
Data Structures for Fast Access
Control in ECM Systems

by

Zhiping Wu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2014

c© Zhiping Wu 2014

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

While many access control models have been proposed, little work has been done on the
efficiency of access control systems. Because the access control sub-system of an Enterprise
Content Management (ECM) system may be a bottleneck, we investigate the representation
of permissions to improve its efficiency. Observing that there are many browsing-oriented
permission request queries, we choose to implement a subject-oriented representation (i.e.,
maintaining a permission list for each subject). Additionally, we notice that with breadth-
first ID numbering we may encounter many contiguous IDs under one object (e.g., folder)
.

To optimize the efficiency taking into account the above two characteristics, this thesis
presents a space-efficient data structure specifically tailored for representing permission
lists in ECM systems. Besides the space efficiency, checking, granting or revocation of a
permission is very fast using our data structure. It also supports fast union of two or more
permission lists (determining the effective permissions inherited from users’ groups). In
addition, our data structure is scalable to support any increase in the number of objects
and subjects.

We evaluate our representation by comparing it against the bitmap based representation
and a hash table based representation while using random ID numbering and breadth-first
numbering, respectively. Our experimental tests on both synthetic and real-world data
show that the hash table outperforms our representation for regular permission queries (i.e.,
querying permissions on a single object each time) as well as browsing-oriented queries with
random ID numbering. However, our tests also show that 1) our representation supports
faster browsing-oriented queries with breadth-first ID numbering applied while consuming
only half the space when compared to the hash table based representation, and 2) our
representation is much more space and time efficient than the bitmap based representation
for our application.

iii

Acknowledgements

First, I would like to thank Frank Tompa for his supervision through the whole process of
my work. Additionally, I sincerely acknowledge Andrew Kane for suggesting that we look
at breadth-first numbering and Simple-9 encoding and Ken Salem for suggesting that we
look at hashing.

This research was supported by the NSERC Business Intelligence Network and by the
University of Waterloo. Their support is highly appreciated. We also gratefully acknowl-
edge the access control data and the insights provided by partner corporations outside the
BIN network.

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Overview 1

1.1 Problem Overview . 1

1.2 The Organization of the Thesis . 4

2 Related Work 5

2.1 Access Control Matrix . 5

2.2 Sparse Matrix Compression . 6

2.2.1 List of Lists . 7

2.2.2 Coordinate List . 8

2.2.3 Dictionary of Keys . 9

2.2.4 Compressed Sparse Row . 9

2.2.5 Compressed Sparse Column . 10

2.2.6 MTL4 . 10

2.3 Column-oriented DB Compression . 11

2.4 Bitmap Compression . 13

2.4.1 Word-Aligned Hybrid . 14

2.4.2 Simple-9 . 15

v

3 Blocked and Ordered Permissions 17

3.1 Characteristics of ECM System’s Access Control and Subject-oriented Rep-
resentation . 17

3.2 Description of Blocked and Ordered Permissions 19

3.2.1 Blocking . 19

3.2.2 Representation within a Block . 20

3.2.3 Unused Bits . 21

3.2.4 Scalability . 21

3.3 Operations on the Permission Lists . 22

3.3.1 Individual Permission Checking . 22

3.3.2 Permission Granting . 22

3.3.3 Permission Revocation . 23

3.3.4 Union of Permission Lists . 23

3.3.5 Intersection of Permission Lists . 24

3.3.6 Browsing-Oriented Query . 24

4 Alternative Implementations 27

4.1 Implementation Based on Hash Table . 27

4.1.1 Hash Table . 27

4.1.2 Hash Function . 28

4.1.3 Access Control Operations . 29

4.2 Implementation Based on WAH . 31

4.2.1 Access Control Operations . 31

5 Performance Evaluation 34

5.1 Experimental Data . 34

5.1.1 Synthetic Data . 34

5.1.2 Real-world Data . 35

vi

5.2 Performance Evaluation . 36

5.2.1 Space Complexity . 36

5.2.2 Execution Speed . 39

6 Conclusion and Future Work 50

6.1 Summary of the Thesis . 50

6.2 Future Work . 51

6.2.1 Object ID Renumbering . 51

6.2.2 Materialization of Effective Permission Lists 51

6.2.3 Negative Authorizations . 54

References 56

vii

List of Tables

2.1 An Example of an Access Control Matrix 5

2.2 The Effective Matrix of the Explicit Matrix in Table 2.1 (assuming Subject
2 is a Member of Subject 3) . 6

2.3 A Matrix Compressed by COO . 9

2.4 A Dictionary Table . 12

2.5 Simple-9 encoding options in a 32-bit word 15

3.1 A simplified access control matrix in a typical ECM system (the first row
represents objects IDs; the first column represents subject IDs) 18

5.1 Comparison of sizes between BOP and the competitive IR compression
schemes (measured in expected number of bits per 1 (d-gap)) 38

5.2 Comparison of sizes among BOP, our hash table, and WAH (the synthetic
data includes a single bitmap which is 11.92 MB before compression; the
real-world data contains nearly 6,000 bitmaps, and the total size before
compression is 56.27 GB) . 38

5.3 Time needed to check, grant, or revoke 50,000 random permissions on the
real-world dataset (ms). 40

5.4 Time needed for 500 unions or intersections using BOP, our hash table, and
WAH on the real-world data (ms) . 45

5.5 Query sets for comprehensive tests . 48

5.6 Execution time for running comprehensive workloads (ms) 49

viii

List of Figures

1.1 An example of a generic model . 2

1.2 Five tables necessary to implement a generic access control model 2

2.1 A logical example of the list of lists (LIL) 8

2.2 An example of WAH encoding [30] . 14

3.1 An example of a section of a permission list 19

3.2 An example of a block of a permission list represented by BOP 21

3.3 A simplified object hierarchy in an ECM system 25

4.1 Logical hash table example . 28

4.2 Implemented hash table example . 29

5.1 Percentage of individual users w.r.t the number of their ancestors 36

5.2 Maximum distance from a subject to the root 37

5.3 Experimental results for individual permission checking on the synthetic data 39

5.4 Experimental results for permission granting on the synthetic data 41

5.5 Experimental results for permission revocation on synthetic data 42

5.6 Union between two permission lists (various times) 43

5.7 500 unions between two permission lists (various length; fixed density) . . 44

5.8 Intersection between two permission lists (various times) 45

5.9 500 intersections between two permission lists (various length; fixed density) 46

ix

5.10 Experiment results for browsing-oriented queries on the synthetic data using
BOP and our hash table, respectively. A line labeled BOP (R) is for the
tests with various contiguous IDs and R random IDs in each test while using
BOP. 47

5.11 Experiment results for browsing-oriented queries on the real-world data us-
ing BOP and our hash table, respectively. 48

6.1 An example of a subject hierarchy . 53

x

Chapter 1

Overview

1.1 Problem Overview

Enterprise Content Management (ECM) systems have been widely used to manage digital
contents by organizations. An important purpose of adopting an ECM system is to improve
the control of information; therefore access control is extremely crucial for ECM systems.
An ECM system usually has a complicated permission inheritance hierarchy 1 with many
more subjects and objects than are found in a traditional operating system. Additionally,
in an ECM system there are many browsing-oriented permission request queries 2. To
avoid making an ECM system’s access control over-complicated, they have very limited
support for negative authorizations.

Efficient access control is critical for a variety of data management applications, in-
cluding ECM systems. Previous work on access control has been focused on the design of
models, and very little work has been done systematically on the implementation side. In
ECM systems the efficiency of access control can be a bottleneck for system performance
because of the complicated permission inheritance, the large number of subjects and ob-
jects, and many browsing-oriented queries. All these motivate us to explore a more efficient
approach to implementing access control systems.

1A subject may directly belong to a group or indirectly belong to a group (its group is a member of
another group). We refer to all groups to which the subject directly or indirectly belongs as the ancestors
of the subject. A subject can inherit permissions from its all ancestors.

2In ECM systems, when a user browses under an object (e.g., folder, mailbox, etc.), only the child
objects on which the user holds certain permission are presented to the user; thus the system has to
implicitly query the user’s permissions on all child objects. We call this query a browsing-oriented query.

1

A typical access control model contains a subject hierarchy and an object hierarchy
that allow permission inheritance. Figure 1.1 shows an example of a generic access control
model. In this example, Alice gets all permissions assigned to her ancestors and herself.

Graduate
Students

Bob

Alice

Student

CS
Students

O1

O2

O6

O5

W

R

O3 O4

The permission set of Alice is: <O1, (R,W)>, <O2, (R)>, <O3, (R)>, <O4,
(R)>, <O5, (R, W, E)>, <O6, (W)>

CS
Students

Figure 1.1: An example of a generic model

Traditionally, because an ECM system is installed on top of a relational database
management system, it can naturally take advantage of relational tables to store access
control information. Up to five tables are necessary, as shown in Figure 1.2. It is also
important to create indexes to provide acceptable performance for various types of queries.

Table-based AC

• Use relational tables
• More centralized
• More generic: can simulate ACL or CL easily
• Five tables (or a subset): Subject, Subject

Hierarchy, Object, Object Hierarchy, Permission
Assignment

• Subject: Object:
• SubjHier: ObjHier:
• Permission Assignment:

SubjID … ObjID …

Child Parent

SubjID ObjID Operation

Child Parent

Figure 1.2: Five tables necessary to implement a generic access control model

In ECM systems, however, permission inheritance through the object hierarchy is often
eliminated (i.e., in Figure 1.1, Alice does not have permissions on O3 or O4). Instead, the

2

systems may explicitly copy permissions along the object hierarchy as objects are created.
Therefore, only the tables SubjHier and PermissionAssignment are read for access control
queries. (Depending on the implementation, we may also have to check the Subject and
Object tables if a deleted subject or object is simply marked as deleted without being
removed.) For example, given a subject ID, in order to get all effective permissions 3 for
the corresponding subject, we have to first find all its ancestors by recursively searching
table SubjHier, and we then join the result with table PermissionAssignment. For now, we
only consider permission inheritance through the subject hierarchy in our implementation,
too.

Some systems may not directly use tables provided by a DBMS but still store access
control lists (ACLs) in table-like data structures. Although we can simply put all relational
tables (or similar data structures) storing access control data into main memory to speed
up the system, we believe that it is necessary to explore a specialized data structure for
the representation of ECM systems’ access control data.

Our data structure is specifically optimized for ECM systems, taking into account the
data and query characteristics. Because there are many browsing-oriented queries in ECM
systems, we choose a subject-oriented representation of permissions, which means that
each subject has an explicit permission list (a list of all the subject’s explicit permissions).
Our data structure is very space-efficient, making in-memory computing inexpensive in
practice. With breadth-first object ID numbering, a browsing-oriented request may query
permissions on several objects with contiguous IDs, and our data structure is optimized for
this numbering mechanism. Additionally, it supports fast checking, granting or revoking
a permission. Meanwhile, it also supports efficient union of two or more permission lists
so that deriving a subject’s effective permission list is fast. Another advantage of our data
structure is that it is able to scale to support significant increase in the number of subjects
and objects.

We then systematically evaluate our data structure against representations based on
a hash table and on a bitmap 4 when used to represent access control data. Theoretical
analyses and experimental results are presented. We find that a hash table outperforms our
data structure for individual permission checking queries (i.e., querying a permission on a
single object each time) as well as browsing-oriented queries with random ID numbering
since a browsing-oriented query in a system using random ID numbering will have to
be processed as multiple individual permission checking queries. However, our tests also

3A subject’s explicit permissions are permissions directly granted to the subject; a subject’s effective
permissions consist of permissions explicitly granted to the subject or to its ancestors.

4Instead of a list of object-permissions pairs, a permission list can be viewed as a (usually sparse)
bitmap with some bits set to one when the subject has corresponding permissions.

3

show that 1) our data structure is much more space and time efficient than the bitmap
based representation for both individual permission checking queries and browsing-oriented
queries using whichever numbering mechanism, and 2) it supports faster browsing-oriented
queries with breadth-first ID numbering applied while consuming only half the space as
compared to a hash table. To make our tests more realistic, we further test the case when
there are contiguous IDs plus a few random IDs under an object. The results illustrate
that our data structure can still outperform a hash table for browsing-oriented query after
inserting a few objects having non-contiguous IDs.

