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Abstract

A self-stabilizing protocol is one that starting from any arbitrary initial state recovers to
legitimate states in a finite number of steps, and once it stabilizes to a set of legitimate
states, it remains there unless it is perturbed by transient faults. The traditional methods
existing for performance evaluation of a self-stabilizing algorithm usually work based on the
analysis of worst case computational complexity. Another method that has been commonly
used in evaluating these algorithms is simulation, which assumes the system starts from
an initial state. Here, it is argued that the traditional methods have shortcomings and do
not give enough insight about the behavior of the system. Moreover, they do not provide a
decent method of comparison. We propose a novel method for evaluation of self-stabilizing
algorithms. This method works based on probabilistic model checking and computation of
the expected number of recovery steps. We execute some experiments on the case studies,
and the results indicate that we can gain insight about the faults and their structure in
the protocol.

Next, we explain the difficulty of designing a self-stabilizing algorithm for a system
and show how it is impossible to do so for some classes of protocols. This resulted in
some relaxation in the definition of self-stabilization. One of the relaxations made in the
definition of self-stabilization is weak-stabilization. A weak-stabilizing protocol ensures
the existence of a recovery path from an arbitrary initial configuration. Thus, some paths
may contain connected components or cycles. Since a weak-stabilizing algorithm may get
stuck in connected components forever, we cannot evaluate weak-stabilizing protocols by
traditional and existing methods. We calculate the expected number of recovery steps
for evaluating weak-stabilization. However, since it does not give us enough intuition
about the structure of faults, we apply a graph-theoretic formula for estimating the weak-
stabilizing algorithm’s performance. This formula is based on the number of cycles and
their reachability.

Based on the observations we made by performance evaluation of these protocols, we
suggest algorithms called state encoding for modifying the performance of the algorithms.
State encoding works based on changing the bit mapping of the states of the system. The
aim is to make the states with faster recovery steps more probable to occur. There are
three algorithms, one of which works based on betweenness centrality which is a measure
of centrality of a node within a graph. The other one works based on feedback arc set
which is a set of arcs whose removal makes a graph acyclic. The third algorithm works
based on the length of the shortest recovery path for the states.

The other problem investigated here is the problem of state space explosion in model
checking. Similar to traditional methods of model checking, probabilistic model checking
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also suffers from the problem of state space explosion, i.e., the number of states grows
exponentially in terms of the number of components in the distributed system. Abstraction
methods, which are described briefly here, are designed to combat this problem. We argue
that they are not efficient enough, and there is still the lack of a sufficient abstraction
method that works for systems with an arbitrary number of processes. We also propose
a new approach for evaluation of an abstraction function. Then, based on the intuition
gained, a new abstraction algorithm is proposed that is exclusively designed for verification
of reachability properties. After executing experiments on a case study, we compare the
result of our algorithm with the results obtained by existing methods. The results support
our claim that our method is more efficient and precise.
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Chapter 1

Introduction and Related Work

In this chapter, we first introduce the concept of self-stabilization and some self-stabilizing
algorithms. Then, we explain some existing methods for evaluating the performance of
self-stabilizing algorithms, and then express our own way for doing so. Next, we introduce
some relaxations on the definition of self-stabilization. One of them on which we focus
in this thesis is weak-stabilization. We introduce the concept and describe our way of
evaluating the performance of a weak-stabilizing algorithm. Then, we discuss the concept
of state encoding as a way of improving the performance of self-stabilization and weak-
stabilization. Finally, we describe the state explosion problem, and explain some existing
methods for dealing with this problem. Then, we explain our own method for tackling this
problem.

1.1 Self-stabilization

Self-stabilization [1, 2, 3] is a versatile technique for achieving fault recovery. In 1993, Arora
and Gouda [4] presented a formal definition of a fault tolerant system. Fault tolerance
ensures that when the system is hit by faults and driven to some arbitrary state [5], it
is guaranteed to recover to a set of legitimate states within a finite number of execution
steps. Once the system reaches such set, it remains in this set thereafter in the absence of
new faults. Within the past decades, the initial concept has matured and expanded into
various problems [6, 7, 8, 9], and networks [10], [11], [12], [13].

Dijkstra [1] introduced three uniform self-stabilizing algorithms for the token ring prob-
lem, which as defined in Definition 33, is a ring of processes in which a token is passed
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between the processes such that eventually only one process has the token. The mutual
exclusion problem first introduced by Dijkstra [14] in 1965, as defined in Definition 35,
given a distributed system consisting of a set of processes and a property known as critical
section, the mutual exclusion problem is defined as to reach a set where there is only one
process which holds the critical section. His work did not receive much attention until in
1983, Leslie Lamport [15] mentioned this paper as the most brilliant work of Dijkstra and
as a milestone for fault recovery problems. Kessels in 1988 [16] proved the correctness of
the three-state algorithm of Dijkstra. This algorithm appears in Algorithm 4. In 1989,
Burns and Pachl [17] proposed a self-stabilizing algorithm for the mutual exclusion prob-
lem on a ring graph with prime size. The ring graph as defined in Definition 3, is a graph
in which nodes are organized as a ring.

In 1994 Flatebo and Datta [18] introduced the concept of a randomized central daemon
which randomly chooses a possible path to get executed, and proposed a two-state self-
stabilizing algorithm for the mutual exclusion problem where a two-state self-stabilizing
algorithm is one in which each process has two possible states. Then, in 1995 Beauquier and
Debas [19] proposed a modification of the three-state self-stabilizing algorithm of Dijkstra
such that the new algorithm has less computational complexity than Dijkstra’s. In this
algorithm, two new lines are added to Dijkstra’s algorithm.

The other problem for which several self-stabilizing algorithms have been suggested is
the leader election problem. This problem, as defined in Definition 34, requires that when
the algorithm terminates, one process is distinguished as the leader and every process in the
system knows whether it is the leader or not [20] [21]. Before Dolev et al. in 1997 [20], some
non-self-stabilizing algorithms for the leader election problem had been proposed [22, 23].

Another problem that is also considered as a case study in this thesis is the propagation
of information with feedback (PIF) problem introduced by Chang [24] and Segal [25]. In
this problem, as defined in Definition 32, a tree structure is given. Initially, all the processes
are idle. Starting from the root, a message request propagates through neighbors of each
node to a leaf; then the leaf sends a response message and this response goes up until it
reaches the root. Then, all the nodes become idle again. After that, several self-stabilizing
PIF algorithms were proposed for this problem [26] [27] [28]. Then, in 2001 Cournier et
al. [29] proposed a deterministic self-stabilizing PIF protocol that works for an arbitrary
tree structure.
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1.2 Evaluation of Self-stabilization

As interest in designing self-stabilizing algorithms has increased, the number of self-stabilizing
algorithms has also increased. However, there was a lack of an adequate way to compare
and analyze the performance of self-stabilizing algorithms. The conventional approaches
employed for performance evaluation of a self-stabilizing algorithm have been mainly based
on how fast it recovers to a set of legitimate states. The conventional metric to evaluate the
performance is asymptotic computational complexity in terms of the number of rounds [20]
(i.e., the shortest computation in which each process executes at least one step) or waiting
time (i.e., the number of global actions that have to be executed). Thus, one can express
the performance of a self-stabilizing algorithm by computing the upper bound as the worst
case number of, e.g., rounds. For instance, if the topology of a distributed system is a tree,
then the performance could be a polynomial in h rounds, where h is the height of the tree.

The main flaw in this approach is that it assumes that all the faults in the system
happen with the same probability and so, the probability distribution over the state space
is uniform. However, in practice, usually some faults are more probable than others.
On the other hand, we have practical ways of evaluation, such as simulation [9], which
uses experimental methods to measure the efficiency of a given self-stabilizing algorithm.
Moreover, we can use simulation as a measure of comparison for self-stabilizing algorithms.

Based on arguing that the existing methods do not provide us enough insight about
the structure of the faults and behavior of the system, Fallahi and Bonakdarpour [30]
proposed a new method for evaluation of self-stabilizing algorithms that works based on
probabilistic model checking [31]. In this method, it is sufficient to compute the expected
number of recovery steps for all the possible states outside the set of legitimate states. It
can also be used as a means of comparison for self-stabilizing algorithms.

In this thesis, we argue that using asymptotic computational complexity for evaluating
the performance is too abstract and does not accurately reflect the realities of deploying
a distributed self-stabilizing algorithm in practice. More specifically, asymptotic compu-
tational complexity does not investigate factors that can be potentially crucial in practice
(constants and smaller polynomials may matter but, most importantly, the worst case
complexity may be irrelevant in practice).

On the other hand, practical performance evaluation of self-stabilizing algorithms typ-
ically uses simulation [32, 33, 12, 9], but most approaches consider running the algorithm
from an initial random state, which is known to introduce significant bias [9] and also
raises the question of case coverage, since only a very small portion of possible states are
encountered in a typical simulation run.
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In general, the conventional performance evaluation metric is computing the asymptotic
computational complexity in terms of round, cycle, and recovery steps, where

• A round [20] is the shortest computation fragment in which each process executes at
least one step.

• A cycle is the shortest computation fragment in which each process executes at least
one complete iteration of its repeatedly executed list of commands.

• Number of recovery steps is the number of global actions that must be executed to
move from an arbitrary state to a legitimate state.

Shortcomings of the conventional method of performance evaluation of self-stabilizing
algorithms are given as following:

• The constants removed in computing the asymptotic computational complexity can
be large enough to affect the performance of the algorithm.

• The smaller polynomials removed in computing the asymptotic computational com-
plexity can be large enough to have a significant impact on the performance of the
algorithm.

• The worst case complexity may rarely occur. In other words, the asymptotic com-
putational method assumes a uniform probability distribution over the state space.
However, in practice, some faults may be more likely to happen.

We believe these abstractions result in the need for a novel method for evaluating the
performance of self-stabilizing algorithm which is more precise. With this motivation, in
this thesis we propose a new metric that characterizes the expected number of recovery
steps of a self-stabilizing algorithm independently of the underlying network topology and
communication technology (e.g., shared memory vs. message passing). The new metric is
the expected number of recovery steps. This expected value is computed based on the sum
of probabilities for n-step reachability of legitimate states for all possible values of n; i.e.,
the number of execution steps to reach a legitimate state from each arbitrary state. Our
technique to compute the probability of n-step reachability and subsequently the expected
number of recovery steps is based upon probabilistic model checking [31] which is defined
as verification of a system by a probabilistic model checker. A probabilistic model checker
takes the model of a (deterministic or non-deterministic) system and a set of probabilistic
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temporal properties as input and automatically proves whether the model satisfies the
properties. In the context of our problem, a probabilistic temporal property is of the form
“whether the probability of reachability of legitimate states from an arbitrary state within
n execution steps is greater than a certain value”. Equivalently, one can compute the
probability of n-reachability of legitimate states from an arbitrary state, which modern
probabilistic model checkers can do. Obviously, computing this probability implies the
computation of the expected number of recovery steps. The expected number of recovery
steps computed using this technique represents the overall performance of an algorithm,
and can be used as a basis for comparing the performance of different algorithms. Another
advantage of our technique is that it can elegantly take into account other parameters vital
to evaluation of the performance of a self-stabilizing algorithm by simply incorporating
them when building the model of an algorithm. Examples of these parameters include the
impact of the underlying scheduler and the likelihood of occurrence of faults. While the
former can significantly change the way an algorithm behaves during recovery, the latter
determines the number of states and the probability of reaching states from which recovery
is fast or slow. This number and probability can significantly impact the expected number
of recovery steps. The suggested technique is described in Chapter 3.

To back our claims, we conducted thorough experiments using the PRISM model
checker [34] and three well-known self-stabilizing algorithms for solving distributed prop-
agation of information with feedback (PIF) in rooted trees in Chapter 3. Moreover, as
another case study we considered two self-stabilizing algorithms for a token ring problem.
Our experiments clearly show that an algorithm that has the best asymptotic performance
does not perform the best under all possible scenarios. Thus, to implement and deploy a
self-stabilizing algorithm in practice one has to assess the environment and the likelihood
of its faults to make the best choice of algorithm. In other words, our results show that the
worst case analysis by itself is not a good way for deployment of self-stabilizing algorithms
in real-world situations.

We believe that our new metric and automated technique provide valuable insights
into behavior and performance of self-stabilizing algorithms crucial for practical system
deployment.

1.3 Relaxations on Definition of Self-stabilization

Designing a self-stabilizing algorithm has been always desirable for researchers. However,
for some classes of problems, such as leader election with anonymous processes [35] (mean-
ing the processes are indistinguishable in that they execute the same set of actions and
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their variables have same domain), it is impossible to have a self-stabilizing protocol. Thus,
since then, some relaxations on the definition of self-stabilization have been proposed. One
of them is probabilistic self-stabilizing protocols in which the recovery of the system to
legal behavior is guaranteed with probability 1 [36]. Herman proposed a probabilistic self-
stabilizing mutual exclusion protocol for the topology of a ring with an odd number of
identical processes [36]. The impossibility of designing a self-stabilizing mutual exclusion
protocol for identical processes was proved by Angluin [37].

Another relaxation proposed on the definition of self-stabilization is k-stabilization [38].
In this method of stabilization, some faults are assumed to be impossible to occur, and the
recovery is ensured to happen within k local state changes for each process in the system.
Beauquier et al. [38] suggested a k-stabilizing algorithm for the token ring problem.

The other type of self-stabilizing protocols is snap-stabilizing. The notion of snap-
stabilization was introduced in 1999 [39] as a snap-stabilizing protocol ensures that the
system always exhibits legal behavior. In other words, a snap-stabilizing algorithm is a
self-stabilizing algorithm that stabilizes in zero steps.

Weak-stabilization is the most recent relaxation that has been introduced in the def-
inition of self-stabilization [40]. A weak-stabilizing protocol ensures the existence of a
recovery path from any arbitrary initial configuration. Thus, there may exist some paths
that are reachable from a configuration and do not recover. They can be cycles or con-
nected components in the graph representing the protocol. There was little attention paid
to weak-stabilization because of this relaxation until Gouda [40] argued that if we could
design a weak-stabilizing algorithm for a problem, it can be significantly faster than self-
stabilization. In 2008, Devismes et al. [41], suggested a weak-stabilizing leader election
protocol for anonymous processes.

1.4 Evaluation of Weak-stabilization

We argue that the existence of cycles by itself should not be a strong reason to reject
weak-stabilizing algorithms as practical solutions to deal with fault recovery in distributed
systems for the following reasons:

• In a weak-stabilizing algorithm, there always exists the chance of convergence. Hence,
a weak-stabilizing algorithm in the presence of a fair scheduler (which guarantees
that a continuously enabled action will eventually be chosen) is guaranteed to reach
a legitimate state within a finite number of execution steps as the probability of
leaving the cycle converges to 1 [41].
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• Unlike self-stabilization, the scheduler is considered friendly. In fact, in order to
prove that a system is not self-stabilizing, it is sufficient to find an execution that
satisfies the property given by the scheduler but does not converge to legitimate
states. Moreover, in practice, it is usually the case that the scheduler is probabilistic,
and finally chooses an enabled action. In many commonly considered systems, ac-
tions happen with some probability. For example, in data networks, a packet reaches
its destination with some probability. This implies that a cycle of actions that in-
volves data re-transmission eventually ends. In fact, it can be shown that in the
presence of the probabilistic scheduler, for systems with finite possible states, any
weak-stabilizing algorithm is a probabilistic self-stabilizing algorithm [41] (i.e., the
probability of reaching a correct behavior in weak-stabilization always converges to
1).

