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Abstract

In this thesis, inspired by the holographic theories, we study a variety of interesting
problems in gravity, condensed matter and cosmology.

First, we explore the entanglement entropy of a general region in a theory of quantum
gravity using holographic calculations. In particular, we use holographic entanglement
entropy prescription of Ryu-Takayanagi in the context of the Randall-Sundrum 2 model
with considering three kind of gravity theory in the bulk: the Einstein gravity, the general
f(R) gravity and the Gauss-Bonnet gravity. Showing the leading term is given by the
usual Bekenstein-Hawking formula, we confirm the conjecture by Bianchi and Myers for
this theory. Further, we calculate the first subleading term to entanglement entropy and
show that they agree with the Wald entropy up to the extrinsic curvature terms.

Then, we study the holographic dual of what is known as quantum Hall ferromagnetism
in condensed matter theory. This phenomenon, which has been observed in graphene sam-
ples by applying strong magnetic field, is the emergence of energy gaps and Hall plateaus at
integer filling fractions due to occurrence of spontaneous symmetry breaking. This effect is
partially understood with certain perturbative calculations at weak coupling. The question
is then whether this feature survives in a strongly coupled system as well. To address this
question, we apply a well-established string theory dual, namely the D3-D5 system. In
this framework, coincident D5 and D7-branes are embedded in the AdSs x S® background
of the D3-branes. Within this holographic set-up and through the numerical calculations,
we investigate the possibility of spontaneous symmetry breaking and find interesting phase
transitions at finite temperature.

Finally, we introduce a holographic description of our four-dimensional universe through
a “brane world” scenario known as the Dvali-Gabadadze-Porrati (DGP) construction,
where the brane refers to our universe embedded in a bulk space-time with five or more
dimensions. In fact, we examine the DGP model as a theory of five-dimensional Einstein
gravity coupled to four-dimensional branes while we assume five-dimensional spherical
black hole metric in the bulk. Then, we study the phenomenological viability of the brane
around this five-dimensional black hole. Further, we relate bulk, brane, and black hole
parameters and the observational constraints on them. We find that viable solutions are
indeed possible, hence we propose a holographic origin for the big bang. In particular, we
suggest that our four-dimensional brane emerges from the gravitational collapse of matter
in five dimensions which avoids the big bang singularity.
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Chapter 1

Introduction

In recent studies of theoretical physics, the holographic description of quantum gravity
has attracted a great deal of attention. The most interesting outcome of the holographic
principle is the AdS/CFT conjecture which posits a duality between quantum gravity
theory with a negative cosmological constant described by an asymptotically anti-deSitter
(AdS) metric in the bulk and a conformal field theory (CFT) defined on the boundary
of this bulk space and hence in a spacetime with one less dimension relative to the bulk.
According to this correspondence, strongly coupled systems of the boundary theory which
are difficult to describe via usual field theoretical approaches have a dual description in
terms of a weakly coupled gravity theory. In this chapter we give a brief introduction to
the holographic principle, review some of the salient insights coming, e.g., from the black
hole thermodynamics and the entropy bounds in sections 1.1 and 1.2, respectively. In
section 1.3 we pursue a heuristic approach to holography and will discuss the AdS/CFT
correspondence in section 1.4. The outline for the rest of the thesis is given in section 1.5.

1.1 Black holes and entropy bounds

Two coincident theorems in general relativity sparked the discovery and development of
black hole thermodynamics in early 70’s. The first one was introduced by Hawking [112] as
the area theorem which states that the area of a black hole event horizon never decreases
with time, i.e., A > 0. Hence, for example, after the merging of two black holes, the area
of the new black hole is larger than the sum of the areas of the original black holes.

The second known as the no-hair theorem indicates that only three parameters, i.e.,
mass, angular momentum and electric charge are enough to characterize a stationary black



hole! [129, , 43, ]. Indeed, the no-hair theorem implies when a complex matter
system collapses to form a black hole, the phase space is drastically reduced. In other
words, the collapsing matter with so many available states and consequently arbitrarily
large entropy reduces to a particular black hole as a unique final state and so apparently
with zero entropy. Hence, from the point of view of an outside observer, the formation of
the black hole would naively violate the second law of thermodynamics [16].

A similar problem occurs when a matter system falls into an already existing black
hole. However, according to the area theorem, the area of the black hole increases after

absorbing the system. Thus as a resolution, Bekenstein [13, 11] suggested that a black hole
should carry an entropy proportional to its horizon area measured in units of the Planck
length; while later Hawking [116] showed that the proportionality constant is precisely 1/4.
Therefore, the entropy of a black hole is given by a quarter of the area of its horizon, i.e.,
A
Spy = —. 1.1
b = (1.1
Moreover, Bekenstein [13, 11] proposed the generalized second law of thermodynamics

(GSL) stating that the total entropy of the black hole plus any matter never decreases:
5Stotal Z 07 (12)

where
Stotal = Smatter + SBH . (13)

Further, he argued that when the gravity is sufficiently weak, the GSL imposes a bound
for the entropy of the matter as
Smatter S )\ERa (14)

where FE is the total energy of matter system, R is some scale characteristic of the size
of the system and A is a numerical constant of order one. In fact, the bound (1.4) was
originally derived from the GSL through a thought experiment by purely classical analysis
with R as the radius of the smallest sphere circumscribing the system and A\ = 27 [15]:
consider a system much smaller than the black hole, which is dropped into a black hole
from the vicinity of the horizon. It will be swallowed and disappear behind the horizon.
According to the GSL, the lost entropy of the system has to be compensated by the growth

IThis was proved for four-dimensional Einstein-Maxwell theory. In recent yeas, of course, people have
studied black holes in higher dimensions and new parameters arise although it is still generally thought
to be some finite number that characterize the black holes. For example, spin is characterized by |d/2]
parameters in d dimensions [181] or the horizon may have distinct topologies in higher dimensions [73].



of the black hole area which is governed by the Einstein equation. Taking this into account
and calculating the energy absorbed by the black hole yields equation (1.4). Although the
derivation of the bound from the GSL has been challenged [233, , , 174] repeatedly,
the bound, apart from its association to the GSL, is interesting by itself. Indeed recently in
[15], Casini provided a more precise definition of the quantities in equation (1.4) and showed
the validity of the Bekenstein bound based on some arguments involving the positivity of
the relative entropy — see also [21].

On the other hand, instead of dropping a thermodynamic system into an existing black
hole, Susskind [222] considered a process in which the system itself is converted to a black
hole. He argued that the GSL then yields an upper bound, known as the spherical entropy
bound, for the entropy of the matter enclosed in the spacelike region of finite volume

A
Smatter <

Tk (1.5)

where A is the area of the boundary of the region. Indeed, A is well-defined only if the
metric near the system is at least approximately spherically symmetric which is the case for
all spherically symmetric systems and all weakly gravitating systems, but not for strongly
gravitating systems lacking spherical symmetry.

The spherical symmetry bound could be derived from the Bekenstien bound if the latter
is assumed to hold for strongly gravitating systems. Indeed if one applies the Bekenestein
bound for a system of mass M and radius R while requiring the gravitational stability,
i.e., 2MG < R, one gets

S<2rMR < 7TR*/G = A/AG . (1.6)

This shows that the spherical entropy bound is weaker than the Bekenestein bound where
both can be applied. However, the spherical bound is more closely related to the holo-
graphic principle and it can be expressed in a covariant and general form as will be shown
in the next section.

In fact, the spherical entropy bound suggests there is an underlying relationship between
geometry and information. The foundation of this correspondence should show up in a
theory of quantum gravity. If one tries to excite too many “degrees of freedom” in a
spherical region of fixed boundary area A, then the region becomes very massive and
undergoes a gravitational collapse to eventually form a black hole of area no larger than
A with maximal entropy of A/4G. This hints that the maximum information which one
can store inside any spacelike region retaining its gravitational stability, is proportional to
the area of the region not its volume. This was probably the first motivation towards the
“holographic principle” which will be discussed in the following.



1.2 The covariant entropy bound

The covariant entropy bound introduced by Bousso [28, 29] is a generalization of the
spherical entropy bound to arbitrary spacelike regions in terms of the light-sheets. The
precise definition becomes clear after the following steps [29]:

e In any d-dimensional Lorentzian spacetime M, choose any (d— 2)-dimensional spatial
surface B, and determine its area A(B). There will be four families of light rays, see
figure (1.1), projecting orthogonally away from B: Fy,--- , F}.

e One can determine the expansion of the orthogonal light rays based on additional
information such as knowing the macroscopic metric in a neighborhood of B. Out of
the four families at least two will not expand, i.e., F} and F; in figure (1.1).

e Select a portion of the non-expanding® F; and follow each light ray no further than
to a caustic, a focal point where it intersects with neighboring light rays. These light
rays form a (d — 1)-dimensional null hypersurface, i.e., a light sheet L(B).

e Determine the entropy on the light sheet, i.e., S[L(B)], which is simply given by the
entropy of the matter system: indeed, the light sheet is just a different way of taking
a snapshot of a matter system in light cone time: suppose B is a sphere around
an isolated, weakly gravitating thermodynamic system. Therefore, given certain
macroscopic constraints such as energy, pressure, volume, etcetera. the entropy of
the system can be computed either thermodynamically or statistically.

This construction in the limit of classical gravity is well-defined and the quantities
S[L(B)] and A(B) can then be compared. The covariant entropy bound then states that
the entropy on the light sheet L(B) will not exceed a quarter of the area of the codimension-2

surface B:

A(B)
SILB)] < == (1.7)

This must hold for any surface B and it applies to each non-expanding null direction F;
separately. Indeed, the difference between the spherical bound (1.6) and the covariant
bound (1.7) is how to define entropy content of the region surrounded by the surface B.
Bousso [29] also pointed out some interesting features of the covariant bound which are
worth mentioning;:

2The families of light rays with non-positive expansion, i.e., ()\) = dA}éd)‘ < 0 where A is an affine

parameter for the light rays generating F;.




time

Fy
_—F,
B
E,
F3

Figure 1.1: Four null hypersurfaces orthogonal to a spherical surface B. F} and Fy have
negative expansion corresponding to non-expanding light sheets [29].

e A codimension-2 surface B serves as the starting point for the construction of a
codimension-1 region L. More precisely, L is a light-sheet constructed by the null
geodesics that originate from the surface B, as long as their expansion is non-positive.

e Unlike Bekenstein bound and the spherical bound which are both inferred from the
GSL, the covariant entropy bound cannot be derived from black hole thermodynam-
ics. Rather, the GSL might be more appropriately regarded as a consequence of the
covariant bound.

e There is no fundamental derivation of the covariant entropy bound. We present the
bound because there is strong evidence that it holds universally in nature.® Therefore,
we conclude that the bound is an imprint of a more “fundamental theory”.

e The bound essentially involves the quantum states of matter. Thus we may conclude
that the fundamental theory responsible for the bound unifies matter, gravity, and
quantum mechanics. More precisely, the fundamental theory should be a theory of
quantum gravity.

e The bound relates information to a single geometric quantity, i.e., area. Then we
conclude that the area A of any surface B measures the information content of an
underlying theory describing all possible physics on the light-sheets of B.

3In [29], the bound has been applied to cosmology and verified explicitly that it is satisfied in a wide
class of universes.



While the bound is conjectured to be valid for all physically realistic matter systems,
it is regarded as evidence for the holographic principle. The interested reader is referred to
the comprehensive review by Bousso [29] for further reading.

1.3 The rise of holography

As mentioned in the previous section the covariant entropy bound implies the existence
of an underlying fundamental theory of quantum gravity. Then the question one may
ask is: how much information would completely specify any physical configuration in a
bounded region? In other words, how many degrees of freedom N are available in a given
“fundamental system”?

Assume a local quantum field theory on a classical background satisfying the Einstein
equations. That is, we have a particular collection of quantum mechanical systems where
the Hilbert space is an infinite tensor product over all points in space with a finite number
of degrees of freedom at each point. However, the infinite number of points on a spatial
slice implies an infinite number of degrees of freedom, i.e., N = oo with the number of
degrees of freedom N being the logarithm of the dimension N of the Hilbert space. The
infinite number of points on a spatial slice, which implies the infinite number of degrees
of freedom, is the source of the well known UV (short-distance) and IR (long-distance)
divergences of quantum field theory. The IR divergences can be regulated by working in
finite volume, while the UV divergences can be controlled by instead considering a theory
with degrees of freedom only on some fine spatial lattice of points, providing the UV cut-
off. So if we include gravity in a minimal crude way in the theory, then the natural UV
cut-off would be the Planck energy?, M, ~ 1.3 x 10°GeV. This is due to the fact that one
might expect that distances smaller than the Planck length ¢, = 1.6 x 107**cm, cannot
be resolved in quantum gravity and Mp is the largest amount of energy one can localize
into a cube of the size of the Planck length without forming a black hole. Thus having a
finite number of states n at each point in the Planck grid, the total number of degrees of
freedom is

N~Vinn 2 V. (1.8)

On the other hand, in statistical physics, entropy is a measure of the number of degrees
of freedom of a theory. Indeed the number of degrees of freedom is N = log N’ = S where

4This is the fundamental mass scale can be made out of the fundamental constants i (Plank constant),
G (gravitational constant) and ¢ (speed of light) in a theory of quantum gravity which in four dimensions
is given as M, = /hc/G. Alternatively, one can make the fundamental length scale, i.e., the so-called

Plank length which in four dimensions is ¢, = \/hG/c3.

6



N = ¢ is the number of states or the dimension of the Hilbert space. We already argued,
in the previous section, that the entropy of any matter system in a finite region of spacetime
is bounded from above by the covariant entropy bound, i.e.,

A
N < —. 1.9
<2 (19)
By comparing equations (1.8) and (1.9), one realizes that quantum field theory over-
counts the number of degrees of freedom. Indeed because of gravity, not all degrees of
freedom that field theory apparently supplies can be used for generating entropy, or stor-
ing information.

In summary, while the number of degrees of freedom in any local quantum field theory
is extensive in volume, the holographic principle implies that the true number of degrees
of freedom is proportional to the area of each region. Although physics appears to be
local to a good approximation, the holographic principle seems to challenge the locality.
Then we need to formulate the “fundamental theory” so as to resolve this tension. So
far, there are two main approaches: one approach aims to retain locality through an
enormous gauge invariance, leaving only as many physical degrees of freedom as needed by
the covariant entropy bound. For example, 't Hooft [227, , , , ] is pursuing
a local approach in which quantum states arise as limit cycles of a classical dissipative
system. The emergence of an area’s worth of physical degrees of freedom has yet to be
demonstrated in such models.

Another approach is to regard locality as an emergent phenomenon without fundamen-
tal significance. In this case, the holographic data are primary. Here, one major challenge
is to understand their evolution. However, one must also explain how to translate this
underlying data, in a suitable regime, into a classical spacetime inhabited by local quan-
tum fields. In a successful construction, the geometry must be shaped and the matter
distributed so as to satisfy the covariant entropy bound. Because the holographic data
is most naturally associated with the area of surfaces, a serious difficulty arises in under-
standing how locality can emerge in this type of approach.

The AdS/CFT correspondence [171] belongs to the second type of approach. However,
this correspondence only defines quantum gravity in a limited set of spacetimes. It contains
a kind of holographic screen, a distant hypersurface on which holographic data is stored
and is evolved forward using conformal field theory.

Which type of approach one prefers will depend, to a great extent, on which difficulties
one would like to avoid: the elimination of most of the degrees of freedom, or the recovery
of locality. One last thing to notice is that since light sheets are central to the formulation

7



of the holographic principle, one would expect null hypersurfaces to play a primary role in
the classical limit of an underlying holographic theory.