1.2 The Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 discusses the related work. We
first review two approaches to implementing an access control matrix, followed by the
discussion of existing work on compression from various communities (including sparse
matrix compression, column-oriented database compression and bitmap compression).

In Chapter 3 we first discuss some important characteristics of ECM systems. These
characteristics play an important role in the design of our data structure. Then the data
structure used to represent subjects’ permissions are presented in detail, followed by the
description of how we do common access control operations on our data structure. Among
these operations, browsing-oriented permission requests have never been seriously discussed
in the literature, and our data structure is the only one particularly optimized for this type
of queries.

We describe two alternative implementations in Chapter 4. We first describe how we
take advantage of a hash table to implement an access control system, including how we do
the common operations. Since our data structure can also be interpreted as a compressed
bitmap, we also present how a mainstream bitmap compression scheme could be used to
implement an access control system.

We compare the space and time efficiency between our data structure and the alterna-
tive implementations in Chapter 5. First, how we generate the synthetic data is presented,
followed by the description of the real-world dataset. Both synthetic data and real-world
data are used for comparison. A detailed performance evaluation and analysis are then
presented.

We conclude our work in Chapter 6, in which several directions of future work are also
discussed.

4

Chapter 2

Related Work

This chapter reviews related work, including capabilities and access control lists (ACLs),
matrix compression schemes, column-oriented database compression techniques, and bitmap
compression schemes.

2.1 Access Control Matrix

First introduced by B.W. Lampson in 1971 [20], an access control matrix is a matrix with
each subject represented by a row, and each object represented by a column. A matrix
entry M[S,O] is the permissions the subject S has on the object O. An access control
matrix represents a static security state; thus all requests in the corresponding state can
be answered (assuming that permissions do not propagate). As a static model, we have
to also define transition rules (e.g., how entries can be changed) from one matrix (state)
to another (state) for a practical system. Table 2.1 shows an example of a simple access
control matrix.

Table 2.1: An Example of an Access Control Matrix
Object 1 Object 2 Object 3

Subject 1 orwx rw
Subject 2 r r
Subject 3 w rx

Due to permission inheritance, the effective matrix reflecting all permissions available
to each subject may differ from the explicit one [10]. For example, suppose that Subject 3

5

in Table 2.1 is a group and Subject 2 is a member of the group. If each member of a group
can inherit all permissions assigned to the group and Table 2.1 is an explicit matrix, we
will have an effective matrix like in Table 2.2. An effective access control matrix is always
sufficient to answer any permission requests at the corresponding security state.

Table 2.2: The Effective Matrix of the Explicit Matrix in Table 2.1 (assuming Subject 2 is
a Member of Subject 3)

Object 1 Object 2 Object 3
Subject 1 orwx rw
Subject 2 w rx r
Subject 3 w rx

An access control matrix can be implemented as a set of access control lists (ACLs,
column-based), a set of capabilities (row-based), or a combination. For example, an ACL
associated with an object contains all (explicit) subjects having permissions on the object
and their permissions. In contrast, the capabilities of a subject contain all its permissions
on all objects. ACLs are usually managed at a (logically) central point. Capabilities, how-
ever, can be passed among subjects. As long as a subject possesses a capability, the subject
is believed to have the permission(s) on the object encoded within the capability. Tradi-
tionally, most systems are ACL-based, and to the best of our knowledge, all commercial
ECM systems are ACL-based.

2.2 Sparse Matrix Compression

An access control matrix is usually sparse. In our application, we require look-up and
update of one or more cells to be efficient. Two types of update operations are considered
in our context: changing the value in a cell to another value without any pre-knowledge
about the value in the cell (whether it is zero or not) or changing a pre-known zero cell to
be a non-zero one. The latter type is usually called insertion of a cell. The cost of update
is dependent on the cost of look-up and the cost of insertion (a look-up followed by either
a change of the value or an insertion). We primarily discuss look-up and insertion in this
chapter. Additionally, a cell with the value of zero and an empty cell are not distinguished
in the rest of the thesis.

There are many schemes for compressing a sparse matrix. Generally speaking, we can
group those schemes into two categories: one category is optimized for space and fast

6

insertion (often slow look-up); the other category is designed for fast matrix operations,
such as multiplication (slow insertion). Dictionary of Keys (DOK), List of Lists (LIL), and
Coordinate List (COO) fall into the first category, while Compressed Sparse Row (CSR
or CRS) and Compressed Sparse Column (CSC or CCS) fall into the second category
[12]. Typically, in the community of scientific computing, schemes in the first category are
used to construct a sparse matrix, and then the matrix is transformed into the format of
a scheme in the second category for further computation [12]. There also exist schemes
that aim to balance the efficiency of insertion and other matrix operations. We review
several typical schemes below. There are also many schemes designed for special matrices
(e.g. banded matrix, diagonal matrix, and symmetrix matrix) [12]; we, however, are not
interested in these special schemes.

2.2.1 List of Lists

List of Lists (LIL) stores one list per row for the non-zero cells, where each entry stores
a non-zero cell’s column index and value. Four arrays are used to implement the list of
lists. The first array, A, contains all non-zero values in the matrix. The second array,
C, stores the corresponding column indexes for each element in array A. The third array,
NEXT, stores the index of the next element for each element in arrays A and C (-1 if no
next element). The last array, R, contains the index of each row’s first non-zero element
in arrays A and C. For example, a matrix

M =

10 20 0 0 0 0
0 30 0 40 0 0
0 0 50 60 70 0
0 0 0 0 0 80

may be compressed to be (zero-based index)

A = [30 20 10 70 50 60 40 80]
C = [1 1 0 4 2 3 3 5]
NEXT = [6 −1 1 −1 3 4 −1 −1]
R = [2 0 5 7]

Logically, the above arrays store four lists as the name of the scheme list of lists indi-
cates. Figure 2.1 presents how the non-zeros are stored logically.

This scheme is usually used to construct a small matrix. It supports fast insertion, but
the lookup of an entry is slow. For insertion at (RowID, ColumnID), we simply have to add

7

 0 1 2 3

Row
 10 20 -1

50

80 -1

Non-zero elements

70 -1

40 -1 30

60

Figure 2.1: A logical example of the list of lists (LIL)

the new element at the front of the list of the row RowID. Specifically, we first append the
value of the newly inserted entry at the end of array A and the column number ColumnID
at the end of array C; second, the value in array R associated with the row RowID (i.e.,
R(RowID)) is appended to array NEXT; finally, the value of R(RowID) is changed to refer
to the last entry in arrays A, C, and NEXT. For lookup of the value at a specific position,
we, however, have to linearly search the non-zeros in the corresponding row.

2.2.2 Coordinate List

The Coordinate List (COO) scheme stores a list of (row, column, value) triples for all
non-zero cells. For example, the matrix in Section 2.2.1 may be compressed to the list of
triples (zero-based index) in Table 2.4. Alternatively, we may use three arrays, each of
which stores the values of a corresponding row in Table 2.4 in the same order.

Theoretically, the triples can be in any order. In practice, however, they are usually
stored in insertion order since we simply append a triple to the end of the list whenever we
are inserting a value into a cell in the matrix (very efficient insertion). Note that storing
tuples in insertion order does not help improve the efficiency of look-up, and a linear search
is inevitable anyway in order to look up (or then update) the value of a specific cell. This
also indicates that a general update of the value of a cell can be slow since we have to go
through the list in order to find the corresponding cell first.

Overall, COO is slow for look-up (and general update). It is, however, very efficient for
insertion.

8

Table 2.3: A Matrix Compressed by COO
row column value
0 0 10
0 1 20
1 3 40
1 1 30
2 3 60
3 5 80
2 4 70
2 2 50

2.2.3 Dictionary of Keys

Dictionary of Keys (DOK) encodes non-zero cells as a dictionary (hash table) mapping
<row, column> pairs to values (a <row, column> pair is a key). Obviously, DOK consumes
more space than COO does (i.e., extra space for buckets and pointers). Various hash tables
may be implemented. This scheme supports fast insertion and look-up (O(1)); however,
iterating over non-zero values in sorted order is not well supported since the order of the
non-zero cells is random after compression.

2.2.4 Compressed Sparse Row

Instead of storing both row and column information for each non-zero cell, Compressed
Sparse Row (CSR) further compresses the row information. Thus it is more space efficient
than COO.

Let NNZ denote the number of non-zero cells in an m × n matrix M. COO needs a
table containing 3 × NNZ cells (or 3 arrays, each of which is of length NNZ) to represent
M. Using CSR, 3 arrays are necessary. The first one, A, and the second one, C, are both
of length NNZ. The array A holds all non-zero elements of M in strict left-to-right top-to-
bottom order; the array C keeps the column index for each element in array A. The last
array R is of length m + 1, containing the starting pointers to the elements in array A for
each row. Therefore, row i contains all elements from A (R(i)) to A (R(i + 1) - 1). For
the special case that row i has no non-zero cells, we will have R (i + 1) = R (i). The last
element of array R equals to NNZ (zero-based index for array A), which is the ending flag.

Using CSR to compress the matrix in Section 2.2.1, we will get three arrays after

9

compression (zero-based index)

A = [10 20 30 40 50 60 70 80]
C = [0 1 1 3 2 3 4 5]
R = [0 2 4 7 8]

Besides the space-efficiency, look-up is fast using CSR since we can efficiently find
elements in a specific row and then use binary search to reach the element in the specific
column. The major drawback of this scheme is that insertion is expensive. Suppose a new
element needs to be inserted into row i. We have to insert an element in array A and C,
respectively (by shifting elements and potentially expanding the arrays). Also, we have to
modify the pointers for each row starting from row i + 1. In fact, in scientific computing,
a matrix is transformed to CSR format only when it is assumed to be static (no more
insertions).

2.2.5 Compressed Sparse Column

Compressed Sparse Column (CSC) is very similar to CSR with the exception that the
column information is compressed instead of row information. Therefore, we need an array
A to keep all non-zero elements of a matrix with the strict top-to-bottom left-to-right
order, an array R to record the row indexes for each element in A, and an array C to keep
pointers to element in array A for each column. For example, the matrix in Section 2.2.4
is compressed into the following arrays

A = [10 20 30 50 40 60 70 80]
R = [0 0 1 2 1 2 2 3]
C = [0 1 3 4 6 7 8]

CSC has the same advantages and drawbacks as CSR does. For an m × n matrix,
whether CSC or CSR is more space-efficient depends on m and n (CSR if m < n; CSC if
m > n). Please note that both CSR and CSC may consume more space than COO for
matrices containing many rows or columns without any non-zero cells.

2.2.6 MTL4

While most schemes are optimized for either look-up or insertion, Matrix Template Library
4 (MTL4) provides a scheme that balances look-up and insertion by pre-allocating fixed-
sized space for each row or column [13]. It then stores each row’s or column’s non-zero

10

cells in the pre-allocated space for each row or column (the space has to be big enough for
the row or column with the largest number of non-empty entries). For example, we use
this scheme to represent the previous matrix in Section 2.2.1. Assuming that we choose a
row-based compression and there are at most 4 nonzeros in a row, we will get

A = [10 20 ∅ ∅ 30 40 ∅ ∅ 50 60 70 ∅ 80 ∅ ∅ ∅]
C = [0 1 ∅ ∅ 1 3 ∅ ∅ 2 3 4 ∅ 5 ∅ ∅ ∅]
R = [[0,2] [4,6] [8,11] [12,13]]

The result is similar to CSR; however, there are two differences. First, we have pre-allocated
unused entries (represented by phi). Second, the array, R, is now a 2-dimensional array
containing the starting and ending pointers for each row’s used entries; for example, the
first element [0, 2] of R indicates that Row 0 contains the 0th to 1st (2-1) elements in array
A; the 2nd and 3rd elements are also reserved for Row 0.

Obviously, with this scheme look-up is as fast as with CSR. For insertion, we (binary)
search the elements in the corresponding row, and then insert the new element into the
corresponding space; thus no other rows will be affected. The representation, however,
relies on there being a small number of non-zero entries in each row or column. Thus this
scheme does not work well if some rows/columns have just a few non-zero entries but some
others have a relatively large number of non-zero entries (wasting considerable space).

