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Abstract

Prostate cancer killed over 33 000 North American men in 2013 [3, 9]. However, the
survival outlook for prostate cancer is very good if it is caught early. Prostate cancer
screening is therefore very important. Although many methods are currently used to screen
for prostate cancer, the use of multiparametric magnetic resonance imaging (mpMRI) is
increasing in clinical practice and has been shown to have some power in differentiating
between healthy and cancerous tissue. This thesis presents a comprehensive feature model
for performing prostate cancer diagnosis using mpMRI. It incorporates a novel tumour
candidate identification algorithm to efficiently and thoroughly identify regions of concern
and a feature model to grade these regions for severity. Unlike conventional automated
classification schemes, this feature model aims to ground its decisions in a way that can
be interpreted and understood by the diagnostician. It does this by grouping features into
high-level feature categories which are already used by radiologists to diagnose prostate
cancer: Morphology, Asymmetry, Physiology, and Size (MAPS), using biomarkers inspired
by the PI-RADS guidelines for performing structured reporting on prostate MRI [5]. To
the author’s best knowledge, the proposed feature model is the first using morphology and
asymmetry features for prostate cancer detection.

Clinical mpMRI data were collected from thirteen men with biopsy-confirmed prostate
cancer and labeled by an expert radiologist with thirteen years of experience diagnosing
prostate MRI. These annotated data were used to train classifiers using the proposed
feature model in order to evaluate classification performance. Training was performed
using cross-validation in order to avoid overlearning the training set. Experimental results
indicated that the proposed model outperformed each of its constituent feature groups as
well as a comparable state of the art feature model.

Further work on the MAPS feature model is still warranted. Although the initial results
are promising, more data are needed to refine the feature model and discard those features
with no predictive power. Additional features should be investigated for inclusion in the
model, so that the existing features may be conditioned on the prostate region to reflect
the different characteristics between, for instance, the peripheral and the transition zones.
Finally, user experience and user acceptance studies would help investigate the degree of
cognitive support to diagnosticians that the MAPS model provides.
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Chapter 1

Introduction

Prostate cancer is the most-diagnosed form of cancer in Canadian men, with an estimated
23,600 new cases projected to be diagnosed in 2013 with 3,900 of those cases expected to
result in death [9]. Although it is the third leading cause of cancer death in men, prostate
cancer has good prognosis if detected early [10]. Effective and reliable screening methods
for prostate cancer are therefore very important.

The main contribution of this work is the introduction of a comprehensive feature model
for performing prostate cancer detection and localization using multiparametric magnetic
resonance imaging (mpMRI). Multiparametric MRI involves repeated imaging of a pa-
tient’s tissues while varying certain parameters of the MRI acquisition protocol, resulting
in several image series (or “modalities”), each emphasizing different tissue characteristics.
The proposed model gathers features into various groups in order to present classification
decisions to diagnosticians in a way that supports their existing diagnostic reasoning pro-
cess. The features presented in this model are evaluated on clinical MRI data to show their
suitability for prostate cancer diagnosis.

1.1 What Is Being Done?

Conventional methods of screening for prostate cancer include the prostate-specific antigen
(PSA) test, trans-rectal ultrasound (TRUS), and magnetic resonance imaging (MRI). Some
of these methods, such as the PSA test, have come under fire for oversensitivity, causing
expensive and often painful follow-up procedures. Imaging-based methods produce im-
age series which require expert review from an experienced diagnostician, who looks for
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subtle features to inform their diagnosis. When multiple types of imaging are performed,
they must be registered to a common coordinate system. Even when registered, it can
be challenging to search for features across multiple imaging modalities at once, and it’s
common for a single scene to receive varying diagnoses if evaluated by different diagnosti-
cians (known as “inter-observer variability”), or even if evaluated by a single diagnostician
multiple times in multiple sittings (“intra-observer variability”). In addition to diagnosis,
imaging can aid in treatment, as in the case of Image Guided Radiation Therapy (IGRT),
which uses real-time imagery (such as MRI) to guide the therapeutic beam of ionizing
radiation. TRUS similarly uses real-time ultrasound imagery to guide biopsy needles for
sample acquisition.

The European Society of Urogenital Radiology recently introduced a set of guidelines
for interpreting several MRI image series together known as PI-RADS, or the Prostate
Imaging – Reporting and Diagnosis System. This system aims to improve consistency
between diagnosticians by providing a common set of criteria to consider when diagnosing
a case. However, as the features laid out in PI-RADS are subjective, there is still an
opportunity for observer variability to manifest.

Research on automatic methods for detecting and localizing prostate cancer consist
mostly of ensemble classifiers trained on huge numbers of features. The classification
decisions made by such automatic systems can be difficult for a radiologist to reason about,
consisting of a binary output or some kind of probability or confidence score. Without a
mechanism to reason about why an automatic classifier computes the result it does, doctors
tend to distrust them.

1.2 Thesis Contributions

The aim of this thesis is to introduce a framework to help bridge the gap between the
quantitative characterization and clinical interpretation of prostate cancer diagnosis. By
grouping classifier features together, we hope to create a diagnostic support system which
doctors can leverage to augment their understanding rather than supplant it. Beyond
stating that a region is suspected to be cancerous, a system built on this framework can
explain that the region has an unusual morphology, for instance. With intuitive features,
classification decisions can be more easily justified and explained to medical practitioners,
while simultaneously providing more consistently quantifiable measures. In this work, we
introduce a novel strategy for computer-aided prostate cancer analysis that combines: i) a
tumour candidate identification scheme based on multiparametric MRI and morphology,
and ii) a comprehensive feature model comprising groups of features evaluating tumour
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candidate morphology, asymmetry, physiology, and size. By presenting results as a collec-
tion of factors doctors are already used to using to evaluate prostate cancer, the proposed
system should foster user acceptance, and the use of objective, quantitative features can
help to reduce inter- and intra-observer variability.

1.3 Thesis Outline

We explore the problem domain in Chapter 2, discussing prostate cancer as well as conven-
tional and automatic methods of prostate cancer detection, before reviewing some impor-
tant image processing tools. In Chapter 3 we explain the feature framework: motivate the
feature groupings and explore each group and its constituent features. Preliminary results
using actual clinical data are shown in Chapter 4. Finally, current progress is summarized
and directions for future work are presented in Chapter 5.
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Chapter 2

Background

This chapter provides fundamental information on what prostate cancer is, whom it affects,
and how it’s diagnosed. We’ll briefly cover prostate anatomy and the prevalence of cancer
within the prostate, as well as screening methods, imaging techniques, and their strengths
and weaknesses. Finally, we’ll discuss previous work in automatic prostate cancer detection.

2.1 Prostate Cancer

Whom does prostate cancer (PCa) affect? Does it occur uniformly throughout the prostate,
or is it concentrated in specific areas; and for that matter, how is the prostate structured?
How can the aggressiveness of a cancer be determined? The answers to these questions
will aid in understanding how PCa is analyzed and diagnosed.

