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Abstract 

Process models are always associated with uncertainty, due to either inaccurate model 

structure or inaccurate identification. If left unaccounted for, these uncertainties can 

significantly affect the model-based decision-making. This thesis addresses the 

problem of model-based optimization in the presence of uncertainties, especially due 

to model structure error. The optimal solution from standard optimization techniques 

is often associated with a certain degree of uncertainty and if the model-plant 

mismatch is very significant, this solution may have a significant bias with respect to 

the actual process optimum. Accordingly, in this thesis, we developed new strategies 

to reduce (1) the variability in the optimal solution and (2) the bias between the 

predicted and the true process optima. 

Robust optimization is a well-established methodology where the variability in 

optimization objective is considered explicitly in the cost function, leading to a 

solution that is robust to model uncertainties. However, the reported robust 

formulations have few limitations especially in the context of nonlinear models. The 

standard technique to quantify the effect of model uncertainties is based on the 

linearization of underlying model that may not be valid if the noise in measurements 

is quite high. To address this limitation, uncertainty descriptions based on the Bayes’ 

Theorem are implemented in this work. Since for nonlinear models the resulting 

Bayesian uncertainty may have a non-standard form with no analytical solution, the 

propagation of this uncertainty onto the optimum may become computationally 

challenging using conventional Monte Carlo techniques. To this end, an approach 

based on Polynomial Chaos expansions is developed. It is shown in a simulated case 

study that this approach resulted in drastic reductions in the computational time when 

compared to a standard Monte Carlo sampling technique. The key advantage of PC 

expansions is that they provide analytical expressions for statistical moments even if 

the uncertainty in variables is non-standard. These expansions were also used to 
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speed up the calculation of likelihood function within the Bayesian framework. Here, 

a methodology based on Multi-Resolution analysis is proposed to formulate the PC 

based approximated model with higher accuracy over the parameter space that is most 

likely based on the given measurements. 

For the second objective, i.e. reducing the bias between the predicted and true 

process optima, an iterative optimization algorithm is developed which progressively 

corrects the model for structural error as the algorithm proceeds towards the true 

process optimum. The standard technique is to calibrate the model at some initial 

operating conditions and, then, use this model to search for an optimal solution. Since 

the identification and optimization objectives are solved independently, when there is 

a mismatch between the process and the model, the parameter estimates cannot 

satisfy these two objectives simultaneously. To this end, in the proposed 

methodology, corrections are added to the model in such a way that the updated 

parameter estimates reduce the conflict between the identification and optimization 

objectives. Unlike the standard estimation technique that minimizes only the 

prediction error at a given set of operating conditions, the proposed algorithm also 

includes the differences between the predicted and measured gradients of the 

optimization objective and/or constraints in the estimation. In the initial version of the 

algorithm, the proposed correction is based on the linearization of model outputs. 

Then, in the second part, the correction is extended by using a quadratic 

approximation of the model, which, for the given case study, resulted in much faster 

convergence as compared to the earlier version. 

Finally, the methodologies mentioned above were combined to formulate a robust 

iterative optimization strategy that converges to the true process optimum with 

minimum variability in the search path. One of the major findings of this thesis is that 

the robust optimal solutions based on the Bayesian parametric uncertainty are much 

less conservative than their counterparts based on normally distributed parameters. 
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Chapter 1 

Introduction 

In the face of growing competition, limited resources and strict environmental 

regulations, optimization is an important tool for process industries to maximize their 

production and profits while keeping the use of available resources to the minimum. 

Since the exact relation between performance and the input conditions of a process 

may not be known a priori, the optimization techniques often rely on some 

mathematical representation of the process, also referred to as “process models”. 

However, the successful implementation of model-based optimal solution depends on 

how accurately the model can predict the process behavior over the entire space of 

input conditions. Any inaccuracy in model predictions may result in non-optimal 

operating policies, leading to a significant loss in performance or even the violation of 

constraints. The model development is usually an iterative procedure where as a first 

step the proposed model is calibrated using the measurements at some initial set of 

operating conditions. Then, in the second step, also known as a validation step, the 

prediction accuracy of this model is evaluated at operating conditions different from 

the ones used in the first step. This iterative procedure is repeated until a model with 

required prediction accuracy is obtained. However, in most practical situations, it is 

difficult to measure all the states and the ones that can be measured are often 

associated with significant level of noise. The problem becomes even more critical if 

the cost and duration of the experiments are very high. In this case, the number of 

experiments that can be performed in a given timeframe is limited and may not 

provide sufficient excitation to estimate all the model parameters accurately. As a 

result, one has to compromise for a model that will be accurate only in a limited space 

of input conditions. Since it is practically impossible to come up with an accurate 

model for a nonlinear process, it is very important to investigate the effect of model 

uncertainties on the optimal solutions. If the resulting optimal solution is highly 
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inaccurate and uncertain, the strategies must be implemented to either reduce the 

model uncertainties that affect the optimal solution or search for an optimal solution 

that is robust to these uncertainties. 

In the search for robust optimal solutions, the effect of model uncertainties is 

included explicitly in the optimization objective function. At a given set of operating 

conditions, the model uncertainties are generally quantified in terms of uncertainty in 

the parameter estimates. The standard technique is based on the linearization of 

model outputs around the parameter estimates, which for normally distributed 

measurement errors results in normal distribution for the parameters. Unlike the 

nominal optimization where the objective function is evaluated once for the nominal 

parameter estimates, the robust approach involves the calculation of objective 

function for different realizations of parameter values within the uncertainty region. 

Then, the goal is to minimize a weighted sum of expectation and variance of the 

objective function. 

For highly nonlinear problems, the normal description for parametric uncertainty is 

valid only if the degree of measurement noise is such that the assumption of model 

linearity holds within the uncertain parameter region. If this assumption does not 

hold, the normal distribution may result in conservative optimal solutions. To 

alleviate this limitation, in this thesis it is proposed to implement a more accurate 

description based on the Bayes’ Theorem. However, one of the major challenges in 

its implementation is the computational time involved in propagating non-normal 

uncertainty descriptions. Since, for nonlinear models, these descriptions do not have 

analytical expressions, the conventional approach is to use Monte Carlo sampling 

techniques where the parameter values are selected randomly from their distribution 

and then the corresponding values for the desired output variable are computed. Since 

this procedure requires repetitive simulations of full nonlinear model and considering 

the fact that this propagation step has to be performed a number of times during the 

optimization, this approach may become computationally prohibitive. Although the 
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computational time can be reduced by using some approximation of the model, e.g. 

first-order or second-order Taylor expansion, the question arises whether these 

approximations are valid within the uncertain parameter region. As an alternative, an 

approach based on the Polynomial Chaos (PC) expansions is proposed in this thesis. 

In the PC framework, any random variable with a finite variance can be expanded in 

terms of a set of independent random variables with standard distributions. The first 

term in the expansion is a constant, representing the mean value of the random 

variable whereas the remaining terms capture the random behavior. The most 

attractive property of these expansions is that the basis functions are orthogonal to 

each other and thus any statistical measure such as mean and/or variance can be 

calculated analytically. 

In another class of optimization algorithms, where the aim is to reduce the model 

uncertainties, the standard procedure is to update the model iteratively around new 

optimal operating conditions until a convergence is achieved. This procedure, often 

referred to as “two-step approach”, involves two sequential steps; first, the model is 

updated at previously calculated optimal solution and, in the subsequent step, the 

updated model is re-optimized for the next iteration. In the presence of model 

mismatch, since the model identification and optimization steps are independent of 

each other, it cannot be guaranteed that the above iterative approach will converge to 

a true process optimum. The reason is that when the inaccurate model is calibrated 

over different operating conditions, the parameter estimates have to compensate for 

the unmodelled dynamics. As a result, a unique set of parameter estimates that can 

predict the process behavior accurately over the entire space of operating conditions 

does not exist. It is also possible that, in an attempt to satisfy the identification 

objectives, the change in parameter estimates between two operating conditions can 

be of an extent that the model based optimization no longer proceeds in the direction 

of true process optimum. To address this problem, a class of algorithms has been 

proposed in the past where the optimization problem is corrected by using the 

measured gradients for the optimization objective and/or the constraints as a 
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feedback. However, in these algorithms, these corrections are external to the model, 

i.e. the model is not modified specifically for these corrections. Instead, the model 

parameters are updated using the standard estimation problem and, then, the 

differences between the predicted and measured gradients of the optimization 

objective and/or constraints are added to the respective quantities. In this thesis, an 

alternative approach is presented where the model structure is corrected such that, 

with the updated parameter estimates, the model simultaneously satisfies the 

identification and optimization objectives. In other words, the objective becomes 

identifying the model structure that is accurate around the process optimum. 

1.1 Research Objectives 

Based on the discussion in this chapter, the following three objectives were identified: 

1. To develop a computationally efficient algorithm based on Polynomial Chaos 

expansions to solve a Robust Optimization problem when the parametric 

uncertainty is given by the Bayes’ Theorem 

2. To develop an iterative optimization algorithm to correct the model 

progressively for structural uncertainty with a guaranteed convergence to a 

true process optimum 

3. To investigate and reduce the effect of model uncertainties on convergence of 

the algorithm developed in Step 2, using the tools from Step 1. 

1.2 Organization of thesis 

Overall, this thesis is organized in six chapters as follows: 

After a brief introduction and outlining the research objectives in Chapter 1, 

Chapter 2 reviews the theory and existing literature on different topics relevant to this 
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research. The topics include parameter estimation, uncertainty quantification, 

propagation of uncertainty and optimization in the presence of model uncertainties. 

