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Abstract

In this work we explore using nonnegative matrix factorization (NMF) for music tran-
scription, as well as several other applications. NMF is an unsupervised learning method
capable of finding a parts-based additive model of data. Since music has an additive prop-
erty (each time point in a musical piece is composed of a sum of notes) NMF is a natural
fit for analysis. NMF is able to exploit this additivity in order to factorize out both the
individual notes and the transcription from an audio sample.

In order to improve the performance of NMF we apply different constraints to the
model. We consider sparsity as well as piecewise smoothness with aligned breakpoints.
We show the novelty of our method on real music data and demonstrate promising results
which exceed the current state of the art. Other applications are also considered, such as
instrument and speaker separation and handwritten character analysis.
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Chapter 1

Introduction

1.1 Matrix factorization

The goal of matrix factorization is to represent a matrix as the product of other matrices.
Here, for a data matrix X, we consider the factorization

≈

X B G

data point basis vector basis activation

That is, we wish to approximate X as the product of two smaller matrices. There are
many methods of matrix factorization, but here we focus on only one: nonnegative matrix
factorization.

Why only consider nonnegative matrices? We will see throughout this thesis that many
real signals are composed as a sum of nonnegative parts. Hence, it is natural to analyze
these signals using a nonnegative method.
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1.2 Motivation from real data

Lee and Seung popularized nonnegative matrix factorization (NMF) as a method for parts-
based analysis [29]. The authors consider the problem of facial image analysis. In their
experiments they compare three different methods of matrix factorization. Principal com-
ponent analysis (PCA), vector quantization (VQ), and nonnegative matrix factorization
(NMF). The authors run the three methods over a database of faces to find 49 basis vectors
which make up the faces as shown in Figure 1.1. VQ finds basis vectors that are whole
faces. PCA finds basis vectors that contain both positive and negative parts. NMF finds
nonnegative basis vectors. Each of these basis vectors corresponds to a recognizable part
of a face (eyes, nose, mouth). This experiment demonstrates the usefulness of NMF when
the data is composed of nonnegative, additive parts.

In our work we will be focussing on applying NMF to the analysis of music. Like the face
data from Lee and Seung’s experiment, audio signals have additive components. We can
visualize these components most readily if we consider a time-frequency representation of
our data. Figure 1.2 shows the magnitude of the short-time Fourier transform (also known
as a spectrogram) of a short musical piece. Note how each data point of the spectrogram
is composed of a nonnegative sum of several basis vectors. Each basis vector in the figure,
excluding the first noisy vector, corresponds to a single musical note. Each note is itself
the sum of a number of harmonic waves which are seen as distinct frequency bands. We
will explain how to find these basis vectors later in the section.

We can exploit the additive nature of music by applying NMF to the task of music tran-
scription. For this task, we are given an audio recording of music and we wish to generate
the corresponding sheet music. In general, music transcription is difficult. However, iden-
tifying single notes played in isolation is relatively easy. Figure 1.3 shows a pressure-time
wave of a single piano note. Note that the wave is not a pure sinusoidal wave, but rather a
sum of sinusoidal waves (harmonics) whose frequencies are whole number multiples of the
fundamental frequency of the note. Figure 1.4 illustrates this summation using the first
four harmonics.

We can view the note in Figure 1.5a in terms of its harmonics by considering its Fourier
transform. In this view, we can identify the note being played by finding the frequency
of the lowest frequency peak. Such a strategy works well for single notes. However, if
multiple notes are played together, our task becomes much more difficult. Figure 1.5b
shows the magnitude of the Fourier transform of three notes played together. Note how
it is not obvious from the Fourier transform how many notes are being played, or which
frequency peaks correspond to the three fundamental frequencies.
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The additive nature of music means that NMF will be an excellent method for analysis.
Figure 1.6 outlines the process. We first take the magnitude of the short-time Fourier
transform of our audio data in order to get it into a representation suitable for NMF.
Applying NMF on the spectrogram results in the factorization as shown in Figure 1.6.
The basis matrix B is composed of the basis vectors of the data. In this case the basis
vectors are notes (as well as a vector corresponding to a note onset). Note that several
of the notes found in B are never played individually in the music sample. However,
NMF is still able to find them. Since each column of B corresponds to a single note, the
activation matrix G corresponds to the transcription. Note the correspondence between
the underlying sheet music and G.

Now let us suppose we wish to improve the transcription matrix G. We can do so by
imposing constraints on it. One constraint we may consider is to impose smoothness on
the rows of G. Doing so may remove spurious note activations. However, smoothing over
each row entirely will make it difficult to determine note onsets and offsets. Instead, we
would like to favour rows of G that are piecewise smooth. See Figure 1.7 for an illustration.
Note how the piecewise smooth constraint allows G to have sharp note onsets and offsets.

1.3 NMF in the literature

NMF was introduced by Paatero and Tapper [36] as positive matrix factorization. Paatero
improved on their previous work in [35]. The method gained popularity due to work by Lee
and Seung [29, 30]. The notion of NMF was seen even earlier under the name ‘self modelling
curve resolution’ [26]. Since then, NMF has been applied to many different applications
including: bioinformatics [40], geophysics [41], stock market analysis [18], digit and texture
classification [16], and music transcription [38]. See [6, 12, 13, 46] for a selection of reviews
of NMF. This thesis will focus on the application of NMF to music transcription.

1.3.1 NMF based music transcription

Smaragdis and Brown [38] introduced the idea of using NMF for music transcription. After
Smaragdis and Brown’s original paper, there has been continued work in the area. Cont
[15] developed a realtime transcriber utilizing sparsity constraints. Virtanen [44, 45] makes
use of both sparsity and temporal smoothness constraints. Vincent et al. [43] introduce
harmonic constraints on the factorization to improve the learned basis vectors. Bertin et
al. [8] use a Bayesian approach to enforce harmonicity and smoothness constraints. Ochiai
et al. [32] make use of beat structure to improve their NMF based transcription.
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An alternative but similar method to NMF, probabilistic latent component analysis
(PLCA), was used for acoustic modelling by Smaragdis and Brown [39]. Their method was
extended by Grindlay and Ellis [22] to support multiple instrument transcription. Benetos
and Dixon [4] both extended the PLCA method by considering a convolutive probabilistic
model. Fuentes et al. [21] also extend the PLCA method to overcome the difficulties of
components having time-varying fundamental frequencies and spectral shapes.

Another technique similar to NMF is sparse coding. Abdallah and Plumbley [2] intro-
duce a method of spectral basis decomposition for use in music transcription. Bertin et al.
[7] investigate both NMF and k-means singular value decomposition for music transcrip-
tion. O’Hanlon et al. [33] attempt music transcription using a nonnegative greedy sparse
pursuit based method. Lee et al. [28] make use of an exemplar-based sparse representation
which eliminates the need for retraining their classifier. For a review of music transcription
methods, including those not related to NMF, see [5].

