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Abstract

Variable annuities (VAs) are investment products similar to mutual funds, but they
also protect policyholders against poor market performance and other risks. They have
become very popular in the past twenty years, and the guarantees they offer have grown
increasingly complex. Variable annuities, also called segregated funds in Canada, can
represent a challenge for insurers in terms of pricing, hedging and risk management. Simple
financial guarantees expose the insurer to a variety of risks, ranging from poor market
performance to changes in mortality rates and unexpected lapses.

Most guarantees included in VA contracts are financed by a fixed fee, paid regularly as
a fixed percentage of the value of the VA account. This fee structure is not ideal from a
risk management perspective since the resulting amount paid out of the fund increases as
most guarantees lose their value. In fact, when the account value increases, most financial
guarantees fall out of the money, while the fixed percentage fee rate causes the fee amount
to grow.

The fixed fee rate can also become an incentive to surrender the variable annuity con-
tract, since the policyholder pays more when the value of the guarantee is low. This
incentive deserves our attention because unexpected surrenders have been shown to be an
important component of the risk faced by insurers that sell variable annuities (see Kling,
Ruez, and Russ (2014)). For this reason, it is important that the surrender behaviour
be taken into account when developing a risk management strategy for variable annuity
contracts. However, this behaviour can be hard to model.

In this thesis, we analyse the surrender incentive caused by the fixed percentage fee
rate and explore different fee structures that reduce the incentive to optimally surrender
variable annuity contracts. We introduce a “state-dependent” fee, paid only when the VA
account value is below a certain threshold. Integral representations are presented for the
price of different guarantees under the state-dependent fee structure, and partial differential
equations are solved numerically to analyse the resulting impact on the surrender incentive.
From a theoretical point of view, we study certain conditions that eliminate the incentive
to surrender the VA contract optimally. We show that the fee structure can be modified to
design contracts whose optimal hedging strategy is simpler and robust to different surrender
behaviours.

The last part of this thesis analyzes a different problem. Group self-annuitization
schemes are similar to life annuities, but part, or all, of the investment and longevity risk
is borne by the annuitant through periodic adjustments to annuity payments. While they
may decrease the price of the annuity, these adjustments increase the volatility of the
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payment patterns, making the product risky for the annuitant. In the last chapter of this
thesis, we analyse optimal investment strategies in the presence of group self-annuitization
schemes. We show that the optimal strategies obtained by maximizing the utility of the
retiree’s consumption may not be optimal when they are analysed using different metrics.
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Introduction

Overview of the thesis

This thesis is divided into two parts. The first part contains Chapters 1 to 5, and is
concerned with the impact of different fee structures on the incentive to surrender variable
annuity contracts. The second part is Chapter 6. In this chapter, we analyse the place of
group self-annuitization schemes in the portfolio of a new retiree who seeks to maximize
the utility of his consumption, and study the resulting payment patterns.

Fee structure and the surrender incentive in variable

annuities

Introduction and motivation

Over the past 15 years, equity-linked insurance products have grown in popularity. By
offering participation in market performance while protecting the initial investment, they
are very attractive to many types of investors. While they used to be considered almost
riskless, equity-linked products eventually proved to carry their share of risk, especially
during the past financial crisis. This coincided with a rapid growth in the literature on
the subject. Equity-linked insurance products are comprised of different types of contracts
that differ in their features, but all offer financial guarantees that may expose their issuer
to different types of risk.

In this thesis, we focus on variable annuities (VAs), which are also referred to as seg-
regated funds in Canada. They are similar to mutual funds, but have a fixed term and
guaranteed minimum payments at the time of death of the policyholder or at maturity.
These guarantees, along with the tax advantages they bring, have made variable annuities
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very popular. However, they do present some challenges, in particular in terms of design,
pricing, valuation and risk management; of course, each of these is intricately related to
the others (Hardy (2003), Boyle and Hardy (2003), Palmer (2006), Coleman, Kim, Li, and
Patron (2007)).

Nowadays, the guarantees that can be added to variable annuity contracts are numerous.
The range of guaranteed minimum benefits is often referred to as “GMxBs” (Bauer, Kling,
and Russ (2008)), to cover GMDBs (death benefits), GMMBs (maturity), GMIBs (income)
and so on. The more complex guarantees evolved to distinguish the products from their
competitors and to retain the policyholders. Additional guaranteed withdrawal riders
can also be added to a typical variable annuity contract. In this thesis, we focus on
GMMBs and apply some results to GMDBs. Note that GMMBs can also be referred to
as guaranteed minimum accumulation benefits (GMABs), and the two terms will be used
interchangeably throughout this thesis. Our results could eventually be extended to other
types of guarantees.

In many cases, the financial guarantees embedded in VAs are analogous to financial
options written on stock or indices. Techniques developed to price financial options have
often been used to analyse the value of the guarantees embedded in variable annuities
and other types of equity-linked insurance products. The first to do so were Boyle and
Schwartz (1977), while Boyle and Hardy (1997) and Barbarin and Devolder (2005) compare
and combine actuarial and financial pricing methods. There are however some differences
between the way financial options and guarantees embedded in VAs are financed. In
particular, financial options sold on the market are paid for upfront, whereas VA guarantees
are usually funded via a fee paid out of the VA account, which is also the asset underlying
the financial guarantee. The fee is typically set as a fixed percentage of the account value
and is paid regularly throughout the contract. It is similar to the management fee paid
out of a mutual fund to cover investment and other expenses. The fee rate charged on VA
accounts is usually higher than in the mutual fund case, because it also covers the different
financial guarantees.

The structure of the management fee in VAs creates a misalignment between the income
and the cost of the option. When the fund value is high, large fees are received, but the
option value is low because it has a small probability of being triggered at maturity. The
opposite happens when the fund value is low. This discrepancy represents an incentive
for the policyholder to surrender the contract when the guarantee is well out-of-the-money
(see Bauer, Kling, and Russ (2008) and Milevsky and Salisbury (2001) for example). In
fact, if the fund value is high enough that the guarantee has a very low probability of being
in-the-money at maturity, then there is little point in continuing to pay for that guarantee.
In that case, the policyholder should lapse and buy a new policy with the fund value. This
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new policy would be at-the-money for a similar cost. Although the maturity would be
extended, it may still be an optimal strategy for the policyholder (see Moenig and Bauer
(2012)).

To reduce the surrender incentive, most VA contracts include surrender charges during
at least the early part of the contract duration. The surrender charge reduces the payoff
received on surrender, so the policyholder does not receive the full value accumulated in
the account. This surrender charge is also in place to recover the high expenses related
to the sale of the VA contract. While this fee does give the policyholder an incentive to
remain in the contract, there are many situations where it is optimal to surrender, even
after taking the surrender charge into account.

Literature about the surrender option

Over the past 20 years, numerous papers have been concerned with pricing different equity-
linked insurance contracts. In particular, many authors have analysed the impact of market
assumptions on the price of equity-linked products. For example, Lin and Tan (2003) and
Gaillardetz (2008) use stochastic interest rate models to price equity-indexed annuities,
while Kling, Ruez, and Ruß (2011) study the impact of stochastic volatility on VAs. In
this thesis, since we want to focus on the effect of the fee structure on the surrender
incentive, we mostly consider a Black-Scholes market model.

The surrender problem has been treated in different ways in the literature. Nonetheless,
all agree that unexpected lapses represent a significant risk for the insurer (see Kling, Ruez,
and Russ (2014)). This is why policyholder behaviour needs to be accounted for when VA
contracts are priced. Different assumptions can be used to model lapse behaviour, ranging
from a simple deterministic lapse rates to more sophisticated models, like De Giovanni
(2010)’s rational expectation and Li and Szimayer (2014)’s limited rationality. Under most
of these assumptions, the policyholder is not able to assess the exact risk-neutral value of
the contract. In addition, exogenous factors can affect her decision.

Another approach to modeling policyholder behaviour is to assume that the policyholder
is perfectly rational and surrenders the contract as soon as it is optimal to do so from
a financial perspective. Under this assumption, the surrender option can be viewed as
an American option that can be exercised at any time before maturity (see Grosen and
Jørgensen (2000)). The value obtained for the VA contract using this assumption represents
an upper bound for its price, as it considers the worst-case scenario for the insurer. Even
if the value thus obtained is not used as the final price, it sheds light on the intrinsic value
of surrender option and on the risk it bears. Furthermore, while there are many other
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factors why policyholders lapse, Knoller, Kraut, and Schoenmaekers (2011) show that the
moneyness of the embedded guarantee plays a role in surrender decisions. This is not
dissimilar to surrendering optimally when the guarantee is out-of-the-money. They also
find that financial literacy increases sensitivity towards the moneyness.

Pricing a VA contract assuming optimal surrender strategy can be justified if the insurer
wants to cover the worst-case scenario. However, optimal surrenders are more complex to
hedge and to manage. For this reason insurers can be tempted to ignore lapse risk or to
make simplifying assumptions that do not reflect actual lapse behaviour. These flawed
assumptions can significantly reduce the efficiency of a hedging strategy. For example,
Kling, Ruez, and Russ (2014) show that hedging effectiveness can be threatened when
lapse behaviour assumptions fail to predict actual surrenders. Thus, early surrenders are
an important component of the risk faced by issuers of VA contracts.

Although most variable annuity contracts charge a constant fee as a percentage of the
account value to cover embedded guarantees, many authors assume that these benefits are
covered by the initial premium (see, for example, Grosen and Jørgensen (2002), Bacinello
(2003a), Bacinello (2003b), Siu (2005), Bacinello, Biffis, and Millossovich (2009), Bacinello,
Biffis, and Millossovich (2010), Bernard and Lemieux (2008)). However, as discussed ear-
lier, the management fee has an impact on the surrender incentive and should be considered
when the policyholder is assumed to lapse optimally. This is mentioned by Bauer, Kling,
and Russ (2008) and Milevsky and Salisbury (2001). In particular, Milevsky and Salisbury
(2001) argue that surrender charges are necessary to complete the market; they allow the
insurer to fairly price the VA contract and hedge it appropriately.

Under the rationality assumption, the surrender option embedded in a VA contract
can be analysed with tools developed for American options. A vast literature has been
developed on this topic, so we will not try to cover it all here. American options can
be priced in many different ways, each of which has its advantages and disadvantages. In
particular, Kim and Yu (1996) use no-arbitrage arguments to derive an integral form for the
value of the early exercise premium. In this thesis, we apply this technique to VA contracts
to isolate the value of the surrender option and to understand the different factors affecting
its value. This value can also be obtained through the method developed in Kim (1990).
American options can also be priced using partial differential equations (PDEs), such as
in Carr, Jarrow, and Myneni (1992). PDEs are also used in the context of equity-linked
insurance products (for example in Dai, Kuen Kwok, and Zong (2008), Chen, Vetzal, and
Forsyth (2008) and Belanger, Forsyth, and Labahn (2009)). In this thesis, we use them to
assess the surrender incentive when the integral representation cannot be obtained.
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Exploring new fee structures

Chapter 1 of this thesis presents the notation and concepts used throughout the first five
chapters of the thesis. It reviews certain notions of risk-neutral pricing, fair pricing and
optimal surrender. It also describes the VA contracts considered in this thesis.

In Chapter 2, we propose a technique to isolate the value of the surrender option in
VA contracts with different types of accumulation benefits. Relying on the no-arbitrage
arguments presented by Kim and Yu (1996), we develop an integral representation for the
value added by the possibility to surrender a VA contract early. From this representation,
it becomes obvious that optimal surrender incentives depend on the value of the fee paid
when the account value is high above the guaranteed level. In other words, decreasing
the fee paid when the maturity guarantee is out-of-the-money would reduce the surrender
incentive.

With this result in mind, we introduce a new “state-dependent” fee structure in Chap-
ter 3. Under this new setting, the fee is still paid as a constant percentage of the VA
account, but only when the value of this account is below a certain threshold. Chapter 3
explores the fair fee for the accumulation benefit with this new fee structure. Using the
appropriate change of measure and the necessary trivariate density derived in Karatzas and
Shreve (1984), we obtain an integral representation for the value of the maturity benefit.
This allows us to perform different sensitivities on the price of the contract, and to do a
preliminary analysis of the surrender incentive.

Chapter 4 studies the effect of the state-dependent fee on the surrender incentive. Since
the problem now includes optimal surrenders, it is no longer possible to obtain an analytic
formula for the value of the contract. Instead, the price is obtained numerically by solving a
partial differential equation using finite difference schemes. This also allows us to visualise
the optimal surrender region for a VA with a simple GMAB at maturity. In particular,
we show that the state-dependent fee combined with early surrender charges is effective in
reducing the optimal surrender incentive. In this chapter, we also explain how to design
a marketable contract for which the optimal behaviour is to keep it until maturity. In
other words, we eliminate the surrender incentive completely, thus greatly reducing the
complexity of the strategy required to hedge the optimal lapse behaviour. By analysing
the hedging errors resulting from the application of such a strategy, we demonstrate that
it is effective at mitigating lapse risk.

In Chapter 5, we modify the fee structure and study the case where the fee is paid
as a fixed amount (instead of a fixed percentage of the account). This fee structure can
be seen as a function of the account value. In particular, when the maturity guarantee is
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out-of-the-money, the fee rate paid by the policyholder is smaller than when the guarantee
is in-the-money. We show that this fixed fee affects the shape of the optimal surrender
region, also reducing the surrender incentive.

Optimal investment strategies at retirement in the pres-

ence of group self-annuitization schemes

While the first five chapters are concerned with a product that is typically used for pre-
retirement savings, Chapter 6 explores post-retirement investment. Group-self annuitiza-
tion schemes can be compared to life annuities with variable payments, which depend on
the investment and mortality experience of the group. They are attractive to pension plan
sponsors because they transfer investment and longevity risk to the retirees. For the same
reason, they can result in very volatile payment patterns, which is particularly risky if they
constitute the main source of income for retirees. In Chapter 6, we assume that a retiree
seeks to maximize the expected utility of his consumption by investing in one or more of
the following:

• A risk-free bank account

• A balanced fund

• A fixed life annuity

• A self-annuitization scheme.

Our results show that fixed life annuities still have a place in a retiree’s portfolio, even when
their price includes a margin for investment and longevity risk. Using a different metric,
we also show that utility maximization does not necessarily yield the most appropriate
investment strategies for retirees.
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Chapter 1

Notation and setting

In this chapter, we introduce the market model used in the next four chapters. We also
review some notions of financial and actuarial mathematics and define the main concepts
discussed throughout this thesis.

1.1 Market model

We consider a variable annuity contract with maturity T and assume that its account
tracks the value of an index {St}06t6T with real-world (P-measure) dynamics

dSt = St
(
µdt+ σdW P

t

)
,

where W P
t is a P-Brownian motion. We work on a filtered probability space (Ω,FT ,F,P),

where Ft = σ({W P
s }06s6t) is the filtration induced by the Brownian motion, and F =

{Ft}06t6T .

For 0 6 t 6 T , we let Ft be the value of the VA account at time t and denote by Ct
the total fees paid between times 0 and t. We assume that the fee paid at time t can be
function of time and of the account value, so its dynamics are given by

dCt = Ftc(t, Ft)dt,

where C0 = 0 and c(t, Ft) represents the fee rate. Since the management fee is paid out of
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the VA account, the process {Ft}06t6T follows

dFt =
Ft
St
dSt − dCt

= Ft
(
(µ− c(t, Ft))dt+ σdW P

t

)
.

The different fee structures used in this thesis are as follows:

• In Chapter 2, we assume that the fee is paid continuously out of the fund at a rate
c, so c(t, Ft) = c.

• In Chapter 3 and 4, we consider a fee that is paid only when the account value is
below a level β. In this case, c(t, Ft) = c1{Ft<β}, where 1A is the indicator function
of the set A.

• In Chapter 5, we explore a fee set as the sum of a deterministic amount pt at time t
and a fixed percentage c of the VA account Ft. Thus, c(t, Ft) = c+ pt

Ft
.

Throughout this thesis, we consider that the assumptions of the Black-Scholes model
(see Black and Scholes (1973)) hold. In particular, as demonstrated by Harrison and
Pliska (1981), this means that there exists an unique equivalent risk-neutral measure Q
under which discounted price processes are martingales. Under this measure, the dynamics
of the VA account are given by

dFt = Ft
(
(r − c(t, Ft))dt+ σdWQ

t

)
,

where WQ
t is a Q-Brownian motion. In the subsequent chapters, to simplify the notation,

we will drop the superscript indicating under which measure the Brownian motion is defined
whenever the context is clear.

1.2 Variable annuity contracts

1.2.1 Maturity benefit

In this thesis, we focus on a policy with a simple guarantee effective at maturity T . The
payoff of the contract is the maximum between a pre-determined amount G and φ(T, F•) a
function which may depend on the entire path of the fund value. In Chapter 2, we discuss
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payoffs that can be path-dependent. In particular, F• can be the average of the fund value
over time. In the subsequent chapters, we restrict ourselves to the case φ(T, F•) = FT .
In all cases, the payoff of the VA at maturity is thus max(G, φ(T, F•)). We typically
express the pre-determined amount G as the initial premium P = F0 rolled-up to T at a
conservative rate g < r, so that G = F0e

gT .

We denote the value of the maturity benefit at time t by U(t, Ft) and define it as the
risk-neutral expectation of the payoff discounted from T to t:

U(t, Ft) = EQ
[
e−r(T−t) max(G, φ(T, F•))

]
.

1.2.2 Optimal surrender

In Chapter 3, we focus on pricing the maturity benefit only. However, in the other chapters,
we also consider the value added by the possibility of surrendering the contract before its
maturity. This requires us to define the concept of optimal surrender and optimal surrender
region, which is done here. These concepts, which will be reviewed in the next few chapters,
are analogous to the ones used in the literature on American options (Wu and Fu (2003),
for example).

We denote the price of the VA contract by V (t, Ft). If this contract is surrendered at
time t ∈ [0, T ), the policyholder receives

(1− κt)φ(t, F•),

where κt ∈ [0, 1) is the surrender charge at t and φ(t, ·) is a function of the fund value or of
its path to time t. Further assumptions will be made on the form of the surrender charge
in the next chapters.

We also let τ be a stopping time with respect to Ft and denote by Tt the set of all
stopping times τ greater than t and bounded by T . Denote the continuation value of the
VA contract at time t by V ∗(t, Ft) and define it by

V ∗(t, x) = sup
τ∈Tt

E
[
e−r(τ−t)ψ(τ, F•)|Ft = x

]
,

where ψ(τ, F•) denotes the benefit received if the contract is surrendered or expires at τ .
That is,

ψ(t, x) =

{
(1− κt)x, if 0 6 t < T

max(x,G), if t = T.
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Heuristically, the continuation value is the discounted maximum value that the policyholder
can expect to receive if she holds the contract at least one instant more. For each time
t ∈ (0, T ), we can define the optimal surrender region Rt as

Rt = {Ft : V ∗(t, Ft) 6 ψ(t, F•)} . (1.1)

We assume that the contract is surrendered as soon as the account value enters the optimal
surrender region. Finally, the price of the contract is equal to the continuation value in the
optimal surrender region. On the boundary of this region, the policyholder is indifferent
between the continuation value V ∗(t, Ft) and the surrender value ψ(t, Ft). Outside of this
region, it is simply equal to the benefit received on surrender. Thus, for t ∈ [0, T ), we have

V (t, Ft) =

{
(1− κt)φ(τ, F•), if Ft ∈ Rt,

V ∗(t, Ft), otherwise.

1.2.3 Fair fee

In Chapters 2 to 5, we are concerned with pricing VA contracts under different assumptions
and fee structures. Here, we will consider that the fair fee rate is the smallest rate for which
the initial premium is equal to the risk-neutral expectation of the VA payoff. Denoting the
fair fee rate by c∗, it is the smallest rate that satisfies

P = F0 = V (c∗)(0, F0), (1.2)

where the superscript c∗ represents the dependence of the value of the policy on the fee rate.
We will usually drop this superscript, unless the fee rate used is not clear from the context.
Note that Equation (1.2) also sheds light on another assumption used throughout this
thesis — the initial premium P is equal to the initial fund value F0. In other words, there
are no upfront fees paid by the policyholder when buying the contract; the entire premium
is deposited in the account. Unless otherwise stated, we consider that the policyholder
does not make further deposits in the VA account.

1.3 Other assumptions

Throughout this thesis, we mostly consider VA contracts assuming that the policyholder is
still alive at maturity. However, most policies offer additional guarantees if she passes away
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before maturity of the contract, and the maturity benefit is only paid if the policyholder is
alive. For this reason, insurers need to account for mortality risk when pricing VAs. This
is particularly true when insurers offer income guarantees, which can be valid as long as
the policyholder is alive. In that case, longevity risk becomes an important part of the risk
faced by the insurer, and modelling mortality improvements accurately is crucial. However,
since our goal is to concentrate on the surrender incentive for products with fixed maturity,
and because we want to isolate this incentive, we believe that our simplifying assumption
is justified.

Since we are using the Black-Scholes model, we assume that the risk-free rate is de-
terministic and constant. Long-term financial guarantees like the ones embedded in VA
contracts are sensitive to changes in the interest rate, so they should be priced and further
studied using a model that allows for stochastic interest rates. Future extensions of our
work should include analysis of our conclusions under stochastic interest rate models.
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Chapter 2

Optimal surrender under constant fee
structure

2.1 Introduction

This chapter is based on a paper that was written in collaboration with Dr. Carole Bernard
and Max Muehlbeyer (from Ulm University), and that was published in Insurance: Math-
ematics and Economics (see Bernard, MacKay, and Muehlbeyer (2014)).

In this chapter, we investigate the optimal surrender strategy for a variable annuity
contract with a minimum accumulation benefit, when the fee is paid as a constant per-
centage of the fund. We first consider a simple point-to-point guarantee and derive an
integral representation for the continuation value of the contract, which can be solved to
compute the optimal surrender boundary. To do so, we use no-arbitrage arguments pre-
sented, among others, by Kim and Yu (1996) and Carr, Jarrow, and Myneni (1992). This
technique, originally designed for vanilla call options, can be extended to more complex
path-dependent payoffs linked, for example, to the average fund value. Our objective is
to illustrate a general technique to compute the optimal surrender strategy for a possibly
path-dependent contract. This technique may help to understand the effect of complex
path-dependent benefits on surrender incentives and could be useful to reduce the sur-
render option value by modifying the type of benefits offered and assess the riskiness of
path-dependent benefits. The assessment of the value of the surrender option is also crucial
to developing an upper bound for the price of a VA contract.

The chapter is organized as follows. In Section 2.2 we state the setting. The optimal sur-
render policy is derived in Section 2.3. Section 2.4 extends this method to path-dependent
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payoffs. In Section 2.5 we apply these results to numerical examples and analyse the
sensitivity of the boundary with respect to a range of parameters. Section 2.6 concludes.

2.2 Setting

Consider a variable annuity contract with a guaranteed minimum accumulation benefit G
at maturity T . This accumulation benefit is computed as G = F0e

gT where g represents
the guaranteed roll-up rate. Let Ft denote the underlying accumulated fund value of the
variable annuity at time t. We assume that the insurance company charges a constant
fee c for the guarantee, which is continuously withdrawn from the accumulated fund value
Ft. Furthermore, we assume that the policyholder pays a single premium to initiate the
contract.

The insurer then invests this premium in the fund or index that was chosen by the
policyholder. We denote this underlying fund or index by St and assume that it follows
a geometric Brownian motion. Therefore, its dynamics under the risk-neutral measure Q
are given by

dSt = rStdt+ σStdWt, (2.1)

where r is the risk-free interest rate, σ > 0 the constant volatility and Wt the Brownian
motion. We denote by Ft the natural filtration associated with this Brownian motion. In
this case, the stock price at time u > t given the stock price at time t has a lognormal
distribution and is explicitly given by

Su = Ste
(r−σ

2

2
)(u−t)+σ(Wu−Wt)

In this chapter, we are only concerned with pricing the surrender option and as such, we
can treat the whole problem under the risk-neutral measure. This choice is also motivated
by the use of no-arbitrage arguments in the derivation of the expression for the surrender
option. It is based on the assumption that policyholders optimize over all possible surrender
strategies and will choose to surrender optimally from a financial perspective.

The following results (2.2) and (2.3) will be useful to derive the results of this chapter.
Since the insurance company continuously withdraws the fee from the fund value at a rate
c, we have the following relationship between Su and Fu at any time u ∈ [0, T ]

Fu = e−cuSu = Fte
(r−c−σ

2

2
)(u−t)+σ(Wu−Wt). (2.2)
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Therefore, the conditional distribution of Fu|Ft for u > t is a lognormal distribution with
log-scale parameter ln(Ft) + (r− c− σ2

2
)(u− t) and shape parameter σ2(u− t). Hence, the

risk-neutral transition density function of Fu at time u > t given Ft is given by

fFu(x|Ft) =
1√

2πσ2(u− t)x
e
−

[ln( x
Ft

)−(r−c−σ
2

2 )(u−t)]2

2σ2(u−t) , x > 0. (2.3)

Note that in this chapter we restrain ourselves to the case when the underlying follows
a geometric Brownian motion, which presents a simple closed expression for its transition
density. However, the method we present here can easily be extended to more general
market models. We discuss this point briefly in the concluding remarks.

2.2.1 Fair Fee for the European Benefit

We assume initially that the VA cannot be surrendered early. Let c be the fee charged by
the insurer between 0 and T . Note that the fund value at time T depends on this fee. We
denote by F c

T the value at T of the fund given that the fee charged during [0, T ] is equal
to c and by φ(T, F c

• ) the payoff at maturity T which may depend on the path of the fund
denoted by F c

• . If the fee c is fair (for the European benefit), we denote it by c∗ and it
satisfies

F0 = E[e−rTmax(T, φ(F c∗

• ), G)], (2.4)

where F0 is the lump sum paid initially by the policyholder net of initial expenses and
management fees. For φ(F•) = FT , and for other usual payoff functions φ(F c∗

• ), this fee
c∗ exists and is unique. To compute this fair fee, it is always possible to use Monte Carlo
techniques. However when the distribution of φ(T, F c

• ) is known, an analytical formula
may be derived, which subsequently can be solved for c∗. For example when {Xt}t∈[0,T ]

is a Markov process with XT |Xt ∼ LN (Mt,Vt) (a lognormal distribution with log-scale
parameter Mt and shape parameter Vt), then E[max(XT , G)] can be computed as

E[max(XT , G)|Ft] = eMt+
Vt
2 N

(− ln(G) +Mt + Vt√
Vt

)
+GN

( ln(G)−Mt√
Vt

)
(2.5)

We omit the proof as it is a rather standard computation. The expression (2.5) can be
used to compute the value of the maturity benefit of the VA in a Black Scholes setting
when φ(T, F c∗

• ) = F c∗
T , which is the simplest benefit: a GMAB on the terminal fund value

payable at time T (Section 2.3). We can then solve for the fair fee in (2.4). It will also be
applied when φ(T, F c∗

• ) is the geometric average of the fund value in Section 2.4.
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2.2.2 Surrender Option

We now assume that the policyholder is allowed to surrender the policy at any time
t ∈ [0, T ) for a surrender benefit equal to

(1− κt)φ(t, F c
• )

where κt is a penalty percentage charged for surrendering at time t. This is consistent with
the modeling of surrender charges in Milevsky and Salisbury (2001). A standard penalty is
typically decreasing over time. Examples of penalty functions are given in Palmer (2006).

In the absence of a surrender penalty (∀t, κt = 0), we will see in the numerical analysis
in Section 2.5 that the optimal surrender boundary is decreasing as a function of c. This
result is intuitive: if the fee c charged on the fund is high, the policyholder has a larger
incentive to surrender the contract when the guarantee is out of the money, because she is
paying more for it.1 This observation means that it may be difficult to pay for the surrender
benefit by withdrawing a higher fixed percentage of the fund. Indeed if, for example, it is
optimal to surrender when Ft > 125 when c = 1%, then by charging c = 2% it might be
optimal to surrender when Ft > 100. Increasing the fee c to take into account the surrender
benefit increases the value of the surrender option. Alternatives include the possibility to
charge for this benefit initially as a lump payment or to design a sufficiently high surrender
penalty to decrease the incentive to surrender. This point is already present in the analysis
of Milevsky and Salisbury (2001). It is clear that when κt is sufficiently high then it is
never optimal to surrender at time t.

For simplicity, throughout the chapter, we assume that κt is exponentially decreasing
and equal to 1− exp(−κ(T − t)) so that the surrender benefit is equal to

e−κ(T−t)φ(t, F c
• ), (2.6)

for κ < c. For example when the surrender benefit at time t is e−κ(T−t)F c
t , then the

inequality κ < c ensures that it can be optimal to surrender the VA for a sufficiently high
value of the fund F c

t . The continuation value of the contract at time t is indeed always
strictly greater than F c

t e
−c(T−t) because the policyholder will receive max(F c

T , G) at time
T and thus at least the fund F c

T . At time t, the value of receiving F c
T at time T is given by

E[F c
T e
−r(T−t)|Ft] = e−c(T−t)F c

t . By assuming that κ < c, we ensure that for any fixed time

1In other words at a given time, the higher c, the larger the future fees to pay before the maturity,
whereas the final benefit is decreasing in c, so the gap between the future benefit associated with the
guarantee option and the future expected fees remaining to be paid increases and thus the incentive to
surrender increases as well.
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t ∈ [0, T ), there exists a fund value high enough that the surrender benefit is worth more
than the maturity benefit so that surrendering the policy might become optimal.

2.3 Derivation of the optimal surrender boundary

This section presents the technique used to derive the optimal surrender boundary. As
mentioned earlier it is sometimes optimal for the policyholder to surrender the contract
before the maturity T because the fee c is charged as a percentage of the fund value. Thus,
assuming the fund value is sufficiently high, the fee paid for the guarantee would exceed
the actual value of the guarantee. This mismatch leads to an optimal early surrender of
the variable annuity.

Consider the variable annuity contract from Section 2.2 with a payoff of max(FT , G) at
maturity T . Here we assume that c is given and thus omit the superscript c in the notation
for the value of the fund at time t. If the contract is surrendered early, at time t < T , the
policyholder receives the accumulated fund value Ft reduced by the surrender penalty, so
that the surrender benefit is given by e−κ(T−t)Ft (particular case of (2.6)). Let Bt denote
the value of the optimal surrender boundary at time t, i.e. if the fund value crosses this
value from below, it is optimal for the policyholder to lapse the contract and receive the
amount Bt.

2

In order to derive the value of the surrender option and the optimal surrender boundary
we use the same technique as Kim and Yu (1996) and Carr, Jarrow, and Myneni (1992). We
first seek to calculate the continuation value of the VA contract, which is defined in Chapter
1. It represents the value of the policy given that it is kept at least one instant longer,
and it is the value used to define the boundaries of the optimal surrender region. Outside
of the optimal surrender region, the continuation value of the VA contract is equal to its
price. Throughout this chapter, we use “price” and “continuation” value interchangeably.

To calculate the continuation value at time t, denoted by V ∗(t, Ft), we decompose it
into a European part and a surrender option. To understand the intuition behind this
approach, consider the following trading strategy which “converts” the full contract value
into the corresponding value of the maturity benefit and the surrender option. We know
that the price of the VA at time t < T along the surrender boundary is equal to e−κ(T−t)Ft,
the value of the surrender benefit at t. This comes from the definition of the optimal

2Here we assume that the optimal surrender region is of the form {Ft > Bt}, in other words the optimal
surrender behaviour is based on a threshold strategy where optimal surrender is driven by the value of the
underlying fund crossing a barrier. This assumption is discussed and justified in Appendix 2.A.
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surrender boundary given in Chapter 1. Moreover, B0 > F0 because otherwise it would
not be optimal for the policyholder to buy the VA at time 0 for a price F0. We neglect all
transaction costs.

Assume that the policyholder has bought the VA at time t = 0. Now whenever the
fund value crosses the optimal surrender boundary from below, she exercises the option and
surrenders the contract. And whenever the fund value crosses the boundary from above,
she buys back the VA contract (given that the boundary is exactly equal to the value of
the VA by definition). Any profits resulting from this trading strategy constitute the value
added by the possibility of lapsing the contract before maturity — the surrender option.
So assume that at time t the fund value Ft crosses the optimal surrender boundary from
below. The policyholder surrenders the contract and receives e−κ(T−t)Ft = e−κ(T−t)e−ctSt
which she instantaneously invests in the stock St. However, since St is not subject to the
guarantee fee c, St outperforms Ft. Therefore, in the case that the fund value crosses
the surrender boundary from above, say at time u > t, the value of the contract on the
boundary is e−κ(T−u)Fu, the policyholder only needs to pay e−κ(T−u)Fu to re-enter, that is
e−κ(T−u)e−cuSu = e−κT e−(c−κ)uSu < e−κ(T−t)e−ctSu (because c − κ > 0). The profit from
this strategy is the value of the surrender option. A formal derivation is given in the proof
of Proposition 2.3.1 below.

Proposition 2.3.1. The benefit associated with the exercise of the surrender option be-
tween [t, t + dt] is equal to h(t) = e−κ(T−t)(c − κ)Ftdt + g(dt), where g(dt) is o(dt) as
dt→ 0.3

Proof. Assume the VA contract is surrendered at time t. Then the policyholder receives
an amount of e−κ(T−t)Ft = e−κ(T−t)e−ctSt, which is invested in the index St. In order to
buy it back at time t + dt > t, she only needs e−κ(T−(t+dt))Ft+dt = e−κT e−(c−κ)(t+dt)St+dt.
Therefore, consider the following decomposition of the amount received at time t:

e−κ(T−t)e−ctSt = e−κT e−(c−κ)(t+dt)St + e−κTSt(e
−(c−κ)t − e−(c−κ)(t+dt))

= e−κ(T−(t+dt))e−c(t+dt)St + e−κ(T−t)e−ctSt(1− e−(c−κ)dt) (2.7)

The first addend is the amount invested in the asset St that is needed to re-enter the con-
tract at time t+ dt (in other words, it is the no-arbitrage price of e−κ(T−(t+dt))e−c(t+dt)St+dt
paid at time t+ dt). The second addend is the amount that needs to be siphoned off and
is invested in the risk-free asset. This decomposition is going to be the key step in general-
izing this proof to more general benefits (see Section 2.4 for an example of path-dependent
benefit).

3A function f(x) is o(g(x)) when x→ 0 if limx→0
f(x)
g(x) = 0.
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Now we can look at what happens to this portfolio after we perform the time step from
t to t + dt. We use the first order approximation to approximate e−(c−κ)dt and erdt. Then
the right hand side of (2.7) becomes

e−κT e−(c−κ)(t+dt)St+dt + e−κT e−(c−κ)tSte
rdt(1− e−(c−κ)dt)

= e−κT e−(c−κ)(t+dt)St+dt + e−κT e−(c−κ)tSt(1 + rdt)(c− κ)dt+ o(dt)
= e−κT e−(c−κ)(t+dt)St+dt + e−κT e−(c−κ)tSt(c− κ)dt+ o(dt)
= e−κ(T−(t+dt))Ft+dt + e−κ(T−t)(c− κ)Ftdt+ o(dt)

The first part of the expression is the cost of buying back the variable annuity. Then the
policyholder is left with the benefit of surrender of h(t) := e−κ(T−t)(c−κ)Ft + g(dt), where
g(dt) is o(dt). �

Using Proposition 2.3.1 and the trading strategy explained above we are now able to
derive a pricing formula for the variable annuity contract with a surrender benefit similarly
to Kim and Yu (1996).

Theorem 1. Let V ∗(t, Ft) denote the continuation value at time t of the variable annuity
with guarantee G at maturity and a surrender benefit equal to the accumulated fund value
with some penalty κ > 0, e−κ(T−t)Ft. Then V ∗(t, Ft) can be decomposed into a corresponding
European part U(t, Ft) and a surrender option e(t, Ft)

V ∗(t, Ft) = U(t, Ft) + e(t, Ft), (2.8)

where {
U(t, Ft) = e−c(T−t)FtN

(
d1(Ft, G, T, t)

)
+ e−r(T−t)GN

(
d2(Ft, G, T, t)

)
,

e(t, Ft) = e−κT (c− κ)Fte
ct
∫ T
t
e−(c−κ)uN

(
d1(Ft, Bu, u, t)

)
du,

(2.9)

and N (x) is the standard normal distribution function with d1 and d2 defined as
d1(x, y, T, t) :=

ln(x
y

)+(r−c+σ2

2
)(T−t)

σ
√
T−t ,

d2(x, y, T, t) := σ
√
T − t− d1(x, y, T, t).

