
Weakly Supervised Learning Algorithms

and an Application to Electromyography

by

Tameem Adel Hesham

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Systems Design Engineering

Waterloo, Ontario, Canada, 2014

c⃝ Tameem Adel Hesham 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144147502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.
I understand that my thesis may be made electronically available to the public.

ii

Abstract

In the standard machine learning framework, training data is assumed to be fully supervised.

However, collecting fully labelled data is not always easy. Due to cost, time, effort or other

types of constraints, requiring the whole data to be labelled can be difficult in many applica-

tions, whereas collecting unlabelled data can be relatively easy. Therefore, paradigms that

enable learning from unlabelled and/or partially labelled data have been growing recently

in machine learning. The focus of this thesis is to provide algorithms that enable weakly

annotating unlabelled parts of data not provided in the standard supervised setting consist-

ing of an instance-label pair for each sample, then learning from weakly as well as strongly

labelled data. More specifically, the bulk of the thesis aims at finding solutions for data

that come in the form of bags or groups of instances where available information about the

labels is at the bag level only. This is the form of the electromyographic (EMG) data, which

represent the main application of the thesis. Electromyographic (EMG) data can be used

to diagnose muscles as either normal or suffering from a neuromuscular disease. Muscles

can be classified into one of three labels; normal, myopathic or neurogenic. Each muscle

consists of motor units (MUs). Equivalently, an EMG signal detected from a muscle consists

of motor unit potential trains (MUPTs). This data is an example of partially labelled data

where instances (MUs) are grouped in bags (muscles) and labels are provided for bags but

not for instances.

First, we introduce and investigate a weakly supervised learning paradigm that aims at

improving classification performance by using a spectral graph-theoretic approach to weakly

annotate unlabelled instances before classification. The spectral graph-theoretic phase of

this paradigm groups unlabelled data instances using similarity graph models. Two new

similarity graph models are introduced as well in this paradigm. This paradigm improves

overall bag accuracy for EMG datasets.

Second, generative modelling approaches for multiple-instance learning (MIL) are presented.

We introduce and analyse a variety of model structures and components of these generative

models and believe it can serve as a methodological guide to other MIL tasks of similar

iii

form. This approach improves overall bag accuracy, especially for low-dimensional bags-of-

instances datasets like EMG datasets.

MIL generative models provide an example of models where probability distributions need

to be represented compactly and efficiently, especially when number of variables of a certain

model is large. Sum-product networks (SPNs) represent a relatively new class of deep

probabilistic models that aims at providing a compact and tractable representation of a

probability distribution. SPNs are used to model the joint distribution of instance features

in the MIL generative models. An SPN whose structure is learnt by a structure learning

algorithm introduced in this thesis leads to improved bag accuracy for higher-dimensional

datasets.

iv

Acknowledgements

I would like to thank my supervisors Dr. Ali Ghodsi and Dr. Dan Stashuk. Dr. Ghodsi’s knowledge,

of which I failed to know the limits, was a great incentive for me to understand how important

it is to be aware of not only one specific area of research but also related areas. The insightful

discussions I had with him have provided me with guidance and inspiration. Also, Dr. Ghodsi’s

probabilistic graphical models course was the beginning of an obsession for me.

I am grateful to Dr. Alex Wong. In addition to his important feedback on my thesis, it has been

great working with him. His impressive sharpness and profound understanding of both the core

and the application side of my thesis, have been invaluable for the progress of this work.

It has been pleasure working with Dr. Dan Lizotte. His broad and deep knowledge as well as his

support have kept my enthusiasm alive throughout the thesis.

I would also like to thank the other members of my PhD committee Dr. Marco Valtorta and Dr.

Paul Fieguth for their valuable comments and feedback on my thesis.

Finally, thanks to my family without whom this work would not have been accomplished.

v

Table of Contents

Declaration of Authorship ii

Abstract iii

Acknowledgements v

List of Figures x

List of Tables xii

Abbreviations xiii

1 Introduction 1
1.1 Contributions . 6
1.2 Outline . 8

2 Background 9
2.1 Probability and Bayes Rule . 9
2.2 Statistical Learning . 10

2.2.1 Statistical Learning Model . 11
Input . 11
Output . 11
Least Squares . 13
Maximum Likelihood . 13
Generative Models and Discriminative Models 13
Inductive Bias . 14

2.3 Unsupervised Learning on Undirected Graphs 14
Clustering Input . 15
Clustering Output . 15
Similarity Graphs . 15
Graph Cut . 16

vi

2.3.1 Spectral Clustering Algorithms . 17
Unnormalized Spectral Clustering 18
Normalized Spectral Clustering according to Shi and Malik [2000] 18
Normalized Spectral Clustering according to Ng et al. [2002] . 18

2.4 EMG Background . 20
2.4.1 Muscle Morphology, Physiology and Electrophysiology 21

2.4.1.1 Morphological and Physiological Description of a Muscle . . 21
2.4.1.2 Muscle Electrophysiology 22

2.4.2 EMG Signals . 23
2.4.2.1 Volume Conduction and Detection of EMG Signals 23

2.4.3 Neuromuscular Disorders . 23
2.4.4 How to Extract Clinically Important Information 26

2.4.4.1 Qualitative Electromyography 26
2.4.4.2 Clinical Quantitative EMG (QEMG) 27
2.4.4.3 MUP Characterization . 28
2.4.4.4 Muscle Classification . 31

3 Problem Formulation 32
3.1 The Bags-of-Instances Setting . 32
3.2 Characteristics of EMG Muscle Datasets . 34

Features of EMG datasets . 34

4 Weakly Supervised Learning based on
Spectral Graph-Theoretic Grouping 36
4.1 Motivation . 36

4.1.1 Related Work . 39
4.2 Methodology . 41

4.2.1 Similarity Graph Models . 42
4.2.1.1 Probabilistic Thresholding 48
4.2.1.2 Probabilistic Acceptance Criterion 49

4.2.2 Spectral Grouping . 50
Clustering Input . 50
Clustering Output . 50

4.3 Experiments . 51
4.3.1 Analysis of Similarity Graph Models 52
4.3.2 Weakly Supervised Classification . 58

4.4 Summary . 59

5 Generative Multiple-Instance Learning Models 61
5.1 Motivation . 61
5.2 Related Work . 63

vii

5.3 MIL Generative Models . 64
5.3.1 Model Structures . 64

5.3.1.1 BIF: B −→ I → F m . 65

5.3.1.2 FIB: B ←− I ← F m . 66

5.3.1.3 IBF: B ←− I → F m . 67

5.3.1.4 Alternative Model BFI: B −→ I ← F m 67
5.3.2 Model Components . 68

5.3.2.1 P (B) and P (I|B) for the BIF Structure 68
5.3.2.2 P (F |I) for the BIF Structure 68

Multivariate Gaussian . 68
Kernel Density Estimation . 68
Gaussian Copula with KDE Marginals 69

5.3.2.3 P (F) for the FIB Structure 69
5.3.2.4 P (I|F) for the FIB Structure 70

Logistic Regression . 70
Support Vector Machines (SVM) 70
K-Nearest Neighbours . 71

5.3.2.5 P (B|I) for the IBF and FIB Structures 71
5.4 Learning and Inference . 72

5.4.1 Learning . 72
5.4.1.1 Parameter Estimation . 73

BIF . 73
FIB . 73

5.4.1.2 Label Updating . 73
BIF . 73
FIB . 74

5.4.2 Inference . 74
BIF . 75
FIB . 75

5.5 Experiments . 75
5.5.1 EMG Datasets . 75
5.5.2 Results on EMG Datasets . 76
5.5.3 Results on the MUSK Dataset . 77
5.5.4 Comparison with Weakly Supervised Learning 79

5.6 Ad hoc Measures for EMG . 80
5.6.1 Measure of Confidence . 80
5.6.2 Measure of Level of Involvement (LOI) 80

5.7 Summary . 84

6 Sum-Product Networks (SPNs) 86

viii

6.1 Motivation . 86
6.2 Graphical Models and Sum-Product Networks (SPNs) 87

6.2.1 SPNs as a Part of the BIF Generative Model 90
6.3 Rank-One Downdate (R1D) Algorithm . 93
6.4 Related Work . 95
6.5 SPN Structure Learning Algorithm (SPN-R1DBiclus) 97
6.6 Experiments . 105
6.7 Summary . 106

7 Conclusions 108

Bibliography 111

ix

List of Figures

1.1 Four learning paradigms . 2
1.2 Neuromuscular Disorders and the Corresponding MUPs 4
1.3 A schematic representation of the main data and paradigms in use 5

2.1 A motor unit . 22
2.2 Normal MU versus Myopathic and Neurogenic MUs 25
2.3 Examples of healthy, Neuro and Myo EMG signals 25

3.1 3-Class partially labelled data of the bags-of-instances setting 34

4.1 A schematic representation of the main steps of the introduced weakly super-
vised paradigm . 40

4.2 DatasetA: A toy dataset . 44
4.3 Similarity graph of DatasetA as a result of applying an ϵ-neighbourhood graph 45
4.4 Similarity graph of DatasetA as a result of applying a symmetric k-nearest

neighbour graph . 46
4.5 Similarity graph ofDatasetA as a result of applying a mutual k-nearest neigh-

bour graph . 47
4.6 Similarity graph of DatasetA as a result of applying a probabilistic threshold

similarity graph with w = 0.073 . 47
4.7 F-measure values for datasets with ground truth labels 56
4.8 Davies-Bouldin index values for datasets without ground truth labels 57

5.1 The BIF model structure . 65
5.2 Average LOI vs. Turns . 81
5.3 Average LOI vs. Amplitude . 81
5.4 Average LOI vs. Area . 82
5.5 Average LOI vs. Thickness . 82
5.6 Average LOI vs. Turns and Amplitude . 83
5.7 Average LOI vs. Amplitude and Area . 83
5.8 Average LOI vs. Area and Thickness . 84

6.1 An SPN implementing a model with two variables 91

x

6.2 Status of the SPN using the inroduced algorithm 100

xi

List of Tables

3.1 EMG Feature descriptions. 35

4.1 Clustering indices values based on different similarity graph models. 55
4.2 Muscle classification accuracy based on the proposed weakly supervised clas-

sifiers vs. a fully supervised classifier. 59

5.1 Results of the EMG datasets . 78
5.2 Results of the EMG datasets with the BIF structure using different initial

values of P (I|B). 78
5.3 Results of the MUSK dataset . 79
5.4 Comparison between the generative MIL model BIF and weakly supervised

learning paradigm on the EMG datasets . 80

6.1 SPN-Gens on an Example Data Matrix . 98
6.2 SPN-R1DBiclus on the Same Data Matrix 100
6.3 Results of the MUSK dataset after using SPNs 106

xii

Abbreviations

CDSS Clinical Decision Support System

CPT Conditional Probability Table

EMG ElectroMyoGraphy

i.i.d. Independent and Identically Distributed

IRB Institutional Review Board

KDE Kernel Density Estimation

LDA Linear Discriminant Analysis

LOI Level Of Involvement

MIL Multiple-Instance Learning

MLE Maximum-Likelihood Estimation

MU Motor Unit

MUP Motor Unit Potential

MUPT Motor Unit Potential Train

NMF Nonnegative Matrix Factorization

PDF Probability Density Function

QDA Quadratic Discriminant Analysis

R1D Rank-One Downdate

SPN Sum-Product Network

xiii

Chapter 1

Introduction

Two of the most eminent and contrasting statistical machine learning paradigms are super-

vised and unsupervised learning. In supervised learning (sometimes referred to as learning

with a teacher), a learner is given data samples/instances where each instance has its own

label and the task of the learner is to implement training on these labelled instances so

that previously unseen or test instances can be reliably labelled by the developed learning

model [Hastie et al., 2009]. In unsupervised learning, a learner is given unlabelled data in-

stances and the task is to derive a descriptive structure of the given unlabelled data [Hastie

et al., 2009]. Nowadays, learning has numerous applications, like spam detection, speech

recognition, text categorisation, handwritten digit recognition and many others.

There are other learning paradigms where learning is not fully supervised or, equivalently,

where a learner is given non-perfect data for training. The goal of these paradigms is to

learn a predictive model based on the available data. Then, test data are to be labelled using

this model. Non-perfect (partially labelled) data can take different settings, each having its

corresponding learning paradigm(s). The most common paradigm that learns from partially

labelled data is semi-supervised learning, which aims at developing models by learning from

partially labelled data consisting of labelled as well as unlabelled instances [Zhou and Xu,

2007]. In many problems, using unlabelled or weakly labelled instances in conjunction with

labelled instances can lead to an improvement in the performance of the learning model

compared to a model based on labelled instances only, and this is the premise on which

1

(a) Supervised Learning (b) Unsupervised Learning

(c) Semi-supervised Learning (d) Bags-of-Instances. Each bag has a label

Figure 1.1: Data settings for four Learning Paradigms. (a) Supervised Learning: all instances are
labelled. (b) Unsupervised Learning: all instances are unlabelled. (c) Semi-supervised Learning:
some instances are labelled and some are unlabelled. (d) Bags-of-Instances Learning: Only bags

are labelled.

semi-supervised learning is based. The number of unlabelled instances is usually greater

than the number of labelled instances in paradigms of this kind. This is a consequence

of the relative ease by which unlabelled data can be obtained in numerous applications.

Semi-supervised learning is commonly considered a subset paradigm of weakly supervised

learning [Joulin and Bach, 2012, Li et al., 2013, Guo et al., 2011] but due to its increasing

importance, it is also considered by some (like Guillaumin et al. [2010]) as a related but

separate paradigm. Weakly supervised learning generalises other learning paradigms, like

paradigms acting on settings where data is given in the form of bags or groups of instances

and label information is given at the bag level only. Figure 1.1 depicts the difference between

supervised, unsupervised, semi-supervised and bags-of-instances weakly supervised learning.

The focus of this thesis is on paradigms where learning is applied on bags of instances. Label

information in this case is provided at the bag level only and the introduced algorithms aim

2

at, first weakly annotating data at the instance level, then applying weakly supervised

learning on the resulting weakly labelled data. We are mainly concerned with the bags-of-

instances setting but depending on each introduced solution, a subproblem can be cast to

another setting and in order to demonstrate the validity of the solution to the subproblem,

we may check another data setting that corresponds to the subproblem.

A common example of the bags-of-instances setting is an object recognition image database

with binary labels where a positive bag label indicates the existence of a specific object in

the corresponding image whereas a negative bag label means that the object does not exist

[Blaschko et al., 2010, Bergamo and Torresani, 2010]. A negative labelled image in this case

is fully labelled. A positive labelled image can be fully labelled if the exact location(s) of the

object is identified, but more often than not this is not the case and positive labelled images

are partially labelled each with a latent variable referring to the location of the object in

the image.

The main application of the research in this thesis is a muscle classification problem based

on electromyographic (EMG) data. EMG muscle data represent partially labelled data

where labels are available only at the bag level. Electromyographic (EMG) signals provide a

unique insight into both the structure and function of muscles [Farkas et al., 2010] and can

therefore be used in a muscle classification problem whose practical aim is muscle diagnosis.

An EMG signal of a muscle consists of motor unit potential trains (MUPTs) whereas each

MUPT represents the activity of a motor unit (MU) during a muscle contraction. Motor

units (MUs) are components of a muscle. Motor unit (MU) activation changes caused by

a disorder are reflected in the characteristics of EMG signals allowing them to be used to

help diagnose neuromuscular disorders. As shown in the right hand side of Figure 1.2, EMG

signals representing the electrical activities of MUs have different characteristics depending

on whether the MU is normal, myopathic or neurogenic. More details about the morpholog-

ical changes in muscles due to neuromuscular disorders are provided in Chapter 2. In EMG

datasets, MU labels are based on the label of the muscle from which they were detected and

do not consider the actual clinical state of the MU. Therefore, EMG datasets are partially

labelled data where labels are provided for the bags but not for individual instances.

3

Figure 1.2: Schematic representation of the effects of the various categories of neuromuscular
disorders [Farkas et al., 2010]. A Normal motor unit (MU), B Neurogenic (MU) & C Myopathic

(MU). In the right hand side, motor unit potentials (MUPs) of each label are displayed.

The primary goal of the research in this thesis is to provide bag (muscle) accuracy for the

muscle classification problem as well as bag accuracy for similar datasets that share the

same bags-of-instances setting but might differ in the assumptions induced by the problem

as well as size and dimension of the data.

The main problem therefore is to assign bag labels to data on the bags-of-instances form.

There are subproblems as well. In the weakly supervised learning paradigm, there is a

grouping subproblem whose solution is tested on other unlabelled datasets. In the genera-

tive multiple-instance learning (MIL) modelling paradigm, representing feature probability

distributions efficiently is another subproblem. One subproblem that is related to the EMG

data only is to get a measure of confidence in muscle characterisations and another of level

of involvement (LOI) of motor unit potentials of a muscle.

Figure 1.3 provides a schematic description of the data and paradigms introduced to learn

from them.

4

Figure 1.3: A representation of data and paradigms in use. EMG datasets are the main datasets in
use but there are other datasets, like the MUSK dataset. Both these datasets are bags-of-instances
datasets. Other datasets in use, for a subproblem related to one of the paradigms, are Abalone,
Swiss Banknotes and Segmentation. The latter three datasets are unlabelled. The first introduced
paradigm is a weakly supervised learning paradigm based on spectral graph-theoretic grouping. It
is applied on the EMG datasets. It is not applied on the MUSK data because it is not applicable on
the first phase of the paradigm which is the spectral graph-theoretic grouping phase. The spectral
graph-theoretic grouping phase aims at weakly annotating unlabelled data by first grouping them
then assign a label to each group based on the relationship between labelled and unlabelled data.
This means that the first step of the spectral graph-theoretic grouping phase is a grouping process.
The grouping process is one of the subproblems and this phase on its own is tested on unlabelled
datasets; Abalone, Swiss Banknotes and Segmentation. The second phase of the weakly supervised
learning paradigm is the weakly supervised classifier used to classify EMG data. The second
introduced paradigm is the generative MIL modelling paradigm. In this paradigm, generative
models are constructed by Bayes nets. It is applied on both EMG and MUSK datasets. One
subproblem of this paradigm is to represent feature probability distributions especially for medium
or large dimensional datasets, like the MUSK dataset. Sum Product networks (SPNs) is a model
by which probability distributions can be represented efficiently. SPNs are applied as a part of the
generative MIL model with the task of modelling the MUSK feature probability distributions.

5

1.1 Contributions

Each contribution out of the first three contributions represents a strategy or part of a

strategy that learns from data of the bags-of-instances setting. We outline these strategies

identifying the main characteristics of each.

Weakly Supervised Learning based on Spectral Graph-Theoretic Grouping

In this weakly supervised learning paradigm, a learner receives a training set containing fully

labelled bags of instances as well as partially labelled bags of instances. First, a spectral

graph-theoretic grouping phase is applied to weakly annotate unlabelled data. Then a weakly

supervised classifier is applied on weakly annotated data as well as labelled data. In the

first phase, novel similarity graph models are proposed. Results show that the introduced

spectral graph-theoretic approach is effective at weakly annotating unlabelled parts of the

data, which results in an improved accuracy of the resulting weakly supervised classifier.

This weakly supervised paradigm leads to an improved muscle classification accuracy.

The spectral graph-theoretic grouping phase weakly annotates instances of the data, which

are instances belonging to bags with known bag labels but unknown instance labels. This

leads to the fact it can be used as an unsupervised learning approach because these instances

it weakly annotates are unlabelled. Experiments are performed on some benchmark unla-

belled datasets and results show that the introduced strategy is effective at constructing a

descriptive grouping structure of each of these datasets.

Generative Multiple-Instance Learning (MIL) Models

In its original setting introduced by Dietterich et al. [1997], multiple-instance learning (MIL)

referred to a binary class learning paradigm where instances are grouped into bags and a bag

is considered positive if it contains at least one positive instance, otherwise a bag is labelled

negative. We extend the definition of MIL to cover multi-class problems, introduce an MIL

paradigm based on generative models and provide intuition and guidelines for applying these

6

generative models to MIL problems. A state-of-the-art solution to the problem of muscle

classification is provided via the MIL paradigm.

Structure Learning of Sum-Product Networks (SPN)

Features used in the EMG data are 8 features. For bags-of-instances datasets with a much

greater number of features, MIL generative models perform relatively well but less well than

they do with EMG datasets. Therefore, there is a need for a better way of handling the fea-

ture dependence relationships in a more compact and tractable manner than those utilised

in the MIL approach introduced above. The most commonly used MIL dataset in the litera-

ture is referred to as the MUSK dataset [Dietterich et al., 1997] and it contains 168 features.

Therefore, the MUSK dataset represents an example where there is a medium rather than

small number of features and where the need to represent dependence relationships among

features compactly and efficiently arises. Sum-product networks (SPNs) are probabilistic

graphical models that are capable of providing deep architectures that can compactly rep-

resent complex dependence relationships among variables while still remaining tractable. A

new algorithm for learning the structure of SPNs is introduced and applied on the MUSK

dataset. The constructed SPN extends the MIL generative models and bag accuracy results

demonstrate that it better expresses dependence relationships.

Regarding the application, the contribution is providing state-of-the-art solutions to the

muscle classification problem using both the weakly supervised learning paradigm and gen-

erative MIL modelling paradigm on one of the two EMG datasets (upper leg) and using the

generative MIL modelling paradigm on the other EMG dataset (lower leg). Also, the bag

accuracy of the MUSK dataset that resulted from using SPNs to model instance feature

distributions is near state-of-the-art results on the MUSK data.

7

1.2 Outline

Chapter 2 introduces background material related to the research of the thesis. It contains

basic background material about statistical learning as well as unsupervised learning per-

formed on undirected graphs. It also contains background about EMG data. In Chapter 3,

the problem is formally defined along with a description of the bags-of-instances partially

labelled data of interest. In Chapter 4, the weakly supervised learning paradigm is pre-

sented. Chapters 5 and 6 are related to the generative MIL modelling paradigm. Chapter 5

presents the generative MIL models and their results on EMG and MUSK data. Chapter 6

presents the sum-product network (SPN) structure learning algorithm and how it leads to

better results on the MUSK dataset when the respective SPN is used to model the instance

feature distributions. Finally, concluding comments are given in Chapter 7. Chapters 4, 5

and 6 represent the chapters where the methodology as well as the contributions are. These

3 chapters begin with an overview each then a brief listing of the related work, followed by

a description of the introduced algorithm and then the results.

The content of this thesis is mainly based on three publications. The weakly supervised

learning paradigm is presented in Adel et al. [2014]. The work on MIL generative models is

presented in Adel et al. [2013]. Finally the SPN structure learning algorithm, along with a

more comprehensive set of experiments, is presented in Adel and Ghodsi [2014].

Other publications that were developed during the time of the thesis but are secondary to

this document, include Adel et al. [2012] and Parsaei et al. [2012].

8

Chapter 2

Background

Here we present fundamental concepts that are used throughout this thesis. We start with a

brief introduction of basic probability rules, then we follow with an overview about statistical

learning and finally unsupervised learning performed on undirected graphs. The material in

these sections is not comprehensive as it is presented with an eye on its use in the rest of

the chapters of the thesis. Finally Section 2.4 presents information about EMG data, which

represent the main application of the introduced paradigms.

2.1 Probability and Bayes Rule

A random variable is a variable whose value is not deterministic as it is subject to variability

due to randomness [Yates et al., 2003]. A random variable can be assigned a value out of a

set of possible values. Confidence that a random variable X has a specific value is denoted

by its probability p(x), i.e. 0 ≤ p(x) ≤ 1. Note that, as a convention, we denote realisations

of random variables in lower case. The function describing the set of values of a random

variable and their respective probabilities is referred to as a probability distribution p(X).

If the set of possible values X can take is countable, then the probability distribution is

a probability mass function (PMF), whereas an uncountable set of values within one or

more intervals is represented by a probability density function (PDF). The probability that

a random variable Y is equal to a certain value given that another random variable X

9

is definitely equal to another value, is known as the conditional probability p(y|x). The

probability that two random variables X & Y are equal to two respective values is referred

to as the joint probability p(x, y). Similar to p(X), p(Y |X) and p(X, Y) can be cast as

probability distributions by normalisation. If the probability distributions of p(X,Y) and

p(X) are known, then p(Y |X) can be obtained as follows:

p(Y |X) =
p(X,Y)

p(X)
(2.1)

As p(X|Y) can be obtained similarly, Bayes rule can now be presented as follows:

p(Y |X) =
p(X|Y) p(Y)

p(X)
(2.2)

2.2 Statistical Learning

In Chapter 1, we briefly presented a high-level taxonomy of learning paradigms that was

mainly based on the setting of the data available for learning. Here we present an example

followed by a more formal notion of statistical learning.

Imagine you are given a set of N musical tunes each with its music genre. You are assigned

the task of assigning music genres to another set of songs or musical tunes. The latter set

of tunes need to be labelled each by one genre. You want to complete the task properly by

minimising the number of tunes you ultimately classify incorrectly, out of those in the set.

