
Efficient algorithms in
quantum query complexity

by

Robin Kothari

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2014

c© Robin Kothari 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144147587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In this thesis we provide new upper and lower bounds on the quantum query complexity of a
diverse set of problems. Specifically, we study quantum algorithms for Hamiltonian simulation,
matrix multiplication, oracle identification, and graph-property recognition.

For the Hamiltonian simulation problem, we provide a quantum algorithm with query com-
plexity sublogarithmic in the inverse error, an exponential improvement over previous methods.
Our algorithm is based on a new quantum algorithm for implementing unitary matrices that can
be written as linear combinations of efficiently implementable unitary gates. This algorithm uses
a new form of “oblivious amplitude amplification” that can be applied even though the reflection
about the input state is unavailable.

In the oracle identification problem, we are given oracle access to an unknown N -bit string
x promised to belong to a known set of size M , and our task is to identify x. We present the
first quantum algorithm for the problem that is optimal in its dependence on N and M . Our
algorithm is based on ideas from classical learning theory and a new composition theorem for
solutions of the filtered γ2-norm semidefinite program.

We then study the quantum query complexity of matrix multiplication and related problems
over rings, semirings, and the Boolean semiring in particular. Our main result is an output-
sensitive algorithm for Boolean matrix multiplication that multiplies two n×n Boolean matrices
with query complexity O(n

√
`), where ` is the sparsity of the output matrix. The algorithm is

based on a reduction to the graph collision problem and a new algorithm for graph collision.

Finally, we study the quantum query complexity of minor-closed graph properties and show
that most minor-closed properties—those that cannot be characterized by a finite set of forbidden
subgraphs—have quantum query complexity Θ(n3/2) and those that do have such a characteri-
zation can be solved strictly faster, with o(n3/2) queries. Our lower bound is based on a detailed
analysis of the structure of minor-closed properties with respect to forbidden topological minors
and forbidden subgraphs. Our algorithms are a novel application of the quantum walk search
framework and give improved upper bounds for several subgraph-finding problems.

iii

Acknowledgements

I would like to start by thanking Andrew Childs, who has been my supervisor since I started
my master’s degree. I thank him for being an outstanding supervisor, who worked closely with
me when I needed his help, and let me work independently when I felt I could. At every point
in time, he was the supervisor I needed right then. I would also like to thank John Watrous for
being a great co-supervisor. He was always available to chat and share his ideas, advice, and
wisdom.

Next I would like to thank my thesis committee members—Peter Høyer, Ashwin Nayak,
Richard Cleve, John Watrous, and Andrew Childs—for reading my thesis and providing excellent
feedback. I also thank Andrew, Ashwin, John, and Richard for broadening my knowledge of the
field through the many quantum computing courses they taught.

I thank all my coauthors and collaborators for many enjoyable brainstorming sessions and
fruitful discussions, my friends and colleagues at IQC and UWaterloo for many quantum and non-
quantum discussions, and my friends in Waterloo and elsewhere for their support and friendship.
Lastly, I would like to thank Alison for her love and support over the last couple of years, and
my mother for a lifetime of love and support.

iv

Dedication

This thesis is dedicated to my father.

v

Table of Contents

List of Figures ix

1 Introduction 1

1.1 Query complexity . 2

1.2 Overview . 6

1.3 Preliminaries and notation . 9

2 Hamiltonian simulation and continuous queries 10

2.1 Introduction . 11

2.1.1 Hamiltonian simulation . 11

2.1.2 Continuous-query model . 13

2.1.3 High-level overview of techniques . 15

2.2 Linear Combination of Unitaries (LCU) algorithm 17

2.2.1 A p-implementation of any linear combination of unitaries 18

2.2.2 Oblivious amplitude amplification . 20

2.2.3 Exact LCU algorithm . 23

2.2.4 Approximate oblivious amplitude amplification 24

2.2.5 Approximate LCU algorithm . 27

2.2.6 Summary . 28

2.3 Hamiltonian simulation . 28

2.4 Continuous- and fractional-query simulation . 34

2.5 Open problems . 38

vi

3 Oracle identification 40

3.1 Introduction . 41

3.2 Oracle identification lower bound . 45

3.3 Oracle identification algorithm . 46

3.3.1 Basic halving algorithm . 46

3.3.2 Improved halving algorithm . 47

3.3.3 Final algorithm . 48

3.4 Removing log factors using the filtered γ2 norm . 53

3.4.1 Composition theorem for worst-case query complexity 53

3.4.2 Composition theorem for input-dependent query complexity 55

3.4.3 Algorithm analysis . 57

3.4.4 Nontechnical summary of techniques . 58

3.5 Application to quantum learning theory . 59

3.6 Discussion and open problems . 61

4 Matrix multiplication 62

4.1 Introduction . 63

4.2 Matrix multiplication over rings and semirings . 68

4.2.1 Matrix multiplication over semirings . 68

4.2.2 Matrix multiplication over rings . 70

4.3 Matrix multiplication over the Boolean semiring 72

4.4 Output-sensitive Boolean matrix multiplication . 78

4.4.1 High-level overview of the algorithm . 79

4.4.2 Graph collision algorithm . 81

4.4.3 Boolean matrix multiplication algorithm . 83

4.4.4 Removing log factors . 85

4.4.5 Lower bound and discussion . 87

vii

5 Minor-closed graph properties 89

5.1 Introduction . 90

5.2 Preliminaries . 93

5.3 Lower bounds . 96

5.3.1 Subgraph-closed properties . 97

5.3.2 Acyclicity . 97

5.3.3 A graph invariant for topological minor containment 101

5.3.4 Minor-closed properties . 103

5.4 Algorithms . 106

5.4.1 Sparse graph detection and extraction . 106

5.4.2 Quantum walk search . 108

5.4.3 Detecting subgraphs of sparse graphs . 109

5.4.4 Relaxing sparsity . 112

5.5 Open problems . 116

6 Conclusion 117

References 119

viii

List of Figures

4.1 Output-sensitive quantum query complexity of Boolean matrix multiplication. . . 67

4.2 Query complexity of matrix multiplication and related problems over semirings . . 69

4.3 Query complexity of matrix multiplication and related problems over rings 71

4.4 Query complexity of Boolean matrix multiplication and related problems 76

5.1 Summary of the main results. 92

5.2 Contracting an edge (u, v). 94

5.3 An example of two related graphs in our adversary lower bound 98

ix

Chapter 1

Introduction

Many of the important questions of theoretical computer science concern the complexity of solv-
ing computational problems on powerful models of computation like Turing machines or Boolean
circuits. These questions range from comparing the relative power of resources, such as whether
untrusted certificates help polynomial-time Turing machines (the P vs NP problem) or whether
exploiting quantum mechanics helps polynomial-time Turing machines (the BPP vs BQP prob-
lem), to understanding the complexity of specific problems, such as matrix multiplication, linear
programming, integer factorization, graph isomorphism, etc.

Unfortunately, precisely because these models are so powerful, we are currently unable to
prove good lower bounds for these models. For example, it is consistent with current knowledge
that the NP-complete problem 3SAT can be solved in linear time. More surprisingly, it is also
possible that all problems in NEXP, the class of problems that can be solved in exponential time
on a nondeterministic Turing machine, can be computed by nonuniform polynomial-size Boolean
circuits.

A natural course of action when faced with such difficulty is to work with an easier model of
computation, following George Pólya’s advice [Pól04, p. xxi]:

“If you can’t solve a problem, then there is an easier problem you can’t solve: find it.”

On the one hand, this model should be simple so we can prove good bounds, but on the other hand,
it should be complex enough that we may ask similar questions about the power of certificates,
quantum computing, etc.

The model of query complexity inhabits this Goldilocks zone, between models about which
we can prove too little and models about which we can prove too much.

1

1.1 Query complexity

The primary object of study in this thesis is the model of query complexity, which is also called
decision tree complexity, especially in the classical (i.e., not quantum) literature. (See [BdW02]
for an excellent survey of query complexity and for formal definitions of the models we consider.)

Just like in the Turing machine model,1 we often focus on the complexity of computing
Boolean functions, although more general problems can be studied. Consider the problem of
computing an n-bit Boolean function f : {0, 1}n → {0, 1} on an input x ∈ {0, 1}n. Informally,
query complexity studies following question: How many bits of the input x need to be read to
determine f(x)?

Deterministic query complexity

We can formalize this question in the following way. We imagine that an algorithm wants to
compute f(x), but does not have direct access to the input x. Instead, it must query an oracle or
black box to learn the bits of x. On being queried with an index i ∈ [n], where [n] := {1, 2, . . . , n},
the oracle responds with the value of xi, the ith bit of x. In between queries, the algorithm can
perform arbitrary (deterministic) operations, which may depend on previously queried input bits.
Finally, the algorithm must output a value in {0, 1}. The algorithm is said to compute f if it
outputs f(x) on input x. The query complexity of an algorithm is the maximum number of queries
made by it over all inputs x. The query complexity of a function f is the query complexity of
the best algorithm (i.e., the one with minimum query complexity) that computes f .

Let D(f) denote the deterministic query complexity of a function f : {0, 1}n → {0, 1}. Note
that this is a number between 0 and n, since the input has only n bits.

Let us consider some examples. If f does not depend on x, i.e., f is a constant function, then
D(f) = 0, and these are the only functions with D(f) = 0. On the other hand, consider the
XOR function, defined as XORn(x) =

⊕n
i=1 xi, which computes the parity of all input bits. Any

algorithm that makes fewer than n queries must fail on some input, since changing the value of
any bit that has not been queried changes the output of the function and thus D(XORn) = n.
Another basic function is the OR function, defined as ORn(x) =

∨n
i=1 xi. This function seems

easier than the XOR function, since the output is not as sensitive to changing the value of an input
bit. Indeed, if the algorithm has already queried a bit that is 1, the answer is now determined
to be 1 and the other input bits are irrelevant. Despite this, the OR function is not easier in the
worst case and D(ORn) = n. To see this, imagine a deterministic algorithm makes n− 1 queries
and sees all zeros in the n − 1 bits it has queried. Now the algorithm is forced to output an
answer based on this information, but the OR function depends crucially on the last bit that has
not been queried, and thus the algorithm must answer incorrectly on some input.

1I will use Turing machines as the archetype of a well-motivated and powerful model to which I compare query
complexity, but other models like Boolean circuits or RAM machines would work just as well.

2

Other query complexity models

Just like for Turing machines, we can study randomized, quantum, or nondeterministic variants
of the model. The (bounded-error) randomized query complexity of a function f , denoted R(f),
is the query complexity of the best randomized algorithm that outputs f(x) on input x with
probability at least 2/3. For example, R(ORn) ≤ 2

3n, as demonstrated by the algorithm that
outputs the OR of 2

3n uniformly random bits of the input. If OR(x) = 0, this algorithm always
outputs 0, and if OR(x) = 1, then with probability at least 2/3 the algorithm will see a 1 in
the 2

3n randomly chosen bits. However, the XOR function remains as hard and R(XORn) = n.
Any randomized algorithm that makes fewer than n queries can at best guess the answer with
probability 1/2, since the answer completely depends on the last bit that has not been seen.

Many of the important open problems of complexity theory have analogous questions in query
complexity. Some of these questions can be answered and some remain open. For example, in
the query complexity model P 6= NP and P = BPP, which are widely believed to be true for
Turing machines.2 On the other hand, in query complexity P = NP ∩ coNP, which is believed to
be false for Turing machines. Several simple questions also remain open: Can the randomized
bounded-error (Monte Carlo) complexity ever be asymptotically smaller than the randomized
zero-error (Las Vegas) complexity? What is best asymptotic separation between D(f) and R(f)?

Further motivation

One reason to study query complexity is that it is a simple, but nontrivial model of computation
that we can reason about: a stepping stone to understanding more complex models. But besides
just being a simpler model, query complexity also shares many conceptual ideas and algorithmic
techniques with Turing machine models, making it possible to import tools and techniques from
one model to the other, from standard algorithmic techniques like divide-and-conquer, repeated
squaring, success probability amplification by majority vote, random walks, etc. to more spe-
cialized techniques like color coding [AYZ95], which we use in Chapter 5, and deterministic coin
tossing [CV86], used in several Hamiltonian simulation algorithms [BACS07, CK11b].

Another reason to study query complexity is to prove lower bounds on restricted classes of
algorithms in the standard Turing machine model. For example, the well-known result that any
comparison-based sorting algorithm must make Ω(n log n) comparisons to sort n items fits right
into the model of query complexity. Similarly, we can ask about the complexity of solving 3SAT if
the algorithm is constrained to use the formula as a black box, i.e., it is only allowed to evaluate
it at inputs of its choice. When restricted to such algorithms, it can be shown that solving 3SAT
requires exponential time. This is also essentially a query complexity problem. This shows that
any potential polynomial-time algorithm for 3SAT must use the structure of the Boolean formula
and not merely its input–output relationship.

2Complexity classes can be defined in the query model by thinking of logn as the input size. Thus f ∈ P if
D(f) = poly(log(n)), f ∈ BPP if R(f) = poly(log(n)), etc. E.g., see [Juk12, Ch. 14], [AB09, Ch. 12], or [Ver98].

3

Quantum query complexity

Having motivated the study of query complexity in general, we now move on to quantum query
complexity. Some of the great breakthroughs of quantum algorithms have been conceived in
this model (e.g., Grover’s algorithm [Gro96]). Shor’s factoring algorithm [Sho97] also essentially
solves a query problem exponentially faster than any classical algorithm. Query complexity is a
model of computation where quantum computers are provably better than classical computers.

Let us define the quantum query model more formally. As before, the quantum algorithm
has oracle access to an input string x ∈ {0, 1}n. Since the map i 7→ xi is not unitary, quantum
algorithms have access to a unitary version of this oracle, which acts as Qx|i, b〉 = |i, b ⊕ xi〉.
A quantum algorithm with query complexity T is specified by T + 1 unitaries U0, U1, . . . , UT
acting on m ≥ log n + 1 qubits. This quantum algorithm is said to perform the unitary Vx =
UTQxUT−1Qx . . . U1QxU0, where Qx represents the tensor product of Qx and the identity matrix
when Ui acts on more qubits than Qx. We say this quantum algorithm computes a function f(x)
with error ε if upon measuring the first qubit of Vx|0m〉, the probability of obtaining f(x) is at
least 1 − ε. The bounded-error quantum query complexity of f , denoted Q(f), is the quantum
query complexity of the best quantum algorithm that computes f with error 1/3.

Many of the reasons to study classical query complexity carry over to quantum query complex-
ity. For example, the search lower bound [BBBV97] shows that any potential polynomial-time
quantum algorithm for 3SAT must use the structure of the Boolean formula and not merely its
input–output relationship.

Quantum query complexity also possesses intuitive structural properties that are not known
to hold even for randomized query complexity. For example, consider the direct sum property
of general (not necessarily Boolean) functions. Let D and E be finite sets and consider a (not
necessarily total) function f from D ⊆ Dn to E. In the examples so far, D = E = {0, 1} and
D = {0, 1}n. Let fk : Dk → Ek be the function that computes f on k independent inputs, i.e.,
fk(y1, . . . , yk) = (f(y1), . . . , f(yk)), where yi ∈ D.

For deterministic query complexity, a perfect direct sum theorem holds, i.e., D(fk) = kD(f).
In this case the upper bound is obvious since we can compute k independent copies of a function
using an optimal algorithm for the function k times. The lower bound was shown by [JKS10].
On the other hand, for randomized query complexity the lower bound still holds up to constants
[JKS10], i.e., R(fk) = Ω(kR(f)), but the upper bound is not known to hold. The obstacle is
that a randomized algorithm that computes f with bounded error no longer computes k copies
of f with bounded error. The probability that all outputs are correct may be much smaller than
a constant. Using a standard error reduction argument, which boosts the success probability of
a function by running it O(log k) times and taking the majority of the outcomes, we obtain an
algorithm for f that has error probability 1/poly(k), which can then be used to compute fk with
bounded error. However, this only shows the weaker result that R(fk) = O(kR(f) log k). In fact,
in certain settings it can be shown that this log k factor cannot be removed [FRPU94].

4

Surprisingly, a direct sum result holds for quantum query complexity, up to a multiplicative
constant [LMR+11]. We utilize this theorem several times in this thesis to prove lower bounds
and remove log factors from upper bounds.

Theorem 1.1 (Direct sum theorem). Let f : D → E be a function and let fk : Dk → Ek denote
the problem of computing f on k independent inputs. Then Q(fk) = Θ(kQ(f)).

Another surprising property of quantum query complexity that holds for deterministic query
complexity, but is not known to hold for randomized query complexity, is a Boolean function
composition theorem. If g : D → {0, 1} and f : {0, 1}n → E are functions, where D ⊆ Dm, let
f ◦ g : Dn → E denote the composed function defined as

(f ◦ g)(x) = f(g(x1, . . . , xm), . . . , g(x(n−1)m+1, . . . , xnm)), (1.1)

where x ∈ Dn and xi ∈ D for all i ∈ [nm]. Then it is known that deterministic query complexity
satisfies D(f ◦ g) = D(f)D(g) [Mon13]. Remarkably, the same result holds for quantum query
complexity, up to a multiplicative constant [LMR+11].

Theorem 1.2 (Boolean function composition). If f and g are functions where the input of f is
Boolean and the output of g is Boolean, then Q(f ◦ g) = Θ(Q(f)Q(g)).

We will also use this theorem several times in this thesis to prove upper and lower bounds.
As before, an analogous theorem is not known to hold for randomized query complexity.

These examples show that quantum query complexity behaves more like deterministic query
complexity than randomized query complexity does, and some of our intuition from designing
deterministic algorithms can be carried over to designing quantum algorithms. It seems from the
perspective of query complexity, quantum mechanics is a more elegant description of our universe
than just adding randomness to a deterministic description.

Measuring non-query resources

While we only study query complexity in this thesis, other non-query resources may also be
studied in this model, such as time complexity, gate complexity, space complexity, etc. It is
desirable to minimize these non-query resources if the aim is to implement these algorithms on
a quantum computer. In this thesis, we will only discuss these measures in passing and so we do
not define them formally. Informally, time complexity usually refers to the running time of the
quantum algorithm when run on a model with quantum random access memory. Gate complexity
refers to the total number of arbitrary 1- and 2-qubit gates needed to implement the non-query
unitary operations, restricted to use only such gates. An algorithm is time efficient (or gate
efficient) if its time complexity (or gate complexity) is close to its query complexity.

5

1.2 Overview

We study the quantum query complexity of a diverse set of problems in this thesis, proving new
upper and lower bounds using several different techniques. The classical (i.e., deterministic or
randomized) query complexities of problems considered in this thesis are usually uninteresting
and easy to characterize.

Since this thesis studies the quantum query complexity of several different problems, it has
been written keeping in mind that some readers may only wish to read about a particular problem
or technique, without reading through the entire thesis. To accommodate such readers, the
chapters are written so as to be independent of each other, unless they explicitly use new results
from another chapter (e.g., Chapter 4 uses a new result from Chapter 3). Each chapter also
begins with a short summary, to aid readers who have directly skipped to a particular chapter,
and a citation to published work on which the chapter is based, if any. Consequently, the section
on preliminaries (Section 1.3) only contains ideas that appear throughout the thesis and are not
specific to any one problem.

I have also assumed that the reader has at least as much background in quantum computation
as a first-year graduate student in computer science who has taken an introductory course in
quantum computing. A great resource for attaining this background is the book by Nielsen
and Chuang [NC00]. For example, I assume the reader is familiar with standard notation and
terminology in quantum computing, Grover’s algorithm, query complexity, basic ideas in classical
(deterministic and randomized) algorithms, and elementary graph theory. Other resources for
gaining familiarity with this material include the book by Kaye, Laflamme, and Mosca [KLM06]
for quantum computing; the book by Jukna [Juk12] and the survey by Buhrman and de Wolf
[BdW02] for query complexity; the book by Arora and Barak [AB09] for query complexity and
randomized algorithms; the book by Manber [Man89] for deterministic algorithms; the book by
Motwani and Raghavan [MR95] for randomized algorithms; and the book by Diestel [Die05] for
graph theory.

Problems studied

We now briefly describe the problems studied in this thesis, highlighting the techniques used to
solve them.

In Chapter 2 we study the sparse Hamiltonian simulation problem and the problem of simulat-
ing the continuous- and fractional-query models of query complexity. In the sparse Hamiltonian
simulation problem we are given oracle access to the entries of a sparse Hamiltonian H and we
wish to approximately implement the unitary operator e−iHt, which represents time evolution
due to H for time t. We describe a new algorithm that achieves optimal scaling in terms of the
error parameter and almost optimal scaling in terms of the other parameters of interest. The

6

continuous- and fractional-query models are models of computation that are potentially more
powerful than the standard model of quantum query complexity. We show that these models are
not significantly more powerful by simulating them in the standard model with little overhead
due to simulation.

Our algorithms follow from a new quantum algorithm for implementing unitary matrices that
can be written as linear combinations of efficiently implementable unitary gates. This algorithm
uses a new form of “oblivious amplitude amplification” that can be applied even though the
reflection about the input state is unavailable. The lower bound constructs a Hamiltonian whose
simulation yields an unbounded-error quantum algorithm for the parity function, which is as hard
as computing parity with bounded error.

This chapter is partly based on the following paper:

[BCC+14] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D.
Somma. Exponential improvement in precision for simulating sparse Hamiltonians.
In Proceedings of the 46th ACM Symposium on Theory of Computing (STOC 2014),
pages 283–292, 2014.

In Chapter 3 we give an optimal quantum algorithm for the oracle identification problem.
In the oracle identification problem, we are given oracle access to an unknown N -bit string
x promised to belong to a known set of size M and our task is to identify x. We present
a quantum algorithm for the problem that is optimal in its dependence on N and M . Our
algorithm considerably simplifies and improves the previous best algorithm due to Ambainis et
al. [AIK+07]. Our algorithm also has applications in quantum learning theory, where it improves
the complexity of exact learning with quantum membership queries, resolving a conjecture of
Hunziker et al. [HMP+10].

Our algorithm is based on ideas from classical learning theory and a new composition theorem
for solutions of the filtered γ2-norm semidefinite program, which characterizes quantum query
complexity. Our algorithm also yields an improved upper bound for the problem of exact learning
using quantum membership queries. Our composition theorem is quite general and allows us
to compose quantum algorithms with input-dependent query complexities without incurring a
logarithmic overhead for error reduction. We use the composition theorem in the next chapter
to remove all log factors from the optimal quantum algorithm for Boolean matrix multiplication.

This chapter is based on the following paper:

[Kot14] Robin Kothari. An optimal quantum algorithm for the oracle identification problem.
In Proceedings of the 31st International Symposium on Theoretical Aspects of Computer
Science (STACS 2014), volume 25 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 482–493, 2014.

7

In Chapter 4 we study the quantum query complexity of matrix multiplication and related
problems. We survey and extend known results on the quantum query complexity of matrix
multiplication, matrix product verification, and related problems over rings, semirings and the
Boolean semiring in particular. We also study relationships between these problems and other
problems studied in quantum query complexity, such as the triangle finding problem and the
graph collision problem.

Our main result is an output-sensitive quantum algorithm for Boolean matrix multiplication
that multiplies two n×n Boolean matrices with query complexity O(n

√
`), where ` is the number

of nonzero entries in the output matrix. Our algorithm is based on the observation that Boolean
matrix multiplication can be reduced to several instances of the graph collision problem and that
these instances of graph collision correspond to dense graphs. For these instances we develop a
quantum algorithm that is more efficient than known algorithms for the general graph collision
problem. We also prove a matching lower bound for Boolean matrix multiplication for all ` ≤ εn2,
for any constant ε < 1.

Section 4.4 of this chapter contains results from the following paper:

[JKM12] Stacey Jeffery, Robin Kothari, and Frédéric Magniez. Improving Quantum Query Com-
plexity of Boolean Matrix Multiplication Using Graph Collision. In Automata, Lan-
guages, and Programming, volume 7391 of Lecture Notes in Computer Science, pages
522–532. Springer, 2012.

In Chapter 5 we study the quantum query complexity of minor-closed graph properties of n-
vertex graphs. We show that most minor-closed properties—those that cannot be characterized
by a finite set of forbidden subgraphs—have quantum query complexity Θ(n3/2) and those that
do have such a characterization can be solved strictly faster, with o(n3/2) queries, where the input
size is Θ(n2).

Our algorithms are a novel application of the quantum walk search framework and give im-
proved upper bounds for several subgraph-finding problems. Our lower bound is based on a
detailed analysis of the structure of minor-closed properties with respect to forbidden topological
minors and forbidden subgraphs.

This chapter is based on the following paper:

[CK12] Andrew M. Childs and Robin Kothari. Quantum query complexity of minor-closed graph
properties. SIAM Journal on Computing, 41(6):1426–1450, 2012.

The thesis ends with concluding remarks in Chapter 6.

8

1.3 Preliminaries and notation

In this thesis we will occasionally describe oracles only by their classical behavior and assume
that quantum algorithms have access to the standard unitary version of the oracle. For example,
when the oracle holds a bit string x, classical algorithms are given access to an oracle that outputs
xi on input i, while quantum algorithms have access to a unitary that maps |i, b〉 to |i, b⊕ xi〉 for
b ∈ {0, 1}. When the oracle holds a string x where each xi ∈ {0, 1, . . . ,m−1}, we have access to a
unitary that maps |i, b〉 to |i, (b+xi) mod m〉 for b ∈ {0, 1, . . . ,m−1}. If the oracle is supposed to
contain real or complex numbers, we assume the oracle contains finite precision approximations.

We will often implicitly use the fact that if we want to perform a product of unitaries
UmUm−1 . . . U2U1, but instead perform unitaries that are ε-close to these, then the total error
caused by this is at most εm. This is justified by the following theorem [NC00, eq. (4.63)].

Theorem 1.3 (Subadditivity of error in implementing unitaries). If Ui and Vi are unitary ma-
trices for i ∈ [m], then

‖UmUm−1 . . . U2U1 − VmVm−1 . . . V2V1‖ ≤
m∑
i=1

‖Ui − Vi‖. (1.2)

Throughout the thesis, when proving asymptotic statements we will assume that large integers
are powers of 2, unless this assumption is not valid for the situation under consideration. For
example, if we are trying to show that Q(f) = O(

√
n) and it is clear that the quantum query

complexity of f is monotonically increasing in n, it is sufficient to prove this claim for all n that
are powers of 2.

The function log n denotes the base-2 logarithm of n. For any positive integer n, we define
[n] := {1, 2, . . . , n}. We use the notation Õ to indicate that we are suppressing polylog factors.
More precisely, f(n) = Õ(g(n)) means f(n) = O(g(n) logk n) for some constant k.

We will use ‖A‖ to denote the spectral norm of an operator A. If unspecified, we quantify the
distance between operators U and V with the function ‖U − V ‖ and the distance between states
|ψ〉 and |φ〉 with the function ‖|ψ〉 − |φ〉‖.

9

Chapter 2

Hamiltonian simulation and
continuous queries

Chapter summary: We provide a quantum algorithm for simulating the dynamics
of sparse Hamiltonians with complexity sublogarithmic in the inverse error, an ex-
ponential improvement over previous methods. Specifically, we show that a d-sparse

Hamiltonian H can be simulated for time t with precision ε using O
(
τ log(τ/ε)

log log(τ/ε)

)
queries, where τ = d2‖H‖maxt. Unlike previous approaches based on product formu-
las, the query complexity is independent of the number of qubits acted on. We also
show that our algorithm is optimal as a function of the error.

Our algorithm is based on a new quantum algorithm for implementing a linear com-
bination of unitary matrices and a new form of “oblivious amplitude amplification”
that can be applied even though the reflection about the input state is unavailable.
Using this algorithm we also significantly improve the simulation of the continuous-
and fractional-query models using discrete quantum queries, showing that the former
models are not much more powerful than the discrete model even for very small error.

This chapter is based on the following paper:

[BCC+14] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D.
Somma. Exponential improvement in precision for simulating sparse Hamiltonians.
In Proceedings of the 46th ACM Symposium on Theory of Computing (STOC 2014),
pages 283–292, 2014.

10

2.1 Introduction

In this chapter we study two a priori unrelated problems: the sparse Hamiltonian simulation
problem and the problem of simulating the continuous- or fractional-query model of quantum
query complexity in the standard (discrete-query) model.

We solve both problems using a new quantum algorithm for implementing unitary matrices
that can be expressed as a linear combination of efficiently implementable unitary gates. We call
this the Linear Combination of Unitaries (LCU) algorithm. Although this chapter is based on
[BCC+14] and our algorithms are conceptually similar to those in [BCC+14], our approach is
different as we solve both problems using the LCU algorithm. Let us start by introducing the
two problems and our techniques.

2.1.1 Hamiltonian simulation

Motivation

The simulation of quantum systems is a major potential application of quantum computers.
Indeed, the problem of simulating Hamiltonian dynamics was the original motivation for the idea
of quantum computation [Fey82]. The first quantum algorithm for simulating Hamiltonians was
due to Lloyd, who provided an efficient algorithm for simulating local Hamiltonians [Llo96]. A
local Hamiltonian is a sum of terms that act nontrivially on a constant number of qubits. Here
we consider the more general problem of simulating sparse Hamiltonians, a generalization of local
Hamiltonians. This problem naturally fits into the query complexity model and has been widely
studied [AT03, Chi04, BACS07]. Sparse Hamiltonian simulation has also proved to be a useful
subroutine in the design of new quantum algorithms [CCD+03, CCJY09, HHL09].

Problem description

In the Hamiltonian simulation problem, we are given a Hamiltonian H (a 2n × 2n Hermitian
matrix) acting on n qubits, a time t > 0, and an error parameter ε > 0. Our task is to construct
a circuit that performs the unitary operation e−iHt with error at most ε. For a quantum system
with Hamiltonian H, the state of the system at time t, |ψ(t)〉, satisfies |ψ(t)〉 = e−iHt|ψ(0)〉.

More formally, we consider the problem of simulating a d-sparse Hamiltonian, a Hamiltonian
with at most d nonzero entries in any row or column, in the model of query complexity where we
are given access to the d-sparse Hamiltonian H via a black box that accepts a row index i ∈ [2n]
and a number j ∈ [d], and returns the position and value of the jth nonzero entry of H in the ith

row. More precisely since the entries are complex numbers, the oracle provides finite precision
approximations of the real and imaginary parts. Our task is to construct a circuit U , such that
‖U − e−iHt‖ ≤ ε, using as few queries to the black box as possible.

11

History

The first efficient algorithm for sparse Hamiltonian simulation was due to Aharonov and Ta-
Shma [AT03]. The key idea (also applied in [CCD+03]) is to use edge coloring to decompose the
Hamiltonian H into a sum of Hamiltonians

∑m
j=1Hj , where each Hj is easy to simulate. These

terms are then recombined using the Lie product formula, which states that

e−iHt ≈
(
e−iH1t/re−iH2t/r · · · e−iHmt/r

)r
(2.1)

for large r. This method gives query complexity poly(n, d)(‖H‖t)2/ε, where ‖·‖ denotes the
spectral norm. This was later improved using high-order product formulas and more efficient
decompositions of the Hamiltonian [Chi04, BACS07, CK11b]. The best algorithm of this type
[CK11b] has query complexity O(d2(d+ log∗ n)‖H‖t(d‖H‖t/ε)δ), where δ > 0 can be arbitrarily
small.1 This complexity is only slightly superlinear in t and increases as an arbitrarily small power
of 1/ε. An alternative Hamiltonian simulation method based on a quantum walk [Chi10, BC12]
is incomparable to these methods. That method has query complexity O(d‖H‖maxt/

√
ε), where

‖H‖max denotes the largest entry of H in absolute value, so its performance is better in terms of
‖H‖maxt and d but significantly worse in terms of ε.

We note that all these algorithms have exponential or nearly exponential dependence on
log(1/ε), the number of bits needed to specify ε.

Our results

In this chapter, we present a dramatically improved algorithm that shows the following.

Theorem 2.1 (Sparse Hamiltonian simulation). A d-sparse Hamiltonian H can be simulated for

time t with error at most ε using O
(
τ log(τ/ε)

log log(τ/ε)

)
queries, where τ := d2‖H‖maxt ≥ 1.

Our algorithm has exponentially improved dependence on 1/ε compared to all previous algo-
rithms. Our algorithm strictly improves upon all previous approaches based on product formulas
(e.g., [Llo96, AT03, Chi04, BACS07, CK11b]), as our algorithm has no dependence on n, and
improved dependence on d and t. The Hamiltonian simulation method based on a quantum walk
[Chi10, BC12] is incomparable as its performance is better in terms of ‖H‖maxt and d but signif-
icantly worse in terms of ε. Thus, while suboptimal for (say) constant-precision simulation, the
results of Theorem 2.1 currently give the best known Hamiltonian simulations as a function of ε.

The performance of our algorithm is optimal or nearly optimal as a function of some of
its parameters. A lower bound of Ω(‖H‖maxt) follows from the no-fast-forwarding theorem of
[BACS07], showing that our algorithm’s dependence on ‖H‖maxt is almost optimal. However,

1Here log∗ denotes the iterated logarithm function, the number of times the logarithm function must be applied
to obtain a result at most 1, i.e., log∗ n = 0 if n ≤ 1 and log∗ n = 1 + log∗(logn) if n > 1.

12

prior to our work, there was no known ε-dependent lower bound, not even one ruling out algo-
rithms with no dependence on ε. We show that, surprisingly, our dependence on ε in Theorem 2.1
is optimal.

Theorem 2.2 (ε-dependent lower bound for Hamiltonian simulation). For any ε > 0, there exists
a 2-sparse Hamiltonian H with ‖H‖max < 1 such that simulating H with precision ε for constant

time requires Ω
(

log(1/ε)
log log(1/ε)

)
queries.

2.1.2 Continuous-query model

Problem description

To introduce the notion of continuous queries, recall that in the usual model of quantum query
complexity, we wish to solve a problem whose input x ∈ {0, 1}N is given by an oracle (or black
box) that can be queried to learn the bits of x. The measure of complexity, called the query
complexity, is the number of times we query the oracle. More precisely, we are given access to a
unitary gate Qx whose action on the basis states |j〉|b〉 is

Qx|j〉|b〉 = (−1)bxj |j〉|b〉 (2.2)

for all j ∈ [N] := {1, 2, . . . , N} and b ∈ {0, 1}.2 A quantum query algorithm is a quantum circuit
consisting of arbitrary x-independent unitaries and Qx gates. The query complexity of such an
algorithm is the total number of Qx gates used in the circuit.

The query model is often used to study the complexity of evaluating a classical function of x.
However, it is also natural to consider more general tasks. In order of increasing generality, such
tasks include state generation [AMRR11], state conversion [LMR+11], and implementing unitary
operations [BC12]. Here we focus on the last of these tasks, where for each possible input x
we must perform some unitary operation Ux. Considering this task leads to a strong notion
of simulation: to simulate a given algorithm in the sense of unitary implementation, one must
reproduce the entire correct output state for every possible input state, rather than simply (say)
evaluating some predicate in one bit of the output with a fixed input state.

Since quantum mechanics is fundamentally described by the continuous dynamics of the Schrö-
dinger equation, it is natural to ask if the query model can be made less discrete. In particular,
instead of using the gate Qx for unit cost, what if we can make half a query for half the cost?
This perspective is motivated by the idea that if Qx is performed by a Hamiltonian running for
unit time, we can stop the evolution after half the time to obtain half a query. In general we
could run this Hamiltonian for time α ∈ (0, 1] at cost α. This fractional-query model is at least as
powerful as the standard (discrete-query) model. More formally, we define the model as follows.

2This unitary is equivalent to one that maps |j, b〉 to |j, b ⊕ xj〉. They are related by a Hadamard transform
performed on the second register.

13

Definition 2.1 (Fractional-query model). For x ∈ {0, 1}N and α ∈ [0, 1], let Qαx be the operator
that acts as

Qαx |j〉|b〉 = e−iπαbxj |j〉|b〉 (2.3)

for all j ∈ [N] and b ∈ {0, 1}. An algorithm in the fractional-query model is a sequence of
unitary gates UmQ

αmUm−1 · · ·U1Q
α1U0, where Ul are arbitrary unitaries and αl ∈ (0, 1] for all

l ∈ [m]. The fractional-query complexity of this algorithm is
∑m

l=1 αl and the total number of
fractional-query gates used is m.

This idea can be taken further by taking the limit as the sizes of the fractional queries approach
zero to obtain a continuous variant of the model, called the continuous-query model [FG98]. In
this model, we have access to a query Hamiltonian Hx acting as Hx|j〉|b〉 = πbxj |j〉|b〉. Unlike the
fractional- and discrete-query models, this is not a circuit-based model of computation. In this
model we are allowed to evolve for time T according to the Hamiltonian given by Hx +HD(t) for
an arbitrary time-dependent driving Hamiltonian HD(t), at cost T .

Definition 2.2 (Continuous-query model). Let Hx act as Hx|j〉|b〉 = πbxj |j〉|b〉 for all j ∈ [N]
and b ∈ {0, 1}. An algorithm in the continuous-query model is specified by an arbitrary x-
independent driving Hamiltonian HD(t) for t ∈ [0, T]. The algorithm implements the unitary
operation U(T) obtained by solving the Schrödinger equation

i
d

dt
U(t) =

(
Hx +HD(t)

)
U(t) (2.4)

with U(0) = 1. The continuous-query complexity of this algorithm is T , the total evolution time.

Because e−iαHx = Qαx , running the Hamiltonian Hx with no driving Hamiltonian for time
T = α is equivalent to an α-fractional query.

History

While initial work on the continuous-query model focused on finding analogues of known algo-
rithms [FG98, Moc07], it has also been studied with the aim of proving lower bounds on the
discrete-query model [Moc07]. Furthermore, the model has led to the discovery of new quantum
algorithms. In particular, Farhi, Goldstone, and Gutmann [FGG08] discovered an algorithm with
continuous-query complexity O(

√
n) for evaluating a balanced binary NAND tree with n leaves,

which is optimal. This result was later converted to the discrete-query model with the same query
complexity [CCJY09, ACR+10].

A similar conversion can be performed for any algorithm with a sufficiently well-behaved
driving Hamiltonian [Chi10]. However, this leaves open the question of whether continuous-
query algorithms can be generically converted to discrete-query algorithms with the same query

14

complexity. This was almost resolved by Cleve, Gottesman, Mosca, Somma, and Yonge-Mallo
[CGM+09], who gave an algorithm that approximates a T -query continuous-query algorithm to

bounded error with O
(
T log T

log log T

)
discrete queries. However, to approximate a continuous-query

algorithm to precision ε, the algorithm of [CGM+09] uses O
(

1
ε
T log T

log log T

)
queries. Ideally we would

like the dependence on ε to be polylogarithmic, instead of polynomial, in 1/ε. For example, such
behavior would be desirable when using a fractional-query algorithm as a subroutine.

For the problem of evaluating a classical function of a black-box input, an approach based
on the general adversary bound and the filtered γ2 norm shows that the continuous-query com-
plexity is at most a constant factor smaller than the discrete-query complexity for a bounded-
error simulation [LMR+11]. However, it remains unclear whether the unitary implemented by
a continuous-query algorithm can be simulated (even with bounded error) using O(T) queries.
Such a result does hold for state conversion, but its dependence on error is quadratic [LMR+11].

Our results

We present a significantly improved and dramatically simplified simulation of the continuous- and
fractional-query models. In Section 2.4, we show the following.

Theorem 2.3 (Continuous-query simulation). An algorithm with continuous- or fractional-query

complexity T ≥ 1 can be simulated with error at most ε with O
(
T log(T/ε)

log log(T/ε)

)
queries.

Since the continuous-query model is at least as powerful as the discrete-query model, a discrete
simulation must use Ω(T) queries, showing our dependence on T is close to optimal. As in

Hamiltonian simulation, a lower bound of Ω
(

log(1/ε)
log log(1/ε)

)
queries for a continuous-query algorithm

with T = O(1) can be shown [BCC+14], so the dependence of our simulation on ε is optimal.

2.1.3 High-level overview of techniques

Both the upper bounds in this chapter (Theorem 2.1 and Theorem 2.3) are based on the algorithm
for implementing linear combinations of unitary matrices, which we abbreviate to LCU algorithm.

LCU algorithm

The LCU algorithm is a new quantum algorithm for implementing any unitary V that can be
written as a linear combination of efficiently implementable unitary matrices Ui, i.e., V =

∑
i aiUi.

If each Ui requires at most q queries to implement, then the LCU algorithm allows us to implement
V perfectly on a quantum computer using O(aq) queries, where a := ‖~a‖1 =

∑
i |ai| and ~a :=

(a1, a2, . . .). The algorithm also works when only an approximation to V is known in terms of a
linear combination of unitaries. This is described in Section 2.2.