2.1.1 Prevalence

Until recently, prostate cancer was the leading cause of cancer death among North Amer-
ican males [2, 3]. Improved survival rates can be attributed to advances in screening.
Despite this, over 30,000 North American men are estimated to have died of prostate
cancer in 2013.
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2.1.2 Anatomy

The prostate consists of several different volumes of tissue, known as zones, shown in
Fig. 2.1. The peripheral zone (PZ) is the largest of these, and tumours in this zone account
for 75% of all prostate tumours [32, 46]. The transition zone (TZ) starts out consisting
of only 10-20% of the prostate, but starting around age 40 it can grow significantly in a
condition known as Benign Prostatic Hyperplasia (BPH), ultimately becoming larger than
the PZ. Approximately 20% of prostate cancers arise in the TZ. The remaining 5% or so
of tumours occur within the Central Zone (CZ), which surrounds the ejaculatory ducts.
These ducts run from the seminal vesicles and vas deferens to the verumontanum, where
they join the urethra.

Figure 2.1: Zones of the prostate. Most cancers occur in the peripheral zone, with a
sizeable minority occurring in the transitional zone. Very few cases occur elsewhere in
the prostate. Adapted by permission from Macmillan Publishers Ltd: Nature Reviews
Cancer [14], c©2007

Unlike the structured zones of the prostate gland, prostate cancer can take on many
forms, from a focal mass to a patchwork of tissue scattered through a volume. Nevertheless,
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prostate cancers are distinguished based on their progress at the cellular level using Gleason
grades. Cancerous tissue may have a Gleason grade between 1 and 5, where grade 1
indicates tissue most resembling healthy prostate tissue, and grade 5 indicates the most
advanced cancers, with sheets of cancerous cells instead of the gland structures present in
healthy prostate tissue.

2.2 Clinical Workflow

Several different methods are currently used to detect prostate cancer, though until recently
there has been no widely-accepted standard clinical practice. The prostate-specific antigen
(PSA) test measures the concentration of specific markers in the patient’s blood of which
high levels indicate high risk for prostate cancer. However, use of the PSA test has been
criticized for having an unacceptably high occurrence of false positives, causing healthy
patients to undergo expensive and sometimes invasive tests to determine whether the PSA
test result was simply a false positive. [11, 48]. The PSA test is therefore recommended
particularly for patients with a predisposition, such as those with a family history of
prostate cancer. Following a positive PSA test, a series of images might be acquired
using one or several imaging modalities, including MRI or positron emission tomography
(PET). Then a systematic transrectal ultrasound (TRUS) guided biopsy is undertaken
where multiple samples are collected. In some cases, the previously-acquired imagery is
registered to the TRUS imagery to aid in the biopsy. Biopsy samples are examined under
magnification for the presence of cancer and graded using the Gleason scale. Although core
biopsies are very accurate, they are intrinsically invasive, causing significant discomfort to
the patient and exposing him to possibly unnecessary surgical risk. Furthermore, some
tumours are isoechoic and respond to ultrasound similarly to the surrounding tissues,
making TRUS-guided biopsies even more difficult as the surgeon must attempt to collect
tissue samples from invisible tumours. Depending on the results, further biopsies may
be indicated, bearing further surgical risk. Following any biopsies, the patient may be
treated with focal therapy, chemotherapy or even a radical prostatectomy, depending on
the severity of his cancer.

The European Society of Urogenital Radiology recently introduced, as part of its MR
guidelines, the Prostate Imaging – Reporting and Data System (PI-RADS) [5], modeled
after the BI-RADS system for breast cancer reporting. PI-RADS breaks the decision
process into several component scores, providing guidelines on the scoring of the various
recommended modalities. For more details on PI-RADS and the modalities it uses, see
Sec. 2.3, below.
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2.3 Multiparametric imaging

Multiparametric magnetic resonance imaging (mpMRI) has shown considerable promise for
diagnosis, especially the combination of T2-weighted MRI (T2w) and diffusion-weighted
MRI (DWI). T2w affords doctors the ability to see relatively high-resolution imagery of
the prostate and surrounding tissue, while allowing detection of subtle structural features.
Recent research has focused on DWI and the DWI-derived Apparent Diffusion Coefficient
(ADC), which quantifies the diffusion of water molecules through tissue and has been
shown to delineate between healthy and cancerous tissue [7, 38].

Other MRI modalities include dynamic contrast-enhanced MRI (DCE-MRI), in which
a contrast agent is introduced and the subject is repeatedly imaged while the contrast
agent is absorbed into the tissue. The contrast agent uptake behaviour of any given voxel
of tissue is modeled and the time-series imagery is used to estimate tissue parameters such
as onset time, time to peak, and washout. Magnetic resonance spectroscopy (MRS) is a
rarely-used MRI modality, known as magnetic resonance spectroscopic imaging or in vivo
nuclear magnetic resonance spectroscopy, which provides information about the chemical
composition of the tissue. Correlated diffusion imaging (CDI) is a recently-developed
modality which, like ADC, is derived from DWI, and has shown promise in differentiating
between healthy and tumorous tissue. One drawback of CDI is that it does not show
structural markers, making tumour foci difficult to register to other modalities unless
viewed in overlay.

Example multiparametric MRI scans are shown in Figure 2.2. It can be observed that
each modality provides different information about the prostate gland, which is useful
in aiding radiologists and clinicians in the clinical decision support process. However,
interpreting multiple modalities simultaneously can be challenging. Tools designed for the
purpose of synchronized viewing of multiple image series use built-in facilities for cross-
registering points of interest and for keeping multiple views aligned at the same position in
patient-centred coordinates, but even with such tools it can be daunting to simultaneously
interpret features across several modalities.

The aforementioned PI-RADS system puts guidelines into place for the interpretation
of mpMRI scenes by diagnosticians. In addition, it has subsequently been supplemented
with graphic examples to help illustrate the scoring scheme [41]. PI-RADS specifies the
use of several different MRI modalities, including T2w, DWI, MRS, and DCE-MRI, each
of which is scored, Likert-style, from 1 to 5. Different scoring guidelines are presented for
each modality, so while MRS features are relatively straightforward to interpret by reading
off the relative heights of two peaks from a spectrogram, other modalities, such as T2w,
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may have very subtle features. Although these features are difficult to interpret without
an understanding of prostate physiology, PI-RADS also provides a scale for performing
qualitative analysis of MRS which makes the meaning of the scores for all the modalities
clear: a score of 1 indicates that “clinically significant disease is highly unlikely to be
present”, while a score of 5 indicates that “clinically significant cancer is highly likely to
to be present”.

Unfortunately, despite the wealth of information provided by various MRI modalities,
prostate cancer remains difficult to distinguish from other conditions, notably BPH. The
additional tissue growth in the TZ occurring due to BPH causes similar MRI signal intensity
changes as prostate cancer. Furthermore, attempts to differentiate cancerous tissue from
healthy tissue in the central gland have failed to show differences in mean T2w or ADC
values [22]. However, since BPH only occurs in the central gland, this issue only arises in
the minority of cases which occur elsewhere than the peripheral zone.

