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Abstract

Software testing is crucial for uncovering software defects and ensuring software reliabil-
ity. Symbolic execution has been utilized for automatic test generation to improve testing
effectiveness. However, existing test generation techniques based on symbolic execution fail
to take full advantage of programs’ rich amount of documentation specifying their input
constraints, which can further enhance the effectiveness of test generation.

In this thesis we propose a general approach, Document-Assisted Symbolic Execution
(DASE), to improve automated test generation and bug detection. DASE leverages natural
language processing techniques and heuristics to analyze programs’ readily available doc-
umentation and extract input constraints. The input constraints are then used as pruning
criteria; inputs far from being valid are trimmed off. In this way, DASE guides symbolic
execution to focus on those inputs that are semantically more important.

We evaluated DASE on 88 programs from 5 mature real-world software suites: GNU
Coreutils, GNU findutils, GNU grep, GNU Binutils, and elftoolchain. Com-
pared to symbolic execution without input constraints, DASE increases line coverage,
branch coverage, and call coverage by 5.27–22.10%, 5.83–21.25% and 2.81–21.43% respec-
tively. In addition, DASE detected 13 previously unknown bugs, 6 of which have already
been confirmed by the developers.
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Chapter 1

Introduction

Software testing is an essential part of software development. It is estimated that inade-
quate testing costs billions of dollars to our economy annually [45]. To improve testing,
many automated test generation techniques are proposed and used [10, 11, 12, 15, 26, 46].
Compared to manually creating test cases, which is time- and effort-consuming, automatic
test generation is a more efficient way to achieve high code coverage and detect bugs.

Symbolic execution [20, 29] has been leveraged to generate high code coverage test
suites effectively and detect previously unknown bugs [9, 17, 22, 31, 35, 50]. Symbolic
execution represents inputs as symbolic values instead of concrete values. Upon exploring a
branch whose condition involves symbolic values, two paths are created, and corresponding
constraints are put on each path. In this way, symbolic execution can systematically
explore all the execution paths. Once the execution of a path terminates, the collection of
constraints along that execution path can be used to generate concrete inputs to exercise
the path. Symbolic execution suffers from the fundamental problem of path explosion.
In practice, one needs to use search heuristics and other techniques to guide symbolic
execution [10, 14, 26, 34, 35].

Although symbolic execution has been successful in improving testing effectiveness,
existing techniques do not take full advantage of programs’ high level input constraints.
Program inputs typically need to follow certain constraints. For example, rm only accepts
12 options including -r, -f and others, and readelf requires its input files to follow
Executable and Linkable Format (ELF). Focusing on the valid or close-to-valid inputs can
help test the core functionalities of the program, which should improve testing coverage
and effectiveness. Fortunately, information about such input constraints commonly exists
in various sources, such as argument parsing functions, programs’ help manuals (e.g., the
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output of rm --help), and library header files (e.g., the comments and code in elf.h).

Thus, we propose a general approach, Document-Assisted Symbolic Execution (DASE),
to enhance the performance of symbolic execution for automatic test generation and bug
detection. DASE automatically extracts input constraints from documents, and use these
constraints as a “filter” to favor execution paths that execute the core functionalities of the
program. This allows symbolic execution to devote more resources on testing code that
implements program’s core functionalities, as opposed to code for input sanity check and
error handling. DASE, as a path pruning strategy, can be used on top of existing search
strategies to further improve symbolic execution.

DASE considers two categories of input constraints: valid choices for a command-line
option (e.g., -r for rm) and the format for an input file (e.g., ELF). These two types
are sufficient for a wide spectrum of programs. In addition, one can convert interactive
programs into command-line programs [27].

1.1 Research Contributions

By combining symbolic execution with input constraints from documentation, this thesis
makes the following contributions:

• We propose a novel approach, Document-Assisted Symbolic Execution (DASE), to
improve dynamic test generation. By incorporating input constraints from documen-
tation, DASE enables symbolic execution to distinguish the semantic importance of
different execution paths to focus on programs’ core functionalities, thus being more
effective.

• DASE combines natural language processing techniques, for instance, grammar rela-
tionships, and heuristics to automatically extract input constraints from documents,
including valid values for command-line options and file format constraints for ELF.
File format constraints enable us to build a partial ELF file model that can possibly
be used for other tasks such as program comprehension and constraint verification.

• Our evaluation shows that DASE outperforms KLEE [15] on 88 programs from 5 ma-
ture widely-used software suites—GNU Coreutils, GNU findutils, GNU grep,
GNU Binutils, and elftoolchain. Compared to KLEE, DASE increases line cov-
erage, branch coverage, and call coverage by 5.27–22.10%, 5.83–21.25%, and 2.81–
21.43% respectively. In addition, DASE detected 13 previously unknown bugs, 6 of
which have been confirmed by the developers after we reported the bugs to them.
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1.2 Thesis Organization

This thesis is divided into nine chapters. In Chapter 1, we introduce the problem and
outline our research contributions. In Chapter 2, we describe the intuition and general
idea behind DASE. Then we introduce the background of command-line options, ELF
file format, and KLEE symbolic execution in Chapter 3. The design and implementation
of DASE are presented in Chapter 4. Chapter 5 presents our experimental method and
Chapter 6 lists the results. Previous attempts and further work are presented in Chapter 7.
Chapter 8 contains related work. Finally, we conclude our findings in Chapter 9.
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Chapter 2

Intuition and Overview

A real world program typically contains numerous or even infinite number of execution
paths. Given limited time, it is crucial for testing to effectively prioritize the paths.
Researchers have proposed approaches to guide the path exploration of symbolic execu-
tion [10, 14, 26, 34, 35], which have been shown to improve code coverage.

Path pruning, which applies a “filter” to prune “uninteresting” paths before employing
a search strategy, can be used to further address the path explosion problem. Path pruning
significantly reduces the size of the search space for a search strategy.

We propose using input constraints as a “filter” to aid search strategies to focus on valid
and close-to-valid inputs (e.g., boundary cases). The core functionality of a program is
typically related to processing valid inputs. For example, a C compiler’s core functionality
is parsing and compiling valid C programs. Valid C programs are only a small portion of
all strings (the input space of a C compiler).

Randomly generated inputs can cover many invalid inputs, but miss valid and close-to-
valid ones. While symbolic execution addresses this issue by exploring paths systematically,
it is unaware of which branch (the “then” branch or the “else” branch) leads to valid inputs
upon a conditional statement. Input constraints that define valid inputs can guide symbolic
execution to focus on paths corresponding to valid and close-to-valid inputs. These paths
can pass the trivial part of input sanity check to go deeper and are more likely to cover
buggy code, thus more “interesting”.

Keeping invalid inputs in the search space hurts the effectiveness of symbolic execution
based test generation, because exploring invalid inputs takes up time and memory, which
can be used for testing valid and close-to-valid inputs instead. Specifically, the two reasons
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are: (1) search strategies have more chances to deviate from the paths related to valid
inputs, and be stuck at “shallow” paths for a long time; and (2) more constraints need to
be solved and search strategies need to compute metrics for invalid inputs in every round,
which is a waste of computation.

A program typically accepts two types of input arguments: options and input files.
Thus, there are two categories of constraints to leverage: valid values of an option, and the
format of an input file. Below we explain in detail why path pruning based on these two
categories of constraints can improve testing coverage and how we perform path pruning
in our prototype, DASE. Since path pruning is used to reduce the search space of search
strategies, we explain it in the context of a search strategy. DASE is built on top of a widely-
used symbolic execution based test generation tool KLEE [15]. We use KLEE’s default
search strategy (explained in the following paragraph) as an example to aid explanation.
Nonetheless, the idea of path pruning is applicable to other search strategies.

During execution, KLEE gradually builds a binary execution tree. The leaf nodes of
this tree are the current execution states and the non-leaf nodes are the branching points
in the program. KLEE’s default search strategy consists of two atom search strategies that
are interleaved in a round robin fashion to prevent one atom strategy from getting stuck.
The first atom strategy is random path selection, which traverses the execution tree from
the root and randomly selects a branch to follow at each non-leaf node, until it reaches a
leaf node. This strategy favors “shallow” leaf nodes to alleviate starvation. The second
strategy, coverage-optimized search, tries to choose a state that is most likely to cover
new code in the immediate future. This strategy uses a heuristic weighting scheme that
considers factors such as the minimum distance to an uncovered instruction.