1.4 Towards the AdS/CFT correspondence

The AdS/CFT correspondence, originally conjectured by Maldacena [171], is an intriguing
equivalence (or duality) between theories with gravity and theories without gravity. In
its original form, it is an equivalence between four dimensional N/ = 4 super Yang-Mills
theory and type IIB string theory compactified on AdSs x S®. The AdSs stands for the
anti-de Sitter space in five dimensions while S® is a five-dimensional sphere. The AdS/CFT
correspondence is a vast subject and has been extensively reviewed in literature, e.g., see

[0, 172, 17,

1.4.1 The AdS geometry

Anti-de Sitter space is a maximally symmetric solution of the vacuum Einstein equations
with a negative cosmological constant. The geometry can be described as the (d + 1)-
dimensional hyperboloid

d
— Y+ > U — v = —L%, (1.10)
=1

embedded in a (d + 2)-dimensional pseudo-Euclidean space with metric of signature (— +
o)

d
ds® = —dyg + Zdyf —dyi, (1.11)

i=1
The pseudo-sphere (1.10) is both homogeneous and isotropic and has the isometry group
SO(2,d), i.e., group of boosts in the embedding space. One can define the so-called global



coordinates (7, p,0,¢1,- -, ¢g_2) on the AdSy, 1 space with

Yo = LcoshpcosT,
y1 = Lsinhpcos@,
Yo = Lsinh psin 6 cos ¢ ,

Yq—1 = Lsinh psin @ sin ¢ sin ¢ - - - cos ¢q_2 ,
yq = Lsinh psin @ sin ¢ sin ¢s - - - sin ¢g_o ,
Yar1 = Lcosh psinT, (1.12)

where p > 0, 7 € [0, 27), and L is the radius of the pseudo-sphere. Therefore one can write
the induced metric on the AdSgy; hypersurface (1.10) in global coordinates as

ds® = L*(— cosh® pdr? + dp® + sinh® pdQ3_,), (1.13)
where dQ23 | represents the metric of the unit (d — 1)-sphere.

From metric (1.13) it is evident that the isometry group SO(2,d) of AdS has the
maximal compact subgroup SO(2) x SO(d). The SO(2) generate translation along the
7 direction which has the topology of S and SO(d) represents the rotational symmetry
along the angular directions on the S9~!. As p — 0 the radius of the S* approaches a
constant as cosh p while the radius of the S9! shrinks to zero as sinhp. As any space
with more than one timelike coordinate, AdS contains closed timelike curves (CTC), i.e.,
the S! along the time direction. However, CTC’s are eliminated in the causal structure
of the AdS by unrolling the S! by taking 7 € (—o0,00), i.e., extending the hyperboloid
to an infinite-fold covering space. The latter geometry is what we are considering in the
following.

It is also common to write the AdS metric in the so-called Poincaré coordinates (z, t, I)
which are defined as
< Lo o o
w=g (14 5@ 2 -).

L
i — —dg ':]-)"'7d_]-7
yi=—w (1 )

< Lot o o L
with 2 > 0 and 7 € R4, Clearly distinguishing y, among ;s breaks the SO(d) symmetry

and the metric takes the form
2

L
ds* = o) (d2* + nudatda”) . (1.15)
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With z > 0, the metric (1.15) covers only half of the hyperboloid (1.10) and only a small
wedge in the full covering space. This is called the Poincaré patch and is conformally
equivalent to a half of the Minkowski spacetime in (d 4+ 1) dimensions. The Penrose
diagram of the AdSy,; with the Poincaré patch highlighted is shown in figure 1.2.

Poincaré patch

Poincaré horizon

Figure 1.2: Penrose diagram of the AdS,;,; which can be conformally mapped on R x S9.
The cross section of the cylinder is half of the sphere S?. The highlighted region is the
Poincare patch which only covers part of the AdSg.4

as it is bounded by the Poincare horizon.
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Clearly Poincaré transformations are part of the symmetry group of AdS spacetime.
Moreover, it is easy to check that the metric (1.15) is invariant under the scaling symmetry
of the form

(z,2,) = (A2, Ax,,), A>0. (1.16)

Therefore, AdS spacetime enjoys a bigger symmetry which in fact matches the conformal
symmetry group in d-dimensions. In particular, the above geometric scaling (1.16) is iden-
tified with the dilatation symmetry in the conformal symmetry group of R»~! according
to the AdS/CFT conjecture. Indeed one of the key motivations for the conjecture is the
correspondence between the symmetries on both sides of the duality.

With one more redefinition of the coordinates, it is easy to see that the AdS spacetime
can be described by a standard warped metric. Indeed, by defining 2 = Le™"/%, the AdS
metric (1.15) can be rewritten as

ds* = dr® + ¥/, do da (1.17)

with 7 € (—o00,00). Here the metric appears as the warped product of d-dimensional
Minkowski space times an extra radial coordinate. That is, the Minkowski metric is mul-
tiplied by an exponential function of the radial coordinate. As the radial coordinate ap-
proaches the infinity, the exponential factor blows up. This is commonly called the AdS
boundary, which is often interpreted as the place where the dual conformal field theory
resides. It can be shown that the massless excitations in the bulk can propagate all the way
to the AdS boundary in a finite proper time. Hence one must supplement the bulk theory
with suitable boundary conditions at infinity. A standard choice is Dirichlet boundary
conditions so that the massless fields are simply reflected back into the bulk.

Moreover, as we will be discussing below, the AdS/CFT correspondence is a strong/weak
coupling duality. Indeed, weakly coupled string theory in the bulk, which is well described
by supergravity, can be used to provide information about the strongly coupled gauge
theory on the boundary, which is difficult to describe with standard field theoretical ap-
proaches. However, the AdS/CFT correspondence can also be applied in the opposite
direction, i.e., we can learn more about string theory in the bulk by understanding the
properties of the gauge theory on the boundary. Therefore, the conjecture works in two
directions. To clarify this point we briefly review some interesting features on both sides
of the correspondence in the following.

1.4.2 Large N limit

One remarkable hint towards the AdS/CFT correspondence was the novel work by 't Hooft
[225] indicating that large N gauge theory is equivalent to a string theory: considering a
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gauge theory with U(N) gauge group in the limit of N — oo and fixed finite g3,;N, where
N is the rank of the gauge group and gy is the coupling constant of the gauge theory,
one can show that the structure of observables as a perturbation series in 1/N is identical
to the loop expansion in a dual string theory. This is true provided one identifies string
coupling g, with 1/N which is very small in the large N limit indicating weak coupling
regime of the string theory in the bulk. One may be concerned that fixing g2, for large
N could only be achieved if the coupling gy is very small and that is not consistent with
what we expect in a strong/weak duality. However, this is not the case, since in the large
N limit the true effective coupling of the gauge theory could be redefined as \; = g%, V.
Therefore in this set up A;, which is known as the 't Hooft coupling, is fixed but could be
sufficiently large.

To see the point, let us consider ordinary D = 4 Yang-Mills theory with U(N) gauge
group and physical coupling gyn and coupled to one flavor of quarks. The beta function
for the coupling to lowest order in perturbation theory is given by [100]

09y m 1 11 4
- T N4 1.18
dlog 1672 3 YM * (1.18)

However, it is easy to see that the RG equation (1.18) is independent of N if it is rewritten
in terms of the 't Hooft coupling \; = ¢%,,N
o 111
Ologp 872 3
Then in the large N limit, we can have strongly coupled field theory with sufficiently large
't Hooft coupling.

N4 (1.19)

Furthermore, the perturbative expansion for the partition function of a large N gauge
theory in terms of 1/N and A; has the form

Zym =Y N7 fy(N). (1.20)
920

where g is the genus for certain two-dimensional surfaces. In this setting, the Feynman
diagrams are organized by the genus of the two-dimensional surfaces on which they can
be drawn without any line crossings. This is similar to the loop expansion of the partition
function of string theory with both closed and open strings (including quarks)

Zstm'ng = ZgzgiQZg (121)
920

when we identify the string coupling g; with 1/N. Hence, of course, the surfaces are the
two-dimensional world-sheets of the string.

12



1.4.3 Non-abelian gauge symmetry from string theory

A heuristic derivation of the AdS/CFT correspondence from string theory begins with
Dp-branes. In fact, using Dp-branes, one can build a non-abelian gauge group. First
discovered by Polchinski [197], Dp-branes are extended dynamical objects with p spatial
dimensions. For example, a DO-brane describes a particle, a D1-brane is a string, a D2 is
a membrane and so on.

In particular, there are two ways to describe a Dp-brane, both of which will arise in our
heuristic derivation of the AdS/CFT correspondence. The first one arises from the open
string theory on the D-branes where consistency require that the endpoints of an open
string satisfy either the Neumann, or the Dirichlet boundary conditions independently in
each spatial direction. The Neumann boundary condition along a direction corresponds
to the free moving endpoints of the open strings in that direction whereas the Dirichlet
boundary condition along a direction pins the string endpoint to a particular place along
that direction. Out of 9 spatial directions, we can allow p Neumann and 9 — p Dirichlet
boundary conditions. Then the string endpoint confined to move within a p-dimensional
spatial hypersurface (as well as time) in ten-dimensional spacetime. This hypersurface is
the Dp-brane, generalizing a notion of the membrane.

The second description comes from the equations of motion in the low-energy limit of
the closed string theory describing the coupling of the D-branes to (super)gravity. Consider
an open string with both ends on the same brane. Since open strings can interact locally
at their endpoints, the two ends might meet and form a closed string, thus leave the brane.
Then we expect both open and closed strings coexist in the same theory. However, closed
strings live in 10 dimensions and respect the full Lorentz invariance of this space. So a
D-brane must be an excitation within the closed string theory. Indeed in this viewpoint,
D-brane can be regarded a non-perturbative object in the full ‘string’ theory, or a solitonic
excitation of the supergravity.

Quantization of the open strings with NN boundary conditions in all 10 dimensions
will lead to massless states including a photon A, in 10 dimensions as well as a fermionic
superpartner \,. On the other hand, quantizing open strings confined to a Dp-brane with
DD boundary conditions in 9 — p directions, gives us a photon A, in p + 1 dimensions
plus 9 — p scalar fields ¢;, corresponding to the fluctuations of the D brane position. In
particular, there is one scalar field for each direction transverse to the brane. The vacuum
expectation values of these scalars indicate the location of the brane in the corresponding
direction. Hence time-dependent scalars describe a brane in motion. As in 10 dimensions,
these bosonic fields come with fermionic superpartners.

Now we are ready to build a nonabelian gauge symmetry in string theory. Consider
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a stack of N parallel coincident Dp-branes: an open string can start on any one of these
branes and end on any other. In particular, each endpoint of the string has N possible
places to end, giving N? possibilities in total. We can label each endpoint with a number
a,b=1,..., N telling us which brane they lie on. These labels are often called Chan-Paton
factors. Each of these strings has the mass spectrum of an open string, meaning that there
are now N? different particles of each type. It is natural to arrange the associated fields
to sit inside N x N Hermitian matrices. Therefore, we have massless scalars ¢%° and a
gauge field Aff’. Here the components of the matrix tell us from which class of strings the
field came. Diagonal components arise from the strings which have both ends on the same
brane, so for the N x N gauge field AZI’, the diagonal elements represent the abelian gauge
fields of the individual branes and together they provide a U(1)Y gauge group.

On the other hand, it can be shown that in the presence of a background gauge field
U(1), the endpoint of a string on a D-brane will behave like a point charge on the brane
world-volume. Therefore, in our story of N coincident Dp-branes, those strings having
their endpoints on different branes are charged under the background gauge fields U (1)".
Consequently, it turns out that they provide the extra gauge fields needed to enhance
U(1)N — U(N). Now if we separate some of the branes, the strings stretching between
them become massive which implies the corresponding gauge fields must be massive and
a smaller gauge group emerges. Hence separating the branes provides a stringy version of
the Higgs mechanism. For more details on D-branes see, for example, [111].

To summarize, quantization of the N? strings on a stack of N coincident Dp-branes re-
sults in a low-energy effective Yang-Mills theory of a U(N) gauge field Azb(a, b=1,...,N)
coupled to scalars and fermions, also in the adjoint representation of U(N).

1.4.4 The AdS/CFT conjecture

So far we have introduced the necessary material which we need to derive the conjecture.
Hence we now try to give a brief heuristic “derivation” of the AdS/CFT correspondence
without explicit mathematical calculations. To begin, let us consider the special case of a
stack of N coincident D3-branes in addition to the closed strings in the ten-dimensional
background. The only scale in this configuration is the string length ¢, which fixes the rest
energy of typical excited string states as Fy ~ 1/{,. Another important parameter is the
(dimensionless) string coupling g, controlling the strength of interactions of the strings,
both open and closed, among themselves. Now having two parameters in hand, we are
interested in two separate limits: the low energy limit where the energies of any process
satisfy £l < 1, and the strong coupling limit where g;N > 1 and the open string sector

14



is strongly coupled. In particular, we are interested in these limits where they applied one
after the other. That is, one can go to the low energy limit first by taking /s < 1 while the
coupling g, is fixed, and then in the low energy limit, increase the coupling g, to produce
gsIN > 1, or the two limits can be applied the other way around. It turns out depending
in which order we take the limits, two completely different theories will emerge. However,
Maldacena [171] made the bold conjecture that these two theories should describe the same
physics. We try to clarify these ideas in the following, which has been also illustrated in
figure (1.3).

Let us first consider the limit where E¢; < 1 while keeping gs and N fixed (with
gsN < 1). In fact, this corresponds to the low-energy limit of the system, in which all
the massive excitations of the strings can be ignored and only the massless modes will
play a role. Further, in this low energy limit, the massless open strings on the four-
dimensional D3-brane and the massless closed string modes in the full ten-dimensional
spacetime decouple and so we can focus on the open string gauge theory alone. As we
discussed in the previous section, the massless excitations for open strings at low energy
limit will be described by a U(N) gauge theory, specifically N' = 4 supersymmetric Yang-
Mills on the D3-branes. Also, from the D-brane dynamics, it is realized that the string
coupling g, is related to the gauge coupling gyy through g, = 2wg3,;,. Now, we go to
the strong coupling limit of gauge theory by increasing gs. Therefore, we end up with
the strongly coupled gauge theory where the effective coupling being the 't Hooft coupling
A = gsN/2m > 1.

On the other hand, we can start by taking the strong coupling limit first, i.e., gsN — 00
(with N large and fixed). Note that with fixed large N, we can still arrange that g;N > 1
while g, < 1. This is important because in this case, the closed string interactions are
still weak among themselves so that we can treat them perturbatively. For example, the
leading terms in closed string scattering come from the tree level amplitudes and we can
ignore loop corrections. However, the closed string interactions with the stack of D3-branes
is controlled by g;/N and hence these interactions are strong. Therefore in this limit, it
is more efficient to think of the D3-branes as sourcing the background of closed string
fields.” Hence, the D3-branes deform the spacetime geometry and the other background
fields such that a closed string moving close to the stack of D3-branes propagate in a
curved ten-dimensional spacetime. Effectively, replacing the perturbative D3-branes with
this curved spacetime geometry is integrating out the strongly coupled open string sector.
Now if we take the low energy limit, i.e., Ef; < 1, we are left with two kinds of low energy
modes: first, the massless closed string excitations propagating in the asymptotically flat

SFor example, Newton constant is G' o< g2 while the energy density of the stack of D3-branes, i.e., the
effective brane tension is T3 o< N/g,s. Hence the effective source for the gravitational field is GT5 o< gsN.
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Figure 1.3: Derivation of the AdS/CFT correspondence [178].

region, i.e., far from the branes. Second, all of the closed string modes propagating in the
D3-brane throat (close to the stack of D3-branes) are indeed lowest energy modes. Since
for an observer at infinity, the energy of these modes are highly red-shifted so that K/, < 1
is valid for any mode deep in the D3-brane throat. At sufficiently low energies, these two
kinds of massless modes are again decoupled. So one can ignore the first ones, i.e., the
supergravity modes in the asymptotically flat region, and focus on the second type in the
throat. Examining the throat geometry, one realizes that the metric takes the form of
AdSs5 x S°, where the radius of curvature L for both the AdS and sphere is the same and
given by

L4

o
Hence, in this second approach we recover the entire ten-dimensional closed string theory
however restricted to the throat, i.e., on the AdSs x S background. Again Maldacena’s
conjecture was that the physics of this system was the same as that for the strongly coupled
N = 4 super Yang-Mills theory.

= gsN =2mA;. (1.22)
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1.5 Outline

Motivated by holographic conjecture and gauge/gravity duality, in the rest of this thesis we
investigate holographic models describing physical phenomena in three interesting areas:
gravity, condensed matter and cosmology.

