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Abstract

The electric power industry worldwide has undergone significant changes over the last

decade. Environmental compliance and energy conservation issues have occupied the fore-

front of the new age power system which have opened the possibility of an increased

integration of Distribution Energy Resources (DER). With the presence of DERs, reliable

system operation and control has become increasingly difficult as the power flow no longer

remains unidirectional. Microgrids with their decentralized system operations offer solu-

tions to the challenges posed by this transformation. It has been generally regarded that

the key to increased operational efficiency and economy of microgrids especially under its

isolated mode of operation lies with improved customer participation in Demand Response

(DR) programs. Developing a DR scheme with a novel customer interaction inside a mi-

crogrid setup will provide a key solution that would drive the system performance to its

peak.

This thesis proposes a mathematical model of DR integrated into the generation schedul-

ing problem of an isolated microgrid. Controllable demand is modeled as a function of

external parameters such as outside temperature, Time-of-Use (TOU) pricing and maxi-

mum limit on demand Pmax through supervised learning of neural networks. An optimal

DR model is proposed to learn the load behavior and produce a control action on the

controllable load profile of the end users. A novel Microgrid Energy Management System

(MEMS) is proposed as the central unit of this DR model to determine the control signal

and perform a least-cost operational schedule of the microgrid. Realistic data from an

actual Energy Hub Management System (EHMS) is used to better replicate the real-world

modeling scenario. Continuing with the DR model, the effect of customer response through

energy payback model is also studied. The impact of this response on the customer load

profile and an estimate of the expected peak reduction is also presented.

The proposed model and the case studies are simulated on an CIGRE IEEE Medium

Voltage (MV) benchmark system. The system under consideration is an appropriate ap-

proximation of the actual isolated microgrid system with their dispatchable diesel genera-

tors, Energy Storage System (ESS), photovoltaic (PV) panels and wind turbines. Finally,

the results illustrating the effectiveness of the proposed DR scheme and the computa-

tional procedures are discussed. This work is concluded by exploring the possible research

directions while addressing some pertinent problems for the same.
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Chapter 1

Introduction

1.1 Motivation

The electric power industry worldwide has undergone significant changes over the last

decade. Environmental compliance and energy conservation issues have occupied the fore-

front of the new age power system which have opened the possibility of an increased

integration of Distribution Energy Resources (DER). With the presence of DERs, reliable

system operation and control has become increasingly difficult as the power flow no longer

remains unidirectional. Microgrids with their decentralized system operations offer solu-

tions to the challenges posed by this transformation. It has been generally regarded that

the key to increased operational efficiency and economy of microgrids especially under its

isolated mode of operation lies with improved customer participation in Demand Response

(DR) programs. Developing a DR scheme with a novel customer interaction inside a mi-

crogrid setup will provide a key solution that would drive the system performance to its

peak.

DR refers to the change in consumption patterns of end-use customers over time in

response to varying price signals. The Federal Energy Regulatory Commission (FERC) of

USA has defined DR in [1] as “Changes in electric usage by demand-side resources from

their normal consumption patterns in response to changes in the price of electricity over

time, or to incentive payments designed to induce lower electricity use at times of high

wholesale market prices or when system reliability is jeopardized.” The DR programs cou-

pled with increased customer participation and increased decentralization of the system

1



CHAPTER 1. INTRODUCTION

have been instrumental in enabling Distributed Generation (DG), Energy Storage Systems

(ESS) and alternate energy sources such as wind and solar power. These generation re-

sources with DR present a sustainable system with reduced losses and flexible operational

characteristics.

The importance of DR and its purported impact on electricity pricing has been suc-

cinctly presented in the case study [2]. According to the study, if Ontario market had an

additional 250 MW of DR capability when the Hourly Ontario Energy Price (HOEP) was

greater than 120 $/MWh, the yearly average price would have been 2% lower, implying

a 170 M$ reduction in electricity costs for the customers. This clearly emphasizes the

scope for an increased and efficient DR mechanism in Ontario. In another study [3], in the

aftermath of the heatwave in northeastern United States and in Ontario, Canada, in 2006,

voluntary load reduction on a certain day resulted in an estimated energy payment savings

of 230 M$. DR is therefore an important research objective with enormous potential and

economical value, and is expected to gain further momentum in the emerging markets in

the years to come.

According to Public Act 12-148 of the USA Senate Bill [4] , microgrids have been

defined as a group of interconnected loads and DER within a clearly defined electrical

boundary that can act as a single controllable entity with respect to the grid or that can

alternate between connected and isolated mode of operation. Microgrids can be seen as a

small vertically integrated system with generation and distribution components that are

capable of providing increased grid resilience and improved reliability. Focus on efficiency,

sustainability and reliability have increased the dependency on smart technologies and

advanced control, resulting in smart microgrids.

Smart microgrids can be seen as the building blocks of larger unified smart grids and

sometimes as a medium of supply to remote areas. In order to justify the system require-

ments, some features of the smart grids, such as smart meter interface, data security, ESS,

DGs, DR and renewable sources of energy [5] have been incorporated into the microgrid

architecture. Smart meters along with a reliable communication framework can be used

as a means of communication between the utility and the customers. Smart meters could

in turn increase customer participation and help in optimizing the system operation [6] by

reducing the peak load while considering the customer priorities and flexibilities.

In Canada, research on microgrids are being carried out in several Universities in collab-

oration with various electric utilities, industries and the stakeholders of DER. The NSERC

2



CHAPTER 1. INTRODUCTION

Smart Microgrid Network [7], a multi-disciplinary research network, has been instrumen-

tal in developing technologies to help Canada in its smart grid transition. Most of the

research activities in [7] have been centered around the control/protection strategies, DR

based energy management and penetration of DER. In [8], current research activities across

various microgrid test beds in Canada have been presented. The core research activities

on test beds have been carried out in Ramea wind-diesel system, Fortis-Alberta grid tied

system, BCIT test system and a portion of Hydro Quebec distribution system in an effort

to understand and improve the microgrid operation.

The advances in DR programs and microgrids have to be sustained to steer the markets

and power grids in the right direction. Continuing research activities on DR under the

microgrid framework has been the motivation for this work.

1.2 Literature Review

1.2.1 Demand Response

Utilities have long wanted to flatten the load curve in an effort to reduce the production

costs and lighten the power system stresses. This has led to different price based and

incentive based DR schemes that encourage customers to alter their power consumption

patterns in such a way that the social welfare is maximized. In this section, a review

of some of the current research works on DR is presented while retaining the focus on

incentive and price based DR.

Direct Load Control (DLC) can be classified as a type of incentive based DR scheme

where the utility holds a direct control of the customer’s load. Loads can be controlled

by the operating utility within specified limits to match the available generation at that

instant and minimizing the uncontrolled load losses. In [9], Ng et al. propose a profit based

utility driven DLC arguing that a cost minimization approach results in revenue loss since

it does not include customer rate structure. The number of customers to be controlled

under the DLC program is considered a decision variable based on price, payback ratio

and load pattern. In this research, the customer rate structure via Time-of-Use (TOU)

prices is included within the cost minimization objective to capture the response of the

customers.

3



CHAPTER 1. INTRODUCTION

Kurucz et al. in [10], investigated DLC from the perspective of peak reduction of

the controlled demand, by proposing a strategy with individual control rules on various

controllable loads of a residential system. Though, a utility may want to reduce the system

demand, a customer participating in a DR program may essentially try to shift the demand

based on the customer rate structure, thus keeping a constant total energy consumption.

The energy payback model proposed in this thesis, optimally determines the demand shift

required from customers across the hours, so as to achieve its operating objectives.

A DLC strategy on Virtual Power Plants (VPP) has been proposed in [11] to imple-

ment optimal load control measures for a set of Heating, Ventilation and Air Conditioning

(HVAC) devices grouped together as a VPP with an aim to maximize the load reduction

over a set control period. In this thesis, the temperature dependent load function con-

cept of [11] has been extended by incorporating customer price structure, thus providing

additional dimensionality to implement optimal control measures for all the controllable

loads.

Literature on price based DR can be divided into three areas of study. The first line of

study is directed at minimizing the customer’s electricity payment while ensuring a desired

comfort level through price based DR [12]. The second line of work deals with the design of

a price based DR scheme to maximize the retailer’s profit [13]. The third line of study deals

with a DR scheme where a utility and the customer interacts to minimize their respective

costs [14]-[16].

In [15], an interface between the electricity market and the customer response from a

DR point of view is discussed. A novel concept of ‘Homeostatic Utility Control’ has been

proposed comprising a three stage application- short term load following, Real Time Pricing

(RTP) and communication capability. A communication interface to maintain a supply-

demand equilibrium, as envisioned in [15], has been proposed in this thesis, between the

load estimator and energy management system of the microgrid. The work in [16] proposes

to optimally schedule the user appliances by predicting the demand as a function of TOU

prices. An adaptive neural-fuzzy learning algorithm is used where the utility determines

a differential pricing scheme based on the predicted demand, thus enabling a closed loop

interaction between the utility and the customer. A master controller interfacing between

the load aggregator and the utility controller, to arrive at an optimal energy management

schedule is discussed. The controller receives user preferences, TOU price and other utility

data as input and outputs the predicted energy usage at the customer side.

4



CHAPTER 1. INTRODUCTION

In the present study, a neural network learning technique has been employed to model

the controllable load of the customer. Application of a control signal by the Microgrid Op-

erator (MGO) to reduce the effective demand of individual customers has been proposed.