2.4 Detecting PCa automatically

Automatic approaches to prostate cancer detection can be grouped into methods which
attempt to segment the prostate into discrete regions of concern, and methods which
instead assign some kind of numeric score to each voxel in the prostate. A variety of
features and classification strategies are used to produce these scores, whether the scores
are region-based or voxel-based. Features and classifiers will be discussed later, but for
region-based methods an additional step must first be performed, namely the segmentation
of the prostate into regions of concern.

2.4.1 Segmenting tumour candidates

The problem of segmenting tumour candidates is not yet well-explored; most classifiers
built on MRI intensity features did not perform any tumour candidate segmentation, but
instead computed voxelwise feature statistics, using ROC curve analysis, or output from
SVMs, RVMs, or MRFs [12, 16, 19, 22–27]. Some high-level classifiers leveraged the added
detail apparent in stained histology scans to segment different gland structures in the
prostate, namely lumen regions, the cytoplasm surrounding the lumen, and the nuclei of
the surrounding cells [35, 36]. Classifiers were trained on features computed from these
regions to predict the Gleason grade of prostate tissue, but MRI modalities do not have
adequate resolution to observe these structures, so these features cannot be leveraged for
MRI tumour candidate identification.
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2.4.2 Feature extraction

Detecting prostate cancer automatically has been a popular area of research and to date,
these methods have focused primarily on low-level features. Conventional multi-parametric
MRI prostate cancer analysis approaches use one or more of the MRI modality values or
derived values, including ADC and T2w, with no complementary high-level features [19].
Published values for classification accuracy using these low-level features ranges from 64%
to 89% [12,19,26,27,38,39].

More sophisticated approaches calculate large numbers of low-level features and then
combine them in various ways (see Sec. 2.4.3); low-level features considered in such ap-
proaches include statistical features (e.g. local variance) and change-of-basis features such
as Gabor filter coefficients [28], discrete cosine transform (DCT) coefficients, and textural
features (both first and second-order) such as those derived from co-occurrence matrices
(CMs). Chan et al. [12] reported that compared to using MRI intensity features exclu-
sively, DCT and CM features improved accuracy between 6.2% and 11.0% (accuracy of
72.9% without those features, and 79.1% – 83.9% with them). Madabhushi et al. [28] re-
ported a positive predictive value (PPV) of approximately 21% when using a combination
of first and second-order statistical features, gradient features, and Gabor features within
an ensemble classification framework. However, since the low-level features lack semantic
meaning, the classification decisions made by such approaches are difficult to justify to ra-
diologists and clinicians, who typically use subjective heuristics to diagnose patient cases.
Although the latter approach is easy to understand and justify, its subjective nature makes
it highly inconsistent.

Unlike low-level features, which typically characterize some kind of voxelwise physiol-
ogy characteristic, high-level features often exploit a priori knowledge of the problem to
quantify high-level domain concepts. High-level features hand have been used in detect-
ing and localizing prostate cancer; however, their use is still limited, mostly to analysis
of histopathology, which necessitates invasive surgery to acquire the tissue samples sub-
sequently scanned at high resolution; for instance, Naik et al. [36] demonstrated that
classifiers built using high-level features designed using domain knowledge are effective at
diagnosing prostate tissue as cancerous and distinguishing cancerous tissue between two
grades on the Gleason scale, with classification accuracy in the range of 86–95%. Notable
among these high-level features was the use of region-based features; the added magnifica-
tion achieved by histopathology scans allows observation and segmentation of structures
too small to be apparent via MRI. Naik et al. computed features on the segmentation
boundaries of these structures, such as smoothness and area, and used these features to
perform classification. The use of such region-based features is not currently well-explored
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for MR imagery. These particular high-level features cannot be computed at all for mul-
tiparametric MRI, as the structures used are too small to be resolved. Haider et al. [19]
described a scoring scheme for diagnosing prostate cancer based on high-level features ob-
served in T2w and ADC imagery. However, these features are not easily quantifiable and
are intended for use by trained radiologists and not classification algorithms.

2.4.3 Classification

So far, several approaches to classification have been applied in various prostate cancer
imaging contexts. Among approaches investigating multiparametric MRI, support vec-
tor machines (SVMs) are widely-used [12, 38, 39, 42], while other methods applied maxi-
mum likelihood (ML) classification [12, 19], logistic regression [26], Markov random fields
(MRFs) [27, 39]. Approaches attempting classification of histopathology data tended to
use more features and thus more sophisticated methods of combining those features; for
instance, combining many weak Bayesian predictors using an ensemble method such as
AdaBoost [16, 28], or using a manifold learning technique such as Graph Embedding or
Local Linear Embedding to reduce the size of the feature space passed into a SVM classi-
fier [15,29,36]. Interestingly, the multiparametric MRI approach with the greatest number
of features reported greatest classification accuracy with the comparatively simple Fisher’s
linear discriminant (FLD) classifier [12].

2.5 Summary

Despite the recent introduction of PI-RADS, systematic prostate cancer evaluation schemes
are still in their infancy. Although much research has been carried out on the use of various
modalities and numerous features for detecting prostate cancer, none of the automatic
approaches explored so far attempt to support their decisions with a similar framework
as those used by radiologists diagnosing PCa manually. There is no attempt to map
automatic classification decisions to the language familiar to diagnosticians in their work.
The frameworks which do group features together in this manner, such as those presented
by Haider et al. [19] or in PI-RADS [5], are meant for interpretation by radiologists. They
are not quantifiable, and due to their subjective nature lack consistency in interpretation
from one session to the next and from one doctor to the next. The field is ripe for a
comprehensive feature model which enables consistent, quantifiable feature analysis in a
manner that is familiar to diagnosticians.
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Chapter 3

Methodology

The proposed model consists of an initial tumour candidate identification scheme followed
by the MAPS feature model used to score the candidate regions. In the proposed method,
initial identification of candidate tumour regions is automatically performed using multi-
parametric MRI and region morphology. After candidate regions are identified by the auto-
matic tumour candidate identification algorithm, numerous features are extracted from the
various mpMRI modalities. These features are grouped into high-level categories accord-
ing to the type of characteristics they describe. The Morphology feature group describes
region shape; whether the boundary is smoothly-varying or jagged, whether it consists of
small protrusions or a focal mass, and so on. The Asymmetry feature group describes the
extent to which the two halves of the region appear similar when split along its major and
minor axes. Tissue characteristics are captured in the Physiology group, which includes
mean signal intensity for all the MRI modalities as well as a series of textural features and
filter responses. Finally, the Size feature group captures the physical extent of the region.
Collectively, these feature groups afford a diagnostician an improved ability to interpret
the system’s decisions. The tumour candidate identification algorithm, as well as each of
the feature groups and all their constituent features, are described in detail in the following
sections.

