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Abstract

This thesis is broken into two parts, both dealing with the role of two-dimensional
graphene in electronic and optical applications. The first section develops a phenomenologi-
cal relationship for the polarizability of the graphene sheet using a hybrid semi-classical and
QFT-derived (Quantum Field Theory) model for different energy regimes. Fits are made
and our results are compared to data from two distinct experimental setups. The effects of
contamination and rippling of the sheet are considered. The second section shows a phe-
nomenological model for the rough surfaces of graphene and its underlying substrate for a
sheet grown on a conducting material. Three different perturbative mathematical models
are then explored to justify the shift in the plasmon frequency and the energy loss dispersion
due to roughness, using input from experimental roughness data. The models are compared
and corrected to include physical effects like crumpling.
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Chapter 1

Introduction

1.1 Graphene: Physics in Flatland

Graphene has many peculiar features, the most noteworthy being its two-dimensionality.
Two-dimensional materials for decades were predicted to be experimentally unviable; this
is due to the Mermin-Wagner theorem, which states that the long-wavelength thermal and
quantum fluctuations would make the material ripple and curve, meaning a flat structure
is an unstable energy state for the system [27]. However, its discovery in 2004 by Geim
and Novosolev using scotch tape on graphite, which is composed of many layers of spaced
graphene, showed that a stable configuration is possible. Graphene is the most recent in
a succession of discoveries regarding the assembly of carbon atoms into different configura-
tions, with fullerene, or buckyballs, coming in 1985 [32]; these are stable molecules of 60
carbon atoms arranged in a geodesic structure. Carbon nanotubes, with a disputed dis-
covery date between 1952 and 1991, are cylindrical lattices with small radii and enormous
tensile strength, and can be considered as ‘rolled up’ graphene in terms of the bonding and
hexagonal lattice structure. The overarching theme of all these carbon nano-structures is
the sp2 orbital bonding that gives these carbon allotropes their unusual properties, including
their feature of having unbonded π orbitals which yield many of the electronic properties.
Throughout our thesis we address this two-dimensional feature of our graphene, a theme
that affects the movement of electrons in the sheet, the roughness of the graphene membrane,
and the mathematical description of it within our electromagnetic boundary conditions.

The topic of two-dimensionality does not stop at the lattice structure. The influence of
the unbonded sp2 orbitals above and below each carbon atom, along with the hexagonal
lattice that threads our carbon atoms, yields a linear dispersion relation for frequencies
between the visible and THz range, depending on the Fermi energy of the graphene. The
photon-like nature of fermionic quasi-particles (meaning electrons and holes with zero ef-
fective mass) for these energies and the ability to experimentally investigate them makes
graphene a tool for research into fundamental physics concepts like Pauli blocking, Klein
tunneling [55], Landau quantization of the fermionic quasi-particles [26], and the quantum
Hall effect.

On the more applied side of things, the electrical conductivity of graphene, even at room
temperature, is stronger than any known material, hence graphene’s being heralded as the
new innovation to upgrade transistors, electrical circuits and semiconductors into faster and
smaller variations [53]. Plasmons with tunable resonance frequency on the graphene surface
is a trending topic in current research, and we describe them next.
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Figure 1.1: Model of the energy dispersion of graphene within the tight-binding approxima-
tion. The 6 symmetric self-crossings in the band energy structure are where the dispersion
relation relating energy to the crystal momentum in the graphene lattice are effectively lin-
ear, known as the Dirac cone regime. Other symmetry points (see Fig. 3.1) are associated
with different regimes that exhibit special properties. Adapted from [42]

1.2 Graphene: A Host for Tunable Plasmons

The many optical and electrical properties of graphene make it an attractive option for the
development of new opto-electronic devices and in the enhancement of current technologies.
Its small size allows its incorporation into semiconductors, conductors, dielectrics, metals
and other nano-structures. Aside from its size, an advantage of graphene is the effect that
doping and gating have on the resonance of electron oscillations confined to the surface of
the sheet, known as plasmons [21]. Graphene in the low energy regime has a band structure
effectively described via a quasi-particle picture with photon-like particles occupying eigen-
states of the Hamiltonian, computed within a tight-binding approximation. Tunability of
the plasmon works because of the strong electron-electron interactions within the graphene
sheet [15], causing the effective mass of these quasi-particles in graphene to modulate with
the Fermi energy, and hence shift the resonant frequency. The ability to tune these plasmons
gives graphene a character unseen in traditional optical devices which have fixed resonance
frequencies. The success of graphene in this respect has spurred the investigation of the
tunability of similar 2D crystals to discover their applications in opto-electronics.

Current applications for graphene plasmons include efficient photocells, frequency mod-
ulators, displays, and sensors, and is seen as a probable successor to liquid crystals due to
the speed of graphene’s response [3]. The biological and chemical sensing technique of sur-
face plasmon resonance has been shown to increase its sensitivity to detected particles when
the system is coupled to a graphene sheet, along with the fact that the carbon structure
of graphene makes it an effective tool for chemical bonding. The extremely-high localiza-
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tion and confinement of the plasmons in graphene, along with its long lifetime and efficient
light-matter interactions also make it the subject of heavy research for opto-electronic uses
[21].

The main issues with using plasmons in graphene for applications center around the low
optical absorption of the single layer of carbon atoms, the challenge of coupling to certain
systems due to the strong bonding capabilities of graphene, and the issues of disorder,
randomness, contamination and finite temperature in the structure, which tend to ripple
and shift the spectrum of graphene plasmons and reduce their lifetime [6]. We therefore
have the high sensitivity of graphene being both a celebrated element of its two-dimensional
structure and as the part of its nature that is hardest to control. In this thesis, we attempt
to uncover some of the effects of random height fluctuations in the structure of the graphene
sheet and the underlying substrate that the carbon nano-structure is frequently grown on.

1.3 Outline of Thesis

The purpose of this thesis is to investigate the behaviour of graphene plasmons in two
different contexts: one context uses them as a method of energy absorption that can be
detected via spectroscopic analysis, and the other context considers graphene plasmons as
self-excited modes on the surface that are solutions to electromagnetic boundary conditions.
The objective of our first investigation is to determine a semi-classical equation for the
optical conductivity of graphene in an energy region that covers two separate regimes of
spectroscopic experiments, and to test our theory by comparing it to experimental results.
Our second objective is to arrive at a reasonable description of the effect that rough surfaces
have on the plasmonic and structural nature of graphene.

Chapter 2 begins this thesis with an explanation of the electromagnetic background
necessary to describe plasmons in later chapters, including Maxwell’s equations, boundary
conditions, the quasi-static approximation, the equations for s- and p- polarized light reflect-
ing from an interface, and the dispersion equation for graphene plasmons on an interface.
Results from this chapter are used later to experimentally verify our model for graphene
conductivity by comparing it with ellipsometry, which measures changes in light polariza-
tion to extract information about a material. We also use this chapter to understand the
bound, oscillatory nature of plasmons on an interface which dominates the theory behind
Chapter 5.

Chapter 3 is an introduction into the electronic properties of graphene we will be using
throughout the thesis. This chapter highlights the relevance of graphene’s two-dimensional
nature, the linear energy dispersion relation for low frequencies in graphene, the universal
absorbance of light in this low energy regime due to the photon-like nature of graphene
quasi-particles, the Random Phase Approximation (RPA), Fermi Liquid theory, the phase
space of excitations, the resonant frequencies in graphene at different energies and the
applicability of a two-fluid two-dimensional hydrodynamic model to describing graphene at
higher energies. Results from this chapter have their application throughout the thesis, with
the hydrodynamic model combined with the universal absorbance of light composing the
two-dimensional conductivity we compare to our experimental spectroscopic results, and
the RPA approximation yielding equations for the conductivity we use for low energies to
analyze the effective dispersion relation for a rough surface.

Chapter 4 delves into one of our two objectives; it contains the necessary equations
relating the functions describing graphene’s polarizability to parameters that can be exper-
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imentally measured. This includes a derivation of the energy loss of inelastically scattered
electrons, and a phenomenological fit to the energy loss data. We then use our fitting param-
eters, now inserted into the conductivity of the graphene, to check the region of low energy
probed by ellipsometry. We test ideas like contamination and rippling of the graphene to
help explain our results, then use the f -sum rule to justify some of our findings.

Chapter 5 is broken in two parts. The first deals with the mathematical and physical
underpinnings of stochastic methods and rough surfaces. We look at ways to describe
roughness, and test out both theoretical and experimental results that justify our treatment
of graphene as a stochastically rippled surface. The second part of the chapter inputs
these results into three different methods for determining the effect of roughness on the
plasmon dispersion relation, which relates the wavenumber to the frequency of a plasmon
constrained to the surface. These methods use a combination of Green’s functions, potentials
as solutions to Laplace’s and Poisson’s equations, and a smoothing method that allows us to
deal analytically with the stochastic variables. Some numerical results are shown to present
predictions that the methods make.

Chapter 6 closes out the thesis with a brief summary of the work performed within the
thesis and future work that can be undertaken in this burgeoning field.
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Chapter 2

Electromagnetic Theory and
Plasmons

2.1 Maxwell’s Equations

A proper understanding of the nature of plasmons, and how they exhibit themselves on
a graphene sheet, necessitates a thorough understanding of electromagnetic (EM) theory.
Analysis of graphene’s opto-electronic properties requires a theory that describes both the
physical matter of the material and the fields that fluctuate near it. We begin with Maxwell’s
equations, which describe macroscopically the electromagnetic effect of several charges and
fields. Although we are dealing with nano-structures throughout the paper, we are justified
in using the classical framework as the materials we investigate have a high density of free
charge carriers, yielding an almost continuous spectrum of electron energy levels [25]. The
equations are below, with boldface representing vector quantities in 3D space.

∇ ·D = ρext (2.1)

∇×E = −∂B

∂t
(2.2)

∇ ·B = 0 (2.3)

∇×H = Jext +
∂D

∂t
(2.4)

where, under the assumptions of linear, isotropic and non-magnetic materials, D = εε0E and
B = µµ0H, ε and µ are the relative permittivities that characterize the response of a given
material to electric and magnetic fields respectively, ε0 and µ0 are the vacuum dielectric
and magnetic permittivities, ρext is the external charge density, Jext is the external current
density, D is the electric displacement vector, H is the magnetizing field, B is the magnetic
field and E is the electric field. Throughout the text we assume µ = 1, meaning our materials
are not magnetizable. These equations in general are both spatially and time dependent.
The relationship between what we label ‘external’ and ‘internal’ variables has a clear physical
distinction: external contributions (e.g. from incident light) drive a system, and anything
labeled as internal (e.g. charge density of electrons bound to ions in a dielectric) respond to
these stimuli.

Equation 2.1 is of special note in the discussion of plasmonic effects: D(r, t) is known
as the electric displacement, the electric field induced by free charges i.e. ones not bound to
any material. Contributions to this vector quantity only include external stimuli and not
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the internal charge density (see the first Maxwell’s equation Eq. 2.1). Given that plasmons
are collective modes, or oscillations, of free particles inside or on the surface of a material,
this quantity D(r, t), and more specifically the constitutive dielectric function ε(r, t) that
relates it to the electric field E(r, t), are the main scope of our forays into electromagnetic
theory.

The other constitutive relation that will receive much attention in the coming chapters
is the relation between internal current density and the electric field. The two equations we
will focus on are therefore:

Jint(r, t) =

∫
dr′dt′σ(r− r′, t− t′)E(r′, t′) (2.5)

D(r, t) = ε0

∫
dr′dt′ε(r− r′, t− t′)E(r′, t′) (2.6)

where the response function σ(r, t) is called the electrical conductivity of the material. Since
the materials we are investigating (e.g. graphene, glass and dielectrics) are media with very
little temporal or spatial dispersion, and are linear media (the photons are not absorbed in
harmonic generation processes), we are justified in assuming response functions constitute
these relations. Transforming the relations via Fourier transforms

∫
dtdre−i(k·r−ωt)(· · · )

breaks our EM fields into plane wave components

Jint(k, ω) = σ(k, ω)E(k, ω) (2.7)

D(k, ω) = ε0ε(k, ω)E(k, ω) = ε0E(k, ω) + P(k, ω) (2.8)

where P(k, ω) is defined as the polarization field in the macroscopic Maxwell’s equations.
The link between the dielectric function and the conductivity is given by Jint = ∂

∂tP,
the definition of the internal current density. In frequency space, this yields the so-called
dielectric response function

ε(k, ω) = 1 +
iσ(k, ω)

ε0ω
(2.9)

This relation is only valid in three dimensions when J represents the current density. We
will see how this relation changes in two dimensions (see Appendix 2).

The inclusion of the wavenumber k in these equations implies a spatially non-local
response. However, by the same line of reasoning as that we used to justify Maxwell’s
equations, we may say that the wavelengths of the light waves and plasmon waves we
investigate are much longer than the size of graphene’s Brillouin zone or the mean free path
of electrons in a metal, for example. Therefore, many of our derivations will include only a
frequency ω response by considering the so-called optical limit of k→ 0 (see Eq. 3.22). More
advanced models for the polarization of materials (related again to the conductivity and the
dielectric function), like the Random Phase Approximation (RPA), and the consideration
of plasmons in waveguides [17] keep this non-locality. We will be using these relations often
in the rest of the text.

2.1.1 Wave Equation and Boundary Conditions

Any system of PDEs, including Maxwell’s equations above, must be implemented physically
with the use of boundary conditions. It is well known that free space EM waves exhibit
transverse behaviour, with oscillating electric and magnetic fields oriented perpendicular
to the direction of motion of the light wave. Changing the medium to a dielectric affords
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the possibility of longitudinal waves, also known as ‘volume plasmons’, where the EM fields
oscillate parallel to the wave propagation direction. Labeling plasmons and collective oscil-
lations as ‘waves’ is no accident. Combining Eqs. 2.2 and 2.4 with Jext = 0 yields

∇×∇×E = −µ0
∂2D

∂t2
(2.10)

This equation can be simplified using the identities ∇×∇×E = ∇(∇ ·E)−∇2E, ε∇ ·E =
∇ · (εE)−E · ∇ε, the Maxwell’s equation ∇ ·D = 0 if there is no external stimulation, and
∇ε ≈ 0 for local dielectric profiles, yielding

∇2E(r, t)− ε

c2

∂2E(r, t)

∂t2
= 0 or ∇2E(k, ω) + k2

0εE(k, ω) = 0 (2.11)

as the speed of light c = 1/
√
ε0µ0 and k0 = ω/c. This is exactly the wave equation, and

it provides us some insight into the behaviour of these plasmons. The same equation holds
for the magnetic field H under the same assumptions with µ = 1 [37], giving

∇2H(k, ω) + k2
0H(k, ω) = 0. (2.12)

The special behaviour occurs at the interfaces. Collective oscillations constrained to the
edge of the material result because of the change of medium, and they are known as ‘surface
plasmons’. These exist as eigenmodes of the wave equation with the boundary conditions
of the system, and can also be maintained without external excitation.

The boundary conditions at a flat planar interface [56] involve the continuity of the
fields found in Maxwell’s equations, with either transverse or normal components being
continuous depending on whether the relation is the curl or the divergence of the field.

E2t = E1t (2.13)

H2t −H1t = Js × n̂ (2.14)

D2n −D1n = ρs (2.15)

B2n = B1n (2.16)

with normal, tangential (in-plane) and surface indices shown. Js is the surface current
density, ρs is the surface charge density, and the vector n̂ points in the ẑ direction, perpen-
dicular to the surface. For graphene, our charge carriers are electrons and holes, oscillating
in response to these fields.

Mathematically, graphene will be treated as a two-dimensional material, and therefore
will only ever appear in the boundary conditions of our problem. For a system where no
other charges are present, ρext = ρsδ(z) for a graphene sheet in the xy-plane. We will
see later on that the definitions of normal or transverse components become skewed when
working on rough (i.e. not flat) surfaces, and therefore require adapted boundary conditions.

2.1.2 Electrostatic and Quasi-static Approximations

Although the full Maxwell’s equations describe the entirety of classical electrodynamics
on the macroscopic scale, they can be hard to work with and solve, especially with the
implementation of boundary conditions. We must frequently then make approximations
suitable to the system in question. We briefly consider two of these.
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Figure 2.1: Interface between two dielectric media ε1, ε2. The electric field shown here is
along the plane of incidence, and is known as either p-polarized or transverse magnetic
(TM). If the magnetic field is along the plane of incidence, the wave is called s-polarized or
transverse electric (TE). Along with the transmitted wave is a reflected wave with the same
angle θ1 in medium 1. Adapted from [47]

The electrostatic approximation makes an assumption that the magnetic field (and hence
any electric currents, via Eq. 2.2) must not vary in time quickly. In equation form,

~∇×E =
∂B

∂t
= 0 (2.17)

Since the electric field is now irrotational, we may derive Poisson’s equation for the elec-
trostatic potential φ in this limit, while using Eq. 2.1 and the assumption of a homogenous
medium with constant ε:

E = −~∇φ (2.18)

∇ · (εE) =
ρext
ε0

(2.19)

ε∇2φ = −ρext
ε0

. (2.20)

This statement derives from the previous two. We arrive at a homogenous equation by
setting ρext = 0, so that Eq. 2.20 becomes

∇2φ = 0, (2.21)

giving us Laplace’s equation. The boundary conditions at an interface can also be expressed
in terms of the potential φ. Assuming media with dielectric constants ε1, ε2,

φ1|z=0 = φ2|z=0 (2.22)

ε1
∂

∂z
φ1|z=0 − ε2

∂

∂z
φ2|z=0 =

ρs
ε0

(2.23)

where ρs is non-zero if there is a charge density lying on the surface. This is a curious
situation where we are able to assume zero charge density anywhere and can therefore use
Laplace’s equation, and yet in the boundary condition we will be able to put a graphene
sheet that has many charge carriers. Such idealized situations occur frequently in theoretical
treatments of physical problems.
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We make note that, due to Maxwell’s third equation Eq. 2.3, the B field is only rotational,
and can therefore be expressed as a curl of a vector potential B = ∇×A, regardless of any
approximation.

The second approximation, known as the quasi-static regime, is similar in scope to the
electrostatic case. If we are working with charged particles (e.g. electrons) moving near the
speed of light in our materials, and we have time-varying fields, there is a delayed response,
and the field experienced by an observer at a point will be at a retarded time. As this time
changes depending on the location of the charged objects causing the time-varying field,
this results in a very complex equation. The problem can be reformulated in terms of a
retarded potential

φ(~r, t) =
1

ε0

∫
ρext(~r

′, tr)

|~r − ~r ′|
d3~r ′ for tr = t− |~r − ~r

′|
c

(2.24)

but within the quasi-static regime can be formulated as

φquasi(~r, t) =
1

ε0

∫
ρext(~r

′, t)

|~r − ~r ′|
d3~r ′. (2.25)

The difference from the electrostatic regime is that now the equation for the electric field
will be allowed to depend on the time-varying magnetic field (i.e. the time varying vector
potential). This therefore yields

E = −~∇φ− ∂A

∂t
, B = ∇×A (2.26)

for vector potential

Aquasi(~r, t) = µ0

∫
Jext(~r

′, t)

|~r − ~r ′|
d3~r ′, (2.27)

derivable by the same method as that for the scalar potential φ.
Both of these approximations rely on a system staying close enough to equilibrium that

the charge movement is either negligible (electrostatic) or non-retarded (quasi-static). As
long as the velocities considered are much slower than light speed, these approximations
should be valid.

2.1.3 Reflection Coefficients with a Graphene Sheet

One useful tool we will need in our future calculations is the modified version of Fresnel’s
equations, which describe the amount of reflected and transmitted light that an incident
wave separates into at a planar interface. Given that two of Maxwell’s equations and two
boundary conditions deal with fields perpendicular to the interface, it is always possible to
determine the reflectance and transmission given information about the angle of incidence
(to determine the relative size of the x- and z- components) and the dielectric functions of
the two media.

Consider first the case of p-polarization, where the magnetic field lies in the y-direction.
Using the wave equation we derived in Eq. 2.12, we can write our fields in media 1, 2 (see
Figure 2.1) as

H1y = (a1e
iκ1zz + b1e

−iκ1zz)eik1xx (2.28)

H2y = (a2e
iκ2zz + b2e

−iκ2zz)eik2xx (2.29)
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for κiz = (
√
εiω/c) cos(θi) and kix = (

√
εiω/c) sin(θi). These waves follow the assumption

that there is no spatial propagation in the y-direction, which can be made so given a judicious
choice of coordinates and the dispersion-less media. We consider Eqs. 2.13 and 2.14 from
above, which read as

n̂× (E2 −E1)|z=0 = 0, n̂× (H2 −H1)|z=0 = Js. (2.30)

The equation for the E field can be extracted via Eq. 2.4:

∂

∂t
(ε0εiEi) = ∇×Hi −→ Ei =

1

iωε0εi
∇×Hi, (2.31)

recalling that the current density Js is restricted to the graphene sheet in the xy-plane, and
therefore only appears in the boundary conditions. The equation for the current density Js
can be found using the constitutive relation Jx = σEx|z=0 at the point z = 0, where the
x-component of the electric field is

Ex|z=0 =
κ2z(a2 − b2)

ε0ε2ω
eik1xx (2.32)

by combining Eqs. 2.29 and 2.31. Noting that k1x = k2x based on wavenumber conservation
at the interface, the boundary conditions become:

κ1z

ε1
(a1 − b1)− κ2z

ε2
(a2 − b2) = 0 (2.33)

(a1 + b1)− (a2 + b2) = Jx =
σκ2z

ε0ε2ω
(a2 − b2), (2.34)

or, in matrix form:[
a1

b1

]
=

1

2

[
1 + ε1κ2z

ε2κ1z
+ σκ2z

ε0ε2ω
1− ε1κ2z

ε2κ1z
− σκ2z

ε0ε2ω

1− ε1κ2z
ε2κ1z

+ σκ2z
ε0ε2ω

1 + ε1κ2z
ε2κ1z

− σκ2z
ε0ε2ω

] [
a2

b2

]
= M (p)

[
a2

b2

]
. (2.35)

This is known as the transfer matrix of the problem [60], and can be compounded to yield the
reflection and transmission emanating from many layers (see Eq. 4.24). For our purposes,
b2 = 0, so the reflectance coefficient for p-polarized light, defined as the ratio of the reflected

light coefficient to the incident, is rp = M
(p)
21 /M

(p)
11 = b1/a1, given that a1 is the coefficient

of the wave in medium 1 traveling in the +z direction, and b1 corresponds to −z movement.

The transmission coefficient, defined as the ratio between a2 and a1, is tp = 1/M
(p)
11 , and

defines the ‘amount’ of light that passes through the material.
The case of s-polarization is similar, with electric fields now oscillating parallel to the

y-axis. We choose E1y and E2y to have the same expression as H1y and H2y from Eqs. 2.28
and 2.29, as the two satisfy a similar wave equation (Eq. 2.11). Now to obtain our form for
H, we use Eq. 2.2:

− ∂

∂t
(µ0Hi) = ∇×Ei. (2.36)

Meanwhile, we have the current Js = Jyŷ = (a2 + b2)σeik2xxŷ, as it must always parallel to
the electric field. This gives boundary conditions for s-polarization of

(a1 + b1)− (a2 + b2) = 0
κ1z

µ0ω
(a1 − b1)− κ2z

µ0ω
(a2 − b2) = σ(a2 + b2) (2.37)

10



and an s-polarization transfer matrix of

M (s) =
1

2

[
1 + κ2z

κ1z
+ σµ0ω

κ1z
1− κ2z

κ1z
+ σµ0ω

κ1z
1− κ2z

κ1z
− σµ0ω

κ1z
1 + κ2z

κ1z
− σµ0ω

κ1z

]
. (2.38)

Once again, the reflectance for this polarization is rs = M
(s)
21 /M

(s)
11 , and the transmission

is ts = 1/M
(s)
11 . We have observed in this derivation the use of many of the assumptions

we had earlier mentioned; the macroscopic view of both Maxwell’s equations, giving us the
wave equation, and the locality assumptions that give us local dielectric functions ε1, ε2.

In the special case of ε1 = ε2 = 1 (suspended graphene) and θ1 = θ2 = 0, our expression
for the transmission t = tp = ts becomes

t =
1

1
2(1 + (1) + σkz

ε0ω
)
≈ 1− 1

4πε0

(
2πσk

ω

)
= 1− 1

4πε0

(
2πσ

c

)
(2.39)

as kz = k = ω/c. The actual transmittance of light is given by T = |t|2 for the zero incidence
angle in a free medium, and gives the fraction of the power that passes into the medium.
To first order in σ, we obtain [12]

T = |t|2 = 1− 2
1

4πε0

2π

c
<σ(ω) and therefore 1− T = A =

1

4πε0

4π

c
<σ(ω) (2.40)

where we have listed the absorbance A and its proportionality to the conductivity of
graphene, which we have chosen in the optical limit to reflect our other assumptions about
locality.

Analyzing the reflectance of light and radiation off of various materials is the basis
of ellipsometry, an experimental technique that will allow us to probe graphene at a low
frequency level with high precision. Since graphene is a two-dimensional material, we do
not expect energy losses to come from penetration inside it (unlike a metal, which exhibits
near perfect reflection). We will see the largest effect of the graphene when the conductivity
σ is the largest e.g. when the electrons are moving collectively. This happens closest to the
plasmon resonance, a topic we will now investigate.