2.1 How can option-related constraints help?

Command-line options are used to tune parameters or invoke certain functionalities of
programs. For example, the option -r tells rm to perform a recursive deletion. A com-
prehensive test suite must cover the option -r to explore the code segment for recursive
deletion. After input argument parsing, a program typically uses a switch-case structure
to check the input argument against all valid options until a match is found, and then
the corresponding functionality is invoked. Figure 2.1 illustrates the execution trees before
and after path pruning. Without pruning, testing all valid options of a program requires
a search strategy to make good choices on the execution tree in Figure 2.1a so that all
clouds (subtrees related to valid command-line options) are covered. Options are at differ-
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... ...

... -z

-b

-a

...

(a) Before Pruning.

-a -b ... -z

(b) After Pruning.

Figure 2.1: Abstract view of execution trees for command-line options, which illustrates
that pruning can potentially improve testing coverage. Clouds are execution subtrees
related to valid command-line options. Circles are other execution subtrees.

ent depths; it is easy for search strategies to miss deep options because of reason (1) and
(2) discussed earlier.

DASE knows what options are valid by analyzing programs’ documentation, which
enables symbolic execution to explore all valid options directly as shown in Figure 2.1b.
Given n valid options, DASE “forks” the symbolic execution n times1, with each forked
execution branch taking a valid option. This approach concretizes the symbolic option with
a valid option one at a time, which essentially trims off paths related to all other options
for each forked execution. Symbolic execution can go directly to the core functionality code
related to the valid option. This allows symbolic execution to spend more time on code
related to the valid option (especially if the valid option is deep before pruning), which
should improve testing coverage. In addition, some constraints are solved or simplified
(e.g., the ones related to the concrete valid option), which reduces the computation time
of the constraint solver.

Although the after-pruning-approach may appear to be similar to breadth-first search

1We fork additional executions for an invalid option and a null option for completeness. But the
additional executions should take less time than the circles in Figure 2.1a combined.
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... ...

valid invalid

invalid

invalid

invalid

(a) Before Pruning.

valid invalid

invalid

(b) After Pruning.

Figure 2.2: Abstract view of execution trees for input file formats.

(BFS), it is very different from BFS. Without pruning, BFS will explore paths in Fig-
ure 2.1a, which still suffers from the two problems (1) and (2) described above. In fact,
our evaluation shows that DASE outperforms KLEE even if BFS is used as an underlying
search strategy (Section 6.1.2). Chapter 8 discusses how DASE is different from other
search strategies.

2.2 How can file-format-related constraints help?

File-format-related constraints can filter out less interesting paths especially if the file for-
mat is complex. Programs parse and process input files (including sanity check) gradually.
The high level execution tree is shown in Figure 2.2a. There are many aborts resulting
from invalid inputs along the process. These aborts typically point to the error handling
logic. With all these execution paths for invalid inputs, search strategies are continuously
distracted. On the contrary, input constraints can trim them off and directly drive sym-
bolic execution deeper to start exploring interesting code there as shown in Figure 2.2b.
DASE builds a file format model by combining file structure with value-based constraints
that are extracted from documentation, and uses the model to prune paths. We focus on
the Executable and Linkable Format (ELF) in this thesis. ELF is the underlying stan-
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dard for all binaries in Unix-like systems. Any program that reads or writes binaries on a
Unix-like platform needs to parse files in ELF format. In this thesis, we evaluate DASE
on 4 programs that use the ELF file format. Since ELF is broadly used and of crucial
importance, DASE can be used to improve test generation for many other programs.
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Chapter 3

Background

This chapter gives a brief background about option styles (Section 3.1), ELF file format
(Section 3.2), and KLEE (Section 3.3).

3.1 Option Styles

Command-line options are used to tweak the logic of programs from outside, which is
important especially for programs that function as pipes or filters. There are several
command-line option styles existing in Unix-like operating systems, including the popular
POSIX- and GNU-style, which are described below.

• POSIX-style [6] is generally in the form of short options, namely, a single dash fol-
lowed by a letter (e.g., ps -a). Letters from distinct options can be combined into
one word under certain circumstances. For example, -xy may indicate the same
meaning as -x -y. Some options may require additional arguments. These options
and their arguments may or may not be separated by whitespaces (e.g., both ps -u

root and ps -uroot are valid).

• GNU-style [8] extends the POSIX-style with long options, which are generally in the
form of two dashes followed by several words concatenated by single dashes (e.g., ps
--no-headers).
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• Apart from the above two styles, there exist several other styles. ps also supports
BSD-style. BSD-style is similar to POSIX-style but without dash prefix (e.g., ps a).
Options can also be combined if no conflict is introduced. Other programs, such as
dd, use a style without any dash, e.g., dd if=FILE of=FILE.

A program may support several option styles for convenience and compatibility. Addition-
ally, any program can define its own option style. It is not possible to cover all of them,
therefore we focus on the first two prevalent styles and discuss how we extract valid options
in Section 4.1.

3.2 Executable and Linkable Format

Executable and Linkable Format (ELF) [1] is a fundamental standard for Unix-like systems.
It specifies the underlying layout for executable files, object files, shared libraries, and core
dumps. An ELF file is usually composed of multiple sections as well as several headers
serving as “road map” to the sections as shown in Figure 3.1. We briefly describe the basic
layout here.

At the beginning of any ELF file is an ELF header, which contains ELF identification
information, target machine, and several other attributes. The ELF header is defined as a
C struct of type Elf32 Ehdr and Elf64 Ehdr in elf.h. For example, Elf64 Ehdr is

typedef struct

{

unsigned char e_ident[EI_NIDENT]; /* Magic number and other info */

Elf64_Half e_type; /* Object file type */

Elf64_Half e_machine; /* Architecture */

Elf64_Word e_version; /* Object file version */

Elf64_Addr e_entry; /* Entry point virtual address */

Elf64_Off e_phoff; /* Program header table file offset */

Elf64_Off e_shoff; /* Section header table file offset */

Elf64_Word e_flags; /* Processor-specific flags */

Elf64_Half e_ehsize; /* ELF header size in bytes */

Elf64_Half e_phentsize; /* Program header table entry size */

Elf64_Half e_phnum; /* Program header table entry count */

Elf64_Half e_shentsize; /* Section header table entry size */

Elf64_Half e_shnum; /* Section header table entry count */

Elf64_Half e_shstrndx; /* Section header string table index */

} Elf64_Ehdr;
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Linking View

ELF header

Program header table

optional

Section 1

...

Section n

...

...

Section header table

Execution View

ELF header

Program header table

Segment 1

Segment 2

...

Section header table

optional

Figure 3.1: ELF structure from ELF specification [1]. Lines with arrowheads represent the
relationships between different components.

For convenience, we will use Elf* to represent both Elf32 and Elf64 in the rest of this
thesis. The ELF header also includes information about two other important header tables:
the section header table (SHT) and the program header table (PHT), as shown by dashed
lines in Figure 3.1.

The SHT, which is useful for program linking, records the locations and attributes for
all sections; while the PHT, which is useful for program loading, tells the system how to
create a process image from the file on disk. The SHT/PHT contains an array of section
headers/program headers, as shown by solid lines in Figure 3.1.

A section header, which is defined as a C struct of type Elf* Shdr, contains the in-
formation such as name, type, and size for the corresponding section. A program header
contains information for a segment, which is composed by sections with similar attributes
for loading (shown in Figure 3.1 using dotted lines). Object files’ real information, such as
instructions and data, is held in sections. Because section headers and program headers
are important to our ELF model, we just copy their definitions (for 64-bit machines) here
from elf.h.
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typedef struct

{

Elf64_Word sh_name; /* Section name (string tbl index) */

Elf64_Word sh_type; /* Section type */

Elf64_Xword sh_flags; /* Section flags */

Elf64_Addr sh_addr; /* Section virtual addr at execution */

Elf64_Off sh_offset; /* Section file offset */

Elf64_Xword sh_size; /* Section size in bytes */

Elf64_Word sh_link; /* Link to another section */

Elf64_Word sh_info; /* Additional section information */

Elf64_Xword sh_addralign; /* Section alignment */

Elf64_Xword sh_entsize; /* Entry size if section holds table */

} Elf64_Shdr;

typedef struct

{

Elf64_Word p_type; /* Segment type */

Elf64_Word p_flags; /* Segment flags */

Elf64_Off p_offset; /* Segment file offset */

Elf64_Addr p_vaddr; /* Segment virtual address */

Elf64_Addr p_paddr; /* Segment physical address */

Elf64_Xword p_filesz; /* Segment size in file */

Elf64_Xword p_memsz; /* Segment size in memory */

Elf64_Xword p_align; /* Segment alignment */

} Elf64_Phdr;

Detailed explanation is available in the specification [1]. We focus on this basic layout
and describe our ELF model in Section 4.3.