(2.10)

Proof. First we prove the formula for the European part U(t, Ft) of the VA. Since
FT |Ft ∼ LN (ln(Ft) + (r − c − σ2

2
)(T − t), σ2(T − t)), we can use (2.5) to calculate the
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European part of the VA. Define d1 and d2 as in (2.10). Then it follows that

U(t, Ft) = e−r(T−t)

[
Fte

(r−c)(T−t)N
(− ln(G) + ln(Ft) + (r − c+ σ2

2
)(T − t)

σ
√
T − t

)
+GN

( ln(G)− ln(Ft)− (r − c− σ2

2
)(T − t)

σ
√
T − t

)]
,

and we find the first part of (2.9). Secondly, we prove the formula for the surrender option
e(t, Ft). Define µ̃(x) := lnFt)+(r−c− σ2

2
)(x−t) and σ̃2(x) := σ2(x−t). From Proposition

2.3.1, the benefits on surrender amount to e−κ(T−u)(c− κ)Fudu+ g(du) for each period of
time [u, u+du] during which the account value Fu is above the optimal surrender boundary
Bu. We divide the remaining duration of the contract, T − t, into N intervals of length
du = T−t

N
and denote uk = t + k du, for k = 1, 2, . . . , N . Therefore, the surrender option

at t < T can be approximated by

N∑
k=1

e−r(uk−t)
∫ ∞
Buk

(e−κ(T−uk)(c− κ)x du+ g(du))fFuk (x|Ft)dx.

To get the desired result in continuous time, we take the limit as N → ∞ to obtain the
following integral form.

e(t, Ft) =

∫ T

t

e−r(u−t)
∫ ∞
Bu

e−κ(T−u)(c− κ)xfFu(x|Ft)dxdu

(2.3)
= (c− κ)

∫ T

t

e−κ(T−u)e−r(u−t)
∫ ∞
Bu

x
1√

2πσ2(u− t)x
e
−

[ln( x
Ft

)−(r−c−σ
2

2 )(u−t)]2

2σ2(u−t) dxdu

= (c− κ)

∫ T

t

e−κ(T−u)e−r(u−t)
∫ ∞
Bu

1√
2πσ̃2(u)

e
− [ln(x)−µ̃(u)]2

2σ̃2(u) dxdu

y=ln(x)
= (c− κ)

∫ T

t

e−κ(T−u)e−r(u−t)
∫ ∞

ln(Bu)

1√
2πσ̃2(u)

e
− [y−µ̃(u)]2

2σ̃2(u) eydydu

= (c− κ)

∫ T

t

e−κ(T−u)e−r(u−t)
∫ ∞

ln(Bu)

1√
2πσ̃2(u)

e
− [y−(µ̃(u)+σ̃2(u)]2

2σ̃2(u) eµ̃(u)+
σ̃2(u)

2︸ ︷︷ ︸
=Fte(r−c)(u−t)

dydu
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= (c− κ)Ft

∫ T

t

e−κ(T−u)e−c(u−t)
[
1−N

(
ln(Bu)− (µ̃(u) + σ̃2(u))

σ̃(u)

)]
du

= (c− κ)Ft

∫ T

t

e−κ(T−u)e−c(u−t)N
(

ln( Ft
Bu

) + (r − c+ σ2

2
)(u− t)

σ
√
u− t

)
du

= (c− κ)Ft

∫ T

t

e−κ(T−u)e−c(u−t)N
(
d1(Ft, Bu, u, t)

)
du.

The expression for the surrender option in (2.9) follows. �

Theorem 1 provides a way to calculate the price of a VA with surrender benefit. How-
ever, since the surrender option depends on the optimal surrender boundary Bt, one needs
to compute it first. In the following we derive the optimal surrender boundary condition
analogously to Kim and Yu (1996).

First, note that at maturity BT = G. We also know that along the surrender boundary
we have

V ∗(t, Bt) = e−κ(T−t)Bt.

Thus, by formula (2.8) and (2.9) we have

Bt = eκ(T−t) (U(t, Ft) + e(t, Ft))

= eκ(T−t)(e−c(T−t)Bte
κ(T−t)N (d1(Bte

κ(T−t), G, T, t)) + e−r(T−t)GN (d2(Bte
κ(T−t), G, T, t))

+ (c− κ)Bte
(c−κ)t

∫ T

t
e−(c−κ)uN

(
d1

(
Bte

κ(T−t), Bu, u, t
))

du). (2.11)

This integral equation can be used to compute the optimal surrender boundary Bt. Observe,
however, that in order to calculate Bt the optimal surrender boundary for future times must be
known. Since it holds that BT = G at expiration, we work backwards to recursively recover
the optimal surrender boundary. Because (2.11) does not have an analytic solution, numerical
integration schemes must be used. Practically this can be done by dividing the interval [0, T ] into
n equidistant subintervals 0 = t0 < t1 < ... < tn = T where times ti, i = 0, .., n, represent the
only possible early surrender times. Define g(u) := e−(c−κ)uN (d1(Bte

κ(T−t), Bu, u, t)). Then, the
integral in (2.11) is approximated by

I(k) =
T

n

k−1∑
i=1

g(tn−i), k = 1, .., n. (2.12)

Note, that at time tn−1 the early surrender premium I(1) is equal to zero because there is no
possibility for the policyholder to surrender the option in the last interval. Therefore, the premium
has to be zero.
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Proposition 2.3.2 (Derivation of the optimal surrender boundary). The following backward
procedure generates an approximation to the surrender boundary.

• Btn = BT = G.

• Recursively, for k = 1..n, compute I(k) in (2.12) to approximate the integral part of (2.11)
and solve the following equation for the only unknown Btn−k

Btn−k = e−c(T−tn−k)Btn−ke
κ(T−tn−k)N (d1(Btn−ke

κ(T−tn−k), G, T, tn−k))

+ e−r(T−tn−k)GN (d2(Btn−ke
κ(T−tn−k), G, T, tn−k)) + (c− κ)Btn−ke

(c−κ)tn−kI(k).

The method described in this section can be extended to any path-independent payoff for
which φ(F c• (T ), T ) = `(F cT , T ) for some function `(·). In Section 2.4 we illustrate how to derive
the optimal surrender boundary when φ(F c• (T ), T ) is path-dependent, that is it depends on the
path {Ft}t∈[0,T ].

2.3.1 Alternative derivation of the optimal surrender boundary

We now present a second way to derive the optimal surrender boundary. Here, we will assume
that there is no surrender charge (i.e. κ = 0), but the method still works as long as κ is such
that the optimal surrender strategy is of the threshold type. The method presented here is based
on the method used in Kim (1990) to price American calls on dividend-paying stocks. The main
idea behind the technique is to assume that the contract can only be surrendered at a finite
number of times, and to calculate the value of the contract at each of those surrender times. The
appropriate limit is then taken to retrieve the integral representation presented in Theorem 1.

Proposition 2.3.3 gives the continuation value of the contract when it can only be surrendered
at a finite number of points in time.

Proposition 2.3.3. Assume that the surrender option can only be exercised at a finite number
of points in time and denote these times by tk, k = 0, 1, ..., n − 1, n, where t0 = 0, tn = T
and tk − tk−1 = ∆t = T

n . For simplicity of notation, write Ftk = Fk and Btk = Bk, and
denote by υ(tn−m, Fn−m;Bn−m+1) the continuation value of the VA contract at time tn−m, as-
suming that it can only be surrendered at a finite number of points between 0 and T . Then,
υ(tn−m, Fn−m;Bn−m+1) is given by

υ(tn−m, Fn−m;Bn−m+1) = U(tn−m, Fn−m)

+

m−1∑
k=1

e−(m−k)r∆tE[(Fn−k − E[e−r∆tFn−k+1|Fn−k])1{Fn−k>Bn−k}|Fn−m]− h(∆t), (2.13)
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where h(∆t) is O(∆t)4, and with the optimal exercise boundary Bn−k defined implicitly and
recursively by

Bn−k = U(tn−k, Bn−k)

+
k−1∑
j=1

e−(k−j)r∆tE[(Fn−j − E[e−r∆tFn−j+1|Fn−j ])1{Fn−j>Bn−j}|Fn−k = Bn−k]− h(∆t). (2.14)

Proof. To obtain the value of the contract, we use backward induction. At maturity, the option
is automatically exercised when FT < G. Thus, we let Bn = G. We can then move back one
period and consider the price of the VA contract one period before expiry. To clarify the notation,
we write υ(tk, Fk;Bk+1) to denote the continuation value of the VA contract given the optimal
surrender boundary one period later. At time tn−1, since the surrender option cannot be exercised
between time tn−1 and T , we have

υ(tn−1, Fn−1;Bn) = E[e−r∆t max(Fn, G)|Fn−1]

= U(tn−1, Fn−1).

We denote the optimal boundary at time tn−1 by Bn−1 and define it implicitly by

Bn−1 = V ∗(tn−1, Bn−1;Bn).

This means that when the fund value at time tn−1 is above Bn−1, it is optimal to surrender the
contract.

We now move back to time tn−2 and calculate υ(tn−2, Fn−2;Bn−1) as the risk-neutral expec-
tation of the value of the contract at tn−1. We know that the surrender option will be exercised if
the fund value is greater than the optimal surrender boundary. Thus, when Fn−1 is above Bn−1,
the value of the contract at tn−1 is simply the fund value. For Fn−1 below the optimal boundary
Bn−1, the value of the contract is the value of the live contract calculated in the previous step.

4A function f(x) is O(g(x)) when x→ 0 if and only if there exist positive numbers K and δ such that
|f(x)| > K|g(x)| for |x| < δ.
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Then, we have

υ(tn−2, Fn−2, Bn−1) = E[e−r∆tυ(tn−1, Fn−1;Bn)1{Fn−1<Bn−1}|Fn−2]

+ E[er∆tFn−11{Fn−1>Bn−1}|Fn−2]

= U(tn−2, Fn−2)− E[e−r∆t1{Fn−1>Bn−1}E[er∆t max(Fn, G)|Fn−1]|Fn−2]

+ E[er∆tFn−11{Fn−1>Bn−1}|Fn−2]

= U(tn−2, Fn−2) + E[e−r∆t(Fn−1 − E[e−r∆tFn|Fn−1])1Fn−1>Bn−1 |Fn−2]

− E[e−r∆t1{Fn−1>Bn−1}E[(G− Fn)1{Fn<G}|Fn−1]|Fn−2] (2.15)

Kim (1990) shows that the last term of (2.15) is O(∆t). In fact, it is the price of a put option
issued at tn−1, with maturity T and strike price K, discounted back to time tn−2, conditional
on Fn−1 begin greater than Bn−1. We show that as ∆t goes to 0, this integral also goes to 0.
Intuitively, if the option is out-of-the-money a very short time before expiry, then its value will
be very small because the probability that it becomes in-the-money before maturity is very low.
A more rigourous proof is given in the Appendix of Kim (1990). Then, the price of the contract
at tn−1 is given by

υ(tn−2, Fn−1, Bn−1) = U(tn−2, Fn−2) + E[e−r∆t(Fn−1 − E[e−r∆tFn|Fn−1])1{Fn−1>Bn−1}|Fn−2]

+ hn−2(∆t), (2.16)

where hn−m(∆t) is a function that contains the terms of order ∆t or higher at time n−m.

To complete the induction, we show that the formula holds for a general step n − m. We
suppose that

υ(tn−m, Fn−m;Bn−m+1) = U(tn−m, Fn−m)

+

m−1∑
k=1

e−(m−k)r∆tE[(Fn−k − E[e−r∆tFn−k+1|Fn−k])1{Fn−k>Bn−k}|Fn−m] + hn−m(∆t). (2.17)

Then, the optimal exercise boundary Bn−m is defined implicitly by

Bn−m = U(tn−m, Bn−m)

+
m−1∑
k=1

e−(m−k)r∆tE[(Fn−k − E[e−r∆tFn−k+1|Fn−k])1{Fn−k>Bn−k}|Fn−m = Bn−m]

+ hn−m(∆t). (2.18)

As in the previous step, we move back one period and calculate υ(tn−m−1, Fn−m−1;Bn−m) as
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the risk-neutral expectations of the value of the live contract at tn−m. We can show that

υ(tn−m−1, Fn−m−1;Bn−m) = U(tn−m−1Fn−m−1)

+
m∑
k=1

e((m+1)−k)r∆tE[(Fn−k − E[e−r∆tFn−k+1|Fn−k])1{Fn−k>Bn−k}|Fn−m−1] + hn−m(∆t).

This step completes the proof; details can be found in Appendix 2.B. �

Proposition 2.3.3 gives us a recursive equation for the value of the live VA contract when
the surrender option can only be exercised at discrete times. The next step is to take the limit
when ∆t → 0 to obtain the integral representation presented in Theorem 1. Since the fee is

paid at a constant rate (that is, c(t, Ft) = cFt), then Fn−m+1 = Fn−me

(
r−c−σ

2

2

)
∆t+σW∆t and

E[e−r∆tFn−m+1|Fn−m] = Fn−me
−c∆t. So (2.13) from Proposition 2.3.3 becomes

υ(tn−m, Fn−m;Bn−m+1) = U(tn−m, Fn−m)

+
m−1∑
k=1

e−(m−k)r∆tE[Fn−k(1− e−c∆t)1{Fn−k>Bn−k}|Fn−m] + h(∆t). (2.19)

Now since 1− e−c∆t = c∆t+O(∆t), we can re-write υ(tn−m, Fn−m, ;Bn−m+1) as

υ(tn−m, Fn−m, ;Bn−m+1) = U(tn−m, Fn−m)

+
m−1∑
k=1

e(m−k)r∆t

∫ ∞
Bn−k

c∆tFn−kp(Fn−k, (m− k)∆t;Fn−m)dFn−k + h(∆t). (2.20)

Taking the limit as n→∞ (so that ∆t→ 0) and defining Ft = Fn−m, we obtain

υ(t, Ft;B•) = V ∗(t, Ft) (2.21)

= U(t, Ft) +

∫ T−t

0
e−r(T−t−s)

∫ ∞
B(T−t−s)

cFT−t−sp(FT−t−s, T − t;F )dFT−t−sds

= U(t, Ft) + cFe−ct
∫ T

t
Fce−cuN (d1(Ft, Bu, u, t))ds, (2.22)

where d1(x, y, T, t) is defined as in Theorem 1. Thus, we recover the result of Theorem 1 when
κ = 0. �
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2.4 Path-dependent payoff

In this section, we consider a path-dependent design for the payoff of the variable annuity. The
example that we study is based on the payoff φ(F c• ) = max(G, YT ). In other words, the policy-
holder receives the maximum of the geometric average of the fund value at time T , YT , and the
guarantee G at time T . The geometric average Yt is defined as

Yt = exp

1

t

t∫
0

lnFsds

 . (2.23)

Our goal is twofold. First we illustrate a general method to derive the optimal surrender strategy
when there are path-dependent benefits. Second, we want to understand the impact of Asian
benefits on the surrender incentive in VAs.

We need a few preliminary results. Defining the geometric average of the index as

Ỹt = exp

1

t

t∫
0

lnSsds

 (2.24)

gives us the following relation between Yt and Ỹt at any time t

Yt = e−
ct
2 Ỹt. (2.25)

An important difference with the setting of Section 2.3 is that this payoff is path-dependent since
Yt includes all values of Fs for times s ∈ [0, t]. We assume that the surrender benefit at time t is
now also path-dependent and equal to

e−κ(T−t)Yt, (2.26)

where κ is sufficiently small so that it can still be optimal to surrender the policy. In particular,
throughout the section, we have the following assumption.

Assumption 2.4.1. The parameters r, c and κ are such that

• κ < r+c+σ2

6
2 , and

• c < r − σ2

6 .

Note that this assumption is not very restrictive. In fact, with a fee rate that would fail to
meet the second criterion of Assumption 2.4.1, the policy would hardly be marketable.
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In the same setting as described in Section 2.2, the conditional distribution of Ỹu|(Ỹt, St)
follows a lognormal distribution

Ỹu|(Ỹt, St) ∼ LN

(
t

u
ln Ỹt +

u− t
u

lnSt +
r − σ2

2

2u
(u− t)2 ,

σ2

3u2
(u− t)3

)
.

This result is known and can be found for example in Hansen and Jørgensen (2000). Using the
relationships (2.25) and (2.2), it is easy to show from the previous result on St and Ỹt that

Yu|(Yt, Ft) ∼ LN

(
t

u
lnYt +

u− t
u

lnFt +
r − c− σ2

2

2u
(u− t)2 ,

σ2

3u2
(u− t)3

)
. (2.27)

Therefore, the conditional distribution function of Yu given (Yt, Ft) is known, similarly to the
conditional distribution of Fu|Ft in (2.3) which was key in the derivation of the early surrender
premium for path-dependent benefits.

Using a similar trading strategy as in Section 2.3, we compute the early surrender premium
of the variable annuity with Asian benefits and are able to prove the following proposition.

Proposition 2.4.1. The benefit associated with the exercise of the surrender option between
[t, t+ dt] is equal to

h(t, Yt, Ft) = e−κ(T−t)Yt

(
r − κ+

1

t
ln

(
Yt
Ft

))
dt+ gg(dt),

when at time t, it is optimal to surrender with (Yt, Ft), and where gg(dt) is o(dt) as dt→ 0.

Proof. The proof is in the same spirit as the proof of Proposition 2.3.1 for path-independent
benefits. At the optimal boundary, the value of the VA is exactly equal to the surrender benefit
(2.26), therefore

V ∗(t, Ft, Yt) = e−κ(T−t)Yt

At time t+ dt, the value of the contract at the surrender boundary is

V ∗(t+ dt, Ft+dt, Yt+dt) = e−κ(T−t−dt)Yt+dt

Assume that the VA is surrendered at time t, then the policyholder receives e−κ(T−t)Yt, we now
have to compute how much is gained by staying out of the contract between t and t + dt. The
main difficulty is to find a trading strategy at time t to ensure that we are able to re-enter the
contract at t + dt and to measure the profit from this strategy needed in the calculation of the
surrender option.
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Let us compute at time t the no-arbitrage value of e−κ(T−t−dt)Yt+dt. To do so, consider u > t
and compute first

E[e−r(u−t)Yu|Ft] = e−r(u−t) exp

(
t

u
lnYt +

u− t
u

lnFt +
r − c− σ2

2

2u
(u− t)2 +

σ2(u− t)3

6u2

)

using the conditional distribution of Yu|(Yt, Ft). For u = t+ dt, we find that

E[e−rdtYt+dt|Ft] = e−rdt exp

(
t

t+ dt
lnYt +

dt

t+ dt
lnFt +

r − c− σ2

2

2(t+ dt)
dt2 +

σ2dt3

6(t+ dt)2

)

→ E[e−rdte−κ(T−t−dt)Yt+dt|Ft] = e−κ(T−t−dt)e−rdt exp

((
1− dt

t

)
lnYt +

dt

t
lnFt + o(dt)

)
,

which can be further simplified into

E[e−rdte−κ(T−t−dt)Yt+dt|Ft] = e−κ(T−t)Yt − e−κ(T−t)Yt

(
r − κ+

1

t
ln

(
Yt
Ft

))
dt+ o(dt).

At time t, the policyholder receives e−κ(T−t)Yt. Note the following decomposition,

e−κ(T−t)Yt = e−κ(T−t−dt)E[e−rdtYt+dt|Ft] + e−κ(T−t)Yt

(
r − κ+

1

t
ln

(
Yt
Ft

))
dt+ o(dt)

One can invest Yte
−κ(T−t) − Yte

−κ(T−t)
(
r − κ+ 1

t ln
(
Yt
Ft

))
dt at time t in the delta hedging

strategy that generates e−κ(T−t)Yt+dt at time t + dt. The remainder is left in a bank account
at time t, so that the surrender option between t and t + dt can be computed as h(t, Yt, Ft) in
Proposition 2.4.1. �

Note that it seems that the surrender option can be negative. This is actually not the case,
as if it is optimal to surrender at time t, then one cannot get more value by waiting for another
dt, therefore

Yte
−κ(T−t) > E[e−rdtYt+dte

−κ(T−t−dt)|Ft],

and thus h(t, Yy, Ft) > 0 at any time t when it is optimal to surrender with (Yt, Ft).

Proposition 2.4.2. Let Ft denote the fund value process given in (2.2) and Yt the geometric
average based on Ft given in (2.23). Then, for u > t,

Yu|(Yt, Ft, Fu = f) ∼ LN
(
Mf , V̂u,t

)
, (2.28)

where
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{
Mf := MYu|Yt,Ft,Fu=f = t

u lnYt + 1
2
u−t
u lnFt + u−t

2u ln f,

V̂u,t := VYu|Yt,Ft,Fu=f = σ2

12u2 (u− t)3.

Proof. Conditionally on (Yt, Ft), we have that (ln(Yu), ln(Fu)) is a bivariate normal distri-
bution. Thus ln(Yu)|(ln(Fu), Ft, Yt) is normally distributed with mean MYu|Yt,Ft,Fu and vari-
ance VYu|Yt,Ft,Fu . To compute the conditional moments of X|Y where X = lnYu|Ft, Yt and
Y = lnFu|Ft, Yt for u > t we first compute

E[X] = E[lnYu|Ft, Yt] = t
u lnYt + u−t

u lnFt +
r−c−σ

2

2
2u (u− t)2

E[Y ] = E[lnFu|Ft, Yt] = E[lnFu|Ft] = ln(Ft) + (r − c− σ2

2 )(u− t)
Var[X] = Var[lnYu|Ft, Yt] = σ2

3u2 (u− t)3

Var[Y ] = Var[lnFu|Ft, Yt] = Var[lnFu|Ft, Yt] = σ2(u− t)
cov[X,Y ] = cov[lnFu, lnYu|Ft, Yt] = σ2

2
(u−t)2

u

corr[X,Y ] =
√

3
2

(2.29)

using (2.3) and (2.27) for the conditional means and variances. The only missing element is the

covariance. From (2.23), recall that Yu = Y
t
u
t e

1
u

∫ u
t ln(Fs)ds. It is thus clear that

cov[X,Y ] = cov

[
lnFu,

t

u
lnYt +

1

u

∫ u

t
lnFsds|Ft, Yt

]
= cov

[
lnFu,

1

u

∫ u

t
lnFsds|Ft, Yt

]
Using the linearity of the covariance

cov[X,Y ] =
1

u

∫ u

t
cov [lnFu, lnFs|Ft, Yt] ds

where we are left with the computation of cov [lnFu, lnFs|Ft, Yt] for t 6 s 6 u. It is clear that

cov [lnFu, lnFs|Ft, Yt] = σ2cov [(Wu −Wt), (Ws −Wt)|Ft, Yt]
= σ2cov [Wu−t,Ws−t|F0, Y0]

= σ2 min(u− t, s− t).

Integrating over s gives the desired result. Then using the inputs in (2.29) and the well-known
conditional moments of a bivariate normal distribution

MYu|Yt,Ft,Fu = E(X) +
cov(X,Y )

var(Y )
(Y − E(Y ))

VYu|Yt,Ft,Fu = (1− ρ2) var(X),

where ρ = cov(X,Y )√
var(X) var(Y )

. The claim follows and we have that Yu|Yt, Ft, Fu = f is distributed
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according to a LogNormal distribution with these moments. �

We can now state a result for the surrender option with Asian benefits, similar to the one
derived in Section 2.3.

Theorem 2. Let V ∗g(t, Ft, Yt) denote the continuation value at time t of the variable annuity
with guarantee G at maturity and a surrender benefit equal to the accumulated geometric average
e−κ(T−t)Yt, and suppose that Assumption 2.4.1 holds. Then V ∗g(t, Ft, Yt) can be decomposed into
a corresponding “European” part, Ug(Yt, Ft, t), and a surrender option, eg(Yt, Ft, t), that is

V ∗g(t, Ft, Yt) = Ug(Yt, Ft, t) + eg(Yt, Ft, t), (2.30)

where

Ug(Yt, Ft, t) = e−r(T−t)eM
g
t +
Vgt
2 N

(− ln(G) +Mg
t + Vgt√

Vgt

)
+ e−r(T−t)GN

( ln(G)−Mg
t√

Vgt

)
, (2.31)

eg(Yt, Ft, t) = e−κT ert
T∫
t

eu(κ−r)e
V̂u,t

2 Y
t
u
t F

u−t
2u
t E [k(u, Fu, t)] du (2.32)

where Mg
t and Vgt are the conditional moments of ln(YT )|(Yt, Ft) given in (2.27), Fu is LogNormal

with density f
(c)
Fu

(f |Ft) in (2.3) and where

k(u, f, t) = f
u−t
2u

N
Hu(Bu(f), f)√

V̂u,t

(Hu(f, f)

u
+ r − κ

)
+

√
V̂u,t

u
√

2π
e
− 1

2
Hu(Bu(f),f)2

V̂u,t


with Hu(x, f) = Mf + V̂u,t − ln(x) and where Mf and V̂u,t are the conditional moments of
Yu|(Yt, Ft, Fu = f) for u > t given in Proposition 2.4.2.

Remark 2.4.1. As in Theorem 1, the value of the surrender option also depends on the fee rate

c, although in a more indirect way. The dependence on c comes from the density f
(c)
Fu

(f |Ft) of Fu,
which is a function of c. In this theorem, we slightly modify the notation and add the subscript
(c) to highlight the link between the fee rate and the value of the surrender option.

Proof. First we prove the formula for the European part Ug(Yt, Ft, t) of the VA. Since YT |(Yt, Ft) ∼
LN (Mg

t ,V
g
t ), we can use (2.5) to calculate the European part of the VA. Ug(Yt, Ft, t) in (2.30)

follows immediately. Secondly, we prove the formula for the surrender option eg(Yt, Ft, t). Per-
forming a similar substitution as in the derivation of the surrender option in Section 2.3, and
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taking a similar limit as in the proof of Theorem 1 to obtain the integral from a sum, we get

eg(Yt, Ft, t) =

T∫
t

e−r(u−t)
∞∫

0

∞∫
Bu(f)

h(u, y, f)fYu(y|Yt, Ft, Fu = f)dyfFu(f |Ft, Yt)dfdu (2.33)

with h(u, y, f) given in Proposition 2.4.1 and where the rationale is to derive the optimal boundary
Bu(f) for Yu at time u given Fu = f . Indeed the optimal surrender policy at time u now depends
on Yu and Fu. We first condition on Fu and assume that Fu = f is given. We then look for the
critical level for Yu which triggers the optimal surrender of the policy. The surrender region is of
the form Yu > Bu(f).5

To compute eg(Yt, Ft, t) note that fFu(f |Yt, Ft) = fFu(f |Ft) is known in (2.3), and that
the distribution of fYu(y|Yt, Ft, Fu = f) is given in Proposition 2.4.2. Let us thus simplify the
surrender option (2.33) as

T∫
t

e−r(u−t)e−κ(T−u)

∞∫
0

∞∫
Bu(f)

y

(
r − κ+

1

u
ln

(
y

f

))
fYu(y|Yt, Ft, Fu = f)dyfFu(f |Ft)dfdu

and thus

eg(Yt, Ft, t) = e−κT ert
∫ T

t
eu(κ−r)

∫ ∞
0

[(
r − κ− ln(f)

u

)
E1 +

1

u
E2

]
fFu(f |Ft)dfdu

where E1 := E
[
1Y >Bu(f)Y

]
and E2 := E

[
1Y >Bu(f)Y ln (Y )

]
, and where Y is lognormal with

log moments Mf and V̂u,t (mean and variance of ln(Yu)|Yt, Ft, Fu = f calculated in Proposition
2.4.2). It is then easy to prove that

E1 = N
(
Mf+V̂u,t−ln(Bu(f))√

V̂u,t

)
eMf+

V̂u,t
2

E2 =
√
V̂u,tBu(f)

1+
Mf

V̂u,t e
− 1

2

M2
f+(ln(Bu(f)))2

V̂u,t√
2π

+ (Mf + V̂u,t)E1

5See Appendix 2.C.
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This observation allows us to further simplify the surrender option to

eg(Yt, Ft, t) = e−κT ert
T∫
t

eu(κ−r)
∞∫

0


√
V̂u,t

u
√

2π
Bu(f)

1+
Mf

V̂u,t e
− 1

2

M2
f+(ln(Bu(f)))2

V̂u,t

+N

Mf + V̂u,t − ln(Bu(f))√
V̂u,t

 eMf+
V̂u,t

2

(
Mf + V̂u,t − ln(f)

u
+ (r − κ)

) fFu(f |Ft)dfdu

Replacing Bu(f) by exp(ln(Bu(f))), noting that V̂u,t does not depend on f , and denoting by

Hu(x, f) := Mf + V̂u,t − ln(x), this expression further simplifies to

eg(Yt, Ft, t) = e−κT ert
T∫
t

eu(κ−r)e
V̂u,t

2

∞∫
0


√
V̂u,t

u
√

2π
e
− 1

2
Hu(Bu(f),f)2

V̂u,t

+N

Hu(Bu(f), f)√
V̂u,t

(Hu(f, f)

u
+ r − κ

) eMf fFu(f |Ft)dfdu

then

eg(Yt, Ft, t) = e−κT ert
T∫
t

eu(κ−r)e
V̂u,t

2 Y
t
u
t F

u−t
2u
t E [k(u, Fu, t)] du

where k(u, f, t) = f
u−t
2u

(
N
(
Hu(Bu(f),f)√

V̂u,t

)(
Hu(f,f)

u + r − κ
)

+

√
V̂u,t

u
√

2π
e
− 1

2
Hu(Bu(f),f)2

V̂u,t

)
and Fu is

a LogNormal variable with density fFu(f |Ft). �

Theorem 2 provides a formula for the price of a VA with Asian benefits including a surrender
option. However, since the surrender option depends on the optimal surrender boundary Bt(f)
it is not an explicit formula that can be implemented directly. One first needs to compute this
boundary in analogy to Kim and Yu (1996). Note that the value of BT (FT ) at maturity is known
and equal to BT (FT ) = G. The procedure is then similar to the one-dimensional case except that
one has a double integral to compute.

To make the problem more tractable and reduce the number of equations to solve, we make the
following assumption on the shape of the barrier. The benefit of this assumption appears clearly
in Proposition 2.4.3 below, which describes the algorithm for the optimal surrender boundary.

Assumption 2.4.2. Assume that the boundary Bu(f) is given by the following form

Bu(Fu) = max(Ge−r(T−u), au + buFu) (2.34)
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At any time before maturity, it is never optimal to surrender unless the immediate payoff is
at least equal to the discounted value of the minimum terminal payoff G, as this is the minimum
amount guaranteed at time T . We also know that along the surrender boundary it holds that

V ∗(t, Ft, Bt(Ft)) = e−κ(T−t)Bt(Ft) = max(Ge−r(T−t), at + btFt).

Thus, by formula (2.30)

Bt(Ft) = eκ(T−t)
(
Ug(max(Ge−r(T−t), at + btFt), Ft, t) + eg(max(Ge−r(T−t), at + btFt), Ft, t)

)
.

This is an integral equation for the optimal surrender boundary because of the form of eg(·, ·, ·) in
(2.32). Observe, however, that in order to compute max(Ge−r(T−t), at+btFt) at time t, the optimal
surrender boundary for future times must be known. Since BT = G (bT = 0) at expiration, we
work backwards through time to recover the optimal surrender boundary recursively. Because
formula (2.32) does not have an analytic solution, numerical integration schemes must be used.
Practically this is done by dividing the interval [0, T ] into n equidistant subintervals 0 = t0 <
t1 < ... < tn = T , where the times ti, i = 0, .., n, represent the possible surrender times. Define

g(u) := e−κT erteu(κ−r)e
V̂u,t

2 Y
t
u
t F

u−t
2u
t E [k(u, Fu, t)]. Then, the integral in (2.32) is approximated

by

I(k) =
T

n

k−1∑
i=1

g(tn−i), k = 1, .., n. (2.35)

Note, that at time tn−1, I(1) = 0.

Proposition 2.4.3 (Derivation of the optimal surrender boundary). The following backward
procedure generates the approximate surrender boundary.

• Btn = BT = G, bT = 0.

• Recursively, for k = 1..n:

– For m values of Ftn−k , compute the optimal boundary Btn−k(Ftn−k) using (2.35) and
solving

Btn−k(Ftn−k) = eκ(T−t) (Ug(Btn−k(Ftn−k), Ftn−k , tn−k) + I(k)
)
.

– Out of the m values obtained, use those above Ge−r(T−t) to perform a linear regression
and obtain atn−k and btn−k .

A numerical illustration is given in the next section. Note that the technique described in this
section will apply for other types of path-dependent benefits. The derivation holds when at any

32



time u, conditional on the value of the underlying fund Fu = f at time u, the optimal strategy
is driven by checking whether some other quantity (here the geometric average) is above a level
Bu(f) (in other words the optimal strategy is a threshold strategy conditionally on the fund value
at time u). Finally, note that the approximation (2.34) significantly simplifies the implementation
as it locally approximates the surrender boundary with a piecewise linear function. From our
numerical experiments we found that this is a satisfactory approximation.

2.5 Numerical Examples

This section presents some numerical examples to illustrate the techniques presented in Sections
2.3 and 2.4 respectively.

2.5.1 Optimal Boundary for the VA studied in Section 2.3

We perform a sensitivity analysis to further shed light on some properties of the surrender bound-
ary derived in Section 2.3. Unless stated otherwise, we assume that κ = 0, r = 0.03, σ = 0.2 and
T = 15 (years). The guaranteed amount G is equal to 100. The fair fee is c∗ = 0.91%, ignoring
the surrender benefit.

Figure 6.4 shows optimal surrender boundaries for the set of parameters given above when
varying one parameter at a time. There are a few things to be noticed. First, as discussed
earlier, the time zero value of the boundary is greater than the fund value at time 0 and the value
at maturity T is equal to the guarantee G. Secondly, the graph of the surrender boundary is
generally non-monotonic. The curve slowly increases to its maximum and then declines rapidly
to G.

In the following we examine the sensitivity of the optimal surrender boundary with respect
to the parameters σ, r, c, T , G and κ. Panel A of Figure 6.4 illustrates the sensitivity with
respect to the volatility σ. We compute the surrender boundary for values of σ = 15%, 20%, 25%
and 30%. We observe that as volatility increases the optimal surrender boundary gets pushed
further up. With a high volatility, the policyholder would surrender the contract at higher values
of the underlying fund than if she had invested in a fund with a lower volatility. Intuitively this
result can be explained by the fact that the fund fluctuates more heavily if the volatility is higher.
Therefore, the maturity benefit is more valuable.

Panel B of Figure 6.4 displays the sensitivity with respect to the risk-free interest rate r.
We vary the interest rate between 2% and 3.5% and compute the optimal surrender boundary.
Similarly to the sensitivity with respect to the volatility, we observe that the optimal surrender
boundary is higher for higher interest rates.
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Figure 2.1: Sensitivity analysis: The fee rates are computed to make the contract with the
European benefit fair in all panels except in Panel C in which the sensitivity to the fee rate
c is studied.

34



In Panel C of Figure 6.4 we show the sensitivity of the optimal surrender boundary of the
sensitivity analysis with respect to the fee c. Since insurance companies do not always charge
the fair fee, it is interesting to investigate what happens if the fee is somewhat higher or lower.
In our case, the fee takes values from 0.5% to 2.0%. The figure shows that with a higher fee the
optimal surrender boundary is lower. This is intuitive since with a higher fee, the policyholder
has to pay more for the guarantee. Thus, the mismatch between the premium for the guarantee
and its value is even greater resulting in earlier surrender times. This also increases the value of
the surrender option, showing that increasing c is not a good way to pay for surrender benefits
(see also Milevsky and Salisbury (2001)). We also observe that the optimal surrender boundary
is very sensitive to changes in the fee. From an initial optimal surrender value of 150 at time zero
for the fair fee, the optimal surrender value drops to about 115 for a fee of 2.0%. Likewise if the
fee is reduced to 0.5% the optimal surrender value increases to just above 180.

Panel D of Figure 6.4 shows the sensitivity with respect to the maturity T . It illustrates that
with increasing maturity the optimal surrender boundary increases as well. Considering a short
time to maturity the fund value is less likely to reach high values. It is also known that the price
of plain vanilla options are negatively correlated with the time to maturity, i.e. it loses value the
closer it gets to maturity. Therefore, if we decrease the maturity T the option is worth less and
should thus be surrendered at a lower fund level.

We analyse the sensitivity of the surrender boundary with respect to the guarantee G in Panel
E of Figure 6.4. For G = 75, 100, 125 and 150 we compute the optimal surrender boundary Bt.
The graphs look quite different from the ones above. We observe that the higher the guarantee
the lower is the initial value of the surrender boundary. However at the same time the slope is
higher for graphs with a higher guarantee. This effect can be explained by considering the fees
c∗ displayed in the table below. The fee for a contract with a guarantee of 150 is about 15 times
greater than the fee of a contract with a guarantee of 75. So on the one hand the policyholder
has a high guaranteed return at maturity. But on the other hand she has to pay a high fee for it.
For this reason, it is better for the policyholder to surrender the contract earlier than if she had
a lower guarantee implying a lower fee.