• Recovery in a weak-stabilizing algorithm heavily depends on the structure of the
algorithm and, in particular, reachability and length of cycles outside the legitimate
states. In other words, existence of cycle(s) in an algorithm by itself is not a good
measure to judge the performance of a weak-stabilizing algorithm.

To explain the latter reason in more detail, consider the structures in Figure 1.1. We
assume uniform probability for all the states in Figure 1.1. In Figure 1.1(b), the recovery
path that starts from state s2 reaches a cycle, but the one that starts from state s1 does
not act in the same way. Such an algorithm is expected to perform better than the one
shown in Figure 1.1(c), since in the latter both recovery paths reach a cycle. Likewise,
the algorithm in Figure 1.1(c) is expected to perform better than the one shown in Fig-
ure 1.1(d), as in the latter the path that starts from state s2 reaches two cycles during
recovery. Also, the algorithm in Figure 1.1(d) is expected to perform better than the one
shown in Figure 1.1(e), since the latter reaches a cycle whose length is longer. On the other
hand, it is difficult to compare the performance of the structures shown in Figures 1.1(d)
and 1.1(f), since the structure in Figure 1.1(f) has a longer cycle, but the path that starts
from state s1 may avoid a cycle by branching to a different recovery sub-path. Another
example is the case shown in Figure 1.1(a) where faults do not perturb the system to a
state from which the cycle can be reached. In such a scenario the existence of the cycle
becomes irrelevant.

The above analysis clearly shows that one cannot reject weak-stabilization based only
on the argument of “existence of cycles during recovery”. That is, the structure of a weak-
stabilizing algorithm and the number and length of cycles that recovery paths visit play
an important role in the performance of the algorithm. With this motivation and in the
absence of performance metrics for weak-stabilization, in this thesis, we focus on developing
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Set of all states

Legitimate States

(a) Self-stabilization

Set of all states

Legitimate States

s2s1

(b) Weak-stabilization

Set of all states

Legitimate States

s1 s2

(c)

Set of all states

Legitimate States

s1 s2

(d)

Set of all states

Legitimate States

s1 s2

(e)

Set of all states

Legitimate States

s1 s2

(f)

Figure 1.1: Self-stabilization and different algorithm structures for weak-stabilization.

such a metric. Our metric is based on the method introduced by Fallahi and Bonakdarpour
for computing the expected number of recovery steps [30]. Unlike conventional asymptotic
computational analysis (in terms of, for instance, the number of rounds [20]), the expected
number of recovery steps can be computed in weak-stabilizing systems that have cycles, as
the probability of leaving a cycle always converges to 1. In order to present the distributed
system as a Markov chain, we consider a probabilistic scheduler, and a finite state space,
i.e., weak-stabilization is as strong as probabilistic stabilization [41], and the probability
of reaching correct behavior converges to 1.

Since the expected number of recovery steps does not reveal much about the structure
of a weak-stabilizing algorithm, we also propose a graph-theoretic metric that character-
izes the performance of a weak-stabilizing algorithm by identifying its strongly connected
components and incorporating their size, density, centrality, and reachability. Our analysis
and experiments on a weak-stabilizing leader election algorithm [41] in Chapter 3 clearly
show that the performance of a weak-stabilizing algorithm heavily depends on its structure
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as well as the location and length of cycles.

In the remainder of the thesis, we may use WS to denote weak-stabilization, or weak-
stabilizing.

1.5 State Encoding

Based on the insights we have gained by performance evaluation of self-stabilizing algo-
rithms, we show that the performance can be of significant help in implementation, as we
derive a general technique (called state encoding) that automatically (sometimes consid-
erably) improves the performance of the implementation without changing the behavior
of the protocol. Then we introduce three algorithms that automatically generate a state
encoding scheme for a given self-stabilizing algorithm that can significantly reduce the
expected number of recovery steps of the algorithm without changing its functional be-
havior. The state encoding algorithm works by changing the bit mapping function for the
configuration of the system. The purpose behind this is to make the occurrence of the
states from which the recovery is faster (the expected number of recovery steps is less than
the overall expected value) more probable. Moreover, it reduces the probability of slower
states occurring. In the context of weak-stabilization, we can also make the states that can
reach cycles less probable to happen without changing the general behavior of the system.
We suggest three algorithms for encoding which are fully described in Section 3.3.

The first algorithm works based on a feedback arc set for the directed graph, which
is a set of arcs whose removal makes the graph acyclic. We assume we have the Markov
chain of the model as the input to this algorithm, and we present it as a directed graph.
Then, we obtain those arcs in the graph whose removal makes the graph acyclic. In the
next step, we will try to reduce the probability of the sources of these arcs which are the
endpoints from which the arcs start. The logic behind this algorithm is, if the sources of
the cycles do not happen, the system never goes into a cycle.

The second algorithm makes the states with higher betweenness centrality (which is
defined for a node in a graph, and counts how many times a node connects any other
pair of nodes in the graph) less probable than other nodes. These two algorithms work
exclusively for weak-stabilizing algorithms.

The third algorithm is a more general one and works for all types of self-stabilizing
algorithms. This algorithm works based on the length of recovery paths for each state.
Then, it tries to make those states whose length of recovery path is less than average more
probable to occur, and consequently, make the rest of the states less probable to happen.
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1.6 State Space Explosion Problem and Abstraction

Similar to traditional model checking methods, the probabilistic model checking suffers
from the state space explosion problem: the number of the states in the system grows
exponentially in terms of the number of components existing in the system. To tackle
this problem, several solutions have been proposed. One of the solutions is bisimulation
minimization [42] which suggests a model with the lowest possible number of states where
this model has the same behavior and model checking results as the model before min-
imization. The states in the bisimilar model are gained through partitioning the state
space of the model such that the states that exhibit similar behavior collapse in the same
state in the bisimilar model. Another solution proposed for combating the state explosion
problem is symmetry reduction [43] [44], in which the reduction of the problem to another
problem that is solved with less memory usage is proposed. Then, verification is done on
the reduced problem.

Other and more recent solutions contain abstraction methods [45]. In the abstraction
methods, an abstraction function is defined that maps the states in the original model
D to the abstract states in the abstract model D̂. Several abstraction functions have
been proposed, such as counter abstraction [46] [47]. In counter abstraction, the input
is a distributed system D consisting of identical processes 1, 2, . . . , n with domain D =
{1, 2, . . . , l}. The abstract system is defined with processes k1, k2, . . . , kl with domain
D = {1, 2, . . . , n} such that ki equals to the number of processes that are at state i where
1 ≤ i ≤ l. We give a fully detailed description of counter abstraction in Definition 31.

Another method is ordering abstraction [48], which sorts the states in ascending or
descending order of the local states of processes. Predicate abstraction [49] is another
method of abstraction that results in two-valued and three-valued abstraction models.
In the two-valued logic model, the affirmative properties are conservative in the abstract
model, meaning if the abstract model says true for a property verification, the property
holds in the original model as well. However, when it is no, it is undecidable in the original
model. The three-valued logic model is conservative for both affirmative and negative
properties; however, when it is unknown, we cannot decide about the property in the
original model. Even though there are several methods proposed for abstraction, there is
still the lack of a decent abstraction method that works for an arbitrary number of states.

Here, we propose a novel abstraction function for verification of reachability properties
where we aim to preserve the expected number of recovery steps as a measure of perfor-
mance of the algorithm as we make the abstract system. Our method is described in detail
in Chapter 3.
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In general, the purpose of abstraction is to coalesce a set of states and put them in
abstract states. Thus, the abstraction method works based on proposing a partition over
the set of states in the system such that the abstract system is conservative in terms of
verification of desired properties. It means the abstract system should provide a decent
estimation for verification of quantitative properties.

Next, we propose a method for measuring the performance of an abstraction method.
This method works based on two important factors that an abstraction method should
have:

• How bisimilar is the abstract model to the system?

• How much memory does the abstraction method save us?

We investigate the answers to these questions in Chapter 3. We make use of these mea-
surements as a tool for comparing abstraction methods. As a result, based on the insights
we gained by evaluating the existing abstraction methods, we propose a new method of
abstraction that is exclusively designed for verification of the expected number of recovery
steps property in a probabilistic system. In our method, we collapse states with the same
value of shortest path to a legal state in the same layer, which is defined as a set of states
with the same number of shortest recovery path steps. Then, within each layer, we find
the processes whose states happen with same probabilities, and after checking whether the
same is confirmed by at least half of the layers we finalize the abstraction and put those
processes in the same abstract variable. Thus, the variables in the abstract system build a
partition over a set of components of the concrete system. Then, we execute some exper-
iments on case studies and compare the results of our method with counter abstraction.
This algorithm will be fully described in Section 3.4.

Organization The rest of the thesis is organized as follows. In Chapter 2, we explain
the preliminary concepts such as graph-theory terms, the formal definition of a distributed
system, probabilistic model checking, self- and weak-stabilization, abstraction, and the
problems which are studied in this thesis. Our methods, case studies, implementation, and
experimental results, consisting of the performance evaluation method for self-stabilizing
algorithms based on the expected number of recovery steps, structure analysis of weak-
stabilizing systems by graph-theoretical methods, and the proposed encoding and abstrac-
tion methods for improving the performance of the system, are described in detail in
Chapter 3. Finally, we make concluding remarks in Chapter 4. Visual representation of
some case studies are included in the appendix.
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Chapter 2

Background

In this chapter, we explain technical definitions of the terms we use later in the thesis.
This includes six sections: graph theory, distributed systems, probabilistic model checking,
self-stabilization, state space abstraction, and self-stabilizing problems.

2.1 Graph Theory

Definition 1 (Undirected Graph) A undirected graph G is denoted by G = (V,E),
consisting of a set V of vertices and a set E disjoint from V of edges. If two vertices u, v
are endpoints of an edge e = (p, q) ∈ E, we call p, q adjacent or neighbors. An edge with
identical end points is called a loop or self-loop [50]. A graph is finite if the sets of its
vertices and its edges are finite.

A graph with only one vertex is called trivial; otherwise it is nontrivial. A graph is
called simple if it has no loop and no two edges with the same endpoints. A digraph D is
denoted by (V (D), E(D)), where V (D) is set of vertices and E(D) is the set of arcs such
that each arc is defined as an ordered pair of vertices of D. For instance e = (u, v) ∈ E(D)
is an arc that goes from u to v. We call u the source and v the sink of arc e.

We note that from now on, we exclusively talk about the directed graphs, and thus, all
the definitions are considered for a directed graph unless we mention that it is undirected.

Definition 2 (Subgraph) A graph H is called a subgraph of G, denoted by H ⊆ G, if
and only if V (H) ⊆ V (G) and E(H) ⊆ E(G). In this case, we call G a supergraph of H.
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The degree of a vertex v in an undirected graph is denoted by degv and is defined as the
number of vertices that are incident to v. The notations δG and σG denote the minimum
and the maximum degrees of the vertices of graph G, respectively.

Based on the topology the vertices in a graph constitute, different types of graph are
defined. One of them is called the ring graph.

Definition 3 (Ring Graph) The ring graph with n vertices has a vertex set correspond-
ing to the integers 0 through n− 1, and edges (i, i+ 1), computed modulo n.

Another type of graph is called tree.

Definition 4 (Tree) An acyclic (without cycle) connected undirected graph is called a
tree. The height of a node in tree is the length of the longest path to a leaf from that node.
The height of the root is known as the height of the tree.

A walk in directed graph G is a finite non-null sequence of vertices W = v1v2v3 . . . vk
such that for 1 ≤ i < k, vi is adjacent to vi+1 by an arc that goes from vi to vi+1. The
integer k is called the length of the walk W . If the arcs of a walk are distinct, we call it
a trail. If the arcs and vertices of a walk are both distinct, we call it a path. The vertices
u, v in graph G are said to be strongly connected if there is a path from u to v, and another
path from v to u in G which are also called a (u, v)−path, and a (v, u)−path respectively.
Strong connection is an equivalence relation on graph G. Thus, we can find a partition for
set V (G), V1, V2, , . . . , Vk such that every pair of vertices u, v are strongly connected if and
only if they belong to the same partition set Vi. The subgraphs G(V1), G(V2), . . . , G(Vk)
are called strongly connected components.

A walk with positive length and the same source and sink is called a closed walk. A
closed trail which is a trail with the same source and sink is called a cycle. We call a graph
bipartite if it has no odd cycle.

The shortest path problem is one of the most common applications of paths and cycles
in graphs. Consider a graph in which a positive integer w(e) is assigned to each of its arcs
e. We call G with these weights on its arcs a weighted directed graph. These weights can
be several concepts in practice, such as the cost of establishing a connection between two
nodes. The shortest path problem is defined as follows: given a weighted graph, find the
shortest path from a specified source to a specified sink in that graph.

The algorithm we will use was developed by Dijkstra (1959) [51] and independently by
Whiting and Hillier (1960) [52]. For a given vertex u0, this algorithm finds the shortest
path between u0 and all the other nodes in graph G.
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In terms of connectivity, not all nodes may have the same significance. It means,
for instance, that removing a node from a graph can change the set of its connected
components.

Definition 5 (Betweenness Centrality) The betweenness centrality [53] for a given
node is the fraction of shortest paths that go through the node. More formally, it is computed
by the following formula:

CB(s) =
∑
s 6=u6=v

SPuv(s)

SPuv

where SPuv is the total number of shortest paths from node u to node v and SPuv(s) is the
number of those paths that pass through s.

Definition 6 (Feedback Arc Set) A feedback arc set (FAS) is defined for a digraph as
a set of arcs whose removal makes a digraph acyclic.

There are some approximation algorithms [54] for finding the minimum feedback arc set
that we will use later in this thesis.

2.2 Distributed System

A distributed system is a collection of independent processes that communicate with each
other through passing messages or shared memory [55]. In this thesis, we represent a
distributed system by a self-loopless undirected graph G = (V,E) in which V represents
the processes of the distributed system, denoted by p1, p2 . . . , pn, and E represents the
communications among processes. The numbers 1, 2, . . . , n are known as the indices of the
processes. The messages between processes pass through these edges. If (p, q) ∈ E for
two processes p and q, we call them neighbors. We assume that each process knows its
neighbors by their indices. Hence, for each process p, we represent its neighbors as their
indices. The number of neighbors of p denotes the maximum number of processes p can
directly communicate with.

Communication between processes can be carried out through message passing or
shared memory. Shared memory communication is used for those distributed systems
in which the processes are spatially located close to each other, such as processes occurring
within a multi-tasking single processor computer. Here, we use a shared memory model in
which the processes communicate with each other by using shared variables. Each process
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owns a set of variables in which it can write and a possibly different set of variables from
which it can read. These two sets can be different from each other. Each variable can take
on a value within its domain. We assume that the domain of variables are finite.

Definition 7 (Global State and State of a Process) The state of a process pi is the
values of its variables. The state of the system, also known as global state, is defined as
the states of its processes.

For each process, we can design a local algorithm that changes the state of that process.
We can deterministically define the future state of a process by knowing its current state.
We present this local algorithm by using Dijkstra’s guarded command [1] which is defined
as follows:

Definition 8 (Action) An action is indicated by the following formula:

〈label〉 :: 〈guard〉 −→ 〈statement〉

Here, label is the name of a local action, guard is a Boolean expression containing a
subset of variables that can be read by the process, and the statement is the future state of
the process.