2.3 Column-oriented DB Compression

Similar to a row or a column in an access control matrix, a column in a database table
may be sparse (i.e., many entries have the value zero or null). Therefore, work on database
compression, particularly on column-oriented database compression, can be relevant to
our work. We thus review several techniques widely used in column-oriented database
compression (except those bitmap compression techniques that will be discussed in the
next section).

There are roughly two categories of compression schemes for column-oriented database
compression: heavy-weight compression and light weight compression [1]. Lempel-Ziv en-
coding is the most common technique in the heavyweight category. It does not have to
know the pattern frequencies in advance; instead, it dynamically builds the pattern table
while encoding the data. Heavyweight schemes can usually achieve very good compression.
However, complete decompression and re-compression are required when the data is up-
dated when using Lempel-Ziv encoding as well as other heavyweight compression schemes.

11

This makes direct processing of compressed data impossible. Thus these schemes are not
suitable for a dynamically-updated database (including our application).

The second category, light compression, however, allows us to process the compressed
data directly. Null Suppression, Dictionary Encoding, and Run-length Encoding (RLE)
are three commonly-used techniques.

The fundamental idea of Null Suppression is that zeros or empty cells are not stored
explicitly (instead, storing just the description of where and how many exist). This tech-
nique usually works well when there are many zeros or empty cells. This technique is
widely used for not only database compression but also the compression of other data, and
it has many variations taking the data characteristics into consideration . Meanwhile it is
often integrated with other techniques. For example, all sparse matrix schemes discussed
in Section 2.2, in fact, exploit Null Suppression.

Dictionary Encoding uses a shorter pattern to replace a longer pattern. A mapping
between actual values and dictionary entries is necessary when using this technique. This
technique is particularly effective for a domain in which the number of possible values is
very limited but every value is space-consuming. For example, suppose that a company
has two campuses and there is an attribute (column) recording each employee’s campus
address. We may create a dictionary table like below

Table 2.4: A Dictionary Table
Real value Dictionary code

888 Fake Road, Waterloo, ON Canada 0
999 NotReal Street, Toronto, ON Canada 1

We can then replace every string value in the column with only one bit.

RLE encodes a run (contiguous repetitions) of the same value to a compact represen-
tation (e.g., a triple of value, starting position, and run length). We may use less data
for each run in some cases (i.e., for a domain with only two values). This technique is
particularly useful in a sorted database.

Again, all these techniques have many variations, and careful consideration regarding
the data and application characteristics is necessary before choosing or designing a suitable
variation. It is also quite usual that more than one technique is used in one database in
order to get the optimal outcome.

12

2.4 Bitmap Compression

In our application, we frequently check, set, and clear a specific bit of a cell’s value;
therefore, we can also naturally interpret a row or a column of the access control matrix
as a bitmap.

We begin by noting immediately that we are only concerned with lossless bitmap com-
pression, and therefore do not consider lossy image compression (such as JPEG) to be
relevant. Research on lossless bitmap compression has been introduced by DB researchers
designing column-oriented database systems. At the same time, IR researchers have in-
troduced many techniques for compressing ordered lists of integers representing document
IDs, with or without storing positions within the corresponding documents. Because there
is an equivalent bitmap for any list of document IDs, we use the term bitmap compression
to cover both types of work.

Although compressing a bitmap and compressing an ordered list of integers are logically
equivalent problems, DB researchers and IR researchers developed quite different schemes
because of their different points of departure. Specifically, the input for compression in
column-oriented databases is a bitmap, while the compression schemes for information
retrieval take a list of integers as input.

Naturally, the fundamental idea among DB researchers is to compress contiguous 1s or
0s into smaller space (e.g. using a byte or word to represent several contiguous 1s or 0s). In
general, we can categorize this work into two groups: byte based schemes, which consider
a byte as the smallest unit, and word based schemes, which consider a word as the smallest
unit. Byte-aligned Bitmap Code (BBC) [5] and PackBits (PAC) [14] fall into the first group,
while Hybrid Run-Length encoding (HRL) [25], Word-aligned Bitmap Code (WBC) [30,
29], Pack Word Code (PWC) [30, 29] and Word-Aligned Hybrid run-length code (WAH)
[30, 29] fall into the second group. None of these schemes require decompression in advance
for bitwise operations; instead, simple interpretation is sufficient. Researchers have shown
that word based schemes are usually faster for both compression/decompression and bitwise
operations at the cost of a little extra space, since modern CPUs access data by word
[30, 29]. Please refer to the paper by Wu et al. [29] for more detailed comparisons among
the schemes mentioned above.

In contrast, the core idea of compressing a list of document IDs is to use less space to
represent an integer. The compression procedure is usually broken down into two steps,
as follows. The first step is to transform the list of document IDs to a list of differences
(d-gaps) so that most elements in the list become smaller integers. The second step is to
represent each d-gap using one or more bits, bytes, or a fraction of a word. Variable length

13

sequences of bytes (vbytes) [11] is a standard compression algorithm which contains 7 bits
of d-gap and 1 bit indicating whether additional bytes are needed. Simple-9 [3, 4] and its
extension Simple-16 [32] encode multiple d-gaps into one word. The four most significant
bits of a word are used to indicate the number of d-gaps encoded in the word. Simple-16
has been shown to have faster decompression.

Many other compressions schemes have been proposed with the aim to reduce compres-
sion and decompression time. For example, PFOR-Delta [34] encodes d-gaps in batch sizes
of some multiple of 32; it is not word-aligned and requires decompression of each batch
prior to performing bitwise or lookup operations. Such schemes are not suited to our task.

We review two typical and influential schemes (i.e., WAH and Simple-9) developed by
DB researchers and IR researchers, respectively, in detail below.

2.4.1 Word-Aligned Hybrid

Word-Aligned Hybrid run-length coding (WAH) is a very popular bitmap compression
scheme. WAH encodes long run of contiguous 0s or 1s using run-length encoding (called
a fill), and represents a mixed-value word in its literal version. Therefore, there are two
types of words: fill word and literal word. In WAH, each word represent (w-1) × N literal
bits (N is a natural number and N ≥ 1), where w is the length of computer word (e.g., 32
or 64). In any word, the most significant bit (MSB) is used as a flag to distinguish a fill
word and a literal word (0 for a literal word; 1 for a fill word). For a literal word, the next
w-1 bits is simply a copy of the actual value. For a fill word, the second MSB is called the
fill bit which represents the value of the contiguous bits. The rest of a fill word encodes
the length of the run (number of w-1 bits); for example, in a 32-bit implementation, 62
contiguous 0s may be encoded as 10000000000000000000000000000010. Due to its word-
aligned requirements, we may not have a full w-1 bits in the last word we want to encode.
Thus there is a special tail word to encode the last few bits of the bitmap (a literal word).
There is also an additional word to record how many bits are used in the tail word.

Figure 2.2 shows how a 128-bit bitmap is compressed using a 32-bit WAH [30].

Figure 2.2: An example of WAH encoding [30]

14

Although WAH requires slightly more space than previous byte aligned schemes, it
can better exploit modern CPUs to get better performance of bitwise operations. WAH,
however, fails to take into account the efficiency of checking, setting, or clearing given bits
in compressed bitmaps.

2.4.2 Simple-9

As a scheme designed to compress an ordered list, Simple-9 first transforms the list of
positions to a list of d-gaps. It then encodes as many d-gaps (up to 28) into one 32-bit
word as possible (a word-aligned scheme). The four most significant bits of a word are used
to indicate the number of d-gaps encoded in the word (called a selector). The remaining
28 data bits encode up to 28 d-gaps, each of which occupies exactly the same number of
bits. Table 2.5 shows the 9 possible ways in which a word is partitioned. For some cases,
a few bits are wasted.

Table 2.5: Simple-9 encoding options in a 32-bit word
Selector (4 bits) Number of coded d-gaps Length of each code (bits) Number of wasted bits

0000 28 1 0
0001 14 2 0
0010 9 3 1
0011 7 4 0
0100 5 5 3
0101 4 7 0
0110 3 9 1
0111 2 14 0
1000 1 28 0

Interestingly, given a d-gap, instead of encoding its actual value, Simple-9 encodes the
actual value minus 1. For example, a list of d-gaps (5, 2, 1) will be encoded as (4, 1, 0).
In this case, a bit can be used to encode the value of 1 or 2 (a d-gap is always at least 1).

During the compression, Simple-9 first checks whether the next 28 d-gaps can be en-
coded into one word; if not, it will check whether the next 14 d-gaps can be encoded into
one word; this process will not stop until one of the nine possible ways is found to be
appropriate. (Since there are at most 28 bits used to encode a d-gap, any d-gap greater
than 228 cannot be encoded.) For example, suppose we have a posting list (4, 11, 12, 13,
16, 21, 22, 29, 30, 42, 65, 66, 76, 94). It will first be converted to a list of d-gaps (4, 7, 1, 1,

15

3, 5, 1, 7, 1, 12, 23, 1, 10, 18). Then two words will be used to encode these d-gaps. The
first word is (0010,011,110,000,000,010,100,000,110,000,∅), where a ∅ means an unused
bit, and the second one is (0100,01011,10110,00000,01001,01001,∅∅∅)

Simple-9 has an extension called Simple-16 which has been shown to have faster decom-
pression. We are, however, not interested in decompression efficiency since this is irrelevant
to our application.

16

Chapter 3

Blocked and Ordered Permissions

In this chapter, we first discuss the characteristics of access control sub-systems in ECM
systems and explain why we choose a subject-oriented implementation. Then a simple,
yet novel data structure to encode subjects’ permission lists is presented, followed by the
description of how to carry out necessary operations in our system.

3.1 Characteristics of ECM System’s Access Control

and Subject-oriented Representation

We first assign sequential numerical IDs to all subjects (users, roles, and groups) and to all
objects (files, directories, mail messages, etc.). Observing that the number of permission
types (PTypes) in an ECM system is typically pre-defined (e.g., 11 types to represent
permissions to read an object’s name, read its content, append to its content, alter its
content, etc.), we use p = |PTypes| bits to represent a subject’s permissions on an object;
thus, we can always use p bits to encode a subject’s permissions on an object, and if a
subject has k permissions on an object, the corresponding k bits are set to 1 and the other
p-k bits for that object are set to 0. This results in an access control matrix in which each
cell contains p-bit data. The explicit permissions are stored, and permission inheritance
will be handled at run time when necessary. Table 3.1 shows an example of an access
control matrix in an ECM system.

An access control matrix, traditionally, is implemented by either subjects (rows) or
objects (columns). In our context, storing the matrix as a whole is inappropriate for several
reasons. First and most importantly, a permission request is against either a subject or

17

Table 3.1: A simplified access control matrix in a typical ECM system (the first row
represents objects IDs; the first column represents subject IDs)

0 1 2 3 4 5
0 11111111111 00000000000 00000000000 00000000000 10111110001 00000000000
1 00000000000 00000000000 00000000000 00000000000 00000000000 00000000000
2 10000000001 00000000000 00000000000 00000000000 00000000000 00000000000

object (e.g., query a specific user’s permissions (under a folder), or query who has what
permissions on a specific object). This makes subject- or object-oriented implementation
quite natural. Second, there are usually many inactive (logged out) users in an ECM
system. For in-memory implementations, keeping the access control data of the inactive
users in main memory can be a significant waste of main memory, even with a compact
data structure applied.

In ECM systems, when a user accesses an object (e.g., folder, mailbox, etc.), only the
child objects on which the user holds certain permission are presented to the user; thus there
are many implicit permission requests (browsing-oriented queries), and these requests are
all subject-oriented. We therefore believe that a subject-oriented implementation is more
efficient for ECM systems and decide to choose subject-oriented representation. Each
subject will have a permission list containing all its explicit permissions. Additionally,
we notice that if breadth-first numbering is applied to object IDs, most IDs involved in
a browsing-oriented query are contiguous; we therefore believe that the performance may
benefit from storing objects in order in a permission list.