3.1 Automatic tumour candidate identification

The first step in diagnosing prostate cancer is identifying all regions which might be cancer-
ous. An automated system working from straightforward screening procedures can quickly
and thoroughly scan all the imagery for a given case, flagging screened regions for review by
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a radiologist, producing screening results with less observer variability. Tumor candidate
regions were identified automatically in the proposed system using guidelines for clinical
multiparametric MRI prostate cancer screening by a radiologist [19]. Tissues satisfying
these criteria were grouped into connected regions and analyzed further with the feature
model detailed in Section 3.2. In particular, diffusion characteristics and morphology were
used to automatically identify candidate regions in the proposed system.

As low ADC values are associated with tumorous tissue [19], tissue with ADC values
below a particular threshold were automatically identified by the proposed system as possi-
ble tumour candidates. Considering that the priority of the candidate identification phase
is to highlight regions for consideration, rather than to eliminate them, the threshold value
used in [19] was relaxed to capture more regions. All voxels with an ADC value less than
700× 10−6 mm2/s were flagged as possible tumour candidates. These flagged voxels are
then grouped into connected regions, and a second phase is used in the automatic tumour
candidate identification algorithm to take morphology into account. In particular, size is
taken into consideration and all connected regions larger than 1 mm2 were considered as
the final set of tumour candidate regions.

Example candidate identification results are shown in Figure 3.1. The tendency of
the identification scheme to identify many false positives is evident; although the region
labelled as tumorous in the ground truth was successfully identified, so were many other
regions. This practice is common in clinical screening, which is effectively the purpose of
tumour candidate identification: to identify all suspects, so that a more specific test can
eliminate the false positives. This helps reduce the number of false negatives, or regions
of concern missed by the test that are nevertheless cancerous. For a discussion about
screening and test evaluation, see Subsection 4.3.1.

3.2 MAPS feature model

In this section, we discuss the proposed feature model in detail. Each feature group in
the MAPS model (Morphology, Asymmetry, Physiology, Size) is expounded along with its
component features. Illustrations have been included as much as possible to help visualize
and contrast the characteristics captured by each feature.
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Figure 3.1: Example tumour candidate identification results, showing contours around the
prostate (blue), true positive regions (red), and regions identified by the tumour candidate
identification algorithm (green), overlaid on the ADC image (shown here interpolated to
the same resolution as T2w). Although the proposed method successfully identifies the
true positive region, it errs on the side of overidentifying healthy regions.

3.2.1 Morphology

The PI-RADS guidelines make mention of morphology in several areas; the appearance of
a “focal mass”, for instance, is an indicator for a higher PI-RADS score in several cate-
gories. Viewed with T2w, a “bulging” effect in the PZ is highly indicative of cancer, while
in the TZ cancerous regions are “usually lenticular or water-drop shaped”. Viewed with
DWI, focal regions as well as “linear, triangular, or geographical [regions]” are important
biomarkers [5]. In the proposed feature model, a set of features are computed to charac-
terize the morphology of the tumour candidate region. The morphological features used
in the MAPS model capture structural information about a candidate region by applying
operations which smooth the shape of the region boundary. Regions with little morpho-
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logical irregularity undergo little change with the smoothing operator, while regions with
highly irregular shapes will see a drastic difference. The various smoothing operators used
to compute morphology features capture different characteristics about the region shape.
In total, three morphological features are computed from the region boundary.

The first feature in this group is the normalized difference in area between the morpho-
logical closing of the region and the morphological opening of the region (cf. Appendix A),
using an identical disk structuring element for both operations [1]:

fM
1 =

Aclosed − Aopened

Ainitial

(3.1)

Here, A denotes the area of a region. Peaks and valleys in the border of the region will cause
the area to increase after closing, while it will decrease after opening (i.e., Aclosed ≥ Aopened);
therefore, regions with very irregular borders will have a greater difference between these
two values, and the feature value will be greater. Smaller feature values then correspond
to regions with borders which do not feature sharp peaks and valleys. An example region
is shown in Fig. 3.2a.

The second morphological feature compares the length of the region’s perimeter before
and after eliminating high-frequency components in the Fourier space (see Appendix A),
and normalizing the difference:

fM
2 =

|Pinitial − Preconstruction|
Pinitial

, (3.2)

where each P is the perimeter of the region denoted by its subscript. Since high-frequency
components capture rapid changes in the shape of the region, this feature will be greater
for regions with rapidly-varying boundaries than for those with smooth, slowly-varying
boundaries [1]. An example region is shown in Fig. 3.2b.

The third morphological feature is similar to the second, in that it examines the differ-
ence between two Fourier reconstructions of the region boundary, one at a low frequency
and one at a higher frequency. However, it computes difference in area, rather than perime-
ter:

fM
3 =

|Ainitial ⊕ Areconstruction|
|Ainitial ∪ Areconstruction|

, (3.3)

where ⊕ denotes the set symmetric difference, finding voxels which are in the low-frequency
reconstruction or the high-frequency one, but not both. This value is normalized by the
area of the union of both reconstructions, denoted by ∪.
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(a) Morphological area feature

(b) Morphological perimeter feature

Figure 3.2: Illustrations of the morphological features. In (a), the area feature illustration,
purple and orange contours denote the morphological opening and closing, respectively, of
a candidate region. The large difference in areas between the contours results in a high
feature value for this region.
In (b), the perimeter feature illustration, a candidate region contour, shown in blue, has
a perimeter similar in length to that of the region’s low-frequency Fourier reconstruction,
shown in red, resulting in a low feature value for this region.

3.2.2 Asymmetry

The PI-RADS guidelines suggest that asymmetry in a lesions denotes an increased likeli-
hood of cancerousness [5]. The Asymmetry feature group represents the degree of bilateral
symmetry exhibited by a candidate region. In order to quantify the region’s symmetry,
the region is split in half along an axis passing through the region’s center of mass. The
halves to either side of this axis are then compared by taking the difference in their areas,
and normalizing it:

fA
· =

Alarge − Asmall

Anormalize

, (3.4)

where Alarge and Asmall represent the areas of the region halves, chosen such that Alarge ≥
Asmall, and Anormalize represents the area of the region used to normalize the difference.
Four different Asymmetry features (illustrated in Figure 3.3) are computed in total by
choosing either the major or the minor axis to split the region, and by choosing either
the entire region area or the area of the smaller half-region as Anormalize. As regions may
be symmetric about one axis but not the other, using both the major and minor axes
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to measure region asymmetry allows the feature model to distinguish a greater variety of
regions.

Figure 3.3: An example region contour is shown in blue, with the major axis drawn in black.
The difference in area between the green and magenta regions is taken and then normalized
two different ways, producing two different features. The process is then repeated using
the minor axis (not shown).