3.3 KLEE Symbolic Execution

KLEE is a symbolic execution engine based on the LLVM compiler framework [3]. Pro-
grams are firstly compiled into LLVM bytecode, which uses RISC-like virtual instruction
set, and then directly interpreted by KLEE. KLEE manipulates programs’ running states
including registers, stacks, heaps and program counters. In addition, KLEE models the
environments that programs interact with. Therefore, “at a high level, KLEE functions as
a hybrid between and operating system for symbolic processes and an interpreter.”
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The core of KLEE is an interpreter loop. For each iteration, an execution state is chosen
to run, and several instructions in the context of that state are symbolically executed. This
loop continues until all states are explored, or timeout threshold is reached. KLEE provides
many strategies for selecting which states to explore next; the default is explained in the
previous chapter. For symbolically executing an instruction, the KLEE paper [15] gives an
example:

%dst = add i32 %src0, %src1

“KLEE retrieves the addends from the %src0 and %src1 registers and writes a new ex-
pression Add(%src0, %src1) to the %dst register.” It is clear that what should be raw
data values (%dst) in normal execution becomes expressions (the Add expression) when
symbolically executed. These expressions have symbolic variables or constants as their
leaves, and LLVM language operations (e.g., arithmetic operations, comparisons, etc.) as
the interior nodes. If all leaves are concrete, the whole expression will be evaluated natively
into a concrete value for efficiency purposes.

The execution of conditional branches is different from the way for the previous as-
signment instruction. The program counter will be altered according to the value of the
condition. KLEE queries the constraint solver to determine whether the branch condition
is provably true or provably false; if it is the case, the program counter is changed to
the appropriate location. If both branches are possible, the current state will be cloned
into two, with the program counters updated correspondingly. Thus, both paths can be
explored.

KLEE detects bugs by wrapping dangerous operations with special checks. For exam-
ple, a division operation will incur an additional check against whether the divisor is zero.
If so, a test case triggering the bug will be generated. Load and store instructions are also
wrapped to check whether the access is in-bounds of a valid memory object.

At the beginning of a program, memory objects that users are interested in must
be marked as symbolic; otherwise, all the instructions manipulate concrete values. KLEE
provides an intrinsic function klee make symbolic() to symbolicize memory, whose usages
are tracked and constraints are collected. Moreover, KLEE also provides mechanisms to
symbolicize the memory objects corresponding to command-line options. klee init env()

intercepts the startup of programs and inserts logic to make them support symbolic options:

• --sym-args MIN MAX N, which represents at least MIN and at most MAX symbolic
arguments, each with a maximum length N,

13



• --sym-files NUM N, which makes stdin and up to NUM symbolic files, each with a
maximum size N,

• --sym-stdout, which symolicizes stdout.

One can use --max-time to specify the maximum allowed execution time, and use
--max-memory to restrict the memory used.

KLEE uses STP [7] for constraint solving. Since the cost of constraint solving dominates
everything else, KLEE implements many optimizations before issuing a query to STP. In-
stead of mapping the program’s address space as a flat byte array, different memory objects
are mapped into distinct STP arrays. Furthermore, KLEE provides query optimizations
including expression rewriting, constraint set simplification, implied value concretization,
constraint independence, and counter-example cache. The KLEE paper [15] explains these
optimizations in detail. When designing our ELF model, we also spend a lot of effort to
guarantee that it does not incur much overheads for STP.
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Chapter 4

Design and Implementation

We describe how DASE extracts and utilizes the constraints for options (Section 4.1 and
Section 4.2) and ELF (Section 4.3 and Section 4.4) in this chapter.

4.1 Extracting Valid Options

We can extract a program’s valid command-line options from various sources like argument
parsing functions (e.g., getopt long from GNU getopt library [4]), help manuals (e.g., the
output of ls --help), man pages (e.g., man ls), and other documentation. Among them,
programs’ argument parsing functions are the most reliable source. So, we extract valid
options from them when applicable. We use the help manuals as a fallback.

The API for getopt long is

getopt_long(argc, argv, short_options, long_options, NULL)

where the parameter short options contains the short options (starting with -), and
the parameter long options contains the long options (starting with --). For example,
mkdir’s short options is “pm:vZ:”, which means mkdir has four POSIX-style options, and
two of them (-m and -Z) require arguments (denoted by “:”). Variable long options is an
array of struct option, each of which defines one long option. For example, one element
in mkdir’s long options array is {"verbose", no argument, NULL, ‘v’}, which means
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--verbose is a long option that requires no additional argument (no argument) and is
equivalent to the short option -v (NULL is irrelevant here).1

Therefore, if a program utilizes GNU getopt long to parse its options, it is straight-
forward to obtain all valid options. We first identify the invocation of getopt long in a
program to acquire the values for its parameters short options and long options. We
then parse the values of these two variables based on their formats defined in the API to
extract the options supported.

Some programs do not use a standard argument parsing function to parse their inputs.
While it is still possible to analyze these special parsing functions to extract all valid
options, the parser will not generalize. Therefore, we build a help manual parser to extract
valid options from the programs’ help manuals, which follow a standard format. For
example, help manual for echo is

Usage: ./echo [OPTION]... [STRING]...

Echo the STRING(s) to standard output.

-n do not output the trailing newline

-e enable interpretation of backslash escapes

-E disable interpretation of backslash

escapes (default)

--help display this help and exit

--version output version information and exit

Since both argument parsing functions and help manuals are simple and well structured,
we do not employ complex techniques to complete the option extraction task; our parsers
perform simple regular expression matching, which is effective and accurate.

4.2 Options as Guide for Symbolic Execution

DASE takes the options extracted in Section 4.1 to trim and reorganize the dynamic
symbolic execution tree as shown in Figure 2.1. A program is usually tested with several
arguments. Rather than marking all arguments symbolic, DASE singles one out. This
selected symbolic argument is concretized with the program’s valid options one by one, and
each valid option will be carried out in a new execution branch. Specifically, if a program
supports n options, DASE will create n execution branches. At each branch, instead of

1For more information about the meaning of this long option, please refer to http://www.gnu.org/

software/libc/manual/html_node/Getopt-Long-Options.html
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having m symbolic arguments, DASE runs the program with m − 1 symbolic arguments
and a valid option. For example, to test echo, instead of using echo --sym-args 0 m x

(KLEE’s terminology, x means the length of each option), we use echo arg --sym-args

0 m-1 x, where arg will be substituted by -n, -e, -E, --help, and --version one by one
at the five generated execution branches.

To facilitate this process, we add another intrinsic function, klee enumerate(), into
KLEE. klee enumerate() accepts a symbolic variable and a list of n concrete choices.
klee enumerate() then forks the current state into n child states and the symbolic variable
in each child state is set to be one of the choices in the list.

In this way, the selected argument becomes one concrete valid option at each branch,
which essentially trims off paths related to all other options for each forked execution. In
addition, the concretization of the selected argument covers all the valid options at the
same depth of the execution tree, which means all valid options are treated equally from
the beginning. We can also think this technique as a “partition” of execution tree; the
aim is to balance the effort on each option (hence the corresponding functionality), which
should be of the same semantic importance.

To ensure the completeness of this “partition”, we also consider invalid option and null
option. In other words, apart from valid options extracted from the program’s documen-
tation, the selected argument is also filled with an invalid option and a null option.

The generated branches are then prioritized by search strategies.

4.3 Building the ELF Model

As introduced in Section 3.2, data in ELF is stored in sections. There are several types of
headers, i.e., the ELF header, section headers, and program headers, acting as “road map”
and meta-information containers to the sections. These headers record sections’ attributes
such as locations, sizes, and types, which tell us where each section is in the file and how
to handle them properly.