You also want to finish the task as soon as you can, provided that you still do it properly;

which means that if you can assign the correct genre to a tune in its first few seconds, this

is better than doing the same after two minutes. You decide which tune belongs to which

genre, based on the experience you obtained by listening to the N labelled tunes and based

on the group of genres from which you pick one for each tune. Your brain chooses features of

the tune that are relevant to the genre assigning task at hand. For example, if tunes are to be

classified into “classical” or “rock” tunes, your criterion can heavily count on assigning one

of the two genres based on whether or not there is singing, not only music. However, if the

10

group of genres include “folk” as well, you should add tune features that are relevant to the

genres, or more precisely, relevant to the difference between a genre and another. Features

like time signature and whether or not there are electrical instruments could be used to

differentiate “rock” from “folk”. Further features should be added in case “alternative rock”

(similar to “rock” in all the previously mentioned features) is added to the group of genres;

e.g. lyrical style. As you are required to be accurate as well as time efficient, you try to base

your genre assignment on features that are relevant to the discrimination among genres as

well as non-redundant.

Learning problems of that kind can be represented by a statistical model. We start with

describing a statistical learning model.

2.2.1 Statistical Learning Model

Input The learner receives a set of N independent and identically distributed (i.i.d.)

instances where each instance X has p features and has a label Y assigned to it. The set

of possible values of Y has a cardinality 1 equal to t. This set of instances is referred to

as training instances Hastie et al. [2009]. Training data is assumed to be drawn from an

unknown distribution.

Sticking to the above example. Input to the learner is a set of tunes, where each tune has

p features, e.g. instrumentation, time signature, energy, duration, tempo, etc. Each tune is

also assigned a label indicating its genre.

Output The learner is required to build a prediction function that maps X to Y . The

prediction function is used to predict an output Ŷ of each instance belonging to another set

of instances, referred to as the test set. The learner bases the mapping he develops from X

to Y on the training instances (supervised learning). In doing so, the learner uses features

that he finds relevant to the mapping, i.e. features that provide useful information about

the mapping, and non-redundant, i.e. each feature provides further useful information than

the already selected features. When t is finite, the prediction function can be referred to as

1We assume labels are discrete as regression problems are not discussed in this thesis.

11

a classifier. Assuming a Bayes classifier, t = 2 and Y ∈ {1, 2}, if P (y = 1|x) > P (y = 2|x),

then ŷ = 1, and vice versa.

This is the task of assigning genres to each test tune in our example.

A prediction function usually contains parameters β. In case a prediction function fits the

training instances too well, there is a risk of overfitting. Overfitting refers to the phenomenon

of a classifier that performs accurately on training data but fails to generalise and does not

perform well on other data instances. In order to avoid overfitting, β should be chosen so that

a classifier has a good balance between its bias and variance. Bias refers to the accuracy of a

classifier on the training data instances whereas variance refers to the sensitivity of a classifier

to changes in the set of training instances [Geman et al., 1992]. Classifiers that overfit have

high variance. The bias-variance tradeoff (also referred to as bias-variance dilemma) has

been well studied in machine learning. For example, Hastie et al. [2009], James et al. [2013],

Geman et al. [1992] present more comprehensive material on this subject.

Overfitting can be thought of as if you try too hard to adjust your criterion of deciding a

genre of a tune based on very specific characteristics of each tune you had in the training set

(low bias and high variance) rather than having a better sense of what generally discriminates

a genre from another and what is a special characteristic of few training tunes (higher bias

and lower variance).

There is more than one measure by which the performance of a classifier can be evaluated.

One of them is error rate. Error rate is defined the probability of a misclassification. It

is equal to the number of misclassified test instances divided by the total number of test

instances. Bayes optimal error rate is defined as the error achieved by an optimal classifier

and it represents the theoretical minimum error on a certain dataset [Keinosuke, 1990].

The Bayes optimal error rate is theoretical mainly because the distribution from which the

training (and test, assuming they both were drawn from the same distribution) data is

drawn, is unknown. Accuracy of a classifier is equal to 1− error rate, which is equal to the

number of correctly classified test instances divided by the total number of test instances.

12

Least Squares To build a classifier, its parameters β should be chosen according to a

criterion. One criterion aims at minimising the residual sum of squares of errors committed

in classifying test instances. This criterion is referred to as least squares. Assuming that

fβ(x) is the classifier’s output for an instance x, least squares can be formulated as follows

[Hastie et al., 2009]:

minimise least squares(β) =
N∑
i=1

(yi − fβ(xi))
2 (2.3)

Maximum Likelihood Another criterion, which is based on likelihood, is referred to as

maximum likelihood estimation (MLE). Let’s first describe the likelihood. Likelihood is a

function of the parameters β of a classifier, or more generally of a statistical model. It

represents the probability that training instances are equal to their respective values given

the parameter values. Likelihood of a classifier can be described as l(β) = p(Y,X|β).

According to maximum likelihood, optimal values of the parameters β are those that make

the probability of the observed training samples as large as possible [Hastie et al., 2009].

Because it is more convenient to work with logarithms and they do not change values of β

that maximise the likelihood, log-likelihood is usually used rather than likelihood.

Generative Models and Discriminative Models Describing the likelihood function as

l(β) = p(Y,X|β) refers to a generative model where the goal is to learn a joint distribu-

tion that underlies the data X as well as the unobserved variable Y that represents their

labels. In contrast with generative models, the likelihood function of a discriminative model

would be equal to l(β) = p(Y |X, β) because discriminative models model the conditional

probability distribution of an unobserved variable Y given observed data represented by

X. One advantage of generative models versus discriminative models is that they can be

used in data simulation because they model both the data and the label or unobserved

variable. Generative models can also be used in classification because, the joint distribution

they provide can be used in classification by applying Bayes rule. On the other hand, dis-

criminative models can sometimes lead to better classification performance than generative

13

models [Lafferty et al., 2001, Ng and Jordan, 2001], but this depends on the problem and

the data. Discriminative models usually perform well when there is plenty of labelled data,

but typically do not exploit unlabelled data. In contrast, generative models can make use

of unlabelled data in learning via a latent variable model [Bishop and Lasserre, 2007]. Ng

and Jordan [2001] reached an important conclusion, related to the asymptotic error of both

models when used as classifiers. They noted that while the asymptotic error is lower with dis-

criminative classifiers, generative classifiers reach their asymptotic error much more quickly.

A generative classifier can be considered a density estimation problem where it is required

to estimate the probability distribution P (X,Y). Similarly, a discriminative classifier can

be considered a density estimation problem but the probability distribution to be estimated

is P (Y |X) [Hastie et al., 2009]. Examples of generative classifiers are linear discriminant

analysis (LDA) and Naive Bayes (NB), while examples of discriminative classifiers include

logistic regression and support vector machines (SVM).

Inductive Bias Inductive bias refers to the set of assumptions the learner strictly follows to

build the learning function or classifier in our case. Each assumption represents a restriction

on the available function space on which the learner builds the learning function, [Ben-David

et al., 2011]. One example of an inductive bias is to minimise the number of parameters β

in the above generative classifier. This comes as a result of Occam’s Razor which favours

the simplest consistent rule. One of the benefits of Occam’s Razor is that the simplest

rule (having minimum number of parameters in our case) can lead to better generalisation,

which eventually turns into smaller variance values [Domingos, 1999]. One further advantage

of generative models versus discriminative models, as will be explained in more detail in

Chapter 5, is that they allow for expert domain knowledge to be incorporated into the

model in a straightforward manner, leading to good inductive bias.

2.3 Unsupervised Learning on Undirected Graphs

Back to the example of musical tunes defined in Section 2.2. Imagine you are not given any

labelled tunes to prepare a criterion. You are given a set of tunes without genres assigned

14

to them and are required to provide some summarising or descriptive information of the set.

As a starting point, your brain will start looking for major similarities and dissimilarities

among the tunes so that you can start providing the required information.

More formally, in unsupervised learning, the learner is given a setX consisting ofN instances

x1, x2, ..., xN without labels. The task of the learner is to process the data so that a specific

form of descriptive statistics about it is obtained. One common form of such statistics is

clustering. We focus here on clustering as it is the single approach of unsupervised learning

that is targeted in this thesis. Therefore let’s describe clustering as follows:

Clustering Input The learner receives a set X of N i.i.d. instances where each instance

has p features. Even if it is not always the case, let’s assume another number k is given,

representing the number of clusters. This is inline with the research in this thesis.

Clustering Output The learner is required to return a partition of the N instances into k

disjoint subsets C1, C2, ..., Ck, where
∪k

i=1Ci = X [Ben-David et al., 2006]. A good partition-

ing should minimise pairwise distances among instances of the same subset and maximise

pairwise distances among instances of different subsets, so that subsets are homogeneous

and well separated, respectively.

Here the focus is on clustering on undirected graphs. We proceed with some related defini-

tions.

Similarity Graphs Assume the similarity between each pair of instances xi and xj in X,

is indicated by sij ≥ 0. Data instances can be represented by a graph G = (V,E) where each

data instance xi is represented by a vertex vi. The decision whether or not to connect two

vertices by an edge, depends on the similarity sij between the corresponding two instances.

If sij is larger than a certain threshold (indicated by the similarity graph model followed),

then the two vertices are connected by an edge whose weight is sij [von Luxburg, 2007],

otherwise the two vertices are not connected. Therefore, for any element wij of the weighted

adjacency matrix W , wij ≥ 0.

15

The degree of a vertex vi is

di =
N∑
j=1

wij (2.4)

The degree matrix D is a diagonal matrix, whose elements are the vertex degrees.

For a subset A, A ⊂ V , size of A can be defined as:

|A| = number of vertices in A (2.5)

or

vol(A) =
∑
i∈A

di (2.6)

The complement of a subset A is denoted by Ā.

For any two subsets A and B, A,B ⊂ V , define:

W (A,B) =
∑

i∈A,j∈B

wij (2.7)

In Section 4.2, a description of the most commonly used similarity graph models is provided.

Based on the graph representation of instances, clustering can be formulated as follows:

Graph Clustering The learner is required to return a partition of the graph into disjoint

subsets, or groups of vertices, where edges between vertices of the same group have weights

that are as high as possible (homogeneous groups) and edges between vertices of different

groups have weights that are as low as possible (well separated groups).

Graph Cut The minimum cut (mincut) of a graph is a partition of the graph whose cut

has the smallest possible sum of weights. For a partition consisting of k groups, mincut can

be solved by choosing a partition C1, C2, ..., Ck such that the following is minimised [Stoer

and Wagner, 1997]:

cut(C1, C2, ..., Ck) =
1

2

k∑
i=1

W (Ci, C̄i) (2.8)

16

In order to prevent trivial solutions, e.g. one vertex groups, restrictions on the minimum size

of a group are imposed. Two common objective functions, each related to one definition of

a group size, are listed here. One is referred to as RatioCut [Hagen and Kahng, 1992]. The

other objective function is referred to as Ncut [Shi and Malik, 2000].

RatioCut(C1, C2, ..., Ck) =
k∑

i=1

cut(Ci, C̄i)

|Ci|
(2.9)

NCut(C1, C2, ..., Ck) =
k∑

i=1

cut(Ci, C̄i)

vol(Ci)
(2.10)

These updated forms turn the mincut problem into an NP hard problem. Spectral clustering

can solve relaxed versions of both problems [von Luxburg, 2007].

Before proceeding with a brief description of spectral clustering algorithms, graph Laplacian

matrices are introduced first. Recall that D is the degree matrix and W is the weighted

adjacency matrix. The unnormalized graph Laplacian is equal to the following:

L = D −W (2.11)

There are two ways by which a normalized graph Laplacian can be calculated, which are as

follows:

Lnor1 = D− 1
2LD− 1

2 (2.12)

or

Lnor2 = D−1L (2.13)

2.3.1 Spectral Clustering Algorithms

Algorithms of spectral clustering can be mainly divided into three algorithms, as per the

graph Laplacian used [von Luxburg, 2007]. For each of them we assume an access to the

following as an input.

17

Input A similarity matrix S ∈ RN×N where sij denotes similarity between xi and xj.

Number of clusters k is also given.

Output Clusters C1, C2, ..., Ck where each instance xi belongs to one and only one cluster.

Unnormalized Spectral Clustering

• Construct a similarity graph model by one of the algorithms described in Section 4.2

or one of the two introduced similarity graph models described throughout Chapter 4.

• Calculate the unnormalized Laplacian L = D −W .

• Calculate the first k eigenvectors ev1, ev2, ..., evk of L.

• Let EV ∈ RN×k be a matrix where columns of EV are ev1, ev2, ..., evk, and let yi ∈ Rk

be the ith row of EV .

• Cluster yi, i = 1, 2, ..., n into clusters C1, C2, ..., Ck using k-means.

Normalized Spectral Clustering according to Shi and Malik [2000]

• Construct a similarity graph model by one of the algorithms described in Section 4.2

or one of the two introduced similarity graph models described throughout Chapter 4.

• Calculate the unnormalized Laplacian Lnor2 = D −W .

• Calculate the first k generalised eigenvectors ev1, ev2, ..., evk of the generalised eigen-

value problem Lnor2 ev = γ D ev.

• Let EV ∈ RN×k be a matrix where columns of EV are ev1, ev2, ..., evk, and let yi ∈ Rk

be the ith row of EV .

• Cluster yi, i = 1, 2, ..., n into clusters C1, C2, ..., Ck using k-means.

Normalized Spectral Clustering according to Ng et al. [2002]

• Construct a similarity graph model by one of the algorithms described in Section 4.2

or one of the two introduced similarity graph models described throughout Chapter 4.

18

• Calculate the normalized Laplacian Lnor1 = D− 1
2LD− 1

2 .

• Calculate the first k eigenvectors ev1, ev2, ..., evk of Lnor1.

• Let EV ∈ RN×k be a matrix where columns of EV are ev1, ev2, ..., evk.

• Construct a matrix T ∈ RN×k, tij = evij/(
∑

k ev
2
ik)

1
2 , which represents rows of EV

normalized to norm 1. Let yi ∈ Rk be the ith row of T .

• Cluster yi, i = 1, 2, ..., n into clusters C1, C2, ..., Ck using k-means.

19

2.4 EMG Background

In the previous sections, we presented information about the learning techniques that will

be used in the algorithms by which the problems are to be solved. Here we give an overview

of the EMG data which represent the main application. As the subject is not so common,

we give more detailed information in this section than what is required for the introduced

paradigms, so that it is easier to understand the whole EMG process.

Human muscles are composed of motor units and each motor (MU) unit is composed of a

specific α-motor neuron and the muscle fibres it innervates. A motor neuron innervates the

muscle fibres of an MU via the neuromuscular junction (NMJ) formed at the terminal end

of each branch of its axon. Voluntary muscle contractions are initiated when the central

nervous system recruits MUs by activating their motor neurons, which in turn, via their

NMJs, activate their muscle fibres. At each NMJ, a region of transmembrane current is

produced across the sarcolemma membrane of its corresponding fibre when the motor neuron

is activated (i.e. discharges an action potential). This transmembrane current creates a

change in transmembrane potential (or action potential) which propagates along the fibre

and initiates/co-ordinates its contraction [Campbell and Reece, 2001]. The currents creating

the action potentials of the activated fibres of recruited MUs summate to create dynamic

electric fields in the volume conductor in and around muscles. Electrodes placed in these

electric fields detect time changing voltage signals which are the electromyographic (EMG)

signals discussed in this section. When a muscle is affected by a neuromuscular disorder,

characteristics of its action potentials, and as a result of the EMG signals they create,

change depending on whether the muscle is affected by a myopathic or neurogenic disorder

and the extent to which the muscle is affected. Therefore, quantitative EMG signal analysis

can be used to support the diagnosis of neuromuscular disorders. Clinical quantitative

electromyography (QEMG) attempts to use the information contained in an EMG signal to

classify the muscle from which it was detected in order to support clinical decisions related

to the diagnosis, treatment or management of neuromuscular disorders.

20

2.4.1 Muscle Morphology, Physiology and Electrophysiology

2.4.1.1 Morphological and Physiological Description of a Muscle

MU Structure and Layout

Each muscle consists of muscle fibres. The muscle fibres of a muscle are grouped according to

their innervating α-motor neuron. An MU refers to a single α-motor neuron and the muscle

fibres it innervates [Adel et al., 2012]. A voluntary muscle contraction is initiated by the

activation of motor neurons whose axons propagate action potentials to their terminal ends

where they join with a muscle fibre via a NMJ as shown in Figure 2.1. More specifically, a

NMJ is the area where the axon terminal of a motor neuron axon innervates a muscle fibre.

In a normal muscle, when a motor neuron is activated (i.e. discharges an action potential)

each of its innervated muscle fibres are also activated via their respective NMJ. At each

NMJ, following the arrival of the action potential at its axon nerve terminal, a region of

transmembrane current is produced across the sarcolemma membrane of its corresponding

fibre which creates a change in muscle fibre transmembrane potential (or a muscle fibre

action potential) which propagates along the fibre and initiates/co-ordinates its contraction.

Therefore, in normal muscle, activation of a motor neuron causes all of its innervated muscle

fibres to contract and contribute to the force generated by the muscle.

For each muscle, there is a pool (or group) of motor neurons which are activated to produce

a voluntary muscle contraction. The number of muscle fibres in a certain motor unit and

the diameter of these fibres determine the size of the motor unit or the magnitude of its

contribution to the muscle force created. The number of muscle fibres within a motor unit

is not constant. Most muscles have large numbers of smaller MUs and smaller numbers of

larger MUs.

An MU territory is the cross-sectional area of a muscle in which the fibres of an MU are

randomly located. For a normal MU, its MU fibres are randomly positioned throughout

its territory. MU territories can be conceived to be circular, with diameters taking values

between 10 and 15 mm depending on the size of the MU. In addition, the MU territories of

the MUs of a muscle are greatly overlapped. Therefore, in a normal muscle, adjacent muscle

21

Figure 2.1: A motor unit [Robergs and Roberts, 1996].

fibres rarely belong to the same MU. Instead, the muscle fibres of an MU are interdigitated

with muscle fibres of many other motor units.

MU Activation

When an MU is recruited, its motor neuron discharges a train of action potentials that

propagate along its axon and, as described above, cause the muscle fibres of the MU to

contract. The recruitment of only one MU leads to a weak muscle contraction. The recruit-

ment of additional MUs leads to the activation of more muscle fibres and, as a result, muscle

contraction becomes gradually stronger.

Motor unit recruitment or derecruitment refers to the activation or deactivation of an MU

or population of MUs. Motor unit recruitment strategies vary depending on the inherent

properties of the specific motor neuron pools of a muscle. Smaller muscles with smaller

pools or numbers of MUs tend to recruit all of their MUs earlier during an increasing

force contraction and often have all of their MUs recruited at 30% of maximal voluntary

contraction. Larger muscles with large numbers of MUs recruit MUs throughout the entire

range of force generation.

2.4.1.2 Muscle Electrophysiology

An innervated muscle fibre is activated when the currents created by the activity of its NMJ

create a transmembrane action potential that then propagates in both directions along the

muscle fibre away from the NMJ initiating and coordinating contraction of the fibre. In other

22

words, action potentials propagate along the axon of a motor neuron to activate the muscle

fibres of an MU. The currents creating the action potentials of the activated muscle fibres

linearly contribute to a spatially and temporally dynamic electric field created in the volume

conductor in and around a muscle. The strength and spatial and temporal complexity of the

created electric field is determined by the number of MUs active and their size. Electrodes

placed in this electric field can be used to detect a time changing voltage signal (i.e. an EMG

signal).

2.4.2 EMG Signals

2.4.2.1 Volume Conduction and Detection of EMG Signals

“Volume conduction is the spread of current from a potential source through a conducting

medium, such as body tissues” [Dumitru et al., 2002]. Simulation models have been devised

so that the effects of having different kinds of volume conductors and arrangements of

detection electrodes on an EMG signal can be studied [Malmivuo and Plonsey, 1995].

2.4.3 Neuromuscular Disorders

Neuromuscular disorders change both the morphology and activation patterns of the MUs

of the muscles affected. Therefore, the shapes of MUPs detected in muscles affected by

neuromuscular disorders will differ from those detected in healthy or normal muscles.

A normal muscle at rest will have no electrophysiological activity (i.e. there will be no electric

field created in its surrounding volume conductor). Muscles affected by a neuromuscular

disorder can have spontaneous muscle fibre activity called fibrillations and/or spontaneous

MU activity called fasiculations.

Myopathic disorders cause muscle fibre atrophy, splitting, hypertrophy and necrosis. Exam-

ples of atrophic and hypertrophic muscle fibres are diagrammed in Figure 2.2. Atrophic and

split muscle fibres have smaller diameters and slower muscle fibre action potential propaga-

tion velocities. Therefore, they typically produce smaller and wider MFPs. Hypertrophic

muscle fibres have larger diameters and faster muscle fibre action potential propagation ve-

locities. They therefore produce in general large and narrower MFPs. Necrotic fibres are not

23

active and do not contribute to detected MUPs. As such, myopathic MUPs, in general, are

composed of fewer MFP contributions of varying size and with larger temporal dispersion

than in MUPs detected in normal muscles. Myopathic MUPs are therefore generally smaller

in size and more complex than normal MUPs. The variation in muscle fibre action potential

propagation velocity in a muscle fibre affected by a myopathic process can be greater than

normal. This in turn can increase the instability of myopathic MUPs.

Because the MUs of a myopathic muscle are generally smaller during equivalent muscle

activations more of them must be recruited and they need to be activated at higher firing

rates compared to a normal muscle [Dumitru et al., 2002]. Therefore, at equivalent levels of

muscle activation, EMG signals detected in a myopathic muscle can become more complex

than EMG signals detected in a normal muscle (see Figure 2.3).

In contrast, neurogenic disorders cause the loss of MUs and muscle fibre denervation. Sub-

sequently, the surviving MUs have increased numbers of fibres with greater spatial fibre

densities relative to normal muscle as seen in Figure 2.2. The increased number of MU

fibres results in MUPs comprised of larger numbers of MFP contributions. The greater spa-

tial fibre densities result in grouped MFP contributions. Consequently neurogenic MUPs

tend to be larger and more complex than normal MUPs sometimes with distinct components

or phases (e.g. satellite potentials). During the acute phase of reinnervation newly formed

NMJs have larger variations in the time taken to initiate a muscle fibre action potential in

their respective muscle fibres. This results in increased instability of neurogenic MUPs.

Because the MUs of a neurogenic muscle are generally larger and because they are fewer in

number during equivalent muscle activations, fewer of them must be recruited but they need

to be activated at higher firing rates compared to a normal muscle [Dumitru et al., 2002].

Therefore, at equivalent levels of muscle activation, EMG signals detected in a neurogenic

muscle can become more complex than EMG signals detected in a normal muscle, as can be

seen in Figure 2.3.

24

Figure 2.2: A. Normal MU vs. myopathic MU.
B. Normal MU vs. neurogenic MU [Barkhaus and Nandedkar, 1994].

Figure 2.3: Examples of healthy, neurogenic and myopathic EMG signals [Zennaro et al., 2003].

25

2.4.4 How to Extract Clinically Important Information

Suitably detected EMG signals contain information that can be used to assist with the

diagnosis of neuromuscular disorders. Specific characteristics of a detected EMG signal can

be related to the type of neuromuscular disorder present (i.e. myopathic or neurogenic) as

well as the degree to which the muscle may be affected by a disorder. As described above,

the changes in MU morphology and activation created by a disease process lead to expected

changes in MUP shapes and stability as well as the level of EMG signal complexity. Specific

aspects of the detected EMG signals can be analyzed to determine if they were most likely

detected in a myopathic, normal or neurogenic muscle. This analysis can be qualitative or

quantitative.

2.4.4.1 Qualitative Electromyography

One way of assessing the clinical state of a muscle is to qualitatively analyze EMG signals de-

tected using needle electrodes following abrupt movement of the electrode, while the muscle

is at rest and during low levels of muscle activation. Characteristics of the detected signals

are subjectively compared to those expected to be detected in normal muscle. The signals

detected following abrupt needle movement and while the muscle is at rest are grouped into

what is classified as spontaneous activity. Following abrupt needle movement, if the muscle

remains active (i.e. significant signals are detected) for a prolonged period of time this is

a sign of abnormality. Likewise, if while the muscle is at rest, potentials related to muscle

fibre fibrillation or MU fasciculation are detected and the muscle is considered abnormal.

MUPs contained in EMG signals detected during low levels of muscle activation are visually

analyzed to assess their shape, size and stability.

The objective of this qualitative analysis of the needle-detected EMG signals is to extract

information regarding the morphology of a representative sample of MUs of the muscle being

examined. Experienced and skilled clinicians can use these qualitative analyses to assist with

the diagnosis of an examined muscle with respect to which, if any, specific disease processes

may be present and, if present, to what extent.