3.2.3 Physiology

Cancerous tissue is often indicated by a number of physiological factors. PI-RADS includes
several physiological MRI biomarkers as criteria, including “uniform high signal intensity”,
“homogeneous low signal intensity”, or “heterogeneous [. . . ] adenoma”. The Physiology
feature group attempts to capture such physiological factors. In addition to raw mpMRI
signal values, many derived features are computed from the mpMRI data. Many of these
features emulate various parts of the human visual system, such as second-order textural
feature images, or Gabor filter responses. Raw mpMRI images as well as several derived
images are shown in Figure 3.4.

While the features in the other groups can be computed from the region boundary,
Physiology features are computed on a per-voxel basis. For each feature, the mean feature
score was taken from all the voxels in the region, and the mean value used as the feature
score for the region.
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(a) ADC (b) T2-weighted (c) DWI (d) CDI

(e) std (ADC) (f) std (T2w) (g) std (DWI) (h) std (CDI)

(i) Contrast (j) Correlation (k) Homogeneity

Figure 3.4: Various Physiology feature images depicting the same region of tissue. Raw
mpMRI values are shown in (a)–(d). First-order textural features (the standard deviation
feature) are shown in (e)–(h), and various second-order texture images are shown in (i)–(k).
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Raw mpMRI signal intensities

The most directly interpretable features consist of the MRI signal intensity values for the
T2w, ADC, DWI, and CDI modalities. Important T2w biomarkers in the PI-RADS scheme
include areas in the PZ of “uniform high signal intensity (SI)” and “homogeneous low signal
[intensity] focus/mass”, as well as “areas of [. . . ] homogeneous low SI” in the TZ [5]. DWI
measures the ability water to diffuse through tissue, and involves repeated imaging while
varying several acquisition parameters, collectively referred to as the b-factor or b-value, to
vary the degree of diffusion allowed to occur during acquisition. The DWI acquisitions at
the various b-values are used collectively to estimate the ADC. Unlike DWI, which induces
signal decay through diffusion (resulting in dark areas where water can diffuse), the ADC
measures the rate of diffusion of tissue, so poorly-diffusing areas appear dark. Raw DWI
and ADC intensity values are used in PI-RADS where areas of concern are indicated by
“focal areas of reduced ADC” and “intense SI on high b-value images” [5]. CDI is not
yet widely-used, but evidence suggests that CDI signal intensity is effective at delineating
tumours from healthy prostate tissue [53].

Textural features

Texture features were included to capture the different textural characteristics between
cancerous and healthy tissue [28]. They play an important role in PI-RADS, which uses
properties including uniformity and homogeneity (or heterogeneity) in diagnosis of T2w
imaging of the TZ [5]. A series of local statistical features were extracted from the mpMRI
images in order to quantify textural characteristics of imaged tissue [28]. Feature values
for each region were obtained by averaging texture image values over the region. Some of
the texture feature images, before region-averaging, are shown in Figure 3.4.

For each candidate region, a set of low-level texture features were computed. Texture
features quantify the occurrence of various patterns in an image. Whereas raw mpMRI
values indicate the signal response from each respective voxel, texture images derived from
the MR images indicate how the signal response at any given voxel relates to those around
it. For example, the mean texture image can be computed using a k × k sliding window,
where each voxel in the mean texture image consists of the mean value of the k2 voxels
in the k × k window centered around that voxel in the original image. As four different
raw modalities were used (T2w, DWI, ADC, CDI), each texture operation described below
constitutes four features in the Physiology group.

Texture features may be classified as first-, second-, or higher-order features, depend-
ing on the number of voxels in a particular spatial arrangement being compared in the
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computation of each class of feature. That is to say, first-order features compare a single
voxel to some global value; the median feature, for instance, is a first-order texture, as
although several voxels are used to compute the median, their relationship to each other
is not important except insofar as they all belong to the same sliding window around the
feature voxel. By contrast, second-order features such as homogeneity are computed using
a cooccurrence matrix (CM), which is a measure of the distribution of pairs of intensities in
an image (see Appendix A for more information on CMs). Higher-order textural features
compare the relationship between more than two voxels.

First-order features The first-order textural features in the MAPS model consist of
the median, standard deviation, and mean absolute deviation. Each of these three features
is computed on the T2w, ADC, DWI, and CDI modalities using a sliding window. Two
window sizes were used for a total of 24 first-order texture features. The median and
standard deviation feature images are straightforward to compute; each voxel (i, j) in the
feature image is the result of evaluating the appropriate function (e.g. median) on Ni,j,
the set of voxel values belonging to the sliding window around voxel (i, j) in the original
image I:

fmedian(i, j) = median(Ni,j) , (3.5)

fstdev(i, j) =
√

var(Ni,j) ; (3.6)

while the mean absolute deviation feature image is simply the absolute value of the voxel-
wise difference between the original image and the mean feature image:

fabsdev(i, j) = |I(i, j)−mean(Ni,j)| . (3.7)

Second-order features The second-order features in the MAPS model consist of con-
trast, correlation, and homogeneity, previously used in [28], computed on T2w imagery at
two scales each for a total of six features. Computed from a CM p (cf. Appendix A), the
second-order textures are given by:

contrast =
∑
i,j

|i− j|2 p(i, j) , (3.8)

correlation =
∑
i,j

(i− µi)(j − µj)p(i, j)

(σiσj)
, (3.9)

homogeneity =
∑
i,j

p(i, j)

1 + |i− j|
. (3.10)
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3.2.4 Size

Region size is used by clinicians to assess mpMRI; the scheme proposed by Haider et
al. uses the presence of nodules larger than 5 mm in the TZ as indicative of cancer and
further uses size to distinguish between classifications of “Probably cancer” and “Definite
cancer” [19], while PI-RADS suggests that if the size of the region’s interface with the
prostate surface is too large, cancer is indicated [5]. The Size feature group contains a
single feature measuring the area of the candidate region. Since the resolution of a voxel
changes with the modality and with the equipment, counting region sizes by number of
voxels would be inconsistent. The size is therefore calculated in physical units, such as
square millimeters. The size feature is shown in Figure 3.5.

Figure 3.5: Size feature illustration. A tumour candidate is shown outlined in ClearCanvas
Image Viewer software along with its area.
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3.3 Summary

The proposed method introduces a novel means of segmenting candidate tumour regions
by combining physiological and morphological information. Features are then extracted
from the candidate regions in several high-level categories derived from clinical practice:
Morphology, Asymmetry, Physiology, and Size. These feature groups are summarized along
with the number of features in each group in Table 3.1. These feature groups capture
information already commonly used by radiologists in the diagnosis of prostate cancer
using mpMRI data, and groups this information in a way familiar to the diagnosticians.
Features in the Morphology, Asymmetry, and Size groups describe properties of the region,
while features in the Physiology group more traditionally describe properties of the tissue
on a finer scale. In order to produce a single feature score for any given region, then, the
feature values at the finer scale are averaged, and their mean value is used as the region’s
feature score. Collectively, this tumour candidate identification scheme and set of feature
groups is the MAPS feature model. In the next chapter, the performance of this model at
detecting prostate cancer will be evaluated and analyzed.