An action is called enabled if its guard is true. A process is called enabled if at least
one of its local actions is enabled. A distributed algorithm is defined as a set of actions
of all of the processes. The speed of execution of local actions for the processes within a
distributed system might be different, which may result in uncertainty for the global state
of the whole system, when execution of the local actions of processes influence each other.
This occurs when one process has more than one enabled actions which lead it to different
states. Therefore, scheduling the actions made by the processes influences their future
states. We use the interleaving model to deal with this complication. In this model, only
one action can happen at a specific time, which is called an atomic step or a computation
step. It can be a send or receive for a message passing system or a write or read for the
shared memory one. We observe that a system allows its processes to execute their local
algorithms simultaneously; however, there is no effect of one of these parallel actions on
the others. Thus, enabled actions are allowed to be executed simultaneously if they have
no effect on each other. From now on, we use may the term step instead of action.
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x = 0 −→ print (‘‘safe’’)
x = 1 −→ x := 0
x = 2 −→ x := 1
x = 3 −→ x := 2
x = 3 −→ x := 1
x = 3 −→ x := 0

Figure 2.1: A set of guarded commands.

Definition 9 (Computation) A computation or execution of a distributed protocol π is
a maximal sequence of its states in which every two consecutive states are represented by
an edge in the graph representing the distributed system. Maximality means either it is
infinite or it reaches a state where no further action is enabled. The set of all executions
on π starting from any initial state is denoted by Σπ.

Example. We consider this example for the sake of explaining the technical concepts.
Assume a simple distributed system consisting of only one process. This process has the
variable x which ranges over the domain {0, 1, 2, 3}. The actions are defined in Figure 2.1.
If we assume x = 3 as the initial state, 3210 is a computation for this distributed system,
then it prints out safe. This sequence is maximal since there are no further enabled actions.
Moreover, Σπ = {30, 310, 3210}.

2.2.1 Daemon or Scheduler

The asynchrony of computations is managed by a daemon or a scheduler [56]. A daemon is
a predicate on the computations of distributed algorithms for making them possible. More
formally, given a distributed system g and distributed algorithm π on it, a daemon d is a
predicate that associates to each π a subset of computations of π.

The schedulers are classified based on different measures [56]:

• Fairness

– An unfair daemon can schedule any set of enabled processes for execution. It
is called unfair since there is a possibility that an enabled process is never
scheduled for execution.

– A weak fair daemon guarantees that an enabled process eventually will be sched-
uled for execution.
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– A daemon is strongly fair if any process that is enabled infinitely often is even-
tually scheduled for execution.

– A daemon is Gouda fair if from any state that appears infinitely often in an
execution, every possible transition is eventually executed.

• Boundedness
A k-bounded daemon guarantees no process can be scheduled more than k times
between the scheduling of any two other processes.

• Enabledness
A k-enabledness process is a particular process that cannot be enabled more than k
times before being executed.

Different types of schedulers may result in different results. In order to incorporate the
impact of the scheduler on our results, we can generate a Markov chain and consider an
order for actions based on different schedulers. Also, note that a daemon can be proba-
bilistic in the way that it assigns a non-uniform probability distribution over the possible
executions, e.g., considering higher priorities for those executions that take the system to
recovery paths. In Section 3.1.5, we explain how non-uniform probability distribution can
influence the performance of a self-stabilizing algorithm.

2.3 Probabilistic Model Checking

To reason about the general behavior of a distributed system, we use model checking
methods [57]. Model checking focuses on a logical view of the state space and the set of
transitions in the system. However, before going through the technical definition of model
checking, we define formal methods.

Definition 10 (Formal Methods) Formal methods are techniques of employing math-
ematics for the sake of reasoning about complex systems.

The goal of formal methods is to prove the correctness of these systems formally by mathe-
matical tools. Thus, they are considered as a significant tool for verifying and guaranteeing
the correct behavior in these systems.

Definition 11 (Model Checking) Given a certain property and a model of a system,
model checking checks all the possible states in the system to see whether that property
holds for the system.
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A general term in probability theory which will be used in this thesis is probability
distribution. The probability distribution can be defined for both discrete and continuous
variables. Since we are mainly concerned with discrete variables here, we just define the
probability distribution for discrete variables.

Definition 12 (Probability Distribution for a Discrete Variable) Let X be a vari-
able that can take values {x1, x2, . . . , xn}. The probability that X can take a specific value
xi is denoted by pi. We note that the probability is denoted by P, thus for instance, the
probability that X = i is indicated by P[X = i]. We call {pi | 1 ≤ i ≤ n} the probability
distribution for X if it satisfies the following conditions:

• The probability that X takes value i is pi, that is:

P[X = i] = pi

• pi is non-negative for all 1 ≤ i ≤ n

• The sum of pi over all possible values of i is 1, that is:

i=n∑
i=1

pi = 1

P∼λ[X = i] where ∼∈ {<,≤, >,≥} and 0 ≤ λ ≤ 1 means the probability that X = i
happens holds with probability threshold λ. For instance, P≥.8[X = i] means the proba-
bility that X = i occurs is greater than or equal to .8. Another term that will be used in
this thesis regarding probability theory is the expected value.

Definition 13 (Expected Value) Let X be a variable that can take values {x1, x2, . . . , xn}
with probabilities {p1, p2, . . . , pn} respectively. Then, the expected value of X is defined as:

E[X] =
n∑
i=1

xipi (2.1)

Another probabilistic measure we will use is skewness of a graph which is measure of
the symmetry of a graph.
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Definition 14 (Skewness) The skewness of a value is a measure of asymmetry which can
be positive or negative. If we consider X as the random variable and µ to be its expected
value, and σ to be its standard deviation, the skewness denoted by γ is calculated by the
following formula:

γ = E[(
X − µ
σ

)3]

Although model checking guarantees the correctness of a system, we know that in prac-
tice no system acts completely correctly. There are many possible events that influence the
system behavior and can interfere with its normal behavior. Hence, verification of prob-
abilistic systems (which are defined as systems that have probabilistic behavior, namely
that the transitions within the system happen with some probability) is more common
in practice. Even if our system is not probabilistic, we can consider equal probability for
all the outgoing edges from each state and assume that the system is probabilistic, which
means the methods proposed here are not restricted to only probabilistic systems.

An atomic proposition is a statement that can be either true or false and cannot be
broken into smaller propositions. A transition relation is denoted by set of (s, act, s′) where
s, s′ are two states in the state space, and act is an action in the set of the actions in the
system which changes the state of the system from s to s′. A labeling function L assigns
a subset of atomic propositions AP to each state s ∈ S.

Definition 15 (Transition System) A transition system TS is a tuple (S,Act,→, I, AP, L)
where

• S is the set of all possible states

• Act is the set of actions

• →⊆ S × Act× S is a transition relation

• I ⊆ S is the set of initial states

• Set of atomic propositions AP

• L : S → 2AP is a labeling function

A TS is called finite if S,AP , and Act are finite.
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Let TS be a transition system. For s, s′ ∈ S and α ∈ Act, s α−→ s′ is another represen-
tation of action in which α indicates the guard, s is the present state, and s′ is the future
state or the statement of the action. The set of direct α-successors is defined as:

Post(s, α) = {s′ ∈ S | s α−→ s′}, Post(s) =
⋃
α∈Act

Post(s, α)

The set of α-predecessors is defined as

Pre(s, α) = {s′ ∈ S | s′ α−→ s}, P re(s) =
⋃
α∈Act

Pre(s, α)

Definition 16 (Discrete-time Markov Chain [58]) A discrete-time Markov chain (DTMC)
is a tuple D = (S, S0,P, L), where

• S is the finite state space

• S0 ⊆ S is the set of initial states

• {ps | s ∈ S} : S × S → [0, 1] is the probability distribution over the set of out-going
arcs from s ∈ S such that for all s ∈ S, we have∑

s′∈S

Ps(s, s′) = 1

which means the sum of probabilities of all outgoing arcs from s is 1.

• L : S → 2AP is a labeling function

Each discrete-time Markov chain can be considered as a transition system. S and
the set of initial states can be considered equivalent as both Markov chain and transition
system have a set of states and another set indicating their initial states. A subset of
atomic propositions AP is assigned to each state in both systems. The transition relation
→ and set of actions Act in the transition system can be considered as the P function in
the Markov chain. If all the enabled actions in the transition system happen with the same
probability, their respective arcs in the Markov chain are assigned equal probabilities. Since
each transition happens with a probability, we can model the system as a discrete-time
Markov chain, which is a transition system, with a probability distribution over outgoing
transitions from each state. From now on in this thesis, we use the term Markov chain to
refer to “Discrete-time Markov chain”.
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Figure 2.2: Markov chain of the guarded commands in Section 2.2.

We can easily see that a deterministic distributed system can be modeled as a Markov
chain such that for two states s, s′ between which there is an edge, we have P(s, s′) 6= 0.
In particular, if a distributed algorithm is not probabilistic, then it can be modeled as a
Markov chain, where the probabilities of all outgoing edges from each state are equal. Also,
we assume that every arc in the system represents a single step. The step is the same as
the action previously defined in Definition 8. Then if a process has t number of enabled
actions, the probability of execution of each of its actions is 1

t
.

A Markov chain D = (S, S0,P, L) can be represented as digraph D′ = (V (D), E(D))
such that V (D) = {vi | i ∈ S}, and each vertex is labeled by L in the same way as in the
Markov chain. The arc (s, s′) ∈ E(D) for s, s′ ∈ S if and only if P(s, s′) 6= 0.

Example. The Markov chain of the example presented in Figure 2.1 is shown in Fig-
ure 2.2. Each state is labeled by the value of variable x. Each transition is annotated by
the probability of its occurrence. In particular, the probability of outgoing transitions from
states 0, 1, and 2 are 1, as these transitions are the only outgoing transitions from these
states. All outgoing transitions from state 3 have probability 1

3
. The label of each state

is written inside it. For instance, the label of not-legitimate states from left to right are:
x = 3, x = 1, and x = 2. The label of the legitimate state is x = 0. The aim of representing
a distributed system by a Markov chain is to perform both quantitative and qualitative ver-
ification of Markov chains [36] (quantitative verification is a technique for deciding about
the quantitative properties of a system such as verifying whether the expected number
of recovery steps is lower than a specific number, while qualitative verification is mainly
concerned with verifying qualitative properties of a system such as verifying whether the
system is in a legitimate state). We are mainly concerned with verifying the expected
number of recovery steps here. The most appropriate logic for this purpose is probabilistic
computation tree logic (PCTL) [59]. This logic is especially designed for reasoning about
reliability.
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Before defining the PCTL syntax, we define some terms for clarification:

• The property ϕ = ϕ1 Uh ϕ2 means the property ϕ1 must hold for h steps until ϕ2

holds.

Definition 17 (PCTL Syntax) Formulas in PCTL [59] are inductively defined (indi-
cated by ::=) as follows:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | P∼λ(ϕ1 Uh ϕ2)

where p ∈ the set of atomic propositions AP, ∼∈ {<,≤,≥, >} is a comparison operator and
0 ≤ λ ≤ 1 is the probability threshold. The sub-formula ϕ1 Uh ϕ2 is the “until” operator [59].

Definition 18 (PCTL Semantics) Let σ = s0s1 . . . be an infinite computation, i be a
non-negative integer, and |= denote the satisfaction relation. The semantics of PCTL is
defined inductively as follows:

σ, i |= true
σ, i |= p if and only if p ∈ L(si)
σ, i |= ¬ϕ if and only if σ, i 6|= ϕ
σ, i |= ϕ1 ∨ ϕ2 if and only if (σ, i |= ϕ1) ∨ (σ, i |= ϕ2)
σ, i |= ϕ1 Uh ϕ2if and only if ∃k ≥ i : (k − i = h) ∧ (σ, k |= ϕ2) ∧

∀j : i ≤ j < k : σ, j |= ϕ1

where L(si) is the labeling function.
In addition, σ |= ϕ holds if and only if σ, 0 |= ϕ holds. Finally, for a state s we have
s |= P∼λϕ if and only if the probability of taking a path from s that satisfies ϕ is ∼ λ.

We use the usual abbreviation ♦iϕ ≡ (true U i ϕ) for “eventually” formulas. The symbol
i shows the upper bound on the number of steps until ϕ is achieved. Moreover, �ϕ ≡ ¬♦¬ϕ
is defined as the “globally” path formula which means ϕ always holds equals to saying it
is not the case that eventually ¬ϕ holds.
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Example It is straightforward to see that the Markov chain in Figure 2.2 satisfies the
following PCTL properties:

• P(x = 3)⇒ ♦3(x = 0)

• P=1♦(x = 0), which has the same meaning as P=1(1 ≤ x ≤ 3)U (x = 0) (The value
of h is arbitrary here)

Definition 19 Let D = (S, S0,P, L) be a Markov chain. A state predicate is a subset of
S.

Since each state in a Markov chain is labeled with a subset of atomic propositions,
a state predicate can be considered as a subset of S (as the set of states) which are
transformed to a PCTL formula by putting ∨ and ¬ around the atomic propositions.

2.4 Self-stabilization

A self-stabilizing system is the one that starting from any arbitrary initial state will even-
tually return to a set of states that are called “legitimate states”. We denote this set by
LS . The set of states outside LS is denoted by ¬LS . Every computation that occurs in
a self-stabilizing system should contain a state in LS . Here we focus on two types of self-
stabilizing methods. The first one is called strong self-stabilization, which guarantees that
starting from any arbitrary initial state, the system will return to LS in a finite number
of steps, whereas in the second one, called weak-stabilization, this finiteness is relaxed. In
the following, we explain these in more detail.

2.4.1 Strong Self-stabilization

Intuitively, a (strong) self-stabilizing system is one that always reaches LS within a finite
number of steps if its execution starts from any arbitrary state (called the strong conver-
gence property), and after convergence it behaves normally unless its state is perturbed by
transient faults (called the closure property). Since a self-stabilizing system can start exe-
cuting from any arbitrary state, in the context of Markov chains we assume that S = S0;
i.e., an initial state can be any state in the state space. We formally define the notion of
legitimate states using PCTL as follows.

23



The closure property ensures if the system is in a legitimate state, it remains there
thereafter.

Definition 20 (Closure) Given D = (S, S0,P, L) as a Markov chain representing a dis-
tributed algorithm, and LS as the set of legitimate states, the closure property is defined
as: For each state s ∈ LS, if there exists a state s′ such that P(s, s′) 6= 0, then s′ ∈ LS;
i.e., execution of a transition in LS results in a state in LS.

Definition 21 (Strong Convergence) Given D = (S, S0,P, L) as a Markov chain, rep-
resenting a distributed algorithm, and LS as a state predicate presenting the set of legitimate
states, the strong convergence predicate is defined as: starting from any arbitrary state, the
probability of reaching the legitimate states is always 1, which implies D has no cycles in
¬LS. This condition ensures the finiteness of the recovery path in a strong self-stabilization.

Definition 22 ((Strong) Self-stabilization) Let D = (S, S0,P, L) be a Markov chain,
representing a distributed algorithm, and LS be a state predicate. We say D is self-
stabilizing for legitimate states LS if and only if closure and convergence conditions hold
for it.

In Definition 21, the convergence property is also called recovery, and a computation
that starts from a state in ¬LS and reaches a state in LS is called a recovery path. Each
arc in the recovery path is considered a recovery step.