26

One of the main disadvantages of qualitative EMG analysis is inter and intra-rater variability.

Specific assessments made and the consistency with which they are made depend on the

training, experience and skill of the examiner. In addition, no more than a few MUPs can

be qualitatively analysed at a time [Farkas et al., 2010]. Therefore, qualitative analysis

is restricted to low levels of muscle activation where only a few MUs are recruited and

consequently the EMG signals detected are the aggregation of only a few MUPTs.

2.4.4.2 Clinical Quantitative EMG (QEMG)

Quantitative electromyography (QEMG) is an objective assessment of several aspects of

detected EMG signals to assist with the diagnosis of a muscle under examination and also

to assess the severity of an existing disorder if one is detected. QEMG aims at increasing

diagnostic sensitivity and specificity. Unlike qualitative analysis, quantitative analysis is not

limited to studying just the first few recruited MUs and EMG signals detected at higher lev-

els of muscle activation can be analyzed. One of the main advantages of quantitative EMG

(QEMG) over qualitative EMG is the fact that QEMG techniques attempt to reproducibly

represent and interpret features of an EMG signal to extract useful information while qual-

itative EMG results are not reproducible. QEMG analysis has the advantage of providing

greater objectivity and consistency, and is often needed in equivocal cases to increase the

certainty of a diagnosis.

Regardless of whether a qualitative or quantitative assessment is used, a similar hierarchi-

cal process is followed. First, in order to account for the large variability in motor unit

(MU) size and motor unit potential (MUP) shape throughout a muscle, signal features are

assessed at several needle positions within a muscle. The data from these various needle

positions are then characterized based on whether they possess attributes consistent with

certain disease processes. The characterized sampled data are then combined to arrive at an

overall impression or characterization of the muscle. Finally, a rule or heuristic is applied to

categorize the muscle based on the characterization measures obtained. Training data must

be grouped based on a specific muscle group and/or age. Otherwise, the final interpretation

of this data may be biased and may have a large margin for error.

27

To perform QEMG, the complete EMG signal can be analyzed or individual MUP activity

can be isolated from an EMG signal using EMG signal decomposition methods. If EMG

signal decomposition methods are used, individual MUP can be analyzed which allows in-

formation about typical MUP shape, MUP shape stability and MU activation patterns to

be used. The next subsection discusses QEMG methods based on individual MUP analysis.

2.4.4.3 MUP Characterization

MUP characterization refers to performing supervised learning to determine if a MUP was

created by a normal or abnormal (disordered) MU, if just two labels are considered or by

a myopathic, normal or neurogenic MU if three labels are considered. This characteriza-

tion is based on a training stage that is performed using training data suitably representing

each label. MUP features used for MUP characterization often consist of MUP template

morphological features; features extracted from the time domain representation of the MUP

template as well as spectral features; those extracted from its frequency domain represen-

tation [Dumitru et al., 2002]. MU firing pattern features have not yet be effectively used.

Typically, a feature selection step is performed to select the best feature subset. As is the

case with any supervised learning problem, feature selection can be filter-based (quality

metric of the feature subset depends on information content like interclass distance or cor-

relation) or wrapper-based (quality metric of the feature subset depends on the accuracy of

the classification process using such feature set). However, wrapper-based feature selection

techniques are used more frequently [Pino, 2008].

In addition to the intrinsic MUP template features, like turns, duration, amplitude, etc,

combinations of features can be used if they improve the classification results. For instance,

MUP template thickness (area/amplitude) can be added to the features used for learning to

improve classification performance if it leads to a higher discriminative power of the feature

set.

Signal Preprocessing (EMG Signal Decomposition)

EMG signals are the linear summation of the MUP trains created by the MUs active in a

muscle. EMG signal decomposition extracts individual MUPTs from an EMG signal. EMG

28

signal decomposition allows several MUPTs created by MUs concurrently active during

a single muscle contraction to be analyzed. The MUPTs extracted during EMG signal

decomposition are further analyzed to assist in diagnosing neuromuscular disorders. EMG

signal decomposition involves three main steps, described in the following paragraphs.

The first step is to detect the MUPTs comprising an EMG signal. Some EMG signal

decomposition algorithms attempt to detect all the MUPTs that existed in the EMG signal

while others attempt to extract only MUPTs that had a major contribution to the EMG

signal. The following task is to determine the shapes of the different MUPs. This can

be done by categorizing the MUPs in the signal based on their shapes and sizes. This

categorization, if implemented properly, reveals clusters of MUPs with similar shapes and

sizes. As a result, MUPs with different shapes and sizes should belong to different clusters.

MUPs with similar shapes and sizes were most probably created by different discharges of

the same MU, while MUPs with unique shapes and sizes (i.e. not belonging to a cluster or

to a cluster with very few members) are most probably superpositions. The main outcome

of this step is to identify the number of MUs that contributed significant MUPs to the EMG

signal (i.e. to estimate the number of MUPTs with significant MUPs) and to estimate the

MUP template of each discovered MUPT.

The second step is to determine the MU related to each MUP template. Superpositions of

MUPs are harder to deal with in the first step as well as in this step. If the overlap is only

slight, the constituents might still be recognizable. But if the overlap is complete it might be

necessary to try different alignments of the templates to see which gives the closest fit. The

motor unit discharge patterns can also be used to help determine which MUs are involved in

a superimposed MUP. As discharge rates are assumed to be rather orderly (i.e. IDIs can be

assumed to follow a Gaussian distribution), the time at which a particular discharge took

place can be estimated from the time at which the preceding or following discharge took

place.

The final step in decomposition is to validate the results in order to ensure they are consistent

with the expected physiological behaviour of MUs. If there are unexpected short IDI in any

of the discharge patterns, or if there are detected MUPs that have not been assigned to a

29

MUPT, then the decomposition is probably not correct or it is incomplete. On the other

hand, if all the activity in the signal (i.e. the detected MUPs) has been adequately accounted

for by the set of extracted MUPTs which in turn represent MUs with physiologically realistic

discharge patterns, then there is a good chance that the decomposition is substantially

complete and accurate.

• Decomposition Using a Knowledge-Based Certainty Classifier

An example of an algorithm that has been developed based on clustering and classification

is briefly illustrated here. The algorithm consists of five major steps; signal preprocessing,

MUP detection, clustering of a part of the detected MUPs, MUP classification and finally

estimation of MUP templates [Parsaei et al., 2012].

In the beginning, the input EMG signal is filtered using a first-order low pass filter in order

to reduce the MUP temporal overlap, accentuate the differences between MUPs created

by different MUs and increase the separation between MUPs and the background noise

[Parsaei et al., 2012].

The second major step of the algorithm is MUP detection where the positions of MUPs

in the filtered signal are detected using a threshold crossing technique [Stashuk, 1999].

The third step is based on clustering a part of the data. MUPTs are formed by clustering

the the MUPs of this part of the data based on their shapes. The main goal of the clustering

step is to estimate the number of MUPTs, estimate their MUP templates and estimate

their respective MU firing pattern statistics [Parsaei et al., 2012].

Afterwards, the rest of the MUPs (those that do not belong to the part of the data used

for clustering) are assigned to the extracted MUPTs based on their shapes and consistency

between their respective MU firing times and those of the extracted MUPTs. The validity

of the extracted MUPTs is assessed and invalid trains are corrected at the end of this step

[Parsaei et al., 2012].

Finally a MUP template is estimated for each MU using mean estimation where a MUP

template estimate is calculated by ensemble averaging all the MUPs belonging to its re-

spective MUPT [Stashuk, 1996].

30

2.4.4.4 Muscle Classification

Aggregation of MUP Characterizations

Characterizations of MUPs must be aggregated to obtain the overall muscle classification

of the muscle from which these MUPs were detected. As with MUPs, a set of n muscle

likelihood measures is obtained, where n is the number of muscle labels and the muscle is

considered to belong to the label that has the highest category likelihood value. In Pfeiffer

and Kunze [1995] and Pfeiffer [1999], the idea of implementing probabilistic characteriza-

tion and aggregating MUP template characterizations using Bayes rule was first introduced.

MUP characterization was performed using Fishers LDA. Other techniques used Bayes rule

to aggregate MUP template likelihood measures obtained from multiple classifiers like deci-

sion trees, LDA and Naive Bayes [Pino, 2008].

31

Chapter 3

Problem Formulation

3.1 The Bags-of-Instances Setting

Here we describe the bags-of-instances setting of the data upon which the introduced weakly

supervised learning algorithms are implemented. Let t be the number of possible bag/in-

stance labels. Let n be the number of bags in the training set. Let B ∈ {1, 2, ..., t} be the

random variable representing a bag’s label, and let Ij ∈ {1, 2, ..., t} be the random variable

representing the label of the jth instance belonging to the bag. The number of instances

in the bag, which differs from one bag to another, is denoted by m; the m instance labels

are referred to together as the vector I⃗. Let F⃗j ∈ ℜp be the p-dimensional feature vector

belonging to the jth instance. Therefore, there is a collection of i.i.d. n bags of the form

(b, f⃗1, f⃗2,..., ⃗fmν)ν , ν ∈ {1, ..., n}.

As mentioned earlier, random variables are denoted in upper case while their realisations are

denoted in lower case. Elements of a vector are indexed with a square-bracketed subscript,

so F⃗j[k] is the kth element of the observed feature vector of the jth instance in a bag [Adel

et al., 2013]. A “generic” instance label is referred to as I and a “generic” feature vector is

referred to as F⃗ .

The main task is to predict the labels of test bags. Feature vectors of instances of test

bags are observed. This could be achieved by learning some mapping or concept from the

training set in order to correctly label unseen (test) bags. Most weakly supervised learning

32

and multiple-instance learning (MIL) problems were based on binary class data, like the ex-

ample shown in Figure 1.1(d). In the muscle classification problem, t = 3 for EMG datasets.

In other partially labelled datasets of the bags-of-instances setting like the MUSK dataset,

t = 2. Figure 3.1 displays an example similar to the one shown in Figure 1.1(d) but with

three labels, i.e. t = 3. The cardinality of bags of each label is usually more than one but

they are set to 1 in Figure 3.1 for simplicity.

Again no instance labels are provided. Nonetheless, for all instances I that belong to bags

B = 1, it is assumed that I = 1, while for all instances I that belong to bags B = 2 or B = 3,

value of I is unknown. This assumption is an outcome of the available information about

the bags-of-instances datasets of interest in this thesis. For all the EMG muscle datasets,

let B = 1 denote a normal bag (muscle). It is so rare that a normal muscle would contain

myopathic or neurogenic motor units and consequently such motor units can be considered

outliers. However, myopathic and neurogenic muscles normally contain normal motor units.

Therefore, for B = 2 or B = 3 (myopathic or neurogenic respectively), I is unknown. The

same goes for the MUSK dataset, because negative bags do not contain positive instances. A

more detailed description of the MUSK dataset is provided in Chapter 5. Therefore, assume

B = 1 denotes a negative bag and B = 2 denotes a positive bag in the MUSK dataset. This

leads to I = 1 for all instances belonging to B = 1 and unknown I values for all instances

belonging to B = 2.

In all the introduced learning algorithms, learning is never applied only on the bag level by

assuming one representative feature vector for each entire training bag and learning from

these vectors. On the contrary, instance labels of a test bag are predicted so that the all

important bag label can be predicted.

33

Figure 3.1: A 3-class partially labelled dataset where only bags are labelled.

3.2 Characteristics of EMG Muscle Datasets

EMG muscle data used are acquired under IRB approval and sanitized of any personal

identifying information and then processed using decomposition-based quantitative elec-

tromyography (DQEMG). Data are gathered in a database that is used for both training

and testing (using cross-validation). This database contains information from 194 muscles

in two groups, as per their location in the body; upper leg and lower leg. There are 99 upper

leg muscles and 95 lower leg muscles. Each group is treated as a separate dataset. There are

three muscle labels; normal, myopathic or neurogenic. As mentioned before, a motor unit

potential train (MUPT) is a train of detected motor unit potentials (MUPs) created by the

repeated firing of the same MU. In the database, each MUP is represented by feature values

of its MUP template; which is an estimate of its typical or expected MUP shape, as well

as stability features that express the stability of the different discharges of this MU within

their respective MUPT.

Features of EMG datasets Table 3.1 illustrates the EMG features used in the learning

techniques applied on EMG datasets, along with a brief description of each feature.

34

Table 3.1: EMG Feature descriptions.

Feature group Features Description

size
duration the interval from the beginning of the first signal de-

flection from the baseline to its final return to the base-
line of an action potential [Dumitru et al., 2002]

amplitude the maximum voltage difference between two points
(peak-to-peak) [Dumitru et al., 2002]

area area under the curve (measured by µV per ms)

shape thickness ratio of area to amplitude

global complexity

length index (RIR) length − 2 (amplitude)
2 (amplitude)

shape width area / length
turns number of positive and negative peaks
phases discrete number of zero crossings plus one
fibre count number of fibres belonging to the MU producing this

MUP

local complexity

phase area area
phases

phase complexity turns
phases

turn area area
turns

turn length length
turns

turn amplitude amplitude
turns

turn width duration
turns

stability
jiggle shape variability of a raw MUP recorded with a con-

ventional EMG needle electrode [Dumitru et al., 2002]
A jiggle shape variability of a band-pass filtered MUP (2nd

derivative of the signal)

shimmer COV st. dev. of distances of the MUPs of a MUPT to its MUP template
mean of distances the MUPs of a MUPT to its MUP template

composite size index 2 log(amplitude) + area
amplitude

35

Chapter 4

Weakly Supervised Learning based on

Spectral Graph-Theoretic Grouping

4.1 Motivation

In data of the setting bags-of-instances, bag labels B are provided while instance labels I

are not. In EMG datasets, t = 3, since a bag or instance can be either normal (B = 1),

myopathic (B = 2), or neurogenic (B = 3). All instances belonging to normal bags (B = 1)

can be labelled normal (I = 1) as it is very rare that a normal muscle would contain

a disordered (myopathic or neurogenic) component. However, this is not the case with

disordered bags as disordered muscles do have some normal as well as disordered components.

This means that, in the EMG dataset, instances belonging to normal bags are labelled

but instances belonging to myopathic and neurogenic bags are unlabelled. Other bags-of-

instances datasets usually have similar setup based on the labelling assumptions resulting

from the semantics of the dataset. For example in image datasets indicating the existence

of an object, a negative labelled image (meaning the object of interest is not in the image)

has all its instances labelled negative. Before the work in this chapter, fully supervised

classification was performed on all instances in order to predict labels B of test bags. An

instance belonging to a myopathic or a neurogenic bag was assumed to be myopathic or

neurogenic respectively. This assumption is not valid because myopathic and neurogenic

36

bags contain normal instances. Therefore, it is easy to see that performance of any classifier

would severely suffer due to this assumption.

In this chapter, a spectral graph-theoretic grouping strategy for weakly supervised classifica-

tion is introduced, where a limited number of available labelled instances (those belonging to

normal bags of the muscle dataset) and a larger set of unlabelled instances (those belonging

to myopathic and neurogenic bags) are used to construct a larger annotated training set

composed of strongly labelled and weakly labelled instances. Strongly labelled instances are

instances that belong to normal bags. Weakly labelled instances are those annotated by

the spectral grouping; instances that belong to myopathic and neurogenic bags. Size of the

dataset as per number of instances is the same, but size of the dataset as per number of an-

notated instances becomes larger. A spectral grouping algorithm is applied to create groups

within unlabelled instances. Afterwards unlabelled instances get weakly annotated based

on the inherent relationship between them and strongly labelled instances. A number of

similarity graph models for spectral grouping, including two new similarity graph models in-

troduced in this thesis, are explored to investigate their performance in the context of weakly

supervised classification. Experimental results using the EMG muscle data demonstrate that

the introduced weakly supervised paradigm can provide significant improvements in classi-

fication performance on this data. Also, the introduced spectral grouping algorithm, whose

implementation is based on the similarity graphs, is tested on other benchmark datasets.

Most of the content of this chapter is presented in Adel et al. [2014].

The main objective of this chapter is to turn a training dataset consisting of a limited

number of labelled instances and a larger number of unlabelled instances into a larger an-

notated set consisting of weakly labelled instances, which are those that were unlabelled,

and strongly labelled instances, for the sake of improving classification performance. This is

to be achieved via the proposed weakly supervised learning paradigm. Unlabelled data are

weakly annotated by applying a spectral graph-theoretic grouping strategy that makes use

of strongly labelled instances as well as similarity among instances in order to assign weak

labels to the unlabelled instances. Spectral graph-theoretic grouping is based on similarity

graph models. In addition to the similarity graph models in the literature, two new similarity

37

graph models are introduced in this thesis. Weakly labelled and strongly labelled instances

form a larger annotated training set. By having larger amounts of annotated training data,

and if the spectral grouping process is implemented properly, using a larger annotated train-

ing dataset should consequently lead to an improved classification performance compared

to the case when an invalid assumption about the unlabelled data is used. We believe this

paradigm can serve as a methodological guide to other datasets of the bags-of-instances set-

ting, not only this muscle classification example. However, while the spectral graph-theoretic

grouping phase of the introduced paradigm has been tested on other benchmark unlabelled

datasets, the weakly supervised paradigm as a whole has been tested on the EMG muscle

datasets only.

To put it in a nutshell, the goal is to improve classification performance of bags-of-instances

datasets (EMG datasets) by constructing a larger annotated training set, then use it for

classification. A weakly supervised paradigm is proposed. The paradigm mainly targets

datasets of the bags-of-instances setting, like the one shown in Figure 4.1(A). Each colour

denotes a label. Assume green denotes label 1, blue denotes label 2 and red denotes label

3. Instances I belonging to the green labelled bags B = 1 (e.g. the bag at top left) are

labelled i = 1, but instances I belonging to blue and red bags B = 2 or B = 3 (e.g. the

other two) are unlabelled. Instances of all blue labelled bags are grouped together in one

similarity graph, i.e. Graph1 contains all I ∈ B = 2. The same goes for instances of all

red labelled bags, i.e. Graph2 contains all I ∈ B = 3. Spectral graph-theoretic grouping is

performed by first constructing two similarity graph models, Graph1 and Graph2 and then

performing spectral grouping on each graph (Figure 4.1(B)). As per this step, two similarity

graph models are proposed. Using the groups resulting from spectral grouping along with

the strongly labelled instances associated within the spectral groups, unlabelled instances

are weakly annotated and the result is Figure 4.1(C). The assumption is that total number of

green instances in blue (resp. red) bags is less than the number of blue (resp. red) instances.

Thus, the group with greater cardinality is assigned the blue (resp. red) label:

38

For Graph1,

∀I, I ∈ Graph1, I ∈ {1, 2}

if |Grp1| > |Grp2|

∀I, I ∈ Grp1, i = 2

∀I, I ∈ Grp2, i = 1

else

∀I, I ∈ Grp1, i = 1

∀I, I ∈ Grp2, i = 2

For Graph2,

∀I, I ∈ Graph2, I ∈ {1, 3}

if |Grp3| > |Grp4|

∀I, I ∈ Grp3, i = 3

∀I, I ∈ Grp4, i = 1

else

∀I, I ∈ Grp3, i = 1

∀I, I ∈ Grp4, i = 3.

The premise is that by applying an efficient grouping strategy on nodes of each similarity

graph, we can weakly (but reliably) annotate the corresponding instances. By doing so,

we construct a larger annotated training set. Finally a weakly supervised classifier exploits

the whole dataset consisting of strongly labelled data and weakly labelled data (Figure

4.1(D)). The rest of the text in this chapter is dedicated to thoroughly study how to ap-

ply an “efficient” grouping strategy so that unlabelled instances can be “reliably” annotated.

4.1.1 Related Work

There are numerous examples of learning algorithms where unlabelled or weakly labelled

data are utilised [Arora et al., 2007, Chum and Zisserman, 2007, Lee and Grauman, 2011,

Winn and Jojic, 2005, Crandall and Huttenlocher, 2006]. Also, Bergamo and Torresani

[2010] provide another example where they exploit weakly annotated web images to build

39

Figure 4.1: A schematic representation of the main steps of the proposed weakly supervised
paradigm. A. A dataset of the bags-of-instances setting (only one bag of each label is shown for
simplicity but cardinality of bags of each label is greater). Each bag label is represented by a
colour. B. All instances of blue bags are grouped in one similarity graph model (Graph1) and the
same for instances of red bags (Graph2). Spectral grouping is performed on each similarity graph
model to group the instances in two groups. Relation with the green labelled instances decide the
label of each group. In this example, the assumption is that total number of green instances in
blue (resp. red) bags is less than the number of blue (resp. red) instances. Thus, the group with
greater cardinality is assigned the blue (resp. red) label. C. Now instances of blue and red bags
are weakly annotated while instances of green bags are strongly labelled. D. A classifier learns

from all instances (weakly and strongly labelled) of all training bags

40

a weakly supervised object classifier. In addition to object recognition in images, weakly

supervised learning has other applications in computer vision. For example, Prest et al.

[2012] perform learning based on weakly labelled videos and fully labelled images in order to

detect objects from web videos. Other examples of weakly supervised learning algorithms

that are applied on videos include Ali et al. [2011] and Leistner et al. [2011].

Graph-theoretic grouping has also been studied before in the literature. Fowlkes et al. [2004]

used spectral graph-theoretic grouping in an image segmentation application. They devel-

oped spectral groups which were based on using a small number of samples and extrapolating

so that the computational requirements are reduced. Aksoy and Haralick [1999] developed

a graph-theoretic clustering algorithm that was used for image grouping. They grouped

images based on the observation that visually similar images are also similar in the feature

space because they have similar feature vectors. Wu and Leahy [1993] represent one further

example of a graph-theoretic based clustering algorithm where they develop an algorithm for

image segmentation. They performed clustering by building an undirected graph using data

instances, then forming mutually exclusive subgraphs by gradually removing arcs according

to a certain criterion.

4.2 Methodology

One strategy of weakly annotating unlabelled data is to apply a grouping technique so that

each part of the unlabelled data can be related to a group, which in turn is assigned a certain

label depending on the inherent relationship between the strongly labelled part of the data

and the unlabelled part. Due to the fact that the spectral grouping process acts only on

the unlabelled part of the data, the introduced spectral grouping algorithms are applicable

on fully unlabelled datasets because they practically act on the unlabelled part of data, as

long as other clustering issues (e.g. number of clusters) can be handled via the problem

assumptions. This is the case with the datasets used in this weakly supervised paradigm.

For the EMG muscle datasets, instances belonging to each disordered type of bag (myopathic

or neurogenic) are known to be either normal or of the same disorder. Therefore, there are

41

two groups/clusters. For the benchmark datasets used, number of clusters is known. As a

preliminary phase of the work in this chapter, spectral clustering as well as other clustering

algorithms were performed on the EMG muscle datasets. Normalized spectral clustering

according to Shi and Malik [2000] performed slightly better than other spectral clustering

algorithms which in turn performed better than other clustering algorithms. However, the

improvement provided by Shi and Malik’s normalized clustering was not considerable. After

careful inspection of the reason why Shi and Malik’s normalized spectral clustering does

not perform better than it does, it turned out to be the fact that all similarity graphs

used before in the spectral clustering literature do not capture well the pairwise similarities

between instances of the dataset. It is worth noting that there are two main normalized

spectral clustering algorithms, one is according to Shi and Malik [2000] and the other is

according to Ng et al. [2002]. For the sake of simplicity, the former will be shortly referred

to in this chapter as normalized spectral clustering, unless stated otherwise.

4.2.1 Similarity Graph Models

The first step of the proposed weakly supervised paradigm is to perform spectral graph-

theoretic grouping on the unlabelled part of the dataset. Spectral graph-theoretic grouping

in turn begins by forming similarity graph model(s) of unlabelled data. In the literature,

there are several popular similarity graph models that transform a given set I1, ..., IN of data

instances with pairwise similarities sab, where a and b are indices, or pairwise distances dab

into a graph. When constructing a similarity graph model the goal is to model the local

neighbourhood relationships between the data instances. The following is a list of the main

similarity graph models.

The ϵ-neighbourhood graph: Instances that have pairwise distances among each other

less than ϵ are connected while the instances with pairwise distances greater than or equal

to ϵ are not. Weights are considered to be at the same scale of distances; which is at most

ϵ [von Luxburg, 2007]. Therefore ϵ-neighbourhood graph is unweighted.

k-nearest neighbour graphs: An instance Ia is connected to an instance Ib if Ib is among

the k-nearest neighbours of Ia. However, the neighbourhood relationship is not symmetric

42

and due to that the resulting graph is a directed graph. Therefore, the graph should be

transformed into an undirected graph. One way of transforming it into an undirected graph

is by connecting two instances Ia and Ib if Ib is among the neighbours of Ia “or” Ia is among

the neighbours of Ib. The resulting undirected graph is referred to as the k-nearest neighbour

graph. Another way is to connect two instances Ia and Ib if Ib is among the neighbours of

Ia “and” Ia is among the neighbours of Ib. The resulting undirected graph in this case is

referred to as the mutual k-nearest neighbour graph. After building the similarity graph in

both cases, edges of the graph are weighted by measuring the similarity of the respective

vertices [von Luxburg, 2007].