It is also important to point out that although our subject-oriented implementation is
like a capability system [16, 21, 24], our implementation is still ACL based since several
major characteristics of a capability system are missing from our system. First of all, a
subject in ECM systems is a user or a group (a role can be viewed as a group, too); in a
capability system, however, a subject is a process. Second, we strictly distinguish subjects
and objects while an ‘object’ in a true capability system can be a process (subject in an
access control matrix) or a piece of data (object in an access control matrix). Third, a
permission list does not contain any address reference to the corresponding objects; thus a
permission list is not a list of capabilities by definition. In fact, our implementation simply
replaces the permission-checking module of an ECM system, and it still takes advantage
of existing mechanisms to protect the permission lists (using whatever protects ACLs in
existing systems) and access objects after checking permissions. Therefore our system is a
subject-oriented ACL implementation.

18

3.2 Description of Blocked and Ordered Permissions

In a real-world ECM installation, we may input more than 6000 permission lists, each of
which contains the corresponding subject’s access control information on around 8 million
objects. Figure 3.1 illustrates a section of a permission list interpreted as a list of p-
bit units. We assume p = |PTypes| = 11 throughout the rest of this thesis and require
a mechanism to store a sequence of p-bit units. If all objects were explicitly included
in a permission list, each permission list would consume around 80 million bits, which
means that the literal version of the whole access control matrix requires more than 60 GB
space. Therefore, a more compact data structure used to represent the permission lists is
necessary. We present our space-efficient permission representation data structure called
Blocked Ordered Permission List (BOP) 1 in this section.

11100011111 00000000000 … 00000000000 11111111111 11100011111

OBJX + 95295 : p bits OBJX + 95294: p bits OBJX: p bits OBJX + 1: p bits OBJX + 2: p bits

95,296 p-bit units (p = 11)

Figure 3.1: An example of a section of a permission list

3.2.1 Blocking

We first divide a permission list into multiple blocks, each of which (logically) contains
95,296 objects with permissions on them (95,296 p-bit units). We have noticed that this
choice of the block size results in quite satisfactory performance, although we cannot
guarantee that the current setting is the best. Figure 3.1 in Section 3.2, in fact, is an
example of a block, in which many units are all-0. We omit blocks in which no bit is set
to 1, so the number of stored (physical) blocks may be smaller than the number of logical
blocks. Our data structure explicitly records the offset of the first logical unit for each
stored block (block offset) in an index so that locating a desired block within a permission
list is efficient. Furthermore, we represent each block (as described shortly) using our data
structure (which can be considered as compression), with the result that physical blocks
have variable size.

1It was initially introduced as a bitmap compression scheme [28]. This is very space and time efficient
for dynamic bitmaps with many small clusters.

19

One advantage of blocking is that it can significantly reduce the search space when
looking for an object. With the block indexes, we can easily jump into the block that
contains the object (in fact, the corresponding permission unit). The search space is then
reduced to permission units in a single block instead of all units.

A second advantage is to reduce the space required to represent the position of a unit.
With over 8 million objects, we need 24 bits to represent a position of an object; however,
with blocking, we need 17 bits to represent a unit’s offset to the beginning of a block. The
absolute position can be easily computed by adding the recorded unit offset to the block
offset.

A third benefit is that we can represent blocks in different formats when appropriate,
depending on each block’s characteristics (i.e., density of non-zero units).

A final advantage of blocking is to reduce the cost of I/O when pure in-memory im-
plementation is infeasible. Physical blocks are our units of I/O, and the indexes to all
physical blocks are kept in main memory. We are thus able to read a specific block from
disk instead of a whole permission list. As most operations will check data in only one or
two blocks, we can reduce the I/O cost significantly in the case of limited available main
memory.

3.2.2 Representation within a Block

A unit with all 0s is not physically stored, and units with one or more 1s (non-empty units)
are stored as a list of pairs representing (a) the logical offset of the unit from the first unit in
the block and (b) the p bits of the units values. (Because we record the logical offset of each
block itself, we can number the logical units within a block starting at 0.) For the access
control application, each unit stores all permissions a subject holds on an object. A 32-bit
word (permission word) is used to represent each unit of bits; in our implementation, the
11 most significant bits store the unit’s literal values and the remaining 21 bits represent
the logical offset of the unit from the first unit of the block.

Figure 3.2 shows the 3-word representation using our data structure for the original
block in Figure 3.1. It is significant to understand that this approach works only when the
permission list is sparse (or if the permission list is very dense, by making the default value
1 instead of 0). In our application, most permission lists are quite sparse, since a subject
typically has no permissions on most objects in a large enterprise.

If there are 32,758 (34.375 % of the block size) or more non-empty units in a block, our
data structure consumes at least as much as the original version. In this case, we keep the
block as a literal bit vector.

20

OBJx + 95295 OBJx OBJx + 1

11100011111 95295 (DEC) 11111111111 1 (DEC) 11100011111 0 (DEC)

3 * 32 bits Block Offset: OBJX

Figure 3.2: An example of a block of a permission list represented by BOP

3.2.3 Unused Bits

With the proposed choices for block size, BOP includes 4 unused bits in every word en-
coding a non-empty unit. Although this wastes some space, there are at least two benefits
resulting from leaving these bits unused. Most importantly, using a full word makes our
scheme word-aligned, which makes the implementation easier and the processing faster [6].
Second, up to four additional permission types can be easily supported (making p = 15,
without making any changes to the encoding or the algorithms). For example, if a new
permission type is introduced by the ECM system, we simply have to let the system know
that one additional bit following the current copy of the permission unit is now used in
any permission word, and the existing encoding of permissions immediately represents that
new permission as being denied to all subjects with no changes whatsoever to the BOP
blocks. Specifically, if the number of permission types increases from 11 to 12, BOP will
then use the 12 most significant bits to represent the permission unit in a 32-bit permission
word (we still just need 17 bits to encode any unit offset, and the number of unused bits
in a permission word decreases to 3 from 4).

3.2.4 Scalability

We may consider scalability in three dimensions, including the increase in the number of
subjects, objects and permission types. Our data structure can support all three dimensions
quite well. When a new subject is added into the system, we simply have to create an
empty permission list for it. Permissions can be granted afterwards. When a new object is
created, the logical length of every permission list grows; however, no physical operation is
necessary until permissions on the newly created object are granted to a subject (appending
one and only one permission word to the end of the corresponding permission list). We have
discussed the increase in the number of permission types in Section 3.2.3. Increasing the
number from 11 to up to 15 is almost free. It is more difficult to support more permission
types (having to use longer words or choose smaller block size), but practically it is quite

21

unlikely that there will be significant increase in the number of permission types in an
ECM system after it is deployed.

3.3 Operations on the Permission Lists

3.3.1 Individual Permission Checking

Checking whether or not a user has a specific permission on an object is a common op-
eration in any access control systems. With a subject-oriented representation, there are
two approaches. The first one is to 1) compute the effective permission list of the corre-
sponding user (the union of the explicit permission lists of the user and all its ancestors)
and then 2) check the value at the corresponding position in the effective permission list.
The second one, however, avoids the computation of the effective permission list. Instead,
the corresponding positions in the explicit permission lists of the user and all its ancestors
are checked individually. As long as one of the permission lists is found to include the
permission requested, the user will be authorized the permission. Noticing that one union
operation is far more expensive than one checking of a specific position in a permission
list, we choose the second approach. We explain how we check a specific position on a
permission list below.

Given the object number and number of the specific permission type, the first step is
to find the corresponding block. The block index provides starting addresses for all logical
blocks. If the index to the desired block points to NULL, the permission list contains no
permissions at all on all objects in the block, including the object we are checking for, and
thus the return value is false. This step requires O(1) time. If the block physically exists,
we (binary) search for the corresponding unit within the block, returning false if it is not
physically stored (indicating the permission list contains not a single permission on the
requested object). Otherwise, we return the corresponding bit value within the unit. The
total time is then O(1) to find the block, O(log N) to find the unit using binary search
(where N is the number of physical units in the block), and O(1) to find the bit within a
stored unit.

3.3.2 Permission Granting

Granting a permission to a subject is another common operation in an access control
system. This requires setting a bit to 1 at a corresponding position in our representation.

22

To complete this operation, we first locate the unit containing the bit as above. If it
physically exists, indicating the permission list contains at least one permission on the
object so that at least 1 bit has been set to 1 in the unit, we simply store 1 as the value for
the bit we wish to set; otherwise, we (first create a new physical block if necessary, and then)
insert an element into the sorted array holding permission words of the corresponding block.
Noticing that we will have to expand and then relocate an array when we are inserting an
element into an array without any spare space, we implement a buddy system [18] to reduce
the frequency of expansion and relocation of arrays (always doubling the array when it is
full). Another benefit gained from the buddy system is that it is much easier to back up
a block to a disk, although we mainly consider in-memory computing. If backup does not
have to be considered, and the system has low-frequent permission granting operations,
expanding an array by 1/2 or even 1/3 each time may work well, too. When the number of
physical units reaches a threshold (32,758 in our current setting), we transform the block
to its literal version and store the 95,296×11 explicit bits instead.

3.3.3 Permission Revocation

Revoking a permission on an object from a subject corresponds to clearing a specific bit in
a specific unit. This operation is similar to setting a bit, except that new blocks and new
units need not be created. On the other hand, a corresponding unit, and even a complete
block, may become all-0 after clearing a bit. We can reclaim the space immediately or set
the bit to 0 and collect empty units periodically offline. Using the latter approach, the
total online time to revoke a permission is O(log N), where N is the number of physical
units in the block.

3.3.4 Union of Permission Lists

To find the effective permissions for a subject, we need to find the union of permission lists
for that subject and all his/her ancestor groups. The union of two permission lists requires
the union of two lists of blocks, and since our scheme is block-aligned (i.e., the start of
every block corresponds to a logical unit numbered by a multiple of 95,296), the operation
is essentially a series of block merges.

When two blocks from the two permission lists have the same offset, they cover the
same logical range. If both blocks are in their literal version, we merely or the bits; if only
one block is in its literal version, we iteratively or in the bits from all units located within
the BOP block. Suppose both blocks are in BOP format; we then need to merge the units

23

(permission words) in the two blocks into one list, possibly transforming the result to its
literal version if the number of units reaches the threshold. If corresponding units appear
in both blocks, we merge them by computing the or of the p most significant bits of the two
words and copying the remainder (offset) bits. We expect most participating blocks are in
BOP format because most permission lists are sparse. The total time is O(N×B), where
N is the number of units in a block and B is the number of blocks used for a permission
list.

3.3.5 Intersection of Permission Lists

Intersection of permission lists is not really necessary for our system; however, we still
implement it in case we have queries like ‘tell me the common permissions of permission
list A and permission list B’ in the future. Intersection is similar to union, but rather
that creating additional blocks, the merged permission list might have fewer non-empty
units and fewer blocks than either input. Because the result must be a subset of both
permission lists, an all-0 block or unit may result from intersecting any block or unit with
one that is all-0, and all-0 blocks or units may also result from intersecting blocks or units
that are neither all-0. Furthermore, the result of intersecting a BOP block and a literal
block is either all-0 or a BOP block: for each bit set to 1 in the literal block, we clear the
corresponding bit in the BOP block.

3.3.6 Browsing-Oriented Query

Defined in Section 1.1, access control requests of this type have never been carefully con-
sidered or optimized. They are, however, probably the most common queries in an ECM
system’s access control sub-system. A user issues a browsing-oriented query implicitly
whenever he/she opens a compound object (i.e., click to enter a folder). For example,
given the object hierarchy shown in Figure 3.3 (please recall that permissions are not
propagated through the object hierarchy), even if a user exactly knows where the particu-
lar object he/she is interested in (for example, O9) is located, he/she will probably go into
folder O1 (resulting in a browsing-oriented query), then into folder O2, then continue to O5,
and finally explicitly request to access to O9. In this example, we have 3 browsing-oriented
queries while there is only one query to check an individual permission. This means that
there might be even more browsing-oriented queries than individual permission checking
queries. Therefore, we design our data structure to optimize for browsing-oriented queries.