Therefore, building an ELF model requires (1) setting up the “road map” layout and
(2) specifying constraints for sections’ attributes. We build the layout by reading the ELF
specification, and then automatically extract constraints for section attributes from elf.h

(its comments are written in natural language) to complete the ELF model. Our results
show that both the layout and the constraints contribute to the coverage improvement of
DASE.
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For the layout, it is mainly the positioning of the headers and the sections. Except
that the ELF header must appear at the beginning of the ELF file, the SHT, the PHT,
and sections are quite flexible as their positioning. However, to reduce the workload of
the constraint solver and also focus on important parts of ELF, we adopt a relatively rigid
layout in our model as shown in Figure 4.1. The ELF header is followed directly by the
SHT and then the PHT. This is enforced by fixing the e shoff (SHT’s offset from the
beginning of the file) and e phoff (PHT’s offset from the beginning of the file) attributes
in the ELF header. The SHT is set to have 5 section headers, which correspond to the 5
sections after the PHT. The first section (at index 0) is always a null section, and we force
the following three sections to be a section header string table (holding null-terminated
strings for section names), a symbol table (which is an array of symbols used for relocating),
and a dynamic section (which is an array of symbols used for dynamic linking). We keep
the fifth section as a random section. The PHT is set to contain only one random program
header. For the second and fifth sections, we set their size to 8 bytes; for the third and
fourth sections, we set their size to be enough for two symbols. Example constraints for
the layout are:

assume(ehdr->e_shoff == sizeof(Elf*_Ehdr));

assume(ehdr->e_phoff ==

sizeof(Elf*_Ehdr) + 5 * sizeof(Elf*_Shdr));

......

assume(shdr2->sh_type == SHT_SYMTAB);

assume(shdr2->sh_size == 2 * sizeof(Elf*_Sym));

......

where assume() is a function for putting constraints onto the current path. The boolean
expression in the function must be true thereafter. ehdr and shdr2 are pointers to the
ELF header and the second section header respectively.

Specifically, the code is implemented in KLEE’s POSIX emulation layer. KLEE mod-
els a plain symbolic file as a sequence of bytes in memory and symbolicizes them using
klee make symbolic() (in runtime/POSIX/fd init.c). We append the above constraints
right after symbolicizing the memory. assume() in the above is implemented using KLEE
intrinsic function klee assume(), which accepts boolean expressions and enforces them to
be true.

Our model is designed to reflect the basic structure of ELF, without introducing too
much overhead for the constraint solver at the same time. We manually enforce the types
of several sections because those section types are important for an ELF file and should
be covered in testing.
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Figure 4.1: ELF model for DASE. “SH”/“PH” is short for “Section Header”/“Program
Header”. The numbers in brackets are array indices.

The other attributes in various headers are restricted using the constraints automati-
cally extracted from elf.h. We explain the technique in the following section. Note that
with the constraints from the following section, our ELF model is still incomplete. We
retain this incompleteness to give DASE the ability to explore close-to-valid inputs, which
are also “interesting”.

4.4 Extracting Complex Input Constraints

In addition to the layout constraints in Section 4.3, we apply NLP techniques to automati-
cally analyze the comments and code in the ELF header file (elf.h) to extract constraints.
The ELF specification [1] and the man page [2] can also be used for input constraint ex-
traction. However, they can easily become outdated and incomplete. For example, the
ELF specification misses valid values for data fields such as “e type” and “e machine”,
and does not describe 64-bit related data structures. The header file elf.h is compiled
together with the target code to test, therefore, it is consistent with the latest ELF file
format under test.

The header file contains a large number of comments that describe the constraints for
the struct data fields (i.e., each comment is followed by a list of macros representing the
valid values). One example is:
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/* Fields in the e_ident array. The EI_* macros

are indices into the array. The macros under each

EI_* macro are the values the byte may have. */

#define EI_MAG0 0

#define ELFMAG0 0x7f

#define EI_MAG1 1

#define ELFMAG1 ’E’

...

DASE automatically generates the following two constraints regarding array index-value
pairs from the comments and code. The rest of this section explains the NLP techniques
used by DASE to generate the constraints.

assume(Elf32_Ehdr->e_ident [EI_MAG0] == ELFMAG0);

assume(Elf32_Ehdr->e_ident [EI_MAG1] == ELFMAG1);

Our technique extracts two types of value constraints: array index-value pairs and
struct field values (e.g., assume( Elf32 Shdr→e type == 0 | ...);). Since comments are
written in a natural language, developers can use different forms to express the same
meaning. For example, they may use “Fields in the e ident array”, “Fields of the e ident
array”, “The e ident array’s fields”, or “The array e ident’s fields” to start the listing of
fields. These sentences use different sentence structures and different words to express
the same meaning, which are difficult to analyze automatically. Simple regular expression
matching will fail to accommodate all these and other variants.

We use typed dependency to analyze the dependencies and grammatical relations
among words and phrases in a sentence to handle these variants. Compared to classifica-
tion approaches used in prior work for comment analysis [44], no training data is required,
thus less manual work. DASE uses the Stanford parser2 to generate typed dependencies.

The grammar rules (GR) used to identify relevant comments and extract constraints
from them are shown below. The main rules (GR2, GR3, and GR4) are used to identify
relevant comments (if a sentence contains the typed dependency defined by a GR, it is con-
sidered relevant and remains for further analysis), then the supporting rules help identify
the parameters in a rule, e.g., array and field names.

GR1 Noun or Adjectival Modifier (support rule)

2http://nlp.stanford.edu/software/stanford-dependencies.shtml
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Noun or Adjectival modifier is an noun or adjectival phrase that modifies a noun
phrase [21]. For example, in the comment “Fields in the e ident array”, the noun
phrase “e ident” modifies the noun “array”. DASE applies this grammar relationship
to retrieve data structure names and index names.

GR2 Prepositional Modifier (main rule)

Prepositional Modifier is a prepositional phrase that modifies the meaning of a verb,
adjective, noun or preposition [21]. For example, in the comment “Legal values for
sh type field of Elf32 Shdr”, the prepositional phrase “for ... Elf32 Shdr” modifies
the noun “values”. DASE applies this grammar on modifiers (i.e., “for”, “of” and
“in”) to locate specific nouns (i.e., “value” and “field”).

After locating the prepositional modifier, the dependency tree links “values” to the
content word “field”. If the content word is being modified by an adjectival modifier,
DASE applies GR1 to resolve the properties. In this example, GR1 will return
“sh type” as the property of “field”, and GR2 will flag the macros as the legal values
for that data field.

GR3 Nominal subject (main rule)

Nominal subject is a noun phrase that is the syntactic subject of a clause [21]. For
example, in the comment “The EI * macros are indices into the array”. The noun,
“macros”, is the subject of the clause, “indices into the array”. DASE applies this
grammar to locate specific clauses (i.e., “indices ...” and “values ...”).

After locating the nominal subject, DASE applies GR1 to resolve the properties.
In this example, GR1 will return the regular expression “EI *” as the property of
“macros”, and GR3 will flag the macros named under this regular expression as the
indices of an array.

GR4 Possession modifier (main rule)

Possession modifier holds the relation between the head of a noun phrase and its
possessive determiner [21]. For example, in the comment “sh type field’s legal values”.
The head noun is “field” and the possessive determiner is “values”. DASE applies
this grammar to locate specific possessive determiners (i.e., “value”).

After locating the possession modifier, DASE applies GR1 to resolve the properties
of the head noun. In this example, GR1 will return the field name “sh type” as the
property of “field”.

If a comment only specifies a partial field name, DASE will resolve the name into
a fully qualified name. For example, the comment “Legal values for e type” specifies a
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field name “e type” without the struct name. DASE maps this field name to structs that
contain this field name and generates the fully qualified names, “Elf32 Ehdr→e type” and
“Elf64 Ehdr→e type”.

We use the example shown at the beginning of this section to illustrate how to extract
one type of constraints (index-value pairs) in the following steps.

1. For the first sentence, GR2 identifies a prepositional link, “in”, between “fields” and
“array”, and invokes GR1 to resolve “array”. GR1 queries the noun modifier for
“array” and returns “e ident”. Therefore, it captures the array name as “e ident”.

2. For the second sentence, GR2 identifies a prepositional link, “into”, between “indices”
and “array”, but it does not invoke GR1 because there is no noun modifier. GR3
identifies “indices” as the subject of “macros”, and invokes GR1 to resolve “macros”.
GR1 queries the noun modifier for “macros” and returns “EI *”. Therefore, macros
with the name, “EI *”, are treated as the indices of an array.

3. For the third sentence, GR3 is invoked before GR2 because of the structure of the
dependency tree. GR3 identifies “values” as the subject of “macros”, but it does
not invoke GR1 because there is no noun modifier. GR2 identifies a prepositional
link, “under”, between “macros” and “macro”, and invokes GR1 to resolve “macro”.
GR1 queries the noun modifier for “macro” and returns “EI *”. Therefore, the macro
below the macro name, “EI *”, is treated as the value of an array.