1.4 Outline

In this thesis we will consider various constraints imposed on G and explore their effect on
both synthetic and real world applications. Chapter 2 introduces time-frequency analysis.
Chapter 3 describes NMF and our proposed constraints. We test our method on synthetic
data in Chapter 4 and on real data in Chapter 5. Finally, Chapter 6 contains our concluding
remarks.
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Figure 1.1: Figure from Lee and Seung face analysis [29]. Three methods are compared:
Principal component analysis (PCA), vector quantization (VQ), and nonnegative matrix
factorization (NMF). Shown in the figure are the 49 basis vectors found by each method
as well as the basis weights corresponding to a single face. Note how NMF is able to find
parts-based basis vectors.
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short-time Fourier transform

Figure 1.2: The magnitude of the short-time Fourier transform of an audio music sample
is taken as the matrix V . NMF is performed to find the basis vectors at the bottom of
the image. These vectors are the columns of B. The arrows representing basis activation
correspond to the entries of G.
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Figure 1.3: Pressure-time wave corresponding to a single piano note.
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Figure 1.4: The summation of the first four harmonics of a piano note. The plots on the
left show each individual harmonic. The plots on the right show the sum of the harmonics.
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(a)

(b)

Figure 1.5: Magnitude of the Fourier transform of (a) the note in Figure 1.3 and (b) three
notes played together.
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Figure 1.6: The short-time Fourier transform of an audio signal is taken to obtain the
matrix X in (a). NMF produces (b) note matrix B and (c) note activation matrix G.
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(a)

(b)

(c)

Figure 1.7: A row of G found by (a) standard NMF, (b) smoothed NMF, and (c) piecewise
smooth NMF.
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Chapter 2

Time-frequency Analysis

In dealing with audio we must transform our data in order to make use of NMF. Consider
the audio signal in Figure 2.1a represented by a pressure time wave. From this represen-
tation it is difficult to discern what kind of source is responsible for the wave. Suppose we
take the Fourier transform of the data as shown in Figure 2.1b. Here we see the structure
of a musical note, that is, a strong fundamental frequency as well as overtones.

2.1 Fourier transform

The Fourier transform allows us to view spatial or time signals in terms of frequency. It is
often useful, as shown in Figure 2.1, to work in the frequency domain in order to discern
structure in data. The Fourier transform of a continuous signal, s, is defined as

S(ξ) =

∫ ∞
−∞

s(t)e−2πitξdt (2.1)

We can view the Fourier transform as a change of basis from the standard basis to a basis
composed of sines and cosines of various frequencies. We can recover the original signal
from its transform by using the inverse Fourier transform

s(t) =

∫ ∞
−∞

S(ξ)e2πitξdξ (2.2)

For many applications, the signal being considered will not be continuous. Rather the
signal will be a discrete time series s0, s1, . . . , sN−1. As such, we will make use of the
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discrete Fourier transform defined below

Sk =
N−1∑
n=0

sne
−2πikn/N (2.3)

The inverse discrete Fourier transform is thus

sn =
1

N

N−1∑
k=0

Ske
2πikn/N (2.4)

Though in most applications our signal will be real, the Fourier transform is complex.
Instead of dealing with complex data we often only consider the magnitude the Fourier
transform (as in Figure 2.1b). In doing so we unfortunately lose temporal information.
Consider the two signals Figure 2.2. The first is a low frequency sine wave followed by a
high frequency sine wave. The second signal is the opposite. Note how the plots of the
magnitude of the Fourier transforms are identical. Ideally, we would like to work with
only the magnitude of the Fourier transform, but still keep temporal information. We will
explore methods for such a task in the next section.

2.2 Time-frequency representations

As noted in the previous section, considering only the magnitude of the Fourier transform,
though convenient, does not allow us to use any temporal information. One solution to
this problem is to take Fourier transforms of many windows of the data. A window is a
function that localizes the signal to a short time interval. See Figure 2.3 for an example of
the effects of two types of windows on a sine function. We can use windows to adapt the
Fourier transform into a time-frequency representation.

2.2.1 Short-time Fourier transform

The short-time Fourier transform (also known as the windowed Fourier transform or Gabor
transform) allows us to represent a signal in terms of both frequency and time. The
continuous version is defined as

S(τ, ξ) =

∫ ∞
−∞

s(t)w(t− τ)e−2πitξdt (2.5)
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where w is the window function. As opposed to the regular Fourier transform, here S is a
function of both frequency and time.

As before, we generally deal with discrete data. The discrete short-time Fourier trans-
form is defined as

Sk,ξ =
∞∑

n=−∞

snwn−ke
−2πiξn (2.6)

By taking the magnitude of S we now have a nonnegative matrix representation of a signal
which can be processed by NMF. Let us return to our two signals from Figure 2.2. The
magnitudes of the short-time Fourier transforms of both signals are shown in Figure 2.4.
We can determine from the transforms that the first signal starts with a low frequency
wave and changes to a high frequency wave (and vice versa for the second signal).

Using the magnitude of the short-time Fourier transform and NMF for music transcrip-
tion was proposed by Smaragdis and Brown [38]. Since then many researchers have worked
to improve transcription accuracies [5]. The goal of our work is to explore the effects of
constraints on NMF. We will show in Chapter 5 that our constraints allow us to achieve
state of the art performance in the task of music transcription.
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(a)

(b)

Figure 2.1: (a) Example of an audio signal. (b) Magnitude of the Fourier transform of the
audio signal in (a).

15



(a) (b)

(c) (d)

Figure 2.2: (a) A low frequency wave followed by a high frequency wave. (b) A signal
opposite to (a). (c,d) Magnitudes of the Fourier transform of (a,b) respectively.
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(a)

(b) (c)

(d) (e)

Figure 2.3: (a) Sine wave. (b,c) Triangular and rectangular window. (d,e) Windowed sine
wave using a triangular and rectangular window respectively.
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(a) (b)

(c) (d)

Figure 2.4: (a) A low frequency wave followed by a high frequency wave. (b) A signal
opposite to (a). (c,d) Magnitudes of the short-time Fourier transform of (a,b) respectively.
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Chapter 3

Nonnegative Matrix Factorization

3.1 Background

The goal of nonnegative matrix factorization (NMF) is to approximate a matrix X ∈ Rd×n

as a product of two matrices B ∈ Rd×r and G ∈ Rr×n. Here, n is the number of data
points, d is the dimension of each data point, and r is the number of basis vectors used to
approximate the data. In other words, we wish to find matrices B and G such that

X ≈ BG

where we evaluate the closeness of BG to X by some cost function.

One question the reader may have is why we choose a nonnegative model. The answer
lies in the type of data we see in the real world. Consider the audio domain. Here, sounds
overlap and add together. Also, we do not typically observe any subtractive circumstances
(that is, sounds cancelling out). Hence a nonnegative additive model, such as NMF, seems
to be appropriate.

Let us consider the task of music transcription as mentioned in the introduction. Sup-
pose we take an audio sample of piano music and apply NMF. See Figure 1.2 for an
illustration. We begin by taking the magnitude short-time Fourier transform of the signal
in order to get a nonnegative data matrix. We then find the matrices B and G. The basis
vectors making up the columns of B is shown in the bottom of Figure 1.2. The activation
arrows represent G. The ith column of G tells us what basis vectors are activated in the
ith column of X. In our transcription problem we only concern ourselves with whether a

19



basis vector is activated at a given time. However, the entries of G are real numbers and
thus hold more information than just basis activation.

Other methods of matrix factorizations are not suitable for such a task. Let us repeat
the experiment by Lee and Seung [29] on music data. We consider two other methods
of factorization: vector quantization (VQ) and principle component analysis (PCA). VQ
finds basis vectors that are prototypes for the data points in X. PCA finds basis vectors
that contain both positive and negative parts.