24

O1

O2

O4 O5 O6

O3

O7

O8 O9 O10

Figure 3.3: A simplified object hierarchy in an ECM system

If the objects are numbered randomly (or in creation order), a browsing-oriented query
will have to be treated as a collection of multiple individual permission checking queries,
and there is quite limited optimization we can do. However, motivated by document
reordering in IR systems (the documents with the same indexed content will then have
close or even contiguous IDs) [8, 31], we notice that the efficiency of answering a browsing-
oriented query can also benefit from having a list of contiguous object IDs to be checked
for a query. Specifically, we can apply breadth-first numbering, and then the object IDs
under their parent object are contiguous. In this case, when a browsing-oriented query is
issued (having to check for a single list of contiguous objects), we first calculate whether
all objects we are checking for are in the same block. If all objects belong to the same
block (which is the majority case), we search for the permission word of the first object we
need to check using binary search. Either the specific one (we find the one we are looking
for) or the next physical permission word (we do not find the permission word of the first
object) is returned. This takes O(log N) where N is the number of physical permission

25

units. Then we check the following physical permission words starting from the returned
one, until we reach a permission word whose associated object ID is bigger than the ID of
the last one in our checking list. This costs O(M) time, where M is the number of objects
under a same object (folder).

If the objects are in two blocks, we check the ending physical permission words of the
first block backward until we reach a physical unit whose associated object ID is smaller
than the first object ID we are checking for, and we check the starting permission words
forward until we reach a physical permission word whose associated object ID is bigger
than the last object ID we are checking for. The frequency of this case is not expected
to be high since the logical block size is much bigger than the number of objects under a
folder.

Since new objects are created over time, we may have to insert a new object under a
folder, which will damage the contiguity of the IDs under the folder. A feasible approach
is to periodically re-number the IDs. However, at an arbitrary time, we may find that
there are several objects with contiguous IDs while one or more objects have arbitrary
IDs. This requires us to modify the above algorithm. The above algorithm can answer a
browsing-oriented query with a single list of contiguous object IDs as input; with random
IDs, a browsing-oriented query may encounter multiple lists of contiguous IDs. Thus we
apply the above algorithm for every list encountered by a browsing-oriented query, and
then union the returned results. Fortunately, we can safely assume that most IDs are
contiguous.

26

Chapter 4

Alternative Implementations

We present two alternative approaches to implementing an access control system in this
chapter.

4.1 Implementation Based on Hash Table

We may implement an access control matrix using a stored set of subject-object-permission
triplets (see Section 2.2.3); however, we believe that implementing a subject-oriented sys-
tem is more reasonable based on the query characteristics (recall Section 3.1). Therefore,
instead of storing an access control matrix using a single hash table, we create a hash table
for each permission list.

4.1.1 Hash Table

In our implementation, the object IDs are the keys and the 11-bit permission units are
the values. We only have to consider non-zero units. Since which keys will appear in a
permission list is unpredictable, we cannot find a perfect hash function.

We choose separate chaining with linked lists as our collision resolution strategy (see
Figure 4.1). However, we do not wish to use 64 bits for each pointer that connects two
entries. Considering we can fit a key and a value into 34 bits, each pointer would consume
twice the space of a key and a value. We therefore implement a hash table with short
pointers in order to improve the space efficiency.

27

NULL

 0 1 2 3

Buckets
Hash (K2)

K2

K0 V0 K2 V2 NULL K1 V1

K0 V0

K0 V0

Entries

Figure 4.1: Logical hash table example

We use two arrays (see Figure 4.2) in our implementation. The first array, Bucket
Array, stores the pointers to the entries in the second array (Entry Array). Specifically,
each pointer points to the first entry of the linked list whose keys are hashed to the bucket.
The Entry Array stores all entries of a hash table. Each entry, in our implementation,
contains KEY, VALUE, and a pointer NEXT pointing to the next entry of the linked list
of its associated bucket. We use 26 bits for a key, 11 bits for a value, and 27 bits for
a NEXT pointer. It is, in fact, possible to use fewer bits for a key and NEXT pointer
since we will have about 8 million (about 223) objects in total. However, we can make it
word-aligned by using a few more bits since each entry now consumes a 64-bit word. We
use 32 bits for every pointer in the Bucket Array so that they are also word-aligned.

Let N be the number of allocated entries and K be the number of buckets. N/K is
then the Load Factor. We pick LoadFactor = 2 to balance the speed and space.

In fact, the values of N and K are determined by the number of entries needed to be
stored in a hash table (represented by M). N is a power of 2. N needs to be equal to or
bigger than M, but it is strictly smaller than 2×M. For example, if we have M = 12, we
then know that N is 16 and K is 8 (16/2).

4.1.2 Hash Function

We start by noticing that we do not want an expensive-to-compute hash function in our
application; for example, hash functions used in cryptography such as MD5 or SHA1 are
inappropriate.

Our hash function is simple (thus inexpensive to compute for any key), yet effective in
randomizing the hash values of the keys [19]. Given a key, we first multiply it with a big

28

K4 V4 MAX_UINT27

K0 V0 3

K3 V3 MAX_UINT27

K1 V1 4

K2 V2 MAX_UINT27

1

MAX_UINT32

2

0
 0 1 2 3 4 5 6 7

 0 1 2 3

Bucket Array
(32 bits)

Key
(26 bits)

Value
(11 Bits)

NEXT Pointer
(27 Bits)

Entry Array
(64 Bits)

K2

Hash (K2)

Figure 4.2: Implemented hash table example

prime. The prime has to be big enough so that the product will consume all 64 bits of a
word. We fetch the middle 24 bits of the product by getting rid of the 12 most significant
bits and 28 least significant bits (the middle 24 bits will now be 24 least significant bits).
Finally, we have the previous result mod the current number of buckets. The hash function
we use is formalized in Equation 4.1.

Hash(Key) = ((Key×BigPrime) << 12 >> 40)%K, where K is the number of buckets
(4.1)

4.1.3 Access Control Operations

This implementation is capable of doing all necessary operations in our access control
system.

Individual Permission Checking

To check an individual permission on a permission list, we first compute the hash value of
the key (object ID), and then search the corresponding linked list for the entry. We check
the corresponding bit if the entry exists.

29

Permission Granting

We first search for the entry with the same key. If we find such an entry, we set the
corresponding bit to one in the entry; otherwise, a new entry will be added to the linked
list. The object ID is the key of the entry, and the corresponding bit is set to one reflecting
the permission has been granted. Physically, to add the entry to our hash table, we add
it to the end of the Entry Array, modify the NEXT pointer of previous entry of its linked
list to the new entry, and set the NEXT point of the new entry to be MAX UINT27.

Hash Table Extension

We may have to expand the hash table when we add a new entry to a full hash table (N =
P). Again, we choose a buddy system for table extension (doubling both the Bucket Array
and Entry Array). All entries will be moved to the new hash table, and the new entry will
be added to the new hash table.

Permission Revocation

This is similar to permission granting, except that 1) we will never have to add new entries,
and 2) we may get an entry having a value of 0. We choose not to reclaim the space occupied
by such entries in real time.

Permission List Union

To union two hash tables, we first make a copy of the bigger hash table (with more used
entries), and then check for every entry in the smaller (with fewer used entries) hash table
whether a corresponding entry exists in the bigger hash table. If a corresponding one
exists, we simply union the 11-bit value without making any change to the entry’s key or
NEXT pointer in the bigger hash table; otherwise we add the entry to the bigger hash
table as a new entry. This operation may trigger at most 1 hash table extension.

Permission List Intersection

Similarly, we make a copy of the smaller hash table, and then check for every entry in
the smaller hash table whether a corresponding entry exists in the bigger hash table. We
remove the entry if no corresponding one is found; otherwise, we intersect the 11-bit values.
This operation would not cause any hash table extension.

30

Browsing-oriented Query

Unfortunately, we have to break down a browsing-oriented query into several individual
permission checking queries since two contiguous keys might be hashed to any two buckets.

4.2 Implementation Based on WAH

A permission list in its literal version is a bitmap. Intuitively, we can compress these
permission bitmaps in order to get a space-efficient implementation, and then carry out
the necessary access control operations on the compressed bitmaps. We implemented a
mainstream bitmap compression scheme called WAH (see Section 2.4.1 for the description
of WAH) for our access control system.

4.2.1 Access Control Operations

WAH is not optimized for dynamic bitmaps. Therefore, operations like setting/clearing
a bit in a compressed bitmap (referring to granting/revoking a permission) have never
been implemented and discussed. In this case, we implemented all necessary operations
to support an access control system. We implemented a 64-bit version of WAH; thus the
number of bits contained in a WAH word is a multiple of 63 (64 - 1 since the most significant
bit is a flag denoting whether it is a fill word or a literal word).

Individual Permission Checking

This operation is to check a specific bit on a bitmap. Since each WAH word contains
various number of bits, we have to linearly search the WAH words one by one from the
beginning of the compressed bitmap in order to find the WAH word containing the specific
bit. If the WAH word we find is a 1-fill, the value of the bit we are checking is 1; if it is a
0-fill, the value of the bit is 0; if it is a literal word, we use bit manipulation techniques to
check the specific bit.

Permission Granting

This operation corresponds to setting a bit to 1 on a bitmap. The first step is to find the
WAH word containing the bit whose value we want to set to 1. If a 1-fill word is returned,

31

nothing needs to be continued since the bit has been set to 1. If we get a literal word,
we set the corresponding bit to be 1 in the word. Setting a bit to 1 in a literal word may
form many contiguous 1s; for example, there could be many contiguous 1s before and after
a 0, and we are changing the 0 to 1. Potentially, this literal word can be combined with
its neighbor(s); we, however, still keep it literal. It is more complicated in case we find a
0-fill. A 0-fill will have to be split into up to three words (two literal words, a literal word
followed by a 0-fill word, a 0-fill word followed by a literal word, or a 0-fill word followed
by a literal word followed by another 0-fill word), indicating that we will have to update
one WAH word and insert another one or two words into the compressed bitmap (which
is an array holding all WAH words).

Permission Revocation

Revoking a permission from a permission list is equivalent to clearing a bit in a bitmap.
Also, we have to first find the WAH word containing the specific bit, and we may get a
0-fill word, a literal word, or a 1-fill. Finding a 0-fill indicates that the bit we want to
clear has been set to 0. We clear the corresponding literal bit if a literal word is found,
and we keep it literal without checking whether it is combinable with its neighbor(s). To
clear a bit in a 1-fill word, we have break it down to up to 3 words (two literal words, a
literal word followed by a 1-fill word, a 1-fill word followed by a literal word, or a 1-fill word
followed by a literal word followed by another 1-fill word). New WAH word(s) will have
to be inserted for this case; however, the number of 1-fill words is quite limited in sparse
bitmaps (close to zero in our application).

Permission List Union

This operation is essentially the merge of words from two compressed permission lists. We
run linearly through two lists. When two physical words contain non-equal logical bits, we
break the longer one into two parts. The first part will union with the shorter word from
the other list (making them logically aligned), and the rest will union with the next word
from the other list. When reaching the end of any list, we directly copy the remaining
words from the unfinished list.

Permission List Intersection

This operation is very similar to union with the exception that we can simply abandon
the remaining words from the logically longer permission list when reaching the end of the

32

logically shorter one.

33

Chapter 5

Performance Evaluation

In this chapter, we compare a hash table, WAH, and BOP for access control system im-
plementation. We first describe the data we use for testing, including the synthetic data
and the real-world data. We then present and discuss the evaluation results for space
consumption and execution speed.

All experiments have been performed on an AMD FX-6100 six-core 3.3Ghz Processor
(8M L3, 6M L2 and 64K + 64K L1 caches) with 32GB of memory, running 64-bit Windows
7 Professional with single thread execution of code compiled using gcc. All experiments
are conducted on permission lists stored in main memory, and therefore no I/O is involved.

5.1 Experimental Data

5.1.1 Synthetic Data

Each permission list we generate contains 100M literal bits (9,090,909 logical objects).
All of them are sparse so that no blocks are stored in literal form. We first generate a
permission list in its literal version (a bitmap), and we then transform it to the BOP
format and to the hash table format, respectively. A permission list is generated by the
following steps:

1. Pick a random starting position s, where s is a multiple of 11;

2. Randomly set 60 % of the bits within the range specified by [s, s + 10];

34

3. Repeat 1 and 2 until 60,000 bits have been set.

4. Convert the literal bitmap to a BOP list and a hash table

It is also important to mention that we allocate four 32-bit words for a BOP block
instead of only one when a new non-zero unit is inserted into an empty BOP block. This
will consume a little extra space, but it can reduce the frequency of array extension.