This control will be particularly useful from the perspective of an isolated microgrid where

neither energy markets nor Independent System Operator (ISO) exist to regulate the real-

time prices. Rather, a simpler control of the load is desired. Principles of utility-customer

interface, as mentioned in the earlier works, have been envisaged while modeling the opti-

mal DR framework in this work.

1.2.2 Demand Response in Microgrids

The existing energy management systems available to operators will soon seem archaic

with the increasing integration of renewable energy sources, DGs, ESS and electric ve-

hicles. With the increased penetration of DERs into the power grid, the power flow no

longer remains unidirectional and power system control becomes increasingly complex. Mi-

crogrids, with their distributed control, provide a novel alternative and can help transform

the existing burdened power system into a smart grid network. The study of DR in micro-

grids holds the key to the operation of a comparatively larger smart grid system. In [17],

the role of DR and its importance in an isolated mode of operation of a microgrid has been

summarized. It compares the DR in a conventional grid and argues for its heightened role

in a microgrid setup with DER integration.

An energy management system, integrating storage and DR in smart microgrids is

proposed in [18]. A two-layer market for DR participation, with a local market for the

customer and a global market for microgrid interaction is proposed. Though [18] studies

the mirogrid energy management through a market structure, the concept of aggregators

and microgrid interaction has been utilized in the present work, in the context of the

proposed optimal DR model. A multi-agent based microgrid operation is proposed in

[13] to optimize the DR and generation scheduling as part of a two-stage scheduling in

day-ahead and real-time market. An interaction between the day-ahead scheduler and

the real-time scheduler is proposed to enable the load shifting and load curtailments of

controllable loads. Instead of a two-stage scheduling, the model proposed in this thesis

performs operations scheduling in real-time based on the controllable loads estimated using

neural network and the optimal control signal derived from the DR model.

5



CHAPTER 1. INTRODUCTION

In [19], hierarchical agents have been used to coordinate DR and DGs in order to

minimize the energy costs of residential customers. A grid connected microgrid with user

feedback to the control agents, stochastic load and wind power are considered in an effort

to strike a balance between the cost and comfort. Customer interaction as described in

[19] is incorporated in the proposed optimal DR model, where the user privacy is guarded.

Unlike the grid connected microgrid with individual micro Combined Heat and Power

(CHP) systems to drive a cost based utilization, centralized generation resources in an

isolated microgrid are introduced in this present work. ESS devices are integrated into the

system with the same purpose of minimizing the energy consumption cost as in [19].

In [20], an energy management algorithm for residential DR is proposed, wherein, the

energy costs and customer load patterns are modeled as Markov chains with unknown

transitional probabilities to capture the changing load patterns and energy costs. The

work uses reinforcement learning techniques to learn the load behavior of the customers and

schedules the energy usage through adaptive learning. In this thesis, a supervised learning

technique is used to model the load pattern as against the reinforced learning proposed

in [20]. The underlying load pattern is learnt as a function of the observations without

relearning the model on a trial and error basis, unlike that in reinforcement learning.

Remote inaccessible areas of Canada have been hampering grid connectivity which has

raised serious concerns on power supply reliability and operation losses. Isolated remote

microgrids could be a saving grace in such circumstances. There are estimated 300 re-

mote communities in Canada housing around 200,000 people which could be served by a

microgrid with better connected and cleaner source of power such as wind turbines and

Photovoltaic (PV), in a mix with diesel generation sets, to enhance the reliability. One

such work to investigate the need for renewable energy alternatives in remote communi-

ties in Northern Ontario, Canada, has been carried out in [21]. The work focuses on the

renewable alternatives over the conventional diesel generators in the remote communities

and presents optimal renewable energy integration scenarios while considering costs and

related constraints.

Research in remote microgrids include investigation of system stability, energy man-

agement issues and the integration of wind turbines and ESS. Hatley Bay, Bella Coola,

Nemiah Valley, Ramea Island and Kasabonika lake [22] are a few testbeds in Canada that

are being used for remote microgird analysis. Testbeds of microgrid systems aid in real-

time analysis of their operational behavior and shortcomings. DR and operations of smart

6



CHAPTER 1. INTRODUCTION

microgrids have been applied on such test-beds to test their practical implications. One

such work [23] outlines the BCIT test-bed at Burnbay, British Columbia, Canada. At the

BCIT test-bed, research has been carried out to investigate DR and efficient distribution of

electricity integrated solutions for alternate sources of energy. In [8], an analysis of another

test bed namely Fortis-Alberta distribution system with emphasis on grid connected mode

of operation of the microgrid is presented.

Extensive studies on the operational aspects and control of smart microgrids have been

reported. DR initiatives have also been studied and efforts are being made to implement

them at the microgrid level. The presence of DER in the form of renewable energy sources

and ESS have had a two pronged effect on their application. On one hand, DERs introduce

a wider net of responsive loads and fast acting generators while on the other they have

rendered the establishment of a market structure and generation scheduling difficult. Thus,

microgrids, especially under isolated mode of operation, have become increasingly depen-

dent on customer response. In this work, an approach to DR incorporating generation

scheduling while modeling the consumption pattern of the customer has been proposed.

1.3 Research Objectives

In view of the literature review and discussions presented in the previous sections, the

research objectives of this thesis are outlined as follows:

• Estimate a model that would better illustrate the underlying relationship between the

distinct external parameters and a residential load. A neural network based modeling

procedure will be adopted to capture the load characteristics. The fundamental

pattern of this load profile will be extracted from the data collected through real-

time measurements in an Energy Hub Management System (EHMS) enabled house in

Ontario by implementing a supervised learning technique. The proposed functional

relation will be extrapolated to represent the aggregate load profile in a microgrid.

• Develop a comprehensive operations scheduling model in an isolated microgrid en-

compassing various DG resources. Wind turbine, conventional diesel, PV panels and

ESS will be considered to simulate the realistic operational microgrid system. Con-

sidering all the dispatch and operational constraints, the generation resources will be

scheduled from the perspective of the MGO.

7
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• Integrate the estimated load model into the operations scheduling model of the mi-

crogrid. The optimal control action of the MGO through a variable demand limit

imposed on the customer will be determined. In essence, a neural network model will

be trained to learn the load behavior and effect a control action, thereby scheduling

a least-cost energy usage and hence enabling a novel DR strategy.

• Test the performance of the model by subjecting it to different realistic cases. The

soundness of the learning process and the subsequent model estimation will be val-

idated with different physical scenarios. The effect of customer payback under the

influence of DR scheme as a case study will also be studied. The quantum of demand

reduction and cost analysis with the proposed model will be demonstrated.

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 establishes the background of this work. A

generic mathematical model of generation dispatch and fundamentals of neural networks

have been presented. This chapter also discusses the mathematical programming tech-

niques and a summary of the computing tools used in this research. In Chapter 3, the

mathematical model of microgrid operations and controllable demand modeling have been

presented in detail. This chapter also sets up the integrated neural network-microgrid op-

erations model. Chapter 4 presents the case studies with the model developed in Chapter

3. Effect of MGO imposed control signal on the controllable load profile and the resultant

DR with cost savings have been presented using simulations in Chapter 4. In Chapter 5, a

summary of the research work is presented and conclusions are drawn. This chapter also

identifies possible directions for future research on DR in smart microgrids.
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Chapter 2

Background

This chapter presents an overview of the tools and models that form the basis of this

thesis. In Section 2.1, a background to DR and microgrids has been presented. This is

followed by a brief description of the estimation techniques in Section 2.2. Further, a brief

outline of neural networks and its architecture, used for system modeling, are discussed in

Section 2.3. In Section 2.4, a brief description of the Unit Commitment (UC) problem and

its mathematical model has been laid out. Finally, in Section 2.5, a brief overview of the

optimization methods and associated solvers used in this work are described.

2.1 Demand Response and Microgrids

DR programs have costs associated with them and the participation of both the MGO

and customers are of utmost importance. A DR program can be subjected to different

manifestations to achieve its end objective while retaining the user specifications. DR in

its simplest form can have two different alternatives. In the first case, customers reduce

their consumption during peak load hours according to an established agreement with the

MGO which yields benefits to both the entities. This voluntary reduction in consumption

by the customer can reduce the energy costs but may result in increased inconvenience and

discomfort to the customers. The second alternative is to shift the load to off-peak hours

from the peak hours. In this case, the customer reduces its consumption during peak hours

driven by high prices and consumes electricity during lower price hours. This pattern of

response does not alter the total energy consumption of the customer but only changes
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the load pattern. This is beneficial in terms of operational reliability and reduced dispatch

costs from the MGO’s perspective and decreased payments by the end user. Different

alternatives of the DR program can be outlined [24] as shown below:

1. Incentive Based Programs

a) Conventional

i) Direct Load Control

ii) Interruptible Load Management

b) Market Based Approaches

i) Capacity Market

ii) Ancillary Service Market

iii) Demand Side Bidding

iv) Emergency DR

2. Price Based DR

i) Time-of-Use pricing

ii) Critical Peak Pricing

iii) Real Time Pricing

DR initiatives are finding increased participation among the utilities and end users. In

FERC’s annual report on ‘Assessment of Demand Response and Advances Metering’ [1];

developments in DR, Advanced Metering Infrastructure (AMI) and smart grid standards

have been highlighted and their potential in energy management have been documented.

One interesting outcome of the report is shown in Figure. 2.1. The figure shows an increase

in the peak reduction potential across all customer classes over a span of six years. The

report estimates total peak reduction potential of 55,980 MW across all regions of NERC.