Feature group Number of features
Morphology 3
Asymmetry 4
Physiology 34
raw mpMRI 4
textural (1st-order) 24
textural (2nd-order) 6

Size 1

total 42

Table 3.1: Summary of feature groups
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Chapter 4

Experimental results

The proposed MAPS feature model was tested by using actual clinical mpMRI data to
extract the MAPS features, which were then used to train automated classifiers. The
performance of classifiers using the proposed feature set and various related feature sets
was measured against ground truth diagnoses provided by an expert diagnostician. Various
subsets of the entire model were independently evaluated to compare, for instance, the
performance of the Morphology features on their own compared to the Asymmetry features.
This chapter explains in detail how the clinical mpMRI data were acquired, how the data
were processed for feature extraction, and how the classifiers were trained and evaluated.
Numeric results are shown and interpreted in Section 4.3.

4.1 Data acquisition protocol

Fifteen patients with biopsy-confirmed tumours were imaged in total. Informed consent was
obtained from all patients, and approval for this study was obtained from the ethics review
board of Sunnybrook Health Sciences Centre. All acquisitions were made at Sunnybrook
Health Sciences Centre in Toronto with a Philips Achieva 3.0 T device with SENSE-Cardiac
coil. Patient ages and DWI acquisition parameters are summarized in Table 4.1. Images
were reviewed and annotated by a trained radiologist with 18 and 13 years of experience
interpreting body MRI and prostate MRI, respectively. Each annotation consists of a
contour of the prostate gland as well as a contour around any cancerous regions identifiable
by MRI.

Next, tumour candidates were identified by the proposed MAPS tumour candidate
identification algorithm. Initially, all voxels with ADC values under 700× 10−6 mm2/s
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Age DFOV (cm2) Resolution (mm3) TE (ms) TR (ms)

74 24× 24 1.667× 1.667× 3 61 6692
61 20× 20 1.5625× 1.5625× 3 61 6178
70 20× 20 1.5625× 1.5625× 3 61 6178
53 20× 20 1.5625× 1.5625× 3 61 6693
53 20× 20 1.5625× 1.5625× 3 61 6178
74 24× 24 1.875× 1.875× 3 63 8717
56 20× 20 1.786× 1.786× 3 61 6667
57 24× 24 1.667× 1.667× 3 61 6177
60 20× 20 1.5625× 1.5625× 3 61 6178
75 20× 20 1.5625× 1.5625× 3 61 6178
62 20× 20 1.5625× 1.5625× 3 61 6178
70 20× 20 1.5625× 1.5625× 3 61 6178
60 24× 24 1.667× 1.667× 3 61 6692

Table 4.1: Summary of patient information for DWI acquisitions

were segmented as tumour candidates. Following this, connected component analysis was
performed (cf. Appendix A) and those components with an area less than 1 mm2 were
discarded. An affine transformation (scaling, rotation, and translation) was applied to
the DWI and ADC imagery as to register it to the T2w imagery according to the patient
coordinates in the MRI metadata. The gland and region masks were likewise transformed.
This ensured the various modalities could be meaningfully compared on a voxelwise basis
by registering the imagery to a common coordinate system and interpolating to a common
resolution. Finally, MAPS feature values were computed for each region, and the resulting
feature vectors used to train and evaluate classifiers.

4.2 Classification and cross-validation

The features extracted from the clinical mpMRI data were used to train many näıve Bayes
classifiers. Näıve Bayes classifiers assume that each feature is independent from one an-
other. Formally, the joint probability of the region label and feature values is equal to
the product of the prior probability and the likelihood of the assumed-independent feature
values:

p(C|fM
1 , fM

2 , fM
3 , fA

1 , · · · ) = p(C)
∏
i

fi . (4.1)
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Although this produces an unsophisticated classifier, in practice they often perform quite
well; furthermore, the simplicity of the model implies a lower number of parameters to
train, which is helpful considering that the dataset used here had on the order of twice
as many training samples as there are features in the model. Learning interaction effects
would necessitate much more training data. Ultimately, the classifications performed for
the sake of this thesis were done to compare the performance of different feature groups in
a consistent way, rather than to maximize classification performance, so while a reduction
in model complexity and classification accuracy may seem to be a trade-off for the sake of
limited training data, it actually serves to facilitate analysis.

In total, 251 regions were used to train and evaluate classifiers. Of these, 53 were
cancerous regions identified by an expert diagnostician. In order to produce non-cancerous
ground truth regions, the automatic tumour candidate identification algorithm was run
and any regions it identified which belonged to the cancerous region labels were removed.
Altogether, 198 non-cancerous regions were identified in this way. Rather than using all 251
regions to train a classifier and then evaluating that classifier on the same regions, which
leads to “memorization” of the training set, a cross-validation approach was used to ensure
that the samples used to evaluate a classifier were not samples the same classifier had used
in its training. Each classifier was trained using a subset of the data and evaluated using
a disjoint subset in order to avoid overlearning. In particular, a single region was held out
from training and evaluated using a classifier trained on all the other regions, and then
the process was repeated until each region had been held out once in this way (leave-one-
out cross-validation), producing 251 evaluation trials. The agreement (or disagreement)
between the Bayesian classifiers’ predictions and the expert’s diagnoses for each region
were used to compute measures of classification accuracy of the proposed feature model
and various other feature sets for the sake of comparison. Details about the performance
metrics used to evaluate classifiers are given in the next section along with the performance
scores achieved using the various feature sets.

4.3 Evaluation

Classifier performance was evaluated using three metrics in common use in clinical practice:
accuracy, sensitivity, and specificity. The following section explains the calculation and
usage of these metrics. The final section presents and interprets the experimental results.
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4.3.1 Performance metrics

Accuracy, sensitivity, and specificity were all calculated. Using TP as the number of
correctly identified positive cases (true positives), TN as the number of correctly identified
negative cases (true negatives), and FP and FN likewise for false positives and false
negatives, respectively, these measures are given by:

acc =
TP + TN

TP + TN + FP + FN
, (4.2)

sens =
TP

TP + FN
, (4.3)

spec =
TN

TN + FP
. (4.4)

In short, accuracy measures the proportion of predictions which are correct, sensitivity
measures the proportion of positive cases correctly identified as such, and specificity mea-
sures the proportion of negative cases correctly identified as negative. Highly sensitive
classifiers are typically used in the clinical process as screens, while highly specific ones are
used to weed out false positives from the set of patients identified by the screen.

4.3.2 Results and analysis

Several feature groups were evaluated with the scheme described above: each component
feature group of the MAPS model, the model as a whole, and two feature groups from
a related approach. Results are shown in Figures 4.1–4.2. First, we will discuss the
performance of the various MAPS feature groups relative to one another and to the model
as a whole. Next, we will examine the performance of MAPS compared to the state of the
art feature model from Madabhushi et al. [28].