In chapter 2, we study the entanglement entropy of a general region in a theory of
induced gravity using holographic calculations. In particular, we use the holographic en-
tanglement entropy prescription of Ryu-Takayanagi in the context of the Randall-Sundrum
2 model while considering three types of gravity theories in the bulk: the Einstein grav-
ity, the general f(R) gravity and the Gauss-Bonnet gravity. We show the leading term
in the entanglement entropy for arbitrary regions on the UV brane is given by the usual
Bekenstein-Hawking formula. This result confirms the spacetime entanglement conjecture
by Bianchi and Myers for these theories. Moreover, we calculate the first subleading term to
entanglement entropy and show they agree with the Wald entropy up to extrinsic curvature
terms. Chapter 2 is based on the two following papers:

e Robert C. Myers, Razieh Pourhasan and Misha Smolkin,
“On Spacetime Entanglement,”
JHEP 06 (2013) 013 [arXiv:1304.2030)]

e Razieh Pourhasan,
“Spacetime Entanglement with f(R) gravity,”
Submitted to JHEP [arXiv:1403.0951]

which correspond to references [182, | in the bibliography. In the first one which was
a collaborative work, I did the calculations and the initial draft of chapter 4 of the paper
while supervised by my senior collaborators. The second one is a single authored paper by
myself, although I also benefited from discussions with my collaborators on the previous
paper. This paper is under review by the referee but has more or less been accepted subject
to minor corrections.

In chapter 3, a detailed numerical study of a recent proposal [158] for exotic states of the
D3-probe D5 brane system with charge density and an external magnetic field is presented.
The state has a large number of coincident D5-branes blowing up to a D7-brane in the
presence of the worldvolume electric and magnetic fields which are necessary to construct
the holographic state. Numerical solutions have shown that these states can compete with
the the previously known chiral symmetry breaking and maximally symmetric phases of
the D3-D5 system. Moreover, at integer filling fractions, they are incompressible with in-
teger quantized Hall conductivities. In the dual superconformal defect field theory, these
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solutions correspond to states which break the chiral and global flavor symmetries sponta-
neously. The region of the temperature-density plane where the D7-brane has lower energy
than the other known D5-brane solutions is identified. A hypothesis for the structure of
states with filling fraction and Hall conductivity greater than one is made and tested by
numerical computation. A parallel is drawn with the quantum Hall ferromagnetism or the
magnetic catalysis phenomenon, which is observed in graphene. As well as demonstrating
that the phenomenon can exist in a strongly coupled system, this work makes a number
of predictions of symmetry breaking patterns and phase transitions for such systems. The
contents of chapter 3 are from the paper:

e Charlotte Kristjansen, Razieh Pourhasan and Gordon Semenoff,
“A Holographic Quantum Hall Ferromagnet,”
JHEP 02 (2014) 097 [arXiv:1311.6999].

which corresponds to reference [157]. This project originated in a discussion with Semenoff
about his previous paper with Kristjansen [158] when I suggested to extend that work and
look for the solutions at finite temperature. I carried all the numerical calculations except
for v = 1 which was done by Kristjansen.

In chapter 4, we studied an early universe cosmology in a holographic framework. While
most of the singularities of General Relativity are expected to be safely hidden behind event
horizons by the cosmic censorship conjecture, we happen to live in the causal future of the
classical big bang singularity, whose resolution constitutes the active field of early universe
cosmology. Could the big bang be also hidden behind a causal horizon, making us immune
to the impacts of a naked singularity? We describe a braneworld description of cosmology
with both four-dimensional induced and five-dimensional bulk gravity (otherwise known
as the Dvali-Gabadadze-Porati or DGP model), which exhibits this feature: The universe
emerges as a spherical three-brane out of the formation of a five-dimensional Schwarzschild
black hole. In particular, we show that a pressure singularity of the holographic fluid, dis-
covered earlier, happens inside the white hole horizon, and thus need not be real or imply
any pathology. Furthermore, we outline a novel mechanism through which any thermal
atmosphere for the brane, with comoving temperature of approximately 20% of the five-
dimensional Planck mass can induce scale-invariant primordial curvature perturbations on
the brane, circumventing the need for a separate process (such as cosmic inflation) to ex-
plain current cosmological observations. Finally, we note that five-dimensional space-time
is asymptotically flat, and thus potentially allows an S-matrix or (after minor modifica-
tions) AdS/CFT description of the cosmological big bang. The material in this chapter
comes from the following paper:
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e Razieh Pourhasan, Niayesh Afshordi and Robert B. Mann,
“Out of the white hole: a holographic origin for the Big Bang,”
JCAP 04 (2014) 005 [arXiv:1309.1487]

corresponding to reference [200]. It was featured in Nature News and received a great
deal of attention in the media. Further, we were invited to write an article, based on our
results, for the Scientific American which will be published in August 2014. The idea was
initiated through a series of discussions with Afshordi and Mann. I did the calculations
while supervised by Afshordi and Mann. I also wrote the first draft of the paper except
for chapter 4 of the paper which was added by Afshordi.

Finally we close the thesis with a summary of our results and a brief discussion of future
direction in chapter 5.
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Chapter 2

On Spacetime Entanglement

2.1 Introduction

Considerations of the second law of thermodynamics in the presence of black holes, led
Bekenstein[16, 13, 14] to make the bold conjecture some forty years ago that black holes
carry an intrinsic entropy given by the surface area of the horizon measured in Planck units
multiplied by a dimensionless number of order one. This conjecture was also supported by
Hawking’s area theorem [115], which shows that, like entropy, the horizon area can never
decrease (in classical general relativity). Bekenstein offered arguments for the proportion-
ality of entropy and area, which relied on information theory, as well as the properties of
charged rotating black holes in general relativity [16, 13, 11]. Of course, a crucial insight
came with Hawking’s discovery that external observers around a black hole would detect
the emission of thermal radiation with a temperature proportional to its surface gravity
[116, ], i.e., T = 5=. Combining this result with the four laws of black hole mechanics
[10], the black hole entropy was recognized to be precisely

A
Sk = — 2.1
BH 4G ) ( )
where A is the area of the event horizon. In fact, this expression applies equally well to any
Killing horizon, including de Sitter [100] and Rindler [159] horizons. While originally de-

rived with considerations of general relativity in four spacetime dimensions, equation (2.1)
also describes the entropy for black hole solutions of Einstein’s equations in higher dimen-
sions.! Further, it has been shown that the Bekenstein-Hawking (BH) expression (2.1) can

Tn d spacetime dimensions, the ‘area’ has units of lengthdﬁ.
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be extended to a general geometric formula, the ‘Wald entropy’, to describe the horizon
entropy in gravitational theories with higher curvature interactions [239, , ].

Of course, much of the interest in black hole entropy, and black hole thermodynam-
ics, stems in the hope that it provides a window into the nature of quantum gravity. A
recent conjecture [19] proposes the above area law (2.1) has much wider applicability and
serves as a characteristic signature for the emergence of a semiclassical metric in a theory
of quantum gravity.? The precise conjecture was that in a theory of quantum gravity, for
any sufficiently large region in a smooth background spacetime, the entanglement entropy
between the degrees of freedom describing a given region with those describing its comple-
ment is finite and to leading order, takes the form given in equation (2.1). Of course, an
implicit assumption here is that the usual Einstein-Hilbert action (as well as, possibly, a
cosmological constant term) emerges as the leading contribution to the low energy effective
gravitational action. This conjecture was supported by various lines of evidence: First of
all, in the context of gauge/gravity duality, equation (2.1) is applied to general surfaces in
evaluating holographic entanglement entropy [204, 203]. Second, it can be shown that in
perturbative quantum field theory, the leading area law divergence [20, | appearing in
calculations of the entanglement entropy for a general region V' can be absorbed by the
renormalization of Newton’s constant in the BH formula applied to the boundary of V', i.e.,
with the area A(OV'). These arguments are framed in terms of the entanglement Hamil-
tonian describing the reduced density matrix and require understanding certain general
properties of the latter operator. However, this new understanding can also be combined
with Jacobson’s ‘thermodynamic’ arguments [134, | for the origin of gravity to provide
further independent support of the above conjecture. A preliminary calculation in loop
quantum gravity also provides support for this new idea. Finally, in models of induced
gravity [205], certain results [70, 93, 91] were again in agreement with the idea that equa-
tion (2.1) describes the entanglement entropy of general regions, in particular even when
the entangling surface does not coincide with an event horizon.

In this chapter, we study this conjecture in more detail in the context of induced
gravity. In particular, following [70, 91], we will study entanglement entropy in the Randall-
Sundrum II (RS2) braneworld [202] and our main result is as follows: The induced gravity
action on the brane takes the form

I — | dv/— Mip o pid_ % p2 2O, CUR L (2.9
ind / v—d [167er T o (R”R ia—n" ) g GG+ (2:2)

where the various curvatures are calculated for the brane metric g;; and the ellipsis indicates
cubic and higher curvature interactions. The precise value of the d-dimensional Newton’s

2See also discussion in [56].
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constant and the induced couplings of the curvature-squared terms depend on the details of
the dual bulk theory and we determine these for two different examples. In principle, these
calculations can be extended to higher orders in the derivative expansion but as indicated
above, we ignore any contributions beyond curvature-squared. Then with holographic
calculations of entanglement entropy, we find for any sufficiently large region V' on the
brane, the corresponding entanglement entropy is given by

_ A(i) d—2 7 ij ~ 1 d 1

+ 4 / ayVh [ﬁa%bdcabcd — KL,K" + ﬁmfg} NI
5 _

where h,;, and K, are, respectively, the induced metric and the second fundamental form
of the entangling surface ¥ = 9V. The leading contribution here is captured by the
Bekenstein-Hawking formula (2.1), in precise agreement with the conjecture of [19]. We
can also compare the above result with the Wald entropy [239, , | for the induced
gravitational action (2.2). Then we find that Sg and Sy.. also agree at this order in the
derivative expansion, except that the extrinsic curvature terms in equation (2.3) do not
appear in the Wald entropy. It is noteworthy that the coefficients of these additional terms
are still determined by the higher curvature couplings in the effective gravity action (2.2).
We emphasize that our calculations only capture the leading terms in an expansion for
large central charge of the braneworld conformal field theory. We should also note that
apart from [70, 91], discussions of horizon entropy as entanglement entropy in the RS2
braneworld also appear in [113, , , 66].

An overview of the remainder of this chapter is as follows: We begin a brief review
of the RS2 model as a theory of induced gravity, in section 2.2. In section 2.3, we use
holographic entanglement entropy to evaluate Sgi for general regions on the RS2 brane,
with the result given in equation (2.3). In section 2.4, we consider our results in the context
of various inequalities that the entanglement entropy must satisfy. This comparison points
out certain limitations with the present approach. Then we conclude with a discussion
of our results in section 2.5. Section (2.6) includes some supplementary material which
describes various technical details. In section 2.6.1, we derive the induced gravity action
on the brane for the case when the dual bulk theory is described by Gauss-Bonnet gravity.
Of course, setting the curvature-squared coupling to zero in the previous result yields
the induced action for Einstein gravity in the bulk. Section 2.6.2 considers in detail the
geometry of the codimension-two surfaces in the bulk and derives various expressions for
the curvatures that are useful in deriving the holographic entanglement entropy in section
2.3. In section 2.6.3, we compare the perturbative results for the entanglement entropy
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given in section 2.3 with those for the simple case of a spherical entangling surface in flat
space where the entire holographic result can be calculated analytically.

2.2 Randall-Sundrum I1

In their seminal work [202], Randall and Sundrum showed that standard four-dimensional
gravity will arise at long distances on a brane embedded in a noncompact but warped five-
dimensional background. Their construction starts by taking two copies of five-dimensional
anti-de Sitter (AdS) space and gluing them together along a cut-off surface at some large
radius with the three-brane inserted at this junction. This construction readily extends to
an arbitrary number of spacetime dimensions to produce gravity on a d-dimensional brane
[71] and in fact, it is straightforward to see that the braneworld metric is governed by the
full nonlinear Einstein equations in d dimensions, to leading order in a derivative expansion
[71]. Our understanding of these Randall-Sundrum II (RS2) models is greatly extended
by realizing the close connection with the AdS/CFT correspondence — see [238, ]
and references therein. Given the holographic description of AdS space, we have a dual
description of the braneworld which is entirely in d dimensions, namely, gravity, as well as
any brane matter, coupled to (two copies of) a strongly coupled CFT with a UV cut-off.
Interestingly, in this context, we can think of the RS2 model as a theory of induced gravity

[ ? ) ) ]

Of course, the key difference between the standard AdS/CFEFT correspondence and the
RS2 model is that the bulk geometry is cut off at some finite p = p., which gives rise to
a new normalizable zero-mode in the bulk gravity theory. This extra mode is localized
at the brane position and becomes the propagating graviton of the d-dimensional gravity
theory. One may make use of the calculations and techniques for regulating the bulk theory
in AdS/CFT correspondence [72, 60, 217] to determine the action of the induced gravity
theory on the brane. We sketch this approach here and relegate a detailed calculation of
the boundary action to section 2.6.1.> As a theory of (d + 1)-dimensional gravity, the RS2
model has the following action

IRS =2 Ibulk + Ibrcme s (24)

where I, is the bulk gravitational action*® and Ij,.n. includes contributions of matter

fields localized on the brane, as well as the brane tension. To determine the effective

3Although the context is somewhat different, our approach is similar in spirit to the discussion of
boundary actions in [139, 213].
4We introduced a factor of two here as a reminder that there are two copies of the AdS geometry.
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action for the d-dimensional gravity theory on the brane, one needs to integrate out the
extra radial geometry in the AdS bulk. In the context of AdS/CFT correspondence, one
must introduce a cut-off radius® p = p, to regulate this calculation. Of course, in the RS2
model, this cut-off acquires a physical meaning as the position of the brane and so the
integral is naturally regulated. The general result takes the form:

Ld/2]
Ty = Lpin + Z I, (2.5)
n=0

where each of the terms in the sum, 1™, diverges as p?id/ % in the limit pe — 0,% while
I is a non-local contribution which remains finite in this limit. In fact, each I is given
by an integral over the brane of a (local) geometric term constructed from the boundary
metric, its curvature and derivatives of the curvature. The label n designates the number of
derivatives appearing in the geometric term, i.e., 1™ contains 2n derivatives of the metric.

In the context of AdS/CFT correspondence, these expressions can be seen as local
divergences that result from integrating out the CFT degrees of freedom with the regulator
p = p.. Boundary counterterms are added to precisely cancel the 1™, allowing one to take
the limit p. — 0 with a finite result for the gravitational action [72]. In the context of the
RS2 model, the cut-off is fixed, no additional counter-terms are added and the total action
(2.4) becomes

ld/2]
Ling =2 1™ + 2L i + Iypane - (2.6)
n=0
Hence, the effective gravitational action on the brane is given by the sum of the geometric
terms ™, which can be interpreted in terms of a standard derivative expansion, e.g., the
n =20, 1 and 2 terms will correspond to the cosmological constant term, the Einstein term
and a curvature-squared term, respectively. In section 2.6.1, we explicitly illustrate these
ideas by deriving these three terms for both Einstein and Gauss-Bonnet gravity in the bulk.
In this regard, the brane tension in /... may be said to play the role of a counter-term, in
that we will tune the tension to precisely cancel the I contribution so that the effective
cosmological constant vanishes. Further let us note that we must be working in a regime
where the brane geometry is weakly curved in order for the above derivative expansion to
be effective and for the local gravitational terms to dominate the Iy;, contribution — see
further details in section 2.3.

5We will assume that p = 0 corresponds to the AdS boundary — see section 2.3 from more details.
SFor even d, the divergence is logarithmic for n = d/2.
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Above, the bulk cut-off p = p. plays an essential role in both the AdS/CFT calculations
and the RS2 model. Holography indicates that there is a corresponding short-distance cut-
off § in the dual CFT. Again in the AdS/CFT context, this is simply a convenient regulator
and one imagines taking the limit § — 0 after the appropriate counterterms are added. In
the RS2 model, the cut-off remains fixed and one finds that § = L, i.e., the short-distance
cut-off matches the AdS curvature scale in the bulk.” Therefore if § is to be a small scale,
then the bulk AdS geometry is highly curved.