In Chapter 3, a novel approach based on Polynomial Chaos (PC) expansions is 

developed (1) to quantify the parametric uncertainty using the Bayes’ Theorem and 

(2) to propagate this uncertainty onto the optimization objective. The computational 

efficiency of the overall robust optimization approach is compared with the standard 

Monte Carlo sampling technique. The optimization results are also compared with 

those obtained by normal description of uncertainty. 

In Chapter 4, an iterative optimization framework is developed where the model is 

corrected iteratively for model-plant mismatch as the algorithm progresses towards 

the true process optimum. Upon convergence, the updated model simultaneously 

satisfies the identification and optimization objectives. The corrections to the model 

are based on linearization of model outputs. The conditions for guaranteed 

convergence have also been formalized. A comparative study is presented where the 

algorithm is compared with the standard “two step” approach and a “modifier 

adaptation” algorithm proposed in the literature. 

Chapter 5 presents two modifications to the iterative algorithm, developed in 

Chapter 4, that improve its rate of convergence and robustness towards the modeling 

errors and the measurement noise. In the first modification, a new correction term 

based on quadratic approximation of the model outputs is proposed. In the second 

modification, the measure for robustness is added explicitly to the optimization 

objective and the resulting robust optimization problem is solved as per the procedure 

proposed in chapter 3. The results are compared for both Bayesian and normal 

descriptions of parametric uncertainty. 

Finally, Chapter 6 reviews the key contributions of this thesis and provides the 

directions for future research in this subject. 
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Chapters 3-5 are presented in a manuscript format. The contents of Chapter 3 have 

already been published in the ADCHEM 2012 Special Issue of Journal of Process 

Control (Mandur et al., 2013a). The manuscript in Chapter 4 has been submitted to 

Chemical Engineering Science and is currently under review and Chapter 5 is to be 

submitted in the near future. The parts of these chapters have also been published in 

two refereed conference proceedings and have been presented in oral presentations in 

national/international conferences as follows: 

Refereed Conference Proceedings: 

 Mandur, J. & Budman, H. (2013b). A Robust algorithm for Run-to-run 

Optimization of Batch Processes. In 10th IFAC International Symposium on 

Dynamics and Control of Process Systems, Vol. 10, No. 1, pp. 541-546 

 Mandur, J. & Budman, H. (2012). A Polynomial-Chaos Based Algorithm for 

Robust Optimization in the Presence of Bayesian Uncertainty. In 8th IFAC 

Symposium on Advanced Control of Chemical Processes, Vol. 8, No. 1, pp. 

549-554 

Non-referred Conference Presentations: 

 Mandur, J. & Budman, H. (2013). A Robust algorithm for Run-to-run 

Optimization of Batch Processes. 63rd Canadian Chemical Engineering 

Conference, Fredericton, NB, October 20-23 

 Mandur, J. (2012). A Polynomial-Chaos Based Algorithm for Robust 

Optimization in the Presence of Bayesian Uncertainty. Statistics and Control 

Meeting 2012, McMaster University, May 23-24 

 Mandur, J. & Budman, H. (2012). A Polynomial-Chaos Based Algorithm for 

Robust Optimization in the Presence of Bayesian Uncertainty. 62nd Canadian 

Chemical Engineering Conference, Vancouver, October 14-17  
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Chapter 2 

Literature Review 

This chapter reviews the existing methodologies in the following research areas: (1) 

estimation of parameters and associated parametric uncertainty; (2) propagation of 

uncertainty and (3) optimization in the presence of model uncertainties. Since an 

extensive research has been carried out in all these areas, the work that is specifically 

relevant to the research objectives is reviewed here. 

2.1 Parameter Estimation 

A model of a nonlinear process can be described by a set of ordinary differential 

equations as follows: 

  ̇   (       )     

    ( ) (2.1) 

Where,         is a vector of model states,         is a vector of model parameters, 

        is a vector of process inputs or operating conditions,         is a vector of 

predicted output variables,         is a set of differential equations based on the mass 

and energy balances,        is a mapping between the model states and the predicted 

outputs and    is a vector of uncertainties representing the model-plant mismatch. 

After formulating a model structure, the next task is to estimate the unknown model 

parameters using the measurements from the process. Here, the goal is to search for 

the parameter estimates such that, at any given set of operating conditions, the model 

can predict the measured output variables with a minimum possible error. However, it 

is often the case that only a subset of parameters can be estimated from a given set of 

measurements. The reason is that, most of the time, not all the states can be measured 
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and the ones that are measured are often associated with a significant level of noise. 

As a result, it is very important to identify this subset of parameters before 

implementing any estimation strategy (Vajda et al., 1989). In general, the parameters 

are considered estimable if the derivatives of the output variables with respect to 

these parameters are linearly independent (Beck et al., 1977). The simplest method to 

test for estimability is to plot the evolution of the derivatives as a function of time. If 

the sum of derivatives corresponding to the effect of any two parameters on the same 

output variable is zero for the entire period, the two parameters are considered to be 

perfectly correlated and cannot be estimated simultaneously. The graphical approach 

is suitable only for simpler models with very few parameters. A more generic 

approach is based on an orthogonalization procedure proposed by Yao et al. (2003). 

This method uses the parametric sensitivity matrix, defined as follows: 

   

[
 
 
 
 
 
 
 
 
 
 
 
 
   

   
|
    

 
   

    

|
    

   
    

   
|
    

 
    

    

|
    

   

   
|
    

 
   

    

|
    

   
    

   
|
    

 
    

    

|
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 (2.2) 

Where 
   

   
|
 

 represents the derivative of the i
th

 output variable with respect to j
th

 

parameter at t
th

 time point. 

If there is no correlation between the parameters, it is straightforward to identify a 

set of estimable parameters by simply rearranging the sum of squares in each column 

of Z in a descending order. Then, the parameter corresponding to a column with the 

highest sum of squares is the most identifiable as its overall effect on the outputs is 
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the highest. However, when the parameters have a correlated effect on the outputs, 

this effect has to be adjusted before their ranking. Let    be the column of Z 

corresponding to the most estimable parameter. Then, the orthogonalization 

procedure is as follows (Yao et al., 2003): 

1. Assuming a linear relation between Z and   , solve a linear regression 

problem where the solution is given by a matrix    as follows: 

      (  
   )

    
   (2.3) 

2. Calculate a residual matrix   , given by     . Then, the next most 

estimable parameter corresponds to a column of this residual matrix with the 

highest sum of squares. 

3. Augment    with the column of   corresponding to the most estimable 

parameter, from Step 2 and let this matrix be     . 

4. Resolve a linear regression problem assuming Z as a linear function of       

as follows: 

        (    
     )

      
   (2.4) 

5. Recalculate the residual matrix    and identify the next most estimable 

parameter as outlined in the Step 2. 

The procedure is repeated until the sum of squares corresponding to the next 

estimable parameter in    is below a predefined threshold. 

Once a subset of estimable parameters is obtained, the next step is to formulate an 

objective to obtain maximum agreement between the predicted and measured outputs. 

One of the most commonly used formulations is based on sum of squared errors, also 

referred to as least squares estimation (LSE).   
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If          is a vector of measured output variables, then the parameter estimates 

by LSE are given as: 

  ̃         
 

∑ ‖  ( )   (   )‖ 
 

   
 (2.5) 

Here, the underlying assumption is that the residuals, given by   ( )   (   ̃), 

are normally distributed and are uncorrelated with a constant variance. For a 

correlated and non-constant variance, the objective function has to be modified as 

follows: 

  ̃         
 

∑ (  ( )   (   ))
  

   
   (  ( )   (   )) (2.6) 

Where,   represents the variance-covariance matrix for the residuals 

In this thesis the residuals are assumed to be uncorrelated but have unequal 

variances and in this case, Equation (2.6) reduces to a weighted least squares 

estimation problem. 

Since the measurements are always corrupted with a noise, it is very important to 

quantify the confidence in the above estimates. A standard approach is based on the 

linearization of model outputs around these estimates and then, for normally 

distributed residuals, the covariance matrix for the estimates can be approximated as 

follows (Bard et al., 1974): 

   
   ∑  

      

 

   

 (2.7) 

Further, the (   ) joint confidence region can be approximated as: 

 (   ̃)
 
  

  (   ̃)     

 ( ) (2.8) 
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Here,   represents a Jacobian matrix of measurable states with respect to the 

uncertain parameters and    

  represents the chi-square distribution with    degrees 

of freedom. 

However, these approximations (Equations (2.7)-(2.8)) are only accurate if the 

underlying linear assumption is valid over the uncertain parameter space. For 

nonlinear models, these approximations may result in inaccurate and misleading 

analysis (Watts, 1994). This is also true in the context of model-based optimization 

where the robust optimal solution based on the above parametric uncertainty may be 

inaccurate and/or too conservative. 

To this end, the Bayesian framework provides an accurate and more realistic 

representation of uncertainty as no linear approximation is required. In fact, the 

Bayesian approach provides an integrated framework to estimate both parameters as 

well as their associated uncertainty. Unlike other estimation techniques, it considers 

the model parameters to be random and as a result, the model predictions are also 

random. Then, the aim is to learn the distribution of parameters in terms of their 

ability to predict the given measurements within some predefined error structure. The 

measure of this ability is expressed by a likelihood function that, basically, is a 

conditional probability density function. 

According to the Bayes’ theorem, the distribution of parameters is given by: 

  (   )   (   ) ( ) (2.9) 

Where,  (   ) is the posterior distribution conditional on the given 

measurements  ,  (   ) is the likelihood function and  ( ) is the prior distribution, 

representing any information available prior to collecting the measurements. 