2.2 Plasmons

We have mentioned before about plasmons being charge oscillations: when charges are
moving to try and screen an electric field, they tend to overshoot and are hence pulled
back by the charge disturbance, which causes an oscillation [21]. What makes surface
plasmons so fascinating is their constraint to the interface between two media, and the
experimental ability to manipulate them to induce resonance for sensors or cause extreme
charge accumulations. However, we must first find out under what conditions these plasmons
exist, be it for graphene on the surface of our interface or not.

2.2.1 EM Equations for Plasmons at an Interface

It has been stated that for a planar interface, we can consider no spatial propagation in the
y-direction, leaving us with two possibilities: the s- and p- polarized modes. To find the
relationship between the frequency and wavenumber of our plasmon, we need to consider
solutions to the wave equation that both satisfy the boundary condition and decay away
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from the surface for fields perpendicular to the planar interface. p-polarization means that
only the Ex, Ez and Hy will be non-zero in media m = 1, 2. Motivated by the wave equation
in Eq. 2.12 and following the same logic as in Eqs. 2.28 and 2.29 for p-polarized waves, we
write our vectors in the form [4]

Em = (Em,x, 0, Em,z)e
ikxxe−κmz |z| (2.41)

Hm = (0, Hm,y, 0)eikxxe−κmz |z| (2.42)

noting that kx = k1x = k2x due to conservation of the wavenumber over the interface,
and that z = 0 is the boundary between the two media in the xy-plane. We also note
that, in order to have a surface plasmon, the wavenumbers κ1z, κ2z, the components of the
wavevector perpendicular to the interface, must have positive real parts so that the waves
decay away from the surface. This feature of the localization of plasmons to the surface is
especially useful in applications, as it not only shows the high efficiency of energy transfer
within the medium but it also meets the demand of modern electronics to have small, non-
interacting components with fast response times and strong fields. Research into waveguides
for opto-electronic applications is an area of development where these local plasmons find
their groove [59].

The coefficients Em,x, Em,z and Hm,y, along with the frequency dispersion relation, can
now be determined via Maxwell’s equations and the boundary conditions at the interface.
Using Eqs. 2.2 and 2.4, using the fact that Jext = 0 for our system, gives

(−1)mκmzEm,x − ikxEm,z = iωµ0Hm,y (2.43)

(−1)m+1κmzHm,y = −iωε0εmEm,x (2.44)

ikxHm,y = −iωε0εmEm,z (2.45)

using the appropriate Fourier transforms. Solving this system of three equations gives

Em,x = i
κmz
ωε0εm

Hm,y(−1)m+1 (2.46)

Em,z = − kx
ωε0εm

Hm,y (2.47)

κ2
mz = k2

x − εm
ω2

c2
. (2.48)

If we wish to consider the effect that graphene has on the plasmons at the interface, we use
the boundary conditions just as in Section 2.1.3, so that Eqs. 2.13 and 2.14 give, respectively,

H1,y = −κ2zε1
κ1zε2

H2,y (2.49)

H2,y −H1,y = σE1,x, (2.50)

where σ is defined via a constitutive relation as in Eq. 2.34. Combining the above two
equations, along with Eq. 2.46, yields

ε1
κ1z

+
ε2
κ2z

+
iσ

ε0ω
= 0, (2.51)

which is the dispersion relation for plasmons on a graphene sheet between two media with
dielectric functions ε1,2 when used in tandem with Eq. 2.48. We now consider two limiting

12



cases of this equation, the first being the case of no graphene. Our dispersion relation is
then

κ2z

κ1z
= −ε2

ε1
. (2.52)

This expression reveals one very unique property of surface plasmons at the interface with-
out graphene - they will only exist between two materials with dielectric functions with
oppositely signed real parts. Materials with dielectric functions with positive real part in-
clude materials with not too many free electrons (e.g. air, glass), so that an applied electric
field moves charges along with it. The opposite is the case for metals and conductors, whose
free electrons oscillate oppositely out of phase with the driving electric field, causing high
reflectivity. The oscillation of these plasmons is therefore usually exhibited at air/metal or
glass/metal planar setups.

Combining Eq. 2.52 with Eq. 2.48 gives a plasmon dispersion for p-polarization modes
for this limiting case as

kx = k0

√
ε1ε2
ε1 + ε2

, (2.53)

which relates the frequency (through k0 = ω/c) to the wavenumber of the collective oscilla-
tion (the plasmon).

Figure 2.2: Propagation of plasmon on a two-dimensional graphene lattice. The coupled
EM wave is p-polarized in this diagram and the decay of the electric field perpendicular to
the interface shows that the plasmon is a localized mode. Adapted from [24]

It is of note that although we are dealing with electron oscillations, we have been working
in the framework of electromagnetism, and our solution for this ‘plasmon’ is exactly a photon
wave. The reason for this is the strong coupling between the electron modes and the photon
that follows them. The collective quasi-particle is known as a surface plasmon polariton. The
behaviour of the plasmon polariton varies greatly with wavenumber, with high wavelengths
yielding light-like oscillations, while low ones become almost electrostatic in their scope. We
will see later on that we can treat the plasmon’s electronic fluctuations via a different model
than the electrodynamic one, namely a hydrodynamic model, treating the moving particles
in the graphene as a fluid flow.

Our interest in later chapters will focus on the surface plasmon, the limiting case of a
surface plasmon polariton where kx, our wavenumber, is far below the light-line ω = ckx,
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giving it an electrostatic character, the opposite of the light-like behaviour one would see
for photon-coupled propagation. To see deeper why this is the case, a plasmon that is fully
constrained to the surface yields a system that satisfies Laplace’s equation, due to the lack
of outward damping giving potentials outside the surface. Wave solutions for the plasmon
that satisfy Laplace’s equation, just as in Eqs. 2.41 and 2.42, will have the form

φ(z) = A2e
ikxxe−κ2zz z < 0 (2.54)

φ(z) = A1e
ikxxeκ1zz z > 0, (2.55)

where we have mentioned that kx = k1x = k2x to satisfy Laplace’s equation properly. Due
to continuity of φ at z = 0 and continuity of ε∂φ/∂z at z = 0, we have A1 = A2 as well as

ε1 + ε2 = 0. (2.56)

Plugging this into Eq. 2.53 shows that kx → ∞ for these surface plasmons that behave
electrostatically.

Our second limiting case will be that where graphene is between two media with dielectric
function ε = εm, so the plasmon dispersion in Eq. 2.51 becomes

1 + i
σ

2ωεε0

√
k2
x − ε

ω2

c2
= 0. (2.57)

We are interested in the equivalent limit in the case of no graphene, kx → ∞, for surface
plasmons on graphene. This will be the case of k2

x � εω2/c2, where the plasmon behaves
less like a photon of the form ω ∼ kx and instead takes on a quasi-static character. For
this dispersion relation to be valid, the imaginary component of the conductivity must be
positive, which in graphene occurs, as we will see later, for the intraband component of the
conductivity σD from Eq. 3.28. Eq. 2.51 now becomes, in this limit,

1 + i
ie2EF
π~2ω

1

2ωεε0
kx = 0 −→ ω2 =

e2EF
π~22εε0

kx (2.58)

Putting this equation for ω2 into the limit k2
x � εω2/c2 required for quasi-static surface

plasmon behaviour gives
kx
kF
� 2vF

c2

e2

4π~ε0
=

2vBvF
c2

(2.59)

where vB is known as the Bohr velocity, and vF and kF are the Fermi velocity and Fermi
wavenumber defined in Eq. 3.1 and 3.13. The importance of this equation is that it justifies
our use of both the quasi-static approximation in graphene and what we later call the optical
limit in Eq. 3.22, as our restriction of kx →∞ is lifted in favour of Eq. 2.59.

Our focus has been on p-polarized modes and not s-polarized modes for two reasons.
The first is that it can be shown [37] that for the interface without graphene, plasmons do
not exist for this polarization. The presence of the graphene changes this, but the strength
of such plasmons is limited by the region where the graphene conductivity is negative, which
only occurs in special circumstances in a limited region [4].

One thing we will observe is that the resonance frequencies that cause collective oscil-
lations in graphene are much lower than those for most dielectric substrates that graphene
rests near. Therefore, concerns about interference or combinations of plasmon modes are
unwarranted, and approximating our dielectric functions as being purely real is justified at
low enough frequencies [24].
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A final note about plasmons and the equations above goes as follows: generally in prob-
lems involving waves, imaginary parts correspond to oscillations and real parts to damping.
The dispersion equation in Eq. 2.53 for p-polarized waves implies, if ε1, ε2 are entirely real,
a plasmon without damping that is forever constrained to the surface. In reality, however,
these dielectric functions have delayed reactions to incident fields, represented by them
having an imaginary part. The imaginary part will therefore also appear in the wavenum-
bers, causing the z-components of the electromagnetic waves to oscillate into space and lose
energy. Much of the future of applications of plasmonics, including those portending to
graphene, relies on the maintenance of strong excitations over long distances for extended
time periods, a goal made difficult by the lack of coherency in the dielectric response.
Graphene as a tool magnifies plasmons to a great degree, hence its interest for plasmonics
and our research in this thesis.
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Chapter 3

Electronic Properties of Graphene

This chapter encapsulates the very broad category of electron interactions, which covers
all interactions of electrons (and holes) with light and matter. For low energies, where
interaction with light is strong, graphene’s optical properties become of interest. Graphene
plasmonics, a main branch of this research, seeks to explore the theory and applications
of localized collective oscillations for a graphene sheet. The main reasons why graphene
plasmonics is a blossoming field are due to the material’s strongly responsive electrons, its
linear band-structure, and its strong electronic tunability due to doping and gating. At
higher-energies, optical exploration of graphene’s structure is no longer viable, but fast-
incident electrons still couple with other electrons in graphene and probe the modes at
these energies, which is the basis of the experimental technique of Electron Energy Loss
Spectroscopy. This chapter seeks to briefly explore how these properties come about and why
they can be used in our research for plasmon and electron interactions. For the remainder
of the chapter, we switch to Gaussian electrostatic units, where 4πε0 = 1.

3.1 Atomic and Band Structure

Graphene is a honeycomb lattice made up of sp2-hybridized carbon atoms arranged in a
2-dimensional structure. Three evenly spaced σ-bonds are in-plane, while a delocalized π
bond, the main contributor to the conductivity of the graphene lattice, lies perpendicular to
the sheet. Both the unit cell and the reciprocal cell are rhombuses, the direct lattice being
composed of two overlapping triangular lattices (labeled by A,B). The spacing between the
carbon atoms is approximately 0.142 nm, and with the high electron density of these atoms,
classical electromagnetic theory will work well here.

Labeled in the reciprocal lattice in Figure 3.1 are four key ‘symmetry’ points, that
either represent saddle points in the energy dispersion or self-crossings. The point M will
be important later, as transitions in the UV region of the EM spectrum occur between π
and π∗ energy bands that occur at this point. The point Γ has an even larger difference
in its states, and transitions at this point will occur for very high energies reachable by
Electron Energy Loss Spectroscopy (EELS), an experimental method we will investigate
in later chapters. Fig. 3.2 shows the band structure and the relevant Fermi surface for
graphene.
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Figure 3.1: (a) Graphene exhibits a honeycomb lattice structure, and the different valleys
A and B make up one elementary cell of two electrons. The lattice vectors ~a1 and ~a2 show
the directions that elementary cells can be repeated in to form an entire lattice. (b) The 1st
Brillouin zone is the momentum space dual to the elementary cell. For example, a function
of the wavenumber at point b1 has the same properties as a function with wavenumber
k = 0. Adapted from [7]

Low-Energy Physics

As shown in Fig. 1.1, different circled regions, representing gaps between the conduction
and valence bands, can be modeled within different approximations. Of particular interest
in graphene, as mentioned in the introduction, is called the low-energy spectrum, circled in
red in Fig. 1.1. Electronic interactions in this region are dominated by the unusual energy
dispersion near the Dirac point, as we investigate below.

The pointsK,K ′ are locations that, within the tight-binding model for nearest-neighbour
interactions, give a zero Hamiltonian, corresponding to self-crossing. In other words, there is
a meeting point between the valence and conduction bands (under ideal conditions, like zero
temperature). What is unique to graphene, and of great interest for plasmonic applications,
is the linear band dispersion near these points:

εK,K′(~k) = ~kvF (3.1)

where ε is the energy derived from the tight-binding Hamiltonian, and vF ≈ 106m/s is the
Fermi velocity. Because this dispersion is linear, it is similar to the photonic dispersion
relationship. This implies that the electrons near these conical energy dispersions behave
like massless particles, and follow the 2D Dirac equation [26]

− ivF~σ · ∇ψ(r) = Eψ(r) (3.2)

with two-component spinor eigenfunctions

ψ± =
1√
2

[
1

±eiθ~k

]
ei
~k·~r (3.3)

for ± corresponding to either the bonding or anti-bonding band, or, via a proper unitary
transformation, electron and hole wavefunctions in the language of semiconductors. θ~k is
the polar angle of the wavenumber components relative to the Dirac point (K symmetry
point) of the elementary reciprocal lattice cell. The spinors come about as there are two
electrons per unit cell, so forgetting the ±1/2 spin of the electrons, the valleys A and B each
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Figure 3.2: Band structure in undoped (EF = 0) graphene, showing self-crossings between
the electron-hole spectrum (circled red) and saddle points corresponding to symmetry points
M and Γ in Figure 3.1(a) (circled green). The self-crossing has a linear dispersion in the
low wavenumber limit, shown in Figure 3.3 for doped (EF > 0) graphene. Adapted from
[42]

make up a portion of the spinor. The ~σ in the Dirac equation above corresponds to Pauli
matrices (in 2D), where the valleys are again analogous to electron spin.

Before we move on to graphene’s optical properties, we make note of the fact that
the density of states for energies near the Dirac points (K and K ′ and all edge points in
the 1st Brillouin zone are all equivalent) is linear in energy just as the energy is linear in
wavenumber:

D(E) =
2|E|

π(~vF )2
(3.4)

The property of the density of states increasing linearly with the energy levels is unique
to two dimensional systems with linear energy dispersion, whereas it is constant for a 2D
electron gas with quadratic energy dispersion. This quantity represents how many energy
states are available for occupation at a particular energy, and hence it yields probabilities
about the electron absorption of graphene that will aid us in determining optical properties
of the material.

3.2 Optical and Electronic Properties

Our need for a full treatment of graphene’s electronic and optical properties will be evident
in each of the main projects featured in this paper. EELS will measure EM absorption by a
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graphene sheet, ellipsometry will implement graphene’s conductivity, and, when analyzing
surface roughness, we will see the effect on graphene’s plasmons themselves. Because of the
two different energy regimes we are investigating, we focus on the two separately. Optical
physics is primarily a feature of the low-energy spectrum, where the π bands dominate;
our forays into graphene’s optical properties cover the universal absorbance of frequencies,
a description of low energy plasmons via a semi-classical fluid model, a discussion of the
RPA approximation valid especially for linear responses to the change in polarization of the
material, and of graphene’s conductivity due to interband and intraband terms. Section 3.2.5
then features a semi-classical treatment of the π and σ electrons resonating according to the
size of their band gaps (as in the green circled regions of Fig. 3.2); these transitions constitute
the high-energy spectrum of graphene’s electronic structure, and despite not currently being
of interest in optical applications, are of interest in the analysis of transitions of the Γ and
M symmetry points [46].

3.2.1 Universal Absorbance

We proceed to introduce one of graphene’s most outstanding properties, which is its universal
absorbance of all wavelengths of light. This is a feature that will be observed in both the
ellipsometric and EELS measurements we will see later on.

Figure 3.3: Due to the symmetry of the linear dispersion of graphene’s π electron bands, a
photon of energy ~ω will excite an electron to a state ~ω/2 as long as ~ω > 2|µ|, where µ is
the chemical potential. Undoped graphene has µ = 0 in the tight-binding approximation,
but higher approximations introduce asymmetry into the conical energy dispersion. Adapted
from [26]

Let ~A(t) = ~A exp(−iωt) be the EM vector potential, so that ~E(t) = (iω/c) ~A(t) by an
appropriate choice of gauge. Then, in Fourier space, the Hamiltonian for particles near the
Dirac point linear dispersion looks like

H = vF~σ · (~k − e
~A

c
) Hint = −1

2

vF e

c
~σ · ~A =

1

2

ievF
ω

~σ · ~E (3.5)

with the 1/2 factor coming from only taking the −iω term of the electric field (not the
symmetric +iω term). Hint represents the Hamiltonian contribution for the interband
transition. To determine the absorption rate, we start with Fermi’s Golden Rule, which
tells us the transition probability per unit time for given energy states (in this case, at
±~ω/2). It reads as

Probi→f =
2π

~
∑
kc,kv

|〈f |Hint|i〉|2δ(Ec(k)− Ev(k)− ~ω) (3.6)
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where c, v are indices for the conduction and valence bands, Ec(k) is the energy of the final
state in the conduction band, and Ev(k) is the energy of the initial state in the valence band.
The spinor wavefunctions for electrons and holes (conduction and valence electrons, respec-
tively) are unitary transformations of the spinors for valleys A and B in the graphene, so we
use them interchangeably. The expectation value of the interband conduction Hamiltonian
is

|〈e|Hint|h〉|2 =

∫
ψ∗eHintψid2r (3.7)

=

∫
1√
2

[1 e−iθ~k ]e−i
~k·~rvF e~σ ·

~E

2iω

1√
2

[
1

−eiθ~k

]
ei
~k·~rd2~r (3.8)

= vF e
|Ex|
2iω

∫
1

2
[1 e−iθ~k ]

[
0 1
1 0

] [
1

−eiθ~k

]
d2~r (3.9)

= −vF e
|Ex|
2ω

sin θ~k

∫
d2~r (3.10)

choosing the electric field to be polarized in the x-direction, and assuming an integration
over a sample area A =

∫
d2r. We already see that the only wavevector dependence occurs

in the polar angle in Fermi’s Golden Rule, so the sum in Eq. 3.6 is equivalent to a sum
over all angles. The Dirac delta function in the transition probability integral is the linear
density of states from Eq. 3.4, at the energy ~ω/2. The absorbed flux equals the total energy
divided by total area, given by

Φabs =
1

A
~ωProbh→e = ~ω

2π

~
v2
F e

2 |E|2

4ω2

∑
θ~k

sin2 θ~k
~ω

π~2v2
F

=
e2|E|2

4~
. (3.11)

Given that the incident flux for an electric field |E| is Φinc = (c/4π)|E|2, we obtain

A = Φabs/Φinc =
πe2

~c
−→ 2.3%. (3.12)

This ratio of the absorbed to incident flux is exactly the definition of absorbance for a
material. We have arrived at the result that, no matter what the frequency, graphene will
absorb all energies of photon with the same probability, assuming the linear dispersion model
for the graphene interband transitions is still valid. On top of this fascinating result is how
high of an absorbance this is for a two-dimensional layer of carbon atoms. This quantum
mechanical treatment helps show the strong interaction between electric fields and graphene
we will see in the remainder of the thesis.

3.2.2 A Classical Hydrodynamic Approach to Graphene

Before delving into some advanced models, we present an elementary version of an Euler-
flow hydrodynamic equation, treating the particles affected by an external source as small
perturbations in the electron density n(~r, t) and the current density ~j(~r, t) in graphene. Let
δn(~r, t) and δ~j(r, t) be these small deviations from the corresponding equilibrium, or the
average values. The assumptions should be valid in the limit of small wavenumbers q � kF ,
so that the response of the electrons is macroscopic [20]. Here kF is the Fermi wavenumber,
which using Eq. 3.1 is the wavenumber corresponding to the Fermi energy EF . There is a
useful relation between the electron density and the Fermi wavenumber in graphene,

kF =
√
πn0 (3.13)
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where n0 represents the average areal electron density of graphene, which increases with
doping.

For ordinary neutral liquids, the restoring force that causes oscillations in particle density
is a pressure gradient, so the classical Euler equation reads as

m
∂~j(~r, t)

∂t
= −~∇P (~r, t) (3.14)

for P (~r, t) the pressure, and m the mass of the particle in the fluid. This equation is valid
when the oscillations are slow enough (i.e. small ω) relative to the system’s response, so
that the system is always in equilibrium. The linear approximation is then that

~∇P (~r, t) ≈ ∂P

∂n
~∇δn(~r, t), (3.15)

assuming the pressure is related to the equilibrium density through an equation of state.
Taking the divergence of the equation and using the continuity equation ~∇ ·~j = −∂n

∂t yields
the equation

∂2δn(~r, t)

∂t2
− 1

m

∂P

∂n
∇2δn(~r, t) = 0 (3.16)

and changing to Fourier components gives us the resonance frequency ω =
√

1
m
∂P
∂n q. Here

we get our first look at what a resonance in fluids corresponds to. Putting this frequency in
our equation implies that even for a low ω and q value, oscillations can exist, and we here
observe a linear dependence of the frequency on the wavenumber.

However, charged liquids, which contain electrons and holes, are unique in this respect,
as the main driving force is not a weakly varying pressure gradient, but instead a long-range
electrostatic field that exists even at long wavelengths [21]. In this case, the Euler equation
for motion will be an integration of all the charges influenced by the Coulomb potential.
We obtain

me
∂δ~j(~r, t)

∂t
= −n0∇~r

∫
d2r′

e2

ε|~r − ~r ′|
δn(~r ′, t) (3.17)

where ε = (ε1+ε2)/2 if the graphene is between two dielectric media [43], and me is the mass
of the electron. This equation can be thought of as relating all the movement of charges as
due to the combined electric force given by charges δn(~r, t), screened by a factor ε. Fourier
transforming the above equation and using the same continuity equation results in(

ω2 − n0q
2

me

2πe2

εq

)
δn(~q, ω) = 0, (3.18)

noticing that the Fourier transform of the screened Coulomb potential in 2D is 2πe2

εq . This

equation yields a resonant frequency of ω =
√

2πn0e2q/(εme), and we now observe square
root dependence in the plasmon frequency, which is the correct behaviour for all collective
eigenmodes of charged fluids in 2D.

We recall that the formula for the linear energy dispersion near the Dirac point, known
as the Dirac cone, means that single-particle excitations between electrons and holes occur
below the energy ~ω = ~vF q. For low enough wavenumbers, this value is smaller than the
value for the plasmon frequency, meaning the plasmon will not decay into an electron-hole
pair in either the conduction or valence band. We will explore later the region where the
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plasmon frequency ω > vF q decays into these pairs due to inter-band transitions, a process
known as Landau damping [51]. We have pointed out before that the plasmon frequency of
our graphene samples will largely be less than the frequency where the nearby conductors
have their plasmon resonance - this restriction to the region below Landau damping is
another reason we will be able to focus on a restricted subset of frequencies.

The factor ε that changes the overall potential is partially derived in later chapters (see
Eq. 5.54) from a Green’s function approach, and is a factor expected for all two-dimensional
systems resting between two layers. Materials like substrates can interact strongly with a
graphene sheet, and the effect that roughness plays into this interaction is the subject of
Chapter 5.

Since the particles with their momenta near the Dirac cone exhibit a linear dispersion
of their energy, and follow a Dirac spinor equation, we hinted that the traveling particles
could be treated as ‘massless’. These massless particles are not, however, the electrons, but
rather photon-like quasi-particles which occupy the eigenstates of the energy band valleys
where the conical self-crossing occurs, which we derived from the band structure. Strong
pairwise electron correlations characterize graphene’s electronic structure, but the quasi-
particle picture presents us with a non-interacting picture, making calculations much easier.

If we consider the carrier density to be made up of these quasi-particles instead, the
value me is no longer valid in the calculations, and instead the plasmon frequency (see
Eqs. 3.29-3.33 for derivation) becomes [21]

ωp(q) =

√
8EFσ0q

~ε
(3.19)

where EF = ~vFkF is the Fermi energy, and σ0 = e2/(4~) is the universal conductivity we
obtained for low frequencies (causing absorbance of 2.3%). This frequency can be shown
within an f -sum rule calculation [52], a derivation that outlines how the total particle num-
ber (be they electrons or quasi-particles) is conserved by forces like the Coulomb interaction
that do not add or subtract to the system. This rule will be crucial once we attempt to
find a hydrodynamic model that explains absorption modes for high-energy transitions in
graphene, as we are necessarily making approximations about the Hamiltonian and we must
ensure that the total particle ‘bulk’ is not changed by these assumptions.

3.2.3 Electromagnetics in Doped Graphene

Approaches to understanding graphene vary from the quantum to the macroscopic: ab initio
calculations start from a density functional theory approach, building up ground states
of many Schrodinger equations to determine properties on the small scale. Macroscopic
theories however need a consistent and simplifying way to deal with the strongly-correlated
electron systems that occur in high-density materials like graphene. For our purposes, we
implement the Fermi liquid theory, which maps systems with a high electron density (which
thence has strongly correlated interactions) to ones with barely interacting quasi-particles
with renormalized mass (as we saw in the plasmon derivation above) [49].

The basis of Fermi liquid theory, developed by Lev Landau, shows that near the Fermi
surface, which is the region of all interesting optical properties, the system has a correspon-
dence with a free Fermi gas that obeys Fermi-Dirac statistics. Therefore electrons in the
system are mapped one-to-one (as particle number must always be conserved) to weakly
interacting fermionic quasi-particles. As these new quasi-particles are not definite eigen-
states of the Hamiltonian, they have a finite lifetime and a renormalized mass caused by the
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collective effect of all the other interactions in the system that ‘dress’ the particle [41]. Each
electron can then be seen as having a bare part to it and a dressed portion that screens its
effect on other particles in the material.