The quantum of resources that can be used for energy management suggests the significance

of DR in today’s grid operation especially during the summer months. To better reflect the

system performance and the effect of DR, the present work considers the summer months

for system modeling.

Smart grids are electricity networks that can intelligently integrate the operational

aspects of generators, distribution centers and end users thereby ensuring a reliable, clean
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Figure 2.1: Potential peak reduction by customer class [1].

and cost effective supply. The relevance of smart grids in the revision of the current grid

infrastructure has been clearly put forth in Grid 2030 vision document [25] of the U.S.

Department of Energy. It presents a road map to establish an electric system that could

provide abundant, secure and affordable power to every part of the country. Smart grids

have felicitated the induction of DG resources like PV panels and fuel cells, the presence

of which has divided the power system into smaller islands thereby reducing the losses and

improving the sustainability. This has resulted in what is called smart microgrids. A formal

definition of microgrids has been presented by the U.S. department of Energy in [26] which

states that-“ A microgrid is an integrated energy system consisting of interconnected loads

and DERs, which as an integrated system, can operate in parallel with the grid or in an

intentional island mode.” The essential building blocks and the components of microgrids

are better illustrated by Figure. 2.2.

Isolated microgrids have been particularly useful in areas where connection to the main

grid is restrictive or financially infeasible. In the isolated mode, the system is self-reliant

wherein the responsive system load is satisfied by the locally available generation. In the

connected mode of operation, the microgrid behaves as a load to the external power system

network. The main idea behind this initiative is the drive towards power system reliability,

load management and sustainability through its dependency on renewable sources of power.

Challenges faced by the isolated microgrids in terms of loss reduction, optimal utilization
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Figure 2.2: Microgrids and their constituents.

of resources, grid stability and security are compounded by the fact that they cannot fall

back on a relatively reliable central grid. Efficient energy management systems, AMI and

advanced security establishment become the key parameters to enhance reliability in such

isolated microgrids. This work proposes an optimal DR scheme on an isolated microgrid,

thus augmenting its potential in system operations.

2.2 Estimation and Modeling

Estimation techniques constitute a fundamental block of engineering which help in extract-

ing information from the available data. State estimation and parameter estimation are

the two most important branches of estimation theory. State estimation tries to optimally

estimate the true state of the system given the system model and the noise induced input.

In parameter estimation, the best possible values of parameters are determined with given

input and output measurements and boundary conditions. With this brief distinction be-
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tween the two broad estimation techniques, a more detailed background on estimation is

presented, since it has been used in the modeling techniques in this thesis.

Parameter estimation has been defined in [27] as an inverse problem where discrete

measurements of the dependent variables are used to estimate the parameters. The pa-

rameters generally define an underlying physical relationship between the distribution of

the input and output datasets. This estimation technique is also referred to as nonlinear

regression and nonlinear estimation. An estimation function could be better illustrated

with the mapping function as shown below:

yi = G(xi, θ) =⇒ yi = θTxi + εi (2.1)

where yi is the output, xi is the input, i is the sample index, θ the parameters to be

estimated, ε is the unmodeled error and G is the nonlinear map.

The parameter estimation problem in general falls into two major classes - regression

and classification problems. An estimation problem is a classical regression based approach

if the input and the output data are continuous in the given domain. Alternatively, it can

be grouped into a classification problem if the output of the model takes a limited number of

discrete values. Based on the characteristics and assumptions on distribution of the input

and output data, few models have been described. The most preliminary but effective

model that has been used widely is the linear model. Linear algebraic models tend to

provide a fairly simple relation between the input and the output responses. The general

linear function and the least square estimation are given as follows [28]:

hθ(x) = θo + θ1x1 + θ2x2 (2.2)

s(θ) =
1

2

m∑
i=1

(hθ(xi)− yi)
2 (2.3)

where i is the sample set. The error function shown in (2.3) is minimized with respect to the

parameters θ. Maximum likehood estimation are also used to estimate model parameters

while incorporating the principles Bayes Theorem.

The linear model as described is used in the context of demand modeling in a microgrid

system. It has to be noted that not all loads in a residential unit can be controlled.

The controllability over the devices can justifiably be used to reduce the energy cost,

consumption, emissions and to even provide a buffer in the form of ancillary service. Thus,
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modeling the demand as a function of time dependent internal and external parameters

can provide adequate support in smarter control and DR. Once the system is modeled

using neural networks by applying the above estimation technique, the optimal system

state estimation using optimization is performed.

2.3 Neural Networks

Neural networks can be used to model the complex relation between the input and output

parameters using a relatively simple construction and algorithm. One of the main advan-

tages lies in the fact that neural networks have relatively high tolerance limit to noisy

data and they have the ability to discern a pattern even for the data that have not been

used to train the model initially. An essential characteristic of neural networks is that the

correctness of the model output function depends extensively on the goodness of the input

data being fed into the model. Thus, learning of the network can be impaired if the input

data does not contain sufficient information representing the output.

Neural networks are generally organized in layers with nodes or neurons connecting dif-

ferent layers through an activation function. Data or pattern is presented at the input layer

which travels to the hidden layers through weighted connections and is finally processed at

the output layer representing the output of the network. As summarized in [29], different

neural network structures like Multilayer Preceptrons (MLP), Radial Basis Function and

Wavelet Neural Networks have been designed and applied to specific applications. MLP is

the most widely used neural network architecture and the same has been applied in this

work. In what follows, a brief description of the MLP architecture, its components and

training function has been presented.

MLP [30] belongs to a general class of neural networks called feedforward neural net-

works with one or more layers between the input and the output capable of approximating

generic class of functions, including continuous and integrable functions. A general struc-

ture of MLP is shown in Figure. 2.3. Here, the first layer is called the input layer. It is a

layer which receives a stimulus from outside of the neural network. Every other subsequent

layer receives stimuli from its preceding layer. For example, from Figure. 2.3, a layer l

receives stimuli from its preceding layer l − 1. The neurons which receive stimuli from

the previous layer’s neurons and the output of which is used as a stimuli for outer layer
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Figure 2.3: MLP architecture [31].

neurons constitute the hidden layer neurons. Neurons, whose outputs are used external to

the network are called the output layer neurons. The term stimuli in this context refers

to a weighted sum of the inputs passed through an activation function to form an output

function. Activation functions are used in the network to scale the data output from a

layer. Some commonly used activation functions in neural networks are:

log sigmoid function : The functional representation of the sigmoid function is given

below. The function is real valued and differentiable, characterized by horizontal

asymptotes as x → ±∞
σ(x) =

1

1 + e−x
(2.4)

σ(x) =

⎧⎨
⎩0 when x → −∞
1 when x → ∞

where σ(.) is the activation function and x is the weighted sum of inputs from the

preceding layer.

tan sigmoid function : This function can be represented as

σ(x) =
2

1 + e−2x
− 1 (2.5)
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Figure 2.4: log sigmoid function.

σ(x) =

⎧⎨
⎩−1 when x → −∞
1 when x → ∞

This function can alternatively be represented by a hyperbolic tan function as

σ(x) =
ex − e−x

ex + e−x
. (2.6)

The above equation can also be represented as

σ(x) =
2

π
arctan(x). (2.7)

As stated earlier, input to the activation function is the weighted sum of the response

from the previous layer. Suppose, if the response from the preceding layer is null, then the

weighted sum of the response becomes zero. To provide a bias against this condition, a

bias parameter has to be introduced in the neural network structure. The weighted sum

upon the addition of the bias parameter is denoted as [29]:

xl
i =

Nl−1∑
j=1

wl
ijz

l−1
j + bi (2.8)
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Figure 2.5: tan hyperbolic function.

where xl
i = bi represents weighted sum at ith node which is equal to the bias at that node,

provided all the previous responses zl−1
j are 0.

Learning in neural network consists of finding the best possible combination of the

weights such that a function that provides a best approximation of the original system

behavior is obtained. Given input and output patterns, the neural network has to be

trained with different pairs of data such that it learns the implicit function that defines

the input-output relationship. It optimizes the weights by minimizing the error between

the network outputs and the targeted outputs. Given a set (xp, tp) of p ordered pairs of

inputs and target outputs, the objective is to minimize the error function,

E =
1

2

p∑
i=1

‖ oi − ti ‖2 . (2.9)

Different training algorithms have been developed and currently used in many com-

mercial solvers. Backpropogation of errors using gradient descent algorithm has been one

of the most commonly used optimization technique to find the local minima of the above

error function. The training algorithm [32] is started by initializing the weights to some

small random values and subsequently updating them along the negative direction of the

error gradient. Weight is the only parameter which can be changed to minimize the error.
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The gradient error function can be calculated as

∇E =

(
∂E

∂w1

,
∂E

∂w2

, · · · , ∂E
∂wi

)
(2.10)

The network weight updates are carried out iteratively using

	wi = −γ
∂E

∂wi

∀ i ∈ [1, · · · , p] (2.11)

where γ denotes the step length of the iteration and the negative sign indicates a negative

gradient. Considering a single input and output network, the algorithm can be summarized

in two stages:

• Feedforward stage - Input is fed into the network. The network function and its

derivative are evaluated and stored at each node.

• Backpropagation stage - A constant 1 is fed at the output and the network is run

backwards. In this way, the partial derivative of E with respect to weights for each sub-

sequent layer up to the input is computed. The cumulative result is the backpropagated

error. Once the derivatives are obtained, the weights are updated by gradient descent

In many commercial solvers including MATLAB TM, Levenberg−Marquardt is the default

training algorithm for the feed-forward network due to its robust nature.