4. DASE resolves the array name “e ident” into a fully qualified name, “Elf32 Ehdr→
e ident” and generate the two constraints.
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Chapter 5

Experimental Methodology

We use the three coverage criteria reported by GNU gcov, i.e., line coverage, branch
coverage, and call coverage, as our main metrics. Call coverage is the percentage of function
calls that are executed throughout the source file. Both gcov and these coverage criteria
are long-established.

5.1 Evaluated Programs

We evaluate DASE on the following 88 programs from 5 popular and mature software
suites, all of which are fundamental tools for Unix-like systems:

Coreutils 6.10. Coreutils is a package of GNU programs that consists of basic
file, shell, and text manipulation utilities that are indispensable for Unix-like systems.
KLEE authors chose Coreutils as their main test software [15]. We also include it in our
evaluation. For a fair comparison with KLEE, we try our best to set the same environment
for Coreutils as KLEE’s authors. We choose the same version, 6.10, and follow their
parameters for both KLEE and DASE. Among the 82 stand-alone programs1 we tested in
Coreutils, the largest program ls has 1,475 effective lines of code (ELOC)2.

diff 3.3. diff compares files line by line and outputs the differences. It is typically
used together with patch to pass modifications around. The program has 526 ELOC.

1dd is excluded because it uses a different option style; chmod, kill, mv, rm, and rmdir are excluded
because they continually cause dangerous test cases to be generated that destroy our experiment data. In
the future, we can apply DASE on these programs in a sandbox to address this issue.

2All the ELOC counts in this thesis are reported by gcov 4.8.1.
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grep 2.18. grep searches files for given patterns. The program has 932 ELOC.

objdump & readelf(b) 2.24. These two programs are from Binutils, which is a
set of GNU programs for processing binaries, libraries, object files, and so on. objdump

and readelf are used for displaying the contents of ELF files. They have 1,687 and 6,998
ELOC respectively. Since both Binutils and elftoolchain contain a readelf program,
we use readelf(b) to denote the readelf program in Binutils and readelf(e) to denote
the one in elftoolchain.

elfdump & readelf(e) r2983. In order to test our ELF model more thoroughly,
we select elftoolchain’s counterparts for the above two programs. elftoolchain
is another set of program development tools for ELF files. It provides similar tools as
Binutils, but favors well-separated and well-documented libraries. They have 1,539 and
3,571 ELOC respectively.

DASE applies option related constraints to prune the execution paths for Coreutils,
diff, and grep. All automatically extracted valid options are used as input constraints for
path pruning. Since these programs do not process ELF files, we apply DASE on 4 ELF
processing programs (objdump, readelf(b), elfdump, and readelf(e)) for path pruning.
In the future, we would like to have DASE apply both the option related and ELF file
format related constraints for path pruning for these programs.

5.2 Experimental Setup

We conduct our experiments on an Intel Core i5-2400 3.10GHz CPU machine running
Ubuntu 13.10. KLEE is built from git revision a45df61 with LLVM 2.9.

We run KLEE and DASE on each program until there are no new instructions covered in
a certain amount of time. We run a preliminary experiment to determine this threshold as
15 minutes for Coreutils programs. For the rest programs with larger size, the threshold
is set to 30 minutes.

The other parameters are set by following the instructions from KLEE’s authors3. The
key parameters are:

klee PROG -sym-args 0 1 10 -sym-args 0 2 2

-sym-files 1 8 -sym-stdout

3http://klee.llvm.org/CoreutilsExperiments.html.
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where PROG is a program in Coreutils. While for DASE, we keep all the parameters the
same as for KLEE, except for replacing a symbolic argument with a list of valid options.

For diff and grep, we set the symbolic file size to 100 bytes because they are meant
to process textual files.

For the ELF processing programs, we use the following parameters respectively for
KLEE and DASE:

klee -sym-args 0 2 2 -sym-files 1 640

klee -sym-args 0 2 2 -sym-elfs 1 640

where -sym-elfs holds our ELF model described in Section 4.3.
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Chapter 6

Experimental Results

This section demonstrates DASE’s ability in improving code coverage and finding previ-
ously unknown bugs.

6.1 Code Coverage

Table 6.1 shows the overall code coverage achieved by KLEE and DASE on all the 88
evaluated programs. The 82 Coreutils programs are listed together due to space con-
straints. Cumulatively, experiments on these programs for both KLEE and DASE take us
approximately 186.5 machine hours (almost 8 days).

Table 6.1 shows that DASE outperforms KLEE on the 88 programs: it increases the
line coverage, branch coverage, and call coverage by 5.27–22.10%, 5.83–21.25%, and 2.81–
21.43% respectively. For example, the coverage boost on grep is over 20% for all three
coverage metrics. These programs, readelf(b), objdump, readelf(e), and elfdump, are
difficult to test because their inputs involve complicated ELF format. In addition, the
sizes of the evaluated programs are at the same scale as the ones evaluated by previous
work [35, 38]. Therefore, the coverage improvement demonstrates the effectiveness of
DASE: high level information from documentation regarding input constraints can guide
symbolic execution to improve automated test generation.

For Coreutils, which was also evaluated in the KLEE paper [15], the percentages we
obtain are different from that paper. This is inevitable because the KLEE tool has evolved
significantly since then, including major source code changes of KLEE (e.g., removals of
special tweaks), upgrade of LLVM, and an architecture change from 32-bit to 64-bit. We
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Program CC Count KLEE(%) DASE(%) ∆(%)

Coreutils
L 18326 66.12 75.13 + 9.00
B 12674 69.81 76.72 + 6.90
C 7003 56.52 66.16 + 9.64

diff

L 526 59.13 73.19 + 14.06
B 489 67.28 75.87 + 8.59
C 150 48.00 64.00 + 16.00

grep

L 932 37.34 59.44 + 22.10
B 786 40.33 61.58 + 21.25
C 266 33.46 54.89 + 21.43

objdump

L 1687 19.38 25.55 + 6.17
B 1270 16.93 22.76 + 5.83
C 463 16.63 19.44 + 2.81

readelf(b)
L 6998 6.89 16.55 + 9.66
B 5410 6.19 21.55 + 15.36
C 1959 6.89 15.62 + 8.73

elfdump

L 1539 16.11 21.38 + 5.27
B 1157 20.40 30.68 + 10.28
C 533 16.51 22.33 + 5.82

readelf(e)
L 3571 12.99 29.91 + 16.92
B 2550 18.51 35.88 + 17.37
C 1126 10.75 25.04 + 14.29

Table 6.1: Coverage results with KLEE’s default search strategy. “CC” means “Coverage
Criteria”. “L”, “B”, and “C” stand for “Line coverage”, “Branch coverage”, and “Call
coverage”, respectively. The third column, “Count”, contains total number of ELOC,
branches, calls for each software. ∆(%)” is the improvement of DASE over KLEE.

choose the latest version of KLEE at the time of experiment because (1) it represents the
current status of KLEE, and (2) the original version used in the KLEE paper is not publicly
available. For a fair comparison, the configurations for KLEE and DASE are identical.

DASE outperforms KLEE for all (82) but 15 programs in Coreutils. Among these
15 programs, the coverage difference is very small (5 or fewer ELOC) for 9. One possible
reason is that the options are used to tune parameters for some of the programs (e.g.,
csplit), and the core functionality code is always executed no matter the parameters
are tuned or not. In the future, we can improve DASE to automatically understand the
semantics of options to avoid using some options for pruning. In addition, 10 of these 15
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Program K-AVGi D-AVGi K-MAXi D-MAXi

Coreutils
7132 7807 11682 12816
49688 54035 320138 320880

diff 18483 23184 35432 47584
grep 25942 25698 43424 68504

objdump 45915 75519 104479 245370
readelf(b) 11570 17095 24884 37377
elfdump 13827 25295 24433 50468

readelf(e) 18009 24187 29140 50255

Table 6.2: Number of instructions for generated test cases. “K-” stands for KLEE and
“D-” stands for DASE. “AVGi” and “MAXi” is the average and maximum number of
instructions for the generated test cases respectively. Since Coreutils includes multiple
programs, a range (the minimum and the maximum) is shown.

programs have five or fewer valid options. The benefits of DASE may not show if the input
format is very simple (e.g., a few valid options). In the future, we want to improve DASE so
that it can automatically detect such relationship between valid options to automatically
determine what valid options to use for pruning.