Example It is straightforward to see that the Markov chain in Figure 2.2 is self-stabilizing
for LS ≡ (x = 0).

From now on, by self-stabilization we mean strong self-stabilization.

2.4.2 Weak Self-stabilization

Intuitively, a weak-stabilizing (WS) system is one in which for each execution starting from
any arbitrary state, there exists an execution path that reaches the set of legitimate states,
and after convergence it behaves normally unless its state is perturbed by transient faults.
Since a WS system can start executing from any arbitrary state, in the context of Markov
chains we assume that S = S0; i.e., an initial state can be any state in the state space.
Unlike the definition of strong self-stabilization, in weak-stabilization the existence of the
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Figure 2.3: Markov chain of a weak self-stabilizing system.

recovery path suffices. Thus, a state in ¬LS may reach cycles or connected components on
its way. Following the result that a deterministic weak-stabilizing protocol can be turned
into a probabilistic self-stabilizing one, we formally define the notion of legitimate states
using PCTL as follows.

Definition 23 (Weak Convergence) Given D = (S, S0,P, L) as a Markov chain repre-
senting a distributed algorithm, and LS as a state predicate indicating the set of legitimate
states, the weak convergence property says: starting from any arbitrary state, the proba-
bility of reaching the legitimate states converges to 1, which implies that the state may run
into cycles in weak convergence.

Definition 24 (Weak-stabilization) Given D = (S, S0,P, L) as a Markov chain repre-
senting a distributed algorithm, and LS as a state predicate denoting the set of legitimate
states, we say that D is weak-stabilizing for set LS if and only if conditions closure and
weak convergence hold for it.

Similar to strong self-stabilization, in Definition 24, the convergence property is also
called recovery and a computation that starts from a state in ¬LS and reaches a state in
LS is called a recovery path.

Example It is straightforward to see that the Markov chain in Figure 2.3 is weak-
stabilizing for LS ≡ (x = 0).

From now on, by weak-stabilization we mean weak self-stabilization.

Definition 25 (Snap-stabilizing Algorithm) A snap-stabilizing algorithm ensures that
starting from an arbitrary state in the system, it always is in LS. Thus, a snap-stabilizing
algorithm is a self-stabilizing one that stabilizes in 0 steps.
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Definition 26 (Ideal-stabilizing Algorithm) An ideal-stabilizing algorithm ensures that
the system always is in its legitimate states. In other words, an algorithm is ideal-stabilizing
if all of its states are legitimate ones.

Ideal-stabilization is close to snap-stabilization except that in ideal-stabilizing, we are
not restricted to any set of properties [60]. There are several model checkers for verification
of a self-stabilizing algorithm. Since we focus on probabilistic model checking in this thesis,
we use PRISM [34] as the model checker for implementing our methods.

PRISM [34] is a probabilistic model checker, which is used for model checking the
Markov chain models as a probabilistic system. Given the Markov chain of the system D
and a property as input, PRISM can verify whether D satisfies that property or not. In
this thesis, we calculate the expected number of recovery steps using PRISM. First, we
implement the self-stabilizing algorithm in PRISM. Reward is a feature in PRISM that
can be defined by the user. We define Reward to be the number of steps. We consider
all the possible states in the system as initial states. The algorithm executes to reach a
legitimate state, and meanwhile, after each step, the Reward is updated as the number of
steps executed so far. After the system stabilizes, the value of Reward is the number of
recovery steps. We calculate the expected number of recovery steps for an initial state using
the Filter feature in PRISM. Filter considers s as the initial state which is an arbitrary
state in ¬LS and LS as the set of all legitimate states. The symbol R denotes the number
of recovery steps and avg indicates the expected number. We define our desired property
which is the expected number of recovery steps here. We write it in the format of

filter(avg,R,LS , s)

We should note that studying the impact of place of occurrence and type of faults is
a part of sensitivity analysis that is a crucial step in evaluating distributed systems in
practice.

2.5 State Space Abstraction

A transition system (TS), as a model of a hardware or a software system, can model the
behavior of the system in detail, which is a low-level implementation, or it can remove the
details from the general model and keep just the significant and necessary information.
This view is called the high-level modeling of the system.
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We assume TS is an abstract transition system and TS ′ is a more detailed system
model. TS ′ may have many and possibly an infinite number of states, whereas TS as an
abstract model has a finite number of states such that TS preserves the desired property
to be verified in TS ′. Thus, we can model check TS instead of TS ′ for deciding about
the satisfaction of the property. More formally, if TS |= α we may safely conclude that
TS ′ |= α.

Definition 27 (Bisimulation Equivalence) Let TSi = (Si, Acti,→i, Ii, APi, Li) be a
transition system for i = 1, 2. A bisimulation for (TS1, TS2) is a binary relation R ⊆
S1 × S2 such that:

• ∀s1 ∈ I1∃s2 ∈ I2 such that (s1, s2) ∈ R and vice versa.

• for all (s1, s2) ∈ R:

1. L(s1) = L(s2) where L(s) is the labeling function defined in Definition 16

2. If s′1 ∈ Post(s1) then there exists s′2 ∈ Post(s2) with (s′1, s
′
2) ∈ R and vice versa.

TS1 and TS2 are bisimulation equivalent or bisimilar, which is indicated by TS1 ∼
TS2 if there exists a bisimulation R for (TS1, TS2).

It is straightforward that a Markov chain (MC) can be considered as the transition
system of a distributed system. S is the state space set in both models. Each state in
the MC has a subset of atomic propositions AP (which implies when the system is in that
state, those atomic propositions are true), the sets Act and → can be considered to be
equivalent to P set where the probability of all the transition relations are equal, since in a
transition system, all the transitions happen with the same probability. L as the labeling
function is also the same in both. Thus, the bisimulation equivalence relation can be easily
generalized to MCs as well.

Definition 28 (PCTL Equivalence) Let TS1 and TS2 be transition systems over AP .

• We define s1 and s2 to be PCTL equivalent, indicated by s1 ≡PCTL s2 if and only if:

s1 |= φ if and only if s2 |= φ for all PCTL formulae over AP
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• TS1 and TS2 are PCTL equivalent denoted by TS1 ≡PCTL TS2 if and only if

TS1 |= φ if and only if TS2 |= φ for all PCTL formulae over AP

It can be proved that the relation R = {(s1, s2)|s1 ≡PCTL s2} is a bisimulation rela-
tion [2].

Definition 29 (Abstraction Function) Let TS = (S,Act,→, I, AP, L) be a transition
system and Ŝ be a set of abstract states. f : S → Ŝ is an abstraction function if for any
s, s′ ∈ S : f(s) = f(s′) if and only if L(s) = L(s′).

Definition 30 (Abstract Transition System) Let TS = (S,Act,→, I, AP, L) be a tran-
sition system. The symbol Ŝ indicates a set of abstract states and f : S → Ŝ is the abstract
function. The abstract transition system TSf = (Ŝ, Actf ,→f , If , APf , Lf ) is defined as

• →f is defined by the rule: f(s)
α−→f f(s′) if and only if s

α−→ s′

• If = {f(s)|s ∈ I}

• Lf (f(s)) = L(s) for all the states s ∈ S

Now, we are ready to discuss specific abstraction methods. One of them that will
be used later in this thesis is counter abstraction, which is an abstraction method for
distributed systems. We assume that every process Pi in the system executes the same
set of actions with the domain variables {0, .., l}. The abstract state space Ŝ is defined
by abstract variables k0, . . . , kl such that ki is the number of processes that are currently
in location i, 0 ≤ i ≤ l. In the case that the domain of processes is infinite, we use the
(0, 1,∞) counter abstraction, which is less precise but still good. In this method, ki ∈ [0, 2]
such that for k < 2, ki = k and otherwise ki = 2.

Definition 31 (Counter Abstraction) Consider a distributed system with a set of n
processes Pi 1 ≤ i ≤ n, each with a domain of variables 0, . . . , L. We define the counter
abstraction function α with Ŝ = {k0, . . . , kL} where ki for 1 ≤ i ≤ L is a number counting
processes that are in state i.

Since in this thesis we are concerned about the finite distributed systems, the domain
of variables should be finite.
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2.6 Problems

In this section, we define some problems for which several self-stabilizing and weak-stabilizing
algorithms have been suggested. The first problem is the propagation of information with
feedback (PIF).

Definition 32 (PIF) Given a distributed system D consisting of processes, the aim of
PIF is to propagate a message request through processes, and get back a response. After
getting the response, the processes get ready to propagate the next message.

The second problem is known as token ring problem which is also the very first problem
for which Dijkstra developed a self-stabilizing algorithm [1].

Definition 33 (Token Ring) Given a distributed system consists of processes organized
in a ring topology, and a property known as a token, the aim of token ring problem is to
achieve a set of states in which only one process has the token.

The third problem is the leader election problem which is among the attractive problems
in self-stabilization.

Definition 34 (Leader Election) Given a distributed system consisting of processes such
that each process whether knows itself as the leader, or it knows one of its neighbors as its
parent. The aim of leader election is to reach a set of states where the system has only one
leader.

Definition 35 (Mutual Exclusion) Given a distributed system that consists of a num-
ber of processes, and a property known as critical section, the aim of mutual exclusion
problem is to reach a set of states such that only one process is in the critical section.
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Chapter 3

Method, Implementation, and
Experimental Results

This chapter includes five main parts. In the first part, we introduce a general method for
performance evaluation of a self-stabilizing algorithm that is based on probabilistic model
checking. This novel method removes the flaws in existing methods and is more precise.
This is discussed more in the experimental results which are explained in Subsection 3.1.6.
Also, we will discuss some of the benefits of this approach.

In the second part, we introduce a novel method for evaluation of a weak-stabilizing
algorithm based on structural analysis of a Markov chain. We consider a Markov chain
as a digraph and will use methods based on graph theory. This method is mainly aimed
at investigating the topology of the underlying digraph of a distributed algorithm and the
impact on its performance.

In the third part, we introduce and define encoding and propose three general algorithms
for this purpose. The first algorithm works based on a feedback arc set. The structure
of the second algorithm is based on betweenness centrality. These two algorithms work
mainly for weak-stabilization. The third algorithm is a more general algorithm and works
for every type of self-stabilization. We will show how we can improve the performance of
a self-stabilizing algorithm by changing the encoding of some of its states. Then, we will
support our claims with experimental results.

In the fourth part, first we propose an approach for evaluation of the performance of
abstraction methods. The purpose of abstraction methods is to deal with the state explo-
sion problem in a distributed system. We will address this problem, and after discussing
its significance based on performance evaluation measurements, we propose an abstraction
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method on the state space of a distributed algorithm that is aimed to preserve the expected
number of recovery steps. This abstraction method is exclusively designed for verification
of reachability properties (which is mainly verification of expected number of recovery steps
here) in distributed algorithms. Then, we will show how our algorithm works by running
some experiments and comparing the results with existing methods of abstraction.

3.1 Performance Evaluation of Self-stabilizing Using

Probabilistic Model Checking

As we discussed in Chapter 1, there are several shortcomings in the existing methods for
performance evaluation of a self-stabilizing algorithm. Hence, we propose a new approach
that works based on computing the average case performance in terms of the expected
number of recovery steps for all the states outside LS .

3.1.1 Sketch of Our Approach

To obtain the expected number of recovery steps, we make use of probabilistic model check-
ing methods to verify the expected number of recovery steps. More precisely, our proposed
algorithm consists of the following steps:

1. For each state outside LS , we compute the probability of its reaching a state in LS .

2. For each state outside LS , we compute the expected number of recovery steps to a
state in the set LS .

3. We calculate the expected number of recovery steps for all states outside LS .

We can clearly see that our result indicates how fast a self-stabilizing algorithm recovers.
Furthermore, since we are using a model checking method and explore all the possible
states, this method is a more fair measure for evaluation of an algorithm’s performance
than conventional methods. Hereafter, we will describe our method in a more formal and
detailed manner.
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3.1.2 Formal Description

Assume D = (S, S0,P, L) is a Markov chain of a distributed system with LS as the set
of legitimate states. Let s be an arbitrary state in the set ¬LS . We should note that the
symbol⇒ means implies, or it can be expressed as if the left part of the arrow is true then
the right part of the arrow will be true. Consider the following PCTL property based on
Definition 18,

P≥p(s⇒ ♦hLS )

The property holds in D if starting from s the probability of reaching LS within h steps
is greater than or equal to p. For computing how fast the recovery is happening we should
know the probability of the truthfulness of the following PCTL expression for each state
in ¬LS .

(s⇒ ♦hLS )

which is the probability that the recovery is achieved for state s within h steps.

We consider {µσ | σ is a recovery path} to be the probability distribution on recovery
paths (which is obtained by the multiplication of the probabilities of the path’s arcs),
and R(s) to represent the length of a recovery path that starts from s. Then, we assume
σ = s0s1 . . . to be a recovery path starting from s0 and reaching LS within h steps
( σ |= ♦hLS in which x |= y means x semantically entails y). Thus, µ(σ = s0s1 . . . ) is the
probability that path σ happens. We can calculate the probability of existence of recovery
paths with length at most N from state s by the following formula:

P{R(s) ≤ N} =
N∑
h=1

{
µ(σ = s0s1 . . . ) | (s0 = s) ∧ (σ |= ♦hLS )} (3.1)

The above formula calculates the probability of recovery path of length at most N
starting from s which is obtained by summation of the probabilities of all the recovery
paths with length at most N .

Example. For the Markov chain in Figure 2.2, the probability of recovery of length at
most two from state 3 to state 0 is 1/3 + 1/3 = 2/3.

As a result, one can calculate the expected number of the recovery steps for all the
recovery paths starting from s by using the following formula.

E[R(s)] =
∞∑
h=1

{µ(σ = s0s1 . . . )× h | (s0 = s) ∧ (σ |= ♦hLS )} (3.2)
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Example. For the Markov chain shown in Figure 2.2, the expected number of recovery
steps for state 3 is

1× 1

3
+ 2× 1

3
+ 3× 1

3
= 2

We note that different from conventional methods that consider the uniform probability
distribution over states and assume all of states have the same probability of occurring,
our approach works for all scenarios. Hence, we assign probability of occurrence p(s) to
each state s ∈ ¬LS . Since we are considering our initial state to be a fault, it should be in
¬LS . Therefore, the following formula holds:

∑
s∈¬LS

p(s) = 1

The expected number of recovery steps for a self-stabilizing system D (where R(D)
denotes the number of recovery steps for it), denoted by E[R(D)], is calculated by the
following formula:

E[R(D)] =
∑

s∈¬LS

(E[R(s)]× p(s)) (3.3)

Dissimilar to conventional methods, the above formula as performance evaluator takes
into account several factors such as the probability of occurrence of each state and the
number of states in ¬LS from which the recovery is fast (or, respectively, is slow).