Figure 3.1 shows the magnitude of the short time Fourier transform for random piano
notes generated from midi software [1]. The music is composed of 12 notes from a single
octave. At any point in time there are exactly three notes being played, and each note is
played for half a second. Suppose we analyze the data using PCA, VQ, and NMF. Here we
choose to break the data into 13 components (one extra component for the noise during a
note onset).

Figure 3.2 shows the results of running PCA. Note how it is difficult to discern what
each basis vector is representing, especially since they can contain negative values. Recall
that the data is the magnitude of a short time Fourier transform and so negative values
have no intuitive meaning. However, for a given data point from the data, PCA is able
to reconstruct it quite well. Now let us consider VQ as in Figure 3.3. Like PCA, the
basis vectors are difficult to interpret. Furthermore, the reconstructed data point has poor
accuracy since only one basis vector can be activated at any one time. Finally, let us try
NMF. The results are shown in Figure 3.4. Note how each basis vector corresponds to a
single note (a fundamental frequency as well as overtones). Also note that for a fixed data
point the corresponding column of G shows three notes activated, which is to be expected.
Furthermore, the reconstructed data point is quite accurate.

This example shows some motivation for utilizing NMF instead of other methods. We
will later show other applications where a parts based nonnegative model is suitable.

3.1.1 Formulation of NMF

Lee and Seung [30] propose using the following cost function1 to measure the closeness of
BG to X

D(X||BG) =
d∑
i=1

n∑
j=1

(
Xij log

Xij

(BG)ij
−Xij + (BG)ij

)
(3.1)

1Note that equation 3.1 reduces to the Kullback-Leibler divergence when
∑d

i=1

∑n
j=1 Xij =∑d

i=1

∑n
j=1(BG)ij = 1. In this thesis X is scaled so that its maximum element is one.
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Figure 3.1: Spectrogram of random notes.

where Mij refers to the element of M in the ith row and jth column. We will call this cost
function divergence. Though it is possible to use many different cost functions to measure
similarity, we choose to use only the above function since the focus of this thesis is on
the constraints imposed G. The method discussed in Lee and Seung [30] is an iterative
method. There are two update steps:

Bij = Bij

∑n
a=1GjaXia/(BG)ia∑n

b=1Gjb

(3.2)
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(a)

(b) (c) (d)

Figure 3.2: PCA method. (a) B matrix, (d) data point in original spectrogram (Figure
3.1) (b) corresponding column of G, (c) reconstructed data point. For (a-b) positive values
are shades of red and negative values are shades of blue.

and

Gij = Gij

∑d
a=1BaiXaj/(BG)aj∑d

b=1Bbi

(3.3)

Note how the update rules preserve nonnegativity since they are products of nonnega-
tive numbers. This iterative method is similar to gradient descent, but with varying step
size. Consider the following additive gradient descent update rule:

Gij = Gij + ηij

[
d∑
a=1

Bai
Xaj

(BG)aj
−

d∑
a=1

Bai

]
(3.4)
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(a)

(b) (c) (d)

Figure 3.3: VQ method. (a) B matrix, (d) data point in original spectrogram (Figure 3.1)
(b) corresponding column of G, (c) reconstructed data point.

For small ηij this update rule will decrease D(X||BG). If we set

ηij =
Gij∑d
a=1Bai

and substitute it into equation 3.4 we obtain equation 3.3. We can obtain equation 3.2
similarly. Note, however, that ηij is not guaranteed to be small and hence equations 3.2
and 3.3 may not decrease equation 3.1. However, these update rules are in fact proven to
be nonincreasing [30]. The proof makes use of an auxiliary function similar to that used
in the expectation-maximization algorithm [30]. There are several drawbacks to using this
method. First, it is prone to getting stuck in local minima. Second, the correct choice for
r, the number of basis vectors, is not clear. Lastly, the method does not exploit sparseness
or temporal coherence between columns of X. We will show that our additions help to
solve these limitations.
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(a)

(b) (c) (d)

Figure 3.4: NMF method. (a) B matrix, (d) data point in original spectrogram (Figure
3.1) (b) corresponding column of G, (c) reconstructed data point.

3.2 Constrained NMF

Let F (X,BG) = D(X||BG), and define

∇MF ,


∂F
∂M11

∂F
∂M12

· · · ∂F
∂M1j

∂F
∂M21

∂F
∂M22

· · · ∂F
∂M2j

...
...

. . .
...

∂F
∂Mi1

∂F
∂Mi2

· · · ∂F
∂Mij

 (3.5)

for some i× j matrix M . Let ∇+
MF (X,BG) and ∇−MF (X,BG) be the absolute values of

the positive and negative parts of ∇MF (X,BG) respectively. We can show [45] that the
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previous update rules can be written as

Bij = Bij
[∇−BF (X,BG)]ij
[∇+

BF (X,BG)]ij
(3.6)

and

Gij = Gij
[∇−GF (X,BG)]ij
[∇+

GF (X,BG)]ij
(3.7)

This form of update rules are often observed to be nonincreasing in practice (though not in
general) [8]. It also allows us to easily derive new equations if we modify our cost function.

In our work we only impose constraints on G. Recall that B consists of the underlying
basis vectors which compose our data samples. Any constraints on B would constrain the
type of data that we can model. Hence, we do not constrain B.

3.2.1 Temporal coherence

In many applications the columns of X are not independent. Take, for example, piano
music. In this application X represents time series data. The matrices B and G will
represent the notes and note activations respectively. See Figure 1.6 for an example. One
way to exploit this temporal coherence is to impose that the rows of G be smooth. This
smoothness constraint has been studied in the literature. One such method modifies the
cost function to

D(X||BG) + λ
r∑
i=1

n∑
j=2

(Gij −Gij−1)
2 (3.8)

where λ controls the weight of the constraint. This constraint attempts to minimize
the squared differences between neighbouring elements of G. However, imposing such
a smoothness constraint over an entire row of G means that there can be no breakpoints
(i.e. sharp changes in the rows of G). We instead propose to constrain the rows of G to
be piecewise smooth. Our motivation for such a constraint is inspired from music data
where a piecewise smooth model is quite evident when looking at data such as in Figure
3.1. However, we do not limit the scope of this work to just music data.

Consider a row of G found by standard NMF on a music sample as in Figure 3.5a.
Imposing smoothness over the entire row will result in Figure 3.5b. This smoothness makes
the onset and offset of the notes unclear. If instead we impose our piecewise smoothness
constraint (as in Figure 3.5c) we see the onsets and offsets more clearly. Clear onsets and
offsets are important for tasks such as music transcription.
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(a)

(b)

(c)

Figure 3.5: A row of G found by (a) standard NMF, (b) smoothed NMF, and (c) piecewise
smooth NMF.

In order to impose piecewise smoothness, we modify our cost function to be

D(X||BG) + λ
r∑
i=1

n∑
j=2

(
1− e−(Gij−Gij−1)

2/2σ2
)

(3.9)

See Figure 3.6 for plots of the function 1 − e−x2/σ2
. Note how small differences between

elements of G are treated like quadratic differences, and large differences have an approx-
imately fixed cost of λ. Consider the distribution of differences between neighbouring
elements of G. We can view large differences as outliers of the distribution. In this sense
our method of assigning a fixed cost to large difference is similar to outlier detection in
robust statistics [11].