6.1.1 Understanding DASE’s Advantage

Since DASE filters out “uninteresting” execution paths, it should enable symbolic execution
to go deeper into the execution tree to explore paths. Table 6.2 shows that this is the case
for the evaluated programs. We count the number of instructions that are executed for
each test case generated by KLEE and DASE, which is approximately the depths of the
corresponding execution paths. The average and maximum numbers are shown in Table
6.2.

From Table 6.2, we can see clearly that DASE generates test cases with much more
instructions executed, indicating that DASE goes much deeper into the execution tree
than KLEE. The improvement is particularly big for the ELF processing programs; both
the averages and maximums almost double their counterparts of KLEE. This is expected
because while KLEE is still exploring at the early stage of the ELF sanity check, DASE
has already quickly penetrated through that part with the help of our ELF model.

To investigate DASE’s performance gain in detail, we manually check the coverage
difference on readelf.c (Binutils). For the three functions related to dynamic section,
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* dynamic section(), in which * means get 32bit, get 64bit, or process, KLEE fails
to cover any of them, while DASE naturally tests them all because our ELF model has a
dynamic section. Many other functions, such as print symbol(), are also not covered by
KLEE but covered by DASE.

We have similar observations for options. We manually examine the coverage difference
for diff. In the switch-case structure for argument parsing, only 27 out of the 55 distinct
options1 are explored by KLEE, and the explored options are the top part of the switch-case
structure. This result agrees with our analysis in Figure 2.1a. On the other hand, DASE
covers 46 options. For example, KLEE fails to cover the option -X (to exclude files matching
a certain pattern) and the function invoked by this option, add exclude files(), while
DASE tests them.

6.1.2 Combining with Other Search Strategies

Path pruning using input constraints is a general approach which can be combined with
different search strategies. To show that the coverage improvement of DASE over KLEE
is not tied to KLEE’s default search strategy, we change the underlying search strategies
for both KLEE and DASE to BFS and rerun our experiments in Table 6.1. Because it
is too time-consuming (almost 140 hours) to run all the programs from Coreutils, we
randomly sample 10 from it.

Table 6.3 shows that when the search strategy is BFS, DASE still outperforms KLEE.
The improvement for diff is big (40.88% line coverage improvement). Comparing Table 6.3
with Table 6.1, we can see that BFS achieves higher coverage than KLEE’s default search
strategy for Coreutils, while BFS is less effective for Binutils. The result shows that
although pruning can help, it is still important to select an effective search strategy for
the program under test. Nonetheless, DASE is consistently better than KLEE for the two
search strategies and the programs evaluated.

6.1.3 Comparison with Developer Generated Tests

Since automated test generation aims to complement developer generated tests, we evaluate
whether DASE improves code coverage on top of developer generated tests. Table 6.4 shows
the results. readelf(e) is missing because there are no developer generated tests for it
in elftoolchain. From this table we can see that by adding DASE generated tests,

1For options that invoke the same code segment, we count them as one option.
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Program CC Count KLEE(%) DASE(%) ∆(%)

Coreutils
L 1840 69.13 79.35 + 10.22
B 1285 74.09 79.30 + 5.21
C 728 53.85 72.94 + 19.09

diff

L 526 40.87 81.75 + 40.88
B 489 60.74 82.82 + 22.08
C 150 33.33 76.67 + 43.34

grep

L 932 33.37 63.52 + 30.15
B 786 41.35 69.21 + 27.86
C 266 25.19 58.65 + 33.46

objdump

L 1687 2.90 3.44 + 0.54
B 1270 5.28 5.43 + 0.15
C 463 5.18 5.62 + 0.44

readelf(b)
L 6998 0.74 0.81 + 0.07
B 5410 1.63 1.63 + 0.00
C 1959 1.12 1.17 + 0.05

elfdump

L 1539 17.93 20.08 + 2.15
B 1157 21.43 30.68 + 9.25
C 533 19.32 21.39 + 2.07

readelf(e)
L 3571 13.58 20.30 + 6.72
B 2550 18.43 33.22 + 14.79
C 1126 10.30 19.27 + 8.97

Table 6.3: Coverage results with BFS as the underlying search strategy.

the code coverage is improved. Together with Table 6.1, we can see that for Coreutils,
diff, objdump, and readelf(b), DASE alone can generate tests to achieve comparable code
coverage as developer generated ones. Although the coverage improvement on objdump,
readelf(b), and elfdump is relatively small, the DASE generated tests detected previously
unknown bugs for all of them. DASE detected a total of 13 bugs on the evaluated programs
that developer generated tests fail to detect (Section 6.2). The results demonstrate that
DASE can be used by developers to further improve testing coverage and find more bugs
even if manual tests exist.

ZESTI [35] uses developer generated tests as “seeds” and explore similar paths as in the
developer generated tests to cover more code and find more bugs. Different from DASE,
the effectiveness of ZESTI depends on the quality of developers’ tests. For example, ZESTI
cannot help programs such as readelf(e) which do not have developer generated tests. In
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Program CC Dev(%) DASE + Dev(%) ∆(%)

Coreutils
L 65.87 84.12 + 18.25
B 73.16 86.74 + 13.58
C 54.19 73.83 + 19.64

diff

L 57.03 80.04 + 23.01
B 72.19 83.64 + 11.45
C 50.67 72.00 + 21.33

grep

L 81.22 86.37 + 5.15
B 86.77 89.82 + 3.05
C 73.31 81.20 + 7.89

objdump

L 56.85 61.41 + 4.56
B 65.43 66.69 + 1.26
C 48.81 53.13 + 4.32

readelf(b)
L 28.45 28.95 + 0.50
B 43.35 43.49 + 0.14
C 28.38 29.10 + 0.72

elfdump

L 55.37 56.34 + 0.97
B 65.91 65.91 + 0.00
C 46.62 48.87 + 2.25

Table 6.4: Coverage results for combining DASE with developers’ test cases.

addition, we find that only 41.8% (318 out of 7612) of the valid options are covered by the
developers’ hand-written tests and only for 31.5% of the Coreutils programs, all of their
valid options are covered. Therefore, it would be difficult for techniques such as ZESTI to
cover all command-line options like DASE does. In fact, due to the higher coverage, DASE
detected two previously unknown bugs in Coreutils that were not detected by ZESTI
(the same version of Coreutils was evaluated by DASE and ZESTI). More discussion
can be found in Chapter 8.

2This number is accumulated from all the programs existing in Coreutils, including those not tested
by us.
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No Program Location Problem KLEE DASE
1 readlef(b) readelf.c:12202 IU X
2 objdump elf-attrs.c:463 IU X
3 objdump elf.c:1351 POB X
4 readelf(e) readelf.c:4015 DBZ X
5 readelf(e) readlef.c:2862 DBZ X
6 readelf(e) readelf.c:3680 DBZ X
7 readelf(e) readelf.c:3930 IU X
8 readelf(e) readelf.c:3961 IL X
9 readelf(e) readelf.c:4102 IL X

10 readelf(e) readelf.c:2662 NPD X
11 readelf(e) readelf.c:2426 POB X
12 elfdump elfdump.c:1509 POB X X
13 elfdump elf scn.c:87 POB X
14 head head.c:207 ME X
15 split split.c:333 ME X

Table 6.5: New bugs detected by KLEE and DASE. “X” denotes a bug is found by a tool.
“IU” means “Integer Underflow”. “DBZ” is “Divide By Zero”. “IL” is “Infinite Loop”.
“NPD” means “NULL Pointer Dereference”. “POB” stands for “Pointer Out of Bounds”.
“ME” is “Memory Exhausted”.

6.2 Detected Bugs

DASE finds more bugs than KLEE. KLEE detects 3 bugs3 from the 88 programs, while
DASE is able to uncover 13 bugs. Table 6.5 lists all the bugs. We explain a few example
bugs to demonstrate DASE’s bug finding capability.

readelf from Binutils will fail with segmentation fault when the input file contains
malformed attribute sections (of type SHT GNU ATTRIBUTES).The bug exists in the function
process attributes(), which is shown in Listing 6.1. In this listing, p is a pointer walking
through the whole section. At line 12177, 4 bytes are read and interpreted as the length
(section len) of the subsequent data structure. Directly after that, the program expects
to read a string and assign its length to namelen. However, section len can be a number
smaller than namelen + 4, which causes an integer underflow at line 12202. section len,

3Here we do not count the bugs already reported in KLEE’s original paper. Those bugs can also be
found by DASE.
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which becomes an extremely big number after underflow, is later used as the stop condition
of a continuing reading of the following memory, which eventually causes a segmentation
fault. The fifth random section in our ELF model enables DASE to successfully generate
an attribute section to trigger this bug. readelf(e) also contains a similar bug.