Example. For the Markov chain in Figure 2.2, assuming equal probability for all non-
legitimate states, the expected mean value of recovery is

1× 1

3
+ 2× 1

3
+ 2× 1

3
= 1.66

We can easily see that if faults happen with a non-uniform probability distribution,
which means the probability distribution over the states in ¬LS is non-uniform, the ex-
pected number of recovery steps can significantly change. For instance, if the fault that
reaches state 3 occurs with probability 90% and states 2 and 1 are each reached with
probability 5%, then the expected number of recovery steps is

1× 5

100
+ 2× 5

100
+ 2× 90

100
= 1.95
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To wrap up, the performance metric we introduced can be easily used for comparison
of self-stabilizing algorithm by comparing the expected number of recovery steps in the
Markov chains of the respective algorithms. The algorithm with the lower expected number
recovery steps is expected to outperform the other one. This is because the algorithm with
smaller expected number of recovery steps has faster recovery than the other algorithm. We
will justify this claim in more detail through experiments in Section 3.1.4. More formally,

Definition 36 Given D1 = (S0, S
0
1 ,P1, L1) and D2 = (S2, S

0
2 ,P2, L2) to be Markov chains

of two self-stabilizing algorithms A1 and A2 executing on same network topology, we say
that A1 outperforms A2 if and only if:

E[R(D1)] < E[R(D2)]

3.1.3 Some Benefits of Our Approach

In this subsection, we explain some of the benefits our approach provides. In addition to
the average case analysis, we try to focus on its advantages in terms of some parameters
that our approach considers.

The effect of the scheduler As explained in subsection 2.2.1, a scheduler is a predicate
that determines the set of admissible executions in each state. To take into account the
influence of a scheduler on performance analysis, we generate the Markov chain of a set of
actions for a specific scheduler. For instance, if in a state several actions are enabled, then
a distributed scheduler may potentially execute any enabled action. Such combinations
can be captured in the resulting Markov chain in a straightforward fashion. We note that
the scheduler itself can also be probabilistic.

The probability of a fault happening One of the most significant flaws in the asymp-
totic method for performance evaluation is that it assumes a uniform probability distri-
bution over the state space. In practice, faults may happen with different probabilities,
and this can have a major effect on the performance of a distributed algorithm. We note
that Equation 3.3 addresses this shortcoming of asymptotic performance evaluation. It
means that if faults that reach states with longer recovery steps are not probable, then the
algorithm is more likely to perform much better than the worst case scenario.

34



Awareness of the effect of adversaries As discussed earlier, faults that perturb the
system to states with recovery paths longer than the expected length are more severe faults.
In other words, severe faults with more recovery steps will degrade the performance of the
system, since it takes more steps for the system to recover to LS than for the case of an
average fault. Thus, if an adversary attacks a system it can cause greater damage by taking
the system to more severe faults. The benefit of our approach is since we are considering
all the possible faults to happen, we know which faults are severe.

Blindness about the network topology and communication Another benefit of
our approach is its generality in terms of topology and communication technology. The
approach we present can be applied to any distributed algorithm with no concerns about
its type of communication (be it shared memory or message passing), or network topology
(be it a ring, a tree, or an arbitrary graph). Regardless of the presentation of an algorithm,
we transform the algorithm into a Markov chain for verification. In this regard, it can be
the case that an algorithm exhibits a different performance for similar topologies with small
differences (e.g., a tree and a chain of processes). These details cannot be analyzed easily
using abstract metrics such as asymptotic computational complexity in terms of rounds,
since it does not take into account the behavior of every single state while evaluating the
whole protocol. On the contrary, our method investigates the behavior of all states, which
results in gaining a deep insight into the structure of the system.

Parametric analysis Although classic model checkers take a model as input, there have
recently been advances on parametric verification, which is defined as verifying a system
with an arbitrary number of processes. For instance, using parametric verification, one can
analyze an algorithm for arbitrary size trees. Using such methods will allow us to analyze
the performance of algorithms for more general classes of network topologies.

3.1.4 Implementation and Experimental Results

First, we present our case study on distributed PIF in rooted trees. Figure 3.1 shows
a simple execution scenario of a PIF algorithm for three processes arranged on a line.
Each process has three states: idle, request, and response (denoted {id , rq , rp}). In this
scenario, initially all processes are idle (step 1). Then, the root makes a request (step 2).
This request propagates all the way to the leaf, where a response is generated (steps 3
and 4). A process whose children are all responding also responds, except for the root,
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Figure 3.1: An execution scenario of PIF.
Algorithm 1 Snap-stabilizing algorithm for achieving PIF in rooted trees

Variable: pi ∈ {id , rq , rp} for internal processes
1: pi ∈ {id , rq} for the root processor
2: pi ∈ {id , rp} for leaf processors

Actions: {For Internal Processes}
3: Irq-action:: Sp = id ∧ SAp

= rq ∧ (∀d ∈ Dp : Sd = id)→ Sp := rq
4: Irp-action:: Sp = rq ∧ (∀d ∈ Dp : Sd = rp)→ Sp := rp
5: Iid-action:: Sp = rp ∧ (∀q ∈ Np : Sq ∈ {rp, id})→ Sp := id

Actions: {For Root Process}
6: Rrq-action:: Sp = id ∧ (∀q ∈ Dp : Sq = id)→ Sp := rq
7: Rid-action:: Sp = rq ∧ (∀q ∈ Dp : Sq = rp)→ Sp := id

Actions: {For Leaf Processes}
8: Lrp-action:: Sp = id ∧ SAp

= rq → Sp := rp
9: Lid-action:: Sp = rp ∧ SAp ∈ {rp, id} → Sp := id

which becomes idle (steps 5 and 7). A responding process becomes idle when its parent is
responding (steps 6 and 8).

We focus on three non-probabilistic self-stabilizing algorithms. These algorithms achieve
PIF given any arbitrary state. The first algorithm [61], as shown in Algorithm 1, is snap-
stabilizing with performance of o(h2) rounds, where h is the height of the rooted tree of
the underlying network. In the sequel, we refer to this algorithm as Snap1. Observe that
in the following algorithms, we indicate the ancestor of p by Ap, the descendants of p by
Dp, and the neighbors of p by Np. The variable of p is indicated by Sp, which has domain
{id , rq , rp}. The topology we are considering here is line where we use Linex refer to x
number of processes organized in a line structure together.
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Algorithm 2 Snap-stabilizing algorithm for achieving the PIF in rooted trees
Variable: pi ∈ {id, rq, rp} for internal processes
1: pi ∈ {id, rq} for the root processor
2: pi ∈ {id, rp} for leaf processors

Actions: {For Internal Processes}
3: Irq-action:: Sp = id ∧ SAp

= rq ∧ (∀d ∈ Dp : Sd = id)→ Sp := rq
4: Irp-action:: Sp = rq ∧ SAp = rq ∧ (∀d ∈ Dp : Sd = rp)→ Sp := rp
5: Iid-action:: Sp = rp ∧ (∀q ∈ Np : Sq ∈ {rp, id})→ Sp := id
6: Iid correction-action:: Sp = rq ∧ SAp

∈ {rp, id} → Sp := id

Actions: {For Root Process}
7: Rrq-action::Sp = id ∧ (∀q ∈ Np : Sq = id)→ Sp := rq
8: Rid-action::Sp = rq ∧ (∀q ∈ Np : Sq = rp)→ Sp := id

Actions: {For Leaf Processes}
9: Lrp-action::Sp = id ∧ SAp

= rq → Sp := rp
10: Lid-action:: Sp = rp ∧ SAp ∈ {rp, id} → Sp := id

In Algorithm 1, pi is a process in the system that can be the root, an internal process,
or the leaf. The topology for this algorithm can be any arbitrary tree; however, we assume
the topology is a line here. Lines 1, 2 define the variables and their domains for each
process. The next three lines define three actions for the internal processes. Line 3 defines
the action which changes the state of an internal process to request. This happens when
process is idle, the state of its ancestor is request, and the states of its descendants are
idle. This line propagates the request of the message to all the way down to the leaf.

Next, Line 4 changes the state of an internal process to response. This happens when
the state of the process is request and the descendant is in state response. This line takes
the response message all the way up to the root.

Then, Line 5 makes the state of an internal process idle again. This happens when the
state of the process is response, and the state of its neighbors is either response or idle.
This line make the system ready again for propagation of a new message.

The next lines define actions for the root and leaf processes, similar to the explanations
above.

The second algorithm [61], shown in Algorithm 2, is snap-stabilizing with performance
of o(1) rounds. This algorithm is obtained by modifying action Irp-action and adding Iid
correction-action to Algorithm 1. In the sequel, we refer to this algorithm as Snap2.

This algorithm acts quite similar to Algorithm 1, except that it has an extra correction
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Algorithm 3 Ideal-stabilizing algorithm for achieving the PIF network in rooted trees
Variable: pi ∈ {id, rq, rp} for internal processes
1: pi ∈ {id, rq} for the root processor
2: pi ∈ {id, rp} for leaf processors

Actions: {For Internal Processes}
3: Irq-action:: Sp = id ∧ SAp

= rq ∧ (∀d ∈ Dp : Sd = id)→ Sp := rq
4: Irp-action:: Sp = rq ∧ SAp = rq ∧ (∀d ∈ Dp : Sd = rp)→ Sp := rp
5: Iid1-action:: Sp ∈ {rp, rq} ∧ SAp = id→ Sp := id

Actions: {For Root Process}
6: Rrq-action::Sp = id ∧ (∀q ∈ Np : Sq = id)→ Sp := rq
7: Rid-action::Sp = rq ∧ (∀q ∈ Np : Sq = rp)→ Sp := id

Actions: {For Leaf Processes}
8: Lrp-action::Sp = id ∧ SAp

= rq → Sp := rp
9: Lid1-action:: Sp = rp ∧ SAp

= i→ Sp := id

line for making the state of an internal process idle again. Line 6 defines this action. This
line says whenever the state of an internal process is request and the state of its ancestor
is response or idle, the state of the internal process should be changed to idle. In the next
section, we will see that this correction improves the performance of the algorithm.

The third algorithm [60], shown in Algorithm3, is an ideal-stabilizing algorithm with
performance o(h2). We refer to this algorithm as Ideal.

The actions in Algorithm 3 are also similar to the previous ones, except for making the
internal process idle again. Line 5 makes the state of an internal process idle when the
state of the process is either request or response and the state of its ancestor is idle.

3.1.5 Implementation

The three aforementioned algorithms are modeled in the probabilistic model checker PRISM
as discrete-time Markov chains. We use the Reward mechanism of PRISM to record and
reason about the recovery steps from each state. Specifically, the reward “¬LS : steps +1”,
where steps is the number of recovery steps and initially steps = 0, specifies that in a com-
putation, when a state in ¬LS is reached, the recovery path has an additional step. Thus,
the expected number of recovery steps can be computed using the value of steps . PRISM
computes the expected value of steps only for a single initial state (i.e., Equation 3.2).
However, using the Filter mechanism in PRISM, we can compute the expected value of
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Figure 3.2: Expected number of recovery steps for three PIF algorithms.

steps for a set of initial states, namely, all states in ¬LS (i.e., Equation 3.3). Likewise,
using filters, one can compute the expected number of recovery steps from certain sets of
states as well. Examples include sets of states reached by certain types of faults or faults
that occur in certain processes.

3.1.6 Experimental Results

This subsection is organized in a top-down fashion. We first present our high-level results
of comparing the performance of algorithms and then describe insights obtained by detailed
analysis of the algorithms.

Expected number of recovery steps

Figure 3.2 shows the expected number of recovery steps of the three PIF algorithms for
different numbers of processes. As can be seen, for the line topology of lengths 5–10, algo-
rithm Snap2 exhibits faster recovery steps than Ideal and Snap1. However, algorithm Snap1’s
performance seems to diverge from the other two with a faster pace. This is because, in
Snap1, as the number of processes increases the number of states from which recovery is
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slow grows more rapidly than the other two algorithms. Also, observe that although Snap1

and Ideal have identical complexity O(h2), Ideal outperforms Snap1, and it does not diverge
as fast as Snap1 as compared with Snap2.

Distribution of number of recovery steps

As mentioned above, the distribution of the number of recovery steps over states determines
the overall recovery steps of an algorithm. To analyze the effect of this distribution, consider
Figure 3.3, which shows the number of states in ¬LS in terms of the number of recovery
steps distribution of PIF for Line10 which is the line topology network consisting of 10
processes given to PIF algorithms as input. The skewness value of the graph can represent
the performance of the algorithm. The positive value of skewness means the number of
recovery steps is less than the expected value for more than half of the states (i.e. the mean
is greater than the median). If the majority of states are concentrated on smaller numbers
of recovery steps, then the expected number of recovery steps decreases. Moreover, a larger
value of skewness implies better performance for the algorithm. That is, recovery for a
larger number of states is faster. As we can observe, the skewness of Snap2 is towards the
left, which causes the expected number of recovery steps to be less than that of the other
algorithms. The same interpretation can be applied for comparing Ideal and Snap1. In
particular, skewness values for Snap2, Ideal, and Snap1 are 2.26, 1.86, and 0.88, respectively.
Hence, Snap2 has the best performance for Line10.

Impact of fault probability distribution

In practice, faults occur with a non-uniform probability distribution. As described in
Equation 3.3, this probability distribution can significantly affect the performance of a
self-stabilizing algorithm. We claim that since there are states from which algorithms
Snap1 and Ideal show faster recovery than Snap2, if some faults reach a set of states with
higher probability, then the expected number of recovery steps may change significantly.
Figure 3.4 validates our claim (Region 1 refers to a state predicate in ¬LS , from which
Snap1 performs better than Snap2). As can be seen in Figure 3.11(a) (respectively, Fig-
ure 3.11(b)), there are cases where Snap2 underperforms Snap1 (respectively, Ideal). This
situation is clearer in the case of Ideal and Snap1 (see Figure 3.11(c)), i.e., there are more
cases where Snap1 outperforms Ideal, although Ideal has better performance than Snap1

when the distribution is uniform (recall Figure 3.2). We observe that the topology for
these experiments is Line8.
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Figure 3.3: Recovery steps skewness of PIF for Line10.

Impact of type of and location of faults

Figure 3.5 compares the overall expected number of recovery steps with the number of
recovery steps when certain faults with respect to type and location occur, for all three
algorithms for a line of size 12. For instance, if the state of the root process becomes rq
in ¬LS , then in all three algorithms the recovery time from these states is less than the
overall expected number of recovery steps of the algorithms. This is also the case when the
state of an intermediate (i.e., non-root and non-leaf) process becomes rp. On the other
hand, faults that change the state of intermediate processes to rq are more severe.
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Figure 3.4: Impact of fault probability distribution (Line8).
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Algorithm 4 Algorithm Dijkstra for token ring problem
Variable: xi ∈ {0, 1, 2} for each process pi

Actions: {For process p0}
1: if (x0 + 1 = x1) then
2: x0 := x0 − 1
3: end if

Actions: {For process pi, for 1 ≤ i ≤ n− 2}
4: if (xi + 1 = xi−1) then
5: xi := xi−1
6: end if
7: if (xi + 1 = xi+1) then
8: xi := xi+1

9: end if

Actions: {For process pn−1}
10: if (xn−2 = x0) AND (xn−2 + 1 6= xn−1) then
11: xn−1 := xn−2 + 1
12: end if

As another case study, we consider two self-stabilizing algorithms addressing the token
ring problem. The first algorithm, proposed by Dijkstra [1], is indicated in Algorithm 4.
We observe that in this algorithm, all the actions are considered in modulo 3.