The proportionality constant in the above Equation can be eliminated by 

standardizing the expression as follows: 
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  (   )  
 (   ) ( )

∫  (   ) ( )  
 (2.10) 

For normally distributed errors or residuals, the likelihood function is given by a 

multivariate normal distribution as follows: 

  (   )  
 

(  )         
   ( 

 

 
(    ( ))

 
   (    ( ))) (2.11) 

Since Equation (2.11) requires only the simulated values of the model outputs, it is 

clear that the linearization of the model is no longer required to calculate the 

distribution in parameters. Furthermore, no prior estimate is required as for the case 

where linear approximations are used (Equations (2.7)-(2.8)). With respect to the 

prior distribution  ( ), unlike the conventional estimation where the only 

information that can be provided is in the form of lower and upper bounds, the 

Bayesian framework allows to incorporate more structured information in the form of 

a distribution. This is a key feature that makes the Bayesian approach suitable for 

sequential learning where the posterior distribution based on one set of measurements 

can be used as the prior for the next set. Therefore, as more experiments are 

performed, the posterior distribution can be improved iteratively. 

Although this approach is ideal for nonlinear problems, the main challenge in its 

application is the computational time. When the model is nonlinear in parameters, the 

likelihood function and the corresponding posterior distribution do not have an 

analytical solution. In order to sample from such distribution, one has to rely on 

numerical approximations. The methods based on the Markov Chain Monte Carlo 

(MCMC) are the most promising in sampling from a complex posterior distribution. 

A Markov chain is a sequence of random numbers where the probability of a current 

sample depends only on the last sample (Robert et al., 2004). Then, the idea behind 

MCMC is to construct a Markov chain such that it draws more samples from the 

target distribution as the chain grows. Since, in the beginning, the chain may not be 
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sampling from the desired distribution, the first few samples are usually discarded 

and are referred to as a “burn-in” sequence. Typically, this number is 1%-2% of the 

total number of samples provided enough samples have been generated to obtain an 

accurate estimate of some statistical measure, e.g. expectation (Robert et al., 2004). 

The Metropolis-Hastings (M-H) is the most widely used MCMC sampler where the 

candidate      is, first, drawn from some proposal distribution with 

probability  (       ) and, then, is accepted with a probability  , defined as follows 

(Metropolis et al., 1953, Hastings et al., 1970, Chib et al., 1995): 

       {  
 (    ) (       )

 (  ) (       )
} (2.12) 

Where,   represents the target distribution. In the Bayesian approach,   is given by 

the posterior distribution  (   ) (Equation 2.10) and as a result, the acceptance 

probability can be expressed as follows: 

       

{
 

 
  

 (      ) (    )

∫  (   ) ( )  
   (       )

 (    ) (  )

∫  (   ) ( )  
   (       ) }

 

 
 (2.13) 

If the candidate      is rejected, the chain will remain at its last value   . Clearly, 

if      has a higher probability in the target distribution it will always be selected. 

There are several other sampling strategies to formulate the Markov Chain, e.g. 

Importance Sampler (Tierney et al., 1994), Gibbs Sampler (Gilks et al., 1996) and 

Random-Walk Metropolis (Gustafson et al., 1998). However, comparing these 

techniques is beyond the scope of this discussion. Instead, the key point is that for 

nonlinear models, the Bayesian based distributions are more accurate and in the 

absence of an analytical expression for the posterior, the sampling strategies have to 

be used where the M-H sampler is one of the methods. 
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2.2 Uncertainty Propagation 

Once the description of parametric uncertainty is obtained, the next goal is to 

propagate its effect into the desired output that, in this thesis, is the optimization 

objective function. This effect is usually measured in terms of some statistical 

measure such as a mean and/or variance of the optimization objective. If ϕ is a 

desired objective with probability p(ϕ), the mean E and variance V are given by; 

  ( )  ∫  ( )    (2.14) 

  ( )  ∫(   ( ))
 
  ( )    (2.15) 

2.2.1 Taylor Series Expansion 

The simplest and the most straightforward approach to calculate the above mean and 

variance is based on model linearization where the desired output is expanded using a 

first-order Taylor Series expansion around the parameter estimates as follows: 

      (2.16) 

Where, L is the vector of derivatives, defined as:    
  

   
|
 ̃
 

When there is an analytical expression for parametric uncertainty, as is the case in 

standard linearization approach (Equation (2.7)-(2.8)), the above linear approximation 

(Equation 2.16) also results in an analytical expression for p(ϕ) as follows: 

  ( )  
 

  
   

√  
   ( (   ̃)

 
   ⁄ ) (2.17) 
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Where,  ̃ is the mean value corresponding to the nominal parameter estimates  ̃ 

and    is the variance given by:  

        
  (2.18) 

Since the mean and variance have analytical expressions, this approach could be a 

reasonable choice for the robust optimization problem. However, as mentioned in the 

previous sub-section, the above parametric uncertainty is only valid if the level of 

measurement noise and disturbances is such that the underlying linear assumption is 

valid over the uncertain parameter space. This problem could be addressed by using 

an uncertainty description based on the Bayesian approach (Equation 2.10). However, 

since for nonlinear models the posterior distribution does not have an analytical form, 

it is no longer possible to obtain analytical expressions for any statistical measure of 

the output (e.g. Equations (2.14)-(2.15)). 

Another major limitation is related to the linearization of desired output (Equation 

2.16). If the optimization objective is nonlinear in parameters, this approach will 

provide inaccurate estimates for statistical measures irrespective of the description for 

parametric uncertainty. Accordingly, the robust optimal solution will also be 

inaccurate. 

To summarize, if the assumption of linearity is valid in both steps, i.e. (1) the 

estimation of uncertainty using Equations (2.7)-(2.8) and (2) the approximation of 

optimization objective using Equation (2.16), the first-order Taylor series approach 

will provide a good approximation with the least computational efforts. 
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2.2.2 Monte Carlo based Uncertainty Analysis 

For nonlinear models, a more generic approach is to use Monte Carlo simulations. In 

the standard MC approach, a large number of parameters are randomly sampled from 

their joint distribution and then, for each one of these sampled parameter values, the 

desired output is calculated by simulating the full nonlinear model. The estimates for 

the mean and variance in Equations (2.14)-(2.15) are approximated using Monte 

Carlo integration as follows: 

  ( )  
 

 
∑  

 

   

 (2.19) 

  ( )  
 

 
∑(    ( ))

 
 

   

 (2.20) 

According to the law of large numbers, the accuracy of these estimates depends on 

the number of samples, N. This is one of the major bottlenecks in the implementation 

of this approach within a robust optimization framework. Since the optimization 

search requires the calculation of the above metrics in each function evaluation, the 

overall calculations can become computationally prohibitive. Moreover, when the 

distribution has long tails, sampling from low probability regions becomes even more 

challenging and if the parameter values within these tails have significant effect on 

the output variable, ignoring these regions may result in inaccurate solutions.  

Although there are sampling techniques that are more efficient and can improve the 

above estimates, the number of samples is still very high thus limiting their use in the 

optimization. Perhaps a very high computational demand is one of the reasons that, 

despite its many advantages, the Bayesian distributions have not received significant 

attention in the area of optimization. Here, one possibility would be to use higher 

order approximations of the model, e.g. second-order Taylor series expansions, but 

the question remains whether these approximations are valid over the uncertain 
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parameter space. Another alternative is to use Polynomial Chaos (or PC) expansions 

and is reviewed next. 

2.2.3 Polynomial Chaos Expansions 

In a PC expansion, the underlying idea is to project a given random variable on a 

space of independent random variables, defined by one of the standard distributions. 

Let us define {  ( )}   
  as a set of independent random variables with some 

probability P. Then, if X is a random variable on the same probability space and has a 

finite variance, it can be expanded in terms of {  ( )}   
  as follows: 

 

 ( )       ∑      (   )

 

    

 ∑ ∑        (       )

  

    

 

    

 ∑ ∑ ∑          (           )

  

    

  

    

 

    

   

(2.21) 

Where,    is a Polynomial Chaos of order p,    is a random event and  ( ) is a 

deterministic constant. A more compact representation is as follows: 

  ( )  ∑  ̂   (       )

 

   

 (2.22) 

Where, there is a one-to-one correspondence between the functionals and the 

coefficients of (2.21) and (2.22). 

The key property of these expansions is that all basis functions {   }   
  are 

orthogonal to each other or in other words; 

 〈    〉  ∫  ( )  ( ) ( )      〈  
 〉 (2.23) 
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Based on this property of basis functions, the coefficients  ̂  can be calculated 

using Galerkin projection as follows: 

  ̂  
〈    〉

〈  
 〉

 
∫      ( )   

∫  
   ( )    

 (2.24) 

In the pioneering work of Ghanem et al. (1991), the independent random variables 

were considered to be normally distributed and, therefore, the corresponding basis 

functions were Hermite Polynomials. When X is a normally distributed random 

variable, the expansion requires only the first two terms where the coefficient of the 

first term will represent the mean of X and the second coefficient will represent the 

variance. On the other hand, if the X has a different distribution, the expansion will 

need several higher orders terms depending on the random behavior. In general, these 

expansions, also termed as Hermite-Chaos, can be used to represent both the 

Gaussian and the non-Gaussian random variables. In a subsequent study by Xiu et al. 