Since a permission list is equivalent to a bitmap, we do not distinguish a permission
list and a bitmap in the rest of this thesis.

5.1.2 Real-world Data

The real-world dataset is provided by a mainstream ECM system vendor. The dataset
contains around 8 million objects and 6,000 active subjects (users and groups).

Among the 6,000 subjects, we have nearly 900 groups and 5,100 individual users. A
user can be a member of one or more groups; a group can also be a member of one or more
groups. Every subject other than the root is a direct member of the root subject.

In an ECM system, a query is always issued by an individual user. Since when a query
is issued, we have to check the permission lists of the issuer (a user) and its ancestors,
it is important to understand how many permission lists we have to check for a query in
practice. The numbers of ancestors vary between 2 and 110 for the individual users. Figure
5.1 shows more details about the percentages of individual users w.r.t the number of their
ancestors. On average, a user has 8.8 ancestors; thus we will have to check 9.8 permission
lists for a query on average.

Because subjects can belong to more than one group, not all ancestors appear along
one chain. Thus, we measure the maximum distance from each individual user (sink
node) to the root subject. This helps us understand how many recursive steps would be
needed to compute the transitive closure. Please notice that counting minimum distance
is meaningless in our application since it is always 1 for any individual user. In addition,
there are no cycles in the directed graph representing the subject hierarchy. Figure 5.2
illustrates the maximum distances for the subjects. On average, the maximum distance
between an individual user and the root subject is 5.62.

35

Figure 5.1: Percentage of individual users w.r.t the number of their ancestors

5.2 Performance Evaluation

5.2.1 Space Complexity

Before reporting the sizes of the data structures witnessed in the experiments, we examine
the expected space requirements in general. It is straightforward to theoretically compare
the space complexities between BOP and our hash table. Since we implement a buddy
system for both BOP and our hash table, both data structures contain some unused space.
For simplicity, we do not consider the allocated unused space now. BOP consumes 32
bits for each non-zero permission unit; assuming that there are M non-zero units, we
need 32 ×M bits in total. Certainly, there are some pointers and other meta data, but
this needs very little space. In contrast, our hash table needs 64 bits for an entry (a
non-zero unit); additionally, each element in the Bucket Array consumes 32 bits, and the
number of elements in the Bucket array is over 1/2 of M. Therefore, we need at least
64×M + 32×M/2 = 80×M bits in total (meta data is ignored as well). This indicates
that our hash table consumes approximately 2.5 times the space compared to BOP.

Moreover, BOP can also be considered as a bitmap compression scheme. Compression
ratio (Equation 5.1) is often cited by researchers in the DB community to compare the
space requirements for compression schemes. In the context of IR, however, researchers
often evaluate the space complexity by considering the average number of bits necessary to
encode a d-gap, which measures the expected number of bits required to represent each 1

36

Figure 5.2: Maximum distance from a subject to the root

in the equivalent bitmap. In keeping with both traditions, we compare BOP against WAH
using the traditional compression ratio but use the latter method to compare BOP against
the vbyte and Simple-9 schemes developed by IR researchers.

A theoretical comparison among BOP, vbyte, and Simple-9 is presented in Table 5.1.
BOP requires 32 bits for each non-empty unit, and there are on average 5.96 ones in each
such unit. Therefore BOP uses on average 5.37 bits to represent each bit set to 1, whereas
vbyte require at least 8 bits for each bit having the value 1. Thus in the prototypical
application, BOP outperforms the best cases possible for vbyte.

We also have a relatively accurate estimate for Simple-9. Considering a sparse bitmap,
on average, there is one d-gap with a relatively large value (on average around 8,000 which
is the avarage distance between two neighboring permission units), and there are 4.96 d-
gaps with small values in a non-empty unit. To encode a value around 8,000 we need 13
bits, and Table 2.5 shows that when using Simple-9, such a value can only be represented
in a word that encodes two d-gaps. Therefore, to encode a typical non-empty unit requires
two words: one to encode the position of the first two bits in the unit and the other to
store the remaining ones. Therefore, on average, Simple-9 uses 64 bits (two 32-bit words)
to represent 5.96 ones (in a single non-empty unit) in our prototypical application, which
means each one (d-gap) requires 10.73 bits.

37

Compression Ratio =
|decompressed data|
|compressed data|

(5.1)

Table 5.1: Comparison of sizes between BOP and the competitive IR compression schemes
(measured in expected number of bits per 1 (d-gap))

BOP vbyte Simple-9
Best Case 2.91 8 1.14

Worst Case 32 N/A 32
Sample Case 5.37 approximately 10.73

We then directly applied BOP, our hash table, and WAH to a synthetic permission
list (bitmap) and the permission lists in an actual ECM access control system. Table 5.2
shows the results. We implemented a buddy system for BOP and our hash table; for WAH,
we used a vector provided by C++ (extending the size by half every time). Therefore all
implementations included some pre-allocated unused space. There are a few dense blocks
in a small percentage of the permission lists in the real-world ECM system, and they are
stored in literal version even when using BOP implementation.

Table 5.2: Comparison of sizes among BOP, our hash table, and WAH (the synthetic
data includes a single bitmap which is 11.92 MB before compression; the real-world data
contains nearly 6,000 bitmaps, and the total size before compression is 56.27 GB)

BOP Hash Table WAH
Synthetic 59.8 KB 163.8 KB 213.4 KB

Compression ratio (synthetic) 204.1 74.5 57.2
Real-word 0.36 GB 0.92 GB 1.1 GB

Compression ratio (real-world) 156.3 61.2 51.2

The results show that all three implementations are much more space-efficient than
storing literal bits, among which BOP is the best. Additionally, the experimental results
for BOP and our hash table are very close to the theoretical analysis (theoretically, our
hash table consumes 2.5 times more space than BOP).

38

5.2.2 Execution Speed

Individual Permission Checking

We first tested this operation on a synthetic permission list generated using the approach
described in Section 5.1.1. Specifically, we randomly picked 50,000 to 500,000 individ-
ual permissions (a permission refers to a specific bit in a bitmap, and it refers to an
object-permission pair for a hash table) and checked their values on a permission list rep-
resented/compressed by BOP, our hash table or WAH. The results are presented in Figure
5.3.

Figure 5.3: Experimental results for individual permission checking on the synthetic data

As expected, the time for all data structures increases linearly when we increase the
number of checking times. Hashing is about 2.6 to 2.7 times faster than BOP. That is
because the time complexity of searching for an object using our hash table is O(1) while
BOP requires O(1) for locating the block plus O(log N) for finding the object, where N is
the number of non-zero units in the block holding the desired object (recall Section 3.3.1).

Additionally, BOP is approximately 10 times faster than WAH when applied to a
synthetic bitmap. Instead of taking advantage of hashing, or the block index and binary
search for efficient search, we have to interpret the WAH words one by one from the
beginning of the compressed bitmap until we find the WAH word containing the bit we
are searching for. Obviously, this linear search with WAH is far more expensive than the
search with our hash table or BOP.

39

BOP, our hash table, and WAH were then applied to our real-world data. We tested
this operation 50,000 times, for each of which we randomly chose a bitmap and checked
the value of a random bit. Table 5.3 shows the experimental results. We notice that the
performance advantage of BOP over WAH is significantly amplified for the real-world data.
There are two reasons. First, BOP is more space efficient, which indicates less cache loading
time. This is particularly important when there are 6,000 real-world bitmaps instead of
only a single synthetic bitmap. In fact, the space efficiency factor also amplifies our hash
table’s performance advantage over WAH and narrows the performance difference between
BOP and our hash table. Second, although the average density of the real-world bitmaps
is close to the density of the synthetic ones, the densities of the real-world bitmaps, in
fact, vary in a large range, and this characteristics amplifies the performance advantage of
binary search over linear search. Due to these two reasons, BOP is almost 100 times faster
than WAH when applied to our real-world data.

Table 5.3: Time needed to check, grant, or revoke 50,000 random permissions on the
real-world dataset (ms).

BOP Hash Table WAH
Checking 18.6 10 1945
Granting 38.3 16.2 2629

Revocation 18.7 9.9 1987

Permission Granting

We generated a permission list and then randomly granted 50,000 to 500,000 individual
permissions to the permission list. We might grant a permission that had been granted.
This operation is similar to the individual permission checking with the exception that a
new entry (for hash table), a new permission word (for BOP), or up to two WAH words
may have to be inserted. Figure 5.4 shows the experimental results.

It is more expensive to use BOP than our hash table for this operation, too. Besides
more searching time as for individual permission checking, another reason is that BOP
may have to insert a new permission word into the array holding the block or a brand
new block when necessary (which is more expensive than inserting a new entry into a hash
table unless an extension is needed for the hash table). In addition, all physical blocks in
a permission list are organized as a linked list, and maintaining such a list costs extra time
when we are inserting a new block.

40

Figure 5.4: Experimental results for permission granting on the synthetic data

Furthermore, the cost for our hash table goes up almost linearly as the increase of the
number of permission grantings (but not perfectly linearly due to the hash table extension
when necessary). However, the cost for BOP obviously increases super-linearly, which is
due to 1) the arrays holding the permission words are becoming larger and larger, and 2)
inserting an element into a larger array is more expensive than inserting an element into a
smaller array (more expensive to shift elements and more expensive to relocate the array
when needed).

The cost for using WAH soars as the number of permission grantings increases. This is
due to the quick increase in size of the compressed bitmap after permission grantings, and
therefore both search and new WAH word insertion becomes more and more expensive.

Again, we tested this operation on the real-world data, and Table 5.3 includes the
results of the experiments. Similar to individual permission checking, the performance
advantages of BOP and our hash table over WAH are amplified even with a small number
of grantings when applied to the real-world data, and the performance difference between
BOP and the hash table is relatively small.

Permission Revocation

Figure 5.5 presents the results for permission revocation on a synthetic permission list
using our hash table, BOP, and WAH, respectively. Table 5.3 includes the results for the

41

tests on the real-world data. The operation is similar to the above two operations; thus it
is not surprising that BOP is a little more expensive than our hash table, and both BOP
and our hash table significantly outperform WAH.

Figure 5.5: Experimental results for permission revocation on synthetic data

It is worth noting that after revoking a permission from a permission list when using
BOP, we may get a permission word containing an all-0 unit; we may even get an empty
block. We implemented a garbage collection mechanism to reclaim such space. Specifically,
if we encounter an empty block after revocation, we remove the block completely. If we get
a permission word with an all-0 unit, we remove this word and shift the remaining elements
in the array containing all permission words of the specific block (thus all unused words
will always be at the tail of the array). However, we do not shrink the array size during
this operation (therefore no array relocation). This explains why permission revocation is
more expensive than individual permission checking when using BOP (the difference can
be very small since we do not encounter many all-0 units in our tests when we revoke just
one permission each time).

We did not recycle garbage for our hash table since it is expensive to do it (we will
have to update all pointers pointing to all entries shifted) (please recall our hash table
implementation presented in Figure 4.2).

For WAH, a word may become combinable with its neighbors. For example, suppose
that we have a 0-fill followed by a literal word in which only one bit is set to 1. After we
revoke the permission, we get a literal word in which every bit is 0; thus this literal word

42

can combine with the 0-fill, forming a new 0-fill containing more 0s. We, however, did not
do this in our implementation since it requires array shift (and potentially array shrink).
This is the reason why revoking a permission is only a little more expensive than checking
a permission using WAH.

Permission List Union

We had two categories of experiments for this operation. In the first category, we generated
100 permission lists using the approach described in Section 5.1.1. Then we performed 100
to 500 union operations, for each of which we randomly chose two permission lists. Figure
5.6 shows the test results. We find that the results for all data structures go up linearly
but BOP is more efficient than the other two (approximately 5.2 times and 6 times faster,
respectively). Unlike the above three operations, because for every entry in the smaller
hash table, we have to one by one either insert it into the bigger one or merge it with an
entry in the bigger one (searching followed by insertion or merge), our hash table barely
outperforms WAH.