15

Oblivious amplitude amplification

The LCU algorithm works by first implementing a probabilistic version of V , which is a unitary
W that implements V coherently with (say) constant probability. From such a map W we
show how to construct an algorithm for V using only a constant number of uses of W . This step
requires us to perform amplitude amplification in a situation where we do not know how to reflect
about the input state, a primitive needed in standard amplitude amplification. Even though this
reflection is not available, we show that a different reflection suffices to reproduce the behavior
of amplitude amplification. We call this technique oblivious amplitude amplification, as it is a
form of amplitude amplification that works without knowledge of the input state. We show this
in Section 2.2.

Hamiltonian simulation algorithm

The reduction from Hamiltonian simulation to implementing a linear combination of unitaries
is conceptually easy. Suppose our Hamiltonian was itself a linear combination of unitaries, i.e.,
H =

∑
j cjUj , where Uj is unitary for all j. Then the map we wish to implement, e−iHt, is

already a linear combination of unitaries:

e−iHt =
∞∑
l=0

1

l!
(−iHt)l =

∞∑
l=0

1

l!

(
−i
∑
j

cjUjt
)l
. (2.5)

When expanded out, each term is a scalar multiplied by a product of unitary operators. Although
this is an infinite sum, a good approximation can be obtained by truncating the sum.

This shows that the LCU algorithm can handle the situation where H is itself a linear com-
bination of unitaries. However, what we have is an arbitrary d-sparse H, and not one that is the
linear combination of unitaries. This is resolved in two stages: First, we decompose H into a sum
of 1-sparse Hamiltonians, a popular strategy in Hamiltonian simulation algorithms. After this,
we show that a 1-sparse Hamiltonian can be decomposed into a linear combination of unitaries.
We describe this in more detail in Section 2.3.

Hamiltonian simulation lower bound

The main idea behind the lower bound is the construction of a Hamiltonian whose exact sim-
ulation for any time t > 0 allows us to compute the parity of an n-bit string with unbounded
error, which is as hard as computing parity exactly, requiring Ω(n) queries [BBC+01, FGGS98].
Therefore, exactly simulating a sparse Hamiltonian for any time t > 0 can be made arbitrarily
hard, independent of t. Since we want to prove a lower bound for a simulation with error, we must
have an accurate enough simulation to allow this reduction to work. If the simulation error is
smaller than the bias of our unbounded-error algorithm, then the unbounded-error algorithm will
still compute parity and will therefore require Ω(n) queries. We show this result in Section 2.3.

16

Continuous-query simulation algorithm

We start by showing that the continuous-query model and fractional-query models are equivalent.
Thus we can instead simulate the fractional-query model, which is almost already in a form that
can be simulated by the LCU algorithm. Consider the unitary V performed by a fractional-query
algorithm with fractional-query complexity at most 1. V has the following form for some m ∈ N:

V = WmQ
αmWm−1Q

αm−1 · · ·W1Q
α1W0, (2.6)

where for all i ∈ [m], Wi are arbitrary unitaries, αi ∈ (0, 1], and
∑

i αi ≤ 1. While it may not
be obvious from the definition of Qα, Qα can be expressed as a linear combination of 1 and Q
(see (2.67)). Thus V can be written as a linear combination of unitaries. However, in some of
these terms Q appears a large number of times, and these terms would be costly to implement.
But these terms also have low weight in the superposition and we show that deleting all such
expensive terms does not affect the unitary V much. We show this in Section 2.4.

2.2 Linear Combination of Unitaries (LCU) algorithm

We begin by introducing the LCU algorithm, a new quantum algorithm for implementing any
unitary that can be expressed as a linear combination of efficiently implementable unitary gates.

Suppose we wish to implement a unitary V that can be written as a linear combination of
unitary gates Ui, i.e., V =

∑
aiUi, where the unitaries Ui are considered easy to perform in

the model under consideration (e.g., query complexity or gate complexity). Formally we mean
the set of unitaries Ui can be efficiently implemented in superposition in the sense that the map
U :=

∑
i |i〉〈i| ⊗ Ui is efficiently implementable. The unitary U maps |i〉|ψ〉 to |i〉Ui|ψ〉. In the

query complexity model, it is easy to show that if every Ui can be implemented with at most
q queries then U can also be implemented with q queries. In other models this may not be the
case, and hence we state our results in terms of the number of uses of U .

We will also assume that the coefficients ai are real and positive without loss of generality,
since the phase of ai can be absorbed into Ui.

In addition to the map U , we will need a unitary A that maps the state |0m〉 to 1√
a

∑
i

√
ai|i〉,

where a := ‖~a‖1 =
∑

i |ai|. In our applications, the matrices Ui will depend on the oracle and
therefore cost queries to perform, but the values of ai are known and thus implementing A costs
no queries. However, we state our results in terms of number of uses of U and A for generality.

We first show an exact version of the LCU algorithm, which is a procedure that exactly
implements V using the maps U and A (and their inverses) O(a) times. We then extend our
algorithm to work in the case where V can only be approximated by a linear combination of
unitary gates. In this case the LCU algorithm only approximately performs V .

17

This section is structured as follows. In Section 2.2.1 we define what we call (for some p ≥ 0)
a p-implementation, a kind of probabilistic implementation of an operator (see Definition 2.3).
We then show how any operator that is expressible as a linear combination of unitaries can be
p-implemented. Using oblivious amplitude amplification, described in Section 2.2.2, we show in
Section 2.2.3 that a p-implementation W of a unitary operator V can be converted to a perfect
implementation of V using O(1/

√
p) uses of W . In Section 2.2.4 we prove a more robust version

of oblivious amplitude amplification to handle the case where V is only close to a unitary. In
Section 2.2.5, we show how to implement V approximately using O(1/

√
p) uses of W , even when

V is only close to a unitary.

Finally in Section 2.2.6 we state a useful corollary of the results of this section, which will be
used in a black box manner for the rest of this chapter. Readers may skip to Section 2.2.6 if they
only wish to use the LCU algorithm as a black box.

2.2.1 A p-implementation of any linear combination of unitaries

We start by defining what it means to p-implement an operator V .

Definition 2.3 (p-implementation). Let V be an operator acting on n qubits and p ≥ 0. We say
a unitary W acting on m+ n qubits p-implements V if for all n-qubit states |ψ〉,

W |0m〉|ψ〉 =
√
p|0m〉V |ψ〉+ |Φ⊥〉, (2.7)

where the unnormalized state |Φ⊥〉 satisfies (|0m〉〈0m| ⊗ 1)|Φ⊥〉 = 0.

In this thesis we only use this informally to build intuition and do not study it in detail. A
p-implementation W of a (possibly nonunitary) map V is a probabilistic implementation of V
in the sense that after performing W we can measure whether the first register is |0m〉 and if
so, we have exactly performed V . The probability of obtaining this result is p‖V |ψ〉‖2. When
V is unitary, this probability is p. This notion is more intuitive when V is unitary, since in this
case p cannot be larger than 1 and p measures how well W implements V . In particular p = 1
corresponds to a perfect implementation of V . On the other hand, when V is nonunitary, p can
be larger than 1.

Such implementations have been studied before in several contexts, often paired with some
technique for recovering the original input state in case we obtain the unfavorable measurement
outcome. In the quantum circuit synthesis community, this is known as the Repeat-Until-Success
paradigm (see [PS13] and the references therein).

This problem also arose in the previous best simulation of the fractional- and continuous-
query models using discrete queries [CGM+09, BCG14]. In these approaches they p-implement
a unitary V for some constant p and show how to recover the original input state from |Φ⊥〉.

18

However, this recovery procedure is itself a probabilistic procedure, i.e., it is only known how to
p-implement the recovery map. Thus with some probability the recovery fails again, and now
two recovery operations are needed, and so on. Thus this recovery stage required a complicated
fault-correction procedure that is difficult to analyze and considerably harder to make efficient in
terms of gate complexity. Indeed, the original algorithm of [CGM+09] was not gate efficient and
was made gate efficient by a later paper [BCG14].

Let us now show that any (not necessarily unitary) operator V that can be expressed as a
linear combination of unitaries can be p-implemented by a simple quantum circuit.

Lemma 2.1 (p-implementation of V). Let V =
∑

i aiUi be a linear combination of unitary
matrices Ui with ai > 0 for all i. Let A be a unitary matrix that maps |0m〉 to 1√

a

∑
i

√
ai|i〉,

where a := ‖~a‖1 =
∑

i ai. Let U :=
∑

i |i〉〈i| ⊗ Ui and p := 1/a2. Then W := A†UA satisfies

W |0m〉|ψ〉 =
√
p|0m〉V |ψ〉+ |Φ⊥〉 (2.8)

for all states |ψ〉, where the unnormalized state |Φ⊥〉, which depends on |ψ〉, satisfies Π|Φ⊥〉 = 0,
where Π = |0m〉〈0m| ⊗ 1.

Proof. This can be shown by straightforward computation.

W |0m〉|ψ〉 = A†UA|0m〉|ψ〉 (2.9)

= A†U

(
1√
a

∑
i

√
ai|i〉|ψ〉

)
= A†

(
1√
a

∑
i

√
ai|i〉Ui|ψ〉

)
(2.10)

= ΠA†

(
1√
a

∑
i

√
ai|i〉Ui|ψ〉

)
+ (1−Π)A†

(
1√
a

∑
i

√
ai|i〉Ui|ψ〉

)
(2.11)

= (|0m〉 ⊗ 1)

(
1√
a

∑
i

√
ai〈i| ⊗ 1

)(
1√
a

∑
i

√
ai|i〉Ui|ψ〉

)
+ |Φ⊥〉 (2.12)

=
1

a
|0m〉V |ψ〉+ |Φ⊥〉 =

√
p|0m〉V |ψ〉+ |Φ⊥〉, (2.13)

where |Φ⊥〉 := (1−Π)A†
(

1√
a

∑
i

√
ai|i〉Ui|ψ〉

)
satisfies Π|Φ⊥〉 = 0 because Π(1−Π) = 0.

Given a p-implementation of the operator we wish to implement, previous approaches mea-
sured the first register and attempted to recover the input state from |Φ⊥〉 in case of the unfa-
vorable outcome. This is often difficult to analyze and requires understanding the set of states
|Φ⊥〉 for every input state |ψ〉. We avoid these difficulties by introducing a general tool we call
oblivious amplitude amplification.

19

2.2.2 Oblivious amplitude amplification

Given a unitary W that p-implements a unitary V , oblivious amplitude amplification uses a
version of amplitude amplification and provides a p′-implementation of V , where p′ > p. In
particular, as in amplitude amplification, if p is known, we can exactly perform V .

This technique applies to any p-implementation of a unitary and can therefore be applied
in any context in which a p-implementation is available. Oblivious amplitude amplification has
already found use in quantum circuit synthesis [PS13, WR14]. It can also be used to improve
the performance of the previous best algorithms for simulating the continuous- and fractional-
query models as shown in [BCC+14]. In this chapter we match the performance of this improved
algorithm, although we use the LCU algorithm instead.

In standard amplitude amplification, to amplify the “good” part of a state, we need to be
able to reflect about the state itself and the projector onto the good subspace. While the latter is
easy in our application, we cannot reflect about the unknown input state. Nevertheless, we show
the following.

Lemma 2.2 (Oblivious amplitude amplification). Let W and V be unitary matrices on n + m
qubits and n qubits, respectively, and let θ ∈ (0, π/2). Suppose that for any n-qubit state |ψ〉,

W |0m〉|ψ〉 = sin(θ)|0m〉V |ψ〉+ cos(θ)|Φ⊥〉, (2.14)

where |Φ⊥〉 is an (n + m)-qubit state that depends on |ψ〉 and satisfies Π|Φ⊥〉 = 0, where Π =
|0m〉〈0m| ⊗ 1. Let R := 2Π− 1 and S := −WRW †R. Then for any t ∈ Z,

StW |0m〉|ψ〉 = sin
(
(2t+ 1)θ

)
|0m〉V |ψ〉+ cos

(
(2t+ 1)θ

)
|Φ⊥〉. (2.15)

Note that WRW † is not the reflection about the initial state, so Lemma 2.2 does not follow
from amplitude amplification alone. However, in the context described in the lemma, it suffices
to use a different reflection.

The motivation for oblivious amplitude amplification comes from work of Marriott and Wa-
trous on in-place amplification of QMA [MW05] (see also related work using amplitude ampli-
fication to obtain a quadratic improvement [NWZ09]). It is also related to Watrous’ Quantum
Rewinding Lemma [Wat09], but our situation is slightly different and also we use amplitude
amplification, which gives us a perfect implementation of V when p is known.

Specifically, Lemma 2.2 follows from the following technical lemma, which shows that during
amplitude amplification the state remains in a certain 2-dimensional subspace in which it is
possible to perform the appropriate reflections.

20

Lemma 2.3 (2D Subspace Lemma). Let W and V be unitary matrices on n + m qubits and n
qubits, respectively, and let p ∈ (0, 1). Suppose that for any n-qubit state |ψ〉,

W |0m〉|ψ〉 =
√
p|0m〉V |ψ〉+

√
1− p|Φ⊥〉, (2.16)

where |Φ⊥〉 is an (n + m)-qubit state that depends on |ψ〉 and satisfies Π|Φ⊥〉 = 0, where Π =
|0m〉〈0m| ⊗ 1. Then the state |Ψ⊥〉, defined by the equation

W |Ψ⊥〉 :=
√

1− p|0m〉V |ψ〉 − √p|Φ⊥〉 (2.17)

satisfies Π|Ψ⊥〉 = 0.

Proof. For any n-qubit state |ψ〉, let |Ψ〉 := |0m〉|ψ〉 and |Φ〉 := |0m〉V |ψ〉. Then the following
equations hold for all |ψ〉.

W |Ψ〉 =
√
p|Φ〉+

√
1− p|Φ⊥〉 (2.18)

W |Ψ⊥〉 =
√

1− p|Φ〉 − √p|Φ⊥〉, (2.19)

where Π|Φ⊥〉 = 0. It follows from these equations that 〈Ψ|Ψ⊥〉 = 0. The lemma asserts that not
only is |Ψ⊥〉 orthogonal to |Ψ〉, but also Π|Ψ⊥〉 = 0.

To show this, consider the operator

Q := (〈0m| ⊗ 1)W †ΠW (|0m〉 ⊗ 1). (2.20)

For any state |ψ〉,

〈ψ|Q|ψ〉 = ‖ΠW |0m〉|ψ〉‖2 = ‖Π(
√
p|Φ〉+

√
1− p|Φ⊥〉)‖2 = ‖√p|Φ〉‖2 = p. (2.21)

In particular, this holds for a basis of eigenvectors of Q, and so Q = p1.

Thus for any |ψ〉, we have

p|ψ〉 = Q|ψ〉 = (〈0m| ⊗ 1)W †ΠW (|0m〉 ⊗ 1)|ψ〉 = (〈0m| ⊗ 1)W †ΠW |Ψ〉 =
√
p(〈0m| ⊗ 1)W †|Φ〉.

(2.22)
From (2.18) and (2.19) we get W †|Φ〉 =

√
p|Ψ〉 +

√
1− p|Ψ⊥〉. Plugging this into the previous

equation we get

p|ψ〉 =
√
p(〈0m| ⊗ 1)(

√
p|Ψ〉+

√
1− p|Ψ⊥〉) = p|ψ〉+

√
p(1− p)(〈0m| ⊗ 1)|Ψ⊥〉. (2.23)

This gives us
√
p(1− p)(〈0m| ⊗ 1)|Ψ⊥〉 = 0. Since p ∈ (0, 1), this implies Π|Ψ⊥〉 = 0.

21

Note that this fact can also be viewed as a consequence of Jordan’s Lemma [Jor75]. Since
this alternate proof may be more illuminating for some readers, we provide a short proof sketch.

Jordan’s Lemma guarantees that the space of (n + m)-qubit states can be decomposed into
a direct sum of 1- and 2-dimensional subspaces that are invariant under the projectors Π and
W †ΠW . In this decomposition, Π and W †ΠW are rank-1 projectors when restricted to the
2-dimensional subspaces. Let |0m〉|ψi〉 denote the eigenvalue-1 eigenvector of Π within the ith

2-dimensional subspace Si. Since Si is invariant under W †ΠW , the state W †ΠW |0m〉|ψi〉 =√
pW †|0m〉V |ψi〉 belongs to Si. Thus |Ψ⊥i 〉 := W †(

√
1− p|0m〉V |ψi〉 −

√
p|Φ⊥i 〉) is in Si, since

it is a linear combination of |0m〉|ψi〉 = W †(
√
p|0m〉V |ψi〉 +

√
1− p|Φ⊥i 〉) and W †ΠW |0m〉|ψi〉.

However, |Ψ⊥i 〉 is orthogonal to |0m〉|ψi〉 and is therefore an eigenvalue-0 eigenvector of Π, since Π
is a rank-1 projector in Si. Thus the lemma is true when restricted to the states |ψi〉, as opposed
to all n-qubit states |ψ〉.

We now show that a general state |ψ〉 can be written as a linear combination of the states
|ψi〉, which completes the proof. We claim that the number of states |ψi〉 is exactly 2n, and that
these states therefore form a basis for the set of states on n qubits, since these states belong to
orthogonal subspaces. There are at most 2n such states since Π has rank 2n and each such state
is an eigenvalue-1 eigenvector of Π. There also must be at least 2n states |ψi〉 that belong to these
2-dimensional subspaces, since otherwise there would be a state |0m〉|ψ〉 that is in a 1-dimensional
subspace, i.e., is invariant under both Π and W †ΠW . This is not possible because W †ΠW acting
on |0m〉|ψ〉 yields

√
pW †|0m〉V |ψ〉, which is a subnormalized state since 0 < p < 1. Finally, since

there are 2n orthogonal vectors |ψi〉, an arbitrary state |ψ〉 can be written as a linear combination
of |ψi〉, and the result follows.

With the help of this 2D subspace lemma (Lemma 2.3), we can prove the oblivious amplitude
amplification lemma (Lemma 2.2):

Proof of Lemma 2.2. Since Lemma 2.3 shows that the evolution occurs within a two-dimensional
subspace (or its image under W), the remaining analysis is essentially the same as in standard
amplitude amplification. For any |ψ〉, we define |Ψ〉 := |0m〉|ψ〉 and |Φ〉 := |0m〉V |ψ〉, so that

W |Ψ〉 = sin(θ)|Φ〉+ cos(θ)|Φ⊥〉, (2.24)

where θ ∈ (0, π/2) is such that
√
p = sin(θ). We also define |Ψ⊥〉 through the equation

W |Ψ⊥〉 := cos(θ)|Φ〉 − sin(θ)|Φ⊥〉. (2.25)

By Lemma 2.3, we know that Π|Ψ⊥〉 = 0. Using these two equations, we have

W †|Φ〉 = sin(θ)|Ψ〉+ cos(θ)|Ψ⊥〉 (2.26)

W †|Φ⊥〉 = cos(θ)|Ψ〉 − sin(θ)|Ψ⊥〉. (2.27)

22

Then a straightforward calculation gives

S|Φ〉 = −WRW †|Φ〉
= −WR(sin(θ)|Ψ〉+ cos(θ)|Ψ⊥〉)
= −W (sin(θ)|Ψ〉 − cos(θ)|Ψ⊥〉)
=
(
cos2(θ)− sin2(θ)

)
|Φ〉 − 2 cos(θ) sin(θ)|Φ⊥〉

= cos(2θ)|Φ〉 − sin(2θ)|Φ⊥〉. (2.28)

Similarly,

S|Φ⊥〉 = WRW †|Φ⊥〉
= WR(cos(θ)|Ψ〉 − sin(θ)|Ψ⊥〉)
= W (cos(θ)|Ψ〉+ sin(θ)|Ψ⊥〉)
= 2 cos(θ) sin(θ)|Φ〉+

(
cos2(θ)− sin2(θ)

)
|Φ⊥〉

= sin(2θ)|Φ〉+ cos(2θ)|Φ⊥〉. (2.29)

Thus we see that S acts as a rotation by 2θ in the subspace span{|Φ〉, |Φ⊥〉}, and the result
follows.

2.2.3 Exact LCU algorithm

We can now show how to perfectly implement a unitary V that is a linear combination of unitaries,
since we have a p-implementation of V from Lemma 2.1 and a procedure for converting a p-
implementation into a better implementation from Lemma 2.2.

Theorem 2.4 (Exact LCU algorithm). Let V be a unitary matrix such that V =
∑

i aiUi is a
linear combination of unitary matrices Ui with ai > 0 for all i. Let A be a unitary matrix that
maps |0m〉 to 1√

a

∑
i

√
ai|i〉, where a := ‖~a‖1 =

∑
i ai. Then there exists a quantum algorithm

that performs the map V exactly with O(a) uses of A, U :=
∑

i |i〉〈i| ⊗ Ui, and their inverses.

Proof of Theorem 2.4. From Lemma 2.1 we know that W = A†UA satisfies

W (|0m〉|ψ〉) = sin(θ)|0m〉V |ψ〉+ cos(θ)|Φ⊥〉 (2.30)

for all states |ψ〉, where sin(θ) = 1/a and θ ∈ (0, π/2). From Lemma 2.2 we know that given this
map, if R := 2Π− 1 and S := −WRW †R, then for any t ∈ Z,

StW |0m〉|ψ〉 = sin
(
(2t+ 1)θ

)
|0m〉V |ψ〉+ cos

(
(2t+ 1)θ

)
|Φ⊥〉. (2.31)

23

If π/2
θ is an odd integer, then we are done; choosing t such that 2t + 1 = π/2

θ gives us a
perfect implementation of V as StW |0m〉|ψ〉 = |0m〉V |ψ〉. In this implementation, we only use
the operators A and U (and their inverses) O(t) times, which is O(1/θ) = O(1/ sin(θ)) = O(a).

Now we show that this was essentially without loss of generality. Consider the case where
π/2
θ is not an odd integer and let 2t + 1 be the smallest odd integer larger than π/2

θ . Let θ′ < θ
be such that (2t+ 1)θ′ = π/2. We can now perturb the map W so that it sin(θ′)-implements V
instead of sin(θ)-implementing V , which will reduce this to the previously considered case. Let
Z be any unitary that performs the map

|0〉 7→
(

sin(θ′)

sin(θ)

)
|0〉+

√
1−

(
sin(θ′)

sin(θ)

)2

|1〉, (2.32)

which is a valid map because sin(θ′)/ sin(θ) < 1. Now Z ⊗W can play the role of W , since

(Z ⊗W)|0m+1〉|ψ〉 = sin(θ′)|0m+1〉V |ψ〉+ cos(θ′)|Φ′⊥〉, (2.33)

which satisfies the conditions of the lemma.

2.2.4 Approximate oblivious amplitude amplification

To extend our results to the case where the operator we wish to implement is only close to
being unitary, we will need a stronger version of oblivious amplitude amplification. This result is
technical and uninterested readers may directly jump to the section summary (Section 2.2.6).

Let Ṽ be an operator that is close to a unitary V and can be represented as a linear combi-
nation of unitaries. We want to implement V , but we only know a representation of Ṽ in terms
of unitaries. We show how this suffices if V and Ṽ are close.

The assumption of the oblivious amplitude amplification lemma (Lemma 2.2) is that we have
available a map W that acts as follows on all n-qubit states |ψ〉:

W |0m〉|ψ〉 =
√
p|0m〉V |ψ〉+

√
1− p|Φ⊥〉, (2.34)

where Π|Φ⊥〉 = 0 and V is unitary. We need to relax this assumption to allow a unitary W̃ that
acts as follows on all n-qubits states |ψ〉:

W̃ |0m〉|ψ〉 =
√
p|0m〉Ṽ |ψ〉+

√
1− p|Φ̃⊥〉, (2.35)

where Π|Φ̃⊥〉 = 0 and Ṽ is not necessarily unitary.

Unlike the case where V is unitary, the states Ṽ |ψ〉 and |Φ̃⊥〉 are not necessarily normalized
because Ṽ is not necessarily unitary.

24

To prove this approximate version, we can go through the proofs of Lemma 2.2 and Lemma 2.3
and prove approximate analogues of all statements. Alternately, we can reduce this case to the
exact case by showing that for any Ṽ , there exists a unitary W that p-implements a unitary V
such that W is close to W̃ and V is close to Ṽ .

Note that this statement does not follow from the fact that V and Ṽ are close, because we
need an operator W that is close to W̃ on the entire vector space, including states that are not
of the form |0m〉|ψ〉, for example. An obvious idea would be to take the unitary W̃ and modify
its action on the |0m〉|ψ〉 subspace so that it p-implements V correctly. However, this may not

result in a unitary operator. If we think of W̃ as a matrix, this is like modifying the entries in
the first few columns of W̃ slightly and expecting W̃ to remain unitary. In general this will not
be the case and could require a large number of other entries to be changed to make the matrix
unitary again.

Lemma 2.4. Let W̃ be a unitary matrix on n + m qubits and Ṽ be a matrix on n qubits that
is δ-close to a unitary matrix in spectral norm, where δ < 1. Additionally, let p ∈ (0, 1) be such
that p(1 + δ)2 < 1. Suppose that for any n-qubit state |ψ〉,

W̃ |0m〉|ψ〉 =
√
p|0m〉Ṽ |ψ〉+ |Φ̃⊥〉, (2.36)

where |Φ̃⊥〉 is an unnormalized (n+m)-qubit state that depends on |ψ〉 and satisfies Π|Φ⊥〉 = 0,
where Π = |0m〉〈0m| ⊗ 1. Then there exist unitary matrices W and V on n + m qubits and n

qubits respectively, such that ‖W − W̃‖ = O(
√
δ), ‖V − Ṽ ‖ ≤ δ, and for all |ψ〉

W |0m〉|ψ〉 =
√
p|0m〉V |ψ〉+

√
1− p|Φ⊥〉, (2.37)

where |Φ⊥〉 is an (n+m)-qubit state that depends on |ψ〉 and satisfies Π|Φ⊥〉 = 0.

Proof. As in the proof of Lemma 2.3, we consider the operator

Q := (〈0m| ⊗ 1)W̃ †ΠW̃ (|0m〉 ⊗ 1). (2.38)

Since this is a Hermitian operator, it has an orthonormal set of eigenvectors. Let these be denoted
|ψi〉 and the corresponding eigenvalues be pi, i.e., Q|ψi〉 = pi|ψi〉. For any state |ψi〉,

pi = 〈ψi|Q|ψi〉 = ‖ΠW̃ |0m〉|ψi〉‖2 = ‖√p|0m〉Ṽ |ψi〉‖2 = p‖Ṽ |ψi〉‖2, (2.39)

which gives us the following upper and lower bounds on pi since Ṽ is δ-close to a unitary:

pi ≤ p(1 + δ)2 < 1 and pi ≥ p(1− δ)2 > 0. (2.40)

For all i, we define |φi〉 := Ṽ |ψi〉/‖Ṽ |ψi〉‖ and thus Ṽ |ψi〉 =
√
pi/p|φi〉. For any i 6= j, we

have
0 = 〈ψi|Q|ψj〉 = p〈ψj |Ṽ †Ṽ |ψj〉 =

√
pipj〈φi|φj〉, (2.41)

25

which gives 〈φi|φj〉 = 0, since pi 6= 0 for all i. We see that Ṽ almost behaves like a unitary,
since it maps an orthonormal basis to an orthogonal basis, such that the norms of the output
vectors are close to 1. Based on this we can define a unitary V that maps |ψi〉 to |φi〉. Now since
V |ψi〉 = |φi〉 and Ṽ |ψi〉 =

√
pi/p|φi〉, we have V †Ṽ |ψi〉 =

√
pi/p|ψi〉, which gives (V †Ṽ −1)|ψi〉 =

(
√
pi/p − 1)|ψi〉. Thus ‖V †Ṽ − 1‖ ≤ maxi |

√
pi/p − 1|, which is at most δ using the upper and

lower bounds on pi. Thus ‖Ṽ − V ‖ = ‖V †Ṽ − 1‖ ≤ δ.
Returning to the question of constructing a map W , we define |Φ⊥i 〉 to be the normalized

state that satisfies
W̃ |0m〉|ψi〉 =

√
pi|0m〉|φi〉+

√
1− pi|Φ⊥i 〉, (2.42)

where |Φ⊥i 〉 satisfies Π|Φ⊥i 〉 = 0. Since {|ψi〉} and {|φi〉} are orthonormal sets, {|Φ⊥i 〉} is also
an orthonormal set. Furthermore, since every vector in {|0m〉|φi〉} is orthogonal to every vector
in {|Φ⊥i 〉}, the set containing all states of the form |0m〉|φi〉 and |Φ⊥i 〉 is an orthonormal set of
vectors. Let this subspace of the entire space n + m-qubit states be called S and let S⊥ be its
orthogonal complement.

Based on this, we define a unitary R, which is the unique unitary that acts as

R(
√
pi|0m〉|φi〉+

√
1− pi|Φ⊥i 〉) =

√
p|0m〉|φi〉+

√
1− p|Φ⊥i 〉 (2.43)

R(
√

1− pi|0m〉|φi〉 −
√
pi|Φ⊥i 〉) =

√
1− p|0m〉|φi〉 −

√
p|Φ⊥i 〉 (2.44)

for all i, and acts as the identity on S⊥. R is a indeed unitary because it is unitary within each
subspace span{|0m〉|φi〉, |Φ⊥i 〉} and on S⊥.

Finally note that W = RW̃ is the map we want since

RW̃ (|0m〉|ψi〉) =
√
p|0m〉|φi〉+

√
1− p|Φ⊥i 〉 =

√
p|0m〉V |ψi〉+

√
1− p|Φ⊥i 〉, (2.45)

and therefore by linearity, W |0m〉|ψ〉 =
√
p|0m〉V |ψ〉+

√
1− p|Φ⊥〉 for any |ψ〉.

Lastly, we need to show that W is close to W̃ . Since ‖W − W̃‖ = ‖R− 1‖, we need to
compute ‖R− 1‖. R is the direct sum of 2 × 2 blocks, and hence ‖R− 1‖ is the maximum
eigenvalue of any of these blocks, which gives

‖R− 1‖ = max
i

∥∥∥∥∥
(√

pi −
√
p

√
1− pi −

√
1− p

√
1− pi −

√
1− p −(

√
pi −

√
p)

)∥∥∥∥∥ . (2.46)

For a fixed i, the matrix is Hermitian with trace 0, therefore its eigenvalues are λ > 0 and −λ.
Since the determinant is the product of the eigenvalues, we have

λ2 = 2
(
1−√pip−

√
(1− pi)(1− p)

)
≤ 2 (1−min{pi, p} −min{1− pi, 1− p}) ≤ 2|pi−p|, (2.47)

where we have used the fact that min{x, y} ≤ x and min{x, y} ≤ y. Using the relationships
between pi and p from (2.40), it follows that pi − p ≤ p(2δ + δ2) ≤ p(3δ) < 3δ and p − pi ≤
p(2δ − δ2) ≤ p(2δ) < 2δ. Thus λ2 ≤ 2|pi − p| < 6δ. This gives λ <

√
6δ and therefore

‖W − W̃‖ = ‖R− 1‖ <
√

6δ = O(
√
δ).

26

2.2.5 Approximate LCU algorithm

In Section 2.2.3 we considered the problem of implementing a unitary V that can be written in
the form V =

∑
i aiUi, where Ui are unitaries considered easy to perform. Our results, however,

require a generalization of this situation where we only have an approximation for V in terms of
unitaries. We show how to extend our LCU algorithm to this situation using Lemma 2.4.

We consider the problem of implementing a matrix Ṽ that is not necessarily unitary, but
satisfies ‖V − Ṽ ‖ ≤ δ for some unitary V , and can be expressed as a linear combination of
unitaries Ui as before, i.e., Ṽ =

∑
i aiUi. In this case we would like to show that we can

approximately implement Ṽ using O(a) uses of the maps A and U as before, where a := ‖~a‖1 =∑
i ai. The accuracy of our implementation will be O(a

√
δ). The analogue of Theorem 2.4 in this

situation is the following:

Theorem 2.5 (Approximate LCU algorithm). Let Ṽ be a matrix that is δ-close to some unitary
in spectral norm, such that Ṽ =

∑
i aiUi is a linear combination of unitary matrices Ui with ai > 0

for all i. Let A be a unitary matrix that maps |0m〉 to 1√
a

∑
i

√
ai|i〉, where a := ‖~a‖1 =

∑
i ai.

Then there exists a quantum algorithm that performs the map Ṽ with error O(a
√
δ) and makes

O(a) uses of A, U :=
∑

i |i〉〈i| ⊗ Ui, and their inverses.

Proof. We will follow the same steps as in Theorem 2.4. First, from Lemma 2.1 we have that
W̃ = A†UA satisfies

W̃ |0m〉|ψ〉 =
√
p|0m〉Ṽ |ψ〉+

√
1− p|Φ̃⊥〉 (2.48)

for all states |ψ〉, where the state |Φ̃⊥〉, which depends on |ψ〉, satisfies Π|Φ̃⊥〉 = 0, where Π =
|0m〉〈0m| ⊗ 1.

From Lemma 2.4, we know that there exist unitary matrices W and V on n+m qubits and
n qubits respectively, such that ‖W − W̃‖ = O(

√
δ), ‖V − Ṽ ‖ ≤ δ, and

W |0m〉|ψ〉 =
√
p|0m〉V |ψ〉+

√
1− p|Φ⊥〉, (2.49)

where |Φ⊥〉 is an (n+m)-qubit state that depends on |ψ〉 and satisfies Π|Φ⊥〉 = 0.

We wish to implement Ṽ , but instead let us implement V . We know that W p-implements V
for p = 1/a2, and that ‖W − W̃‖ = O(

√
δ), where W̃ = A†UA. Therefore using Lemma 2.2, we

have a perfect implementation of V that makes O(a) uses of W . But since we only have available

the map W̃ = A†UA, if we use this instead of W , the implemented unitary will be distance
O(a
√
δ) from V , by the subadditivity of error in implementing unitaries (Theorem 1.3). Since V

is δ-close to Ṽ , we have an implementation of Ṽ with error O(a
√
δ + δ) = O(a

√
δ).

27

2.2.6 Summary

In summary, we have a procedure for implementing a map that can be approximately represented
as a linear combination of unitaries that are easy to perform. Theorem 2.5 is the most general
statement of our result.

For both the applications we consider, we will only use the following corollary of Theorem 2.5,
which is specific to the query complexity model, assumes a = ‖~a‖1 is a constant, and has no
constraint on ai being real as the phase of ai can be subsumed into the unitary Ui.

Corollary 2.1. Let Ṽ be a matrix that is δ-close to some unitary in spectral norm, such that
Ṽ =

∑
i aiUi is a linear combination of unitary matrices Ui, where ‖~a‖1 = O(1) and any unitary

Ui requires at most q queries to perform. Then the map Ṽ can be performed with error O(
√
δ)

using O(q) queries.

2.3 Hamiltonian simulation

We now apply the results of the previous section to give improved algorithms for simulating sparse
Hamiltonians. To see how these are related, suppose we wish to implement a Hamiltonian H that
is the sum of m unitaries Uj for time t = 1/m. We do not require that Uj be Hermitian as well,
although that will be the case in our application. Then the operator we need to implement is

V := e−iH/m = e−i(
∑

j Uj)/m. (2.50)

Expanding the definition of the matrix exponential we get

V =
∞∑
l=0

1

l!ml

(
−i
∑
j

Uj

)l
= 1− i

m

(∑
j

Uj

)
− 1

2m2
(U2

1 + 2U1U2 + U2
2 + . . .) + (2.51)

Notice that each term in the linear combination is a unitary matrix. However, since this is an
infinite sum, let us delete the terms in the sum after l = k and call the resulting matrix Ṽ .

Ṽ :=

k∑
l=0

1

l!ml

(
−i
∑
j

Uj

)l
. (2.52)

Note that when Ṽ is expressed as a linear combination of unitaries, a = ‖~a‖1 < e = O(1). Indeed,
this was the reason for choosing t = 1/m.

28

The error in this approximation, δ := ‖V − Ṽ ‖, is at most

δ =

∥∥∥∥∥
∞∑

l=k+1

1

l!ml

(
−i

m∑
j=1

Uj

)l∥∥∥∥∥ ≤
∞∑

l=k+1

1

l!ml

(∥∥∥ m∑
j=1

Uj

∥∥∥)l
≤

∞∑
l=k+1

1

l!
=

1

k!

∞∑
l=k+1

k!

l!
≤ 1

k!

∞∑
l=1

1

(k + 1)l
<

1

k!
. (2.53)

If implementing any Uj has unit cost, then Ṽ is a linear combination of unitaries where each
unitary may cost up to k queries to implement, since the most expensive term in the linear
combination will be the product of k matrices Uj . Corollary 2.1 now gives us a simulation of H
with error O(

√
δ) with cost O(k). If we want error at most ε in the final simulation, we need

to take k large enough. Solving
√

1/k! = O(ε) yields k = Ω
(

log(1/ε)
log log(1/ε)

)
. To see this, observe

that if we choose k = c
(

log(1/ε)
log log(1/ε)

)
, for some constant c, then k log k is asymptotically c log(1/ε)

up to lower order terms. Choosing c large enough will ensure that log(k!) is much larger than
2 log(1/ε), which is equivalent to 1/k! being smaller than ε2.

Applying the LCU algorithm (Corollary 2.1) gives us the following lemma.

Lemma 2.5. Let H =
∑m

j=1 Uj be a Hamiltonian, where each Uj is unitary for all j ∈ [m] and

costs O(1) queries to implement. Then the unitary e−iH/m can be implemented up to error ε with

query complexity O
(

log(1/ε)
log log(1/ε)

)
. Thus for t ≥ 1/m, the unitary e−iHt can be implemented up to

error ε with query complexity O
(
mt log(mt/ε)

log log(mt/ε)

)
.

The last part of the lemma follows from the fact that e−iHt = (e−iH/m)mt, and thus composing
mt implementations of the operator e−iH/m with error at most ε/mt in each implementation gives
an implementation of e−iHt up to error ε by Theorem 1.3.

This handles the case when we have a decomposition of H as a sum of unitaries. While
this was a simple scenario, having a decomposition in terms of unitaries is not unrealistic. For
example, H could be a weighted sum of tensor products of Pauli operators, which are unitary,
or H may the be the sum of local terms, which can be represented as a linear combination of
unitaries of constant dimension, which are easy to implement. Note that any Hamiltonian can be
represented as a linear combination of unitaries. In fact any Hermitian matrix can be written as
a linear combination of 2 unitaries. To show this, note that by conjugating the Hermitian matrix
by a unitary that diagonalizes it and multiplying by a scalar, it suffices to prove this claim for
diagonal Hermitian matrices with eigenvalues between −1 and +1. The fact that any real number
in [−1,+1] can be written as the average of two complex numbers of unit modulus completes the

29

proof. The problem, of course, is that these unitaries need to be efficiently implementable and
the coefficients in the linear combination should have a small value of ‖~a‖1.

To handle arbitrary sparse Hamiltonians, we decompose them into a linear combination of
unitary Hamiltonians. To do this we first decompose a d-sparse Hamiltonian into a sum of d2

1-sparse Hamiltonians, which have at most 1 nonzero entry in any row or column, and then
decompose 1-sparse Hamiltonians into a linear combination of unitary Hamiltonians.

Decomposing a sparse Hamiltonian as a sum of 1-sparse Hamiltonians

The step of decomposing a sparse Hamiltonian as a sum of 1-sparse Hamiltonians appears in
almost every result on Hamiltonian simulation. Known results decompose a d-sparse Hamiltonian
H into a sum of O(d2) 1-sparse Hamiltonians [BACS07], but simulating one query to a 1-sparse
Hamiltonian requires O(log∗ n) queries to the oracle for H. This suffices for our purposes, but
would add a log∗ n factor to the complexity.

We improve upon previous results and present a simplified decomposition theorem that de-
composes a d-sparse Hamiltonian into d2 Hamiltonians that are 1-sparse where a query to the
individual 1-sparse Hamiltonians can be performed using O(1) queries to the original Hamilto-
nian, removing the log∗ n factor. This factor originally comes from a distributed vertex coloring
algorithm. It also considerably simplifies the decomposition argument (even as compared to
substantially less efficient simulations, such as in [AT03]).

Lemma 2.6. If H is a d-sparse Hamiltonian, there exists a decomposition H =
∑d2

j=1Hj where
each Hj is 1-sparse and a query to any Hj can be simulated with O(1) queries to H.