In fact, we can think of the RS2 model as having a single independent scale, i.e., the
cut-off §. To illustrate this point, we focus on the case of Einstein gravity in the bulk forthe
following discussion.® First of all, we saw that L is fixed by & above. Another scale in the
bulk gravitational theory would be the Planck scale, i.e., Ejﬁ,}tlk = 87Gyy1. The standard
AdS/CFT dictionary relates the ratio of the AdS curvature scale to Planck scale in terms
of a central charge C'r, which measures the number of degrees of freedom in the boundary
CFT. Hence in the RS2 model with § = L, we define

Cr =72 6"" G - (2.7)

Now the construction described above determines the induced couplings of the brane grav-
ity action (2.6) in terms of the bulk Newton’s constant (or equivalently ¢pp.;) and the
short-distance cut-off. Hence these couplings can also be expressed in terms of § and Cfr.

For example, the effective Newton’s constant [71] (see also section 2.6.1) is given by
d—2 7(d —2) 672
G, — G 4=—" - 2.8
Y Ea 16 Cr (28)

Hence, in the RS2 model, both the bulk and boundary Planck scales are derived quantities
given in terms of § and C7p, which we can regard as the fundamental parameters defining
the RS2 theory.

We must emphasize that throughout the following, we will assume that C7 > 1 and
our calculations only capture the leading terms in an expansion with large C'r. First of all,
this assumption is implicit in the fact that we will treat the bulk gravity theory classically.
Quantum corrections in the bulk will be suppressed by inverse powers of Cp. Further,

"Note that this result is independent of the choice of p.. Rather in the RS2 model, § is defined in terms
of the induced metric on the brane. This should be contrasted with the standard AdS/CFT approach
where the CFT metric defining ¢ is the boundary metric rescaled by a factor of p..

8 As we will see later, the situation for Gauss-Bonnet gravity is slightly more complicated. In particular,
the boundary CFT is characterized by two independent central charges, both of which will be assumed to
be large — see equations (2.86) and (2.87).
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one must imagine that the simple description of the RS2 model, with a discrete cut-off
in the AdS bulk, is an approximation to some construction within a UV complete theory,
e.g., a stringy construction as described in [238, , , , 0]. In such a scenario, the
bulk cut-off will have a more elaborate realization, e.g., where the AdS space would extend
smoothly into some compact UV geometry. Hence one should expect that there will be
additional contributions to the effective gravitational action (2.6). Effectively, these can be
catalogued as additional counterterms (beyond the cosmological constant term) in Iy.qpe.
However, it is reasonable to expect that these corrections should be independent of the
central charge defining the AdS contributions and so they are again suppressed in the limit
of large C'r. We might note that in the limit C7 > 1, we have § > /p for both the Planck
scale in the bulk and on the brane.

Finally, we observed above that the local terms in equation (2.5) can be seen as being
generated by integrating out the CFT degrees of freedom in the context of the AdS/CFT
correspondence. The same interpretation applies to the RS2 model and so in this sense,
this model [70, 94, 113, 98] provides a theory of induced gravity [205]. Such models received
particular attention in discussions of the idea that black hole entropy coincides with the
entanglement entropy between degrees of freedom inside and outside of the event horizon
[133, 91]. In fact, [70] used the RS2 model to illustrate this idea. The approach taken
there was to use the usual holographic prescription to calculate entanglement entropy
[204, |. That is, to calculate the entanglement entropy between a spatial region V'
and its complement V in the d-dimensional boundary theory, one extremizes the following
expression

S(V) = ext Al)
vea 4Gy
over (d—1)-dimensional surfaces v in the bulk spacetime, which are homologous to the
boundary region V. In particular then, the boundary of v matches the ‘entangling sur-
face’” ¥ = OV in the boundary geometry. While a general derivation of equation (2.9)
remains lacking, there is a good amount of evidence supporting this proposal in the con-
text of the AdS/CFT correspondence, e.g., see [201, , , 49, ]. In [70, 94] and in
the following, it is assumed that the same prescription could be applied to the RS2 model.
In an expansion for large Cr, it seems reasonable to assume that S(V') is dominated by
correlations of the CFT degrees of freedom and equation (2.9) yields the leading contribu-
tion to the entanglement entropy. In section 2.4, we discuss further limitations in applying
equation (2.9) in the RS2 model.

(2.9)

The essential argument in [70] was that in the RS2 model, extending the event horizon

9Hence the ‘area’ A(v) to denotes the (d—1)-dimensional volume of v.
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of a black hole on the brane into the bulk naturally defines an extremal surface in the AdS
geometry. Hence if the entangling surface ¥ on the brane coincides with the event horizon,
equation (2.9) simply evaluates the expected black hole entropy. Similar, considerations
were made for de Sitter horizons for the RS2 braneworld in [I13]. In [70], calculations
were presented for an explicit black hole solution in a d = 3 braneworld [71] and it was
shown that the leading contribution takes the expected BH form (2.1) for large black holes.
However, it was also noted that equation (2.9) yields a finite entanglement entropy for a
circular entangling surface in empty (three-dimensional) Minkowski space and further,
the leading contribution is again A(X)/4G3, as long as its radius satisfies R > 6. In
fact, it is straightforward to see that the holographic prescription (2.9) will yield a finite
entanglement entropy in any number of spacetime dimensions and for general entangling
surfaces in the RS2 model. We confirm, in the next section, that the leading contribution
takes precisely the form A(X)/4Gy for sufficiently large regions, in agreement with the
conjecture of [19]. Similar arguments appeared previously in [91]. Further, we will examine

the first higher curvature corrections to the BH expression (2.1).

2.3 Entanglement entropy for general regions

In this section, we use the holographic prescription (2.9) [204, ] and its generalization
to Gauss-Bonnet gravity [1241, 59] — see equation (2.49) — to evaluate the entanglement
entropy associated with general entangling surfaces on the d-dimensional brane of the RS2
model. Our calculations will make use of the Fefferman-Graham (FG) expansion [33] as
developed to describe the boundary theory in the AdS/CFT correspondence [60, ]. To
begin, we write the asymptotic geometry of AdS space in d + 1 dimensions as'’

62 dp?

1 . .
——t ;gij(x, p)dz'dx’ (2.10)

ds* = G, da"dx” =
s wdxtdx 1

10Tet us comment on our index conventions throughout this chapter. Directions in the full (AdS)
geometry are labeled with letters from the second half of the Greek alphabet, i.e., pu,v,p,---. Letters
from the ‘second’ half of the Latin alphabet, i.e., 7,4, k,- -+, correspond to directions in the background
geometry on the brane or on the boundary of AdS. Meanwhile, directions along the entangling surface on
the brane are denoted with letters from the beginning of the Latin alphabet, i.e., a,b,c, - - -, and directions
along the corresponding bulk surface are denoted with letters from the beginning of the Greek alphabet,
i.e., a, 3,7, --. Finally, we use hatted letters from the later part of the Latin alphabet to denote frame
indices in the transverse space to both of these surfaces, i.e., 7, J.
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where § = L is the AdS curvature scale and p = 0 is the boundary of AdS. Now the metric
gi;(z, p) admits a series expansion in the (dimensionless) radial coordinate p

© W b, @
gij(x,p) = Gi(a")+p 9i(a") +p” Gy(z')+--- . (2.11)

The leading term (‘3)1'9‘ corresponds to the metric on the boundary of AdS space. The
next set of contributions in this expansion, i.e., with n < d/2 (for either odd or even d),
are covariant tensors constructed from this boundary metric [60, ]. At higher orders

n > d/2, the coefficients (5)@' will also depend on the specific state of the boundary CFT
that is being described, e.g., (T};). However, in the context of AdS/CFT correspondence,
it was shown [126] that only the coefficients with n < d/2 contribute to the divergences
appearing in the entanglement entropy of the dual CFT. As we will see below, in the RS2
model, the analogous terms become the leading contributions to the entanglement entropy.
Moreover, rather than being divergent, they can be expressed in terms of the couplings
appearing in the induced gravity action (2.6). These terms will be the focus of our present
calculations and so our results will be independent of the state of the CF'T.

In fact, the metric coefficients in the range 1 < n < d/2 are almost completely fixed by
conformal symmetries at the boundary [127, ]. For example, the first coefficient in the
FG expansion in equation (2.11) is independent of the details of the bulk gravity action
and is given by

()
1) 52 (0) 9ij (0)
=———(Ry[9] — 22— , 2.12

where R;; is the Ricci tensor constructed with the boundary metric (B)ij. At higher orders,
certain constants (corresponding to coefficients of conformally covariant tensors) must be
fixed by the bulk equations of motion and so depend on the specific bulk gravity theory.

For example, for arbitrary ‘B)ij, the coefficient %)ij is given by [127, 207]

(2) (0)
95 = 54 (kl Cmnklcmnkl 945+ ko C’iklij felm

1 1 1 1 (0)
ViR — ———[IR;; LR 95
+d—4[8(d—1)vvﬂR = it sgm @y Y
1 d—4 1
————R"Ryji + ——R,"R; RRy;
) R TP B Y PR e L B Y s PR
1 ©0) 3d 0
. RMRL G, - R, 2.13
Txa—2 Y T e —1p@—ap ! JD ’ (2.13)
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where C,,,.,; is Weyl tensor for the boundary metric. Above the two constants, k; and ko,
will depend on the bulk gravity theory. For example, they vanish with Einstein gravity in
the bulk, while with Gauss-Bonnet gravity they are given by equation (2.88).

In the RS2 model, the standard choice which we adopt is to set the position of the brane
at p = p. = 1. A scaling symmetry of the AdS geometry allows us to make this choice
without loss of generality. However, note that generally, one thinks of the FG expansion,
described by equations (2.10) and (2.11), as being justified because it is applied in the
vicinity of the AdS boundary, i.e., for p < 1. Hence, some extra attention is required to
justify the FG expansion when it is applied in the RS2 model with the brane at p = 1.

By a simple scaling argument, (ﬁ)ij contains 2n derivatives with respect to the boundary
coordinates, as can be seen explicitly in equations (2.12) and (2.13). Hence we can regard
the expansion (2.11) as a derivative expansion and it will converge effectively as long as

the boundary metric (El-j is weakly curved on the scale of the AdS curvature L, which in the
RS2 models matches the short-distance cut-off § in the dual CFT. That is, we will require

5 R”k,[ ] <1, (2.14)

and similarly for (covariant) derivatives of the curvatures.!! Further, we must keep in

mind that the boundary metric (5)@-, which as we described above determines the leading
coefficients in the FG expansion (2.11), does not match the brane metric. Rather using
equations (2.10) and (2.11), the induced metric on the brane is given by

<o> ) Sy
iy = Gijl oy = 9i5(x,p=1) =9 5(x)+ 9 4( = Gij(x) . (2.15)
n=0

However, note that given the constraint (2.14) on the boundary geometry (and using
equation (2.12)), the differences between these two metrics must be small since

(0) (1)
Gij— 9i~Gi <1, (2.16)

There is a similar (small) shift in the geometry of the entangling surface. Standard
calculations, e.g., [124, 126, 127, 207], define the entangling surface ¥ on the AdS boundary
at p = 0 — see figure 2.1. Following the holographic prescription (2.9), one determines the
corresponding extremal surface o in the bulk. Now the entangling surface & on the brane
is defined as the intersection of ¢ with the cut-off surface at p = 1. Hence the geometries
of these two surfaces will not coincide but differences can be precisely determined using
the FG expansion, as we show in the following.

1One should imagine that the curvature is expressed in an orthonormal frame in this inequality.
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p=0,
AdS boundary

1
p /@l /P‘ 1, Brane

Figure 2.1: The entangling surfaces, ¥ on the AdS boundary and ¥ on the brane, do not
quite coincide because of the nontrivial radial profile of the extremal surface v in the bulk.

Given the framework described above and shown in figure 2.1, let y* witha =1,--- ,d—
2 be coordinates running along the entangling surface X in the AdS boundary and let h,g
be the induced metric on extremal v. Reparametrizations on this bulk surface are fixed by
imposing hq, = 0. In the same way that the FG expansion makes a Taylor series expansion
of the bulk metric in the vicinity of the AdS boundary, we can represent the induced metric
hap with a Taylor series about p = 0:'?

(1 1 /o (1)

62
hpp—4—p2(1+ hppﬂ‘i‘"‘), hab—;(hab"i_ habp+"')7 (217)

)
where h,;, is the induced metric on the entangling surface . The first order coefficients
in this expansion again independent of the specific form of the bulk gravity action and are

R2For further details, see section 2.6.2.



given by [124, , , ]

i i © & 52 i ©
K' Ky 945, hpp:mKKjgij, (2.18)

<}1l> _(;}) 5
ab —J ab d—2

) ) .
with K, being the second fundamental form of ¥ (and K* = h®K?,).13

As above, we require that this expansion (2.17) is applicable in the vicinity of the
brane at p = 1. The latter requires both that the background curvatures are small as in
equation (2.14) but the characteristic scale of the extrinsic curvatures is also much less
than 4, i.e.,

SK, < 1. (2.19)

Analogous inequalities would also have to apply for (covariant) derivatives of K, as these
would appear at higher orders. Further, recall that the entangling surface ¥ on the brane
is defined by the intersection of the extremal surface with p = 1 and hence equation (2.17)

yields
~ (0) (1)
hab = hab|p:1 =hat hap+ - (220)

for the induced metric on the . Again the curvature constraints, (2.14) and (2.19), ensure
that the differences between these two metrics is small, i.e., using equation (2.18), we have

~ (0) (1)
hij— hij ~hi; < 1. (2.21)

The discussion up to this point was absolutely general, and there was no need to specify
the details of the bulk gravity action in the bulk. However, the detailed expressions for
the holographic entanglement entropy across 3 are sensitive to the form of this action.
Next, we illustrate this calculation using the usual prescription (2.9) for the case where the
bulk theory is just Einstein gravity (coupled to a negative cosmological constant). Then
we follow with a brief discussion describing results for Gauss-Bonnet gravity in the bulk.
In this case, we use the generalized prescription of [124, 59] to calculate the holographic
entanglement entropy.

13Here we adopt the notation of [127, 207]. Let n'; (with 7 = 0,1) be a pair of orthonormal vectors which
span the transverse space to ¥. The extrinsic curvatures are then defined by K., = V,n’; and contracting

with a normal vector gives K, = n;* K7,. Hence in the following formulae, the extrinsic curvatures carry
a coordinate index 4, rather than a frame index 7.
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2.3.1 Einstein gravity

Our bulk gravity action consists of the Einstein-Hilbert action with a negative cosmological
constant and we must also include the usual Gibbons-Hawking-York surface term!

1 d(d—1)
E, =—— [ ¢/ —-Gl—— /dd \/ — 2.22
bulk 167G g4 / . G[ 92 * R} 87TGd+1 v sk ( )

In section 2.6.1, we show that with this bulk theory, the induced gravity action on the
brane is given by

rd= / d*z/—§ {16 . <RUR” él(d;‘l_l)32>+0(a6)} : (2.23)

where the expressions defining the effective Newton’s constant and the curvature-squared
coupling in terms of § and G441 or the central charge are given in equations (2.107) and

(2.108).

The holographic entanglement entropy for generic entangling surfaces in the boundary
is evaluated using equation (2.9). We begin by evaluating the area A(c) of the extremal
surface to the first two leading orders in the expansion given in equation (2.17)°

Alo) = 2 / A2y dpvVh (2.24)
= fr [T Vi (e B ) S 00)].

Now we can use equation (2.20) to re-express this result in terms of induced metric on the
)
brane hgy, rather than the boundary metric h,,. In particular, we have

\/g_\/_(l—l(l;b() b+0(34)) ' (2.25)

Recall that the difference between the two metrics is small, as shown in equation (2.21).
Therefore explicitly applying the conversion to hy, in the first-order terms here and in
equation (2.24) is not necessary. This would only generate terms of order O(9?), which

1 Calligraphic R and K will be used to denote bulk curvature and the second fundamental form of the
brane respectively. We implicitly assume that bulk integral runs over both copies of the AdS space whereas
surface integral is carried over both sides of the brane.

B Factor two accounts for the two copies of AdS space in the construction.
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we are not evaluating here. Now carrying out integration over p in equation (2.24) (and
keeping only the lower limit at p = 1) yields

Y i—2 ) 1 O, o .
EE = 577 ongy “ . (2.2
s 2(d_2)Gd+1/d y\/_{ d 4>h —— b ha+O@")| . (226)

o)
Finally we can substitute for h,g using equation (2.18) and at the same time, we use
equations (2.107) and (2.108) to express the result in terms of the gravitational couplings
in the induced action (2.23). Our final expression for the entanglement entropy becomes

Spe = ) | a [ap (21%” L = K@'&) oY, (227)

4Gd d—

Here, all curvatures are evaluated on the entangling surface & and §Z~# = mynl ng is the

metric in the transverse space to the entangling surface, i.e., g% = Gij — hij.