From a microscopic point of view, the theory can be developed using renormalization
techniques in Quantum Field Theory (QFT). This theory predicts the central themes of
the Fermi liquid theory: finite weakly interacting quasi-particles with a renormalized mass.
Renormalization is a result of a divergence when summing over all possible interactions of
particles (i.e. all interactions of a particle with itself, with two other particles, etc.), and
choosing certain ways to renormalize in certain regimes guides our interpretation of the
macroscopic properties of high density liquids.

A high density of electrons, leading to a high quasi-particle density, means that the
kinetic energy for the system is much larger than the potential, and interactions that involve
the kinetic part (reflected in collisions, or momentum transfer, between particles), will be
heavily weighed in the renormalization.

A crude approximation for this system, known as the Hartree approximation, sums up
interactions a particle has with itself, known as ‘bubble’ diagrams. This approximation
predicts for our system infinite particle lifetimes with zero mass, since we have neglected
correlations between the movement of the particles. This is expected, as treating all the new
quasi-particles as not interacting will give them photon-like properties. Wanting to include
the dominant effect of these correlations, we add onto this approximation what are known
as ‘ring’ diagrams, one of the interactions representing momentum transfer. These rings
are so called because an interaction at one end of the ring effectively produces a negative
electron on top of the ring and a positive hole on its bottom, which together create a finite
lifetime dipole, causing polarization of the medium and movement of the charges. This gives
the Random Phase Approximation (RPA), also known as the time-dependent Hartree-Fock
approximation for its inclusion of non-static behaviour like momentum transfer.

One way in which this RPA approximation can be seen qualitatively is in the screened
Coulomb interaction in two dimensions

vsc(q) =
1

4πεε0

2π

q + kTF
or vsc(r) =

1

4πεε0

{
1

r
+
πkTF

2
[Y0(kTF r)−H0(kTF r)]

}
, (3.20)

where we have Bessel Y and Struve H functions in our screened Coulomb potential equation.
This expression drops off as 1/(r3k2

TF ), with k−1
TF known as the Thomas-Fermi screening

length. Physically, this represents an electron in the system repelling other electrons from
it, and this interaction is isomorphic in properties to each electron being followed by a cloud
of positive charges of width k−1

TF , so its effect on particles outside this distance is drastically
reduced. This example also shows why the interaction of quasi-particles can be considered
so weak - the effective cloud that surrounds them accounts for a reduced interaction (in this
case exhibited by the screened Coulomb potential).

RPA is also able to determine the linear responses we obtained from constitutive relations
in EM, namely the conductivity σ(q, ω), polarizability χ(q, ω) and the dielectric function
ε(q, ω). The inclusion of ω in these functions relating to the polarizability of the medium is
evidence that the RPA is able to include correlations - ω implies that a polarization of the
material moves the electrons collectively, so that a sort of inertia, or momentum transfer, is
occurring on the quantum scale.

Before we proceed with explaining our RPA-derived polarizability function in terms of
inter- and intra- band transitions, we briefly mention why we do not consider the case of
undoped graphene. Recall that in the regime of Fermi energy EF = 0, we see in Figure
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3.3 that there is no longer a Fermi surface, but rather a ‘Dirac point’ in one dimension.
Landau’s Fermi liquid theory relies on electrons occupying a set of states near the Fermi
level in order for the screening effect to occur. With so few electrons occupying the Fermi
level (due to thermal and quantum effects), other interactions than the ‘ring’ diagrams will
take over, and the RPA requires corrections [52]. Undoped graphene also does not include
intraband transitions, which dominate at low frequencies where our plasmons are going
to lie. In Section 4, where we consider interband transitions for graphene, we will make
the simplifying assumption that the graphene is undoped, but for Section 5, when we study
graphene plasmons existing due to intraband transitions, it is necessary that a Fermi surface
exist, and we used doped graphene for that section.

Phase Space of Excitations

In our discussion about different excitations that the particle is able to take on, we will
focus on the imaginary part of the polarizability =χ(q, ω), as it will give us a way to analyze
reasons for energy loss (and hence absorbance) in our system. To see this, we first make
note of the relationship (see Appendix 2)

σ(q, ω) =
iω

q2
χ(q, ω), (3.21)

meaning that =χ(q, ω) ∼ <σ(q, ω). We saw in Eq. 2.40 that the absorbance of our material
A under certain conditions was linearly dependent on the real part of the conductivity.
This hints at the property that <σ(q, ω) gives us an idea about the nature of dissipation
in our system due to current flow J. Another way to see this is that =χ(q, ω) determines
how excitations couple to external charge fluctuations. For example, a fermionic excitation
creates a quasi-particle/quasi-hole pair that then is moved along by a current J, described
by =χ(q, ω). Plasmons are bosonic excitations in that they quantize collective behaviour,
but they still exhibit the finite lifetimes of standard quasi-particles.

Figure 3.4: k − ω plot of the different modes of excitation. Intraband (grey) dominates the
spectrum at low energies, while the interband excitations (blue) are suppressed in the k → 0
limit due to the Fermi level at ωF = vFkF . Adapted from [51]

The intraband transitions are a result of electron excitations within conduction or valence
bands, but not from one to the other. These transitions, which now dominate at low energies
[33], are effective at suppressing the Coulomb interaction, and therefore for doped graphene
we expect the RPA to hold.

Evaluation of =χ(q, ω) within the RPA approximation yields the plasmon frequency
derived from the Fermi Liquid Theory in Eq. 3.19 [22], which is a proper treatment given
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the photon-like properties of the quasi-particles near the linear dispersion Dirac cone. This
plasmon mode has the square root wavenumber dependence we expect from the 2D electron
gas, and exists in the region vF q < ω < 2EF − qvF , as the other regions will cause the
plasmon oscillation to decay into other modes.

3.2.4 Graphene Conductivity in the Optical Regime

We have mentioned in Chapter 2 that the difference in scale between the wavelengths of
probes and plasmons in the graphene, compared to the characteristic wavenumber scales
of graphene’s Brillouin zone and the mean free electron path, suggests a local frequency
response. This is especially valid in the Dirac cone approximation, a region where the
following property holds approximately

0 ≈ ω

c
� q � ω

vF
� kF . (3.22)

This is known as the optical, or q → 0 limit. We explore the conductivity of the material,
which will yield a finite answer in this limit. This is due to the nature of the electric
current J(ω) in materials, as current is an intrinsic dynamic response, whereas factors like
the internal charge density, by the continuity equation, require a level of dispersion to take
effect.

The optical conductivity is broken into two parts, the first being the inter-band contri-
bution σI = σr + iσi, with [4]

σr = σ0

(
1 +

1

π
tan−1 ~ω − 2EF

~γI
− 1

π
tan−1 ~ω + 2EF

~γI

)
(3.23)

and

σi = −σ0
1

2π
ln

(~ω + 2EF )2 + ~2γ2
I

(~ω − 2EF )2 + ~2γ2
I

(3.24)

such that

σ0 =
e2

4~
(3.25)

is called the universal conductivity, and γI is the relaxation rate for interband transitions
related to the damping of the mobile electrons in the graphene, derived under the RPA
approximation. This is known as the universal conductivity as it is the same expression
we showed in Eq. 3.12 for absorbance (see Eq. 2.40 to relate <σ(ω) to A) due to the inter-
band transitions that absorb all frequencies below a certain threshold, where the transitions
dominate for undoped graphene.

The second contribution is known as the Drude conductivity term, and has the form

σD = σ0
4EF
π

1

~γD − i~ω
(3.26)

derived from the intraband contribution, which becomes dominant at all frequencies for
highly doped graphene (see Fig. 3.4). The relaxation rate for the Drude term is γD, which
is derived from a measured dc mobility limited by impurities [29], allowing us to separate
it from the γI due to interband transitions.
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Based on the doping of the graphene in question, we will be exploring different regimes.
There is also the non-optical regime for polarizability which we investigate in Section 5.2.2
when a description of plasmonic behaviour for a large spectrum of wavenumbers is desired
[22]. Another limit that is of use to us is the limit where the interband transitions have
γI → 0, resulting in a total conductivity of

σlow(ω) =
e2EF
π~2

i

ω + iγD
+ σ0

[
Θ(~ω − 2EF ) +

i

π
ln

∣∣∣∣~ω − 2EF
~ω + 2EF

∣∣∣∣] (3.27)

with Θ(~ω − 2EF ) the Heaviside step function, showing the screening of low wavenumber
excitations due to the Fermi surface, as in Fig. 3.4.

We see from Fig. 3.4 that the plasmon mode, which will exist for ω � qvF , and derived
from the RPA approximation, will be dominated by this Drude conductivity term with a
negligible real part (as there is negligible absorption in the plasmon region vF q < ω <
2EF − qvF ),

σplasmonics ≈ σD ≈ i
e2EF
π~2ω

. (3.28)

We showed in Eq. 2.59 why this conductivity suitably described the region where the plasmon
is valid, and yet we could still consider our excitation to be a surface plasmon.

Based on this expression, we can derive the plasmon’s resonant frequency. We combine
the two dimensional continuity equation, the definition of conductivity, the definition of the
electric potential and the definition of the internal charge density for the screened Coulomb
interaction near a substrate, which is

φ̂ = v(q)2D,sρ̂ =
2π

qε
ρ̂ (3.29)

based on Eq. A.41 from Appendix 2.
Under the assumption of optical conductivity for graphene plasmons, this gives

ωρ̂ = ~q ·~j(ω) (3.30)

= σ(ω)~q · ~E(ω) (3.31)

= −iq2σ(ω)φ̂(q, ω) (3.32)

= −iq2

(
i
e2EF
π~2ω

)(
2π

qε
ρ̂

)
. (3.33)

The plasmon frequency yields an eigenmode for the equation for non-zero ρ̂, allowing us
to cancel ρ̂ and determine the equation for ωp(q) from Eq. 3.19. This frequency was also
derived from the dispersion relation determined in Eq. 2.58, this time in Gaussian units.
[4].

It is interesting to observe that, despite the fact that our conductivity equation is derived
under the quasiparticle picture within the RPA approximation, we are able to treat the
particles like any other electron system that satisfies the continuity equation, the equation
for current and the internal charge density. In fact, the f -sum rule for conservation of
particle number mentioned earlier is a result of the application of the continuity equation
on a quantum level with the quantum Hamiltonian of the system [49]. We investigate this
conservation law in future chapters.
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3.2.5 Two-Fluid Hydrodynamic Approach

A previously mentioned property of the graphene structure is that it contains two types of
electrons depending on their location in the orbital of each carbon atom: three σ electrons
and one π electron. We seek in this section to develop a model for high-energy transitions
between the π and σ bands as shown in Fig. 3.2. In our development of a planar description
of graphene’s properties for higher energies than those where the linear dispersion model for
the π-orbitals in graphene is valid, we seek to use a Hamiltonian that encodes all the features
experienced by these electron types in two-dimensions via a hydrodynamic model. We use
the ideas from density functional theory, which lumps collective classical and quantum
mechanical properties into functionals solely dependent on the local electron density. On
one hand, the Hamiltonian will contain terms seen in a classical harmonic approach to
fluids with a restoring force, but on the other hand, we see the exchange interaction due
to quantum indistinguishability of identical particles, now in terms of the electron density
instead of wavefunctions. Effects like the periodicity of the graphene structure are ignored in
favour of an electron gas against a uniform positive ion background, with various corrections
included to capture the fluid effects. The two fluid Hamiltonian is [44]

H =
∑
ν=σ,π

{∫
d2rnν(r)

[
1

2m∗ν
|pν(r)|2 +

κν
2
|xν(r)|2 + V (r)

]

+

∫
d2rnν(r)

[
π~2

2m∗ν
nν(r)− e2

[
32

9π
nν(r)

]1/2
]

+
e2

2

∑
ν′=σ,π

∫ ∫
d2rd2r′

nν(r)nν′(r)

|r− r′|

}
(3.34)

where nν , pν , xν , m∗ν , and κν are, respectively, the number density per unit area, the fluid
momentum field, the displacement field, the effective mass, and the restoring-force constant
for the ν-th electron fluid, with ν = σ, π representing the type of carrier in the fluid. We
have the relation pν = m∗ν ẋν , the time derivative, and we have an implicit time dependence
along with the r-dependence.

The first term represents the kinetic energy of a fluid ν, the second term the restoring
force of electrons that occurs within a harmonic approximation of fluids, giving a restoring
frequency ωνr =

√
κν/m∗ν , and the potential V (r) = Vg(r) + Vext(r) as a result of both the

positive ion background and any external perturbations. The next set of terms are derived
from the local density approximation (i.e. only depend on the electron density at a single
point in space) to determine the exchange effects from a density functional approach, known
as the Thomas-Fermi and Dirac exchange interactions. Lastly included are the electronic
Coulomb interactions.

We now wish to consider the perturbations of the electrons to be small, allowing us
to expand the Hamiltonian to the second-order in the perturbation by letting nν(r) =
n0
ν + λδnν(r) +O(λ2), Vext = λVext and the velocity uν(r) = λδẋν(r) +O(λ2), where n0

ν is
the ground state electron density of either the σ or π fluid. In order to satisfy the continuity
equation, we let δnν(r) = −n0

ν∇ · δxν(r) = n0
ν∆ξν(r) where the gradient and divergence

operators act in the plane of a graphene sheet, and by working in an electrostatic regime
we are able to define the displacement field as being irrotational, letting ξν(r) be the scalar
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potential that generates it. Writing out the second order Hamiltonian yields

H2 =
∑
ν

∫
d2r

{
m∗ν
2

(|∇ξ̇ν |2 + ω2
νr|∇ξν |2) + Vext(r)∆ξν

}

+
∑
ν

∫
d2r

(
π~2

2m∗ν
− e2 1√

2πn0
ν

)
× (n0

ν∆ξν)2

+
e2

2

∑
ν,ν′

∫ ∫
d2rd2r′

n0
νn

0
ν′

|r− r′|
∆ξν∆ξν′ (3.35)

Since this is a second order Hamiltonian, it gives us a semi-classical equation of motion
for the electron fluids, containing terms analogous to the speed of propagation density and
classical pressure derived from a quantum perspective. From the Hamiltonian, the Euler-
Lagrange equation of motion can be derived by combining the two first-order PDEs given
by Hamilton’s equations to give one second order PDE for the variable ξν :

ξ̈ν + ωνrξν + s2
ν∆ξν =

1

m∗ν
(Vext(r)− eΦind(r)) (3.36)

where the potential Φind is the induced potential due to the electron fluid polarization from
the small perturbative external potential satisfying the Poisson equation

∆Φind = 4πeδ(z)
∑
ν=σ,π

n0
ν∆ξν(r) (3.37)

and the speed of propagation density sν is defined by

s2
ν =

2

m∗ν

(
π~2

2m∗ν
n0
ν − e2

√
n0
ν

2π

)
. (3.38)

The term ξ̈ν stems from the time derivative of the partial derivative of the system’s La-
grangian with respect to the canonical coordinate ξ̇ν , while all other terms are a result of
∂L(t, ξν , ξ̇ν)/∂ξν in the Euler-Lagrange equation.

Transforming to Fourier components, and noticing that Vtot(r) = Vext(r) − eΦind(r) is
the total potential of the system, we obtain

(−ω2 + ω2
νr + s2

νq
2)ξν = − 1

m∗ν
Vtot (3.39)

δnν = − n0
νq

2/m∗ν
ω2
νr + s2

νq
2 − ω(ω + iγν)

Vtot = χν(q, ω)Vtot (3.40)

which is the definition of the polarizability χ(q, ω), relating the induced charge density
with the total potential of the system. We note the addition of an imaginary damping γν ,
which cannot be derived in the context of the Hamiltonian from DFT, but instead is a
phenomenological justification of the damping that occurs in real systems. We see a similar
factor occur in the QFT approach to many-body systems, considered the lifetime of quasi-
particles or of oscillations. Also similar to QFT is the effective electron mass m∗ν used in the
calculations, which will be heavier than a normal electron mass due to the cloud of particles
surrounding it.

28



Determining χν(q, ω), which hence also gives us εν(q, ω) and σν(q, ω), will be of much
use later when we attempt a fitting of this two-fluid hydrodynamic model to explain high-
energy spectroscopy data, a method that yields high-energy plasmon peaks resonating at
the σ → σ∗ and π → π∗ inter-band transitions that match well with what we expect from
this semi-classical electron fluid.

We note that we now have two different polarizabilities for two different regimes, allowing
us to determine the response of planar graphene to external perturbations. For the linear
dispersion approximation for the low-energy excitations involving only π electron bands
near the two symmetry points K,K ′ we have (for the case of undoped graphene) already
noticed the universal absorbance of graphene, which is the major contributor to this regime’s
polarizability. Once we look at higher energies where the plasmonic behaviour of the σ and π
bonds begin to take the major roles, we can use the two-fluid two-dimensional hydrodynamic
model, for which we have determined the polarizability. Reconciling these two models to
determine the full spectrum of graphene’s behaviour will be the subject of later chapters.
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Chapter 4

Modelling Ellipsometry and EELS
in Graphene

We have covered in previous chapters some of the basics of graphene and its optical prop-
erties. In our studies of rough surfaces in Chapter 5, we will focus on plasmonic be-
haviour, and we showed in Section 3.2.3 that these plasmons are strongest in the low
wavelength/frequency regime. However, we also developed a semi-classical model for the
electrons that are involved in the bonding process through σ and π orbitals, which at higher
energies resonate in a fluid-like manner at different symmetry points in the graphene lattice.

Precise modeling of the low energy (and hence low frequency) regime is accomplished
via the detection of changes in the polarization of light, known as ellipsometry due to the
elliptical nature of electric fields that oscillate out-of-phase with each other. Less precise but
having a large energy scope is the technique of EELS, which measures inelastically-scattered
electrons that undergo energy loss with the material. We attempt to reconcile the data we
obtain from these measurements experimentally via a combination of a hydrodynamic model
with a low frequency contribution called the ‘Dirac term’, the universal absorbance due to
interband transitions of graphene for low wavenumbers and frequencies that we explored
in Sections 3.2.1 and 3.2.4. As there is an overlap between the data sets, we are able to
phenomenologically determine parameters for our models that fit the data well.

4.1 Ellipsometry

We have seen in Section 2.1.3 that given the polarization of incident light, the angle at which
it hits an interface, and the properties of the materials and surfaces in the system, we can
determine the coefficients for the polarization of both the reflected light and transmitted
light. As an experimentalist, two of these factors can be controlled, but one desires to know
to great precision the optical properties of the material. Measuring reflected or transmitted
light will therefore give information on the material below, which is experimentally chosen
to be an interface in most cases for ease of use.

The ability for this technique to probe materials as thin as graphene, which is thin-
ner than the light used to probe it, and its non-invasiveness, make ellipsometry ideal for
measuring changes in the low energy spectrum of graphene. In our case we will consider
experimental data of graphene on top of a glass substrate, as this allows the light that trans-
mits through the graphene to pass through unhindered, while also being a neutral material
that should not change heavily the electronic properties of this very tunable material. We
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will speculate later in this chapter the possibility of elements and charge impurities between
the graphene and glass, deposited as a result of the difficult experimental techniques used
to build graphene on top of a substrate effectively. It is clear that reflection coefficients
should be measured as this experimental setup allows for the measurement of light without
passing through any other materials than air.

The fundamental equation of ellipsometry is [16]

rp
rs

= tanψei∆ (4.1)

where rp, rs are defined as in Eqs. 2.35-2.38, ψ is the magnitude of the difference between
the different polarizations, and ∆ is the phase shift. These parameters can be measured for
different angles of incidence θ, and different incident energies determined by the component
of the incident light parallel to the surface. Therefore our ellipsometric measurements will
give us, for different energies and different θ, two parameters that in tandem should model
the graphene conductivity we have in Eqs. 2.35-2.38.

It is of note that the graphene conductivity is the only unknown in the equations for rp, rs,
so for each energy ~ω, our amplitude and phase shift determine the conductivity. However,
this system appears to be overdetermined, as two data sets have the ability to determine
two free parameters. This is however a misnomer, as our conductivity contains both real
and imaginary parts, corresponding to absorption and dissipation modes respectively (see
Section 3.2.3). We will be starting with the model and fitting it to the data sets rather
than try to extract data to create a model. This extraction in the case of three-dimensional
graphene (assuming the graphene is a very thin layer) has been performed and analyzed
[45], and their equations for rp, rs become three-layer Fresnel equations. In their case the
system has three free parameters, so the thickness of the graphene must be assumed to be
approximately 0.335nm as it is in the interlayer spacing of bulk graphite.

Experiments [45] were performed using a J.A.Woollam UV-IR ellipsometer, with an
energy range of 0.7− 5 eV. We note that the size of the light beam used by this equipment
requires a relatively large non-grained graphene patch, which can be challenging to find on
a graphene surface assuming such a patch exists. This consideration will offer us insight
into the precision of this method for materials with a small sample size.

In order to model the glass underneath (ε2 in Eq. 2.35) we use experimental data for
the frequency-dependent dielectric function ε2(ω), and model it via the Sellmeier equation,
which is often used to model dielectric functions for light frequencies near the visible spec-
trum:

ε2r(λ) = 1 +
B1λ

2

λ2 − C1
+

B2λ
2

λ2 − C2
+

B3λ
2

λ2 − C3
(4.2)

where λ = 2π/ω is the wavenumber corresponding to the frequency ω, and the coefficients
Bn, Cn are determined according to the model fit. Substrate materials in ellipsometry are
chosen for their lack of absorption at low frequencies, hence the fact that our glass only has
a real part to its dielectric function.

Given that the controlled variables in our experimental ellipsometric setup will be the
angle of incidence and the in-plane frequency, our ellipsometric measurements will yield an
optical (q → 0) limit conductivity i.e. σ(ω). Is this sufficient to model graphene at low
energies? We have answered this question in the low energy regime, where the universal
absorbance of frequencies is wavenumber- and frequency- independent. The region where
the linear dispersion model begins to break down is approximately 1 eV, after which the
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hydrodynamic model for the π → π∗ plasmon, which we will find has a resonance near 4
eV, should achieve a better fit, with our spectrometer having an energy range up to 5 eV.

For the π electrons, let us combine our result from Eq. 3.40 for the polarizability of the
π fluid with our relation Eq. A.35. This yields

σπ(q, ω) = −iω n0
π/m

∗
π

ω2
πr + s2

πq
2 − ω(ω + iγπ)

. (4.3)

Although it is tempting to rid ourselves of the term that results from pressure due to
Thomas-Fermi and Dirac exchange interactions, we are no longer in the regime of applica-
bility of the optical limit as defined in Eq. 3.22. Instead, the wavevector that is derived
from the incident light response in ellipsometry has the form

qphoton =
ω

c
cos θ, (4.4)

which depends on the angle of incidence θ. Although we could include this in our approach,
we avoid it for two reasons. The first is that in this high-energy plasmon regime, the
coupling of the wavevector of the photon to that of the hydrodynamic plasmon may not
be as straightforward as letting q = qphoton, and including this plasmon polariton requires
a more in-depth treatment [33]. The second objection is the sense of scale, as (sπ/c)

2 is
a small factor given the speed of propagation due to quantum effects is not as sizable as
the speed of light. We must be careful with this statement however, as we saw in Section
2.2.1 that a metal/air or metal/glass system has the ability to sustain plasmonic modes that
cause the wavenumber to approximate electrostatic behaviour, sending the system into the
q → ∞ regime. Thankfully, the coupling of photons to plasmons in graphene [3] is limited
to small q behaviour thanks to the Landau damping that occurs for energies above the
interband threshold of approximately 1 eV. For these reasons our equation for σπ(q, ω) (and
likewise for σσ, by the same logic) is effectively q-independent in the context of ellipsometric
measurements.

4.2 Electron Energy Loss Spectroscopy

A low-loss electron energy loss spectroscopic analysis of graphene aims to use inelastic
scattering of an electron beam to determine modes of energy loss in our medium (surface).
This technique has the ability to map the modes of loss for up to 50 eV, allowing us to
investigate both the π and σ plasmon regions, areas where the collective oscillation of
electrons makes scattering at such energies occur with high frequency. We have before
expressed our desire to map the response in this region via a hydrodynamic model, but we
must use experimental data to verify that the two-fluid plasmons we have predicted do in
fact exist. To start, we must know how one can relate the collective modes and their related
polarization to the energy loss at various energies.

We begin with a straight-line trajectory for our electron, heading toward a two dimen-
sional planar graphene sheet, thereby creating an external charge density

ρext = Zeδ(~r − ~v‖t)δ(z − v⊥t) (4.5)

where Z = −1 for an electron and ~v‖ and ~v⊥ are velocity components parallel and perpen-
dicular to the plane of graphene. For graphene at height z = 0, the induced potential will
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Figure 4.1: In the low-loss regime, electrons incident to the system geometry interact with
interband transitions, intraband transitions and plasmon absorption in the 0-50 eV range.
Beyond this, the core-loss region absorbs energies on the level of atomic bonding. The Zero
Loss Peak (ZLP) comes about due to electrons that do not interact or scatter with the
material, interfering with the analysis of behaviour in the 0-2 eV region. Figure adapted
from [45]

decay away from z, as can be seen via the Fourier transform of the external charge density
above:

Φ̃ind(~q, z, ω) = −2πe

q
ñ1(~q, ω)e−q|z|, (4.6)

similar to Eq. A.41 for z = 0, as ñ1(~q, ω) is the induced charge-carrier density on graphene
(with e > 0). The polarizability now comes directly from its definition in Fourier space
(recalling it is a response function),

ñ1(~q, ω) = eΠ0(~q, ω)
[
Φ̃ind(~q, z, ω) + Φ̃ext(~q, z, ω)

] ∣∣∣∣
z=0

, (4.7)

where Π0(~q, ω) = −χ(~q, ω), the polarizability of the graphene sheet. Given the external
charge density ρext, we can also compute the external potential in Fourier space due to the
moving electron

Φ̃ext(~q, z, ω) =

∫
d2~rei~q·~r

∫
dteiωt

∫
d2~r ′dz′

Zeδ(~r − ~v‖t)δ(z − v⊥t)√
(~r − ~r ′)2 + (z − z′)2

(4.8)

=
4πZev⊥

(qv⊥)2 + (ω − ~q · ~v‖)2
ei(ω−~q·~v‖)z/v⊥ . (4.9)

Combining the above three equations then yields

ñ1(~q, ω) = −ZK(q, ω − ~q · ~v‖)
[

1

ε(~q, ω)
− 1

]
(4.10)

where

K(q, ω) =
2qv⊥

(qv⊥)2 + ω2
(4.11)
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is called the kinematic factor, and as shown in Eq. A.36, there is a relation between the
dielectric function and the polarizability, with v(q) = 2πe2/q in electrostatic units.