Proof. The new ingredient in our proof is to assume that the graph of H is bipartite. (Here the
graph of H has a vertex for each basis state and an edge between two vertices if the corresponding
entry of H is nonzero.) This is without loss of generality because we can simulate the Hamiltonian
σx ⊗H instead, which is indeed bipartite and has the same sparsity as H. From a simulation of
σx ⊗H, we can recover a simulation of H using the identity e−i(σx⊗H)t|+〉|ψ〉 = |+〉e−iHt|ψ〉.

Now we decompose a bipartite d-sparse Hamiltonian into a sum of d2 terms. To do this, we
give an edge coloring of the graph of H (i.e., an assignment of colors to the edges so that no two
edges incident on the same vertex have the same color). Given such a coloring with d2 colors, the
Hamiltonian Hj formed by only considering edges with color j is 1-sparse.

We use the following simple coloring. For any pair of adjacent vertices u and v, let r(u, v)
denote the rank of v in u’s neighbor list, i.e., the position occupied by v in a sorted list of u’s
neighbors. This is a number between 1 and d. Let the color of the edge (u, v), where u comes from
the left part of the bipartition and v comes from the right, be the ordered pair (r(u, v), r(v, u)).
This is a valid coloring since if (u, v) and (u,w) have the same color, then in particular the first

30

component of the ordered pair is the same, so r(u, v) = r(u,w) ⇒ v = w. A similar argument
handles the case where the common vertex is on the right.

Given a color (a, b), it is easy to simulate queries to the Hamiltonian corresponding to that
color. To compute the nonzero entries of the ith row for this color, depending on whether i is
in the left or right partition, we merely have to determine the neighbor of i that has rank a or
b, respectively, in its neighbor list, and check if the pair (a, b) is consistent with their respective
rankings, which can be obtained from the oracle with O(1) queries.

Observe that the simple trick of making the Hamiltonian bipartite suffices to remove the
O(log∗ n) term present in previous decompositions of this form. This trick is quite general and can
be applied to remove the O(log∗ n) factor wherever such a factor appears in a known Hamiltonian
simulation algorithm (e.g., [BACS07, CK11b, WBHS11]).

Decomposing a 1-sparse Hamiltonian into a linear combination of unitaries

We now decompose a 1-sparse Hamiltonian G into a sum of O(‖G‖max/γ) unitary Hamiltonians
Gj up to error O(γ).

Lemma 2.7. For any 1-sparse Hamiltonian G and precision γ > 0, there exist O(‖G‖max/γ)
unitary Hamiltonians Gj with eigenvalues ±1 such that ‖G− γ

∑
j Gj‖max ≤ 3γ.

Proof. First we decompose the Hamiltonian G as G = GX + iGY +GZ , where GX contains the
off-diagonal real terms, iGY contains the off-diagonal imaginary terms, and GZ contains the on-
diagonal real terms. Next, for each of GP for P ∈ {X,Y, Z}, we construct an approximation G̃P
with each entry rounded off to the closest multiple of 2γ. Since each entry of G̃P is at most γ away
from the corresponding entry in GP , we have ‖GP − G̃P ‖max ≤ γ. Denoting G̃ = G̃X+iG̃Y +G̃Z ,
this implies ‖G− G̃‖max ≤ 3γ.

Next, we take CP := G̃P /γ, so ‖CP ‖max = d‖GP ‖max/γe ≤ d‖G‖max/γe. We can then
decompose each 1-sparse matrix CP into ‖CP ‖max Hermitian matrices, each of which is 1-sparse
and has entries from {−2, 0, 2}. If CPjk is 2p, then the first |p| matrices in the decomposition have
a 2 for p > 0 (or −2 if p < 0) at the (j, k) entry, and the rest have 0. More explicitly, we define

CP,`jk :=

2 if CPjk ≥ 2` > 0

−2 if CPjk ≤ −2` < 0

0 otherwise

(2.54)

for P ∈ {X,Y, Z} and ` ∈ [‖CP ‖max]. This gives a decomposition into at most 3d‖G‖max/γe
Hermitian matrices with eigenvalues in {−2, 0, 2}.

31

To obtain matrices with eigenvalues ±1, we perform one more step to remove the 0 eigenvalues.
We divide each CP,` into two copies, CP,`,+ and CP,`,−. For any column where CP,` is all zero,
the corresponding diagonal element of CP,`,+ is +1 (if P ∈ {X,Z}) or +i (if P = Y) and
the diagonal element of CP,`,− is −1 (if P ∈ {X,Z}) or −i (if P = Y). Otherwise, we let

CP,`,+jk = CP,`,−jk = CP,`jk /2. Thus CP,` = CP,`,+ + CP,`,−. Moreover, each column of CP,`,± has

exactly one nonzero entry, which is ±1 (or ±i on the diagonal of CY,`,±).

This gives a decomposition G̃/γ =
∑

`,±(CX,`,± + iCY,`,± + CZ,`,±) in which each term has
eigenvalues ±1. The decomposition contains at most 6d‖G‖max/γe = O(‖G‖max/γ) terms.

Putting it all together

Lemma 2.6 decomposes our Hamiltonian H into d2 Hamiltonians that are 1-sparse. We further
decompose H using Lemma 2.7 into a sum of m = O(d2‖H‖max/γ) unitary Hamiltonians Gj
such that ‖H − γ

∑m
j=1Gj‖max ≤ 3γd2, since each 1-sparse Hamiltonian is approximated with

precision 3γ and there are d2 approximations in this sum. To upper bound the simulation error,
we have ∥∥∥e−iHt − e−iγ∑j Gjt

∥∥∥ ≤ ∥∥∥(H − γ
m∑
j=1

Gj)t
∥∥∥ ≤ 3γd3t, (2.55)

where we used the fact that ‖eiA − eiB‖ ≤ ‖A−B‖ and ‖A‖ ≤ d‖A‖max for a d-sparse matrix
A. For unitaries A and B, ‖eiA − eiB‖ ≤ ‖A−B‖ can be proved by observing that

‖eiA − eiB‖ = ‖(eiA/n)n − (eiB/n)n‖ ≤ n‖eiA/n − eiB/n‖ ≤ ‖A−B‖+O(1/n), (2.56)

where the first inequality uses subadditivity of error (Theorem 1.3) and the second inequality
follows by Taylor expansion. Since the statement is true for all n, the claim follows.

Choosing γ = ε/3d3t gives the required precision. We now invoke Lemma 2.5 with H =∑m
j=1Gj where m = O(d2‖H‖max/γ) evolved for time γt to get the following theorem.

Theorem 2.1 (Sparse Hamiltonian simulation). A d-sparse Hamiltonian H can be simulated for

time t with error at most ε using O
(
τ log(τ/ε)

log log(τ/ε)

)
queries, where τ := d2‖H‖maxt ≥ 1.

Note that the value of γ does not appear in the final expression and therefore plays no role in
determining the query complexity. Thus the error in approximating H by a linear combination of
unitaries can be made arbitrarily small and is not the dominant source of error—the truncation
of the Taylor series for ex is the dominant source of error.

32

Lower bound

We now show that in general any sparse Hamiltonian simulation method must use Ω
(

log(1/ε)
log log(1/ε)

)
discrete queries to obtain error at most ε, and so the dependence of the query complexity in
Theorem 2.1 on ε is tight up to constant factors. To show this, we use ideas from the proof of the
no-fast-forwarding theorem [BACS07, Theorem 3], which says that generic Hamiltonians cannot
be simulated in time sublinear in the evolution time. The Hamiltonian used in the proof of that
theorem has the property that simulating it for time t = πn/2 determines the parity of n bits
exactly. We observe that simulating this Hamiltonian (with sufficiently high precision) for any
time t > 0 gives an unbounded-error algorithm for the parity of n bits, which also requires Ω(n)
queries [FGGS98, BBC+01].

Theorem 2.2 (ε-dependent lower bound for Hamiltonian simulation). For any ε > 0, there exists
a 2-sparse Hamiltonian H with ‖H‖max < 1 such that simulating H with precision ε for constant

time requires Ω
(

log(1/ε)
log log(1/ε)

)
queries.

Proof. To construct the Hamiltonian, we begin with a simpler HamiltonianH ′ that acts on vectors
|i〉 with i ∈ {0, 1, . . . , n}. The nonzero matrix entries of H ′ are 〈i |H ′| i + 1〉 = 〈i + 1 |H ′| i〉 =√

(n− i)(i+ 1)/n for i ∈ {0, 1, . . . , n − 1} [CDEL04]. We have ‖H ′‖max < 1, and simulating
H ′ for t = πn/2 starting with the state |0〉 gives the state |n〉 (i.e., e−iH

′πn/2|0〉 = |n〉). More
generally, for t ∈ [0, πn/2], we claim that |〈n|eiH′t|0〉| = |sin(t/n)|n.

To see this, consider the Hamiltonian X̄ :=
∑n

j=1X
(j), where X := (0 1

1 0) and X(j) denotes

the single qubit operator X acting on the jth qubit. Since e−iXt = cos(t)1 − i sin(t)X, we have

|〈11 . . . 1|e−iX̄t|00 . . . 0〉| = |sin(t)|n. Defining |wtk〉 :=
(
n
k

)−1/2∑
|x|=k |x〉, we have

X̄|wtk〉 =
√

(n− k + 1)k|wtk−1〉+
√

(n− k)(k + 1)|wtk+1〉. (2.57)

This is precisely the behavior of nH ′ with |k〉 playing the role of |wtk〉, so the claim follows.

Now, as in [BACS07], consider a Hamiltonian H generated from an n-bit string x0x1 . . . xn−1.
H acts on vertices |i, j〉 with i ∈ {0, . . . , n} and j ∈ {0, 1}. The nonzero matrix entries of this
Hamiltonian are

〈i, j |H| i+ 1, j ⊕ xi〉 = 〈i+ 1, j ⊕ xi |H| i, j〉 =
√

(n− i)(i+ 1)/n (2.58)

for all i and j. By construction, |0, 0〉 is connected to either |i, 0〉 or |i, 1〉 (but not both) for
any i; it is connected to |i, j〉 if and only if j = x0 ⊕ x1 ⊕ · · · ⊕ xi−1. Thus |0, 0〉 is connected
to either |n, 0〉 or |n, 1〉, and determining which is the case determines the parity of x. The
graph of this Hamiltonian contains two disjoint paths, one containing |0, 0〉 and |n,XOR(x)〉
and the other containing |0, 1〉 and |n, 1 ⊕ XOR(x)〉. Restricted to the connected component of

33

|0, 0〉, this Hamiltonian is the same as H ′. Thus, starting with the state |0, 0〉 and simulating H
for time t gives |〈n,XOR(x)|e−iHt|0, 0〉| = |sin(t/n)|n. Furthermore, for any t, we have 〈n, 1 ⊕
XOR(x)|e−iHt|0, 0〉 = 0 since the two states lie in disconnected components.

Simulating this Hamiltonian exactly for any time t > 0 starting with the state |0, 0〉 yields an
unbounded-error algorithm for computing the parity of x, as follows. First we measure e−iHt|0, 0〉
in the computational basis. We know that for any t > 0, the state e−iHt|0, 0〉 has some nonzero
overlap on |n,XOR(x)〉 and zero overlap on |n, 1⊕XOR(x)〉. If the first register is not n, we output
0 or 1 with equal probability. If the first register is n, we output the value of the second register.
This is an unbounded-error algorithm for the parity of x, and thus requires Ω(n) queries.

Since the unbounded-error query complexity of parity is Ω(n) [FGGS98, BBC+01], this shows
that exactly simulating H for any time t > 0 needs Ω(n) queries. However, even if we only have
an approximate simulation, the previous algorithm still works as long as the error in the output
state is smaller than the bias |〈n,XOR(x)|e−iHt|0, 0〉|2. If we ensure that the overlap is larger
than ε by a constant factor, then even with error ε, the overlap on that state will be larger than
ε. On the other hand, the overlap on |n, 1⊕XOR(x)〉 is at most ε, since the output state is ε close
to the ideal output state which has no overlap.

To achieve an overlap larger than ε, we need |sin(t/n)|2n to be larger than ε for constant t.
More concretely, choose t = 1 so we need to find the largest n that satisfies |sin(1/n)|2n > ε.
Asymptotically sin(1/n) ∼ 1/n, and thus it suffices to choose an n for which n2n is much smaller

than 1/ε, which is equivalent to 2n log n < log(1/ε). Choosing n = c
(

log(1/ε)
log log(1/ε)

)
, for some

constant c > 0, satisfies this since n log n ∼ c log(1/ε) up to lower order terms.

This gives the required lower bound of Ω(n) = Ω
(

log(1/ε)
log log(1/ε)

)
queries.

2.4 Continuous- and fractional-query simulation

In this section we present a dramatically simplified and improved simulation of the continuous-
or fractional-query model (introduced in Section 2.1.2) in the conventional discrete-query model.
The main result of this section is Theorem 2.3, which states that any T -query algorithm in the
continuous- or fractional-query model can be simulated in the standard (discrete-query) model

within error ε using O
(
T log(T/ε)

log log(T/ε)

)
queries.

Equivalence of the continuous- and fractional-query models

We begin by recalling the equivalence of the continuous- and fractional-query models for any
error ε > 0. An explicit simulation of the continuous-query model by the fractional-query model
was provided by [CGM+09, Section II.A]; the proof is a straightforward application of a result of

34

[HR90]. The other direction is apparently folklore (e.g., both directions are implicitly assumed
in [Moc07]); we provide their proof for completeness.

Theorem 2.6 (Equivalence of continuous- and fractional-query models). For any ε > 0, any al-
gorithm with continuous-query complexity T can be implemented with fractional-query complexity
T with error at most ε and conversely, any algorithm with fractional-query complexity T can be
implemented with continuous-query complexity T with error at most ε.

Proof. We wish to implement the unitary U(T) satisfying the Schrödinger equation (2.4) with
U(0) = 1. To refer to the solutions of this equation for arbitrary Hamiltonians and time intervals,
we define UH(t2, t1) to be the solution of the Schrödinger equation with Hamiltonian H from time
t1 to time t2 where U(t1) = 1. In this notation, U(T) = UHx+HD

(T, 0).

Let m be an integer and θ = T/m. We have

UHx+HD
(T, 0) = UHx+HD

(mθ, (m− 1)θ) · · ·UHx+HD
(2θ, θ)UHx+HD

(θ, 0). (2.59)

If we can approximate each of thesem terms, we can use the subadditivity of error in implementing
unitaries (Theorem 1.3) to obtain an approximation of U(T).

Reference [HR90] shows that for small θ, the evolution according to Hamiltonians A and B
over an interval of length θ approximates the evolution according to A+B over the same interval.
Specifically, from [HR90, eq. A8b] we have

‖UA+B((j + 1)θ, jθ)− UA((j + 1)θ, jθ)UB((j + 1)θ, jθ)‖ ≤
∫ (j+1)θ

jθ
dv

∫ v

jθ
du ‖[A(u), B(v)]‖,

(2.60)
where [A,B] := AB − BA. In our application, A(t) = HD(t) and B = Hx. Since ‖Hx‖ = 1, the
right-hand side is at most

2

∫ (j+1)θ

jθ
dv

∫ v

jθ
du ‖HD(u)‖ ≤ 2

∫ (j+1)θ

jθ
dv

∫ (j+1)θ

jθ
du ‖HD(u)‖ = 2θ

∫ (j+1)θ

jθ
‖HD(u)‖du.

(2.61)

By subadditivity, the error in implementing U(T) is at most

2θ

m−1∑
j=0

∫ (j+1)θ

jθ
‖HD(u)‖du = 2θ

∫ T

0
‖HD(u)‖du = 2

T

m

∫ T

0
‖HD(u)‖du, (2.62)

which can be made smaller than ε by choosing a large enough m, which proves this direction of
the equivalence.

For the other direction, consider a fractional-query algorithm

Ufq := UmQ
αm
x Um−1 · · ·Qα2

x U1Q
α1
x U0 (2.63)

35

where αi ∈ (0, 1] for all i ∈ [m], with complexity T =
∑m

i=1 αi. Let Ai :=
∑i

j=1 αj for all i ∈ [m]

and let Uj =: e−iH
(j)
D for all j ∈ {0, 1, . . . ,m}. Consider the piecewise constant Hamiltonian

H(t) = Hx +
1

ε1

(
δt∈[0,ε1]H

(0)
D +

m∑
i=1

δt∈[Ai−ε1,Ai]H
(i)
D

)
, (2.64)

where δP is 0 if P is false and 1 if P is true. Provided ε1 ≤ min{α1/2, α2, . . . , αm}, evolving
with H(t) from t = 0 to T implements a unitary close to our fractional-query algorithm. More
precisely, it implements

U(T) = e−i(H
(m)
D +ε1Hx)e−i(αm−ε1)Hxe−i(H

(m−1)
D +ε1Hx) · · ·

e−i(α2−ε1)Hxe−i(H
(1)
D +ε1Hx)e−i(α1−2ε1)Hxe−i(H

0
D+ε1Hx),

(2.65)

which satisfies ‖U(T)− Ufq‖ = O(mε1). This follows from the fact that each exponential in (2.65)

approximates the corresponding unitary of (2.63) with error O(ε1) (e.g., ‖e−i(H
(m)
D +ε1Hx) − Um‖ =

O(ε1) and ‖e−i(αm−ε1)Hx −Qαm
x ‖ = O(ε1)) and the subadditivity of error when implementing uni-

taries (Theorem 1.3). The fact that each exponential has error O(ε1) follows from the inequality
‖eiA − eiB‖ ≤ ‖A−B‖, which we proved in (2.56).

This simulation has continuous-query complexity T . Its error can be made less than ε by
choosing ε1 sufficiently small (in particular, it suffices to take some ε1 = Θ(ε/m)).

Since the two models are equivalent, it suffices to convert a fractional-query algorithm to a
discrete-query algorithm.

Simulating the fractional-query model with discrete queries

We start with a fractional-query algorithm that makes at most 1 query. The result for multiple
queries (Theorem 2.3) follows straightforwardly.

Lemma 2.8. An algorithm with fractional-query complexity at most 1 can be simulated with error

at most ε with O
(

log(1/ε)
log log(1/ε)

)
queries.

Proof. Consider the unitary V performed by a fractional-query algorithm with fractional-query
complexity at most T ≤ 1. V has the following form for some positive integer m:

V = WmQ
αmWm−1Q

αm−1 · · ·W1Q
α1W0, (2.66)

where for all i ∈ [m], Wi are arbitrary oracle-independent unitaries, αi ∈ (0, 1], and
∑

i αi = T ≤
1. Let Q be the unitary representing a discrete oracle query. Recall that if the discrete-query

36

operator Q acts as Q|j〉|b〉 = (−1)bxj |j〉|b〉, then we have defined Qα as Qα|j〉|b〉 = e−iπαbxj |j〉|b〉.
From the definition, it follows that

Qα =
1

2
(1 +Q) + e−iπα

1

2
(1−Q) = e−πα/2(cos(πα/2)1 + i sin(πα/2)Q). (2.67)

Let us define ci := cos(παi/2) and si := sin(παi/2). In terms of these, we can write V as

V = e−iπT/2Wm(cm1 + ismQ)Wm−1(cm−11 + ism−1Q) · · ·W1(c11 + is1Q)W0. (2.68)

It is clear that this is a linear combination of unitaries. For this linear combination, the 1-norm
of the coefficients, ‖~a‖1, is

∏
i(ci + si), which we can upper bound as follows:

∏
i

(ci + si) =
∏
i

√
1 + sin(παi) ≤

√∏
i

(1 + παi) ≤
√∏

i

eπαi ≤ eπT/2 ≤ eπ/2, (2.69)

where we have used the inequalities sinx ≤ x and 1 + x ≤ ex for all x ≥ 0.

Although V is a linear combination of unitaries with constant ‖~a‖1, some terms in the linear
combination are expensive to implement. For example, there is a term that involves m products
of Q, which would require m queries to implement. However, this term has very little weight in
the linear combination. This suggests that for some k we can truncate the expression for V by
deleting all terms that have more than k occurrences of Q and the resulting operator will still be
close to V . Let this approximation to V be denoted Ṽ . The error in this approximation, ‖V − Ṽ ‖
is the sum of all the terms in

∏
i(ci + si) that contain more than k factors of si.

We can succinctly represent this error term by defining m independent random variables Xi

with Pr(Xi = 0) = ci
ci+si

and Pr(Xi = 1) = si
ci+si

. Then

‖V − Ṽ ‖ ≤

(∏
i

(ci + si)

)
Pr

(∑
i

Xi > k

)
≤ eπ/2 Pr

(∑
i

Xi > k

)
, (2.70)

where we have used (2.69) to obtain the last inequality. We can bound the probability that∑
iXi > k using the Chernoff bound (see for example [MR95, Theorem 4.1]), which says that for

any δ > 0,

Pr

(∑
i

Xi > (1 + δ)µ

)
<

eδµ

(1 + δ)(1+δ)µ
, (2.71)

where µ :=
∑

i Pr(Xi = 1) =
∑

i
si

ci+si
. Since αi ≥ 0 and

∑
i αi = T ≤ 1, we have µ ≥ 0 and

µ =
∑
i

si
ci + si

≤
∑
i

si =
∑
i

sin(παi/2) ≤
∑
i

παi/2 = πT/2, (2.72)

37

where we used the facts that sinx ≤ x for all x > 0 and sin θ + cos θ ≥ 1 for all θ ∈ [0, π/2].
Setting k = (1 + δ)µ, we get

Pr

(∑
i

Xi > k

)
<

ek−µ

(1 + δ)k
=
ek−µµk

kk
<

(eµ)k

kk
. (2.73)

Since µ = O(1), we can choose some k = Ω
(

log(1/ε)
log log(1/ε)

)
to achieve ‖V − Ṽ ‖ = O(ε2).

Finally, Ṽ is a linear combination of unitaries, each of which cost at most k discrete queries,
with ‖~a‖1 = O(1) and ‖V − Ṽ ‖ = O(ε2). The result now follows from Corollary 2.1.

Since we can simulate a fractional-query algorithm that makes at most 1 query in the discrete-

query model with error at most ε using O
(

log(1/ε)
log log(1/ε)

)
queries, we can simulate a T query

fractional-query algorithm by dividing it into T pieces, each of which makes at most 1 frac-
tional query, and simulating each piece with error at most ε/T . The final error in simulating the
T -query fractional-query algorithm will be at most ε by the subadditivity of error (Theorem 1.3).
This gives us the main result of the section.

Theorem 2.3 (Continuous-query simulation). An algorithm with continuous- or fractional-query

complexity T ≥ 1 can be simulated with error at most ε with O
(
T log(T/ε)

log log(T/ε)

)
queries.

As in Hamiltonian simulation, it can be shown that this dependence on ε is optimal [BCC+14].

2.5 Open problems

While our algorithm for continuous-query simulation is optimal as a function of ε alone, it is
suboptimal as a function of T , and it is unclear what tradeoffs might exist between these two
parameters.

Open Problem 2.1. Given a continuous- or fractional-query algorithm with query complexity T ,
what is the optimal query complexity of simulating it in the discrete-query model up to error ε, as

a function of T and ε? We know this can be done with O
(
T log(T/ε)

log log(T/ε)

)
queries (Theorem 2.3) and

that Ω
(
T + log(1/ε)

log log(1/ε)

)
queries are necessary [BCC+14]. In particular, can we at least perform

a bounded-error simulation with O(T) queries?

In the context of sparse Hamiltonian simulation, the quantum walk-based simulation of [Chi10,
BC12] achieves linear dependence on t, whereas our upper bound is superlinear in t. However,

38

the dependence on ε is significantly worse in the walk-based approach. It would be desirable to
combine the benefits of these two approaches into a single algorithm. Another open question
is to better understand the dependence of our sparse Hamiltonian simulation method on the
sparsity d. While we use d2+o(1) queries, the method of [BC12] uses only O(d) queries. Could
the performance of the simulation be improved by a different decomposition of the Hamiltonian?
These questions are encompassed by the following.

Open Problem 2.2. What is the optimal query complexity of sparse Hamiltonian simulation
in terms of all parameters of interest? We know upper bounds of O(d‖H‖maxt/

√
ε) [BC12] and

O
(
τ log(τ/ε)

log log(τ/ε)

)
queries, where τ := d2‖H‖maxt (Theorem 2.1). The best lower bounds we know

are Ω(‖H‖maxt) [BACS07] and Ω
(

log(1/ε)
log log(1/ε)

)
(Theorem 2.2).

39

Chapter 3

Oracle identification

Chapter summary: In the oracle identification problem, we are given oracle access
to an unknown N -bit string x promised to belong to a known set of size M and our
task is to identify x. We present the first quantum algorithm for the problem that is
optimal in its dependence on N and M . Our algorithm considerably simplifies and
improves the previous best algorithm due to Ambainis et al. [AIK+07]. Our algorithm
also has applications in quantum learning theory, where it improves the complexity of
exact learning with quantum membership queries, resolving a conjecture of Hunziker
et al. [HMP+10].

Our algorithm is based on ideas from classical learning theory and a new composition
theorem for solutions of the filtered γ2-norm semidefinite program, which characterizes
quantum query complexity. Our composition theorem is quite general and allows us
to compose quantum algorithms with input-dependent query complexities without
incurring a logarithmic overhead for error reduction. Our composition theorem is
used in the next chapter to remove all log factors from the nearly optimal quantum
algorithm for Boolean matrix multiplication.

This chapter is based on the following paper:

[Kot14] Robin Kothari. An optimal quantum algorithm for the oracle identification problem.
In Proceedings of the 31st International Symposium on Theoretical Aspects of Computer
Science (STACS 2014), volume 25 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 482–493, 2014.

40

3.1 Introduction

In this chapter we study the query complexity of the oracle identification problem, the very basic
problem of completely determining a string given oracle access to it.

Problem description

In the oracle identification problem, we are given an oracle for an unknown N -bit string x, which
is promised to belong to a known set C ⊆ {0, 1}N , and our task is to identify x while minimizing
the number of oracle queries. For a set C, we denote this problem OIP(C). In other words,
OIP(C) is the problem of computing the identity function f(x) = x, promised that x ∈ C. As
usual, classical algorithms are given access to an oracle that outputs xi on input i, while quantum
algorithms have access to a unitary Qx that maps |i, b〉 to |i, b⊕ xi〉 for b ∈ {0, 1}.

For example, let C := {0, 1}N . Then the classical (deterministic or bounded-error) query
complexity of OIP(C) is N , since every bit needs to be queried to completely learn x, even with
bounded error. A surprising result of van Dam shows that Q(OIP(C)) = N/2 + O(

√
N) [vD98],

which is optimal up to lower order terms [ABSdW13]. As another example, consider the set
C1 = {x : |x| = 1}, where |x| denotes the Hamming weight of x. This corresponds to the search
problem with 1 marked item and thus Q(OIP(C1)) = Θ(

√
N) [BBBV97, Gro96], while the classical

query complexity is Θ(n).

History and motivation

Since oracle identification is a very general problem, it has been studied in several different
contexts. Ambainis et al. [AIK+04, AIK+07] studied this problem from the perspective of finding
algorithms that are optimal in terms of N and the size of the set C. This is the version of the
problem we will focus on in this chapter.

The problem has also been studied in quantum machine learning [SG04, AS05, HMP+10],
where it is known as the problem of exact learning using quantum membership queries. In
the machine learning literature the focus is on finding optimal algorithms for OIP(C) in terms
of combinatorial parameters of the set C. We also address this version of the problem in this
chapter.

Several well-known problems are special cases of oracle identification, e.g., the ordered search
problem, the search problem with one marked element [Gro96], the Bernstein–Vazirani problem
[BV97], the oracle interrogation problem [vD98], and hidden shift problems [vDHI06]. For some
applications, generic oracle identification algorithms are almost as good as algorithms tailored to
the specific application, as observed in [CKOR13]. Consequently, the main result of this chapter
improves some of the upper bounds in [CKOR13].

41

The problem has also been studied in the context of post-quantum cryptography from the
perspective of designing quantum-secure message authentication codes [BZ13]. There the problem
was studied over a larger alphabet without any constraint on the set C (i.e., C is the set of all
strings of length N over the chosen alphabet). Boneh and Zhandry [BZ13] provided an optimal
algorithm and matching lower bound for this case.

We primarily study the version of the problem studied by Ambainis et al., although we will
later discuss how our algorithm yields improved upper bounds in the context of quantum machine
learning. Ambainis et al. [AIK+04, AIK+07] studied the oracle identification problem in terms
of N and M := |C|. They exhibited algorithms whose query complexity is close to optimal in its
dependence on N and M .

For a given N and M , we say an oracle identification algorithm is optimal in terms of N and
M if it solves all N -bit oracle identification problems with |C| = M making at most Q queries and
there exists some N -bit oracle identification problem with |C| = M that requires Ω(Q) queries.
This does not, however, mean that the algorithm is optimal for each set C individually, since
these two parameters do not completely determine the query complexity of the problem. For
example, all oracle identification problems with M = N can be solved with O(

√
N) queries, and

this is optimal since this class includes the search problem with one marked item (C1 above).
However there exists a set C of size M = N with query complexity Θ(logN), such as the set of
all strings with arbitrary entries in the first logN bits and zeros elsewhere. There even exists a
set C, derived from the Bernstein–Vazirani problem [BV97], with M = N with quantum query
complexity equal to 1. (This set has classical query complexity Θ(logN).)

Let OIP(M,N) denote the set of oracle identification problems with C ⊆ {0, 1}N and |C| = M .
Let the query complexity of OIP(M,N) be the maximum query complexity of any problem in
this set. Our goal is to characterize Q(OIP(M,N)).

Known results

The classical query complexity of OIP(M,N) is easy to characterize:

Proposition 3.1. The classical (deterministic or bounded-error) query complexity of OIP(M,N)
is Θ(min{M,N}).

For M ≤ N , the upper bound follows from the observation that we can always eliminate at
least one potential string in C with one query. For the lower bound, consider any subset of C1 of
size M . For M > N , the lower bound follows from any set C ⊇ C1 and the upper bound is trivial
since any query problem can be solved with N queries.

In the quantum case, the M ≤ N case is fully understood. For a lower bound, we consider (as
before) any subset of C1 of size M , which is as hard as the search problem on M bits and requires
Ω(
√
M) queries. For an upper bound, we can reduce this to the case of M = N by selecting M

42

bits such that the strings in C are distinct when restricted to these bits. A proof that such a set of
M bits always exists appears in [CKOR13, Theorem 11]. Thus Q(OIP(M,N)) ≤ Q(OIP(M,M)),
which is O(

√
M) [AIK+04, Theorem 3]. In summary, we have the following.

Proposition 3.2. For M ≤ N , Q(OIP(M,N)) = Θ(
√
M).

For the other regime, where M > N , the best known lower and upper bounds are the following,
from [AIK+04, Theorem 2] and [AIK+07, Theorem 2] respectively.

Theorem 3.1 ([AIK+04, AIK+07]). If N < M ≤ 2N
d

for some constant d < 1, then

Q(OIP(M,N)) = O(
√
N logM/logN) (3.1)

and for all M > N , Q(OIP(M,N)) = Ω(
√
N logM/logN).

When M gets closer to 2N , their algorithm no longer gives nontrivial upper bounds. For
example, if M ≥ 2N/ logN , their algorithm makes O(N) queries. While not stated explicitly,
an improved algorithm follows from the techniques of [AIN+09, Theorem 6], but the improved

algorithm also does not yield a nontrivial upper bound when M ≥ 2N/ log3N .

Ambainis et al. left open two problems, in increasing order of difficulty. Quoting [AIK+07,
Section 5]:

A challenging question is whether or not there exists an OIP algorithm whose upper
bound is o(N) for M > 2N/ logN , say, for M = 2N/ log logN . Even more challenging is
to design an OIP algorithm which is optimal in the whole range of M .

Our results

In this chapter we resolve both open problems by completely characterizing the quantum query
complexity of the oracle identification problem in the range N < M ≤ 2N . Furthermore, we
present a single algorithm that is optimal in the entire range of M , including M ≤ N . Our main
result is the following:

Theorem 3.2. For N < M ≤ 2N , Q(OIP(M,N)) = Θ
(√

N logM
log(N/logM)+1

)
.

The lower bound follows from the ideas in [AIK+04], but needs additional calculation. The
lower bound also appears in an unpublished manuscript [AIN+09, Remark 1], but we provide a
proof in Section 3.2 for completeness. The +1 term in the denominator is relevant only when M
gets close to 2N ; it ensures that the complexity is Θ(N) in that regime.

The main result is the algorithm, which is quite different from and simpler than that of

[AIK+07]. It is also optimal in the full range of M as it makes O
(√

N logM
log(N/logM)+1

)
queries when

M ≥ N and O(
√
M) queries when M ≤ N . We now present a high-level overview.

43

High-level overview of our techniques

Our upper bound has two main ingredients: First, we use ideas from classical learning theory,
where the oracle identification problem is studied as the problem of exact learning with member-
ship queries [Ang88]. In particular, our quantum algorithm is based on Hegedűs’ implementation
of the halving algorithm [Heg95]. Hegedűs characterizes the number of queries needed to solve
the classical oracle identification problem in terms of the “extended teaching dimension” of C.
While we do not use that notion, we borrow some of the main ideas of the algorithm.

Our algorithm is based on some simple ideas. Say we know that the oracle string x belongs
to a set S. We can construct from S a string s, known as the “majority string,” which is 1 at
position i if at least half the strings in S are 1 at position i and 0 otherwise. Importantly, for any
i, the set of strings in S that disagree with s at position i is at most half the size of S. Now we
search for a disagreement between x and s using Grover’s algorithm. If the algorithm finds no
disagreement, then x = s. If it does, we have reduced the size of S by a factor of 2. This gives an
algorithm with query complexity O(

√
N logM), which is suboptimal. We improve the algorithm

by taking advantage of two facts: first, that Grover’s algorithm can find a disagreement faster
if there are many disagreements to be found, and second, that there exists an order in which to
find disagreements that reduces the size of S as much as possible in each iteration. The existence
of such an order was shown by Hegedűs [Heg95]. Our algorithm is fully explained in Section 3.3.

The second ingredient of our upper bound is a general composition theorem for solutions of the
filtered γ2-norm semidefinite program (SDP) introduced by Lee et al. [LMR+11] that preserves
input-dependent query complexities. We need such a result to resolve the following problem: Our
algorithm consists of k bounded-error quantum algorithms that must be run sequentially because
each algorithm requires as input the output of the previous algorithm. Let the query complexities
of the algorithms be Q1(x), Q2(x), . . . , Qk(x) on input x. If these were exact algorithms, we
could merely run them one after the other, giving one algorithm’s output to the next as input, to
obtain an algorithm with worst-case query complexity O(maxx

∑
iQi(x)). However, since these

are bounded-error algorithms, we cannot guarantee that all k algorithms will give the correct
output with high probability. One option is to apply standard error reduction, but this would
yield an algorithm that makes O(maxx

∑
iQi(x) log k) queries in the worst case. Instead we prove

a general composition theorem for the filtered γ2-norm SDP that gives us an algorithm that makes
O(maxx

∑
iQi(x)) queries, as if the algorithms had no error. A similar result is known for worst-

case query complexity, but that gives a suboptimal upper bound of O(
∑

i maxxQi(x)) queries in
this case. Our composition theorem is proved in Section 3.4.

Other applications

The oracle identification problem was also studied by Atıcı and Servedio [AS05], who studied
algorithms that are optimal for a given set C. The query complexity of their algorithm depends

44

on a combinatorial parameter of C, γ̂C , which satisfies 2 ≤ 1/γ̂C ≤ N+1. They prove Q(OIP(C)) =
O(
√

1/γ̂C logM log logM). Our algorithm for oracle identification, without modification, makes

fewer queries than this bound. Our algorithm’s query complexity is O
(√

1/γ̂C

log 1/γ̂C
logM

)
, which

resolves a conjecture of Hunziker et al. [HMP+10]. We prove this in Section 3.5.

Our composition theorem can also be used to remove unneeded log factors from existing
quantum query algorithms. In the next chapter we show how to improve the query complexity of
our algorithm for Boolean matrix multiplication from Õ(n

√
`), where n is the size of the matrices

and ` is the sparsity of the output, to O(n
√
`). We conclude with some discussion and open

problems in Section 3.6.

3.2 Oracle identification lower bound

The main result, Theorem 3.2, naturally has two parts. In this section we prove the lower bound.

Theorem 3.3. For any N < M ≤ 2N , Q(OIP(M,N)) = Ω
(√

N logM
log(N/logM)+1

)
.

To simplify our lower bounds, we first show the result for M ≥ 2N/2. In this case, we can
consider the set of all N -bit strings with zeros in the last N/2 bits. This set has size 2N/2, and
oracle identification on this set is equivalent to identifying an arbitrary N/2-bit string, which
requires Θ(N) queries [FGGS98, BBC+01]. Thus the theorem is true when M ≥ 2N/2.

Now consider the set Ck, the set of all N -bit strings with Hamming weight k. We will show that
the oracle identification problem on this set provides the lower bound claimed in Theorem 3.3.
We claim that Q(OIP(Ck)) = Ω(

√
Nk) when k ≤ N/2, and that |Ck| =

(
N
k

)
is at most M when

k = 1
10

logM
log (N/ logM)+1 and M < 2N/2. The lower bound follows from these two claims.

Lemma 3.1. Let Ck = {x ∈ {0, 1}N : |x| = k} be the set of all N -bit strings with Hamming
weight k. Then Q(OIP(Ck)) = Ω(

√
Nk) when k ≤ N/2.

Proof. Consider the problem PromiseSearch, in which we have oracle access to a d-bit string
promised to contain exactly one 1 and our task is to find it. This problem requires Ω(

√
d) queries

to solve, which can be shown by the adversary method (see [Amb02, Theorem 1]).

Without loss of generality, assume N is an integer multiple of k. (If not, we could choose the
largest such integer smaller than N .) Divide the N -bit string into k equal parts of size N/k ≥ 2.
On each part of size N/k, we embed the PromiseSearch problem. Solving the oracle identification
problem on this string would solve k independent instances of the PromiseSearch problem on N/k
bits, which by the direct sum theorem (Theorem 1.1) requires Ω(k

√
N/k) = Ω(

√
Nk) queries.

45

Lemma 3.2. For any N < M < 2N/2, if k = 1
10

logM
log (N/ logM)+1 then

(
N
k

)
≤M .

Proof. We prove this for k = 1
10

logM
log (N/ logM) instead. The claim for k = 1

10
logM

log (N/ logM)+1 follows

from the monoticity of the function
(
N
k

)
when k < N/2.

For this proof, we define n := logN and m := logM . In this notation, k = 1
10

m
log (N/m) . Now

(
N

k

)
≤
(
Ne

k

)k
=

(
10Ne log

(
N
m

)
m

)k
=

((
N
m

)10
10e log

(
N
m

)(
N
m

)9
)k

= M

(
10e log

(
N
m

)(
N
m

)9
)k

, (3.2)

where the last equality follows from the fact that
(
N
m

)10k
= 2m = M . Since M < 2N/2, m < N/2

and
(
N
m

)
> 2, we have (

10e log
(
N
m

)(
N
m

)9
)
< 1, (3.3)

which shows that
(
N
k

)
≤M .

Observe that the set of hard instances we use for the lower bound is all strings of Hamming
weight k for the largest k that satisfies

(
N
k

)
≤M . However, a matching upper bound for this set

is easy since we can find all k 1s in a string using O(
√
Nk) queries (e.g., see Lemma 5.6).

3.3 Oracle identification algorithm

In this section we explain the ideas that go into our algorithm and prove its correctness. We
also prove the query upper bound assuming we can compose bounded-error quantum algorithms
without incurring log factors, which we justify in Section 3.4.

Throughout this section, let x ∈ C be the string we are trying to identify. For any set
S ∈ {0, 1}N , let MAJ(S) be an N -bit string such that MAJ(S)i is 1 if |{y ∈ S : yi = 1}| ≥ |{y ∈
S : yi = 0}| and 0 otherwise. In words, MAJ(S)i is b if the majority of strings in S have bit i
equal to b. Note that the string MAJ(S) need not be a member of S.

3.3.1 Basic halving algorithm

We begin by describing a general learning strategy called the halving algorithm, attributed to
Littlestone [Lit88]. Say we currently know that the oracle string x belongs to a known set S ⊆ C.
The halving algorithm tests if the oracle string x is equal to MAJ(S). If it is equal, we have

46

identified x; if not, we look for a bit at which they disagree. Having found such a bit i, we know
that xi 6= MAJ(S)i, and we may delete all strings in S that are inconsistent with this. Since at
most half the strings in S disagree with MAJ(S) at any position, we have at least halved the
number of potential strings.

To convert this into a quantum algorithm, we need a subroutine that tests if a given string
MAJ(S) is equal to the oracle string x and finds a disagreement otherwise. This can be done by
running Grover’s algorithm on the bitwise XOR of x and MAJ(S). This gives us the following
simple algorithm.