G 75 100 125 150

c∗ 0.35% 0.91% 2.02% 5.28%

Lastly, Panel F of Figure 6.4 represents the effect of κ. The optimal boundary quickly moves
up when κ increases: the surrender incentive is much lower because of the surrender penalty. In
practice κ can be chosen high enough to have very low surrender incentives. Throughout our
study we assumed κ = 0 to find the maximum risk for companies if they do not charge for the
surrender option.
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2.5.2 Optimal Boundary for the VA studied in Section 2.4

We illustrate the shape of the optimal boundary for a VA with path-dependent payoff in Figure
2.2. Since the optimal boundary depends on time t and on the value of the fund Ft, the optimal
surrender boundary throughout the life of the contract must thus be represented by a surface
(Figure 2.2). It is also possible to fix a value Ft and obtain a curve which shows the evolution of
the boundary through time (as it is in Figure 2.3). We consider a 10-year contract with payoff
max(YT , G) as defined in Section 2.4. Here, we assume that the guaranteed roll-up rate is 0.025 so
that G = F0e

0.025T . We also assume that there is no surrender charge. Neglecting the surrender
benefit, we use the fair fee c∗ = 0.0197. Market assumptions are as in the previous section.
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Figure 2.2: Optimal surrender surface for a 10-year geometric average VA with
G = F0e

0.025×10 and κ = 0.

For high values of FT , the boundary drops at maturity, because for any value YT > G, the
option is exercised. However, before maturity, it is not necessarily optimal to surrender because
the average of the fund might still increase. This is especially the case when Ft > Yt. For low
values of Ft, the boundary is close to Ge−r(T−t), the discounted value of G. When the fund value
is low, it drags the average down and decreases the probability that the average at maturity is
above the guarantee. Thus, for low values of Ft, it may be optimal to lapse the contract and
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cash in the gains earlier. In general, for a fixed time t, this causes the boundary to increase with
Ft. This behaviour is more noticeable at the beginning of the contract since there is more time
for the average to increase. The optimal surrender boundaries are relatively low, because the
average is a lot less volatile than the fund. For this reason, it is often optimal to surrender early,
even when the fund value is high, because the expected increase in the average is less than the
risk-free rate. Thus, it would be optimal to withdraw the amount of the average and invest it at
the risk-free rate. In fact, when Yt increases past Ge−r(T−t), the value of the option drops quickly
because of the low volatility of the average. This indicates that Asian-type maturity benefits tend
to increase the value of the surrender option.
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Figure 2.3: Optimal surrender boundary for a 10-year geometric average VA as a function
of time for different values of Ft with G = F0e

0.025×10 and κ = 0.

2.6 Concluding Remarks

In this chapter, we presented a method that allows us to derive a formula for the continuation
value of a VA contract. We do so by decomposing the value into a corresponding European part
and a surrender option. The latter can be expressed as an integral that depends on the optimal
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boundary at future times. Thus, the price of the contract and the surrender boundary must be
solved iteratively through backward recursion. We implemented the formulae thus obtained and
performed some numerical examples. They revealed that when the maturity benefit depends only
on the terminal fund value, the optimal surrender boundary is a non-monotonic function which
increases at first and then decreases to finally reach the guaranteed amount at maturity. By
performing sensitivity analysis we found that with increasing volatility, interest rate, surrender
charge and maturity the optimal surrender boundary is pushed up. If we increase the guarantee,
however, we find a lower boundary at the beginning, but, due to a higher slope, the boundary
takes higher values as maturity is approached before dropping back to the guaranteed level. This
effect is explained by the higher fair fees for contracts with a high guarantee.

Our method is general enough to be used when the benefits are path-dependent. We consid-
ered the geometric average of the fund as an example of such a payoff. Analogously to the first
case, we derived a pricing formula and an integral equation for the optimal surrender boundary
which depends on the geometric average as well as on the fund value itself. We found that the low
volatility of the geometric average decreases the value of the guarantee and increases surrender
incentives.

In this chapter, we assumed that the underlying follows a geometric Brownian motion. Al-
though this model is too simple to fit actual market data, it is sufficient to shed some light on the
different factors influencing the optimal surrender boundary. Since the transition density of the
underlying asset is known explicitly, we are able to obtain integral representations for the value of
the surrender option. Our method can easily be extended to other market models as long as the
model guarantees the existence of a portfolio that replicates the fund value using traded assets.
In the case when the transition density is not known in explicit form, the method can still be
used, without deriving an analytical form for the integrand but approximating it by Monte Carlo
techniques for instance. Thus, our method can be extended to obtain the surrender boundary
under more realistic market models.

The results obtained in this chapter, especially those pertaining to the maturity benefit that
depends only on the terminal fund value, give an insight into the factors that influence the value
of the option to surrender the variable annuity contract. In particular, the fee rate paid when
the account value is high contributes to surrender incentives, both by influencing the optimal
surrender boundary and by affecting the value of the surrender option. In the next chapters, we
will explore different fee structures designed to reduce the surrender incentive by decreasing the
fee rate paid when the fund value is high.
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Appendix

2.A Optimal Surrender Region for GMAB

In this appendix, we discuss the shape of the optimal surrender region for a simple guaranteed
minimum accumulation benefit. Throughout Chapter 2, we assume that the optimal strategy
is of the threshold type, that is, for every time t ∈ [0, T ), the optimal surrender region has the
form [at,∞), with 0 6 at < ∞. In order for our method to be valid, this condition must hold.
Since the difference between the value of the maturity benefit and the account value decreases
monotonically in Ft, it is somewhat intuitive that the strategy should be of the threshold type.
However, proving it rigorously is not straight-forward.

For most American-type options studied in the past 40 years, the optimal exercise stratgy is
of the threshold type. In other words, the optimal exercise region for any t ∈ [0, T ) is of the form
[at,∞) or [0, bt], with 0 6 at <∞ and 0 6 bt <∞. However, after Dayanik and Karatzas (2003)
gave examples of options with optimal surrender regions that were not of the threshold type, more
literature on the shape of this region emerged6. This has given rise to literature studying the
conditions that American-type options must satisfy in order for their optimal exercise strategy
to be of the threshold type. In particular, Villeneuve (2007) studies sufficient conditions for
threshold strategies, while Strulovici and Szydlowski (2012) analyse the existence of optimal
strategies. These papers focus on time-homogenous payoffs — payoffs that only depend on the
value of the underlying. However, in our case, the payoff of the variable annuity with surrender
option is inhomogeneous in time, since the financial guarantee is only applied at maturity. For
this reason, we need to use the results obtained by Jönsson, Kukush, and Silvestrov (2005a) and
Jönsson, Kukush, and Silvestrov (2005b) for time inhomogeneous payoffs in a discrete setting.
By showing that our payoff function satisfies certain conditions, we can confirm that the optimal
strategy, in discrete time, is of the threshold type. We can then use Amin and Khanna (1994)’s
convergence results to confirm that the results also hold in continuous time. In this appendix, we

6In Chapter 4 of this thesis, we also present some variable annuity designs that have non-threshold
optimal surrender strategies.
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show how the results of Jönsson, Kukush, and Silvestrov (2005b) and Amin and Khanna (1994)
can be applied to our problem.

A rigourous proof of the threshold strategy is out of the scope of this Appendix. To justify our
assumption that the optimal strategy is to always surrender the contract when the account value
is above a certain boundary, we show that in discrete time, our problem satisfies the conditions
of Theorem 1 of Jönsson, Kukush, and Silvestrov (2005b), which confirms the one-threshold
structure of the optimal stopping domain.

Since Jönsson, Kukush, and Silvestrov (2005b)’s results hold in discrete time, we must modify
our original problem and set it in discrete time. Assume that the timeline from 0 to T is divided
into n intervals of size ∆t = T

n , with t0 = 0, t1 = ∆t, . . . , tn = T , and that the VA contract can
only be surrendered or exercised at times t0, t1, . . . , tn−1, tn. Further assume that the underlying
index St follows a binomial model, such that it approximates our Black-Scholes setting and
converges to it in the limit. Following Cox, Ross, and Rubinstein (1979), we let the value of the
index at time tk, Sk, be given by Sk = A(Sk−1, Yk), for k = 1, 2, . . . , n. Yk is a random variable

taking value u = eσ∆t with probability p and d = e−σ∆t with probability 1−p, where p = er∆t−d
u−d .

We also let A(x, y) = xy, so that E[e−r∆tA(Sk−1, Yk)|Sk−1] = Sk−1. Since the variable annuity
fee is paid at a constant rate c, we denote the value of the account at time tk by Fk and let
Fk = e−ctkSk. As in the continuous time case, we have S0 = F0 = P .

For each time tk, the payoff function of the contract is given by

ψk(x) =

{
xe−κ(T−tk)−ct, if k = 0, 1, . . . , n− 1.

max(xe−cT , G), if k = n.
(2.36)

Note that the payoff functions are expressed here in terms of the index value.

To apply Theorem 1 of Jönsson, Kukush, and Silvestrov (2005b), we must check assumptions
Ã2, G̃1, B̃1, Ẽ1 and Ẽ2, and assumption A1 from Jönsson, Kukush, and Silvestrov (2005a).
Assumption A1 ensures that if Si = 0, then Sj = 0 for all i < j 6 n. Assumption Ã2 requires
that A(x, y) be non-decreasing and convex in x, which is satisfied in our model. Assumption
Ẽ2 is satisfied if for any 0 < d < ∞, limx→∞ P [A(x, Yk+1) < d] = 0. These three assumptions
are easily satisfied by the binomial model. To satisfy condition G̃1, we must show that each
function ψk(x), k = 0, 1, . . . , n is non-decreasing and convex. For k = 0, 1, ..., n− 1, the function
is linear and increasing in x, so the condition is satisfied. It is also easy to show that ψn(x) is
non-decreasing and convex. Condition Ẽ1 states that for k = 0, 1, . . . , n− 1, we must have

lim infx→∞
e−r∆tE[ψk+1(Stk+1

)|Stk = x]

ψk(x)
< 1. (2.37)

For k = 0, 1, . . . , n−2, E[ψk+1(Stk+1
)|Stk = x] = xe−κ(T−tk+1)−c(tk+∆t) and ψk(x) = xe−κ(T−tk)−ctk ,

so
e−r∆tE[ψk+1(Stk+1

)|Stk=x]

ψk(x) = e−(c−κ)∆t, which is less than 1 under our assumption that κ < c. For
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k = n− 1, E[ψn(Stn)|Stn−1 = x] = xe−cT +P (xe−ctn−1 ,∆t), where P (x,∆t) is the of a European
put option on the fund with Ft = x, with time to maturity ∆t and strike G. So

e−r∆tE[ψn(Stn−1)|Stn = x]

ψn−1(x)
= e−(c−κ)∆t +

eκ∆tP (xe−ctn−1∆t)

xe−ctn−1
. (2.38)

Since the second term of goes to 0 as x→∞, condition G̃1 holds for all k = 0, 1, . . . , n.

Finally, to be able to conclude that Theorem 1 of Jönsson, Kukush, and Silvestrov (2005b)
holds, we must check that

ψ′k(x) > e−r∆tE
[
ψ′k+1(A(x, Yk+1)) A′(x, Yk+1)

]
, (2.39)

for all k = 0, 1, . . . , n − 1, where ψ′k(x) and A′(x, Yk+1) are the right-derivative of the corre-
sponding functions. First, note that A′(x, Yk+1) = Yk+1, and that for k = 0, 1, . . . , n − 1,
ψ′k(x) = e−κ(T )−(c−κ)tk . We also have ψ′n(x) = e−cT1{x>GecT }. Thus, for k = 0, 1, . . . , n − 2,
we have

e−r∆tE
[
ψ′k+1(A(x, Yk+1)) A′(x, Yk+1)

]
= e−κT−(c−κ)tk+1

= e−κT−(c−κ)tk−(c−κ)∆t

6 e−κT−(c−κ)tk = ψ′k(x). (2.40)

To show that (2.39) holds for k = n− 1, observe that

e−r∆tE
[
ψ′n(A(x, Yk+1)) A′(x, Yk+1)

]
6 e−r∆tE

[
e−cTYn

]
= e−cT

6 e−cT+(c−κ)∆t = ψ′n−1(x). (2.41)

Note that these conditions hold only when κ < c.

Theorem 1 from Jönsson, Kukush, and Silvestrov (2005b) states that when conditions Ã2,
G̃1, B̃1, Ẽ1 and Ẽ2 hold, then for any time tk, k = 0, 1, . . . , n, the optimal stopping region at
time tk has the form [ak,∞), with 0 6 dk <∞.

Having checked all the necessary conditions for Theorem 1 from Jönsson, Kukush, and Silve-
strov (2005b) to hold, we can use it to confirm that for any time tk, k = 0, 1, ..., n, the optimal
surrender strategy at time tk is a threshold strategy. The idea behind the proof of this theorem
is to show that the optimal surrender strategy at time n− 1 is a threshold strategy. This is done
using conditions B̃1, Ẽ1 and G̃1. These conditions are then used to show recursively that a
threshold strategy is also optimal at time n− 2, n− 3, . . . , 1, 0.

We must then verify that this result also is also true in continuous time. While Cox, Ross,
and Rubinstein (1979) shows that the convergence holds for European-type contingent claims, the
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convergence is harder to prove for options that can be surrendered at any time before maturity,
because they involve an optimal control problem. Amin and Khanna (1994) show that under
certain regularity conditions in the financial model, if the payoff function of the American option
is uniformly integrable7, convergence of the price and the optimal strategy holds. For a binomial

model, Amin and Khanna (1994) show that supk E
[
supk<j6n S

γ
tj
|Stk

]
< ∞ for every γ > 0, so

convergence holds for any payoff that is bounded above by a polynomial function of the stock
price. Since our payoff function at most the sum of the account value and an European put on
the account value (which has a bounded payoff), it is uniformly integrable in the binomial model,
and thus convergence holds.

2.B Last step of the proof of Proposition 2.3.3

In this last step, we suppose that

υ(tn−m, Fn−m;Bn−m+1) = U(tn−m, Fn−m)

+
m−1∑
k=1

e−(m−k)r∆tE[(Fn−k − E[e−r∆tFn−k+1|Fn−k])1{Fn−k>Bn−k}|Fn−m]−O(∆t). (2.42)

We move back one period and calculate υ(tn−m−1, Fn−m−1;Bn−m) as the risk-neutral expec-
tations of the value of the live contract at tn−m:

υ(tn−m−1Fn−m−1;Bn−m) =

E[e−r∆tυ(tn−m, Fn−m;Bn−m+1)1{Fn−m<Bn−m}|Fn−m+1]

+ E[e−r∆tFn−m1{{Fn−m>Bn−m}}|Fn−m+1]

= U(tn−m−1, Fn−m−1)

+

m−1∑
k=1

e−(m−k+1)r∆tE[(Fn−k − E[e−r∆tFn−k+1|Fn−k])1{Fn−k>Bn−k}|Fn−m+1]

+ E[e−r∆t(Fn−m − U(tn−m, Fn−m))1{Fn−m>Bn−m}|Fn−m−1]−O(∆t)

− E [ e−r∆t1{Fn−m>Bn−m}
m−1∑
k=1

E[e−(m−k)r∆t(Fn−k − E[e−r∆tFn−k+1|Fn−k])1{Fn−k>Bn−k}|Fn−m]|Fn−m+1 ] . (2.43)

7The payoff function ψk(x) is uniformly integrable if for some δ > 1, supk E
[
supk<j6n ‖ψj(Stj )‖δ|Stk

]
<

∞.
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Note that the last term can be written as

− E
[
e−r∆t

{
E[e−r∆tFn−m+1|Fn−m]− e−r∆tE[Fn−m+11{Fn−m+1<Bn−m+1}|Fn−m]

− E[E−r∆tE[e−r∆tFn−m+2|Fn−m+1]1{Fn−m+1>Bn−m+1}|Fn−m]

+
m−2∑
k=1

e−(m−k)r∆tE[(Fn−k − E[er∆tFn−k+1|Fn−k])1{Fn−k>Bn−k}|Fn−m] } |Fn−m+1] . (2.44)

Using (2.44) in (2.43) and re-arranging, we obtain

υ(tn−m−1, Fn−m−1;Bn−m)

= U(tn−m−1Fn−m−1)

+
m∑
k=1

e((m+1)−k)r∆tE[(Fn−k − E[e−r∆tFn−k+1|Fn−k])1{Fn−k>Bn−k}|Fn−m−1]−O(∆t)

− E
[
e−r∆t1{Fn−m>Bn−m}

{
U(tn−m, Fn−m)− e−r∆tE[Fn−m+1|Fn−m]

+ e−r∆tE[(Fn−m+1 − E[e−r∆tFn−m+2|Fn−m+1])1{Fn−m+1>Bn−m+1}|Fn−m]

m−2∑
k=1

e−(m−k)r∆tE[(Fn−k − E[e−r∆tFn−k+1|Fn−k])1{Fn−k>Bn−k}|Fn−m]

}
|Fn−m−1

]
. (2.45)

We will now show that the last expectation in (2.45), denoted by Lm+1 is of order O(∆t) or
higher. First, we know from (2.18) that for Fn−m > Bn−m,

Fn−m > U(tn−m, Fn−m)

+

m−1∑
k=1

e−(m−k)r∆tE[(Fn−k − E[e−r∆tFn−k+1|Fn−k])1{Fn−k>Bn−k}|Fn−m]−O(∆t),

which gives us the following upper bound for Ln−m−1:

Ln−m−1 < E[e−r∆t1{Fn−m>Bn−m}
(
Fn−m − E[e−r∆tFn−m+1|Fn−m]

)
|Fn−m−1].

Before we go further, we need to examine E[e−r∆tFt|Fs], 0 6 s < t 6 T , more closely. Observe
that

Ft = Fs exp

{(
r − σ2

2

)
−
∫ t−s

0
c(Fs+u)du+ σ(Wt −Ws)

}
> Fs exp

{(
r − c̄− σ2

2

)
+ σ(Wt −Ws)

}
, (2.46)
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since we assumed that c(t, Ft) 6 c̄ for 0 6 t 6 T . Then we have a new upper bound for Ln−m−1:

Ln−m−1 < E[e−r∆t1{Fn−m>Bn−m}Fn−m
(
1− e−c∆t

)
|Fn−m−1].

This allows us to evaluate the expectation and obtain

E[e−r∆t1{Fn−m>Bn−m}Fn−m
(
1− e−c∆t

)
|Fn−m−1] =

(1− e−c∆t)Fn−m−1N(d1(Fn−m−1,∆t;Bn−m)), (2.47)

where d1(Fn−m−1,∆t;Bn−m) =
ln
(
Fn−m−1
Bn−m

)
+
(
r−c−σ

2

2

)
∆t

σ
√

∆t
and N (·) is the cumulative distribution

of a standard normal random variable. To see that (2.47) is of order O(∆t) or higher, we observe
that (1− e−c∆t) is of order O(∆t) and we show that

lim
∆t→0

N (d1(Fn−m−1,∆t;Bn−m)) = 0.

Here, Fn−m−1 is strictly less than Bn−m−1 since the option is still “alive” one period later (which
means that Fn−m−1 < Bn−m−1). Then, for any ε > 0, there exists ∆t? small enough such that for
any ∆t < ∆t?, |Bn−m−1 −Bn−m| < ε. Now let ε′ = Bn−m − Fn−m−1. Since Fn−m−1 < Bn−m−1,
ε′ > 0. By the continuity of the optimal exercise boundary B(·), there exists ∆t small enough

so that Bn−m > Bn−m−1 − ε′ = Fn−m−1. Hence, as ∆t→ 0, ln
(
Fn−m−1

Bn−m

)
becomes negative and

d1 → −∞. Thus, lim∆t→0N (d1(Fn−m−1,∆t;Bn−m)) = 0. Then, we can say that Ln−m−1 is of
order O(∆t) or higher. �

2.C Optimal Surrender Region with Asian Benefits

We prove here that the optimal surrender strategy for the path-dependent payoff introduced in
Section 2.4 is also a threshold strategy. That is, we show that when the surrender charge is of the
form κt = 1− e−κ(T−t), κ < c, and satisfies the conditions stated at the beginning of Section 2.4,
then for any time t before maturity and any value Ft, there exists a geometric average Y ∗t above
which the value of the contract is less than the surrender benefit available immediately. Here, we
will not refer to the results used in Appendix 2.A because we are now facing a path-dependent
problem. Instead, this proof is inspired by Section 3 of Wu and Fu (2003). We let τ be a stopping
time with respect to Ft and denote by Tt the set of all stopping times τ greater than t and
bounded by T . We express the value at time t of the variable annuity contract V ∗(t, x) by

V ∗g(t, f, x) = sup
τ∈Tt

E
[
e−r(τ−t)ψ(τ, Yτ )|Ft = f, Yt = x

]
,
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and

ψ(t, x) =

{
e−κ(T−t)x, if 0 6 t < T

max(x,G), if t = T.
(2.48)

We also define the optimal surrender region at time t, denoted Rt(Ft), by

Rt(Ft) =

{
Yt : sup

τ∈Tt
E
[
e−r(τ−t)ψ(τ, Yτ )|Ft

]
6 ψ(t, Yt)

}
. (2.49)

We can also rewrite Rt(Ft) as

Rt(Ft) =

{
Yt :

V ∗g(t, Ft, Yt)

ψ(t, Yt)
6 1

}
.

We analyse the function γg(t, Ft, x) ≡ V ∗g(t,Ft,x)
ψ(t,x) and obtain Lemma 4.B.2.

Lemma 2.C.1. Let γg(t, f, x) = V ∗g(t,f,x)
ψ(t,x) for t ∈ [0, T ]. Then,

• For t = T , γg(T, f, x) = 1.

• For t ∈ [ 0, T ), γ(t, f, x) is non-increasing in x.

Proof. At t = T , we have that V ∗g(T,FT ,YT )
ψ(T,YT ) = ψ(T,YT )

ψ(T,YT ) = 1.

For what follows, we use the fact that Yu|Ft, Yt has the same distribution as Y
t
u
t F

u−t
u

t eµ(t,u)+σ(t,u)Z ,

where Z is a standard normal random variable, µ(t, u) =
r−c−σ

2

2
2u (u−t)2 and σ2(t, u) = σ2

3u2 (u−t)3.
For t ∈ [ 0, T ), note that γg(t, f, x) can be rewritten as

γg(t, f, x) =
V ∗g(t, f, x)

ψ(t, x)
=

supτ∈Tt E
[
e−r(τ−t)ψ(τ, Yτ )|Ft = f, Yt = x

]
e−κ(T−t)x

=
supτ∈Tt E

[
e−r(τ−t)e−κ(T−τ)Yτ + e−r(T−t)(G− YT )+1{τ=T}|Ft = f, Yt = x

]
xe−κ(T−t)

where Xt,u = µ(t, u)+σ(t, u)Z. Note that because Brownian motion increments are independent,
γg(t, f, x) only depends on {F}06s<t through Yt, the value of the average at time t. In addition,
since x is a positive real number and E

[
e−r(τ−t)ψ(τ, Yτ )|Ft = f, Yt = x

]
is finite, we can take

1
xe−κ(T−t) inside the supremum.
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Now for any τ ∈ Tt and ε > 0, we have

E

[
e−(r−κ)(τ−t)

(
Yt
Ft

) t
τ
−1

eXt,τ |Yt = x, Ft = f

]

= E

[
e−(r−κ)(τ−t)

(
x

f

) t
τ
−1

eXt,τ |Ft = f

]

> E

[
e−(r−κ)(τ−t)

(
x+ ε

f

) t
τ
−1

eXt,τ |Ft = f

]

= E

[
e−(r−κ)(τ−t)

(
Yt
Ft

) t
τ
−1

eXt,τ |Yt = x+ ε, Ft = f

]
, (2.50)

since t
τ − 1 6 0, and

E

e−r(T−t)( G

Yte−κ(T−t) −
(
Yt
Ft

) t
τ
−1

eXt,T

)+

1{τ=T}|Yt = x, Ft = f


= E

e−r(T−t)( G

xe−κ(T−t) −
(
x

f

) t
τ
−1

eXt,T

)+

1{τ=T}|Ft = f


> E

e−r(T−t)( G

(x+ ε)e−κ(T−t) −
(
x

f

) t
τ
−1

eXt,T

)+

1{τ=T}|Ft = f


> E

e−r(T−t)( G

(x+ ε)e−κ(T−t) −
(
x+ ε

f

) t
τ
−1

eXt,T

)+

1{τ=T}|Ft = f


= E

e−r(T−t)( G

Yte−κ(T−t) −
(
Yt
Ft

) t
τ
−1

eXt,T

)+

1{τ=T}|Yt = x+ ε, Ft = f

 . (2.51)

To obtain the third and fourth line, note that for a > a′ > 0 and 0 6 b < b′, (a− b)+ > (a′ − b)+

and (a− b)+ > (a− b′)+. Using (2.50) and (2.51) together, we obtain

E
[
e−r(τ−t)ψ(τ, Yτ )|Ft = f, Yt = x

]
ψ(t, x)

>
E
[
e−r(τ−t)ψ(τ, Yτ )|Ft = f, Yt = x+ ε

]
ψ(t, x+ ε)

(2.52)

for any τ ∈ Tt and ε > 0. Taking the supremum over all τ ∈ Tt on both sides, we obtain the
desired result. �
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The result presented in Lemma 4.B.2 allows us to say that if we can find Y ∗t such that
γg(t, Ft, Y

∗
t ) = 1, then for any Yt > Y ∗t , γ(t, Ft, Yt) 6 1. Thus, the optimal surrender region

Rt(Ft) has the form [ Y ∗t ,∞ ).

To complete the proof that the optimal surrender strategy is of the threshold type, we need
to show that for any t, Ft, 0 6 t < T , Ft > 0, there exists a value Y ∗t such that V ∗g(t, Ft, Yt) 6
ψ(t, Yt). This is shown in Theorem 2.C.1.

Theorem 2.C.1. The optimal exercise strategy for the path-dependent surrender option is to
surrender the contract when Yt > Bt(f), with

Bt(f) = inf{x : V ∗g(t, f, x) 6 ψ(t, x)},

for t ∈ [ 0, T ), f > 0. Bt(f) <∞ for all t ∈ [0, T ], f > 0 if the surrender charges are of the form

κt = 1− exp(−κ(T − t)) and satisfy κ <
r+c+σ2

6
2 , and c < r − σ2

6 .

Proof. We show that for any t ∈ [ 0, T ), f > 0 it is possible to find x such that V ∗g(t, f, x) 6
ψ(t, x). Note that for t ∈ [ 0, T ), ψ(t, x) = xe−κ(T−t). Thus, we need to show that it is possible
to find x such that

V ∗g(t, f, x) 6 xe−κ(T−t).

First, fix t ∈ [ 0, T ) and observe that for any stopping time τ ∈ Tt, we have

E[e−r(τ−t)ψ(τ, Yτ )|Yt = x, Ft = f ]

= E[e−r(τ−t)Yτe
−κ(T−τ)|Yt = x, Ft = f ] + E[e−r(T−t)(G− YT )+1{τ=T}|Yt = x, Ft = f ]

6 E[e−r(τ−t)Yτe
−κ(T−τ)|Yt = x, Ft = f ] + E[e−r(T−t)(G− YT )+|Yt = x, Ft = f ]

The second term of the equation is simply the price of a geometric Asian put option with strike
G. This term goes to 0 as x→∞ (see for example Kemna and Vorst (1990)). Now by the same
reasoning as in the proof of Theorem 6.1, it suffices to show that there exists x∗ such that

E[e−r(τ−t)Yτe
−κ(T−τ)|Yt = x∗, Ft = f ] < x∗e−κ(T−t).

Then, by Lemma 4.B.2, the inequality will hold for any x > x∗. For a fixed t ∈ [0, T ), f ∈ (0,∞),
this can be done by taking any x > f . Let f < x∗ < ∞. Then, by first conditioning on the
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stopping time τ , we have

E[e−r(τ−t)Yτe
−κ(T−τ)|Yt = x∗, Ft = f ]

= E[e−κ(T−τ)e−r(τ−t)+
t
τ

lnx∗+ τ−t
τ

ln f+ r−c−0.5σ2

2τ
(τ−t)2+

σ2(τ−t)3

6τ2 ]

< E[x∗e−κ(T−τ)e−r(τ−t)+
r−c−0.5σ2

2τ
(τ−t)2+

σ2(τ−t)3

6τ2 ]

< E[x∗e−κ(T−τ)e−r(τ−t)+
r−c−σ2/6

2τ
(τ−t)2

]

< E[x∗e−κ(T−τ)e−
1
2

(r+c+σ2

6
)(τ−t)]

< E[x∗e−κ(T−τ)eκ(τ−t)]

= x∗e−κ(T−t)

To get the fourth and the fifth line, we use the assumption c < r− σ2

6 and the fact that τ > τ − t.
By taking the supremum over all stopping times, this allows us to conclude that under our
assumptions, it is always possible to find an average fund value x such that

V ∗g(t, f, x) 6 xe−κ(T−t).

�
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Chapter 3

State-dependent fees for variable
annuity guarantees

3.1 Introduction

This chapter is based on a paper that was written in collaboration with Dr. Carole Bernard and
Dr. Mary Hardy, and that is forthcoming in ASTIN Bulletin (see Bernard, Hardy, and MacKay
(2014)).

Variable annuity guarantees are typically funded by a fixed fee rate. This fee structure is
unsatisfactory from a risk management perspective because there is a misalignment of the fee
income and the option cost. When markets fall, the option value is high, but the fee income is
reduced. When markets rise, the fee income increases, but there is negligible guarantee liability.
As explained in the previous chapter, a fixed fee rate represents an incentive for the policyholder
to surrender his contract when the account value is well above the guarantee.

In this chapter we investigate a dynamic fee structure for GMMBs and GMDBs, where the fee
rate depends in some way on the evolving embedded option value. Specifically, we develop pricing
formulas for a contract for which the fee (applied as a proportion of the policyholder’s fund) is
only payable when the fund value is below the guaranteed benefit – that is, when the embedded
option is in-the-money. A similar formula was derived for equity options in Karatzas and Shreve
(1984). However, our formula is more general, and we present details that will make it easier to
use for the reader. We also extend the results to allow for a threshold for fee payments that is
higher than the guaranteed amount, so that the fee begins to be paid when the fund moves close
to being in-the-money. For convenience, we refer to this fee structure as ‘state-dependent’, where
the states being considered are simply (1) the policyholder’s fund Ft lies above a given barrier β,
and (2) Ft lies below the barrier, β. The motivation for exploring this fee structure was a VA-type
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contract issued by Prudential UK, whose “flexible investment plan” is an equity-linked policy with
an optional GMDB, for which the fee is paid only if the fund value is below the guaranteed level.
See Prudential(UK) (2012), page 11, for details. Thus, this is a practical design proposition, at
least for the GMDB. The advantages for an optional GMDB rider are clear; once the guarantee
is no longer valuable, the policyholder pays the same fees as those who did not select the GMDB
rider. Additionally, the alignment of income and liability value is better managed. One major
disadvantage however is that by paying for the option only when the option is in the money, the
fee rates at those times will be high, especially for GMMBs, to the extent that the contract will
no longer appear competitive with other investment alternatives, and which could also exacerbate
the option liability through fee drag. We discuss this further in Section 3.4.

Although the policyholder’s option to surrender is impacted by the fee structure, in this
chapter we derive and evaluate fair fees assuming, initially, no policy surrenders. It would be
straightforward to adapt the formulae to allow for deterministic surrenders. In Section 3.5 we
consider further the impact of the fee structure on the surrender incentive. Many recent works on
variable annuities have incorporated optimal surrenders in the pricing analysis (see, for example,
Bacinello, Millossovich, Olivieri, and Pitacco (2011) and Belanger, Forsyth, and Labahn (2009)).
The complexity added by the state-dependent fee makes this more complex in this case than
in the flat fee context, and a full analysis will be performed in Chapter 4. In Section 3.5 we
present a preliminary analysis of the surrender incentive, to support the intuition that the state-
dependent fee structure reduces the incentive to surrender for policies that are substantially
out-of-the-money.

The rest of this chapter is organized as follows. In Section 3.2 we present the model (which
follows the standard Black-Scholes assumptions) and the pricing of a general maturity benefit
given that the fee is only paid when the fund value is below some critical level. In Section 3.3 we
apply the results to the simple guaranteed minimum maturity and death benefits embedded in
a VA contract. Some numerical illustrations can be found in Section 3.4. A first analysis of the
surrender incentive is presented in Section 3.5. Section 3.6 studies the robustness of the results
to the Black-Scholes model assumption. Section 3.7 concludes.

3.2 Pricing with state-dependent fee rates

3.2.1 Notation

Consider a simple variable annuity contract and denote by Ft the underlying fund value at time t.
Assume that there is a single premium P paid at time 0 by the policyholder. Further assume that
the premium is fully invested in an equity index St which follows a geometric Brownian motion
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under the risk-neutral measure Q1:

dSt = St (r dt+ σdWt) .

Here r denotes the continuously compounded risk-free rate and σ is the volatility. Furthermore
suppose that management fees are paid out of the fund at a constant percentage c whenever the
value of the fund, Ft, lies below a given level β. Let Ct be the total fees paid at time t; its
dynamics are given by

dCt = cFt1{Ft<β} dt,

where 1A is the indicator function of the set A. The dynamics of the fund are thus given by

dFt
Ft

=
dSt
St
− c1{Ft<β} dt, 0 6 t 6 T, (3.1)

with F0 = P − e, where P is the initial premium and e is the fixed expense charge deducted
by the insurer at inception. Throughout this chapter, we assume e = 0. Using Ito’s lemma to
compute d ln(Ft), and integrating, we obtain the following representation of (3.1),

Ft = F0 exp

{(
r − σ2

2

)
t− c

∫ t

0
1{Fs<β}ds+ σWt

}
. (3.2)

3.2.2 Pricing the VA including guarantees with state-dependent
fee rates

We first consider a simple maturity benefit guarantee, with term T -years, and with a payout that
depends only on FT . Let g(T, FT ) be the total payoff of the VA – that is, the policyholder’s
fund plus any additional payments arising from the embedded option. For example g(T, FT ) =
max(G,FT ) where G is the guaranteed payout at time T . Our first objective in this chapter is to
compute the following value

U0,F0 := EQ[e−rT g(T, FT )],

which corresponds to the market value (or no-arbitrage price) of the VA at time 0 for its payoff
g(T, FT ) paid at time T . Note that in this chapter, we slightly modify the notation for the price of
the maturity benefit to highlight its dependence on other factors such as the fair fee and the level
under which this fee is paid. As we discuss above, for simplicity, we ignore lapses and surrenders,
and value the contract as a definite term investment.

As the fee is only paid when the fund value Ft is below the level β, we introduce the occupation

1This chapter is only concerned with the risk-neutral pricing of the maturity benefit. For this reason,
we only work under the risk-neutral measure Q.
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time

Γ−t,F (β) =

∫ t

0
1{Fs<β}ds, (3.3)

which corresponds to the total time in the interval (0, t) for which the fund value lies below the
fee barrier β.

Proposition 3.2.1 (No-Arbitrage Price). Let θt := −a + c
σ1{Ft<β} where a = 1

σ

(
r − σ2

2

)
and

let K = 1
σ ln

(
β
F0

)
. Define a probability Q̃ by its Radon-Nikodym derivative with respect to the

risk-neutral probability2 Q(
dQ̃
dQ

)
T

= exp

{∫ T

0
θsdWs −

1

2

∫ T

0
θ2
sds

}
. (3.4)

Then,

U0,F0 = e−rT−
a2

2
TEQ̃

[
exp

{
aW̃T + bΓ−

T,W̃
(K)− c

σ

∫ T

0
1{W̃s<K}dW̃s

}
g
(
T, F0e

σW̃T

)]
, (3.5)

where b = c
σ2

(
r − σ2

2 −
c
2

)
and W̃t = Wt −

∫ t
0 θsds is a Q̃−Brownian motion, and Γ−

T,W̃
(K) is

defined similarly as in (3.3) and represents the occupation time of W̃ below K.