Algorithm 4 suggests a self-stabilizing algorithm for the token ring problem on three-
state processes organized in a ring. A process is said to have the token if its state exceeds
the state of its last process by one. Since the topology is a ring, the previous process for
p0 is pn−1 and p0 is the next process for pn−1. The top process is known as pn−1, and the
bottom process is p0. Line 1 first checks whether the state of p1 exceeds the state of p0 by
one which means p1 has the token. If this is true, then the state of p0 will be reduced by
one modulo three which means p1 no longer has the token, and it passes the token either
to its next or its last process. The next action for the middle processes says if pi has the
token, make its state as the state of its last process which means it no longer has the token,
and passes it. The next action for the top process says if it does not have the token and
the process of its left and right process are the same, then give it the token.

The second algorithm is described in Algorithm 5, which gives a modification on Algo-
rithm 4 and provides a better lower bound [19].

Algorithm 5, known as algorithm BD, acts similarly to Dijkstra’s with some modifi-
cation on the actions of the algorithm. For instance, Line 2 adds an extra condition for
changing the state of the process p0. The state of the internal processes is also changed
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Algorithm 5 Algorithm BD for token ring problem
Variable: xi ∈ {0, 1, 2} for each process pi

1: Program for process p0:
2: if (x0 + 1 = x1) AND (x0 = xn−1) THEN then
3: x0 := x0 − 1
4: end if
5: Program for process pi, for 1 ≤ i ≤ n− 2:
6: if (xi + 1 = xi−1) AND (xi + 1 = xi+1) THEN then
7: xi := xi + 1
8: end if
9: Program for process pn−1:

10: if (xn−1 = x0 + 2) AND (xn−1 6= xn−2) THEN then
11: xn−1 := xn−1 + 1
12: else if (xn−1 = x0) then THEN
13: xn−1 := xn−1 + 1
14: end if

by adding an extra condition to be held. For the top process, the conditions have been
modified.

The same measurements described above have been applied to these two algorithms as
well.

Expected number of recovery steps Figure 3.6 shows the expected number of re-
covery steps of two token ring algorithms for different numbers of processes. As can be
seen, the expected number of recovery steps for the BD algorithm is below Dijkstra’s, as
is claimed [19]. Also, the algorithms seem to have exponential growth as the size of the
system increases.

Distribution of number of recovery steps To analyze the effect of this distribution,
consider Figure 3.7 which indicates the number of states in ¬LS in terms of the distribution
of the number of recovery steps over the states in a token ring of size 10. As discussed
earlier, the skewness value of a graph represents the performance of the algorithm. The
skewness for the Dijkstra algorithm is 0.71 whereas it is 0.72 for the BD algorithm. We
conclude that BD outperforms Dijkstra for this topology.

Impact of fault probability distribution As mentioned above, faults occur with a
non-uniform probability distribution. Our claim is that since there exist states from which
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Figure 3.6: Expected number of recovery steps for two token ring algorithms.

Dijkstra’s algorithm is faster than the BD algorithm, if some faults reach a set of states with
higher probability, then the expected number of recovery steps may change significantly.
Figure 3.8 validates our claim. As can be observed, in Figure 3.8 there are cases where
the Dijkstra algorithm outperforms the BD algorithm, although in general, BD has better
performance than Dijkstra.
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3.2 Structural Analysis of Weak-Stabilization

In this section, we will describe our approach for evaluating the performance of a weak-
stabilizing algorithm. This approach is exclusively designed for this set of self-stabilizing
algorithms. The definition of weak-stabilizing algorithm ensures that starting from an
arbitrary initial state, the probability of convergence to LS converges to 1, or in other
words, there exists a path from the state to LS . It means that the number of recovery
steps can be infinite in practice. This is because cycles and strongly connected components
may be reached from the states. If the same probability for every outgoing execution from a
state in ¬LS is considered, it can be proved mathematically that the recovery path will be
eventually selected [40]. However, in practice it can take a long time for the state to choose
that path. In this case, the other paths may contain strongly connected components (or
cycles) in the middle of them. As discussed in Chapter 1, by evaluating the performance
of a weak-stabilizing algorithm we should analyze the structure of its cycles. Enumeration
of all the cycles and computing their reachability together takes time exponential in the
number of components that the system contains. Thus, we will focus on two graph-theoretic
abstractions that can be approximate representatives of the existence of cycles and their
connectivity.

Strongly Connected Components (SCCs) A SCC, as defined in Chapter 2, is a
subgraph in which each two vertices are reachable from each other and which contains
at least one cycle. We will consider the number of states and transitions in a SCC. We
calculate the ratio of the number of transitions to the number of states. The higher the
ratio, the more complicated the SCC. It is straightforward that the more complicated SCC
can degrade the performance of a weak-stabilizing system. We will demonstrate this later
in Section 3.2.1.

Betweenness Centrality (BC) As defined in Definition 5, the betweenness centrality
of a vertex indicates how many times that node connects other nodes. We make use of this
concept to obtain an idea about the centrality of the states in a Markov chain. The BC
for the state s is denoted by BC(s).

We compute the number of SCCs, and then for each SCC we calculate the BC for all
the states in it. We developed a formula for evaluation of a weak-stabilizing algorithm
based on SCC and BC of its Markov chain. We expect that as the number of SCCs in the
Markov chain of an algorithm increases, it becomes more probable for the paths in it to get
longer to recover, since they may get stuck in SCCs for a while. Next, one a path enters
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a SCC, the density of a SCC can determine how long it takes for the path to escape that
SCC. The denser SCC makes the recovery path longer. Furthermore, again inside a SCC,
the BC of the nodes determines how many times the recovery path may go through more
nodes in a SCC. Thus, we expect it to have a direct impact on the number of recovery
steps. To measure the BC of a SCC, we consider it to be the average of BC of all of its
nodes. Then, we insert these values into the following formula, which is a characterization
of the performance for a weak-stabilizing algorithm in Markov chain D:

R = |Dscc| ·
∑
scc∈D

(BC(scc) · Escc
Vscc

) (3.4)

where

• Dscc denotes the set of SCCs in D all of whose states are in ¬LS .

• BC(scc) is the unweighted average BC of the states in scc.

• Vscc and Escc denote the number of states (respectively, arcs) in scc.

The last fraction in Equation 3.4 indicates the graph density of a SCC. We observe that
Equation 3.4 is an abstraction to explain the performance of a weak-stabilizing algorithm
and may fail due to outliers. For instance, Equation 3.4 may fail to give an accurate
measure of performance for the Markov chains with a small number of SCCs.

3.2.1 Implementation and Experimental Results

In this section, we describe our implementation for analyzing the performance of weak-
stabilizing algorithms. Although our approach can be applied to any weak-stabilizing
algorithm, we choose the weak-stabilizing leader election algorithm for anonymous trees [41]
(by anonymous, we mean all the processes have the same set of variables and domain) for
our study (see Algorithm 6). The state space of this algorithm includes cycles due to
computations in which a process keeps changing its parent to its neighboring processes
(i.e., in Line 2). Thus, the length of cycles in ¬LS directly depends on the number of
neighbors of processes. ∆p is the degree of process p in the graph in this algorithm.

Algorithm 6 suggests a weak-stabilizing algorithm for solving the leader election prob-
lem. The algorithm defines the variable of the process p as Par p, called the parent of p
and its domain as Neigp ∪ {⊥} which is the union of the neighbors of process p and the
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Algorithm 6 WS leader election [41] for any process p
Variable: Parp ∈ Neigp ∪ {⊥}
Macro: Childrenp = {q | q ∈ Neigp ∧ Parq = p}
Predicate: isLeader(p) ≡ (Parp = ⊥)

Actions:
1: (Parp 6= ⊥) ∧ (|Childrenp| = |Neigp|) −→ Parp := ⊥
2: (Parp 6= ⊥) ∧ [Neigp\(Childrenp ∪ {Parp}) 6= ∅] −→ Parp := The next indexed neighbor of p
3: (Parp = ⊥) ∧ (|Childrenp| < |Neigp|) −→ Parp := min≺p(Neigp\Childrenp)

symbol ⊥. Then, it defines the children of process p as q such that Par q = p. If Par p = ⊥,
process p is leader. The objective of the algorithm is to reach a state in which there is only
one leader in the whole tree. Line 1 of the algorithm says if all the neighbors of p know
p as their parent and process p is not leader, then we make it the leader by changing its
state to ⊥. Line 2 of the algorithm says if process p is not leader, and there exists some
neighbors of p which does not know p as their parents, we switch the parent of p to its next
neighbor modulo ∆p. Finally Line 3 of the algorithm says if p knows itself as the leader
and yet there are some neighbors of p which do not know p as their parent, we change the
parent of process p to its minimum indexed neighbor.

Consider the network topologies shown in Figure 3.9 and their expected number of
recovery steps obtained by the probabilistic model checker PRISM [34]. Although the
expected number of recovery steps clearly show which topology converges faster when
running Algorithm 6, we need more insightful information in order to analyze the behavior
of the algorithm. We analyze the structure of the Markov chain of Algorithm 6 as a digraph
running on each topology in Figure 3.9. We use the method of analysis of Section 3.2.

3.2.2 Analysis of WS Leader Election Algorithm

Figures 3.9(a) and 3.9(b) show the two possible topologies for a network of size 4. The
Markov chain of the topology in Figure 3.9(a) (shown in Appendix A) includes three
SCCs (Strongly Connected Components): one SCC with 3 nodes and six SCCs with 2
nodes. SCCs with 2 nodes are due to the fact that processes p1 and p2 can keep changing
their leaders. For example, considering a uniform probability distribution for all enabled
actions (probabilistic scheduler), in global state (p1,⊥, p3,⊥) (i.e., Par p0 = p1, Par p1 = ⊥,
Par p2 = p3, and Par p3 = ⊥) process p2 has process p1 as its neighbor, which is neither
its parent nor its child. Hence, p2 can execute Line 2 of Algorithm 6 and sets p1 as its
parent, where the global state becomes (p1,⊥, p1,⊥). From this state, p2 can again choose
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Figure 3.9: Different topologies for Algorithm 6.

p3 as its parent by executing the same action; hence, a cycle occurs.1 There are 3 ∗ 2 = 6
combinations of such cycles. The SCC with 3 nodes is due to the following scenario. In
state s0 = (⊥, p0, p3,⊥) since both processes p1 and p2 are not leaders, and they have
neighbors which are not their children, by executing Line 2 of Algorithm 6, the system can
reach either state s1 = (⊥, p0, p1,⊥) or state s2 = (⊥, p2, p3,⊥). Thus, there is a cycle of
length 2 between s0 and s1 and another cycle of length 2 between s0 and s2; hence, there
is a SCC of size 3 among s0, s1 and s2.

In contrast, the Markov chain of the topology in Figure 3.9(b) includes only one SCC
(due to process p1 and its three neighbors) of size 18 states and 36 transitions. Since
process p1 has three neighbors and the other processes have only one neighbor, they all
tend to choose p1 as their parent, and thus, p1 becomes the leader. This implies that this
SCC looks more sparse than the SCCs for other topologies. Moreover, since there is only
one SCC, there is no reachability of SCCs (cycle chains) together. These results make us
expect a smaller number of recovery steps here.

We note that cycles with high graph density and chains of cycles tend to increase the
expected number of recovery steps. This is because the existence of cycle chains and high-
density cycles can make the recovery path more complicated, and there would be more
paths that go through cycles and SCCs again and again. While the Markov chain of the
distributed system with topology in Figure 3.9(b) has a long cycle, it does not have a high
number of dense cycles and it does not have a chain of individual cycles. Unlike this case,
in the topology in Figure 3.9(a), the SCCs form a relatively long chain of cycles, which
causes a larger number of recovery steps. We note that because of the size of SCCs for four

1An alert reader can easily visualize the reachability graph of topologies of four processes, but we refer
the reader to the Appendix for detailed visualization of the corresponding Markov chains.
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processes, Equation 3.4 does not reflect the structure of its Markov chains properly. For
these graphs, the number of SCCs and their connectivity can be calculated easily. In fact,
we are more interested in the ability to analyze larger graphs and predict the recovery steps
for larger systems. For six processes, we focus only on the best and worst case of topologies
for the expected number of recovery steps. The star topology in Figure 3.9(c) exhibits the
best performance among all six-process topologies as we can see the expected number of
steps for it. Intuitively, this is because the network tends to quickly choose the center of
the star (i.e., process p0) as the leader. This intuition is reasonable, since the Markov chain
of the star topology has only one SCC with low graph density 3.3, betweenness centrality
272, and R = 899 (calculated by using Equation 3.4). The worst case recovery is for the
topology shown in Figure 3.9(d). Our analysis shows that this topology creates 27 SCCs
with dense cycles. In addition, some larger SCCs are highly dense with high betweenness
centrality. For this topology R = 438, 152.

To summarize, the importance of the above discussion is threefold:

• Equation 3.3 provides us with fine-grained approach to evaluate the performance of
weak-stabilizing algorithms.

• Equation 3.4 characterizes an approach to get a sense of the performance of a weak-
stabilizing algorithm.

• These equations together are valuable tools for developers of distributed and network
protocols to design more efficient weak-stabilizing algorithms.

3.3 State Encoding Employment for Improving Per-

formance

Since we are investigating all the states in the system in our method of performance
evaluation, we know the set of faults and can make the system more resilient to them.
This can be done by changing the encoding for the states presenting severe faults and
reducing the probability of their occurrence. State encoding is defined as assigning bit
patterns to states. For example, two states s and s′ can be assigned to bits 0 and 1,
respectively. Another possibility is to have bit patterns of size two and mapping 00 to
s and 01, 10, and 11 to s′. In the first case, there is a bijection between bit patterns
and abstract states. In the second case, the mapping is injective, but not surjective. The
purpose of such state encoding is threefold:
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1. To increase the proportion of LS as compared with ¬LS states by making states
appearing in ¬LS less likely to appear (compared to the default choice of a bijective
mapping) if bits can, for instance, randomly get flipped.

2. To decrease the expected number of recovery steps by making states that occur in
the executions of long recovery paths less likely to appear than those belonging to
short recovery paths’ executions.

3. In the context of weak-stabilizing algorithms, our goal is to decrease the expected
number of recovery steps by making states in ¬LS which are in cycles less likely to
appear. As a result, those states belonging to short recovery paths’ executions will
become more likely to occur.

Example. When the example shown in Figure 2.3 is considered, the expected value of
recovery steps for each state can be calculated by using Equation 3.3. Since there is a
cycle in the recovery path, the calculations become more complex. Thus, we implement
this Markov chain in PRISM and calculate the expected number of recovery steps R from
each state by using Filter. The results are:

State 1 E[R] = 2.5, State 2 E[R] = 3.5, State 3 E[R] = 3.0

The expected mean value overall is

E[R] =
1

3
× 2.5 +

1

3
× 3.5 +

1

3
× 3.0 = 3.0

.