Algorithm 3.1 Basic halving algorithm

1: S ← C
2: repeat
3: Search for a disagreement between x and MAJ(S). O(

√
N)

4: If a disagreement is found, delete all inconsistent strings from S. If not, let S ← {MAJ(S)}.
5: until |S| = 1

This algorithm always finds the unknown string x, since S always contains x. The loop can
run at most logM times, since each iteration cuts down the size of S by a factor of 2. Grover’s
algorithm needs O(

√
N) queries, but it is a bounded-error algorithm. For this section, let us

assume that bounded-error algorithms can be treated like exact algorithms and need no error
reduction. Assuming this, Algorithm 3.1 makes O(

√
N logM) queries.

3.3.2 Improved halving algorithm

Even assuming free error reduction, Algorithm 3.1 is not optimal. Primarily, this is because
Grover’s algorithm can find an index i such that xi 6= MAJ(S)i faster if there are many such
indices to be found, and Algorithm 3.1 does not exploit this fact.

Given an N -bit binary string, we can find a 1 with O(
√
N/K) queries in expectation, where

K > 0 is the number of 1s in the string [BBHT98]. Alternately, there is a variant of Grover’s
algorithm that finds the first 1 (from left to right, say) in the string inO(

√
p) queries in expectation

where p is the position of the first 1. This follows from the known O(
√
N) query algorithm for

finding the first 1 in a string of size N [DHHM06], by running that algorithm on the first 2k bits,
for k = 1, 2, . . . , logN . Let us refer to this function as the find-first-one function. We can now
modify the previous algorithm to look for the first disagreement between x and MAJ(S) instead
of any disagreement. Algorithm 3.2 is our modified algorithm.

As before, the algorithm always finds the unknown string. To analyze the query complexity, let
r be the number of times the loop repeats, including the last run of the loop where no disagreement
is found. For convenience, we will say that in the last run of the loop, a disagreement was found

47

Algorithm 3.2 Improved halving algorithm

1: S ← C
2: repeat
3: Search for the first disagreement between x and MAJ(S). O(

√
pi)

4: If a disagreement is found, delete all inconsistent strings from S. If not, let S ← {MAJ(S)}.
5: until |S| = 1

at the (N + 1)th bit, i.e., one position after the last bit in the string. Let p1, p2, . . . , pr be the
relative positions of disagreement, where by relative positions we mean that the ith disagreement
is found pi bits after pi−1. For example, this means that the first disagreement was found at
bit p1, the next one was found at bit p1 + p2 and so on. After the first run of the loop, since a
disagreement is found at position p1, we have learned the first p1 bits of x; the first p1 − 1 bits
agree with MAJ(S), while bit p1 disagrees with MAJ(S). Thus we are left with a set S in which
all strings agree on these p1 bits. For convenience, we can treat S as a set of strings of length
N − p1 (instead of length N) and only look for disagreements starting from position p1 in the
next iteration. This explains why the cost of finding the second disagreement scales like O(

√
p2)

instead of O(
√
p1 + p2), because we are not going to search over the first p1 bits. Each iteration

reduces the effective length of strings in S by pi, and since the last disagreement is found at
position N + 1 by convention, we have

∑r
i=1 pi = N + 1.

For example, consider the situation where x = MAJ(S) the first time the loop is run. In this
case, no disagreement will be found and therefore p1 = N + 1 and r = 1. As another example,
let x be a string for which the first disagreement is found at position p, and after updating S by
eliminating strings that are inconsistent with the first p bits of x, x = MAJ(S). In this example
p1 = p, p2 = N + 1− p, and r = 2.

To analyze the query complexity, note that as in Algorithm 3.1, the loop can run at most
logM times, thus r ≤ logM . Finally, let us assume again that these bounded-error search
subroutines are exact. Then this algorithm requires O(

∑
i

√
pi) queries, which is O(

√
N logM),

by the Cauchy–Schwarz inequality.

3.3.3 Final algorithm

While Algorithm 3.2 is an improvement over Algorithm 3.1, it is still not optimal. One reason is
that sometimes a disagreement between the majority string and x may eliminate more than half
the possible strings. This observation can be exploited by finding disagreements in such a way as
to maximize the reduction in size when a disagreement is found, an idea due to Hegedűs [Heg95].

To understand the basic idea, consider searching for a disagreement between x and MAJ(S)
classically. The most obvious strategy is to check if x1 = MAJ(S)1, x2 = MAJ(S)2, and so on

48

until a disagreement is found. This strategy makes more queries if the disagreement is found at
a later position. However, we could have chosen to examine the bits in any order. We would like
the order to be such that if a disagreement is found at a later position, it cuts down the size of
S by a larger factor. Such an ordering would ensure that either we spend very few queries and
achieve a factor-2 reduction right away, or we spend more queries but the size of S goes down
significantly. Hegedűs shows that there is always a reordering of the bits that achieves this. The
following lemma is similar to [Heg95, Lemma 3.2], but we provide a proof for completeness.

Lemma 3.3. For any S ⊆ {0, 1}N , there exists a string s ∈ {0, 1}N and a permutation σ on

N , such that for any p ∈ [N], |Sp| ≤ |S|
max{2,p} , where Sp := {y ∈ S : yσ(i) = sσ(i) for 1 ≤ i ≤

p−1 and yσ(p) 6= sσ(p)}, the set of strings in S that agree with s at σ(1), . . . , σ(p−1) and disagree
with it at σ(p).

Proof. We will construct the permutation σ and string s greedily, starting with the first position,
σ(1). We choose this bit to be one that intuitively contains the most information, i.e., a bit
for which the fraction of strings that agree with the majority is closest to 1/2. This choice
will make |S1| as large as possible. More precisely, we choose σ(1) to be any j that maximizes
|{y ∈ S : yj 6= MAJ(S)j}|. Then let sσ(1) be MAJ(S)σ(1).

In general, after having chosen σ(1), . . . , σ(k − 1) and having defined s on those bits, we
choose σ(k) to be the most informative bit assuming all previous bits have agreed with string s
on positions σ(1), . . . , σ(k−1). This choice makes |Sk| as large as possible. More precisely, define

S̄p := {y ∈ S : yσ(i) = sσ(i) for all 1 ≤ i ≤ p}. (3.4)

We choose σ(k) to be any bit j that maximizes |{y ∈ S̄k−1 : yj 6= MAJ(S̄k−1)j}|. Then let sσ(k)

be MAJ(S̄k−1)σ(k).

This construction ensures that |S1| ≥ |S2| ≥ . . . ≥ |SN |. To show this, note that since σ(k)
was chosen to maximize |{y ∈ S̄k−1 : yj 6= MAJ(S̄k−1)j}|, we have

|Sk| = |{y ∈ S̄k−1 : yσ(k) 6= MAJ(S̄k−1)σ(k)}| ≥ |{y ∈ S̄k−1 : yσ(k+1) 6= MAJ(S̄k−1)σ(k+1)}|. (3.5)

The size of this set is at least |{y ∈ S̄k : yσ(k+1) 6= MAJ(S̄k−1)σ(k+1)}|, since S̄k ⊆ S̄k−1. We do
not know the value of MAJ(S̄k−1)σ(k+1) (e.g., it need not be equal to sσ(k+1)), but we do know
that it is either 0 or 1, which gives

|Sk| ≥ min
{
|{y ∈ S̄k : yσ(k+1) 6= 0}|, |{y ∈ S̄k : yσ(k+1) 6= 1}|

}
= min

{
|{y ∈ S̄k : yσ(k+1) 6= sσ(k+1)}|, |{y ∈ S̄k : yσ(k+1) = sσ(k+1)}|

}
= min{|Sk+1|, |S̄k+1|} = |Sk+1|, (3.6)

where the last equality uses |Sk| ≤ |S̄k| for all k.

Finally, combining |S1| + . . . + |Sp| ≤ |S| with |S1| ≥ |S2| ≥ . . . ≥ |Sp| gives us |Sp| ≤ |S|/p.
Combining this with |S1| ≤ |S|/2, which follows from the definition of S1, yields the result.

49

Algorithm 3.3 Final algorithm

1: S ← C
2: repeat
3: Let σ and s be as in Lemma 3.3. (These depend on the current S.)
4: Search for the first (according to σ) disagreement between x and s. O(

√
pi)

5: If we find a disagreement, delete all inconsistent strings from S. If not, let S ← {s}.
6: until |S| = 1

We can now state our final oracle identification algorithm (Algorithm 3.3).

This algorithm is similar to Algorithm 3.2, except that in each run we define σ and s using
Lemma 3.3 based on the current set S and search for the first disagreement between x and s
according to σ. Let us also only search for the first disagreement among those bits on which it is
possible to have disagreements. For example, if it is never possible to have disagreements beyond
the kth bit, then the algorithm should not look for a disagreement beyond the kth bit. This may
happen because bits beyond k are equal for all strings in S, or because there is a unique string
that agrees with s on the first k bits. We will call these bits noninformative bits. For example, if
the only remaining strings are 000 and 111, and we are looking for disagreements with 111, either
a disagreement is found at the first bit or not at all. The second and third bits are noninformative.
This example shows that a bit i may be noninformative even if it is not the same for all x ∈ S.

With this in mind, let r be the number of times the loop repeats. This means r− 1 disagree-
ments were found and in the last iteration x agreed with s in all the remaining (informative)
bits. Let the position of the first disagreement be p1. Now that we know the first p1 bits of x, we
have eliminated several strings from S. S now contains at least p1 noninformative bits, since all
strings in S agree on those bits. The next disagreement is found at position p2 and so on until
pr−1. Now the number of remaining informative bits is at most N −

∑r−1
i=1 pi, since each iteration

reveals the value of pi bits making them noninformative as all strings in the updated set S agree
on these bits. In the last iteration, let the total number of informative bits be pr. The search
subroutine in the last iteration will search over pr bits.

From the definition of pi, it is clear that
∑r

i=1 pi ≤ N . Unlike the previous analysis, the bound
r ≤ logM can be loose, since the size of S may reduce by a larger factor due to Lemma 3.3.
Instead, we know that each iteration reduces the set S by a factor of max{2, pi}, which gives
us
∏r
i=1 max{2, pi} ≤ M . As before, we will assume the search subroutine is exact, which

gives us a query upper bound of O(
∑r

i=1

√
pi), subject to the constraints

∑r
i=1 pi ≤ N and∏r

i=1 max{2, pi} ≤M . We solve this optimization problem below.

Lemma 3.4. Let C(M,N) be the maximum value attained by
∑r

i=1

√
pi, subject to the constraints

50

∑r
i=1 pi ≤ N,

∏r
i=1 max{2, pi} ≤M, r ∈ [N], and pi ∈ [N] for all i ∈ [r]. Then

C(M,N) = O

(√
N logM

log(N/logM) + 1

)
and C(M,N) = O(

√
M). (3.7)

Proof. First we define two closely related optimization problems and show that their optimum
values upper bound C(M,N). Let α1 and α2 denote the optimum values of problem 1 and 2
respectively. We will show that C(M,N) ≤ α1 ≤ α2 and then upper bound α2 using the dual of
problem 2. Let n := dlogNe and m := dlogMe.

Problem 1 (α1)

maximize:
r∑
i=1

√
qi

subject to:
r∑
i=1

qi ≤ 2N,

r∏
i=1

qi ≤M2,

r ∈ [N],

2 ≤ qi ≤ 2N (for i ∈ [r]).

Problem 2 (α2)

maximize:

n+2∑
k=1

√
2kxk

subject to:

n+2∑
k=1

2kxk ≤ 4N,

n+2∑
k=1

kxk ≤ 4m,

xk ≥ 0 (for k ∈ [n+ 2]).

Let p1, . . . , pr, r be an optimal solution of the problem in the statement of the lemma. Thus
C(M,N) =

∑r
i=1

√
pi. Define qi := 2pi, for all i ∈ [r]. This is a feasible solution of problem 1,

since
∑

i pi ≤ N ⇒
∑

i qi ≤ 2N , and
∏
i max{2, pi} ≤ M gives us

∏
i 2 ≤ M and

∏
i pi ≤ M ,

which together yield
∏
i 2pi ≤M2. Finally

∑
i

√
pi ≤

∑
i

√
2pi, which gives us C(M,N) ≤ α1.

Now let q1, . . . , qr, r be an optimal solution of problem 1. Thus α1 =
∑r

i=1

√
qi. Define

xk := |{i : dlog qie = k}|. We claim that this is a feasible solution of problem 2.
∑

i qi ≤ 2N ⇔∑
i 2log qi ≤ 2N , which implies

∑
i 2dlog qie ≤ 4N . We can rewrite

∑
i 2dlog qie as

∑
k 2kxk, which

gives us
∑

k 2kxk ≤ 4N . The next constraint
∏
i qi ≤ M2 implies

∑
i log qi ≤ 2m. Since each

qi ≥ 2, the number of terms in this sum is at most 2m, thus
∑

idlog qie ≤
∑

i(log qi + 1) ≤ 4m.
Again,

∑
idlog qie is the same as

∑
k kxk, which gives us

∑
k kxk ≤ 4m. Finally α1 =

∑
i

√
qi =∑

i

√
2log qi ≤

√
2dlog qie ≤

∑
k

√
2kxk ≤ α2.

Problem 2 is a linear program, which gives us an easy way to upper bound α2. For convenience,
let N ′ = 4N , n′ = dlogN ′e = n + 2, and m′ = 4m. Let the optimum values of the following
primal and dual linear programs be α and β respectively. Clearly α2 = α. By weak duality of
linear programming, we have α ≤ β.

51

Primal (α)

maximize:

n′∑
k=1

√
2kxk

subject to:

n′∑
k=1

2kxk ≤ N ′,

n′∑
k=1

kxk ≤ m′,

xk ≥ 0 (for k ∈ [n′]).

Dual (β)

minimize: N ′y +m′z

subject to: 2ky + kz ≥
√

2k, (for k ∈ [n′])

y, z ≥ 0.

For convenience, define d := log(2N ′/m′) = log(2N/m), which satisfies d ≥ 1 since m ≤ N .

We can use any dual feasible solution to upper bound β. Let y =
√

1
2dd

and z =
√

2d

d . Thus

β ≤ N ′y +m′z ≤ 2
√

2
√

N ′m′

log(N ′/m′)+1 = O
(√

Nm
log(N/m)+1

)
.

Let us check the constraints: Clearly y, z ≥ 0; the other constraints require that√
2k

d2d
+

√
k22d

2kd
≥ 1

for all k ≥ 1 and d ≥ 1. Using a + b ≥ 2
√
ab, the left-hand side of this equation is greater than

2k/d. Thus the inequality clearly holds for k ≥ d (and even k ≥ d/2).

Now suppose 1 ≤ k ≤ d. Let us show that the second term
√

k22d

2kd
is large enough. Since k2

2k

is concave in this range, the minimum is achieved at either k = 1 or k = d. For k = 1, the second
term becomes

√
2d/d, and for k = d, the second term evaluates to

√
d; both of which are at least

1 when d ≥ 1.

Since the solution is feasible, we get C(M,N) ≤ β = O
(√

Nm
log(N/m)+1

)
. Finally, note that in

the problem in the statement of the lemma,
∏
i max{2, pi} ≤ M forces

∑
i pi ≤ M , which also

implies pi ≤M and r ∈M . Thus we may simply substitute N with M to get another valid upper
bound. This gives C(M,N) = O(

√
M).

Thus Algorithm 3.3 achieves the upper bound claimed in Theorem 3.2, under the assumption
that our bounded-error subroutines can be treated as exact algorithms. But since they not exact,
we could reduce the error with logarithmic overhead. Since the loop repeats at most logM times,
if we ensure that the error in each subroutine is an inverse polynomial in logM , the overall error
will be less than a constant. Thus by using standard error reduction, we have an algorithm for

the oracle identification problem that makes O
(√

N logM
log(N/logM)+1 log logM

)
queries.

52

However, it is usually unnecessary to incur this loss in quantum query algorithms. In the
next section we show this is true for Algorithm 3.3, and the log logM factor can be removed.
Readers uninterested in removing this final log factor may safely skip the next section or jump
to the nontechnical summary of this section (Section 3.4.4).

3.4 Removing log factors using the filtered γ2 norm

While the primary aim is to rigorously establish the query complexity of Algorithm 3.3, in this
section we will develop techniques that can be used more generally. Let us begin by describing
what we would like to prove.

Algorithm 3.3 essentially consists of a loop repeated r(x) times. We write r(x) to make
explicit its dependence on the input x. The loop itself consists of running a variant of Grover’s
algorithm on x, based on information we have collected thus far about x. Call these algorithms
A1, A2, . . . , Ar(x). To be clear, A1 is the algorithm that is run the first time the loop is executed,
i.e., it looks for a disagreement under the assumption that S = C. It produces an output p1(x),
which is then used by A2. A2 looks for a disagreement assuming a modified set S, which is smaller
than C. Let us say that in addition to p2(x), A2 also outputs p1(x). This ensures that the output
of Ai completely describes all the information we have collected about x. Thus algorithm Ai+1

now only needs the output of Ai to work correctly.

Thus we can now view Algorithm 3.3 as a sequential composition of r(x) algorithms, A1,
A2, . . . , Ar(x). It is a composition in the sense that the output of one is required as the input of

the next algorithm. We know that the expected query complexity ofAi on input x isO(
√
pi(x)). If

these algorithms were exact, then running them one after the other would yield an algorithm with
expected query complexity O(

∑
i

√
pi(x)). But since they are bounded error, this straightforward

strategy does not work.

Surprisingly, it is known how to sequentially compose quantum algorithms in terms of worst-
case query complexity. More precisely, if we have r algorithms A1, A2, . . . , Ar with worst-case
query complexities Qi, then there is a quantum algorithm that solves the composed problem
with O(

∑
iQi) queries. This is a remarkable property of quantum algorithms, which follows

from the work of Lee et al. [LMR+11]. We first discuss this simpler result before moving on to
input-dependent query complexities.

3.4.1 Composition theorem for worst-case query complexity

We now show a composition theorem for solutions of the filtered γ2-norm SDP, which implies a
similar result for worst-case quantum query complexity. This follows from the work of Lee et al.
[LMR+11], which we generalize in the next section.

53

Consider functions that map D → E, where D ⊆ {0, 1}N and E is some finite set. For any
matrix A indexed by elements of D, we define a quantity γ(A). (To readers familiar with the
notation of [LMR+11], this is the same as their γ2(A|∆).)

Definition 3.1. Let A be a square matrix indexed by elements of D. We define γ(A) to be the
optimum of the following semidefinite program:

γ(A) := min
{|uxj〉,|vyj〉}

max
x∈D

c(x) (3.8)

subject to: ∀x ∈ D, c(x) = max
{∑

j

‖|uxj〉‖2,
∑
j

‖|vxj〉‖2
}

(3.9)

∀x, y ∈ D,
∑

j:xj 6=yj

〈uxj |vyj〉 = Axy. (3.10)

We call the semidefinite program (SDP) above the filtered γ2-norm SDP or the γ(A) SDP.
For a function f : D → E, let F be its Gram matrix, defined as Fxy = 1 if f(x) 6= f(y) and
Fxy = 0 otherwise. Lee et al. provide an algorithm and matching lower bound to show that
Q(f) = Θ(γ(J − F)), where J is the all-ones matrix.

More generally, they showed that this SDP can be used to upper bound the quantum query
complexity of state conversion. In the state conversion problem, we have to convert a given state
|sx〉 to |tx〉. An explicit description of the states |sx〉 and |tx〉 is known for all x ∈ D, but we
do not know the value of x. Since the query complexity of this task depends only on the Gram
matrices of the starting and target states, define S and T by Sxy := 〈sx|sy〉 and Txy := 〈tx|ty〉
for all x, y ∈ D. Let S 7→ T denote the problem of converting states with Gram matrix S to
those with Gram matrix T . If F is the Gram matrix of a function f , then J 7→ F is the function
evaluation problem. Lee et al. provide a bounded-error quantum algorithm that solves the state
conversion problem with O(γ(S − T)) queries. This gives Q(S 7→ T) = O(γ(S − T)), which
generalizes Q(f) = O(γ(J − F)). Note that unlike in function evaluation, this provides only an
upper bound and not a tight characterization.

We now have the tools to prove the composition theorem for the filtered γ2-norm SDP.

Theorem 3.4 ([LMR+11]). Let f0, f1, . . . , fk be functions with Gram matrices F0, F1, . . . , Fk re-
spectively. Let C1, C2, . . . , Ck be the optimum value of the SDPs for the state conversion problems
F0 7→ F1, F1 7→ F2, . . . , Fk−1 7→ Fk, i.e., ∀i ∈ [k], Ci = γ(Fi−1−Fi). Then γ(F0−Fk) ≤

∑k
i=1Ci.

This does not appear explicitly in [LMR+11], but simply follows from the triangle inequality
γ(A + B) ≤ γ(A) + γ(B) [LMR+11, Lemma A.2]. From this we can also show an analogous
theorem for quantum query complexity, which states Q(F0 7→ Fk) = O(

∑k
i=1Q(Fi−1 7→ Fi)). We

do not prove this claim as we do not need it here.

54

3.4.2 Composition theorem for input-dependent query complexity

For our application, we require a composition theorem similar to Theorem 3.4, but for input-
dependent query complexity. However, it is not even clear what this means a priori, since the
value γ(J − F) does not contain information about input-dependent complexities. Indeed, the
value is a single number and cannot contain such information. However, the SDP does contain
this information and we modify this framework to be able to access this.

For example, let f be the find-first-one function discussed in Section 3.3.2, which outputs the
smallest i such that xi = 1 and outputs N + 1 if x = 0N . There is a quantum algorithm that
solves this with O(

√
f(x)) queries in expectation. Furthermore, there is a feasible solution for the

γ(J − F) SDP with c(x) = O(
√
f(x)), where c(x) is the function that appears in eq. (3.9). This

suggests that c(x) gives us information about the x-dependent query complexity. This function
c(x) will serve as our input-dependent cost measure.

Definition 3.2 (Cost function). Let A be a square matrix indexed by elements of D. We say
c : D → R is a feasible cost function for the γ(A) SDP if there is a feasible solution of the γ(A)
SDP with values c(x) in eq. (3.9). Let the set of all feasible cost functions for γ(A) be denoted
Γ(A).

Note that if c(·) is a feasible cost function for γ(J − F), then maxx c(x) is an upper bound
on the worst-case cost, γ(J −F), which is exactly what we expect from an input-dependent cost.
We can now prove an input-dependent analogue of Theorem 3.4 with c(x) playing the role of
γ(J − F).

Theorem 3.5. Let f0, f1, . . . , fk be functions with Gram matrices F0, F1, . . . , Fk respectively. Let
c1(·), c2(·), . . . , ck(·) be feasible cost functions for γ(F0 − F1), γ(F1 − F2), . . . , γ(Fk−1 − Fk), i.e.,
for all i ∈ [k], ci(·) ∈ Γ(Fi−1 − Fi). Then there is a c(·) ∈ Γ(F0 − Fk) satisfying c(x) ≤

∑
i ci(x)

for all x ∈ D.

As in the case of Theorem 3.4, this follows from an analogous triangle inequality.

Lemma 3.5. Let A and B be square matrices indexed by D. If cA(·) ∈ Γ(A) and cB(·) ∈ Γ(B),
there exists a c(·) ∈ Γ(A+B) satisfying c(x) ≤ cA(x) + cB(x) for all x ∈ D.

Proof. Since cA(·) ∈ Γ(A) and cB(·) ∈ Γ(B), there exist vectors that satisfy the following con-
straints: ∑

j:xj 6=yj

〈uAxj |vAyj〉 = (A)xy with cA(x) = max{
∑
j

‖|uAxj〉‖2,
∑
j

‖|vAxj〉‖2} and

∑
j:xj 6=yj

〈uBxj |vByj〉 = (B)xy with cB(x) = max{
∑
j

‖|uBxj〉‖2,
∑
j

‖|vBxj〉‖2}.

55

Now define |uxj〉 := |1〉 |uAxj〉 + |2〉 |uBxj〉 and |vxj〉 := |1〉 |vAxj〉 + |2〉 |vBxj〉. We claim that these
vectors are feasible for γ(A+B). The constraints are satisfied since∑

j:xj 6=yj

〈uxj |vyj〉 =
∑

j:xj 6=yj

〈uAxj |vAyj〉+
∑

j:xj 6=yj

〈uBxj |vByj〉 = (A)xy + (B)xy = (A+B)xy.

The cost function for this solution, c(x), is max{
∑

j ‖|uxj〉‖2,
∑

j ‖|vxj〉‖2}, which gives

c(x) = max{
∑
j

‖|uAxj〉‖2 + ‖|uBxj〉‖2,
∑
j

‖|vAxj〉‖2 + ‖|vBxj〉‖2} ≤ cA(x) + cB(x),

showing that c(x) ≤ cA(x) + cB(x) for all x ∈ D as claimed.

In our applications, we will encounter algorithms that also output their input, i.e., accept as
input f(x) and output (f(x), g(x)). Note that the Gram matrix of the function h(x) = (f(x), g(x))
is merely H = F ◦G, defined as Hxy = FxyGxy.

Such an algorithm can either be thought of as a single quantum algorithm that accepts
f(x) ∈ E as input and outputs (f(x), g(x)) or as a collection of algorithms Ae for each e ∈ E,
such that algorithm Af(x) requires no input and outputs (f(x), g(x)) on oracle input x. These
are equivalent viewpoints, since in one direction you can construct the algorithms Ae from A
by hardcoding the value of e and in the other direction, we can read the input e and call the
appropriate Ae as a subroutine and output (e,Ae(x)). Additionally, if the algorithm Af(x) makes
q(x) queries on oracle input x, the algorithm A we constructed accepts f(x) as input, outputs
(f(x), g(x)), and makes q(x) queries on oracle input x. While intuitive for quantum algorithms,
we need to establish this rigorously for cost functions.

Theorem 3.6. Let f, g : D → E be functions with Gram matrices F and G. For any e ∈ E, let
f−1(e) = {x : f(x) = e}. For every e ∈ E, let ce : f−1(e) → R be a feasible cost function for
γ(J −Ge), where Ge denotes the matrix G restricted to those x that satisfy f(x) = e. Then there
exists a c(·) ∈ Γ(F − F ◦G), such that c(x) = cf(x)(x).

Proof. We build a feasible solution for γ(F − F ◦G) out of the feasible solutions for γ(J −Ge).
We have vectors {|uexj〉 , |veyj〉} for each e ∈ E that satisfy

∑
j:xj 6=yj 〈u

e
xj |veyj〉 = (J −Ge)xy for all

x, y ∈ f−1(e) and ce(x) = max{
∑

j ‖|uexj〉‖2,
∑

j ‖|vexj〉‖2}.

Let |uxj〉 = |f(x)〉 |uf(x)
xj 〉 and |vxj〉 = |f(x)〉 |vf(x)

xj 〉. This is feasible for γ(F − F ◦G), since∑
j:xj 6=yj

〈uxj |vyj〉 =
∑

j:xj 6=yj

〈f(x)|f(y)〉〈uf(x)
xj |v

f(y)
yj 〉 = Fxy ◦ (J −Gf(x))xy = Fxy − (F ◦G)xy.

Note that when f(x) 6= f(y), the value of
∑

j:xj 6=yj 〈u
f(x)
xj |v

f(y)
yj 〉 is unknown, but this only hap-

pens when Fxy = 0, which makes the term 0. Lastly, the cost function for this solution is

max{
∑

j ‖|uxj〉‖2,
∑

j ‖|vxj〉‖2}, which is max{
∑

j ‖|u
f(x)
xj 〉‖2,

∑
j ‖|v

f(x)
xj 〉‖2} = cf(x)(x).

56

3.4.3 Algorithm analysis

We can now return to computing the query complexity of Algorithm 3.3. Using the same notation
as in the beginning of this section, for any x ∈ C, we define r(x) to be the number of times the
repeat loop is run in Algorithm 3.3 for oracle input x assuming all subroutines have no error.
Similarly, let p1(x), p2(x), . . . pr(x)(x) be the relative positions of the first disagreement found in
each run of the loop, assuming the algorithms work exactly. Note that p1(x), p2(x), . . . pr(x)(x)
together uniquely specify x. Let r = maxx r(x).

We define r functions f1, . . . , fr as f1(x) := p1(x), f2(x) := (p1(x), p2(x)), and so on until
fr(x) := (p1(x), . . . , pr(x)), where pk(x) := 0 if k > r(x). Thus if Pi are the Gram matrices of
the functions pi, then F1 = P1, F2 = P1 ◦ P2, . . . , Fr = P1 ◦ P2 ◦ · · · ◦ Pr.

We will now construct a solution for γ(J −Fr), using solutions for the intermediate functions
fi. From Theorem 3.5 we know that we only need to construct solutions for γ(J − F1), γ(F1 −
F2), . . . , γ(Fr−1 − Fr). From Theorem 3.6 we know that instead of constructing a solution for
γ(Fk − Fk+1), which is γ(Fk − Fk ◦ Pk+1), we can construct several solutions, one for each value
of fk(x). More precisely, let fk : D → Ek; then we can construct solutions for γ(J −P ek+1) for all
e ∈ Ek, where P ek+1 is the matrix Pk+1 restricted to x that satisfy fk(x) = e.

For any k, the problem corresponding to γ(J − P ek+1) is just the problem of finding the first
disagreement between x and a known string, which is the essentially the find-first-one function.
This has a solution with cost function O(

√
f(x)), which in this case is O(

√
pk+1(x)).

Theorem 3.7 (find-first-one function). Let f be the function that outputs the smallest i such that
xi = 1 and outputs N + 1 if x = 0N . Let F be its Gram matrix. Then there is a c(·) ∈ Γ(J − F)
such that c(x) = O(

√
f(x)).

Proof. Let ak = k−1/4 and bk = 1/ak = k1/4. Define |uxj〉 = |vxj〉 as the following.

|uxj〉 = |vxj〉 =

aj , if j < f(x)

bf(x), if j = f(x)

0, if j > f(x).

This is a feasible solution for γ(J − F). Since the constraints are symmetric in x and y, there
are two cases: either f(x) < f(y) or f(x) = f(y). For the first case,

∑
j:xj 6=yj 〈uxj |vyj〉 =∑

j=f(x)〈uxj |vyj〉 = af(x)bf(x) = 1, since x and y agree on all positions before f(x). For the second
case,

∑
j:xj 6=yj 〈uxj |vyj〉 = 0, since the only bits that x and y disagree on appear after position

f(x) = f(y). To compute the cost function, note that c(0N) =
∑N

k=1 a
2
k = O(

√
N) = O(

√
f(0N)).

For all other x, c(x) =
∑f(x)−1

k=1 a2
k + b2f(x) =

∑f(x)−1
k=1 k−1/2 +

√
f(x) = O(

√
f(x)).

57

Our function is different from this one in two ways. First, we wish to find the first disagreement
with a fixed string s instead of the first 1. This change does not affect the Gram matrix or the
SDP. Second, we are looking for a disagreement according to an order σ, not from left to right.
This can be fixed by replacing j with σ(j) in the definition of the vectors above.

This shows that for any k, there is a feasible cost function for γ(J − P ek+1) with cost c(x) =

O(
√
pk+1(x)) for any x that satisfies fk(x) = e. Using Theorem 3.6, we get that for any k there is

a ck(·) ∈ Γ(Fk−Fk ◦Pk+1) with ck(x) = O(
√
pk+1(x)) for all x ∈ D. Finally, using Theorem 3.5,

we have a c(·) ∈ Γ(J − Fr) with cost c(x) = O(
∑r

i=1

√
pi(x)) = O(

∑r(x)
i=1

√
pi(x)).

Since the function fr(x) uniquely determines x, we have a feasible cost function for oracle

identification with cost O(
∑r(x)

i=1

√
pi(x)), subject to the constraints of Lemma 3.4, which we have

already solved. This upper bound for the filtered γ2 norm can be converted to a quantum query
complexity upper bound, which shows that the query complexity of our algorithm is

O

(√
N logM

log(N/logM) + 1

)
and O(

√
M).

Along with the lower bound proved in Section 3.2, this yields the main result.

Theorem 3.2. For N < M ≤ 2N , Q(OIP(M,N)) = Θ
(√

N logM
log(N/logM)+1

)
.

3.4.4 Nontechnical summary of techniques

Since this section was particularly technical, let us quickly summarize what has been achieved.
We studied the situation where we have k bounded-error algorithms A1, A2, . . . , Ak such that
algorithm A1 accepts as input f0(x) and outputs (f0(x), f1(x)), and so on. In general Ai accepts
as input (f0(x), f1(x), . . . , fi−1(x)) and outputs (f0(x), f1(x), . . . , fi(x)). This situation models
what we call a sequential composition of algorithms, where the output of one algorithm is required
as the input of the next. We have assumed without loss of generality that each algorithm also
outputs its own input, which is why A1 outputs (f0(x), f1(x)) and not just f1(x).

Now we can compute fk(x) by sequentially composing these algorithms. If the expected
query complexity of algorithm Ai on input x is ci(x), ideally we would expect to compute fk(x)
with worst-case complexity O(maxx

∑
i ci(x)). However, this straightforward composition does

not work since these are bounded-error algorithms. We could reduce their error to an inverse
polynomial in k, but this would add an additional log k factor.

The main result of this section is that it is possible to achieve the worst-case upper bound
O(maxx

∑
i ci(x)) if there exists a feasible solution the filtered γ2-norm SDP (Definition 3.1) with

costs ci(x) for each algorithm Ai. In our application, we had to show that this is possible for the
find-first-one function. In the application to Boolean matrix multiplication in Section 4.4.4, we
will need to show this for a related function.

58

3.5 Application to quantum learning theory

The oracle identification problem has also been studied in quantum learning theory with the
aim of characterizing Q(OIP(C)). The algorithms and lower bounds studied apply to arbitrary
sets C, not just to the class of sets of a certain size, as in the previous sections. We show that
Algorithm 3.3 also performs well for any set C, outperforming the best known algorithm. The
known upper and lower bounds for this problem are in terms of a combinatorial parameter γ̂C ,
defined by Servedio and Gortler. They showed that for any C, Q(OIP(C)) = Ω(

√
1/γ̂C + logM

logN)

[SG04]. Later, Atıcı and Servedio showed that Q(OIP(C)) = O(
√

1/γ̂C logM log logM) [AS05].
We show that our algorithm, without modification, performs strictly better than this. To do this,
we must first define γ̂C .

Definition of the combinatorial parameter γ̂C

The definition of this parameter is involved and we break it up into three steps. Let C ⊆ {0, 1}N
be a set of N -bit strings. We define

γSi := min
b∈{0,1}

|{x ∈ S : xi = b}|
|S|

, where i ∈ [N] and S ⊆ C. (3.11)

This parameter is equal to the fraction of strings in S that disagree with the majority string at
the ith bit. So if we know that the oracle string x is contained in S and we query bit i, there
are two possibilities: If xi disagrees with the majority string, we have eliminated at least half the
strings from S. If xi agrees with the majority string, we have eliminated γSi |S| strings from S.
In either case, the remaining set has size at most (1− γSi)|S|, since γSi ≤ 1/2.

Next we define
γS := max

i∈[N]
γSi , where S ⊆ C. (3.12)

The parameter γS is the fraction of strings eliminated from S by querying the best possible i,
i.e., the one that eliminates the largest fraction of strings, independent of the value of xi. In
Lemma 3.3 we called this bit the most informative bit.

Lastly, we define
γ̂C := min

C′⊆C,|C′|≥2
γC
′
. (3.13)

Algorithm analysis

Informally, γ̂C is the largest α ≤ 1/2, such that for any set S ⊆ C, if we know that x belongs to
S, there is a bit of x that can be queried such that the size of the set of strings consistent with
the answer to this query is at most (1−α)|S|, no matter what the oracle responds. This ensures

59

that if we query the oracle with the permutation of Lemma 3.3, which was chosen to maximize
the number of strings eliminated with a query, each query reduces the size of S by a factor of
(1− γ̂C).

For example, in the first run of the loop in Algorithm 3.3, we search for a disagreement
between x and s according to the order of Lemma 3.3, which orders bits by how informative they
are, i.e., it picks the bit that maximizes γS . When a disagreement is found at position p1, we
have learned the values of the first p1 bits. Each bit learned decreases the size of the set S by a
factor of (1 − γS), where S is the set of strings consistent with all the bits learned so far. But
we know that (1− γS) ≤ (1− γ̂C), which means we have decreased the size of S by a factor of at
least (1− γ̂C)p1 by learning p1 bits.

This adds an extra constraint to the optimization problem appearing in Lemma 3.4 of the
form M

∏r
i (1− γ̂C)pi ≥ 1, since there will be one x ∈ S at the end. From this constraint we get

(
∑

i pi) log(1− γ̂C) ≥ − logM . Using log(1− γ̂C) ≤ −γ̂C gives
∑

i pi ≤
logM
γ̂C

.

We may now replace the constraint
∑

i pi ≤ N with
∑

i pi ≤
logM
γ̂C

in the optimization problem

of Lemma 3.4. This inequality also implies pi ≤ logM
γ̂C

and r ≤ logM
γ̂C

. Thus we may simply replace

all occurrences of N with logM
γ̂C

in Lemma 3.4. This shows that Q(OIP(C)) = O
(√

1/γ̂C

log 1/γ̂C
logM

)
,

which resolves a conjecture of Hunziker et al. [HMP+10, Conjecture 2]. More generally we have
the following.

Theorem 3.8. Algorithm 3.3 provides the following upper bound on the quantum query complex-
ity of OIP(C):

Q(OIP(C)) = O

(
min

{√
1/γ̂C

log 1/γ̂C
logM,

√
N logM

log(N/logM) + 1

})
. (3.14)

This shows that Algorithm 3.3 performs well on any set C, since we know from [SG04] that

Q(OIP(C)) = Ω

(√
1/γ̂C +

logM

logN

)
. (3.15)

From this lower bound we see that Algorithm 3.3 makes

O

(
Q(OIP(C))2√
logQ(OIP(C))

logN

)
(3.16)

queries, which means for any set C our algorithm is at most about quadratically worse than the
best algorithm for the set C.

60

3.6 Discussion and open problems

Some readers may wonder if the composition theorem could be avoided by using a standard
argument about expected running times (or query complexity), which has the following form:
Given k Las Vegas algorithms with expected running times t1, . . . , tk, running these algorithms in
succession will yield an algorithm with expected running time

∑
i ti by the linearity of expectation.

If we now terminate the algorithm after (say) 5 times its expected running time, then by Markov’s
inequality we have a bounded-error algorithm with worst-case running time O(

∑
i qi). However,

to use this argument the individual algorithms need to be zero error. If the algorithms are
merely bounded error, then the final answer may be incorrect even if one of the k bounded-error
algorithms errs. In our applications, oracle identification and Boolean matrix multiplication, we
use a subroutine to find the first marked 1 in a string. This algorithm has bounded error since it
is too expensive to verify (with zero error) that a given 1 is indeed the first 1 in a string.

Our composition theorem only works for solutions of the filtered γ2-norm SDP, not for quan-
tum query complexity itself. While this is sufficient for our application, it would be interesting
to know if bounded-error quantum algorithms with input-dependent query complexities can be
composed in general without incurring log factors.

Open Problem 3.1. Suppose we have k bounded-error quantum algorithms {Ai}, such that A1

outputs f1(x), A2 accepts as input f1(x) and outputs f2(x), and so on, until Ak, which accepts
fk−1(x) as input and outputs fk(x). Let qi(x) be the expected query complexity of algorithm Ai
on input x. From these algorithms can we construct a bounded-error quantum algorithm A that
computes fk(x) with expected query complexity O(

∑
i qi(x)) on input x?

While the query complexity of oracle identification in terms of M and N has been fully
characterized, finding an optimal quantum algorithm for OIP(C) remains open. The corresponding
problem for classical query complexity is also open.

Open Problem 3.2. Can we characterize (up to constants) the classical or quantum query
complexity of OIP(C) for every set C?

In the previous section we showed that our algorithm is almost optimal for all sets, since for
any set C it performs at most about quadratically worse than the best quantum algorithm for
C. This raises the possibility that our algorithm is optimal for every set C, but this is not the
case. There exist sets for which our algorithm performs suboptimally. This follows from the fact
that our algorithm can be made fully classical by replacing the search subroutine with a classical
search subroutine, which would increase the query complexity by at most a quadratic factor.
Thus the square of the query complexity of our algorithm is an upper bound on the classical
query complexity of the problem. Consequently, our algorithm is suboptimal for any OIP(C) for
which there is a super-quadratic separation between quantum and classical query complexity,
such as the Bernstein–Vazirani problem [BV97] for which we have a 1 vs logN separation.