Performance of the MAPS feature groups

Classification performance of each of the feature groups comprising the MAPS model is
shown in Figure 4.1. Several trends are worth noting: some feature groups achieve con-
sistent scores with each metric, such as the Physiology feature group, which achieves over
80% accuracy, sensitivity, and specificity. Other groups achieve a high sensitivity, but low
specificity and low accuracy: while the Size group achieves a sensitivity of 91%, its accu-
racy is only 32% and its specificity is lower still. The Asymmetry group is similar, at about
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85% sensitive and 45% accurate. It is logical that the Size feature group, consisting of a
single measure of total region area, should fail to accurately classify samples, as there are
many factors which can contribute to region size besides cancer, such as haemorrhaging.
Likewise, while asymmetry may successfully detect the majority of cancerous cases, it fails
to distinguish from healthy cases, producing many false positives.

The Morphology and Physiology feature groups, on the other hand, achieve scores
better than a random guess (i.e., better than 50%) across all three performance metrics.
The Morphology group achieves an accuracy of 71% and specificity of 69%, though over
80% sensitivity. Morphology would seem to be better at detecting true positives than
true negatives; however, considering that there are only three Morphology features, their
performance is better than one might expect given that the Asymmetry group has a similar
number of features and nearly twice the misclassification rate. Clearly the inclusion of
region shape adds diagnostic power.

Of all the individual feature groups evaluated, the Physiology group had the best perfor-
mance, achieving no scores under 80%. In fact, the Physiology features alone outperformed
the competing model evaluated below (cf. Figure 4.2). At first glance this may not seem
surprising; with 31 features, the Physiology group was easily the largest component of
the MAPS model in terms of number of features. However, the model proposed by Mad-
abhushi et al. [28] has a comparable number of features, and uses the same first- and
second-order texture operators as the Physiology features, as well as other filters not used
by the MAPS model (e.g., Gabor filters). Why should the Physiology group perform so
much better than the other model, given the similar features used by both? The answer
lies in the MAPS model’s use of mpMRI data: while the other model may use more filters,
the Physiology features (and by extension the MAPS model as a whole) more than make
up for this with the additional information captured by the different modalities of MRI,
each providing additional information about the depicted tissues. The addition of DWI-,
ADC-, and CDI-derived features significantly improves classification performance.

Unsurprisingly, the unabridged MAPS model performs better than any one of its feature
groups. Taken together, each group provides complementary information, so that tissue
information captured by the Physiology features and shape information captured by the
Morphology features bolster each others’ shortcomings; the sensitivity of the Size and
Asymmetry groups can be exploited while using the strength of the other groups to reject
more false positives. The MAPS feature model achieved approximately equal accuracy,
sensitivity, and specificity scores of 89%.
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Figure 4.1: Classification performance (accuracy, sensitivity, and specificity) of each MAPS
feature group independently (Morphology, Asymmetry, Physiology, Size), and the MAPS
feature model as a whole. The performance of the MAPS model dominates the scores for
each feature group except Size, which achieves a slightly higher sensitivity than MAPS,
though abysmally low accuracy and specificity.
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MAPS vs. state-of-the-art

The performance of the MAPS feature model is also shown in Figure 4.2, where it is
compared against other feature models. In particular, the feature model proposed by
Madabhushi et al. [28] based on T2w imagery was evaluated, along with the subset of
that model which corresponds to Gabor filter responses. Interestingly, these two feature
groups had comparable performance: they both achieved 47% accuracy, 78± 1% sensi-
tivity, and 38–39% specificity, with the Gabor feature set being slightly more sensitive
and the full feature set slightly more specific, although these differences are too subtle
to be statistically significant (overlapping 95% Wilson confidence intervals are shown in
Table 4.2). This suggests that adding textural features to Gabor filter responses did not
improve cancer detection power, and that both feature groups characterizing strictly T2w
imagery cannot differentiate between cancerous and noncancerous tissue. The many false
positives produced by both approaches are a byproduct of the similar T2w characteristics
between healthy and tumorous tissue, suggesting that T2w alone is not sufficient for good
classification. Indeed, adding more information in the form of additional MRI modalities
resulted in a much greater improvement, as shown with the performance of the MAPS
model, which includes features derived from several mpMRI modalities in the Physiology
feature group. Therefore, in addition to being easier to interpret by radiologists, the MAPS
feature model achieves higher classification performance.

Feature set sensitivity specificity
lower bound upper bound lower upper

Gabor 0.665 0.880 0.319 0.453
[28] 0.645 0.866 0.324 0.458
MAPS 0.774 0.947 0.838 0.926

Table 4.2: 95% confidence estimates on feature set performance. The significant degree
of overlap in the confidence intervals between the first two feature sets suggests that the
difference in performance of the two feature sets is not statistically significant. The MAPS
set appears significantly more specific than the others.

Summary of observations

Although the components of the MAPS model may not be strong predictors individually,
the experimental results make it clear that their combination is competitive with state of
the art approaches. It was also observed that adding information in the form of additional
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mpMRI modalities was more effective than additional filter response images on existing
modalities at improving classification outcomes. Overall, the MAPS model performed
better than any other feature group evaluated, achieving approximately equal classification
accuracy, sensitivity, and specificity scores of 89%.
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Figure 4.2: Classification performance (accuracy, sensitivity, and specificity) of: Gabor fea-
tures on their own; Gabor features with several T2w-derived textural features as published
by Madabhushi et al. [28]; and the MAPS feature model.
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Chapter 5

Conclusions

In Chapter 3, we developed a comprehensive feature model for prostate cancer detection
consisting of several feature groups in order to foster user acceptance and facilitate inter-
pretability of classification results. However, the results must not only be interpretable,
they must be accurate. To that end, the proposed feature model was evaluated on clinical
multiparametric MRI data, annotated by a radiologist with thirteen years of experience
diagnosing prostate MRI. By using some of the data to train a classifier and the rest of
the data to test that classifier, we can estimate the performance of the feature model on
novel datasets.

The strength of the results presented in Chapter 4 is limited due to the size of labeled
dataset available for training; however, initial results are promising. Collectively, the fea-
tures in the MAPS model achieved an accuracy of 89%, compared with 47% by the feature
model from [28], achieving higher performance while providing a structured framework for
interpretation.

5.1 Future Work

Although the initial results are promising, further work is needed to support the use of the
MAPS model in the clinical decision-making environment.
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5.1.1 Feature Selection

Further labeled MRI data would be invaluable in supporting the experimental results shown
thus far. Additional data would provide stronger evidence of the performance of the MAPS
feature model at detecting prostate cancer. In particular, with enough data, the model
could be refined through feature selection in order to discard features shown to have little
predictive power.

5.1.2 New features and changes to existing features

Furthermore, there are many additional features that could be considered for inclusion
in the model. Although MAPS currently tries to capture many of the features used by
radiologists when they are searching for cancer, additional ones can no doubt be designed,
which should be evaluated along with the existing features for inclusion into the model.
The Size feature group in particular, consisting of a single feature measuring region area,
could be expanded with several different measures of size, such as the major axis length of
the region, or the diameter of the largest circle which can be inscribed therein, for example.