According to the universal approximation theorem of the feed-forward neural networks

[29], a single hidden layer can approximate any measurable function regardless of the

activation function and input space with desired accuracy. Theoretically, there seems to

be no constraint on the success of the feed-forward networks. But, it has to be noted that

universal approximation theorem does not fix the number of neurons in a layer to guarantee

success. In fact, in many black-box models which seldom have any information about the

functional relationship and parameters, the number of neurons are selected by trial and

error with an objective to minimize the error gradient. A balance has to be struck between

an increase in number of neurons of the hidden layer and the convergence rate for a given

accuracy, since either of them are directly proportional. Failure to obtain a good model

could be attributed to inadequate learning, too few hidden layer neurons or presence of a

stochastic relation between the input and output functions.

Once the network has been trained to deduce the weights and biases, it has to be tested

and validated to ascertain the quality of the model. Typically, based on the size of the input

data set, the data is divided to perform training, testing and validation analysis. Testing

of a model is carried out only once against the trained model to obtain the predicted error
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using a non-training data. This gives an indication of the performance of the model against

an unseen data. Once, the model testing has been completed, the model is subjected to

validation tests. A good model is expected to produce a generalized functional relationship

between the input and the output. Cross validation of the model is essential to check the

generalization of the estimated model. Unlike the test data, the validation data is generally

used repeatedly to minimize the non-training performance function such as Mean Square

Error (MSE) of the model. Training can be stopped once the validation error performance

function stops decreasing or once it reaches the tolerance. Training along with testing and

validation concludes the overlying process in developing a neural network model.

2.4 Unit Commitment

The UC problem in power systems is carried out with an aim to optimize the operation

of generating resources to supply the load at minimum cost, over a given time period,

while satisfying the system constraints. Some of the most widely used methodologies for

the solution of UC problems range from integer and linear programming [33], dynamic

programming, priority listing, lagrange relaxation, simulated annealing [14], interior point

optimization, fuzzy systems and artificial neural networks [16]. A general mathematical

model of the UC problem [33] is discussed next.

Objective Function

A simple cost minimization based objective is given as,

J =
∑
t∈T

∑
g∈G

Cg,t(Pg,t) + SUg,tyg,t + SDg,tzg,t (2.12)

where the first term of (2.12) represents the generation cost and the second and

third terms denote the start-up and shut-down costs, which are usually associated

with thermal generators. The cost functions are generally modeled as linear functions

while the startup and shutdown costs are typically fixed costs. The objective function

is subjected to the following constraints.

Generation Constraint

The generation from generating units are restricted by their maximum and minimum
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limits as follows:

Pmin
g vg,t ≤ Pg,t ≤ Pmax

g vg,t ∀ g ∈ G, ∀ t ∈ T (2.13)

Power Balance Constraint

The total generated power should meet the system demand over all time periods

under consideration, ∑
g∈G,t∈T

Pg,tvg,t −Rg,t = Pdt (2.14)

Ramp up/down Constraints

Limits are imposed on the rate at which generation can increase or decrease. Ramping

constraints can be modeled as,

Pg,t+1 − Pg,t ≤ RUg

Pg,t − Pg,t+1 ≤ RDg

⎫⎬
⎭ ∀ g ∈ G, ∀ t ∈ T (2.15)

Minimum Up/Down Time Constraints

A generating unit, especially thermal units, cannot be arbitrarily switched on and

off. The operation of the generator is restricted by the minimum time for which it

remains on or off which are indicated by the following constraints.

[
xon
g,t−1 − UTg

]
[vg,t−1 − vg,t] ≥ 0[

xon
g,t−1 −DTg

]
[vg,t − vg,t−1] ≤ 0

⎫⎬
⎭ ∀ g ∈ G, ∀ t ∈ T (2.16)

The above nonlinear constraints can be linearized as follows,

Lg∑
t=1

[1− vg,t] = 0 (2.17)

t+UTg−1∑
i=t

vg,i ≥ UTgyg,t ∀ t = Lg + 1, . . . , T − UTg + 1 (2.18)

Lg = min
[
T, (UTg − U0

g )vg,0
]

T∑
i=t

[vg,i − yg,t] ≥ 0 ∀ t = T − UT (g) + 2, . . . , T (2.19)
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where (2.17) ensures that the generating unit will satisfy the minimum up-time con-

straint if it has been on at hour 0 for fewer hours than minimum up-time. Equation

(2.18) ensures the UC status for all sets of consecutive steps of size UTg. Finally,

(2.19) enforces the minimum up-time if the unit has been started at the last UTg − 1

hours. It ensures that the unit remains on for the subsequent hours up to T . On

a similar note the corresponding linear form of minimum down-time constraints can

be stated as:

Fg∑
t=1

vg,t = 0 (2.20)

t+DTg−1∑
i=t

[1− vg,i] ≥ DTgzg,t ∀ t = Fg + 1, . . . , T −DTg + 1 (2.21)

F (g) = min[T, (DTg − S0
g )(1− vg,0)]

T∑
i=t

[1− vg,i − zg,t] ≥ 0 ∀ t = T −DTg + 2, . . . , T (2.22)

Equations (2.20), (2.21), (2.22) enforce similar constraints as the minimum up-time

except that the UTg has been replaced by DTg and start up indicator by shut down

alternative.

Coordination Constraints

Relation between start up and shut down decision variables are given as:

yg,t+1 − zg,t+1 = vg,t+1 − vg,t ∀ g ∈ G, ∀ t ∈ T (2.23)

Similarly a unit can either be start up or shut down at a time instant. To avoid the

simultaneous operation of the unit the following constraint is imposed

yg,t + zg,t ≤ 1 ∀ g ∈ G, ∀ t ∈ T (2.24)

yg,t, zg,t ∈ {0, 1} ∀ g, ∀ t

Spinning Reserve Constraint

To satisfy the system spinning reserve requirement at all time periods the following

constraint is imposed. ∑
g∈G,t∈T

Rg,tvg,t ≥ Rt (2.25)
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2.5 Optimization Methods

The mathematical model used in this work belongs to a class of Mixed Integer Nonlinear

Programming problems (MINLP). It is a culmination of Mixed Integer Linear Programming

(MILP) and Nonlinear Programming (NLP) subproblems, hence a brief overview of the

MILP and NLP problems is given.

A general mathematical form of the MILP optimization problem structure is given as:

min

n∑
j=1

cjxj, (2.26)

subject to
n∑

j=1

aijxj = bi ∀ i = 1, 2, . . . ,m (2.27)

xj ≥ 0 ∀ j = 1, 2, . . . , n xj ∈ {0, 1}

It is referred to as pure or binary integer problem if all the decision variables are integers,

i.e., each variable can take either 0 or 1 as its value. A MILP is an optimization problem

[34] wherein some or all of the decision variables are integer values and the objective

function and corresponding constraints are linear.

In case of integer programming, many different algorithms are used in practice, ranging

from heuristics to linear programming relaxation algorithms like Branch and Bound and

cutting plane algorithms [34]. One advantage of the latter methods over the heuristic

methods is that they are capable of delivering a feasible if not optimal solution against

the possibility of no solution. The Branch and Bound and cutting plane algorithms have

been widely applied in many commercial solvers that are used to solve the MILP problems.

The Branch and bound is a divide and conquer strategy. They are non-heuristic [35] and

they maintain a provable upper and lower bound on the globally optimal objective value.

The general idea is to divide the feasible region into sub-partitions and bounding it in an

iterative procedure until a ε-suboptimal point is achieved [36].

The NLP optimization problem arises if the objective or at least one of the decision

variables is a function of nonlinearity or in other words if the feasible region is determined
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by nonlinear constraints. The general mathematical form is given as:

min
x

f(x) (2.28)

subject to g(x) ≤ 0 (2.29)

h(x) = 0 (2.30)

x ∈ X

Many algorithms have been reported to solve the unconstrained and constrained NLP

problems. Newton’s method has been the most common method to solve the unconstrained

optimization problems. The Newton’s method [37] shows a quadratic convergence charac-

teristics, while the steepest descent convergence property depends to a large extent on the

size of the step.

The MINLP problems arise with the presence of discrete and continuous variables

with nonlinearities in the objective function or constraints. It is a special case which

combines both MILP and NLP problems both structurally and in complexity. As with NLP

problems, the solution associated with the above mentioned methods depend to a larger

extent on the initial starting solution. It is common that a problem with nonlinearities

in the constraints may converge at a local optimal solution rather than a global optimal

solution. Furthermore, introduction of integer constraints introduces non-convexities to the

nonlinear problem which imposes additional burden on resource constraints, thus making

MINLP a mathematically hard problem to solve.

2.5.1 Tools and Solvers

In this work, GAMS [38] has been used as a primary tool on which the optimization

framework rests. The DICOPT solver [39] has been used for solving the MINLP problem

formulated in this work. The algorithm is based on outer approximation, equality relax-

ation and augmented penalty. The algorithm solves an NLP problem with relaxed integer

constraints and stops if this first run yields an integer solution. If no integer solution ex-

ists at the first run, the problem is divided into NLP subproblems and an MILP master

problem. At the subsequent major iterations, these NLP subproblems are solved for the

fixed binary variables predicted by the master problem which finally halts at the instance

of a stopping criteria. In this work, optimization of the MILP master problem has been
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carried out using the CPLEX [40] solver. CPLEX primarily uses Branch and Bound with

cuts and heuristics for solving pure integer and mixed integer programs. To speeden up

the operation and to reduce the computational time, several parameters in CPLEX can be

fine tuned. The SNOPT solver [41] has been used for solving the nonlinear subproblem. It

uses a sparse sequential quadratic programming method to solve constrained optimization

problems.