We apply an encoding for this example to improve the overall expected number of
recovery steps for the system. The domain before encoding is {0, .., 3}. State 1 has the
lowest expected number of recovery steps. Thus, since we want to make it more probable
to occur, we map it to {1, 4, 5}. Then, we map state 3 which has the second smallest
expected number of recovery steps to {3, 6}. Finally, we map state 2 with largest expected
number of recovery steps to the same domain {2}. Thus, after applying the encoding, the
new domain is {0, 1, . . . , 6}. The probability of occurrence of the encoded state 1 is 1

2
,

while it is respectively 1
3

and 1
6

for encoded states 3 and 2. Thus, the overall expected
number of recovery steps will reduce to:

E[R] =
1

2
× 2.5 +

1

3
× 3 +

1

6
× 3.5 = 2.83
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Algorithm 7 State encoding for SS algorithms (based on feedback arc set)

Input: Set of processes {p0, . . . , pn−1} and Markov chain D = (S, S0,P, L) representing their respective
distributed system

Output: Bit pattern state encoding

1: Let G = (V,A) be the digraph, where V = {Vi | i ∈ S} and for all s, s′ ∈ S (vs, vs′) ∈ A if P(s, s′) 6= 0
2: Let rank(vs) be the length of the shortest path

from vertex vs, where s 6∈ LS , to a vertex vs′ , where s′ ∈ LS
3: A′ := FAS (G)
4: V ′ := {v | ∃u : (v, u) ∈ A′}
5: Let U1 (respectively, U2) be the set of states sorted by their rank(v) values for each v ∈ V ′

(respectively, rank(u) for each u 6∈ V ′)
6: U := U1 · U2 as the concat of U1 and U2 which is their ordered union
7: Divide U into n subsets {u0 . . . un−1} based on the range of their ranks such that in each sublist we

have equal range of ranks
8: for (i = 0 to n) do
9: Encode(ui)

10: end for

.

Our claim in this section is that the insights gained through our performance analysis
technique make it possible to design encodings that can improve the performance of an
algorithm. We note that state encoding is only an implementation technique and does
not change the behavior of the original algorithm. It is aimed to improve the performance
of the algorithm. After applying the encoding, we implement the same set of actions for
the new mapped domains. For instance process pi with variable x with domain D in the
algorithm will be changed to process pi with variable x with new domain D′ in which only
the probability of occurrence is different.

We introduce three state encoding algorithms based on insights gained through our
performance analysis.

3.3.1 Based on Feedback Arc Set

Algorithm 7 attempts to map more state bits to states that do not appear on a cycle. To
this end, the algorithm utilizes the concept of a feedback arc set (FAS). The algorithm uses
the sources of these arcs in Markov chain to generate a state bit mapping.

The algorithm takes n processes and a Markov chain D as input and generates a state
bit mapping. First, it transforms D into a directed graph (Line 1). Then it ranks all states
in ¬LS based on the length of their shortest recovery path to a state in LS (Line 2). Next,
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it attempts to find an FAS (Line 3). Since any FAS will suffice, it does not matter that the
problem of finding a minimum FAS is both NP-complete and APX-hard. Next, we sort
the vertices that are sources of arcs in the FAS in the list U1 and the rest of the vertices
in the list U2 (Line 6). The actual encoding (Line 9) occurs on n equal-ranged subsets of
the concatenation of U1 and U2 which is obtained by putting elements of U1 followed by
elements of U2 in order into the set U .

The function Encode works as follows. For each variable owned by process pi, we define
two domains for before and after encoding, denoted Di and D′i, respectively. Di can be any
finite subset of real numbers indicating local states of process pi. Initially, D′i is empty. For
each ui and value j ∈ Di, we calculate the probability that process pi takes value j. This
is calculated by dividing the number of states in which pi takes on value j by the number
of all possible states. Then, we map each of the most probable states into i + 1 states in
D′i (since we are encoding ui and states are sorted decreasingly based on their expected
number of recovery steps, as i increases in the for loop, the length of recovery becomes less,
and we want to make it more probable to occur). Subsequently, we remove the original
value from Di. For instance, the states in u0 consist of those with longest recovery paths.
Thus, we map the most probable state in them to only one value in D′i. In case that more
than one process has the most probable state, we choose one process randomly. Since the
states in u0 · · ·un−1 are sorted in terms of their shortest recovery paths’ length, we are
guaranteed that for every process i each value in Di will be mapped to at least 1 value in
D′i. Also, the most probable values in un−1, which includes the states with lowest length
of shortest recovery paths’ length, are mapped to n values in D′i.

3.3.2 Based on Betweenness Centrality

Algorithm 8 is similar to Algorithm 7 except in choosing the set of sample states. In
Algorithm 7 this set is obtained using a feedback arc set and in Algorithm 8, it is identified
based on the betweenness centrality of strongly connected components (Lines 2 and 3).
The rest of the algorithm works similarly to Algorithm 7.

3.3.3 Based on Expected Number of Recovery Steps

This algorithm works a bit differently from the two aforementioned algorithms. This
algorithm works based on layers that are defined in terms of the length of shortest recovery
paths. Each layer Li consists of the states in ¬LS with the same shortest path to a state
in LS such that L1 contains states with shortest recovery path of length 1, L2 contains
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Algorithm 8 State encoding for SS algorithms (based on BC)

Input: The set of processes {p0 . . . pn−1} and its Markov chain D = (S, S0,P, L)
Output: Bit pattern state encoding

1: Let G = (V,A) be the digraph, where V = S and (vs, vs′) ∈ A if P(s, s′) 6= 0 for all s, s′ ∈ S
2: Let SCC be the set of strongly connected components of G
3: Let U be the sorted list of CB(scc) · |scc| for each scc ∈ SCC
4: Divide U into n sub-sets {u0 . . . un−1} based on the range of CB(scc) · |scc| value
5: for (i = 1 to n) do
6: Encode(ui=1)
7: end for

states with shortest recovery path of length 2 and so on. Thus, the index of each layer
indicates the length of recovery paths for its states. In the next step, we divide the layers
into two subgroups: the first one contains those layers whose indices are less than or equal
to the overall expected number of recovery steps, and the next one contains the layers with
indices greater than the overall expected number of recovery steps. Then, for each group
we do the following:

• Find the probability of each state happening for each process.

• For the first group: Sort the processes with their respective states in decreasing order
of the above values and put them in S1.

• For the second group: Sort the processes with their respective states in increasing
order of the above values and put them in S2.

Then we construct S = S1·S2 in which S is built by concatenation of S1 and S2. Starting
from the beginning of S, we make the probabilities of the states of the corresponding
process in increasing order such that the first state appearing in the list will become the
least probable and as we continue the probability of the state will increase. Thus, the
last element will be the most probable state (for instance, state 0 for process p4). The
logic behind this algorithm is by making the states with faster recovery more probable to
happen, and making those with slower recovery less probable to occur, we can improve the
overall performance of the system since after doing so, the expected number of recovery
steps will be decreased.
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Algorithm 9 State encoding for SS algorithms (based on layers)

Input: The set of processes {p0 . . . pn−1}, each with domain {0, . . . , l} and Markov chain D = (S, S0,P, L)
representing the respective distributed system

Output: Bit pattern state encoding

1: Let G = (V,A) be the digraph of MC, where V = {vi | vi ∈ S} and (vs, vs′) ∈ A if P(s, s′) 6= 0 for all
s, s′ ∈ S

2: Let rank(vs) be the length of the shortest path
from vertex vs, where s 6∈ LS , to a vertex vs′ , where s′ ∈ LS

3: Put the nodes vs with the same shortest path in the same layer

4: Partition the layers into two groups: The layers with indices less than or equal to the expected number
of recovery steps, and the layers with states having expected number of recovery steps greater than
the overall expected value

5: For the first group, calculate the probability of each state for every process and sort the states and
related processes in decreasing order of probabilities, namely S1

6: Do the same for the second group with the difference that put the states and respective processes in
increasing order of the probabilities, namely S2

7: S := S1 · S2

8: Encode elements of S by assigning them probabilities in decreasing order such that the first element
will become the most probable one and, respectively, the last element will be the least probable

3.3.4 Implementation and Experimental Results

The first section includes the experiments and results for strong self-stabilization, and the
second part describes the experiments and results for weak-stabilizing algorithms.

Encoding Strong Self-stabilizing Algorithm

Consider a Line4 for the Snap1 algorithm. We make the following observations (summarized
in Table 3.1):

• In the case of the root process both states id or rq appear in ¬LS , but id appears
2.5 times more than rq in the root which is obtained by calculating the probabilities
of each state in PRISM. Moreover, the expected number of recovery steps when the
state of the root is id is 1.9, while the expected number of recovery steps when the
state of the root is rq is 1.5. Thus, assigning more bit patterns to rq will result in
a smaller-sized ¬LS as well as decreasing the expected number of recovery steps.
A 2-bit state mapping is the following: {00} 7→ id and {01, 10, 11} 7→ rq . E′
and E′ respectively indicate the expected number of recovery steps before and after
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encoding. This encoding of the root will result in new expected number of recovery
steps E′ = 1.62 for state id and E′ = 1.4 for state rq .

• The state of the second process can be id , rq , or rp, and all three appear in ¬LS .
However, state rq appears in six global states, while the other two appear in four
global states. Also, the expected number of recovery steps for states id and rp is
1.5, while the expected number of recovery steps for state rq is 2.2. Thus, reducing
the occurrences of state rq should decrease the expected number of recovery steps.
Two bits are necessary to encode three states, but since we want to make the state
rq to be less probable to occur, we will not map two different bit patterns to state
rq . Thus, we use a 3-bit encoding to decrease the proportion of non-legitimate states
as follows: {000} 7→ rq , {001, 010, 011} 7→ id , and {100, 101, 110, 111} 7→ rp. Note
that the choice for the state mapping of states id and rp is arbitrary.

• In the case of the third process, based on the expected number of recovery steps
and number of states shown in Table 3.1, allocating more bit patterns to state id
would be increasing the expected number of recovery steps since its expected number
of recovery steps is more than overall expected value. In contrast, allocating more
bit patterns to state rp decreases the expected number of recovery steps since its
expected number of recovery steps is less than average. Based on these observations,
we incorporate the state encoding shown in Table 3.1.

We observe that for some processes encoding makes recovery slower, but the technique
is globally very effective. To clarify this, consider the expected number of recovery steps
before and after encoding for each global state in Table 3.1. By taking into account that
each global state may be replicated, the overall expected number of recovery steps for
algorithm Snap1 before encoding is E = 2.36 steps, while after encoding it is E′ = 1.47
steps. Figure 3.10 also shows the skewness of Snap1 graph before (0.81) and after (1.56)
encoding.
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Global states E E′ # of Encoded States

(id , id , rq , id) 2.0 2.66 3
(id , id , rq , rp) 1.5 1.33 9
(id , rq , id , id) 2.62 4.19 1
(id , rq , id , rp) 2.31 5.20 3
(id , rq , rq , id) 3.25 3.20 1
(id , rq , rq , rp) 2.5 2.20 3
(id , rq , rp, id) 1.0 1 6
(id , rq , rp, rp) 1.5 1.2 18
(id , rp, rq , id) 1.5 1.99 4
(id , rp, rq , rp) 1.0 1 12
(rq , id , rq , id) 1.5 1.99 9
(rq , id , rq , rp) 1.0 1 27
(rq , rp, rq , id) 2.0 2.36 12
(rq , rp, rq , rp) 1.5 1.14 36

Table 3.1: Impact of encoding on PIF expected number of recovery steps (Line4).

3.3.5 Encoding Weak-stabilizing Algorithm

Consider Algorithm 6 with four processes with the topology shown in Figure 3.9(a), where
range {−1, 0, . . . , 3} represents {⊥, p0, p1, p2, p3}. Thus, considering the neighboring pro-
cesses in the topology, we have D0 = {−1, 1}, D1 = {−1, 0, 2}, D2 = {−1, 1, 3}, and
D3 = {−1, 2}. By applying Algorithm 7 we obtain the following subsets (see Figure A.1):

u0 = {(−1, 0,−1,−1), (−1, 0, 1,−1), (−1, 0, 3,−1),

(−1, 2,−1,−1), (−1, 2, 3,−1), (1,−1, 3,−1), (1, 0, 3,−1)}
u1 = {(−1,−1, 1,−1), (−1,−1, 3,−1), (−1, 0,−1, 2),

(−1, 0, 3, 2), (−1, 2,−1, 2), (1, 2, 3, 2)}
u2 = {(−1, 2, 1,−1), (1, 2,−1,−1), (1, 2, 1,−1), (1, 0, 1, 2), (1, 2, 1, 2)}
u3 = {(−1,−1,−1,−1), (−1,−1,−1, 2), (−1,−1, 1, 2), (−1,−1, 3, 2), (−1, 2, 1, 2),

(1,−1,−1,−1), (1,−1,−1, 2), (1,−1, 3, 2), (1, 0,−1,−1), (1, 0,−1, 2), (1, 0, 3, 2)}
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Now, for u0 we have the following (initially D′0 = D′1 = D′2 = D′3 = ∅):

P(Par p0 = −1) =
5

7
P(Par p0 = 1) =

2

7

P(Par p1 = −1) =
1

7
P(Par p1 = 0) =

4

7
P(p1 = 2) =

2

7

P(Par p2 = −1) =
2

7
P(Par p2 = 1) =

1

7
P(Par p2 = 3) =

4

7

P(Par p3 = −1) =
7

7
P(Par p3 = 2) =

0

7

The probabilities are simply calculated by counting. For instance the probability of Par p0 =
−1 is the number of states in u0 in which Par p0 = −1 divided by number of all states in u0.
The rest are calculated in the same approach. Thus, we map −1 ∈ D0 to only one value in
D′0 since it is the most probable state in the longest recovery path. Thus, we update D0 by
removing −1 and D′0 by adding −1. The application of this mapping to domain D1 · · ·D3

and D′1 · · ·D′3 is illustrated in Table 3.2. We observe that maxP indicates the state which
is the most probable one in that iteration, and D and D′ are the domain of the processes
respectively before and after encoding.
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i = 1 i = 2 i = 3 i = 4
maxP D D′ maxP D D′ maxP D D′ maxP D D′

p0 −1 {1} {−1} {1} {−1} {1} {−1} 1 ∅ {−1, 0, 1, 2}
p1 0 {−1, 2} {0} {−1, 2} {0} 2 {−1} {0, 2, 5, 6} −1 ∅ {−1, 0, 1, 2, 3, 4, 5, 6}
p2 3 {−1, 1} {3} −1 {1} {−1, 0, 3} {1} {−1, 0, 3} 1 ∅ {−1, 0, 1, 2, 3, 4}
p3 −1 {2} {−1} {2} {−1} {2} {−1} 2 ∅ {−1, 0, 1, 2, 3}

Table 3.2: Iterations of state encoding for i = 0 to 3 (Line 9 of Algorithm 7 for WS leader
election and 4 processes for the topology shown in Figure 3.9(a)).

For u1, the probabilities are the following:

P(Par p0 = 0) =
0

6
P(Par p1 = −1) =

2

6
P(Par p1 = 2) =

2

6

P(Par p2 = 1) =
1

6
P(Par p2 = 3) =

3

6
P(Par p3 = 2) =

4

6

For process p0 and p3 there is also only one value in the domain D remaining to be
mapped to D′. Thus, we will decide on their mapping when processing u2. For process
p2, we map 3 in D2 to two values {3, 4} in D′2 and update D2 by removing 3 from it. The
remainder of this iteration is summarized in Table 3.2.

For u2, we have

P(Par p0 = 1) =
4

5
P(Par p1 = −1) =

0

5
P(Par p1 = 2) =

4

5

P(Par p2 = 1) =
4

5
P(p3 = 2) =

2

5

Finally, for u3, we have

P(Par p0 = 1) =
6

11
P(Par p1 = −1) =

7

11
P(p3 = 2) =

8

11

The result of the iterations for u2 and u3 are summarized in Table 3.2. Using the
above state encoding technique reduces the expected recovery steps of the weak-stabilizing
leader election for the topology shown in Figure 3.9(a) (respectively, Figure 3.9(b)) to 1.6
(respectively, 1.7) from 2.8 (respectively, 2.6). We note that the encoded models use 26
times more space than the model before encoding. Thus, the problem is to find a trade-off
between the expected number of recovery steps and memory usage.