We have introduced two new parameters to the model, λ and σ. The reader may
wonder if doing so will greatly complicate our optimization task, since now we must not
only optimize a non-convex cost function but also find suitable parameter values. However,
we will show that by fixing λ and iteratively optimizing the cost function for varying values
of σ we can achieve good results without much extra work. This method has similarities
with the graduated non-convexity algorithm pioneered by Blake and Zisserman in which a
non-convex problem is solved by optimizing a sequence simpler functions [9].
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Figure 3.6: Plots of the function 1− e−x2/σ2
for varying σ values.

This new constraint does not involve B, so its update rule stays the same. We now find
the gradient of the cost function with respect to G.

∇GD(X||BG) = Bᵀ

(
1− X

BG

)
(3.10)

where 1 is the all ones matrix the same size as X.[
∇Gλ

r∑
i=1

n∑
j=2

(
1− e−(Gij−Gij−1)

2/2σ2
)]

ij

=

λ

σ2

(
e−(Gij−Gij−1)

2/2σ2

(Gij −Gij−1)− e−(Gij+1−Gij)
2/2σ2

(Gij+1 −Gij)
)

(3.11)

The update rule becomes

Gij = Gij

[
Bᵀ X

BG

]
ij

+ λ
σ2

(
Gij−1 · e−(Gij−Gij−1)

2/2σ2
+Gij+1 · e−(Gij+1−Gij)

2/2σ2
)

[Bᵀ1]ij + λ
σ2Gij

(
e−(Gij−Gij−1)2/2σ2 + e−(Gij+1−Gij)2/2σ2

) (3.12)

A similar update rule was derived by Jia and Qian [23] for the purpose of hyper spectral
unmixing. See their work for a proof of convergence.

In many signals (such as music and speech) breakpoints are correlated. For exam-
ple, consider a chord played on a piano. Each note is struck simultaneously, hence the
breakpoints corresponding to the attacks of the notes should be aligned. Consider the two
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(a)

(b)

Figure 3.7: Two rows of G found by imposing (a) piecewise smoothness and (b) piecewise
smoothness with aligned breakpoints.

rows of G in Figure 3.7a. By favouring aligned breakpoints, we can improve breakpoint
detection as seen in Figure 3.7b.

In order to align breakpoints, we modify our cost function to be

d∑
i=1

n∑
j=1

(Xij −BGij)
2 + λ

n∑
j=2

(
1− e−

∑r
i=1(Gij−Gij−1)

2/2σ2
)

(3.13)

As in our last cost function, a single breakpoint is assigned a fixed cost of λ. However, if
multiple breakpoints occur at the same time step, then they are assigned a total cost of
λ. Hence, the cost function tends to prefer aligned breakpoints. The gradient of the new
term with respect to G is[

∇Gλ

n∑
j=2

(
1− e−

∑r
i=1(Gij−Gij−1)

2/2σ2
)]

ij

=

λ

σ2

(
e−

∑r
i=1(Gij−Gij−1)

2/2σ2

(Gij −Gij−1)− e−
∑r

i=1(Gij+1−Gij)
2/2σ2

(Gij+1 −Gij)
)

(3.14)

The new update rule for G is now

Gij = Gij

[
Bᵀ X

BG

]
ij

+ λ
σ2

(
Gij−1 · e−

∑r
i=1(Gij−Gij−1)

2/2σ2
+Gij+1 · e−

∑r
i=1(Gij+1−Gij)

2/2σ2
)

[Bᵀ1]ij + λ
σ2Gij

(
e−

∑r
i=1(Gij−Gij−1)2/2σ2

+ e−
∑r

i=1(Gij+1−Gij)2/2σ2
)

(3.15)
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3.2.2 Sparsity

We will consider two different sparsity constraints on G. The first constraint favours small
elements of G to be very close to zero. We can impose this constraint with the following
cost term:

λ
d∑
i=1

n∑
j=1

(1− e−G2
i,j/2σ

2

) (3.16)

with the gradient with respect to G being[
∇Gλ

d∑
i=1

n∑
j=1

(1− e−G2
i,j/2σ

2

)

]
ij

=
λ

σ2
Gij e

−G2
ij/2σ

2

(3.17)

The update rule for G is:

Gij = Gij

[
Bᵀ X

BG

]
ij

[Bᵀ1]ij + λ
σ2Gij e

−G2
ij/2σ

2
(3.18)

The second sparsity constraint favours few nonzero rows of G, which can aid in finding
a suitable value for r. The choice of r can greatly influence the results of NMF. Choosing
r too small may force the algorithm to combine basis vectors. While choosing r too large
may segment correct basis vectors into separate pieces. Consider the following cost term:

λ
r∑
i=1

(1− e−(
∑n

j=1Gi,j)
2/2σ2

) (3.19)

The idea of this term is to assign a cost of λ to any nonzero row of G. The gradient with
respect to G is[

∇Gλ
d∑
i=1

(1− e−(
∑n

j=1Gi,j)
2/2σ2

)

]
ij

=
λ

σ2
e−(

∑n
j=1Gi,j)

2/2σ2
n∑
j=1

Gij (3.20)

The update rule for G is:

Gij = Gij

[
Bᵀ X

BG

]
ij

[Bᵀ1]ij + λ
σ2 e
−(

∑n
j=1Gi,j)2/2σ2∑n

j=1Gij

(3.21)
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3.3 Choosing λ and σ

In regular NMF we only need to set r, the number of basis vectors. Our method introduces
two new parameters per constraint: λ, the weight of the constraint, and σ, which controls
the width of the Gaussian constraint function. Choosing correct value for these parameters
may seem difficult at first. However, we will show that an approximate estimation of σ is
good enough in practice. We will also show that the algorithm is fairly robust to changes
in λ. That is, the exact value of λ does not matter so long as it is within a certain range.

We propose estimating σ for each constraint from G using the following:

• piecewise smooth: λ
∑r

i=1

∑n
j=2

(
1− e−(Gij−Gij−1)

2/2σ2
)

σ̂ = std({Gij −Gij−1 | 1 ≤ i ≤ d, 1 ≤ j ≤ n}) (3.22)

• aligned breakpoints: λ
∑n

j=2

(
1− e−

∑r
i=1(Gij−Gij−1)

2/2σ2
)

σ̂ = std

({
n∑
j=2

(Gij −Gij−1) | 1 ≤ i ≤ d

})
(3.23)

• element-wise sparsity: λ
∑d

i=1

∑n
j=1(1− e

−G2
i,j/2σ

2

)

σ̂ = std({Gij | 1 ≤ i ≤ d, 1 ≤ j ≤ n}) (3.24)

• row-wise sparsity: λ
∑r

i=1(1− e
−(

∑n
j=1Gi,j)

2/2σ2

)

σ̂ = std

({
n∑
j=1

Gij | 1 ≤ i ≤ d

})
(3.25)

where std(S) is the standard deviation of the elements of the set S.

Once we have an estimate for σ, we choose a σ′ which is much larger than it, say 10σ.
We iterate NMF using σ′ until the change to the cost function is small. We then decrease
σ′ and optimize again. We repeat this until σ′ is relatively small, say σ′ = σ/10. Choosing
a relatively large σ′ means our cost function curve is very wide, see Figure 3.6. A wide
function means that only very large values to the function will be treated as outliers. As we
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decrease σ′, the function decreases in width and smaller values are treated as outliers. We
propose that this process of decreasing σ′ means that an exact choice of σ is not important.
Hence, estimating σ as shown above is sufficient to get good results in practice.