61

Chapter 4

Matrix multiplication

Chapter summary: We study the quantum query complexity of matrix multipli-
cation and related problems. We survey and extend known results on the quantum
query complexity of matrix multiplication and matrix product verification over rings,
semirings and the Boolean semiring in particular. We also study relationships between
these problems and other problems studied in quantum query complexity, such as the
triangle problem and the graph collision problem.

Our main result is an output-sensitive quantum algorithm for Boolean matrix multi-
plication that multiplies two n× n Boolean matrices with query complexity O(n

√
`),

where ` is the number of nonzero entries in the output matrix. Our algorithm is
based on the observation that Boolean matrix multiplication can be reduced to sev-
eral instances of the graph collision problem and that these instances of graph collision
correspond to dense graphs. For these instances we develop a quantum algorithm that
is more efficient than known algorithms for the general graph collision problem. We
also prove a matching lower bound for Boolean matrix multiplication for all ` ≤ εn2,
for any constant ε < 1.

Section 4.4 of this chapter contains results from the following paper:

[JKM12] Stacey Jeffery, Robin Kothari, and Frédéric Magniez. Improving Quantum Query Com-
plexity of Boolean Matrix Multiplication Using Graph Collision. In Automata, Lan-
guages, and Programming, volume 7391 of Lecture Notes in Computer Science, pages
522–532. Springer, 2012.

62

4.1 Introduction

Motivation

Matrix multiplication is an old and well-studied problem in (classical) algorithms and complexity
theory. The problem is to compute the product C of two n × n matrices A and B, where
Cij :=

∑
k AikBkj . The straightforward algorithm for matrix multiplication that computes each

entry separately using its definition runs in time O(n3). In 1969, Strassen published an algorithm
that runs in time O(n2.807) [Str69], showing that the straightforward approch was suboptimal.
Since then there have been many improvements to the running time and the complexity of matrix
multiplication remains an area of active research.

Surprisingly, the matrix product verification problem can be solved faster. In this problem, we
are given three matrices A, B, and C, and we have to check if C = AB. In 1979, Freivalds [Fre79]
presented an optimal O(n2) time bounded-error probabilistic algorithm to solve this problem,
showing that matrix product verification can be simpler than matrix multiplication.

Since these problems are of fundamental interest, we study them in the quantum setting. We
will primarily be interested in the matrix multiplication problem, denoted MM, and the matrix
product verification problem, denoted MPV. In the course of their study we will see that these
problems have surprising connections to other problems studied in quantum query complexity,
such as the triangle problem and the graph collision problem.

While matrices with real number entries are commonly encountered in scientific applications,
matrices have been studied over many different algebraic structures, ranging from complex num-
bers and finite fields to integers and polynomials. These examples motivate the study of matrix
multiplication over rings. Another class of matrices that is commonly encountered in theoret-
ical computer science and graph theory is Boolean matrices. The Boolean semiring is the set
{0, 1} with ∨ and ∧ as the addition and multiplication operations respectively. Other exam-
ples of semirings are the natural numbers, the nonnegative reals, the tropical semiring, and the
(max,min)-semiring. We will not discuss matrices over algebraic structures more general than
semirings (e.g., near-semirings), although it is possible to do so and some results extend to these
structures.

In this chapter we primarily study matrix multiplication over arbitrary rings and the Boolean
semiring. We choose to study rings in general because we are not aware of any algorithm that
exploits the structure of any specific ring (e.g., real or complex numbers). On the other hand, al-
gorithms for Boolean matrix multiplication do exploit properties of the Boolean semiring, making
it fruitful to study them separately.

Boolean matrix multiplication also has many applications and surprising connections. The
Boolean matrix product has a natural interpretation in terms of graphs: If A and B are Boolean
matrices, and GA and GB are the graphs corresponding to these adjacency matrices, then the

63

Boolean matrix product AB is the adjacency matrix of the graph in which two vertices i and j
are adjacent if and only if we can go from i to j by taking the first step on graph GA and the
second step on graph GB. As another example, note that the transitive closure of an n-vertex
graph G with adjacency matrix A is

∑n
i=0A

i. More surprisingly, natural modifications of the
Boolean matrix product verification problem are equivalent to the triangle problem and the graph
collision problem, two well-studied problems in quantum query complexity.

Definitions

Before we describe the problems we study formally, let us define the algebraic structures we will
encounter.

Definition 4.1 (Rings and semirings). A semiring S = (S,+, ·) is a set S with two binary
operations + : S × S → S and · : S × S → S called addition and multiplication respectively, and
two distinguished elements called 0S and 1S , such that the following properties hold:

1. (S,+) is a commutative monoid with identity element 0S : Addition is associative, commu-
tative, and ∀a ∈ S, a+ 0S = a.

2. (S, ·) is a monoid with identity element 1S : Multiplication is associative and ∀a ∈ S,
a · 1S = 1S · a = a.

3. Multiplication distributes over addition: ∀a, b, c ∈ S, a · (b+ c) = a · b+a · c and (b+ c) ·a =
b · a+ c · a.

4. 0S is the multiplicative annihilator of S: For all a ∈ S, a · 0S = 0S · a = 0S .

5. S contains more than one element, which is equivalent to 0S 6= 1S .

A semiring S = (S,+, ·) is a ring if (S,+) is an Abelian group, i.e., if every element in S has an
additive inverse.

For example, the set S = {0, 1}, with + = ∨ (logical OR), and · = ∧ (logical AND), is a
semiring known as the Boolean semiring. Integers, real numbers, complex numbers, and finite
fields with the usual notions of addition and multiplication are rings. When it is clear from
context, we drop the subscript S and use 0 and 1 for 0S and 1S respectively.

Matrix multiplication is defined over semirings in the natural way. The product of an m× n
matrix A and an n× p matrix B over S is an m× p matrix C, where Cij :=

∑n
k=1Aik ·Bkj .

Over any semiring, we use 1 to denote the identity matrix, which has every diagonal entry
equal to 1 and every off-diagonal entry equal to 0, and 0 to denote the zero matrix, which has all
entries equal to 0. Similarly, we use ~1 to denote the all-ones vector and ~0 to denote the all-zeros
vector.

64

Problem description

We study the quantum query complexity of matrix multiplication and related problems in the
natural query model for this problem in which we have query access to the entries of the input
matrices. For example, in the matrix product verification problem we have access to an oracle for
A, B, and C and we have to decide if AB = C. An oracle for a matrix A accepts as input (i, j)
and outputs Aij . As usual, quantum algorithms have access to a unitary version of this oracle.

The primary problems we study are the matrix multiplication problem, denoted MM, and the
matrix product verification problem, denoted MPV. We also study the problem of computing
matrix–vector products: we use MvM to denote the matrix–vector multiplication problem and
MvPV to denote the matrix–vector product verification problem.

For each of these four problems, we also define a simpler version of the problem where the
first input matrix is known and part of the problem specification. For example, in the matrix
multiplication problem, MM, we are given oracle access to 2 matrices A and B, and we have to
output AB. In the version of the problem where A is known, we are given oracle access to B and
have to compute AB. We denote this problem MMA to indicate that the matrix A is part of the
specification of the problem itself and not part of the input. A problem that will appear often in
reductions is the problem of verifying if the sum of a vector equals a specified value. We refer to
this as the vector sum verification problem, denoted vSV.

Since we study these problems for the special case when S is the Boolean semiring in depth in
Section 4.3, we denote the Boolean versions of these problems by appending B before the name
of the problem. These problems are defined more formally below.

Definition 4.2. We define the following oracular problems, where S = (S,+, ·) is a semiring,
A,B,C ∈ Sn×n, v, w ∈ Sn, and s ∈ S.

• MMS (Matrix Multiplication). Input: A, B. Output AB.

• MPVS (Matrix Product Verification). Input: A, B, C. Output: Is AB = C?

• MvMS (Matrix–vector Multiplication). Input: A, v. Output: Av.

• MvPVS (Matrix–vector Product Verification). Input: A, v, w. Output: Is Av = w?

Similarly, we define the following oracular problems where A is part of the problem specification:

• MMA
S (Matrix Multiplication). Input: B. Output AB.

• MPVAS (Matrix Product Verification). Input: B, C. Output: Is AB = C?

• MvMA
S (Matrix–vector Multiplication). Input: v. Output: Av.

65

• MvPVAS (Matrix–vector Product Verification). Input: v, w. Output: Is Av = w?

We also define the following vector problem:

• vSVS (vector Sum Verification). Input: v, s. Output: Is
∑n

i=1 vi = s?

When S is the Boolean semiring, we prefix B to the problem name instead, e.g., BMM, BvSV,
and BMPVA.

One may wonder why we choose to study so many variants of the problem. Studying the ma-
trix multiplication and product verification problems naturally leads to studying matrix–vector
multiplication and product verification. The version of these problems where A is fixed arises in
several reductions, making it worthwhile to study independently. Fixing A also allows us to show
strong relationships between problems. For example, we show in the next section that over any
semiring we have Q(MMA) = Θ(nQ(MvMA)). On the other hand, no such tight relationship can
exist between MvM and MM over arbitrary semirings. Lastly, BMvPVA is related to other inter-
esting problems in quantum query complexity, such as graph collision and the query complexity
of depth-2 AC0 circuits.

Known results

According to Buhrman and Špalek [BŠ06], the quantum query complexity of matrix product
verification was first studied (in an unpublished paper) by Ambainis, Buhrman, Høyer, Karpinski,
and Kurur. They presented an algorithm for MPV with query complexity O(n7/4). The first
published work on the topic is due to Buhrman and Špalek [BŠ06], who noted that Q(MPV) =
O(n5/3) over any ring using a generalization of Ambainis’ element distinctness algorithm [Amb07].
This algorithm also works over semirings and more general structures. The algorithm can easily
be cast in the quantum walk search framework of Magniez, Nayak, Roland and Santha [MNRS11]
as explained in the survey by Santha [San08]. More interestingly, they showed how to make this
algorithm time efficient over fields and integral domains. Their algorithm uses the same technique
used by Freivalds [Fre79] to speed up matrix product verification and since Freivalds’ technique
also works over rings (see [Wil11]), their algorithm is also time efficient over arbitrary rings.

Buhrman and Špalek were also the first to study the quantum query complexity of Boolean
matrix multiplication. They showed that Q(BMPV) = O(n3/2) and gave an output-sensitive
algorithm for BMM. An output-sensitive algorithm is one whose complexity depends on the
output. They showed that if the number of nonzero entries in the output is `, then Q(BMM) =
O(n3/2

√
`) [BŠ06, Section 6.2]. Their algorithm is quite simple: it repeatedly searches for nonzero

entries in C. Since checking if a given entry in C is 1 requires O(
√
n) queries, we can search for

a nonzero entry among all n2 entries of C using O(
√
n2 ×

√
n) queries by composing Grover’s

66

n0 n1 n2

n1

n1.5

n2

` (number of nonzero entries in C)

Q
(B

M
M

)

Buhrman and Špalek [BŠ06]

Vassilevska Williams and Williams [WW10]

Le Gall [Le 12]
Our result and matching lower bound

Figure 4.1: Output-sensitive quantum query complexity of Boolean matrix multiplication.

algorithm over a space of size n2 with the checking subroutine. If there are ` nonzero entries, then
we can find all of them with O(

√
n2` ×

√
n) = O(n3/2

√
`) queries, using the version of Grover’s

algorithm that finds all marked items.

This algorithm was later improved by Vassilevska Williams and Williams [WW10], who used
a classical reduction relating Boolean matrix multiplication and triangle finding, and the triangle
finding algorithm of Magniez, Santha and Szegedy [MSS07] to get a quantum algorithm for
Boolean matrix multiplication with query complexity Õ(min{n1.3`17/30, n2 +n13/15`47/60}). Their
algorithm was then improved by Le Gall [Le 12]. These algorithms are depicted in Figure 4.1.

Our results

Our main result is an optimal output-sensitive algorithm for Boolean matrix multiplication that
makes O(n

√
`) queries, where ` is the number of nonzero entries in the output. We also show a

matching lower bound of Ω(n
√
`) when ` ≤ εn2 for any constant ε < 1. The lower bound is based

on the observation that if A were the identity matrix, matrix multiplication would be equivalent
to learning all the entries of B. These results are presented in Section 4.4.

Our upper bound is based on two ideas: a connection between BMM and the graph collision
problem and a new algorithm for graph collision that works better in our application. More
precisely, we show how to reduce the Boolean matrix multiplication problem to several instances

67

of the graph collision problem. The instances of graph collision that arise in our reduction are
very dense; the graphs have at most ` nonedges. We present a new graph collision algorithm that
makes O(

√
n+
√
`) queries and solves graph collision on a graph with at most ` nonedges. These

two ideas together yield the claimed upper bound. Unlike the previous best algorithms for BMM
[WW10, Le 12], our algorithm does not use quantum walks. Our graph collision algorithm is based
on Grover’s algorithm and its variants, unlike graph collision algorithms used as a subroutine in
triangle finding algorithms, which are based on Ambainis’ quantum walk for element distinctness
[Amb07].

Most of the content of Section 4.2 and Section 4.3, except results attributed to others, does not
appear in the literature to the best of my knowledge. However, it is either folklore or relatively
easy to show and presented here for completeness.

4.2 Matrix multiplication over rings and semirings

We have defined eight variants of the matrix multiplication problem in Section 4.1. We can
visualize these problems arising as a result of three different ways of making the problem easier.
First, we could merely verify the product instead of computing it. Second, we could compute
a matrix–vector product instead of a matrix–matrix product. Third, we could make the first
matrix free, i.e., make it part of the problem specification so that it requires no queries to learn.
These three ways of modifying the problem give rise to eight potential problems. We first study
these problems and how they relate to each other over semirings.

4.2.1 Matrix multiplication over semirings

Figure 4.2 depicts these problems and their relationships over arbitrary semirings.

The relationships depicted with dotted arrows in Figure 4.2 are obvious and follow from three
simple observations: First, any multiplication problem is no easier than the corresponding product
verification problem, since computing a value is no easier than verifying it. Second, problems
about matrix–matrix products include matrix–vector products as a special case, and cannot be
easier. Third, problems in which A is fixed and not part of the input are only easier than the
corresponding problem where A must be queried.

Other relationships are not all as straightforward as these and often rely on nontrivial prop-
erties of quantum query complexity such as the direct sum (Theorem 1.1) and composition (The-
orem 1.2) theorems. We now show that the claimed relationships are correct.

Theorem 4.1 (Matrix multiplication over semirings). The relationships between problems indi-
cated in Figure 4.2 hold over all semirings. More precisely, for any pair of problems X and Y, if in

68

Q(MvMA)
In: v
Out: Av

Q(MvM)
In: A, v
Out: Av

Q(MM)
In: A, B
Out: AB

Q(MMA)
In: B
Out: AB

Q(MvPVA)
In: v, w
Out: Av = w?

Q(MvPV)
In: A, v, w
Out: Av = w?

Q(MPV)
In: A, B, C
Out: AB = C?

Q(MPVA)
In: B, C
Out: AB = C?

Q(vSV)
In: v, s
Out:

∑
i vi = s?

n √
n

n

√ n

Figure 4.2: Quantum query complexity of matrix multiplication problems over a semiring. The subscript S,
for example in MMS , has been suppressed for readability. Arrows between problems indicate relationships

between their query complexities. Q(X) −→ Q(Y) and Q(X) Q(Y) mean Q(Y) = Ω(Q(X)). Q(X)
f(n)−−−→

Q(Y) means Q(Y) = Ω(f(n)Q(X)). Q(X)
f(n)
===⇒ Q(Y) means Q(Y) = Θ(f(n)Q(X)). Dotted arrows indicate

obvious relationships.

Figure 4.2 we have Q(X) −→ Q(Y) or Q(X) Q(Y) then Q(Y) = Ω(Q(X)), if Q(X)
f(n)−−−→ Q(Y)

then Q(Y) = Ω(f(n)Q(X)), and if Q(X)
f(n)
===⇒ Q(Y) then Q(Y) = Θ(f(n)Q(X)).

Proof. As explained, the relationships indicated using dotted arrows are obvious. Figure 4.2 has
5 other arrows between problems, and thus we have to establish 5 claims. Let us begin with the
arrows originating from vSV.

We can embed an instance of vSV into an instance of MvPVA by taking the first row of A to be
the all-ones vector and the remaining rows be all-zeros vectors. Now the first entry of the matrix–
vector product of A and v is the sum of all entries in v. Thus Q(MvPVA) = Ω(Q(vSV)). Note
that the matrix A is fixed in this reduction. We can reduce more instances of vSV to MvPV when
the matrix A is part of the input. By taking the vector in MvPV to be the all-ones vector, we can

69

verify the vector sum of each row of A. This is equivalent to verifying that n independent instances
of vSV are all correct. This is the composition of the ANDn function with vSV, which requires
Ω(
√
nQ(vSV)) queries (from Theorem 1.2), giving us Q(MvPV) = Ω(

√
nQ(vSV)). Similarly, we

can embed n instances of vSV into MvM. In this case, we have to compute the output of n
instances of vSV, instead of merely verifying that they are correct. We can use Theorem 1.1 to
show that the Q(MvM) = Ω(nQ(vSV)). This establishes the correctness of all arrows originating
from vSV in Figure 4.2.

We can now establish the correctness of the two double arrows (⇒) in Figure 4.2. First, note
that the problem MPVA is merely n independent instances of MvPVA, since the ith columns of
matrix B and C define an input to MvPVA for the same matrix A. Since MPVA is the task
of verifying if n instances of MvPVA are correct, we get Q(MPVA) = Θ(

√
nQ(MvPVA)) from

Theorem 1.2. Similarly, MMA is equivalent to computing the output of n independent instances
of MvMA. In this case we use Theorem 1.1 to conclude that Q(MMA) = Θ(nQ(MvMA)).

This shows that the relationships indicated in Figure 4.2 hold in general. We use these
relationships to show lower bounds for rings below and for the Boolean semiring in Section 4.3.

4.2.2 Matrix multiplication over rings

First we recap known results about the query complexity of matrix multiplication over rings. As
stated in Section 4.1, Buhrman and Špalek showed the following result [BŠ06].

Theorem 4.2 (Buhrman and Špalek). Matrix product verification of n × n matrices can be
performed with O(n5/3) queries over any ring or semiring.

This upper bound is not known to be tight. Buhrman and Špalek showed a lower bound of
Ω(n3/2) for MPV over F2, which we generalize to all rings. But this still leaves a gap between
the known upper and lower bounds. Other than this problem, the query complexity of the other
problems is easily characterized as shown in Figure 4.3.

To establish these query complexities, we start by showing that Q(vSVS) = Θ(n) over any ring
S. Then from Theorem 4.1 we immediately have optimal lower bounds for all other problems.
We then provide matching algorithms for all problems other than MPV, which is covered by
Theorem 4.2.

Lemma 4.1. Q(vSVS) = Θ(n) over any ring S = (S,+, ·).

Proof. Since the input size is O(n), the upper bound follows. For the lower bound, we prove that
given oracle access to n elements v1, . . . , vn from a ring S, determining if

n∑
i=1

vi =

dn/2e∑
i=1

1S or
n∑
i=1

vi =

dn/2e+1∑
i=1

1S ,

70

Q(MvMA)
Θ(n)

Q(MvM)
Θ(n2)

Q(MM)
Θ(n2)

Q(MMA)
Θ(n2)

Q(MvPVA)
Θ(n)

Q(MvPV)
Θ(n3/2)

Q(MPV)
Ω(n3/2), O(n5/3)

Q(MPVA)
Θ(n3/2)

Q(vSV)
Θ(n)

n
√
n

n

√ n

Figure 4.3: Quantum query complexity of matrix multiplication problems over a ring. The subscript S
(e.g., MMS) has been suppressed. Arrows between problems indicate relationships between their query

complexities. Q(X) −→ Q(Y) and Q(X) Q(Y) mean Q(Y) = Ω(Q(X)). Q(X)
f(n)−−−→ Q(Y) means

Q(Y) = Ω(f(n)Q(X)). Q(X)
f(n)
===⇒ Q(Y) means Q(Y) = Θ(f(n)Q(X)). Dotted arrows indicate obvious

relationships.

promised that one of these is the case, requires Ω(n) queries. This problem is a special case of

vSV, since testing if the sum of the vector equals
∑dn/2e

i=1 1S solves this problem. The problem is

well defined because we are working in a ring and therefore
∑dn/2e

j=1 1S is not equal to
∑dn/2e+1

j=1 1S .
(This would not be true over the Boolean semiring, for example.)

Consider the set of strings X ⊆ Sn, such that v ∈ X if exactly dn/2e entries of v are equal to
1S and the remaining entries are 0S . Let Y be the set with dn/2e+ 1 entries equal to 1S and the

rest equal to 0S . Note that X contains yes instances of the problem, since
∑n

i=1 vi =
∑dn/2e

i=1 1S ,
and Y contains no instances of the problem. This is exactly the set of hard instances for the
dn/2e-threshold problem or the Majority function. An Ω(n) lower bound for the majority function
can be proved using the polynomial method [BBC+01] or the adversary method [Amb02, Theorem
5.1].

We can now show that all the bounds in Figure 4.3 are correct.

Theorem 4.3 (Matrix multiplication over rings). The query complexities stated in Figure 4.3
are correct.

71

Proof. First we establish the lower bounds. From Lemma 4.1 we know that Q(vSV) = Ω(n). All
other lower bounds follow from this using the general relationships proved in Theorem 4.1.

Moving on to upper bounds, the simple observation that the query complexity of a problem
is at most its input size establishes the claimed upper bound for most problems in Figure 4.3.
The only remaining problems are MPV, MvPV, and MPVA. Theorem 4.2 shows that Q(MPV) =
O(n5/3). The complexity of MPVA is characterized by the complexity of MvPVA, since we know
from Theorem 4.1 that Q(MPVA) = Θ(

√
nQ(MvPVA)). Finally, Q(MvPV) = O(n3/2) since

verifying any given inner product between a row of A and v requires at most O(n) queries and
there are n inner products to be verified. Using Theorem 1.2, Q(MvPV) is upper bounded by the
product of Q(ANDn) and O(n), which gives Q(MvPV) = O(n3/2).

The main open problem of this section is to determine Q(MPVS) over rings. No better upper
or lower bounds are known even for specific rings. Note that the lower bound cannot be improved
using the original (positive-weights) adversary method due to the certificate complexity barrier
[Sze03, Zha05, LM08, ŠS06].

Open Problem 4.1. What is the quantum query complexity of matrix product verification over
rings? It is known that for any ring S, Q(MPVS) = Ω(n3/2) and Q(MPVS) = O(n5/3). Can we
improve the upper or lower bound for specific rings?

4.3 Matrix multiplication over the Boolean semiring

We can now study these problems over the Boolean semiring. The Boolean versions of these
problems are less understood and are closely related to other problems of interest, such as the
graph collision problem (GC), the triangle problem (Triangle) and the query complexity of func-
tions that can be represented by depth-2 linear-sized AC0 circuits (LC0

2). We begin by discussing
these problems.

Triangle problem

Definition 4.3 (Triangle problem). In the triangle problem or triangle finding problem, denoted
Triangle, we are given query access to three n× n Boolean matrices A, B, and C and we have to
decide if there exist i, j, k ∈ [n] such that Aik = Bkj = Cij = 1.

In other words, let G be a tripartite graph on 3n vertices with tripartition I ∪ J ∪K, where
|I| = |J | = |K| = n, specified by biadjacency matrices A, B, and C, such that Aik = 1 if i ∈ I
is adjacent to k ∈ K, Bkj = 1 if k ∈ K is adjacent to j ∈ J , and Cij = 1 if i ∈ I is adjacent to
j ∈ J . Given query access to A, B, and C, we have to determine if G contains K3 (a triangle) as
a subgraph, i.e., if there exists (i, j, k) ∈ I × J ×K, such that Aik = Bkj = Cij = 1.

72

Our definition is slightly different from the usual definition of this problem. In our version,
which may also be called the tripartite triangle finding problem, we are promised that the graph
under consideration is tripartite. The usual definition of the problem allows arbitrary graphs.
However, it is easily seen that the two problems are equivalent up to constant factors. On the one
hand, tripartite triangle finding is clearly a special case of triangle finding. On the other hand,
given one graph G in which we have to find a triangle, we can make three copies of the vertex
set, called I, J , and K, and connect vertex i ∈ I to vertex j ∈ J if and only if (i, j) is an edge in
G and similarly connect edges between I and K, and J and K. There are no edges within I, J ,
or K. This graph is tripartite and contains a triangle if and only if G does.

The triangle problem has been intensely studied in quantum query complexity and remains
an important open problem. This question was first studied by Buhrman et al. [BDH+05], who
gave an O(n+

√
nm) query algorithm for graphs with m edges. When m = Θ(n2), this approach

uses O(n3/2) queries, which matches the performance of the simple algorithm that searches for a
triangle over the potential

(
n
3

)
triplets of vertices. This was later improved by Magniez, Santha,

and Szegedy [MSS07] to Õ(n1.3), and then by Magniez, Nayak, Roland, and Santha [MNRS11],
who removed some log factors. Subsequently, the upper bound was improved by Belovs [Bel12] to
O(n35/27), and then by Lee, Magniez, and Santha to O(n9/7) [LMS13]. More recently, the upper
bound has been improved by Le Gall to Õ(n1.25) [Le 14].

However, the best known lower bound for the triangle problem is only Ω(n) (by a simple re-
duction from the search problem). This is partly because one of the main lower bound techniques,
the quantum adversary method of Ambainis [Amb02], cannot prove a better lower bound due to
the certificate complexity barrier [Sze03, Zha05, LM08, ŠS06].

Open Problem 4.2. What is the quantum query complexity of the triangle problem? The
best known lower and upper bounds are Q(Triangle) = Ω(n) and Q(Triangle) = Õ(n1.25) [Le 14]
respectively.

Graph collision

The next problem we introduce is the graph collision problem. This problem is used as a subrou-
tine in several known triangle finding algorithms [MSS07, Bel12, LMS13, JKM13].

Definition 4.4 (Graph collision). In the graph collision problem with a known n × n Boolean
matrix A, denoted GCA, we are given query access to two length-n Boolean vectors v and w, and
we have to decide if there exist i, j ∈ [n] such that Aij = vj = wi = 1.

In other words, let G be a known bipartite graph on 2n vertices with adjacency matrix A.
We are given query access to two Boolean vectors v and w, which we can interpret as indicating
whether a particular vertex is marked or not, i.e., vi = 1 indicates that vertex i is marked. We
have to determine if there exists an edge between two marked vertices. An edge between two

73

marked vertices is called a “collision.” Note that in this problem the graph G is known and not
part of the input.

Our definition of the graph collision problem is also slightly different from the usual definition.
In our version, which may be called the bipartite graph collision problem, we are promised that
G is bipartite. The standard definition allows arbitrary graphs. However, the two problems are
equivalent up to constant factors. The bipartite version is clearly a special case of the general
version and the general version can be reduced to the bipartite version using the same trick as
before: we make two copies of the original graph and connect two vertices in different copies if
and only if they are connected in the original graph. No vertices are connected within the same
copy. This new instance of graph collision is bipartite and has a collision if and only if the original
instance does.

The best known lower bound for graph collision is Ω(
√
n), which follows from a simple re-

duction from the search problem, while the best known upper bound is O(n2/3), as it can be
solved by Ambainis’ quantum walk for element distinctness [Amb07]. Better upper bounds are
known for special graph families, random graphs, and graphs with special properties. See the
survey by Ambainis, Balodis, Iraids, Ozols, and Smotrovs [ABI+13] for an overview. The graph
collision problem is intimately related to the triangle problem since an improved lower bound for
graph collision will lead to an improved lower bound for triangle finding. On the other hand,
an improved algorithm for graph collision will improve the known quantum walk algorithms for
triangle finding, since they use graph collision as a subroutine.

Open Problem 4.3. What is the quantum query complexity of the graph collision problem?
The best known lower and upper bounds are Q(GC) = Ω(

√
n) and Q(GC) = O(n2/3) [Amb07]

respectively.

Depth-2 LC0 circuits

Lastly, we introduce the problem of determining the query complexity of functions expressed by
depth-2 linear-size circuits using only AND, OR, and NOT gates, where the size of a circuit is
the total number of AND and OR gates in it. This problem was first studied by Childs, Kimmel,
and Kothari [CKK12], as an example of functions that are not much more complicated than
read-once formulas but whose query complexity is unknown. The problem is also closely related
to BMvPVA and yields the best known lower bound for BMvPV and BMPV as we show below.

The class of Boolean functions that can be computed by polynomial-size, constant-depth
circuits that use AND, OR, and NOT gates is called AC0. The class of linear-size AC0 circuits is
called LC0. The class we are interested in is depth-2 LC0 circuits.

Definition 4.5 (LC0
2 problem). Let LC0

2 denote the class of functions on n bits that can be
represented by depth-2 circuits using only AND, OR, and NOT gates with at most n AND and

74

OR gates. For a function f ∈ LC0
2, Q(f) is the quantum query complexity of computing f . Let

Q(LC0
2) := maxf∈LC0

2
Q(f) be the query complexity of the hardest function in LC0

2.

We know that Q(LC0
2) = Ω(n0.555) and Q(LC0

2) = O(n3/4) [CKK12]. I conjecture that the
upper bound is closer to the truth. A function based on projective planes that may yield a better
lower bound is presented in [CKK12].

Open Problem 4.4. What is Q(LC0
2)? We know that Q(LC0

2) = Ω(n0.555) and Q(LC0
2) =

O(n3/4) [CKK12].

Note that any improvement in the lower bound for this problem will yield an improved lower
bound for the Boolean matrix product verification problem (BMPV).

Verifying Boolean matrix product inequalities

It turns out that the three problems introduced above are related to the problem of verifying
Boolean matrix product inequalities. In a product verification problem, we have to determine if
two Boolean matrices or two Boolean vectors are equal. Testing if two Boolean values a and b are
equal can be broken down into two problems, of checking if a 6 b and a > b, where we use the
obvious ordering on the Booleans, i.e., 0 6 0, 0 6 1, and 1 6 1. Thus we can define inequality
versions of any product verification problem in the natural way. We add the subscript 6 or >
to denote the version of the problem where we have to test inequality instead of equality. For
example, BMPV asks if AB = C, while the problems BMPV6 and BMPV> ask if AB 6 C and
AB > C respectively.

We can now examine how the inequality versions are related to the standard versions of the
problems and to the three problems introduced. Figure 4.4 shows the relationships between these
problems.

First note that Figure 4.4 asserts that the equality problems are related to the inequality
versions in the following way: Q(BMvPVA) = Θ(Q(BMvPVA6) + Q(BMvPVA>)) and Q(BMPV) =
Θ(Q(BMPV6) +Q(BMPV>)). One direction of this inequality is clear, since we can test equality
by testing both inequalities, but it is not obvious that we can test inequality by using only the
equality problem. We prove this for BMvPVA; the result for BMPV can be shown analogously.

Lemma 4.2. Q(BMvPVA) = Θ(Q(BMvPVA6) +Q(BMvPVA>)).

Proof. Since we can use algorithms for BMvPVA6 and BMvPVA> to solve BMvPVA, we have

Q(BMvPVA) = O(Q(BMvPVA6) + Q(BMvPVA>)). To establish the other direction, we prove

Q(BMvPVA6) = O(Q(BMvPVA)) and Q(BMvPVA>) = O(Q(BMvPVA)).

75

Q(BMvMA)
Θ(n)

Q(BMvM)
Θ(n3/2)

Q(BMM)
Θ(n2)

Q(BMMA)
Θ(n2)

Q(BMvPVA)
Ω(n0.555), O(n3/4)

= Θ
(
Q(BMvPVA

6)︸ ︷︷ ︸
=Q(GC)
Ω(

√
n)

O(n2/3)

+Q(BMvPVA
>)︸ ︷︷ ︸

=Q(LC0
2)

Ω(n0.555)

O(n3/4)

)

Q(BMvPV)
Θ(n)

Q(BMPV)
Ω(n1.055), O(n3/2)

= Θ(

=Q(Triangle)

Ω(n), O(n1.25)︷ ︸︸ ︷
Q(BMPV6) +Q(BMPV>))

Q(BMPVA)
Ω(n1.055), O(n5/4)

Q(BvSV)
Θ(
√
n)

n √
n

n

√ n

Figure 4.4: Quantum query complexity of Boolean matrix multiplication problems. Arrows between

problems indicate relationships between their query complexities. Q(X) −→ Q(Y) and Q(X) Q(Y)

mean Q(Y) = Ω(Q(X)). Q(X)
f(n)−−−→ Q(Y) means Q(Y) = Ω(f(n)Q(X)). Q(X)

f(n)
===⇒ Q(Y) means Q(Y) =

Θ(f(n)Q(X)). Dotted arrows indicate obvious relationships.

We begin with Q(BMvPVA6) = O(Q(BMvPVA)). To show this, we want to reduce the problem
of checking if Av 6 w to the problem of checking if Zx = y, where Z is a matrix and x and y
are vectors. To get some intuition for the reduction, let us consider two Booleans a and b. We
want to test if a 6 b. It is easy to see that a 6 b if and only if a ∨ b = b, since equality fails
only when a = 1 and b = 0. We want to extend this idea to vectors, i.e., we want to use the fact
that Av 6 w ⇔ Av ∨ w = w. This is an equality, but it is not of the form Zx = y. It can be
brought to this form by defining Z =

(
A 1
0 0

)
, x = (vw), and y =

(w
~0

)
. Now Zx = y if and only if

Av ∨ w = w. This completes the proof of Q(BMvPVA6) = O(Q(BMvPVA)).

Lastly, we have to show that Q(BMvPVA>) = O(Q(BMvPVA)). As before, we want to reduce
the problem of checking if Av > w to the problem of checking if Zx = y. For two Booleans a and
b, it is easy to see that a > b if and only if a ∨ b = 1, where b̄ denotes the complement of b. To

put this into the form Zx = y, we define Z =
(
A 1
0 0

)
, x = (vw̄), and y =

(
~1
~0

)
. Now Zx = y if and

only if Av ∨ w̄ is ~1, which is equivalent to Av > w, which completes the proof.

76

Figure 4.4 also shows the relationships between the inequality versions of the problems and
the three problems we defined earlier in this section. These are straightforward to show. We
start with the claim that Q(BMPV6) = Q(Triangle). Observe that AB 6 C is false only if there
exist i, j ∈ [n], such that (AB)ij = 1 and Cij = 0, and (AB)ij = 1 only if there exists a k ∈ [n]
such that Aik = Bkj = 1. So AB 6 C is false if and only if there exist i, j, k ∈ [n] such that
Aik = Bkj = C̄ij = 1. This is exactly the definition of the triangle problem, except with C̄
instead of C. Similarly, BMvPVA6 is false if and only if there exists in i ∈ [n] such that (Av)i = 1
and wi = 0. (Av)i = 1 if and only if there exists a j ∈ [n] such that Aij = 1 and vj = 1. Thus
BMvPVA6 is false if and only if there exist i, j ∈ [n] such that Aij = vj = w̄i = 1, which is the
graph collision problem with w̄ instead of w.

Lastly, we show that Q(BMvPVA>) = Θ(Q(LC0
2)). We saw in the proof of Lemma 4.2 that

BMvPVA> can be alternately expressed as the problem of checking if Av∨ w̄ is the all-ones vector.
Note that (Av)i ∨ w̄i is the output of a single OR gate, where the input variables are the bits of v
and w, and A is a description of the bits that feed into each OR gate. Checking if Av ∨ w̄ is the
all-ones vector is thus an AND of n OR gates, which is a depth-2 LC0 circuit. This shows that
Q(BMvPVA>) = O(Q(LC0

2)). For the other direction, we have already noted that LC0
2 is just the

problem of checking if an AND of n OR gates is the all-ones vector. This can be expressed as the
problem of checking if Av is the all-ones vector, which is the same as checking if Av is greater
than or equal to the all-ones vector.

Thus we have established the relationships stated in Figure 4.4 between the inequality versions
of the problems and the rest of the problems.

Query complexities of these problems

Finally we can establish all the other bounds in Figure 4.4. As before, we first look at the vSV
problem.

Lemma 4.3. Q(vSVS) = Ω(
√
n) over any semiring S. In particular, Q(BvSV) = Θ(

√
n).

To show this, we can prove that given black-box access to n elements x1, . . . xn from a semiring
R, determining if

∑n
j=1 xj = 1S requires Ω(

√
n) queries. We will only need the instances where

all entries are equal to 0S and where one entry is 1S and the remaining are zero. In the first case
the sum of all entries is 0S , and in the second case it is 1S . This is the promise version of the
OR problem, where we are promised that either there are no marked items or there is only one
marked item. This can be shown using the adversary method or the polynomial method.

Finally we can show that all the bounds stated in Figure 4.4 are correct.

Theorem 4.4 (Boolean matrix multiplication). The query complexities stated in Figure 4.4 are
correct.

77

Proof. First let us establish the lower bounds. From Lemma 4.1 we know that Q(BvSV) = Ω(n).
From Lemma 4.2 we know that Q(BMvPVA) = Ω(LC0

2) = Ω(n0.555). Finally, Q(BMvMA) = Ω(n),
since if A is the identity matrix, this is the problem of learning the entire vector v, which requires
Ω(n) queries. All other lower bounds follow from these using the general relationships proved in
Theorem 4.1.

As for the upper bounds, the simple observation that the query complexity of a problem
is upper bounded by its input size establishes the claimed upper bound for many problems in
Figure 4.3. Q(BMvM) = O(n3/2) since each entry of the product of Av can be computed with
O(
√
n) queries using Grover’s algorithm and there are n entries to compute, which gives a bound

of O(n3/2) using the composition theorem (Theorem 1.2). The upper bound on BMPV was shown
by Buhrman and Špalek [BŠ06], and follows from a similar idea that checking each entry costs
O(
√
n) queries and we can search over all entries to check if all entries are correct. The remaining

upper bounds follow from the general relationships shown in Theorem 4.1 and Lemma 4.2.

Since we have already stated the open problems of determining Q(GC) and Q(LC0
2), the main

open problem that remains is determining the query complexity of BMPV.

Open Problem 4.5. What is the quantum query complexity of Boolean matrix product verifica-
tion (BMPV)? We know that Q(BMPV) = Ω(n1.055) [CKK12] and Q(BMPV) = O(n3/2) [BŠ06].

Since Triangle reduces to BMPV, we cannot improve the upper bound too much without
improving the upper bound for Triangle. Since Triangle has withstood attack on the lower bound
front for many years, it may be more fruitful to try to improve the lower bound for BMPV, since
it is at least as hard as Triangle. Unlike for Triangle, the certificate complexity barrier does not
seem to present a problem for BMPV, so there might even be an improved lower bound using the
original (positive-weights) adversary method.

4.4 Output-sensitive Boolean matrix multiplication

As discussed in Section 4.1 and shown in Figure 4.1, the output-sensitive version of the Boolean
matrix multiplication problem has been studied by several authors. Our main result is an output-
sensitive algorithm for Boolean matrix multiplication of n×nmatrices that makesO(n

√
`) queries,

where ` is the number of nonzero entries in the output matrix. More precisely, our algorithm
makes O(n

√
`) queries when the values of ` is known beforehand, and if ` is unknown makes

O(n
√
`+ 1) queries. The additional +1 only affects the asymptotic complexity when ` = 0, since

in that case O(n
√
`) is 0, whereas the complexity of our algorithm is O(n). Since this is a minor

technical point, we only make this distinction precise when we formally prove the complexity
of the algorithm. Otherwise when we discuss the algorithm informally we use the expressions
O(n
√
`) and O(n

√
`+ 1) interchangeably.

78

We also show our algorithm is nearly optimal by providing a matching lower bound when
` < εn2 for some ε < 1. We start with a high-level overview of our algorithm, followed by our
new algorithm for graph collision, followed by our algorithm for BMM. We end with the lower
bound and a discussion of its optimality.

4.4.1 High-level overview of the algorithm

We wish to compute the product C of two n × n Boolean matrices A and B given query access
to their entries, while making O(n

√
`) queries, where ` is the number of nonzero entries in C. As

a warmup to solving this problem, let us solve the simpler problem of deciding if C = 0. Using
our approach, this problem can be solved with O(n) queries, which is optimal. Note that it was
already not known how to solve this problem with O(n) queries before our work. The solution to
the easier problem will guide us towards the final algorithm for BMM.

A simpler problem: Is AB = 0?

Consider the problem of deciding if the product of A and B is 0 given query access to the entries
of A and B. The straightforward way to solve this problem is by checking if any entry of C is
nonzero using the definition. Since any entry of C can be computed using O(

√
n) queries and

there are n2 entries to check, using Grover’s algorithm to search for a nonzero entry takes O(n3/2)
queries, which is suboptimal.