(2002), the authors illustrated that a PC expansion will have an optimal rate of 

convergence if the independent random variables also belong to the same family of 

distributions as the random variable X. Accordingly, the authors generalized these 

expansions by proposing a broader class of orthogonal polynomials from the Askey 

Scheme. If the X belongs to any standard random variable in this scheme, the 

corresponding orthogonal polynomials can be used to formulate the expansion with 

minimum number of terms. In case there is no exact match in the scheme, the 

polynomials from the closest family can be used. 

Over the past two decades, the PC expansions have been applied extensively in the 

area of computational fluid dynamics (Najm, 2009; Knio et al. 2006), structural 

mechanics (Hosder et al., 2006; Ghanem et al., 1991; Ghanem, 1998a, 1998b; 

Ghanem et al., 1998) and applied mathematics (Xiu et al., 2002b; Xiu et al., 2005; 

Xiu, 2007). Recently, these expansions have also been introduced in the area of 

optimal control (Nagy et al., 2007). 
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For PC-based uncertainty propagation, the idea is to expand both the uncertain 

parameters and the resulting uncertain output in terms of the same set of independent 

random variables. The first step is to expand the parameters. If the parameters have 

standard distribution, e.g. normal as obtained by the linearization approach 

(Equations (2.7)-(2.8)), they can be expanded in terms of normally distributed 

independent variables without any further computation as the first coefficient will be 

the mean and the second coefficient will be the variance of parameters. However, if 

the parameters conform to some non-standard distribution, a mapping between the 

parameters and the independent random variables is required, which can be obtained 

by transforming both variables to a uniformly distributed probability space (Xiu et al., 

2002b) as follows; 

   ∫  (  )  
 

 

 ∫  (  )  
 

 

 (2.25) 

Once this map is available, the coefficients of the expansion can be calculated using 

Equation (2.24). 

The next step is to expand the desired output with respect to the independent 

random variables used in the previous step. In literature, there are two methodologies 

for this task referred to as intrusive and non-intrusive. In the intrusive approach (Xiu 

et al., 2002a, 2003; Najm et al., 2009), the governing equations are modified by 

replacing the parameters and the desired output by their PC expansions. Then, using 

Galerkin projections, these equations are converted into a set of equations for each 

coefficient of PC expansion of the output. Let us consider the following example (Xiu 

et al., 2003): 

 
  

  
     (2.26) 

Where,   is uncertain with some distribution.  
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Then, the task is to propagate the uncertainty in   onto the  . Since both   and   

are random variables, they can be expanded as follows: 

   ∑  ̂   (  )

 

   

 (2.27) 

   ∑ ̂   (  )

 

   

 (2.28) 

Then, the first step in the intrusive approach is to substitute these expansions in the 

governing equation (Equation (2.26)) as follows: 

 ∑
  ̂ 

  
  (  )

 

   

  ∑∑ ̂  ̂   (  )

 

   

  (  )

 

   

 (2.29) 

The next step is to perform Galerkin projections onto each basis function: 

 

〈(∑
  ̂ 

  
  (  )

 

   

)    (  )〉    

 〈 (∑∑ ̂  ̂   (  )

 

   

  (  )

 

   

)    (  )〉 

(2.30) 

Since 〈  (  )   (  )〉    for    , the LHS in the above expression reduces to 

a single term corresponding to the basis function   (  ) and by repeating this 

operation for          , the above expression is converted into a set of 

differential equations for coefficients  ̂  as follows: 

  ̇   
 

〈  (  ) 〉
∑∑ ̂  ̂ 

 

   

〈  (  )  (  )  (  )〉

 

   

 (2.31) 
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The major challenge in the above approach is whether the governing equations can 

be modified for applying the Galerkin projections, which may not be possible for 

complex nonlinear models. As an alternative, in the non-intrusive approach, the 

model is used as a black box to generate a mapping between the desired output and 

the set of independent random variables and, then, the coefficients of the expansion 

are calculated using Equation (2.24) (Hosder et al., 2006; Xiu, 2007; Xiu et al., 2005). 

To summarize the procedure: 

1. Obtain the values of independent random variables corresponding to a 

quadrature rule to be used for calculating the integrals in Equation (2.24). 

2. Calculate the corresponding values of the parameter from its PC expansion 

(Equation (2.27)). 

3. Solve the model equation (Equation 2.26) to calculate the output for each 

realization of parameter values. 

4. Use the set of independent random variables from Step 1 and the outputs 

from Step 3 and calculate the coefficients of PC expansion for the output 

using Equation (2.24). 

Since there is no restriction on the type of governing equations, this approach can 

be applied to a wide range of applications. However, it is quite clear that the accuracy 

of the coefficients depends on the quadrature rule used in the numerical integrations 

(Equation (2.24)) and this has been one of the key areas of research in this class of 

algorithms. In one of the earlier methods (Tatang et al., 1997 and Pan et al., 1997), 

the selection of collocations points was based on the roots of orthogonal polynomials 

with a degree higher than the corresponding basis functions. This approach was later 

refined by Isukapalli et al. (1999) where the authors improved the selection of 

collocation points, especially in the regions where the independent random variables 

have higher probability of occurrence. When it comes to multidimensional integrals, 
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the standard approach of taking a full tensor product of one-dimensional quadrature 

rule may become computational prohibitive. The reason is that the number of 

collocation points in the tensor rule grows exponentially with the dimensions. To this 

end, an alternative approach, often implemented in non-intrusive literature, is to use 

sparse grids as originally proposed by Smolyak in 1963. It has been shown that the 

collocation points based on the sparse grid quadrature rules have weak dependency on 

the number of dimensions, thus making them suitable for large multidimensional 

integrals. 

Besides the selection of collocation points, the nonlinearity of the integrand is also 

a major factor. The standard quadrature rules assume the integrand to be a smooth 

function. However, when there is a bifurcation or discontinuity in this function, these 

methods fail to give accurate estimates for the coefficients. This problem can be 

addressed by formulating multi-element PC representations (Le Maitre et al., 2004a, 

2004b, 2007; Wan et al., 2005) where the space of random variables is divided into 

sub-regions in which the integrand is relatively smoother and these regions are then 

approximated by individual PC expansions. The procedure is repeated until no further 

divisions are required. 

The most important property that makes the PC expansions especially suitable for 

repetitive calculations is that, irrespective of uncertainty descriptions, the mean and 

variance can be calculated analytically as follows: 

  ( )   ̂  (2.32) 

  ( )  ∑  ̂ 〈  
 〉

 

   

 (2.33) 

This is clearly a significant advantage as compared to the both Taylor expansions 

and Monte Carlo methods, discussed in the previous sub-sections. The first-order 

Taylor series expansion can give the analytical expressions only if model is linear 
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whereas for Monte Carlo methods, there are no analytical expressions. It is worth 

noticing that the PC approximations are accurate over the uncertain space and 

therefore, they can be applied to any nonlinear problem efficiently. 

Another area where the PC expansions have seen a major application is Bayesian 

Inference (Marzouk et al., 2007; Ma et al., 2009 & Balakrishnan et al., 2003). Here, 

the basic idea is to propagate the prior uncertainty in parameters onto the model 

outputs. Then, by using the PC expansions instead of full model, the computation of 

the likelihood function becomes much faster, speeding up the overall sampling 

significantly. In the studies reported so far, the expansions are formulated over the 

entire parameter space defined by the prior uncertainty. When the model is highly 

nonlinear, this requires a large number of collocation points to estimate the 

coefficients accurately. It is quite possible that, in the posterior distribution, only a 

part of this parameter space has higher probability and therefore, any accuracy in the 

approximation outside this partial region is of lesser importance. In fact, if the 

information about the posterior distribution can be used in formulating the 

approximation, the collocation points can be relocated to the parameter regions of 

higher posterior probability. To this end, a novel adaptive approach is presented in 

this thesis and will be discussed in Chapter 3. 

2.3 Optimization under Uncertainty 

When a process is optimized with an uncertain model, it is quite possible that the 

predicted optimal solution may have a significant variability and, in a worst-case 

scenario, there could be a significant bias between the predicted and the actual 

process optimum. In such scenario, one must implement appropriate strategies to 

improve the accuracy of the model-based optimal solution. 

One of the strategies is robust optimization where the goal is to search for optimal 

solutions where the effect of model uncertainties is the minimum (Beyer et al., 2007; 
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Samsatli et al., 1998; Diwekar et al, 1996; Srinivasan et al., 2003; Nagy et al., 2004). 

In a standard optimization, also referred to as “nominal optimization”, the objective 

function is calculated using the nominal parameter values that are already uncertain. 

Instead, in the robust optimization, the objective function is calculated over the entire 

uncertain parameter space and then, some combination of statistical measures is 

minimized. The most common cost function is a weighted sum of expectation and 

variance, to provide a trade-off between the maximum performance and the 

robustness. If there are any constraints to be considered, they can be formulated either 

as the worst-case or in a probabilistic sense where one can define a probability for a 

constraint violation. Either way, the feasibility can be guaranteed at-least within the 

measured uncertainty. The major limitations in this class of algorithms are related to 

the uncertainty quantification and propagation steps, as reviewed in the previous sub-

sections. In this thesis, these limitations are addressed by using a PC based 

methodology to propagate the Bayesian description of parametric uncertainty. 

Although the robust approach can result in an optimal solution with a minimum 

variability, this solution could be very conservative if the model uncertainties are 

quite significant. It is worth mentioning here that the robust approach does not 

attempt to reduce the bias between the predicted and actual process optimum, for 

which case an iterative approach has to be adopted. However, a robust approach can 

be combined with iterative algorithms for minimizing the bias as well as increasing 

the robustness of the solution (Zhang et al., 2002). 