Figure 5.6: Union between two permission lists (various times)

In the second category of the tests, we varied the logical length of the permission lists,
but we fixed the density of the units/bits (1.1×10−3/6×10−4). This is done by increasing
the logical length and the total number of bits to be set proportionally. The results are
presented in Figure 5.7

43

It is interesting to notice that the cost for our hash table increases faster for some
settings than for others. In fact, this is not determined by the logical length but the total
number of used entries. For each union, we first make a copy of the bigger hash table. As
we insert the entries from the smaller hash table to the copy of the bigger hash table, an
extension is necessary sometimes but not always. For example, if we have two hash tables,
each of which has 9 entries, the chance to require an extension is relatively small since the
pre-allocated hash table is big enough as long as we have two entry merges (16 entries after
two merges); the situation may not change when the number of each hash table’s entries
goes up to 10 (i.e., three merges); however, when the number increases to 15, it is very
likely that we need an extension, which causes the fluctuation of the slope of line for our
hash table. For BOP, however, the increase of the logical length (permission words) simply
increases the number of the blocks we need to merge without making the blocks larger or
denser.

Figure 5.7: 500 unions between two permission lists (various length; fixed density)

When testing union on our real-world data, each test is to pick two random permission
lists and union them. We counted the necessary time for 500 unions. Table 5.4 presents
the results.

Permission List Intersection

Figure 5.8 and Figure 5.9 present the results for intersection on the synthetic permission
lists. The results for real-world data is presented in Table 5.4.

44

Table 5.4: Time needed for 500 unions or intersections using BOP, our hash table, and
WAH on the real-world data (ms)

BOP Hash Table WAH
Union 72 190 368

Intersection 24 33 308

The results for intersection are very close to those for union with two exceptions. First,
intersection is cheaper using whichever data structure (the result of an intersection will
never contain more entries/permission words than the smaller participant). Second, the
line for our hash table goes up more smoothly and the performance difference between our
hash table and WAH is widened since this operation requires no hash table extension at
all.

Figure 5.8: Intersection between two permission lists (various times)

Browsing-oriented Query

For BOP and WAH, the first step is always to search for the first object given a list of
contiguous objects. Since WAH is far much slower for this step than BOP (in fact, we also
notice that the cost of checking for a list of contiguous objects is mainly from checking for

45

Figure 5.9: 500 intersections between two permission lists (various length; fixed density)

the first one), it is quite obvious that checking for a list of contiguous objects is also slower
using WAH. We focused on BOP and our hash table for this test.

Although checking an individual permission is more efficient using our hash table, a
major drawback of a hash table is that it is poor for iterating over non-zero values in
sorted order. Assuming that breadth-first numbering is used for objects, we will have to
check multiple objects with contiguous IDs for a browsing-oriented query. In addition, new
objects may be created under an object (e.g., a folder), so there may exist a small number
of objects with random IDs under one object. We simulated this in our experiments
by including R (0≤R≤3) random IDs in each browsing-oriented query. We tested the
performances when there were various contiguous IDs to be checked in a query (again,
with R random IDs). Figure 5.10 shows the results.

All BOP lines go up very slowly, and the cost almost doubles when the number of
random IDs doubles, indicating that the major cost is to find the first object we need to
check when using BOP. In contrast, the cost for our hash table increases more sharply
as the number of objects to be checked in a query increases. The number of random IDs
will not affect the hash table performance since a hash table has to treat every object as
a random one anyway. We therefore did not include any random IDs for the hash table
tests.

Additionally, as expected, when the percentage of random IDs is small in a query, BOP
is more efficient than a hash table. For example, the line BOP(3) indicates that when the

46

Figure 5.10: Experiment results for browsing-oriented queries on the synthetic data using
BOP and our hash table, respectively. A line labeled BOP (R) is for the tests with various
contiguous IDs and R random IDs in each test while using BOP.

percentage of random IDs is lower than 11% (3/26), BOP is more efficient. Note that we
did not use percentage as a parameter but used a fixed number of random IDs for a BOP
line, since both the number of IDs and the number of random IDs are too small to make
meaningful claims when using percentages.

In order to test this operation on the real-world data, we applied breadth-first num-
bering to the objects. We then changed a few percentages of IDs to be random (2% to
10%) Then we tested 50,000 random browsing-oriented queries. The results are shown
in Figure 5.11. The results show again that BOP is more efficient than our hash table
when the percentage of random IDs is low. It is worth noting that most browsing-oriented
queries encountered one list of contiguous objects when a small percentage of IDs are set
to random (which is unlike the tests on the synthetic data).

In conclusion, BOP is faster if most IDs we have to check in a browsing-oriented query
are contiguous by storing the permission words in order, and we can benefit from BOP if
breadth-first numbering is used for objects in practice.

47

Figure 5.11: Experiment results for browsing-oriented queries on the real-world data using
BOP and our hash table, respectively.

Comprehensive Workload

We designed four prototypical workloads in this section. In each one, 1) we have multiple
types of queries, 2) we take the subject hierarchy into consideration (affecting individual
permission checking and browsing-oriented queries since we have to check the permis-
sion lists of the issuer’s ancestors, too), and 3) there includes 10% random IDs in the
dataset. Four query sets were generated. Each query set includes 100,000 queries con-
sisting of browsing-oriented queries, individual permission checking queries, permission
granting queries, and permission revocation queries (see Table 5.5 for details).

Table 5.5: Query sets for comprehensive tests
Browsing Individual checking Granting Revocation

QS1 0.45 0.45 0.05 0.05
QS2 0.65 0.25 0.05 0.05
QS3 0.35 0.35 0.15 0.15
QS4 0.50 0.20 0.15 0.15

Table 5.6 presents the results of answering these query sets. We find that BOP outper-
forms our hash table for all query sets. Among the four query sets, QS1 and QS2 assume a
less dynamic system, and they are more expensive to run because of the subject hierarchy
(a browsing-oriented query or a individual permission query has to check, on average, 9.7

48

permission lists while we have to work on only a single permission list for a granting or re-
vocation query). Additionally, BOP and our hash table produced very close execution time
for QS3 which contains the lowest percentage of browsing-oriented queries. That proves
that the performance advantage of BOP is from quicker execution of browsing-oriented
queries, and it also indicates that a hash table will outperform BOP in a system with few
browsing-oriented queries.

Table 5.6: Execution time for running comprehensive workloads (ms)
BOP Hash Table

QS1 1696 1778
QS2 1801 1927
QS3 1333 1397
QS4 1398 1519

49

Chapter 6

Conclusion and Future Work

6.1 Summary of the Thesis

Access control is critical for enterprise content management. Previous work was focused on
access models with little consideration on the efficiency problem. Our thesis investigates
the data structures for fast access control in an ECM system.

In this thesis, we surveyed ECM systems’ data and query characteristics. Besides the
characteristics that an ECM system usually has a complicated subject hierarchy and has
many more subjects and objects, the most important characteristic is that there are many
browsing-oriented queries in an ECM system.

We then presented a data structure specifically tailored to ECM systems by optimizing
it for browsing-oriented queries. In our design, permissions are organized by subjects, and
each subject’s permission list is represented by our data structure called BOP. BOP first
splits a permission list into multiple blocks with indexes to them, and then uses a 32-bit
word to represent a non-zero permission unit (4 bits are unused). Permission units in a
block are stored in order. How to carry out the necessary operations in an access control
system was presented, too. Two alternative implementations were also discussed (using a
hash table or a bitmap compression scheme called WAH).

To compare the three data structures, we generated a few synthetic permission lists;
we presented the characteristics of the real-world data we got from a mainstream ECM
vendor, too. We first evaluated their space efficiencies. We then carried out each operation
on permission lists represented by BOP, our hash table, and WAH, respectively (except
that we did not test browsing-oriented queries for WAH), and compared their execution

50

speed. We find that BOP is the most space efficient data structure for our access control
system among the three (consuming only 36.5% and 28.0% of the space needed by our
hash table and WAH, respectively, when applied to our real-world data). Additionally, the
hash table outperforms the other two while checking an individual permission, granting a
permission, and revoking a permission; however, BOP is the most efficient data structure
for browsing-oriented queries when breadth-first numbering is applied to object IDs (even
when there is a small percentage of random IDs). Through the comprehensive tests that
contain all types of operations and take the subject hierarchy into consideration, we found
that BOP resulted in the lowest overall cost (the performance advantage decreased as the
percentage of the browsing-oriented queries went down).

In conclusion, BOP is scalable, space-efficient, and fast when applied to an ECM system,
particularly when the percentage of browsing-oriented queries are relatively high.

6.2 Future Work

6.2.1 Object ID Renumbering

In our test, we, in fact, have renumbered the object IDs for tests on browsing-oriented
queries in order to get contiguous IDs under an object. As the system runs, new objects
may be created under an object, and an existing object may be moved to another folder.
These operations increase the number of lists of contiguous IDs encountered by a browsing-
oriented query, thus making BOP less efficient. Therefore, we plan to evaluate the cost of
renumbering systematically so that we can decide how often we need to renumber object
IDs.

6.2.2 Materialization of Effective Permission Lists

Another potential direction is to materialize the individual users’ effective permission lists
so that we have to check just one effective permission list when answering a browsing-
oriented query or an individual permission checking query.

Essentially, this is similar to the materialized view problem widely discussed in the
database community [22, 15, 33, 9]. There are two major problems regarding materialized
views: selection and maintenance. With regard to view selection, we propose to materialize
every active (logged in) individual user’s effective permission list. To compute a user’s
effective permissions, we simply have to union the permission lists of his/her ancestors

51

and himself/herself. In the previous chapters of this thesis, we assume that the list of any
user’s ancestors is pre-stored; however, an access control system is dynamic so that a user
may get a new ancestor or lose an ancestor during run time. Intuitively, we can maintain
a transitive closure matrix for the subject hierarchy. Thus an efficient transitive closure
maintenance algorithm is necessary.

If effective permission lists are materialized, they need to be updated when changes are
made to the explicit permission lists (e.g., permission grant/ revocation, group membership
update, etc.). The straightforward way is to do a complete refresh for each potentially
affected user’s materialized permission list (to re-union the explicit permission lists of the
user and all its groups). However, this can be expensive, particularly if explicit permission
lists and the subject hierarchy are relatively frequently updated. Therefore, we plan to
develop algorithms for incrementally updating materialized effective permission lists.

Many incremental maintenance techniques that reduce the maintenance cost have been
presented in the database community [27, 7, 33, 9]. The fundamental idea is to calculate
what needs to be updated in the materialized view, given only the view definition, the
current contents of the materialized view, and the update operation, and directly make
changes to the materialized view. However, the view maintenance algorithms strongly
depend on the operators used to define the views. Therefore, although the fundamental
idea of incremental maintenance is crucial in our research, we have to develop our own
application-specific algorithms.

The update operations we are considering include permission granting, permission re-
vocation, and membership update. Basically, there are two steps to implement incremental
update: find potentially-affected users, and determine which specific piece of data needs
to be updated and how it needs to be updated in each potentially-affected materialized
permission list. When an update operation is applied to an individual user, there is always
only one potentially-affected user, and no special consideration is needed for the design of
the incremental update algorithm. Additionally, we may conclude for a potentially-affected
materialized permission list that, in fact, no update is required.

Among these update operations, permission granting is the easiest one with regard to
incremental update of materialized permission lists. For example, if a new permission is
granted to G3 (see Figure 6.1), we simply need to grant the same permission (set the
corresponding bit to 1 in the corresponding object-permissions pair) to the individual
members of G3 (U1, U2, and U3 in our case).

We will next consider the operation that a permission is revoked from a group. Poten-
tially, every member in the group is affected. However, simply clearing the corresponding
permission in the effective permission lists of potentially-affected users is inappropriate

52

U1 U2 U3

G1

G2
G5

G3

G4

Figure 6.1: An example of a subject hierarchy

since a member may inherit the same permission from another group. We are going to
develop an algorithm that can identify the set of materialized permission lists that do need
an update. The algorithm may work like this: we first find the set of potentially-affected
users (all active users who are members of the group from which the permission is re-
moved); we then check for every one in the set whether the specific permission is explicitly
granted to any of its other ancestors so that the user can inherit it. Given the fact that
checking a specific permission (or even several permissions) is much faster than the union
of two permission lists, we believe that this algorithm may outperform complete refresh.