MATLAB TM [42] has been used to perform the neural network analysis of this work.

MATLAB’s Neural Network toolbox [32] has a range of functionalities that include function

approximation, nonlinear regression, pattern regression, clustering and time series analysis.

In this work, a neural network function fitting tool has been used to train the model.

MATLAB TM is efficient in neural network function analysis [32] and it provides many

key functions in an effort to arrive at suitably approximated model. Besides numerous

training algorithms such as Levenberg-Marquardt, one step secant, gradient descent and

resilient backpropogation, it also allows the user to define the input-output processing

and activation functions. Some essential parameters like minimum gradient, goal, epochs

and time are user defined. Random data division, regularization and early stop criteria

that produce generalized models are supplemented by data validation criteria that show

error histograms, performance plots as a function of epochs and regression analysis. This

combined validation results gives us an amply clear picture of the model behavior and

response.

2.6 Summary

In this chapter, background of DR and microgrids and its impacts have been discussed.

This was followed by a brief analysis of the estimation and modeling techniques. The

chapter provided an introduction to the basic definitions and a foundation to the estima-

tion procedures. Neural networks have been used with a specific purpose of functional

approximation which in the context of this work refers to load modeling. Neural network

feedforward architecture and the backpropagation algorithm were discussed in detail to

illustrate the general model of the network. A general mathematical formulation of the

UC optimization problem has also been presented. Finally, a brief description of the gen-

eral optimization methods specific to this work and the associated tools and solvers were

presented.
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Modeling Framework for Optimal

DR of Controllable Loads

In this chapter, details of the specific mathematical models used in this thesis have been

presented. In Section 3.1, the operations planning problem of the microgrid is discussed.

First, the overall framework of operations including the load estimation and generation

scheduling models are discussed followed by the mathematical models. Demand modeling

is discussed in Section 3.2 along with the details on the input parameters and neural net-

work architecture of the modeling process. An account of the neural network performance

indices during training and validation with simulated results is also presented. Finally, in

Section 3.3, the neural network based load function has been derived and the DR-integrated

microgrid operations model is presented.

3.1 Microgrid Operations Model

3.1.1 Overall Framework for Optimal DR

The total energy consumption of a residence though small, can provide a major initiative

in load following and DR, when aggregated. From the MGO’s perspective, a good model

can provide the MGO with an accurate estimate of the demand and help manage its

generation resources optimally. In the proposed DR framework, an interface between the

residential customers and the MGO is presented. A closed loop optimal DR framework
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has been depicted in Figure. 3.1 where individual load profiles of residential customers are

estimated and the evaluated aggregated demand of the microgrid is presented to the MGO

controller. The MGO can use this aggregated demand and issue a control signal through its

energy management system. The proposed framework for optimal DR comprises three main

modules (Figure. 3.1), namely, Load Profile Estimator (LPE), Load Profile Aggregator

(LPA) and the Microgrid Energy Management System (MEMS).

The LPE module learns the controllable residential load profile based on the input

historical temperature, the TOU price and MGO imposed demand limit on the customer.

A neural network based supervised learning technique is employed by the LPE to evaluate

the load profile (actual) and compare it to the historical controlled load profile (target) data.

The LPE module can reside inside a customer’s house, and communicate the estimated

load profile to the LPA module. The LPA accumulates the demand profile from individual

customers and provides the aggregated load profile to the MGO which houses the MEMS.

The MEMS provides connectivity to both the LPE and LPA modules and it is regarded

as the central unit which performs the optimization within the proposed optimal DR

framework.

Besides the aggregated data, the MEMS receives inputs such as the generation capac-

ity of diesel generators and ESS units, the predicted wind and PV generation profiles and

DG cost characteristics. A cost minimization based optimal operations scheduling of the

microgrid is performed by the MEMS unit, and an optimal control signal Pmax is deter-

mined, which is fed back to the LPE at the customer side. This Pmax signal, along with the

temperature and TOU price data is used to estimate the optimal demand profile. Based

on this optimal demand, the MEMS determines the least cost optimal generation schedule

of all generation resources in the microgrid system. Thus, a DR scheme in the context of

microgrids with a simple control has been proposed while retaining its robustness. The

overall architecture of the proposed optimal DR framework is shown in Figure. 3.1.

3.1.2 Microgrid Energy Management System (MEMS) Mathe-

matical Model

In this thesis, only isolated mode of operation for the microgrid has been considered. In

Chapter 2, the mathematical model of a generic UC problem has been presented, consid-

ering a cost minimization objective. In this chapter, the MEMS operations model for an
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Figure 3.1: Proposed architecture of the optimal DR framework.

isolated microgrid is presented which is based on the UC model discussed in Chapter 2,

but with various modifications and some novel features. The microgrid considered, houses

a combination of generation resources such as dispatchable diesel generators, PV panels,

wind turbines and ESS devices. The objective function (J) given below represents the

isolated microgrid operations cost over a scheduling period (typically 24 hours).

J =
∑
g

∑
t

(axgvg,t + bxgPg,t + SUCgyg,t + SDCgzg,t)

+
∑
ba

∑
t

(TOUtP
ch
ba,tchba,t − TOUtP

dch
ba,tdchba,t) (3.1)

where the first term of (3.1) denotes the costs of the dispatchable generators comprising the

no-load and operational costs of diesel generators along with their start-up and shut-down

costs. The second and the third term accounts for the costs associated with the charging

and discharging cycles of the ESS devices. Here, the microgrid gets paid when the ESS is

discharging and incurs a cost when ESS is charging. TOU pricing has been used for the

ESS devices, so as to align them with customer pricing.
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Generation Constraints

The following constraints define the generation limits for the generating sources under

consideration.

Pmin
g vg,t ≤ Pg,t ≤ Pmax

g vg,t ∀ g, t (3.2)

Pmin
ba chba,t ≤ P ch

ba,t ≤ Pmax
ba,t chba,t

Pmin
ba dchba,t ≤ P dch

ba,t ≤ Pmax
ba dchba,t

⎫⎬
⎭ ∀ ba, t (3.3)

where Pmin, Pmax are minimum and the maximum generation capacities of the gen-

erating units, vg,t is the binary status variable associated with dispatchable diesel

generators and chba,t, dchba,t refer to the charging and discharging binary decision

variables respectively. Pg,t, P
ch
ba,t and P dch

ba,t represent the output variables pertaining

to diesel generators and ESS devices (charge and discharge) respectively. It is noted

that PV and wind generation are considered as exogenous inputs.

Demand-Supply Balance Constraint

The following constraint is used to meet the demand-supply balance at each time

period.

∑
g

Pg,t +
∑
pv

Ppv,t +
∑
w

Pw,t +
∑
ba

P dch
ba,t = Pdt +

∑
ba

P ch
ba,t ∀ t (3.4)

It is to be noted that Pd in (3.4) is the cumulative system load comprising two

components, Pd0 and Pde, the base and controllable components respectively, as

follows:

Pdt = Pd0t + Pdet (3.5)

In the next section, the details of modeling the controllable component Pdet is pro-

vided. Equation (3.4) also illustrates that the discharge from ESS is considered a

generating source while the charging of the ESS, a load on the microgrid system.

Energy Storage System Constraints

It should be noted that P ch and P dch in (3.3) cannot act simultaneously because a

battery can either charge or discharge at a given time instant. Hence, binary decision
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variables are introduced within the MEMS model to schedule the operation of the

ESS. The operating constraints pertaining to the ESS are as follows:

Cmin
ba ≤ SOCba,t ≤ Cmax

ba ∀ t, ba (3.6)

where Cmin
ba , Cmax

ba refer to the minimum and maximum storage limit of the ESS and

SOCba,t signifies the current State of Charge (SOC) of the ESS unit. It also considers

that the SOC of the ESS at hour t+1 is dependent on the SOC at hour t and the

charging and discharging powers at hour t. The efficiency of the ESS is assumed

to be split between the charging and discharging cycles. The formulation is shown

below:

P ch
ba,tηchchba,t −

P dch
ba,t

ηdch
dchba,t = SOCba,t+1 − SOCba,t ∀ ba, t (3.7)

where ηch and ηdch refer to the efficiency under charging and discharging cycles re-

spectively. The complexities introduced by the nonlinearities in (3.7) can be eased by

formulating its linear variant using the Big-M method [34]. Accordingly, an implicit

either/or relation is obtained as shown by the following equations:

P ch
ba,tηch −M(dchba,t) ≤ SOCba,t+1 − SOCba,t

P ch
ba,tηch +M(dchba,t) ≥ SOCba,t+1 − SOCba,t

⎫⎬
⎭ ∀ ba, t �= tN (3.8)

−P dch
ba,t

ηdch
−M(chba,t − dchba,t + 1) ≤ SOCba,t+1 − SOCba,t

−P dch
ba,t

ηdch
+M(chba,t − dchba,t + 1) ≥ SOCba,t+1 − SOCba,t

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∀ ba, t �= tN (3.9)

The intuition behind the above equations is that if the ESS is in charging state,

SOCt+1 is equal to the charging power and SOCt. The scalar M in (3.8) and (3.9)

linearizes (3.7) by imposing one constraint while eliminating the other.