When new measurements can be obtained, they can be used to formulate an 

iterative procedure where it is expected that, by continuously updating and re-

optimizing the model, it might be possible to eliminate the bias between the predicted 

and the actual process optimum. When the model is updated as soon as the 

measurements are collected, the approach falls within the category of real-time 

optimization (RTO) and it is widely implemented in the industry as a supervisory 

control layer. In a batch process, the update step can be carried out at the end of 
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batch, in which case the approach is often referred to as “run-to-run” optimization. 

However, in both applications, the standard approach is the same whereby in the first 

step, the model parameters are estimated using new measurements at previously 

calculated optimal solution and then, the updated model is optimized for the next 

iteration (Ruppen et al., 1998; Chen et al., 1987; Marlin et al., 1997; Astrom, 1970). 

This two-step procedure is repeated until the algorithm converges. Mathematically, 

these steps can be expressed as follows: 

          
 

 (    )  

            
 

 (    ) (P.2.1) 

Where,  and   are the objective functions corresponding to the parameter 

estimation and optimization problems respectively and    is the iteration number. 

In this approach, the convergence to a process optimum can be guaranteed if; (1) 

the optimal solutions during the iterative search provide sufficient excitation and (2) 

there is no model-plant mismatch. The first requirement for the convergence can be 

addressed by incorporating an optimal design of experiments’ criterion within the 

optimization objective. In this way, it is possible to obtain a trade-off between the 

optimal conditions and the operating conditions that provide sufficient excitation for 

the next identification. However, this topic is beyond the scope of this thesis and will 

not be discussed further. 

Regarding the second requirement for the convergence, model-plant mismatch is 

inevitable in almost all practical situations and addressing this mismatch is a major 

objective in this thesis. When the model has inaccurate structure, there is a lack of 

synergy between the identification and optimization objectives. The reason is that the 

parameters that minimize the prediction error at a given operating conditions may not 

minimize the error in neighboring conditions. As a result, the model may predict the 

gradients of the optimization objective inaccurately. 
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In model identification, a given model is said to be adequate if it is possible to 

estimate the model parameters that can predict the available measurements with a 

minimum possible error. Similarly, for a combined identification and optimization 

problem, the model is considered adequate if there is a set of parameter estimates that 

can satisfy both identification and optimization objectives at the process optimum. In 

the context of real-time optimization (RTO), Forbes et al., (1994, 1996) proposed a 

following test for Model Adequacy: 

If    is the unique process optimum and there exists at least one set of parameter 

values  ̂ for which; 

    (   ̂)|
     (2.34a) 

    (   ̂)|
     (2.34b) 

   
  (   ̂)|

                        (2.34c) 

   
  (   ̂)|

                        (2.34d) 

Then, the model is adequate.  

Now, if the given model is inadequate, the optimization strategies have to be 

modified such that the model-based optimization search will be forced to proceed 

towards the process optimum. For convergence to a process optimum, it is necessary 

that the predicted optimality conditions, also known as Karush-Kuhn-Tucker or KKT 

conditions, should match the ones measured from the process (Beigler et al., 1985). In 

one of their earlier studies, Robert et al. (1979) introduced an integrated approach 

where the optimization objective was augmented with an additional term that cancels 

out the differences between the predicted and measured gradients of the optimization 

objectives for the current iteration. The augmented objective function in this approach 

is as follows: 
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 (      )    
    

With,  

    [        ]   (     ) (P.2.2) 

Where,      and      are the gradients of measured and predicted outputs 

respectively. In this approach, the correction was introduced only in the objective 

function. Since then, there have been several extensions to this idea, involving 

different ways in which modifications can be implemented, to address a wide range of 

problems (Tatjewski et al., 2002; Gao et al., 2005; Chachuat et al., 2009; Marchetti et 

al., 2009 and Costello et al., 2011). These extensions also differ in a way the model 

update step is implemented. For example, while Robert et al. (1979) always updated 

the model parameters to satisfy the identification objectives, Tatjewski et al. (2002) 

and Gao et al., (2005) replaced the parameter estimation step by a linear correction to 

the outputs that accounts for the prediction error. Later on, in the studies by Chachuat 

et al., 2009; Marchetti et al., 2009 and Costello et al., 2011, the authors eliminated the 

model update step altogether. These latter studies argued that, since the convergence 

to a process optimum depends only on the ability of a model to predict the gradients 

of the optimization problem accurately, eliminating the model update step has no 

effect on the convergence. However, following the elimination of this step, the model 

can no longer be used for predictions around the optimum and this may have a 

significant importance in many practical applications. It should also be noted, here, 

that the corrections in the optimization problem have to be filtered in order to ensure 

the convergence to a unique solution. Without enough filtering, the corrections are 

often too aggressive and may result in oscillatory convergence. 

Another key point in these algorithms is that the corrections are external to the 

model. In other words, the model parameters are never updated with respect to the 

measured gradients of the optimization problem. Even when the parameters are 

updated in some algorithms, the update is with respect to the prediction error. In this 
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thesis, a novel approach is developed where the goal is to correct the model for its 

structural uncertainty in a way that, upon convergence, it satisfies both identification 

and optimization objectives. In other words, the final corrected model should satisfy 

the adequacy conditions in Equations ((2.34a)-(2.34d)) It is also shown that the 

proposed approach eliminates the need for an external filter as the corrected model 

itself provides for much improved filtering properties. 
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Chapter 3 

Robust Optimization of Chemical Processes 

using Bayesian description of parametric 

uncertainty
1
 

(Published in Journal of Process Control) 

3.1 Introduction 

Model-based optimization methodologies rely primarily on the accuracy of the model 

used to predict outputs over the entire space of operating conditions. Any uncertainty 

in the model, if not accounted for, may result in non-optimal operating policies which 

may lead to significant loss in the economic objectives or even violations of 

environmental and safety constraints. Due to either noise in measurements or model 

structure error, the model parameters are always uncertain. In that case, it becomes 

very important to quantify the effect of the associated parametric uncertainty on the 

optimization objectives and if this effect is significant, it is necessary to either reduce 

the uncertainty in parameters by changing the model structure or obtaining additional 

data, or to search for an optimum that is robust to these uncertainties. 

The current study considers the problem of finding an optimal solution that is 

robust to parametric uncertainties assuming that additional data, beyond a limited 

initially available set, are either very difficult to obtain or not available to further 

reduce the uncertainty. Although the optimization problem considered in this study is 

off-line, the proposed methodology can also be applied to online optimization 

problems where, as new measurements become available, the re-estimation of 

uncertainty description and/or re-estimation of the robust optimal solution is required 

                                                      
1
 Adapted from Mandur et al., 2013a (License Number: 3370961239953) 
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such as Robust Real-time Optimization and Robust Nonlinear Model Predictive 

Control. 

In contrast to nominal optimization, where the objective function calculated at the 

nominal values of parameters is minimized, in robust optimization some statistical 

metrics of the objective function calculated over the uncertain parameter space is 

minimized instead (Diwekar et al., 1996; Samsatli et al., 1998; Nagy et al., 2004; 

Beyer et al., 2007). A typical robust optimization formulation involves the 

minimization of a weighted sum of both the expected value of the cost and its 

variance due to uncertainty, thus providing a trade-off between maximum 

performance and robustness as follows: 

    
 

             ( (     ))        ( (     ))  

               (     )    (3.1) 

Where,   is a vector of uncertain model parameters,   is a vector of decision 

variables,   is a vector of states,   is an objective function,   is a vector of equalities 

or inequalities which includes the model equations and additional process limits,   is 

the expected value of the objective function  ,     is the variability in the objective 

function   and    and    are weights that are problem specific. 

The calculation of any statistical metrics to be performed in the robust optimization 

framework, involves integrals related to the calculation of the functions   and     in 

Equation (3.1) which generally do not have analytical solutions. The most common 

approach is to approximate the objective function   in Equation (3.1) by either a first 

order or second order Taylor Series Expansion around the nominal parameter values 

(Nagy et al., 2004; Darlington et al., 1999). Although these approximations work well 

when the uncertainty in the parameters is not too large and the objective function is 

nearly linear or quadratic, for most nonlinear processes, these assumptions are not 

valid. For general nonlinear cases, an alternative is to use a Monte Carlo approach 
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where the parameter values are randomly selected from the joint probability 

distribution and then the corresponding objective function is calculated (Diwekar et 

al, 1996; Beyer et al., 2007). However, in this approach, a large number of samples 

are required for obtaining an accurate estimate of the above integrals. Thus, when 

using Monte Carlo techniques, the need for extensive sampling combined with the 

fact that the cost function in Equation (3.1) has to be computed at each function 

evaluation during an iterative search for an optimum, results in a large computational 

burden. 