Proof. This proof is based on Section 5 of Karatzas and Shreve (1984). Recall that Wt is a
standard Brownian motion under the risk-neutral probability measure Q. By Girsanov’s Theorem
it is clear that W̃t = Wt −

∫ t
0 θsds = Wt + at − c

σ

∫ t
0 1{Fs<β}ds is a standard Brownian motion

under the probability measure Q̃ defined in (3.4). Furthermore, observe that Ft = F0e
σW̃t , for

0 6 t 6 T , so that the occupation time of the fund below the level β can be rewritten using the
Brownian motion W̃ under the new probability measure Q̃

{Ft < β} =
{
W̃t < K

}
, (3.6)

where K := 1
σ ln

(
β
F0

)
. In other words, the occupation time Γ−t,F (β) (given in (3.3)), is also

Γ−
t,W̃

(K) =
∫ t

0 1{W̃s<K}ds (using the equivalence in (3.6)). Note that we can express the Radon-

2This means that Q̃(A) = E
[
dQ̃
dQ1A

]
for any measurable set A.
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Nikodym derivative
(
dQ̃
dQ

)
T

as(
dQ̃
dQ

)
T

= exp

{∫ T

0
θs(dW̃s + θsds)−

1

2

∫ T

0
θ2
sds

}
= exp

{∫ T

0
θsdW̃s +

1

2

∫ T

0
θ2
sds

}
= exp

{
−aW̃T +

c

σ

∫ T

0
1{W̃s<K}dW̃s +

a2

2
T − bΓ−

T,W̃
(K)

}
(3.7)

where

b =
c

σ2

(
r − σ2

2
− c

2

)
.

To get the last equality, (3.7), we used the fact that

θ2
s = a2 − 2c

σ2

(
r − σ2

2
− c

2

)
1{W̃s<K}.

This makes it possible to price a claim g(T, FT ) on the fund at maturity, under the measure Q̃:

U0,F0 = EQ
[
e−rT g(T, FT )

]
= EQ̃

[(
dQ
dQ̃

)
T

e−rT g(T, FT )

]

= EQ̃

[
e
−rT+aW̃T− c

σ

∫ T
0 1{W̃s<K}

dW̃s−a
2

2
T+bΓ−

T,W̃
(K)

g
(
T, F0e

σW̃T

)]
,

which ends the proof of Proposition 3.2.1. �

From Proposition 3.2.1, it is clear that we need the joint distribution of (W̃t,
∫ T

0 1{W̃s<K}dW̃s,

Γ−
t,W̃

(K)) under Q̃ to evaluate the initial premium U0,F0 . Using the Tanaka formula for the

Brownian local time, L
t,W̃

(K) (see Proposition 6.8 of Karatzas and Shreve (1991)), we can write∫ t

0
1{W̃s<K}dW̃s = L

t,W̃
(K)− (W̃t −K)− + (0−K)−, (3.8)

where we recall that x− = max(−x, 0) so that (0 − K)− = max(K, 0). Thus, to price the
Variable Annuity contract, we compute the expectation under Q̃ using the trivariate density3

Q̃
(
W̃T ∈ dx, LT,W̃ ∈ dy,Γ

−
T,W̃

(K) ∈ dz
)

, which we recall in the following proposition.

3Note that the terminology “density” is used but it could be mixed, as there could be some probability
mass on {L

T,W̃
(K) = 0,Γ−

T,W̃
(K) = T} or on {L

T,W̃
(K) = 0,Γ−

T,W̃
(K) = 0}.
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Proposition 3.2.2 (Distribution of
(
W̃T , LT,W̃ (K),Γ−

T,W̃
(K)

)
under Q̃). Denote by f(x, y, z) =

Q̃
(
W̃T ∈ dx, LT,W̃ (K) ∈ dy,Γ−

T,W̃
(K) ∈ dz

)
and by h(s, x) := |x|√

2πs3
exp

{
−x2

2s

}
.

For K > 0, the joint density of
(
W̃T , LT,W̃ (K),Γ−

T,W̃
(K)

)
is given by

f(x, y, z) =


2h(z, y +K) h(T − z, y −K + x), x > K, y > 0, 0 < z < T
2h(T − z, y) h(z, y + 2K − x), x < K, y > 0, 0 < z < T

1√
2πT

(
e−

x2

2T − e−
(x−2K)2

2T

)
, x < K, y = 0, z = T.

For K < 0, the joint density of
(
W̃T , LT,W̃ (K),Γ−

T,W̃
(K)

)
is given by

f(x, y, z) =


2h(z, y) h(T − z, y + x− 2K), x > K, y > 0, 0 < z < T
2h(T − z, y −K) h(z, y − x+K), x < K, y > 0, 0 < z < T

1√
2πT

(
e−

x2

2T − e−
(x−2K)2

2T

)
, x > K, y = 0, z = 0.

Proof. Section 3 of Karatzas and Shreve (1984) gives the trivariate density of (ZT , LT,Z(0),
Γ+
T,Z(0)) for a Brownian motion Z with given initial value Z0. To make use of this result, we

express L
T,W̃

(K) and Γ−
T,W̃

(K) in terms of (ZT , LT,Z(0),Γ+
T,Z(0)) where Z is a Brownian motion

such that Z0 = K. A detailed proof of Proposition 3.2.2 can be found in Appendix 3.A. �

From the expression of the price in Proposition 3.2.1, and from the Tanaka formula in (3.8), we
observe that the trivariate density given in Proposition 3.2.2 can be used to price any European
VA. The following proposition summarizes this result.

Proposition 3.2.3 (No-arbitrage price). The no-arbitrage price at time 0 of a VA contract with
payoff g(T, FT ) can be computed as

U0,F0 = e−rT−
a2

2
TEQ̃

[
e
aW̃T+bΓ−

T,W̃
(K) −

cL
T,W̃

(K)

σ
+ c
σ ((W̃T−K)−−max(K,0))

g
(
T, F0e

σW̃T

)]

using the trivariate density of
(
W̃T , LT,W̃ (K),Γ−

T,W̃
(K)

)
given in Proposition 3.2.2.

3.3 Examples

In this section we apply Proposition 3.2.3 to price a VA with level GMMB, and a VA with a
level GMDB, with state-dependent fees payable when the policyholder’s fund falls below some
pre-specified level.
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3.3.1 State-dependent fee rates for a VA with GMMB

The next proposition gives the price of a variable annuity with a guaranteed minimum maturity
benefit (GMMB). It pays out the maximum between the value of the fund at maturity, FT , and
a guaranteed amount G at a given maturity date T . The payoff is then

g(T, FT ) := max(G,FT ) = FT1{G6FT } +G1{FT<G}. (3.9)

Let UM0,F0
(T, β,G, c) be the no-arbitrage price of this VA at inception assuming that a fee c is

taken from the fund continuously, whenever the fund value drops below the level β.

Proposition 3.3.1 (No-arbitrage price for GMMB with guaranteeG). The initial price UM0,F0
(T, β,G, c)

of the GMMB contract is given by

UM0,F0
(T, β,G, c) = e−rT−

a2

2
T− c

σ
max(0,K)(F0AT +GDT ), (3.10)

where 
AT =

+∞∫
H

+∞∫
0

T∫
0

e(σ+a)x+bz− c
σ
y+ c

σ
(x−K)−f(x, y, z)dz dy dx

DT =
H∫
−∞

+∞∫
0

T∫
0

eax+bz− c
σ
y+ c

σ
(x−K)−f(x, y, z)dz dy dx

with H := 1
σ ln

(
G
F0

)
. Recall that K := 1

σ ln
(
β
F0

)
where β is the level that triggers the payment

of the continuous fee c.

Note that the maturity benefit is usually conditional on the survival of the policyholder. In
Proposition 3.3.1, we ignore mortality risk. In order to add mortality risk, it would suffice to
multiply the value of the benefit by the probability that the policyholder survives to maturity.

Proof. Using Proposition 3.2.3 and the expression of the payoff g(T, FT ) given in (3.9), the result
follows. �

We now replace the density f by its expression given in Proposition 3.2.2 and we can simplify
the expressions for AT and DT . To do so we distinguish four cases. Details are given in Appendix
3.B.

The fair fee rate c∗ is then computed such that, for a given premium P , the VA value is equal
to the premium paid, that is

P = UM0,F0
(T, β,G, c∗). (3.11)

We ignore here other types of expenses and assume there are no other guarantees attached. Note
that the fair fee is the amount that needs to be paid out of the fund in order for the insurer to
build the replicating portfolio.
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Proposition 3.3.1 gives integral expressions for the no-arbitrage price of the GMMB. In the
special case when the fee is paid only when the option is in-the-money, in other words when
β = G, the price of the GMMB is given in the next proposition.

Proposition 3.3.2 (No-arbitrage price for GMMB with guarantee G when β = G). When the
fee is only paid when the option is in-the-money, that is β = G, the initial price UM0,F0

(T, β,G, c)
of the GMMB contract is given by

UM0,F0
(T, β,G, c) = e−rT−

a2

2
T− c

σ
max(0,K)(F0C1 +G(C2 + C3)),

where

C3 =
(
β
F0

) c
σ2
e

(
r−σ

2

2

)2
T

2σ2

(
N

(
ln
(
β
F0

)
−ηT

σ
√
T

)
−
(
β
F0

) 2η

σ2
N

(
ln
(
F0
β

)
−ηT

σ
√
T

))
with η = r − σ2

2 − c and N(·) stands for the cdf of the standard normal distribution. For K > 0
(that is G = β > F0),

C1 =
∞∫
K

∞∫
0

T∫
0

(y+K)(y−K+x)

π
√
z3(T−z)3

e
(a+σ)x+bz− cy

σ
− (y+K)2

2z
− (y−K+x)2

2(T−z) dz dy dx

C2 =
K∫
−∞

∞∫
0

T∫
0

y(y+2K−x)

π
√
z3(T−z)3

e(
a− c

σ )x+bz− cy
σ

+ cK
σ
− y2

2(T−z)−
(y+2K−x)2

2z dz dy dx,

and for K < 0 (that is G = β < F0)
C1 =

∞∫
K

∞∫
0

T∫
0

y|y+x−2K|
π
√
z3(T−z)3

e
(a+σ)x+bz− cy

σ
− y

2

2z
− (y−2K+x)2

2(T−z) dz dy dx

C2 =
K∫
−∞

∞∫
0

T∫
0

|y−K|(y−x+K)

π
√
z3(T−z)3

e(
a− c

σ )x+bz− cy
σ

+ cK
σ
− (y−K)2

2(T−z) −
(y+K−x)2

2z dz dy dx.

Details can be found in Appendix 3.B in the case when H = K.

3.3.2 State-dependent fee rates for a VA with GMDB

In this section, we price a guaranteed minimum death benefit rider, which guarantees a minimum
amount if the policyholder dies before maturity of the contract. Let us first introduce some
notation. Let τx be the random variable representing the future lifetime of a policyholder aged x
and let xτyx denote his curtate future lifetime4. Let also tpx = P (τx > t) be the probability that
a policyholder aged x survives t years and qx+t = P (t < τx 6 t + 1|τx > t) be the probability

4Here, x·y denotes the floor function.
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that a policyholder aged x+ t dies during year t. We assume that the GMDB is paid at the end
of the year of death, only if death occurs strictly before the maturity T of the contract. The fair
price at time 0 of the GMDB is given by

EQ

[
e−r(xτyx+1) max(Gxτyx+1, Fxτyx+1)1{(xτyx+1)<T} + e−rTFT1{(xτyx+1)>T}

]
,

where Gt is the guarantee paid at time t. Assume that mortality rates are deterministic and
that death benefits are paid at the end of the year of death. Under those assumptions, the no-
arbitrage price of the payoff of the variable annuity with a GMDB rider, denoted by UD0,F0

(T, β, c),
can be computed using the price for a GMMB obtained in the previous section. It can be seen
as a weighted sum of GMMB prices. See, for example, Dickson, Hardy, and Waters (2009) for
details.

Proposition 3.3.3 (Fair price for GMDB). Under the assumption of deterministic mortality
rates, the fair price of a GMDB, UD0,F0

(T, β, c) is given by

UD0,F0
(T, β, c) = EQ

[
T∑
t=0

tpx qx+t e
−rt max(Gt, Ft) + T px e

−rTFT

]

=
T∑
t=0

tpx qx+tU
M
0,F0

(t, β,Gt, c) + T pxEQ
[
e−rTFT

]
,

where UM0,F0
(t, β,Gt, c) is the market value of a variable annuity of maturity t with a GMMB rider

with guaranteed amount Gt. We also have that

EQ
[
e−rTFT

]
= F0e

−rT−a
2

2
TADT ,

with

ADD =

∫ ∞
−∞

∫ ∞
0

∫ T

0
e(a+σ)x+bz− c

σ
y+ c

σ ((x−K)−−max(x,0))f(x, y, z)dz dy dx,

where f(x, y, z) is defined as in Proposition 3.2.2.

Proof. This result is immediate using (3.5) and Proposition 3.2.1. �

The fair fee rate for the GMDB benefit is such that the initial premium is equal to the
expected value under Q of the discounted payoff. That is, for a given premium P , and assuming
the GMDB is the only guarantee, c∗ satisfies

P = UD(T, β, c∗). (3.12)
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3.4 Numerical Results

In this section, we compare the state-dependent fee rates for VAs with guarantees, for a range of
parameters and settings. Unless otherwise indicated, we let r = 0.03 and σ = 0.2; the contract
term is 10 years. We assume that the initial premium is P = 100, with no initial fixed expense,
so that e = 0. The policyholder is assumed to be aged 50, and mortality is assumed to follow the
Gompertz model, with force of mortality µy = 0.00002 e0.1008y.

Let g denote the guaranteed roll-up rate, which relates the guarantee G applying at T , and the
initial premium P , as G = P egT . When g = 0, the guarantee is a ‘return-of-premium’ guarantee,
so that G = P . For now, we assume that the fee is paid only below the guaranteed level (β = G).

In Figure 3.1, we show the market value of the VA with a GMMB as a function of the fee rate
c. The point on the x-axis at which the curve of the no-arbitrage price of the payout crosses the
line y = 100 corresponds to the fair fee rate (as computed in (3.11)). We show different curves
for g = 0%, g = 1% and g = 2%. As expected, the fair fee increases as the guaranteed payoff
increases, reaching almost 0.1 when the guaranteed roll-up rate g is 2%.
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Figure 3.1: No arbitrage price of a VA with a 10-year GMMB as a function of c, with $100
initial premium and guaranteed roll-up rates g = 0%, 1% and 2%.
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Figure 3.1 also illustrates, though, that the relationship between the guarantee level and fee
rate is not straightforward. We note that the curves for g = 0% and g = 1% cross at around
c = 9%. At first this observation may seem counter-intuitive; for a conventional, static fee
structure, a lower guarantee would lead to a lower fee rate. However, in our case, as the fee
is paid only when the option is in the money, the effect of the guarantee roll-up rate g on the
state-dependent fee rate c is not so clear. A higher guarantee generates a higher occupation time,
so that the cost is spread over a longer payment period, which in some cases will lead to a lower
fee rate.

Figure 3.2 illustrates the sensitivity of the dynamic fair fee rate with respect to the volatility
σ and the term T . We find that the fair fee rate increases with σ and decreases with T . In
relative terms, the maturity of the GMMB does not seem to affect the sensitivity of the fair fee
to changes in σ.
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Figure 3.2: Sensitivity of fair fee rates for GMMB with respect to volatility (from σ = 15%
to σ = 30%) and contract term, T = 5, 10 or 15 years for a contract with g = 0.

Table 3.1 considers two contracts; a GMMB and a GMDB, both with fees paid only when
the guarantee is in the money. For comparison purposes, results pertaining to a GMMB with a
continuous fee rate are also illustrated. As expected, the fair fee rate for the GMMB is much
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higher when it is paid only when the guarantee is in the money. The difference is much more
significant for shorter maturities. The GMDB results in a lower fair fee rate since the benefit is
paid only if the policyholder dies during the life of the contract. In this case, since the policyholder
is 50 years old, the probability of having to pay the benefit is quite low. Observe that the GMMB
fair rate (as computed in (3.11)) is decreasing with respect to T whereas the GMDB fair rate
(as computed in (3.12)) is increasing with respect to T . This is explained by the fact that the
payoff of the GMDB benefit is a weighted sum of GMMB payoffs with different maturities (see
Proposition 3.3.3), with weights linked to the probability that the policyholder dies during a
given year. By increasing the maturity of the contract, we extend the period during which the
death benefit can be paid, thus increasing the probability that it is paid at any given point before
maturity. In addition, since the mortality rates increase with time, the fair fee rate is calculated
assuming that less premium will be collected in later years since some policyholders will have
died. For this reason, the fee rate needs to be higher for longer maturities.

Table 3.1: Fair fee rates (%) for the GMMB and GMDB with respect to maturity T when
β = G. “(s-d fee)” refers to state-dependent fees and “(cst fee)” refers to a constant fee.

Type of Contract T = 5 T = 7 T = 10 T = 12 T = 15
GMMB (s-d fee) 15.58 11.01 7.48 6.08 4.66
GMMB (cst fee) 3.53 2.43 1.58 1.24 0.91
GMDB (s-d fee) 0.1 0.12 0.17 0.21 0.27
GMDB (cst fee) 0.04 0.04 0.06 0.06 0.08

Table 3.2 illustrates the sensitivity of the state-dependent fee to the volatility assumption,
compared to that of the static fee. Although the state-dependent fair fee is consistently higher,
it is not significantly more sensitive to a small increase in volatility. In fact, when the volatility
increases from 0.15 to 0.2, the static fee increases by about 84% while the state-dependent fee is
81% higher. However, to keep up with larger increases in volatility, the state-dependent fee rises
faster. When the volatility doubles from 0.15 to 0.3, the state-dependent fee is multiplied by 3.94
while its constant counterpart is only 3.74 times higher. Thus, as σ increases, the sensitivity of
the state-dependent fee to the volatility also increases, compared to the static fee.

For a simple return-of-premium GMMB, we see in Figure 3.1 that the fair fee under the
dynamic fee structure is around 7.5% of the fund. This is a very high rate, and is not practical
in marketing terms. This result though, is not that surprising. The static fee under the same
assumptions is around 2%. The result shows that 2% of the fund paid throughout the policy term
has the same value as 7.5% of the fund paid only when the fund is low. Thus, the state-dependent
fee is paid for a shorter time, and is paid on a smaller fund.

If we accept that such a high fee is unlikely to be feasible, we can move the payment barrier
higher, so that the option being funded still has significant value, even though it is out-of-the-
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Table 3.2: Fair fee rates (%) for the 10-year GMMB with respect to volatility σ when
β = G. “S-D” refers to state-dependent fees and “CST” refers to a constant fee.

Type of Fee σ = 0.15 σ = 0.2 σ = 0.25 σ = 0.3
S-D 4.13 7.48 11.54 16.26
CST 0.86 1.58 2.38 3.22

money. That is, the policyholder would pay for the option when it is close to the money, and cease
paying when it moved further away from the money. This adjustment retains the advantage of
the differential fee structure with respect to disintermediation risk when the guarantee is far out-
of-the-money, but, by increasing the occupation time, offers a more reasonable rate for policies
which are close to the money.

Suppose that the dynamic fee is paid when the fund value is below β = (1 + λ)G, for some
λ > 0. Figure 3.3 illustrates the fair fee rate for different values of λ. We see a dramatic effect on
the fee rate for relatively low values of λ. Increasing the barrier from G to 1.2G causes the fair
fee rate to decrease from 7.48% to 3.77%, which may improve the marketability of the contract
significantly. Moreover, fixing the barrier at 1.34G or higher causes the fair fee to drop below
3.00%, which brings the risk-neutral drift of the fund value process back above 0. Asymptotically,
the state-dependent fee rate of the GMMB converges to the static fee rate which is not state-
dependent. Increasing the payment barrier decreases the fair fee rate, but it also adds an incentive
to surrender. In fact, if the fee is paid while the guarantee is out-of-the-money, it may be optimal
for the policyholder to surrender when the fund value is close to the guaranteed amount. This
might happen when the expected value of the discounted future fees is more than the value of the
financial guarantee. However, even with an increased payment barrier, the incentive to surrender
for very high fund values is still eliminated, thus decreasing the value of the surrender option.
We discuss this further in Section 3.5.
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Figure 3.3: State-dependent fee rates for GMMB, for λ=0 to 5, r = 0.03, T = 10

3.5 Analysis of the Surrender Incentive

One of the motivations of state-dependent fees is to reduce the incentive to surrender the VA
contract when the fund value is high, that is when the guarantee is out-of-the-money. It is clear
that if the policyholder pays a constant fee, at some point the fund value could become so high
that the option is essentially valueless, while the option fees have considerable drag on the fund
accumulation. It would be rational to surrender, in order to stop paying the fees. However, if the
fee is state-dependent, when the fund value is high the policyholder no longer pays fees, and will
gain no benefit from surrendering.

In order to demonstrate this numerically, we consider the relationship between the value of
the financial guarantee at maturity and the value of the future fees. At some time t before the
maturity date T , the policyholder may surrender, with a payoff of Ft (we assume no surrender
charge). If the policyholder holds the contract until maturity, she will receive the fund at T plus
the additional guarantee payout (if any) – that is, she will receive FT + (G− FT )+.
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We will show, in Proposition 3.5.1, that it is optimal to retain the contract at time t if at
that time the value of the future fees is less than the value of the maturity guarantee, which is
the value of the put option payout (G− FT )+. However, the reverse is not generally true. That
is, it may not be optimal to surrender the contract even when the value of the future fees is
greater than the value of the maturity put option. The reason is that the surrender option is
American-style, and if the value of the fees is not too much greater than the option value, it may
be optimal to postpone the decision to surrender.

The option to postpone the surrender decision when fees are state-dependent will be examined
in Chapter 4. However, a comparison of the value of the maturity put option benefit with the
value of the future fees does allow some comparison of surrender incentives. We will demonstrate
through an example how the state-dependent fee reduces the surrender incentive for out-of-the-
money options, compared with a constant fee.

Proposition 3.5.1 (Sufficient conditions to retain the contract at time t). Consider a GMMB
contract that can be surrendered and denote the present value of the maturity benefit at time t by
P (t, Ft). A first sufficient condition to retain the contract at time t is given by

P (t, Ft) := Et[e
−r(T−t) max(FT , G)] > Ft. (3.13)

Let m(t, Ft) denote the value at t of the future fees, and let p(t, Ft) denote the value at t of the
maturity put option, so that

m(t, Ft) := Ft − Et[e−r(T−t)FT ] and p(t, Ft) := Et

[
e−r(T−t)(G− FT )+

]
(3.14)

Then a second sufficient condition to retain the contract at time t is given by

p(t, Ft) > m(t, Ft). (3.15)

Proof. Fix t ∈ [0, T ) and denote the value at time t of the full contract, including the surrender
option, by V (t, Ft). The surrender region is A, defined as the region of Ft where Ft > V (t, Ft)
(as the surrender benefit is equal to Ft).

The full contract value can never be less than the present value of the maturity benefit, so
V (t, Ft) > P (t, Ft).

Suppose also that (3.13) holds, so that P (t, Ft) > Ft; then

V (t, Ft) > P (t, Ft) > Ft ⇒ Ft /∈ A

that is, Ft is outside the surrender region when P (t, Ft) > Ft. Condition (3.13) is proved.
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Condition (3.15) follows from (3.13), as follows

P (t, Ft) = Et[e
−r(T−t)FT ] + Et

[
e−r(T−t)(G− FT )+

]
= Ft −m(t, Ft) + p(t, Ft)

⇒ P (t, Ft)− Ft = p(t, Ft)−m(t, Ft)

then

P (t, Ft) > Ft ⇔ p(t, Ft) > m(t, Ft)

and condition (3.15) is proved. �

To illustrate the effect of the fee structure on the incentive to surrender, we consider a 5-year
variable annuity contract. All other parameters are the same as in Section 3.4. We assume that
the fee rate is set at the fair rate to fund the maturity benefit without allowing for surrenders.

3.5.1 Constant Fee

We first consider the case where a level fee is paid continuously, regardless of the value of the fund.
Figure 3.4 shows the difference between the value of the financial guarantee and the expected
value of the future fees.

As expected, at any time, there is a fund value above which the future fees are worth more
than the financial guarantee at maturity. This can be clearly seen in the panels in Figure 3.4
which give snapshots at t = 1, 2 and 4. The curves all cross at a single point. Below this point,
the option value is greater than the value of the future fees, and the policyholder should remain
in the contract. Above the cross over point, there is another threshold, above which it would
be optimal to surrender the policy. Between the cross over point and the surrender threshold,
it is optimal to postpone the surrender decision. It is well documented that when the fee is
constant, the optimal surrender strategy is to lapse the contract whenever the fund value is above
a certain level (see, for example Chapter 2 and Milevsky and Salisbury (2001)). In this example
the threshold is 125.2 at t = 1, 126.4 at t = 2 and 123.7 at t = 4 (these numbers were calculated
following the algorithm in Chapter 2). That is, for example, at t = 1, the policyholder should
surrender if the fund value is greater than 125.2, which has a probability of around 20%.

3.5.2 State-Dependent Fee

Next, we consider a contract with a state-dependent fee. We first assume that the payment
barrier is β = G = F0. In this case the state-dependent fee is very high. The difference between
the value of the financial guarantee and the expected value of the future fees is shown in Figure
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Figure 3.4: Difference at time t (when the fund value is Ft) between the value of the
financial guarantee at maturity T and the expected value at t of the discounted future
fees for a 5-year GMMB contract with G = F0 = 100 and c = 3.53% paid continuously.
Snapshots at t = 1, t = 2 and t = 4.

3.5. The smaller panels show the relationship between the future fee value and the option value
at t = 1, 2 and 4, in terms of Ft.

One major difference in comparison to the constant fee case is that the surface does not drop
below 0. That means that in this example, there is no fund value at any date where the value
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of the future fees exceeds the value of the option. Hence, following Proposition 3.5.1, it is never
optimal to surrender this contract.

To complete this analysis, we consider a similar contract, but with an increased payment
barrier β. We let β = 1.4G, again assuming G = F0. In this case, the difference between the
value of the financial guarantee and the expected future fee can become negative, but returns to
0 for high fund values (see Figure 3.6).

However, when the payment barrier is increased, there is an interval around the payment
barrier where it may become optimal to surrender the contract since the policyholder can expect
to pay more than he will receive (see Figure 3.6). This indicates that the surrender region when the
fee is state-dependent has a different form than when the fee is constant; the optimal surrender
strategy is no longer based on a simple threshold; there may be a surrender corridor, where
surrender is optimal for Ft in the corridor, and not for higher or lower values of Ft. However, it is
apparent that the area where there is no surrender incentive, because the option value is greater
than or equal to the future fee value, is much larger than for the constant fee case.

We have demonstrated through an example that the optimal surrender area for the constant
fee contract is much larger than for the state-dependent fee contract. However, we have not
included a full analysis of optimal surrenders, nor have we priced the contracts assuming optimal
(or deterministic) surrenders. As mentioned before, the small panels of Figure 3.6 indicate that
the optimal surrender strategy is not of the threshold type. This makes a full analysis of the
optimal surrender strategy more complex than for the traditional constant fee5.

3.6 Model Risk

In the previous sections we have assumed that fund values may be modelled by a geometric
Brownian motion, which allows us to obtain solutions in integral form. However, it is well-known
that this model does not provide a good fit to the empirical distribution of stock returns over
longer terms. Our results in the previous section may thus be viewed as approximations for real
market values. In order to test their sensitivity to model risk, we find the fair fee rate when
the stock returns are assumed to follow a regime-switching log-normal (RSLN) model. Hardy
(2001) shows that this model provides a better fit for the distribution of long-term stock returns,
allowing for heavier tails. It also reproduces the volatility clustering observed in empirical data.

5Because of the shape of the surrender region, we cannot use the integral representation techniques of
Kim and Yu (1996), and least squares Monte Carlo techniques (used, for example, by Bacinello, Millosso-
vich, Olivieri, and Pitacco (2011)) break down due to the fact that the difference between the surrender
benefit and the continuation option is so small for much of the range of Ft, that numerical errors are
too significant. The problem is manageable using partial differential equations, as in Dai, Kuen Kwok,
and Zong (2008), Chen, Vetzal, and Forsyth (2008) and Belanger, Forsyth, and Labahn (2009), but the
technical challenges involved take such analysis beyond the scope of this chapter.
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Figure 3.5: Difference at time t (when the fund value is Ft) between the value of the
financial guarantee at maturity T and the expected value at t of the discounted future
fees, for a 5-year GMMB contract with β = G, G = F0 = 100 and c = 15.58% paid when
Ft < β. Snapshots at t = 1, t = 2 and t = 4.
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The RSLN model is based on an underlying state variable, the value of which is governed
by a transition matrix P (of size 2 × 2 if there are 2 possible regimes). The elements of this
matrix, denoted pi,j represent the probability that the state variable moves to state j given that
it is currently in state i. Between each transition, stock returns follow a log-normal distribution
whose parameters are determined by the regime indicated by the state variable. Hardy (2001)
presents a two-regime model in which transitions occur monthly. These characteristics are very
suitable for our purposes. In fact, while we assumed earlier that management fees were withdrawn
in a continuous manner, many insurance companies collect them monthly. This also has an impact
on the fair fee rate that should be charged.

In this section, in addition to testing the sensitivity of the fair fee rate to model changes,
we also analyze the impact of discrete fee collection. When fees are withdrawn in discrete time,
getting an analytical expression for the present value of the guarantee payoff is not always possible.
For this reason, we use Monte Carlo simulations to obtain the results given in this section. We
consider GMMB guarantees with maturities ranging from 5 to 15 years. To quantify the model
impact and fee discretization separately, we find the fair fee rates under three models. The first
case is identical to the setting presented in the previous sections; the value of the fund follows
a geometric Brownian motion (GBM) and fees are paid continuously. In the second case, the
return on the fund is also assumed to be log-normal, but the fees are paid monthly. The last case
assumes that fund returns follow a regime-switching log-normal model and that the fees are paid
monthly. We use a risk-free rate of 0.03. For the GBM, we use σ = 0.14029 to match Hardy
(2001). For the RSLN, we used the parameters given in Table 3.3, which are taken from Hardy
(2001). The volatility parameters σ1 and σ2 are expressed per month.

Table 3.3: Regime-switching log-normal parameters used for Monte Carlo simulations

Parameter σ1 σ2 p1,2 p2,1

Value 0.035 0.0748 0.0398 0.3798

Table 3.4 presents the fair fee rates obtained using 5 × 106 simulations. The column RSLN
corresponds to the fair rates computed by Monte Carlo simulations when the underlying index
price follows a regime switching model and fees are paid monthly when the fund is in-the-money,
assuming a return-of-premium guarantee. The column GBM-D corresponds to the fair rates
computed by Monte Carlo when the underlying index price evolves as in the Black-Scholes model
and fees are paid monthly when the fund is below the return-of-premium guarantee. Finally
GBM-C corresponds to the fair rates computed using Proposition 3.3.2 and solving (3.11) when
the fee is paid continuously, conditional on the fund value lying below the return-of-premium
guarantee.

We observe from Table 3.4 that the RSLN fees are close to the Black-Scholes fees, given
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Table 3.4: Fair fee rates (%) in the Regime Switching model (RSLN) and in the Black-
Scholes model when fees are paid monthly (GBM-D) and when fees are paid continuously
(GBM-C)

T RSLN GBM-D GBM-C
5 7.18 7.27 7.82
10 3.43 3.44 3.57
15 2.07 2.06 2.11

monthly payments, which indicates that the results appear to be fairly robust with respect to
model risk, particularly with respect to fat tails. A possible explanation for this may be the fact
that when the fund does not perform well, the guarantee is more likely to be in the money and
the fee is collected. If the guarantee is in the money more often, the fee is also paid for a longer
period of time. Thus, although fatter tails may lead to potentially higher benefits to pay, they
can drag the fund down and cause the fee to be paid more often. In this case, a slightly lower
fee rate can still be sufficient to cover the guarantee. We also note that the Black-Scholes model
with continuous fees generates slightly higher fee rates than for the monthly fees, which arises
from the difference between the occupation time for the discrete case and the continuous case,
with lower expected occupation time where the process is continuous.

3.7 Concluding Remarks

This chapter finds the fair fee rate for European-type guaranteed benefits in variable annuities
when the fee payment is contingent on the position of the value of the underlying fund relative
to some critical level β.

This is a first step towards a dynamic state-dependent charging structure, where the fee rate
depends on the fund value and the dynamic value of the embedded guarantees. We have considered
pricing here, but we recognize that the fee structure could also have an important impact on
hedging performance and on the surrender rates. In future research we will investigate valuation
and risk management allowing for dynamic, state-dependent surrenders, and also consider the
impact of a non-level fee threshold.
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Appendix

3.A Proof of Proposition 3.2.2

Proof. We first prove the case where K > 0. Observe that

Q̃
(
W̃T ∈ dx, LT,W̃ (K) ∈ dy,Γ−

T,W̃
(K) ∈ dz

)
= Q̃

(
−W̃T ∈ −dx, LT,W̃ (K) ∈ dy,Γ−

T,W̃
(K) ∈ dz

)
= Q̃

(
ZT ∈ K − dx, LT,W̃ (K) ∈ dy,Γ−

T,W̃
(K) ∈ dz

)
,

where Zt = K − W̃t is a Q̃-Brownian motion starting at K.
Next, we need to express L

T,W̃
(K) and Γ−

T,W̃
(K) in terms of LT,Z(0) and Γ+

T,Z(0) (where Γ+
T,Z(0)

denotes the occupation time of Z above 0). Then, it will be possible to use the results of Karatzas
and Shreve (1984) to obtain the desired distribution. Note that

Γ−
T,W̃

(K) =

∫ T

0
1{W̃s6K}ds =

∫ T

0
1{Zs>0}ds = Γ+

T,Z(0). (3.16)
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Using the Tanaka formula, we also have

L
T,W̃

(K) = (W̃T −K)− − (0−K)− +

∫ T

0
1{W̃s6K}dW̃s

= (−ZT )− −K −
∫ T

0
1{Zs>0}dZs

= (−ZT )− −K −
∫ T

0

(
1− 1{Zs<0}

)
dZs

= (−ZT )− −K − ZT +K +

∫ T

0
1{Zs<0}dZs

= (−ZT )+ +

∫ T

0
1{Zs<0}dZs, (3.17)

where we use
∫ T

0 dZs = ZT − Z0 = ZT −K to obtain the second to last equation. The Tanaka
formula also allows us to express LT,Z(0) as

LT,Z(0) = Z−T −K
− +

∫ T

0
1{Zs<0}dZs, (3.18)

where K− = 0 as K > 0. Re-arranging (3.17) using (3.18), we obtain

L
T,W̃

(K) = LT,Z(0) + (−ZT )+ − Z−T .

Since (−ZT )+ − Z−T = 0, we get
L
T,W̃

(K) = LT,Z(0). (3.19)

Then using (3.16) and (3.19), we can write

Q̃
(
ZT ∈ K − dx, LT,W̃ (K) ∈ dy,Γ−

T,W̃
(K) ∈ dz

)
= Q̃

(
ZT ∈ K − dx, LT,Z(0) ∈ dy,Γ+

T,Z(0) ∈ dz
)
. (3.20)

Since Zt is a Brownian motion starting at K, we can use the trivariate density of (ZT , LT,Z(0),
Γ+
T,Z(0)) given in Section 4 of Karatzas and Shreve (1984) and get the desired result.
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Similarly, for K < 0, we can observe that

Q̃
(
W̃T ∈ dx, LT,W̃ (K) ∈ dy,Γ−

T,W̃
(K) ∈ dz

)
= Q̃

(
W̃T −K ∈ dx−K,LT,W̃ (K) ∈ dy,Γ−

T,W̃
(K) ∈ dz

)
= Q̃

(
HT ∈ dx−K,LT,W̃ (K) ∈ dy,Γ−

T,W̃
(K) ∈ dz

)
,

where Ht = W̃t − K be a Q̃-Brownian motion starting at −K. We now express L
T,W̃

(K) and

Γ−
T,W̃

(K) in terms of LT,H(0) and Γ+
T,H(0). We have

Γ−
T,W̃

(K) =

∫ T

0
1{W̃s6K}ds =

∫ T

0
1{Hs60}ds =

∫ T

0
1− 1{Hs>0}ds = T − Γ+

T,H(0).

We also have

L
T,W̃

(K) = (W̃T −K)− − (0−K)− +

∫ T

0
1{W̃s6K}dW̃s

= H−T +

∫ T

0
1{Hs60}dHs

= LT,H(0). (3.21)

Then we can write

Q̃
(
HT ∈ dx−K,LT,W̃ (K) ∈ dy,Γ−

T,W̃
(K) ∈ dz

)
= Q̃

(
HT ∈ dx−K,LT,H(0) ∈ dy,Γ+

T,H(0) ∈ T − dz
)
. (3.22)

Since Ht is a Brownian motion starting at −K (remember that K < 0), the result follows from
Section 4 of Karatzas and Shreve (1984). �

3.B Details for the GMMB price

Note that AT and DT in the expression (3.10) in Proposition 3.3.1 depend on the trivariate
density established in Proposition 3.2.2, which depends on K and β. We now discuss all possible
cases needed to implement this formula.
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Assume K > 0 and β > G.