We will illustrate this point with an experiment. We plot the music transcription
performance (F-score) on a piece of randomly generated synthetic piano music as we vary
λ and σ. We discuss our method of music transcription in Chapter 5. In this experiment
we apply the piece wise smoothness constraint. In our first test we let λ range from 0 to
20 and σ range from 10 to 0.1. In our second test we hold λ = 1 constant. Again, we let
σ range to 0.1, but we run several trials with varying initial values. See Figure 3.8 and 3.9
for the results.

Let us consider the results of the first test. Each line in Figure 3.8a represents a fixed
value of λ. We have included a surface plot of the data in Figure 3.8 in order to help
with visualization. Observe that the F-score for λ = 0 is constant as is to be expected
since σ has no effect. Also, the transcription performance with λ > 0 does not improve
over the base case of λ = 0 for large values of σ. However, once σ gets sufficiently small
performance improves. For small λ the F-score remains more or less constant as σ is
decreased. However, as λ increases, decreasing σ negatively affects the F-score.

In Figure 3.9 we hold λ = 1 constant and vary the starting values of σ. As can be seen,
starting from a large value of σ reduces the likelihood that the algorithm will get stuck in
a relatively poor local minimum. Hence, we conclude that in general we should start with
a very large value of σ and minimize our cost function for smaller and smaller values of σ.
Furthermore, the exact values of σ at each iteration is not important so long as λ is chosen
appropriately.
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(a)

(b)

Figure 3.8: F-score (higher is better) for varying λ and σ values. (a) line plots and (b)
surface plot.
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Figure 3.9: F-score (higher is better) for varying initial σ values.
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Chapter 4

Synthetic Experiments

4.1 Temporal coherence

In the next experiment we will test the effects of the piecewise smoothness constraint on
synthetic data. We begin with five basis vectors (normalized to have unit sum) as in Figure
4.1a. These vectors represent generic data and so we label their dimension as ‘feature
index’. In the case of music transcription, the feature index corresponds to frequency. To
generate our data we use a Markov process. Each basis vector is either in an ‘active’ or
‘inactive’ state. The probability of a basis vector staying in its current state is 0.9 and its
probability of swapping states is 0.1. Using this Markov process we generate a G matrix
as in Figure 4.1b and use it to create the data matrix in Figure 4.1c. We run NMF with
varying λ values with different amounts of white Gaussian noise added to the data. See
Figure 4.2 for an example of the noisy data. The signal to noise ratios (SNR) were varied
from 50 dB to 20 dB. See Figures 4.3 and 4.4 for the results. The plots show the error
(squared Frobenius norm) of G− Ĝ, where Ĝ is our estimated G matrix.

We see that for very little noise (SNR = 50 dB) the constraint does little to improve the
error. However, once the noise becomes high enough (SNR ≤ 40 dB) using the piecewise
smooth constraint improves error. Also of note is that using too large a λ value can lead
to poor results as is seen for SNR ≤ 30 dB.
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(a) (b)

(c)

Figure 4.1: Synthetic rectangle data. (a) five basis vectors (B matrix), (b) generated G
matrix, (c) synthetic data created from BG.
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Figure 4.2: White Gaussian noise was added to data from Figure 4.1 with signal to noise
ratio 20 dB.
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(a) (b)

(c) (d)

Figure 4.3: White Gaussian noise was added to data with signal to noise ratio (a) 50 dB
and (c) 40 dB. Error rates with 95% confidence intervals averaged over ten trials versus λ
values are shown in (b) and (d).
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(a) (b)

(c) (d)

Figure 4.4: White Gaussian noise was added to data with signal to noise ratio (a) 30 dB
and (c) 20 dB. Error rates with 95% confidence intervals averaged over ten trials versus λ
values are shown in (b) and (d).
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4.2 Aligned breakpoints

Our next experiment tests the effects of aligning breakpoints. We use ten basis vectors as
shown in Figure 4.5a. We modify our generation process from our previous experiments
to favour aligned breakpoints. That is, a basis has a greater chance of being activated if
another basis vector is activated at the same time. The same is true for deactivation. We
use this process to generate G. We then set X = BG′ where G′ has every third row shifted
by two time steps. Figure 4.5 shows the generated data. We run NMF with our piecewise
smooth constraint with aligned breakpoints. We do not learn B in these experiments (i.e.
we set it equal to the ground truth) in order to speed convergence to a good minimum.
We measure error as the squared Frobenius norm of G − Ĝ, where Ĝ is our estimated G
matrix. The results are shown in Figures 4.6 and 4.7.

As we see from the results, the piecewise smoothness constraint with aligned breakpoints
not only is robust to noise, but also improves the error for the case of little noise. This
is the case because it is aligning the rows of G that were shifted prior to the generation
of X. Though not included in the figures, NMF with the piecewise smoothness constraint
(no aligned breakpoints) was also run on the data. However, the error of all λ > 0 was
greater than the error for λ = 0.

4.3 Sparsity

The swimmer dataset [17] is composed of images of a synthetic swimmer with varying
positions of limbs. The swimmer is composed of a constant torso and four limbs. Each
limb can be in one of four possible positions. Hence there are 44 = 256 possible swimmers.
See Figure 4.8 for example images.

Suppose we wish to apply non-constrained NMF to the dataset. We set r = 16 and
see the piecewise breakdown in Figure 4.9. Note how the swimmer’s body is incorporated
into each piece. The reader may wonder why we did not set r = 17, since there are 16 arm
variations and one body position. Though it is possible for NMF to pick out the swimmer’s
body individually, we can see that the data can be represented by 16 pieces. Hence, setting
r = 17 can result in NMF finding and extraneous 17th piece. See Figure 4.10.

Now let us suppose we do not know the underlying model of the swimmer dataset.
That is, we do not know the swimmer has four limbs each with four positions. How do we
go about choosing r? We can make use of our row sparseness constraint in order to make
a guess at the correct r. For this experiment we will initially set r = 50 and λ = 10. After
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(a) (b)

(c)

Figure 4.5: Synthetic rectangle data. (a) ten basis vectors (B matrix), (b) generated G
matrix, (c) synthetic data created from BG.

we run row-wise sparse NMF, we keep only the basis vectors corresponding to the nonzero
rows of G. See Figure 4.11 for the results. Note how the algorithm successfully finds the
16 pieces of the swimmer. As opposed to the non-constrained NMF case, we see the body
piece attached only to the top left limb.
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(a) (b)

(c) (d)

Figure 4.6: White Gaussian noise was added to data with signal to noise ratio (a) 50 dB
and (c) 40 dB. Error rates with 95% confidence intervals averaged over ten trials versus λ
values are shown in (b) and (d).
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(a) (b)

(c) (d)

Figure 4.7: White Gaussian noise was added to data with signal to noise ratio (a) 30 dB
and (c) 20 dB. Error rates with 95% confidence intervals averaged over ten trials versus λ
values are shown in (b) and (d).
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Figure 4.8: Four images form the swimmer dataset. Each image shows one of the four
possible positions for the bottom right limb.
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Figure 4.9: 16 pieces of the swimmer found by NMF.
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Figure 4.10: 17 pieces of the swimmer found by NMF. Note the two duplicates.
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Figure 4.11: 16 pieces of the swimmer found by constraining NMF to have row sparsity in
G.
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Chapter 5

Real Data

5.1 Music transcription

The goal of music transcription is to take as input an audio recording of music and output
its underlying sheet music. We begin with our audio signal in the form of a pressure time
wave. We then take the magnitude of the short-time Fourier transform of the signal to get
the data matrix X. We call this the spectrogram of the music signal. When finding the
spectrogram we have several parameters to consider. The window type (such as gaussian
or triangular), size, and overlap must be chosen. A small window gives good time accuracy
but poor frequency accuracy (vice versa for a large window). In our experiments we make
use of 100ms triangular windows overlapping by 50%. The frequencies at which to compute
the spectrogram must also be considered. Though the human ear can hear up to 20kHz,
music and speech generally fall below 5kHz. We have found that considering up to 2kHz
is sufficient for our tasks.