We still have to relate this expression to the energy loss experienced by the particle,
which by definition is

dEloss
dt

=

∫
d3r~jext(r, t) · ~Eind(r, t) (4.12)

= −
∫
d3rΦind(r, t)∇ ·~jext(r, t) (4.13)

=

∫
d3r

(
∂ρext
∂t

Φind + ρext
∂Φind

∂t
− ρext

∂Φind

∂t

)
(4.14)

=
d

dt

(∫
d3rρextΦind

)
−
∫
d3rρext

∂Φind

∂t
(4.15)

where we implicitly used the definition of the potential Φind under the Coulomb gauge
and the continuity equation. Only the second component of this equation is the result of
dissipation, as can be seen by the placement of the total time derivatives. Integrating over
all time and transforming the dissipative equation to two-dimensional Fourier space gives

Eloss = iω

∫
d2~q

(2π)2

∫
dω

2π

∫
dzΦ̃ind(~q, z, ω)

∫
d2~r

∫
dtei(~q·~r−ωt)ρext(r, z, t) (4.16)

= i

∫ ∞
0

dωω

∫
d2~q

q

(
(Ze)2

2π2
K(q, ω − ~q · ~v‖)

[
1

ε(~q, ω)
− 1

])
×
∫
dt

∫
d2~r

∫
dzei(~q·~r−ωt)e−q|z|δ(~r − ~v‖t)δ(z − v⊥t) (4.17)

=

∫ ∞
0

dωωP1(ω) (4.18)

where the probability density of losing energy ω due to the graphene is

P1(ω) =
(Ze)2

2π2

∫
d2~q

q
K2(q, ω − ~q · ~v‖)=

[
− 1

ε(~q, ω)

]
. (4.19)

The factor =[−1/ε(~q, ω)] is called the loss function, and will be used in Chapter 5 to analyze
energy loss due to plasmons on or near rough surfaces. Since we are working with normal
electron incidence, v‖ = 0, and as graphene polarizability is close to being isotropic, we
invoke Π0(~q, ω) = Π0(q, ω). From an experimental point of view, the integration of our
wavenumber is limited by the acceptance angle of the apparatus (i.e. its ability to measure
q in the below Figure), but since our kinematic factor K(q, ω) is strongly peaked at the value
q = ω/v⊥ � qc, with qc being the acceptance wavenumber, we can extend our integration
to infinity.

Under these assumptions, we are able to write our loss probability as

P1(ω) =
4e2

πv2
⊥

∫ ∞
0

dq
q2[

q2 + (ω/v⊥)2

]2=
[

−1

1 + 2πe2

q Π0(q, ω)

]
. (4.20)

Now that we have a way to model EELS using graphene’s polarizability, we wish to again
ask ourselves whether the q → 0 limit is sufficient for our uses. Similar to the ellipsometric
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case in Section 4.1, we are able to say the speed of propagation due to quantum effects is
sν � v⊥, given that our kinematic factor is peaked at q = ω/v⊥, allowing us to effectively
use the wavenumber-independent conductivity.

This factor P1(ω) is, however, only a probability, and many of the electrons passing
through the graphene will not experience any sort of interaction. Although graphene has
miraculously high absorbance for its dimension (approximately 2.3% as shown in Section
3.2.1), there is still a very large proportion of electrons that will be detected near 0 eV. This
is known as the zero-loss peak (ZLP), and it obstructs the ability of EELS to obtain any
resolution near the area between 0 and 2 eV. This is a large motivation behind using the
high-resolution ellipsometric data for monolayer graphene, which is able to resolve this area
clearly.

Efforts are made [45] for our data to make careful subtraction of this peak. For this
task, we must note that we expect little graphene interaction for electrons below 1 eV (see
Fig. 3.4) as the losses below this energy are minimal. We also expect the energy loss to be
zero for zero frequency. A careful cubic interpolation removes the ZLP for these electrons,
but we continue to observe a delta-like peak at approximately 2 eV (see Fig. 4.2). We posit
in this thesis that this is due to interband transitions that dominate for lower energies, the
same that give the universal absorbance for all frequencies. Some ab initio calculations [9]
have yielded a similar low energy peak. The position of this peak near 1 eV is a result

Figure 4.2: Shown are the data for EELS with the ZLP peak subtracted, along with our
hydrodynamic model without the Dirac cone approximation and with it. The removal of the
ZLP leaves behind a large peak, which we posit is due to the interband transitions present
in low-energy graphene. Figure adapted from [36]
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Hydrodynamic
Parameters Units Pi-Plasmon Sigma-Plasmon

n0
ν nm−2 38.09 114.28
ωνr eV 4.624 14.14

Table 4.1: Conductivity Parameters for Hydrodynamic Model in Section 4.2.1.

of the low-wavenumber integration over the loss function, compared to the position of the
hydrodynamic peaks, which are due to being near their respective plasmon resonances. This
means, for example, that if graphene had twice the universal conductivity σ0, the peak would
increase (due to more losses) but its frequency would not change. It also means the position
of this peak will not depend on the electron incident velocity v⊥. Corrections due to doping
in the graphene however may have the ability to shift the peak for this low energy.

From an experimental point of view, we note that EELS requires a much smaller area of
monolayer graphene than ellipsometry to perform accurate measurements [11]. These EEL
spectra were collected in an aberration-corrected scanning transmission electron microscope,
Nion UltraSTEM 100 [31]. The microscope was operated at 60 kV acceleration voltage in
order to avoid knock-on damage of the lattice. A 30 mrad convergence angle, a 15 mrad
collection aperture, an energy dispersion of 0.05 eV/pixel, and an electron beam with an
energy resolution of 350 meV were used in the experiments.

4.2.1 Combining the Two Conductivities

The combination of two conductivity regimes requires some guesswork, as there is a lot of
graphene physics occurring between in the 0-5 eV range that must be estimated using a
combination of the well-understood Dirac term stemming from quantum level absorption
modes and with the semi-classical two-fluid hydrodynamic flow for higher energy regimes.
Our main requirement is that there is a continuous transition between the conductivities.
We look at the absorbance, which is given by Eq. 2.40:

A =
4π

c
<σ(ω), (4.21)

noting that the universal conductivity due to the Dirac term is σ0 = 1/4 in Gaussian units.
We perform a phenomenological fit to the parameters in Fig. 4.2 for our data (see Table
4.1) and proceed to use these terms, along with the assumption that our graphene isn’t
doped by any impurities (EF = 0), to see the absorbance data under different combinations
of conductivity terms. We justified the undoped assumption phenomenologically by seeing
its effect on the EELS data and by seeing the agreement with the absorption data for low
energies with experiment.

Using only the hydrodynamic model, we observe zero absorbance by the graphene of low
energy photons, with a peak near the π plasmon of approximately 4.62 eV, giving around
14% absorbance. By adding in the constant 2.3% absorbance we expect due to interband
effects for undoped graphene in the low energy regime, this peak absorbance elevates to
around 16%. A compromise between the models utilizes the Heaviside functions to separate
the two regimes:

σ(ω) = σlowΘ(ωc − ω) + (σπ + σσ)Θ(ω − ωc) (4.22)

36



Figure 4.3: Comparison of absorbances for the HD model with and without the Dirac term,
along with a piecewise combination of the two at approximately 3 eV to ensure continuity
of the real part of the conductivity, which controls dissipation modes and hence absorbance.

where σlow(ω) is defined in Eq. 3.27 for the low energy regimes, and σν(ω) is shown in
Eq. 4.3 (with an analogous relation for the σ bonds). The intersection point of these two
regimes is shown to be ωc ≈ 3 eV, which is beyond the validity of the linear dispersion
model near the Dirac cone, showing the simplicity of this assumption.

Experimental absorbance data [30] gives a similar peak near the value of 4.5 eV as we
have in Table 4.1, and gives an asymmetry as given in the hydrodynamic model, but the
experimental peak absorbance is approximately 8%, which could be due to contamination or
rippling of the graphene. Unrippled pure graphene is expected to give the highest absorbance
due to the collective flow of electrons in a low-dimensional system. One can then ask why
the graphene continues to show around the same universal 2.3% absorbance for energies
below 2 eV in experiment. This is an open question, and requires an in-depth investigation
into the effect of impurities on the absorption spectra for this material. Other theoretical
treatments of the absorption of graphene in this region have yielded similarly high peaks.

Due to the experimental data showing both universal absorbance and a slightly lower
absorption peak, we wish to choose our Heaviside model from the above equation when
checking our ellipsometric data. However, unlike for our absorption measurements, which
show that the continuity of the real part of the conductivity for some ωc can be achieved,
this continuity does not carry over into the realm of =σ(ω). We will therefore choose
the combined HD and Dirac models without the Heaviside function, keeping in mind the
increased peak will predict more absorption of a certain polarization of light.

4.2.2 Checking the Ellipsometric Data

One of our main goals - that of verifying phenomenologically that the two-fluid hydrody-
namic model gave an excellent fit for the plasmon peaks due to graphene’s symmetry points
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Figure 4.4: Theoretical and experimental plots of the ellipsometric parameters ∆ and ψ for
θ = 45 ◦ and θ = 65 ◦. (a) The conductivity of the graphene plays a large role in shifting
ψ, more so than the energy dependent dielectric of glass. The interband contribution gives
very good agreement between 0 and 3 eV, but the effect of the π-plasmon over-contributes
to the polarization change. (b) This plot is broken in half to outline the ranges of angles
we are investigating. Notice that due to the over-contribution, there is a flip in sign of ∆
for θ = 45 ◦, near 4.7 eV. For this phase shift, the Dirac contribution is eclipsed by the
π-plasmon. Adapted from [36]

- has been accomplished. On top of this result, we claim that the removal of the ZLP leaves
a peak that, rather than being an artifact of the removal, is evidence that the interband
transitions show up in the blurred portion of the EELS spectra. To verify our parameters
in this blurred region, we will compare our EELS-derived parameters for both this universal
term and the 4.6 eV π-plasmon with the help of our ellipsometric data, ∆ and ψ.

To recap, we input the combined conductivity σlow + σπ + σσ into Eqs. 2.35 and 2.38
for the reflection coefficients of rp and rs, plug these factors into Eq. 4.1 and compare the
values ∆ and ψ to their experimentally measured values from [45]. Many angles of incidence
were taken, which in Eqs. 2.35 and 2.38 changes κ1z and κ2z. As an example we present the
angles 45 ◦ and 65 ◦, which are indicative of the other angles between 45 ◦ and 70 ◦, taken
in 5 ◦ steps, which were measured. We note an almost mirror shift between the data of
the two angles - this is due to the existence of a Brewster’s angle around 60 ◦, causing our
s-polarization to disappear upon reflection i.e. rs = 0.

Figure 4.4 shows side by side the values for the ellipsometric parameters ∆ and ψ.
Starting with ψ, the more robust of the two measurements, shows the theoretical combined
HD model closely following the experimental measurement for the difference in polarized
light. We anticipated that an overshoot of the π-plasmon peak would occur due to the high
theoretical absorbance versus the lower experimental one due likely to contamination and
rippling of the graphene sheet. In fact, by including a multiplicative factor f = 0.5 to the
conductivity of the π-fluid σπ in order to make the absorbance peak around 8 eV in Fig. 4.3
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to match experiment, the fit to the value ψ at all angles θ is a perfect match.
The reason for this disparity can be linked to any number of factors. As the graphene in

both ellipsometry and EELS is grown via Chemical Vapor Deposition (CVD), the location
of water and other impurities between the graphene sheet and the glass substrate may play
a large role in the changing of the reflective properties for higher energies more so than
lower ones. Ripples in the graphene and its three-dimensional topology can influence the
way that light comes back to the detector [54], dispersing after hitting the ripples rather
than following a straight line trajectory to the ellipsometer. This effect is evidently one
which would not influence the EELS measurements as much due to the incident trajectory
of fast moving electrons in that setup.

Figure 4.4 also shows a theoretical plot for the parameter ∆. Here, our theoretical
model, despite well approximating the magnitude of the phase shift between the rp and rs
coefficients before and after the measurement by the ellipsometer, does not fit particularly
well at any given energy. The largest phase shift experimentally occurs near 4.8 eV, whereas
our theoretical treatment peaks around 4 eV. This may once again be due to factors such
as contamination and rippling which do not factor in as much into the measurements for
EELS.

Extraction of the refraction index n(ω) =
√
ε(ω) from [45], assuming a graphene mono-

layer with thickness 3.35nm and using the three-dimensional Fresnel equations, was able
to obtain a dielectric function for graphene (with real parts of the function determined
through Kramers-Kronig relations [10]) that was then used to determine the absorbance
of the graphene in this model. The calculated absorbance matched well with previous ex-
periments [30], with a peak around 8 eV. Although we are assuming a two-dimensional
graphene layer, we know experimentally about the presence of impurities that enter be-
low the graphene sheet. This is especially valid in Spectroscopic Ellipsometry (SE), where
the experimental setup is exposed to air. Also, the presence of a third layer between the
graphene and the substrate would likely have a strong effect on the phase shift of polarized
light (due to the transmission/reflection at multiple surfaces rather than just one) while
not having a large effect on the magnitude of the shift ψ from polarization of the graphene
electrons.

In order to implement our three-layer approximation, we will make the assumption that
the layer between the graphene and the substrate can be described by a local dielectric
function εlayer(ω). We have before computed the matrices M (p) and M (s) in Section 2.1.3,
describing the reflection of light for a system with graphene on top of the substrate. Using
a transfer matrix formalism [60], we are able to describe in a similar way the reflection due
to multiple layers. Although our M (p) and M (s) defined relations are between the first and
second layer, we can generalize these relations, such that[

a2

b2

]
= M

(p,s)
2/3

[
a3

b3

] [
a1

b1

]
= M

(p,s)
1/2

[
a2

b2

]
(4.23)

where a change of indices for the original M (p) and M (s) fully generalizes the result. We
notice that the coefficients a, b have different meanings for s and p polarization. To account
for the gap that forms between the graphene and substrate ∆z, we use a 2× 2 propagation
matrix that gives the change in the propagation of light through the material. The overall
matrix relating a1 and b1 (coefficients of light propagation through the first material) to a3
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and b3 is given by[
a1

b1

]
= M

(p,s)
1/2

[
e−iκ2z∆z 0

0 eiκ2z∆z

]
M

(p,s)
2/3

[
a3

b3

]
=M(p,s)

[
a3

b3

]
. (4.24)

Using this matrixM allows us to generalize to three-layers our reflectance and transmission
coefficients

rp,s =
M(p,s)

21

M(p,s)
11

tp,s =
1

M(p,s)
11

(4.25)

where the indices represent the elements of the 2× 2 transfer matrix M.
Unfortunately, for estimated values of ε between 1 and 2.5 (the dielectric function

for many glass-like materials), and ∆z between 1 and 3.35nm (the average ‘thickness’ of
graphene due to its carbon atoms and perpendicular π orbitals), there is no significant
change in our results from Fig. 4.4 for ellipsometry. This simplistic model ignores the possi-
bility of polarizable media, especially water, which has an ε near 40. Other dielectric media
are possible, but then the question arises why they do not shift the ψ if they have absorbant
modes in the 0-5 eV range. Future work into the effects of contaminants on the ellipsometric
response is needed for a fuller picture.

Briefly, the effects we expect from contamination are the following: for EELS, there
are more opportunities for scattering events given more scatterers, and contamination is
therefore believed to artificially raise the loss spectra. Analysis [45] shows that most of the
spectra due to contamination comes for energies larger than 5 eV. Other effects such as
rippling could serve to raise all the spectra due to q → 0 being a bad approximation if many
scatterers exist. We also have the fact that ellipsometric measurements require a larger area
than those for EELS and are therefore more likely to use contaminated graphene, giving a
plausible reason for a shift in the overall theoretical predictions. If the experimental EELS
overestimates the magnitude of σπ,σ, we would see a lower absorbance that matches with
experiment, and a less-influential π-plasmon would, as mentioned, give better agreement
with ψ.

Verifying these speculations is outside the current viable experimental realm of perfectly
clean graphene and outside phenomenological models that serve to give an approximate
behaviour for energy absorption and dissipation modes inside graphene.

4.3 f-sum Rule

We conclude this section by investigating the f -sum rule, mentioned in Sections 3.2.2 and
3.2.4. This is a conservation law stemming from the conservation of particle number for
a given Hamiltonian. The logic is that the effect of the conductivity in graphene is to
induce a planar current from an applied electric field i.e. to move electrons around. This
constitutive function, and the Hamiltonian from which it was derived as an addition to the
ground state energy of the system, must therefore preserve the total number of particles in
the system. This applies as well to the case of quasi-particles, which have finite lifetimes,
since our assumption about the Fermi liquid from which both RPA and our hydrodynamic
models stem require a fixed number of particles.

The f -sum rule reads as [52]∫ ∞
0
<[σ(ω)]dω =

πe2

2me
natNe (4.26)
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Figure 4.5: f -sum rule showing the availability of valence electrons to participate in the
system. The inclusion of the Dirac term in the conductivity σ(ω) = σlow + σπ + σσ gives
values commensurate with the expected valence electron numbers from the carbon electrons
in σ and π orbitals. Figure adapted from [36]

where me is the mass of the electron, nat = n0
π + n0

σ is the atomic areal density of graphene
particles (noting that 3n0

π = n0
σ, as there are 3 more σ electrons than π for each carbon

atom, see Table 4.1), and Ne is the number of valence electrons per carbon atom. For high
energies, Ne should approach 4, as the increased frequencies allow for previously trapped
electrons to flow as if behind a background of positive ions.

We can use this rule to define the number of valence electrons that participate in exci-
tations up to a certain energy Ω [1]:

Ne(Ω) =
2me

πe2nat

∫ Ω

0
<[σ(ω)]dω. (4.27)

We see in Figure 4.5 the comparison between our hydrodynamic model with and without
the additional Dirac term for undoped graphene (EF = 0). The number of valence electrons
suitably jumps near the plasmon peaks now that there are more valence electrons that can
be involved in different types of excitations. The addition of a new mode of transition for
electrons with the Dirac term increases is seen to universally increase the curve in Figure
4.5, as expected for a universal absorbance. Our number of valence electrons Ne(Ω) plateaus
at 1 and 4, given the one π-electron and three σ-electrons involved in graphene bonding.
This graph matches with theoretical predictions obtainable from band energy diagrams [40]
about the value for Ne(Ω).

The f -sum rule lends support that the phenomenological hydrodynamic parameters we
fit to the data for EELS (see Table 4.1) correctly match with the expected number of valence
electrons for graphene, suggesting a clean graphene surface that yields the correct number
of counts experimentally.
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Chapter 5

Effects of Roughness on Graphene
Plasmons

There are many elements to our investigation of how roughness on both the graphene and
substrate surfaces we consider changes plasmons. How the roughnesses of the surfaces in-
teract, the image potential effect that the substrate has on the graphene plasmons, and
electronic effects present due to the crumpling and deformation of the surfaces. We inves-
tigate these properties one by one.

5.1 Characterization of Rough Surfaces

At the heart of our study are planar surfaces with stochastic height profiles. This is expected
on the nano-scale, where current fabrication limits and physical properties regarding the size
of atoms mean that an ideal flat surface is always just out of reach. Let us consider as an
example our dielectric substrate, which, assuming it is translationally invariant, can be
partially described in the following manner [13]:

〈hs(~r)〉 = 0 (5.1)

〈hs(~r)hs(~r ′)〉 = σ2C(|~r−~r ′|) with σ2 = 〈hs(~r)2〉 (5.2)

where hs(~r) is the height in the z-direction of the graphene at the point ~r in the xy-plane.
The averaging brackets 〈〉 are shorthand for an integration over all realizations over the
surface. We note throughout the chapter the use of vector notation for two-dimensional
quantities restricted to the plane.

From a probabilistic perspective, all random processes have probabilities attached to
them, described by the distribution function

F (x,~r) = P (hs(~r) ≤ x) (5.3)

describing the probability of the height being less than the value x. The probability density
function (PDF) at the point ~r is then

f(x,~r) =
∂F (x,~r)

∂x
. (5.4)

We are also concerned probability-wise about how different points on a surface correlate
with each other. We define the joint probability distribution to be

F (x1, x2, ~r, ~r
′) = P (hs(~r) ≤ x1, hs(~r

′) ≤ x2) (5.5)
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Figure 5.1: Double rough surface problem, with the mean difference between the graphene
and substrate being h0. hs(~r) and hg(~r) are stochastic height variations from the means
0 and h0 for substrate and graphene, respectively. The values φ1, φ2 and φ3 label the
potentials in different regions when we seek to solve Laplace’s equation for each potential.
The vector ~r rests in the xy-plane. Adapted from [8]

and the joint PDF, describing the probability of two things happening at once, as

f(x1, x2, ~r, ~r
′) =

∂2F (x1, x2, ~r, ~r
′)

∂x1∂x2
. (5.6)

These PDFs act as a sort of instantaneous probability, and they hence allow us to compute
the ‘moments’ of our stochastic function:

〈hs(~r)〉 =

∫ ∞
−∞

xf(x,~r)dx (5.7)

〈hs(~r)hs(~r ′)〉 =

∫ ∞
−∞

∫ ∞
−∞

x1x2f(x1, x2, ~r, ~r
′)dx1dx2. (5.8)

The first is called the mean, and the second the autocorrelation (versus regular correlation,
where the two variables are not necessarily the same). This autocorrelation, as can be seen
in the joint probability distribution, gives an average behaviour for how two heights on the
surface are correlated. We expect of course for points ~r, ~r ′ close to each other that they
will be more correlated than if they were far away. This relationship will be reflected in our
choice for C(|~r − ~r ′|).

Higher-order moments can be similarly defined by determining a PDF and then integrat-
ing over all realizations of it, giving a correlation between larger collections of the stochastic
process. So, for example, the function 〈hs(~r)hs(~r ′)hs(~r ′′)〉 defines the correlation between
three points on the surface ~r, ~r ′, ~r ′′. A stochastic process is said to be fully described if
all its moments are known, but of course there are infinitely many. To relate these higher
moments to the first and second moments (mean and autocorrelation) we implement the
Gaussian property, which says that all odd-numbered moments are zero, while all even-
numbered moments are equal to the sum of the products of all permutations of hs as paired
in autocorrelation functions. For example,

〈hs(~r)hs(~r ′)hs(~r ′′)hs(~r ′′′)〉 = 〈hs(~r)hs(~r ′)〉〈hs(~r ′′)hs(~r ′′′)〉
+ 〈hs(~r)hs(~r ′′)〉〈hs(~r ′)hs(~r ′′′)〉+ 〈hs(~r)hs(~r ′′′)〉〈hs(~r ′)hs(~r ′′)〉. (5.9)

This theorem, a generalization of Bourret’s treament of higher order moments [5], comes
from the assumption that hs follows a multivariate distribution function, where it is known
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that only the mean and covariance matrix are needed to define all moments. These higher
moments for certain problems will be of the order of the autocorrelation and must be treated
carefully, and one of the models presented later involves our using a non-perturbative (i.e.
using every moment of a stochastic process) approach to solving a problem involving the
broadening of a plasmon frequency [14].

A crucial assumption we make about the macroscopic behaviour of both substrate and
graphene in this thesis are their translational invariance - that on average the surface is
expected to look the same everywhere. This also means there is no directional or positional
dependence on any of our stochastic moments, allowing us to say, for example, that the
autocorrelation only depends on |~r− ~r ′|. Although the substrate is not expected to change
its structure given plasmon movement, the flexibility of the graphene likely means that its
structure changes due to the interactions of strongly coupled oscillating modes, which is
beyond the scope of this paper. Therefore we will make the simplifying assumption that
both surfaces are translationally invariant.

We will also assume that the substrate and graphene interfaces are infinitely long. This
ties in with our assumption of translational invariance, as edges are a sort of ‘breeding
ground’ for strong plasmonic behaviour [58]. This will also simplify our transformation of
our potential equations into Fourier space, a transform that highlights the effect that certain
characteristic wavenumbers on the rough surface have on the graphene plasmon close to its
resonance. This assumption can be justified given the locality of plasmonic effects away
from the edges of a genuine graphene sample.