12177 s e c t i o n l e n = byte ge t (p , 4 ) ;
12188 p += 4 ;

. . .
12200 namelen = s t r l e n ( ( char ∗)p) + 1 ;
12201 p += namelen ;
12202 s e c t i o n l e n −= namelen + 4 ;
12203
12204 while ( s e c t i o n l e n > 0)

Listing 6.1: Buggy code in readelf.c from Binutils.

readelf from elftoolchain suffers from another segmentation fault because of NULL
pointer dereference. The buggy function is timestamp(), which is shown in Listing 6.2.
timestamp() calls C library function gmtime() to convert time from type time t to struct

tm. However, on a 64-bit machine, time t is 64-bit long; its maximum value cannot be
properly stored in a struct tm because the tm year field in struct tm is an int. gmtime()
will return NULL in this case. The code in timestamp() fails to check gmtime()’s return
value against NULL and dereferences it right afterwards, which causes a segmentation
fault.

2661 t = gmtime(& t i ) ;
2662 s n p r i n t f ( ts , s izeof ( t s ) , . . .
2663 t−>tm year + 1900 , . . .

Listing 6.2: Buggy code in readelf.c from elftoolchain.

The head program will experience memory exhaustion when invoked with options -c

-1P,which tells head to print all but the last 1P bytes of the input file. And P is a very
large unit which stands for 10245. Therefore the bug is that head tries to allocate a large
amount of memory, which exceeds the total amount of available memory. Specifically,
elide tail bytes pipe() in head.c calls xcalloc(), which fails. According to the com-
ment, head is not expected to “fail (out of memory) when asked to elide a ridiculous
amount”. For bigger units (e.g., Z and Y), head exits with the correct error message—
“number of bytes is so large that it is not representable”. Neither developers’ hand-written
tests nor KLEE generated tests covered this bug. And note that the second argument
is not an option; it is a parameter for the -c option. Therefore simply enumerating all
combinations of options is impossible to detect this bug either.
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Two bugs can be found by KLEE but not by DASE. The first one has a very large value
in e shoff of the ELF header, which is incompatible with our ELF model. As shown in
Section 4.3, we manually fixed e shoff to layout the SHT. So DASE loses the possibility
of finding this bug. DASE cannot detect the second bug for a similar reason. Missing
these two bugs shows the tradeoff involved in designing the ELF model. We want to focus
on those more valid inputs, which are more important and fruitful. Therefore we adopt a
relatively rigid layout. As the result shows, this tradeoff is quite beneficial: DASE find 10
more bugs than KLEE. One can always relax the constraints to explore less valid inputs
and potentially cover these two bugs. Running KLEE and DASE together to gain benefits
from both is also a good solution.

6.3 Constraint Extraction Results

For command-line options, we automatically extracted 821 valid option values: 720 from
the 82 Coreutils programs, 46 from grep, and 55 from diff. Among them, 22 options are
invalid: 21 for the [ utility from Coreutils and 1 for grep. The accuracy is 97.3%. The
[ utility only accepts two options, namely --help and --version; however, it supports
expressions such as -n STRING to test whether STRING is empty and -d FILE to test
whether FILE exists and is a directory. Our command-line option parsing tool will extract
the operators -n and -d as options, although they are conceptually not. However, this
brings no harm for testing the [ utility because these different operators should be covered.
The invalid option for grep is -NUM. NUM here is meant to be substituted with some number
such as 1. Our extracting tool thinks -NUM is a valid option. However, we can easily filter
out this invalid option by using the fact that a short option (started with a single dash)
only has a single character.

For ELF processing programs, we manually enforced 26 constraints to form the lay-
out of our ELF model shown in Figure 4.1. By analyzing the ELF header file, DASE
automatically extracted 56 values for 14 constraints regarding array index-value pairs and
208 values for 21 constraints regarding valid field values. For example, the constraint
“assume( Elf32 Shdr→e type == 0 | Elf32 Shdr→e type == 1);” is one constraint
with two values (0 and 1). Among the 208 values for 21 constraints regarding valid field
values, 10 values are invalid, which affect six constraints. The accuracy is thus 96.2% for
the 21 constraints. The imprecision results from a special kind of macros used in elf.h.
After listing all valid values of a field, there may be an additional macro, typically named as
* NUM, mapping to the next available number. For example, in the following code, EV NUM

is not a valid value for the e version field. Our extraction tool will not distinguish this
special case and thus treat EV NUM as a legal value.
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/* Legal values for e_version (version). */

#define EV_NONE 0 /* Invalid ELF version */

#define EV_CURRENT 1 /* Current version */

#define EV_NUM 2

Among all the constraints, 9 constraints (consisting of 60 values) are not used because they
are not applicable to our model. These unused constraints are all for special section types.
We can incorporate them when we improve our ELF model in the future.

DASE extracted almost all constraints in the header file, which helped DASE improve
the testing coverage and testing effectiveness. To extract more constraints to further im-
prove the testing effectiveness, we can analyze the ELF specification and the man page.
Although they contain outdated and incomplete information, we may manually verify the
extracted constraints (currently the constraints extracted from the header file are used di-
rectly by DASE for test generation to minimize manual effort) or leverage time information
to automatically identify potentially outdated constraints. In addition, the proposed NLP
techniques can be generalized to analyze other formats, e.g., TCP/IP packets and XML
format, etc.
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Chapter 7

Discussion And Future Work

Using information from documents, DASE aims to help symbolic execution focus on se-
mantically important paths. We have experimented with alternative design choices, which
include distributing execution time equally among command-line options and making the
ELF model symbolic. These alternative design choices are described below.

7.1 Previous Attempts for Command-line Options

In our first try, time spent on each option is predetermined. If a program has n options,
we then divide the total time into n time slices and allocate one slice to each option. This
approach guarantees the equality of options. However, it may perform poorly because the
importance and code coverage of different options are not identical. For example, in rm,
--help and --version are trivial compared to -r. It is not easy to devise a rational time
allocation scheme.

We also try to represent all possible options of a program using a single constraint. For
example, to test echo with m symbolic arguments (using KLEE’s terminology, this is echo
--sym-args 0 m x, in which x means the length of each symbolic argument), we single
one symbolic argument out and put the following constraint on it:

assume(arg == "-n" || arg == "-e" || arg == "-E" ||

arg == "--help" || arg == "--version");

where arg is the selected symbolic argument. The rest m−1 arguments are kept untouched
(again using KLEE’s terminology, this is echo arg --sym-args 0 m-1 x). In this way,
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there will be no concretization of the selected argument. Also, there is no explicit execution
branch forking as described in Section 4.2. Experiments demonstrate that this method
almost contributes no coverage improvement to symbolic execution. One reason is that
the constraint, only for a single variable, is too simple. Another explanation is that the
constraint gives little guidance to symbolic execution. Practically, symbolic execution can
build this constraint by walking through a program’s input argument parsing module.

Therefore we propose to use the method in Section 4.2 to improve symbolic execution
for command-line programs. It combines equality of each option at the beginning and
flexibility of effort allocation for further exploration.

7.2 Previous Attempts for ELF

We have tried a more flexible version of our ELF model. In the current model, the size and
offset of each section are set to concrete values. In the flexible model, they are symbolic.
That is, the size and offset of each section will be determined by symbolic execution
when exploring ELF processing programs. Although more general, it loses the benefit of
concretizing ELF’s “skeleton.” If the offset of a section is symbolic, all indexes and pointers
to its contents become symbolic. When referring fields in the section, KLEE needs first to
resolve the symbolic pointer. As explained in the KLEE paper [15], this is an expensive
operation. Therefore, the performance gain is much smaller than using rigid ELF skeleton.

7.3 Future Work

Our current approach of using information from documentation to improve symbolic ex-
ecution is efficient. However, our approach can be improved in the following ways, which
remain as our future work.

• Analyzing the importance of options. As explained in Section 6.1, DASE’s perfor-
mance on some command-line programs is not satisfying now. This is because that
some programs have few options, or their options are just used to tune parameters
while the core functionality code is always executed no matter the parameters are
tuned or not. Under such circumstances, it is not suitable to use options for pruning.