Once we have the spectrogram, we can apply NMF to find B and G. Ideally B will
contain the notes and G will contain the transcription. See Figure 5.1 for an outline of the
process. As seen in the figure, B contains the seven notes as well as a vector corresponding
to the note onsets. The rough transcription in G matches quite well the original sheet
music.

Determining which basis vector corresponds to which note can be done by looking at the
fundamental frequencies. The fundamental frequencies are the lowest frequency bands of
each note. Each fundamental frequency (and hence each basis vector) can then be mapped
to a single note.
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Figure 5.1: The short-time Fourier transform of an audio signal is taken to obtain the
matrix X in (a). NMF produces (b) note matrix B and (c) note activation matrix G.

In practice it is generally better to learn B prior to the transcription. We can do so
by computing B using NMF on a sample piece containing all possible notes. Thus, during
NMF only G is updated which reduces the computation time and increases accuracy. See
Algorithm 1 for an outline of the algorithm. Note that we scale the columns of B to have
unit sum.

Once we have found our transcription matrix G, we must convert it to an actual tran-
scription. Since the goal of our work is not to create a state of the art music transcriber,
we propose a simple method of transcription. We convert G into a binary matrix under
the following rule

Gij =

{
1 if Gij ≥ σ
0 if Gij < σ
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Algorithm 1 Constrained NMF algorithm

for scaling factor ← 10.. 1
10

do
for i← 1..num constraints do

σi ← scaling factor · estimate(σi)
end for
while change in F (B,G) > ε do

Bij ← Bij
[∇−F (X,BG)]ij
[∇+F (X,BG)]ij

B ← scale(B)

Gij ← Gij
[∇−F (X,BG)]ij
[∇+F (X,BG)]ij

end while
end for

where σ is the standard deviation of the elements of G. The binary G matrix is thus our
transcription. That is, note i is activated at time j if and only if Gij is equal to one.

We evaluate our transcription results by measuring the accuracies on the transcribed
note onsets and offsets. We use four evaluation metrics. The first three are precision,
recall, and F-score. These measure the accuracy of our transcribed note onsets. Precision
is the fraction of correctly transcribed onsets out of the total number of transcribed onsets.
Recall is the fraction of correctly transcribed onsets out of the total number of actual
onsets. F-score (also called F-measure) is the harmonic mean of precision and recall.

A note onset is considered correct if it occurs within 50ms of the ground truth. Let
tp and fp be the number of true and false positives respectively. Let fn be the number of
false negatives. Then

precision =
tp

tp + fp
, recall =

tp

tp + fn
, F-score = 2

precision · recall

precision + recall

The last metric is mean overlap ratio (MOR). MOR is a measure of note offset accuracy.
For each correctly transcribed note, we define ong and ont to be the ground truth onset
time and transcribed onset time respectively. We define off g and off t for offset times
similarly. The overlap ratio is then

min{off g, off t} −max{ong, ont}
max{off g, off t} −min{ong, ont}

We find MOR by averaging the overlap ratio of all the correctly transcribed notes.
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5.1.1 MAPS

We evaluate our transcription algorithm on the MAPS (MIDI Aligned Piano Sounds)
dataset [19] and compare our results to those found by Bertin et al. [8].

The MAPS dataset contains both synthetic and real audio samples. The synthetic
pieces were generated from software. The real pieces were recorded on a piano in both
ambient and close conditions. We test our algorithm on 30 pieces each of synthetic and
real audio samples. Each sample is truncated to 30s. Our results as well as the results
from Bertin et al. [8] are included below. Bertin et al. compare several different methods
for music transcription. The following algorithms were tested in their work:

• NMF/MU - NMF minimizing Itakura-Saito divergence [20].

• S-NMF - space-alternating generalized expectation-maximization algorithm for NMF
with smoothness constraint on G [20].

• Virtanen’07 - NMF with temporal continuity constraint minimizing Kullback-Leibler
divergence [45].

• Vincent’08 - NMF with weighted Euclidean distance and harmonicity constraint [42].

• H-NMF/MU - Harmonic NMF [8].

• HS-NMF - Harmonic Smooth NMF [8].

We should note that in the methods tested by by Bertin et al., no training was done
prior to transcription. The columns of B are either initialized with harmonic estimates
prior to transcription or classified after the fact using a harmonic comb-based technique
from [42]. This is in contrast to our method which makes use of an initial training phase
to learn B from synthetic music generated from software [1]. In Tables 5.1 and 5.2 we list
the results reported by Bertin et al. (first six rows) as well as the results of our constrained
NMF method (last row).

In Tables 5.3, 5.4, and 5.5 we show the values of λ that gave the best results experimen-
tally. Here, λsm1, λsm2, and λsp refer to the λ values corresponding to the piecewise smooth,
piecewise smooth with aligned breakpoints, and element wise sparsity constraints respec-
tively. For the synthetic data, the sparsity constraint alone is able to give good results.
Adding in either piecewise smooth constraints shows little to no improvement. However,
when we consider real data, we see improvements when considering both sparsity and
piecewise smoothness.
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Algorithm F-score Precision Recall MOR
NMF/MU 0.549 0.634 0.561 0.512
Vincent’08 0.584 0.607 0.600 0.548

H-NMF/MU 0.524 0.587 0.591 0.460
S-NMF 0.495 0.624 0.433 0.507

Virtanen’07 0.536 0.559 0.564 0.521
HS-NMF 0.607 0.658 0.645 0.443

Constrained NMF 0.706 (±0.055) 0.727 (±0.051) 0.701 (±0.066) 0.529 (±0.035)

Table 5.1: The results of Bertin et al. and constrained NMF for synthetic music samples.
The top two results in each column are in bold.

Algorithm F-score Precision Recall MOR
NMF/MU 0.408 0.433 0.434 0.477
Vincent’08 0.361 0.387 0.374 0.500

H-NMF/MU 0.413 0.430 0.427 0.446
S-NMF 0.366 0.462 0.320 0.456

Virtanen’07 0.336 0.342 0.348 0.471
HS-NMF 0.450 0.466 0.453 0.432

Constrained NMF 0.539 (±0.063) 0.563 (±0.068) 0.544 (±0.071) 0.565 (±0.040)

Table 5.2: The results of Bertin et al. and constrained NMF for real (ambient) music
samples. The top two results in each column are in bold.