From an experimental point of view, it is important to point out the ergodic theorem
for stationary processes. This theorem says that to determine a moment of a stationary
stochastic variable (stationary in this case meaning the moment dependence is only on
|~r − ~r ′|, i.e. translational invariance), it is sufficient to measure the value of hs(~r) at all
~r, and then take the arithmetic mean (i.e. use the averaging brackets 〈〉) of n-products to
obtain the n-th moment. Since it is impossible experimentally to determine the value of
roughness at infinitesimally small points, the moments can be defined via a limiting process

〈hs(~r)〉 = lim
T→∞

1

4T 2

∫ T

−T

∫ T

−T
hs(x, y)dxdy (5.10)

〈hs(~r)hs(~r + ~r ′)〉 = lim
T→∞

1

4T 2

∫ T

−T

∫ T

−T
hs(x, y)hs(x+ x′, y + y′)dxdy (5.11)

for ~r = (x, y) and ~r ′ = (x′, y′). This is one way of saying the experimenter can measure
heights at various points and stochastically average them to obtain an approximate form for
any of the moments. We will be using experimental data to determine roughness parameters
that govern our surfaces in question.

Wavevectors are a more convenient setting to explore the effects of roughness, so the
Fourier transformed surface profile function reads as

h̃(~k) =

∫
d2~r exp (−i~k · ~r)h(~r), (5.12)

where ~k = x̂kx + ŷky. The moments in k-space become

〈h̃(~k)〉 = 0, (5.13)

〈h̃(~k)h̃(~k ′)〉 = σ2g(|~k|)(2π)2δ(~k + ~k ′), (5.14)
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while the Gaussian property for higher moments holds just as before, verbatim in k-space.
The function g(|~k|) =

∫
d2~r exp (−i~k · ~r)C(|~r|) is the Fourier transformed stationary auto-

correlation. This can be seen as:

〈h̃(~k)h̃(~k ′)〉 =

∫
d2~r

∫
d2~r ′e−i(

~k·(~r−~r ′)+(~k+~k ′)·~r ′)σ2C(|~r − ~r ′|) (5.15)

so integrating through ~r ′ forces a (2π)2δ(~k + ~k ′) term in the autocorrelation function.
It is important to note that although our real-space stochastic height profile functions

have strictly real values, this is not necessarily so in Fourier space, and we must exercise
caution in the difference between h̃(~q) and h̃∗(~q) = h̃(−~q). The Fourier-space correlation,
g(|~k|), will be real valued as it represents a probabilistic likelihood of two points in k-space
to be correlated.

5.1.1 EM Boundary Conditions for Rough Surfaces

Now that we have a stochastic way of describing the surface, we need to use this description
to determine modified boundary conditions due to roughness. We start with the assumption
of using the quasi-static approximation with the Coulomb gauge, allowing us to describe
homogenous media via Laplace’s equation. Considering Figure 5.1 we let hs,g(~r) be the
height profiles of the surfaces, giving the height at a planar point ~r = (x, y). Then our PDE
with boundary conditions reads as

∆φ3(~r) = 0, z < hs(~r) (5.16)

∆φ2(~r) = 0, hs(~r) < z < hg(~r) (5.17)

∆φ1(~r) = 0, hg(~r) < z (5.18)

φ1|z=hs(~r) = φ2|z=hs(~r) (5.19)

φ2|z=hg(~r) = φ3|z=hg(~r) (5.20)

∂

∂n
φ1|z=hs(~r) −

∂

∂n
φ2|z=hs(~r) = 4πσ (5.21)

∂

∂n
φ2|z=hg(~r) − ε

∂

∂n
φ3|z=hg(~r) = 0 (5.22)

Fφ1|z→−∞ = φ3|z→∞ = 0 (5.23)

where

∂

∂n
=

[
1 +

[
∂hs,g(~r)

∂x

]2

+

[
∂hs,g(~r)

∂y

]2
]−1/2 [

−∂hs,g(~r)
∂x

∂

∂x
− ∂hs,g(~r)

∂y

∂

∂y
+

∂

∂z

]
(5.24)

is the normal derivative to the rough surface characterized by hs,g(~r), defined via the relation
∂f/∂n = ∇f(~r) · n. Here we adapt the convention that σ is the surface charge density in
graphene, which is in a different context than the value σ representing the root mean squared
height of the surface in Eq. 5.14. Later we will develop proper perturbative Green’s functions
that utilize these relations.

5.1.2 Types of Rough Surfaces

The assumptions we have made so far about our rough surfaces have been standard practice:
assuming that our surface is large enough that we can ignore edge effects and can say it
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H σ (nm) a (nm)

Fractal (G) 0.68 0.22 21.1
Fractal (S) 0.8 0.31 15
Bessel (G) 0.85 0.22 20.4
Bessel (S) 1 0.31 14.5
Gaussian (G) 1 0.22 22.3
Gaussian (S) 1 0.31 15.8

Table 5.1: Fitted values for Fig. 5.2, showing parameters for fractal, Bessel and Gaussian
fits to the data. ‘G‘ represents graphene while ‘S’ is the substrate

is translationally invariant (stationary), along with the subtle point that we have defined
a Fourier transformed wavevector dependence that would require a flat surface to prop-
erly define. The stationary assumption allows us to determine moments of the stochastic
process by an experimental sampling. The last assumption was that our height function
would be similar to a multivariate Gaussian distribution, fully characterized by the mean
and the autocorrelation. We will investigate three types of autocorrelation, known as Gaus-
sian, Bessel, and Fractal surfaces, along with what is called a healing factor, derived from
membrane physics to describe effects of thin films deposited on rougher surfaces [48].

Figure 5.2: Fractal, Bessel and Gaussian correlation functions fitted to experimental data
for substrate and graphene surfaces. The substrate follows the pattern 〈hs(~r)hs(~r ′)〉 with
parameters shown in Table 5.1. Likewise the graphene correlation function 〈hg(~r )hg(~r

′)〉
has been shown in the table. The displayed data is in fact σ2

s,g − 〈hs,g(~r)hs,g(~r ′)〉. Adapted
from [23] and [35]

We introduce the fractal autocorrelation function (the only piece of information we need,
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given the mean is defined as 0) as

〈h(~r)h(~r ′)〉F = σ2 exp

[
−
(
|~r − ~r ′|
a

)2H]
(5.25)

where a is known as the transverse autocorrelation length, as it describes the mean value
length between two peaks or two valleys on the surface, while the factor H is known as the
fractal dimension. These three parameters quantify how ‘random’ a surface is. Small values
of a correspond to white noise, while large values imply less erratic behaviour. Likewise high
σ yields a much rougher surface than σ = 0, the flat surface. The use of the fractal dimension
H (also called the Hurst exponent) incorporates the idea that many surfaces exhibit a self-
affine structure, such that an invariance exists where ~r → Λ~r yields h(~r)→ ΛHh(~r), meaning
qualitatively that zooming into the surface will look very much like the original copy; this is
the basis of fractals in nature [54]. We note that the values for σ are fixed by the behaviour
at |~r − ~r ′| → ∞ on the plot, when the functions in Fig. 5.2 approach σ2

s,g

The typical feature of all natural correlation functions is their trailing off as the distance
between points increases. Physically this means that two points infinitely far away should
have no correlation, whereas two points adjacent to each other should have a lot in common.
The case of white noise, a → 0, implies no correlation between any points no matter their
proximity, the entirely random scenario.

The Gaussian distribution is the special case of H = 1, so called as the autocorrelation
function contains the factor exp(−|~r − ~r ′|2). It is especially useful as there exists a simple
analytic Fourier transform

g(|~k|)G = πa2 exp

{
−k

2a2

4

}
(5.26)

where g(|~k|) is defined in Eq. 5.14. The Bessel distribution is

〈h(~r)h(~r ′)〉B =
2Hσ2

Γ(1 +H)

[
R
√

2H

2a

]H
KH

[
R
√

2H

a

]
(5.27)

where Γ is the Gamma function, KH is the second kind of Bessel function of order H, and
R = |~r − ~r ′|, which has a Fourier transform

g(|~k|)B =
a2

(2π)5

[
1 +

a2k2

2H

]−(1+H)

. (5.28)

Since the fractal correlation function does not have an analytical expression for its Fourier
transform, we can make the assumption under certain conditions that it is approximately
the same as this Bessel Fourier transformed function.

Since our data is experimental, we wish to determine the autocorrelation function based
on what has been measured, which requires a fit based on one of these phenomenological
models. By matching our correlation functions to the data, we can determine the best
fit and deduce some ideas of how the graphene bends and curls under certain conditions.
Physically, the roughness of the substrate is determined by the experimental method used to
construct it, but as graphene is a thin membrane that forms on top of this substrate, there
is no experimental way (as of yet) to determine the behaviour of the roughness between
the gap. Although we can use energy considerations to find the balance between forces like
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adhesion, tension, and bending rigidity, we are concerned for our purposes on the correlation
functions themselves, but we will use these forces to justify some of our models later on.

We notice two glaring properties in the table: that the graphene sheet is both smoother
and has a higher value of a. This implies both that it is much smoother than the surface
underneath it (like a blanket spread over a pile of knives) and that there is a mismatched
correlation length, meaning the graphene does not perfectly rest on each peak and sink in
each valley, but maintains much of its own structure. This is justified given that the mean
spacing between the two is approximately a tenth of a nanometer. We will see that both
these properties can stem from the healing assumption for thin membranes on a not strongly
interacting material.

Based on the fits, it is clear that the fractal correlation function gives the overall best
fit for both the substrate and the graphene, largely due to its flexibly changing parameters.
However, we note that the region of most concern is the region |~r − ~r ′| → ∞, as this
corresponds to the lowest wavenumbers when a Fourier transform is performed, and the
region of small q has the largest effect on the overall plasmon effect later on. This can be
seen in terms of characteristic length scales, as we expect q ∼ 1/a ∼ 0.1nm−1 (very small) to
be near the characteristic spatial frequency of the rough surface. This makes the Gaussian
profile a very attractive option, given it has an exceptional fit for |~r − ~r ′| > 30nm and a
simple analytic Fourier transform. For this reason both correlations will be considered in
later chapters.

5.1.3 Healing Property for Thin Membranes

Experiments [23] and theoretical treatments both show that the graphene exhibits a rough-
ness that partially follows the substrate surface, but how can we tell the relationship between
what are now two rough surfaces? Graphene roughness is influenced by factors including
thermal fluctuations, van der Waals forces, electronic orbital repulsion, and forces of lateral
tension and bending rigidity that shape the graphene around the roughness of the substrate.
These forces mean there is now also a correlation function between the two rough surfaces
that must be taken account of. We define the gap correlation function in Fourier space as

〈(h̃g(~q)− h̃s(~q ′))2〉 = 〈h̃s(~q)2〉+ 〈h̃g(~q)2〉 − 2〈h̃s(~q)h̃g(~q ′)〉. (5.29)

If we assumed that there was near perfect correlation between the two, which is given by
a harmonic approximation to the adhesion potential [8], we would have 〈h̃s(~q)h̃g(~q ′)〉2 ≈

〈h̃s(~q)2〉〈h̃g(~q)2〉, since each point is separated by its mean squared height,

√
〈h̃s,g(~q)2〉,

and there is hence no wavenumber dependence. However, this model ignores the elastic
curvature of graphene, which partially causes the difference in the transverse correlation
lengths ag,s. We therefore consider the implementation of a healing function that describes
the influence of the substrate on the adhesion of the membrane. This function relates the
Fourier transformed stochastic height profiles via h̃g(q) = H(q)h̃s(q), such that

H(q) =

(
1 + τ2q2 + ρ4q4

)−1

(5.30)

is the healing function, where τ and ρ are related to the tension and bending rigidity of
graphene for a rough substrate [28]. To see this, we look at the Monge representation
(associating a height profile to each planar point) for the free energy of rippled graphene
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[57]

F [hg(~r)] =

∫
d2~r
√

1 + (∇hg)2

{
β +

κ

2

(
∇ · ∇hg√

1 + (∇hg)2)

)
+V (~r, hg)

}
. (5.31)

The free energy due to tension, given by the parameter β in this equation, is a constant
spread out over the whole curved area of the surface, while the bending rigidity represented
by κ is seen to depend on the curvature intricately. The adhesion energy V (~r, hg) can be
approximated via the Lennard-Jones potential for the attraction between neutral atoms,
yielding a stiffness constant k0 that can renormalize the tension and rigidity factors by
τ2 = β/k0 and ρ4 = κ/k0. Again, we take a phenomenological approach to determining
these factors by seeing how the inverse Fourier transform of the graphene height correlation
function from Eq. 5.30 compares to the data we have for the real space correlation function
for graphene in Fig. 5.2. We also note that we expect the healing approximation to be most
valid near small k, where the approximation says the Fourier transformed graphene height
correlation function approaches that of the substrate. We see that g(|~k|)g ≈ g(|~k|)s in the
~k → 0 limit (i.e. σgag ≈ σsas for each of the models), validating our point.

Our comparison, by using the Gaussian assumption for the substrate, applying the
healing function to the Fourier transformed Gaussian function and then comparing the
inverse transformed result to the experimental data for graphene’s autocorrelation function,
yields the values τ = 5.54nm and ρ = 4.46nm. By using this healing method, we can
describe the whole system, including the gap between the two surfaces, using the substrate’s
autocorrelation and these two coefficients for the thin graphene membrane.

5.2 Green’s Functions for Single/Double Interface Problems

Figure 5.1 is a challenging problem to solve largely due to three factors: boundary conditions
that are perturbative in the height profiles hg and hs, the roughness of our potentials and
boundaries, and the correlation between the two surfaces. Throughout Chapter 5 we will
attempt three methods that attempt to quantify the effect of surface roughness for the
potential on a graphene surface. Below we list three different problems and the methods we
consider that will be highlighted in Chapter 5 to solve them

• Rough graphene described by hg(~r) above rougher substrate described by hs(~r) with
dielectric function ε. . .

? Section 5.2.1: First-order perturbation of boundary conditions and Laplace’s
equation (Section 5.1.1) in hg(~r), hs(~r), followed by smoothing method for eigen-
value problems (Appendix 1) to determine plasmon dispersion

? Section 5.2.2: Second-order perturbation in hs(~r) of Green’s function for system,
Dyson series solution of full graphene-substrate interaction, must assume hg(~r) =
0 to obtain plasmon dispersion

? Section 5.2.3: Second-order perturbation in hs(~r) and hg(~r) of Green’s function
for potential on the rough graphene surface

• Rough graphene described by h(~r) lying directly on top of substrate with dielectric
function ε . . .
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? Section 5.2.1: First-order perturbation of boundary conditions and Laplace’s
equation (Section 5.1.1) in h(~r), followed by smoothing method to determine
plasmon dispersion

• Rough graphene described by h(~r) in free space . . .

? Equivalent to above two methods by letting ε = 1 for the substrate

5.2.1 Extinction of Potentials and Laplace Equation Eigenvalue Problem

As our boundary conditions and the Laplace equations in Eqs. 5.16-5.23 stand, the double
interface problem contains three different potentials. We will also consider later the single
interface problem, involving two different potentials, as a special case. However, using
Green’s second theorem, which says∫

V
d3r(u∆v − v∆u) =

∫
Σ
dS

[
u
∂v

∂n
− v ∂u

∂n

]
, (5.32)

we can transform all our equations into using just a single potential. In that equation, V is
defined as a volume bounded by a surface Σ. We will choose this surface to be an infinite
half-sphere bounded by either the hs or hg surface, and since we have vanishing potentials
in the infinite limit the right hand side of the Green’s theorem will only include the rough
surface, allowing us to use the definition of the normal vector in Eq. 5.24.

We introduce the Green’s function for regions 2 and 3, G23, as the solution of the
equation

∆G23(~r, ~r ′) = −4πδ(~r − ~r ′) (5.33)

which, with vanishing boundary conditions at infinity, means we can write it as

G23(~r, ~r ′) =

∫
d2~q

(2π)2

2π

q
ei~q·(~r−~r

′)e−q(z−z
′) (5.34)

with q = |~q|. The same definitions hold for G12, which will be used for the graphene surface,
except the decay factor will be e−q(z

′−z) as this will give finite solutions as z′ increases.
We multiply the definition of the Green’s function by φ2 on the left, and subtract it

from the Green’s function G23 multiplied by ∆φ2 (which, in the region below the substrate
surface, region 3, is 0), and then integrate the variable ~r over the volume V defined above.
Using Green’s theorem yields

ΘV (~r)φ3(~r) = − 1

4π

∫
Σ23

dS′
[[

∂

∂n′
G23(~r, ~r ′)

]
φ3(~r ′)−G23(~r, ~r ‘)

∂

∂n′
φ3(~r ′)

]
(5.35)

where

ΘV (~r) =

∫
V
d3~r ′δ(~r − ~r ′) (5.36)

which is unity if ~r is in the volume V and 0 otherwise. We now utilize the boundary condi-
tions from Section 5.1.1, which for regions 2, 3 allow us to transform this into a statement
about the potential in region 2:

0 = − 1

4π

∫
Σ23

dS′
[[

∂

∂n′s
G23(~r, ~r ′)

]
φ2(~r ′)− 1

ε
G23(~r, ~r ′)

∂

∂n′s
φ2(~r ′)

]
. (5.37)
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By ‘flipping over’ to the middle region from the top region, we eliminate any trace of the
volume term, leaving a new boundary condition. We can do the same trick for the boundary
condition between regions 1, 2:

0 = − 1

4π

∫
Σ12

dS′
[[

∂

∂n′g
G12(~r, ~r ′)

]
φ2(~r ′)−G12(~r, ~r )

[
∂

∂n′g
φ2(~r ′) + 4πσ(~r ′)

]]
. (5.38)

A hybrid of these two will yield the full boundary condition for graphene directly on top
of a substrate, which will be investigated later. Again, because of the outgoing boundary
conditions and the Laplace’s equation between the two surfaces, we choose the following
form for the potential φ2 = φ

φ(~r ′) =

∫
d2~k

(2π)2
ei
~k·~r ′(A(~k)e−kz

′
+B(~k)ekz

′
). (5.39)

We can simplify our equations by realizing that the surface integration is defined as

dS = d2~r

[
1 +

[
∂hs,g(~r)

∂x

]2

+

[
∂hs,g(~r)

∂y

]2
]1/2

(5.40)

which will eliminate the normalization term in the integration wherever the ∂/∂n term
appears. It is notable that the graphene term in the second of the boundary conditions will
contain this extra factor of second order form, which we will investigate in later chapters.

Beginning with Eq. 5.24 in tandem with Eq. 5.38, which now reads as

0 =

∫
d2~r ′

[
(~n′s · ∇G23)φ− 1

ε
(~n′s · ∇φ)G23

]∣∣∣∣
z′=hs(~r)

, (5.41)

we plug in the derivations for the potential (Eq. 5.39), the Green’s function (Eq. 5.34), and
the normal vector (Eq. 5.24), to obtain

0 =

∫
d2~r ′

∫
d2~q

(2π)2

2π

q
ei~q·(~r−~r

′)e−qzeqhs(~r ′)

∫
d2~k

(2π)2
ei
~k·~r ′{

[−(∇~r ′hs(~r ′)) · (−i~q) + q](A(~k)e−khs(~r ′) +B(~k)ekhs(~r ′))

− 1

ε

[
(−(∇~r ′hs(~r ′)) · (i~k)− k)A(~k)e−khs(~r ′) + (−(∇~r ′hs(~r ′)) · (i~k) + k)B(~k)ekhs(~r ′)

]}
(5.42)

We wish to expand this equation up to first-order for the exponentials, which means
eqhs(~r ′) ≈ 1 + qhs(~r

′), which is an approximation we will attempt to justify later, but
we have set up the problem such that hs will be very small compared to other length scales
in the problem (i.e. h0). The perturbative result is

0 =

∫
d2~r ′

∫
d2~q

(2π)2

2π

q
ei~q·(~r−~r

′)e−qz
∫

d2~k

(2π)2
ei
~k·~r ′
[
A(~k)(1 + (q − k)hs(~r

′))

×
(

(q +
k

ε
) + i(~q +

~k

ε
) · ∇~r ′hs(~r ′)

)
+B(~k)(1 + (q + k)hs(~r

′))

×
(

(q − k

ε
) + i(~q +

~k

ε
) · ∇~r ′hs(~r ′)

)]
. (5.43)
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We here invoke some Fourier transforms via the relation
∫
d2~r ′ei(

~k−~q)·~r ′(· · · ) so that

1→ (2π)2δ(~q − ~k), h(~r ′)→ h̃(~q − ~k), ∇~r ′h(~r ′)→ −i(~k − ~q)h̃(~q − ~k), (5.44)

where we have by definition the complex conjugate of the Fourier transformed height pro-
file in our expression. Simplifying the equation, we then realize that if the total Fourier
transform is 0, then each component must be given by the result

A(~q)
ε+ 1

ε− 1
+B(~q) =

∫
d2~k

(2π)2
k

[
A(~k)(1− k̂ · q̂)−B(~k)(1 + k̂ · q̂)

]
h̃s(~q − ~k). (5.45)

In the case of zero roughness, this yields A(~q) = 1−ε
ε+1B(~q).

The second equation is very similar (minus the graphene contribution), with the excep-
tion that ε = 1 in free space, and the Green’s function has now switched its sign for the
outgoing perpendicular portion, so that |z−z′| = z′−z. After all the cancellations, it leaves
us with −2B(~q)qeqh0 , which we will add to the graphene contribution, which is

− 4πe2

∫
d2~r ′

∫
d2~q

(2π)2

2π

q
ei~q·(~r)eqze−qh0

{∫
d2~r ′′

∫
d2~k

(2π)2

∫
d2~r ′ei(

~k−~q)·~r ′e−qhg(~r ′)e−i
~k·~r ′′

× χ(~k, ω)

∫
d2~k ′

(2π)2
ei
~k ′·~r ′′

[
A(~k ′)e−k

′hg(~r ′′)e−k
′h0 +B(~k ′)ek

′hg(~r ′′)ek
′h0

]}
. (5.46)

This stems from the definition of the surface charge carrier density in graphene σ in terms
of the potential and the polarizability, within the assumption of local screening across
graphene, which is

σ(~r) = −e2

∫
d2~r ′′χ(~r − ~r ′′, ω)φ(~r ′′), (5.47)

or fully written out,

σ(~r ′) = −e2

∫
d2~r ′′

∫
d2~k

(2π)2
ei
~k·(~r−~r ′′)χ(~k, ω)

∫
d2~k ′

(2π)2
ei
~k ′·~r ′′

×
[
A(~k ′)e−k

′hg(~r ′′)e−k
′h0 +B(~k ′)ek

′hg(~r ′′)ek
′h0

]
. (5.48)

By integrating out
∫
d2~r ′ei(

~k−~q)·~r ′(· · · ) and
∫
d2~r ′′ei(

~k ′−~k)·~r ′′(· · · ) we have

e−qhg(~r ′) = (2π)2δ(~q − ~k)− qh̃g(~q − ~k) (5.49)

e−k
′hg(~r ′′) = (2π)2δ(~k − ~k ′)− k′h̃g(~k − ~k ′) (5.50)

to first order in hg.
Carrying out the calculation, we only look at the Fourier component within the larger

integration, which when combined with the −2B(~q)qeqh0 from before gives

0 = −2B(~q)qeqh0 − 4πe2

∫
d2~k

(2π)2

(
(2π)2δ(~q − ~k)− qh̃g(~q − ~k)

)
χ(~k, ω)

∫
d2~k ′

(2π)2

×
[
A(~k ′)e−k

′h0

(
(2π)2δ(~k − ~k ′)− k′h̃g(~k − ~k ′)

)
+B(~k ′)ek

′h0

(
(2π)2δ(~k − ~k ′) + k′h̃g(~k − ~k ′)

)]
. (5.51)
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Simplification yields

0 = −2B(~q)qeqh0 − 4πe2χ(~q, ω)

[
A(~q)e−qh0 +B(~q)eqh0

]
− 4πe2

∫
d2~k

(2π)2

[
k

(
B(~k)ekh0 −A(~k)e−kh0

)
χ(~q, ω)

− qχ(~k, ω)

(
B(~k)ekh0 +A(~k)e−kh0

)]
h̃g(~q − ~k). (5.52)

For a flat surface, this equation yields 0 = −2B(~q)qeqh0−4πe2χ(~q, ω)

[
A(~q)e−qh0+B(~q)eqh0

]
,

which when combined with the previous result of A(~q) = 1−ε
ε+1B(~q) from Eq. 5.45 gives an

eigenvalue equation for ω:

1 +
2πe2

q
χ(~q, ω)

[
1 +

1− ε
1 + ε

e−2qh0

]
= 0. (5.53)

The case of the graphene on top of the surface of a substrate is very similar, but the region
worked with will only contain the term A(~q) as there is only an outgoing potential in the
boundary conditions. There is now only one boundary condition in the problem. We obtain
for this case

A(~q)

[
ε+ 1

2
+

2πe2

q
χ(~q, ω)

]
=∫

d2~k

(2π)2
kA(~k)

[
ε− 1

2
(1− k̂ · q̂) +

2πe2

q
χ(~q, ω)− 2πe2

k
χ(~k, ω)

]
h̃(~q − ~k) (5.54)

which again in the limit of h → 0 yields the traditional flat boundary condition. This can
be easily derived by setting B(~q) = 0 as there is no longer a middle region, and adding in
the terms containing ε from the first boundary condition in Eq. 5.43.