To obtain an optimal algorithm, we take a different perspective on the matrix C. Let ei be the
ith basis vector, i.e., the Boolean vector of length n with 1 at the ith position and zeros everywhere
else. In terms of this vector, we can write C as C =

∑
ij Cijeie

†
j . Since Cij =

∑
k AikBkj , we

have

C =
∑
ijk

AikBkjeie
†
j =

∑
k

∑
ij

AikBkjeie
†
j

 =:
∑
k

Ck, (4.1)

where we have defined Ck :=
∑

ij AikBkjeie
†
j . In other words, C is the OR of n matrices Ck,

where Ck is the outer product of the kth column of A, ak, with the kth row of B, bk, as shown
below.

If A =

 | | |
a1 · · · an

| | |

 and B =

 — b1 —

—
... —

— bn —

 then Ck =

 |
ak

|

(— bk —
)
.

(4.2)

From this characterization, we see that C = 0 if and only if ∀k ∈ [n], Ck = 0. For a fixed k,
Ck = 0 if the outer product of ak and bk is 0, i.e., for every i, j, we have AikBkj = 0. This only

79

happens if either ak or bk is ~0, which can be checked with O(
√
n) queries. Since we can check if

Ck = 0 using O(
√
n) queries, we can check if there is any k ∈ [n] for which Ck = 0 using O(n)

queries.

The key idea used to solve this simpler problem was the observation that C can be written in
an alternate way in terms of outer products of column and row vectors of A and B respectively.
Now let us make the problem a little harder by generalizing this simple problem.

An intermediate problem

Consider the problem where we are given query access to matrices A and B, and an explicit
description of a matrix C ′ promised to satisfy C ′ 6 C = AB. The problem is to determine if
C ′ = AB. While this problem is similar to the Boolean matrix product verification problem,
there are two differences: the matrix C ′ is known and requires no queries to learn, and we are
promised that C ′ 6 C, which means that all the 1s in C ′ are also present in C. The simpler
problem we just discussed is the special case of this problem when C ′ = 0, which satisfies the
promise since 0 6 C for all matrices C. We would like to solve this problem with O(n +

√
n`)

queries, where ` is the number of nonzero entries in C ′.

As before, we view C as the OR of n matrices Ck. Now the task is to find a nonzero entry in
C that is not present in C ′. We do this by finding a nonzero entry in Ck that is not present in C ′,
which is equivalent to finding a nonzero entry in Ck ∧C ′ for some k. For a fixed k, (Ck ∧C ′)ij is
nonzero if and only if Aik = Bjk = 1 and C ′ij = 1. Since C ′ is a known matrix, this is exactly the
graph collision problem on the graph described by C ′ where the input vectors are the ith column
of A and the jth row of B.

The best known algorithm for the graph collision makes O(n2/3) queries, so we can find a
nonzero entry in Ck∧C ′ with O(n2/3) queries. Searching over all values of k gives us an algorithm
for this problem with query complexity O(n7/6) queries. However, this is not an arbitrary instance
of the graph collision problem: We know that the bipartite graph described by C ′ has a special
property—it has at most ` nonedges, since C has ` nonzero entries and C ′ 6 C. Furthermore,
graph collision is easier on graphs with very few nonedges. For example, if the graph has no
nonedges, i.e., it is the complete bipartite graph, then graph collision can be solved in O(

√
n)

queries as we did before. On the complete graph, graph collision is merely the problem of testing
if either of the vectors is ~0, which only requires O(

√
n) queries.

We show in the next section that these instances of graph collision can indeed be solved faster.
When the graph has at most ` nonedges, we can solve GC with O(

√
n +
√
`) queries. We also

show that if there are λ > 0 collisions, we can find all λ collisions with O(
√
nλ+

√
`) queries.

80

Final algorithm

Given these two graph collision algorithms, we now have a natural algorithm for BMM. We can
start by setting C ′ = 0. Now we solve our intermediate problem and find a k such that Ck ∧ C ′
has a nonzero entry. Once we find such a k, we find all graph collisions for that k for the graph
C ′. Every time we find a collision we learn a new entry of C. After we have found all the nonzero
entries of C ′k, we update the matrix C ′ with the new nonzero entries we have learned and repeat
this algorithm until there is no k such that Ck ∧ C ′ has a nonzero entry.

To ensure that this is leading toward our goal, let us perform a back-of-the-envelope estimate
for the algorithm’s complexity using intuitively reasonable, but unproven, assumptions.

First consider the case when ` < n. It is reasonable to guess that the hardest instances of the
problem will have only one witness per nonzero entry, i.e., if Cij = 1, then there is only one k
for which (Ck)ij = 1. It is also reasonable to imagine that in the worst case, each nonzero entry
in C will have a different value of k serving as a witness. Thus our algorithm needs to find the `
values of k such that each of them provide a witness for one nonzero entry of C. Deciding if a k
witnesses a nonzero entry of C is the graph collision problem, which requires only O(

√
n) queries

in this case since ` ≤ n. Since there are ` such k to be found over a search space of size n, we can
find them all in query complexity O(

√
n`×

√
n) = O(n

√
`), which is the claimed upper bound.

In the other case when ` > n, it is still reasonable to imagine that witnesses will be spread
uniformly over all values of k so that each k witnesses roughly `/n nonzero entries of C. Since
each k witnesses a nonzero entry, we do not need to search for k, we can merely find all nonzero
entries in Ck ∧ C ′ for each k. Since each k will have λ = `/n collisions, graph collision takes
O(
√
nλ +

√
`) = O(

√
`) queries and there are n different values of k, which gives an algorithm

with query complexity O(n
√
`). We make this algorithm rigorous in Section 4.4.3.

4.4.2 Graph collision algorithm

As explained in the previous section, we use the graph collision problem as a subroutine for
solving BMM. Specifically, we study graph collision on bipartite graphs with at most ` nonedges
and show that such instances can be solved faster if ` is small. As before, let GCA denote the
graph collision problem on a bipartite graph with biadjacency matrix A. Recall that A is known
and requires no queries to learn, while the input to the problem is two n-length Boolean vectors
v and w, whose entries can be accessed by an oracle. The aim is to decide if there exist i, j ∈ [n]
such that Aij = vj = wi = 1. For any A, we let ` denote the number of zero entries in the matrix,
i.e., the number of nonedges in the bipartite graph described by A. Thus the complete bipartite
graph, which corresponds to A being the all-ones matrix, has ` = 0. We also study the problem
of determining all graph collisions for a given instance, i.e., determining all pairs i, j ∈ [n] such
that Aij = vj = wi = 1. We denote this problem GCAall.

81

We will also refer to the two sets of vertices, corresponding to the vector v and w, as J and
I respectively. We will say a vertex j ∈ J or i ∈ I is marked if vj = 1 or wi = 1, respectively. In
this terminology, the graph collision problem is to find a marked vertex in J that is adjacent to
a marked vertex in I.

Theorem 4.5 (Graph collision on dense graphs). For an n × n matrix A with at most ` zero
entries, Q(GCA) = O(

√
n +
√
`) and Q(GCAall) = O(

√
nλ +

√
`), where λ > 0 is the number of

graph collisions. When λ = 0, Q(GCAall) = O(
√
n+
√
`).

Proof. We start with an algorithm for GCAall. As explained at the end of this proof, this algorithm
can be easily converted to an algorithm for GCA by stopping the algorithm once a collision is
found. For now let us also assume that λ 6= 0.

First rearrange the vertices in I in decreasing order of degree and let di be the degree of the
ith vertex in I. Thus d1 ≥ d2 ≥ . . . ≥ dn. Let ci := n − di be the number of non-neighbors of a
vertex i ∈ I, i.e., the number of vertices j ∈ J that vertex i ∈ I is not adjacent to. We call ci
the nondegree of i, as it counts the number of nonedges incident on vertex i, much like di, the
degree, counts the number of edges incident on vertex i.

Algorithm 4.1 Graph collision algorithm (finds all collisions)

Given: An explicit description of a bipartite graph on vertex sets I and J with |I| = |J | = n.
Oracle input: Two Boolean vectors vi and wj where i ∈ I and j ∈ J .
Let di be the degree of the ith vertex in I, and let ci := n− di.
Let the vertices in I be arranged in decreasing order of degree so that d1 ≥ d2 ≥ . . . ≥ dn.

1: Find the highest degree marked vertex in I. Let r ∈ I be the index of this vertex. O(
√
n)

2: if cr ≤
√
` then

3: Find all marked neighbors of r in J . Output any graph collisions found. O(
√
nλ)

4: Read the values of all non-neighbors of r in J . ≤
√
`

5: Since v is completely known, find all marked i ∈ I adjacent to any marked j ∈ J . O(
√
nλ)

6: else
% In this case, using the promise that there are ` nonedges, it can be shown that r ≥ n−

√
`.

7: Read the values of all wi for i ≥ r. (We know that wi = 0 for all i ≤ r.) ≤
√
`

8: Since w is completely known, find all marked j ∈ J adjacent to any marked i ∈ I. O(
√
nλ)

9: end if

Algorithm 4.1 describes our approach for finding all graph collisions assuming λ 6= 0. Our
algorithm starts by finding the highest degree marked vertex in I. This takes O(

√
n) queries

[DHHM06]. (We called this as the find-first-one function in Chapter 3.) Let this vertex be the
rth vertex in I. We now know that wr = 1 and wi = 0 for all i ≤ r since r is the first marked
vertex in I.

82

Now consider two cases. If the number of non-neighbors of r, cr, is smaller than
√
`, this

means r is adjacent to n−
√
` vertices in J . Any marked vertex in this set will lead to a collision.

Since we know the graph explicitly, we know this set of vertices. We can search for all marked
vertices in this set and find them with O(

√
nλ) queries, since there are at most λ graph collisions

and each marked vertex gives rise to a unique graph collision. Now we know the values vj of
all neighbors of r. Since r has at most

√
` non-neighbors, we can simply read the values of vj

for these neighbors classically. This requires at most
√
` queries, after which we have completely

learned the vector v. Now that v is known, we know exactly which vertices in I will lead to
graph collisions if marked. We search over this set for all marked vertices. Again, this requires at
most O(

√
nλ) queries since the search space is of size at most n and there are at most λ marked

vertices. This shows that the stated query complexities in the first case are correct and we have
found all graph collisions.

In the second case, the number of non-neighbors of r, cr, is larger than
√
`. Since the vertices

we arranged in decreasing order of degree, they are arranged in increasing order of nondegree.
All vertices i ∈ I with i ≥ r have nondegree greater than cr. However, there are at most `
nonedges, so there cannot be too many vertices with i ≥ r, since each i contributes ci nonedges.
Indeed, there can be at most `/cr such vertices, since each vertex has nondegree at least cr. Since
cr ≥

√
`, there can be at most

√
` vertices with i ≥ r, which means that r ≥ n −

√
`. Since we

know that wi = 0 for all i ≤ r, the only unknown values of wi are for i ≥ r. But there are at
most

√
` such entries, which can all be read with at most

√
` queries. Now we have completely

learned w, so we know exactly which vertices in v will lead to graph collisions. These can all be
found with O(

√
nλ) queries as before, since there are at most λ such vertices.

This algorithm has bounded error since all subroutines used are bounded error and are called
only a constant number of times. This shows that Q(GCAall) = O(

√
nλ+

√
`) when λ 6= 0. When

λ = 0, we use the same algorithm, but the analysis is slightly different. The subroutines that
searched for all marked items and made O(

√
nλ) queries now only make O(

√
n) queries before

declaring that there is no marked item.

To show that Q(GCA) = O(
√
n+
√
`), instead of searching for all graph collisions we stop as

soon as we find one graph collision. This replaces the costs O(
√
nλ) with O(

√
n) in the analysis

above.

4.4.3 Boolean matrix multiplication algorithm

Given these two graph collision algorithms, we can present and analyze our algorithm for BMM.
Before presenting the final algorithm, note that the following simple algorithm works well when
` = Ω(n). We just find nonzero entries in Ck∧C ′, starting with C ′ = 0, for k = 1, 2, . . . , n. In each
step, we update C ′ to include all the nonzero entries found. Each step requires O(

√
nλi+

√
n+
√
`)

queries, where the additional O(
√
n) factor accounts for the fact that graph collision still takes

83

O(
√
n+
√
`) queries when λi = 0. Since each subroutine is bounded error, we boost the success

probabilities at the cost of an additional log factor. Thus the total cost of the algorithm is∑
k Õ(
√
nλk +

√
n +
√
`) = Õ(n3/2 + n

√
`), using the Cauchy–Schwarz inequality and the fact

that
∑

k λk = `. Note that when ` = Ω(n), this is Õ(n
√
`).

Final algorithm

Our final algorithm is similar to this one with one change. Solving graph collision for all values
of k is inefficient if ` is small and only some of these graph collisions yield nonzero entries. To
account for this, we search for the first graph collision instance that has a collision among the n
instances defined by different values of k. Specifically, we search for the first k such that Ck ∧C ′
has a nonzero entry, find all nonzero entries for this values of k, update C ′, and look for the next
k such that Ck ∧ C ′ has a nonzero entry.

We start with C ′ = 0 and want to find the first k such that Ck ∧ C ′ has a nonzero entry.
As discussed in Section 3.3.2, we can find the first marked item in a list of size n with O(

√
p)

queries in expectation, where p is the position of the first marked item. This follows from the
known O(

√
n) algorithm for finding the first 1 in a string of size n [DHHM06], by running that

algorithm on the first 2m bits, for m = 1, 2, . . . , log n.

If p1 is the first k with a graph collision, we can compose the algorithm to find the first marked
item with the graph collision algorithm that makes O(

√
n+
√
`) queries to get an algorithm that

makes O(
√
p1(
√
n+
√
`)) queries and finds the first index k ∈ [n] such that there is a nonzero entry

in Ck. Once we find p1, we find all graph collisions for this instance on the complete bipartite
graph, since currently C ′ = 0. This takes O(

√
nλ1) queries, where λ1 is the number of nonzero

entries in Cp1 . After we have found all the nonzero entries of Cp1 , we update the matrix C ′ with
the new nonzero entries we have learned. At this point, C ′ =

∑p1
k=1Ck, since there are no graph

collisions up to Cp1 and we have learned all the nonzero entries of Cp1 . Now we search for the
first k > p1 such that Ck ∧C ′ has a nonzero entry. Let p2 be the position of this k relative to p1,
i.e., k − p1. We then find all new nonzero entries of this instance of graph collision and continue
this process until we reach the end. As before we boost the success probabilities of all algorithms
to make the error probability inverse polynomially small. This gives us Algorithm 4.2.

Note that any point in the algorithm the matrix C ′ stores a cumulative sum of Ci up to
position c, i.e., C ′ =

∑c
k=1Ck. In the beginning C ′ = 0, and at each step C ′ is updated with

the new nonzero entries found at the first value of k that has nonzero entries not present in C ′.
Therefore at the end C ′ =

∑n
k=1Ck, which is C.

Let us analyze the complexity of this algorithm. Say the loop runs t times including the last
run where no k is found. Let the relative positions of graph collisions be p1, p2, . . . , pt. By relative
positions we mean the first k is p1, the second k is p1 + p2, and so on. Lastly, in the last run let
us say that k = n + 1 is the result of the search. This is to account for the fact that the search

84

Algorithm 4.2 Output-sensitive Boolean matrix multiplication algorithm

1: C ′ ← 0

2: i← 1
3: c← 1
4: while there exists a k ≥ c such that Ck ∧ C ′ has a nonzero entry do
5: Find the first k ≥ c such that Ck∧C ′ has a nonzero entry. Let pi ← k−c. Õ(

√
pi(
√
n+
√
`))

6: Find all nonzero entries of Ck ∧ C ′ Õ(
√
nλi +

√
`)

7: C ′ ← C ′ ∨ (Ck ∧ C ′)
8: c = c+ pi
9: i← i+ 1

10: end while

in the last run still requires queries to decide that there is no further k to be found such that
Ck ∧ C ′ has a nonzero entry. Thus the relative positions pi sum to n+ 1. Note that t ≤ n since
there are only n values of k and t ≤ ` since there are only ` nonzero entries to be found.

Since the first step of the loop costs Õ(
√
pi(
√
n +
√
`)) queries and the second step needs

Õ(
√
nλi +

√
`) queries, where λi is the number of graph collisions found at step i, the total query

complexity of the algorithm is

Õ

(
t∑
i=1

(√
pin+

√
pi`+

√
nλi +

√
`
))

= Õ(n
√
`+ n) = Õ(n

√
`+ 1), (4.3)

where we have used the Cauchy–Schwarz inequality,
∑t

i=1 λi = `,
∑t

i=1 pi = n + 1, t ≤ n, and
t ≤ `. This gives us the following theorem.

Theorem 4.6. The quantum query complexity of multiplying two n × n Boolean matrices is
Õ(n
√
`+ 1), where ` is the number of nonzero entries in the output matrix.

Note that this upper bound holds even when the value of ` is not known a priori. However,
this is still weaker than the claimed result due to log factors present in the upper bound. We
need some techniques introduced in the previous chapter to remove these log factors. We show
how to apply these techniques in the next section. The removal of log factors is technical and
does not conceptually alter the algorithm described above.

4.4.4 Removing log factors

We now show how to improve the upper bound on Boolean matrix multiplication from Õ(n
√
`+ 1)

to O(n
√
`+ 1). These results are based on the composition theorem proved in Section 3.4. As

85

shown in Section 3.4, the removal of log factors relies on converting quantum algorithms into
feasible solutions of the γ2 SDP while preserving the algorithm’s expected query complexity. Let
us do this for the two graph collision subroutines used in the algorithm.

The first subroutine solves the graph collision problem on a bipartite graph with 2n vertices
and at most ` nonedges in O(

√
n +
√
`) queries. This query complexity is not input dependent,

and thus there is a feasible SDP solution for this problem with c(x) = O(
√
n+
√
`) for all x, using

the known characterization of Lee et al. [LMR+11]. Recall that c(x) is a feasible cost function,
as defined in Definition 3.2.

The second subroutine finds all graph collisions in an instance with λ collisions using O(
√
nλ+√

`) queries. This upper bound is input dependent, since λ is a function of the input. In this
subroutine, the only input-dependent algorithm is the variant of Grover’s algorithm that requires
O(
√
nk) queries to output all the ones in an n-bit string when there are k ones. There is a feasible

cost function for this with c(x) = O(
√
nk), which can be shown in several different ways. One

way to show this is to observe that we can obtain an optimal quantum algorithm for this function
by finding the first 1 in the string, and then looking for the first 1 after that position and so on.
This corresponds to composing the SDP solution for the find-first-one function (Theorem 3.7)
with itself repeatedly to find all ones. The cost function of the resultant SDP will satisfy c(x) =
O(
∑

i

√
pi), where pis are the locations of the ones. By the Cauchy–Schwarz inequality this is

O(
√
nk). Another way to show this is to observe that this is the oracle identification problem

with C = {0, 1}N , for which we have shown that our algorithm gives rise to an SDP solution
with cost function c(x) =

∑r
i

√
pi(x). At each stage of the algorithm, the majority string will be

the all-ones string, and the algorithm will find all disagreements, which means it will find all the
zeros in the string. But by negating the string, this is equivalent to finding all the ones.

Just like in oracle identification, we will break up the BMM algorithm into a sequence of
algorithms Ai such that the output of Ai is the input of Ai+1, and convert each algorithm
into a feasible solution for the corresponding SDP. The BMM algorithm is already of this form:
The BMM algorithm breaks up the problem into n instances of graph collision. The algorithm
repeatedly searches for the first index i such that the ith graph collision instance has a collision.
Then it finds all graph collisions of this instance and repeats. The problem of searching for the
first i that has a graph collision is the composition of the find-first-one function (Theorem 3.7)
with the graph collision function. This is a composition in the sense that each oracle input bit
of the first problem is the output bit of another query problem. It is known that the optimal
value of the γ SDP for f ◦ g is at most γ(J − F)γ(J − G) [LMR+11, Lemma 5.1]. Similarly, it
can be shown that there is a feasible cost function for f ◦ g that is at most the product of the
cost functions. This is similar to [LMR+11, Lemma 5.1] or Lemma 3.5, but instead of taking the
direct sum of the vectors, we take the tensor product.

Thus if p1, . . . , pr are the relative positions of indices found by the algorithm, the search
subroutine requires O(

√
pi(
√
n+
√
`)) queries for each i and a feasible cost function with this cost

86

exists. The algorithm that finds all graph collisions has a feasible cost function O(
√
nλi +

√
`),

where λi is the number of graph collisions in the ith graph collision instance. This gives a feasible
cost function for BMM with cost O(

∑
i(
√
pi(
√
n+
√
`) +
√
nλi +

√
`)), which is same calculation

we performed in the previous section, but without log factors. This evaluates to O(n
√
`+ 1),

which shows Q(BMM) = O(n
√
`+ 1).

Theorem 4.7 (Output-sensitive Boolean matrix multiplication). The quantum query complexity
of multiplying two n×n Boolean matrices is O(n

√
`+ 1), where ` is the number of nonzero entries

in the output matrix. The upper bound holds even when the value of ` is unknown.

4.4.5 Lower bound and discussion

Our algorithm for BMM makes O(n
√
`) queries, and we show this is optimal when ` is not too

close to n2. More precisely, if ` < εn2 for some ε < 1, then Q(BMM) = Ω(n
√
`). Our lower bound

also holds if the algorithm is promised that all instances have the same known value of `, except
when ` is known to be 0 or n2, because that would uniquely identify the output matrix C. For
these extreme cases, we can show that distinguishing between ` = 0 and ` = 1 (or ` = n2 and
` = n2 − 1) requires Ω(n) queries. Formally, we show the following.

Theorem 4.8. Q(BMM) = Ω(n
√

min{`, n2 − `}), where ` is the number of nonzero entries in the
output matrix, even if restricted to instances with a fixed value of `. Additionally, distinguishing
between the cases ` = 0 and ` = 1 (or ` = n2 and ` = n2 − 1) requires Ω(n) queries.

Proof. We fix A to be the identity matrix, so that the output matrix C equals B. Now our
problem is the oracle identification problem on a Boolean string of size n2 with the additional
promise that the string has Hamming weight `. Note that the complexity of the problem is the
same for Hamming weight ` or n2 − `, since complementing all the bits in the input string does
not change the problem’s complexity. Thus we can assume ` ≤ 1

2n
2 and we only need to show

Q(BMM) = Ω(n
√
`) and that distinguishing ` = 0 from ` = 1 requires Ω(n) queries.

The latter problem is merely the PromiseOR function, in which we have to compute the OR of
n2 input bits with the promise that the Hamming weight is 0 or 1. The PromiseOR function on n2

bits requires Ω(n) queries, which can be shown using any of the lower bound methods. (Indeed,
most lower bound proofs for the OR function actually prove a lower bound for this problem.)

We now have to show that the oracle identification problem on n2 bits with the promise that
its Hamming weight ` satisfies 0 < ` ≤ 1

2n
2 requires Ω(n

√
`) queries. This is exactly what we

showed in Lemma 3.1 in the previous chapter.

This shows that our algorithm is tight for any ` ≤ εn2 for any constant ε < 1. However, it is
not tight for ` = n2−o(n), i.e., when C is very close to being the all-ones matrix J . When ` is very

87

close to n2, our algorithm makes O(n2) queries, which is trivial. However, there are nontrivial
algorithms that work better in this regime. For example, assume that we know that there is at
most one zero entry in C. We can find a zero in C with only O(n3/2) queries, since computing
one entry of C costs O(

√
n) queries and searching over all n2 entries adds a multiplicative factor

of O(n). This is faster than the trivial O(n2) algorithm. More generally, if there are m zeros in
C, we can find them all in O(n3/2√m) queries, which is o(n

√
`) = o(n2) when m = o(n).

One may expect that the problem behaves symmetrically in terms of ` and n2 − `, as in
the proof of Theorem 4.8. But this is not the case. While our algorithm requires only O(n)
queries to decide if AB = 0, deciding if AB = J is a strictly harder problem. We showed in the
previous section that the LC0

2 problem is equivalent to checking if Av = ~1 for a known matrix
A. Thus deciding if AB = J , even when A is known, is at least

√
n times harder than the

LC0
2 problem, using the composition theorem (Theorem 1.2). Thus deciding if AB = J requires

Ω(
√
nQ(LC0

2)) = Ω(n1.055) queries, even when A is known.

The query complexity of BMM when the number of zeros is small remains open.

Open Problem 4.6. What is the output-sensitive query complexity of BMM as parametrized by
m, the number of zero entries in the output matrix? We know Q(BMM) = O(n3/2√m) and that
the problem of deciding of AB = J , where J is the all-ones matrix, requires Ω(n1.055) queries.

88

Chapter 5

Minor-closed graph properties

Chapter summary: We study the quantum query complexity of minor-closed graph
properties, which include such problems as determining whether an n-vertex graph is
planar, is a forest, or does not contain a path of a given length. We show that most
minor-closed properties—those that cannot be characterized by a finite set of forbid-
den subgraphs—have quantum query complexity Θ(n3/2). To establish this, we prove
an adversary lower bound using a detailed analysis of the structure of minor-closed
properties with respect to forbidden topological minors and forbidden subgraphs. On
the other hand, we show that minor-closed properties (and more generally, sparse
graph properties) that can be characterized by finitely many forbidden subgraphs can
be solved strictly faster, in o(n3/2) queries. Our algorithms are a novel application
of the quantum walk search framework and give improved upper bounds for several
subgraph-finding problems.

This chapter is based on the following (conference and journal) papers:

[CK11a] Andrew M. Childs and Robin Kothari. Quantum query complexity of minor-closed graph
properties. In Proceedings of the 28th Symposium on Theoretical Aspects of Computer
Science (STACS 2011), volume 9 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 661–672, 2011.

[CK12] Andrew M. Childs and Robin Kothari. Quantum query complexity of minor-closed graph
properties. SIAM Journal on Computing, 41(6):1426–1450, 2012.

89

5.1 Introduction

In this chapter we study the query complexity of deciding whether a graph has a given property.
The query complexity of graph properties has been studied for more than 40 years, yet old and
easy-to-state conjectures regarding the deterministic and randomized query complexities of graph
properties remain unresolved.

Classical and quantum query complexity of graph properties

For monotone graph properties, a wide class of graph properties including almost all the prop-
erties considered in this chapter, a widely believed set of related conjectures, attributed to St̊al
Aanderaa, Richard Karp, and Arnold Rosenberg, assert that the deterministic and randomized
query complexities of recognizing such properties are

(
n
2

)
and Θ(n2) respectively, where n is the

number of vertices [Ros73, LY02]. For deterministic query complexity this has been proved for
prime n [KSS83] and up to a constant factor for all n [RV75]. For randomized query complexity
the best known lower bound is Ω(n4/3 log1/3 n) [CK07].

However, the quantum query complexity of graph properties can be harder to pin down than
its classical counterparts, since there exist monotone graph properties whose quantum query
complexity is Θ(n), and others with quantum query complexity Θ(n2). In fact, one can construct
a monotone graph property with quantum query complexity Θ(n1+α) for any fixed 0 ≤ α ≤ 1
using known bounds for the threshold function [BBC+01].

Prior work

The quantum query complexity of several specific graph properties has been established in prior
work. Dürr, Heiligman, Høyer, and Mhalla [DHHM06] studied the query complexity of sev-
eral graph problems, and showed in particular that connectivity has quantum query complexity
Θ(n3/2). Zhang [Zha05] showed a lower bound of Ω(n3/2) for problems such as bipartiteness
and perfect matching. Ambainis et al. [AIN+08] showed that planarity also has quantum query
complexity Θ(n3/2). Berzina et al. [BDF+04] showed several quantum lower bounds on graph
properties, including Hamiltonicity. Sun, Yao, and Zhang [SYZ04] exhibited a nonmonotone
graph property with quantum query complexity Õ(

√
n) and showed that all nontrivial graph

properties have quantum query complexity Ω(
√
n).

Despite this work, the quantum query complexity of many interesting graph properties remains
unresolved. As discussed in Section 4.3, a well-studied graph property whose query complexity
is unknown is the property of containing a triangle (i.e., a cycle on 3 vertices) as a subgraph.
The best known upper bound is Õ(n1.25) due to Le Gall [Le 14], while the best known lower
bound is only Ω(n). More generally, we can consider the H-subgraph containment problem, in
which the task is to determine whether the input graph contains a fixed graph H as a subgraph.

90

Magniez et al. gave a general algorithm for H-subgraph containment using Õ(n2−2/d) queries,
where d > 3 is the number of vertices in H [MSS07], which was the best known algorithm for
H-subgraph containment at the time of publication of this work, although better algorithms are
now known [LMS11, Zhu12, LMS13]. The complexity of the best known upper bound [LMS13]
does not have a concise description and can be obtained by solving a linear program. However,
the query complexity of these algorithms is still superlinear in n, while the best lower bound
known for H-subgraph containment is only Ω(n).

Our results

In this chapter we study the quantum query complexity of minor-closed graph properties. A
property is minor closed if all minors of a graph possessing the property also possess the property.
(Graph minors are defined in Section 5.2.) Since minor-closed properties can be characterized
by forbidden minors, this can be viewed as a variant of subgraph containment in which we look
for a given graph as a minor instead of as a subgraph. The canonical example of a minor-closed
property is the property of being planar. Other examples include the property of being a forest,
being embeddable on a fixed two-dimensional manifold, having treewidth at most k, and not
containing a path of a given length.

While any minor-closed property can be described by a finite set of forbidden minors, some
minor-closed properties can also be described by a finite set of forbidden subgraphs, graphs that
do not appear as a subgraph of any graph possessing the property. We call a graph property
(which need not be minor closed) a forbidden subgraph property (FSP) if it can be described by
a finite set of forbidden subgraphs. Our main result is that the quantum query complexity of
minor-closed properties depends crucially on whether the property is FSP. We show that any
nontrivial minor-closed property that is not FSP has query complexity Θ(n3/2), whereas any
minor-closed property that is FSP can be decided using O(nα) queries for some α < 3/2, and in
particular the query complexity is o(n3/2). In general, the value of α may depend on the property;
we give upper bounds on α that depend on the sizes of certain vertex covers.

Figure 5.1 summarizes our understanding of the quantum query complexity of minor-closed
graph properties. All subgraph-closed properties, which include minor-closed properties and
FSPs, have an easy lower bound of Ω(n) (Theorem 5.5). Furthermore, all sparse graph properties,
which are defined in Section 5.2 and which include all minor-closed properties, have an easy
upper bound of O(n3/2) (Theorem 5.10). On the lower bound side, our main contribution is
to show that minor-closed properties that are not FSP require Ω(n3/2) queries (Theorem 5.8),
which tightly characterizes their quantum query complexity. Regarding upper bounds, our main
contribution is a quantum algorithm for all sparse graph properties that are FSP using o(n3/2)
queries (Corollary 5.5).

Our lower bounds (Section 5.3) use the original (positive-weights) quantum adversary method
of Ambainis [Amb02]. The basic idea of the main lower bound is similar to the connectivity lower

91

Sparse

O(n3/2)

(Theorem 5.10)

Subgraph closed

Ω(n)

(Theorem 5.5)

Minor closed

FSP

Θ(n3/2) (Corollary 5.4) o(n3/2) (Corollary 5.5)

Figure 5.1: Summary of the main results.

bound of Dürr et al. [DHHM06]. However, it is nontrivial to show that this approach works using
only the hypothesis that the property is minor closed and not FSP. In fact, we show a slightly
stronger result, assuming only that the property is not FSP and can be described by finitely many
forbidden topological minors.

Our upper bounds (Section 5.4) use the quantum walk search formalism [MNRS11]. Our
approach differs from previous applications of this formalism in several respects. First, the
graph underlying our quantum walk is a Hamming graph, rather than the Johnson graph used
in previous algorithms. (This difference is not essential, but it simplifies the algorithm, and
a similar approach may prove useful in pedagogical treatments of other quantum walk search
algorithms.) Second, our algorithms involve several quantum walks occurring simultaneously on
different Hamming graphs; although this can be viewed as a single walk on a larger graph, the
salient feature is that the walks on different graphs proceed at different speeds, i.e., in each time
step a different number of steps are taken on each graph. Third, our quantum walk algorithm
makes essential use of the sparsity of the input graph, and to do so the algorithm must make
queries even to determine which vertices of the input graph to search over (namely, to find vertices
of a given degree).

The fact that our quantum walk can exploit sparsity allows us to improve upon known al-
gorithms for many sparse graph properties, even if they are not necessarily minor closed. In

92

particular, we give algorithm that outperforms the general algorithm of Magniez et al. [MSS07]
whenever H is a bipartite graph.

Finally, as another application, we consider the C4-subgraph containment problem, where C4

is the cycle on 4 vertices. This can be viewed as a natural extension of the triangle problem,
which is C3-subgraph containment. We show that C4 finding can be solved with only Õ(n1.25)
queries. This was surprising at the time this work was published because the best known upper
bound for triangle finding at that time was Õ(n1.3) [MSS07]. However, the query complexity of
triangle finding has recently been improved to Õ(n1.25) [Le 14].

Subsequent developments

After this work was published, some of the algorithmic results of our work were improved by
Belovs and Reichardt [BR12]. Using a reduction to s-t connectivity, they show that a path of
any fixed length can be detected in O(n) queries. More generally, they show that any minor-
closed property that is FSP and can be described by exactly one forbidden subgraph, which
must necessarily be a path or a (subdivided) claw, has query complexity Θ(n). This raises the
possibility that all minor-closed properties that are FSP could have linear query complexity,
although this remains open for properties characterized by more than one forbidden subgraph.

5.2 Preliminaries

In this chapter, all graphs are simple and undirected. Thus a graph on n vertices is specified
by
(
n
2

)
bits. The input graph is accessed by querying a black box to learn any of these

(
n
2

)
bits.

Deterministic and randomized algorithms have access to a black box taking two inputs, u and v,
and returning a bit indicating whether (u, v) is an edge in the graph. Quantum algorithms have
access to a unitary gate that maps |u, v, b〉 to |u, v, b⊕ e〉 where (u, v) ∈ V × V , b is a bit, and e
is 1 if and only if (u, v) ∈ E.

Let the deterministic, randomized, and quantum query complexities of determining whether
a graph possesses property P be denoted as D(P), R(P), and Q(P), respectively. Clearly,
Q(P) ≤ R(P) ≤ D(P) ≤

(
n
2

)
. Also note that these query complexities are the same for a

property P and its complement P̄, since any algorithm for P can be turned into an algorithm for
P̄ by negating the output, using no additional queries.

A graph property on n vertices is a property of n-vertex graphs that is independent of vertex
labeling, i.e., isomorphic graphs are considered equivalent. For a graph G on n vertices and
an n-vertex graph property Pn, we write G ∈ Pn to mean that graph G has property Pn. A
graph property P := {Pn}∞n=1 is a collection of n-vertex graph properties Pn for all n ∈ N . For
example, the property “the first vertex is isolated” is not a graph property because it depends on

93

the labeling, and in particular it depends on which vertex we decide to call the first one. However,
the property “contains an isolated vertex” is a graph property.

An n-vertex graph property Pn is nontrivial if there exists a graph that possesses it and one
that does not. A graph property P = {Pn}∞n=1 is nontrivial if there exists an n0 such that Pn
is nontrivial for all n > n0. Thus a property such as “contains a clique of size 5” is nontrivial,
although it is trivial for graphs with fewer than 5 vertices.

In this chapter, Kn and Cn refer to the complete graph and cycle on n vertices, respectively.
Ks,t is the complete bipartite graph with s vertices in one part and t vertices in the other. The
claw graph is K1,3 and a star graph is K1,t for any t. For a graph G, V (G) and E(G) denote the
vertex and edge sets of the graph; n := |V (G)| and m := |E(G)|.

u v

↓

Figure 5.2:
Contracting
an edge (u, v).

A graph H is said to be a subgraph of G, denoted H ≤S G, if H can be
obtained from G by deleting edges and isolated vertices. A graph H is said to
be a minor of G, denoted H ≤M G, if H can be obtained from G by deleting
edges, deleting isolated vertices, and contracting edges. To contract an edge
(u, v), we delete the vertices u and v (and all associated edges) and create a
new vertex that is adjacent to all the original neighbors of u and v. The name
“edge contraction” comes from viewing this operation as shrinking the edge
(u, v) to a point, letting the vertices u and v coalesce to form a single vertex as
shown in Figure 5.2. When working with multigraphs, edge contraction may
be defined to allow the possibility of multiple edges. However, all graphs are
simple in this chapter.

Another way to understand graph minors is to consider reverse operations: H ≤M G if G can
be obtained from H by adding isolated vertices, adding edges, and performing vertex splits. In
a vertex split, we delete a vertex u and add two new adjacent vertices v and w, such that each
original neighbor of u becomes a neighbor of either v or w, or both. This is the reverse of the
operation depicted in Figure 5.2. In general, this operation does not lead to a unique graph, since
there may be many different ways to split a vertex.

A related operation, which is a special case of a vertex split, is known as an elementary
subdivision. This operation replaces an edge (u, v) with two edges (u,w) and (w, v), where w
is a new vertex. A graph H is said to be a topological minor of G, denoted H ≤T G, if G
can be obtained from H by adding edges, adding isolated vertices, and performing elementary
subdivisions. We call G a subdivision of H if it is obtained from H by performing any number
of elementary subdivisions.

For example, observe that if H is a path, then H ≤S G ⇔ H ≤T G ⇔ H ≤M G. More
generally, if every connected component of a graph H is a subdivision of a star (which includes
paths), then H ≤S G⇔ H ≤T G and these are the only graphs with this property (Lemma 5.4).
Similarly, if every connected component of H is a path or a subdivision of a claw (K1,3), then
H ≤S G⇔ H ≤M G and these are the only graphs with this property.

94

Some graph properties can be expressed using a forbidden graph characterization. Such a
characterization says that graphs have the property if and only if they do not contain any of
some set of forbidden graphs according to some notion of graph inclusion, such as subgraphs or
minors. For example, a graph is a forest if and only if it contains no cycle as a subgraph, so forests
are characterized by the forbidden subgraph set {Ck : k ≥ 3, k ∈ N}. The property of being a
forest can also be characterized by the single forbidden minor C3, since a graph is a forest if and
only if it does not contain C3 as a minor. If a property can be expressed using a finite number
of forbidden subgraphs, we call it a forbidden subgraph property (FSP). A property is said to be
subgraph closed if every subgraph of a graph possessing the property also possesses the property.
(Note that subgraph-closed properties differ from monotone graph properties in that the latter
allow only edge deletion, not vertex deletion.) Similarly, a property is said to be minor closed if
all minors of a graph possessing the property also possess the property. In a series of 20 papers
spanning over 20 years, Robertson and Seymour proved the following theorem [RS04]:

Theorem 5.1 (Graph minor theorem). Every minor-closed graph property can be described by a
finite set of forbidden minors.

We also require the following consequence of the graph minor theorem, which follows using
well-known facts about topological minors [RS90, Theorem 2.1].

Corollary 5.1. Every minor-closed graph property can be described by a finite set of forbidden
topological minors.

Note that the converse of this statement is not true, i.e., there exist properties that are not
minor closed but can be described by finitely many forbidden topological minors. For example,
let H be the graph on 8 vertices that is formed by adding an edge between the degree-3 vertices
of two disjoint claw graphs (i.e., it looks like ++). Then the property of not containing H as a
topological minor is not minor closed. It is also easy to verify that this property is not FSP.

We call a graph property sparse if there exists a constant c such that every graph G with the
property has |E(G)| ≤ c |V (G)|. Nontrivial minor-closed properties are sparse, which is an easy
corollary of Mader’s theorem [Mad67].

Theorem 5.2. Every nontrivial minor-closed graph property is sparse.

Proof. Mader’s theorem [Mad67] states that there exists a function f such that any graph G
that does not contain Kh as a minor must have |E(G)| ≤ f(h) |V (G)|. (The function f has been
subsequently improved [Tho01].)

Since the family is nontrivial, there is some complete graph Kh that is not contained in this
family. Since the family is minor closed, no graph which contains Kh as a minor is in this family
either. Thus this set of graphs is a subset of the family of graphs which do not contain Kh as a
minor, and therefore we have |E(G)| ≤ f(h)|V (G)| for all graphs G in this nontrivial minor-closed
family.

95

5.3 Lower bounds

In this section, we prove lower bounds on the quantum query complexity of graph properties.
We first show a simple Ω(n) lower bound for all subgraph-closed properties. With the exception
of Theorem 5.10, this covers all the properties considered in this chapter, since every property
considered (or its complement) is subgraph closed.