As mentioned in Section 3.3, Algorithm 8 is similar to Algorithm 7 except in choosing
the set of states to be encoded. Algorithm 8 works based on the betweenness centrality
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whereas Algorithm 7 is based on the shortest path from states in ¬LS to LS . Applying
Algorithm 8 reduces the expected recovery steps of WS leader election for the topology
shown in Figure 3.9(a) (respectively, Figure 3.9(b)) to 1.5 (respectively, 2.1) from 2.8
(respectively, 2.6).

3.4 State Space Abstraction

An abstraction function, as defined in Definition 29, is intended to give a less detailed yet
representative model of the system such that we can verify a desirable property in the
abstract model instead of the original one. But how can we measure the performance of an
abstraction method? In the first part of this section we propose a method for evaluation
of an abstraction function.

3.4.1 Performance Evaluation of an Abstraction Function

In general, we can say that an abstraction function can be evaluated by two main points:

• How much memory does it save for us?

One of the most significant motivations for designing an abstraction function is mem-
ory. We know that the size of the Markov chain (MC) grows exponentially in terms of
the number of processes the distributed system has. Since model checking methods
should investigate all the possible states in the system to decide about the verifica-
tion of a given property, it takes an exponential amount of computation. Thus, it
is not a good algorithm. For instance, let D be a distributed system consisting of n
processes each with domain {0, . . . l}. The number of the states in the Markov chain
modeling this system is ln. Using the counter abstraction method, the size of the
abstract function will be calculated by using the following steps:

– The counter abstraction has abstract variables k0, . . . , kl such that 0 ≤ ki ≤ n
for 0 ≤ i ≤ l.

– The number of possible states is the number of possible solutions for the follow-
ing formula since each process should be in one state 0, 1, . . . , l and there are n
processes

k0 + k1 + · · ·+ kl = n such that 0 ≤ ki ≤ n
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The number of solutions for the above equation is

(
n+ l − 1
l − 1

)
, which is of

order θ(nl) [62].

Since in the systems we are considering usually l < n, as we know by the order of
growth of functions, for large enough l, n is nl < ln. Thus, we save memory by using
the counter abstraction method.

• How representative is the abstract system?

We observe that as we remove more details of the system when the size of theD grows,
the abstract system will become less representative and the verification will become
less precise. Thus bisimilarity does not hold anymore. The counter abstraction
method is one of the existing methods that suffer from this problem. The distance
between the functions nl and ln grows as n and l get larger. Therefore, it would
be good if we could stop somewhere before this distance gets too large and have a
measurement of how much we can reduce the size of the system such that the error
of the verification is negligible. For this purpose, we define a measurement, namely
the critical ratio, which tells us how much memory saving is possible for a given
system such that the difference between the expected number of recovery steps in
the abstract model and the model before abstraction is less than 5%.

Definition 37 (Critical Ratio) Let A be the smallest possible size of an abstract
system in which the error in the expected number of recovery steps is less than or
equal to 5%, and let S be the size of the original state space. The critical ratio is
defined as

CR =
A

S

It is straightforward that different systems and abstraction algorithms may have
various values of CR. Therefore, as an evaluation for an abstraction algorithm, the
CR determines how helpful an abstraction algorithm can be for model checking a
distributed system and algorithm.

Based on these two evaluation methods for an abstraction algorithm, we propose a
new method of abstraction that always keeps the size of the abstract system within
the critical ratio and yet saves us a noticeable amount of memory.
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3.4.2 Our Method of Abstraction

The method we propose is designed to ensure verification of reachability properties. The
basic idea is that processes whose states act similarly in terms of the number of recovery
steps can be unified. However, how can we specify these processes? First, we calculate
the expected length of the shortest recovery path for every state s ∈ ¬LS by Dijkstra’s
algorithm. Then we take the floor function for these recovery steps and put the states with
the same floor of shortest recovery steps in the same layer. Thus, we have Max(Lengths
of Shortest Recovery Paths)−Min(Lengths of Shortest Recovery Paths) + 1 layers. Then,
within each layer i, we calculate the probability of each possible state for each process and
construct its probability interval which is defined as the interval between the lower and
upper bound of its probability of occurrence. If the probability interval of two processes
fall within each other’s value with an difference of less than 5% for upper and lower bound
of the intervals, we put those processes in the same group G. For instance if the probability
interval for p− 1 is [.25, .5] and the probability interval for p2 is [.2, .45], we put p1 and p2
in the same group. At the end, if at least half of the layers construct the same group of
processes, we coalesce them in the abstract system. Since this method ensures we have an
error less than 5% in unifying processes, the size of the abstract system is at most equal to
the value of CR. In the next step, we find the best way of mapping (an abstract function)
for each group of processes. If a group contains a single process, we map its state to the
same state (configuration) as that process. Otherwise, we decide on the mapped value
based on the following:

Let S be a global state in which:

• p1, . . . , pg be the processes in the same group G,

• Spi indicate the state of the process pi, and

• count(Spi) be the number of processes that currently are in state Spi in state S

.

For finding the best mapping value for group G in state S, we calculate the following
for every process pi where 1 ≤ i ≤ g

valpi = P(Spi)× count(Spi) (3.5)

The above formula works based on both the probability, and number of processes that are
in state Spi . For instance if the state is (0, 0, 0, 1) and the probability of occurrence of
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Algorithm 10 State abstraction for SS algorithms (based on E(R) for every state in ¬LS )
Input: The set of processes {p0 . . . pn−1} and Markov chain D = (S, S0,P, L) representing the respective

distributed system
Output: Abstract Markov chain D̂ = (Ŝ, Ŝ0,P, L)

1: Let G = (V,A) be the digraph, where V = {v − i | i ∈ S} and (vs, vs′) ∈ A if P(s, s′) 6= 0 for all
s, s′ ∈ S

2: Let rank(vs) be the expected length of recovery path
from vertex vs, where s 6∈ LS , to a vertex vs′ , where s′ ∈ LS

3: L := {Li | Li is a layer in G} such that layer Li consists of states with expected number of recovery
steps i

4: for (j = 1 to size of(Layers)) do
5: for (k=1 to size of(Layer j)) do
6: Calculate the lowest and upper bound of the probabilities of states of the processes
7: Construct probability interval for every Pi in layer j
8: end for
9: Put the processes with similar probability intervals in the same group

10: end for
11: C = Number of similar groups of processes in all layers
12: if (C ≥ sizeof(Layers)/2) then
13: Unify those processes in D̂
14: end if
15: for (j = 1 to size of(groups)) do
16: Calculate val − i for each process pi in group j
17: Extract p−max and map group j to process pmax

18: end for

each state for each process is .25, we map it to 0. However, when we have a state such as
(0, 0, 1, 1) where counting the state does not help to verify the state it should be mapped
to, the probability determines how to map this state. For instance if the probability if 1
has the probability of occurrence .6 and 0 happens with probability .4, we map it to 1.

We map the state of the processes in G for state S to Spmax where Spmax is the state
of a process that has the maximum value of valpi . The remaining processes will hold their
original value for state.

Algorithm 10 takes the Markov chain of a distributed system as input and gives the
abstract Markov chain as the output. Line 2 defines the rank for each vertex such that
rank(v) is the expected length of the recovery path from that vertex. Then, Line 3 defines
layers as states with the same rank. For instance, Li contains all the vertices whose rank is i.
Then for each layer, Line 6 constructs the Max and Min of the probabilities (respectively puj
and plj) of each state for all the processes in that layer. Then we construct the probability
interval for that process as [plj, puj]. Then in layer j, we put the processes with the same
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probability intervals (with negligible error of 5%) in the same temporary groups. Then
in Line 11 we count the similar temporary groups, and if the number of similar groups is
larger than half of the number of layers, we put the processes in one final group. Then,
in Line 17, we map the state of final grouped processes to the appropriate value based on
vali defined in Equation 3.5.

3.4.3 Implementation and Experimental Results

In this section the experiments for the abstraction have been executed for the PIF network.
We will explain the implementation and description of each in separate sections.

Implementation and Experiments on PIF Tree Networks

Implementation As described in Section 3.1.4, we implement the PIF protocols for
several sizes of model in PRISM and then calculated the expected length of the recovery
path by a step-based reward. We implemented both counter abstraction and our method
of abstraction described in Algorithm 10 in the package igraph for Python and Scilab.

Experiments First, we calculate the critical ratio for counter abstraction for algorithms
Snap1, Snap2, and Ideal. Figure 3.11 shows visualization of the CR. In Figure 3.11(a), we see
how the expected recovery time (expected number of recovery steps) grows as the size of the
system increases for the abstract and the original system (the system before abstraction).
We can see that the difference between the abstract model and the original one increases
as the system gets larger. When the difference between these two gets larger than 5%,
the abstract model is no longer representative of the original system. Figure 3.11(b), and
Figure 3.11(c) have the same interpretation.

Then, we implemented the counter abstraction method for the three algorithms Ideal,
Snap1, and Snap2 and calculated the critical ratio as defined in Definition 37. Then, for
different sizes of PIF models, we conducted experiments for both counter and our method
of abstraction. The results are shown in Table 3.3.

As we can observe in Table 3.3, as the size of the model increases, our method has much
less error than counter abstraction, since its prediction value of the expected recovery steps
is relatively closer to the original value. On average, for the experiments we have done the
average error of our method is 4% whereas it is 16% for the counter abstraction method.
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(a) Critical ratio for Ideal = 0.07

 2

 4

 6

 8

 10

 12

 14

 16

 18

 5  6  7  8  9  10

E
x
p

e
c
te

d
 R

e
c
o

v
e

ry
 T

im
e

Line length

Original
Abstracted

(b) Critical ratio for Snap1 = 0.4
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(c) Critical ratio for Snap2 = 0.09

Figure 3.11: Critical ratio for Id, Snap1, Snap2 on PIF network.

Model Size Original value of E(R) Counter Abstraction Our Method
Line7 6.03 5.8 5.8
Line8 7.56 6.63 7.59
Line9 9.25 7.4 9.6
Line10 10.9 8 9.9

Table 3.3: Experimental results for counter abstraction and our method of abstraction in
different sizes of PIF tree networks.
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Chapter 4

Conclusion and Future Work

In this thesis, we focused on performance analysis of distributed self-stabilizing and weak-
stabilizing algorithms using probabilistic model checking techniques. We argued that the
traditional methods of evaluation such as asymptotic computational complexity measure-
ments abstract away many factors that are practically significant and are worthy of notice.
Furthermore, the conventional methods cannot take into account real constraints such as
the likelihood of occurrence of faults. We proposed a new metric, namely, the expected
number of recovery steps to complete stabilization. This metric can be measured straight-
forwardly by using off-the-shelf probabilistic model checkers such as PRISM, which we
used here. We supported our claims by employing experiments on three self-stabilizing
algorithms for distributed propagation of information with feedback (PIF) in rooted trees.
Another case study we considered is two self-stabilizing protocols proposed by the Dijk-
stra [1] and BD [19] algorithms. Moreover, the insights gained by our experiments led us
to more efficient implementations using state encoding.

As for future work, there are several new research directions. For instance, one can de-
sign parametric model checking techniques to analyze the performance of algorithms when
the exact number of processes is unknown. Yet another challenging problem is to devise
probabilistic synthesis techniques that can revise an existing protocol to improve its per-
formance, providing an automatic method which can improve the algorithm performance
regardless of the number of processes it contains, or the problem it solves.

Next, we argued that evaluation of the performance of weak-stabilizing (WS) algorithms
has not been studied and reported in the literature because such algorithms may exhibit
behavior that never stabilizes. For this reason conventional metrics for evaluating the per-
formance of self-stabilization (e.g., asymptotic computation complexity) become irrelevant
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in the context of WS algorithms. We proposed an automated method for evaluating the
performance of distributed WS algorithms using a probabilistic model checking verification
method. Our method computes the expected number of recovery steps of each state of a
WS algorithm using rigorous state exploration from which the overall expected number of
recovery steps of the algorithm can be obtained. To our knowledge, this is the first attempt
to study the performance of WS systems. Since the expected number of recovery steps as
just a value is not particularly insightful, we also proposed a graph-theoretic method to
analyze the structure of the underlying graph of WS algorithms. This method is based on
identifying strongly connected components and their betweenness centrality in the reach-
ability graph of a WS algorithm. All our claims were supported by experiments on a WS
leader election algorithm [41]. Using our insights, we also introduced two algorithms that
generate state bit maps (called state encoding) that improve the expected number recovery
steps in an implementation of a WS system. These algorithms are automated; however,
they can be applied only to weak-stabilizing protocols as they are working based on the
structure of the strongly connected components that exist in the structure of the underlying
graph. Then, based on all encoding results, we proposed an automated encoding algorithm
that works for all types of self-stabilizing algorithms. This algorithm works based on the
length of the shortest path of the states to the set of legitimate states.

As for future work for this part, we are planning to design algorithms that design
WS systems with given the expected number of recovery steps as the objective. Another
interesting direction is to design parametric model checking techniques to analyze the
performance of WS algorithms when the exact number of processes is not given.

Finally, we discussed the state explosion problem that exists in all types of model
checking, including probabilistic model checking which was our main concern here. We
investigated using existing methods for solving this problem. There are several methods
ranging from bisimulation that aim to minimize the size of the system while being rep-
resentative as well as abstraction methods. We argued that there is a lack of a sufficient
measure to compare these methods. Thus, we suggested a measure called the critical ratio
for evaluating and comparing abstraction methods. The critical ratio measures how much
memory we can save such that our abstract model is still a good representative of the orig-
inal system. Based on this measurement, we proposed a novel technique of abstraction.
Our method works based on the shortest recovery paths and coalescing the states with the
same length of shortest recovery path in the same layer. Then, within each layer we unify
the processes with similar behavior. Finally, if more than half of the layers unify the same
set of processes, we construct the groups and construct the abstract system. Thus, our
method gives a partition over the processes of the distributed system. This abstraction
method is exclusively designed for the verification of quantative reachability properties. We
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employed our method of evaluation and abstraction for three self-stabilizing algorithms on
PIF over tree networks. Then, we compared the results of our method to the counter
abstraction method.

As future work for this part, we are going to design an automated approach of abstrac-
tion for an arbitrary property to be verified. Also, designing an abstraction function that
works for a system of unbounded size is desirable.
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Appendix A

WS Leader Election for Line4

Figures A.1 and A.3 show the cycles of Algorithm 6 for the topology shown in Figures 3.9(a)
and 3.9(b), respectively. The range {−1, 0, . . . , 3} represents {⊥, p0, p1, p2, p3}.

Figures A.2 and A.4 show the complete Markov chain of Algorithm 6 for the topology
shown in Figures 3.9(a) and 3.9(b), respectively. The black states are legitimate states,
grey states are non-legitimate states that participate in a cycle, and white states are non-
legitimate states that are not on a cycle.
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0 . 2 5 0 . 3 3
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Figure A.1: Cycles of the topology shown in Figure 3.9(a).
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Figure A.2: Complete Markov chain of Algorithm 6 for the topology shown in Figure 3.9(a).
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Figure A.3: All SCCs of the topology shown in Figure 3.9(b).
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Figure A.4: Complete Markov chain of Algorithm 6 for the topology shown in Figure 3.9(b).
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