The ultimate goal of these Green’s functions is to determine the effect of roughness
on plasmons, which are determined according to their dispersion relation i.e. the relation
between the wavenumber q and ω. We have observed in previous chapters a derivation in
different regimes for the polarizability of graphene (although the region where plasmons
occur is best described near the linear dispersion regime, due to Landau damping), and
now via these boundary conditions we can observe how the dispersion relation changes with
the change in the surface properties. To link this with the RPA derivation we saw earlier,
consider the case of free graphene with no roughness (see Appendix 2)

ε(~q, ω) = 1− v(q)χ(~q, ω) = 1− 2πe2

q
χ(~q, ω) = 0 (5.55)

which is implying that in this free case ε(~q, ω) = 0 gives the dispersion relation, a result we
expect within the RPA approximation that makes the dielectric function a relation between
the external and total potentials in the system. Effects like the substrate dielectric function
or roughness can be seen to change the effective Coulomb potential and hence the dispersion
relation. Why does this relation give us the plasmon uniquely? Notice we assumed above
we could cancel A(~q) as if it was non-zero, but our problem is Laplace’s equation with
no external factors, so it will only be non-zero if there is a sustained mode not requiring
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external perturbation somewhere in the system. This is uniquely satisfied by the surface
plasmon [37].

We notice as a simpler example the case of graphene directly on top of the substrate,
where the component of the Fourier-transformed potential component A(~q) appears both
freely and within an integral being taken over the realization at each wavenumber of the
stochastic height function. Simply trying to take the average of both sides will yield zero
contribution from the stochastic variable, which has mean 0. Instead, we need a way to
include effects of order higher than one (e.g. autocorrelation) while eliminating the need for
the potential function A(~q). To do this we use the smoothing method, outlined in Appendix
1.

We begin by outlining a simpler problem presented in [14], which contains a single
interface, but instead of the plasmons being induced by the graphene (i.e. χ(~q) = 0), the
conducting substrate has ε = ε(ω), which has a resonance frequency of ωp in its bulk. We
have before mentioned the existence of surface plasmons and shown they come about from
an electromagnetic approach, via the photon that couples with the electron oscillations that
let us describe the plasmon as a solution to the wave equation decaying away from the
surface. This time, we approach the problem by seeking the dispersion equation based on
the existence of a mode in the system that exists without excitation and satisfies Laplace’s
equation: it is because of our prior knowledge that we can then associate this dispersion
equation with the solution to a surface plasmon.

Without the graphene, our boundary condition in Eq. 5.54 that allows us to solve for
A(~q) is

A(~q)

(
ε(ω) + 1

ε(ω)− 1

)
=

∫
d2~k

(2π)2
kA(~k)(1− k̂ · q̂)h̃(~q − ~k) (5.56)

We recall from Eq. 2.56 in Section 2.2.1 that for a planar interface, the equation for a surface
plasmon (what we are looking for when solving Laplace’s equation) satisfies ε(ω) + 1 = 0,
yielding a particular frequency (notice we no longer seek a dispersion equation, as a surface
plasmon resonates at a unique wavenumber-independent frequency for this electrostatic
regime). We expect this to change with the roughness of the surface. We notice as before
that we must eliminate the factor A(~q) to obtain an equation for, in this case, γ(ω) =
(ε(ω) + 1)/(ε(ω)− 1).

Referencing Appendix 1, our non-random matrix operator H = γ(ω), while the rough

stochastic perturbation V =
∫

d2~k
(2π)2

k(1 − k̂ · q̂)h̃(~q − ~k), so to determine an equation that

operates on the function PA(~k) = 〈A(~k)〉, we determine the matrix 〈M〉 up to second-order:

〈M1〉 = 〈V 〉 = 0 (5.57)

〈M2〉 = 〈V 〉+H−1(〈V 2〉 − 〈V 〉2) (5.58)

=
1

γ(ω)

∫
d2~k

(2π)2

∫
d2~k ′

(2π)2
kk′(1− k̂ · q̂)(1− k̂′ · k̂)〈h̃(~q − ~k)h̃(~k − ~k ′)〉 (5.59)

which will act on the potential A(~k ′). We recall Eq. 5.14, where g(~k) is the Fourier-
transformed autocorrelation function describing the rough properties of the substrate, while
σ is the mean square deviation from flatness. This means that the total equation for 〈A(~q)〉
is (

γ(ω)− 1

γ(ω)
σ2

∫
d2~k

(2π)2
qk(1− k̂ · q̂)2g(|~q − ~k|)

)
〈A(~q)〉 = 0 (5.60)
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and therefore the equation that determines the roughness effect in the plasmon frequency
equation is

γ(ω) = ±σ

√∫
d2~k

(2π)2
qk(1− k̂ · q̂)2g(|~q − ~k|) compared to γ(ω) = 0. (5.61)

This equation shows a wavevector dependent splitting. To see how this comes about, one can
imagine a sinusoidal or grated surface, so that the Fourier-transformed correlation function
has discrete values, which would in turn yield specific wavevectors that the frequency can
resonate at, due to the coupling of the length scales. The rough surface is then analogous to
a continuous superposition of these gratings, causing a continuous wavenumber dependence.

Some crucial assumptions have been made in this derivation, even for this case without
the graphene, namely the restriction up to first-order in the Green’s function, done by
assuming a linear form for the exponentials e±kh(~r). We also only computed up to second
order in the matrix M from Appendix 2, but larger expansions of even order (due to the
Gaussian property) could be carried out. In fact, if one is able to develop an analytic
form (non-perturbative) for M , the full approach for a rough eigenvalue problem (shown in
Appendix 1) is a Green’s function method that produces an imaginary part to the plasmon
frequency. This procedure (along with keeping the full exponential) is carried out in [14],
where they note that higher even order perturbations are all of the same order as the second
order in their system and therefore cannot be ignored.

This discovery makes the investigation of higher-order effects in our graphene system
a topic of interest throughout the remainder of the thesis. We will again be using the
smoothing method when we wish to determine the effect of roughness for plasmons restrained
to the graphene surface as a technique to determine the plasmon dispersion relation. We
will notice some issues when trying to incorporate this idea of higher order terms into the
graphene system, including the deformation and crumpling of the surface, the differential
area term

√
1 + (∂h/∂x)2 + (∂h/∂y)2, which when expanded contains infinite even terms

in the stochastic height profile h, and non-locality as a result of correlation between two
surfaces.

Projection Method for Graphene System

We begin by writing out, using the method contained in Appendix 1, the values for the
operators that will act on the potential A(~k) for the case of graphene directly on top of the
substrate, shown in Eq. 5.54 which is an instructive example that provides indications for
what to expect in the two surface case. The equation we wish to solve is of the form∫

d2~p

(2π)2

[
H(~q, ~p)− V (~q, ~p)

]
A(~p, ω) = 0 (5.62)

where

H(~q, ~p) = (2π)2δ(~q − ~p)
[
ε+ 1

2
+

2πe2

q
χ(q, ω)

]
= (2π)2δ(~q − ~p)ε(q, ω) (5.63)

V (~q, ~p) = p

[
ε− 1

2
(1− p̂ · q̂) +

2πe2

q
χ(~q, ω)− 2πe2

p
χ(~p, ω)

]
h̃(~q − ~p) (5.64)

where we point out the polarizability now only depends on the wavenumber, not on its vector
components. We have shown this is a result of the assumptions about the translational
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invariance of graphene. Via the Green’s function method outlined in Appendix 1, this
equation becomes ∫

d2~p

(2π)2

[
H(~q, ~p)− 〈M(~q, ~p)〉

]
〈A(~p, ω)〉 = 0, (5.65)

where 〈M〉 = 〈V +M〈G〉(V − 〈M〉)〉 ≈ 〈V 〈G〉V 〉, 〈G〉 = (G−1
0 − 〈M〉)−1 and

G0 = H−1(~q, ~p) =
(2π)2δ(~q − ~p)

ε(q, ω)
, (5.66)

all by definition. Let 〈M〉 = (2π)2δ(~q − ~p)m(q, ω) so that

〈G〉 = (2π)2δ(~q − ~p) 1

ε(q, ω)−m(q, ω)
. (5.67)

We note that this is reminiscent of the loss function used to determine modes of absorption

Loss Function = −=
[

1

ε(q, ω)−m(q, ω)

]
, (5.68)

recalling that the imaginary component of, in this case, frequency, reflects the system’s
ability to absorb energy at the value of <(ω). The equation for the dispersion relation will
hence be ε(q, ω)−m(q, ω) = 0, as this reflects the region of largest energy absorption.

We are using the approximation 〈M〉 ≈ 〈V 〈G〉V 〉, which is shorthand operator notation
for saying

〈M(~q, ~p)〉 = (2π)2δ(~q − ~p)m(q, ω) =

∫
d2~p ′

(2π)2

∫
d2~q ′

(2π)2
〈V (~q, ~p ′)〈G(~p ′, ~q ′)〉V (~q ′, ~p)〉

=

∫
d2~p ′

(2π)2

∫
d2~q ′

(2π)2
(2π)2δ(~p ′ − ~q ′) 1

ε(~p ′, ω)−m(~p ′, ω)
p′p〈h̃(~q − ~p ′)h̃(~q ′ − ~p)〉

×
[
ε− 1

2
(1− q̂ · p̂′) +

2πe2

q
χ(q, ω)− 2πe2

p′
χ(p′, ω)

]
×
[
ε− 1

2
(1− q̂′ · p̂) +

2πe2

q′
χ(q′, ω)− 2πe2

p
χ(p, ω)

]
. (5.69)

We notice two delta functions in this expression, one from 〈G〉, and the other from the
translational invariance of the system, which gives 〈h̃(~q− ~p ′)h̃(~q ′− ~p)〉 = σ2(2π)2δ(~q− ~p ′+
~q ′− ~p)g(|~q− ~p ′|), yielding a dependence on a single variable. We simplify our expression as

m(q, ω) = σ2

∫
d2~p ′

(2π)2

g(~q − ~p ′)p′q
ε(~p ′, ω)−m(~p ′, ω)

×
{[

ε− 1

2
(1− p̂′ · q̂)

]2

−
[

2πe2

q
χ(q, ω)− 2πe2

p′
χ(p′, ω)

]2}
(5.70)

= σ2

∫
d2~p

(2π)2

g(~q − ~p)pq
ε(~p, ω)−m(~p, ω)

{[
ε− 1

2
(1− p̂ · q̂)

]2

−
[
ε(q, ω)− ε(p, ω)

]2}
(5.71)

given the definition of ε(q, ω) in Eq. 5.63. This equation appears to contradict itself,
as it is supposed to determine, for a certain value ω, the value of m(q, ω) that yields
ε(q, ω) − m(q, ω) = 0, which is a term that will be integrated over in the denominator
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of its own definition. We will soon see that we can step around this issue by adding an
imaginary component to the frequency, which suggests the roughness of the graphene adds
some dissipation to the system, which does in fact occur physically. We notice that our
expression contains m(q, ω) implicitly, and therefore must be solved iteratively. For most
purposes, the value of m(k, ω) is much smaller than ε(k, ω) for values of k 6= q, meaning a
1st or 2nd order approximation will usually suffice.

Here we employ two major assumptions in order to give an approximate form for the
roughness effect on the dispersion relation. One is that the surface is describable via a
Gaussian correlation function, as this allows us to write the Fourier transform of the auto-
correlation in a very simple form that is easily integrable, and we have mentioned before
that the Gaussian correlation function describes the surface very well from our phenomeno-
logical observations in the q → 0 limit. The other is the form we use for the polarization
of graphene in the optical (q → 0, or ω � vF q) limit. For doped graphene our polarization
function reads as [26]

χ(q, ω) =
4e2

2πe2

EF
(~vF )2

[
1− χr(q, ω)− iχi(q, ω)

]
(5.72)

=
2

π

EF
(~vF )2

1− 1 + (· · · )√
1−

( qvF
ω

)2 + i
1 + (· · · )√( qvF

ω

)2 − 1

 (5.73)

and doing the Taylor expansion to first order in the argument, (qvF /ω)2, and noticing the
imaginary argument will disappear for our optical limit, gives a polarizability of

χ(q, ω) ≈ −EF
π

q2

(~ω)2
. (5.74)

Using the relation Eq. A.35 between conductivity and polarizability, this is exactly the Dirac
conductivity term we obtained in Section 3.2.4 (Eq. 3.28), however we use this approach in
order to properly treat the wavenumber response in the polarization. To recall, our region
of focus (defined by the allowed phase space for the plasmon to act without decay into other
modes) is vF q < ω < 2EF − qvF , so we are justified in both using the optical limit and
in using the polarization function effects near the Dirac cone. Current research attempts
to uncover higher order effects of the polarization function and energy regions beyond the
Dirac cone, which we investigated using a hydrodynamic model in Chapter 4.

Given this function, we can now write ε(q, ω) from Eq. 5.63 as

ε(q, ω) =
ε+ 1

2
− 2πe2

q

EF
π~2

q2

ω(ω + iγ)
=
ε+ 1

2
− fq

ω2
, (5.75)

letting f = 2πe2EF /π~2 and γ = 0+. This inclusion of an imaginary damping component
to the frequency will be shown to give a non-zero result for the plasmon dispersion relation.
By construction, the roughness function m(q, ω) = mr + imi. To first approximation,
mr(p, ω) = mi(p, ω) = 0 within the integration, allowing us to use the Sokhotski-Plemelj
theorem

1

ε(p, ω)
≈ P.V. ω2

ε+1
2 ω2 − fp

− iπω
2

f
δ

(
ε+ 1

2

ω2

f
− p
)

(5.76)

where P.V. stands for the Cauchy principal value of the integral, whereas an imaginary
component occurs at the resonance frequency, where the denominator is zero, at p = q.
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ωp/vFkF q/kF = 0.2 q/kF = 0.5 q/kF = 1

Gap, Flat Case 0.37287 + 0I 0.98753 + 0I 2.14883 + 0I
Full Correlation 0.37267 + 2.7× 10−6I 0.98686 + 7.8× 10−5I 2.14971 + 3.4× 10−3I
No Correlation 0.37171 + 2.1× 10−4I 0.97636 + 8.8× 10−3I 2.09026 + 0.1I
No Gap, Flat 0.59795 + 0I 0.94545 + 0I 1.33076 + 0I
No Gap, Rough 0.59837− 6.8× 10−6I 0.94604− 1.3× 10−4I 1.33790− 1.3× 10−4I

Table 5.2: Table showing the shift in the normalized plasmon frequency ωp/vFkF for different
wavenumbers for the case of (a) flat graphene a height h0 = 0.42nm above a flat substrate
with ε = 3.9 (b) a fully correlated system assuming Eq. 5.81 holds, implying the two
surfaces have similar topographies (c) an uncorrelated system, where the surfaces are rough
independent of each other (d) flat graphene lying directly on a flat substrate (e) rough
graphene with no gap from the rough substrate it is above. kF = 0.2nm−1 with Gaussian
correlation functions assumed for the two surfaces with parameters in Table 5.1, and the
optical polarizability from Eq. 5.74.

Given the Gaussian correlation function depends on |~q − ~p| due to translational invariance,
an angular component is involved in our integration. Expanded out, we have

g(|~q − ~p|) = πa2 exp

[
−a

2

4
(p2 + q2 − 2pq cos θ)

]
. (5.77)

To eliminate this, we utilize modified Bessel functions of the first kind

1

π

∫ π

0
cosn θ exp

(
a2

2
pq cos θ

)
=

∂n

∂αn
I0(α(p)) (5.78)

where α(p) = a2

2 pq. After some simplification, we obtain for the real part of m

mr(~q) =
d2a2

2
qω2e−

a2

4
q2
∫ ∞
p=0

dp
p2

ε+1
2 ω2 − fp

e−
a2

4
p2

×
{[(

ε− 1

2

)2(
2I0(α(p))−

(
2 +

1

α(p)

)
I1(α(p))

)]
−
(
f

ω2

)2

(p− q)2I0(α(p))

}
.

(5.79)

We note that since ε+1
2 ω2 = fq the second factor does not require the Sokhotski-Plemelj

theorem to the zeroth order. However for the first term it does. This results in an imaginary
term of

mi(~q) = −πd
2a2

2
q3ω

2

f
e−

q2a2

2

(
ε− 1

2

)2(
2I0(α(q))−

(
2 +

1

α(q)

)
I1(α(q))

)
. (5.80)

In addition to the zero-gap case, which is simplified due to having to work with only
one potential component A(~q), we would like to compare changes in the plasmon frequency
due to the gap case (Appendix 4). Many of the same derivations carry over, with the flat
case plasmon frequency for two surfaces given by Eq. 5.53. As shown in Appendix 4, we
are now focused on two potential components given by matrix equations, and these cause,
upon averaging, cross-correlation terms to crop up. This should not be surprising, as the
gap between the two surfaces is an important parameter in the effect of roughness on the
plasmon frequency.
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Figure 5.3: Percent difference of plasmon frequency for three different regimes of sub-
strate/graphene roughness, assuming zero-gap. We assume kF = 0.2nm−1 and ε = 3.9,
using the Gaussian correlation function when computing the corrections to the frequency.

Figure 5.4: Energy loss function (Eq. 5.68) for three different regimes of substrate/grapehene
roughness, with q/kF = 1 chosen for display purposes, assuming zero-gap. The flat case is
the ideal delta-peak, with our eigenvalue problem yielding imaginary components that make
the plasmon lossy. A large enough roughness physically shifts the frequency.
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For the case of a two surfaces with a finite gap, cross-correlation terms of the form 〈h̃sh̃g〉
can be approximated using the gap equation in Eq. 5.29. Assuming close adhesion,

〈h̃s(~q)h̃g(~p)〉 =

√
〈h̃s(~q)2〉〈h̃g(~q)2〉

= (2π)2δ(~q + ~p)σsσgasag exp

[
−

(
a2
s + a2

g

8

)
(p2 + q2 − 2pq cos θ)

]
(5.81)

The inclusion of this correlation, which we call full correlation, is an attempt to describe the
relationship between our graphene and substrate surfaces based on the model of a surface
perfectly following the one below it. On the opposite side of the spectrum is the case
of no correlation, assuming that 〈h̃sh̃g〉 = 0, which will necessarily give a stronger effect
on the plasmon frequency shift than the more physically justified full correlation case. We
considered in Section 5.1.3 a healing method, but it is too numerically intensive to implement
at this time.

Table 5.2 gives us, for three wavenumbers within or near the validity of the optical limit
in Eq. 3.22, values for the plasmon frequency for five different regimes. The imaginary com-
ponents come from the integration around the singularity at the plasmon frequency itself,
as in Eq. 5.80. There are many things to glean from this table. One obvious observation
is how different the flat case plasmon frequencies, given by Eqs. 5.53 and 5.54 respectively,
are. The distinction of choosing graphene to lie directly on the substrate or even just a
little above it has a profound impact on the plasmon frequency and the resulting screening.
It implies that once a better understanding of the gap between graphene and its substrate
evolves, that measured plasmonic behaviour can give information about the topology of the
gap.

Our table also gives us an approximate value for the bifurcations due to roughness, with
all our values in Table 5.2 giving a plasmon shift below 1%. Some of the corrections increase
the plasmon frequency, which can be justified given that plasmon frequencies are known to
bifurcate, as in Eq. 5.61. The derivation of an imaginary part to ωp from roughness, which
implies physically the damping of our plasmon, is of special note. Lastly, we mention the low
q behaviour in both the gap and no gap cases, which continues to give a finite value for the
plasmon frequency shift. This seems counter-intuitive given that the effects of roughness for
such a spatially localized plasmon are expected to vanish, although this result could reveal
new behaviour at low wavenumbers.

5.2.2 Green’s Function for Non-Perturbative Case

We have so far made impressive forays into determining a change in plasmon frequencies
via a first-order Green’s function approach that has also yielded imaginary terms physically
expected from rough surfaces. However, we have mentioned before that higher-order effects
will play a role of comparable order to the second order terms in 〈h̃(~q)h̃(~q ′)〉. Taking a look
at the operator method in Appendix 1, it can be seen that even the fourth-order expansion
for M will be very long and complicated. Therefore we will attempt in this section to take
a more standard approach to determining potentials via Green’s functions, namely to start
by solving for the substrate with a point charge above it, proceeding to generalize it to
an entire graphene sheet. This will afford us the opportunity to see the effects of higher-
order correlations in the material, however, it lacks the proper treatment of electromagnetic
boundary conditions in the graphene sheet as we shall see shortly.
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For a substrate at hs(~r), we locate a point charge above it, yielding a variation of
Poisson’s equation for EM potentials in homogenous media:

∆G(~r, ~r ′) =

{
−4πδ(~r − ~r ′) z > h(~r)

0 z < h(~r)
(5.82)

and the z in these equations is the perpendicular height that corresponds to the ~r in the
plane. We will have the same boundary conditions as in Section 5.1.1, except for a single
surface without graphene, namely

εn̂ · ∇G(~r, ~r ′)|z=hs(~r)− = n̂ · ∇G(~r, ~r ′)|z=hs(~r)+ (5.83)

with the gradient being in-plane. The solution to this variant of Poisson’s equation has the
form [50]

G(~r, ~r ′) =


∫

d2~k
(2π)2

{
ei
~k·(~r−~r ′) (2π

k

)
e−k|z−z

′| +A(~k)ei
~k·~re−kz

}
z > h(~r)∫

d2~k
(2π)2

B(~k)ei
~k·~rekz z < h(~r)

(5.84)

where A(~k) and B(~k) are the potential components above and below the surface, as seen
previously. There is now in addition to the homogenous potentials an inhomogenous solution
due to the point charge, recognized as the Fourier space transform of the Coulomb potential.
We note that in the following derivations, we will make the assumption that our point charge
at height z′ is higher than z for all ~r, meaning the point source is higher than any point
on the rough surface, allowing us to say |z − z′| = z′ − z. This assumption will later be
explored.

In this formulation, we decide to carry out our prescription for determining the com-
ponents A(~k), B(~k) via the two boundary conditions for continuity at the interface derived
from Maxwell’s equations. We recall that, given a single interface, in our first approach we
used Green’s second theorem to eliminate one of the components, so a system of equations
with A(~k), B(~k) becomes solely an equation for A(~k). For this approach we decide to keep
both potentials, leading us to two equations for two unknowns i.e. a matrix.

Our second deviation from our old method will be to expand our equations to second
order in h(~r). This will require an expanded form for our directional derivative

n̂ · ∇ =
∂

∂z
− (∇hs(~r)) · ∇ −

1

2
(∇hs(~r))2 ∂

∂z
(5.85)

and a Fourier transform for terms of the form h2
s(~r), done by performing

∫
d2~re−i(

~k−~q)·~r on
perturbative expansions of e−qhs(~r)

e−qhs(~r) −→ (2π)2δ(~k − ~q)− qh̃s(~k − ~q) +
q2

2

∫
d2~q ′

(2π)2
h̃s(~q

′)h̃s(~k − ~q − ~q ′) (5.86)

to second order. What is of particular interest to us is the inhomogenous term in the
potential above the surface, which means there is no longer a trivial solution A(~k) = B(~k) =
0 to the problem. This was crucial to us in determining the dispersion relation - seeking
non-trivial solutions to Laplace’s equation yielded the surface plasmon, which by definition
yielded an eigenmode that could give non-zero potentials. However, the power of the Green’s
function technique is reflected here, as we are no longer limited in the way we have set up
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the problem to just consider plasmons, and we can instead investigate potentials at any
point above the surface.

Referencing Appendix 1, after computations we are able to write our problem in the
form

(H − V )R = f (5.87)

where f is now the term derived from the point source above the surface. Our function
R = [A(~k) B(~k)]T in this case is a 2 × 1 vector, and H,V are matrices derived from the
interface continuity equations. To determine the average potential, we write our equation
as

〈R〉 = (H − 〈M〉)−1〈F 〉 (5.88)

with M,F defined in Appendix 1. We mentioned before that we expanded our boundary
conditions to second order in h(~r), and so the equation for 〈M〉 must be up to second-order
as well. The equation for 〈F 〉 is also written to second-order in h(~r). The reason it is called
a non-perturbative solution is due to the non-linear way that the stochastic height function
is included in the final equation for the vector R.

Our equations for the averaged potential have the form

〈A(~k)〉 =
2π

q
exp(−i~k · ~r ′) exp(−kz′)a(k) (5.89)

〈B(~k)〉 =
2π

q
exp(−i~k · ~r ′) exp(kz′)b(k) (5.90)

where a(k), b(k) are known as the surface profile functions. This form comes about as 〈R〉 ∼
〈F 〉, which is the term containing the free solution to Laplace’s equation due to the point
source, causing the terms 2π

q exp(−i~k·~r ′) exp(±kz′) to appear. Lastly, for ease of calculation,
we invoke the Gaussian correlation function found in Eq. 5.26 for the autocorrelation of the
Fourier transformed height profile h̃(~k) in the expressions for 〈M〉 and 〈F 〉.