• Analyzing the relationship between options. Command-line options can overlap with
each other. For example, readelf has an option -a which is equivalent to the com-
bination of -h, -l -S, -s, -r, -d, -V, -A, and -I. It will be more beneficial to avoid
pruning using both the “super” option and its equivalent options.
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• Adding more sections in the ELF model. Currently, we only force five sections in our
ELF model, while only three of them have types predetermined. These three types
of sections are important. Nonetheless, it is meaningful to try more different types.

• Building models for other file formats. ELF is prevalent in Unix-like systems. How-
ever, there exist plenty of other important file formats. Various network package
protocols are crucial for the current computer world. XML as the de facto standard
of message exchanging is also widely used and its parsers should function correctly
to their best. A model for a file type can benefit vast numbers of programs.
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Chapter 8

Related Work

Recent years have witnessed re-emerging interest in utilizing symbolic execution [20, 29] for
automated test generation. Researchers have proposed frameworks [15, 16, 18, 25, 37, 41,
42, 47] for different programming languages by using symbolic execution alone or combining
it with concrete execution. The later executes a program on a concrete input, and then flips
the branch conditions to systematically explore more paths. Although symbolic execution
already shows its excellence in improving test efficiency, its scalability is hindered by path
explosion.

To alleviate the path explosion problem, a number of strategies have been proposed [10,
14, 15, 19, 30, 40, 42]. Simple strategies such as depth-first search (DFS) favors deep paths
in the execution tree whereas breadth-first search (BFS) favors shallow paths. CUTE [42]
and CREST [14] both use a bounded DFS strategy. It limits the number of branches that
can be explored at any path but it does not scale to programs that have a deep search
tree. KLEE [15] uses two atom search strategies in a round robin fashion as explained in
Chapter 2. CREST [14] also proposed control-flow graph (CFG) directed search, uniform
random search, and random branch search. Santelices and Harrold proposed Symbolic
Program Decomposition [40] that exploits the control and data dependencies to avoid
analyzing unnecessary combinations of subpaths. Babić et. al. proposed a three-stage
process [10] which exploits static analysis of the binaries under test to guide exploration.
Krishnamoorthy et. al. [30] proposed a reachability-guided strategy that guides the search
towards important parts of the code specified by the user; a conflict-driven backtrack-
ing strategy that utilizes conflict analysis to discard redundant paths; and error-directed
strategies that target on assertions, abort statements, and paths that are less likely to be
executed.
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DASE tackles the path explosion problem by automatically extracting input constraints
from documentation and use the input constraints to prune execution paths. This is
different from the previous techniques, which rely on information from the code logic
(typically CFG) to guide the path exploration process. In addition, DASE focuses on valid
or close-to-valid inputs, while the above techniques have no knowledge about whether an
execution path corresponds to valid or invalid input.

BuzzFuzz [23] aims to test a program’s core functionality code like DASE. It focuses on
potential attack points, i.e., locations in code possibly resulting in errors, in the program
under test. Dynamic taint tracing is used to identify the initial values affecting the attack
points from a set of seed input files. These initial values are then fuzzed to generate
new input files, which typically preserve the underlying syntactic structure of the seed
input files. Thus, BuzzFuzz can easily pass the initial input parsing part and exercise
core functionality code. It is clear that BuzzFuzz relies on existing seed input files; paths
explored by BuzzFuzz are limited to around those appear in seed input files. Moreover,
users need to specify attack points. The default set of attack points only focuses on library
function arguments. In contrast, DASE is not a fuzzing technique. It does not depend on
seed input files, and its bug finding is not limited to certain program points.

ZESTI [35] explores “interesting” code by starting with developer generated test to
explore additional paths around predefined sensitivity operations—pointer dereferences
and divisions—using symbolic execution. This means ZESTI’s performance is affected by
existing tests, while DASE does not suffer from this problem, as discussed in Section 6.1, In
addition to ZESTI, other work utilizing existing tests for test suite augmentation includes
directed test suite augmentation [49]. KATCH [38] uses existing tests to explore the
added or modified code in software patches. It first locates a developer test case that has
an execution path close to the patch code, and then modifies the execution path to test
the path code. Kin-Keung et. al.’s work [32] also aims at finding execution paths that
reach target code. They all rely on existing tests and use information from the code logic.

Input constraints and specifications in general have been used for automated test gen-
eration [12, 13, 36]. These techniques do not use the input constraints to guide symbolic
execution for test generation. In addition, the input constraints need to be provided,
and they do not automatically extract input constraints. CESE [33] and grammar-based
whitebox fuzzing [24] are related to our work with respect to testing programs expecting
highly-structured inputs. But their methods require context-free grammar and they focus
on completely valid inputs.

Partitioning has been used to improve symbolic execution. FlowTest [34] partitions the
inputs into “non-interfering” blocks by analyzing the dependency among inputs. Simple
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Static Partitioning [43] approaches the problem by first performing a shallow symbolic
execution up to a certain depth and collecting all the path constraints. Then these path
constraints are broken down into individual ones and recombined into a reduced number of
constraints for parallel execution. Qi et. al. proposed execution paths can be partitioned
using their output similarity [39]. However, these techniques still only leverage information
from the code logic, while DASE “divides” the execution based on semantic functionalities
of the program. Although this resembles input space partitioning [48], DASE’s division
is not disjoint since we have several symbolic arguments and currently we only “divide”
the execution according to the first one. The other unconstrained options can expand to
whatever concrete options and introduce duplicates. Ensuring disjointness remains as our
future work.

A recent study [28] had shown that there is little correlation between code coverage
and the effectiveness of a test suite (measured by the number of killed mutants). However,
the mutants are generated using PIT [5] with extremely simple mutants, which might not
represent real bugs. In our study, we built DASE on top of KLEE. DASE significantly
improves the code coverage and detect new bugs compared to KLEE through partitioning
the input space by command-line options.
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Chapter 9

Conclusions

This thesis presents Document-Assisted Symbolic Execution (DASE) as a general and ef-
fective approach to improve symbolic execution for automatic test generation and bug
detection. DASE utilizes natural language processing techniques and heuristics to au-
tomatically extract high level input constraints from programs’ documentation. DASE
then uses these constraints as pruning criteria to focuse on valid or almost valid inputs.
DASE prunes paths based on their semantic importance to help search strategies prioritize
execution paths more effectively.

We build our DASE prototype based on KLEE and focus on two types of input con-
straints: command-line options and the ELF file format. These two types are sufficient
for a wide spectrum of programs. We evaluate DASE on 88 programs from 5 mature
real-world software suites: GNU Coreutils, GNU findutils, GNU grep, GNU Binu-
tils, and elftoolchain. Compared to KLEE, DASE increases line coverage, branch
coverage, call coverage by 5.27–22.10%, 5.83–21.25%, 2.81–21.43%, respectively. Addition-
ally, DASE detected 13 previously unknown bugs, 6 of which have been confirmed by the
developers. DASE’s ability in improving code coverage and detecting more bugs clearly
shows the benefits of incorporating high level information from documentation to symbolic
execution.

There are many possible extensions for this work. We can further analyze the usefulness
of options for pruning. We can also extract constraints and models for other types of
formats, e.g., network packages and XML files, to improve test generation for programs
that take these types of input.
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Appendix A

Bug Reports

Table A.1 lists all the bug reports in the bug tracking systems. Bugs are numbered the same
as in Table 6.5. Bug #1 and #2 are pointing to the same report because the developers
fixed the two issues in the same thread. However, they occurred in two distinct source files
and affected two different programs, thus, they are different bugs.
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No Bug Report
1 https://sourceware.org/bugzilla/show_bug.cgi?id=16664

2 https://sourceware.org/bugzilla/show_bug.cgi?id=16664

3 https://sourceware.org/bugzilla/show_bug.cgi?id=16682

4 https://sourceforge.net/p/elftoolchain/tickets/439

5 https://sourceforge.net/p/elftoolchain/tickets/444

6 https://sourceforge.net/p/elftoolchain/tickets/445

7 https://sourceforge.net/p/elftoolchain/tickets/438

8 https://sourceforge.net/p/elftoolchain/tickets/440

9 https://sourceforge.net/p/elftoolchain/tickets/442

10 https://sourceforge.net/p/elftoolchain/tickets/441

11 https://sourceforge.net/p/elftoolchain/tickets/443

12 https://sourceforge.net/p/elftoolchain/tickets/446

13 https://sourceforge.net/p/elftoolchain/tickets/447

14 http://osdir.com/ml/bug-coreutils-gnu/2013-01/msg00137.html

15 https://lists.gnu.org/archive/html/bug-coreutils/2013-01/msg00148.html

Table A.1: Bug reports for all detected bugs.
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