In this case K > H and we have AT = A
(1)
T +A

(2)
T +A

(3)
T where

A
(1)
T =

K∫
H

+∞∫
0

T∫
0

e(σ+a)x+bz− c
σ
y+ c

σ
(K−x) 2h(T − z, y) h(z, y + 2K − x)dzdydx

A
(2)
T =

+∞∫
K

+∞∫
0

T∫
0

e(σ+a)x+bz− c
σ
y 2h(z, y +K) h(T − z, y −K + x)dzdydx

A
(3)
T = ebT+ cK

σ√
2πT

K∫
H

e(a+σ− c
σ )x
(
e
−x2

2T − e
−(x−2K)2

2T

)
dx.

We also have DT = D
(1)
T +D

(2)
T where

D
(1)
T =

H∫
−∞

+∞∫
0

T∫
0

eax+bz− c
σ
y+ c

σ
(K−x) 2h(T − z, y) h(z, y + 2K − x)dzdydx

D
(2)
T = ebT+ cK

σ√
2πT

H∫
−∞

e(a−
c
σ )x
(
e
−x2

2T − e
−(x−2K)2

2T

)
dx.

Assume K < 0 and β > G.

In this case K > H and we have AT = A
(4)
T +A

(5)
T +A

(6)
T where

A
(4)
T =

K∫
H

+∞∫
0

T∫
0

e(σ+a)x+bz− c
σ
y+ c

σ
(K−x) 2h(T − z, y −K) h(z, y − x+K)dzdydx

A
(5)
T =

+∞∫
K

+∞∫
0

T∫
0

e(σ+a)x+bz− c
σ
y 2h(z, y) h(T − z, y + x− 2K)dzdydx

A
(6)
T = e

cK
σ√

2πT

K∫
H

e(a+σ− c
σ )x
(
e
−x2

2T − e
−(x−2K)2

2T

)
dx.

We also have DT = D
(3)
T +D

(4)
T where

D
(3)
T =

H∫
−∞

+∞∫
0

T∫
0

eax+bz− c
σ
y+ c

σ
(K−x) 2h(T − z, y −K) h(z, y − x+K)dzdydx

D
(4)
T = e

cK
σ√

2πT

H∫
−∞

e(a−
c
σ )x
(
e
−x2

2T − e
−(x−2K)2

2T

)
dx.
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Assume K > 0 and β < G.
In this case K < H and we have

AT =
+∞∫
H

+∞∫
0

T∫
0

e(σ+a)x+bz− c
σ
y 2h(z, y +K) h(T − z, y −K + x)dzdydx.

We also have DT = D̄
(1)
T + D̄

(2)
T + D̄

(3)
T where

D̄
(1)
T =

K∫
−∞

+∞∫
0

T∫
0

eax+bz− c
σ
y+ c

σ
(K−x) 2h(T − z, y) h(z, y + 2K − x)dzdydx

D̄
(2)
T =

H∫
K

+∞∫
0

T∫
0

eax+bz− c
σ
y 2h(z, y +K) h(T − z, y −K + x)dzdydx

D̄
(3)
T = ebT+ cK

σ√
2πT

K∫
−∞

e(a−
c
σ )x
(
e
−x2

2T − e
−(x−2K)2

2T

)
dx.

Assume K < 0 and β < G.
In this case K < H and we have

AT =
+∞∫
H

+∞∫
0

T∫
0

e(σ+a)x+bz− c
σ
y 2h(z, y) h(T − z, y + x− 2K)dzdydx

We also have that DT = D̄
(4)
T + D̄

(5)
T + D̄

(6)
T where

D̄
(4)
T =

K∫
−∞

+∞∫
0

T∫
0

eax+bz− c
σ
y+ c

σ
(K−x) 2h(T − z, y −K) h(z, y − x+K)dzdydx

D̄
(5)
T =

H∫
K

+∞∫
0

T∫
0

eax+bz− c
σ
y 2h(z, y) h(T − z, y + x− 2K)dzdydx

D̄
(6)
T = e

cK
σ√

2πT

K∫
−∞

e(a−
c
σ )x
(
e
−x2

2T − e
−(x−2K)2

2T

)
dx.

To compute A
(3)
T , we observe that for any α ∈ R, we have the following identity

1√
2πT

∫ K

H
eαx

(
e−

x2

2T − e−
(x−2K)2

2T

)
dx =

e
α2T

2

[
N

(
αT −H√

T

)
−N

(
αT −K√

T

)
− e2αKN

(
2K −H + αT√

T

)
+ e2αKN

(
K + αT√

T

)]
.
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After replacing α = a+ σ − c
σ = r−c

σ + σ
2 , and simplify, we obtain

A
(3)
T =

(
β

F0

) c
σ2

e
T

2σ2 (γ2−c(c−2r+σ2))

N ( ln
(
F0
G

)
+ γT

σ
√
T

)
−N

 ln
(
F0
β

)
+ γT

σ
√
T


−
(
β

F0

) 2γ

σ2

N

 ln
(

β2

F0G

)
+ γT

σ
√
T

+

(
β

F0

) 2γ

σ2

N

 ln
(
β
F0

)
+ γT

σ
√
T

 ,
where γ = r + σ2

2 − c.

Define I(α1, α2) as follows

I(α1, α2) :=
1√
2πT

∫ α2

−∞
eα1x

(
e−

x2

2T − e−
(x−2K)2

2T

)
dx.

We use the following identity to get closed-form expressions for D̄
(3)
T and D

(2)
T :

I(α1, α2) = e
α2

1T

2

[
N

(
α2 − α1T√

T

)
− e2α1KN

(
α2 − α1T − 2K√

T

)]
.

It is clear that D̄
(3)
T = ebT

(
β
F0

) c
σ2 I

(
a− c

σ ,K
)

and D
(2)
T = ebT

(
β
F0

) c
σ2 I

(
a− c

σ , H
)
. After

simplifications, we obtain D̄
(3)
T

D̄
(3)
T =

(
β

F0

) c
σ2

e

(
r−σ

2

2

)2
T

2σ2

N
 ln

(
β
F0

)
− ηT

σ
√
T

− ( β

F0

) 2η

σ2

N

 ln
(
F0
β

)
− ηT

σ
√
T

 ,

where η = r − σ2

2 − c. Note that D
(2)
T can be obtained similarly as the only difference is that H

replaces K. Thus we only need to replace β by G in the above expression to obtain D
(2)
T . �

76



Chapter 4

Optimal surrender under the
state-dependent fee structure

4.1 Introduction

This chapter is based on a paper that was written in collaboration with Dr. Maciej Augustyniak
(Université de Montréal), Dr. Carole Bernard and Dr. Mary Hardy.

This chapter aims to provide some insight on a very practical question: How can an insurer
take advantage of product design to mitigate lapse risk, and to simplify risk management (hedging)
in VAs? To answer this question, we examine the interplay between the fee structure of a VA with
a guaranteed minimum accumulation benefit (GMAB) and the schedule of surrender charges. We
propose to reduce the surrender incentive using product design to construct a contract which
will be rarely optimal to lapse, if ever, while still being marketable. By achieving this, we
greatly simplify the strategy that hedges optimal policyholder behaviour, since the hedge can
be established as if no surrenders were allowed. Most importantly, it eliminates the need to
model surrender behaviour for pricing and hedging purposes, thus reducing the risk of having
an inappropriate lapse model. In such a product design, lapse assumptions mainly impact the
profitability analysis of the product, and have little influence on the hedging strategy.

When the fee is paid as a fixed percentage of the fund, we demonstrate that there exists
a model-free minimal surrender charge function which results in lapsation being sub-optimal
during the whole length of the contract, and derive it in explicit form. However, these surrender
penalties generally lead to a product design which is not marketable. For this reason, we consider
the state-dependent fee structure presented in Chapter 3, where the fee is paid only when the
account value is below a certain threshold. We analyse the optimal surrender behaviour under
such a fee structure in the presence of surrender charges. We show how to solve for the minimal

77



surrender charge function which results in lapsation being sub-optimal during the whole length
of the contract. We explore different product designs that are able to eliminate the surrender
incentive while keeping the contract marketable and attractive to policyholders. We find that by
combining a state-dependent fee with surrender charges, it is possible design a contract that can be
hedged and managed reasonably well, while remaining attractive to policyholders (with relatively
low fees). In particular, when the surrender incentive is eliminated, the hedging strategy is much
simpler since it is reduced to replicating the maturity benefit. Through the analysis of hedging
errors, we also show that such a hedging strategy performs well under optimal and sub-optimal
lapse behaviour, making the state-dependent fee an attractive design from a risk-management
perspective.

Section 4.2 of this chapter introduces the model and the contract to price. In Section 4.3, we
derive examples of optimal surrender regions. Section 4.4 presents the theoretical results useful
to design a contract that eliminates the surrender incentive. In Section 4.5, we give an example
of such a contract and analyse the effectiveness of a dynamic hedge under different surrender
behaviours. Section 4.6 concludes.

4.2 Pricing the GMMB

4.2.1 Market and Notation

We consider a VA contract with maturity T and underlying account value at time t denoted by
Ft, t ∈ [0, T ]. Suppose that the initial premium F0 is fully invested in an index whose value
process {St}06t6T has real-world (P-measure) dynamics

dSt
St

= µdt+ σdW P
t ,

where W P
t is a P-Brownian motion.1 Suppose also that the usual assumptions of the Black-Scholes

model are satisfied. Then, the market is complete and there exists a unique risk-neutral measure
Q under which the index St follows a geometric Brownian motion with drift equal to the risk-free
rate r. Then we have

dSt
St

= rdt+ σdWQ
t .

1We work on a filtered probability space (Ω,F , {Ft}06t6T ,P) where (Ω,F) is a measurable space,
{Ft}06t6T is the natural filtration generated by the Brownian motion (with Ft = σ({Ws}06s6t)) and P
is the real-world measure. We assume that the probability space is complete (F0 contains the P-null sets)
and right-continuous.
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We consider the state-dependent fee struture explored in Chapter 3, under which the insurer
only charges the fee when the account value is below a given level β. This level is set as a multiple
of the guaranteed amount and is defined as

β = (1 + λ)G,

where λ > 0 is the fee payment barrier loading. In this setting, the P-dynamics of the account
value are given by

dF
(β)
t

F
(β)
t

= (µ− c1{F (β)
t <β})dt+ σdWt,

where 1A is the indicator function of the set A and where the superscript β indicates the depen-
dence of the account value on the fee barrier. Without loss of generality, we assume that F0 = S0.
Chapter 3 provides integral representations for the prices of guaranteed minimum accumulation
and death benefits (GMAB and GMDB) when surrenders are not allowed. These integral repre-
sentations allow us to solve for the fair value of c numerically when the fee is state-dependent.
When the fee is paid regardless of the account value, or β = ∞, these integral representations
simplify to expressions very similar to the Black-Scholes formula. In that case, the account value

at time t is denoted by F
(∞)
t .

4.2.2 Pricing VAs in the presence of a state-dependent fee and
surrender charges

We focus on a T -year VA contract with a GMAB, having payoff max(G,F
(β)
T ) at maturity. The

symbol G denotes a pre-determined guaranteed amount equal to

G = egTF
(β)
0 ,

where 0 6 g < r is the guaranteed roll-up rate. If the policyholder surrenders the contract at any

time 0 < t < T , she receives (1− κt)F (β)
t : the account value diminished by the surrender charge

κtF
(β)
t , where 0 6 κt < 1. Typically, κt is a decreasing function of time to discourage policyholders

to lapse in the first years of the contract. In fact, early surrenders affect insurers more significantly
because VA contracts have acquisition expenses that are expected to be recouped during the first
years of the contract. For this reason, insurers generally charge high surrender penalties during
the first few years of the contract. Since the contract cannot be surrendered at maturity, we
define κT = 0. We will make further assumptions on the form of κt in the numerical examples.

We let V (t, F
(β)
t ) denote the value of the contract at time t, 0 6 t 6 T . Since the VA

contract can be surrendered at any time before maturity, its pricing becomes an optimal stopping
problem. To define this problem, we must first introduce further notation. Denote by Tt the set of
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all stopping times τ greater than or equal to t and bounded by T . Then, define the continuation
value of the VA contract with surrender as

V ∗(t, F
(β)
t ) = sup

τ∈Tt
EQ[e−r(τ−t)ψ(τ, F (β)

τ )|Ft],

where,

ψ(t, F
(β)
t ) =

{
(1− κt)F (β)

t , if t ∈ (0, T ),

max(G,F
(β)
T ), if t = T,

is the payoff of the contract at surrender or at maturity.

Let Rt be the optimal surrender region at time t ∈ [0, T ] and define it by

Rt = {F (β)
t <∞ : ψ(t, F

(β)
t ) > V ∗(t, F (β)

t )}.

Thus, the optimal surrender region is defined as the fund values for which the surrender benefit
is worth at least as much as the VA contract when the policyholder continues to hold on to it
for at least a small amount of time. The complement of Rt, denoted by Ct will be referred to
as the continuation region. When the VA fee is paid regardless of the account value (β = ∞),

the surrender region at time t, if it exists, is of threshold type, i.e., Rt = {F (∞)
t > Bt}, with or

without surrender penalties (see Chapter 2). Bt represents the fund threshold which induces a
rational policyholder to surrender his VA contract at time t. Section 4.4 analyzes the surrender
region for the case of a state-dependent fee and shows that it is not necessarily of threshold-type.

Finally, we can define the price of a VA contract with GMAB and surrender option as

V (t, F
(β)
t ) =

{
V ∗(t, F

(β)
t ), if F

(β)
t ∈ Ct,

ψ(t, F
(β)
t ), if F

(β)
t ∈ Rt.

Since we are working in the Black-Scholes framework, under the usual no-arbitrage assump-

tions V (t, F
(β)
t ) must satisfy the partial differential equation (PDE) in the continuation region

Ct,
∂V

∂t
+

1

2

∂2V

∂F (β)2
t

F (β)2

tσ
2 +

∂V

∂F
(β)
t

F
(β)
t (r − c1{F (β)

t <β})− rV = 0, (4.1)

for 0 6 t 6 T (and F
(β)
t ∈ Ct). In the optimal surrender region Rt, we have

V (t, F
(β)
t ) = ψ(t, F

(β)
t ), (4.2)

for 0 6 t 6 T (and F
(β)
t ∈ Rt).2 The derivation of (4.1) is given in Appendix 4.A. The solution

2For more details on this characterization, see for example Björk (2004).
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also needs to satisfy the following boundary conditions:

V (T, F
(β)
T ) = max(G,F

(β)
T ),

lim
F

(β)
t →0

V (t, F
(β)
t ) = V (t, 0) = Ge−r(T−t).

The first boundary condition reflects the payoff of the VA at maturity. The second condition
comes from the fact that when the account value approaches 0, only the maturity guarantee is
valuable. To solve the PDE in (4.1), we also need to specify an upper boundary. However, the
behaviour of the contract price for high account values is different whether the fee is constant
or state-dependent, and it is generally not possible to specify this boundary exactly for a finite
value of Ft.

In the constant fee case, when the optimal strategy is to lapse whenever the account value
is above a certain threshold, we can specify an exact upper boundary because the price of the
contract corresponds to the surrender benefit when the fund value is sufficiently high. Such a
situation can occur if surrender charges are low enough. However, Section 4.4.2 shows that there
exists a minimal surrender charge function such that the optimal strategy is to never surrender
the contract until maturity. When this happens, the asymptotic behaviour of the contract price
is the same as if only the maturity benefit was considered, so that (see Section 4.4.2)3

lim
F

(∞)
t →∞

V (t, F
(∞)
t )

F
(∞)
t

= e−c(T−t).

Of course, there is no need to use numerical methods to solve the PDE in this case, because in the
absence of surrenders, the contract price has a closed-form expression based on the Black-Scholes
formula.

With a state-dependent fee (β <∞), the following asymptotic behaviour holds regardless of
the form assumed for the surrender charge function:

lim
F

(β)
t →∞

V (t, F
(β)
t )

F
(β)
t

= 1. (4.3)

A proof of this assertion is given in Appendix 4.B. This result allows us to use F
(β)
t as an upper

3Intuitively, this is due to the fact that the maturity benefit is worth close to nothing at very high fund

values F
(∞)
t , which implies that we can write:

EQ[e−r(T−t) max(G,F
(∞)
T )|Ft] ≈ EQ[e−r(T−t)F

(∞)
T |Ft] = F

(∞)
t e−c(T−t).
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boundary for V (t, F
(β)
t ) when solving the PDE in (4.1) numerically. Intuitively, this limiting

behaviour stems from the fact that when the account value is very high, the maturity benefit is
worth close to nothing, and the policyholder does not expect to pay any more fees. Thus, the
value of the contract can be estimated by

EQ[e−r(T−t)F
(β)
T |Ft] ≈ EQ[e−r(T−t)F

(β)
t

ST
St
|Ft] = F

(β)
t , when F

(β)
t � β.

4.3 Numerical Examples

In this section, we solve the PDE presented in equation (4.1) of Section 4.2 under different fee
structures, and observe the impact of the fee structure on the shape of the optimal surrender
region. Understanding the interplay between the fee structure and the surrender incentive is
the first step towards designing a contract that eliminates the surrender incentive while offering
reasonable fee rates and surrender charges. Moreover, having a better understanding of the
surrender incentive allows the insurer to establish more effective risk-management strategies.

4.3.1 Solving the PDE numerically

To solve (4.1), we use finite difference methods. The equation is first expressed in terms of
xt = lnFt and discretized over a rectangular grid representing the truncated, discretized domain
of (t, xt). The upper truncation point of the grid depends on the contract whose price we are
solving for. For example, when an optimal surrender boundary exists for all t ∈ [0, T ], it is not
necessary to consider values that are above this boundary, because the price of the contract is
known exactly in this region (and is equal to the value of the surrender benefit). In more general
cases, the grid in the xt dimension must be large enough that the asymptotic results derived in
Section 4.2 can be used reliably to approximate the contract price at the highest fund values in
the grid. For small account values at time t, the contract price is well approximated by Ge−r(T−t)

and we do not need to include fund values which are very close to zero. The maximum value of
the grid, xmax, is high enough that it has a very small probability of being reached by the process
xt. When the contract is always optimally surrendered at values below ex

max
, we use a lower

maximal value to decrease computational time. We use an explicit method with space steps dx

and time steps dt = (dx/σ)2

3 to ensure stability of our numerical scheme (see, for example, Racicot
and Théoret (2006)). Implicit methods were also explored for validation purposes and to examine
stability, but the explicit scheme was selected and was implemented in C++ to improve the speed
of calculation. Central differences were used to approximate the first order term. Again, other
methods were explored. In particular, we also used forward differences to make sure that all the
coefficients were positive (for more details, see Chapter 9 of Duffy (2006)), but the precision of
the results obtained using central differences was very similar.
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4.3.2 Numerical Results

In this section, we consider a 10-year VA contract guaranteeing an amount of G = F
(β)
0 = 100

at maturity (in other words, the guaranteed roll-up rate of the GMAB is g = 0). The market
parameters were fitted to a data set of weekly percentage log-returns on the S&P500 from October
28, 1987 to October 31, 2012, from which we obtained the parameters µ = 0.07 and σ = 0.165.
We further assume r = 0.03.

The grid that we use spans from ln 20 to ln 400. Note that EP[ST |S0 = 100] = 201.38 and√
V arP[ST |S0 = 100] = 112.65, so our grid covers the most likely paths of F

(β)
t since F

(β)
t 6 St

for any β > 0 and t ∈ [0, T ]. The space steps we use have length dx = 0.0005.

Fair fee

We define the fair fee for a variable annuity contract as the fee rate c∗ satisfying

F
(β)
0 = V (0, F

(β)
0 ; c∗), (4.4)

where V (0, F
(β)
0 ; c∗) is the price of the contract calculated using the fee c∗. Table 6.1 presents

the fair fees obtained for different payment barrier loadings λ and surrender charge functions κt,
assuming either optimal policyholder behaviour or that the contract is held to maturity. In the
latter case, the price of the contract is simply the expectation of the discounted maturity benefit.
In Chapter 3, we derive an integral formula for this price, which can also be obtained by solving
an equation similar to (4.1).

We consider values of λ = 0.2, 0.5 and ∞, corresponding to threshold levels of β = 120, 150,
and ∞, where β = (1 + λ)G. λ =∞ corresponds to the case where the fee is paid continuously,
regardless of the value of the account (β =∞). Note that Chapter 3 studied the case where λ = 0
without any surrender charges. This design leads to a very high fair fee which may not always
be marketable. In this section, we focus on more realistic contract designs, and also incorporate
surrender charges. We consider two decreasing surrender charge functions, in addition to the case
κt = 0 . First, we use the function, κt = 1−e−κ(T−t), studied in Chapter 2. Second, we consider a
“vanishing” surrender charge function, κt = κ(1−t/T )3. This function mimics surrender penalties
found on the market, which are typically high in the first years of the contract, and drop rapidly
to make the VA a more liquid investment.

The resulting fair fees are presented in Table 6.1. In general, the fair fee decreases when the
payment barrier loading λ increases, because the fee is expected to be paid for a longer period of
time. The fair fee also decreases with increasing surrender charges, as these charges discourage
lapsation and represent an additional revenue for the insurer. Further analysis of the fair fee is
conducted in the next part of this section to discuss the optimal surrender region under constant
and state-dependent fees.
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Figure 4.1: Evolution of surrender charge κt from t = 0 to t = 10 for different surrender
charge functions.

λ β No Surrender
Optimal Surrender

κt = 0 κt = 1− e−0.005(T−t) κt = 1− e−0.01(T−t) κt = 0.05(1− t/T )3

0.2 120 0.02359 0.03473 0.02364 0.02361 0.02371

0.5 150 0.01550 0.03473 0.01585 0.01557 0.01763

∞ ∞ 0.01062 0.03473 0.01394 0.01075 0.01697

Table 4.1: Fair fee for different VA contracts with T = 10, r = 0.03, and σ = 0.165.

Optimal surrender region

No surrender charge (κt = 0)

When there is no penalty on early surrender, the analysis of the optimal surrender region
presented in this section reveals that the state-dependent fee structure may not be sufficient to
decrease the surrender incentive. This is first hinted at in Table 4.1, where the fair fee was found
to be the same for all three values of λ studied when κt = 0. Such a result suggests that a
policyholder behaving optimally is not able to profit from the state-dependent fee. For example,
it could be rational to lapse before reaching the fee barrier threshold. Figure 4.2 shows that this
is exactly what occurs, i.e., the optimal surrender boundaries for all three values of λ are identical
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and lie below 120. Therefore, a policyholder behaving optimally will never reach the fee barrier
threshold of β = 120 or 150, and from his perspective, product designs with β = 120, 150, or ∞
are equivalent. This explains why the fair fee remains the same for these three designs.

In the absence of surrender charges, the minimal account value at which the policyholder

should lapse the contract just after inception is equal to the initial premium (F
(β)
0 = 100), when

the fair fee is calculated assuming optimal surrenders. In fact, the fair fee is calculated such

that V (0, F
(β)
0 ) = F

(β)
0 , which coincides with the definition of the optimal surrender boundary

at time 0 (assuming no surrender charges). This is clearly illustrated in Figure 4.2, where the
optimal surrender boundary crosses 100 at t = 0. It is this phenomenon that Milevsky and
Salisbury (2001) refer to when they argue that without surrender charges, the VA contract is not
marketable. Next, we explore such charges as a way to decrease the surrender incentive.
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β = 150

β = 120

Figure 4.2: Optimal surrender region for λ = 0.2, 0.5 or ∞ and κt = 0, priced assuming
optimal surrenders (c = 0.03473).

Adding surrender charges

The addition of surrender charges to a VA policy with any kind of fee structure (constant or
state-dependent) reduces the incentive to lapse because it decreases the surrender benefit. We
first revisit the surrender charge function, κt = 1 − eκ(T−t), considered in Section 4.3.2. This
results in a surrender penalty starting approximately at 10κ at time 0 and decreasing almost
linearly to 0 at time 10. Figure 4.3 presents the optimal surrender regions for κ = 0.005 and 0.01,
when λ = 0.5. Interestingly, it is only optimal to lapse the contract closer to maturity, and we

85



κ = 0.005

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

t

Su
rre

nd
er 

ch
arg

e

0 2 4 6 8 10
20

40

60

80

100

120

140

t

Fu
nd

 va
lue

κ = 0.01

0 2 4 6 8 10
0.00

0.02

0.04

0.06

0.08

0.10

t

Su
rre

nd
er 

ch
arg

e

0 2 4 6 8 10
20

40

60

80

100

120

140

t

Fu
nd

 va
lue

Figure 4.3: Left column: Surrender charge as a function of time when κt = 1 − e−κ(10−t).
Right column: Optimal surrender region for λ = 0.5, fairly priced assuming optimal sur-
renders (see Table 4.1.

observe that the size of the optimal surrender region diminishes when the surrender charge rate
κ increases. In other words, the presence of surrender penalties encourages the policyholder to
wait for the account value to grow above the fee barrier threshold.

Figure 4.4 shows the optimal surrender region when κt = κ(1 − t/T )3. Compared to the
previous case, this function leads to lower penalties for almost all t ∈ [0, T ), even when the
parameters are chosen such that the charge at t = 0 is the same under both functions. For
this reason, the surrender incentive is higher for the “vanishing” surrender charge. This is also
reflected in the fair fee, which is higher for all three levels of the payment barrier considered (see
Table 4.1). Nonetheless, Figure 4.4 shows that by combining a state-dependent fee with surrender
charges, we are again able to eliminate the surrender incentive at the beginning of the contract,
and when the account value is close to and above the payment barrier. In the next section, we
will formalize this result theoretically and demonstrate that the introduction of surrender charges
eliminates the surrender incentive above the payment barrier. We will also show how to obtain
the minimal surrender charge function which does not give rise to a surrender incentive during
the whole length of the contract.
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Figure 4.4: Upper left : Surrender charge as a function of time when κt = 0.05(1− t/10)3.
Upper right and bottom row: Optimal surrender region when λ = 0.2, 0.5, ∞, fairly priced
assuming optimal surrenders (see Table 4.1).

4.4 Theoretical analysis of the surrender incentive

In the previous section, we analysed the optimal surrender region resulting from different product
designs. In particular, we showed that a combination of surrender charges and state-dependent
fees can eliminate the surrender incentive for high account values. In this section, we formalize
some of the results that were observed in Section 4.3. These results are then used in Section 4.5
to design a contract that completely eliminates the surrender incentive.

4.4.1 Surrender incentive for large account values when β <∞

We first show that when the fee is state-dependent (that is, when β <∞) and the account value
is above the fee barrier, the contract is always worth at least as much as the surrender benefit.
Thus, the policyholder never has a clear incentive to lapse when the account value is above the
payment barrier. This result is formalized in the following proposition.

Proposition 4.4.1. Let F
(β)
t and κt be defined as in Section 4.2 and let β <∞. Then, for any

t ∈ [0, T ] and F
(β)
t > β,

V ∗(t, F
(β)
t ) > F (β)

t . (4.5)
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If κt > 0 at time t, the inequality in (4.5) is strict.

Proof. Suppose that there are no surrender charges, i.e., κt = 0, ∀t, that the fee is only paid

below β, and that we are at time t with F
(β)
t > β. Consider the stopping time,

τβ = inf
{
t < u < T : F (β)

u < β
}
,

with the convention that τβ = T , if the barrier β is never reached. Then, we can write,

V ∗(t, F
(β)
t ) = sup

τ∈Tt
EQ[e−r(τ−t)ψ(τ, F (β)

τ )|Ft]

> EQ[e−r(τβ−t)ψ(τβ, F
(β)
τβ

)|Ft]

= EQ[e−r(τβ−t)F (β)
τβ

1{τβ∈(t,T )}|Ft] + EQ[e−r(τβ−t)F (β)
τβ

1{τβ=T}|Ft]

= βEQ[e−r(τβ−t)1{τβ∈(t,T )}|Ft] + EQ[e−r(T−t)F
(β)
T 1{τβ=T}|Ft],

where the first term is the payoff of a down rebate option which pays β if the fund F
(β)
t reaches

β before maturity T and zero otherwise, and the second term is the payoff of a down-and-out

European call option with zero strike which pays F
(β)
T at maturity T , provided that F

(β)
u > β, for

t 6 u 6 T . Since the combined payoff of these two options can be replicated by holding the fund

F
(β)
t and selling it as soon as F

(β)
t = β, simple no-arbitrage arguments imply that the total price

of these two options is exactly F
(β)
t , which gives,

V ∗(t, F
(β)
t ) > F (β)

t .

Now consider the case where the surrender charge function κu, t 6 u 6 T , is a decreasing
function of u, and is strictly positive at t:

V ∗(t, F
(β)
t ) = sup

τ∈Tt
EQ[e−r(τ−t)ψ(τ, F (β)

τ )|Ft]

> EQ[e−r(τβ−t)ψ(τβ, F
(β)
τβ

)|Ft]

= EQ[e−r(τβ−t)F (β)
τβ

(1− κτβ )1{τβ∈(t,T )}|Ft] + EQ[e−r(τβ−t)F (β)
τβ

1{τβ=T}|Ft]

= βEQ[e−r(τβ−t)(1− κτβ )1{τβ∈(t,T )}|Ft] + EQ[e−r(T−t)F
(β)
T 1{τβ=T}|Ft]

> (1− κt)
{
βEQ[e−r(τβ−t)1{τβ∈(t,T )}|Ft] + EQ[e−r(T−t)F

(β)
T 1{τβ=T}|Ft]

}
(4.6)

= (1− κt)F (β)
t ,

as the term inside the braces in equation (4.6) was shown to be exactly F
(β)
t . This result implies

that in the presence of surrender charges, it is never optimal to surrender the variable annuity
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contract when the fund is above or equal to the fee threshold barrier β. �

Because of the way the optimal surrender region was defined in Section 4.2.2 (the policy-
holder is assumed to lapse when the contract is worth at least as much as the surrender benefit),
Proposition 4.4.1 does not necessarily characterize the region above the payment barrier. For

example, in Figure 4.2, it is optimal to surrender the contract when F
(β)
t > β, while Figures 4.3

and 4.4 show continuation regions above β. Note that for the state-dependent fee designs studied
in Figure 4.2, the policyholder is actually indifferent to lapse, but is assumed to surrender because
of the way we defined the surrender region. This is because the contract value and the surrender
benefit are equal above β for this specific case.

4.4.2 Minimal surrender charge to eliminate the surrender in-
centive

In the remainder of this section, we seek to design a contract that does not have an optimal
surrender region. In other words, the optimal behaviour when buying such a contract is to hold
it until maturity. To design this policy, we look for a sufficiently large surrender charge such that

ψ(t, F
(β)
t )− V ∗(t, F (β)

t ) 6 0, for any account value F
(β)
t , and any time t ∈ [0, T ). We first study

the constant fee case, where a general result can be obtained in closed-form. We then discuss
contracts with state-dependent fees.

Constant fee (β =∞)

When a constant fee is charged, and there are no surrender charges, there exists an optimal
lapsation boundary above which a rational investor should not hold on to the VA contract.

Assuming once again that F
(∞)
0 = G = 100, T = 10, r = 0.03, and σ = 0.165, Figure 4.5

illustrates three such boundaries4, each of which is associated with a given level of c (displayed
on the curve). Since a lower fee c lessens the incentive to surrender, this boundary shifts upwards
when c decreases.

When the insurer does not charge a penalty for early surrender, the fee income represents his
only revenue. This income compensates him for both the guarantee offered and early surrender
risk (the risk of not being able to collect future fees on the account value). To fully mitigate
lapse risk, he must charge a fee for which the value of the guarantee offered assuming optimal
policyholder behaviour equals the amount invested. Under the assumptions stated above, this
fair fee corresponds to 3.50%, which is very high. In fact, if the insurer were certain that the
policyholder would keep her variable annuity until maturity, then he would be able to offer her

4These boundaries can be obtained using the method described in Chapter 2, or by solving the PDE
in equation (4.1) numerically. See Section 4.3 for more details.
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Figure 4.5: Optimal surrender boundary when there are no surrender charges. Each of the three
curves is associated with a fee c. The fair value of c under optimal behaviour is 3.5%. The fair
value of c when the policyholder is not allowed to lapse is 1.06%. The fair value of c assuming
the policyholder lapses suboptimally as soon as the fund reaches 150 is 1.81%.

a fee of only 1.06%. One way to decrease the fair fee while still fully mitigating lapse risk is
to introduce surrender penalties in the product design. These penalties represent an additional
income for the insurer, enabling him to reduce the constant fee charge, and also work as a
disincentive to lapse. Proposition 4.4.2 states the minimal value of κu at each time u ∈ [t, T ), so
that it is never optimal for the policyholder to surrender her contract from time t until maturity.

Proposition 4.4.2. Let F
(β)
t and κt be defined as in Section 4.2 and let β = ∞. If the insurer

wants to charge the minimal value of κu at each time u ∈ [t, T ), so that an optimal lapsation
boundary from u = t to T does not exist, then he must set:

κu = 1− e−c(T−t), t 6 u < T.

Proof. First, suppose that the surrender charge κu, for t 6 u < T , is sufficiently high for there
to be no optimal lapsation boundary for t 6 u < T . This situation is possible because we can
consider the extreme case where κu = 1, for t 6 u < T . Then, the value of the contract at time u
must simply be the risk-neutral discounted expectation of the payoff at maturity, and be greater
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or equal to the surrender benefit:

V ∗(u, F (β)
u ) = EQ[e−r(T−u) max(F

(β)
T , G)|Fu] > F (β)

u (1− κu), ∀F (β)
u > 0.

The previous inequality can be rewritten as:

κu > 1−
EQ[e−r(T−u) max(F

(β)
T , G)|Fu]

F
(β)
u

, ∀F (β)
u > 0.

Therefore, the minimal surrender penalty that can be charged at time u while the inequality
above is satisfied corresponds to:

κ?u = max

(
1− inf

F
(β)
u >0

{
EQ[e−r(T−u) max(F

(β)
T , G)|Fu]

F
(β)
u

}
, 0

)
.

Since

EQ[e−r(T−u) max(F
(β)
T , G)|Fu]

F
(β)
u

=
F

(β)
u e−c(T−u) + EQ[e−r(T−u) max(G− F (β)

T , 0)|Fu]

F
(β)
u

(4.7)

> e−c(T−u), ∀Fu > 0,

and,

lim
F

(β)
u →∞

EQ[e−r(T−u) max(F
(β)
T , G)|Fu]

F
(β)
u

= e−c(T−u),

then, we must have,
κ?u = 1− e−c(T−u), t 6 u < T. (4.8)

�

Remark 4.4.1. Note that the result given by Proposition 4.4.2 is very general because it is
essentially model-free, and holds for any arbitrage-free complete market model, and not just for
the Black-Scholes model. It shows that if the surrender charge function is chosen according to
(4.8), for t 6 u < T , then it will not be optimal to surrender the contract. However, the condition
κt > κ?t is also sufficient to guarantee that it is not optimal to lapse at time t, regardless of the
form assumed for κu, t < u < T . To see why, observe that,

V ∗(t, F
(β)
t )

F
(β)
t (1− κt)

>
EQ[e−r(T−t) max(F

(β)
T , G)|Ft]

F
(β)
t (1− κt)

>
e−c(T−t)

1− κt
, ∀F (β)

t > 0.

It is clear that whenever κt > κ?t , the continuation value, V ∗(t, F
(β)
t ), must be greater than the

surrender value, F
(β)
t (1 − κt), for any values of F

(β)
t at time t, making surrender sub-optimal.
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Note that the converse of this result does not necessarily hold, i.e., the condition κt > κ?t is not

necessary when surrender is not optimal at time t, ∀F (β)
t > 0. In other words, there may be a

value of κt ∈ (0, κ?t ) which makes lapsation not optimal at time t. In fact, κ?t is a strict lower
bound for the surrender charge at time t if and only if it is never optimal to surrender the contract
after t.

State-dependent fee (β <∞)

We have seen in the previous section that to fully mitigate lapse risk in the presence of a constant
fee, the insurer can use various product designs, the two extremes being: (I) c = 3.5% and no
surrender charges, and (II) c = 1.06% and a schedule of surrender charges corresponding to
κt = 1 − e−0.0106(T−t). Both of these designs may be difficult to market in practice, because
the first has a high fee and the second heavily penalizes the policyholder in the event of lapse.
Therefore, we may opt for a product design such as the one with κ = 0.005 in Figure 4.6. However,
this design may be difficult to hedge because it gives rise to an optimal lapsation boundary, and
the insurer must therefore hedge an American option to fully mitigate lapse risk. Note that for
scenario (II), when c = κ = 1.06%, the insurer is required to hedge a European option as this
product design makes surrender sub-optimal at any given time. We therefore ask the following
question: Can we design a product that incorporates a reasonable fee and surrender charges, and
that gives no incentive to lapse for a rational policyholder? If we consider a state-dependent fee,
the answer to this question is yes. Figure 4.7 illustrates the optimal lapsation boundary when the
fee barrier threshold is β = 110 (left) or β > 118.1 (right), and there are no surrender charges.