The equations for these surface profile functions are given in Appendix 3. By writing
〈A(~k)〉 in this form, we can write for the average potential above the surface

〈G(~r, ~r ′)〉 =

∫
d2~k

(2π)2
exp(i~k · (~r − ~r ′))g(k, z, z′). (5.91)

Our Fourier coefficient is

g(k, z, z′) =
2π

k

[
exp(−k|z − z′|) + a(k) exp(−k(z + z′))

]
, (5.92)

where a(k) is the surface profile function as defined in Appendix 3.
Now that we have determined the Green’s function for a point source, we would like to

apply this to a graphene sheet. If we wish to determine the effect of the substrate roughness
on graphene, we must look at the image charge effect. This is the physical effect of electrons
in the graphene inducing charge in the substrate which in turn affects the graphene electrons,
ad infinitum. We have seen this before in Section 3.2.2 for a graphene sheet directly on top
of the substrate, causing the Coulomb potential to be screened by a factor (ε + 1)/2. To
examine this self-interaction, we must determine the full Green’s function for the graphene
system, which is [43]

G(k, z, z′) = g(k, z, z′) + e2

∫
dz′′g(k, z, z′′)χ(k, ω)G(k, z′′, z′)δ(z′′ − (h0 + hg(~r))). (5.93)
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The full Green’s function G(k, z, z′) should not be confused with 〈G(~r, ~r ′)〉, the average
Green’s function due to a charge near a rough surface. Eq. 5.93 can be seen to come about
based on the equation for the Fourier transformed potential

φ̃(z) =

∫
dz′g(k, z, z′)[ρ̃(k, z′) + e2χ(k, ω)δ(z′ − (h0 + hg(~r)))φ̃(z′)], (5.94)

which says that the total potential at point z is due to the Fourier transformed external
charge density ρ̃(z′) at all other points z′ and the charge density due to the graphene, which
due to its two-dimensional form is uniquely located at h0 + hg(~r). Our G(k, z, z′) above is
then a solution to

φ̃(z) =

∫
dz′G(k, z, z′)ρ̃(z′), (5.95)

the definition of the Green’s function. In order to obtain an analytic form for this Green’s
function, we will assume that hg(~r) = 0, so the graphene is flat. This allows us to write

G(k, z, z′) = g(k, z, z′) + e2g(k, z, h0)χ(k, ω)G(k, h0, z
′) (5.96)

with the same equation giving us

G(k, h0, z
′) = g(k, h0, z

′) + e2g(k, h0, h0)χ(k, ω)G(k, h0, z
′). (5.97)

Rearranging the above equation and plugging back into our full Green’s function yields

G(k, z, z′) = g(k, z, z′)− e2χ(k, ω)g(k, z, h0)g(k, h0, z
′)

1 + e2χ(k, ω)g(k, h0, h0)
. (5.98)

For Coulomb interactions within graphene we can also set z = z′, so that

G(k, h0, h0) =
2π/k

[1 + a(k) exp(−2kh0)]−1 + (2πe2/k)χ(k, ω)
. (5.99)

Our Green’s function relates the potential to the charge density, so when the Green’s
function is very large, this reflects a sizable charge oscillation occurring. We can see that
our Green’s function will be largest when the denominator is 0. We therefore suggest that
this denominator yields the plasmon dispersion relation between q and ω. We can observe
this from the flat case, which gives

1 +

(
1 +

1− ε
1 + ε

e−2kh0

)
2πe2

k
χ(k, ω) = 0. (5.100)

This is exactly the flat case plasmon dispersion relation we obtained in Section 5.2.1 in
Eq. 5.53. Assuming we use the form for the graphene polarizability in the optical limit in
Eq. 5.74, this yields an exact formula for ω in terms of the wavenumber k:

ω2 =

(
1 +

1− ε
1 + ε

e−2kh0

)
fk. (5.101)

Here we observe the square-root wavenumber dependence that is a property of two-dimensional
electronic systems.

Figure 5.5 investigates the percentage change in the plasmon frequency and the change
in the energy loss function due to roughness by analyzing three different regimes that have

63



been mentioned briefly in Section 5.1.3. The properties of being fully correlated (FC) or not
correlated (NC) relate to the assumption made about the substrate-graphene correlation
function:

〈h̃s(~q)h̃g(~q ′)〉FC =

√
〈h̃s(~q)2〉〈h̃g(~q)2〉, 〈h̃s(~q)h̃g(~q ′)〉NC = 0. (5.102)

The third regime, ”very rough”, assumes as = 1nm and σs = 0.38nm, giving a surface
resembling more white noise than a genuine physical substrate used in experiments.

One may question why the factors for the graphene roughness and the gap correlation
function are coming about when we assumed that graphene was flat, in order to compute
the Dyson series. Theoretically, the assumption of flatness can be relaxed to a degree by
instead changing the relative roughness of the substrate underneath. For example, although
we know physically that the graphene has σg = 0.22nm and the substrate has σs = 0.31nm,
if they are fully correlated we suggest this system should behave similarly to flat graphene

with σs = 0.09nm. Likewise, with no correlation, the effective σs =
√
σ2
s + σ2

g = 0.38nm.

Under these assumptions, we use the gap correlation function from Eq. 5.29 instead of the
traditional 〈h̃s(~q)h̃s(~q ′)〉 in the surface profile function a(q).

We use the Gaussian correlation regime for both the substrate and graphene autocorre-
lation, although we could just as well use the fractal or Bessel correlation forms. We have
however confirmed in Section 5.1.2 that in the low wavenumber limit, the three forms are
convergent, and there is therefore minimal difference in the percent difference of the plasmon
frequency. One main advantage of the image potential method is that, despite its simplicity,
it allows us to see the effects that different choices of the correlation function make.

In Fig. 5.5, where we analyze the change in frequency assuming the polarizability from
Eq. 5.74, we seek plasmons in the range where Landau damping does not occur, for 0 ≤
q/kF < 1. This is known as the ideal plasmon, as it neglects the effects of finite lifetime
and scattering from charged impurities which would yield a perfect delta-peak in the energy
loss function. We notice that even for a substrate which is similar in character to white
noise, the roughness of the substrate affecting flat graphene is approximately 2%. Our
image potential method also suggests that in the low wavenumber limit roughness becomes
entirely negligible, an effect contrary to what we observed in Fig. 5.3. This suggests that
the assumption of flat graphene is the main contributor in the plasmon frequency shift at
low wavenumbers.

A reason for this small effect been suggested in [50], where the collective roughness of
the substrate is said to be equivalent to a thin dielectric layer on top of a flat substrate.
Thus, the relatively large average distance between graphene and substrate helps explain
the small effect that changing a or σ has on the plasmon dispersion relation. The effect
of the roughness in our plots is to make the plasmon frequency lower, but there is an
equivalent branch the plasmon divides into making the frequency increase. We recall the
dispersion relation for a surface plasmon on a substrate generally splits into two branches
in the presence of surface roughness, as seen in Eq. 5.61.

We notice that although we now have a result which includes a non-perturbative rough
surface profile function, a few assumptions needed to be made to obtain this result. Clearly
letting hg(~r) = 0, given the experimental data we have available, is a very rough approxima-
tion. In addition to the fact that this assumption implies flat graphene, it also implies that
the local gap height between the substrate and graphene is negligible i.e. that the substrate
is far enough away that the substrate surface appears as a flat surface with some corre-
lations. This is another very rough approximation, given how close the two surfaces can
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Figure 5.5: Percent difference of plasmon frequency and energy loss function for three
different regimes of grapehene roughness. We assume h0 = 0.42nm, EF = 0.1eV and
ε = 3.9, with ag, σg, σs and as in Table 1 using the Gaussian correlation function. as = 1 is
used in the ”very rough” regime. Adapted from [35]

be (as seen in Section 5.1.3 on thin membranes). One result of this assumption of a large
distance between the graphene and substrate surfaces is that any point on the graphene will
be higher than every point on the substrate, so that the approximation |z − z′| = z′ − z is
valid for graphene at z′. An attempt to rectify these properties is given in the next section.

Determining the plasmon dispersion is one way to look at how roughness changes the fre-
quencies that our system resonates at. Under the assumption of optical limit polarizability,
we see that the relation between k and ω is very simple. However, one of the powerful tools
at our disposal via this Green’s function approach is that we have determined something
similar to an effective dielectric function in the denominator. We will be able to look at
what is called the loss function, just as in Eq. 5.68. Although under the traditional optical
limit we will be observing a delta peak for such a function, an expanded model [22] that
includes imaginary parts to the polarizability and wavenumbers beyond just linear disper-
sion near the Dirac cone are thereby considered in order to see the effects of roughness
in regions where =χ(k, ω) is non-zero (such as the region of Landau damping beyond the
Fermi wavenumber k > kF ). Implementing such models is numerically intensive for the
plasmon dispersion in Section 5.2.1, and for that section we therefore stick to the optical
limit polarizability. This restrains us to discussing the roughness in the low k limit, but this
is the region where the plasmon is strongest and is therefore of the most interest.

Figure 5.5 also shows the energy loss dispersion for two different wavevectors, q = k = kF ,
where the plasmon just enters the electron-hole continuum (see Fig. 3.4), and q = k = 2kF ,
where it is deep into the continuum, both chosen for a specific wavenumber q to highlight the
change in absorption for different energies. One can see that moving deep into the region of
heavy losses obliterates the delta-peak reminiscent of the lossless plasmon. The figure shows
that roughness has its largest effect in the region of Landau damping, where the asymmetric
broadening of the plasmon decreases by approximately 5% from the fully correlated case,
which we mentioned was nearly equivalent to the case of flat graphene hovering over a flat
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substrate.

5.2.3 Green’s Function in Perturbative Case

The assumption of flat graphene, for which the non-perturbative case made the assumption,
requires rectification. To do this, recall for the flat case we let z = z′ = h0 in the expression
for Eq. 5.92, which is the Fourier-transformed equation for the Green’s function in Eq. 5.84,
using our derivation that the potential A(~q) could be written via a surface profile function
a(q) as in Eq. 5.89. Instead of this approach, we deign to construct a function similar to
g(k, z, z′) in Eq. 5.92, but with our heights, given by z = h0 + hg(~r) and z′ = h0 + hg(~r

′)
plugged into Eq. 5.84 to properly treat the potential on the surface of rippled graphene.
Once these heights are inputted, our new Green’s function, which will be a second-order
perturbation of the Green’s function for the potential on flat graphene above a flat substrate,
can be computed.

Now, to second order in both hs(~r) and hg(~r), we must retain the factors up to second
order only in our perturbation of Eq. 5.84, including perturbations of the potential com-
ponent A(~q) shown in Eq. A.60. Looking at this equation, the inhomogenous term and A0

will contain up to 2nd order in hg, A1 will contain up to first order in hg and first order
in hs (and will therefore involve the correlation between the two surfaces), and A2, the
second-order perturbation in hs to the homogenous component of the potential A(~q) above
the surface, is expanded to zeroth-order in hg as assumed in the flat case.

We begin by rewriting our desired problem in Fourier space, letting ψ(~r) = φ(~r, hg(~r))
be the local potential on graphene. Using our equation for the charge density due to the
polarizability,

ψ(~p) =

∫
d2~re−i~p·~rψ(~r)

= −e2

∫
d2~re−i~p·~r

∫
d2~r ′G(~r, ~r ′, hg(~r), hg(~r

′))

∫
d2~r ′′

∫
d2~p ′

(2π)2
ei~p
′·(~r ′−~r ′′)χ(~p ′)ψ(~r ′′)

= −e2

∫
d2~p ′

(2π)2
χ(~p ′)ψ(~p ′)

∫
d2~r

∫
d2~r ′ei(~p

′·~r ′−~p·~r)g(~r, ~r ′, hg(~r), hg(~r
′))

= −e2

∫
d2~p ′

(2π)2
χ(~p ′)ψ(~p ′)g̃(~p, ~p ′), (5.103)

which implicitly defines g̃(~p, ~p ′). Before, our Green’s function for the point source was
g(k, z, z′), but now we know exactly the location of the graphene, but we also acknowledge
that there may be some non-locality in the coupled substrate-graphene system, and we
must therefore include a dependence of both ~p, ~p ′. Our desire is to determine this function
g̃(~p, ~p ′) to second order in our height profiles hs(~r) and hg(~r) as additions to our previous
framework. Later we will consider the effects of graphene crumpling and surface terms and
their effect on this Green’s function. We note that this Green’s function does not require a
Dyson expansion as does g̃(~k, z, z′), as Eq. 5.103 includes graphene’s response already.

We note that it is desirable for our Green’s function g̃(~p, ~p ′) to be only ~p-dependent, as
our Green’s relation would then become an eigenvalue problem - we will touch on this later.

In the equation’s current form, however, it is not terribly useful to us; this is because
ψ(~p) is itself rough, yet we need some way to determine a dispersion relation from it. We
have two options set before us: in Section 5.2.1 we used the equation for the potential
along with a potential extinction method and a smoothing operator technique to directly
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determine the dispersion relation from a matrix equation for 〈A(~k)〉. In Section 5.2.2 we
worked directly with the Green’s function under the assumption of flat graphene being
affected by the average effect of the rough substrate beneath it. To continue in the spirit of
the Green’s function method then, we implement Bourret’s approximation [5]

〈ψ(~p)〉 = −e2

∫
d2~p ′

(2π)2
χ(~p ′)〈ψ(~p ′)〉〈g̃(~p, ~p ′)〉. (5.104)

This common approximation used in stochastic processes is in fact equivalent to our first-
order approximation from Eq. A.12 for 〈M1〉. We make the definition in text from now on
that g̃ = 〈g̃(~p, ~p ′)〉.

We begin with the potential due to the free Coulomb interaction at the point z =
h0 + hg(~r) due to a point source at a height z′ = h0 + hg(~r

′).

g̃free =

∫
d2~r

∫
d2~r ′ei(~p

′·~r ′−~p·~r)
∫

d2~k

(2π)2

2π

k
ei
~k·(~r−~r ′)e−k|hg(~r)−hg(~r ′)| (5.105)

We can switch temporarily to real coordinates, where our Coulomb potential reads as

g̃free =

∫
d2~r

∫
d2~r ′ei(~p

′·~r ′−~p·~r) 1√
(~r − ~r ′)2 + (hg(~r)− hg(~r ′))2

≈
∫
d2~r

∫
d2~r ′ei(~p

′·~r ′−~p·~r) 1

|~r − ~r ′|

{
1− 1

2

(hg(~r)− hg(~r ′))2

(~r − ~r ′)2

}
(5.106)

The average of the height profiles yields the autocorrelation. This correlation will be de-
pendent on |~r − ~r ′|, and since this is the only variable, we shift our integration to depend
on ~r− = ~r − ~r ′. Using Eq. 5.14 we obtain

g̃free = g̃0,free + g̃2,free = (2π)2δ(~p− ~p ′)
∫
d2~r−
|~r−|

[
1− σ2

g

1− Cg(|~r−|)
|~r−|2

]
e−i~p·~r− . (5.107)

This perturbative expansion, like its counterpart for flat graphene, contains a local wavevec-
tor response. Using a Gaussian correlation function as in Eq. 5.26 yields an analytic form
for this Green’s function

g̃free = (2π)2δ(~p− ~p ′)2π

p

{
1− (σgp)

2

[
−1 +

√
π

2
e−2β2

[
(β +

1

β
)I0(2β2) + βI1(2β2)

]]}
(5.108)

→ 2π

p

[
1−

(
σg
ag

)2

pag

]
for pag � 1 and → 2π

p

[
1−

(
σg
ag

)2]
for pag � 1 (5.109)

with β = pag/2, and ag the transverse correlation length of graphene as shown in Table 5.1.
Comparing these results with Table 5.1 shows that roughness does not have a large effect
to 2nd order in either limiting case on the overall Green’s function for the free part. This
however shows that much rougher surfaces require careful consideration.

The expansion of the image potential (the second term in Eq. 5.92) due to a flat substrate
(A0) follows similar lines of reasoning, yielding the Green’s function g̃00 + g̃02 (zeroth order
in hs, zeroth and 2nd order in hg).

g̃00 + g̃02 = (2π)2δ(~p− ~p ′)2π

p

1− ε
1 + ε

e−2ph0 +
1− ε
1 + ε

∫
d2~k

(2π)2

× 2π

k
e−2kh0

∫
d2~r

∫
d2~r ′e−i((

~k−~p ′)·~r ′−(~k−~p)·~r) 1

2
k2(hg(~r) + hg(~r

′))2, (5.110)
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forgetting the first-order contribution as it averages to 0. Again the correlation function
yields a translational invariance, so upon averaging the integration can be shifted.

g̃02 = (2π)2δ(~p− ~p ′)2π

p

1− ε
1 + ε

[
e−2ph0+∫

d2~k

(2π)2

2π

k
e−2kh0k2

∫
d2~r−e

i(~k−~p)·~r−σ2
g [1 + Cg(|~r−|)]

]
. (5.111)

This portion of the Green’s function again gives a local wavenumber response.
Now, our perturbation must consider the correlation between the first-order perturbation

in the substrate with that in the graphene. We therefore use A1 as shown in Appendix 3 to
obtain

g̃11 =

∫
d2~re−i~p·~r

∫
d2~r ′ei~p

′·~r ′
∫

d2~k

(2π)2
e−kh0ei

~k·~r

× 4π
1− ε

(ε+ 1)2

∫
d2~q

(2π)2
e−i~q·~r

′
e−qh0(ε+ k̂ · q̂)h̃s(~k − ~q)[1− khg(~r)− qhg(~r ′)] (5.112)

= 4π
ε− 1

(ε+ 1)2

∫
d2~k

(2π)2
e−kh0

∫
d2~q

(2π)2
(ε+ k̂ · q̂)h̃s(~k − ~q)e−qh0 [kh̃g(~p− ~k) + qh̃g(~q − ~k ′)].

(5.113)

Upon averaging, we obtain

g̃11 = 4π
ε− 1

(ε+ 1)2

∫
d2~k

(2π)2
ke−kh0

× [(ε+ k̂ · p̂)e−ph0〈h̃s(~p− ~k)h̃g(~p− ~k)〉+ (ε+ k̂ · p̂′)e−p′h0〈h̃s(~p ′ − ~k)h̃g(~p
′ − ~k)〉]

(5.114)

with integration parameters changed appropriately to yield a single integration.
We have in this cross-correlation Green’s function perturbation a response that is both ~p

and ~p ′ dependent, dashing our hopes of perturbatively solving our potential as an eigenvalue
problem as mentioned above, unless we assume zero correlation between the surfaces.

Lastly, we write g̃20, which combines A2 from Appendix 3 with the zeroth order of
z′ = h0 + hg(~r

′) for a trivial definition:

g̃20 =

∫
d2~re−i~p·~r

∫
d2~r ′ei~p

′·~r ′
∫

d2~k

(2π)2
e−kh0ei

~k·~rA2(~k, z′ = h0). (5.115)

This expression for g̃20, just like g̃02, will contain a local wavevector response δ(~p − ~p ′).
These four derivations are the four we show, as the others when averaged are zero due to
being of first-order in either hg or hs.

One major caveat of using the Green’s function formalism is our ability to include
various other effects that occur in the graphene monolayer due to effects not obtainable
from boundary conditions in the Laplace’s equation. One is the electronic response of
crumpling, and the other is the area of graphene and its effect on the conductivity that
we must be careful in handling. Current investigations into the nature of graphene reveal
that the rough surface of the graphene plays a role in the low mobility of charges in the
sheet. This, along with the effect of charged impurities in the substrate [2], are thought to
be major players in the movement of graphene’s free electrons.
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Considering these effects brings up new questions about how to consider the roughness
effects on the potential in graphene. One is that there is, in addition to the out-of-plane
roughness, which we have modeled based on the Monge representation, an in-plane rough-
ness, caused by the shift of spacings in the lattice between carbon atoms in the graphene
sheet. Another is whether our assumption about the flat effect of our polarizability, χ(q, ω),
is justified given our other assumptions and our inclusion of second-order deformation of
our sheet in the Green’s function.

The crumpling of graphene, mediated by long-wavelength phonons coupling with graphene’s
electrons [38], contribute to strain and tension in the material, and these phonons, in a way
analogous to the EM fields created by traveling photons, create a scalar potential V1 and a
vector potential A due to both in-plane and out-of-plane strains. As these are potentials,
they would come about in our expression for the conductivity of the graphene, a variation
of our expression in Eq. 5.47 in Fourier space [18, 19]:

σ(q) = −e2χ(q, ω)

(
φ̃(q) + Ṽ1(q) +

ω

q
q̂ · Ã(q)

)
(5.116)

with χ(q, ω) the flat polarizability from before. These potentials, derived from similar energy
considerations that led us to write the free energy functional in Eq. 5.31, are not added
directly into the Green’s function but they do play a role in the final potential equations,
and are implicitly already averaged over second-order terms in hg (although under a different
formalism using deformation tensors from elasticity theory).

Now we are faced with the question of how to properly incorporate the area of the
graphene sheet in our calculations. In our derivations in Section 5.2.1 and their respective
eigenvalue problem, we were able to write an equation up to first-order in our substrate (or
substrate-graphene system), and hence neglect the factor

√
1 + (∇hg)2 which would appear

in the boundary conditions for graphene. In order to be consistent with the eigenvalue
problem in our calculations in this section, should we include this factor in our polarizability
and hence our conductivity? As shown in Appendix 3 and in Eq. 5.85, the differential area
factor is what gives a second-order term in the directional derivative. If we include it as an
addition to our flat case conductivity, it results in a renewed definition for σ(~r) [57]

σ(~r, ω)diff = −e2

∫
d2~r ′′

√
1 + (∇hg(~r ′′))2χ(~r − ~r ′′, ω)φ(~r ′′), (5.117)

with which we would be forced to make a Bourret-like approximation if an averaged form
for the potential is to be extracted from this equation. This approximation however is
questionable and comes about solely due to our using a flat estimation for the polarizability,
and its inclusion is hence an open question.

We are faced with a final question in this chapter - are we are able to construct a full
Green’s function, starting from a graphene point source, that includes the self-interaction
of the graphene and hence the plasmonic behaviour? We have seen an issue in Eq. 5.114,
where the non-local wavevector response yields a Green’s function g̃(~p, ~p ′), unlike the local
dependence we see elsewhere. This implies that given correlation between the substrate and
graphene surfaces, the potential 〈ψ(~p)〉 cannot be separated out as an eigenvalue problem.
What if we assume there is a negligible substrate-graphene correlation? There remains an
issue with attempting to determine a full Green’s function perturbatively: the perturbative
orders of the heights do not match. To see this, let our potential 〈ψ̃(~p)〉 = ψ0(~p) + ψ2(~p),
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separating portions of the function based on their order in height profiles hs or hg. Then

ψ0(~p) = −e2

∫
d2~p ′

(2π)2
(g̃0,free(~p, ~p

′) + g̃00(~p, ~p ′))χ(~p ′)ψ0(~p ′) (5.118)

ψ2(~p) = −e2

∫
d2~p ′

(2π)2
χ(~p ′)[(g̃2,free + g̃02 + g̃11 + g̃20)ψ0 + (g̃0,free + g̃00)ψ2], (5.119)

by Eq. 5.103. The first equation, ψ0, is a system with both a flat substrate and flat graphene
a height h0 above it, and can be seen to yield the flat plasmon dispersion when a non-zero
ψ0 is induced by the plasmon it describes. We can do this as the local response of the
Green’s function g̃0,free(~p, ~p

′) + g̃00(~p, ~p ′) turns the zeroth order solution into an eigenvalue
problem.

Similarly, the equation we have developed for ψ2 is the second order correction to the
potential on the surface of the graphene. This equation is in itself quite useful, as it gives
the perturbative correction to the potential for a system with no external charges, so the
plasmon dispersion will be the set of wavenumbers and frequencies that constitute the non-
zero values of the potential for this equation.

However, are we able to combine the Green’s functions into one large function that
allows us to determine the plasmon relation? This is seen not to be the case, as there will
be ‘mixing’ between terms of second order in the Green’s function and terms of second order
in the potential ψ2 if this is attempted, yielding values of fourth order in the potential ψ(~p)
which we did not account for. This is the ultimate issue with attempting to determine a
perturbative form for the total Green’s function. This should not be too surprising looking
at the equations above - solving for ψ0 will yield the flat plasmon dispersion, after which
there is no way from the equation for ψ2 to change the dispersion. The perturbed potential
does however give us information about the effect of roughness on the potential, as we see
in Eq. 5.109.

As it stands, there are now two consistent ways to determine the plasmon dispersion:
one from the potentials themselves via an eigenvalue problem, and the other from a self-
consistent Dyson equation for the point-source Green’s function. These yield the same
answers in the limit of no roughness despite being entirely different approaches. The question
about which method yields the best interpretation for how plasmons behave on a rough
surface is open, but both methods have their merits.

A summary of the three methods outlined in this Chapter, as well as the pros and cons
of the methods are found in a table on the next page.
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Methods for Solving Doubly Rough Surface Plasmon Dispersion for Graphene

First-Order Expansion with Smoothing Method to Second-Order

• Using Green’s Second Theorem, this method turns the three-potential prob-
lem into one with just φ2, expands boundary conditions to first order, then
uses the smoothing method for eigenvalue problems with stochastic variables
(Appendix 1) to determine a self-consistent plasmon dispersion correction

• Can be generalized easily to graphene on top of the substrate, free graphene,
and for a frequency-dependent substrate that can sustain its own plasmons

• Advantages: Gives both real and imaginary corrections to plasmon dispersion
equation; self-consistent treatment of roughness

• Disadvantages: Only expands boundary conditions to first-order, neglecting
substrate-graphene interactions and other second-order effects; numerically
challenging: requires iterative computation and works best for low roughness
and low wavenumber

Image Potential in Non-Perturbative Regime

• Approaching the problem from a Green’s Function perspective, this method
computes g(~k, z, z′) for a point charge above the graphene, computes the
average non-perturbative effect of the substrate underneath, and uses a Dyson
series to determine the full Green’s function for the self-potential induced by
the graphene, giving the plasmon dispersion

• Can only be used for graphene above the substrate, under the flexible as-
sumption that each point on the graphene is above the highest peak on the
substrate surface

• Advantages: Allows for full graphene wavenumber spectrum analysis through
an energy-loss function; self-consistent plasmon dispersion

• Disadvantages: Assumes flat graphene; neglects substrate-graphene interac-
tions and other second-order effects

Image Potential in Perturbative Regime

• Using Bourret’s approximation, we obtain a second-order Green’s function
based on the roughness of the substrate and graphene involved in the bound-
ary conditions. Allows for computation of the potential on the graphene
surface, on average

• Advantages: Can include effects such as crumpling of the graphene and the
differential area of the graphene.