The fully connected graph: All instances are connected to one another; in other words

all instances are considered “similar” to one another. The edges are weighted by sab. The

graph is useful only when local neighbourhoods can be modelled by the similarity func-

tion because this is the only way by which the fully connected graph can represent the

local neighbourhood relationships [von Luxburg, 2007]. The Gaussian similarity function

s(Ia, Ib) = exp(−||Ia − Ib||2/(2σ2)) is an example of this kind of similarity function. The

parameter σ of the Gaussian similarity function controls the width of the neighbourhoods.

The parameter σ acts like the parameter ϵ in the construction of the ϵ-neighbourhood graph

[von Luxburg, 2007].

EMG datasets provide examples of datasets where neither the ϵ-neighbourhood graph, k-

nearest neighbour graphs nor fully connected graphs can capture properly the similarities

between the data instances mainly because there are different densities within the same

dataset. The proposed similarity graph models aim at being robust in handling different

data densities within a dataset. They are referred to as probabilistic threshold similarity

graph and probabilistic criteria similarity graph. One of the main advantages of the pro-

posed probabilistic threshold and probabilistic criteria similarity graphs is that they do not

have a problem in dealing with instances in different scales. This means that unlike the

ϵ-neighbourhood graph which does not connect instances belonging to the same scale when

a dataset is on different scales, and unlike the k-nearest neighbour graph which, in the same

43

Figure 4.2: DatasetA: A 26-instance 2-label dataset used to test different similarity graph
models. Instances are coloured according to their labels.

case, would connect instances on different scales, the probabilistic threshold similarity graph

can connect instances within regions of constant density when data is on different scales.

Mutual k-nearest neighbour graph can at times act on different scales but setting the pa-

rameter k in this case usually is a problem because, first finding the optimal k value for a

certain dataset is tricky and second and more importantly, one dataset can have the optimal

value of k that does not mix the data scales with one another on one part of the dataset

different from the optimal value of k on another part of the same dataset.

Examples where the advantages of the probabilistic threshold and probabilistic criteria sim-

ilarity graphs are clear, usually relate to clusters that have irregular shapes. For example

Figure 4.2 shows a toy dataset representing a pattern that takes place quite often in the

EMG datasets as well as other datasets where there are two or more irregular clusters in the

data. A Matlab GUI, which was developed by Hein and Luxburg in [Hein and von Luxburg,

2007], is tailored in order to show the figures used throughout this illustrative example.

Figure 4.3 shows how the instances are connected when an ϵ-neighbourhood graph is used

with values of ϵ equal to 0.2298 and 0.2791. When ϵ is less than the former, number of

connected components is ≥ 5 whereas number of connected components is always 1 for

values of ϵ greater than the latter. The former is the value of ϵ that resulted from leave-

one-out cross-validation on this small dataset and it led to 5 connected components as it

loosely or never connects instances belonging to the same cluster while bigger values of ϵ

overconnected instances belonging to different connected components. Figure 4.4 shows

the similarity graphs when a symmetric k-nearest neighbour graph is used with values of k

44

(a) ϵ = 0.2298 (b) ϵ = 0.2791

Figure 4.3: Similarity graph of DatasetA as a result of applying an ϵ-neighbourhood graph.
This technique fails to identify the 2 groups of DatasetA.

equal to 1, 2, 3 and 4. Number of connected components is always 1 for values of k greater

than 4. No value of k made symmetric k-nearest neighbour graphs get the correct groups or

connected components. The value of k resulting from leave-one-out cross-validation is k = 3

and it connects instances belonging to different connected components.

Figure 4.5 shows the similarity graphs when a mutual k-nearest neighbour graph is used

with values of k equal to 4, 5, 6 and 7. Number of connected components is always 1 for

values of k greater than 7. No value of k made mutual k-nearest neighbour graphs get the

correct connected components. The value of k resulting from leave-one-out cross-validation

is k = 4 and even if it is a better fit than both the ϵ-neighbourhood graph and the symmetric

k-nearest neighbour graph, the two disconnected components on the right side of Figure 4.5

(a) should have been connected as they belong to the same cluster and the same goes for

the component on the right side along with the one in the middle of Figure 4.5 (a).

Figure 4.6 shows the similarity graph resulting from the probabilistic thresholding algorithm

with a value of w equal to 0.073 which is the value resulting from applying leave-one-out

cross-validation on this illustrative dataset. The probabilistic threshold similarity graph is

the only similarity graph model that leads to the correct connected components because

the values that w are compared to are normalized values representing the distance between

a certain instance and another divided by summation of distances between the former and

all instances of the dataset. This normalization leads to similarity graph model that not

45

(a) k = 1 (b) k = 2

(c) k = 3 (d) k = 4

Figure 4.4: Similarity graph of DatasetA as a result of applying a symmetric k-nearest neighbour
graph. This technique fails to identify the 2 groups of DatasetA.

only depends on absolute values of parameters but is also heavily impacted by relative

weight values where a certain distance value from a certain instance to another is taken

into consideration only with relative to another distance from the former instance to a third

instance.

In the probabilistic threshold similarity graph, a parameter w is used as a threshold on the

similarity values. Similarity values greater than or equal to w are kept while similarity values

smaller than w are assigned using a truncated Gaussian distribution with mean = w and

standard deviation = σ. Another parameter ϵ is used to decide the final similarity values as

illustrated in Section 4.2.1.1. As shown in equations 4.1 and 4.2, initial values of similarity,

which are compared with w are normalized based on the summation of distances from a cer-

tain instance. This leads to the fact that the thresholding applied here is relative to the data

and does not depend on absolute values as is the case with ϵ in ϵ-neighbourhood graph and

46

(a) k = 4 (b) k = 5

(c) k = 6 (d) k = 7

Figure 4.5: Similarity graph of DatasetA as a result of applying a mutual k-nearest neighbour
graph. This technique fails to identify the 2 groups of DatasetA.

Figure 4.6: Similarity graph of DatasetA as a result of applying a probabilistic threshold graph
with w = 0.073. This technique manages to correctly identify the 2 groups of DatasetA.

47

k in the k-nearest neighbour graphs. Nonetheless w and ϵ still provide a hard thresholding

on the similarity values and therefore these parameters can still affect the similarity values

a great deal. In order to alleviate this effect of hard thresholding, a similarity graph that is

based on a probabilistic acceptance criterion is proposed. As illustrated in Section 4.2.1.2,

similarity values are assigned either from sab ∼ N(w, σ) or to 0 based on a probability value

and there is no hard threshold under which similarity values are directly assigned a value of 0.

The proposed approach for constructing similarity graphs can be formally described as

follows:

4.2.1.1 Probabilistic Thresholding

Each vertex va of the similarity graph model represents an instance Ia. For each vertex va,

distances between a vertex va and all other vertices; dab, b = 1, ..., N, b ̸= a, are calculated

first as Euclidean distances. Initial similarity values are subsequently calculated as a function

of the distances by equation 4.1

sinitab =
dab

1−m∑N
b=1 dab

1−m , m > 1 is a smoothing parameter (4.1)

Similarity values which are greater than or equal to w are kept while the rest of similarity

values are assigned using a truncated Gaussian distribution with mean = w and standard

deviation = σ. This means that for the interval sab ∈ (0, w), values of sab ∼ N(w, σ) are

used to decide the final value of sab as follows. If a weight value generated by N(w, σ) is

smaller than a certain small threshold value ϵ, then the respective similarity value is set to

0, otherwise the similarity value is set to the generated weight. In summary, let’s assume

that the value sϵ leads to a probability density function (PDF) value of ϵ. Then, similarity

values greater than or equal to w are taken as they are and similarity values smaller than sϵ

are set to 0, while for interval sab ∈ (sϵ, w) similarity values are obtained by sab ∼ N(w, σ),

as shown in equation 4.2. Similarity graphs constructed by the probabilistic thresholding

48

algorithm are referred to as probabilistic threshold similarity graphs.

sab =

sinitab if sinitab ≥ w

f(sinitab , w, σ) = 1
σ
√
2π
e−

(sinit
ab −w)

2

2σ2 if ϵ ≤ f(sinitab , w, σ) < w

0 if f(sinitab , w, σ) < ϵ.

(4.2)

4.2.1.2 Probabilistic Acceptance Criterion

Here, distances and corresponding initial similarity values are calculated the same way as in

thresholding. Similarity values that are greater than or equal to w are again kept as they

are while a truncated Gaussian distribution with mean = w and standard deviation = σ is

utilised as follows in order to calculate similarity values smaller than w. The weight values

resulting from N(w, σ) are accepted as they are into the neighbourhood with a probability

based on the generated weight and therefore a stochastic acceptance criterion, that does not

require a threshold, is provided. To sum it up, similarity values greater than or equal to w

are taken as they are while for interval sab ∈ (0, w) similarity values are assigned either by

sab ∼ N(w, σ), with a probability based on the weight generated from N(w, σ), or set to 0

otherwise, as displayed in equation 4.3. Similarity graphs constructed by the probabilistic

acceptance criterion algorithm are referred to as probabilistic criterion similarity graphs.

sab =

sinitab if sinitab ≥ w

f(sinitab , w, σ) = 1
σ
√
2π
e−

(sinit
ab −w)

2

2σ2 with prob. ∝ 1
σ
√
2π
e−

(sinit
ab −w)

2

2σ2

0 with prob. ∝ 1− 1
σ
√
2π
e−

(sinit
ab −w)

2

2σ2 .

(4.3)

Both neighbourhood relationships of the introduced similarity graphs are turned into sym-

metric neighbourhoods in a fashion similar to the k-nearest neighbour graph; either by

assigning the maximum value out of similarity(va, vb) & similarity(vb, va) to both of them

49

or by taking the minimum value out of these two values to be their updated symmetric

similarity value.

4.2.2 Spectral Grouping

The graph clustering notation presented in Section 2.3 is repeated here, as well as a listing

of the main graph Laplacian matrices in the literature.

Clustering Input The learner receives a set X of N i.i.d. instances where each instance

has p features. Even if it is not always the case, but let’s assume another number k is given,

representing the number of clusters. This is inline with the work in this chapter.

Clustering Output The learner is required to return a partition of the N instances into k

disjoint subsets C1, C2, ..., Ck, where
∪k

i=1Ci = X [Ben-David et al., 2006]. A good partition-

ing should minimise pairwise distances among instances of the same subset and maximise

pairwise distances among instances of different subsets, so that subsets are homogeneous

and well separated, respectively.

As spectral clustering is what is of interest here. Clustering with undirected graphs where

vertices represent instances is the form of clustering in use in the work in this chapter.

Graph Clustering The learner is required to return a partition of a graph into disjoint

subsets, or groups of vertices, where edges between vertices of different groups have weights

that are as low as possible (well separated groups) and edges between vertices within the

same group have weights that are as high as possible (homogeneous groups).

Let D be the degree matrix and W be the edge weight matrix of the similarity graph. The

unnormalized graph Laplacian is equal to the following:

L = D −W

There are two ways by which a normalized graph Laplacian can be calculated, which are as

follows:

Lnor1 = D− 1
2LD− 1

2

50

or

Lnor2 = D−1L

A normalized graph Laplacian is calculated in all the algorithms performed in the work in

this chapter via the latter equation Lnor2 = D−1L [Chung, 1997].

4.3 Experiments

There is no ground truth labelling available for the unlabelled instances of the EMG datasets.

The main purpose of weakly annotating these unlabelled instances is to improve the perfor-

mance of the subsequent weak classifier. This means that the accuracy of the weak classifier

is the main metric for measuring the quality of the weak annotation. Still, we show another

metric which is a clustering internal evaluation measure in order to demonstrate the qual-

ity of the grouping process in a generic sense. Davies-Bouldin index is used as an internal

evaluation measure for the EMG datasets. Benchmark clustering datasets used in the ex-

periments have their ground truth labels available. Ground truth labels were never used in

the learning process by any means. F-measure is used as an external evaluation measure for

these datasets where ground truth labels are available.

For 2-cluster problems like the EMG clusterings, Davies-Bouldin can be calculated as follow:

Davies-Bouldin =
1

2

2∑
a=1

maxa ̸=b(
σa + σb

d(ca, cb)
)

where ca is the centroid of cluster a, σa is the average distance of all instances of cluster

a to centroid ca and d(ca, cb) is the distance between two centroids [Davies and Bouldin,

1979]. As the numerator expresses the compactness of the clusters of a clustering result

(intra-cluster distance) and the denominator expresses the separation among the clusters

of the clustering (inter-cluster distance), the smaller the value of Davies-Bouldin index, the

better the corresponding clustering.

F-measure is a clustering external evaluation measure that weights the recall by a parameter

β [Rijsbergen, 1979]. Precision is P =
true positives

true positives + false positives
and recall is R =

51

true positives
true positives + false negatives

. F-measure is calculated by:

F-measure =
(β2 + 1) P R

β2P +R

Here we use β = 1. Therefore, F-measure used here is the harmonic mean of precision and

recall:

F-measure =
2 P R

P +R

Best value of F-measure is 1 or 100% and worst value is 0. In this range, the larger F-

measure, the better the corresponding clustering result.

Results are divided into spectral graph-theoretic results, which are based on similarity graph

models, and weakly supervised classification results. The former displays the outcome of

Section 4.3.1 which provides an analysis of similarity graph models, two of which are in-

troduced in this work. The second part of the results compares between weakly supervised

classifiers and the corresponding fully supervised classifier (Section 4.3.2).

4.3.1 Analysis of Similarity Graph Models

Regarding the EMG muscle datasets, the parts used of every muscle dataset in the similarity

graphs represent the unlabelled parts. Outcome of each spectral graph-theoretic grouping

consists of two groups. The labelled part of every muscle dataset is used to annotate the

groups because the group with a smaller number of elements is assigned the label normal

while the group with more elements is given the disordered label. This assumption is based

on the structure of a disordered muscle, which typically contains more disordered motor

units (MUs) than normal MUs. The elements which get annotated by the spectral grouping

represent weakly labelled data that can be used as labelled data for the weakly supervised

classification algorithm illustrated in the Section 4.3.2. Regarding the features used in EMG

datasets, 8 features were chosen out of the 19 available features and they were obtained

by applying an exhaustive (brute-force) feature selection technique for all feature sets. The

technique is wrapper-based as classification accuracy was the criterion used to judge the

52

quality of a feature. Different classifiers were used and the other unselected 11 features

always turned to be either redundant or irrelevant.

For the other three datasets, it is an ordinary spectral clustering problem and clustering is

applied on all the data as there is no labelled part of the data. Spectral clustering (grouping)

is evaluated here on its own and then its impact on classification performance is evaluated

in Section 4.3.2. We are mainly interested in the proposed probabilistic threshold and

probabilistic criteria similarity graphs so they are evaluated based on clustering evaluation

measures compared to other similarity graph models existent in the literature.

In Table 4.1, values of the evaluation measures are shown for the following datasets:

• Abalone [Blake et al., 1998] dataset: 4177 instances, 9 features in 10 clusters.

• Swiss Banknotes [Flury and Riedwyl, 1983] dataset: 200 instances, 6 features in 2

clusters.

• Segmentation [Asuncion and Newman, 2007] dataset: 2310 instances, 19 features in 7

clusters.

• EMG Myopathic Upper Leg dataset (Myo Upper Leg): 557 instances, 8 features in 2

clusters.

• EMG Neurogenic Upper Leg dataset (Neuro Upper Leg): 356 instances, 8 features in

2 clusters.

• EMG Myopathic Lower Leg dataset (Myo Lower Leg): 583 instances, 8 features in 2

clusters.

• EMG Neurogenic Lower Leg dataset (Neuro Lower Leg): 444 instances, 8 features in

2 clusters.

The algorithms experimented are:

• Probabilistic threshold: optimal values of w and σ are obtained by cross-validation.

There are two versions of the probabilistic thresholding approach as per how to trans-

form the similarity matrix into a symmetric matrix:

53

– Prob. thresholding Min.: Assign the minimum value out of similarity(va, vb) &

similarity(vb, va) to both of them

– Prob. thresholding Max: Assign the maximum value out of similarity(va, vb) &

similarity(vb, va) to both of them

• Probabilistic criterion: optimal values of w and σ are obtained by cross-validation.

There are two versions of the probabilistic acceptance criterion approach as per how

to transform the similarity matrix into a symmetric matrix:

– Prob. acceptance Min.: Assign the minimum value out of similarity(va, vb) &

similarity(vb, va) to both of them

– Prob. acceptance Max: Assign the maximum value out of similarity(va, vb) &

similarity(vb, va) to both of them

• ϵ-neighbourhood: optimal value of ϵ is obtained by cross-validation.

• k-nearest neighbour: optimal value of k is obtained by cross-validation.

• Mutual k-nearest neighbour: optimal value of k is obtained by cross-validation.

• Fully connected graph: optimal value of σ is obtained by cross-validation.

The first 3 datasets are publicly available datasets that have been used in clustering before.

The latter 4 datasets represent EMG datasets. As mentioned earlier, these datasets were

acquired from upper leg and lower leg recordings and each of them contains two types of

instances; normal as well as disordered (myopathic or neurogenic). In fact there are 2 rather

than 4 EMG datasets as the myopathic and neurogenic upper leg datasets represent bags of

the same dataset (the same goes for the lower leg dataset) but they are shown as two different

datasets here because they are treated separately as far as spectral clustering (grouping)

and its evaluation are concerned. In Section 4.3.2, where weakly supervised classification

is applied, weakly annotated data of both upper leg datasets are being processed together

along with the strongly labelled instances of the upper leg dataset (again the same goes for

lower leg).

54

Table 4.1: Clustering indices values based on different similarity graph models.

Dataset Algorithm Eval. Index Value

Abalone

Prob. threshold Min

F-measure

71%
Prob. threshold Max 90.3%
Prob. criterion Min 67.2%
Prob. criterion Max 88.37%
ϵ-neighbourhood 70.1%

k-nearest neighbour 88.6%
Mutual k-nearest neighbour 53.2%

Fully connected graph 35.1%

Banknotes

Prob. threshold Min

F-measure

100%
Prob. threshold Max 100%
Prob. criterion Min 100%
Prob. criterion Max 100%
ϵ-neighbourhood 100%

k-nearest neighbour 100%
Mutual k-nearest neighbour 100%

Fully connected graph 99%

Segmentation

Prob. threshold Min

F-measure

58.1%
Prob. threshold Max 52.5%
Prob. criterion Min 55.83%
Prob. criterion Max 54.4%
ϵ-neighbourhood 24%

k-nearest neighbour 24.97%
Mutual k-nearest neighbour 24.95%

Fully connected graph 24.95%

Myo Upper Leg

Prob. threshold Min

Davies-Bouldin index

0.1402
Prob. threshold Max 0.4137
Prob. criterion Min 0.1400
Prob. criterion Max 0.4132
ϵ-neighbourhood 1.75

k-nearest neighbour 2.27
Mutual k-nearest neighbour 2.01

Fully connected graph 1.4

Neuro Upper Leg

Prob. threshold Min

Davies-Bouldin index

0.6727
Prob. threshold Max 0.3413
Prob. criterion Min 0.6725
Prob. criterion Max 0.3411
ϵ-neighbourhood 2.39

k-nearest neighbour 2.09
Mutual k-nearest neighbour 2.11

Fully connected graph 1.81

Myo Lower Leg

Prob. threshold Min

Davies-Bouldin index

0.2918
Prob. threshold Max 0.3807
Prob. criterion Min 0.2911
Prob. criterion Max 0.3806
ϵ-neighbourhood 1.18

k-nearest neighbour 1.74
Mutual k-nearest neighbour 1.71

Fully connected graph 1.69

Neuro Lower Leg

Prob. threshold Min

Davies-Bouldin index

0.6521
Prob. threshold Max 0.3642
Prob. criterion Min 0.6520
Prob. criterion Max 0.3641
ϵ-neighbourhood 2.88

k-nearest neighbour 2.97
Mutual k-nearest neighbour 2.9

Fully connected graph 2.04

55

Figure 4.7: F-measure values for datasets with ground truth labels.
The greater the F-measure value the better.

As can be seen in Table 4.1 and in figures 4.7 & 4.8, when similarity graph models are

constructed using the proposed probabilistic approaches, clustering results are better, or at

least as good as, the other approaches. Figure 4.8 shows the improvement achieved by using

any of the four proposed similarity graphs over the other similarity graphs in comparison

as the Davies-Bouldin index values are clearly better with the former. The same conclusion

is shown in case of the Segmentation dataset (by far the largest out of the 3 datasets) in

Figure 4.7. For Abalone dataset in Figure 4.7, the probabilistic threshold maximum graph

leads to the best result as its F-measure value is slightly better than the one achieved by

constructing the probabilistic criterion maximum graph as well as the K-nearest neighbour

graph. All graphs are nearly equally good for the Banknotes dataset displayed in Figure

4.7. One other advantage of the proposed probabilistic thresholding approaches lies in the

fact they do not depend on distance among the instances, location of the instances nor on

56

Figure 4.8: Davies-Bouldin index values for datasets without ground truth labels.
The smaller the index value the better.

a number of neighbours specified a priori that can perform well at some part of the dataset

but not on another part of the same dataset due to, for example, having a dataset containing

different densities within it.

Results show that the probabilistic threshold similarity graph and the probabilistic criterion

similarity graph lead to very similar clustering results among themselves as shown by the

values of the validity indices. The former leads to better results in case of the Abalone

dataset and the minimum graph of the Segmentation dataset, while the latter leads to

slightly better results in case of the maximum graph of the Segmentation dataset. For the

rest of the datasets, results are quite similar among the two proposed graphs.

On the other hand, for some datasets minimum similarity graphs lead to better results

57

than maximum similarity graphs and vice versa on the other datasets. This suggests that

the choice between the minimum and maximum similarity graph for the same approach

(probabilistic thresholding or probabilistic acceptance criterion) should depend on the value

of the cluster validity index resulting from cross-validation.

4.3.2 Weakly Supervised Classification

Now that the annotated training data is larger due to the weak annotation of the previously

unlabelled instances by spectral grouping, we want to evaluate the significance of the weak

labelling procedure with respect to classification performance on the EMG muscle datasets.

Results of the classification are evaluated before and after weak labelling, i.e. with a fully

supervised classifier that assumes all training data instances can be directly assigned the

label of their respective bags, and with a weak classifier that uses weakly labelled data

resulting from spectral grouping along with strongly labelled data. The former is referred

to as fully supervised in the sense that it assumes there is one level of data and assumes

every instance has its own label, which turns it into a supervised learner. The assumption

by which it casts the problem into a supervised learning problem and labels all instances,

is invalid though. The latter classifier recognises the data as partially labelled and proceeds

by the weak annotation and this is why it is referred to as a weakly supervised classifier.

A logistic regression classifier is used as the classification algorithm. Assuming F refers

to a p-dimensional feature vector of an instance I, the utilised logistic regression classifier

assumes P (I = i|F) ∝ expβi[0]+βi[1:p]f , i < 3.

The fully supervised classifier considers all training instances of myopathic and neurogenic

muscles to have the same label (myopathic or neurogenic, respectively) as the muscle. On

the other hand, the weak classifier exploits weak labels assigned to each of these instances

by the spectral grouping procedure. The Upper Leg dataset has 650 labelled instances and

913 unlabelled instances. The fully supervised classifier imprudently assigns the respective

bag label to 913 unlabelled instances. On the other hand, the weakly supervised classifier

processes 913 weakly labelled instances as well as 650 strongly labelled instances. The

Lower Leg dataset has 672 labelled instances and 1027 unlabelled instances. Therefore,

58

Table 4.2: Muscle classification accuracy based on the proposed weakly supervised classifiers vs.
a fully supervised classifier.

Dataset Algorithm Classification accuracy

Upper Leg

Prob. threshold Min Weak Class. 95%
Prob. threshold Max Weak Class. 92.4%
Prob. criterion Min Weak Class. 95%
Prob. criterion Max Weak Class. 92.7%

Fully Supervised Class. 84%

Lower Leg

Prob. threshold Min Weak Class. 96.1%
Prob. threshold Max Weak Class. 93.4%
Prob. criterion Min Weak Class. 95.6%
Prob. criterion Max Weak Class. 93.4%

Fully Supervised Class. 82.3%

the fully supervised classifier imprudently assigns the respective bag label to 1027 instances

whereas the weakly supervised classifier processes 1027 weakly labelled instances as well as

672 strongly labelled instances.

Leave-one-out cross-validation is implemented by setting instances belonging to a single

muscle as test data while training on instances of the rest of the muscles, then repeating this

process for every muscle. It can be more precisely referred to here as leave-one-muscle-out

cross-validation. Overall muscle classification accuracy is the main metric used to evaluate

the classification performance. Table 4.2 shows the results of the logistic regression fully

supervised and weakly supervised classifiers. Every weak classifier is named after the simi-

larity graph model pursued but a logistic regression classifier is used for classification in all

weak classifiers as well as the supervised classifier. Results show that, using a weak classi-

fier, muscle classification accuracy significantly improves compared to the fully supervised

classifier.