Operational Constraints

These include the ramping and the minimum up/down constraints. The ramping

constraints governing the diesel generators can be written as:

Pg,t − Pg,t−1 ≤ RU(1− yg,t) + Pmin
g yg,t

Pg,t−1 − Pg,t ≤ RD(1− zg,t) + Pmin
g zg,t

⎫⎬
⎭ ∀ g, t �= t1 (3.10)
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where RU , RD are the ramp-up and ramp-down rates of the diesel generators and

yg,t, zg,t refer to the start-up and shut-down binary decision variables. Minimum

up/down time constraints, which have not been exclusively shown here, are similar

in formulation as in Section 2.4.

Coordination Constraints

It coordinates the start-up and shut-down decisions of the generating units. Relations

between the binary decision variables of dispatchable generators and the ESS are

given as follows:

yg,t − zg,t = vg,t − vg,t−1 (3.11)

chba,t + dchba,t ≤ 1 (3.12)

yg,t, sg,t, vg,t, chba,t, dchba,t ∈ {0, 1}

3.2 Load Profile Estimation

In this section, the controllable component of electricity consumption profile of a residential

energy hub is modeled considering the parameters influencing this load. In microgrids

especially under the isolated mode of operation, responsiveness of every individual load is

important. The EHMS in these houses can use the demand data and provide an array of

control and operational decisions as a function of related parameters. Using neural network

learning technique, the controllable load is modeled as a function of the temperature, TOU

prices and the MGO imposed maximum power limit. The training data of neural network

is summarized as:

Output Training Data

• System demand-Pde (kW ): It is the cumulative controllable load on the microgrid

arising from the power demand measured from the appliances at a particular time

instant. The data is measured with a sampling period of 5 minutes over a time

horizon of 24 hours, for a three month period, May to July 2012, providing a total

of 288 samples per day. Load measurements are initially carried out considering a

particular set value of Pmax, thereafter, different Pmax values are assigned and the

controlled load profile (target) is simulated.
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Input Training Data

• Temperature-T (◦C): The external temperature has an effect on the controllable load

component of a residential unit. Therefore, to increase the accuracy of modeling,

temperature has been considered over the same time period and granularity as in

output.

• Maximum power limit-Pmax (kW ): This limit on the maximum power consumption

of a residential energy hub is imposed, as determined by the MGO. Different Pmax

are considered including - 19.5 kW, 6.825 kW, 4.88 kW, 4.8 kW, 2.68 kW, 2.6 kW

and 2.55 kW, and for each case the load profile (target) has been simulated.

• TOU price ($/kWh): It is the pricing scheme that had been applicable to residential

customers in Ontario. Summer pricing, which corresponds to the pricing scheme in

force from May-October, has been used in the proposed optimal DR model. The

TOU pricing, which is categorized into off-peak, mid-peak and on-peak based on

different times of the day is further subdivided into 5 minute intervals to align with

the sampling rate of the measured demand.

Thus, a sufficiently large and unique dataset is presented to the neural network with an aim

to produce a fitting network with reasonably accurate function capturing the relationship

between output and input. Before feeding the collected data to train the feedforward

multilayer network, the data is preprocessed. At the preprocessing stage, constant rows in

inputs/outputs are removed since these redundant data do not contribute to the learning

procedure. In the next stage, the dataset is normalized within a specific range of [-1, 1]

such that the activation function does not saturate. As seen from Figure. 2.5, for large

input values the activation function output saturates, resulting in smaller gradients and

slower training. Without this step, the training step would have fixed lower weights and

biases at the first layer to avoid saturation. The above mentioned steps need be applied

again to the targets after training to revert the output back to its original scale. The

normalizing function used in this work is given as:

y =
(ymax − ymin)(x− xmin)

xmax − xmin

+ ymin (3.13)
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where ymax, ymin take up the values 1 and -1 respectively; xmax, xmin denote the maximum

and minimum values of the input range while x denotes the corresponding input data point.

The input data to the neural network is divided randomly into training, validation

and testing datasets in the ratio of 0.7 : 0.15 : 0.15. Theoretically, there is no limit to

the number of hidden layers. Generally, one layer and utmost two layers are sufficient

to approximate complex functions. As mentioned in [29], single layer MLP networks are

universal approximators. Hence, a single hidden layer MLP is chosen. Number of hidden

layer nodes depend on the dimensionality of input and output vectors and also on the

training cases. Here, the number of hidden nodes have been determined by comparison of

different sets of trained models. Model comparison rests on the fact that, less number of

hidden nodes produce high training error and possible under-fitting, while large number of

hidden nodes produce over-generalization and subsequent over-trained models. Four hidden

neurons have been used in this work after a comparative analysis with other architectures.

The adopted neural network architecture is depicted in Figure. 3.2, where In1 − In3

represent the three inputs, IWj,i refer to the input layer weights of the network, LWl,j are

the layer weights, Hj represents the jth hidden node, B is the hidden node and output

node bias and OUT is the output neuron.

As the network is presented with data, weights and biases are initialized and the network

is trained in MATLAB TM platform [42]. Levenberg-Marquardt training algorithm has

been used to train the model. The MSE performance function given in (2.9) is used to fine

tune the weights and biases in an effort to optimize the model performance. The training

algorithm and the stopping criteria, as described in Section 2.3, is applied to the modeling

procedure. The network performance and training states are shown in Figure. 3.3 and

Figure. 3.4 respectively.

Figure 3.3 shows the MSE for all datasets on a logarithmic scale as a function of epochs;

where epoch refers to the number of training trials. Validation and test performance are

the points of interest, and the plot shows the iteration at which the validation perfor-

mance function reaches minimum even as the training is continued for 7 more epochs.

Best validation performance has been depicted in Figure. 3.3 which corresponds to an

MSE=0.66793.

Figure 3.4 comprises three subplots; the first subplot is the backpropagation gradient

expressed in logarithmic scale. It shows the gradient descent across the iterations and

arrives at a gradient value of 0.008838 at epoch 39 where the training has stopped. The
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Figure 3.2: Neural network architecture.

second subplot shows the scalar μ dynamics across the epochs; where μ corresponds to the

scalar in the Levenberg-Marquardt algorithm at the update step. A small value of μ leads

to Newton’s method, while a larger μ leads to gradient descent method. This scalar value

is decreased when the performance function decreases resulting in a faster and accurate

Newton’s method. The value of μ increases when the performance function is expected to

increase, thus switching to gradient method as the minimum error is far. At the stopping

condition, the scalar magnitude is 10. The third subplot shows the validation failure count.

As it can be seen at epoch 39, the stipulated count of maximum number of validation fail

is reached and the training has stopped.

At the end of the training procedure, it is prerogative to compare the actual model ouput

with the target system output. In the study, a total of 84,960 samples are considered. In

order to illustrate the fit unambiguously, 600 data points of the two sets are shown in

Figure. 3.5.

The neural network inherently subjects the trained model with test and validation

datasets to evaluate its flexibility and outputs the best validation performance model.

Randomness can be introduced into this model to visualize the model behavior under
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Figure 3.3: Neural network performance plot.

Figure 3.4: Training state plot.
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Figure 3.5: Actual vs target output.

constrained random data. In this case, the model is subjected to uniformly distributed

random in [0,1] data at the input and the estimated target output obtained has been

plotted in Figure. 3.6. It is noted that with constrained random input data i.e., noise,

the neural network performance is not deteriorated and thus indicates a fair degree of

robustness.

Histograms showing the difference between the actual and the target output is plotted

in Figure. 3.7, and as noted, among the total samples considered, majority of the errors

lie in the range of -0.44 to 0.62.

Figure 3.8 plots the regression relation between the actual output and the targets. The

sampled output is essentially a binary signal in a sense that it has a fixed amplitude touch-

ing zero over few alternating sample sizes. The neural network reproduces this behavior in

the actual output and in the process the network output lags as the target output shifts.

This can be seen from the regression plot (Figure. 3.8) as well as in Figure. 3.5.

After the neural network is trained and validated, the function approximating the input-

output relation is extracted. This relation is a function of the network’s input weights,

layer weights and network biases. The tan sigmoid function described in (2.5) is used as the
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Figure 3.6: Model behavior under random input data.

Figure 3.7: Error histogram. Figure 3.8: Regression plot.
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input layer activation function and a linear function is used as the output layer activation

function. The weights and biases used in Figure. 3.2 are employed in the respective

equations. The mathematical representation of the controllable load function is given as:

Pdet = (a1tLW11 + a2tLW12 + a3tLW13 + a4tLW14 +B1) (3.14)

where the activation functions a1t, a2t, a3t and a4t are given as:

a1t =
2

1 + e(−2H1t)
− 1 (3.15)

a2t =
2

1 + e(−2H2t)
− 1 (3.16)

a3t =
2

1 + e(−2H3t)
− 1 (3.17)

a4t =
2

1 + e(−2H4t)
− 1 (3.18)

and the hidden layer function are:

H1t = (IW11θt + IW12Pmaxt + IW13TOUt +B11)

H2t = (IW21θt + IW22Pmaxt + IW23TOUt +B21)

H3t = (IW31θt + IW32Pmaxt + IW33TOUt +B31)

H4t = (IW41θt + IW42Pmaxt + IW43TOUt +B41)

(3.19)

where θt and TOUt are the known parameters of measured outside temperature and TOU

prices respectively. Pmaxt and Pdet are the variable demand limit and the controllable

load estimated by the neural network model respectively.