The first important feature to note about this result is that leading term precisely
matches the BH formula (2.1) for the induced gravity theory (2.23). However, here it
appears in Sgp for a general entangling surface rather than a horizon entropy. That is,
subject to the constraints in equations (2.14) and (2.19) in this RS2 model, we find that
the leading contribution to the entanglement entropy for any general (large) regions is given
precisely by the Bekenstein-Hawking formula. Of course, this result precisely matches the
conjecture of [19]!

The next-to-leading term in equation (2.27) reveals a non-trivial correction to the area
law. The appearance of k; here suggests that it is connected to the curvature-squared
interaction appearing in the induced gravity action (2.23). Of course, this connection
naturally brings to mind the Wald entropy [239, , |, which describes the horizon
entropy of (stationary) black hole solutions in theories with higher curvature interactions.
In particular, let & be (a cross-section of) a Killing horizon in a gravity theory with a
general (covariant) Lagrangian £(g, R, VR, ---). Then the Wald entropy is [239, , 132]

Sward = —27 / dd—zy\/ﬁ 84 €Y & (2.28)
5 ORY

where as above, ﬁab is the induged metric on Y and €;; is the volume-form in the two-
dimensional transverse space to 3. Some useful identities for the latter include:*®

S B e T A2k ~L A aij
€ij €kl = 9yt 95k — ik 9ji1 » CikEj = —G;, &Eij&e" = —2. (2.29)

16Recall that the signature of the transverse space is (—, +).
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Applying equation (2.28) (as well as the above identities) to the induced gravity theory
(2.23), we obtain
A(X)

~ 3 d
— d—2 ij =L 4
Swas = 4G T /id ) (QR G- —— R) + OB, (2.30)

Comparing equations (2.27) and (2.30), we see that Sgp and Sy.4 agree up to the absence
of the extrinsic curvature terms in the Wald entropy. However, this discrepancy might have
been expected since, as we emphasized above, the Wald formula (2.28) was constructed
to be applied to Killing horizons, for which the extrinsic curvature vanishes.!” Hence if
equation (2.27) is evaluated on a Killing horizon, we will find Sgy = Swaa. Note that this
match for boundary black holes between the entanglement entropy (2.27) and the Wald
entropy (2.30) was previously observed in [218].

2.3.2 f(R) gravity

In the next two sections, we will consider extended theories of gravity in the bulk as a
generalization of the usual Einstein-Hilbert action (2.22). In particular in this section, we
study the RS2 model with f(R) gravity where f is an arbitrary function of the Ricci scalar
[220] as an interesting toy-model. Thus the action for the AdSz,; bulk becomes

Touiie = m/ddm dp@{% + F(R(G) | + Lours (2.31)
where Gy, is the gravitational constant in the bulk metric G, L is the scale of cosmo-
logical constant and R is the curvature scalar in the bulk. As before, the dimensionless
coordinate p is the extra radial direction in the bulk and z? are the coordinates along the
brane located at p = p. whereas p = 0 would be the boundary of AdSy. ;. Note that the
AdSg.1 geometry again has a radius of curvature § which matches the short-distance cut-off
in the boundary theory. However, we will see that the AdS;,; scale no longer corresponds
to the scale of the cosmological constant, i.e., § # L. To have a well-defined variational
principle, the proper surface term is added to the action (2.31) with the form [(9]

1
Touwrs = Ao/ =G K f'(R)|pep. 2.32
(=g [ ANV R 2:32)

170n a Killing horizon, the extrinsic curvature will vanish precisely on the bifurcation surface. For a
general cross-section of the Killing horizon, the extrinsic curvature is nonvanishing but only for a null
normal vector. Hence one finds that any scalar invariants constructed with the extrinsic curvature still
vanish, e.g., in general, K* # 0 however K'K; = 0.
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where K is the trace of second fundamental form of the metric on the brane and prime
denotes a derivative with respect to R.

We use Fefferman-Graham gauge (2.10) for the metric in the bulk. However 4, the
curvature radius of AdSy,1, is related to the cosmological constant L and the gravitational
couplings implicit in f(R) through the equation of motion in the bulk, i.e.,

G d(d—1
F(R) Ry + (Gwvavg - vﬂvy) F(R) - G (f(R) ; %) —0. (233)
That is, if one inserts the metric (2.10) with g;; = n;;, i.e., pure AdS space, into equation
of motion (2.33) one obtains

1 1

- T dd-1)e {Qdf'(Ro) + 52f(730)} , (2.34)

where R is the curvature of AdSy,; spacetime, i.e.,

Ro = —w . (2.35)

One can obtain the induced gravity action on the brane by integrating out the extra
radial dimension of the bulk action (2.31). To do so, we use the derivative expansion
(2.11) for the metric g;; about the position of the brane. The two constants k; and ks in
expression (2.13) depend on the type of gravity theory in the bulk. By solving the equation
of motion (2.33) for f(R) in the bulk, one explicitly finds &y, k2 = 0. The latter are most

easily determined if one picks a fixed geometry on the boundary for (B)Z-j and then plugs
the metric expansion (2.10) into equation of motion (2.33).

Also, using the expansion (2.97) one finds
R=Ro+---, (2.36)

since we are just interested in the terms up to curvature squared, we don’t really need to
specify ellipsis which are of O(d°) and higher. Indeed, as it is manifest in the expansion
(2.97), the only curvature squared term has a coefficient depending on the constants k;
and ky. However, this term is absent in the present case with f(R) gravity for which k;
and ks are both zero.

In order to calculate the induced gravity action on the brane which is given by expression
(2.4), we also need to find the derivative expansions for the extrinsic curvature. Using
equation (2.92) one can easily derive (up to curvature squared terms)

52 5 d

1 ij 2 6
K= d+2(d_1>R+Q(d_l)(d_2)2<R,-jR —m}z )} +005%.  (2.37)
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Note that curvatures in the above expression are constructed from the brane metric g ;.

Finally putting together equations (2.4), (2.31) and (2.32) while using the derivative
expansions for the bulk and brane metrics and curvatures as well as the constraint (2.34)
and integrating over the radial direction p we get

— R K i d
[ind = ddx vV — g |:167TGd + ﬁ(R”R] — ll(d——l)RQ) + - :| . (238)

The ellipsis in the induced action (2.38) are of order O(9°) and higher and

1 20 f(R &3 "(R
1_ 2SR FRo), (2:39)
Gqg d—2 Ggn 4(d—2)2(d—4) Gar
with Ry is given by equation (2.35) and we have tuned the brane tension to be
d—1
/'(Ro). (2.40)

Trane = T~
b 47T5Gd+1

Note that all the curvatures in the induced action (2.38) are constructed from the brane
metric g;;. Also, since the effective Newton constant and the brane tension are positive,
then f’(Rp) and consequently the coupling k; are positive. So far, we have found the
effective Newton constant of the brane Gy in terms of the bulk gravitational constant
Ggy1. Moreover, we have an additional parameter x; on the brane which is expressed in
terms of bulk gravity parameters. It is worth to mention that the expression (2.38) for
the induced action has the same form as previously obtained for the induced action (2.23)
in Einstein gravity. However, the effective Newton constant G4 and the coupling x; have
different definitions in terms of the bulk gravitational couplings.

Now, in order to calculate the leading term and the first subleading term of the en-
tanglement entropy of a general surface on the brane with f(R) gravity in the bulk, we
need to find the appropriate entropy functional for the bulk surface o and then extremise
the functional to find holographic entanglement entropy [125]. A natural guess with a
general covariant Lagrangian £(g, R, VR, ---) would be the Wald entropy formula (2.28).
However, this is known not to be correct in general [125]. In general, one must add terms
involving the second fundamental forms of the boundary of ¢. However there is evidence
such terms do not occur for f(R) gravity, e.g., using a novel method called squashed cone,
it has been shown in [97] that for the bulk action of the R? form, which is specific form
of f(R), no extrinsic curvature appears in the entanglement entropy. Also performing a
field redefinition, one can show that f(R) gravity can be transformed into a pure Einstein
gravity minimally coupled to matter [210]. For the latter, the entropy functional is simply
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A/AG and transforming back yields no IC terms. Therefore, we assume in order to obtain
the entropy functional associated with the bulk surface o for f(R) gravity in the bulk, it
is enough to use the Wald entropy formula (2.28). This yields

1 x
S, = / -2y / dpV/hf (R), (2.41)
2Ga1 Js 1

where 3 are the coordinates along the entangling surface 3 and hap is the induced metric on
the codimension-2 surface o with its components are given by expression (2.17). Applying
Taylor expansion for f(R) and integrating over the radial direction p from the location of
the brane to infinity we get

B 0 a2 )7 d—2 o 1 o, o
SEE_Q(d—z)Gd+1/d y\/zf(RO)|:1+2(d_4) hpp+d_4h h/ab_'_ )
(2.42)

where we have used equation (2.25). Note that there is no f” term in expression (2.42),
since curvature squared term is absent in the derivative expansion (2.36).

Finally if we use equation (2.18) along with the expressions in (2.39) for the effective
Newton constant G4 and parameter k; we can rewrite the entanglement entropy (2.42) as
following

Spgp = AZ) + Ky / dd—2y\/ﬁ(2Riﬂ' 0 — 4 g KiKi) +0(0%). (2.43)
4Gd D J d—1

It is clear that the leading term is just the area law as it has been already conjectured in

[19]. Again one should note that the expression (2.43) for entanglement entropy has the

same form as previously obtained for the entanglement entropy (2.27) in Einstein gravity

in the bulk. The only distinction is that the effective Newton constant G5 and the coupling

k1 are defined differently in terms of bulk parameters.

Moreover, the first subleading term can also teach us an interesting lesson: Let’s evalu-
ate the Wald entropy associated to the entangling surface > by directly applying the Wald
formula (2.28) for this surface which is a codimension-2 hypersurface on the brane with
induced action (2.38). Doing so, one obtains

5= A5 | ah(2r7g5 - 25 R) + 0. (2.44)
4G, > d—1

where we have used the following identities:

Einé;” = —3is £i;69 = —2. (2.45)
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Now comparing equations (2.43) with (2.44), it is evident that the entanglement entropy for
a general surface agrees to the Wald entropy up to the extrinsic curvature terms. In fact,
if the entangling surface is a Killing horizon, for which extrinsic curvatures are vanishing,
then both entropies coincide. However, for a general entangling surface, the Wald entropy
does not give the whole entanglement entropy for the surface; there are some contributions
to the entanglement entropy from non vanishing extrinsic curvature terms which they do
not appear in the Wald entropy. Indeed, the fact that the entanglement entropy cannot
be completely extracted from the Wald formula has been recently studied in [182, 97, 64].

2.3.3 Gauss-Bonnet gravity

In this section we analyze another higher curvature theory of gravity in the bulk. In
particular, our discussion will focus on Gauss-Bonnet (GB) gravity, and as before, we
regard the latter as simply a convenient toy-model which may provide some insights into
more general bulk theories. The bulk action is given by

1 d(d—1) L2\
s —— [ d V-G | —— —_— ab 2.4
bulk — 167TGd+1 / Z G |: L2 + R+ (d _ 2)(d _ 3) X4 + surf ( 6)

where Y4 is proportional to the four-dimensional Euler density,
X4 = RuvpeR*™" —4R,,R”7 +R>. (2.47)

The detailed form of the surface term Ig7, is given in equation (2.83). Now with the
above bulk action, we showed in section 2.6.1 that the induced gravity action for the RS2
braneworld becomes

d K
ind = / diay {16 Ga <R”R” mR2> * 22 CimC™™ + 0(86)}
(2.48)
where Cjji; is the Weyl tensor of the brane geometry. The d-dimensional Newton’s constant
and the couplings for the curvature-squared terms are defined in equations (2.103-2.105).

The prescription for the holographic entanglement entropy is modified for GB gravity
[124, 59]. In particular, it still involves extremizing over bulk surfaces as in the original
prescription (2.9) but the functional to be evaluated on these surfaces is no longer the BH
formula. Rather the latter is replaced by the following expression:

1 2 L2\ 2L2%2)\
S = 42y d \/E{qu—R n /IC, 2.49
J zc;dﬂ/a var d==3 ) T a=@=—3)Gm o O
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where R is intrinsic curvature of the bulk surface o, IC is the trace of the second fundamental
form on the boundary of o, which coincides with the entangling surface ¥ on the brane.
In equation (2.49), we already introduced a factor two to account for both copies of AdS
space on either side of the brane. Apart from this factor of two, we note that S;,, was
derived to describe black hole entropy in GB gravity [137] but it only coincides with Siyq
for surfaces with vanishing extrinsic curvature [124].

As before, we assume that the background geometry on the brane and the entan-
gling surface ¥ are big enough such that equations (2.14) and (2.19) are satisfied. Then
derivative expansion can be applied to make a Taylor series expansion of the intrinsic and
extrinsic curvatures, R and KC, however, we relegate details to section 2.6.2. Substituting
equations (2.115) and (2.117) into equation (2.49) and integrating out radial direction p,
yields

A) -2, /7 |opis 5 d
= d h|2RY g;: — —— KK, 2.
SEE 4Gd + R1 /j y\/_ R g’Lj d _ 1 R ( 50)

—[. . . 1
+ 4k / d=2y\V/Iy {h“chdeabcd — K, K%+ d—KZ } +0(0Y).
. _

Again, we find that in this RS2 model, the leading contribution to the entanglement
entropy evaluated for arbitrary large regions is given precisely by the Bekenstein-Hawking
formula (2.1), in agreement with the conjecture of [19]. As in the previous section, we
can also compare above result with the Wald entropy (2.28) for the induced gravitational
action (2.48). Again Sgp and Sy, match except that the extrinsic curvature terms above
do not appear in the Wald entropy.

As a final note, it is amusing to observe that the geometric terms appearing in equa-
tion (2.50) are almost the same. Using the geometric identities provided in section 2.6.2,
we can write

ij ~ d i
QRjgi?—d R—- K'K; = (2.51)
d—2 4 1 .
hachbdca . Kt Kiab _KZKZ — R«
d—S{ bed = Baphi T F T 5]

where Rs denotes the intrinsic Ricci scalar of the entangling surface 3. Given this expres-
sion, equation (2.50) can be rewritten as

AR d-2 oo ]
S = o 3" /d yVh Ry (2.52)

— . 1
+ K3 / 42y {h“chde’abcd— LK —— KK } +0(0Y),
b))

d—2
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where

d—2 2 Cr
d—3"" 7 T(d—2)(d—3)(d—4) 61"

The last expression for the new coupling k3 comes from combining equations (2.104) and
(2.105). Now it is interesting to consider this result in the special case d = 4. In this case,
the k, couplings are all dimensionless, but at the same time the expressions that we have
provided above and in section 2.6.1 are not quite correct — they all appear to diverge
because of a factor 1/(d—4). Re-visiting the derivation of these expressions, one finds that
in fact these couplings contain a logarithmic dependence on the cut-off §. In particular,
we write for d = 4:

R3 = 4:‘€2 + — (253)

a; C
fr = =5t log(pd), Ky = ——log(ud). (2.:54)

where p is some renormalization scale. Further note that with the normalization chosen in
equations (2.86) and (2.87), the central charges, Cr and a} match precisely the standard
central charges appearing in the trace anomaly, i.e., a}; = a and Cp = ¢ [185, , 3.
Hence, the entanglement entropy (2.52) becomes, for d = 4

A(Y)
4G,

_log(ud) “5 [ yVh (c [ﬁ“cﬁbd@bcd— N N KZK] —aRi) +

S (2.55)

d—2

We can recognize the second term above as the universal contribution to the entanglement
entropy of a four-dimensional CFT [219]. Actually, the attentive reader may notice that
there is an extra overall factor of two, which arises because there are actually two copies
of the CFT corresponding to the two copies of AdS space.