We then describe an Ω(n3/2) lower bound for the problem of determining whether a graph
contains a cycle and explain how a similar strategy can be applied to any graph property that is
closed under topological minors, provided we can identify a suitable edge of a forbidden topological
minor. Next we introduce a tool used in our general lower bounds, namely a graph invariant that
is monotone with respect to topological minors. With this tool in hand, we show an Ω(n3/2) lower
bound for any H-topological minor containment problem that does not coincide with H-subgraph
containment. We conclude by showing the main result of this section, that every nontrivial minor-
closed property P that is not FSP has Q(P) = Ω(n3/2).

The quantum lower bounds in this chapter use the original (positive-weights) quantum ad-
versary method of Ambainis [Amb02].

Theorem 5.3 (Adversary bound). Let f(x1, . . . , xn) be a function of n bits and let X,Y be two
sets of inputs such that f(x) 6= f(y) if x ∈ X and y ∈ Y . Let R ⊆ X × Y be a relation. Let the
values m, m′, lx,i, l

′
y,i for x ∈ X, y ∈ Y and i ∈ {1, . . . , n} be such that the following hold.

1. For every x ∈ X, there are at least m different y ∈ Y such that (x, y) ∈ R.

2. For every y ∈ Y , there are at least m′ different x ∈ X such that (x, y) ∈ R.

3. For every x ∈ X and i ∈ {1, . . . , n}, there are at most lx,i different y ∈ Y such that
(x, y) ∈ R and xi 6= yi.

4. For every y ∈ Y and i ∈ {1, . . . , n}, there are at most l′y,i different x ∈ X such that
(x, y) ∈ R and xi 6= yi.

Let lmax be the maximum of lx,i l
′
y,i over all (x, y) ∈ R and i ∈ {1, . . . , n} such that xi 6= yi. Then

any quantum algorithm computing f with probability at least 2/3 requires Ω
(√

mm′

lmax

)
queries.

For the classical lower bound in the next section, we use the following theorem of Aaron-
son [Aar06].

Theorem 5.4 (Classical adversary bound). Let f,X, Y,R,m,m′, lx,i, l
′
y,i be as in Theorem 5.3.

Let v be the maximum of min{lx,i/m, l′y,i/m′} over all (x, y) ∈ R and i ∈ {1, . . . , n} such that
xi 6= yi. Then any randomized algorithm computing f with probability at least 2/3 requires Ω(1/v)
queries.

96

5.3.1 Subgraph-closed properties

We begin with the Ω(n) lower bound for all nontrivial subgraph-closed graph properties.

Theorem 5.5 (Subgraph-closed properties). For any nontrivial subgraph-closed graph property
P, Q(P) = Ω(n), R(P) = Θ(n2), and D(P) = Θ(n2).

Proof. Since P is nontrivial, for all n ≥ n0 there exists a graph on n vertices that is in P, and
since P is subgraph closed, this implies that the empty graph on n vertices is in P. Since P is
nontrivial, there exists a graph H not in P. Since H /∈ P, all supergraphs of H are also not in P.
Now let d = max{|V (H)|, n0}. Then the empty graph on d vertices is in P, while the complete
graph on d vertices, Kd, is not in P.

We prove a lower bound for the problem of distinguishing the empty graph on n vertices and
the n-vertex graph formed by Kd and n− d isolated vertices, for all n ≥ d.

Let X contain only one graph, the empty graph on n vertices. Let Y contain all graphs on
n vertices that contain exactly one copy of Kd and n − d isolated vertices. Let R be the trivial
relation, R = X × Y . Thus, in the notation of Theorem 5.3, m equals |Y | =

(
n
d

)
. Similarly,

m′ = |X| = 1. Since X contains only the empty graph, lx,i counts the number of graphs in Y

in which the ith edge is present. Since one edge fixes two vertices of Kd, the number of related
graphs in Y with a given edge is

(
n−2
d−2

)
. Since X contains only 1 graph, l′y,i ≤ 1.

The quantum adversary method (Theorem 5.3) gives us Q(P) = Ω
(√(

n
d

)
/
(
n−2
d−2

))
= Ω(n).

Theorem 5.4 gives us R(P) = Ω(n2) and thus D(P) = Ω(n2). Since all query complexities are at
most

(
n
2

)
, we have D(P) = Θ(n2) and R(P) = Θ(n2).

Note that this theorem can also be proved by reduction from the unstructured search problem
using Turán’s theorem. By Turán’s theorem, the densest graph on n vertices that does not contain
Kd as a subgraph has Θ(n2) nonedges. Thus any algorithm that decides the graph property must
be able to distinguish the densest graph from the same graph with one extra edge. Since there
are Θ(n2) nonedges, the problem of searching a space of size Θ(n2) can be reduced to this, giving
the appropriate lower bounds.

This theorem shows that all the properties considered in this chapter are classically uninter-
esting from the viewpoint of query complexity, since their classical (deterministic or randomized)
query complexity is Θ(n2).

5.3.2 Acyclicity

We now show an Ω(n3/2) lower bound for the problem of determining whether a graph is acyclic
(i.e., a forest). We then isolate the main idea of this proof, formulating a lemma that is useful

97

a b

c d

a b

c d

x ∈ X y ∈ Y
Figure 5.3: An example of two graphs on 10 vertices such that (x, y) ∈ R.

for establishing lower bounds for more general topological minor-closed graph properties.

The lower bound for acyclicity is similar to the connectivity lower bound of Dürr et al.
[DHHM06]. The intuition is that a long path and a long cycle look the same locally. Since
algorithms only have access to local information, these two graphs should be hard to distinguish.
Unfortunately this is not sufficient, since a path can be easily distinguished from a cycle by
searching the entire graph for a degree-1 vertex, which can be done with O(n) queries. Instead,
we try to distinguish a path from the disjoint union of a cycle and a path. Now both graphs have
2 degree-1 vertices. We require both the cycle and the path to be long, since a short cycle or
path could be quickly traversed.

Theorem 5.6. Deciding if a graph is a forest requires Ω(n3/2) queries.

Proof. Let X be the set of all graphs on n vertices isomorphic to the path on n vertices. Let Y
be the set of all graphs on n vertices that are the disjoint union of a path and a cycle, such that
no vertex is isolated and both the cycle and path have more than n/3 vertices. Clearly all graphs
in X are forests and all graphs in Y are not. Let (x, y) ∈ R if there exist 4 vertices a, b, c, d, such
that the only difference between x and y is that in x, the induced subgraph on these vertices has
only the edges (a, b) and (c, d), but in y, the induced subgraph has only edges (a, c) and (b, d).
See Figure 5.3 for an example of two related graphs on n = 10 vertices.

Now let us compute the relevant quantities from Theorem 5.3. Recall that m is the minimum
number of graphs y ∈ Y that each graph x ∈ X is related to. Each graph in X can be transformed
to a related graph in Y by selecting edges (a, b) and (c, d) such that the distance between the
edges is between n/3 and 2n/3. There are n− 1 ways to pick the edge (a, b), and for any choice
of (a, b) there are n/3 possible edges (c, d), which gives m = Ω(n2). Similarly, m′ = Ω(n2), since
in a graph y ∈ Y , we can choose any one edge in the cycle to be (a, c) and any one in the path
to be (b, d).

Now let us compute lmax. The quantity lx,i counts the number of graphs in Y that are related

to x and differ from x at the ith edge. The variable i indexes the bits of the adjacency matrix; let
xi indicate whether the ith edge is present or absent in x. Since lmax is the maximum of lx,i l

′
y,i

over all related pairs (x, y) such that xi 6= yi, let us first compute the maximum of lx,i l
′
y,i over all

related pairs (x, y) where xi = 0 and yi = 1.

98

Since xi = 0, the ith edge is not present in x and is present in the related graphs y, so without
loss of generality the ith edge is (a, c). To obtain a graph in Y , we need to choose vertices b and
d such that (a, b) and (c, d) are edges in x. We can choose either of a’s two neighbors to be b
and either of c’s two neighbors to be d. This gives at most 4 different y ∈ Y that are related to
this x and differ at the ith edge. Thus lx,i ≤ 4 when xi = 0. (The reason for the inequality is
that sometimes this may not yield a valid graph in y, e.g., when the resulting graph is not of the
appropriate form, or when the resulting path or cycle is too short.)

Since yi = 1, l′y,i counts the number of graphs in X related to y that do not have the ith edge.
Again, we can assume this edge is (a, c), since it is present in y but not in related graphs in X.
If the ith edge is an edge on the path in y (as opposed to the cycle), then choosing any edge in
the cycle will give two vertices b and d that give rise to valid graphs in x when the edges (a, b)
and (c, d) are added and (a, c) and (b, d) are deleted. Thus there are O(n) possible choices for
b and d, which gives O(n) related graphs in X. If (a, c) is an edge on the cycle, then we can
choose any edge on the path as (b, d). This again leads to at most O(n) possibilities, which gives
us l′y,i = O(n). Thus lx,i l

′
y,i = O(n) for all (x, y) ∈ R when xi = 0 and yi = 1.

Now we need to compute lx,i l
′
y,i when xi = 1 and yi = 0. The values of lx,i and l′y,i are similar

for this case: one is O(1) and the other is O(n). This gives lx,i l
′
y,i = O(n) for all (x, y) ∈ R such

that xi 6= yi. Thus lmax = O(n).

Using Theorem 5.3, we get a lower bound of Ω(
√
n4/n) = Ω(n3/2).

Cyclicity can be viewed as the property of containing C3 as a minor, or equivalently, as a
topological minor. Note that for any constant r, the same proof also works for the property of
containing Cr as a minor (i.e., containing a cycle of length at least r), since the graphs in X
did not contain any cycle, and the graphs in Y contained a cycle of length at least n/3, which
contains any constant-sized cycle as a minor.

Inspecting the proof technique more closely, we see that no particular property of forests was
used, other than the facts that all subdivisions of C3 are not forests, and that if we delete an
edge from a subdivision, the resulting graph is a forest. More precisely, we used the existence of
a graph G (in this case C3) and an edge (u, v) ∈ E(G) (since C3 is edge transitive it does not
matter which edge is chosen) such that if (u, v) is subdivided any number of times, the resulting
graph still does not have the property (in this case, of being a forest) and if (u, v) is replaced by
two disjoint paths the resulting graph does have the property. The following lemma formalizes
this intuition.

Lemma 5.1. Let P be a graph property closed under topological minors. If there exists a graph
G /∈ P and an edge (u, v) in G, such that replacing the edge (u, v) by two disjoint paths of any
length, one connected to vertex u and the other connected to vertex v, always results in a graph
G1 ∈ P, then Q(P) = Ω(n3/2).

99

Proof. The proof is similar in structure to Theorem 5.6 and subsumes it if we take G = C3. For
the general case, let G be a graph on k vertices.

Let G1 be the graph G with the edge (u, v) deleted, a path of length n1 attached at vertex
u, and a path of length n2 attached at vertex v, such that n1, n2 ≥ n/3 and |V (G1)| = n. By
assumption, G1 ∈ P. Let X be the set of all graphs isomorphic to G1.

Let G′2 be the graph G with the edge (u, v) subdivided n1 times, where n1 ≥ n/3. This is
equivalent to replacing the edge by a path of length n1 + 1. Let G2 be the disjoint union of G′2
and a path of length n2, such that n2 ≥ n/3 and |V (G2)| = n. Clearly G2 /∈ P, since it contains
G as a topological minor. Let Y be the set of all graphs isomorphic to G2.

As before, let (x, y) ∈ R if there exist 4 vertices a, b, c, d, such that the only difference between
x and y is that in x, the induced subgraph on these vertices has only the edges (a, b) and (c, d),
but in y, the induced subgraph has only the edges (a, c) and (b, d).

Each graph in X can be transformed to a related graph in Y by first selecting an edge (a, b) in
the first path and then picking another edge (c, d) in the second path. Each path contains more
than n/3 edges, but we have to satisfy the condition that when the edges (a, b) and (c, d) are
removed and replaced with (a, c) and (b, d), the resulting graph is in Y . This means that after
swapping the edges, both the long disjoint path and the path between vertices u and v have to
be longer than n/3. Even with this restriction there are Ω(n2) graphs in Y related to any graph
x ∈ X. For example, we can choose any edge on the shorter path to be (a, b), and then there are
at least n/6 edges on the longer path which can be chosen to be (c, d), which will give a graph in
Y when the edges (a, b) and (c, d) are removed and replaced with (a, c) and (b, d).

Similarly, m′ = Ω(n2). We have to choose an edge from the disjoint path and one from the
path which connects the vertices u and v. Again, we can choose any edge from the smaller of the
two paths, and then there are still at least n/6 edges in the other path left to choose, such that
if those edges are chosen as (a, c) and (b, d), and then we perform the swap (i.e., (a, c) and (b, d)
are removed and replaced with (a, b) and (c, d)), this results in a graph in X.

Now let us upper bound the maximum of lx,i l
′
y,i over all related pairs (x, y) where xi = 0 and

yi = 1. Since the ith edge is not present in x, we can take this to be the edge (a, c). To obtain a
graph in Y , we need to choose vertices b and d such that (a, b) and (c, d) are edges in x. We can
choose any one of a’s neighbors to be b and any one of c’s neighbors to be d. (For some edges,
this procedure may not give a graph in Y , but we only need an upper bound.) Since a and c have
O(1) neighbors, lx,i = O(1) when xi = 0.

To compute l′y,i, we can assume the ith edge is the edge (a, c), since it is present in the graph

y but not in related graphs in X. If the ith edge is an edge on the disjoint path in y or the path
connecting vertices u and v, there can be at most O(n) choices for the edge (b, d) on the other
path that gives rise to a valid graph in X when the edges (a, b) and (c, d) are added and (a, c)
and (b, d) are deleted. As before, sometimes there may be no related graphs with the ith edge

100

absent, but we only require an upper bound. Thus lx,i l
′
y,i = O(n) for all (x, y) ∈ R when xi = 0

and yi = 1.

Now we need to compute lx,i l
′
y,i when xi = 1 and yi = 0. The values of lx,i and l′y,i are similar

for this case: one is O(1), and the other is O(n). This gives lx,i l
′
y,i = O(n) for all (x, y) ∈ R such

that xi 6= yi. Thus lmax = O(n).

Using Theorem 5.3, we get a lower bound of Ω(
√
n4/n) = Ω(n3/2).

5.3.3 A graph invariant for topological minor containment

To identify suitable edges for use in Lemma 5.1, we introduce a graph invariant that is monotone
with respect to topological minors. As a simple application, we use this invariant to show an
Ω(n3/2) lower bound for all H-topological minor containment properties that are not also H-
subgraph containment properties.

Call an edge internal if it lies on a cycle or on a path joining two vertices of degree 3 or
greater. Call all other edges external. Note that an edge is external if and only if it belongs to a
dangling path, a vertex subset {v1, v2, . . . , vk} such that v1 is adjacent to v2, v2 is adjacent to v3,
etc., where v1 has degree 1 and v2, v3, . . . , vk−1 have degree 2. For a graph G, let β(G) denote the
number of internal edges in G. We claim that β is monotone with respect to topological minors.

Lemma 5.2. If H ≤T G then β(H) ≤ β(G).

Proof. Let H be a topological minor of G, where G is obtained from H in one step, i.e., by
performing an elementary subdivision or by adding a single edge or a single isolated vertex. We
show that β(H) ≤ β(G). Then the same inequality follows when H is obtained from G by any
number of steps.

It is clear that adding an isolated vertex does not change the β value of a graph. Adding an
edge to H results in a supergraph of H, which contains all the high degree vertices and cycles
that H does (and possibly more). Therefore each internal edge in H remains an internal edge in
G, which shows that the β value cannot decrease.

Finally, since subdividing an edge in H replaces the edge with a path of length 2, this does
not change the connectivity of the graph. Any paths that used the subdivided edge can now use
the path of length 2 instead. All the vertices of H have the same degree in G. Thus cycles cannot
be destroyed by subdivision, and neither can a path between any two particular vertices.

We use a specific topological minor operation that strictly decreases the invariant.

Lemma 5.3. In a graph G, deleting an internal edge (u, v) and adding two disjoint paths, one
starting from vertex u and one from v, decreases the β value of the resulting graph H.

101

Proof. It is clear that merely deleting the internal edge (u, v) decreases the β value of the graph.
Let us now show that every internal edge in H is also an internal edge in G.

First, observe that none of the edges that were added to H as part of the two disjoint paths
are internal. This follows because the added edges lie on a path with one end connected to u or
v and the other end free. No edge on this path is part of a cycle, and the path does not contain
any vertices of degree 3 or more.

It remains to consider edges of H that are also present in G. If an edge is internal in H
because it lies on a cycle, then it is also internal in G since all cycles in H are present in G. If
an edge is internal in H because it lies on a path between two vertices of degree 3 or more, none
of the vertices on that path can be on the added disjoint paths, since all the added vertices have
degree 1 or 2, and all vertices that are present in both H and G have exactly the same degree in
both graphs. Thus such an edge is internal in G as well. Since G has all the internal edges of H,
and at least one more (the edge (u, v)), β(H) < β(G).

Finally, the graphs with β(H) = 0 have a nice characterization.

Lemma 5.4. For any graph H, H-topological minor containment is equivalent to H-subgraph
containment if and only if β(H) = 0.

Proof. If H is a subgraph of another graph, then it is also a topological minor of that graph.
Thus to show the equivalence of topological minor containment and subgraph containment, we
only have to show that if H is a topological minor of G then H is also a subgraph of G.

If β(H) = 0, then H contains no internal edges, which means each connected component of
H is a subdivision of a star graph. Then it is easy to see that every subdivision of H contains H
as a subgraph.

To show the converse, note that if H is a graph in which some connected component is not a
subdivision of a star, then H must have 2 vertices of degree 3 in a connected component or have
a cycle. For these graphs we exhibit a subdivision of H which does not contain H as a subgraph.

Let H be a graph on k vertices that contains a cycle. Let G be the graph obtained by
performing k subdivisions on every edge of H. Now the smallest cycle in G is at least k times
longer than the smallest cycle in H. Thus G contains no cycles of length less than or equal to k.
But H is a graph on k vertices, and contains a cycle, which must be of length less than or equal
to k. Therefore H cannot be a subgraph of G.

Finally, let H be a k-vertex acyclic graph with 2 or more vertices of degree 3 in the same
connected component. Again let G be the graph obtained by performing k subdivisions on every
edge of H. Now the shortest path joining any pair of degree-3 vertices in G has length greater
than k. However, any path joining 2 degree-3 vertices in H has length less than or equal to k.

102

Thus H cannot be a subgraph of G, since deleting edges and isolated vertices cannot decrease
the shortest path between two vertices.

Using this invariant together with Lemma 5.1, we can easily show an Ω(n3/2) lower bound
for H-topological minor containment assuming that this property does not coincide with H-
subgraph containment. Since Lemma 5.4 characterizes such graphs, we know that H must be
cyclic or contain 2 vertices of degree at least 3 in the same connected component.

Theorem 5.7. For all graphs H, if H-topological minor containment is not equivalent to H-
subgraph containment, then the quantum query complexity of H-topological minor containment is
Ω(n3/2).

Proof. To apply Lemma 5.1, P must be closed under topological minors. Thus, we consider the
property of not containing H as a topological minor.

We require a graph G /∈ P with the properties stated in Lemma 5.1. Let G be the graph
H itself, and let (u, v) be any internal edge, which must exist by Lemma 5.4. By Lemma 5.3,
replacing (u, v) with two disjoint paths results in a graph G′ with β(G′) < β(H). Thus G′ cannot
contain H as a minor, which gives G′ ∈ P, and Lemma 5.1 gives us the Ω(n3/2) lower bound.

5.3.4 Minor-closed properties

We are now ready to prove our main lower bound result, an Ω(n3/2) lower bound for any minor-
closed graph property that is not FSP. By Corollary 5.1, any minor-closed graph property can be
described in terms of forbidden topological minors. However, so far, we have only considered the
case of a single forbidden topological minor. With multiple forbidden topological minors, some
internal edges of some forbidden minors may not suffice for use in Lemma 5.1, since subdividing
an internal edge of one minor may result in a graph that contains one of the other minors. Hence
our main challenge is to identify a suitable edge for use in Lemma 5.1.

We now introduce some terminology that will only be used in this subsection. We call a set of
graphs B equivalent under topological minor containment and subgraph containment if whenever
a graph in B is a topological minor of a graph G, there is some graph in B that is also a subgraph
of G.

Lemma 5.5. For any graph property P that is not FSP and that is described by a finite set of
forbidden topological minors, there exists a graph G /∈ P and an edge (u, v) ∈ E(G) satisfying the
conditions of Lemma 5.1.

Proof. We define P using two finite sets of forbidden topological minors, S and B, where the set
B is equivalent under topological minor containment and subgraph containment. Clearly, such a

103

description exists, because we can take B to be the empty set and let S be the set of forbidden
topological minors.

Among all possible descriptions of the property P in terms of finite forbidden sets S and B,
we choose a description that minimizes |S|. Since P is not FSP, it cannot be described by a pair
S and B where S = ∅ since B would then provide a forbidden subgraph characterization of P.
Let l := |S| 6= 0. Order the graphs in S by their β values, so that S = {H1, H2, . . . Hl} where
β(H1) ≤ β(H2) ≤ . . . ≤ β(Hl).

We claim that H1 can serve as the required graph G for Lemma 5.1. Clearly, H1 /∈ P. H1

must contain an internal edge, since otherwise Lemma 5.4 implies that H1 is equivalent under
subgraph and topological minor containment, in which case H1 could be removed from S and
added to B, violating the minimality of S. It remains to show that one of the internal edges of
H1 satisfies the conditions of Lemma 5.1.

Toward a contradiction, assume that none of the internal edges of H1 could serve as the edge
(u, v). This means that for each internal edge there is a pair of disjoint paths such that the graph
resulting from replacing the edge with this pair of paths, G′, does not possess property P. Since
G′ /∈ P, G′ must contain some graph in S or B as a topological minor. Since an internal edge was
deleted and replaced with two disjoint paths, the β value of the resulting graph has decreased
(by Lemma 5.3). Since β(G′) < β(H1) and β(H1) ≤ β(Hi) for all 1 ≤ i ≤ l, none of the graphs
in S can be a topological minor of G′, and thus only a graph in B can be a topological minor of
G′.

Hence, for each edge (u, v), there exists a pair of disjoint paths such that when (u, v) is
replaced by these paths, the resulting graph G′ contains one of the graphs in B as a topological
minor, and therefore as a subgraph. Let G′′ be a supergraph of G′ obtained by adding an extra
edge that connects the loose ends of the two disjoint paths. Since G′′ is obtained by replacing
the edge (u, v) by a long path, it is a subdivision of H1. Since G′ contains a graph in B as a
subgraph, so does G′′.

It follows that for every internal edge (u, v) of H1, there is a constant a such that if the
edge (u, v) is subdivided a or more times, the resulting graph contains some graph from B as a
subgraph. Let the maximum constant a over all internal edges be c. If any internal edge of H1

is subdivided more than c times, it contains some graph from B as a topological minor. We use
this fact to get a forbidden subgraph characterization for {H1} ∪B.

Let the number of internal edges in H1 be k. Let J be any graph that contains some graph
from {H1} ∪B as a topological minor. If it contains some graph from B as a topological minor,
it also contains some graph from B as a subgraph, so B already has a forbidden subgraph
characterization. The only graph whose containment as a topological minor we have to express
by a forbidden subgraph characterization is H1. So let J contain H1 as a topological minor. Since
some subdivision of H1 is a subgraph of J , let J ′ be a minimal subgraph of J that is a subdivision
of H1, i.e., no subgraph of J ′ is a subdivision of H1.

104

We claim that if J ′ has more than ck+ |V (H1)| vertices, then it already contains some graph
from B as a subgraph. Since J ′ is a subdivision of H1 and has ck more vertices than H1, it
must be obtained after ck subdivisions. Moreover, no subgraph of J ′ can be a subdivision of H1.
Thus J ′ must be obtained by subdividing only internal edges of H1, since subdividing an external
edge leads to a supergraph of the original graph (because an external edge must be on a dangling
path). Since J ′ is obtained from H1 by ck subdivisions of internal edges, at least one internal edge
was divided c times. Let the graph with this edge divided c times be called H ′. Since the order of
subdivisions does not matter, H ′ ≤T J ′. However, by assumption there is a graph in B that is a
topological minor of H ′. By the transitivity of topological minor containment, there is a graph in
B that is a topological minor of J ′. But since B-subgraph containment and B-topological minor
containment are equivalent, there is a graph in B that is a subgraph of J ′. Thus we do not need
to forbid any additional subgraphs in order to exclude graphs J ′ with more than ck + |V (H1)|
vertices.

Now suppose that J ′ has fewer than ck+ |V (H1)| vertices. Let F be the set of all subdivisions
of H1 with at most ck+ |V (H1)| vertices. Clearly J ′ ∈ F , and F is a finite set of graphs. The set
F ∪B is now a forbidden subgraph characterization for the property of not containing any graph
from {H1} ∪B as a topological minor.

This gives us a different representation of P, using the new sets S′ = {H2, H3, . . . ,Hl} and
B′ = F ∪B. But |S′| < l, which contradicts the minimality of the original characterization.

Combining this lemma with Corollary 5.1 and Lemma 5.1, we get the main result of this
section.

Theorem 5.8. For any nontrivial minor-closed property P that is not FSP, Q(P) = Ω(n3/2).

This lower bound cannot be improved due to a matching algorithm shown in Section 5.4. It
cannot be extended to minor-closed properties that are also FSP because, as we also show in
Section 5.4, every property of this type has query complexity o(n3/2).

Since the complement of H-minor containment is minor closed, we have the following.

Corollary 5.2. If H is a graph for which the property of not containing H as a minor is not
FSP, then the quantum query complexity of H-minor containment is Ω(n3/2).

Note that H-minor containment is not FSP for most graphs H. The only exceptions are
graphs in which each connected component is a path or a subdivision of a claw (K1,3). It is
not hard to show that if H is such a graph, then H-minor containment is equivalent to H-
subgraph containment. For such graphs H, one can show that H is a minor of G if and only if
it is a topological minor of G [Die05, Proposition 1.7.4]. Then, by Lemma 5.4, such an H is a
topological minor of G if and only if it is a subgraph, which proves the claim.

105

5.4 Algorithms

We now turn to quantum algorithms for deciding minor-closed graph properties, as well as related
algorithms for subgraph-finding problems.

5.4.1 Sparse graph detection and extraction

We begin by describing some basic tools that allow us to detect whether a graph is sparse and to
optimally extract the adjacency matrix of a sparse graph.

To tell whether a graph is sparse, we can apply quantum counting to determine approximately
how many edges it contains. In particular, Theorem 15 of [BHMT02] gives the following.

Theorem 5.9 (Approximate quantum counting). Let f : {1, . . . , N} → {0, 1} be a black-box
function with |f−1(1)| = K, and let ε ∈ (0, 1]. There is a quantum algorithm that produces an
estimate K̃ of K satisfying |K−K̃| ≤ εK with probability at least 2/3, using O(1

ε

√
N/K) queries

of f in expectation, provided K > 0. If K = 0, the algorithm outputs K̃ = 0 with certainty in
O(
√
N) queries.

Note that the failure probability can be reduced to δ by repeating this algorithm O(log 1
δ)

times and taking the median of the resulting estimates.

Applying Theorem 5.9 to approximately count the edges of a graph, we have the following.

Corollary 5.3. For any constant ε > 0 and function f : Z+ → Z+ there is a quantum algorithm
using O(

√
n2/f(n) log 1

δ) queries which accepts graphs with m ≥ (1 + ε)f(n) and rejects graphs
with m ≤ (1− ε)f(n) with probability at least 1− δ.

Proof. Approximate quantum counting with accuracy ε can distinguish the two cases. However,
if m � f(n), then quantum counting requires O(

√
n2/m) queries in expectation, much more

than the claimed O(
√
n2/f(n)) queries. This can be fixed by adding n more vertices and f(n)

edges so the total edge count is always greater than f(n). Now we have to distinguish the cases
m ≥ (2+ε)f(n) and m ≤ (2−ε)f(n). This can be done using accuracy ε/2 and only O(

√
n2/f(n))

expected queries. Since we know the query upper bound explicitly, we can halt the algorithm
if it exceeds its query upper bound by a factor of 4. By Markov’s inequality, this happens with
probability at most 1/4.

This procedure has constant success probability. Repeating this O(log 1
δ) times and taking

the majority vote of the outcomes boosts the success probability to at least 1− δ.

We also use a procedure for extracting all marked items in a search problem.

106

Lemma 5.6. Let f : {1, . . . , N} → {0, 1} be a black-box function with |f−1(1)| = K. The
bounded-error quantum query complexity of determining f−1(1) is O(

√
NK) if K > 0, and

O(
√
N) if K = 0.

This result and its optimality appear to be folklore (see for example [Amb10]); we include a
short proof for completeness. It can also be proved using the techniques of [AIN+08] or [DHHM06].

Proof. First check if K = 0 by standard Grover search, using O(
√
N) queries; if so, we are done.

Otherwise, by Theorem 17 of [BHMT02], we can exactly determine K with bounded error in
O(
√
NK) expected queries. To get a worst-case query upper bound, we first estimate K to a

constant factor using Theorem 5.9. If we allow the algorithm in Theorem 5.9 to make up to
O(
√
N) queries, it produces an estimate of K with high probability. With an estimate of K, we

can halt the algorithm if it makes more than (say) 4 times its expected query complexity, thus
exactly determining K with bounded error in O(

√
NK) queries in the worst case.

By Theorem 16 of [BHMT02], givenK, we can find a marked item with certainty in O(
√
N/K)

queries. We repeat this algorithm K times, unmarking each item after we find it, until there are
no more marked items. The number of queries used by this procedure is O(

∑K−1
i=0

√
N/(K − i)).

Observe that

K−1∑
i=0

√
N

K − i
≤
√
N

∫ K

0

dx√
x

= 2
√
NK. (5.1)

Thus O(
√
NK) queries suffice to find the K marked items.

Applying these results, we find that sparse graph properties can be decided in O(n3/2) queries.

Theorem 5.10. If P is a sparse graph property, then Q(P) = O(n3/2).

Proof. Since P is sparse, there is a constant c such that G ∈ P implies m ≤ cn. By Corollary 5.3,
we can reject graphs with m ≥ 2cn and keep for further consideration those with m ≤ cn with
bounded error using O(

√
n) queries. (It does not matter whether graphs with cn < m < 2cn are

rejected.) Now all unrejected graphs have m < 2cn. By applying Lemma 5.6 we can reconstruct

all edges of the graph with bounded error using O
(√(

n
2

)
m
)

= O(n3/2) queries. Given all the

edges of the graph, no further queries are needed to decide P.

Combining this with Theorem 5.2 and Theorem 5.8, an immediate consequence is

Corollary 5.4. If P is nontrivial, minor closed, and not FSP, then Q(P) = Θ(n3/2).

107

Note that this provides an alternative proof that the quantum query complexity of planarity
is Θ(n3/2) [AIN+08].

For minor-closed graph properties that are also FSP, the lower bounds from Section 5.3 do
not rule out the possibility of an improvement over Theorem 5.10. In fact, we show that an
improvement is possible for all such properties.

5.4.2 Quantum walk search

Here we introduce our main algorithmic tool, quantum walk search. Building on work of Ambainis
[Amb07] and Szegedy [Sze04], Magniez et al. gave the following general quantum walk search
algorithm (Theorem 3 of [MNRS11]):

Theorem 5.11 (Quantum walk search). Let P be a reversible, ergodic Markov chain with spectral
gap δ > 0, and let M be a subset of the states of P (the marked states) such that in the stationary
distribution of P , the probability of choosing a marked state is at least ε > 0. Then there is a
bounded-error quantum algorithm that determines whether M is empty using O(S+ 1√

ε
(1√

δ
U+C))

queries, where S is the number of queries needed to set up a quantum sample from the stationary
distribution of P , U is the number of queries needed to update the state after each step of the
chain, and C is the number of queries needed to check if a state is marked.

Despite the generality of this approach, nearly all previous quantum walk search algorithms
take P to be a simple random walk on the Johnson graph J(N,K), whose vertices are the

(
N
K

)
subsets of {1, . . . , N} of size K, with an edge between subsets that differ in exactly one item.
For our purposes it will be more convenient to consider a random walk on the Hamming graph
H(N,K), with vertex set {1, . . . , N}K and edges between two K-tuples that differ in exactly one
coordinate. This choice simplifies the implementation of our setup step. Although the order of
the items has no significance, and the possibility of repeated items only slows down the algorithm,
the effect is not substantial.

In particular, both Markov chains have spectral gap δ = Ω(1/K). It can be shown that the

eigenvalues of the simple random walk on the Johnson graph are 1− i(N+1−i)
K(N−K) for i ∈ {0, 1, . . . ,K},

so the spectral gap is δJ(N,K) = N
K(N−K) = Ω(1/K). The Hamming graph is even easier to analyze,

since it is the Cartesian product of K copies of the complete graph on N vertices. The normalized
adjacency matrix of H(N, 1) has spectral gap δH(N,1) = 1, so the normalized adjacency matrix of
H(N,K) has spectral gap δH(N,K) = 1/K.

More generally, we consider a Markov chain on the tensor product of several H(N,Ki) in
which we take αi steps on the ith coordinate. Then the spectral gap is δ = 1−maxi(1− 1

Ki
)αi =

Ω(mini αi/Ki), where we assume that 1/Ki = o(1).

108

Note that the stationary distribution of a symmetric Markov chain is uniform. Thus the initial
state is a uniform superposition, and to calculate ε, it suffices to calculate the probability that a
uniformly random state is marked.

5.4.3 Detecting subgraphs of sparse graphs

We now describe algorithms for determining whether a sparse graph G contains a given subgraph
H. Our basic strategy is to search over subsets of the vertices ofG for one containing a vertex cover
of H, a subset C of the vertices of H such that each edge of H involves at least one vertex from C.
By storing the list of neighbors of every vertex in a given subset, we can determine whether they
include a vertex cover of H with no further queries. We exploit sparsity by separately considering
cases where the vertices of the vertex cover have a given (approximate) degree.

Let vc(H) denote the smallest number of vertices in any vertex cover of H. A vertex cover of
H with vc(H) vertices is called a minimal vertex cover.

Theorem 5.12. Let P be the property that a graph either has more than cn edges (for some

constant c) or contains a given subgraph H. Then Q(P) = Õ
(
n

3
2
− 1

vc(H)+1

)
.

Proof. First, we use Corollary 5.3 to determine whether the graph is nonsparse. We accept if it
has more than cn edges. Otherwise, we continue, knowing it has fewer than, say, 2cn edges.

Now let C be a minimal vertex cover of H. We search for a subset of the vertices of G that
include the vertices of C (for some copy of H in G). To take advantage of sparsity, we separately
consider different ranges for the degrees of these vertices. We say that a vertex of G has degree
near q if its degree is within a constant factor of q. For concreteness, let us say that the degree
of v is near q if it is between q/2 and 2q. We search for a copy of H in G where vertex i of C has
degree near qi. By considering a geometric progression of values for each of the qis, we cover all
the possible vertex degrees with an overhead of only O(logvc(H) n) = Õ(1).

Since Theorem 5.9 only allows us to estimate the degree of a vertex within error ε, if the degree
estimate is too close to q/2 or 2q we might incorrectly accept or reject the vertex. To handle
this, we use a geometric progression where the intervals overlap enough that every possible degree
is sufficiently far from the end of some interval. For concreteness, we choose the progression of
values to be 2, 4, 8, . . ., so that the relevant intervals are 1 to 4, 2 to 8, 4 to 16, etc.

For each fixed (q1, . . . , qvc(H)), we search over ki-tuples of vertices of G with degree near qi
for each i from 1 to vc(H). For each such vertex, we store its complete neighbor list. In one
step of the Markov chain, we take αi steps for the ith component. Here the kis and the αis are
parameters that can be chosen to optimize the performance of the algorithm.

Let ti be the number of vertices of G with degree near qi. Note that we can approximate the tis
at negligible cost using Theorem 5.9. Also note that since each vertex is counted at most 3 times

109

and the number of edges of G is O(n), we have
∑

i tiqi = O(n), and in particular, tiqi = O(n) for
each i. Choose the ordering of the indices so that t1 ≤ · · · ≤ tvc(H).

The setup cost of the walk has two contributions. Using Grover’s algorithm, we can prepare
a uniform superposition over all vertices of degree near qi using O(n/

√
ti) queries. To prepare

a uniform superposition over all ki-tuples of such vertices, we simply repeat this ki times, using
O(kin/

√
ti) queries. (Note that if our search involved a Johnson graph instead of a Hamming

graph, we would need to prepare a uniform superposition over ki-subsets of vertices instead of
ki-tuples. Although this could be done, it would make the setup step more complicated, and the
performance of the algorithm would be essentially unchanged.) Thus we can prepare a uniform
superposition over the ki-tuples for all i using O(

∑
i kin/

√
ti) queries. Next we compute the

list of neighbors of each of these vertices using Lemma 5.6, which takes O(
∑

i ki
√
nqi) queries.

Since qi = O(n/ti), the cost of the neighbor computation can be neglected, so the setup cost is
S = O(

∑
i kin/

√
ti).

The cost of performing a step of the walk also has two contributions. To update the vertices,
we search for αi vertices of degree near qi; this takes O(

∑
i αin/

√
ti) queries. Updating their

neighbor lists takes O(
∑

i αi
√
nqi) queries, which is again negligible. Therefore, the update cost

is U = O(
∑

i αin/
√
ti). Since we perform poly(n) update steps, we reduce the error probability

of each update step to 1/ poly(n) so that the final error probability is a constant. This only
introduces an overhead of O(log n).

We mark states of the Markov chain that include a vertex cover of a copy of H in G. Since
we also store complete neighbor lists, and every vertex in H is adjacent to some vertex of the
vertex cover, no queries are required to determine whether a state is marked. In other words, the
checking cost is C = 0.

It remains to determine the spectral gap of the chain and the fraction of marked vertices.
From Section 5.4.2, the spectral gap is δ = Ω(mini αi/ki). If we choose ki of the ti vertices of
degree near qi uniformly at random, the probability of obtaining one particular vertex of degree
near qi is Ω(ki/ti); therefore the fraction of marked vertices is ε = Ω(

∏
i ki/ti).

Applying Theorem 5.11, the number of queries used by this algorithm for any fixed values of
q1, q2, . . . , qvc(H) is

O

(
n

[∑
i

ki√
ti

+

√
max
i

ki
αi

∏
i

ti
ki

∑
i

αi√
ti

])
. (5.2)

Recall that we have the freedom to choose the αis and the kis. If vc(H) ≥ 2, we choose them to
satisfy

αi
αj

=
ki
kj

=

√
ti
tj

(5.3)

110

for all i, j (which still leaves the freedom to choose one of the αis and one of the kis). Assume
for now that the αis and the kis are integers. Then the query complexity is

O

(
n

[
k1√
t1

+

√
k1

α1

∏
i

ti
ki

α1√
t1

])
= O

(
n

[
k1√
t1

+

√
k1α1

t1

∏
i

ti
ki

])
(5.4)

= O

n
 k1√

t1
+

√√√√k1α1

t1

(√
t1
k1

)vc(H)∏
i

√
ti

 (5.5)

= O

n
 k1√

t1
+

√
α1

(√
t1n

k1

)vc(H)−1
 (5.6)

where we have used the simple bound ti ≤ n in the last line. Now take α1 = 1 and

k1 =
√
t1n

1
2
− 1

vc(H)+1 ; (5.7)

then the total query complexity is

O
(
n

3
2
− 1

vc(H)+1

)
(5.8)

as claimed. Furthermore, recall that iterating over the various qis only introduces logarithmic
overhead. Since we repeat this subroutine poly(log n) times, we reduce the error probability of
the subroutine to 1/ poly(log n), which only introduces an extra O(log log n) = Õ(1) factor to the
query complexity.

So far we have assumed that the αis and the kis are integers. However, observe that the
asymptotic expressions for the query complexity are unchanged if we replace each αi by any
value between αi and 2αi and each ki by any value between ki and 2ki. Since α1 = 1 is the
smallest αi and k1 = ω(1) is the smallest ki, and because for any x ≥ 1 there is always an integer
between x and 2x, the result holds when the αis and kis are rounded up to the next largest
integers. Similarly, the fact that we only have a multiplicative approximation for the tis does not
affect the asymptotic running time.

We can apply this algorithm to decide sparse graph properties, and in particular minor-
closed properties, that are also FSP: we simply search for each of the forbidden subgraphs,
accepting if none of them are present. For minor-closed properties, the nonsparseness condition
of Theorem 5.12 can be removed due to Theorem 5.2. Thus, since vc(H) is a constant for any
fixed graph H, we have

Corollary 5.5. If P is sparse and FSP, then Q(P) = O(nα) for some α < 3/2.