In recent years, uncertainty propagation using Polynomial Chaos (PC) expansions 

has been studied by several authors from different areas (Najm, 2009; Knio et al., 

2006; Nagy et al., 2007; Xiu et al., 2002, 2003; Ghanem et al., 1991) and has been 

shown to be much more efficient and accurate when compared to Monte Carlo 

sampling approaches. The two major advantages of the PC expansions are that they 

can be used to propagate any complex probability distribution into the desired output 

and that the mean, variance and any other higher order moments can be calculated 

analytically. Although few studies have also implemented the PC expansions within 

the robust optimization framework (Molina-Cristobal et al., 2006; Xiong et al., 2011), 

in these studies, very simplistic descriptions of uncertainty, e.g. normal or exponential 

distributions, were used. However, for nonlinear processes, such descriptions often 

fail to provide accurate results. Instead, in this work, we considered more accurate 

description of the uncertainty by using the Bayes' Theorem which gives a probability 

distribution instead of a point estimate. A preliminary description of the proposed 

approach was recently presented by the authors in Mandur et al. (2012). In the 

Bayesian approach, the posterior distribution of the parameters is proportional to a 

likelihood which is a function of the errors between the measurements and the model 

predictions and a prior probability which represents any information about the 

parameters available prior to collecting the data. The calculation of the likelihood 

function is generally a major time consuming step because it requires multiple 

simulations of the nonlinear dynamic model. Thus, the use of some reduced form or 
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an approximation of the process models can result in significant reduction of the 

computational time (Balakrishnan et al., 2003; Marzouk et al., 2007). In the previous 

studies, the approximations based on PC expansions were proposed that describe the 

model over the entire uncertain parameter space. The number of polynomials in these 

expansions depends on the degree of non-linearity of the model with respect to 

parameters. However, in the parameter space, there could be some regions where the 

degree of nonlinearity is relatively less and as a result, lower order polynomials can 

be used in these regions. In addition, there can also be some regions where the 

posterior probability of the parameters is low and in such regions, there is no need to 

achieve higher degree of accuracy in the approximation. Motivated by these two 

scenarios, in this work an adaptive approach based on multi-resolution analysis 

(MRA) is proposed which progressively decomposes the parameter space into sub-

regions, where the change in posterior probability is above a pre-specified threshold 

value. The proposed approach results in more model runs in the parameter region 

with relatively higher posterior probability. After obtaining the posterior probability 

of the parameters, an approach based on PC expansions is used to propagate this 

uncertainty into the objective function of the optimization problem (Mandur et al., 

2012). The results are compared with those obtained when a normal representation of 

uncertainty is used. 

The rest of the chapter is organized as follows. Section 3.2 presents the background 

and the overall methodology. Section 3.3 illustrates the proposed methodology for a 

penicillin manufacturing process followed by Section 3.4 with summary and 

conclusions. 
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3.2 Background and methodology 

In this section, we will begin with a brief description of the mathematical tools used 

in the methodology. 

3.2.1 Polynomial Chaos Expansions 

Consider a probability space defined by (     ), where   is the sample space,   is 

the  -algebra over   and   is a probability measure on  . If {  ( )}   
  is a set of 

independent random variables with probability measure  , then any random variable 

X with a finite variance can be expanded as follows: 

 

 ( )       ∑      (   )

 

    

 ∑ ∑        (       )

  

    

 

    

 ∑ ∑ ∑          (           )

  

    

  

    

 

    

   

(3.2) 

Where,    is the PC of order   (Ghanem et al., 1991; Xiu et al., 2002),   is the 

random event and  ( ) is the deterministic coefficient. The above expansion can 

further be re-written in a simpler form (Ghanem et al., 1991) as: 

  ( )  ∑  ̂   (       )

 

   

 (3.3) 

Where, there is a one-to-one correspondence between the functions and the 

coefficients of the above two representations (Equation (3.2)-(3.3)). For 

computational feasibility, the expansion is considered in a truncated form as follows: 

  ( )  ∑  ̂   (          )

 

   

 (3.4) 
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Where,   is the total number of independent random variables and   is the total 

number of terms in the expansion and is given by: 

     
(   ) 

    
 (3.5) 

An underlying property of a PC expansion is that all basis functions are orthogonal 

to each other with respect to the probability distribution of independent random 

variables,   and accordingly the following applies: 

 〈    〉  ∫  ( )  ( ) ( )      〈  
 〉 (3.6) 

Where, 〈 〉 is the inner product operator. To satisfy Equation (3.6), different 

distributions of independent random variables require different orthogonal basis 

functions. For example, Hermite polynomials are the basis functions for normal 

random variables, Legendre polynomials for uniform random variables, Laguerre 

polynomials for gamma random variables and so on (Xiu et al., 2002).  

Orthogonality of the basis functions can be used to calculate the     coefficient by 

projecting the expansion onto the corresponding basis function as follows: 

  ̂  
〈    〉

〈  
 〉

 
∫      ( )   

∫  
   ( )    

 (3.7) 

The integrals in Equation (3.7) can then be calculated using quadrature rules. 

3.2.2 Bayesian framework 

In the Bayesian framework, the model parameters and hence the model outputs are 

both considered as random variables. Given a set of measurements, the Bayes’ 

Theorem defines the posterior probability of the parameters as follows: 
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  (   )  
 (   )  ( )

∫  (   )  ( )  
 (3.8) 

Where,   represents the set of measurements,  ( ) is the likelihood of parameters 

given the measurements and  ( ) is the prior probability of parameters, representing 

any information about the parameters available a priori. In this work, the errors 

between predictions and measurements are assumed to be independent and normally 

distributed with zero mean and finite variance. As a result, the likelihood function is 

given by a k-dimensional multivariate normal distribution as follows: 

 

 

 (   )  
 

(  )         
   ( 

 

 
(   ( ))

 
   (  ( ))) (3.9) 

Where,   and   are the vectors of model predictions and corresponding 

measurements respectively and   is the covariance matrix. 

In calculating the posterior distribution or any integral over it, the major 

computational time is spent in the calculation of likelihood function which requires 

repeated simulations of the nonlinear dynamic model for different values of the 

uncertain parameters. Accordingly, this calculation can be improved significantly if 

an approximation of the nonlinear model is available which can provide a quick 

calculation of outputs’ predictions as a function of parameters’ values. In this work, 

an adaptive approach based on multi-resolution analysis (MRA) is proposed that 

progressively refines the approximation of the model in high probability regions of 

the parameter space. The level of successive refinements depends on the nonlinearity 

of the model with respect to parameters. 
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3.2.2.1 Multi-resolution analysis 

Let   
   be the subspace of polynomials   ( )     ( )             . Then, 

a subspace   
  , where the set of polynomials is obtained by translation and dilation 

of the polynomials in   
    can be defined as follows: 

 
  

   {    
 ( )       

 ( )    (     )              

            } 
(3.10) 

Based on the above definitions, a multi-resolution approximation for any function 

    ( ) is given by the sequence of subspaces   
              satisfying the 

following properties: 

   
     

       
      

 ⋃   
  

   
 is dense in   ( ) (3.11) 

 ⋂  
  

   

 { }  

Accordingly, at a particular resolution level  , any function can be approximated as 

follows: 

   ( )  ∑ ∑          
 ( )

  

   

    

   

 (3.12) 

We consider orthonormal Legendre Polynomials, rescaled over [   ], as a set of 

basis functions for   
   with the restriction that the polynomials vanish outside [   ]. 

Therefore, the polynomials in successive subspaces     
 ( ) are defined only in the 

interval [        (   )]. Since due to orthonormality of   ( ); 
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 〈    
        

  
〉                 (3.13) 

The coefficients of the expansion (Equation (3.12)) can then be calculated by 

projection as follows: 

      〈       
 〉   (3.14) 

It should also be noted that a particular polynomial     
 ( ) approximate the 

function only in [        (   )] and at the subsequent higher resolution    , this 

region decomposes into two halves where each half can be then approximated by 

appropriate polynomials from     
  . Thus, in different regions of the parameter space, 

a function can be approximated by polynomials from different subspaces depending 

on the accuracy required in that region. Based on the above, an iterative procedure is 

proposed to refine the approximation only in the parameter regions where the change 

in posterior probability between the successive approximations is above some pre-

specified threshold. 

The comparison of the probability distribution from two successive approximations 

is based on the Kullback-Leibler (K-L) divergence (Cover et al., 1991), given by: 

 

  (         )  ∫    (   )    (
    (   )

  (   )
)    (3.15) 

 

 ∫  
    (   )  ( )

∫     (   )  ( )  
   

(

 
 

    (   )

∫     (   )  ( )  

  (   ) 

∫   (   )  ( )  )

     

(3.16) 
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The iterative procedure to approximate the nonlinear dynamic model is as follows: 

1. Transform the uncertain model parameters, based on prior probability 

distribution, into uniformly distributed random variables defined over the 

interval [   ]. 

2. Obtain two separate approximations of the model outputs as a function of 

transformed random variables first using the basis functions from 

subspace   
   and then from subspace   

  . The first approximation is 

basically a polynomial chaos representation, where the approximation is 

over the entire parameter space. The second approximation is more refined 

as it approximates the sub-regions of parameter space separately using 

locally supported basis functions. 

3. Calculate the posterior distribution using both the approximations and 

compare them using K-L divergence in sub-regions defined by   
   

subspace. Since the polynomial approximations are used to calculate the 

likelihood, the required expression in Equation (3.17) is calculated very 

quickly. 

4. Approximate the sub-regions where the difference is above a specified 

threshold using the basis functions from subspace   
  . 

5. Repeat step 3 and 4 until the difference between the posterior distributions 

from last two successive approximations is less than the pre-specified 

threshold. 

3.2.3 Uncertainty Propagation using PC expansions 

Once the posterior distribution of the parameters   is obtained, the next step is to 

propagate this uncertainty into the objective function  . In the PC framework, the 
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simplest approach would be to formulate a PC expansion directly relating the 

objective function to the parameters. Here, the first step would be to obtain a map 

between the parameters and the corresponding objective function by solving the 

model for different realizations of parameters. Then using this map and Equation 

(3.7), the coefficients for different basis functions, to be used in the expansion, could 

be calculated. However, this approach would require the parameters to be 

independent and to have a probability distribution corresponding to the orthogonal 

basis functions being used. However the parameters may not meet these conditions, 

as in this work. In that case, appropriate transformations must be carried out and the 

PC expansion for the objective function is then formulated in terms of transformed 

random variables as follows. 