2.4 Beyond the Area

Recent progress has revealed an interesting interplay between entanglement entropy and

renormalization group flows, e.g., [185, , 46, 47, 48, , ]. One important result is an
elegant proof for the c-theorem in two dimensions [245] formulated in terms of entanglement
entropy [10, 17]. In particular, one begins by considering the entanglement entropy on an

interval of length ¢ and then evaluates

Co(t) = £0,S(0). (2.56)
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If the underlying field theory is a two-dimensional CF'T, then (5 is a constant independent
of ¢ and in fact, 3Cy = ¢, the central charge characterizing the CFT. Now in general,
if one assumes only Lorentz invariance, unitarity and strong subadditivity [1(4], one can
demonstrate [10, 17]

0,C5(¢) <0. (2.57)

Therefore comparing C5 found at short scales with that determined by probing the system
at long distances, one has [C5],,,, > [C5],, and of course, if the underlying field theory
describes an RG flow connecting two fixed points, then the same inequality holds for the
corresponding central charges. In an exciting recent development, [18] extended this con-
struction to prove an analogous c-theorem which had been conjectured for three dimensions
[185, , , ]. In three dimensions, one considers the entanglement entropy of a disk
of radius R and arrives at the following construction [1&, ]

C5(R) = RIpS(R) — S(R) (2.58)

which yields an interesting (constant) central charge in the case where the underlying
theory is a CFT. In general, again with the assumptions of Lorentz invariance, unitarity
and strong subadditivity, one can establish the following inequality:

OrC3(R) = R0%2S <0, (2.59)

which establishes the three-dimensional version of the c-theorem.

Now, turning to higher dimensions, one can observe [184, 121] the inequality (2.57) will
still apply in any situation where the background geometry preserves Lorentz symmetry in
a plane and the entangling surface is chosen as two points (spacelike) separated in this plane
by a distance ¢. The simplest example to consider is a ‘strip’ or ‘slab’ geometry in R?, i.e.,
the entangling surface is chosen to be two parallel (d—2)-dimensional planes separated by a
distance ¢ along the z-axis — see figure 2.2a. As before, one can evaluate the entanglement
entropy for the region between the two planes and then construct the function Cy(¢), as in
equation (2.56). However, note that Cy(¢) will not be a constant even when the underlying
theory is a CFT for d > 3 [184]. The geometric approach of [16, 17] only relies on making
Lorentz transformations in the (¢, x)-plane and then comparing entropies for different pairs
of planes. Hence with the same assumptions of Lorentz invariance, unitarity and strong
subadditivity, the inequality (2.57) again holds in this situation.

Similarly, the inequality (2.59) will apply in higher dimensions, as long as the back-
ground geometry preserves Lorentz symmetry in a three-dimensional Minkowski subspace
and the entangling surface is chosen as a circle in a spacelike plane in this subspace (with-
out any additional structure in the extra dimensions). Of course, the simplest example to
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(a) (b)

Figure 2.2: Panel (a) shows the slab geometry on a constant time slice. The entangling
surface consists of two parallel (hyper)planes separated by a distance ¢. The reduced
density matrix is calculated for the region V' between these two planes by integrating out
the degrees of freedom in the exterior region V. Panel (b) shows a cylindrical entangling
geometry with radius R. In both cases, the distance H is introduced to regulate the area
of the entangling surfaces.

consider is a cylindrical entangling surface in R?, i.e., the (d — 2)-dimensional entangling
surface has topology S! x R473 as shown in figure 2.2b. Here the approach of [15] can
again be applied to establish the inequality (2.59) for C3(R), which is again constructed
as in equation (2.58).

In the following, we will consider testing our holographic results for the RS2 model
with the above inequalities, (2.57) and (2.59). In this case, the bulk geometry will still
be empty AdS space and so we are not considering a nontrivial RG flow in the boundary
CFT. However, in comparison to [10, 47, 48], there are unconventional aspects of the
present calculations, including that the underlying degrees of freedom include gravity and
that the boundary CFT has an explicit cut-off . On the other hand, it seems that the
basic assumptions of [16, 17, 18] still seem to apply in the present context, i.e., Lorentz
invariance, unitarity and strong subadditivity. Hence we will find that demanding that our
results for slab and cylindrical geometries satisfy equations (2.57) and (2.59), respectively,
provide new insights into our model. For simplicity, we will only present our calculations
for the case with Einstein gravity in the bulk.
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2.4.1 Slab geometries

We begin by considering the slab geometry shown in figure 2.2a for d > 3. We will denote
the separation of the two planes on the brane as ¢ and reserve ¢ to denote the corresponding
distance on the AdS boundary in our holographic calculations. Note that from our previous
calculations, we can expect that the BH term (2.1) will appear as the leading contribution
in the entanglement entropy, i.e.,

Hd—2
S =
EE 9 Gd

TR (2.60)

where H% 2 corresponds to the regulated area of one of the planes and hence the total area
of the entangling surface is A(X) = 2H%2. Note that this leading term is independent of
the separation ¢ and so Cy (57) depends entirely on the higher order terms in equation (2.60).
Further, since the background geometry is flat space and the entangling surface itself is flat,
any higher order geometric contributions, like those explicitly shown in equation (2.52),
will vanish. Hence the contributions that we are probing in our calculations here should be

thought of as coming from long-range correlations in the CFT. From previous holographic

calculations [181], we can expect that to leading order, Cy(¢) takes the form
. Hi=2 I(5a1)
Co(l) =" Op =—— 4+ -+, with y= —2"2 (2.61)
g2 2V T (55)

As the corresponding holographic calculations have been extensively described else-
where, e.g., [204, , ], our description here is brief. To begin, we write the AdS
metric in Poincaré coordindates

52
dsi, = s (—dt* + da® + di + d2?) . (2.62)

where y* with i = 1, 3, -- -, d — 2 describe the directions parallel to the entangling surface.
In the standard holographic calculation, one sets the planes defining the entangling surface
at x = (/2 and x = —{/2 where ¢ denotes the separation at the AdS boundary z = 0. As
above, we set the area of each of the two planes to be H%2, where H is an arbitrary IR
regulator with H > ¢. As usual, the entanglement entropy is evaluated with equation (2.9)
and area is extremized by a bulk surface with a profile z(z) satisfying

d—1
o = - . (2.63)

\/(75)2@1—1) — »2(d-1)
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For d > 3, the final result can be written as

- (2<2d_—d1>’%’ =) (%>H> 5 (%)] .

where the effective d-dimensional Newton’s constant is given by equation (2.8). If this
expression is expanded for § < ¢, we recover the expected area law, as in equation (2.60).
Now this result is written in terms of ¢, the separation of the two planes on the AdS bound-
ary, whereas we would like to express the results in terms of 57, the separation on the brane.
The relation between these two distances is readily found by integrating equation (2.63)
between z = 0 and z = ¢, with the final result given by

= [1 -3 (%) ofi (é T (%)()H - e

Given equations (2.64) and (2.65), figure 2.3 plots the results for Sgg, Cy and 9;Cs in
terms of £ /9, for d > 3. The plot of the entanglement entropy confirms that Sgz — So =
H%2/(2G) asymptotically for £/§ — co but note that Sg — Sy < 0 for all values of /.
Further Sy goes to zero at ¢ = 0, as would be expected since the region V' has shrunk
to zero size at this point. Now the plot of C’Q(g) shows that it is increasing for relatively
small separations, i.e., / < 0, and it decreases for large values of (. Hence in the next plot,

we see J;Cs is negative as required when the separation is large. However, we also find
0;Cy > 0 for £ S 0.

Presumably we have found an inconsistency in our model for small separations, i.e.,
¢ ~ §. Of course, it should not be surprising to find unusual behaviour when the width
of the slab is of the same order as the short-distance cut-off. In particular, with this
intrinsic cut-off, the model has only a finite resolution of order ¢ and hence it is not
actually meaningful to consider evaluating the entanglement entropy for the slab when
1 < §. Essentially the assumption of strong subadditivity is lost at this scale because we
cannot effectively distinguish the degrees of freedom inside and outside of the slab. The
fact that 9;Cy becomes positive in this regime is simply pointing out this limitation of the
model.

2.4.2 Cylindrical geometries

In this section, we examine the entanglement entropy for a cylindrical entangling surface
with d > 3, i.e., ¥ = S!' x R in a flat R? background, as shown in figure 2.2b. We
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Figure 2.3: Sy, Cy and CY) = §0;Cy as a function of { for d = 3, 4,5,6. The vertical axes
are normalized with Sy = %_; The first plot confirms that for ¢ > 4, the dominant
contribution in entanglement entropy is the BH term, i.e., Sp. Also the last plot reveals

that C) becomes positive for ¢ < 4, indicating a limitation with this model.

will denote the radius of the circle on the brane as R while R will be the corresponding
radius on the AdS boundary. equation (2.52) indicates that the leading contributions to
the entanglement entropy should take the form

TR Hi3 d—3 H¥3
9 _ e 2.
See el 7m3d 5 + , (2.66)

where H is the scale which regulates the area of 3, ie., A(X) = 2rR H*3. Hence we expect
that for large radius (R > §), the BH area term (2.1) will be the leading contribution to
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Sges. However, note that the construction of C3 in equation (2.58) is designed to precisely

remove the area term for the cylindrical geometry [165] and so to leading order, we expect
d—3H3

C3=4 — R 2.67

3= 4K T 7 + (2.67)

Hence in this case, C3(R) contains geometric terms arising from short-range correlations
across the entangling surface, as well as nonlocal contributions coming from long-range
correlations in the CFT.

To begin the holographic calculation, we write the AdS metric in Poincaré coordinates

as,
2

)
alsir1 =2 (—dt2 + dr? 4+ r?d¢* + dif? + sz) ) (2.68)

where y* withi = 1, 3, - - -, d—3 describe the directions parallel to the entangling surface. In
the standard holographic approach, one would define the entangling surface with r = R at
the AdS boundary z = 0. The entanglement entropy is then evaluated with equation (2.9)
and we consider bulk surfaces with a profile 7(z). The induced metric on such a bulk
surface then becomes

2
sy, = % [(1+77(2)) dz* + r°d¢” + di?] . (2.69)

Using equation (2.8), the entanglement entropy can then be written as

AS) ([d=2)0 [ rVIdr?

S - 4Gd R 5 Zd_l ’

(2.70)

where z, is the maximum value of z where the surface reaches » = 0 and closes off in the
bulk. The above functional can be used to derive an equation of motion in order for the
profile r(z) to extremize the area:

rr’ — (1 + 7"7"’) (1+7?)=0. (2.71)

The latter must be solved subject to the boundary conditions r(z = 0) = R on the AdS
boundary and ' = 0 at r = 0 to ensure that the surface closes of smoothly in the bulk.
For d = 3, one can obtain an analytic solution, since the calculation is a special case of

the analysis given in section 2.6.3 — also, see below. For d > 4 and R > ¢, we can find
the expansion of r(z) and hence of entanglement entropy (2.70) in inverse powers of R/0.
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We checked that the leading and next-to-leading terms match equation (2.66), which was
based on our general geometric formula (2.52).

However, in general, we had to resort to numerical methods to solve for the profile and
the entanglement entropy. Further, one must integrate the profile from z =0 to z = ¢ to
determine the relation between R and R.
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Figure 2.4: Sy, C5 and C5 = 603C5 as a function of R for d = 3,4,5,6. The vertical
axes are normalized with Sy = A(X)/(4G4). The plot of Sy confirms that for R > 6, the
dominant contribution is the BH term, i.e., Sg. The last plot reveals that for d = 4,5, 6,
C4 becomes positive for R < 8. Also note that for d = 3, C} is positive for all R.

Figure 2.4 shows plots of Sgg, C3 and its derivative as functions of R for d = 3, 4, 5,
and 6. The entropy plot confirms that entanglement entropy is always positive and finite in
terms of the radius of the circle on the brane. It goes to zero at R = 0, as expected since the
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interior region shrinks to zero, and it is bounded from above by the leading BH contribution
shown in equation (2.66). Moreover, for d > 4, Cj is increasing when the radius of the
circle is small relative to the cut-off scale, i.e., R < ¢, while it starts to decrease when
the radius is large. Hence, we find 03C3 < 0 for large R, as required, but 03C5 becomes
positive for R < 9. However, this problematic behaviour can be explained, as before, by the
finite resolution intrinsic to the RS2 model. Our results for the entanglement entropy are
not meaningful when R < § because the model cannot effectively distinguish the degrees
of freedom inside and outside of the cylinder. Note, however, that d = 3 is a special case
with 0;C3 > 0 for all values of R. Clearly, this case requires further explanation, which
we reserve for the following section.

2.4.3 Results for d =2 and 3

Both the slab geometry for d = 2 and the cylindrical geometry for d = 3 are special cases.
In particular, both cases appear to be problematic from the point of view of the analysis
in this section. We found above that 0;C3 > 0 for all radii in d = 3 and below we will
show that 0;Cy > 0 for all separations in d = 2. Another distinctive feature of these two
cases is that the calculations can be done completely analytically, as they are both special
cases of the analysis given in section 2.6.3.

Hence let us present the analytic results. For d = 2, the entanglement entropy for the
slab geometry becomes

8 A R

2

8 ~ J ~
;C’T {10g<€/5)+£~—2+~-} for £>> 6,

12

where Cr is the central charge given by equation (2.86). Given this result for Sg;, we find

2
o, — 8Cr _ l 280T {1_£+...} , (2.73)
9 2
oo, - B0r_ 8 L 3T (2.74)
7 T - 3/2 T 3
(62 + 452)
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where the approximate expressions apply for {>4. Similarly, we obtain a simple expres-
sion for entanglement entropy for cylindrical geometry in d = 3

Rz
Ser = 8Cr ﬁ +1-—-1 (2.75)

o 5 )
~ 8Cr E—1+—~+ for R>9.
0 2R
We use this expression for Sgy to calculate
) )
Cg = SCT 1—~— ZSCT 1—=4+--- 5 (276)
V R? 4 42 R
R6 5
(7o + ) R

We have again also presented the leading terms in an expansion for R > 4.

Since the expressions in equations (2.74) and (2.77) are both positive, it is evident
that the inequalities in equations (2.57) and (2.59) are never satisfied in these two cases.
Further, as noted before, it is clear the finite resolution ¢ will not resolve this discrepancy
since these violations occur for arbitrarily large regions. A common feature of both of
these cases is that the gravity theory on the brane is somewhat unusual, i.e., for d = 2
and 3, there will be no propagating graviton modes on the brane. While this feature may
make these theories seem somewhat pathological, we do not believe that the failure of
the inequalities is tied to this peculiar property. In particular note that, with the slab
geometry, we still found that equation (2.57) is satisfied for d = 3.

Instead, examining the large size expansions in equations (2.72-2.77), we find that
in these two special cases, the inequalities are probing contributions to the entanglement
entropy that contain positive powers of the cut-off (in the long-distance expansion). That is,
equation (2.74) is controlled by the 62/ term in equation (2.72) for large ¢, while the §/R
term in equation (2.75) dominates the result in equation (2.77) at large R. This contrasts
to the cases where equations (2.57) and (2.59) were satisfied. As shown in equation (2.61)
for the slab geometry, we found the leading contribution to Cs was independent of §. For
the cylindrical entangling surface, equation (2.67) shows that the leading contribution to
Cs is controlled by 3, which is proportional to 1/§9°* for d > 4 and to logd for d = 4.
Further, we might note that such contributions with positive powers of ¢ would be dropped
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in standard AdS/CFT calculations because they vanish in the limit § — 0. Let us also
observe that similar terms are also becoming important where the previous calculations
fail to satisfy the desired inequalities, i.e., when ¢, R < 6.

Hence the calculations of 9;C; for d = 2 and 9;C5 for d = 3 are scrutinizing the RS2
model in an essentially different way from the previous calculations. In particular, the
problems with equations (2.57) and (2.59) indicate that we are probing the RS2 model
beyond its proper regime of validity. We expect that the culpable feature in our framework
responsible for this bad behaviour is the superficial treatment of the cut-off § as a discrete
surface in the AdS bulk. For example, in a stringy construction [238, , , , 0],
the AdS space would extend smoothly into some complex UV geometry. Of course, un-
derstanding the dual description of such a construction would also be more difficult. In
particular, an interesting question would be finding the appropriate definition of the holo-
graphic entanglement entropy to replace equation (2.9). Given the conjecture of [19], it
seems that one should simply consider applying the BH formula (2.1) to some surface in
the extended geometry. However, it remains to find some principle that would select the
appropriate surface in the UV geometry. Given this reasoning, another perspective on our
problems with equations (2.57) and (2.59) would to say that the standard holographic pre-
scription (2.9) for the entanglement entropy must be supplemented by order § corrections
when calculating Sk in the RS2 braneworld — not a particularly surprising conclusion.