4.4 Summary

A weakly supervised learning paradigm is introduced. The goal is to improve classification

performance by weakly annotating unlabelled data using a spectral graph-theoretic grouping

59

strategy. Spectral grouping exploits similarity among data instances as well as the relation-

ship between unlabelled and strongly labelled data instances, by constructing similarity

graph models, including two introduced similarity graph models, to weakly annotate unla-

belled data instances. Afterwards, a classifier learns from the weakly and strongly labelled

data. Datasets upon which applying the introduced weakly supervised learning paradigm

may be useful, typically consist of a limited number of labelled samples and a larger set of

unlabelled samples as well as intrinsic relationship between both sets derived by the data or

the problem. Results show that performance of the resulting weakly supervised classifier is

better than its counterpart fully supervised classifier on the EMG datasets.

In addition to improving the classification performance on partially labelled data, spectral

graph-theoretic grouping using the two introduced similarity graph models can be seen as

a spectral clustering algorithm with the goal in this case being to create clusters with high

similarity within each cluster and low similarity between clusters. Results show that the

introduced spectral grouping strategy leads to compact and well separated clusters on the

tested datasets.

The introduced weakly supervised learning paradigm is discriminative. Therefore, data can

not be simulated as this discriminative paradigm does not model the joint distribution of

data and label. One of the future goals related to EMG data is to build a simulation tool.

A generative model is needed for this to be achievable.

Another limitation of the weakly supervised learning paradigm is that spectral graph-

theoretic grouping can not handle all bags-of-instances datasets. In the case of EMG, spectral

graph-theoretic grouping makes it possible to exploit unlabelled data in learning, but this

is due to the assumptions of the EMG data that make clustering a sound option. However,

with the MUSK dataset, where many positive bags have a very small number of positive

instances that can not be considered a group or a cluster, the weakly supervised learning

paradigm does not represent good approach.

Next chapter we introduce a generative multiple-instance learning (MIL) modelling paradigm

that is intuitively capable of handling different assumptions of bags-of-instances datasets,

as well as making use of these assumptions in learning.

60

Chapter 5

Generative Multiple-Instance

Learning Models

5.1 Motivation

In Multiple-Instance Learning (MIL), training instances are grouped together in bags which

have labels. Each instance in a bag has a label that may be different from that of the

bag, but instance labels are not observed; only the label of the bag is available for learning

[Adel et al., 2013]. The MIL setting was first proposed by Dietterich et al. [Dietterich et al.,

1997] while dealing with a pharmaceutical problem. Their task was to predict the binding

properties of molecules, which depend on the shape of the molecule. However, a molecule

can take on several shapes. Thus, each molecule is represented as a bag of instances, whereas

each instance represents a shape the molecule can take on. If none of the possible shapes

enable binding, the bag (molecule) gets a negative label. But if one shape allows for binding,

the bag is labelled positive. The dataset from this problem is referred to in MIL literature

as the MUSK dataset [Dietterich et al., 1997]. The MUSK dataset from this problem has

remained one of the most widely used benchmark datasets for MIL tasks.

The classification of a muscle based on the set of MUPTs representing a sampling of its

MUs can be formulated as an MIL problem wherein each muscle is a bag and each MU

of a muscle is an instance of that bag. In this chapter, generative modelling approaches

61

are shown to be useful and effective for data that naturally occur in MIL form, such as

EMG muscle data. Generative models are models that describe the full joint distribution

of the data [Adel et al., 2013]. This is one of the main differences between the weakly

supervised learning paradigm presented in Chapter 4 and the paradigm presented in this

chapter, as the former is discriminative. Predicting with a generative model is particularly

suitable for medical domains for several reasons: Generative models allow for expert domain

knowledge to be incorporated in an intuitive way, which leads to good inductive bias in the

modelling assumptions. As we will demonstrate, a model with good inductive bias (elicited

from experts in biomedicine) can result in highly accurate predictions even on the basis of a

relatively small training set. Generative models yield not only a classification tool, but can

also be used as a simulation tool for the problem domain.

For EMG muscle datasets, the features of an instance correspond to the features used to

represent the MUPT of the MU. Main assumptions of the EMG problem are as follows. The

instances of a normal bag are all normal, while neurogenic and myopathic bags may contain

both normal as well as neurogenic or myopathic instances, respectively. It is exceedingly

unlikely that a neurogenic (resp. myopathic) disordered muscle contains/generates a myo-

pathic (resp. neurogenic) MU/MUPT. Only bag labels are provided in the training dataset.

A learning experiment was performed where a learner assigned the bag label to each instance

in the bag and it proved to be inefficient. There is a need for a learner that learns instance

labels of the training set first, then learns to classify test instances (for the sake of classifying

their respective bags) and test bags accordingly.

The generative models introduced in this chapter not only provide a solution to the muscle

classification problem but also provide a framework as well intuition and guidelines for

applying generative models to other MIL problems. We provide the results of applying the

generative modelling approaches on the EMG muscle data, and also on the MUSK dataset.

Most of the content of this chapter is presented in Adel et al. [2013].

62

5.2 Related Work

Dietterich et al. [1997] suggest several algorithms for learning axis-aligned rectangles for the

original MIL problem on the MUSK data. Following Dietterich’s introduction of the MUSK

data setting as MIL, various problems have been phrased as MIL problems. MIL approaches

have, for example, been employed for content-based image retrieval [Maron and Ratan, 1998,

Zhang et al., 2002], text classification [Settles et al., 2007, Andrews et al., 2002b], protein

identification [Tao et al., 2004], music information retrieval [Mandel and Ellis, 2008] and

activity recognition [Stikic and Schiele, 2009]. In medical domains, prediction problems

often naturally occur as MIL tasks. One example is the original MUSK prediction task;

Dundar et al. [2008] also show that learning problems for computer-aided detection (CAD)

applications can often be considered as MIL problems.

Wang and Zucker [2000] adapt Nearest Neighbour learning to MIL. Several studies present

kernels to use Support Vector Machines on MIL problems [Gärtner et al., 2002, Andrews

et al., 2002a, Tao et al., 2004], adaptations of boosting [Andrews and Hofmann, 2003, Xu

and Frank, 2004, Viola et al., 2005] and, more recently, incorporate methods from semi-

supervised or active learning to the MIL setting [Rahmani and Goldman, 2006, Zhou and

Xu, 2007, Settles et al., 2007]. The original bag labelling rule (where the label of the bag

is the logical OR of its instances as in the MUSK data) has been modified and generalized

to account for requirements by other application areas (Foulds and Frank [2010] provide an

overview.). Sabato et al. [2010] provides a comprehensive study with upper and lower bounds

on the sample complexity of the bag-level learning problem without the independence as-

sumption, i.e. without assuming that instances occurring together in a bag are conditionally

independent .

Generative modelling approaches have only rather recently been introduced to the MIL set-

ting [de Freitas and Kück, 2005, Yang et al., 2009, Foulds and Smyth, 2011]. The former two

studies suggest more complex model structures for modifications of the Multiple-Instance

Learning problem. The works of Foulds and Smyth [2011] and Yang et al. [2009] can be

viewed as special cases of the paradigm introduced in this chapter. Regarding references

related to graphical models, in Alpaydin [2010] Alpaydin gives a concise overview of directed

63

graphical models while in Koller and Friedman [2009] Koller and Friedman provide a com-

prehensive treatment of the subject. Also in Chapter 6, we inspect graphical models a bit

more deeply.

5.3 MIL Generative Models

Sticking to the mathematical notation introduced in Chapter 3. Random variables are

denoted in upper case, while their realizations are denoted in lower case. Let t = 3 be

the number of possible bag/instance labels. Let B ∈ {1, 2, ..., t} be the random variable

representing a bag’s label, and let Ij ∈ {1, 2, ..., t} be the random variable representing the

label of the jth instance belonging to the bag. The number of instances in the bag is denoted

by m; the m instance labels are referred to together as the vector I⃗. Let F⃗j ∈ Rp be the

p-dimensional feature vector belonging to the jth instance. Elements of a vector are indexed

with a square-bracketed subscript, so F⃗j[k] is the kth element of the observed feature vector

of the jth instance in a bag. A “generic” instance label is referred to as I and a “generic”

feature vector is referred to as F .

Most MIL work to date considers binary labels, i.e. t = 2, while in this EMG problem t = 3,

since a bag or instance can be either normal (B = 1), myopathic (B = 2), or neurogenic

(B = 3). Furthermore, in this problem, a bag may only generate a compatible instance label:

the value of a single instance label ij is called compatible with a bag label b if and only if

ij ∈ {1, b}. A joint labelling i⃗ = i1, ..., im is called feasible if and only if ∃b(∀j, ij ∈ {1, b}).

The following is a discussion of possible Bayes net structures for the proposed MIL generative

models followed by a discussion of the possible modelling choices for marginal and conditional

distributions.

5.3.1 Model Structures

The main inductive bias that is retained here from the original MIL formulation is the

assumption that the bag label is conditionally independent of the feature vectors given their

corresponding instance labels. This is implied by the assumption that the feature probability

64

Figure 5.1: The BIF model structure. Parameters for P (Ij |B) and for P (F⃗j |Ij) are tied across
j.

distribution of normal instances in a normal bag should be the same as the feature probability

distribution of normal instances in an abnormal bag. The same assumption applies to the

MUSK dataset. Three possible Bayes net structures are presented below, two of which will

be used as candidate structures for the the EMG MIL generative model. For completeness,

a fourth structure that does not satisfy the conditional independence assumption is also

discussed. The structures are named based on the partial order in which the variables

appear in the graph.

5.3.1.1 BIF: B −→I → F m

This structure best represents the generative process underlying the EMG data. Under this

structure, the bag generates its m instances independently given its label. Each instance

in turn generates its own feature vector given its label, but independent of the bag label

and independent of the other instances and features in the bag. The structure of this model

is given concisely by the plate diagram B −→ I → F m, the expanded version of which is

shown in Figure 5.1. The other model structures considered differ in the direction of the

edges, which has important consequences as will be seen.

65

For this structure, P (B) must be learnt from observed data, while P (I|B) and P (F |I) must

be learnt using a hidden variable method like EM. Constraints on P (I|B) are simple to

encode in order to ensure that a bag can never generate an incompatible instance. The

values in the conditional probability table (CPT) of B|I can be restricted by requiring

P (I = i|B = b) = 0 for all i /∈ {1, b}. It follows that sets of instance labels drawn from

this model are always compatible with the bag label. Furthermore, a Dirichlet prior can be

imposed easily on the proportion of instance labels that match the bag label while obeying

these constraints. Since the continuous features are observed, P (F |I) is modelled using

density estimation.

The main departure this model makes from other probabilistic models for multiple instance

learning is that it assumes that the bag label is the cause of the instance label, rather than

the other way round. Under this model, it is possible for a disordered (non-normal) bag to

produce all normal instances, which is disallowed in other MIL models. However, for this

EMG system, this is entirely appropriate; it is possible (though unlikely) for a muscle with

a myopathic or neurogenic disorder to produce all normal MUPTs. Among existing MIL

models, that of Yang et al. Yang et al. [2009] is most similar to BIF.

5.3.1.2 FIB: B ←− I ← F m

FIB represents another way of expressing an MIL generative model where the instances

generate the bag label. Under this structure, the feature vectors are drawn from some

P (F), they then generate the instance labels, which in turn determine the bag label. The

probability P (I|F) can be expressed using any discriminative learner, which is attractive,

though a hidden variable method like EM must still be used for training. In order to make

the model fully generative P (F) must also be modelled using density estimation.

Note that B has all m instances as parents, and m can vary from muscle to muscle, so

P (B|I) must be expressed as a function of different numbers of instances; this is discussed

in Section 5.3.2. Unfortunately, in the EMG 3-class setting, this structure suffers from an

important drawback: it offers no way of prohibiting infeasible instance label assignments,

i.e. assignments where for example I1 = 2 and I2 = 3. In order to have a fully consistent

66

generative FIB model, therefore, an additional possible bag “label” b = 0 that has positive

probability given infeasible labellings, must be added. This does not reflect the generative

process of the EMG data, but we can still use this model structure and condition on the

event B ̸= 0 where necessary [Adel et al., 2013]. Foulds and Smyth [2011] note that prior

knowledge about the frequency of instance labels given bag labels is difficult to incorporate

with directed edge from I to B.

5.3.1.3 IBF: B ←− I → F m

Under this structure, the instances are generated independently according to some P (I), and

they subsequently generate both the bag label and the feature vectors. This model structure

is essentially the “Multiple-Instance Mixture Model” of Foulds and Smyth [2011]. As in the

FIB model, there is a directed edge from I to B, which causes the same drawbacks described

in the FIB model but does not allow for the additional flexibility of using a discriminative

learner for the instance labels. Therefore, this structure is not considered for the EMG MIL

generative model.

5.3.1.4 Alternative Model BFI: B −→I ← F m

This model attempts to combine two attractive properties: The ability to use a discriminative

model P (I|F), and the ability to easily put priors on P (I|B). Unfortunately, in this model,

B and F are dependent given I, which is not true in this EMG problem (nor with the MUSK

data). Note that BFI is essentially a clustering model with I as the cluster label and B acting

simply as an additional feature along with F . No particular extra importance is attached to

B via conditional independence so some additional assumption about P (I|B,F) is needed.

Put another way, even if the feature label is known, the bag label exerts an influence on

the instance feature vector. This means that normal instances from B=1 are different from

normal instances in B=2, which is not correct. We count on being able to generalize from

normal instances in normal bags to normal instances in abnormal bags, so this model is not

appropriate.

67

5.3.2 Model Components

Choosing the model structure determines the conditional independence properties of the

MIL generative model but does not specify a form for the various probability distributions.

In this section, we discuss some possibilities for components of the model that have different

assumptions and inductive biases.

5.3.2.1 P (B) and P (I|B) for the BIF Structure

Since B and I take on a small number of discrete values, a tabular representation is appro-

priate. As noted earlier, we can impose restrictions on possible values of I|B by clamping

appropriate values in the table.

5.3.2.2 P (F |I) for the BIF Structure

Because a continuous feature space is assumed, P (F |I) can be modelled using any density

estimation method. Some well-known possibilities are discussed here.

Multivariate Gaussian One simple choice for P (F |I = i) is a multivariate Gaussian

distribution with mean µi and covariance Σi for i ∈ {1, ..., t}. Depending on the availability

of data and desired modelling assumptions, we can restrict Σi to be diagonal.

Kernel Density Estimation Kernel Density Estimation (KDE) is a non-parametric method

that estimates a probability density or distribution function by summing up kernel functions

placed at every observed data point. The most common form of KDE, which uses a Gaussian

kernel, is used. To choose the kernel width, the Silverman’s rule of thumb Silverman [1998]

(h = (4×σ̂5

3n
)
1
5 ; n = number of samples, σ̂ is the standard deviation of the samples)

is picked as a simple but effective choice. The advantage of KDE is that it is capable of

modelling complex marginals and complex dependencies among the variables of interest, but

it does not always work well in moderate to high dimensions.

68

Gaussian Copula with KDE Marginals A drawback of the multivariate Gaussian ap-

proach is that much real-world data is not in fact Gaussian. Since it is required to make this

generative model as realistic as possible, a copula-based model is proposed. This copula-

based model is practical to estimate but can fit the observed data more closely.

Sklar’s theorem [Sklar, 1959] implies that any multivariate density g with marginal densities

g1, g2, ..., gp and marginal cumulative distribution functions (CDFs) G1, G2, ..., Gp can be

expressed in the form

g(f) = g1(f[1]) · g2(f[2]) · ... · gp(f[p]) · c(G1(f[1]), G2(f[2]), ..., Gp(f[p])) (5.1)

where c is a copula density that captures the dependence structure of the feature vector

F = (F[1], ..., F[p]). If the elements of F are independent, then c ≡ 1.

Because they are all one-dimensional, the marginals can be estimated well using Kernel

Density Estimation (KDE) Alpaydin [2010] even with a modest amount of data, giving ĝk

and Ĝk for k = 1...p. This allows the MIL generative model to capture non-Gaussian aspects

of the data, such as relatively heavy or light tails, skewness, or even multi-modality, thus

making it more realistic.

The copula model allows to achieve more high-fidelity marginals without resorting to an

unrealistic independence assumption: we can still capture pairwise dependencies in the data

by assuming a parametric form for c and estimating the necessary parameters. A Gaussian

copula is assumed, whose parameter is the covariance matrix of

(Φ−1(G1(F[1])),Φ
−1(G2(F[2])), ...,Φ

−1(Gp(F[p]))) where Φ−1 is the inverse of the standard

normal CDF. This can be estimated by the empirical correlation of

(Φ−1(Ĝ1(F[1])),Φ
−1(Ĝ2(F[2])), ...,Φ

−1(Ĝp(F[p]))) over the observed f |I = i in the data. (a

separate copula model is estimated for each possible value of I).

5.3.2.3 P (F) for the FIB Structure

In principle, any of the density estimators proposed for P (F |I) could be used here; however,

the marginal P (F) is multi-modal, so the copula and KDE models are more appropriate as

69

density estimators in this model.

5.3.2.4 P (I|F) for the FIB Structure

Since I has a discrete domain, any classification method that supplies class probabilities can

be used to model P (I|F). We examine three such methods here.

Logistic Regression This well-known model assumes P (I = i|F) ∝ expβi[0]+βi[1:p]f , i < t.

Note that, a maximum likelihood estimate of β is not unique if the data is linearly separable.

Support Vector Machines (SVM) SVM classifiers have the added advantage that in the

event of feature separability, one gets a large-margin classifier whereas logistic regression

would fail to converge. Furthermore, kernelized SVM classifiers allow us to easily create

non-linear separators in feature space.

The dual form of the soft margin version of SVM is given by:

max ΣN
u=1αu − 1

2
ΣN

u,v=1IuIvαuαvk(f⃗uf⃗v)

w.r.t. αu

s.t. 0 ≤ αu ≤ C

and ΣN
u=1αuIu = 0

where N refers to the total number of instances, k refers to a kernel function and C is

a penalty parameter that controls overfitting. If C = 0, then there is no penalty and a

maximum margin is obtained. If C is large, it results in fewer classification training errors

and a smaller margin. Here a radial basis kernel k(f⃗u, f⃗v) = exp(−γ||f⃗u − f⃗v||
2
) is used with

γ = 1
8
and a penalty parameter C = 1.

Multi-class SVM is implemented using a one-against-one strategy. A voting strategy is used

for each instance where each binary classification result is a vote. The assigned class is the

one with the maximum number of votes.

Although the classic SVM formulation [Cortes and Vapnik, 1995] does not provide condi-

tional class probabilities, subsequent work [Huang et al., 2006, Chang and Lin, 2011] has

added this capability.

70

In the beginning pairwise class probabilities are estimated as ruv ≈ p(I = u|I = u or v, f⃗)

[Chang and Lin, 2011]. After estimating all ruv values, values of p are obtained by solving

an optimisation problem, which is [Wu et al., 2004]:

minp
1
2
Σt

u=1Σv:v ̸=u(rvupu − ruvpv)
2

s.t. pu ≥ 0,∀i,

and Σt
u=1pu = 1

K-Nearest Neighbours If the decision boundary between instance labels is believed to

be complex and if sufficient data are available, a non-parametric model may be warranted.

K-nearest neighbours uses the empirical distribution of the instance labels of the K closest

feature vectors to f to estimate P (I|F = f).

5.3.2.5 P (B|I) for the IBF and FIB Structures

Since m varies from bag to bag, P (B|I) must be expressed as a function that can take a

variable number of parameters. Recall that in this setting, we must allow for the possibility

that the joint labelling of I is not feasible; b = 0 is added to the domain of B to capture this

event. we can adhere to the standard MIL assumptions by making P (B|I) deterministic as

follows. For feasible labellings, we set

P (B = b|I1, I2, ..., Im) =

1 if b = maxj Ij

0 otherwise,
(5.2)

and for infeasible labellings we set

P (B = b|I1, I2, ..., Im) =

1 if b = 0

0 otherwise.
(5.3)

This means that, for EMG datasets, a bag whose instances form a feasible joint labelling

has a label equal to 1 if all its elements are normal (maxj Ij = 1), otherwise it has either

71

Algorithm 1 Hard EM Algorithm

for all bags do {initialise instance labels}
i⃗← b

end for
repeat

learn model components {M-step}
for all bags do {relabel instances: E-step}

i⃗← argmax⃗i P (I⃗ = i⃗|B = b, F⃗ = f⃗)
end for

until instance labels do not change

label 2 or 3. Note that a feasible joint labelling with labels 2 and 3 both happening does

not exist as this is an infeasible labelling.

5.4 Learning and Inference

All of the components described in Section 5.3.2 have associated off-the-shelf learning algo-

rithms for completely observed data. MIL generative models must be learnt without ever

observing I (though with substantial information about I provided through B), so a hard-

Expectation-Maximization (EM) procedure is used for simultaneously learning the model

parameters and inferring the most likely I given the observed B and F . This worked well on

the EMG data. Moreover, the conceptual groundwork that is laid here may also be useful

in other settings.

5.4.1 Learning

For learning, a “hard-EM” approach [Koller and Friedman, 2009] is used. As noted in Chap-

ter 3, access to a collection of n bags of the form (b, f1, f2, ..., fmν)ν , ν ∈ {1, ..., n} which are

independent and identically distributed (i.i.d), is assumed. Given an initial label assignment

to all of the instances in the EMG dataset, the learning method is straightforward. Steps

of the learning algorithm are presented in Algorithm 1. The following is a discussion of the

two main steps.

72

5.4.1.1 Parameter Estimation

BIF For the BIF model, P (B), P (I⃗|B), and P (F |I) must be estimated. The marginal

probability P (B) is estimated from observed bag label counts only; it does not change across

iterations. Because we assume P (I|B) is the same for all instances in all bags, we pool all

the bags together and use the aggregated counts to estimate P (I|B). We may add “pseudo-

counts” to this estimate if a dirichlet prior is desired; in these experiments we assume for

each bag type that each compatible instance label has been seen once, and each incompatible

label zero times. To learn P (F |I), again we may pool all of the instances together to learn

d density estimates P (F |I = 1), P (F |I = 2), ..., P (F |I = t).

FIB For the FIB model, we must estimate P (F) and P (I|F); we assume that P (B|I)

is fixed according to the standard MIL definition. To estimate P (F), we pool all feature

vectors together and estimate the necessary parameters. These are completely observed so

P (F) does not change across iterations. To learn P (I|F), again we pool all of the instances

together to learn the conditional distribution using a supervised learning method.

5.4.1.2 Label Updating

To update the labels for each bag given the learned parameters, we must find the most

likely instance labels given the observed data, that is, we must compute argmax⃗i P (I⃗ =

i⃗|B = b, F⃗ = f⃗) for each bag.

BIF From the conditional independence structure of the BIF model, we have

argmax
i⃗

P (I⃗ = i⃗|B = b, F⃗ = F⃗) = argmax
i⃗

P (I⃗ = i⃗|B = b)P (F⃗ = f⃗ |I⃗ = i⃗).

Since these quantities for different instances are independent given the bag label, we have

P (I⃗ = i⃗|B = b)P (F⃗ = f⃗ |I⃗ = i⃗) =
m∏
j=1

P (Ij = ij|B = b)P (Fj = fj|Ij = ij),

73

so to maximize the likelihood of the joint label assignment i⃗, we may maximize each instance

label independently:

i⃗[j] = argmax
ij

P (Ij = ij|B = b)P (Fj = fj|Ij = ij).

FIB From the conditional independence structure of the FIB model, we have

argmax
i⃗

P (I⃗ = i⃗|B = b, F⃗ = F⃗) = argmax
i⃗

P (B = b|I⃗ = i⃗)P (I⃗ = i⃗|F⃗ = f⃗).

However, in this model, the instance labels are not conditionally independent given the bag

label and we cannot maximize them independently. For example, if B = 2, and I1, I2, ..., Im−1

are all equal to 1, then Im must be equal to 2 according to the MIL assumption encoded in

P (B|I⃗). However, we can still avoid searching over all mt possible label vectors. If and only

if i⃗ is a feasible vector for B = b, then we have P (B = b|⃗i) = 1 and therefore the objective

is

P (B = b|⃗i)P (I⃗ = i⃗|F⃗ = f⃗) =
m∏
j=1

P (Ij = ij|Fj = fj).

We can find the best feasible i⃗ in two steps:

1. Let i⃗j = argmaxij∈{1,b} P (Ij = ij|Fj = fj)

2. If i⃗ = 1⃗, set the label for index given by

argmaxj P (Ij = b|Fj = fj) to b.

The vector i⃗ is now feasible and maximizes
∏m

j=1 P (Ij = ij|Fj = fj) over all feasible vectors

when B = b.