First, note that when β > 118.1, the optimal lapsation boundary is always under β, and,
therefore, a rational policyholder will always surrender her product before reaching the no-fee
region. If the insurer wants to fully mitigate lapse risk, then for pricing and hedging purposes this
design is equivalent to having a constant fee and no surrender charges (c = 3.5%, see Figure 4.5).
Nevertheless, in practice, the state-dependent fee design with β > 118.1 may give a false incentive
for sub-optimal policyholders to hold on to the product. For this reason, it may be argued that
the state-dependent fee design is preferable. When β = 110, the state-dependent fee design does
not give rise to an optimal lapsation boundary between t = 2.0 to 9.9, and is therefore able to
make lapse sub-optimal in that range with only a slight fee increase of 0.08% with respect to the
design with a constant fee. However, this fee is too high to be marketable in practice, and we
are still confronted with an American option for risk management purposes. This suggests that
combining a state-dependent fee with surrender charges can lead to a very interesting design.

In the state-dependent fee case, obtaining a simple closed-form expression for the minimal
surrender charge that eliminates the surrender incentive is not possible, for different reasons. First,
although there exists an integral representation for the value of the maturity benefit (see, Chapter
3), or for the discounted expectation of the account value at future times, they are generally

complex and depend on the current account value F
(β)
t in more than one way. In addition, the
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Figure 4.6: Left: Surrender charges when κt = 1− e−κ(10−t) for κ = 0.005, 0.0075, 0.0106.
Right: Optimal surrender boundaries for a constant fair fee associated with the surrender
charge functions presented on the left.

function EQ[e−r(T−t) max(F
(β)
T , G)|Ft]/F (β)

t is generally not monotone in Ft because the expected
future fees are not monotone in Ft, due to their state-dependent nature. Nevertheless, it is still
possible to solve for the minimal surrender charge that eliminates the surrender incentive, but we
must do so numerically. The procedure is outlined in the following steps:

1. Find the fair fee assuming that the contract is always held until maturity. This can be
done numerically, for example by using finite differences, or by using the formula given in
Chapter 3.

2. For each t ∈ [0, T ), numerically obtain the account value F ?t at which the ratio of the
maturity benefit to the fund value is the smallest:

F ?t = arg inf
F

(β)
t >0

{
EQ[e−r(T−t) max(F

(β)
T , G)|Ft]

F
(β)
t

}
.

Note that in this step, we can assume V ∗(t, F
(β)
t ) = EQ[e−r(T−t) max(F

(β)
T , G)|Ft], since

this must hold ∀t when κt is set so that surrenders are never optimal during the entire
length of the contract.
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Figure 4.7: Left: Optimal surrender boundary for a state-dependent fee paid only under
β = 110, and assuming fair pricing (c = 3.58%) and no surrender charges. Right: Optimal
surrender boundary for a state-dependent fee paid only under any choice of threshold
β > 118.1, and assuming fair pricing (c = 3.50%) and no surrender charges.

3. Set

κ?t = max

(
1−

EQ[e−r(T−t) max(F
(β)
T , G)|F (β)

t = F ?t ]

F ?t
, 0

)
,

where κ?t is the minimal surrender charge eliminating the surrender incentive.

As an example, we revisit a design presented in Section 4.3. We assume β = 150 and F
(150)
0 =

G = 100 because this design results in a realistic fee rate. The market parameters are the same
as in Section 4.3. Using the procedure described above, we obtain the surrender charge function
illustrated on the left of Figure 4.8. In this case, the fair fee is c = 1.55%. The values F ?t used
in the calculation of the surrender charge are given on the right. Observe that exactly on this
boundary, we have V (t, F ?t ) = (1−κt)F ?t , and that surrender is never optimal on either side of the
boundary. Then, with this surrender charge function, the policyholder never has a clear incentive
to surrender (that is, the contract value is always worth at least as much as the surrender benefit).
Another way to see this is to say that whenever the policyholder lapses, she does so sub-optimally
and this brings additional revenue to the insurer.

The surrender charge structure obtained is satisfying because it is not too high, starting below
3.5% and decreasing to 0 at maturity. This is significantly lower than the minimal surrender charge
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required to eliminate the surrender incentive when β =∞. As explained in Section 4.4.2, such a
penalty would start at over 10% at inception and would not drop below 5% until the fifth year of
the contract. Thus, the state-dependent fee allows us to eliminate optimal surrender incentives
using much lower surrender charges.
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Figure 4.8: Left : Minimal surrender charge function not giving rise to an optimal surrender
boundary when c = 0.0155 and β = 150. Right : Values of F

(150)
t at which the infima of

the function EQ[e−r(T−t) max(F
(150)
T , G)|Ft]/F (150)

t were computed.

4.5 Dynamic hedging

This section illustrates why eliminating the surrender incentive in the VA product design can
simplify the insurer’s hedging strategy and make it more effective. Before presenting our results
on dynamic hedging, we review some concepts with respect to hedging VAs, and explain how we
calculate the insurer’s hedged loss.

4.5.1 Calculation of the net hedged loss at maturity

Assume that we have a path of stock values, {St}06t6T , and corresponding account values,

{F (β)
t }06t6T , sampled at discrete time intervals h, where, for example, h = 1/52 implies weekly

95



observations. We define the net hedged loss at maturity as L−H, where,

L = Net unhedged loss at maturity,

H = Cumulative mark-to-market gain on the hedge.

When the insurer does not use a hedging strategy, his net loss at maturity is L. When he employs
a hedging strategy, his net loss is L−H. The losses are net because they take into account the
fee income and surrender charges received by the insurer.

If the policyholder does not surrender her contract, the net unhedged loss at maturity T is

L = payoff to the policyholder − accumulated value of fees

= max(0, G− F (β)
T )−

T/h−1∑
i=0

F
(β)
ih (1− e−ch)er(T−ih)1{F (β)

ih <β}.

In the event of surrender at time t = τ , the net unhedged loss at maturity T is

L = −(accumulated value of fees and surrender charges)

= −
τ/h−1∑
i=0

F
(β)
ih (1− e−ch)er(T−ih)1{F (β)

ih <β} − F
(β)
τ κτe

r(T−τ).

To calculate the net hedged loss at maturity, the cumulative mark-to-market gain on the hedge
must be subtracted from the net unhedged loss. Assuming that the hedging strategy consists of
a delta hedge, the mark-to-market gain at time t+ h of the hedge established at time t is

∆t(St+h − Sterh),

where ∆t is the delta used in the hedge, and will be defined in Section 4.5.2. The cumulative mark-
to-market gain on the hedge corresponds to the accumulated value of these gains to maturity:

H =

τ/h−1∑
i=0

∆ih(S(i+1)h − Siherh)er(T−(i+1)h),

where τ represents the time at which the hedging strategy is stopped (surrender or maturity).
Finally, the net hedged loss at maturity is simply L−H.
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4.5.2 Calculation of ∆t

When constructing a hedging strategy, the insurer must first specify the assumptions that will be
used for hedging, as well as the objective function that needs to be hedged. For example, suppose
that β = ∞, and that the insurer wants to set-up a delta hedge of his net liability assuming no
surrenders occur. In this context, the net liability of the insurer towards the policyholder at time
t, denoted by Ψt, corresponds to the fair value of the maturity benefit minus the account value:

Ψt = EQ[e−r(T−t) max(F
(∞)
T , G)|Ft]− F (∞)

t

= EQ[e−r(T−t) max(G− F (∞)
t , 0)|Ft] + F

(∞)
t e−c(T−t) − F (∞)

t

= EQ[e−r(T−t) max(G− F (∞)
t , 0)|Ft]− F (∞)

t (1− e−c(T−t)). (4.9)

Equation (4.9) offers an alternative interpretation of the net liability, as the value of the underlying
European put option minus the fair value of the fees that will be collected by the insurer until
maturity.5 For this particular case, the delta of the net liability is available in closed form as,

∂

∂St
Ψt =

∂Ψt

∂F
(∞)
t

∂F
(∞)
t

∂St

= [−e−c(T−t)N(−d1)− (1− e−c(T−t))]e−ct

= −e−cTN(−d1)− (e−ct − e−cT ),

where N(·) denotes the standard normal cumulative distribution function, and

d1 =
log(F

(∞)
t /G) + (r − c+ σ2/2)(T − t)

σ
√
T − t

.

In more general situations, where we want to hedge assuming optimal policyholder behaviour,
we cannot obtain the delta analytically. However, we can write,

Ψt = V (t, F
(β)
t )− F (β)

t ,

where V (t, F
(β)
t ) represents the fair value of the VA contract with surrender option, as defined in

5The fair value of the fees that will be collected by the insurer after time t corresponds to F
(∞)
t (1 −

e−c(T−t)). To see why, we can interpret the fee c as a dividend rate. The fair value of dividends to be

received between times t and T is the difference between the fund value at time t (F
(∞)
t ) and the prepaid

forward price at t for a claim paying F
(∞)
T at time T (F

(∞)
t e−c(T−t)).
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equation (4.2.2). The delta is then obtained with,

∂

∂St
Ψt =

∂Ψt

∂F
(β)
t

∂F
(β)
t

∂St

=

[
∂V (t, F

(β)
t )

∂F
(β)
t

− 1

]
∂F

(β)
t

∂St
, (4.10)

where, ∂V (t, F
(β)
t )/∂F

(β)
t must be estimated numerically based on a finite difference grid (as in

Section 4.3) and,

∂F
(β)
t

∂St
=
F

(β)
t

St
. (4.11)

This is implicitly obtained in the derivation of equation (4.1) in Appendix 4.B, since the principle
behind this derivation is a portfolio that hedges the delta of the variable annuity contract.

Remark 4.5.1. When the insurer prices the VA contract and hedges its delta assuming optimal
policyholder behaviour, his hedging strategy is a theoretical self-financing super-hedge. In other
words, the hedge will always yield enough money for the insurer to help him cover the payoff of the
VA as well as the surrender benefit. If the policyholder adopts a sub-optimal behaviour, then the
insurer will also be able to derive a gain from the hedge. Unfortunately, these statements are only
valid under the rather stringent assumptions of the Black-Scholes model. In practice, even if the
insurer implements the optimal hedge, the presence of both discretization and model errors will
cause the hedging strategy to lose its self-financing property and expose the insurer to a possible
loss.

4.5.3 Modeling policyholder behaviour

Given that the insurer establishes his hedging strategy assuming a particular form of policyholder
behaviour, it is important to verify that the effectiveness of this strategy is robust to a wide
range of dynamic lapsation behaviour observed in practice. For example, there is empirical
evidence (e.g., Knoller, Kraut, and Schoenmaekers, 2013; Milliman, 2011) that the moneyness of
the guarantee is a key driver of lapse behaviour among policyholders. The Canadian Institute of
Actuaries (2002) and the American Academy of Actuaries (2005) both recommended to model
surrenders by varying the lapse rate according to the moneyness of the guarantee. Based on a
report from the Society of Actuaries (2012), approximately 60% of insurers follow this practice.

Therefore, we consider the following stopping time to model different forms of policyholder
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behaviour in our analysis of hedging effectiveness:

τM = inf
0<t<T

{
F

(β)
t (1− κt)

G
>Mt

}
, (4.12)

where F
(β)
t (1−κt)/G denotes what we call the moneyness ratio at time t, and Mt is a moneyness

threshold, which when reached induces surrender. If the moneyness threshold is never attained,
then we set τM = T . When Mt =∞, ∀t, then τM = T a.s., and this strategy falls back to keeping

the contract until maturity. Moreover, since we can rewrite the condition F
(β)
t (1 − κt)/G > Mt

as F
(β)
t > MtG/(1 − κt), this stopping time encompasses all strategies of threshold-type, and,

therefore all optimal strategies for the case β = ∞. For instance, if we choose Mt = Mopt
t , such

that Mopt
t G/(1 − κt) matches the optimal lapsation fund threshold for 0 6 t 6 T , then this

stopping time is the optimal one. Besides allowing us to consider two extreme cases of lapse
modeling, i.e, no surrender and optimal behaviour, the stopping time in (4.12) can also help us
define realistic sub-optimal lapse assumptions. For example, if Mt is constant ∀t, say Mt = 1.5,
then a policyholder adopting such a strategy will surrender her contract when the surrender

benefit, F
(β)
t (1−κt), is at least 50% larger than the guarantee. The rationale behind this type of

surrender behaviour is to avoid paying fees when the guarantee has little value. We will consider
such surrender strategies based on a fixed moneyness ratio in our hedging analysis.

4.5.4 Results

To illustrate why eliminating the surrender incentive in the VA product design can simplify
the insurer’s hedging strategy and make it more effective, we revisit the example analyzed in
Section 4.4. This example incorporates a state-dependent fee paid only when the account value

is below β = 150, and the following assumptions: F
(150)
0 = G = 100, T = 10, r = 0.03, and

σ = 0.165. We assume that the surrender charge function is the minimal one which makes
lapsation sub-optimal during the whole length of the contract, see Figure 4.8. The fair value of
c for this particular case is 0.0155.

To highlight the importance of product design on risk management, we contrast this example
to a typical constant fee product design (β = ∞) with the exact same schedule of surrender
charges. It turns out that when pricing under optimal policyholder behaviour, the fair value of c
is once again 0.0155, and the optimal lapsation boundary corresponds to the curve on the right
of Figure 4.8. This result, which may seem surprising at first, has an intuitive explanation which
we detail in the next paragraph.

First, note that for a given surrender charge function, and assuming that the policyholder
lapses optimally, the state-dependent fair fee (β <∞) is always at least as much as the constant
fair fee (β =∞). This is due to the fact that under the state-dependent fee design, the fee might
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be paid over a period of time shorter than in the constant fee case. Consequently, for a given
lapse assumption, the state-dependent fee is an upper bound for the fair fee when β =∞. In our
specific example, this implies that the fair fee when β =∞ is at most 0.0155. To see why 0.0155
is also a lower bound for the constant fair fee, consider a policyholder who lapses as soon as the
account value hits the curve on the right of Figure 4.8. At this exact moment, we know that the
surrender benefit is exactly equal to the value of the VA contract in the state-dependent fee case
(β = 150). This is simply because the (minimal) surrender charge schedule was established so
that the following condition is satisfied along the curve on the right of Figure 4.8:

EQ[e−r(T−t) max(F
(150)
T , G)|Ft] = (1− κt)F (150)

t . (4.13)

This strategy (holding a constant-fee contract and surrendering as soon as the account value
hits the curve on the right of Figure 4.8) can be replicated by holding the state-dependent

fee contract with β = 150 and c = 0.0155, and surrendering it as soon as (1 − κt)F
(150)
t =

EQ[e−r(T−t) max(F
(150)
T , G)|Ft]. In both cases, the surrender boundary would be the same, be-

cause it was defined through Equation (4.13). Since that surrender boundary is always under
β = 150, the policyholder will pay fees continuously until surrender or maturity in both con-
tracts. We know that the state-dependent fee contract is priced fairly at c = 0.0155. Thus, since
under this particular surrender strategy the policyholder receives the same payoff from holding
the constant fee or the state-dependent fee contract, they should both have the same price of
0.0155. This implies that c = 0.0155 must be a lower bound for the fair fee when β = ∞, as
it is the fair c under one possible surrender strategy. Finally, the arguments presented in this
paragraph imply also that (i) the fair fee must be exactly 0.0155 because it is bounded above and
below by this value, and (ii) the curve on the right of Figure 4.8 must be the optimal lapsation
boundary in the constant fee case (β =∞).6

In summary, we consider two product designs which are priced assuming optimal policyholder
behaviour. The first one is a constant fee design (β = ∞), c = 0.0155 and the surrender charge
schedule given in Figure 4.8. This contract is fairly priced, as explained above. The optimal
hedging strategy for this design is to hedge assuming the lapsation boundary is given by the
curve on the right-hand side of Figure 4.8. The second design has the same surrender charge
schedule and the same fair fee rate, but this fee is now paid only when the account value is below
β = 150. The optimal hedging strategy for this design is to hedge assuming the policyholder will
hold on to her contract until maturity.

Table 4.2 shows the statistics of the insurer’s net delta hedging loss at maturity (H − L)
for the first product design with β = ∞ based on 500,000 stock paths projected on a weekly

6Note that this result about the equivalence of the fair fee when β < ∞ and β = ∞ will hold when
(i) the surrender charge function is chosen as the minimal one making lapsation sub-optimal for the case

β <∞, and (ii) the value of Ft at the infimum of the function EQ[e−r(T−t) max(F
(β)
T , G)|Ft]/F (β)

t is below
β, for t 6 0 6 T .
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frequency (h = 1/52) over T = 10 years with the Black-Scholes model and a real-world drift
parameter of µ = 0.07. The hedging portfolio is rebalanced weekly, and is established assuming
either optimal behaviour (Opt) or no surrenders (NS). We also consider five possible types of
surrender behaviours based on the stopping time in (4.12): Mt = Mopt

t , 1.3, 1.5, 1.7, and ∞ (see
Section 4.5.3 for more details).

Table 4.2: Statistics of the insurer’s net hedging loss

β =∞
Behaviour Mt = Mopt

t Mt = 1.3 Mt = 1.5 Mt = 1.7 Mt =∞
Hedge Opt NS Opt NS Opt NS Opt NS Opt NS

Mean 0.0 2.5 0.0 2.5 −1.0 2.9 −2.7 2.2 −10.4 −4.1

StDev 0.7 4.1 0.7 4.3 1.3 5.8 2.5 6.6 9.6 0.7

95% CTE 1.6 7.7 1.6 8.5 1.5 12.4 1.4 14.9 1.4 −2.5

99% VaR 1.9 8.0 1.9 8.8 1.8 12.9 1.8 15.7 1.8 −2.3

β = 150

Behaviour Mt = Mopt
t Mt = 1.3 Mt = 1.5 Mt = 1.7 Mt =∞

Hedge NS NS NS NS NS

Mean 0.0 0.0 −1.1 −1.9 0.0

StDev 0.7 0.7 1.1 1.8 1.0

95% CTE 1.6 1.6 1.6 1.8 2.1

99% VaR 1.9 1.9 2.0 2.2 2.4

First, observe that on average the optimal hedging strategy never results in a loss, regardless of
the policyholder behaviour. This is consistent with a super-hedge, but note that the insurer is still
exposed to hedging risk as the 95% CTE is close to a loss of 1.5 for all scenarios. Nonetheless,
hedging assuming optimal policyholder behaviour gives good results because it corresponds to
hedging the worst-case scenario. However, given that the insurer sells many different VA products,
implementing this optimal hedge for each product can be very impractical, if even possible. For
this reason, insurers generally implement a simplified hedging strategy, such as a delta hedge
that neglects the probability of surrenders. Unfortunately, the results in Table 4.2 show that this
simplification significantly impairs hedging effectiveness when the policyholder can surrender her
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contract before maturity and is therefore not a viable solution for the insurer.

We now turn our attention to the second product design with β = 150. The second part of
Table 4.2 shows the statistics of the insurer’s net delta hedging loss at maturity (H −L) for this
product design based on the same 500,000 simulated weekly stock paths. We again analyse the
same five surrender behaviours as in the first part of Table 4.2, but now consider only a delta
hedge of the maturity benefit (no surrenders), as this strategy is also optimal for this design.

We observe that hedging effectiveness for the scenarios with Mt = Mopt
t and Mt = 1.3, in the

second part Table 4.2 is comparable with what was obtained in the first part, for the product
design with β = ∞. However, the risk measures for the net hedging loss are a bit higher for
the other scenarios. This increase is due to the fact that for the product design with β = 150,
the insurer does not receive any fee income when the account value is above 150, but he is still
exposed to hedging errors.

From a risk management standpoint, a product design which does not give rise to a surrender
incentive seems preferable. First, the variable annuity product can be hedged conservatively
assuming no surrenders which simplifies the construction of the hedging portfolio. Second, the
hedging strategy can be implemented in a uniform manner across the portfolio of VAs because the
optimal lapsation boundary does not have to be taken into consideration for each of the different
product designs. Third, early surrenders can only be sub-optimal and generate additional revenue
for the insurer. This additional revenue can compensate the insurer for the liquidity strain that
arises with early surrenders, or for the need to adjust his hedging portfolio after a policyholder
has lapsed.

4.6 Concluding Remarks

This chapter explores the surrender incentive resulting from a state-dependent fee structure. It
shows that a combination of surrender charges and state-dependent fee structure can significantly
reduce the incentive to surrender a variable annuity contract optimally, especially above the
payment barrier. This chapter also explains how to obtain the minimal surrender charge to
ensure that surrender incentives are eliminated. Under a state-dependent fee structure, such
charges are shown to be much lower than when the fee is paid continuously. Finally, it is shown
that when the surrender incentive is eliminated, hedging the maturity benefit is sufficient to
protect the insurer against optimal and suboptimal lapse behaviour.

Further research should aim to test the robustness of the product design and dynamic hedging
strategy under different market models. The product design could also be extended to variable
annuity contracts offering other types of financial guarantees.
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Appendix

4.A Proof of Equation (4.1)

In this section, we detail the derivation of (4.1). This derivation is very close to the derivation of
the Black-Scholes equation for options on a dividend-paying stock. Since the derivation holds for
any β ∈ (0,∞], in this appendix we omit the superscript (β) and refer to the account value by
Ft for ease of exposition. First, we remind the reader of the dynamics of the VA account Ft:

dFt = Ft((µ− c1{Ft<β})dt+ σdWt), 0 6 t 6 T, (4.14)

which is based on the value of the index St. The dynamics of St are given by

dSt = St(µdt+ σdWt), 0 6 t 6 T. (4.15)

We also consider the price of the VA contract, V (t, Ft), which depends on time t and account
value Ft. Thus, by Itô’s lemma, we can write

dV (t, Ft) =
∂V

∂t
dt+

∂V

∂Ft
dFt +

1

2

∂2V

∂F 2
t

σ2F 2
t dt, 0 6 t 6 T. (4.16)

Now consider a portfolio composed of a long position in the VA contract and a short position in
the index St. We denote the value of the portfolio at time t by Πt and define it by

Πt = V (t, Ft)−∆tSt, (4.17)
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where ∆t is the number of shares of the index St in the portfolio at time t. Using (4.16), (4.14)
and (4.15), and since the portfolio is assumed to be self financing, we have

dΠt = dV −∆tdSt

=
∂V

∂t
dt+

∂V

∂Ft
dFt +

1

2

∂2V

∂F 2
t

σ2F 2
t dt−∆tSt(µdt+ σdWt)

=

(
∂V

∂t
+
∂V

∂Ft
Ft(µ− c1{Ft<β}) +

1

2

∂2V

∂F 2
t

σ2F 2
t −∆tStµ

)
dt+

(
∂V

∂Ft
Ftσ −∆tStσ

)
dWt.

To make the portfolio risk-free, we need to eliminate the term in dWt. This is done by setting
∆t = ∂V

∂Ft
Ft
St

. Using this hedging ratio, we get

dΠt =

(
∂V

∂t
+
∂V

∂Ft
Ft(µ− c1{Ft<β}) +

1

2

∂2V

∂F 2
t

σ2F 2
t −∆tStµ

)
dt. (4.18)

This portfolio is thus risk-free. By no-arbitrage arguments, the return of this portfolio must be
the risk-free rate. In other words, we must have

dΠt = rΠtdt = r(V (t, Ft)−∆tSt)dt. (4.19)

Since (4.18) and (4.19) are equal, and since ∆t = ∂V
∂Ft

Ft
St

we have

∂V

∂t
− ∂V

∂Ft
Ftc1{Ft<β} +

1

2

∂2V

∂F 2
t

σ2F 2
t − rV (t, Ft) + r

∂V

∂Ft
Ft = 0

∂V

∂t
+

1

2

∂2V

∂F 2
t

σ2F 2
t +

∂V

∂Ft
Ft(r − c1{Ft<β})− rV (t, Ft) = 0.

4.B Proof of Equation (4.3)

In this section, we prove (4.3) from Section 4.2. More precisely, we show that

lim
x→∞

V (t, x)

x
= 1, (4.20)

where V (t, x) is the price of the VA contract with maturity payoff max(G,F
(β)
T ), β < ∞, and

surrender option.

We first present two lemmas that will be used to prove (4.3) in Proposition 4.B.1.
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Lemma 4.B.1. Let F
(β)
t , t 6 0 6 T be as defined in Section 4.2. Then,

lim
x→∞

EQ[e−r(T−t)F
(β)
T |F

(β)
t = x]

x
= 1. (4.21)

Proof. Let mF (t, u) = inft6s6u F
(β)
s and mS(t, u) = inft6s6u Ss be the minimum values attained

by the account and the index, respectively, between times t and u. Then, (4.21) can be re-written
as

EQ[e−r(T−t)F
(β)
T |F

(β)
t = x]

x
=

EQ[e−r(T−t)F
(β)
T 1{mF (t,T )>β}|F

(β)
t = x]

x
+
EQ[e−r(T−t)F

(β)
T 1{mF (t,T )6β}|F

(β)
t = x]

x
. (4.22)

To prove that limx→∞
V (t,x)
x = 1, we show that the first term of (4.22) goes to 1 as x→∞, and

then show that the second term goes to 0 as x→∞.

To do so, let Ct = e
−c
∫ t
0 1{F (β)

s <β}
ds

and note that Ct is Ft-measurable. Observe that if

F
(β)
t = CtSt > β, then

F (β)
u 1{mF (t,u)>β} = CtSu1{mS(t,u)> β

Ct
}, a.s. for t < u 6 T, (4.23)

since the fee is not paid as long as the account value is above β. It follows that

EQ[e−r(u−t)F (β)
u 1{mF (t,u)>β}|F

(β)
t = x] = CtEQ

[
e−r(u−t)Su1{mS(t,u)> β

Ct
} | St =

x

Ct

]
. (4.24)

The expectation on the right-hand side of (4.24) is the price of a down-and-out call option with
strike 0 and barrier β

Ct
. Under the Black-Scholes model, the price of this option has a closed-form

solution (see, for example, Chapter 18 of Björk (2004)). So we can write

CtEQ

[
e−r(u−t)Su1{mS(t,u)> β

Ct
}|St =

x

Ct

]
=

xN

 ln x
β +

(
r + σ2

2

)
(u− t)

σ
√
u− t

− β(β
x

) 2r
σ2

N

 ln β
x +

(
r + σ2

2

)
(u− t)

σ
√
u− t

 .
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Thus, we have

EQ[e−r(u−t)F
(β)
u 1{mF (t,u)>β}|F

(β)
t = x]

x

=

x
Ct
N

(
ln x
β

+
(
r+σ2

2

)
(u−t)

σ
√
u−t

)
x

−
β
(
β
x

) 2r
σ2 N

(
ln(βx )+

(
r+σ2

2

)
(u−t)

σ
√
u−t

)
x

=
1

Ct
N

 ln
(
x
β

)
+
(
r + σ2

2

)
(u− t)

σ
√
u− t

− (β
x

) 2r
σ2 +1

N

 ln
(
β
x

)
+
(
r + σ2

2

)
(u− t)

σ
√
u− t

 .

The result follows since limy→∞N (y) = 1 and limy→−∞N (y) = 0.

To show that the second term of (4.22) vanishes for large values of x, we first note that

EQ[e−r(T−t)F
(β)
T 1{mF (t,T )6β}|F

(β)
t = x]

x
6
EQ[e−r(T−t)ST1{mS(t,T )6 β

Ct
}|St = x

Ct
]

x
, (4.25)

since for any 0 6 t 6 T , Ft = StCt 6 St, a.s. The right-hand side of (4.25) is the price of of
down-and-in call option with strike 0 and barrier β

Ct
. The price option also has a closed-form

solution (again, see Chapter 18 of Björk (2004)), which allows us to write

EQ[e−r(T−t)F
(β)
T 1{mF (t,T )6β}|F

(β)
t = x]

x
6

1

Ct

{
N

(
ln β

x − (r̃ + σ2)(u− t)
σ
√
u− t

)
+

(
β

x

) 2r̃
σ2 +2

N

(
ln β

x + (r̃ + σ2)(u− t)
σ
√
u− t

)}
.

Since limy→−∞N (y) = 0, limx→∞
EQ[e−r(T−t)F

(β)
T 1{mF (t,T )6β}|F

(β)
t =x]

x = 0. �

Lemma 4.B.2. Let F
(β)
t , t 6 0 6 T be as defined in Section 4.2. Then,

lim
x→∞

x+ EQ[e−r(T−t)(G− F (β)
T )+|F (β)

t = x]

x
= 1,

where (G− F (β)
T )+ = max(G− F (β)

T , 0).

Proof. Denote by pt,St(T,G, δ) the price at time t of a European put option with strike G and
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maturity T , on a stock St paying dividends at a continuous rate δ. Using

ST e
−c(T−t)

St
<
F

(β)
T

F
(β)
t

<
ST
St
, a.s.,

it is easy to show that

pt,x(T,G, 0) 6 EQ[e−r(u−t)(G− F (β)
u )+|F (β)

t = x] 6 pt,x(T,G, c).

Since ∀δ > 0, limx→∞ pt,x(T,G, δ) = 0, the desired result follows from

lim
x→∞

EQ[e−r(T−t)(G− FT )+|F (β)
t = x]

x
= 0.

Using Lemmas 4.B.1 and 4.B.2, we can now prove the main result of this section.

Proposition 4.B.1. Let V (t, F
(β)
t ) be as defined in Section 4.2. Then,

lim
x→∞

V (t, x)

x
= 1. (4.26)

Proof. To prove Proposition 4.B.1, we first show

EQ[e−r(T−t)F
(β)
T |Ft] 6 V (t, F

(β)
t ) 6 Ft + EQ[e−r(T−t)(G− F (β)

T )+|Ft]. (4.27)

The first inequality stems from the fact that the price of the contract with surrender option,

V (t, F
(β)
t ) is worth at least as much as the present value of the maturity benefit, which is itself at

least equal to the expectation of the account value at maturity. To show the second inequality,

recall that the payoff of the contract is either (1− κu)F
(β)
u if the contract is surrendered at time

u < T , or F
(β)
T + (G − F (β)

T )+ at time T if the contract is kept until then. Notice also that the

present value of the surrender benefit is at most F
(β)
t since for any u < t < T ,

EQ[e−r(u−t)(1− κu)F (β)
u |Ft] 6 EQ[e−r(u−t)F (β)

u |Ft] 6 F
(β)
t . (4.28)

Thus, the value of the variable annuity contract is bounded above by the sum of the expected
value of the two possible payoffs, and it follows that

V (t, F
(β)
t ) 6 Ft + EQ[e−r(T−t)(G− F (β)

T )+|Ft].
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From (4.27), it follows that

EQ[e−r(T−t)F
(β)
T |F

(β)
t = x]

x
6
V (t, x)

x
6
F

(β)
t + EQ[e−r(T−t)(G− F (β)

T )+|F (β)
t = x]

x
. (4.29)

To complete the proof of Proposition 4.B.1, it suffices to take the limit of (4.29) as x→∞. The
result follows from Lemma 4.B.1 and Lemma 4.B.2, since the first and the third terms of (4.29)
both go to 1 in the limit. �
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Chapter 5

Optimal surrender under
deterministic fee structure

5.1 Introduction

This chapter is based on a chapter that was written in collaboration with Dr. Carole Bernard
and that was submitted to the book Innovations in Risk Management.

In this chapter, we consider a VA with guaranteed minimum accumulation benefit (GMAB)
and the option to surrender. We propose to change the fee structure so that a fixed percentage
c is paid from the fund while an additional fee is paid via regular installments of a deterministic
amount pt at time t, throughout the term of the contract. Another interpretation would be to
say that it is a “state-dependent percentage fee” computed as

c(t, Ft) = c+
pt
Ft

which denotes the percentage of the fund taken to pay for the options. This is equivalent to
saying that c(t, Ft)Ft = cFt + pt is the fee paid at time t.

This fee structure can be seen as a compromise between a constant fee rate (as in Chapter
2) and a state-dependent fee paid only under a certain threshold (as in Chapters 3 and 4). The
deterministic fee expressed as a fixed amount is more in line with the cost of the option; as a
percentage of the account, the fee rate decreases with the value of the financial guarantee. This
results in lower fee rates (as a percentage of the account) when the account value is high, when
compared to the constant fee. As demonstrated in Chapter 2, the surrender incentive depends
on the fee paid when the account value is large. This is why the deterministic fee structure
can reduce surrender incentives. An advantage of this fee structure over the state-dependent
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one presented in Chapter 3 is that it is easy to explain to a less sophisticated policyholder. In
addition, since the fee can be expressed as a continuous function of the account value, pricing the
VA is mathematically simpler than when the fee is a discontinuous function of the account value
Ft.

We want to investigate the impact of such fee structure on the value of the surrender option.
In Section 5.2, we describe the model and the VA contract. Section 5.3 introduces a theoretical
result and discusses the valuation of the surrender option. Numerical examples are presented in
Section 5.4 and Section 5.5 concludes.

5.2 Assumptions and Model

Consider a market with a risk-free asset yielding a constant risk-free rate r and an index {St}06t6T
evolving as in the Black-Scholes model so that

dSt
St

= rdt+ σdWt,

under the risk-neutral measure Q, where σ > 0 is the constant instantaneous volatility of the
index. Let Ft be the natural filtration associated with the Brownian motion Wt.

5.2.1 Variable Annuity

We consider a VA contract with an underlying fund fully invested in the index St. At time t, we
assume that the fee paid is the sum of a constant percentage c > 0 of the account value and a
deterministic amount pt. Setting pt = 0, we will find back results commonly used in the literature
with the fee being only paid as a percentage of the fund.

We further assume that the investment of the policyholder at time 0 is P = F0, and that
regular additional premiums at are invested at time t. Additional contributions are common in
variable annuities, but they are regularly neglected and most academic research focuses on the
single premium case as it is simpler.

When additional contributions can be made to the account, VAs are called Flexible Premi-
ums Variable Annuities (FPVAs). Chi and Lin (2012) provide examples of such VAs where the
policyholder is given the choice between a single premium and a periodic monthly payment in
addition to some initial lump sum. Analytical formulae for the value of such contracts can be
found in Costabile (2013) and Huerlimann (2010). In the first part of this chapter, we show how
flexible premium payments influence the surrender value.

We assume that all premiums invested at 0 and at later times t are invested in the fund. All
fees (percentage or fixed fees) are paid from the fund. We need to model the dynamics of the
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fund. Our approach is inspired by Chi and Lin (2012) who study flexible premiums paid over
time. For the sake of simplicity, we assume that all cash flows happen in continuous time, so that
a fixed payment of A at time 1 (say, end of the year) is similar to a payment made continuously
over the interval [0, 1]. Due to the presence of a risk-free rate r, an amount paid at time T equal
to A is equivalent to an instantaneous contribution of at dt at any time t ∈ (0, 1] so that the
annual amount paid per year is A =

∫ 1
0 ate

r(1−t)dt. By abuse of notation, if at is constant over
the year, we will write that at is the annual rate of contribution per year (although there is no
compounding effect).

Precisely the dynamics of the fund can be written as follows

dFt = (r − c)Ftdt+ σFtdWt + atdt− ptdt

with F0 = V0, and where Ft denotes the value of the fund at time t, at is the annual amount of
contributions (or equivalently, the fee paid at the end of each year), c is the annual rate of fees
and pt is the annual amount of fee to pay for the options. Similarly to Chi and Lin (2012), it is
straightforward to show that

Ft = F0e
(r−c−σ

2

2
)t+σWt +

∫ t

0
(as − ps)e(r−c−σ

2

2
)(t−s)+σ(Wt−Ws)ds, t > 0,

that is

Ft = Ste
−ct +

∫ t

0
(as − ps)e−c(t−s)

St
Ss
ds. (5.1)

To simplify the notation, we will write

Ft = Ste
−ct +

∫ t

0
bse
−c(t−s) St

Ss
ds, (5.2)

where bs = as− ps can take values in R. While in the case of regular contributions, bs is typically
positive, it can also be negative, for example in the single premium case, or if the regular premiums
are very low. We will split bs into contributions as and deterministic fee ps when it is needed for
the interpretation of the results.

This formulation can be seen as an extension of the case studied in Chi and Lin (2012) who
assume a constant contribution parameter at = a for all t and no periodic fees (pt = 0). As can be
seen from (5.2), the account value becomes path-dependent and involves a continuous arithmetic
average.