111

Note that Theorem 5.12 also holds if we ask whether H is contained as an induced subgraph,
since when we check whether H is present for a certain subset of edges, we have access to their
complete neighbor lists.

For many subgraphs, we can improve Theorem 5.12 further by storing additional information
about the vertices in the minimal vertex cover: in addition to storing their neighborhoods, we can
also store basic information about their second neighbors. In particular, we have the following.

Theorem 5.13. Let P be the property that a graph either has more than cn edges (for some
constant c) or contains a given subgraph H. Let H ′ be the graph obtained by deleting all degree-

one vertices of H that are not part of an isolated edge. Then Q(P) = Õ
(
n

3
2
− 1

vc(H′)+1

)
.

Proof. As before, we begin by using Corollary 5.3 to determine whether the graph is nonsparse,
accepting if this is the case.

Otherwise, we use the technique of color coding [AYZ95] to handle the degree-one vertices of
H. Suppose that H has ` degree-one vertices, and label them 1, . . . , `; label the other vertices
` + 1. Assign labels from the set {1, . . . , `, ` + 1} uniformly at random to the vertices of G. If
there is a copy of H in G, then with probability at least (` + 1)−|V (H)| = Ω(1), the vertices of
this copy of H in G have the correct labels. We assume this is the case, increasing the cost of the
algorithm by a factor of O(1).

We augment the algorithm of Theorem 5.12 by storing additional information about each
vertex: in addition to the neighborhood, we also store whether each vertex has a second neighbor
with each possible label. Computing this information for any one vertex of G of degree near qi
with known neighborhood takes O(

√
nqi) queries, so the additional setup cost of O(

∑
i ki
√
nqi)

and update cost of O(
∑

i αi
√
nqi) to store this information is negligible. Now we can recognize

H by storing only a minimal vertex cover of H ′, still with zero checking cost. Thus the same
analysis applies with vc(H) replaced by vc(H ′), and the result follows.

In the published version of this work, we use Theorem 5.13 to obtain improved algorithms
for properties characterized by a single forbidden minor (and equivalently, a single forbidden
subgraph). However, since the query complexity of such properties is now known to be Θ(n) by
the work of [BR12], we do not study algorithms for such properties in this thesis.

5.4.4 Relaxing sparsity

In the previous section, we focused on the case of sparse graphs, since this is the relevant case for
minor-closed graph properties. However, our algorithms easily generalize to the case where the
number of edges is at most some prescribed upper bound, which need not be linear in n, leading
to further applications.

112

Theorem 5.14. Let P be the property that an n-vertex graph either has more than m̄ edges,
where m̄ = Ω(n), or contains a given subgraph H. Let H ′ be the graph obtained by deleting all

degree-one vertices of H that are not part of an isolated edge. Then Q(P) = Õ(
√
m̄n

1− 1
vc(H′)+1).

Note that Theorem 5.14 subsumes Theorem 5.13, which in turn subsumes Theorem 5.12.

Proof. We apply the algorithm from the proof of Theorem 5.13 (which in turn depends on the
analysis in the proof of Theorem 5.12), replacing the promise that m = O(n) with the promise
that m = O(m̄), which implies that qi = O(m̄/ti). In this algorithm, the setup cost is

S = O

(∑
i

kin/
√
ti +

∑
i

ki
√
nqi

)
(5.9)

= O

(∑
i

ki√
ti

(n+
√
nm̄)

)
(5.10)

= O

(
√
nm̄

∑
i

ki√
ti

)
, (5.11)

and by a similar calculation, the update cost is

U = O

(
√
nm̄

∑
i

αi√
ti

)
; (5.12)

the checking cost remains C = 0, and the spectral gap and fraction of marked vertices are also
unchanged. Again choosing

αi
αj

=
ki
kj

=

√
ti
tj
, (5.13)

the query complexity from Theorem 5.11 is

O

(
√
nm̄

[
k1√
t1

+

√
k1

α1

∏
i

ti
ki

α1√
t1

])
= O

√nm̄
 k1√

t1
+

√
α1

(√
t1n

k1

)vc(H)−1
 . (5.14)

(cf. (5.4–5.6)). Taking α1 = 1 and

k1 =
√
t1n

1
2
− 1

vc(H′)+1 (5.15)

gives a query complexity of

O(
√
m̄n

1− 1
vc(H′)+1) (5.16)

and the result follows.

113

In conjunction with the Kövári–Sós–Turán theorem [KST54], this algorithm has applications
to subgraph-finding problems that are not equivalent to minor-finding problems.

Theorem 5.15 (Kövári–Sós–Turán). If an n-vertex graph G does not contain Ks,t as a subgraph,

where 1 ≤ s ≤ t, then |E(G)| ≤ cs,t n2− 1
s , where cs,t is a constant depending only on s and t.

In particular, we use this theorem to show the following.

Theorem 5.16. If H is a d-vertex bipartite graph, then H-subgraph containment has quantum

query complexity Õ(n2− 1
d
− 2

d+2) = Õ(n
2− 3d+2

d(d+2)).

Proof. By Theorem 5.15, a graph that does not contain Ks,t (where 1 ≤ s ≤ t) has at most

cs,t n
2− 1

s edges, so a graph with more than cs,t n
2− 1

s edges must contain H. Theorem 5.9 shows

that we can determine whether the input graph has more than 2cs,t n
2− 1

s edges using o(n) queries.

If so, we accept; otherwise, we apply Theorem 5.14 with m̄ = 2cs,t n
2− 1

s and vc(H ′) ≤ d/2, giving
the desired result.

Recall that for d > 3, Theorem 4.6 of [MSS07] gives an upper bound of O(n2− 2
d) for finding

a d-vertex subgraph. For bipartite subgraphs, Theorem 5.16 is a strict improvement.

Note that a better bound may be possible by taking the structure of H into account. In
general, if H is a bipartite graph with the ith connected component having vertex bipartition
Vi ∪ Ui with 1 ≤ |Vi| ≤ |Ui|, then we can replace d/2 by

∑
i |Vi|, since a graph that does not

contain K∑
i |Vi|,

∑
i |Ui| does not contain H, and vc(H ′) ≤ vc(H) =

∑
i |Vi|. As a simple example,

if H = K1,t is a star on t + 1 vertices, then H-subgraph containment can be solved with Õ(n)
quantum queries (which is essentially optimal due to Theorem 5.5). This shows that the quantum
query complexity of deciding if a graph is t-regular is Θ̃(n). (In fact it is not hard to show that
the query complexity of this problem is Θ(n).)

As another example, consider the property of containing a fixed even-length cycle, i.e., C2l-
subgraph containment. Since C2l is bipartite, this is a special case of the problem considered

above. Theorem 5.16 gives an upper bound of Õ(n
2− 3l+1

2l(l+1)), which approaches O(n2) as the cycle

gets longer (i.e., as l → ∞). As concrete examples, it gives upper bounds of Õ(n1.416) for C4

containment and Õ(n1.583) for C6 containment.

For even cycles of length 6 or greater, this upper bound can be significantly improved by
replacing Theorem 5.15 with the following result of Bondy and Simonovits [BS74].

Theorem 5.17 (Bondy–Simonovits). Let G be a graph on n vertices. For any l ≥ 1, if |E(G)| >
100ln1+1/l then G contains C2l as a subgraph.

114

Using this upper bound instead of Theorem 5.15 in Theorem 5.16 gives us the following upper
bound for even cycles.

Theorem 5.18. The C2l-subgraph containment problem can be solved using Õ(n
3
2
− l−1

2l(l+1)) queries.

For C4 containment, the upper bound given by this theorem matches the one given by Theo-
rem 5.16. However, for all longer even cycles, the bound given by this theorem is strictly better
than the one given by Theorem 5.16. For example, we get an upper bound of Õ(n1.416) for C6

containment, as compared to the upper bound of Õ(n1.583) given by Theorem 5.16. Moreover, as
the cycles get longer, the upper bound of Theorem 5.18 approaches O(n3/2) instead of O(n2).

We can sometimes improve over Theorem 5.14 by introducing a nontrivial checking cost. The
following is a simple example of such an algorithm for C4 containment that performs better than
the Õ(n1.416) query algorithm given by both Theorem 5.16 and Theorem 5.18.

Theorem 5.19. C4-subgraph containment can be solved in Õ(n1.25) quantum queries.

Proof. By Theorem 5.15, a graph with Ω(n3/2) edges must contain C4 = K2,2, so by applying
Theorem 5.9 and accepting graphs with Ω(n3/2) edges, we can assume that m = O(n3/2). Then,
for various values of q in a geometric progression, we search for a vertex v of the input graph
that has degree near q and that belongs to a 4-cycle. It suffices to search for v using Grover’s
algorithm instead of the more general Theorem 5.11. Let t denote the number of vertices of
the input graph with degree near q, and let |ψ〉 denote a uniform superposition over all such
vertices, where for each vertex we store a list of its O(q) neighbors. Grover’s algorithm starts
from the state |ψ〉 and alternates between reflecting about |ψ〉 and about vertices that belong to
a 4-cycle, detecting whether such a vertex exists in O(

√
t) iterations. By Grover’s algorithm, we

can prepare a uniform superposition over the vertices of degree near q using O(n/
√
t) queries; by

Lemma 5.6, we can compute the neighborhood of a vertex with degree near q in O(
√
nq) queries.

Thus we can prepare or reflect about |ψ〉 in O(n/
√
t +
√
nq) queries. Given the neighbors of a

vertex with degree near q, we can decide whether that vertex is part of a 4-cycle by searching
over all vertices in the graph for a vertex that is adjacent to 2 of its neighbors. This can be done
in O(

√
nq) queries. Thus the query complexity of searching for a 4-cycle is

O

(√
t

[
n√
t

+
√
nq

])
= O(n+

√
nqt). (5.17)

Since qt = O(n3/2), we see that the number of amplitude amplification steps is O(n5/4). As in
previous algorithms, iterating over values of q and error reduction of subroutines only introduces
logarithmic overhead, so the total query complexity is Õ(n5/4) as claimed.

115

5.5 Open problems

Since the best known lower bound for forbidden subgraph properties is the simple Ω(n) bound
from Theorem 5.5, an obvious open question is to find improved lower bounds for such properties.
While the original (positive-weights) quantum adversary method cannot prove a better lower
bound due to the certificate complexity barrier [Sze03, Zha05, LM08, ŠS06], it might be possible
to apply the negative-weights adversary method [HLŠ07] or the polynomial method [BBC+01].
Note that sparsity makes forbidden subgraph properties potentially more difficult to lower bound;
this is precisely the feature we took advantage of in the algorithms of Section 5.4. Proving a
superlinear lower bound for any subgraph-finding problem—even one for which dense graphs
might not contain the subgraph, such as in the case of triangles—remains a major challenge.

Open Problem 5.1. Can we prove an ω(n) lower bound on the quantum query complexity of
any H-subgraph containment property?

After our work and the results of Belovs and Reichardt [BR12], the main open problem about
minor-closed properties is whether we can show a dichotomy result for their query complexity.
We have already shown that minor-closed properties that are not FSP require Θ(n3/2) queries.
Is it the case that minor-closed graph properties that are FSP require Θ(n) queries?

Open Problem 5.2. Is the following conjecture true? The query complexity of a minor-closed
property is either Θ(n) or Θ(n3/2), depending on whether or not the property is FSP.

Note that the conjecture is true for minor-closed properties that are characterized by exactly
one forbidden minor [BR12]. Showing the general conjecture would require proving an O(n)
query upper bound for all minor-closed properties that are FSP. Note that while our algorithms
only take advantage of the sparsity of such properties, minor-closed families of graphs have other
special properties, such as bounded degeneracy, which might also be exploited.

Lastly, the quantum analogue of the Aanderaa–Karp–Rosenberg conjecture remains open.
Using the best known randomized lower bound of Ω(n4/3 log1/3 n) [CK07], it can be shown that
any nontrivial monotone graph property has quantum query complexity Ω(n2/3 log1/6 n) [MSS07].

Open Problem 5.3. Does a quantum analogue of the Aanderaa–Karp–Rosenberg conjecture
hold? Is it the case that the quantum query complexity of deciding any nontrivial monotone
graph property is Ω(n)? The best known lower bound is Ω(n2/3 log1/6 n) [MSS07].

The best lower bound we could hope for is Ω(n), since there exist nontrivial monotone graph
properties with query complexity O(n).

116

Chapter 6

Conclusion

In this thesis we studied the quantum query complexity of a variety of problems using several
different techniques. We briefly summarize the problems solved and key technical contributions.

In Chapter 2 we introduced the linear combinations of unitaries (LCU) algorithm that provides
nearly optimal algorithms for the sparse Hamiltonian simulation problem and the problem of
simulating the continuous- and fractional-query models in the standard discrete-query model. The
LCU algorithm is based on a new technique introduced called “oblivious amplitude amplification.”
In Chapter 3 we presented the first optimal quantum algorithm for the oracle identification
problem. The solution is based on ideas from classical learning theory and a new composition
theorem for quantum query complexity that allows the removal of log factors that arise from
composition in certain situations. The composition theorem is also used to remove log factors
from the algorithm presented in the next chapter. In Chapter 4 we surveyed known results on
matrix multiplication and provided an almost optimal algorithm for output-sensitive Boolean
matrix multiplication. The algorithm is based on a reduction to the graph collision problem
and a new algorithm for graph collision that performs better than known algorithms when the
underlying graph is dense. Lastly in Chapter 5 we characterized the quantum query complexity
of all minor-closed graph properties that did not have a forbidden subgraph characterization
and showed that the remaining minor-closed properties are strictly easier to solve. The lower
bound is based on a detailed analysis of the structure of such properties with respect to forbidden
subgraphs and topological minors, while the upper bound is based on a novel application of the
quantum walk framework that exploits the fact that the underlying graphs are sparse.

We have already seen many open questions related to the problems studied in this thesis, rang-
ing from well-known and widely studied problems such as algorithms for Hamiltonian simulation
(Open Problem 2.2) and the query complexity of monotone graph properties (Open Problem 5.3)
to lesser-known problems like the query complexity of LC0

2 circuits (Open Problem 4.4) and
Boolean matrix multiplication with dense output matrices (Open Problem 4.6). More generally,

117

quantum query complexity is rich in open problems and continues to remain, in my opinion, an
exciting area of research.

118

References

[Aar06] Scott Aaronson. Lower bounds for local search by quantum arguments. SIAM
Journal on Computing, 35(4):804–824, 2006. [p. 96]

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009. [pp. 3, 6]

[ABI+13] Andris Ambainis, Kaspars Balodis, Jānis Iraids, Raitis Ozols, and Juris Smotrovs.
Parameterized quantum query complexity of graph collision. In Proceedings of the
Workshop on Quantum and Classical Complexity, pages 5–16, 2013. [p. 74]

[ABSdW13] Andris Ambainis, Arturs Backurs, Juris Smotrovs, and Ronald de Wolf. Optimal
quantum query bounds for almost all Boolean functions. In Proceedings of the 30th
Symposium on Theoretical Aspects of Computer Science (STACS 2013), volume 20
of Leibniz International Proceedings in Informatics (LIPIcs), pages 446–453, 2013.
[p. 41]

[ACR+10] Andris Ambainis, Andrew M. Childs, Ben W. Reichardt, Robert Špalek, and
Shengyu Zhang. Any AND-OR formula of size N can be evaluated in time N1/2+o(1)

on a quantum computer. SIAM Journal on Computing, 39(6):2513–2530, 2010. [p.
14]

[AIK+04] Andris Ambainis, Kazuo Iwama, Akinori Kawachi, Hiroyuki Masuda, Raymond H.
Putra, and Shigeru Yamashita. Quantum Identification of Boolean Oracles. In
Proceedings of the 21st International Symposium on Theoretical Aspects of Computer
Science (STACS 2004), volume 2996 of Lecture Notes in Computer Science, pages
105–116. Springer, 2004. [pp. 41, 42, 43]

[AIK+07] Andris Ambainis, Kazuo Iwama, Akinori Kawachi, Rudy Raymond, and Shigeru Ya-
mashita. Improved algorithms for quantum identification of Boolean oracles. Theo-
retical Computer Science, 378(1):41 – 53, 2007. [pp. 7, 40, 41, 42, 43]

119

[AIN+08] Andris Ambainis, Kazuo Iwama, Masaki Nakanishi, Harumichi Nishimura, Rudy
Raymond, Seiichiro Tani, and Shigeru Yamashita. Quantum query complexity of
Boolean functions with small on-sets. In Proceedings of the 19th International Sym-
posium on Algorithms and Computation, pages 907–918, 2008. [pp. 90, 107, 108]

[AIN+09] Andris Ambainis, Kazuo Iwama, Masaki Nakanishi, Harumichi Nishimura, Rudy
Raymond, Seiichiro Tani, and Shigeru Yamashita. Average/worst-case gap of quan-
tum query complexities by on-set size. arXiv preprint arXiv:0908.2468, 2009. [p.
43]

[Amb02] Andris Ambainis. Quantum lower bounds by quantum arguments. Journal of Com-
puter and System Sciences, 64(4):750–767, 2002. [pp. 45, 71, 73, 91, 96]

[Amb07] Andris Ambainis. Quantum walk algorithm for element distinctness. SIAM Journal
on Computing, 37(1):210–239, 2007. [pp. 66, 68, 74, 108]

[Amb10] Andris Ambainis. A new quantum lower bound method, with an application to
strong direct product theorem for quantum search. Theory of Computing, 6(1):1–
25, 2010. [p. 107]

[AMRR11] Andris Ambainis, Löıck Magnin, Martin Roetteler, and Jérémie Roland. Symmetry-
assisted adversaries for quantum state generation. In Proceedings of the 26th IEEE
Conference on Computational Complexity (CCC 2011), pages 167–177, 2011. [p. 13]

[Ang88] Dana Angluin. Queries and Concept Learning. Machine Learning, 2:319–342, 1988.
[p. 44]

[AS05] Alp Atıcı and Rocco Servedio. Improved Bounds on Quantum Learning Algorithms.
Quantum Information Processing, 4:355–386, 2005. [pp. 41, 44, 59]

[AT03] Dorit Aharonov and Amnon Ta-Shma. Adiabatic quantum state generation and
statistical zero knowledge. In Proceedings of the 35th ACM Symposium on Theory
of Computing (STOC 2003), pages 20–29, 2003. [pp. 11, 12, 30]

[AYZ95] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM,
42(4):844–856, 1995. [pp. 3, 112]

[BACS07] Dominic W. Berry, Graeme Ahokas, Richard Cleve, and Barry C. Sanders. Effi-
cient quantum algorithms for simulating sparse Hamiltonians. Communications in
Mathematical Physics, 270(2):359–371, 2007. [pp. 3, 11, 12, 30, 31, 33, 39]

[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani.
Strengths and weaknesses of quantum computing. SIAM Journal on Computing
(special issue on quantum computing), 26:1510–1523, 1997. [pp. 4, 41]

120

http://arxiv.org/abs/arXiv:0908.2468

[BBC+01] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf.
Quantum lower bounds by polynomials. Journal of the ACM, 48(4):778–797, 2001.
[pp. 16, 33, 34, 45, 71, 90, 116]

[BBHT98] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight Bounds on
Quantum Searching. Fortschritte der Physik, 46(4-5):493–505, 1998. [p. 47]

[BC12] Dominic W. Berry and Andrew M. Childs. Black-box Hamiltonian simulation and
unitary implementation. Quantum Information and Computation, 12(1–2):29–62,
2012. [pp. 12, 13, 38, 39]

[BCC+14] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and
Rolando D. Somma. Exponential improvement in precision for simulating sparse
Hamiltonians. In Proceedings of the 46th ACM Symposium on Theory of Computing
(STOC 2014), pages 283–292, 2014. [pp. 7, 10, 11, 15, 20, 38]

[BCG14] Dominic W. Berry, Richard Cleve, and Sevag Gharibian. Gate-efficient discrete
simulations of continuous-time quantum query algorithms. Quantum Information
and Computation, 14(1–2):1–30, 2014. [pp. 18, 19]

[BDF+04] Aija Berzina, Andrej Dubrovsky, Rusins Freivalds, Lelde Lace, and Oksana Sceg-
ulnaja. Quantum query complexity for some graph problems. In SOFSEM 2004:
Theory and Practice of Computer Science, volume 2932, pages 1–11, 2004. [p. 90]

[BDH+05] Harry Buhrman, Christoph Dürr, Mark Heiligman, Peter Høyer, Frédéric Magniez,
Miklos Santha, and Ronald de Wolf. Quantum algorithms for element distinctness.
SIAM Journal on Computing, 34(6):1324–1330, 2005. [p. 73]

[BdW02] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree com-
plexity: a survey. Theoretical Computer Science, 288(1):21 – 43, 2002. [pp. 2, 6]

[Bel12] Aleksandrs Belovs. Span programs for functions with constant-sized 1-certificates.
In Proceedings of the 44th ACM Symposium on Theory of Computing (STOC 2012),
pages 77–84, 2012. [p. 73]

[BHMT02] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum amplitude
amplification and estimation. In Quantum computation and information, volume
305 of Contemporary Mathematics, pages 53–74. AMS, 2002. [pp. 106, 107]

[BR12] Aleksandrs Belovs and Ben W. Reichardt. Span programs and quantum algorithms
for st-connectivity and claw detection. In Algorithms — ESA 2012, volume 7501
of Lecture Notes in Computer Science, pages 193–204. Springer, 2012. [pp. 93, 112,
116]

121

[BS74] J. Adrian Bondy and Miklós Simonovits. Cycles of even length in graphs. Journal
of Combinatorial Theory, Series B, 16(2):97–105, 1974. [p. 114]

[BŠ06] Harry Buhrman and Robert Špalek. Quantum verification of matrix products. In
Proceedings of the 17th ACM-SIAM Symposium On Discrete Algorithms (SODA
2006), pages 880–889, 2006. [pp. 66, 67, 70, 78]

[BV97] Ethan Bernstein and Umesh Vazirani. Quantum Complexity Theory. SIAM Journal
on Computing, 26(5):1411–1473, 1997. [pp. 41, 42, 61]

[BZ13] Dan Boneh and Mark Zhandry. Quantum-Secure Message Authentication Codes.
In Advances in Cryptology – EUROCRYPT 2013, volume 7881 of Lecture Notes in
Computer Science, pages 592–608. Springer, 2013. [p. 42]

[CCD+03] Andrew M. Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gutmann,
and Daniel A. Spielman. Exponential algorithmic speedup by quantum walk. In
Proceedings of the 35th ACM Symposium on Theory of Computing (STOC 2003),
pages 59–68, 2003. [pp. 11, 12]

[CCJY09] Andrew M. Childs, Richard Cleve, Stephen P. Jordan, and David Yonge-Mallo.
Discrete-query quantum algorithm for NAND trees. Theory of Computing, 5(5):119–
123, 2009. [pp. 11, 14]

[CDEL04] Matthias Christandl, Nilanjana Datta, Artur Ekert, and Andrew J. Landahl. Perfect
state transfer in quantum spin networks. Physical Review Letters, 92(18):187902,
2004. [p. 33]

[CGM+09] Richard Cleve, Daniel Gottesman, Michele Mosca, Rolando D. Somma, and David
Yonge-Mallo. Efficient discrete-time simulations of continuous-time quantum query
algorithms. In Proceedings of the 41st ACM Symposium on Theory of Computing
(STOC 2009), pages 409–416, 2009. [pp. 15, 18, 19, 34]

[Chi04] Andrew M. Childs. Quantum information processing in continuous time. PhD thesis,
Massachusetts Institute of Technology, 2004. [pp. 11, 12]

[Chi10] Andrew M. Childs. On the relationship between continuous- and discrete-time quan-
tum walk. Communications in Mathematical Physics, 294(2):581–603, 2010. [pp. 12,
14, 38]

[CK07] Amit Chakrabarti and Subhash Khot. Improved lower bounds on the randomized
complexity of graph properties. Random Structures and Algorithms, 30(3):427–440,
2007. [pp. 90, 116]

122

[CK11a] Andrew M. Childs and Robin Kothari. Quantum query complexity of minor-closed
graph properties. In Proceedings of the 28th Symposium on Theoretical Aspects of
Computer Science (STACS 2011), volume 9 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 661–672, 2011. [p. 89]

[CK11b] Andrew M. Childs and Robin Kothari. Simulating sparse Hamiltonians with star
decompositions. In Theory of Quantum Computation, Communication, and Cryp-
tography (TQC 2010), volume 6519 of Lecture Notes in Computer Science, pages
94–103. Springer, 2011. [pp. 3, 12, 31]

[CK12] Andrew M. Childs and Robin Kothari. Quantum query complexity of minor-closed
graph properties. SIAM Journal on Computing, 41(6):1426–1450, 2012. [pp. 8, 89]

[CKK12] Andrew M. Childs, Shelby Kimmel, and Robin Kothari. The quantum query com-
plexity of read-many formulas. In Algorithms — ESA 2012, volume 7501 of Lecture
Notes in Computer Science, pages 337–348. Springer, 2012. [pp. 74, 75, 78]

[CKOR13] Andrew M. Childs, Robin Kothari, Maris Ozols, and Martin Roetteler. Easy and
Hard Functions for the Boolean Hidden Shift Problem. In 8th Conference on the
Theory of Quantum Computation, Communication and Cryptography (TQC 2013),
volume 22 of Leibniz International Proceedings in Informatics (LIPIcs), pages 50–79,
2013. [pp. 41, 43]

[CV86] Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to opti-
mal parallel list ranking. Information and Control, 70(1):32 – 53, 1986. [p. 3]

[DHHM06] Christoph Dürr, Mark Heiligman, Peter Høyer, and Mehdi Mhalla. Quantum query
complexity of some graph problems. SIAM Journal on Computing, 35(6):1310–1328,
2006. [pp. 47, 82, 84, 90, 92, 98, 107]

[Die05] Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics.
Springer-Verlag, Berlin, third edition, 2005. [pp. 6, 105]

[Fey82] Richard P. Feynman. Simulating physics with computers. International Journal of
Theoretical Physics, 21(6–7):467–488, 1982. [p. 11]

[FG98] Edward Farhi and Sam Gutmann. Analog analogue of a digital quantum computa-
tion. Physical Review A, 57(4):2403–2406, 1998. [p. 14]

[FGG08] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum algorithm for the
Hamiltonian NAND tree. Theory of Computing, 4(8):169–190, 2008. [p. 14]

[FGGS98] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Limit on
the speed of quantum computation in determining parity. Physical Review Letters,
81(24):5442–5444, 1998. [pp. 16, 33, 34, 45]

123

[Fre79] Rūsiņš Freivalds. Fast probabilistic algorithms. In Mathematical Foundations of
Computer Science, volume 74 of Lecture Notes in Computer Science, pages 57–69.
Springer, 1979. [pp. 63, 66]

[FRPU94] Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy
information. SIAM Journal on Computing, 23(5):1001–1018, 1994. [p. 4]

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the 28th ACM Symposium on Theory of Computing (STOC 1996),
pages 212–219, 1996. [pp. 4, 41]

[Heg95] Tibor Hegedűs. Generalized teaching dimensions and the query complexity of learn-
ing. In Proceedings of the 8th Conference on Computational Learning Theory (COLT
1995), pages 108–117, 1995. [pp. 44, 48, 49]

[HHL09] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for
linear systems of equations. Physical Review Letters, 103(15):150502, 2009. [p. 11]

[HLŠ07] Peter Høyer, Troy Lee, and Robert Špalek. Negative weights make adversaries
stronger. In Proceedings of the 39th ACM Symposium on Theory of Computing
(STOC 2007), pages 526–535, 2007. [p. 116]

[HMP+10] Markus Hunziker, David A. Meyer, Jihun Park, James Pommersheim, and Mitch
Rothstein. The geometry of quantum learning. Quantum Information Processing,
9(3):321–341, 2010. [pp. 7, 40, 41, 45, 60]

[HR90] Jacky Huyghebaert and Hans De Raedt. Product formula methods for time-
dependent Schrödinger problems. Journal of Physics A, 23(24):5777, 1990. [p.
35]

[JKM12] Stacey Jeffery, Robin Kothari, and Frédéric Magniez. Improving Quantum Query
Complexity of Boolean Matrix Multiplication Using Graph Collision. In Automata,
Languages, and Programming, volume 7391 of Lecture Notes in Computer Science,
pages 522–532. Springer, 2012. [pp. 8, 62]

[JKM13] Stacey Jeffery, Robin Kothari, and Frédéric Magniez. Nested quantum walks with
quantum data structures. In Proceedings of the 24th ACM-SIAM Symposium on
Discrete Algorithms (SODA 2013), pages 1474–1485, 2013. [p. 73]

[JKS10] Rahul Jain, Hartmut Klauck, and Miklos Santha. Optimal direct sum results for
deterministic and randomized decision tree complexity. Information Processing Let-
ters, 110(20):893 – 897, 2010. [p. 4]

124

[Jor75] Camille Jordan. Essai sur la géométrie à n dimensions. Bulletin de la Société
Mathématique de France, 3:103–174, 1875. [p. 22]

[Juk12] Stasys Jukna. Boolean Function Complexity: Advances and Frontiers. Algorithms
and Combinatorics. Springer, 2012. [pp. 3, 6]

[KLM06] P. Kaye, R. Laflamme, and M. Mosca. An Introduction to Quantum Computing.
Oxford University Press, 2006. [p. 6]

[Kot14] Robin Kothari. An optimal quantum algorithm for the oracle identification prob-
lem. In Proceedings of the 31st International Symposium on Theoretical Aspects of
Computer Science (STACS 2014), volume 25 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 482–493, 2014. [pp. 7, 40]

[KSS83] Jeff Kahn, Michael Saks, and Dean Sturtevant. A topological approach to evasive-
ness. In Proceedings of the 24th Symposium on Foundations of Computer Science
(SFCS 1983), pages 31–33, 1983. [p. 90]

[KST54] Thomason Kövari, Vera T. Sós, and Pál Turán. On a problem of K. Zarankiewicz.
Colloquium Mathematicum, 3:50–57, 1954. [p. 114]

[Le 12] François Le Gall. Improved output-sensitive quantum algorithms for Boolean ma-
trix multiplication. In Proceedings of the 23rd ACM-SIAM Symposium On Discrete
Algorithms (SODA 2012), pages 1464–1476, 2012. [pp. 67, 68]

[Le 14] François Le Gall. Improved quantum algorithm for triangle finding via combinatorial
arguments. arXiv preprint arXiv:1407.0085, 2014. [pp. 73, 90, 93]

[Lit88] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2(4):285–318, 1988. [p. 46]

[Llo96] Seth Lloyd. Universal quantum simulators. Science, 273(5278):1073–1078, 1996.
[pp. 11, 12]

[LM08] Sophie Laplante and Frédéric Magniez. Lower bounds for randomized and quan-
tum query complexity using Kolmogorov arguments. SIAM Journal on Computing,
38(1):46–62, 2008. [pp. 72, 73, 116]

[LMR+11] Troy Lee, Rajat Mittal, Ben W. Reichardt, Robert Špalek, and Mario Szegedy.
Quantum query complexity of state conversion. In Proceedings of the 52nd IEEE
Symposium on Foundations of Computer Science (FOCS 2011), pages 344–353, 2011.
[pp. 5, 13, 15, 44, 53, 54, 86]

125

http://arxiv.org/abs/arXiv:1407.0085

[LMS11] Troy Lee, Frédéric Magniez, and Miklos Santha. A learning graph based quantum
query algorithm for finding constant-size subgraphs. arXiv preprint arXiv:1109.5135,
2011. [p. 91]

[LMS13] Troy Lee, Frédéric Magniez, and Miklos Santha. Improved quantum query algo-
rithms for triangle finding and associativity testing. In Proceedings of the 24th
ACM-SIAM Symposium On Discrete Algorithms (SODA 2013), pages 1486–1502,
2013. [pp. 73, 91]

[LY02] Laszlo Lovasz and Neal E. Young. Lecture notes on evasiveness of graph properties.
arXiv preprint arXiv:cs/0205031, 2002. [p. 90]

[Mad67] Wolfgang Mader. Homomorphieeigenschaften und mittlere Kantendichte von
Graphen. Mathematische Annalen, 174:265–268, 1967. [p. 95]

[Man89] Udi Manber. Introduction to Algorithms: A Creative Approach. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1989. [p. 6]

[MNRS11] Frédéric Magniez, Ashwin Nayak, Jérémie Roland, and Miklos Santha. Search via
quantum walk. SIAM Journal on Computing, 40(1):142–164, 2011. [pp. 66, 73, 92,
108]

[Moc07] Carlos Mochon. Hamiltonian oracles. Physical Review A, 75(4):042313, 2007. [pp.
14, 35]

[Mon13] Ashley Montanaro. A composition theorem for decision tree complexity. arXiv
preprint arXiv:1302.4207, 2013. [p. 5]

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge
University Press, 1995. [pp. 6, 37]

[MSS07] Frédéric Magniez, Miklos Santha, and Mario Szegedy. Quantum algorithms for the
triangle problem. SIAM Journal on Computing, 37(2):413–424, 2007. [pp. 67, 73,
91, 93, 114, 116]

[MW05] Chris Marriott and John Watrous. Quantum Arthur–Merlin games. Computational
Complexity, 14(2):122–152, 2005. [p. 20]

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge Series on Information and the Natural Sciences. Cambridge
University Press, 2000. [pp. 6, 9]

[NWZ09] Daniel Nagaj, Pawel Wocjan, and Yong Zhang. Fast amplification of QMA. Quantum
Information and Computation, 9(11-12):1053–1068, 2009. [p. 20]

126

http://arxiv.org/abs/arXiv:1109.5135
http://arxiv.org/abs/arXiv:cs/0205031
http://arxiv.org/abs/arXiv:1302.4207

[Pól04] George Pólya. How to Solve It: A New Aspect of Mathematical Method. Princeton
Science Library. Princeton University Press, 2004. [p. 1]

[PS13] Adam Paetznick and Krysta M. Svore. Repeat-until-success: Non-deterministic
decomposition of single-qubit unitaries. arXiv preprint arXiv:1311.1074, 2013. [pp.
18, 20]

[Ros73] Arnold L. Rosenberg. On the time required to recognize properties of graphs: a
problem. SIGACT News, 5(4):15–16, 1973. [p. 90]

[RS90] Neil Robertson and Paul D. Seymour. Graph minors. VIII. A Kuratowski theorem
for general surfaces. Journal of Combinatorial Theory, Series B, 48(2):255–288,
1990. [p. 95]

[RS04] Neil Robertson and Paul D. Seymour. Graph minors. XX. Wagner’s conjecture.
Journal of Combinatorial Theory, Series B, 92(2):325–357, 2004. [p. 95]

[RV75] Ronald L. Rivest and Jean Vuillemin. A generalization and proof of the Aanderaa-
Rosenberg conjecture. In Proceedings of the 7th ACM Symposium on Theory of
Computing (STOC 1975), pages 6–11, 1975. [p. 90]

[San08] Miklos Santha. Quantum walk based search algorithms. In Theory and Applications
of Models of Computation, volume 4978 of Lecture Notes in Computer Science, pages
31–46. Springer, 2008. [p. 66]

[SG04] Rocco A. Servedio and Steven J. Gortler. Equivalences and Separations Between
Quantum and Classical Learnability. SIAM Journal on Computing, 33(5):1067–1092,
2004. [pp. 41, 59, 60]

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509,
1997. [p. 4]

[ŠS06] Robert Špalek and Mario Szegedy. All quantum adversary methods are equivalent.
Theory of Computing, 2:1–18, 2006. [pp. 72, 73, 116]

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13:354–356, 1969. [p. 63]

[SYZ04] Xiaoming Sun, Andrew C. Yao, and Shengyu Zhang. Graph properties and circular
functions: How low can quantum query complexity go? In Proceedings of the 19th
IEEE Conference on Computational Complexity (CCC 2004), pages 286–293, 2004.
[p. 90]

127

http://arxiv.org/abs/arXiv:1311.1074

[Sze03] Mario Szegedy. On the quantum query complexity of detecting triangles in graphs.
arXiv preprint arXiv:quant-ph/0310107, 2003. [pp. 72, 73, 116]

[Sze04] Mario Szegedy. Quantum speed-up of Markov chain based algorithms. In Proceedings
of the 45th IEEE Symposium on Foundations of Computer Science (FOCS 2004),
pages 32–41, 2004. [p. 108]

[Tho01] Andrew Thomason. The extremal function for complete minors. Journal of Combi-
natorial Theory, Series B, 81(2):318–338, 2001. [p. 95]

[vD98] Wim van Dam. Quantum Oracle Interrogation: Getting All Information for Almost
Half the Price. In Proceedings of the 39th IEEE Symposium on Foundations of
Computer Science (FOCS 1998), page 362, 1998. [p. 41]

[vDHI06] Wim van Dam, Sean Hallgren, and Lawrence Ip. Quantum Algorithms for Some
Hidden Shift Problems. SIAM Journal on Computing, 36(3):763–778, 2006. [p. 41]

[Ver98] Nikolai K. Vereshchagin. Randomized Boolean decision trees: Several remarks.
Theoretical Computer Science, 207(2):329 – 342, 1998. [p. 3]

[Wat09] John Watrous. Zero-knowledge against quantum attacks. SIAM Journal on Com-
puting, 39(1):25–58, 2009. [p. 20]

[WBHS11] Nathan Wiebe, Dominic W. Berry, Peter Høyer, and Barry C. Sanders. Simulating
quantum dynamics on a quantum computer. Journal of Physics A, 44(44):445308,
2011. [p. 31]

[Wil11] Ryan Williams (http://cstheory.stackexchange.com/users/225/ryan-williams). An-
swer to “What is the most general structure on which matrix product verification
can be done in O(n2) time?”. Theoretical Computer Science Stack Exchange, 2011.
http://cstheory.stackexchange.com/a/5942 (version: 2011-04-07). [p. 66]

[WR14] Nathan Wiebe and Martin Roetteler. Quantum arithmetic and numerical analysis
using repeat-until-success circuits. arXiv preprint arXiv:1406.2040, 2014. [p. 20]

[WW10] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between
path, matrix and triangle problems. In Proceedings of the 51st IEEE Symposium on
Foundations of Computer Science (FOCS 2010), pages 645–654, 2010. [pp. 67, 68]

[Zha05] Shengyu Zhang. On the power of Ambainis’ lower bounds. Theoretical Computer
Science, 339:241–256, 2005. [pp. 72, 73, 90, 116]

[Zhu12] Yechao Zhu. Quantum query complexity of constant-sized subgraph containment.
International Journal of Quantum Information, 10(03):1250019, 2012. [p. 91]

128

http://arxiv.org/abs/arXiv:quant-ph/0310107
http://cstheory.stackexchange.com/users/225/ryan-williams
http://cstheory.stackexchange.com/a/5942
http://arxiv.org/abs/arXiv:1406.2040

	List of Figures
	Introduction
	Query complexity
	Overview
	Preliminaries and notation

	Hamiltonian simulation and continuous queries
	Introduction
	Hamiltonian simulation
	Continuous-query model
	High-level overview of techniques

	Linear Combination of Unitaries (LCU) algorithm
	A p-implementation of any linear combination of unitaries
	Oblivious amplitude amplification
	Exact LCU algorithm
	Approximate oblivious amplitude amplification
	Approximate LCU algorithm
	Summary

	Hamiltonian simulation
	Continuous- and fractional-query simulation
	Open problems

	Oracle identification
	Introduction
	Oracle identification lower bound
	Oracle identification algorithm
	Basic halving algorithm
	Improved halving algorithm
	Final algorithm

	Removing log factors using the filtered gamma2 norm
	Composition theorem for worst-case query complexity
	Composition theorem for input-dependent query complexity
	Algorithm analysis
	Nontechnical summary of techniques

	Application to quantum learning theory
	Discussion and open problems

	Matrix multiplication
	Introduction
	Matrix multiplication over rings and semirings
	Matrix multiplication over semirings
	Matrix multiplication over rings

	Matrix multiplication over the Boolean semiring
	Output-sensitive Boolean matrix multiplication
	High-level overview of the algorithm
	Graph collision algorithm
	Boolean matrix multiplication algorithm
	Removing log factors
	Lower bound and discussion

	Minor-closed graph properties
	Introduction
	Preliminaries
	Lower bounds
	Subgraph-closed properties
	Acyclicity
	A graph invariant for topological minor containment
	Minor-closed properties

	Algorithms
	Sparse graph detection and extraction
	Quantum walk search
	Detecting subgraphs of sparse graphs
	Relaxing sparsity

	Open problems

	Conclusion
	References