For the one parameter case, the transformation is as follows: 

      (∫  (   )  
 

 

) (3.18) 

Where,     is the inverse cumulative density function for the independent random 

variable   and  (   ) is the posterior probability of the model parameter   calculated 

by Equation (3.8). 

For more than one parameter, if the parameters are uncorrelated, the 

transformations are straightforward where each model parameter can be transformed 

into a separate independent random variable according to Equation (3.18). However, 

for the case of correlated parameters which is generally the case for model parameters 

within a system of coupled differential equations, the transformation based on 

marginal and conditional probabilities can be used. For example, for two correlated 

parameters, the transformations are as follows: 
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  (∫  (    )   

  

 

) (3.19) 

      
  (∫  (       )    

  

 

) (3.20) 

Where,  (    ) is the marginal posterior probability of parameter    and 

 (       ) is the posterior probability of parameter    conditional on parameter   . 

Once the transformation of parameters θ into a set of independent random variables 

  is obtained, the next step is to obtain a map between the objective function   in 

Equation (3.1) and the set of independent random variables  . A straightforward 

method is to select values for parameters θ and then calculate for them, the 

corresponding objective function   by solving the model equations and the values for 

a set of independent random variables   using the transformations in Equations 

((3.18)-(3.20)). However, this method may result in the values of   that may not be 

the same as required to solve the integrals in Equation (3.7) using quadrature rules. 

To alleviate this problem, a more appropriate approach is to first formulate a PC 

expansion of the parameters θ as a function of the variables   using transformations 

Equations ((3.18)-(3.20)); then, select values of independent random variables   at the 

required collocation points, calculate the corresponding values of model parameters θ 

from the formulated PC expansions and finally, calculate the corresponding objective 

function   by solving the nonlinear dynamic model equations for each model 

parameter value. 

For one parameter case, the PC formulation is straightforward where the 

coefficients can be calculated by Equation (3.7) using the map between model 

parameter   and independent random variable  , obtained from Equation (3.18). The 

resulted PC expansion is as follows: 
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   ∑    ( )

 

 

 (3.21) 

For the case of two parameters, first the mapping between the model parameter 

  and the corresponding independent random variable   , given by Equation (3.19) is 

used to formulate the PC expansion for    as follows: 

    ∑   
  (  )

 

 

 (3.22) 

Similarly, the mapping given by Equation (3.20) is used to formulate the PC 

expansion for   as follows: 

   (  )  ∑   
(  )  (  )

 

 

 (3.23) 

Here, it should be noted that the above PC expansion for    is conditional on a 

particular value of    and therefore, the different values of   will give different PC 

expansions. In order to explicitly incorporate the effect of   in the above expansion, 

each of the coefficients    
 are further expanded in terms of the independent random 

variable    as follows: 

    
 ∑    

  (  )

 

 

 (3.24) 

Substitution of Equation (2.24) into Equation (3.23) results in one PC expansion for 

  which depends on both random variables   and    as follows:  

    ∑(∑    
  (  )

 

 

 )  (  )

 

 

 (3.25) 
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Finally, using the map between   and   , the PC expansion of the objective function 

  with respect to the independent random variables is obtained as follows: 

   ∑ ̂   ( )

 

 

 (3.26) 

The expected value and the variance of the objective function   can then be 

calculated using the following analytical expressions: 

  ( )   ̂  (3.27) 

  ( )  ∑ ̂ 
    

   

 

   

 (3.28) 

Where, 〈   〉 represents inner product with respect to  . After substituting the 

expected value and variance of the objective function f, as calculated above, in the 

cost function of Equation (3.1), the search for the optimum can be performed using 

appropriate optimization technique. It should be noted that within the optimization 

problem (Equation 3.1), the methodology given above to represent the objective 

function with respect to the random variables can also be used to describe any other 

variable for which constraints have to be satisfied. The overall methodology, to be 

executed at each function evaluation in the search for the optimum, is summarized for 

clarity in a stepwise procedure as follows: 

1. Obtain the approximation of model outputs as a function of model parameters 

θ using multi-resolution approach, as outlined in the stepwise procedure in 

section 3.2.2.1 

2. Calculate the posterior distribution of the parameters θ from the given data 

using Equation (3.8) where the likelihood function is calculated using above 

approximation 
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3. Transform the model parameters θ into a set of independent random variables 

  using Equations ((3.18)-(3.20)) and formulate their PC expansions, as given 

by Equation ((3.21)-(3.25)) 

4. Select the values of independent random variables   at the specific points as 

required by the quadrature rule to be used 

5. Calculate for these  , the corresponding values of parameters θ using PC 

expansions (Equations (3.21)-(3.25)) 

6. Calculate the values of objective function   for the θ obtained in the previous 

step using model equations 

7. Formulate a PC expansion for the objective function   and calculate the 

expected value and the variance using Equations ((3.27)-(3.28)). 
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3.3 Case Study: Fed-batch bioprocess 

3.3.1 Problem formulation 

The proposed methodology is applied to a fed-batch process for penicillin production. 

To simulate the actual process, a model based on the governing equations proposed 

by Birol et al. (2002) is considered. Assuming temperature and pH to be constant and, 

also, that the oxygen is available in excess, the following set of modified Equations 

((3.29)-(3.32)) is used to describe the process: 
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(3.31) 

 
  

  
                (3.32) 

where, X is the concentration of biomass,    is the specific growth rate,    and 

  are saturation constants,   is the concentration of substrate,   is the volume of the 

culture medium,   is the concentration of penicillin,    is the specific rate of 

penicillin production,    is an inhibition constant,    ⁄  is the yield of biomass per 

unit mass of substrate,    ⁄  is the yield of penicillin per unit mass of substrate,    is 

the maintenance constant, F is feed-rate and    is the concentration of substrate in the 

feed. 
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To formulate an uncertain model, it is assumed that the knowledge about the 

consumption of penicillin by hydrolysis is not available to the user. Therefore, the 

rate of change in penicillin, as available to the user, is as follows: 

 
  

  
 (

    

     
  

  

)  
 

 

  

  
 (3.33) 

The set of Equations (3.29) and ((3.31)-(3.33)) then represents an uncertain model 

of the process which, hereafter, will be referred to as "process model" or simply as 

"model". To estimate the model parameters, the simulated data is obtained by running 

the simulator (Equations ((3.29)-(3.32)) with the initial concentrations and the inlet 

feed profile as listed in Table 3.1. The parameters used in the simulator Equations 

((3.29)-(3.32)) are listed in Table 3.2. 

 

 

Table 3-1: Initial concentrations and input feed profile for the simulated data 

Biomass Conc. (X0) 0.1 (g/l) 

Substrate Conc. (S0) 0.1 (g/l) 

Product Conc. (P0) 0 (g/l) 

Initial Culture Volume (V0) 100 (L) 

Input Feed (F) 0.04 (L/hr) 
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Table 3-2: Parameters' values for process simulator (Equations (3.29)-(3.32)) 

                    
 ⁄
   

 ⁄
       

0.092 0.15 0.005 0.0002 0.1 0.04 0.45 0.9 0.014 600 

 

To introduce uncertainty in the measurements, it is further assumed that the culture 

volume cannot be measured and the measurements of the other states; biomass, 

penicillin and substrate, are corrupted with Gaussian noise. 

Once the parameters are estimated with their associated uncertainty, as per the 

methods described in the previous section, the objective is to maximize the amount of 

penicillin, at the end of batch, with minimum variability and the culture volume not 

exceeding 120 L. With initial substrate concentration (  ) and inlet feed rate ( ) as 

manipulated variables, the robust optimization problem is formulated as follows: 

    
    

   [ ( (           ))     ( (           ))]  

      (    )    (         )  

 ‖ (           )‖ 
     (3.34) 

The signs of the expected value and the variance of the objective function are 

introduced to implicitly maximize the lower bound of the penicillin production, i.e. 

the mean value minus the variance, at the end of the batch (  ) or alternatively to 

minimize the negative value of this bound. The bound on the volume is introduced to 

avoid overflowing of the vessel at all times. 
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3.3.2 Results and discussion 

To illustrate the methodology, we considered four examples where only a subset of 

parameters is considered to be uncertain. The remaining parameters, in all the 

examples, were fixed at their nominal values, estimated by the standard least squares' 

method. The subset of parameters is selected following a preliminary study where the 

parameters were ranked according to decreasing order of their uncertainty. The 

uncertainty description for this purpose was obtained using an approach based on 

linearization of the model around the nominal parameter values (Bard, 1974). The 

three most uncertain parameters in the ranking were   ,    and   . The individual 

effect of these parameters is studied in three different examples and finally, the fourth 

example considered the combined effect of uncertainty in    and   . One of the key 

points of this study is to investigate how the Bayesian description for parametric 

uncertainty affects the solution of the robust optimization problem when compared to 

simpler descriptions, as often used. For this purpose, in all the examples, the 

uncertainty description in the parameters is obtained using both the Bayesian as well 

as the linear approximation approach (Bard, 1974). For normally distributed errors, 

where the Bayesian approach results in a more realistic description of the uncertainty, 

the linear approximation results in normally distributed parameters. The mean and 

variance of the parameters, as a result of these two descriptions, is summarized in 