We are also going to work on incremental update algorithms for membership update,
including assigning a group to another group and removing a group from another group.
For the former one, suppose G2 is a new member of G1. A potential algorithm is like
this: find all members of G2; for each member of G2, we union its materialized effective
permission list with the explicit permission lists of G1 and all its ancestors. This algorithm
may, however, not be the optimal one. For example, if a potentially-affected user was a
member of G1 before the operation, in fact, its materialized permission list does not need
to be updated. We will improve our algorithm by taking these cases into consideration.
For example, we can take advantage of the transitive closure matrix to reduce the set of
potentially-affected users. Suppose SetDesG2 is the set of G2’s descendants (which can

53

be derived from the transitive closure matrix very quickly), SetDesG1 is the set of G1’s
descendants, and SetActive is the set of active individual users. We can reduce the set of
potentially-affected users from SetDesG2 to SetDesG2 ∩ SetActive - SetDesG1.

Removing a group from another group is the most complicated update operation with
regard to materialized permission list maintenance. For example, if we remove a group G2
from another group G1, all permissions assigned to G1 and its ancestors (the set of effective
permissions of G1, or SetEPG1) may have to be revoked from all members of G2; however,
G2’s members may inherit those permissions from other ancestors. We will have to check
those many permissions for every member of G2, which may be even more expensive than
a complete refresh. However, we can at least reduce the set of potentially-affected users
by again using the transitive closure matrix (from SetDesG2 to SetDesG2 ∩ SetActive -
SetDesG1). In fact, for incremental update, we may also reduce the number of permissions
we need to check for a potentially-affected user. For example, if a direct member of G2 is
also a direct member of G0 which is an ancestor of G1, the member will retain all effective
permissions of G0 (SetEPG0). Thus we can reduce the set of permissions we have to check
from SetEPG1 to SetEPG1 - SetEPG0.

It is also worth noting that a complete refresh does not have to be more expensive than
the equivalent incremental update. Therefore, we must compare the performances between
complete refresh and incremental update for every operation we consider.

6.2.3 Negative Authorizations

Negative permissions have been discussed in academic papers [6, 2], but they are not widely
adopted in industry. In fact, there are also some arguments that using negative permissions
is harmful [26]. That is because security administrators are more easily confused with
complicated conflict resolution policies within a system; thus they are more error-prone
even with a correctly-working conflict resolution algorithm. Recently, some health care
systems have proposed to use negative permissions (called exceptions in their context)
[17]; however, ECM systems have very limited support for negative permissions (notably
SharePoint 2013 supports explicit ‘Deny’ that can override positive permissions [23]).

With negative permissions, there may be conflicts of permission assignments; thus
conflict resolution is inevitable in a system supporting negative permissions. Chinaei et al.
present a unified conflict resolution algorithm that can resolve conflicts within a system even
it uses different conflict resolution policies under different conditions [10]. More commonly,
however, people tend to use a uniform and simple conflict policy across the whole system
(often negative permissions take precedence). The major benefit of this approach is that

54

it can ease the difficulty of conflict resolution. However, it makes the system less flexible;
also, if the policy needs to be changed, the whole system has to be replaced.

We do not conclude here how negative permissions should be used; we may, however,
investigate how to materialize permission lists when negative authorization is supported in
a system (probably with a fixed conflict resolution policy being adopted). We will have to
take into account the conflict resolution policy in order to get the effective permission list
we want to materialize; we also have to resolve potential conflicts for every update. If these
steps are too expensive, partial materialization (e.g., materialize an active user’s direct or
inherited positive permissions and negative permissions separately) may be adopted; we
resolve potential (simplified) conflicts at run time.

55

References

[1] Daniel J. Abadi, Samuel Madden, and Miguel Ferreira. Integrating compression and
execution in column-oriented database systems. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 671–682, Chicago, Illinois,
USA, 2006. ACM.

[2] Mohammad A. Al-Kahtani and Ravi S. Sandhu. Rule-based RBAC with negative
authorization. In Proceedings of the 20th Annual Computer Security Applications
Conference, pages 405–415, Tucson, AZ, USA, 2004. IEEE Computer Society.

[3] Vo Ngoc Anh and Alistair Moffat. Index compression using fixed binary codewords. In
Proceedings of the Fifteenth Australasian Database Conference, pages 61–67, Dunedin,
New Zealand, 2004. Australian Computer Society.

[4] Vo Ngoc Anh and Alistair Moffat. Inverted index compression using word-aligned
binary codes. Inf. Retr., 8(1):151–166, 2005.

[5] Gennady Antoshenkov and Mohamed Ziauddin. Query processing and optimization
in Oracle Rdb. VLDB J., 5(4):229–237, 1996.

[6] Elisa Bertino, Fabio Origgi, and Pierangela Samarati. An extended authorization
model for object databases. Journal of Computer Security, 3(2/3):169–206, 1995.

[7] José A. Blakeley, Per-Åke Larson, and Frank Wm. Tompa. Efficiently updating ma-
terialized views. In Proceedings of the 1986 ACM SIGMOD International Conference
on Management of Data, pages 61–71, Washington, D.C., USA, 1986. ACM Press.

[8] Daniel K. Blandford and Guy E. Blelloch. Index compression through document
reordering. In Proceedings of 2002 Data Compression Conference, pages 342–351,
Snowbird, UT, USA, 2002. IEEE Computer Society.

56

[9] Songting Chen, Xin Zhang, and Elke A. Rundensteiner. A compensation-based ap-
proach for view maintenance in distributed environments. IEEE Trans. Knowl. Data
Eng., 18(8):1068–1081, 2006.

[10] Amir H. Chinaei, Hamid R. Chinaei, and Frank Wm. Tompa. A unified conflict reso-
lution algorithm. In Proceeding of the 4th VLDB Secure Data Management Workshop,
pages 1–17, Vienna, Austria, 2007. Springer.

[11] W.B. Croft, D. Metzler, and T. Strohman. Search Engines: Information Retrieval in
Practice. Addison Wesley Publishing Company Incorporated, 2010.

[12] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, 2012.

[13] Peter Gottschling and Dag Lindbo. Generic compressed sparse matrix insertion: Algo-
rithms and implementations in MTL4 and FEniCS. In Proceedings of the 8th Workshop
on Parallel/High-Performance Object-Oriented Scientific Computing, pages 2:1–2:8,
Genova, Italy, 2009. ACM.

[14] Apple Computer Inc. Understanding packbits. http://devword.apple.com/

technotes/tn/tn1023.html, 1996.

[15] Pravin P. Karde and Vilas M. Thakare. Selection and maintenance of materialized
view and its application for fast query processing: A survey. International Journal of
Computer Science and Engineering Survey, 1(2):16–29, 2010.

[16] Paul A. Kargerr. Improving security and performance for capability systems. Technical
Report 149, University of Cambridge Computer Laboratory, Cambridge, UK, 1988.

[17] Atif Khan and Ian McKillop. Privacy-centric access control for distributed hetero-
geneous medical information systems. In Proceedings of 2013 IEEE International
Conference on Healthcare Informatics, pages 297–306, Philadelphia, PA, USA, 2013.

[18] Kenneth C. Knowlton. A fast storage allocator. Commun. ACM, 8(10):623–624,
October 1965.

[19] Donald E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Search-
ing. Addison-Wesley Publishing Company, Inc., Reading, MA, USA, 1973.

[20] Butler W. Lampson. Protection. In Proceedings of the 5th Princeton Conference on
Information Sciences and Systems, pages 437–443, Prinston, NJ, USA, 1971. Prinston
University.

57

http://devword.apple.com/technotes/tn/tn1023.html
http://devword.apple.com/technotes/tn/tn1023.html

[21] H.M. Levy. Capability-based Computer Systems. Digital Press, 1984.

[22] Imene Mami and Zohra Bellahsene. A survey of view selection methods. SIGMOD
Record, 41(1):20–29, 2012.

[23] Microsoft. Authorization, users, groups, and the object model in SharePoint 2013.
http://msdn.microsoft.com/en-us/library/sharepoint/ms414400.aspx, 2013.

[24] Mark Miller, Ka-Ping Yee, and Jonathan Shapiro. Capability myths demolished.
Technical report, Combex Inc, 2003.

[25] Mark Nelson and Jean-Loup Gailly. The Data Compression Book (2nd ed.). MIS:Press,
New York, NY, USA, 1996.

[26] Diana K. Smetters and Nathan Good. How users use access control. In Proceedings
of the 5th Symposium on Usable Privacy and Security, pages 15:1–15:12, Mountain
View, California, USA, 2009. ACM.

[27] Frank Wm. Tompa and José A. Blakeley. Maintaining materialized views without
accessing base data. Inf. Syst., 13(4):393–406, 1988.

[28] Garfield Zhiping Wu and Frank Wm. Tompa. Effective and efficient bitmaps for access
control (summary). In Proceedings of the 2014 Data Compression Conference, page
433, Snowbird, UT, USA, 2014. IEEE.

[29] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. A performance comparison of bitmap
indexes. In Proceedings of the 2001 ACM CIKM International Conference on Infor-
mation and Knowledge Management, pages 559–561, Atlanta, Georgia, USA, 2001.
ACM.

[30] Kesheng Wu, Ekow J. Otoo, Arie Shoshani, and Henrik Nordbergi. Notes on design
and implementation of compressed bit vectors. Technical Report LBNL/PUB-3161,
Lawrence Berkeley National Laboratory, Berkeley, CA, 2001.

[31] Lingpeng Yang, Dong-Hong Ji, and Mun-Kew Leong. Document reranking by term
distribution and maximal marginal relevance for chinese information retrieval. Inf.
Process. Manage., 43(2):315–326, 2007.

[32] Jiangong Zhang, Xiaohui Long, and Torsten Suel. Performance of compressed inverted
list caching in search engines. In Proceedings of the 17th International Conference on
World Wide Web, pages 387–396, Beijing, China, 2008. ACM.

58

http://msdn.microsoft.com/en-us/library/sharepoint/ms414400.aspx

[33] Jingren Zhou, Per-Åke Larson, Jonathan Goldstein, and Luping Ding. Dynamic ma-
terialized views. In Proceedings of the 23rd International Conference on Data Engi-
neering, pages 526–535, Istanbul, Turkey, 2007. IEEE.

[34] Marcin Zukowski, Sándor Héman, Niels Nes, and Peter A. Boncz. Super-scalar RAM-
CPU cache compression. In Proceedings of the 22nd International Conference on Data
Engineering, pages 59–70, Atlanta, GA, USA, 2006. IEEE Computer Society.

59

	List of Tables
	List of Figures
	Overview
	Problem Overview
	The Organization of the Thesis

	Related Work
	Access Control Matrix
	Sparse Matrix Compression
	List of Lists
	Coordinate List
	Dictionary of Keys
	Compressed Sparse Row
	Compressed Sparse Column
	MTL4

	Column-oriented DB Compression
	Bitmap Compression
	Word-Aligned Hybrid
	Simple-9

	Blocked and Ordered Permissions
	Characteristics of ECM System's Access Control and Subject-oriented Representation
	Description of Blocked and Ordered Permissions
	Blocking
	Representation within a Block
	Unused Bits
	Scalability

	Operations on the Permission Lists
	Individual Permission Checking
	Permission Granting
	Permission Revocation
	Union of Permission Lists
	Intersection of Permission Lists
	Browsing-Oriented Query

	Alternative Implementations
	Implementation Based on Hash Table
	Hash Table
	Hash Function
	Access Control Operations

	Implementation Based on WAH
	Access Control Operations

	Performance Evaluation
	Experimental Data
	Synthetic Data
	Real-world Data

	Performance Evaluation
	Space Complexity
	Execution Speed

	Conclusion and Future Work
	Summary of the Thesis
	Future Work
	Object ID Renumbering
	Materialization of Effective Permission Lists
	Negative Authorizations

	References