λsm1 λsm2 λsp F-score Precision Recall MOR
0.0 0.0 0.0 0.379 (±0.033) 0.257 (±0.027) 0.751 (±0.055) 0.574 (±0.033)
0.0 0.0 1.8 0.704 (±0.049) 0.665 (±0.046) 0.759 (±0.063) 0.521 (±0.035)
0.0 1.5 0.0 0.431 (±0.046) 0.376 (±0.037) 0.540 (±0.079) 0.541 (±0.051)
0.0 0.5 1.5 0.706 (±0.055) 0.727 (±0.051) 0.701 (±0.066) 0.529 (±0.035)
0.5 0.0 0.0 0.587 (±0.056) 0.608 (±0.045) 0.586 (±0.072) 0.549 (±0.049)
0.1 0.0 0.9 0.696 (±0.069) 0.730 (±0.072) 0.692 (±0.069) 0.544 (±0.042)

Table 5.3: Constrained NMF results for synthetic data with 95% confidence intervals.

5.1.2 Sparseness

Choosing a suitable r is not always clear. In music transcription, r should be equal to the
number of notes in the piece, which is not always known in advance. In other applications,
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λsm1 λsm2 λsp F-score Precision Recall MOR
0.0 0.0 0.0 0.251 (±0.030) 0.158 (±0.021) 0.644 (±0.066) 0.565 (±0.035)
0.0 0.0 2.4 0.502 (±0.055) 0.480 (±0.058) 0.542 (±0.058) 0.495 (±0.040)
0.0 1.0 0.0 0.367 (±0.040) 0.302 (±0.031) 0.511 (±0.078) 0.536 (±0.049)
0.0 0.5 1.5 0.493 (±0.060) 0.509 (±0.063) 0.503 (±0.067) 0.546 (±0.030)
0.5 0.0 0.0 0.456 (±0.052) 0.446 (±0.047) 0.509 (±0.078) 0.523 (±0.055)
0.1 0.0 0.9 0.539 (±0.063) 0.563 (±0.068) 0.544 (±0.071) 0.565 (±0.040)

Table 5.4: Constrained NMF results for real (ambient) data with 95% confidence intervals.

λsm1 λsm2 λsp F-score Precision Recall MOR
0.0 0.0 0.0 0.314 (±0.026) 0.198 (±0.019) 0.789 (±0.046) 0.631 (±0.026)
0.0 0.0 1.8 0.661 (±0.049) 0.597 (±0.058) 0.762 (±0.045) 0.558 (±0.031)
0.0 1.0 0.0 0.442 (±0.026) 0.341 (±0.021) 0.657 (±0.058) 0.628 (±0.031)
0.0 0.5 1.5 0.698 (±0.043) 0.685 (±0.046) 0.724 (±0.052) 0.584 (±0.031)
0.5 0.0 0.0 0.618 (±0.041) 0.591 (±0.037) 0.667 (±0.058) 0.641 (±0.036)
0.1 0.0 0.6 0.715 (±0.041) 0.699 (±0.045) 0.747 (±0.052) 0.637 (±0.025)

Table 5.5: Constrained NMF results for real (close) data with 95% confidence intervals.

such as facial analysis, there may be no correct value of r. We propose a method to
automatically select a suitable r by imposing sparsity on the rows of G. In order to test its
effectiveness we generated music data from midi synthesizer software [1]. First, the number
of notes, r, in the piece is chosen. Next, r notes are chosen randomly from a number of
adjacent octaves. These r notes will make up the piece. For every time step of duration t,
we randomly select k < r notes from the possible notes and play them for t seconds. This
process is repeated until desired. Each note in the piece is thus never played by itself (i.e.
it is always accompanied by k−1 other notes). We run our constrained NMF algorithm on
each piece and count the number of nonzero rows of G (discounting those that correspond
to note onsets). The row count is our guess at the underlying r value. The results are
included in Figure 5.2.

As can be seen, the estimated means are within error of the true mean for a large range
of λ values. Hence, though the choice of λ is important to get good results, a precise choice
is not necessary. Also note that for smaller r the algorithm appears to be more accurate.
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(a) (b)

(c) (d)

Figure 5.2: The mean r estimates over five trials with k = 3 and true r values (solid line)
(a) r = 8, (a) r = 12, (a) r = 16, and (a) r = 20.
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5.2 Instrument separation

Up until now we have only considered single instrument music. In real music there are
usually many instruments playing simultaneously. For our next experiment we generate
synthetic music of a violin and clarinet. At every time step, we pick three notes at random
from either instrument from a single octave. In our first experiment we see if regular NMF
is able to pick out the 24 distinct notes (12 notes in an octave per instrument). We set
r = 25 (one for the note onsets) and run the algorithm with no constraints. See Figure 5.3
for the results. As shown in the figure, NMF is able to pick out 12 pairs of notes.

Figure 5.3: Basis vectors found by NMF on violin and clarinet music. Note the pairs of
notes.

In general we may not know the number of instruments or the number of notes in a
piece of music. As in our earlier case where we used row sparsity to guess the number
of piano notes used, we can see if constrained NMF is able to distinguish the different
instruments. See Figure 5.4 for the results with r = 100 and λ = 25. The algorithm finds
25 basis vectors: 11 pairs of notes, one single note, one extraneous overtone, and one onset
vector.
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Figure 5.4: Basis vectors found by NMF on violin and clarinet music using the row sparsity
constraint with λ = 25. Note that only basis vectors corresponding to nonzero rows of G
are included.

The next step would be to classify the basis vectors into the two instrument classes. We
leave such classification for future work. Instead, in our next experiment we learn the basis
vectors for each instrument separately so there is no need for classification. See Figure 5.5
for a comparison of the basis vectors. Though both instruments share the same harmonic
frequencies for each note, they differ in how each harmonic is emphasized. Note that the
clarinet emphasizes odd harmonics.

Once we have learned the basis vectors, we combine them into one basis matrix. Next
we generate random test music. For every half second increment we randomly select three
notes from a single octave. We then randomly assign each note to be either played by violin
or clarinet. We run piece wise smooth NMF with varying λ and record the transcription
F-scores in Figure 5.6 for the violin and clarinet notes separately. As can be seen, choosing
0 < λ < 1 results in the highest F-scores.
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(a)

(b)

Figure 5.5: Basis vectors learned for (a) violin and (b) clarinet. Note how the clarinet
differs by emphasizing odd harmonics.
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(a)

(b)

Figure 5.6: Mean transcription F-scores over five trials with 95% confidence intervals for
(a) violin notes and (b) clarinet notes.
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5.3 Speech

In many ways, speech is similar to music. Both are audio signals and are composed of
parts. The parts of music are notes, and the parts of speech are phonemes. This motivates
us to use NMF for speech transcription. Let us first look at an excerpt of speech in Figure
5.7. One can, with a small bit of effort, pick out where one phoneme ends and the next
begins. However, many of the different phonemes look very similar. This was not the case
with music where two notes were noticeably distinct.

Figure 5.7: Spectrogram of speech. The text is: “I am happy to join with you today”. The
audio data was generated using Praat [10].

Upon first inspection it may seem that each phoneme is fairly easily distinguishable
from the others. This would imply that NMF may be able to perform accurate speech
transcription. However, let us consider some specific phonemes from the spectrogram.
See Figure 5.8 for and example of four different phonemes. The ‘h’ and ‘t’ phonemes in
Figures 5.8a and 5.8b are difficult to distinguish because they have very little structure.
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However, even phonemes with structure can be difficult to distinguish. Consider the ‘5’
and ‘@’ phonemes in Figures 5.8c and 5.8d.

(a) (b) (c) (d)

Figure 5.8: The spectrogram of four different phonemes: (a) h, (b) t, (c) 5, (d) @.