2.5 Discussion

In this chapter, we used the Randall-Sundrum II braneworld as a framework to study
the conjecture [19] that in quantum gravity, the entanglement entropy of a general region
should be finite and the leading contribution is given by the Bekenstein-Hawking area law
(2.1). As this braneworld model has a dual description in terms of gravity in an AdS
bulk, we were able to apply the usual prescription for holographic entanglement entropy
to show that this conjecture is realized in this model. The validity of this result required
that the curvatures of the brane geometry were small relative to the cut-off scale, as in
equation (2.14). Further, the geometry of the entangling surface, i.e., the boundary of the
region for which Sgg is being calculated, must also be sufficiently smooth as expressed in
equation (2.19).

The entanglement entropy of general regions also shows interesting structure beyond
the area law term. In section 2.3, we extended our holographic calculations to find the
leading corrections to the BH term, which involve integrals of background and extrinsic
curvatures over the entangling surface. One notable feature of the general result shown in
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equation (2.3) is that the (dimensionful) coefficients of these correction terms in Sy can
be expressed in terms of the gravitational couplings of the curvature-squared coefficients in
the induced gravity action. The latter action was derived in section 2.6.1 and the general
form of our results is given in equation (2.2). It is natural to compare the Wald entropy
(2.28) of this gravity action with the entanglement entropy and we found

See = Swaa — / ddiQ:U\/Z {51 KiKz’ + 4 Ko (KébKiab - ﬁK1K1>] +oeee (2'78)
5 _

That is, Syw.q and Sgp match except that the extrinsic curvature terms appearing in the en-
tanglement entropy are absent in the Wald entropy. However, since the extrinsic curvatures
of a Killing horizon vanish, this means that we will find Sgz = Syaq if the entanglement
entropy is evaluated on such a horizon, e.g., of a stationary black hole. Of course, this
conclusion reinforces the results of [70, | that horizon entropy can be interpreted as
entanglement entropy in the RS2 model. Further, our result is perhaps natural given that
the ‘off-shell” approach [10), | to evaluating horizon entropy is constructed to take the
form of an entanglement entropy calculation and further when this approach is applied in a
higher curvature gravity theory, it reproduces precisely the Wald entropy [185, |. Given
that the extrinsic curvature terms in Sk also appear multiplied by the gravitational cou-
plings, it would be interesting to construct an analogous ‘derivation’ which also produces
these terms for a general horizon or a generic entangling surface.

As an indication of the robustness of these results, we compare equation (2.3) with
a perturbative calculation of the holographic entropy functional for a general curvature-
squared gravity action in the bulk [124]. Following the reasoning of [19], this entropy
functional should represent the leading contribution to the entanglement entropy for general
regions in the AdS spacetime. Hence it is interesting to compare the result emerging
from the two different calculations for consistency. Their analysis begins with a general
curvature-squared action for a five-dimensional gravity action, which for convenience we
write as

1
I =
167TG5

12 y y
/ &z /=g {ﬁ + R+ L* (M CijC™ + My RijjR7 + A3 R?) | . (2.79)

The (dimensionless) couplings of the curvature-squared terms were assumed to be small,
i.e., A23 < 1, and the calculations were only carried to out to linear order in these cou-
plings. Note that the action above contains a negative cosmological constant term and so
the vacuum solution is an AdSy spacetime. Considering the AdS/CFT correspondence in
this context, the objective in [121] was to determine the appropriate prescription for holo-
graphic entanglement entropy. By demanding that this prescription produce the correct
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universal contribution to the entanglement entropy in the dual four-dimensional CFT, as
appears in equation (2.55), the following entropy functional was constructed

2
Alo) + L / &Eavh [2A1 (A% Capea — KK ™)

Ser 4Gy 4G5

+ M RYg5 420 R+ a K'K;] . (2.80)

where o denotes the extremal surface in the AdS bulk. Now comparing this result with
equation (2.3) with d = 5, we find agreement for the leading area term, of course, and
further the terms involving the background curvatures match the Wald entropy in both
expressions. A more interesting observation is that the coefficient of the K¢, K;% term
precisely matches in both expressions, i.e., this coefficient is the same as that of the Weyl
curvature term but with the opposite sign. Unfortunately, no comparison can be made for
the K'K; term because the coefficient o above remains undetermined in equation (2.80).
This ambiguity arises because the calculations yielding equation (2.80) were only linear in
the higher curvature couplings, whereas fixing o would require a higher order calculation
because the leading order equations extremizing the surface set K* = 0.'* However, the
fact that the two independent calculations agree on the coefficient of the K!, K;% term
seems to hint at the universal structure of the extrinsic curvature contributions in Sgg. It
is also revealing that there are no additional contributions to Sgg of this form for the action
(2.79) where the couplings A and A3 are completely independent, whereas with d = 5, we
have A3 = —2 X2 in equation (2.2).

Given equation (2.78), it is interesting to examine the sign of the extrinsic curvature
corrections to Sgg. For simplicity, let us assume that we are considering the entangling
surface on a fixed time slice in a stationary background, i.e., the time-like normal will not
contribute to the extrinsic curvatures. In this case, both of the geometric expressions in
equation (2.78) are positive (or vanishing).!” Hence the sign of the extrinsic curvature term
depends on the sign of the gravitational couplings, k1 and ko. In particular, Sgr < Sy.q for
k1, ke > 0. Hence this inequality is satisfied for the RS2 model constructed with Einstein
gravity and also f(R) gravity in the AdS bulk — see equations (2.108) and (2.39). However,
the couplings for the RS2 model with GB gravity in the bulk are given in equations (2.104)
and (2.105) and in this case, it is clear ko will be negative when the GB coupling A is
negative. A closer examination also shows that x; will become negative in d > 5 if A

18The suggestion was made in [124] to set o = 2); in order to simplify the equations determining the
extremal bulk surfaces. Of course, this choice would disagree with the results in equation (2.3).

191f we denote the eigenvalues of K, for the space-like normal as k,, then K'K; = (3, ko) and
KL K — S KK = Y k2 — 225 (3, ka)®. The latter can be shown to be positive or zero using
Lagrange’s identity.
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becomes sufficiently positive. Hence for these models, the extrinsic curvature corrections
in equation (2.78) do not have a definite sign. Of course, in dynamical circumstances, e.g.,
in a cosmological setting or for an expanding black hole, the time-like normal will also
generically contribute nonvanishing K, and in such a situation, the geometric expressions
in equation (2.78) are no longer guaranteed to be positive. Hence it does not possible to
make a general statement about the sign of the extrinsic curvature corrections and hence
about the relative magnitude of Sgr and Syq.

It may seem desirable to establish an inequality of the form Sy < Sy.q as this would
be inline with the intuitive statement that ‘black holes are the most entropic objects’ in the
corresponding gravity theory, as might arise in discussions of the Bekenstein bound [15] or
holographic bounds [28, 29] on the entropy. Hence although the conjecture of [19] suggests
that in theories of quantum gravity, Sy is finite and closely related to the Bekenstein-
Hawking entropy (2.1), the previous discussion seems to indicate that entanglement entropy
alone is not the correct quantity in which to frame such discussions. In particular, in
examining entropy bounds, it seems crucial to relate the appropriate entropy density to
the stress-energy tensor [90], which would not be achieved by, e.g., quantum correlations
in the vacuum. Hence it seems a more refined measure of the entropy is required for such
discussions [15, 21].

As an aside, let us add that [95, 96] suggested that extremal surfaces should play an
important role in combining entanglement entropy and quantum gravity. That is, the
leading contribution to entanglement entropy should be given by the BH formula (2.1) but
only when the entangling surface is an extremal surface. This contrasts with the present
perspective [19] where extremal surfaces do not seem to play a special role. Certainly, our
calculations in the RS2 model establish Sgx = A/(4Gy) + -+ for arbitrary surfaces, not
only event horizons. Further, while K* = 0 for an extremal surface, this does not eliminate
all of the extrinsic curvature corrections in equation (2.78).

As a final note, we remind the reader of the various limitations appearing in our cal-
culations. First of all, our results in equations (2.2) and (2.3) rely on the geometries of
both the background and the entangling surface being weakly curved, as described by
the constraints in equations (2.14) and (2.19). Further, the calculations in section 2.4 for
d = 2 and 3 revealed new limitations, in that, contributions to the entanglement entropy
at O(d/R) appear unreliable. It would appear that this problem could be resolved by con-
sidering a stringy construction [238, , , , 0] which emulates the RS2 model. In
particular, such a construction would give a better understanding of the geometric cut-off
in the AdS geometry. It would be interesting if this approach also gave some new insights
into the standard holographic prescription (2.9) for entanglement entropy. The discussion
in section 2.4 also showed that there are basic limitations to assigning an entanglement
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entropy to spacetime regions, which are generic rather than being specific to the RS2
model. In particular, one expects that any theory of quantum gravity will only distinguish
different regions of spacetime with some finite resolution and so one will not be able to
meaningfully assign an entanglement entropy to arbitrarily small regions (or regions de-
fined by geometric features which are arbitrarily small). We note that the assumptions
of strong subadditivity, Lorentz symmetry and causality lead one to conclude that if the
entanglement entropy of any arbitrary region in flat space is finite then it must be given by
precisely Spp = co.A + ¢1, where ¢y and ¢; are universal constants [11]. Hence the ‘failure’
of the putative entanglement entropy for arbitrarily small regions in section 2.4 is actually
an essential ingredient to providing a nontrivial result (2.3) at large scales.

2.6 Supplementry material for chapter 1

2.6.1 Induced Gravity Action

In this section, we use the Fefferman-Graham expansion given in equations (2.10) and (2.11)
to explicitly evaluate the first few contributions in the derivative expansion of the induced
gravity action (2.6) on the brane. In the following, we consider a bulk theory with higher
curvature interactions, namely Gauss-Bonnet (GB) gravity [167, 166]. One should regard
this theory as a toy model which may provide some insights into more general holographic
CFT’s. In particular, having a curvature-squared term in the bulk results in the boundary
theory having two independent central charges [189, 22]. In part, this feature motivated
several recent holographic studies of GB gravity, e.g., [34, 30, 35, 57, 41, 58, , 12]. Of
course, the results for Einstein gravity (2.22) are easily obtained from the following by
taking the limit where the higher curvature coupling vanishes.

The GB gravity action in the bulk takes the form?°

d(d—1) L2\
d+1 GB
/d zV -G {—2 + R+ ( %) 3) Xa| +Lgyp- (2.81)

GB  _ 1

where x4 is proportional to the four-dimensional Euler density,

X4 = RuvpR"™" — 4R, R +R>. (2.82)

20 As in the main text, calligraphic R and K are used to denote bulk curvature and the second fundamen-
tal form of the brane, respectively. Recall that there are two copies of the AdS geometry and so implicitly,
we assume that bulk integral runs over both copies and surface integral is carried over both sides of the
brane.
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This curvature-squared interaction in the bulk requires higher curvature contributions in
the surface action [179, |, which appears along with the standard Gibbons-Hawking-
York term for the Einstein-Hilbert action,

L* )\ g
JoB . — d 2 " (4 — ICH 2.
surf 167TGd+1 /d T/ — |: }C+ —2)(d—3) ( RK —8R;;K (2.83)

—gic?’ + 4K, K — gicij/cjklcikﬂ ,

where g;; corresponds to the induced metric on the brane.

While L sets the scale of the cosmological constant in equation (2.81), one easily finds
that the AdS curvature scale is actually given by
L? 1—+v1—4\

2 _ _
=1L foo where f, = o

Here we are using the relation § = L which holds for the RS2 model, as discussed in section
2.2. Note that we chosen f, such that with A — 0, f», = 1 and so we recover L = L
in this limit. Implicitly, f. is determined as the root of a quadratic equation and we are
discarding the other root since with this choice, the graviton would be a ghost and hence
the dual CFT would not be unitary [27, , 180]. Further, constraints on the holographic
construction limit the GB coupling to lie in the following range, e.g., [3/]

(2.84)

_Bd+2)(d=2) _, _(d=2)(d=3)(d>—d+6)

1(d+ 27 A = 3d+6) (2.85)

for d > 4. As noted above, one interesting feature of GB gravity (2.81) is that the dual
boundary theory will have two distinct central charges. Following [185, , 3], we define
these charges as:?!

e
S 1—2) 2.
Cr S Gunr [ fsl s (2.86)
w54t d—
o= = 1oty | 2.
ad 8Gd+1l i—3" ] (287)

The first charge Cr controls the leading singularity of the two-point function of the stress
tensor. The second central charge a}; can be determined by calculating the entanglement

21For convenience, our normalizations of Cr and aj are slightly different here than originally appears in
e.g., [185, , 34].
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entropy across a spherical entangling surface [185, |. In even dimensions, a} is also
proportional to the central charge appearing in the A-type trace anomaly [185, |. Note
that in the limit A — 0, Cr = a.

For GB gravity as presented in equation (2.81), the two unknown coefficients k; and ks
in equation (2.13) are given by [121]

P 3 Moo
b Ad-1)(d—-2)(d-3)(d—4) (1-2\fx)
4
ky = —3 (d—1) ky . (2.88)
Now the equations of motion for the metric in the bulk are given by
G d(d—1) L2\
L — 2.89
R =75 (R+ r Td-2ad-3" (2.89)
202 \

+m (RMUpTRVUpT o 2RMPRVp - QRMpVaRpJ + RR;W) =0.

Taking trace of these equations then yields

L2\ d(d+1)
— vy =—R— —~. 2.90
(d—2)(d—1) ™ 2 (2.90)
Hence, the on-shell bulk action can be written as follows
1 2d(d —1)
9% — _ 4/ —G [— R| + 21" 2.91
bulk 47TGd+1 (d _ 3) / T 12 + + surf ( )

where IG7; is given in equation (2.83). We have included an extra factor of two above, as
in equation (2.4), since we are assuming that the integrals above run over one copy of the
AdS space.

The outward-pointing unit normal at the cut-off surface, p = 1, is given by n, =
—+/Gpp0f,. Now one can readily evaluate derivative expansion of the second fundamental
form at this surface
p 0Gi

Kij = Vinjlpm = =5

1 d <n) 1 (n)
- SZ n) = (Gij — Zn i) (2.92)

where we are using L = 8. Recall that equation (2.15) gives the induced metric g;; on the
brane in terms of the FG expansion coefficients (2.11).

p=1
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Now, the general expansion of the curvature scalar requires rather tedious computa-
tions. However, we employ a shortcut since we will only carry the derivative expansion

to fourth order. In this case, we need only (éij and ?Z-j in the FG expansion (2.11). The
main observation for our shortcut is to exploit Einstein gravity in order to argue that for
any gravity theory in the bulk only terms proportional to k; and ks in equation (2.13)
contribute nontrivially at fourth order in the derivative expansion of the curvature scalar
while the second order term in such expansion vanishes independently of the details of the
bulk gravity theory.

Indeed, in the case of Einstein gravity (for which § = L = L), the Ricci scalar is
constant by the equations of motion, i.e., equation (2.90) yields R = —d(d + 1)/§? (with
A = 0). Therefore in the derivative expansion, coefficients of all higher order corrections
vanish. Furthermore, we observe that k1 = ke = 0 from equation (2.88) with A = 0.
Hence we may deduce that in the absence of k; and ks, the contributions that originate

from (é)ij and (é)ij cancel each other. Therefore with a general theory for bulk gravity, only
Weyl-squared terms in equations (2.12) and (2.13) can contribute in a nontrivial way at the
fourth order in the derivative expansion of the curvature scalar, whereas second order must
vanish identically. Now since the Weyl-squared terms already possess four derivatives, it
is enough to perform linear analysis to find the desired contributions in the expansion of
R. That is, first we rewrite equation (2.10) as

5 , 0%dp* 1 © D L
ds® = G datde” = T + — 9 i(x)datdr’ + 0Gy;(z, p) da'da’ (2.93)
p P
where, in principle, one has
W @ )
0G;j(x,p) =9 ij(x)+ Gij(x)p+--- = Z 9(z)p" . (2.94)
n=1

Then we can evaluate linear correction to R associated with dG;, however, for the present
purposes, we do not use the entire expression (2.94) but rather we keep only contributions

of the Weyl-squared terms appearing in (é)ij.