3.3 Neural Network-Microgrid Integration

For the DR, the controllable demand of the microgrid is the output derived from the neural

network function. Given the load model of a microgrid, a control signal pmax is determined

that optimally schedules the energy while minimizing the operating cost of the MGO. The

control signal Pmax imposes a cap on the peak load from the perspective of the MGO. The

controllable demand, which is a function of the temperature, TOU price and Pmax is the

outcome of the optimal DR model.

Parameter estimation of the load model is followed by the microgrid system optimiza-

tion to simultaneously determine the MGO’s control signal Pmax and the controlled demand
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profile of the customers. In essence, Pmax and the controllable load are deduced at every

time instance with varying temperature and TOU price data. The controllable load (Pdet )

is integrated into the MEMS model of the microgrid to optimally schedule the generation

resources. The resultant MINLP problem has the following representation for the load

balance constraint in addition to the previously described MILP problem of UC in Section

3.1.

The demand supply balance constraint of the UC described in (3.4) is replaced by the

following to incorporate the controlled load:(∑
g

Pg,t +
∑
pv

Ppv,t +
∑
w

Pw,t +
∑
ba

P dch
ba,t

)
=

(
Pdet +

∑
ba

P ch
ba,t + Pd0t

)
∀ t (3.20)

where Pd0t is the base load profile across the time horizon that remains unaffected by the

temperature and TOU price variations, and Pdet is given by (3.14).

3.4 Summary

In this chapter, a comprehensive mathematical model of UC encompassing all the genera-

tion and storage components of a microgrid was presented. Neural network based super-

vised learning technique has been described in detail to model the controllable demand of

th microgrid. Finally, the controllable demand function is extracted from the neural net-

work model and integrated into the MEMS model of the microgrid resulting in an optimal

DR scheme.
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Chapter 4

Case Studies

4.1 Introduction

In this chapter, the mathematical models developed in the previous chapter are applied

to a test case microgrid system to examine the effectiveness of the DR model. In Section

4.2, the microgrid test system and the generation data are introduced. In Section 4.3,

simulation cases for the analyses are presented and supported with detailed results and

discussions. Finally, in Section 4.4, the computational performance of the proposed model

is discussed.

4.2 Microgrid Test System

The CIGRE / IEEE Medium Voltage (MV) benchmark system [43] with DG integration

has been used in this work. The 13-bus modified MV rural distribution is shown in Figure.

4.1. The microgrid benchmark system, derived from a German MV distribution network,

has a voltage level of 20 kV, supplied by a 110 kV/20 kV transformer sub-station.

As seen in Figure. 4.1, the switch at bus 1 allows the microgrid to alternate between

grid connected and isolated modes of operation. In the grid connected mode, bus 1 is

modeled as an infinite bus. In this work however, only isolated mode of operation of the

microgrid has been studied and the DG unit at bus 1 acts as the main source of reliable

power supply. The network parameters and load characteristics used in this work have been
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Figure 4.1: Modified microgrid test system.
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adapted from [43]. The details of the DG parameters and their corresponding generation

capacity are given in Table 4.1.

Table 4.1: Microgrid DER capacity.

Node Unit Capacity (kW)

1 Diesel 5000

3 Photovoltaic 20

4 Photovoltaic 20

5 Battery 600

5 Fuel Cell 33

5 Electrolyser 30

5 Photovoltaic 30

6 Electrolyser 50

6 Photovoltaic 30

7 Wind Farm 1500

8 Electrolyser 200

8 Photovoltaic 30

9 CHP Diesel 310

9 Fuel Cell 212

9 Photovoltaic 30

10 Battery 200

10 Fuel Cell 14

10 Photovoltaic 40

11 Photovoltaic 10

13 Gas 500

Temperature and summer TOU pricing data corresponding to the three months from

May-July 2012 in the region of Ontario is used in this work. The maximum demand that

can be controlled at any instant is approximately 30% of the total fixed base load on the

system.
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4.3 Results and Discussions

4.3.1 Description of Case Studies

The mathematical model described in the previous chapter has been tested on the microgrid

test system considering two different cases:

Case-1: With Uncontrolled Loads

• In this case, the MGO control signal Pmax is suppressed. In other words, the control

signal Pmax is fixed at its maximum limit and the uncontrolled load is modeled as

a function of the exogenous parameters, TOU price and outside temperature only.

Therefore, the customer load cannot be controlled by any external signal and this

case represents a case without DR.

Case-2: With Controllable Loads

• In this case a DR scheme is proposed where the MGO can issue a control signal

Pmax to the load entity. The demand model developed earlier and integrated into the

operations scheduling model of the microgrid, is used to extract an optimal value of

the control signal Pmax for the specific temperature and price structure. The effect of

this control signal on the controllable load profile of the microgrid system has been

studied in this case.

4.3.2 Case Studies

The proposed model incorporates temperature and TOU pricing data as input parameters

to the optimization framework. The temperature and TOU pricing data corresponding to

a particular summer day in June 2012, in Ontario, Canada is shown in Figure. 4.2.

The summer TOU pricing scheme comprises three price steps, 0.042 $/kWh, 0.076

$/kWh and 0.091 $/kWh corresponding to the off-peak, mid-peak and peak hours of the

day, respectively. The average temperature on this particular day was 19.6 ◦C.

The base load, which exceeds both the controlled and uncontrolled load components

has been used in accordance with the microgrid load characteristics. The base load profile

over 24 hours is shown in Figure. 4.3.
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Figure 4.2: Temperature and TOU pricing profile.

Figure 4.3: Base load profile of residential customers in a microgrid.
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Figure 4.4 and 4.5 show the PV generation profile and the assumed wind generation

profile for the same day under consideration, respectively. Uncertainties in PV and wind

generation have not been considered. Instead, the wind generation output and PV output

are considered to be exogenously fed to the system. The generation profile of the PV panels

and the wind turbine have been included with due consideration of the capacity limits of

the individual units in the microgrid.

Figure 4.4: PV generation profile.

Figure 4.5: Wind generation profile.

It is to be noted that in the results below, subscripts nc and c have been used to denote

the uncontrolled load case (Case 1) and controlled load case (Case 2), respectively.

Case 1:

In this case, the load is not influenced by any control signal from the MGO. The load

in this case is a function of the temperature and TOU price only. The base load and the

neural network estimated uncontrolled load as a constituent of the total system load is
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shown in Figure. 4.6. It can be seen that the shift in the load profile of the uncontrolled

load across the time period has a correlation with the TOU price signal while the magnitude

of load variation is determined by its relation to the external temperature as modeled by

the neural network.

Figure 4.6: Cumulative load profile, base load and uncontrollable load in Case 1.

Figure 4.7 shows the optimal diesel generation schedule as an outcome of the cost min-

imization optimization. The generators G2 nc and G3 nc from Figure. 4.7 correspond to

the CHP diesel and gas turbine units at bus 9 and 13 respectively, while G1 nc corresponds

to the main diesel generator unit at bus 1. The dispatch in Figure.4.7 is in line with the cost

characteristic and generation constraints of the concerned generators. It has to be noted

that, G2 nc and G3 nc being the cheapest generation sources in the microgrid, operate at

their full potential during the scheduling period.

Figure 4.8 shows the cumulative ESS discharge and charging profile during the off-

peak pricing hours. Here, Tot ch − nc and Tot dch − nc describe the power charged

and discharged for all ESS devices in the uncontrolled load case (Case 1). As described

in the objective function, the MGO makes a savings in generation cost when the ESS

batteries discharge and it pays a price equivalent to cost of supplying the load when it is

charging. Figure 4.9 depicts the ESS discharge and charging profile during peak demand

cycle. The ESS operation is optimized such that it charges when the cost of supplying
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Figure 4.7: Optimal generation dispatch in Case 1.

the load is low (low TOU prices) and maximizes the discharge during the peak TOU price

periods. The total energy charged by the ESS during the off-peak hours is 4.5 MWh and

the energy discharged is 2.8 MWh. Similarly, the total energy charged by the ESS during

the peak period is 1.4 MWh and the total energy discharged during this period is 3 MWh

respectively.

Figure 4.8: ESS dispatch during off-peak in Case 1.

Case 2:

In this case, the controllable load is influenced by the MGO imposed control signal
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Figure 4.9: ESS dispatch during peak in case 1.

Pmax. The effect of Pmax on the controllable load and the generation schedule are presented

alongside a comparative study with Case 1. The controllable load profile under an active

control signal Pmax and its comparison with the uncontrolled load in Case 1 is discussed.

Figure 4.10 shows small perturbations in the controlled load profile during the period

corresponding to TOU price of 0.042 $/kWh where the load experiences a shift which is

reflected by the generation shift and the subsequent perturbations in the sigmoid function

in optimization. A reduction in the load profile is also observed when subjected to a control

by the MGO. The total reduction in load energy over the scheduling period accounts for

1620 kWh which corresponds to 5% reduction of controllable load energy in comparison

to the case where the load is not externally controlled (Case 1). To better demonstrate

the load variation, a section of the demand profile during a selected off-peak and peak

intervals are shown in Figure. 4.11 and 4.12 respectively. Significant demand reductions

from the MGO’s perspective is noted, with the control signal, as against the uncontrolled

load behavior. It is to be notd from Figure. 4.11 and 4.12 that the amount of load reduction

on the system demand is significant during the off-peak periods as against the peak TOU

price periods. It is due to the fact that the quantum of controllable loads presented to

the LPE during the peak TOU price were negligible which was reflected in the load model

from the LPE as represented in Figure. 3.5. Thus, the scope of controllable load reduction
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during the peak period is restricted as illustrated in Figure. 4.12.