Another issue with speech data is that there is only a single phoneme being spoken
at a given point in time. This is in contrast to music where there are usually multiple
notes being played at once. Since NMF tries to segment data points into parts, it tends to
have difficulty handling single phonemes. For instance, NMF may split a single phoneme
into multiple parts. Suppose we run NMF on the audio sample from Figure 5.7. The
factorization is included in Figure 5.9. Though some basis vectors if Figure 5.9a look
similar to phonemes (say vectors 6 and 15), the transcription in Figure 5.9b shows that
there is not a one-to-one correspondence between phonemes and basis vectors. That is,
there is no discernible time at which a single basis vector is activated. In fact at most time
points a large number of basis vector are activated.
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5.3.1 Speaker separation

Though NMF seems to fail for single speaker data, there may be hope for multiple speaker
data. We encounter such situations regularly. For example, we may be having a con-
versation with an individual in a noisy coffee shop. In such an environment, we need to
separate out a single speaker from background noise as well as other nearby conversations.
In order to investigate this problem, we consider an audio recording in which two speakers
are speaking simultaneously. We wish to separate each speaker individually. NMF based
approaches have been studied in the literature [37]. We generate synthetic speech data
using Praat [10]. In our experiments we first train on speech data from the individual
speakers. For each speaker we set r = 20 and learn a B matrix. We then concatenate the
two B matrices into one so that r = 40. We now run NMF on the mixed speaker sample
in Figure 5.10 while holding B constant. Once we have learned G we can reconstruct each
speakers spectrograms. The spectrogram of speaker 1 is found by multiplying the first
half columns of B with the first half rows of G. The spectrogram for speaker 2 is found
similarly. See Figures 5.11 and 5.12 for a comparison of the the ground truth and estimated
spectrograms.

We see in the figures that NMF is able to correctly separate the two speakers’ spec-
trograms (at least at lower frequencies). This suggests that NMF learns basis vectors
which are unique to each speaker. Ideally we would like to separate speakers without any
prior training, as humans are generally able to do. Humans, however, are able to make
use of more than just auditory information. We also make use of visual cues, such as lip
movements, in order to aid us in hearing in a noisy environment [47]. Hence, developing
methods which incorporate more than just auditory methods is important for the task of
speaker separation.

5.4 Character analysis

We now look at the problem of character analysis. Here we consider digits taken from
the MNIST database of handwritten digits [27]. Each digit is a 28 × 28 greyscale image.
The digits are centred using their pixel centres of mass. We reshape each image into a
single vector to make the columns of our X matrix. Figure 5.13 shows the basis vectors
found by NMF with the element wise sparseness constraint. Note as λ increases some
basis vectors begin to resemble full digits. Other basis vectors converge to small dots. This
would suggest that as the cost for activating a basis vector increases the basis vectors tend
toward full digit prototypes (similar to k-means).
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Now suppose we impose the row sparsity constraint. Figure 5.14 shows the basis vectors
for varying λ values. Note how most basis vectors resemble full digits. Further note that
when λ ≥ 45 the digits ‘2’, ‘5’, and ‘8’ appear to be missing. This can be explained by
looking at the distribution of digits in Figure 5.15. As can be seen, the three digits with
the fewest examples are eliminated from the bases vectors as λ increases. We also see some
digits represented by multiple basis vectors (for example, the digits ‘0’, ‘1’, and ‘7’ when
λ = 55). This would suggest that those digits have the greatest variability in how they are
written.
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(a)

(b)

Figure 5.9: The results of running NMF of the speech data in Figure 5.7. (a) B, (b) G.
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Figure 5.10: Spectrogram of mixed speech from two speakers.
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(a)

(b)

Figure 5.11: (a) Original and (b) reconstructed spectrogram of speaker 1.
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(a)

(b)

Figure 5.12: (a) Original and (b) reconstructed spectrogram of speaker 2.
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(a) (b)

(c) (d)

Figure 5.13: Basis vectors found from digit dataset with varying sparseness constraint. (a)
λ = 0, (b) λ = 1, (c) λ = 3, (d) λ = 5.
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(a)

(b)

(c)

(d)

Figure 5.14: Basis vectors found from digit dataset with varying row sparseness constraint.
(a) λ = 25, (b) λ = 35, (c) λ = 45, (d) λ = 55.
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Figure 5.15: Distribution of digits in first 100 samples of the MNIST dataset.

68



Chapter 6

Conclusion and Future Work

In this work we have explored using NMF in several applications. Most notably we have
demonstrated the effectiveness of NMF for music transcription. The key reason why NMF
performs so well in transcription is because of the additive nature of music. Each time
point in a musical piece is composed of a sum of notes. When we consider a time-frequency
representation of music, we further note that each sum is nonnegative. Thus, NMF is able
to exploit this nonnegative additivity in order to factorize out both the individual notes
and the transcription. At first these results may seem too good to be true, but in reality
it is the consequence of finding the correct model for our data.

In order to improve the performance of NMF we considered different constraints on
the cost function. The constraints are derived from observations of real music data. We
note that music is generally composed of piecewise smooth parts, and hence we impose a
piecewise smooth constraint. Furthermore, note onsets/offsets often occur simultaneously,
inspiring another contraint which favours aligned breakpoints. Finally, relatively few notes
tend to be activated at a given time, and so we impose sparsity. We demonstrated the
novelty of the constraints on synthetic and real music data. We show promising results
which exceed the current state of the art. We also explored other interesting applications,
such as instrument and speaker separation and handwritten character analysis.

There remain many avenues of future research in NMF. In our work we only consider a
single cost function (divergence). Investigating different cost functions and their behaviour
with constraints is a possible future route. For example, we may consider the squared
Frobenius norm as in [30]. Other optimization methods can also be explored. Several dif-
ferent methods have been explored in the literature including: regularized alternating least
squares [14], projected gradient descent [31], active set methods [24], and block principal
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pivoting [25].

Recently, Arora et al. [3] proved that a polynomial time algorithm for NMF exists if the
separability condition holds. A factorization is separable if we can permute r columns of G
to get the identity. In the context of music transcription, this would mean that each note
is played in isolation at some point in the piece. However, this assumption does not hold in
general as can be seen even in our simple example from Figure 1.6. Further investigation
is required in order to determine if a similar polynomial time algorithm can be found for
music transcription.

Another possible area of interest is adding higher level concepts to NMF. In the case of
music, our constrained NMF model only has the notion of notes that are piecewise smooth
and sparse. There are many other properties, such as the notion of bars, tempo, time
signature, and key that could be added into the model. In the case of speech we may wish
to add the notion of words or phrases. Furthermore, we could use methods from natural
language processing in order to improve the speech factorizations.

The use of NMF for audio analysis makes several assumptions about the behaviour
of sound. One assumption is that when two sounds occur at the same time, they add
together. However, Wegel and Lane [48] demonstrate that a masking effect occurs when
multiple sounds at similar frequencies are heard simultaneously. For example, a very loud
noise can mask a quieter sound that would otherwise be audible. Another assumption is
that the human ear responds linearly to changes in volume. However, in order to achieve
the large dynamic range of our audio system, our cochleas compress the volume of loud
sounds [34]. In other words, the perceived difference between 10 and 20 dB sounds is
greater than the difference between 80 and 90 dB sounds. Investigating ways to modify
NMF in order to account for these assumptions is a possible line of future research.
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