5.4.2 Inference

Once we have learned all of the model parameters, given a new bag where only feature values

f⃗ are observed, we wish to compute argmax⃗i,b P (I = i⃗, B = b|F⃗ = f⃗). These are the most

likely bag and instance labels given the m feature vectors in the new bag.

74

BIF In the BIF model,

max
i⃗,b

P (I = i⃗, B = b|F⃗ = f⃗) ∝ max
i⃗,b

P (B = b)P (I⃗ = i⃗|B = b)P (F⃗ = f⃗ |I⃗ = i⃗)

= max
b

P (B = b)max
i⃗

P (I⃗ = i⃗|B = b)P (F⃗ = f⃗ |I⃗ = i⃗).

Therefore we can apply the instance label updating method presented in Section 5.4.1 for

each possible bag label and weight them according to P (B) to find the joint MAP assignment

to b and i⃗.

FIB In the FIB model,

argmax
i⃗,b

P (I = i⃗, B = b|F⃗ = f⃗) = argmax
i⃗,b

P (B = b|I⃗ = i⃗)P (I⃗ = i⃗|F⃗ = f⃗)

= argmax
b

argmax
i⃗

P (B = b|I⃗ = i⃗)P (I⃗ = i⃗|F⃗ = f⃗).

Therefore we can apply the instance label updating method presented in Section 5.4.1 for

each possible bag label to find the joint MAP assignment to b and i⃗.

5.5 Experiments

We find that the BIF structured models perform very well for several different component

choices. The FIB structured models perform less well, but still much better than chance as

per bag accuracy. Based on the results obtained, we recommend structure and component

choices that lead to a high-fidelity generative model of EMG data.

5.5.1 EMG Datasets

We use p = 8 features, which are the same 8 features used in the weakly supervised paradigm

described in Chapter 4. The same 8 features were also used in prior work [Adel et al., 2012]

as they were found to be useful for classification. Descriptions of these features are provided

75

in Table 3.1.

1. Number of turns

2. Amplitude

3. Area

4. Thickness

5. Size index

6. Turn width

7. Firing rate MCD (mean consecutive difference)

8. A-jiggle

Two EMG datasets are used here. One is acquired from upper leg recordings and it contains

99 bags and 1563 instances. The other EMG dataset is acquired from lower leg recordings

and it contains 95 bags and 1699 instances. All data were collected under IRB approval

and and were de-identified. Versions used here have been cleaned to remove obvious outlier

errors. For example, instances with highly improbable feature values were removed.

5.5.2 Results on EMG Datasets

Table 5.1 shows the performance of different models on the EMG data. The accuracy results

were computed using leave-one-bag-out cross-validation. We also present the log-likelihood

of the observed data maximized over the model parameters and the hidden instance labels,

which measures how well the models fit the training data.

We present the results for the BIF structure using five different density estimators for P (F |I).

We use two versions each of the Gaussian and copula models, one assuming independence

between elements of the feature vectors given the instance labels (e.g. a diagonal covariance

matrix) indicated by the prefix ⊥⊥, and one assuming pairwise correlations. The marginals

of the copula models are estimated using KDE with a Gaussian kernel and the Silverman’s

rule of thumb bandwidth [Silverman, 1998]. We also give results for a multi-dimensional

KDE for P (F |I), again with the Silverman’s rule of thumb bandwidth.

76

As mentioned earlier, a tabular representation is used in learning the BIF structure in order

to initiate P (I|B) where restrictions are imposed on certain values of I|B by clamping these

values in the table. More specifically, the following values in the table were assigned 0 values:

P (I = 2|B = 1), P (I = 3|B = 1), P (I = 3|B = 2) & P (I = 2|B = 3). Table 5.2 shows the

accuracy and likelihood values obtained when a tabular representation that assumes small

values (0.01) rather than zeros in the aforementioned table positions and the BIF structure

was robust enough to produce similar results to those obtained by setting the same values

to 0.

Results for the FIB structure are presented using four different discriminative learning mod-

els. In all cases, P (F) was estimated using a multi-dimensional KDE with the Silverman’s

rule of thumb bandwidth. The discriminative learners were Logistic Regression (LR), K-

nearest neighbours (KNN) with K = 7, SVMs with a radial basis function kernel, C = 1 and

γ = 1/8, and Quadratic Discriminant Analysis (QDA). QDA assumes a Gaussian distribu-

tion of each label/class and assigns to an instance the class with a greater value of posterior

probability [Hastie et al., 2009]. Parameters of the Gaussian distribution of each class are

estimated from the training data by a maximum likelihood estimate (MLE). A posterior

probability refers to p(I|F), and the assigned label is obtained by i = argmaxi p(F |I)(p(I).

KNN suffers due to not having sufficient data instances for it to perform well. Also, perfor-

mance of SVM is very bad.

The last column shows the previous state of the art results, which were obtained without

the bag-instance assumption. Bag labels were given as the label of each instance within the

bag and QDA was used assuming independence between features.

5.5.3 Results on the MUSK Dataset

The MUSK dataset [Dietterich et al., 1997] contains 92 bags and 476 instances. Each

instance has 168 features. All feature values are discrete. Version 1 of the MUSK dataset is

used and it is referred to as MUSK1. Table 5.3 shows results on the MUSK1 dataset. We

use the same models. Since the data are 168-dimensional, as a pre-processing step, we use

PCA to eliminate near-collinearity; we choose enough components to capture 90% of the

77

Table 5.1: Results of the EMG datasets. To give a sense of the statistical uncertainty, we mark all
accuracies that are within the 99% Bernoulli confidence interval of the maximum observed accuracy

in bold. We mark the highest log-likelihoods for the BIF and FIB structures in italics.

Upper Leg BIF: B −→ I → F m FIB: B ←− I ← F m Non-MIL
⊥⊥Gauss ⊥⊥Cop. Gauss Cop. KDE LR KNN SVM QDA ⊥⊥QDA

Bag Acc. 95.5% 95.5% 95.5% 95.5% 95.5% 72.8% 56.8% 25.0% 83.8% 81.1%
Log Lik. -36843 -37104 -36810 -37066 -34726 -32889 -32998 -34382 -32938 —

Lower Leg BIF: B −→ I → F m FIB: B ←− I ← F m Non-MIL
⊥⊥Gauss ⊥⊥Cop. Gauss Cop. KDE LR KNN SVM QDA ⊥⊥QDA

Bag Acc. 98.6% 97.1% 97.1% 95.7% 88.6% 81.4% 58.6% 37.1% 82.6% 77.1%
Log Lik. -38035 -38206 -37980 -38141 -35999 -34833 -34952 -35598 -35128 —

Table 5.2: Results of the EMG datasets with the BIF structure using different initial values of
P (I|B).

Upper Leg BIF: B −→ I → F m

⊥⊥Gauss ⊥⊥Cop. Gauss Cop. KDE

Bag Acc. 95.1% 95.1% 95% 95.1% 95%
Log Lik. -36843 -37105 -36810 -37068 -34726

Lower Leg BIF: B −→ I → F m

⊥⊥Gauss ⊥⊥Cop. Gauss Cop. KDE

Bag Acc. 98.2% 96.9% 97.1% 95.7% 88.6%
Log Lik. -38035 -38209 -37980 -38143 -35999

variance, leaving us with p = 76 features. Results are not state-of-the-art, but moderately

good; among our models the BIF model with independent Gaussians for P (F |I) has the

highest cross-validation bag accuracy and log-likelihood. In addition to the assumptions,

one main difference between EMG muscle datasets and the MUSK1 dataset is the number

of features. There is a need for a better way of capturing the dependence relationships

among this (and larger for other problems) number of features. By “better”, we mean more

compact but still tractable. In Chapter 6, sum-product networks are shown to provide this

compact and tractable representation, which leads to higher cross-validation bag accuracy

and log-likelihood on the MUSK1 dataset.

78

Table 5.3: Results of the MUSK1 dataset.

MUSK1 BIF: B −→ I → F m FIB: B ←− I ← F m

⊥⊥Gauss ⊥⊥Cop. Gauss Cop. KDE LR KNN SVM QDA

Bag Acc. 86.5% 84.4% 69.6% .641% 77.2% 78.3% 77.2% 83.2% 83.1%
Log Lik. -14921 -18437 -45815 -51031 -33591 -34086 -34120 -34001 -34056

5.5.4 Comparison with Weakly Supervised Learning

As per bag accuracy results (first two rows are taken from Tables 4.2 and 5.1) are shown

in Table 5.4. The similarity graph model that ultimately led to the highest bag accu-

racy; Probabilistic threshold minimum graph, is in use for the weakly supervised learning

paradigm. The model used is the BIF model where P (F |I) is estimated using Gaussian

independent features. Results of the first two rows show that this BIF model leads to a

better bag accuracy in both Upper Leg and Lower Leg datasets. The last two rows show the

results of collecting all instances of the same bag label in one bag. In this case, the spectral

graph-theoretic grouping based weakly supervised learning achieves higher accuracy. When

number of bags is small, this is not a problem for the spectral graph-theoretic grouping phase

because spectral grouping collects all unlabelled instances of the same bag label in one graph

(as if it is one bag) before starting to group them on the graph. However, generative MIL

models need some population of bags so that they can generalise and assign probabilities

involving B on some basis. For example, assume we have two bags in total labelled 1, one

containing 500 instances labelled 1 and 500 instances labelled 2 and the other containing 10

instances labelled 1 and 0 instances labelled 2. The value of P (I|B) in the case when they

are two bags is very different from its value with one bag containing 510 instances labelled

1 and 500 instances labelled 2.

As mentioned in Chapter 4, the generative MIL models are more flexible in handling different

assumptions as per the bag-of-instances setting of data. This is why the MUSK data is not

tested on the weakly supervised learning paradigm but it is tested here with MIL. Again,

another advantage of generative MIL models is their capability of generating simulated data

as the joint distribution of data and label is modelled.

79

Table 5.4: Comparison between the generative MIL model BIF and weakly supervised learning
paradigm on the EMG datasets.

⊥⊥Gauss BIF Prob. threshold Min Weak Class.

Upper Leg 95.5% 95%

Lower Leg 98.6% 96.1%

Upper Leg (instances of same bag label in one bag) 89.1% 95%

Lower Leg (instances of same bag label in one bag) 91.3% 96.1%

5.6 Ad hoc Measures for EMG

An ad hoc measure of confidence in the characterisation of a muscle and another measure

of level of involvement (LOI) of a certain MUPT into a certain disorder are provided in this

section. These ad hoc measures are of use only to EMG muscle data as they lead to sound

experimental results. These measures are not intended to be of use to any other data.

5.6.1 Measure of Confidence

A confidence measure reports the uncertainty of a certain muscle characterisation, which is

the uncertainty of the classification of a muscle. In other words, it measures the degree to

which an output of a muscle classifier is likely to be correct.

One advantage of the generative models presented is that they provide probabilities of each

bag label assignment. Therefore, in the BIF structure, the value P (B = b|F⃗ = f⃗) for the

muscle label, i.e. the label that leads to highest value of the conditional probability, is taken

as a representation of the confidence in the muscle characterisation.

5.6.2 Measure of Level of Involvement (LOI)

Level of involvement (LOI) measures the level of severity of a certain disorder for each motor

unit potential train (MUPT). Using the BIF structure, for each instance I, the 3 values (one

per label) of the conditional probability P (I = i|F⃗ = f⃗) are calculated for each I. This is

the conditional probability of I given F marginalised over B.

80

These values were used in an exploratory analysis showing how the change of values of a

single feature or two features together affects the LOI values of MUPTs on average. The

following graphs show how the average values of LOI over all the MUPTs of all the muscles

change along with changes in feature values.

Figures 7.1-7.4 show the average LOI values along with the corresponding values of 4 indi-

vidual features; turns, amplitude, area and thickness, respectively.

Figure 5.2: Average LOI values of all MUPTs vs. change of values in the “turns” feature. Normal
LOI is displayed in green, myopathic LOI is displayed in red and neurogenic LOI is displayed in

blue

Figure 5.3: Average LOI values of all MUPTs vs. change of values in the “amplitude” feature.
Normal LOI is displayed in green, myopathic LOI is displayed in red and neurogenic LOI is displayed

in blue

81

Figure 5.4: Average LOI values of all MUPTs vs. change of values in the “area” feature. Normal
LOI is displayed in green, myopathic LOI is displayed in red and neurogenic LOI is displayed in

blue

Figure 5.5: Average LOI values of all MUPTs vs. change of values in the “thickness” feature.
Normal LOI is displayed in green, myopathic LOI is displayed in red and neurogenic LOI is displayed

in blue

Figure 7.5 shows the average LOI values along with the corresponding values of two features;

turns and amplitude.

82

Figure 5.6: Average LOI values of all MUPTs vs. change of values in “turns” and “amplitude”
features. Normal LOI is displayed in green, myopathic LOI is displayed in red and neurogenic LOI

is displayed in blue

Figure 7.6 shows the average LOI values along with the corresponding values of two features;

amplitude and area.

Figure 5.7: Average LOI values of all MUPTs vs. change of values in “amplitude” and “area”
features. Normal LOI is displayed in green, myopathic LOI is displayed in red and neurogenic LOI

is displayed in blue

Figure 7.7 shows the average LOI values along with the corresponding values of two features;

area and thickness.

83

Figure 5.8: Average LOI values of all MUPTs vs. change of values in “area” and “thickness”
features. Normal LOI is displayed in green, myopathic LOI is displayed in red and neurogenic LOI

is displayed in blue

5.7 Summary

Results on the EMG data indicate that all of the BIF-based generative models perform

better than previous state-of-the-art results of muscle classification. This demonstrates that

modelling the EMG as a two-stage generative model according to the way these signals

are actually generated in real life significantly improves prediction accuracy over previous

strategies on this task on the bag level accuracy. As far as muscle classification accuracy is

concerned, the parametric model components (Gaussian and Copula) appear best.

Also, a general paradigm for generative models in Multiple-Instance Learning (MIL) has

been introduced. This paradigm may be useful in modelling other MIL tasks in addition to

the EMG muscle datasets, and it was tested on the MUSK1 dataset. Although MIL is a

well-developed sub-field of Machine Learning, before the work of Adel et al. in [Adel et al.,

2013] where the results shown in Table 5.1 and Table 5.3 have been published, generative

modelling approaches had not received much attention. The results suggest that models that

are well aligned with the actual data generation in a problem domain (the BIF structure

in the case of the EMG signal classification task) can be a good choice for classification

and modelling purposes.A comparison with the weakly supervised learning paradigm is also

provided.

84

Regarding the MUSK dataset, bag accuracy is far from state-of-the-art accuracy on the

same data (which is 96%) [Tao, 2004]. It is believed that one of the reasons is the fact

that the MUSK dataset has many more features than EMG (168 vs. 8) and if the joint

feature conditional probability distribution P (F |I) can be represented more efficiently, bag

accuracy can improve. Chapter 6 discusses in more detail using sum-product networks

(SPNs) to provide an efficient representation of features.

85

Chapter 6

Sum-Product Networks (SPNs)

6.1 Motivation

As was the case with the MUSK dataset in Chapter 5, when number of features is not small,

and especially when it becomes large, the need for a compact and tractable representation of

the dependence relationships among features grow. In this part of the thesis, we are mainly

interested in constructing a model that can represent joint feature probability distributions

efficiently. The need for such representation was not crucial with EMG datasets as they have

far too few features, but the MUSK dataset is an example of a multiple-instance learning

(MIL) dataset with 168 features. In this age of Big Data, dimension of a dataset can be

even much more than 168. Therefore, the need for graphical models that can provide an

efficient representation of complex probability distributions becomes crucial. This is the

motive behind exploiting sum-product networks (SPNs). SPNs are mainly used here to

model P (F |I) in the BIF generative model presented in Chapter 5 as an MIL paradigm.

However, SPNs can be used to model probability distributions in numerous other problems

and applications.

Note that, in this chapter, generically using the word “model” refers to a representation

of a joint variable probability distribution. For example if we note that Bayes nets do not

efficiently represent a model, we do not refer to a specific MIL generative model of Chapter

5 but to a generic joint variable probability distribution model.

86

Bayes nets can compactly represent probability distributions but they are not guaranteed

to provide an efficient representation. For example, Bayes nets may turn inference into

an intractable process, making the use of approximate inference inevitable. On the other

hand, the main edge of SPNs is their capability of representing a wide range of probability

distributions, with their respective conditional dependence complications, in a compact and

tractable model. The structure of an SPN needs to be learnt unless a fixed structure is used.

The difference between one SPN structure and another can lead to differences in the model’s

performance, which in our MIL case is measured by bag accuracy.

In this chapter, we present a sum-product network (SPN) structure learning algorithm via

applying biclustering motivated by an algorithm called rank-one downdate (R1D). The main

premise of the introduced algorithm is to build the structure learning process upon finding

subSPNs that are the most coherent without having to pick the most fitting subSPN available

via one separate variable or instance splitting at each step. Results show that SPNs learnt

by the introduced algorithm, and used to model P (F |I) in the BIF structure presented in

Chapter 5, ultimately lead to higher bag accuracy than those obtained by density estimators

and than those obtained by other SPN structures, on the MUSK dataset. The introduced

SPN structure learning algorithm is also significantly faster than its counterpart algorithms

in terms of SPN structure learning time. The bulk of the content of this chapter as well as

a more comprehensive set of results are presented in Adel and Ghodsi [2014].

6.2 Graphical Models and Sum-Product Networks (SPNs)

Probabilistic graphical models are graphs that express the conditional dependence relation-

ships among random variables of a joint distribution. Graphical models have applications

in computer vision, speech recognition, medical diagnosis and many other fields. One of

the main advantages of graphical models is their ability to compactly represent complex

distributions [Roth, 1996]. Two main types of graphical models are Bayesian networks and

Markov random fields. Bayesian networks model asymmetric dependencies as they depict

each variable as a node and depict each conditional dependence relationship as an arrow.

87

On the other hand, Markov random fields model symmetric dependencies as each variable

is represented by a node and each symmetric relationship is represented by an edge [Koller

and Friedman, 2009]. The number of parameters in a graphical model is typically an expo-

nential function of the number of random variables. Therefore, inference can be intractable

in graphical models due to the complex interactions between random variables and hence

approximate inference is required.

This highlights one of the main uses of latent variables in graphical models. Latent variables

can be used to reduce the number of parents of nodes in a model while still allowing the

related probability distribution to be represented. Deep architectures can be considered a

type of a graphical model, which is based on introducing multiple layers of latent variables

[Hinton et al., 2006]. Using deep architectures, problems containing complex interactions

between variables, which were difficult to model compactly using a Bayesian network, can

be modelled using a rich yet compact deep architecture [Bengio, 2009]. However, inference

is not guaranteed to be efficient in deep architectures. In other words, deep architectures

represent a step forward compared to Bayesian networks and Markov random fields in terms

of compactness of the model created but not in terms of tractability of inference. Therefore,

inference is intractable in deep architectures and approximate inference is still required.

Approximate inference has many problems; most notably, it is unreliable and there is no

guarantee it will lead to good results.

Thus, the main requirements for a model to be considered a good representation of a complex

joint probability distribution are compactness and inference efficiency. The above represen-

tations, especially deep architectures, manage to accomplish the first but not the second

requirement. This is why sum-product networks recently came into the literature. Sum-

product networks (SPNs), introduced by Poon and Domingos [2011], aim at reaching the

most compact representation possible provided that inference remains tractable. Layers of

hidden variables are added to the model as long as they increase compactness and as long

as they keep inference tractable. Thus, SPNs guarantee that the resulting model is rich as

well as tractable.

An SPN can be defined as either a univariate distribution, weighted sum of other SPNs each

88

containing the same set of variables, or a product of other SPNs with disjoint sets of variables.

The “scope” of an SPN is the set of variables that appear in the leaf nodes of the SPN, or

in other words, the set of variables such SPN contains. A tractable univariate distribution

is an SPN 1. This univariate distribution can be any type of distribution; e.g. Bernoulli

(representing boolean random variable), multinomial (discrete random variable), Poisson

(continuous random variable) or any other individual distribution as long as it is tractable.

SPNs provide a representation in which these single tractable distributions are combined into

a richer and more complex distribution provided that the resulting distribution is tractable.

This can be achieved by applying two combination rules:

• A product of SPNs over disjoint variables is an SPN. An SPN with this property is

referred to as a decomposable SPN. The meaning of this property is related to the

independence among variables; for instance a product X1 × X2 means that X1 and

X2 are independent. In the original definition provided by Poon and Domingos [2011],

they allow for a less restrictive version of this condition referred to as consistency of

an SPN as they note that the scopes do not have to be disjoint but it is enough if one

variable does not appear negated in one child of the product node and non-negated

in another. However, we do not need this less restrictive version in the work in this

chapter.

• A weighted sum of SPNs that have the same scope is an SPN. Weights must be positive

[Gens and Domingos, 2013]. An SPN with this property is referred to as a complete

SPN. This property depicts mixture models where each subcomponent of an SPN

(subSPN) of the weighted sum acts as a mixture component. A sum of SPNs can be

thought of as the result of summing out a hidden variable.

An SPN can then be defined as a rooted directed acyclic graph (DAG) whose leaves are

univariate distributions, and whose internal nodes are sum and product nodes. As noted

earlier, every edge from a sum node to one of its children has an assigned positive weight.

1A tractable univariate distribution is defined as a univariate distribution whose partition function and mode can
be computed in time O(1) [Gens and Domingos, 2013].

89

In the case of Bayes nets, which entirely depend on conditional independence, if there is no

conditional independence among the variables of a model, then the resulting net consists of

a big clique. If an SPN is used instead, the resulting representation can well be compact

because, unlike typical Bayes nets, an SPN has the advantage of utilising context-specific

independencies. Context-specific independencies are independencies that hold in some con-

texts but not in others [Boutilier et al., 1996]. In other words, they are independencies that

hold given a specific assignment of values to specific variables [Boutilier et al., 1996]. In

Bayes nets, inference can be exponential in the number of variables. On the other hand, in

SPNs, inference is always linear in the size of the network. The size of the network can be

exponential in the number of variables but much more often than not this is not the case

and consequently there are many complex problems that can be represented compactly and

efficiently using SPNs but not using typical Bayes nets.

6.2.1 SPNs as a Part of the BIF Generative Model

As an example of an SPN, let’s assume we have two variables (for simplicity) F1 and F2.

Each of the two variables is a binary variable. Let’s assume that an SPN is required to

represent the joint probability distribution of F1F2. One example of a resulting SPN is

displayed in Figure 6.1. In this example the two variables are not independent but they

are context-independent, which would have made it a clique if a Bayes net was used. This

means that if specific mixtures over these two variables can be found so that variables are

independent given their specific joint assignment of values in every mixture, we can add

a hidden variable to express the mixture by a sum node (the sum node at the top of the

network in Figure 6.1) and then express context-specific independence in each mixture by a

product node (the two product nodes on the second layer of the network). The third layer

contains sum nodes representing the univariate distribution of each variable in each mixture.

There are two values only of each variable as F1 and F2 are binary. Note that subSPNs are

reused in larger components, e.g. the subSPN represented by a sum node at the right side

of third layer, which increases compactness of the network.

90

Figure 6.1: An SPN representing a model with two variables.

The last paragraph illustrates one simple example of an SPN. Now we want to show how an

SPN can be used in the BIF model structure of MIL. Let’s assume that the two variables

in Figure 6.1 are two instance features in the BIF model. Let’s assume that an SPN is is

required to represent the probability distribution P (F |I) where t = 2, i.e. I ∈ {1, 2}. As we

want to keep the arrow from I to F in order to maintain the advantages of the BIF structure,

we can model the joint P (F1F2|I), not P (F1F2I). In case F1 and F2 are independent given

I, then Figure 6.1 is a possible representation of P (F |I) with the sum node at the top repre-

senting I = 1 with probability 0.3 and I = 2 with probability 0.7. In case F1 and F2 are not

independent given I, then P (F |I = 1) on its own can be assumed to have a representation

similar to the one in Figure 6.1, and the same goes for P (F |I = 2) while both are linked

with a sum node at a layer above the layer at the top of Figure 6.1, which represents the

mixture over P (F |I). Put another way, in case F1 and F2 are independent given I, I can

be considered the hidden variable used in specifying the context of the variables where they

are independent. However, if F1 and F2 are not independent given I, then one hidden vari-

able is needed for P (F |I = 1) and another for P (F |I = 2). Even if the latter case further

demonstrates the advantage of SPN, let’s assume the former holds. The assumption that the

former holds is valid not only for the sake of simplicity but also because two consecutive sum

nodes can be mixed in one, so let’s assume that the former holds which makes Figure 6.1

91

a possible representation of P (F |I). Assume I = 1 happens with a probability 0.3 and is

represented by the subSPN at the left side of Figure 6.1, whereas I = 2 happens with a

probability 0.7 and is represented by the subSPN at the right side of the figure.