5.1.3 User testing

Finally, and perhaps most importantly, the MAPS model needs to be evaluated in a clinical
decision-making environment. Although initial results show promise for the framework’s
ability to automatically detect prostate cancer, no amount of automated testing can stand
in for user experience testing. In order to validate MAPS as being easy to interpret, it
must be evaluated by practitioners. Studies should be run to measure the impact (if any)
MAPS has on observer variability, on the accuracy of the diagnostician accuracy, and on
the speed with which diagnosticians can review patient cases.
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Appendix A

Image processing tools

This chapter explains in more depth some of the image processing tools used at various
points throughout this thesis. A basic understanding of signal theory is assumed. Although
the word “pixel” is used here to denote the discrete units (“picture elements”) comprising
an image, the methods described herein apply equally to volumetric data, in which case
any mention of pixels should be taken to refer to volumetric picture elements, or “voxels”.

A.1 Morphological operations

Morphological operators are used to perform spatial processing of images [18]. Though
morphological operators can be applied to grayscale images, this thesis only considers the
case of a binary input image. We can represent a region contour as such a binary image,
with true-valued pixels inside the region and false ones elsewhere. Morphological operators
pass a smaller binary image known as a “structuring element” over the input image. Each
output pixel depends on the interaction of the structuring element with the input image.
There are two basic morphological operators: erosion and dilation. There are also two
more complex operators, opening and closing, but these are simply obtained by using an
identical structuring element to perform first a dilation followed by an erosion (in the case
of morphological opening) or vice versa (in the case of morphological closing), so it is
sufficient to study dilation and erosion.

The morphological dilation of a binary image with a certain structuring element is
straightforward to understand: the structuring element is successively centred at each true
pixel in the original image, and at each location, any pixels reachable by the structuring
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element are set to true-valued in the output image. Repeated application of the dilation
operator will tend to cause a region to increase in size. If we take A to be the set of
pixel coordinates of true-valued pixels in our binary input image, each of which lies on a
two-dimensional integer grid Z2, and B to likewise represent the structuring element, then
the dilation of A by B is given by:

A⊕B =
{
z ∈ Z2 | (B̂)z ∩ A 6= ∅

}
, (A.1)

where Ŝ is the set of coordinates in S reflected through the origin (i.e., Ŝ = {−s | s ∈ S}),
St is the set S translated by the vector t (i.e., St = {s + t | s ∈ S}), and ∅ is the empty
set.

Morphological erosion, on the other hand, removes area from a binary region mask.
Instead of moving the centre of the structuring element through the true pixels and con-
sidering all pixels covered by the structuring element, the converse is true: the structuring
element is only allowed where all the true pixels in the structuring element (not only the
centre pixel) lie within the input mask, and while the structuring element is shifted around
the input image in this manner, only those pixels visited by the centre pixel of the structur-
ing element are set true in the morphologically eroded output image. The morphological
erosion of A by B is given by:

A	B =
{
z ∈ Z2 | Bz ⊆ A

}
. (A.2)

A.2 Fourier analysis of closed contours

For features relying on Fourier-domain filtering of region contours, it is assumed that the
reader is familiar in general terms with frequency-domain concepts. In order to apply
Fourier analysis to a closed contour, we must find an appropriate representation for the
contour [18]. First, we consider the set of K contiguous pixels which comprise the re-
gion boundary: {(x0, y0), (x1, y1), . . . , (xK−1, yK−1)}. We reinterpret these coordinates as
the real and imaginary components of a series of complex numbers, si = xi + yi , i ∈
{0, 1, . . . , K − 1}. Since the contour is closed, continuing from the last boundary pixel
returns to the first boundary pixel; in other words, sK = s0 and in general sn = sn mod K ,
making the boundary signal periodic. We compute the one-dimensional Fourier series
coefficients of this complex periodic sequence:

a(u) =
1

K

K−1∑
k=0

sk exp (−2πuk/K) . (A.3)
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The K frequency-domain coefficients comprising a may be used to extract information
about the region’s shape; for instance, it is clear that when u = 0, (A.3) reduces to
the arithmetic average of the elements si, and thus the zero-frequency Fourier coefficient
a(0) stores the region centroid. Filtering may also be performed on a before using the
inverse transform to reconstruct the filtered spatial-domain signal. For example, a low-
pass filtered reconstruction of the contour may be obtained by summing only the first P
frequency-domain coefficients:

s(k) =
P−1∑
u=0

a(u) exp (2πuk/K) . (A.4)

A.3 Co-occurrence matrices

Co-occurrence matrices (CMs) are similar to image intensity histograms: they measure the
distribution of various intensity values appearing in an image. However, while histograms
count the frequency of individual pixels taking on certain intensity values, CMs count the
frequency of pairs of intensity values occurring at a specified offset. In particular, certain
horizontal and vertical displacements are chosen, and pixel pairs separated by this offset are
counted for inclusion in the matrix. For a CM p measuring image I using offset (∆x,∆y),
the entries are given by:

p∆x,∆y(i, j) =
∑
∀m

∑
∀n

{
1, if I(m,n) = i and I(m+ ∆x, n+ ∆y) = j

0, otherwise
(A.5)

Depending on the number of gray levels in the image, p may be a very large matrix. As a
result, rather than interpreting p directly, it is common to compute metrics on the entries
of p (cf. Subsection 3.2.3).

A.4 Connected component analysis

Connected component analysis is a method of analyzing binary images. Each contiguous
region of true-valued pixels in an image is considered as one “connected component”.
Subsets of connected components can then be selected based on arbitrary criteria, such as
region size, major axis orientation, or any other metric which can be computed on a closed
2D region.
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A.5 Gabor filters

Gabor filters capture frequency information about the image. However, unlike the Fourier
transform, which captures global frequency information, Gabor filtering captures periodic
patterns over a smaller scale, producing an image where each pixel value corresponds to
the local frequency response around that pixel in the original image. Any one Gabor
filter applies at a specific scale and orientation, responding to a particular frequency. More
precisely, a Gabor filter kernel is a sinusoidal plane wave (which detects frequency response)
with a Gaussian envelope (which imposes locality on the frequency response):

g(x, y) = exp

(
−1

2

((
x′

Sx

)2

+

(
y′

Sy

)2
))

cos (2πfx′) , (A.6)

where x′ = x cos θ+ y sin θ and y′ = −x sin θ+ y cos θ rotate the coordinates such that the
line normal to the wavefronts lies at an angle of θ from the horizontal; Sx and Sy are the
variances along the x′ and y′ axes, respectively; and f is the frequency. Several such filters
are used in combination to complement each others’ information. In particular, Gabor fil-
ters were applied to T2w imagery at a combination of frequencies and orientations totalling
18 filter response images, corresponding to the frequencies f =

{
16
√

2, 32
√

2, 64
√

2
}

and
the orientations θ = {nπ/6 | ∀n ∈ {0, 1, . . . , 5}}.
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