Figure 4.10: Comparison of controlled and uncontrolled load profile in Case 1 and 2.

The change in load profile is accompanied by a change in diesel dispatch and the ESS

output, as shown in the figures next. Figure 4.13 depicts the optimal generation profile of

the diesel generators for Case 2.

48



CHAPTER 4. CASE STUDIES

Figure 4.11: Effect of Pmax on the system demand for a selected off-peak interval.

Figure 4.12: Effect of Pmax on the system demand for a selected peak interval.
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Figure 4.13: Optimal generation dispatch in Case 2.

Figure 4.14: A comparison of diesel generator dispatch under Case 1 and 2.
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Figure 4.15: ESS dispatch during off-peak in Case 2.

Figure 4.16: ESS dispatch during peak in Case 2.

Referring to Figure. 4.14, tot G− c and tot G−nc represent the cumulative generation

profile considering three conventional diesel generators. Figure 4.14 shows the variation in

the diesel generator dispatch profile in Case 1 and the controllable load case (Case 2). It

is noted that a total energy of 1,821 kWh from diesel generators is conserved under Case 2

as against Case 1 under the same scheduling period. Similar to Case 1, the ESS dispatch

under off-peak and peak periods have been shown in Figure. 4.15 and 4.16 respectively.

The total charging energy of the combined ESS with controllable loads is 14.5 MWh which

is 544 kWh less than the energy consumed in the uncontrolled load case (Case 1). The

total energy discharged in Case 2 is equal to 14 MWh, which is significantly lower than

the uncontrolled load case discharge owing to the reduced demand requirements. Absolute

difference between the ESS dispatch at each instant over the two cases is shown in Figure.

4.17.
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A 5% reduction in the controllable load is not insignificant when the cost components

of the system are taken into account. It is estimated that for this specific day under study,

total savings of $560 can be achieved for the MGO taking into account the complete cost

characteristics of the microgrid, while the projected yearly savings is $204,388; which is a

significant saving considering the size and the scope of isolated microgrids (Table 4.2). It

is also noted from Table 4.3 that the total DR related energy savings achieved for the day

is 3,008 kWh which can be projected to 1,098 MWh annually, which is quite significant.

Figure 4.17: Absolute change in ESS dispatch.

Table 4.2: Comparison of costs between Case 1 and Case 2.

Diesel Dispatch Cost ($) ESS Charging Cost ($) Savings from ESS Discharge ($) Total Cost ($) Savings ($/year)

Case 1 105,730 824 914 105,640
204,388

Case 2 105,207 780 907 105,080

Table 4.3: Energy dispatch comparison between Case 1 and Case 2.

Diesel Generation (kWh) ESS Charging (kWh) ESS Discharging (kWh) Demand Response ( kWh)

Case 1 524,478 15,057 15,520 -

Case 2 522,658 14,513 14,876 3,008

4.3.3 Inclusion of Constant Energy Constraint

In any system, while the DR program may try to reduce the peak demand, the customer

actually intends to shift the consumption to off-peak periods. Therefore, without com-

promising on the operational duration and total energy consumption of the individual
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appliances, the energy is paid back to the off-peak hours. In the MEMS model discussed

earlier, reduction of the controllable load under the influence of Pmax has been the forcing

function of the DR. Cost minimization based generation scheduling resulted in a reduc-

tion of the load in an effort to minimize the cost. While cost minimization of microgrid

operations achieved its objective, the significance of load shift was not considered.

In order to take into consideration the DR effects across the operating horizon, the

MEMS model is modified to include a constant energy constraint. The objective function

is modified to reflect the effect of TOU prices on the controllable demand.

Objective Function

J =
∑
g

∑
t

(axgvg,t + bxgPg,t + SUCgyg,t + SDCgzg,t)

+
∑
ba

∑
t

(TOUtP
ch
ba,tchba,t − TOUtP

dch
ba,tdchba,t) +

∑
t

(PdetTOUt) (4.1)

where the last term of (4.1) denotes the total customer payment, which is a function of

the controlled demand.

Constant Energy Constraint ∑
t

Pdet ≥ TotalEnergy (4.2)

Energy is conserved in this case and the load is shifted across the scheduling period.

The total demand profile and the load shift is depicted in Figure. 4.18.

The total demand as depicted in the figure is a summation of the controllable load

and system base load. As seen in Figure. 4.18, the demand that has been substantially

reduced during the peak hours is effectively shifted to the off-peak periods. The maximum

instantaneous demand has been reduced from 3,147 kW to 3,095 kW and the energy

consumption during the peak hours has reduced by 1,508 kWh.

4.4 Computational Performance

The proposed MEMS model has been executed on GAMS [38], the DICOPT [39] solver was

used to solve the MINLP problem. The MILP master problem was assigned to CPLEX

[40] solver and the NLP subproblems were assigned to SNOPT [41] solver. The solution

statistics are listed below:
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Figure 4.18: Controllable load shift profile.

• Number of equations: 28,910

• Number of variables: 18,721

• Number of nonlinear non-zeros: 10,368

• Number of discrete variables: 7,200

• CPU time: 574.01 sec

4.5 Summary

This chapter brought to light the CIGRE microgrid test system to test the effectiveness of

the optimal DR model under the system’s isolated mode of operation. The mathematical

models of DR was analyzed considering different case studies. The effect of controlling sig-

nal on DR and the subsequent variation in generation scheduling has been examined. The

total energy conservation and the resultant savings for the MGo have also been highlighted.

Load shifting of controllable demand based on TOU and its effect on peak reduction has

also been demonstrated.
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Conclusions and Future Work

5.1 Summary and Conclusions

Chapter 1 presented the main motivations behind this research. The motivations brought

to light the need for a novel DR scheme and its implementation on a smart microgrid

framework. A literature review of related works on DR with emphasis on microgrid based

DR schemes were presented. This chapter also highlighted the research objectives of this

thesis.

Chapter 2 presented a brief background of the tools and models of this research. An

overview of DR and microgrids was presented to illustrate their significance and associ-

ated characteristics. General estimation techniques and modeling procedures along with a

background on load modeling using neural networks were also presented. This chapter also

outlined the mathematical problem of the UC and elaborated on the optimization methods

and tools used in this research.

In Chapter 3, a detailed mathematical model that incorporates DR within an opti-

mization framework was proposed. An architecture of the proposed DR model was pre-

sented while illustrating its individual components. A detailed mathematical model of

MEMS was developed and it was followed by a load estimation technique incorporated

into the LPE. Neural network based supervised learning technique was used to simulate a

functional relation between complex physical parameters. A TOU based dynamic pricing

scheme, outside temperature and MGO imposed maximum limit Pmax on load was used

to model load consumption of an EHMS house during the summer months in Ontario.
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The chapter concludes by providing the resultant mathematical model of the MEMS with

neural network-microgrid integration which performs the optimal scheduling of generation

resources of a microgrid.

In Chapter 4, a controlling scheme of DR through MGO was investigated on a CIGRE

microgrid system. Case studies were carried out to better demonstrate the effect of the

proposed model on energy management in microgrids. Cost based optimization of the

neural network integrated model was performed and the effect of the control signal Pmax

on the two cases were shown. The total load conservation with and without the controlling

scheme and the resultant savings for the MGO were presented to shown the effectiveness

of the proposed optimal DR model. A separate analysis of the DR model with energy

payback was presented to reflect the real-world customer behavior in a microgrid system.

The proposed system does not compromise on the operational privacy of the individual

users in a power system set up. In essence, the control scheme solely considers the op-

erational data available at the supply end and proceeds to reduce the peak consumption.

The proposed model proves to be effective under practical constraints where the MGO is

not expected to have a complete knowledge of the operating status of individual devices

under operation. Further, the mathematical model formulated in this work belongs to a

class of MINLP problems. This complex NP hard problem has been solved using commer-

cial solvers with guaranteed precision. The resource constraints and the execution time

encountered while solving this model seem to fit well under most practical scenarios.

5.2 Contributions

The main contributions made of this thesis are summarized as follows:

• A detailed mathematical model demonstrating the fundamental governing relation-

ship between the outside temperature, TOU price and maximum demand limit (Pmax)

on the controlled load was presented. This model was estimated using neural network

which was trained by supervised learning.

• A comprehensive cost minimization based generation scheduling model for an isolated

microgrid has been developed. Diesel generators, ESS devices, PV and wind turbines

have been considered for the studies.
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• The novel controlled load model is integrated with the microgrid operations model to

formulate the MEMS model. The effect of MGO’s control signal Pmax is examined on

the demand reduction of the controllable load and the cost savings have been clearly

illustrated.

• The proposed model was validated under realistic test cases and a comparative anal-

yses was made with the base case. Besides the MGO based cost minimization ap-

proach, a customer payback model incorporated into the developed DR problem was

studied.

5.3 Future Work

Possible future work as a continuation of the present research are as follows:

• The proposed optimal DR model could be extended by modeling the system load as

a function of voltage. The present model while considering a least cost dispatch, does

not emphasize on system security. Additional voltage control of the load will produce

a security constrained optimal DR which will be effective from the perspective of

isolated microgrid.

• The proposed controllable load modeling of the system was based on the supervised

learning technique, the goodness of which depends to a large extent on the quality

and the quantity of the historical data. Reinforcement learning based modeling of the

controllable load that adapts to the system behavior and relearns the model could

be used in the future.
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