In the above example, features are assumed to be binary. However, this is not the case in

the MUSK dataset as their features are continuous. We assume that the univariate feature

distributions are Gaussian. Therefore, the leaves of the SPN used to represent the joint fea-

ture distribution of the MUSK dataset represent univariate Gaussian distributions, rather

than binary distributions as in Figure 6.1.

Regarding the learning phase of the BIF structure, hard EM is used and the steps are shown

in Algorithm 1 in Chapter 5. In this and the next paragraph, the same learning steps are

explained with the difference being in using SPNs, rather than the density estimation tech-

niques mentioned in Chapter 5, to model P (F |I). Before the first iteration, I has a value

from the instance initialisation step. Next is the parameter estimation step, presented in

Section 5.4.1.1 (M-step), for every iteration of EM, we have both I and F⃗ observed and

we wish to model the distributions P (F⃗ |I = i) for i = 1, 2, ..., t. Assuming t = 2, two

subSPN structures should be learnt at every iteration; one for P (F⃗ |I = 1) and another for

P (F⃗ |I = 2). This demonstrates how important it is to have a fast SPN learning algorithm

as when the number of features is large, a slow SPN structure learning algorithm can slow

down the whole learning process. SPN structure learning is what this chapter mainly intro-

duces, therefore the algorithm assigned for this task will be presented in detail throughout

the chapter.

Back to Hard EM. The next step is the label updating step, presented in Section 5.4.1.2

(E-step) where the probability P (F⃗ = f⃗ |I = i) for i = 1, 2, ..., t should be computed. The

same probability is required in inference, presented in Section 5.4.2. Recall that F is ob-

served. The rest of this paragraph is dedicated to show how to compute the probability

of query variables given evidence variables on an already constructed SPN. This represents

92

how P (F⃗ = f⃗ |I = i) is computed in SPNs. One of the quantities that are always tractable

in SPNs because they can be computed in linear time in the size of the network is the

conditional probabilities. Conditional probabilities are evaluated as the ratio of the two re-

spective marginals. In order to compute the P (F⃗ = f⃗ |I = i), two marginals are computed;

P (F⃗ = f⃗ , I = i) and P (I = i). The former is then divided by the latter so that a value

of P (F⃗ = f⃗ |I = i) is obtained. Marginals can be computed by summing out one or more

variables. All leaf nodes belonging to such variables are set to 1. In order to start com-

puting a marginal, the value at each leaf node is computed first. The value at a leaf node

represents a variable value. For example, if the observed binary F⃗ = (1, 0), then F1 = 1,

F̄1 = 0, F2 = 0 and F̄2 = 1. The weighted sum of the child nodes of a sum node represents

the value assigned to a sum node and the product of the child nodes of a product node

represents the value assigned to the product node. Leaf nodes of variables not identified in

the marginals are the leaf nodes that are all set to 1 as they represent the variables to be

summed out or marginalised over. Evaluation of the SPN nodes continues in this fashion

until the root is reached. For example, assume again that the subSPN at the left side of

Figure 6.1 represents I = 1 and the right side represents I = 2, then P (F⃗ = (1, 0)|I = 1)

can be calculated as:

P (F⃗ = (1, 0)|I = 1) =
P (F⃗ = (1, 0), I = 1)

P (I = 1)
=

0.4× 0.5× 0.3

0.3
= 0.2

6.3 Rank-One Downdate (R1D) Algorithm

Rank-one downdate (R1D) algorithm was developed by Biggs et al. [2008] to compute a

nonnegative matrix factorization (NMF) of matrices with nonnegative entries. By matrix,

we refer to a data matrix consisting of instances and variables. The goal of NMF is to

approximate such matrices by a product of two low-rank matrices W and H whereas each

of them contains only nonnegative entries. The algorithm is partly based on the singular

value decomposition (SVD) as it computes the dominant singular vectors and values of

submatrices that are dynamically determined by the algorithm itself [Biggs et al., 2008].

93

A rank-one (R1) submatrix is extracted on each iteration from the original data matrix

according to an objective function. Our SPN structure learning algorithm is adapted from

R1D but it is not the same. One of the reasons R1D was chosen as a basis for our algorithm

is the fact that variable splitting can be turned into correlation splitting while instance

splitting remains based on the similarity between instance vectors. Another reason is the

speed of the algorithm compared to its counterpart NMF algorithms and this is the case for

our adapted SPN structure learning version as well.

According to the Perron-Frobenius theorem [Golub and Loan, 1996], the leading singular

vectors of a nonnegative matrix have nonnegative values. Consequently, computing an R1

NMF of a nonnegative matrix is a trivial task [Biggs et al., 2008]. R1D extends this idea to

compute higher order NMF by taking a submatrix of the original data matrix, computing

an R1 NMF of this submatrix and subtracting the R1 NMF from the original submatrix

while setting all negative values of the resulting submatrix to 0. The algorithm proceeds

iteratively whereas each iteration corresponds to computing one higher rank. One reason

why this algorithm is a better candidate for clustering than the original SVD is that each

iteration acts on a submatrix rather than the whole original matrix. Taking the whole matrix

has the side effect of averaging the variables/instances while taking a submatrix makes

clustering and biclustering more straightforward. In the case of biclustering, variables and

instances corresponding to the nonzero singular vector positions are considered a bicluster.

Another advantage of extracting a submatrix rather than working on the full matrix, which

is fundamental for our cause, lies in the fact that a correctly chosen submatrix is closer or

more likely to be of rank one (remember that this is an approximation) than the full matrix

[Biggs et al., 2008].

As such, the R1D algorithm mainly consists of an outer loop and an inner loop. Each itera-

tion of the outer loop, which is referred to by Biggs et al. [2008] as “greedy R1 downdating”,

has as an output one column of W as well as one column of H. It does so by iteratively

extracting the best possible candidate for an R1 submatrix of the data matrix (task of the

inner loop) and subtracting it from the original matrix. We care more about the inner loop

here as we are not interested in calculating an NMF of a matrix. Assume that the original

94

matrix is A ∈ Rm1×n1. The inner loop extracts an R1 submatrix via computing 5 values;

M1, N1, u1, v1 and σ1. M1 is a subset of {1, 2, ...,m1}, N1 is a subset of {1, 2, ..., n1},

u1 ∈ Rm1, v1 ∈ Rn1 and σ1 ∈ R whereas both u1 and v1 are unit vectors. The goal of the

inner loop is to select these 5 values so that the submatrix indexed by rows M1 and columns

N1 is approximately (as close as possible to be) of rank one. The objective function used

in order to achieve this goal is as follows [Biggs et al., 2008]:

f(M1, N1, u1, σ1, v1) = ∥A(M1, N1)∥2F − γ∥A(M1, N1)− u1 σ1 v1T∥2F (6.1)

The γ parameter is a penalty parameter that leads to the objective that the fartherA(M1, N1)

departs from being of rank one, the larger the penalty.

6.4 Related Work

Structure learning in SPNs has not been a hot topic in the SPN literature until recently.

In the beginning, only parameters were learnt. A structure was readily given and weights

were learnt either generatively [Poon and Domingos, 2011] or discriminatively [Gens and

Domingos, 2012]. Hard EM algorithm was used by Poon and Domingos [2011] to apply

generative parameter learning on SPNs. Deep SPNs were learnt successfully using hard

EM, but a pre-defined network structure was used. The same persisted in the discriminative

parameter learning algorithm introduced by Gens and Domingos [2012], which was based

on a gradient descent algorithm.

The first algorithm that learnt the structure of an SPN from data was proposed by Dennis

and Ventura [2012]. After an initial step where instances are clustered and a sum node is

created accordingly, they start to cluster variables in a top-down approach creating product

nodes. As they do not cluster instances after the first step, context-specific independences

that appear from this point onwards are not taken into consideration. Such context-specific

independences represent the main reason why SPNs can be preferred over Bayesian networks

as SPNs accomplish better likelihood values due to these independences and, consequently,

95

ignoring them penalises the whole expressive power and richness of the model. Also, clus-

tering ignores correlation between variables and as a result two variables that are strongly

correlated but do not have similar values will be clustered in two different clusters, which

would potentially lead to suboptimal likelihood values. In addition, weights related to sum

nodes are learnt after, rather than during, the structure learning process. Peharz et al. [2013]

introduced another SPN structure learning algorithm based on greedily merging small image

regions into larger regions in a bottom-up approach. An algorithm for online SPN structure

learning was proposed by Lee et al. [2013], where the problem is cast into an online clustering

problem. They develop an incremental structure learning algorithm based on dynamically

modifying the number of clusters, which in turn is based on the incoming data. The most

eminent SPN structure learning algorithm so far was proposed by Gens and Domingos [2013].

They apply a recursive top-down approach where, at each step, variables are checked if they

can be split into approximately independent subsets in which case a corresponding product

node is the outcome. Otherwise the current set of instances is clustered and a sum node

is returned whose weights are calculated by the proportions of instances belonging to every

cluster. This algorithm greedily optimises log-likelihood and overcomes several limitations

that existed in Dennis and Ventura [2012]. However, it keeps searching locally, not globally,

at the ideal candidate for a splitting at each step. The matrix in Table 6.1 shows an example

where the best decisions for variable/instance splittings, and consequently the log-likelihood

value, are conditioned by the local search nature of the algorithm. We will return to this

example later. Also, deciding which subsets of variables are independent of one another is

based on approximations that do not always lead to accurate variable clusters. Granted,

searching for independence always involves such risk but accumulating these approximations

step after step can lead to inaccurate subSPNs. The algorithm is applicable on discrete as

well as continuous data but the reported results were on binary data only. Finally the out-

come of the algorithm is a tree SPN and subSPNs are not reused. The last algorithm, to the

best of our knowledge, that dealt with SPN structure learning was proposed by Rooshenas

and Lowd [2014] where the authors adapt an SPN structure learning methodology based on

both mixture modelling and arithmetic circuits (AC) learning. It is different from the other

96

algorithms in the sense that it does not only apply local modifications in the search of an

optimal model as AC learning “could” lead to global changes but a global look at the data

is not guaranteed in each step.

6.5 SPN Structure Learning Algorithm (SPN-R1DBiclus)

We introduce an SPN structure learning algorithm that is based on biclustering. The algo-

rithm aims at hierarchically finding subSPNs by applying biclustering to the data matrix

and ultimately converting the biclusters obtained into an SPN structure. Biclustering is

the problem of simultaneously clustering rows and columns of a data matrix. The primary

premise of the algorithm is to avoid being restricted by having to split the data matrix at

the rate of one dimension split at a time because this could potentially result in splitting

elements that should have belonged to the same subSPN. This drawback can happen be-

cause local inspection applied on the data matrix before each splitting did not discover this

subSPN as it was not only one sum node away, nor only one product node away, but at

least (nearest) as far as one sum and one product node away. In other words, when it is

impossible to reach the most coherent subSPN as both sum and product nodes should be

applied concurrently at the same step, and when applying one sum or product node makes

this subSPN already divided at a previous step, this can lead to lower log-likelihood values,

and this is one of the main issues that our algorithm aims at handling. We refer to the

introduced algorithm as SPN-R1DBiclus. The algorithm is presented in Adel and Ghodsi

[2014].

The biclustering algorithm we introduce to build SPNs is based on the rank-one downdate

(R1D) algorithm developed by Biggs et al. [2008]. We do not do downdating here and the

word “downdate” is kept in reference to the original name “R1D” only.

A toy example is provided in Tables 6.1 & 6.2 in order to compare between the steps taken

by the algorithm proposed by Gens and Domingos [2013] (SPN-Gens) and our introduced

algorithm (SPN-R1DBiclus), respectively, as well as the log-likelihood values obtained in

each case. Table 6.1(A) shows the original data matrix which consists of 6 instances with

97

Table 6.1: SPN-Gens on an Example Data Matrix

40 40 40 40
40 40 40 40
40 18 18 40
20 18 18 20
20 20 20 20
20 20 20 20

A

40 40 40 40
40 40 40 40
40 18 18 40

20 18 18 20
20 20 20 20
20 20 20 20

B

40 40 40 40
40 40 40 40
40 18 18 40

20 18 18 20
20 20 20 20
20 20 20 20

C

40 40 40 40
40 40 40 40
40 18 18 40

20 18 18 20
20 20 20 20
20 20 20 20

D

4 variables each, whereas each horizontal line represents one instance. SPN-Gens starts by

applying clustering in the first step and the result in this case is placing the first 3 instances

together in one cluster and the other 3 instances in another, as shown in Table 6.1(B). In

this step, the cluster of elements with value 18 is split. The following step in SPN-Gens is

related to the top cluster as the independence check is applied first and it results in splitting

the first variable from the others as shown in Table 6.1(C). The first and fourth variable

had the same values across all instances but the first variable is still rated as a variable that

is “approximately” independent from the other group of variables containing the second,

third and fourth variable. The same happens in step D. Variables keep getting split until we

reach multinomial variables, which represent the leaves of the SPN. The problems in steps

C and D are related to the mutual information dependence check in SPN-Gens. We focus

more on step B as it is related to the main idea of the algorithm rather than the subroutine

chosen to check independence. The point here is that the elements with value 18 could have

been a perfect and coherent chunk on which a subSPN could be based but due to the fact

that these elements are split from one another in a previous “local” splitting (step B), the

algorithm is not able to put them in one SPN. The final log-likelihood value on the same

data is −2.

98

On the other hand, Table 6.2 shows how SPN-R1DBiclus deals with the same data matrix of

Table 6.1(A). By applying biclustering, the algorithm spots the chunk of elements with value

18 from the beginning and places them in one bicluster. In order to adjust biclustering so

that it can cope with how SPNs are made, we need to get parts of the data that share aligned

instances (rows) and variables (columns) so that they can be aligned as a submatrix and can

be a part of the resulting SPN. Elements that do not belong to the “18” bicluster need to be

divided as either in Table 6.2(B) or, reversely, by splitting columns 2 and 3 from the other

two then clustering columns 2 and 3 into 2 clusters; the 18 cluster and another. Splitting

as in Table 6.2(B) is chosen here because the other option assumes that variables 2 & 3 are

always independent even in cases of instances not belonging to the “18” bicluster, which is

not true. Table 6.2(B) does not adopt this assumption as it merely clusters instances that

belong to the bicluster; i.e. their variables that do not belong to the bicluster, in a cluster.

To put it in simpler terms, we follow a more “conservative’ approach, regarding variable

independence, that does not consider two groups of variables to be independent unless we

are confident they are at least uncorrelated across all checked instances. Figure 6.2 shows the

SPN constructed via Table 6.2. Rows represent instances and columns represent variables.

Now we have 3 chunks of data resulting from one iteration of R1D biclustering; one is the

bicluster chosen by the algorithm, another consists of variables, which belong to instances

of the bicluster but do not belong to the 18 bicluster. A third cluster is the one consisting

of instances not belonging to the bicluster. Weights of edges of a sum node are assigned

based on the proportion of elements in each cluster. In our example, weight of the left side

cluster is 0.33 and weight of the right side cluster is 0.66. Note that this ultimately does

not always lead to 2 clusters for the whole matrix because the algorithm continues acting

recursively in each of the three resulting paths. For example the right side cluster of the

displayed sum node can get clustered again and this will be equivalent to having more than

2 clusters for the whole displayed matrix. The same applies to variable groups and product

nodes. The final log-likelihood value in this case is −1.39, which is better than the result

of Table 6.1. As SPN-R1DBiclus proceeds recursively through each of the three parts. In

case the bicluster returns itself again, this means that the bicluster is the best approximate

99

rank-one (R1) submatrix possible to be returned from the algorithm and a multivariate leaf

node is reached. Being an R1 matrix means that variables are all dependent and we can

proceed with one big sum node (each instance is a branch with a weight = 1/#instances)

followed by one product node for variables of each instance. Back to our example, the 18

bicluster does not have any independent variable subgroups (it is R1) and this is why a sum

node followed by a layer of product nodes not only speeds up the recursive process but also

improves log-likelihood as it does not assume any nonexistent independences.

Table 6.2: SPN-R1DBiclus on the Same Data Matrix

40 40 40 40
40 40 40 40
40 18 18 40
20 18 18 20
20 20 20 20
20 20 20 20

A

40 40 40 40
40 40 40 40

40 18 18 40
20 18 18 20

20 20 20 20
20 20 20 20

B

Figure 6.2: Status of the SPN after Table 6.2 (B)

The objective function used in nearly all SPN learning algorithms till now; which is the

likelihood function, is different from the parameter estimation objective function of SPN-

R1DBiclus; which is the least squares. It has been stated by Hofmann [1999] and others

100

that the likelihood function has advantages over the least squares fit in data analysis and

parameter estimation. The likelihood function proved beneficial in several applications,

and, in general, it has more advantages than drawbacks over the least squares fit. As SPNs

are graphical models, it was natural that the likelihood function is chosen as the objective

function for SPN learning. However, SPNs split the data in two, rather than one, directions.

To the best of our knowledge, all SPN learning algorithms in the literature either split

the data in one direction at a time, or focus on one direction (variables) throughout the

whole algorithm. Moreover, there is no one likelihood objective function that controls data

splitting in both directions operated upon (both functions are usually likelihood-based but

not the same objective function is optimised in both the variables and instances directions).

Our introduced SPN learning algorithm is based on the fact that the least squares function

used has the advantage of acting upon both splitting directions (variables and instances)

concurrently. Moreover, the version we apply, which is partly motivated by computing

the SVD, avoids some of the inherent drawbacks of most similar least squares fit-based

methods. It is worth noting that the use of these singular values here is merely to pick out

some variable/instance indices or, in other words, to cluster the data matrix. This means

that no singular values are carried through the algorithm as the goal of this singular values

is to pick out certain indices. This also helps avoid further drawbacks of SVD methods as

we do not care about the values themselves but use them for matrix splitting.

In SPN-R1DBiclus, note that rows represent instances and columns represent variables.

One main subroutine; R1Biclus, of the algorithm extracts a bicluster, which is a subset of

variables and instances. The bicluster extraction represents the part mostly motivated by

the R1D algorithm. A resulting bicluster is an approximate rank-one submatrix. In case the

submatrix returned is equal to the full subroutine input matrix B, this means that the input

matrix B is already of rank-one, or more precisely as close as it can get by the subroutine to

be of rank-one. In this case a boolean called stop is set to true. Along with each bicluster

extraction, the rest of the matrix is split into two, as shown in Table 6.2(B), so that the

three resulting parts; the bicluster and the two other parts of the matrix, form a sum node

on the whole matrix then a product node on one of the branches (clusters) of the sum node.

101

Weights of a sum node are assigned by the proportions of instances belonging to each cluster.

The algorithm proceeds recursively on the three parts until a base case is reached. There

are three base cases here. The first is when the current matrix has one variable only (line 6

in Algorithm 2). In this case the remaining vector represents a univariate distribution and

a corresponding leaf node is created. The second base case is when the current matrix has

one instance only (line 9). In this case, all variables can be considered independent and a

product node is created along with its leaves being the involved variables. Before getting

back to the third base case which is related to the boolean stop = true, let’s move to when

stop = false; which means that the subroutine R1Biclus returns a submatrix that does not

span the whole subroutine’s input matrix B. In this case, the bicluster MB corresponds to

a subSPN on which the subroutine will recursively run. Now regarding the rest of B, back

to Table 6.2, we are now standing at Table 6.2(A) where MB is the “18” square. We now

have two parts of B; which are MB and B \MB. As our aim is to learn an SPN, we need

to align this couple of submatrices so that we can continue building the SPN. This makes it

a must to decide one of two ways regarding how to split that part B \MB. Is it by splitting

all variables into two groups first; one representing variables belonging to MB and one for

the rest, or by splitting all instances into two groups first; one representing MB’s instances

and one for the rest as in Table 6.2(B)? The former option assumes that MB’s variables are

“always” independent of the rest of the variables which is not true. The choice equivalent

to Table 6.2(B) is the one followed because, as mentioned earlier, we do not add a product

node unless elements of the disjoint variable groups are uncorrelated. Therefore, we start

with a sum node in a similar fashion to Table 6.2(B) (lines 15 & 16), then follow it with a

product node (line 18). Note that this results in a sum node with exactly two branches but

they can be split through further sum nodes again later if there are further clusters involved

which means that the number of clusters can practically be any number depending on how

many clusters the algorithm recursively finds.

The algorithm proceeds recursively on each of the three submatrices until one of the two

previously mentioned base cases is reached or the base case stop = true is reached. The result

in the latter is a submatrix that is approximately of rank-one and we have a multivariate

102

distribution leaf node. We have a submatrix but we still refer to it as a multivariate leaf node

because the solution in this case is straightforward. We know this is a rank-one submatrix;

i.e. variables are not independent because had there been any independence, the matrix

would have been of a higher rank. Therefore, we can proceed with a sum node containing

as many branches as number of instances in the submatrix, then a product node for each

instance on its own. Even if this seems to be big of a change with a large submatrix, but

because we know that a submatrix in this case is of rank-one, we are confident enough

that there is no variable independence and that searching for such independences would

cause huge loss of run-time without a gain as per the objective function. A summary of the

algorithm is provided in Algorithm 2. The R1Biclus subroutine extracts the values M1,

N1, u1, v1 and σ1 first as the outcome of its main loop (lines 29-37). Unlike the original

R1D algorithm of Biggs et al. [2008], we do not downdate the matrix here. We take the

nonzero indices of u1 and v1, which are M1 and N1, as a bicluster on their own. This means

that we apply the biclustering based on the resulting values of u1 and v1 deciding to put

those that are nonzero in one bicluster. One of the main advantages of R1D compared to

other SVD-based methods is that the rank-one submatrix (bicluster in our case) is searched

for and submatrices are compared to one another in an optimisation subproblem of its own

[Biggs et al., 2008]. This makes it more convenient for use in splitting variables/instances.

Variable splitting should be based on correlation, not similarity. The returned bicluster

adapts in case one variable is changing exactly in the opposite direction of another as in this

case both have nonzero values. Moreover, both have the same absolute nonzero value of v1.

For example, look at the following data matrix:

3 -3

3 -3

7 -7

7 -7

The resulting v1 vector in this case is [0.7071 −0.7071] and its absolute is [0.7071 0.7071].

We pick the nonzero positions, and so both variables are picked in one bicluster. This is

inline with variable splitting in SPN and in graphical models in general as these values are

obviously correlated.

103

Algorithm 2 SPN Learning (SPN-R1DBiclus)

Input: A ∈ Rm1×n1, γ > 1
Output: SPN representing A

1: SPN = SPNR1dBiclus(A)

2: Function SPNR1dBiclus(B)
3: Let r = {1, 2, ...,# rows of B}
4: Let c = {1, 2, ...,# columns of B}
5: if |c| = 1 then
6: return univariate distribution as a leaf
7: end if
8: if |r| = 1 then
9: return handle c leaf univariate distributions

10: end if
11: [MB, MC, MD, Stop] = R1Biclus(B)
12: if Stop = true then
13: return handle multivariate distribution(B)
14: else
15: Let ME = Augmented Matrix(MB, MC)
16: Make sum node from MD & ME
17: Call SPNR1dBiclus(MD)
18: Make product node from MB & MC
19: Call SPNR1dBiclus(MC)
20: Call SPNR1dBiclus(MB)
21: end if
22: End Function

23: Function [MB, MC, MD, Stop] = R1Biclus(B)
24: Select j0 ∈ {1, 2, ..., n1} to maximise ∥A(:, j0)∥
25: M1 = {1, 2, ...,m1}
26: N1 = {j0}
27: σ1 = ∥A(:, j0)∥
28: u1 = A(:,j0)

σ1
29: repeat
30: v1 = A(M1, :)

T
u1(M1)

31: N1 = {j : γ v1(j)
2 − ∥A(M1, j)∥2 > 0}

32: v1(N1) = v1(N1)
∥v1(N1)∥

33: u1 = A(:, N1)v(N1)

34: M = {i : γ u1(i)
2 − ∥A(i,N1)∥2 > 0}

35: σ1 = ∥u1(M1)∥
36: u1(M1) = u1(M1)

σ1
37: until M1, N1, u1, v1, σ1 do not change
38: MB = B(M1, N1)
39: if MB = B then
40: Stop = true
41: else
42: Stop = false
43: end if
44: allColsExN1 = {1, 2, ..., n1} \N1
45: allCols = {1, 2, ..., n1}
46: allRowsExM1 = {1, 2, ...,m1} \M1
47: MC = B(M1, allColsExN1)
48: MD = B(allRowsExM1, allCols)
49: End Function

104

In addition to being used as an SPN structure learning algorithm, R1Biclus is a novel

clustering and biclustering algorithm. It can be used for instance clustering by splitting

elements instances based on being equivalent to zero or nonzero positions in the u1 vector,

then doing the same for each cluster on its own. R1Biclus can be used as a biclusteirng

algorithm in a manner very similar to what we do here, but based on similarity in both

the first and second singular vectors. Biclustering has many applications in biological data

analysis. R1Biclus has an advantage over other SVD clustering algorithms, which is it is

less prone to perturbations by noise because it computes the dominant singular vectors of

a submatrix rather than the full matrix. An article classification application of the R1D

algorithm in Biggs et al. [2008], by which R1Biclus was motivated, shows that the original

algorithm is a good material for learning applications.