To simplify the notation, we assume without loss of generality that F0 = S0 = V0.
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5.2.2 Benefits

We assume that there is a guaranteed minimum accumulation rate g < r on all the contributions
of the policyholder until time T so that the accumulated guaranteed benefit Gt at time t has
dynamics

dGt = gGtdt+ atdt

where G0 = V0 at time 0. Thus, at time t the guaranteed amount Gt can be expressed as

Gt = V0e
gt +

∫ t

0
ase

g(t−s)ds.

When the contribution rate is constant (at = a), the guaranteed value can be simplified to

Gt = V0e
gt + a

(
egt − 1

g
1{g>0} + t1{g=0}

)
.

Chi and Lin (2012) develop techniques to price and hedge the guarantee at time t. Using their
numerical approach it is possible to estimate the fair fee for the European VA (Proposition 3 in
their paper).

As in Bernard, MacKay, and Muehlbeyer (2014) and Milevsky and Salisbury (2001), we
assume that the policyholder has the option to surrender the policy at any time t and to receive
a surrender benefit at surrender time equal to

(1− κt)Ft

where κt is a penalty percentage charged for surrendering at time t. As presented for instance
in Bernard and Lemieux (2008), Milevsky and Salisbury (2001) or Palmer (2006), a standard
surrender penalty is a non-increasing function of time. Typical VAs sold in the US have a
surrender charge period. A typical example is New York Life’s Premier Variable Annuity (New
York Life (2014)), for which the surrender charge starts at 8% in the first contract year, decreases
by 1% per year to reach 2% in year 7. From year 8 on, there is no penalty on surrender. In
another example, “the surrender charge is 7% during the first Contract Year and decreases by
1% each subsequent Contract Year. No surrender charge is deducted for surrenders occurring
in Contract Years 8 and later” (Thrivent Financial (2014)). In general, the maximum surrender
charge will be around 8% of the amount withdrawn based on the annuity. The percentage of the
surrender charge varies and generally decreases during the surrender charge period.
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5.3 Valuation of the surrender option

In this section, we discuss the valuation of the full variable annuity contract, with maturity
benefit and surrender option.1 We first present a sufficient condition to eliminate the possibility of
optimal surrender. We then explain how we evaluate the surrender option using partial differential
equations (PDEs). We consider a variable annuity contract with maturity benefit only, which can
be surrendered. We choose to ignore the death benefits that are typically added to that type of
contract since our goal is to analyze the effect of the fee structure on the value of the surrender
option.

5.3.1 Theoretical Result on Optimal Surrender Behaviour

According to (5.2) the account value Ft can be written as follows at time t

Ft = e−ctSt +

∫ t

0
bse
−c(t−s) St

Ss
ds, t > 0,

and at time t+ dt, it is equal to

Ft+dt = e−c(t+dt)St+dt +

∫ t+dt

0
bse
−c(t+dt−s)St+dt

Ss
ds.

Proposition 5.3.1 (Sufficient condition for no surrender). For a fixed time t ∈ [0, T ], a sufficient
condition to not surrender at time t is given by

(κ′t + (1− κt)c)Ft < bt(1− κt), (5.3)

where κ′t = ∂κt
∂t . Here are some special cases of interest:

• When at = pt = 0 (no periodic investment, no periodic fee) and κt = 1−e−κ(T−t) (situation
considered in Chapter 2) then bt = 0 and (5.3) becomes

κ > c.

• When at = 0 (no periodic investment, i.e. a single lump sum paid at time 0), then bt =
−pt 6 0. Assume that pt > 0 so that bt < 0 thus

1In this chapter, we quantify the additional value added by the possibility for the policyholder to
surrender his policy. We call it the surrender option, as in Milevsky and Salisbury (2001). It is not a
guarantee that can be added to the variable annuity, but rather a real option created by the fact that the
contract can be surrendered.
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• If κ′t + (1 − κt)c > 0 (for example if κ is constant), then the condition can never be
satisfied and no conclusion can be drawn.

• If κ′t + (1− κt)c < 0 then it is not optimal to surrender when

Ft >
−pt(1− κt)
κ′t + (1− κt)c

.

• When κt = κ and bt = b are constant over time, the condition (5.3) can be rewritten as

Ft <
b(1− κ)

c(1− κ)
=
b

c
.

Remark 5.3.1. Proposition 5.3.1 shows that in the absence of periodic fees and investment, an
insurer can easily ensure that it is never optimal to exercise by choosing a surrender penalty of
1 − e−κt with a penalty parameter κ higher than the percentage fee c. This is in line with our
result from Chapter 4. Proposition 5.3.1 shows that it is also possible when there are periodic fees
and investment opportunities and the conditions are more complicated.

Remark 5.3.2. Equation (5.3) of Proposition 5.3.1 has an intuitive interpretation. In fact, it
can be re-written as

(κ′t + (1− κt)c)Ft + pt(1− κt) < at(1− κt),

where the left-hand side is approximately the gain made from being out of the contract from t to
t + dt, and right-hand side approximates the increase in the account value between times t and
t+ dt. Thus, it is not optimal to surrender if the gain from surrender is less than the increase in
the account value.

Proof. Consider a time t at which it is optimal to surrender. This implies that for any time
interval of length dt > 0, it is better to surrender at time t than to wait until time t + dt. In
other words, the surrender benefit at time t must be at least equal to the expected discounted
value of the contract at time t + dt, and in particular larger than the surrender benefit at time
t+ dt. Thus

(1− κt)Ft > E[e−rdt(1− κt+dt)Ft+dt |Ft]

Using the martingale property for the discounted stock price St and the independence of incre-

ments for the Brownian motion, we know that E[St+dte
−rdt] = St and E

[
St+dt
St

∣∣∣Ft] = E
[
St+dt
St

]
=
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erdt thus

E[e−rdtFt+dt|Ft] = e−c(t+dt)St +

∫ t

0
bse
−c(t+dt−s) St

Ss
ds+

∫ t+dt

t
bse
−c(t+dt−s)e−rdtE

[
St+dt
Ss

]
ds,

= e−c(t+dt)St +

∫ t

0
bse
−c(t+dt−s) St

Ss
ds+

∫ t+dt

t
bse
−c(t+dt−s)ds,

= e−cdtFt + e−cdt
∫ t+dt

t
bse
−c(t−s)ds. (5.4)

Thus

(1− κt)Ft > (1− κt+dt)
(
e−cdtFt + e−cdt

∫ t+dt

t
bse
−c(t−s)ds

)
We then use κt+dt = κt+κ′tdt+o(dt), e−cdt = 1− cdt+o(dt) and

∫ t+dt
t bse

−c(t−s)ds = btdt+o(dt)
to obtain

(1− κt)Ft > (1− κt − κ′tdt) ((1− cdt)Ft + (1− cdt)btdt) + j(dt)

which can be further simplified into

(κ′t + (1− κt)c)Ftdt > bt(1− κt)dt+ j(dt). (5.5)

where the function j(dt) is o(dt). Since this holds for any dt > 0, we can divide (5.5) by dt and
take the limit as dt→ 0. Then, we get that if it is optimal to surrender the contract at time t,

(κ′t + (1− κt)c)Ft > bt(1− κt).

It follows that if (κ′t + (1− κt)c)Ft < bt(1− κt), it is not optimal to surrender the contract at t.�

5.3.2 Valuation of the surrender option using PDEs

To evaluate the surrender option, we compare the value of the variable annuity contract with
and without surrender. These contracts can be compared to American and European options,
respectively, since the guarantee in the former can be exercised at any time before maturity while
the latter is only triggered when the contract expires.

From now on, we assume that the deterministic fee pt is constant over time, so that pt = p for
any time t. We also assume that the policyholder makes no contribution after the initial premium
(at = 0 for any t), and denote GT = G to simplify the notation.

We denote by U(t, Ft) and V (t, Ft) the value of the contract without and with surrender
option, respectively. The value of the contract without the surrender option is simply the risk-
neutral expectation, conditional on the filtration up to time t, of the payoff at maturity.
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U(t, Ft) = E[e−r(T−t) max(G,FT )|Ft] (5.6)

It is well-known2 that the value of a European contingent claim on the fund value Ft follows
the following PDE:

∂U

∂t
+

1

2

∂2U

∂F 2
t

F 2
t σ

2 +
∂U

∂Ft
(Ft(r − c)− p)− rU = 0. (5.7)

Note that(5.7) is very similar to the Black-Scholes equation for a contingent claim on a stock
that pays dividends (here, the constant fee c represents the dividends), with the addition of the
term ∂U

∂Ft
p resulting from the presence of a deterministic fee. Since it represents the contract

described in Section 5.2, (5.7) is subject to the following conditions:

U(T, FT ) = max(G,FT )

lim
Ft→0

U(t, Ft) = Ge−r(T−t).

The last condition results from the fact that when the fund value is very low, the guarantee
is certain to be triggered. When Ft → ∞, the problem is unbounded. However, we have the
following asymptotic behaviour:

lim
Ft→∞

U(t, Ft)

Et[FT e−r(T−t)]
= 1, (5.8)

which stems from the fact that when the fund value is very high, the value of the guarantee
approaches 0. We will use this asymptotic result to solve the PDE numerically, when truncating
the grid of values for Ft. The expected value in (5.8) is easily calculated and is given in the proof
of Proposition 5.3.1.

To express the value of the variable annuity contract with the surrender option, we must
introduce further notation. We denote by Tt the set of all stopping times τ greater than t and
bounded by T . Then we can express the continuation value of the VA contract with surrender as

V ∗(t, Ft) = sup
τ∈Tt

E[e−r(τ−t)ψ(τ, Fτ )],

where

ψ(t, x) =

{
(1− κt)x, if t ∈ (0, T )

max(G, x), if t = T

2See, for example, Björk (2004), Section 7.3. The derivation of this PDE is similar to the one used in
Chapter 4.
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is the payoff of the contract at surrender or maturity. Finally, we let Rt be the optimal surrender
region at time t ∈ [0, T ] and define it by

Rt = {Ft : V ∗(t, Ft) 6 ψ(t, Ft)}.

In other words, the optimal surrender region is given by the fund values for which the surrender
benefit is worth at least as much as the VA contract if the policyholder continues to hold it for at
least a small amount of time. The complement of the optimal surrender region Rt will be referred
to as the continuation region. We also define Bt, the optimal surrender boundary at time t, by

Bt = inf
Ft∈[0,∞)

{Ft ∈ Rt}.

As is the case for the American put option3, the VA contract with surrender option gives rise
to a free boundary problem. In the continuation region, V ∗(t, Ft) follows (5.7), the same equation
as for the contract without surrender option. However, in the optimal surrender region, the value
of the contract with surrender is the value of the surrender benefit:

V ∗(t, Ft) = ψ(t, Ft), t ∈ [0, T ], Ft ∈ Rt. (5.9)

For the contract with surrender, the PDE to solve is thus subject to the following conditions:

V ∗(T, FT ) = max(G,FT )

lim
Ft→0

V ∗(t, Ft) = Ge−r(T−t)

lim
Ft→Bt

V ∗(t, Ft) = ψ(t, Bt).

lim
Ft→Bt

∂

∂Ft
V ∗(t, Ft) = 1− κt.

For any time t ∈ [0, T ], the value of the VA with surrender is given by V (t, Ft) = max(V ∗(t, Ft), ψ(t, Ft)).
This free boundary problem is solved in Section 5.4 using numerical methods.

5.4 Numerical Example

To price the VA using a PDE approach, we modify (5.7) to express it in terms of xt = lnFt. We
discretize the resulting equation over a rectangular grid with time steps dt = 0.0001 (dt = 0.0002
for T = 15) and dx = σ

√
3dt,4 from 0 to T in t and from 0 to ln 450 in x. We use an explicit

scheme with central difference in x and in x2.

3See, for example, Carr, Jarrow, and Myneni (1992)
4As suggested in Racicot and Théoret (2006).
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5.4.1 Numerical Results

We now consider variable annuities with the maturity benefit described in Section 5.2. We assume
that the initial premium P0 = 100, that there is no periodic premium (as = a = 0), that the
deterministic fee is constant (pt = p) and that the guaranteed roll-up rate is g = 0. We further
assume r = 0.03, σ = 0.2 and that the surrender charge, if any, is of the form κt = 1− eκ(T−t).

For a 10-year variable annuity contract with and without surrender charge, the results are
presented in Table 5.1. In each case, the fee levels c and p are chosen such that the maturity
benefit is fully covered.5 It is interesting to note that as a percentage of the initial premium,
the fair fee when it is paid as a fixed amount is higher than the fair constant percentage fee.
This is due to the fact that when the fee is a fixed amount, it represents a lower percentage of
the fund when the fund value is high. The insurer thus receives less than when the fee is a fixed
percentage. When the fund value is low, the fixed amount fee represents a larger proportion of the
fund compared to the constant percentage fee. This higher percentage drags the fund value down
and increases the option value. This can explain the difference between the fair fixed percentage
and fixed amount fees.

Fee Surrender Option
c p κ = 0 κ = 0.005

0.0000 2.0321 3.07 1.02
0.0050 1.3875 3.50 1.46
0.0100 0.7443 3.92 1.89
0.0158 0.0000 4.43 2.39

Table 5.1: Value of the surrender option for a 10-year variable annuity contract for different
fee structures.

In Table 5.1, we present the values of the surrender option for different fee structures. In
particular, we study the case where the fee is set only as a fixed percentage, and the one where
the fee is only paid as a deterministic amount. Fee structures combining both types of fees are
also analysed. The results in Table 5.1 show that when the fee is set as a fixed amount, the
value of the surrender option is lower than when the fee is expressed as a percentage of the fund.
When a mix of both types of fees is applied, the value of the surrender option decreases as the
fee set as a percentage of the fund decreases. When the fee is set as a fixed amount, a lower
percentage of the fund is paid out when the fund value is high. Consequently, the fee paid by
the policyholder is lower when the value of the guarantee is low. This explains why the value
of the surrender option decreases when the fee is paid as a fixed amount. This can be observed

5That is, P0 = U(t, Ft).
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both with and without surrender charges. However, surrender charges decrease the value of the
surrender option, as expected. The effect of using a fee set as a fixed amount, instead of a fixed
percentage, is even more noticeable when there is a surrender charge.

Figure 5.1 shows the optimal surrender boundaries for the fee structures presented in Table 5.1.
As expected, the optimal boundaries are higher when there is a surrender charge. Those charges
are put in place in part to discourage policyholders from surrendering early. The boundaries are
also less sensitive to the fee structure when there is a surrender charge. In fact, when there is a
surrender charge, setting the fee as a fixed amount leads to a higher optimal boundary during most
of the contract. This highlights the advantage of the fixed amount fee structure combined with
surrender charges. Without those charges, the fixed fee amount could lead to more surrenders.
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Figure 5.1: Optimal surrender boundary when T = 10.

Table 5.2 shows the effect of the fee structure on the surrender options for 5-year and 15-year
contracts. For the 15-year contract, we lowered the surrender charge parameter to κ = 0.004
to ensure that the optimal surrender boundary is always finite. For both maturities, setting
the fee as a fixed amount instead of a fixed percentage has a significant effect on the value of
the surrender option. This effect is amplified for longer maturities. As for the 10-year contract,
combining the fixed amount fee with a surrender charge further reduces the value of the surrender
option, especially when T = 15. The optimal surrender boundaries for different fee structures
when T = 15 are presented in Figure 5.2. For longer maturities such as this one, the combination
of surrender charges and deterministic fee increases the surrender boundary more significantly.
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T = 5 T = 15
Fee Surrender Option Fee Surrender Option

c p κ = 0 κ = 0.005 c p κ = 0 κ = 0.004
0.0000 4.1500 3.09 2.09 0.0000 1.2588 2.76 0.23
0.0100 2.9714 3.32 2.33 0.0030 0.8422 3.30 0.77
0.0200 1.7955 3.56 2.57 0.0060 0.4269 3.84 0.84
0.0353 0.0000 3.92 2.94 0.0091 0.0000 4.40 1.86

Table 5.2: Value of the surrender option for 5-year and 15-year variable annuity contracts
for different fee structures.
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Figure 5.2: Optimal surrender boundary when T = 15.

5.5 Concluding Remarks

In this chapter, we introduced the notion of a deterministic fee as a new type of state-dependent
fee. Combined with surrender charges, it can reduce the surrender incentive. Further investigation
into the form of the surrender charge could lead to designs eliminating the optimal surrender in-
centive. Nonetheless, this type of fee structure is an interesting alternative to the state-dependent
fee introduced in Chapter 3, since it is easier to explain to the policyholder. In addition, it does
not present a discontinuity, which simplifies the pricing of liabilities.

We also explored a sufficient condition that allows to eliminate the possibility of optimal
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surrender for variable annuity contracts with fairly general fee structures. This result extends
the one presented in Chapter 2. It could be used to explore fee structures that eliminate the
surrender incentive.

Future work should focus on more general payouts in more general market models, and include
death benefits. These considerations would introduce our results to a more realistic setting, which
would probably increase their attractiveness to the insurance industry.
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Chapter 6

Group Self-Annuitization Schemes:
How optimal are the ‘optimal
strategies’?

6.1 Introduction and Motivation

Group self-annuitization (GSA) schemes allow individuals with retirement funds to pool their
assets with other similar individuals, with a view to providing income through retirement. By
pooling funds, the members benefit from risk sharing. Each year end (say), the income of the sur-
viving members is adjusted to reflect the investment experience of the pooled fund, the mortality
experience of the annuitants or possibly both.

With the decline of defined benefit plans, increased attention on longevity risk, and (per-
ceived) high cost of annuities purchased through insurance companies, GSA schemes have been
attracting attention from researchers and from the pensions industry. Some defined contribution
(DC) pension plan sponsors are using GSAs to offer retirees the benefits of pooling (albeit to
a limited extent), without requiring sponsors to retain the investment, mortality and longevity
risks associated with offering fixed annuities. For individual retirees the benefits of pooling may
be available at substantially less cost than through the fixed annuity market. Furthermore, if
investments perform above expectations, and longevity is adequately anticipated, then the extra
return in a GSA scheme is returned to the participants, whereas for a fixed annuity (offered by
a sponsor or purchased through the annuity market), any excess investment income would not
increase benefits (at least, not directly). This upside opportunity may be an attraction for par-
ticipants, and it has been suggested (for example, by Maurer, Mitchell, Rogalla, and Kartashov
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(2013)) that GSAs could increase annuitization of retirement benefits, which is generally assumed
to be below optimal levels (as proposed by, for example, Yagi and Nishigaki (1993)).

Previous research on GSA schemes covers a range of different designs. Piggott, Valdez, and
Detzel (2005) derive closed-form expressions for the benefits coming from annuity pools, both
closed and open to new participants. Using these results, Qiao and Sherris (2013) use simulations
to highlight the risks of GSAs, especially when the group is closed, for retirees reaching high
ages. They argue that there needs to be solidarity between younger and older pensioners to
reduce longevity risk, and that the fund needs to be open to new pensioners to avoid volatility
in payments and declining income at high ages. Nonetheless, Stamos (2008) demonstrates that
pooled annuity funds can protect against longevity risk, even when the pool is small. He shows
that a utility maximizing retiree will often favor pooled annuities when there is a charge for
transferring mortality risk to an insurer; van de Ven and Weale (2009) obtain similar results.
Donnelly, Guillén, and Nielsen (2013) also find that participants are willing to absorb the mortality
risk in a pooled arrangement. They show that the expected return to the annuitants is higher and
that the expected lifetime utility is also increased compared with a pooled fund where only the
investment risk is pooled. However, they do not compare the value of a pooled fund compared
with a regular fixed annuity product.

Independently, Sabin (2010) develops a similar product called tontine annuity and gives the
condition under which the pool remains fair for all participants.

In this chapter, we assess the value of a GSA-type annuity within a retiree’s portfolio. We
note that variants of these schemes are offered by some North American employers, and are
likely to become more popular with plan sponsors who are de-risking their pension benefits. For
example, it is a feature of the University of British Columbia (UBC) pension plan1. Under the
UBC version, the yearly amount of the annuity is computed based on an assumed mortality
table and an assumed interest rate, which can be selected by the participant to be 4% or 7% per
year. The group of retirees share the investment risk and the mortality experience. Every year
the annuity payments are recomputed on the same valuation basis (4% or 7%) given the funds
available, which depend on the investment return on the fund, the mortality experience and the
cash paid out as annuity payments during the year.

Intuitively, this arrangement seems somewhat risky for the retiree, unless she has significant
other stable income. The graph in Figure 6.1 plots the possible annual values of this type of
annuity for 100 simulation paths when the retirement fund follows a geometric Brownian motion
with parameters µ = 0.0583 and σ = 0.2, and the plan assumed interest rate is i = 0.04. We
see that for a small number of paths the annuitant does extremely well, but for a relatively large
number of paths she fares poorly. We question the appropriateness of this profile for most retirees.
The UBC plan results available for the period 1996 to 2013 show that the retirees selecting the

1See UBC Faculty Pension Plan (2013).
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GSA option have had a volatile ride – their annuities fell by almost 20% in a single year during
the financial crisis2.
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Figure 6.1: 100 simulated paths of the GSA. Initial annuity value is 100 pa, µ = 0.0583,
σ = 0.2, i = 0.04, mortality follows RP-2000 table (75% male), group of 100 retirees

However, some of the recent literature has proposed that GSAs have an important role in
retirement portfolios. Maurer, Mitchell, Rogalla, and Kartashov (2013) consider the impact
of stochastic mortality and investment risk together. If the insurer retains the mortality risk
they label the annuity as non-participating and assume the insurer uses a quantile approach to
charge for the mortality risk. The authors load the premium so that the solvency probability
given a stochastic mortality model is very high. The so-called participating contracts pass the
systematic mortality risk to the annuitants. The authors find, in the context of their optimal
allocation approach, that the participating contracts are preferred by consumers, relative to the

2In 2009, the payments in the UBC plan were reduced by 17.45% for the 4% option, and by 19.8% for
the 7% option.

124



non-participating contracts. This is consistent with similar analysis in Donnelly, Guillén, and
Nielsen (2013).

Most authors who investigate retirement asset allocation seek to optimize the utility of the
retiree’s consumption. Horneff, Maurer, and Rogalla (2010) study optimal portfolio decisions
with deferred annuities in a life-cycle and find that a significant portion of the wealth goes to
buying deferred annuities. Hanewald, Piggott, and Sherris (2013) use simulations to analyse dif-
ferent portfolios that include life, deferred and inflation-indexed annuities, group self-annuitization
and self-annuitization. They split mortality risk into idiosyncratic and systematic and consider
fee loadings. When loadings are present, GSAs are preferred to other types of annuities, even
inflation-indexed ones. However, the GSA group is assumed to be sufficiently large that all
idiosyncratic mortality risk is diversified away, which is not assumed in our work.

In this chapter we use dynamic programming to obtain the optimal investment and consump-
tion strategy for a retiree who has access to both a GSA-scheme (very similar to the one offered
by the UBC pension plan) and a fixed whole-life annuity. To reflect the language in the UBC
plan, we use the term Variable Payment Life Annuity for the GSA scheme. We also assume
that the retiree can self-annuitize and we analyze the resulting income and annuity payments.
We find that a utility maximizing retiree will invest a significant part of her wealth in the life
annuity, even in the presence of a fee loading, where the objective is to maximize lifetime utility
of consumption, assuming CRRA (constant relative risk averse) utility.

While most authors consider systematic mortality and longevity risk, in this chapter we limit
ourselves to studying the effect of idiosyncratic mortality risk. This work is a first step towards
a full-blown analysis of the VPLA, which should include longevity risk since it is an important
factor in the development of group self-annuitization schemes. In addition, adding longevity risk
would increase the riskiness of the product, and would further confirm our conclusions about the
riskiness of the VPLA.

The CRRA utility optimization approach is used by many authors, including Stamos (2008),
Maurer, Mitchell, Rogalla, and Kartashov (2013), Horneff, Maurer, and Rogalla (2010) and Don-
nelly, Guillén, and Nielsen (2013). However, it may not adequately model the financial risk
management challenge faced by retirees. We extend our analysis to explore different criteria, in
particular, the risk of a 50% drop in retirement income. We show that strategies which empha-
size downside protection lead to payment patterns that may be more appropriate or realistic for
retirees than the CRRA utility maximization approach.

Section 2 presents the GSA scheme. In Section 3, we describe the optimization problem.
Numerical results for different sets of assumptions are presented in Section 4. Some assumptions
are relaxed in Section 5 and Section 6 concludes.
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6.2 Variable Payment Life Annuities

In this section, we introduce the Variable Payment Life Annuity (VPLA) product in more detail.
This term is not widely mentioned in the literature, but it is the one used in the UBC plan, which
is part of the motivation for this chapter. This product is very similar to the GSA described in
Piggott, Valdez, and Detzel (2005). A VPLA is a life annuity with payments that vary depending
on the performance of the fund relative to a fixed assumed rate i. In this work, we assume that
it is a type of annuity offered to members of a pension plan. Thus, the evolution of the annuity
payments depends on the performance of the pension fund, or of the sub-fund allocated to the
VPLA.

We first consider the situation where N members of a pension plan retire at the same time.
Assume there are no other retirees. Each retiree decides to allocate part of their wealth at
retirement to a VPLA. Let (xn) denote the nth member of the group, for n = 1, 2, . . . , N , and let
V0(xn) denote (xn)’s initial assets allocated to the VPLA. Then, at time 0, the nth retiree will
receive an amount

LV0 (xn) =
V0(xn)

äxn
, (6.1)

where äxn is the present value of a life annuity-due to (xn). One year later, the amount received
by the retiree is denoted by LV1 (xn) = LV0 (xn)(1 + j0), where 1 + j0 is the adjustment factor for
the first year. More generally, if (xn) is still alive at time t,

LVt (xn) = LVt−1(xn)(1 + jt−1) = LV0 (xn)
t−1∏
k=0

(1 + jk). (6.2)

The adjustment factor may take into account only the investment experience of the fund, or the
investment and mortality experience. Note that the adjustment factor for a given year is the
same for all the retirees in the group. In the next subsections, we explain how the adjustment
factor is obtained in each case.

6.2.1 Adjustment factor without mortality

In this case, the only variable that contributes to the adjustment factor is the performance of the
pension fund. There is no mortality risk pooling and each retiree can be considered individually.
The adjustment factor from year t to t+ 1 is given by

1 + jt =
1 +RVt
1 + i

,
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where RVt is the return on the pension fund during year t. Thus, if the actual return is less than
the assumed rate, the payment during year t+ 1 is less than the previous one.

6.2.2 Adjustment factor with mortality

When the adjustment factor takes mortality into account, the mortality experience of the whole
retiree group affects the benefits of the survivors.

We begin by deriving the first adjustment factor (1 + j0). The total value of the pension fund
at time 0 is

F0 =

N∑
n=1

V0(xn) =
N∑
n=1

LV0 (xn)äxn .

Note this is the value of the fund before the annuity payments. The value of the fund after the
annuity payments are made is

F0+ =

N∑
n=1

(V0(xn)− LV0 (xn)) =

N∑
n=1

LV0 (xn) axn , (6.3)

where axn = äxn−1. F0+ is the amount available for investment in the first year. The fund earns
a return of RV0 during the first year, so the value of the fund at t = 1, before paying the annuities
is

F1 =

(
N∑
n=1

LV0 (xn) axn

)
(1 +RV0 ), (6.4)

For each (xn), define the survival indicator function at t as

It(xn) =

{
1 if (xn) is alive at t
0 if (xn) dies before t

(6.5)

We use conservation of value to obtain the payments at time one. The annuity payment to
(xn) at t = 1 is given by

LV1 (xn) = (1 + j0) LV0 (xn) I1(xn),

where 1 + j0 is the adjustment factor during the first year. The fund at t = 1 must be sufficient
to pay the adjusted annuities of the survivors, which gives the prospective equation

F1 =

N∑
n=1

(1 + j0) I1(xn) LV0 (xn) äxn+1

and this must be equal to the right hand side of equation (6.4), which is the retrospective fund
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value. Solving for j0 gives

1 + j0 =

(∑N
n=1 LV0 (xn) axn

)
(1 +RV0 )∑N

n=1 I1(xn) LV0 (xn) äxn+1

.

Notice that we can write F1 as

F1 =
N∑
n=1

LV1 (xn) äxn+1,

where some of the LV1 (xn)’s may be zero. The value of the fund at t = 1 after paying the survivors
is

F1+ =
N∑
n=1

LV1 (xn) äxn+1 −
N∑
n=1

LV1 (xn) =
N∑
n=1

LV1 (xn) axn+1.

For subsequent years, we have a fund Ft at the start of the (t + 1)th year. Proceeding as
above, before the annuity payments at t we have

Ft =
N∑
n=1

LVt (xn) äxn+t

and after paying the annuities at t we have

Ft+ =

N∑
n=1

LVt (xn) axn+t

During the period (t, t + 1) the return on the fund is RVt . Hence the value of the fund at time
t+ 1 before the annuity payments is

Ft+1 = Ft+ (1 +RVt ) =

(
N∑
n=1

LVt (xn) axn+t

)
(1 +RVt ).

This must be sufficient to fund the future annuity payments starting from t+ 1, with value

Ft+1 =

N∑
n=1

LVt (xn) It+1(xn) (1 + jt) äxn+t+1. (6.6)
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We obtain jt by equating the two expressions for Ft+1, giving

(1 + jt) =

(∑N
n=1 LVt (xn) axn+t

)
(1 +RVt )∑N

n=1 LVt (xn) It+1(xn) äxn+t+1

. (6.7)

Notice that if we assume that everybody retires at the same age, x, say, then (6.7) simplifies
to

(1 + jt) =

∑N
n=1 LVt (xn)∑N

n=1 L
V
t (xn) It+1(xn)

ax+t (1 +RVt )

äx+t+1

=

( ∑N
n=1 LVt (xn)∑N

n=1 L
V
t (xn) It+1(xn)

)
px+t

(
1 +RVt
1 + i

)
⇒(1 + jt) =

px+t

p∗x+t

1 +RVt
1 + i

(6.8)

where px+t and i are the assumptions used for äx + t, and p∗x+t is the experienced survival
rate, weighted by the annuity values. That is,

p∗x+t =

∑N
n=1 L

V
t (xn) It+1(xn)∑N
n=1 L

V
t (xn)

(6.9)

This form shows the two components of the adjustment factor. The first is linked to actual mor-
tality and is greater than 1 if more people than expected die, weighted by the annuity payments.
The second is greater than 1 if the actual return RVt is higher than the return assumed by the
plan, i. Our Equation (6.8) is identical to Equation (4) from Piggott, Valdez, and Detzel (2005).

In this section, we have assumed that the group of retirees is closed to new entrants. While
this assumption may be realistic in some cases, for example, if the administrators separate groups
or cohorts or retirees into different funds with different adjustment factors, the VPLA plan that
we discuss here would typically be open to new retirees. Pooling the younger and older cohorts
reduces the volatility of the payments by increasing the diversification (see Qiao and Sherris
(2013)). However, it would add to the complexity of our optimization problem and make it
infeasible to solve using dynamic programming. So we first consider a closed, heterogeneous
group. It is important to keep in mind that this leads to more volatile VPLA payments, especially
in older ages.
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6.3 The Optimization Problem

Now that we have introduced the VPLA product, we incorporate it in an optimization problem
that models the decisions an individual must make through their retirement.

The main goal of this section is to use the standard construct of the annuitization literature
(see, for example, Hainaut and Devolder (2006),Stamos (2008), Maurer, Mitchell, Rogalla, and
Kartashov (2013), Horneff, Maurer, and Rogalla (2010), Donnelly, Guillén, and Nielsen (2013),
and Milevsky and Young (2007)). Under this standard approach we assume that the consumption
of each individual is entirely flexible and is one of the controls under a dynamic optimization (that
is, an optimization involving payments and decisions at different times, which depend on the
evolving underlying processes). The other control is the proportion of wealth invested in different
asset types. The optimal values for the control variables are determined by maximizing the total
expected utility of the consumption process, discounted by the retiree’s subjective discount rate.
The usual assumption, which we also adopt, is a utility function that has constant relative risk
aversion (CRRA). CRRA utility uses a parameter of relative risk aversion γ > 0, and takes the
form

U(c) =

{
c1−γ

1−γ for γ 6= 1,

log(c) for γ = 1.

CRRA utility is chosen partly for its tractability. However, it may not be the best choice for the
annuitization problem. CRRA implies that utility depends on proportional changes in wealth,
not on absolute values. Since (again, following the usual practice) we assume all individuals in
the group have the same risk aversion parameter γ, we are assuming that an individual with a
starting pension of $20,000 has the same aversion to a 10% drop in income as an individual with
a starting pension of $200,000.

Although these assumptions may be questioned, we continue with them as a benchmark. It
allows us to compare our results with other researchers’ findings. It also gives us a strategy that
we can test under more realistic constraints.

6.3.1 The model, assumptions and notation

We assume a retirement age of 65 and set the time of retirement at t = 0. We also assume all
lives expire by age 120, which means we will project for 54 years.

A new retiree has wealth A0 to divide between four assets: the money market, a balanced
fund, a life annuity with fixed payments and a VPLA. After this initial decision, the retiree
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rebalances her non-annuitized wealth between the saving bonds and the balanced fund at the
beginning of each year.

The proportions of initial wealth invested in balanced fund, the fixed annuity and the variable
annuity are denoted by ωB, ωF and ωV , respectively. The remaining wealth is invested in the
money market.

Denote the non-annuitized (or liquid) wealth of the retiree at time t by Wt.

We slightly modify and extend the notation from the previous section and define LF to be
the annual income from the fixed annuity, and LVt to be the retiree’s income at time t from the
VPLA. The total annuity income at t is

Lt = LVt + LF .

At t = 0, we obtain LF and LV0 by dividing the amount invested in each annuity by äF65 and
äV65, respectively. We allow for different assumptions to be used when determining the initial
payments for the fixed and variable annuities because the issuer of the fixed annuity typically
incorporates margins for the retained investment and longevity risk. We assume that this margin
is incorporated in the interest rate assumption for äF65 . We denote this adjusted interest rate by
iF and define it by

iF = i(1− λ),

where i is the interest rate used for the VPLA annuity factor, äV65, and λ ∈ ( 0, 1 ] is the interest
margin parameter.

Thus, starting with an accumulated amount at retirement A0, the annuity payments and
liquid wealth at time 0, after investment decisions are made, are given by

LF =
ωFA0

äF65

LV0 =
ωVA0

äV65

L0 = LF + LV

W0 = A0(1− ωF − ωV ) + L0,

At times t = 1, 2, ..., 54, the only investment decision that the retiree must make is how to
divide her non-annuitized wealth, Wt, between the money market and the balanced fund. We
denote by ωt the proportion of the wealth invested in the balanced fund at t. Let ω denote the
set of portfolio control variables, {ωB, ωV , ωF , ω1, ω2, . . . , ωT }.

Investments in the money market are assumed to earn the risk-free rate, r, and the return on
the balanced fund in (t, t + 1) is denoted RBt . Hence, the return on the non-annuitized wealth
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during the year starting at time t, denoted Rt, is given by

Rt = r + ωt(R
B
t − r).

After one period, the total liquid wealth, W1, and the annuity income, L1, are given by

LV1 = LV0 (1 + j0)

L1 = LV1 + LF

W1 = (W0 − C0)(1 +R0) + L1,

where C0 is the amount consumed at time 0 and (1 + jt) is the adjustment factor derived in the
previous section.

To determine the adjustment factors we assume that a proportion αV of the VPLA fund is
invested in the risky asset, while the rest is in the risk-free asset. For t = 0, 1, 2, ..., T − 1, the
total wealth Wt and the annuity income Lt evolve according to the following equations, where Nt

denotes the number of survivors at t.

LVt+1 =

{
LVt (1 + jt) if Nt ∈ [2, 3, ..., N0]

LVt
1+RVt

1+i if Nt = 1

Lt+1 = LVt+1 + LF

Wt+1 = (Wt − Ct)(1 +Rt) + Lt+1,

where RVt is the return on the VPLA fund from time t to t + 1. We assume that Nt follows
a binomial with Nt−1 trials and probability of success px+t−1, and that when there is only one
retiree left in the plan, the payments are no longer adjusted to mortality experience. This is in
line with Donnelly, Guillén, and Nielsen (2013). It keeps the payments from declining too much
if there is only one person left in the plan, but will distort results at very high ages.