The first variation of the curvature scalar under G, — G, + 0G,, is given by
IR = —R"6G,, + V¥ (V"0G,, — V,0G",) , (2.95)

where covariant derivative V, is compatible with unperturbed metric G, which is also
used to raise and lower the indices in the above expression. In our case, the unperturbed
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Ricci tensor is given by

4d i PINC) d o,

R””Z—ﬁp27 RJ:p(pRJ[g]—§9”> , (2.96)
where indices in parenthesis are raised and lowered with (g(})l-j. Combining the above results
altogether, we find the following expansion for the curvature scalar to fourth order in the
derivative expansion:

d(d+1)

R =~ 52 + 4(d - 3) (d kl + k2) 52[72 Cmnk:lcmnkl + .- (297)

In particular, in the special case of GB gravity (2.46), it follows from equation (2.88) that
d(d+1) 1 Moo - "

62 (d—1)(d—2) (1—2xrfy) °F Fmmi + (2.98)

Next we substitute equations (2.92) and (2.98) into equations (2.83) and (2.91) and
then integrate over the extra dimension p in equation (2.91). The final result takes the
form

5 _12(d —1)(d — 2 2
20 = e [ ¢ova S 0 A
1 —6M/ 2 ij d 2
+(1+2>\foo)R+m5 <RZJR 4(d—1)R>
- (d_g)f% 6% Cij C7M 4 (9(86)] : (2.99)

Note that implicitly the above expression only contains the contribution from the lower
limit of the p integration, i.e., from p = 1. Our result coincides with the I™ terms in
equation (2.6) for n = 0, 1 and 2. Up to the Weyl-squared term, this boundary action is
identical to that found in [2412] for GB gravity. However, the Weyl-squared term was absent
in [242] simply because the analysis there only considers conformally flat boundaries. To
get the full induced gravity action (2.6) on the brane, we need to add Ij.qne to the above
expression. In the absence of any matter fields, the latter has the simple form

Tyrane = —Ty_1 / dr\/—3. (2.100)

Now for simplicity, we tune the brane tension to be

d—1 2
Tp1=———(1—2=A 2.101
= e (130 (2.101)
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so that it precisely cancels the cosmological constant contribution in equation (2.99). Com-
bining these expressions together, we finally obtain

d Ko
IGB — d / ; 2 2 y ijkl
ind / T |:16 Gd <R]R —4(d—1)R > + — o C’JMC’ +O(8 )
(2.102)
where the effective d-dimensional Newton’s constant is given by
1 20 142\ 1 d—2 —(d—3)a}
Gy d—2 Ggg m(d—2) §d=2
and the couplings for the curvature-squared terms can be written as
3 _ — Na* — (d —
oy = ) 1—06Afy _ 2 (d—3)a; — (d—4)Cr (2104)
4(d—-22(d—-4) Gagn w(d—2)%(d—4) ya—4
3 A 1 P
Ko = i Joo Cr —ag (2.105)

4(d—2)(d—3)(d—4) Gay1  2m(d—2)(d—4) o+

Now setting A = 0 above, we recover the induced action for Einstein gravity (2.22) in
the bulk

I,ﬁld—/ddm\/—LGde (RUR” ﬁ}#) +O(86)] : (2.106)

where the induced couplings can be written as

1 26 1 16 Cr

- - 2.1

Gi — d=2Cp, md—2) 52 (2.107)
3 1 2

Ky = d = r (2.108)

4d—2)2(d—4) Ggp1  w(d—2)*(d—4) 544
Note that in this case, induced gravity action does not contain a term proportional to the
square of the Weyl tensor, i.e., ko = 0.

2.6.2 Codimension-two Bulk Surfaces

In this section, we consider various curvatures associated with codimension-two surface o
in the bulk and evaluate their derivative expansion up to second order. The formulae that
we obtain here are useful in the derivation of equation (2.50).
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Recall that FG-like expansion of the induced metric on ¢ was given in equation (2.17).
Let us rewrite its components in the following way
©)

5 ha
hop = 35+ 0o hap = :

+ SRy - (2.109)

Here, we are again using L = 8, as is appropriate for calculations in the RS2 model, and
further we have defined

82 = 2 )
Ohog =7 hopt" 0 Sha =D hap" " (2.110)
n=1 n=1

(0)
As in equation (2.96), the Ricci tensor of the leading order metric h,g is given by??

4(d — 2 i 5700 d—2) ©,.
R 54—),02 R = plpRofh) - 22 5 Ly, (2.111)
Now applying equation (2.95) for the full induced metric (2.109) yields
d—1)(d—2 d—2)(d-3) ® 2(d—3) 0, o
R = —(;#—Fp<Rz+$ hpp—i_% B hab) +O<84)
(d—1)(d—2) d—3 1,0, d—2 ; 1
52 +p| Ry T 5 2 hRap d_lR—i—KKZ + O0(0%),

(2.112)

)
where we have explicitly substituted for h,g using equations (2.12) and (2.18) in the second
line. Here Ry denotes intrinsic curvature scalar for X. However, note that to the order
that we are working the latter is indistinguishable from the intrinsic Ricci scalar evaluated
for 3, the entangling surface on the brane, i.e., using equation (2.21), Ry = Rs + O(9%).

To evaluate the holographic entanglement entropy in section 2.3.3, it is useful to ap-
ply further geometric identities to re-express the first order term in equation (2.112). In
particular, we use the Gauss-Codazzi equation

[Rg]abed = Raped + KL Kipa — Ky K;pe (2.113)
along with
= e =l 2(d—3)~ d—3
hhPCopq = BRI R ypeq — %hbdﬁzbd + mR, (2.114)

iy ©)
#Indices of Ricci tensor R¥[1] are raised and lowered with h;;.
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where Cjj; denotes the Weyl tensor evaluated with the brane metric. Combined these
identities allow us to re-express equation (2.112) as

(d—1)(d—2)

R=— 5

~ o~ ) 1 .
+p (h“hbd(]abcd — K} K%+ EK’KZ) + 0% .  (2.115)

For the present purposes, the entangling surface Y is the boundary of the extremal
surface ¢ and so we now turn to evaluate the second fundamental form with the above
asymptotic expansion. The outward normal vector of 3 imbedded into o is n, = — \/h_pp or.
Hence, extrinsic curvature tensor takes the following form

0)

1 8hab h ap 1o

Kap = Vany = — = 1—— 00" , 2.116
b Ty 2\/h_pp ap p=1 (5 ( 2 hPP)+ ( ) ( )
whereas its trace is given by
d—2 1w 1 ©, ®
d—2 ) y d .
= — 2RY Gt — —— R — K'K; . 2.117
5 2(d—2)<R Gij =g It )+O< ) (2.117)

)
In the second line, we have explicitly substituted for h,s using equations (2.12) and (2.18).
We have also simplified the resulting expression using R = R* hq, + R g;;.

2.6.3 Spherical Entangling Surfaces

In this section, we compare our perturbative results for the entanglement entropy in section
2.3 with those for a simple case where the entire holographic result can be calculated
analytically, namely a spherical entangling surface in flat space. For this purpose, we
consider the case where the bulk is pure AdS space and the brane geometry is flat. In
this situation, we have g;;(z, p) = n;; in equation (2.10) and the full metric coincides with
the standard Poincaré patch metric upon substituting z? = 62p. Further, choosing the
entangling surface ¥ in the AdS boundary to be a (d — 2)-dimensional sphere of radius R,
then the extremal surface o is given by [204, 203]

Pp+rP=R>=R>+6%, (2.118)

where r is the radial coordinate in the boundary geometry. Here we have also introduced
R, which corresponds to the radius of the spherical entangling surface ¥ on the brane, i.e.,
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at p = 1. In fact, the derivation of [19] shows that this same surface will be the appropriate
extremal surface, independently of the bulk gravity theory. As it will prove useful below,
let us write the induced metric on o

52 d 2 52 2
ds* = p—’; <1 + T—2p> + %d§2§2. (2.119)

Now in the case of Einstein gravity in the bulk, the holographic prescription (2.9) yields
the following [204, 203]

d—3

5d71 1 1 — 2\5

Sup =2 A0) Qs / ayt=v) " (2.120)
4G 2Gan 5 yit

V62+R2

0T [ R/ (2-d3-d4-d 1 I(354)r(%5h)
~ 2Gan d—2 TP\ 27 27 2 14 Ry

where we have again introduced a factor of two above to account for the two copies of the
AdS geometry and €, 5 is the surface area of a (d — 2)-dimensional sphere of unit radius,
ie., Qq_o = 2721 (41). Now to satisfy the constraint (2.19), we consider a large
sphere with R >> 8. In this case, we may expand the result in equation (2.120) to find

A(D) d—2 [(6§\°

where we substituted for the d-dimensional Newton’s constant using equation (2.107) and
we wrote A(f}) = Q4_oR*2 for the area of the entangling surface. Hence we again find
the leading term takes precisely the form of the BH entropy (2.1). Further let us match
the first correction to that in equation (2.27). First, we calculate the extrinsic curvatures
of the sphere of radius R as

; —
Kiy=0 and K7, = % : (2.122)

where the first is associated with a time-like normal vector nﬁ = 0! and the second with the
radial normal n! = §7. Now using equation (2.108), we find there is a precise agreement
between the first corrections appearing in equations (2.27) and (2.121).

Let us now turn to the case of Gauss-Bonnet gravity (2.46). Now for the holographic
calculation of entanglement entropy, we extremize the new entropy functional in equa-
tion (2.49). However, as noted above, for a spherical entangling surface ¥ in the boundary
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theory, the extremal surface ¢ in the bulk is again given by equation (2.118). Hence we
must examine the geometry of this surface somewhat more closely to evaluate the desired
Siu. First of all, although it is not immediately evident from equation (2.119), o is a
constant curvature surface with

R=—(d—1)(d-2)/8. (2.123)

Next, the extrinsic curvature of the boundary do on the brane, i.e., p =1 is given by

1 oh hay [ 62
Ky = -t Ohar| P [y O (2.124)
2\/ hpp dp p=1 0 R?
As shown in [124], combining these results yields
d—1 Alo)  2\f 0 92 d—2
Siv = |1 —2—FA A\ 14+ = Q2R 2.125
M [ d—3f]2Gd+1+d—3Gd+1 +R2 -2 ( )

where the formula for A(c) is the same as in the case of Einstein gravity equation(2.120).
As above, we expand this expression for R > § and the result may be written as

AR, 1=6A e d—2 (5
Tep <1_ 11 2\ fo 2(d—4) (E) +> (2.126)

after substituting with equation (2.103). Now examining the previous result in equa-
tion (2.50), we first note that the combination of extrinsic curvatures appearing in the ko
term vanishes if we substitute with equation (2.122). However, using equations (2.104)
and (2.122), we find an exact agreement between the x; term appearing in equation (2.50)
and the first correction appearing above in equation (2.126).
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Chapter 3

A Holographic Quantum Hall
Ferromagnet

3.1 Introduction and Summary

The quantum Hall effect is one of the most dramatic phenomena in condensed matter
physics [3, 81]. At particular values of its charge density and magnetic field, a two-
dimensional electron gas exhibits incompressible charge-gapped states. These states can be
robust and persist over a range of the ratio of density to field, that is, over a Hall plateau
on which the Hall conductivity is a constant v times the elementary unit of conductivity

% (= % in the natural units which we shall use in this chapter),
v
oy = —- 3.1
Oy e ( )

The same electron gas can exhibit an array of such states, where v is generally an integer,
for the integer quantum Hall effect, or a rational number for the fractional quantum Hall
effect.

What is more, the integer quantum Hall effect has a beautiful and simple explanation
as a single-particle phenomenon. When a charged particle moving in two dimensions is
exposed to a magnetic field, its spectrum is resolved into discrete Landau levels. Lan-
dau levels are flat, dispersionless bands with gaps between them. Fermi-Dirac statistics
dictates that the low energy states of a many-electron system are obtained by filling the
lowest energy single-electron states, with one electron per state. When a Landau level is
completely filled with electrons, the next electron one inserts into the system must go to
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the next higher level which is separated from the ones that are already occupied by a gap.
The result is a jump in the chemical potential. Alternatively, when the chemical potential
is in the gap between levels, it can be varied with no change of the charge density. Such a
state is said to be incompressible. This effect is enhanced by disorder induced localization
which forms a mobility gap and results in the Hall plateau.

In the absence of disorder, for free electrons, the Hall conductivity is given by equation
(3.1) with v equal to the filling fraction. The filling fraction is defined as the ratio of
the number of electrons to the number of states in the Landau levels which are either
completely or partially occupied (see equation (3.3) below). When a number of Landau
levels are completely filled, v is an integer which coincides with the number of filled levels
and the Hall conductivity is quantized. It is given by the formula (3.1). Moreover, for
completely filled energy bands, the Hall conductivity is a topological quantum number
insensitive to smooth alterations of the energy band [160), , ], such as those caused
by changes in the environment of the single electrons. We can turn on lattice effects and
disorder with the Hall conductivity remaining unchanged, and can thus conclude that,
when v is an integer, the quantized Hall conductivity is robust for a large range of single-
particle interactions including the effects of disorder which are responsible for forming the
Hall plateaus.

In addition to this, there are good theoretical arguments for the persistence of the
integer Hall effect in the presence of electron-electron interactions, at least when the in-
teractions are weak enough that perturbation theory can be applied. An easy way to
understand this is by noting that, at the level of a low energy effective action, the Hall
effect is encoded in a Chern-Simons term for the photon field,

SCS = % dBSC EHV)\AH&,A)\ . (32)
The coefficient of the Chern-Simons term is proportional to the Hall conductivity. More-
over, there is a theorem which states that the Chern-Simons term does not renormalize
beyond one-loop order in either a relativistic or non-relativistic field theory [54, , ].
The theorem depends on the existence of a charge gap in the spectrum. If the gap closes it
is known that either scalar or fermion charged matter can renormalize the Chern-Simons
term [209]. Thus, as far as perturbation theory is valid, the existence of the integer quan-
tum Hall effect after interactions are turned on is intimately tied to the question of whether
the incompressible nature of the state due to the energy gap between Landau levels survives
in the interacting theory.

In this chapter, we shall discuss the question as to whether any features of the inte-
ger Hall effect can persist when the coupling is strong, beyond the reach of perturbation
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theory. The development of AdS/CFT duality between certain gauge field theories and
certain string theories has given us a tool for solving the strong coupling limit of some
quantum systems. In a recent paper [158], two of the authors have found an example of
a strongly coupled quantum field theory which, in a state with non-zero charge density
and when subject to an external magnetic field, exhibits incompressible states with inte-
ger quantized Hall conductivity. It occurs in a non-Abelian gauge field theory that has
a well-established string theory dual, the D3-D5 system [151, ]. The string theory is
quantitatively tractable in its semi-classical low energy limit, and a further probe limit
where the number of D5 branes is much smaller than the number of D3 branes. These
limits coincide with the strong coupling and quenched planar limit of the quantum field
theory and its solution yields information about the latter at strong coupling. The be-
havior of the theory when a charge density and magnetic field are added can readily be
studied there. In that system, it was shown that there exist exotic states of the D3-D5
system where it becomes incompressible. These states occur at precisely integer values of
the filling fraction v, where

_ 2mp

_ 33
Y=NB’ (3.3)

with p the particle density, B the external field and N the number of colors of quarks in
the non-Abelian gauge theory. These states were argued to be the natural strong coupling
manifestation of some incompressible integer quantum Hall states which appear in the
weak coupling limit of that theory.

Aside from a manifestation of an integer quantum Hall state, the incompressible states
of the strongly coupled system found in reference [158] have an interesting analog in the
observed quantum Hall states of graphene. Graphene is a two-dimensional semi-metal
where the electron obeys an emergent massless Dirac equation with four flavors of the

fermion field and an effective SU(4) symmetry [208, 99]. This fact leads to the anomalous
quantum Hall effect [111] where the Hall conductance is quantized as
2
raphene __ € 1

The