6.6 Experiments

In order to model P (F |I) in the BIF model described in Chapter 5, density estimators

were used. Here, the impact of computing P (F |I) using SPN whose structure is learnt by

SPN-R1DBiclus and using an SPN whose structure is learnt by SPN-Gens is compared to

the density estimation techniques used in Chapter 5 (multivariate Gaussian, Kernel density

estimation and Gaussian Copula with KDE Marginals). The evaluation measures used are

the ultimate bag accuracy and log-likelihood value, same as in Chapter 5. In Adel and Ghodsi

[2014], a more comprehensive set of experiments was performed. This set of experiments

contained log-likelihood and conditional log-likelihood values comparisons, learning run-time

comparisons on image datasets with larger size and dimension, an image completion task and

a handwritten digit recognition application. The results of these experiments demonstrated

that SPN-R1DBiclus leads to improvements in terms of log-likelihood and conditional log-

likelihood values, learning accuracy as well as structure learning run-time.

As noted in Chapter 5, the MUSK1 dataset [Dietterich et al., 1997] has 168 discrete features.

It contains 92 bags and 476 instances. Table 6.3 shows the results of the BIF model on

the MUSK1 dataset. Bag accuracy as well as log-likelihood values obtained by the SPN

105

Table 6.3: Results of the MUSK1 dataset after using SPNs.

MUSK1 BIF: B −→ I → F m

Rnd: 0.33 ⊥⊥Gauss ⊥⊥Cop. Gauss Cop. KDE SPN-R1DBiclus SPN-Gens

Bag Acc. 86.5% 84.4% 69.6% .641% 77.2% 91% 90.1%
Log Lik. -14921 -18437 -45815 -51031 -33591 -11894 -12200

structure learning algorithm SPN-R1DBiclus are better than those obtained using density

estimators and using an SPN learnt by SPN-Gens instead.

As per learning times of both SPN structure learning algorithms, learning time of SPN-

R1DBiclus is 0.4 the average learning time of SPN-Gens. The introduction of the multivari-

ate leaf node concept is one key factor behind the difference in learning times in favour of

SPN-R1DBiclus.

6.7 Summary

With the specific goal here being to represent the joint distribution P (F |I) of the BIF-

structure efficiently, we presented a new SPN structure learning algorithm that provides

a compact and tractable representation of the joint feature probability distribution (given

instance feature) of the MUSK data. The constructed SPN does not depend on local greedy

data splittings as it globally splits the data based on a biclustering algorithm. The algorithm

leads to improvements in the MUSK1 bag accuracy and log-likelihood, over density estima-

tors ((multivariate Gaussian, Kernel density estimation and Gaussian Copula with KDE

Marginals)) and SPN structure learning represented by the state-of-the-art SPN struc-

ture learning algorithm developed by Gens and Domingos [2013]. The algorithm is also far

superior in terms of SPN structure learning speed.

In addition to being an SPN structure learning algorithm, the core part of the presented

algorithm represents a versatile SVD-based biclustering algorithm that can be used for both

clustering and biclustering. Here we showed results that are relevant to the MIL data. A

more comprehensive set of results and algorithms to compare with is shown in Adel and

Ghodsi [2014], where state-of-the-art results of learning, inference on image datasets, image

106

completion and a handwritten digit classification application are provided by the presented

algorithm.

107

Chapter 7

Conclusions

Research in this thesis has focused on learning problems where partially labelled data are

available. More specifically, data that come in the form of bags of instances where labels are

available for bags, but not for instances. This is the form of the electromyographic (EMG)

data which was collected for muscle diagnosis and which represents the main application.

The main evaluation measure used is the bag accuracy. The premise of the introduced learn-

ing paradigms is to exploit prior information and assumptions about the partially labelled

training data so that further labelling information can be obtained before building the pre-

dictor or classifier accordingly. By gaining further labelling information, the mapping from

instances to labels provided by the classifier improves.

Two probabilistic paradigms are introduced as approaches for bags-of-instances data. The

first approach is a discriminative weakly supervised learning approach where unlabelled data

are weakly annotated via first performing spectral graph-theoretic grouping and then assign-

ing weak annotations based on the labelled data within the associated spectral groups. A

number of similarity graph models for spectral grouping, including two introduced similarity

graph models, are explored to investigate their performance in handling different types of

data. The second approach introduced as a solution for bags-of-instances data is a genera-

tive modelling approach for MIL that casts the problem as an MIL problem and allows for

expert domain knowledge to be incorporated intuitively which leads to good inductive bias

and consequently high bag accuracy.

108

A state-of-the-art solution to the muscle classification problem has been provided by the

MIL generative modelling and weakly supervised learning.

One advantage of generative models is that they can be used as a simulation tool as they

model the joint distribution of data and label. As such, MIL generative models can be used

in EMG data simulation, which represents one path for future work in EMG and muscle

analysis.

When number of bags of each label is small, the spectral graph-theoretic grouping phase is

not affected as long as number of instances is not small, because spectral grouping collects

all unlabelled instances of the same bag label in one graph (as if it is one bag) before starting

to group them on the graph. However, generative MIL models need some population of bags

so that they can generalise and assign probabilities related to the bag label B on the base

of this population.

MIL generative models have the advantage of being intrinsically capable of exploiting unla-

belled instances as they can be treated as latent variables, which was the case with the MIL

instance labels. On the other hand, the weakly supervised learning approach does not have

this advantage. Spectral graph-theoretic grouping makes it possible to exploit unlabelled

data in learning, but this is due to the assumptions of the EMG muscle data that make

clustering a sound option. For example, the MUSK dataset, where many positive bags have

a very small number of positive instances that can not be considered a group or a cluster,

does not represent good material for a grouping-based procedure like spectral graph-theoretic

grouping. However, more generically, the weakly supervised learning approach has spectral

graph-theoretic grouping as one phase and replacing this phase with another phase that is

more sound according to the data and problem at hand can be useful as long as the added

phase reliably assigns weak annotations to unlabelled data.

As was the case with MIL generative models, the need to model complex probability dis-

tributions efficiently is a must for probabilistic models especially with datasets of large size

and/or dimension. We introduce an SPN structure learning algorithm that results in a com-

pact and tractable representation of the joint feature probability distribution of the MUSK

data. This leads to overall higher bag accuracy of the resulting MIL generative model. The

109

algorithm aims at learning an SPN structure by concurrently splitting the data matrix in

two directions using a biclustering algorithm which aims at making the algorithm model

coherent chunks of the data matrix as subSPNs and consequently representing distributions

(feature distribution given instance label in the MIL generative model case) with high-fidelity

models.

110

Bibliography

T. Adel and A. Ghodsi. Structure learning of sum-product networks via rank-one downdate

biclustering. Under review, 2014.

T. Adel, B. Smith, and D. Stashuk. Muscle categorization using pdf estimation and naive

bayes classification. IEEE Engineering in Medicine & Biology Society (EMBC), pages

2619–2622, 2012.

T. Adel, R. Urner, B. Smith, D. Stashuk, and D. Lizotte. Generative multiple-instance

learning models for quantitative electromyography. Conference on Uncertainty in Artificial

Intelligence (UAI), pages 332–339, 2013.

T. Adel, A. Wong, and D. Stashuk. A weakly supervised learning approach based on spectral

graph-theoretic grouping. To be submitted in April 2014, 2014.

S. Aksoy and R. M. Haralick. Graph-theoretic clustering for image grouping and retrieval.

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1999.

K. Ali, D. Hasler, and F. Fleuret. Flowboost - appearance learning from sparsly labeled

video. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011.

E. Alpaydin. Introduction to Machine Learning. The MIT Press, 2nd edition, 2010.

S. Andrews and T. Hofmann. Multiple-instance learning via disjunctive programming boost-

ing. Advances in Neural Information Processing Systems (NIPS), pages 65–72, 2003.

111

Bibliography

S. Andrews, T. Hofmann, and I. Tsochantaridis. Multiple instance learning with gener-

alized support vector machines. Conference of the American Association for Artificial

Intelligence (AAAI), pages 943–944, 2002a.

S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-

instance learning. Advances in Neural Information Processing Systems (NIPS), pages

561–568, 2002b.

H. Arora, N. Loeff, D. Forsyth, and N. Ahuja. Unsupervised segmentation of objects us-

ing efficient learning. IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2007.

A. Asuncion and D. Newman. Uci machine learning repository. 2007. URL http://www.

ics.uci.edu/∼mlearn/MLRepository.html.

P. Barkhaus and S. Nandedkar. Recording characteristics of the surface EMG electrodes.

Muscle & Nerve, pages 1317–1323, 1994.

S. Ben-David, U. Von Luxburg, and D. Pal. A sober look at clustering stability. Conference

on Learning Theory (COLT), pages 5–19, 2006.

S. Ben-David, N. Srebro, and R. Urner. Universal learning vs. no free lunch results. Philos-

ophy and Machine Learning Workshop NIPS, 2011.

Y. Bengio. Learning deep architectures for ai. Foundations and Trends in Machine Learning,

2009.

A. Bergamo and L. Torresani. Exploiting weakly-labeled web images to improve object

classification: A domain adaptation approach. Advances in Neural Information Processing

Systems (NIPS), pages 181–189, 2010.

M. Biggs, A. Ghodsi, and S. Vavasis. Nonnegative matrix factorization via rank-one down-

date. International Conference on Machine Learning (ICML), 25, 2008.

C. M. Bishop and J. Lasserre. Generative or discriminative? getting the best of both worlds.

Bayesian Statistics, 8:3–23, 2007.

112

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html

Bibliography

C. Blake, E. Keogh, and C. Merz. Uci repository of machine learning databases. 1998.

M. Blaschko, A. Vedaldi, and A. Zisserman. Simultaneous object detection and ranking with

weak supervision. Advances in Neural Information Processing Systems (NIPS), 2010.

C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific independence

in bayesian networks. Conference on Uncertainty in Artificial Intelligence (UAI), pages

115–123, 1996.

N. Campbell and J. Reece. Biology. The MIT Press, 6th edition, 2001.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.

ACM Transactions on Intelligent Systems and Technology, 27:1–27, 2011.

O. Chum and A. Zisserman. An exemplar model for learning object classes. IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2007.

F. Chung. Spectral graph theory. AMS Press, 1997.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.

D. J. Crandall and D. Huttenlocher. Weakly supervised learning of part-based spatial models

for visual object recognition. European Conference on Computer Vision (ECCV), 2006.

D. L. Davies and D. W. Bouldin. A cluster separation measure. IEEE Transactions on

Pattern Analysis and Machine Intelligence (PAMI), 2:224–227, 1979.

N. de Freitas and H. Kück. Learning about individuals from group statistics. Conference

on Uncertainty in Artificial Intelligence (UAI), pages 332–339, 2005.

A. Dennis and D. Ventura. Learning the architecture of sum-product networks using clus-

tering on variables. Advances in Neural Information Processing Systems (NIPS), 25, 2012.

T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solving the multiple instance problem

with axis-parallel rectangles. Artificial Intelligence, 89(1-2):31–71, 1997.

113

Bibliography

P. Domingos. The role of occam’s razor in knowledge discovery. Data mining and knowledge

discovery, 3(4):409–425, 1999.

D. Dumitru, A. Amato, and M. Zwarts. Electrodiagnostic Medicine. 2nd edition, 2002.

Murat Dundar, Glenn Fung, Balaji Krishnapuram, and R. Bharat Rao. Multiple-instance

learning algorithms for computer-aided detection. IEEE Transactions on Biomedical En-

gineering, 55(3):1015–1021, 2008.

C. Farkas, A. Hamilton-Wright, H. Parsaei, and D. Stashuk. A review of clinical quantitative

electromyography. Critical Reviews in Biomedical Engineering, 38(5):467–485, 2010.

B. Flury and H. Riedwyl. Angewandte multivariate Statistik. MIT Press, 1983.

J. R. Foulds and E. Frank. A review of multi-instance learning assumptions. Knowledge

Engineering Review, 25(1):1–25, 2010.

J. R. Foulds and P. Smyth. Multi-instance mixture models. SIAM International Conference

on Data Mining (SDM), pages 606–617, 2011.

C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the Nyström

method. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 26

(2):1–12, 2004.

T. Gärtner, P. A. Flach, A. Kowalczyk, and A. J. Smola. Multi-instance kernels. Interna-

tional Conference on Machine Learning (ICML), pages 179–186, 2002.

S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias-variance dilemma.

Neural Computation, 4:1–58, 1992.

R. Gens and P. Domingos. Discriminative learning of sum-product networks. Advances in

Neural Information Processing Systems (NIPS), 25, 2012.

R. Gens and P. Domingos. Learning the structure of sum-product networks. International

Conference on Machine Learning (ICML), 30, 2013.

114

Bibliography

G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins University Press,

1996.

M. Guillaumin, J. Verbeek, and C. Schmid. Multimodal semi-supervised learning for image

classification. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2010.

Y. Guo, A. Korhonen, I. Silins, and U. Stenius. Weakly supervised learning of informa-

tion structure of scientific abstracts - is it accurate enough to benefit real-world tasks in

biomedicine? Bioinformatics, 27(22):3179–3185, 2011.

L. Hagen and A. Kahng. New spectral methods for ratio cut partitioning and clustering.

IEEE Transactions on Computer-Aided Design, 11(9):1074–1085, 1992.

T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning, volume 2.

2009.

M. Hein and U. von Luxburg. Similarity graphs in machine learning. Machine Learning

Summer School, MPI Biological Cybernetics, 2007.

G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets.

Neural Computation, 18:1527–1554, 2006.

T. Hofmann. Probabilistic latent semantic analysis. Conference on Uncertainty in Artificial

Intelligence (UAI), 15:289–296, 1999.

T.-K. Huang, R. C. Weng, and C.-J. Lin. Generalized Bradley-Terry models and multi-class

probability estimates. Journal of Machine Learning Research (JMLR), 7:85–115, 2006.

G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to Statistical Learning,

volume 1. 2013.

A. Joulin and F. Bach. A convex relaxation for weakly supervised classifiers. International

Conference on Machine Learning (ICML), 2012.

F. Keinosuke. Introduction to statistical pattern recognition, volume 1. 1990.

115

Bibliography

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT

Press, 2009.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models

for segmenting and labeling sequence data. International Conference on Machine Learning

(ICML), 2001.

S.-W. Lee, H. Min-Oh, and Z. Byoung-Tak. Online incremental structure learning of

sumproduct networks. In Neural Information Processing, 2013.

Y. J. Lee and K. Grauman. Learning the easy things first: Self-paced visual category

discovery. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011.

C. Leistner, M. Godec, S. Schulter, A. Saffari, and H. Bischof. Improving classifiers with

weakly-related videos. IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2011.

Y. Li, I. Tsang, J. Kwok, and Z. Zhou. Convex and scalable weakly labeled svms. Journal

of Machine Learning Research (JMLR), 2013.

J. Malmivuo and R. Plonsey. Bioelectromagnetism principles and applications of bioelectric

and biomagnetic fields. Oxford University Press, 1995.

M. I. Mandel and D. P. Ellis. Multiple-instance learning for music information retrieval.

International Society for Music Information Retrieval (ISMIR), pages 577–582, 2008.

O. Maron and A. L Ratan. Multiple-instance learning for natural scene classification. In-

ternational Conference on Machine Learning (ICML), pages 341–349, 1998.

A. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A comparison of logistic

regression and naive bayes. Advances in Neural Information Processing Systems (NIPS),

2001.

A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: analysis and an algorithm. Advances

in Neural Information Processing Systems (NIPS), 14:849–856, 2002.

116

Bibliography

H. Parsaei, D. Stashuk, and T. Adel. Decomposition of intramuscular emg signals using a

knowledgebased certainty classifier algorithm. IEEE Engineering in Medicine & Biology

Society (EMBC), pages 6208–6211, 2012.

R. Peharz, B. C. Geiger, and F. Pernkopf. Greedy partwise learning of sum-product net-

works. In Machine Learning and Knowledge Discovery in Databases, 8189:612–627, 2013.

G. Pfeiffer. The diagnostic power of motor unit potential analysis: An objective bayesian

approach. Muscle & Nerve, 22:584–591, 1999.

G. Pfeiffer and K. Kunze. Discriminant classification of motor unit potentials (MUPs)

successfully separates neurogenic and myopathic conditions. Electromyography and Motor

Control, 97:191–207, 1995.

L. Pino. Neuromuscular Clinical Decision Support using Motor Unit Potentials Characterized

by Pattern Discovery. PhD Thesis, Systems Design Engineering, Univ. of Waterloo, 2008.

H. Poon and P. Domingos. Sum-product networks: A new deep architecture. Conference

on Uncertainty in Artificial Intelligence (UAI), 27, 2011.

A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Ferrari. Learning object class detec-

tors from weakly annotated video. IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2012.

R. Rahmani and S. A. Goldman. Missl: multiple-instance semi-supervised learning. Inter-

national Conference on Machine Learning (ICML), pages 705–712, 2006.

C. J. Van Rijsbergen. Information retrieval. Butterworth, 2nd edition, 1979.

A. Robergs and S. Roberts. Exercise physiology. Mosby, 1996.

A. Rooshenas and D. Lowd. Learning sum-product networks with direct and indirect variable

interactions. International Conference on Machine Learning (ICML), 31, 2014.

D. Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82:273–302,

1996.

117

Bibliography

S. Sabato, N. Srebro, and N. Tishby. Reducing label complexity by learning from bags.

Journal of Machine Learning Research (JMLR), 9:685–692, 2010.

B. Settles, M. Craven, and S. Ray. Multiple-instance active learning. Advances in Neural

Information Processing Systems (NIPS), 2007.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence (PAMI), 22(8):888–905, 2000.

B. Silverman. Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC,

1998.

A. Sklar. Fonstions de répartition à n dimensions et leurs marges. Publications de l’Institut

de Statistique de l’Université de Paris, 8:229–231, 1959.

D. Stashuk. Mean, median and mode estimation of motor unit action potential templates.

IEEE Engineering in Medicine & Biology Society (EMBC), 4:1498–1499, 1996.

D. Stashuk. Decomposition and quantitative analysis of clinical electromyographic signals.

Medical Engineering and Physics, 21(6):389–404, 1999.

M. Stikic and B. Schiele. Activity recognition from sparsely labeled data using multi-instance

learning. Location and Context Awareness (LoCA), pages 156–173, 2009.

M. Stoer and F. Wagner. A simple min-cut algorithm. Journal of the ACM (JACM), 44(4):

585–591, 1997.

Q. Tao. Making efficient learning algorithms with exponentially many features. University

of Nebraska, PhD Thesis, 2004.

Q. Tao, S. D. Scott, N. V. Vinodchandran, and T. T. Osugi. Svm-based generalized multiple-

instance learning via approximate box counting. International Conference on Machine

Learning (ICML), 2004.

P. A. Viola, J. C. Platt, and C. Zhang. Multiple instance boosting for object detection.

Advances in Neural Information Processing Systems (NIPS), 2005.

118

Bibliography

U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416,

2007.

J. Wang and J. Zucker. Solving the multiple-instance problem: A lazy learning approach.

International Conference on Machine Learning (ICML), pages 1119–1126, 2000.

J. Winn and N. Jojic. Locus: learning object classes with unsupervised segmentation.

International Conference on Computer Vision (ICCV), 2005.

T. Wu, C. Lin, and R. Weng. Probability estimates for multi-class classification by pairwise

coupling. Journal of Machine Learning Research (JMLR), 2004.

Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering: theory and its

application to image segmentation. IEEE Transactions on Pattern Analysis and Machine

Intelligence (PAMI), 15(11):1101–1113, 1993.

X. Xu and E. Frank. Logistic regression and boosting for labeled bags of instances. Pacific-

Asia Conference on Knowledge Discovery and Data Mining (PAKDD), pages 272–281,

2004.

S. H. Yang, H. Zha, and B. G. Hu. Dirichlet-bernoulli alignment: A generative model for

multi-class multi-label multi-instance corpora. Advances in Neural Information Processing

Systems (NIPS), pages 2143–2150, 2009.

D. Yates, D. S. Moore, and D. S. Starnes. The practice of statistics. Freeman, 2nd edition,

2003.

D. Zennaro, P. Welling, V. Koch, G. Moschytz, and T. Laubli. A software package for

the decomposition of long-term multichannel emg signal using wavelet coefficients. IEEE

Transactions on Biomedical Engineering, pages 58–69, 2003.

Qi Zhang, S. A. Goldman, W. Yu, and J. E. Fritts. Content-based image retrieval using

multiple-instance learning. International Conference on Machine Learning (ICML), pages

682–689, 2002.

119

Bibliography

Z. Zhou and J. Xu. On the relation between multi-instance learning and semi-supervised

learning. International Conference on Machine Learning (ICML), pages 1167–1174, 2007.

120

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Background
	2.1 Probability and Bayes Rule
	2.2 Statistical Learning
	2.2.1 Statistical Learning Model
	Input
	Output
	Least Squares
	Maximum Likelihood
	Generative Models and Discriminative Models
	Inductive Bias

	2.3 Unsupervised Learning on Undirected Graphs
	Clustering Input
	Clustering Output
	Similarity Graphs
	Graph Cut

	2.3.1 Spectral Clustering Algorithms
	Unnormalized Spectral Clustering
	Normalized Spectral Clustering according to Shi2000
	Normalized Spectral Clustering according to Ng2002

	2.4 EMG Background
	2.4.1 Muscle Morphology, Physiology and Electrophysiology
	2.4.1.1 Morphological and Physiological Description of a Muscle
	2.4.1.2 Muscle Electrophysiology

	2.4.2 EMG Signals
	2.4.2.1 Volume Conduction and Detection of EMG Signals

	2.4.3 Neuromuscular Disorders
	2.4.4 How to Extract Clinically Important Information
	2.4.4.1 Qualitative Electromyography
	2.4.4.2 Clinical Quantitative EMG (QEMG)
	2.4.4.3 MUP Characterization
	2.4.4.4 Muscle Classification

	3 Problem Formulation
	3.1 The Bags-of-Instances Setting
	3.2 Characteristics of EMG Muscle Datasets
	Features of EMG datasets

	4 Weakly Supervised Learning based on Spectral Graph-Theoretic Grouping
	4.1 Motivation
	4.1.1 Related Work

	4.2 Methodology
	4.2.1 Similarity Graph Models
	4.2.1.1 Probabilistic Thresholding
	4.2.1.2 Probabilistic Acceptance Criterion

	4.2.2 Spectral Grouping
	Clustering Input
	Clustering Output

	4.3 Experiments
	4.3.1 Analysis of Similarity Graph Models
	4.3.2 Weakly Supervised Classification

	4.4 Summary

	5 Generative Multiple-Instance Learning Models
	5.1 Motivation
	5.2 Related Work
	5.3 MIL Generative Models
	5.3.1 Model Structures
	5.3.1.1 BIF: B-3muI F mheightwidthwidthheight
	5.3.1.2 FIB: B-3mu I F mheightwidthwidthheight
	5.3.1.3 IBF: B-3mu I F mheightwidthwidthheight
	5.3.1.4 Alternative Model BFI: B-3muI F mheightwidthwidthheight

	5.3.2 Model Components
	5.3.2.1 P(B) and P(I|B) for the BIF Structure
	5.3.2.2 P(F|I) for the BIF Structure
	Multivariate Gaussian
	Kernel Density Estimation
	Gaussian Copula with KDE Marginals

	5.3.2.3 P(F) for the FIB Structure
	5.3.2.4 P(I|F) for the FIB Structure
	Logistic Regression
	Support Vector Machines (SVM)
	K-Nearest Neighbours

	5.3.2.5 P(B|I) for the IBF and FIB Structures

	5.4 Learning and Inference
	5.4.1 Learning
	5.4.1.1 Parameter Estimation
	BIF
	FIB

	5.4.1.2 Label Updating
	BIF
	FIB

	5.4.2 Inference
	BIF
	FIB

	5.5 Experiments
	5.5.1 EMG Datasets
	5.5.2 Results on EMG Datasets
	5.5.3 Results on the MUSK Dataset
	5.5.4 Comparison with Weakly Supervised Learning

	5.6 Ad hoc Measures for EMG
	5.6.1 Measure of Confidence
	5.6.2 Measure of Level of Involvement (LOI)

	5.7 Summary

	6 Sum-Product Networks (SPNs)
	6.1 Motivation
	6.2 Graphical Models and Sum-Product Networks (SPNs)
	6.2.1 SPNs as a Part of the BIFGenerative Model

	6.3 Rank-One Downdate (R1D) Algorithm
	6.4 Related Work
	6.5 SPN Structure Learning Algorithm (SPN-R1DBiclus)
	6.6 Experiments
	6.7 Summary

	7 Conclusions
	Bibliography