6.3.2 Solving the Optimization Problem

We assume a constant time-preference discount factor, β, for the retiree. The objective then is
to find the control vectors ω, and C, such that

E

[
54∑
t=0

βtU(Ct)

]
(6.10)
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is maximized. We assume that the retiree’s utility is given by

U(x) =
x1−γ

1− γ
, γ > 1 (6.11)

Since the utility function is time separable,3 the optimization problem can be represented recur-
sively by the following equations

H(t,Wt, Lt, Nt) = max
ωt,Ct

{U(Ct) + Et [βH(t+ 1,Wt+1, Lt+1, Nt+1)]} (6.12)

for t = 1, 2, ..., T − 1

H(0,W0, L0, N) = max
ωB ,ωF ,ωV ,C0

{U(C0) + E0 [βH(1,W1, L1, N1)]} for t = 0 (6.13)

where Et[·] is the expectation conditional on the information up to time t. This optimization
can be solved recursively starting from the last period using dynamic programming. We describe
this process in Appendix A. More general detail about the methodology is given in, for example,
Pennacchi (2008).

6.4 Results of the Optimization Problem

In this section we show the optimal investment and consumption strategy during retirement under
the maximized expected CRRA utility, using the optimization approach described above. Once
the optimal controls are obtained, we use Monte Carlo methods to simulate the resulting con-
sumption and annuity payments, assuming a retiree follows the optimal strategy. We analyze the
distribution of the payments at different ages after retirement. The maximized utility approach
combines all future payments into a single expected present value of future consumption, weighted
by the utility function. It is interesting to look at the potential income paths generated by the
optimal strategy. This allows us to get a better feel for the risks associated with the VPLA, even
when utility is optimized.

As a simple measure of the adequacy of the resulting income flow to the retiree, we measure
the probability that the annual consumption level drops below a certain percentage of the original
level at retirement. This is important because we assume that this is the retiree’s only source
of revenue, and if she is no longer able to consume at the original level, her lifestyle may be
affected. In this analysis, we set the “poverty threshold” at 50% of the initial consumption. That
is, whenever the consumption in a given year is less than 50% of the consumption in the first
year, we consider that the retiree has hit the poverty level.

3A utility function is time separable if the current utility only depends on current consumption and not
on past consumption or expected future consumption.
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Parameter Value
Age at retirement x 65

Annuitization interest rate i 0.03
Risky asset lognormal distribution µ 0.04078
Risky asset lognormal distribution σ 0.18703

Risk free rate r 0.02
Percentage of VPLA fund invested in risky asset αV 0.4

Time-preference discount factor β 0.96
Risk aversion parameter γ 5

Size of retiree group N0 100
Mortality table RP-2000 combined healthy

Table 6.1: Parameters used to obtain numerical results for the optimization problem

We first solve the problem with a set of assumptions similar to the one presented in Maurer,
Mitchell, Rogalla, and Kartashov (2013), and then modify key assumptions to understand how
they affect investment and consumption decisions.

6.4.1 Assumptions and Parameters

The parameters used in this section are presented in Table 6.1. Most of our parameters come
from Maurer, Mitchell, Rogalla, and Kartashov (2013), as that enables us to benchmark our
results against theirs. The parameters that differ are explained in this section. Note that the risk
aversion parameter is higher than many researchers use – a more common value would be around
2 (see, for example Maier and Rüger (2010))4. Using γ = 5 indicates that we are assuming a very
strong aversion to risk.

We also have to make an assumption about the investment choices in the VPLA fund. In
Maurer, Mitchell, Rogalla, and Kartashov (2013), the retiree has control over the fund composi-
tion. However, we assume that the fund is managed by the plan sponsor and that the investment
proportions are fixed. The parameter αV was chosen to reflect the average results from Mau-
rer, Mitchell, Rogalla, and Kartashov (2013), giving an expected return on the VPLA fund of
3.6%, which is slightly higher than the risk free rate used to determine fixed annuity prices. This
assumption will be tested in Section 6.4.3.

4This is a significant difference. For example, an individual who risks losing 80% of their wealth, with
a probability of 1%, would pay a premium of 40% of their wealth for full insurance with γ = 5, but only
4% of their wealth with γ = 2.
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Additional parameters, such as the fee load applied to fixed annuities, do not appear in Table
6.1 as we will consider a range of values in our analysis.

6.4.2 Numerical Results of Utility Maximization

In this section, we present the results of the utility maximization problem introduced in the
previous section. Once the optimal controls are obtained, we use 100,000 Monte Carlo simulations
to investigate the optimal strategies. The balanced fund return and the number of survivor
processes are each simulated 100,000 times. The first sample path for the returns is used with
the first sample path for the survivors, and so on until the last one. Market and mortality risks
are assumed to be independent.

We obtain our first results under the assumption that λ = 0, which means that the same
annuitization rate and mortality tables are used to price both the fixed and variable annuities.
Under this assumption, it is optimal to invest all the wealth at retirement in the fixed annuity (see
Table 6.2 for a summary of the results). This result is intuitive – for the same price, a risk-averse
retiree prefers an annual fixed payment to an uncertain one, even if both payments have similar
expected values.

As explained previously, a plan sponsor would typically charge more to retain investment
and longevity risk; if the plan sponsor does not offer a fixed annuity, the retiree would have
to purchase the annuity from an insurer, and the margins for risk and profit would generally
lead to substantially higher annuity prices compared with the VPLA rate. For this reason, we
also performed the optimization problem for different values of the interest margin parameter λ.
The optimal investment choices at retirement are summarized in Table 6.2. We describe the key
results with these parameters.

• It is always optimal (using these assumptions) to invest all of the retirement funds in a
combination of the fixed and variable annuity; that is, ωB = 0, ωV + ωF = 1.

• It is always optimal to consume the full annuity payment each year – that is, Ct = Lt for
all t.

• As the cost of the fixed annuity increases, the retiree optimizes the utility of her consumption
by investing a greater part of her initial wealth in the VPLA. However, even when the
interest margin parameter is very high (λ = 0.5 and λ = 0.6), the retiree should still invest
over 20% of her wealth in the fixed annuity. This allows her to have a minimum guaranteed
annual payment.

• When the interest margin parameter λ is greater than 0.2, the minimum guaranteed pay-
ment is less than half of the initial payment. In that case, there is a positive probability
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that, throughout the life of the retiree, the annual payment drops below 50% of the initial
level.

• Even when the fee load is high, the initial payments are quite similar. The distribution of
the payments throughout retirement is however very different under the different values for
λ.

λ 0 0.1 0.2 0.3 0.4 0.5 0.6

iF 0.0300 0.0270 0.0240 0.0210 0.018 0.0150 0.012

äF65 13.9301 14.3064 14.7006 15.1136 15.5466 16.0010 16.4780

ωV 0 0.12 0.39 0.60 0.71 0.77 0.77

ωF 1 0.88 0.61 0.40 0.29 0.23 0.23

L0 7.18 7.00 6.94 6.95 6.96 6.96 6.93
LV0 0 0.76 2.82 4.36 5.10 5.52 5.56
LF0 7.18 6.24 4.12 2.59 1.86 1.44 1.37

Table 6.2: Optimal investment at retirement for different interest margins λ, with associ-
ated initial annuity payments, as % of wealth at retirement.

We study in more detail the optimal strategy when λ = 0.2, since this is a plausible interest
spread parameter. This leads to an annuity factor äF65 of 1.055 times the factor used to price
the VPLA5. Using Monte Carlo simulation, we analyse the distribution of the annual payment
throughout retirement, conditional on the retiree being alive at each age. The distribution illus-
trated in Figure 6.2 is summarized in Table 6.8 of Appendix B (column PS1). We see that for
λ = 0.2, the optimal strategy is to invest a little over 60% of initial wealth in the fixed annuity.
The resulting annuity has a fixed component of over 50%, meaning that the annual payment can
never be less than half of the initial payment. This ensures a level of financial security for the
retiree during a period of her life when she is particularly vulnerable. While the average and
the median annual payment slowly decrease throughout retirement, there is also a possibility
that mortality experience and investment returns could be favorable for the retiree, leading to
increased payments. Nonetheless, by age 95, in over half of the cases, the annual payment will
have dropped to below 91% of the first payment. In this case, since a significant part of the
wealth remains in the fixed annuity, the retiree is always sure to receive a payment that is at least
59% of her first payment. Figure 6.2 shows a drop in the mean and the median average payment
just after year 30. This is due to the fact that our distribution is conditional on the retiree still
being alive at that age. Keeping one retiree alive drops the actual mortality experience below the
mortality rate assumed by the plan, thus affecting the payments negatively. When all retirees in
the group have died except for one, payments are only affected by investment returns.

5Note that this is lower than the factor of 1.1 assumed by Milevsky (2001).
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Figure 6.2: Distribution of the annual payment during retirement as a percentage of initial
wealth, conditional on survival; λ = 0.2.

Next, we analyse the distribution of the annual payments when λ = 0.3. This means that the
fixed annuity factor äF65 is 8.5% higher than the VPLA annuity factor, which is still a plausible
fee load. Under these assumptions, the optimal strategy at retirement is to invest 40% of the
wealth in the fixed annuity and 60% in the VPLA, and nothing in the balanced fund or money
market. In this case the fixed annuity component contributes 37% of the first payment, so there
is a possibility that the total payment could drop below half of the first payment, if the VPLA
falls by more than around 65%.

Column PS2 of Table 6.8 summarizes the distribution presented in Figure 6.3. When λ = 0.3,
a larger part of the wealth is invested in the VPLA, so the range of possible payments, especially
at more advanced ages, is wider. The median also drops faster, but the average remains around
the same when λ increases from 0.2 to 0.3. We can conclude that the investment strategy that
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maximizes utility leads the same level of consumption, on average, even when the price of the fixed
annuity increases. However, the variability of the annual payments is increased, which significantly
increases the risk that the retiree hits the poverty threshold during retirement. These probabilities
are presented in column PS2 of Table 6.9. When λ = 0.3 and the retiree maximizes the utility
of her consumption, she is not at risk before age 90, but she has a 5.32% probability of reaching
the poverty threshold between ages 90 and 100. This appears unsatisfactory, since it coincides
with a period of higher expected consumption needs (medical expenses, for example) and the
nonagenarian is unlikely to have the opportunity to return to the workforce to supplement her
income.
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Figure 6.3: Distribution of the annual payment during retirement as a percentage of initial
wealth, λ = 0.3.

To conclude this analysis, we keep λ = 0.3 and set ωV and ωF so that the probability of
hitting the poverty level during retirement remains at 0. Thus, we set the fixed annuity part of
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the first payment to be worth half of the total amount. By letting

ωF

aF65

= 0.5

(
ωV

aV65

+
ωF

aF65

)
,

we get ωF = 0.57 and ωV = 0.43, which results in an initial payment of 6.88% of the initial
wealth, a lower initial payment than when the retiree maximizes the utility of her consumption.
However, since the fixed annuity makes up half of the initial payment, the retiree can never reach
the poverty level. The distribution of the payments during retirement is summarized in column
PS3 of Table 6.8. While the average payment is slightly lower when poverty level is avoided, this
new investment strategy leads to higher median payments at ages 85 and 95. At all ages, the
95th percentile is higher with the revised strategy, and this difference increases with time.

This result is interesting because it highlights the fact that simple utility maximizing strategies
may lead to investment strategies that are too risky for retirees and that do not take their
particular needs into account. By commuting the income stream into a single present value, upside
opportunities can balance downside risk (though not symmetrically using risk averse utility).
Thus, for example, using the parameters of this section, but with a CRRA parameter of γ = 2,
a 65-year old life is deemed to be indifferent between consuming $20,000 per year for life, and
consuming $31,000 per year for 20 years, followed by only $5,000 per year after age 85.

Rather than focus on the expected utility, we focus here on maintaining a minimum level of
income for life. This strategy might better reflect the risk preferences of retirees than the CRRA
utility does. We note that behavioral science shows that most investors fear a decrease in income,
which is reflected in the concept of habit formation (see MacDonald, Jones, Morrison, Brown, and
Hardy (2013) and Pollak (1970)), and a strategy which offers lower initial payments, but with
less chance of catastrophic reduction in income would be preferred over higher initial payments
and/or higher upside potential, but incorporating the severe downside risk.

6.4.3 Exploring different assumptions

VPLA only

In this section, we explore the case where the retiree cannot invest in a fixed annuity. That is,
if she wants to annuitize her wealth, she can only invest in the VPLA. Again, we use dynamic
programming to obtain the optimal controls.

For this section, we use different assumptions for the annuitization rate i to reflect the terms
offered in the UBC pension plan. We start by assuming i = 4%. We find that the optimal
investment and consumption strategy is to invest the full amount at retirement in the VPLA and
to consume the total payment every year. The distribution of the annual payments is illustrated
in Figure 6.4 and is summarized in column PS4 of Table 6.8. The range of possible payments in
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this case is a lot wider, and the average payment increases during the first 20 years of retirement.
However, if the retiree survives to age 100, there is a 36.6% probability that her annual payment
will eventually be less than half of the original payment, which is significant. Investing the full
amount available at retirement in a VPLA and relying on this investment to provide a retiree’s
main, and often only, source of income is extremely risky and does not seem appropriate.
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Figure 6.4: Distribution of the annual payment during retirement as a percentage of initial
wealth when ωF = 0.

Pension plans may offer a VPLA option priced assuming a much higher interest rate. For
example, a retiree in the UBC plan can choose a VPLA priced with a rate of 7%. Under this
assumption, the initial annuity payment will be a lot higher than when i = 4%. However, unless
market performance meets the assumption, the annual payment will decrease steadily. This only
appears to be an interesting option for someone with a significantly shorter life expectancy than
the rest of the group. Here, we study the optimal investment and consumption strategies when
i = 7% (and using the same mortality assumptions, with no adjustment for adverse selection).
In this case, we assume that the VPLA fund is fully invested in the risky asset (αV = 1) to
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increase the average return. The resulting consumption strategy is interesting: in the first years,
when annuity payments are high, the retiree should not consume all the payment. She should
save it to complement her VPLA income, which will most likely decrease later in her retirement.
Column PS4 of Table 6.9 summarizes the distribution of the consumption at different ages. The
optimal strategy allows the mean consumption to increase until age 95. However, the range
of possible scenarios is very wide, which translates into a risky strategy. In the worst 5% of
the cases, the annual consumption drops to 60% of the initial consumption only 10 years after
retirement, and fails to recover in subsequent years. Figure 6.5 illustrates the evolution of the non-
annuitized (liquid) wealth during retirement. When market performance and mortality experience
is favorable, she is able to re-build the wealth she had at retirement. However, in the worst cases
the saved annuity payments do not protect her from decreasing consumption, potentially to less
that one-third of the initial consumption (and unfavorable tax treatment could make the situation
even worse).
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Figure 6.5: Distribution of the annual liquid wealth during retirement as a percentage of
initial wealth when ωF = 0, i = 0.07.
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Changing the risk aversion parameter

Here we consider the optimal investment choices for a retiree with a lower risk aversion parameter
(γ = 2). As noted above, Maurer, Mitchell, Rogalla, and Kartashov (2013) use γ = 5, but
according to Maier and Rüger (2010) this is on the high side of empirical estimates. Harrison,
List, and Towe (2007) use a more middle of the road assumption that γ = 2. The results in
column PS6 of Table 6.8 show that when there is no additional fee, the fixed annuity is still
preferred. However, as soon as the fee load λ is above 0.2, the retiree maximizes the utility of
her consumption by investing all of her accumulated wealth in the VPLA. This strategy results
in the payment distribution summarized in colum PS6 of Table 6.8.

While this strategy maximizes the utility of the retiree’s consumption, it results in very risky
payment patterns, given that we are assuming that this is the retiree’s only source of income.
There is a significant probability that the annual payments become insufficient to meet her needs.
In fact, the probability that the annual payment decreases below 50% of the initial payment
before age 100 is almost 40%. With an interest margin of λ = 0.2 on the fixed annuity, she could
buy a fixed annuity that pays her 6.896% of her initial wealth each year, which represents 96% of
the initial VPLA payment. There is a very high probability (94.22%) that the VPLA payment
drops below that amount before the retiree reaches age 100. Thus, the higher initial payment
and the possibility of increased income provided by the VPLA may not be sufficient to justify
investing in the VPLA, even when the utility is maximized.

λ 0 0.05 0.1 0.15 0.2 0.25
iF 0.0300 0.0285 0.0270 0.0255 0.0240 0.0225
äF65 13.9301 14.1161 14.3064 14.5012 14.7006 14.9046
ωV 0 0 0.27 0.66 1 1
ωF 1 1 0.73 0.34 0 0
L0 7.18 7.08 5.10 2.34 0 0
LV0 0 0 1.94 4.74 7.18 7.18
LF 7.18 7.08 7.04 7.08 7.18 7.18

Table 6.3: Optimal investment with associated initial annuity payments (as % of wealth
at retirement), at retirement for different interest margins λ, when γ = 2.

Changing group size

In the results above we have assumed a group size of 100. This group size is reasonable if the
retirees are separated into cohorts. Better longevity risk pooling can however be accomplished
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when the retiree group is larger. In this section, we consider N0 = 200 and observe the effect on
the optimal consumption levels when λ = 0.2 and λ = 0.3. We return to the original assumption
with respect to the risk aversion parameter (γ = 5).

When λ = 0.2, the retiree should invest 55% of her wealth in the fixed annuity and the rest
in the VPLA (compared to 61% when N0 = 100), confirming that a larger retiree group makes
the VPLA more attractive. Column PS7 of Table 6.8 gives an insight into the distribution of the
annual payment at ages 75, 85 and 95. This distribution is similar to the one obtained with the
same assumptions for a group size of 100. The mean and the median are slightly higher at all
three ages. The difference between the 5th and the 95th percentiles, smaller in the case of the
larger group, shows that there is a better longevity risk pooling in this case. The optimal strategy
is thus less risky, even if a larger percentage of the initial wealth is invested in the VPLA.

If the fee load is increased, at λ = 0.3, the retiree maximizes her utility by investing 35%
of her wealth in the fixed annuity (compared to 40% when N0 = 100). Column PS8 of Table
6.8 summarizes the distribution of the payments and clearly shows that the optimal investment
strategy is less risky when the retiree group is larger. However, the 95th percentile does not
increase as much over time, thus decreasing the probability of very high payments. Column PS8
of Table 6.9 confirms that a larger group better protects the retiree against the probability of
hitting the poverty threshold during retirement, consistent with the results of Hanewald, Piggott,
and Sherris (2013).

Changing market assumptions

Throughout this analysis, we have assumed that 40% of the VPLA fund was invested in the
risky asset. Now we change this assumption and choose αV so that the expected return on the
VPLA fund is equal to the annuitization rate i, which gives us αV = 0.25. The VPLA fund
returns are less volatile than under the previous assumption, so the payment pattern is less risky.
However, retirees do not benefit as much from market performance, although they still benefit
from mortality risk pooling.

The optimal investment choices when αV = 0.25 are summarized in Table 6.4. When λ = 0.2,
it is optimal for a retiree to invest over 81% of her portfolio in the fixed annuity. This is a much
higher proportion than when αV = 0.4. Since the expected value of the investment portion of
the VPLA adjustment factor, ((1 + RV )/(1 + i)), is equal to 1.0, the retiree does not have an
expectation of investment gains in the VPLA. In addition, the mortality part of the adjustment
factor makes the payments more volatile. Thus, when the fee loading is not too high, investing in
the VPLA is not worth it. The payment pattern resulting from the optimal investment strategy
when λ = 0.2 is given in column PS9 of Table 6.8. The payment distribution is a lot less risky, but
there is less upside potential. Furthermore, the initial payment of 6.87% of the retirement wealth
is lower for lower values of αV . This shows that if a plan sponsor wants to offer this sort of GSA
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scheme, the expected return on the pooled fund should be higher than the annuity interest rate
if they want the VPLA to be more attractive than the fixed annuity. Of course, if the interest
margin is higher on the fixed annuity, the VPLA is attractive even without any incentive from
the equity market, since it offers a certain protection against longevity risk at no additional cost,
compared with self-annuitization.

λ 0 0.05 0.1 0.2 0.25 0.3
iF 0.0300 0.0285 0.0270 0.0240 0.0225 0.021
äF65 13.9301 14.1161 14.3064 14.7006 14.9046 15.1136
ωV 0 0 0 0.19 0.39 0.58
ωF 1 1 1 0.81 0.61 0.42
L0 7.18 7.08 6.99 6.87 6.89 6.94
LV0 0 0 0 1.36 2.80 4.16
LF 7.18 7.08 6.99 5.51 4.09 2.78

Table 6.4: Optimal investment at retirement, with associated initial consumption in % of
fund, for different interest margins λ when ωV = 0.25.

6.5 Optimal Strategies in an Open Group of Retirees

So far, we have assumed that the VPLA payments are based on a closed group of retirees. In
the present section, we relax this assumption. Using an open retiree group should decrease the
volatility of payments and eliminate the downward trend at very high ages, as noted in Qiao and
Sherris (2013).

We perform this analysis using Monte Carlo simulations and the adjustment factor given by
Equation (6.8)6. We assume that when the retiree enters the group at age 65 (we call this time
0), there are 82 retirees in the group, distributed as outlined in the first two columns of Table
6.5. The starting amount for a retiree aged x, x > 65 is given by

L0(x) = LV0 (65)

(
E[1 +Rt]

1 + i

)x−65

. (6.14)

In other words, we assume that at time 0, a retiree receives the average amount she would have
received if she started in the plan at age 65 with the same amount and investment strategy as

6The adjustment factor we use differs from the one suggested in Piggott, Valdez, and Detzel (2005) and
fails to satisfy the four criteria presented in their work.
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the new retirees at time 0, and if mortality experience followed the assumptions. Column 3 of
Table 6.5 shows an example of the starting amounts when the assumptions follow parameter set
1 (PS1) from Table 6.7. We assume that each year 3 new retirees join the group at age 65,
with the same initial amount and the same investment strategies as the previous retirees. The
other assumptions are the same as in the previous section (outlined in Table 6.1). In the Monte
Carlo simulation, each participant is considered individually. Each year, each participant stays
alive with the appropriate probability from the mortality table RP-2000 combined healthy. Each
retiree’s pension amount is tracked and is used in the calculation of the adjustment factor.

Age (x) Number Lx,0 (under PS2)
65 20 7.18
70 19 7.39
75 16 7.61
80 13 7.83
85 9 8.06
90 4 8.30
95 1 8.55

Table 6.5: Composition of retiree group at t = 0 when ωV = 0.39.

To compare with the closed group, we consider the case where λ = 0.2 (so that äF65 = 1.055 äV65)
and apply the optimal investment strategy derived for the closed group (i.e. we use PS2 from
Table 6.7). Under the same assumptions, we also increase the proportion of the initial wealth
invested in the VPLA. Results are summarized in Table 6.6.

By comparing columns 1 and 2 of Table 6.6, we find that for the same investment strategy
(ωV = 0.39), the mean and the median of the total payment are higher when the group is open
than when it is closed. They also increase as the retiree ages. New, younger retirees entering
the group make the payments more stable and keep them from decreasing through time. The
open group also increases the 5th and 95th percentiles, thus improving the financial security of
the annuitant.

The last column of Table 6.6 displays the statistics of the distribution of payments when
all the wealth is invested in the VPLA. In this case, the resulting payment pattern is less risky
than when the group is closed, confirming the role of the new entrants in stabilizing the annuity
payments. Columns 2, 3 and 4 show the distribution of the payments resulting from other
investment strategies when the wealth is split between the fixed annuity and the VPLA. While
there is added risk to investing a larger proportion of wealth in the VPLA, the resulting payments
are not as volatile as when the group is closed.

Figures 6.6 and 6.7 illustrate the distribution of payments when ωV = 0.39 and ωV = 1,
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respectively.

ωV 0.39 0.39 0.5 0.6 0.7 1
ωF 0.61 0.61 0.5 0.4 0.3 0
Group Type Open Closed Open Open Open Open
l0 6.9492 6.9492 6.9906 7.0282 7.0658 7.1787
|Mean consumption, % of L0

Age 75 102.44 99.41 103.07 103.69 104.30 106.09
Age 85 104.90 98.88 706.18 107.65 108.72 112.12
Age 95 107.20 98.13 108.92 110.97 113.13 117.83

Median
Age 75 100.96 98.12 101.12 101.46 101.67 102.36
Age 85 101.86 96.18 102.38 102.96 103.43 104.88
Age 95 102.69 91.13 103.14 104.03 105.16 107.34

5th Percentile
Age 75 87.34 85.45 83.85 80.67 77.74 68.57
Age 85 83.56 79.97 79.11 74.96 71.09 59.40
Age 95 80.71 72.61 75.60 70.76 66.61 54.07

95th Percentile
Age 75 122.54 117.86 128.63 134.28 139.79 155.96
Age 85 136.52 126.81 146.24 156.36 164.94 189.81
Age 95 148.63 145.62 162.77 174.81 188.01 221.55

Table 6.6: Statistics of the distribution of the annual payment as a percentage of the initial
consumption for different investment strategies.

6.6 Conclusion

In this chapter, we used dynamic programming to obtain the optimal investment and consumption
strategy for a retiree whose choices at retirement include a GSA scheme, a fixed annuity and self-
annuitization.

We found that a mix of the GSA scheme and the fixed annuity are preferred over self-
anuitization. We tested the sensitivity of the investment choices to changes in the different
parameters. One of our main conclusions is that in most cases, a reasonably risk-averse retiree
should invest part of her portfolio in a fixed annuity. We also confirm that the fees charged by
insurance companies to take on longevity and investment risks make GSA schemes more attrac-
tive. We demonstrate that risk is better pooled in a bigger retiree group, and that opening the
group leads to less volatile payment patterns.
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Figure 6.6: Distribution of the annual payment during retirement as a percentage of initial
wealth when ωV = 0.39 and the retiree group is open.

We show that utility maximization can lead to suboptimal strategies from a cashflow perspec-
tive, and that other criteria, such as keeping the income above a certain threshold throughout
retirement, should also be used to assess investment strategies.

The present analysis does not take systematic mortality risk into account. However, un-
certainty about future mortality is one of the main reasons why insurance companies charge a
premium for fixed annuities. Adding mortality improvements to our model without changing
the design of the product would have caused payments to be riskier and to decrease over longer
horizons. Nonetheless, even without systematic mortality risk, we show that fixed annuities still
have a place in a retirement portfolio. Some GSA schemes have payments that are adjusted to
changes in mortality assumptions. Future work could aim to analyse optimal retirement strate-
gies in the presence of such products, using models that include mortality improvements. Such
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Figure 6.7: Distribution of the annual payment during retirement as a percentage of initial
wealth when ωV = 1 and the retiree group is open.

analysis could also be performed on larger groups.
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Appendix

6.A Solving the optimization problem using dynamic

programming

In this section, we explain in greater detail how to solve the optimization problem through
dynamic programming. Our optimization problem has four state variables: Wt, L

V
t , LF and Nt.

However, to illustrate the method, we assume only one state variable here, omitting the annuity
payments LV and LF . The technique presented can easily be extended to higher dimensions.

Suppose that Wt = (Wt−1 − Ct−1)((1 + r) + ωt−1(RBt−1 − r))) and consider the objective
function

H(0,W0) = max
ω0,C0

{U(C0) + E0 [βH(1,W1)]}, (6.15)

where ω and C are the controls we want to solve for. More generally, let

H(t,Wt) = max
ωt,Ct
{U(Ct) + Et

[
βH(t+ 1,Wt+1)

]
}. (6.16)

Notice that the function H(t,Wt) is always the maximized future discounted expected utility. We
assume that the utility function is time-separable. In other words, the optimal consumption at a
given time is independent of past consumption except through the process Wt. This allows us to
treat each period, recursively, from end to start. At a given time t, in the one-variable problem,
the optimal controls are only dependent on Wt. In other words, we can construct a set of values
for Wt, together with the optimal values for the control variables given Wt.

However, we cannot entirely solve the problem at each t since we do not know the value of the
function H(t+ 1,Wt+1). Generally, it is only possible to write this function in analytical form at
time T , that is, H(T,WT ) = 0 for any WT , as it is assumed all lives have died by T , and there is
no bequest motive. Since this is the only known value for the derived utility function, we begin
our optimization from the second-to-last period T − 1. At that time, given our assumption that
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no lives survive to T , it is optimal to consume all remaining wealth, giving

H(T − 1,WT−1) = max
ωT−1,CT−1

{U(CT−1) + ET−1[H(T,WT )]} = U(WT−1) (6.17)

Since we cannot know the value of the wealth process at time T − 1 (it will depend on the
optimal controls during periods 1 to T − 1), we calculate and store the derived utility function
H(T − 1,WT−1) for a range of different values of WT−1. These are chosen to represent the range
of feasible values for WT−1. Then, we move back one period and, again, for a range of values of
WT−2, solve for the optimal controls ωT−2 and CT−2 that will maximize

U(CT−2) + ET−2 [β H(T − 1,WT−1)] = U(CT−2) + β E[U(WT−1)]

However, this time, we only know H(T − 1,WT−1) for the selected discrete values that we
used for WT−1. Our candidate controls ωT−2 and CT−2 will most likely not return one of the
values WT−1 for which we have calculated H(T − 1,WT−1). Thus, we have to interpolate from
the values we know to approximate the derived utility function for any value WT−1. This will
allow us to obtain the optimal controls at time T − 2. The same procedure is repeated until we
find the controls at time 0.

Here is the algorithm that is followed to obtain the optimal controls for a problem with T
periods, using n discrete values for each Wt.

1. Build a grid of values of Wt at which the derived utility function will be calculated. This
grid will have n rows and T columns. Each column represents a vector of possible wealths
at a given time.

2. Build another grid of the same size to store the values of H(t,Wt). Fill the last column
with zeros, since we assume no bequest function.

3. Build two other grids of the same size to store the optimal values of ω and Ct at each time,
for different wealths.

4. For each column t = T − 1 to 1, apply the following to each element i = 1 to n of the
column:

(a) Given wealth W i
t , find the optimal controls ωit and Cit . Note that the function to

optimize will use interpolation to calculate the value of the derived utility function
one period later.

(b) Store the optimal controls and the derived utility in the corresponding grid.

5. Now the grids are filled out and the first period needs to be solved.
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6. Given wealth W0, find the optimal controls ω0 and C0. Again, the function to optimize will
use interpolation to calculate the value of the derived utility one period later.

To apply this method to our optimization problem, we need to extend it to the case where
there are three state variables. Hence, instead of having a vector of values Wt and its associated
vector Jt at each time t, we have a four-dimensional array with values Wt, L

V
t , LF and Nt at

each time t (denote by nW , nLV , nLFA and nN the number of values of Wt, L
V
t , LFt and Nt

that are considered, respectively). The interpolation that needs to be performed to solve the
problem at each data point is thus 3-dimensional. This method extends quite easily to multiple
dimensions. However, the number of data points at which the derived utility function must be
calculated is multiplied (nW ×nLV ×nLFA×nN instead of n), and the interpolation can become
computationally burdensome.

6.A.1 Simplifying the optimization problem by normalizing

The normalization described in this section was inspired by Hubener, Maurer, and Rogalla (2013).

The optimization results shown in Section 6.4 were simplified from the Bellman equation,
(6.12) by normalizing with respect to Wt, which reduced the number of state variables from four
to three. That is, instead of working with the variables LVt , LF , and Ct, we use the normalized
variables

lVt =
LVt
Wt

, lFt =
LF

Wt
, and ct =

Ct
Wt

. (6.18)

This simplification is possible because the optimization problem is homothetic in wealth. This
effectively means that the level of wealth does not impact the utility maximizing strategy, so that
working with lFt , lVt and ct gives the same results as working with Wt, L

V
t , LF and Ct for any Wt.

Intuitively, this seems reasonable given the nature of CRRA utility. However, we demonstrate
more formally here.

We need to show that

H(t,Wt, L
V
t , L

F
t , Nt) = W 1−γ

t h(t, lVt , l
F
t , Nt) (6.19)

for some function h(.).

We show this by backwards induction. To make the proof easier to read, we will omit the
arguments in H and h other than the time variable.
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At T , H(T ) = 0, so the result holds trivially. In the penultimate period, we have

H(T − 1) = U(WT−1)

=
W 1−γ
T−1

1− γ
= W 1−γ

T−1 h(T − 1),

where h(T − 1) = 1/1− γ.

Now, assume that for some t + 1, 1 6 t + 1 6 T the result in equation (6.19) holds. Then
consider the function at t.

H(t) = max
ωt,Ct

{U(Ct) + Et [β H(t+ 1)]}

and U(Ct) =
C1−γ
t

1− γ
=

(Wt ct)
1−γ

1− γ
= W 1−γ

t U(ct)

⇒ H(t) = max
ωt,ct

{
W 1−γ
t U(ct) + Et

[
βW 1−γ

t+1 h(t+ 1)
]}

(using the inductive hypothesis).

Now Wt+1 = (Wt − Ct) (1 +Rt) + Ix(t+ 1)
(
LVt+1 + LF

)
where Ix(t+ 1) is the survival indicator function for (x) at t+ 1. Recall that

LVt+1 = LVt (1 + jt). (6.20)

Then

Wt+1 = Wt

(
(1− ct)(1 +Rt) + Ix(t+ 1)

(
lVt (1 + jt) + lFt

))
⇒ H(t) = max

ωt,ct

{
W 1−γ
t U(ct)

+Et

[
βW 1−γ

t

(
(1− ct)(1 +Rt) + Ix(t+ 1)

(
lVt (1 + jt) + lFt

))1−γ
h(t+ 1)

]}
⇒ H(t) = W 1−γ

t h(t) where

h(t) = max
ωt,ct

{
U(ct) + Et

[
β
(
(1− ct)(1 +Rt) + Ix(t+ 1)

(
lVt (1 + jt) + lFt

))1−γ
h(t+ 1)

]}
Note that, as required, h(t) is a function of lVt , l

f
t , but not of Wt, L

V
t or LF .

Using this normalization we can perform the optimization problem using dynamic program-
ming with three-dimensional grids. We normalize further by using

lt = lVt + lFt and ρt =
lVt
lt
.
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This way, both continuous state variables exist on the interval [0, 1] and all combinations are
attainable.

To accelerate the computation, we use the method described in Section 5.1 of Carroll (2011)
to calculate the expectation of functions of lognormal random variables. In this method, the
lognormal distribution is discretized and the integral is approximated by a sum, in which each
term represents an interval of equal probability.

To obtain the results presented in Section 6.4, we discretized the space of state variables
(lt, pt, Nt) over a grid of size 6× 16× 9. Larger grid sizes were explored, with similar results.

6.B Parameter sets and associated numerical results

Parameters PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9
λ 0.2 0.3 0.3 - - 0.2 0.2 0.3 0.2
ωV 0.39 0.6 0.43 1 1 1 0.45 0.65 0.19
ωF 0.61 0.4 0.57 0 0 0 0.55 0.35 0.81
αV 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.25
i 0.03 0.03 0.03 0.04 0.07 0.03 0.03 0.03 0.03
γ 5 5 5 5 5 2 5 5 5
N0 100 100 100 100 100 100 200 200 100

Table 6.7: Definition of parameter sets (PS).
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Parameter Set PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9
l0 6.9492 6.9538 6.8583 8.4804 11.1479 7.1787 6.9718 6.9820 6.8739
|Mean consumption, % of L0

Age 75 99.41 99.08 99.70 96.58 70.51 98.72 99.27 99.07 99.12
Age 85 98.89 98.23 99.01 102.49 96.13 97.46 98.63 98.17 98.29
Age 95 98.13 97.34 98.26 91.20 93.26 96.17 98.07 97.27 97.50

Median
Age 75 98.12 97.09 98.07 93.41 60.35 95.47 97.79 96.87 98.83
Age 85 96.18 94.29 95.75 95.65 74.50 91.29 95.84 94.10 97.68
Age 95 91.13 86.74 89.95 76.43 64.72 83.52 92.28 88.79 94.95

5th Percentile
Age 75 85.45 77.93 82.59 62.96 25.66 64.79 83.88 76.67 94.71
Age 85 79.97 69.44 75.79 53.31 23.38 51.94 78.03 68.15 92.04
Age 95 72.61 58.46 66.71 32.69 17.23 37.77 71.50 58.58 87.69

95th Percentile
Age 75 117.86 126.96 122.52 141.17 149.36 143.61 119.70 128.78 104.54
Age 85 126.81 140.46 133.33 174.98 240.60 163.84 128.83 141.87 106.60
Age 95 145.62 169.53 156.68 196.13 259.71 197.17 143.48 163.68 115.19

Table 6.8: Statistics of the distribution of the annual payment as a percentage of the initial
payment for different sets of parameters.

Pr(Lt < 0.5 L0) PS2 PS4 PS8
Before age 80 0 0.0070 0
Before age 90 0 0.0550 0
Before age 100 0.0532 0.3660 0.0504
Before age 120 0.3562 0.5633 0.4381

Table 6.9: Probabilities of hitting the poverty level before certain ages for different sets of
parameters.
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