• Disadvantages: Perturbative Green’s function cannot be used to deduce
plasmon dispersion equation due to order mismatch; non-local wavenumber
means eigenvalue problem only defined under special conditions
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Chapter 6

Conclusion

6.1 Summary

Investigating graphene and all its intricate complexities is a task not attempted by the
author. The breadth and scope of the research being done experimentally and theoretically
in everything from its opto-electronic properties to its use as a membrane in biology to its
tremendous breaking strength makes it a fascinating area to pursue. For this thesis, we
decided to investigate graphene plasmonics in two different contexts: one where plasmons
that occur due to saddle points in the graphene energy band structure create absorbance
patterns that we modeled semi-classically via a hydrodynamic model, and another where we
utilized electromagnetic PDEs and their boundary conditions on rough surfaces to determine
the overall effect of roughness on the behaviour of plasmons restrained to the graphene
surface.

Two main themes spanned both of these topics. The first is our postulate that graphene,
due to its monolayer thickness, should be treated as a two-dimensional material. Given the
physical size of atoms, this is still an approximation, but the limited dimensions that elec-
trons and holes are restricted to on the graphene sheet make our conjecture plausible. We
extended this theory to experimental areas like Electron Energy Loss Spectroscopy and El-
lipsometry, experimental methods commonly used in the analysis of thin films, where our
conjecture and the results that follow from it gave us a new way to interpret results about
the reflectance of light and the absorption modes of two dimensional materials; based on our
assumptions we derived that a peak in the spectra for electron energy loss is likely due to
linear energy dispersion for low energy electrons in monolayer graphene. Our postulate also
allowed us to implement graphene as a boundary condition in Maxwell’s equations, which
we then used to derive perturbative results for the effect that a rough surface (with rough-
ness also factored into the boundary conditions) would have on the resonance of electron
oscillations.

Both of these topics spanned many aspects of the theory of light and matter in the con-
text of a graphene sheet, and to arrive at any useful result requires consistent but careful
use of assumptions in our theories. The second theme of this thesis has been the exploration
of different regimes within which our various approximations would hold. In the introduc-
tory chapters we introduced many of them, including the quasi-static approximation, the
optical limit of graphene, the isotropy of graphene, the Random Phase Approximation, the
hydrodynamic model for π and σ plasmons, and the validity of Maxwell’s equations for a
nano-scale structure. In the context of modeling spectroscopy data, we made assumptions
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about the nature of inelastic scattering in graphene and of light reflection from a rippled
interface, and for roughness we explored different methods that implemented differing ways
of cataloging the effects of rippled surfaces as well as phenomenologically and theoretically
determining the correlation function of graphene. Although not results in themselves, much
of our research is motivated by our need to make better and better approximations as our
knowledge of graphene’s material and electrical properties expands.

Starting from the basics of electromagnetism, we derived conditions required for plas-
mons to exist and ways to determine the plasmon dispersion relation. Our exploration of
the electronic properties of graphene led us into RPA results derived from a combination
of a tight-binding approximation and Fermi Liquid theory, yielding a conductivity that we
used in the theoretical modeling of electron loss spectra and of polarization light changes
upon interaction with monolayer graphene. A need to describe the surface that these prop-
erties exhibited themselves on led us into a mathematical investigation into the nature of
rippling on graphene and the stochastic ways to describe it and the effect the rippling has
on plasmons.

Ultimately, our thesis presented many ideas about the nature of graphene. The main
one was the constant emphasis on graphene’s effectively two-dimensional structure and how
this will change our approach to spectroscopic analysis and in computing the plasmon dis-
persion. We presented the idea that a proper subtraction of the zero-loss peak in EELS done
on small graphene flakes should maintain a sharp peak due to interband transitions in the
regime of very low energies. Also shown was that our two-fluid HD model combined with a
Dirac term is able to predict effects such as the asymmetric energy loss spectra, placement
of the absorbance peak, fluctuations in light polarization and the valency of carbon’s orbital
electrons at certain energies. We illustrated the solvability of stochastic systems via a proper
treatment of the rough perturbations to the flat potential and the flat boundary conditions,
giving numerical predictions for graphene based on measured stochastic properties of the
material. These numerical plots showed in different regimes the regions where roughness
affected graphene the most. For one method we extracted a damping term from an eigen-
value solution to the dispersion relation, suggesting mathematically that rippling forces the
eventual decay of the plasmon, although this remains speculation.

6.2 Future Work

Many of the next steps that can be undertaken have been alluded to in previous chapters,
and we elaborate on them below.

Our theoretical models for the spectroscopic data analyzed in Chapter 4, despite making
useful predictions, are a long way away from being able to predict the spread of experimental
data from our two-dimensional model. The reconciliation of the two regimes of conductivity
from Section 4.2.1, due to its discontinuity in the imaginary space, can be further improved
by incorporating approximate models for the electronic effects in the 1-3eV range, although
the advantage of our model is its simplicity and explanatory power. Results may also be
improved by developing a theory for the effective polarization of water molecules and other
impurities wedged beneath the graphene sheet. For this investigation, we can in fact incor-
porate some of our framework from Chapter 5 and consider a stochastic treatment of impu-
rities that influence the electronic structure of the graphene, thereby changing the response
of the graphene to incident photons or electrons. From a theoretical standpoint, check-
ing the Kramers-Kronig relations to ensure our conductivity is a proper response function,
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and verifying the f -sum rule holds for the Hamiltonian used to generate our semi-classical
conductivity will in future work help validate our theory and our hypothesis that treating
graphene as two-dimensional is valid in our systems of consideration.

Since our modeling in Chapter 4 is mostly as a tool to analyze the general trend of data,
corrections to it can be checked against experiment. Our perturbative analysis in Chapter
5 has yet to be compared to experimental analysis of plasmon loss and dispersion on a
graphene surface, although similar analysis for plasmons on rough dielectrics with surface
modes reveal a good match between theory and experiment [50]. Future work will attempt
to determine of the three methods considered which is the best in predicting the change in
the frequency over time for different regimes, and more powerful numerical techniques can
reveal the effects that using the Gaussian correlation function versus the healing assumption
or the fractal correlation function have on the plasmon dispersion and the energy loss of our
plasmons. Another technique of interest would be the comparison of the roughness effects
between graphene laying directly on the surface of the substrate compared to the system
of smooth graphene on a rougher substrate with gaps between. A large divergence in the
results may reveal that assuming zero gap between graphene and its substrate is not valid
in some regimes of graphene plasmonics. An analysis of the coupling of phonon modes to
the Dirac plasmon for low energies [34], done by a suitable choice of dielectric, may reveal
roughness to have a stronger effect here than on the plasmon alone.

Perhaps of most interest in future work is investigating via our smoothing method the
effects of charged impurities on the low energy Dirac plasmon for doped graphene - if the
impurities or contaminants in the substrate are stochastically spread, they will individually
raise or lower the local Fermi energy in graphene, causing the fluctuation in the Fermi energy
to now be a stochastic parameter. We have good models to predict the autocorrelation of
the Fermi energy fluctuation due to substrate impurities [2] and can therefore determine
the potential on the surface as in Section 5.2.1 and thence find the shift in the plasmon
dispersion relation via an eigenvalue problem. It is likely that this Fermi energy shift can
have a large effect on the overall plasmonic behaviour of the substrate, as has been suggested
in some studies [19].
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Appendix A

Appendix

A.1 Smoothing Method

The smoothing method follows a procedure in [39] to turn equations of the form

(H − V )R = f (A.1)

into the form
(H − 〈M〉)〈R〉 = 〈F 〉 (A.2)

where H,V are n × n matrices, R, f are n × 1 column vectors, and V,R and f have the
property of being stochastic. We include the additional caveat that H,V are similar to
response functions and are not related in functional form to either R or f . By definition,
they cannot be determined exactly, but their behaviour can be estimated based on averaging
techniques. For example, if a function ζ(~r‖) is a stochastic function over all planar radii ~r‖,
then 〈ζ(~r‖)〉 tells you the average over all realizations, while 〈ζ(~r‖)ζ(~r′‖)〉 is an autocorrelation
that gives you the average relationship between points on a plane.

Being able to put the first equation into a form that only measures the average of the
variables considered is a great leap forward in determining properties about R. Usually
the matrix V is a small stochastic perturbation of the larger, deterministic matrix H, and
knowing the function H − 〈M〉 yields analytic properties about the average of our function
R.

We introduce the operator P , which acts on a function f by Pf = 〈f〉. Its counterpart,
Q, acts via Qf = f−〈f〉, and represents fluctuations from the average of f . These operators
act on everything after them. Starting from the first equation, noting that f = P (f)+Q(f),
we have

P (HR)− P (V R) = P (f) −→ HP (R)− P (V P (R))− P (V Q(R)) = P (f) (A.3)

Q(HR)−Q(V R) = Q(f) −→ HQ(R)−Q(V P (R))−Q(V Q(R)) = Q(f) (A.4)

(H −QV )QR = QV PR+Qf (A.5)

QR = (H −QV )−1QV PR+ (H −QV )−1Qf (A.6)

Plugging this last equation into the first yields

HPR− PV PR− PV (H −QV )−1QV PR = PV (H −QV )−1Qf + Pf (A.7)

(H − P (V + V (H −QV )−1QV ))PR = P (V (H −QV )−1Qf + f). (A.8)
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This is our essential equation, as it shows there is an analytic way to represent the average of
the functions in a consistent way. We proceed in this way as it is almost never the case that
P (V R) = PV PR, which would give us a simple expression for 〈R〉. This is most obvious
by considering a matrix V such that PV = 0, so the incorrect method would conclude that
there is no average effect.

We have deduced the stochastic functions

M = V + V (H −QV )−1QV F = f + V (H −QV )−1Qf. (A.9)

We now show that M is also equal to V +MH−1QV , via a perturbative expansion in powers
of QV .

M = M1 +M2 +M3 + · · ·
= V +M1H

−1QV +M2H
−1QV + · · ·

= V + V H−1QV + V H−1QVH−1QV + · · ·
= V + V (I +H−1QV +H−1QVH−1QV + · · · )H−1QV

= V + V (H −QV )−1QV = M (A.10)

which shows the equivalency, using the geometric series expansion and hence the assumption
that V is small compared to H. Multiplying the left side of M = V +MH−1QV by VM−1

and the right side by V −1M gives us another equivalency, M = V + V H−1QM .
As we mentioned, the value V is generally small compared to H, so we will now be able

to solve 〈M〉 via a perturbative expansion in V :

M = M1 +M2 +M3 + · · · (A.11)

M1 = V −→ 〈M1〉 = 〈V 〉 (A.12)

M2 = V + V H−1QV −→ 〈M2〉 = 〈V 〉+H−1(〈V 2〉 − 〈V 〉2) (A.13)

M3 = V +M2H
−1QV (A.14)

where we note that this last averaging will have terms of the form QV QV which when
expanded become quite large.

It is interesting to observe that the averaged form of 〈M〉 does not depend on either f
or R. Therefore any n×1 matrix R will yield the same factor H−〈M〉 in its averaged form
equation.

Although we now have an analytic form for M , a perturbative approach must be taken to
each order we would like, and therefore the full function 〈M〉 can never be fully determined.
We therefore proceed with a Green’s function like method that eliminates the factors R, f ,
and shows that this approach, and the non-linearities it invokes, produces values for 〈M〉
reminiscent of self-energies that appear in many-body problems, giving an imaginary part
to what, for H,M real valued matrices, is a surprising result. Although the two values
of 〈M〉 will be perturbationally equivalent, this Green’s function approach shows the non-
perturbative result for 〈M〉 yields a complex-valued self energy [14].

Let H−1 = G0, (H − V )−1 = G and I be the identity (now using matrices in place of
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vectors), so that

(H − V )G = I −→ (H − PM)PG = I or (H − 〈M〉)〈G〉 = I (A.15)

PG = G0 +G0PMPG (A.16)

G = G0 +G0V G (A.17)

G = G0 +G0V PG+G0V QG (A.18)

(I −G0V Q)G = G0 +G0V PG (A.19)

G = (I −G0V Q)−1G0 + (I −G0V Q)−1G0V PG (A.20)

G = G0 +G0(I −G0V Q)−1V PG (A.21)

but M = V +G0V QM −→M = (I −G0V Q)−1V, (A.22)

where (A.16) follows from multiplying both sides of (A.15) by G0, and (A.17) follows from
our definitions of G and G0.Therefore

G = G0 +G0MPG = G0 +G0V G −→ V G = MPG (A.23)

This tidbit will allow us to derive an expression for M that can be computed perturbatively.
In the expression G = G0 + G0V G, let V = 〈M〉 + (V − 〈M〉), so G = G0 + G0〈M〉G +
G0(V − 〈M〉)G, which can be written as

(I −G0〈M〉)G = G0(I + (V − 〈M〉)G). (A.24)

Let G1 be the solution for the first component of V :

G1 = G0 +G0〈M〉G1 (A.25)

G1 = (I −G0〈M〉)−1G0 (A.26)

G = G1(I + (V − 〈M〉)G) (A.27)

where (A.27) follows from (A.24). Now we have

G1 = G0 +G0〈M〉G1 and PG = G0 +G0〈M〉PG −→ G1 = PG (A.28)

This yields, based on our derivation G = G1(I + (V − 〈M〉)G),

G = 〈G〉+ 〈G〉(V − 〈M〉)G (A.29)

Transforming via V G〈G〉−1(· · · )G−1〈G〉 gives

V G = V 〈G〉+ V G(V − 〈M〉)〈G〉 (A.30)

M〈G〉 = V 〈G〉+M〈G〉(V − 〈M〉)〈G〉 (A.31)

M = V +M〈G〉(V − 〈M〉), (A.32)

yielding a final analytic value for M . If H,M are simple enough matrices, this result
combined with the Gaussian property for higher order moments will give a non-perturbative
solution to 〈M〉.

81



A.2 Linear Response Theory in Two Dimensions

Frequently we have encountered linear response theory in our treatment of electromagnetic
problems and in graphene. The conductivity σ relates the current density to the electric field,
the dielectric function ε relates the electric field due to external charges to the total field, and
the polarizability χ relates the internal charge density to the total electric field. These are
all intertwined but as the dimensionality of the problem changes, so does the dimensionality
of the parameters σ, χ. ε relates two portions of an electric field, and therefore maintains
its form.

We wish to derive the general relation between σ(q, ω) and χ(q, ω). We start with the
continuity equation in Fourier space:

ωρint = ~q · Jint = σ~q ·Etot. (A.33)

By definition we also have

Etot = −i~qφtot + iωA and ρint = χ(q, ω)φtot (A.34)

with (~q, ω) in all other variables implicitly. We note however that the vector potential A
is gauge invariant, so within the Coulomb gauge we are able to choose ∇ ·A = 0, and in
this gauge the vector potential disappears from the final equation. It is important to note
that our relation is only valid within this gauge, unless we work within an electrostatic
approximation where ∂A/∂t = 0 always. Combining these all yields

σ(q, ω) =
iω

q2
χ(q, ω) (A.35)

We recall another general form for the relation between the polarizability χ and the dielectric
function ε,

ε(q, ω) = 1− v(q)χ(q, ω) (A.36)

where v(q) is the unscreened Coulomb potential, a value that is equal to different values
depending on the dimension of the problem:

v(q)3D =
1

4πε0

4π

q2
v(q)2D =

1

4πε0

2π

q
(A.37)

This definition stems from separating out the potential due to external and internal contri-
butions

φtot = φext + v(q)χ(q, ω)φtot −→ φtot =
φext

1− v(q)χ(q, ω)
=

φext
ε(q, ω)

(A.38)

We can see that we re-obtain our EM relation in three dimensions between ε and σ from
Eq. 2.9

ε(q, ω) = 1− 1

4πε0

4π

q2
χ(q, ω) = 1− 1

4πε0

4π

q2

(
q2

iω

)
σ(q, ω) = 1 +

iσ(q, ω)

ε0ω
(A.39)

This same process using the two dimensional k-space Coulomb potential gives

ε(q, ω)2D = 1 +
iq

2ε0ω
σ(q, ω)2D (A.40)

We also mention the relation between the internal potential and the internal charge
density using (A.36) and (A.38), along with the definition of the internal charge density:

φint = (1− ε(q, ω))φtot = v(q)χ(q, ω)φtot = v(q)ρint, (A.41)

which is applicable in any dimension.
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A.3 Perturbative Potentials and Non-Perturbative Surface
Profile Functions

Surface profile functions for a point charge above a randomly rough surface describe the
average potential induced by the point charge. They have the form [50]

a(k) =
1

ε+ 1

M22(k)h1(k)−M12h2(k)

|M(k)|
(A.42)

b(k) =
1

ε+ 1

M11(k)h2(k)−M21h1(k)

|M(k)|
(A.43)

where |M(k)| is the determinant of the matrix M . We define the variable ξ = ak, and the
function

Jn(ξ) = e−ξ
2/4

∫ ∞
0
due−u

2/ξ2u2In(u) (A.44)

=
1

16
π1/2e−ξ

2/8ξ5

{
In/2−1(

1

8
ξ2) +

[
1 +

4

ξ2
− 4n

ξ2

]
In/2(

1

8
ξ2)

}
. (A.45)

Our matrix elements are

M11(k) = 1 +
1

2

σ2

a2
ξ2 − 4

σ2

a2

1

ξ2

ε− 1

(ε+ 1)2

(
(ε− 1

2
)J0 +

4ε

ε− 1
J1 −

1

2
J2

)
(A.46)

M12(k) = −4
σ2

a2

1

ξ2

ε(ε− 1)

(ε+ 1)2

(
3

2
J0 − 2J1 +

1

2
J2

)
(A.47)

M21(k) = 4
σ2

a2

1

ξ2

ε− 1

(ε+ 1)2

(
3

2
J0 − 2J1 +

1

2
J2

)
(A.48)

M22(k) = 1 +
1

2

σ2

a2
ξ2 − 4

σ2

a2

1

ξ2

ε− 1

(ε+ 1)2

(
1

2
(ε− 2)J0 +

4ε

ε− 1
J1 +

1

2
εJ2

)
(A.49)

and functions

h1(k) = (1− ε)
(

1 +
1

2

σ2

a2
ξ2 + 2

σ2

a2

1

ξ2

1

ε+ 1
[J2 + (2ε+ 1)J0]

)
(A.50)

h2(k) = 2

(
1 +

1

2

σ2

a2
ξ2 +

σ2

a2

1

ξ2

1− ε
ε+ 1

[
J2 +

4(ε+ 1)

ε− 1
J1 − J0

])
. (A.51)

The surface profile functions in the flat case are

a(k)σ=0 =
1− ε
1 + ε

(A.52)

b(k)σ=0 =
2

1 + ε
. (A.53)

We note that there is no directional-dependence in the surface profile functions, as the
autocorrelation of the height profile function is also not directionally-dependent as a result
of the translational invariance we assume about the substrate surface.

The two boundary conditions can be written up to second order perturbations as follows.
The first, a result of continuity of the tangential electric field at the interface, is written as

83



0 =

∫
d2~q

(2π)2

{
2π

q
e−i~q·~r

′−qz′
[
(2π)2δ(~k − ~q) + qh̃(~k − ~q) +

q2

2
α

]
+A(~q)

[
(2π)2δ(~k − ~q)− qh̃(~k − ~q) +

q2

2
α

]
−B(~q)

[
(2π)2δ(~k − ~q) + qh̃(~k − ~q) +

q2

2
α

]}
(A.54)

letting α =
∫ d2~q ′

(2π)2
h̃(~q ′)h̃(~k − ~q − ~q ′).

The second boundary condition, which expresses the continuity of the normal compo-
nents of the electric displacement vector D, reads as

0 =

{
∂

∂z
− [∇hs(~r)] · ∇−

1

2
[∇hs(~r)]2

∂

∂z

}∫
d2~q

(2π)2
ei~q·~r{

2π

q
e−i~q·~r

′
e−q|z−z

′| +A(~q)e−qz − εB(~q)eqz
}∣∣∣∣

z=hs(~r)

. (A.55)

Expanding to second order in the known coefficients yields

0 =

∫
d2~q

(2π)2
ei~q·~r

{
2πe−i~q·~r

′
e−qz

′
[
1− iq̂ · ∇h+ qh− iqhq̂ · ∇h− 1

2
(∇h)2 +

q2

2
h2

]
−A(~q)q

[
1 + iq̂ · ∇h− qh− iqhq̂ · ∇h− 1

2
(∇h)2 +

q2

2
h2

]
−εB(~q)q

[
1− iq̂ · ∇h+ qh− iqhq̂ · ∇h− 1

2
(∇h)2 +

q2

2
h2

]}
(A.56)

where h is short for hs(~r) in these equations.
Via the Fourier transform shown in Section 3.2.2, along with the relations∫

d2~re−i(
~k−~q)·~r(∇h)2 = −

∫
d2 ~Q

(2π)2
~Q · (~k − ~q − ~Q)h̃( ~Q)h̃(~k − ~q − ~Q) (A.57)

i~q ·
∫
d2~re−i(

~k−~q)·~rh∇h = −
∫

d2 ~Q

(2π)2
~q · ~Qh̃( ~Q)h̃(~k − ~q − ~Q) (A.58)

i~q ·
∫
d2~re−i(

~k−~q)·~r∇h = −~q · (~k − ~q)h̃(~k − ~q), (A.59)

one can rewrite the second boundary condition in the same form as the first boundary
condition. These two equations form the matrix equation used in Section 3.2.2 to determine
the non-perturbative solutions to A(~k), B(~k). It becomes clear that expanding this equation
to any more than second-order would be an exercise in tedium.

To determine the perturbative solutions for the potentials A(~k), B(~k) to second order in
the height profile hs

A(~k) = A0(~k) +A1(~k) +A2(~k) + (· · · ) (A.60)

(likewise for B), we group terms of order n in the potential expansion with terms of order
2− n in the stochastic height profile, similar in spirit to perturbative solutions in quantum
mechanics with expansions to n-th order in the energy and wavefunctions. The solutions to
1st and 2nd order for these potentials are
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[
A1(~k)

B1(~k)

]
= −4π

ε− 1

(ε+ 1)2

∫
d2~q

(2π)2
e−i~q·~r

′
e−qz

′
h̃(~k − ~q)

[
ε+ k̂ · q̂
−1 + k̂ · q̂

]
(A.61)

[
A2(~k)

B2(~k)

]
= −4π

ε− 1

(ε+ 1)3

∫
d2~q

(2π)2

∫
d2 ~Q

(2π)2
e−i

~Q·~r ′e−Qz
′
qh̃(~k − ~q)h̃(~q − ~Q)

×

[
ε(ε− 1) + 2εq̂ · ( ~Q+ ~k)− (k̂ · q̂)(q̂ · Q̂)(ε− 1)

−(ε− 1)− 2Q̂ · q̂ + 2ε(k̂ · q̂)− (k̂ · q̂)(q̂ · Q̂)(ε− 1)

]
(A.62)

A.4 Smoothing Method for Finite-Gap Case

Combining equations from Section 5.2.1 into matrix form yields∫
d2~p

(2π)2

(
(2π)2δ(~q − ~p)

[
1+ε
1−ε 1

W (q)e−qh0 [1 +W (q)]eqh0

]
−

p

[
h̃s(~q − ~p)(1− q̂ · p̂) −h̃s(~q − ~p)(1 + q̂ · p̂)

h̃g(~q − ~p)[W (p) +W (q)]e−ph0 h̃g(~q − ~p)[W (p)−W (q)]eph0

])[
A(~p)
B(~p)

]
=

[
0
0

]
(A.63)

where W (q) = (2πe2/q)χ(q, ω), recalling that ω is not involved in our integrations, allowing
us to write our edited dielectric function as W (q). Here we perform the same perturbation
as the smoothing method did for graphene on top of a substrate as done in Section 5.2.1.
As we now have matrices, we define ε(q, ω) via a matrix equation as:

H(~q, ~p) = (2π)2δ(~q − ~p)
[

1+ε
1−ε 1

W (q)e−qh0 [1 +W (q)]eqh0

]
= (2π)2δ(~q − ~p)ε(q, ω) (A.64)

We likewise make the approximation 〈M〉 = 〈V +M〈G〉(V − 〈M〉)〉 ≈ 〈V 〈G〉V 〉. Our only
change in definition is that for the loss function, which now will take on the form

Loss Function = −=
[

1

det[ε(q, ω)−m(q, ω)]

]
. (A.65)

This extends the analogy of the plasmon dispersion being given by the relation ε(q, ω) −
m(q, ω) = 0 to matrices. Analyzing this loss function gives indications about where the
plasmon modes lie.

Our matrix 〈G(~p, ~q)〉 is now defined as an inverse calculation

〈G〉 = (2π)2δ(~q − ~p) = (2π)2δ(~q − ~p)
[
h11(q)−m11(q) h12(q)−m12(q)
h21(q)−m21(q) h22(q)−m22(q)

]−1

= (2π)2δ(~q − ~p)
[
g11(q) g12(q)
g21(q) g22(q)

]
, (A.66)

recalling that to make a first-order iterative approximation to M ≈ 〈V 〈G〉V 〉, we take
mij(q) = 0 in the expression for 〈G〉. The terms gij(q), by nature of being defined as the
components of the inverse matrix, contain the determinant of H−〈M〉 in their denominator.
This equivalent situation in Section 5.2.1 forced us to implement the Sokhotski-Plemelj
theorem to justify integration over a singularity.
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