Table 3.3. Although, in each example, the Bayesian description of the uncertainty 

differs from its normal counterpart, the most significant differences are in the third 

and fourth example that considered uncertainty only in    and joint uncertainty in    

and    respectively. 
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Table 3-3: List of means and variances, comparing Bayesian and Normal distributions for each example 

                   

 
Normal Bayesian Normal Bayesian Normal Bayesian Normal Bayesian 

E( ) 0.2892 0.3253 0.9986 1.2076 0.036 0.0589 [0.2892 0.036] [0.2498 0.0955] 

V( ) 0.0107 0.0098 0.0807 0.1605 0.000263 0.0012 [0.0122 0.0003] [0.0089 0.004] 
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(a) 

 

 (b) (c) 

Figure 3-1: (a) Comparison of Bayesian and Normal uncertainty for   ; (b) 2-D 

representation of joint Bayesian uncertainty for    and    (c) 2-D representation of joint 

normal uncertainty for    and    
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In the third example, both the expected value and the variance of    are larger for 

the Bayesian description. It is further clear from Figure 3.1a, that the Bayesian 

uncertainty favors the larger values of    as compared to the normal uncertainty 

description. For example, the region with    larger than ~0.075 is more probable 

when the Bayesian uncertainty is considered, whereas, the region with    below 

~0.01, is less probable with this description. In the fourth example, as shown in 

Figure 3.1b, the Bayesian uncertainty shows very strong correlation between    

and   . The region, with    ranging from 0.15-0.25 and    ranging from 0.075-0.25 

that has very low probability according to the normal description, is significantly 

favored by the Bayesian based uncertainty description. It should be noted that this 

region also favors the larger values of   . The parameter    basically represents the 

extent of substrate inhibition in the penicillin production. The larger the value of    

the lesser will be the inhibition effect. From the above discussion, it is expected that 

the Bayesian based description of uncertainty will favor higher amounts of penicillin 

in both the examples. 

The next step was to investigate how the differences in the uncertainty descriptions 

in each example, i.e. Bayesian versus Normal, affect the corresponding solution of the 

robust optimization problem (3.34). The search was performed using fmincon 

function in the MATLAB Optimization Toolbox. To ensure that the optimal solution 

is not a local minima, the search was repeated several times with different guesses of 

the initial operating conditions. The mean and variance of the objective function f at 

the optimal solution are summarized in Table 3.4. The results clearly shows that the 

robust optimal solution obtained using the Bayesian description of the parametric 

uncertainty differs significantly from the one corresponds to the normal, especially 

for the two parameter's case in the fourth example. The distribution of the objective 

function f at the optimum based on the joint uncertainty in    sand    is shown in 

Figure 3.2a and 3.2b. 
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Table 3-4: Comparison of optimal solution based on Bayesian and Normal 

description of uncertainty 

   ( )       ( (  ))    ( (  ))          (  ) 

   Normal 12.54 0.078 53.01 28.83 164.12 

 
Bayesian 38.04 0.150 75.95 13.76 328.02 

       

   Normal 31.74 0.277 86.58 11.80 484.45 

 
Bayesian 29.38 0.277 80.59 12.12 479.06 

       

   Normal 26.35 0.0797 30.55 14.09 191.55 

 
Bayesian 22.91 0.0799 46.93 22.145 191.83 

       

        Normal 26.87 0.0734 17.65 12.58 173.10 

 
Bayesian 29.16 0.1009 52.75 32.73 235.87 
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(a) 

 

(b) 

Figure 3-2: Distribution of the penicillin at the end of batch, predicted at the 

optimum, based on the (a) Bayesian uncertainty and (b) Normal uncertainty 
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It should be noted here that the model has structural uncertainty and because of 

this, the optimal solution in all the four examples, might not corresponds to the true 

process optimum. For that, an iterative procedure has to be applied that slowly 

converges to the true process optimum (Chen et al., 1987; Chachuat et al., 2009; 

Mandur et al., 2013b), which is beyond the scope of this study. However, it is 

relevant to check the effect of the normal and the Bayesian uncertainty descriptions 

on the measured penicillin at the end of batch, simulated at the corresponding optimal 

solutions. From Table 3.4, it appears that for the second and the third example, both 

the descriptions resulted in nearly the same optimal solutions. However, for the first 

example, the optimal solution corresponding to the Bayesian uncertainty results in 

nearly twice the measured penicillin as compared to normal uncertainty. Similarly, 

for the fourth example, this increase in the measured penicillin is nearly 36%. In other 

words, for the first and the fourth examples, the optimal solutions are closer to the 

true process optimum when the Bayesian description of uncertainty is used. From 

these results, it is also observed that the optimal solution is very sensitive to the 

uncertainty in    whereas sensitivity to the uncertainty in    is negligible. 

In practical situations, it is common that the measurements may not be available as 

frequent as expected. To study the effect of frequency of the measurements, an 

additional simulation study is conducted where the measurements are assumed to be 

available every 12 hours instead of every 6 hours, as is the case in previous examples. 

For this comparative study, only two parameters,    and    are re-estimated. As 

expected, fewer measurements resulted in increase in the parametric uncertainty 

which further results in more conservative optimal solutions. For normal uncertainty, 

the amount of penicillin at the end of batch is observed to be decreased by 80.5 % and 

for Bayesian uncertainty, a decrease of 69.8% is observed. 
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3.3.3 Computational Efficiency 

The computational time of the proposed methodology was compared with the most 

widely used Monte Carlo approach. In the latter, the expected value and the 

variability of the objective function are evaluated using Monte Carlo integration 

which basically involves repeated evaluations of the model for different parameter 

values, selected randomly from their distribution. When the distribution has to be 

obtained by the Bayesian Inference, as in this study, there is an added computational 

load in the Monte Carlo approach. Since the posterior distribution has no analytical 

expression, the parameter samples have to be obtained using Markov Chain Monte 

Carlo (MCMC) approach (Robert et al., 2004). In MCMC, the aim is to construct a 

Markov chain that converges to a desired posterior distribution after a large number 

of samples. Since in the beginning, the chain may be far off from the convergence, 

few initial samples are generally rejected as burn-in (Robert et al., 2004). In the 

comparison, we constructed the Markov Chain with 50,000 samples and rejected the 

first 5000 samples as a burn-in. The remaining samples were then used to calculate 

the expected value and the variance of the objective function. The search for the 

optimum was completed in 50-60 iterations and takes approximately 60-70 hours on 

average on a Quad-Core 3GHz Core-i7 Workstation. On the other hand, the proposed 

methodology based on PC expansions completed the search in approximately 4-5 min 

on average for the three examples considering uncertainty in single parameter 

whereas, for the fourth example which considered uncertainty in two parameters the 

computations required 30-40 min. The difference in computational load between the 

one uncertain parameter and two uncertain parameters cases is that for the latter the 

number of quadrature points required to solve the two-dimensional integrals in the 

computation of PC coefficients is higher as compared to the number needed for the 

one-dimensional integrals in the remaining examples. The above significant reduction 

in the computational time as compared to standard Monte Carlo approach is primarily 

due to the reduction in model runs required for each function evaluation. Whereas, in 

the Monte Carlo approach, the model has to be solved 45,000 times to evaluate the 
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expected value and the variance in the objective function, in the proposed approach 

only the PC coefficients have to be evaluated which requires few tens to hundred 

model runs. This computational advantage further makes the proposed methodology 

suitable for solving online robust optimization problems using Bayesian description 

of uncertainty, where the standard Monte Carlo based approach might fails to provide 

a solution within reasonable time before the next measurement. 

Another major saving is achieved by using an approximation of the original 

nonlinear model (Equations (3.29) and ((3.31)-(3.33))) in the likelihood function. 

However, it should be noted that the model used in this case study is not highly 

nonlinear in parameters. As a result, the proposed iterative approach involving the 

refinement of the approximation in parameter regions of higher probability did not 

provide any computational advantage. In fact, in all the four examples presented 

above, the approximation of the model was obtained using polynomials from the base 

resolution subspace   
  .  

It was hypothesized that the multi-resolution approach with adaptive refinement 

would significantly contribute to computational efficiency when the dependency of 

the objective function   would be highly nonlinear or even discontinuous with respect 

to the uncertain parameters as occurring in problems with bifurcations or high 

parametric sensitivity. To illustrate the efficiency of the proposed approach, we 

considered a particular situation where there is a discontinuity in the measurement of 

penicillin due to a minimal threshold for detection in that measurement. This situation 

is common in chromatographic based measurements where the peaks related to 

penicillin or other products are measured with respect to minimal baseline and below 

that baseline the measurement is assumed as zero (Nakashima et al., 1993). A 

straightforward way to estimate the parameters in such situation, while not altering 

the assumption of Gaussian noise, is to model the process and device related 

threshold together. In that case, the model output for penicillin will be zero below the 

threshold and the value produced by the Equations ((3.29) and ((3.31)-(3.33))) when 
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the value is above the threshold. Following this assumption and considering the case 

of uncertainty in two parameters as for the fourth example above, the model output as 

a function of parameters is a discontinuous function as shown in Figure 3.3. 

Such situation cannot be approximated by using polynomials only from the base 

subspace   
  . Figure 3.4 compares the joint probability distribution of     and    as 

obtained by two different approximations; one using the polynomials only from   
   

and another using the adaptive approach as outlined in this work. In the first 

approximation, the maximum order of polynomials used in each dimension was 19 

whereas in the adaptive approach, only the first four Legendre polynomials in the 

base resolution and a maximum of four resolutions were used. As it can be seen from 

Figure 3.4a, where the threshold was considered to be 0.2, both the approximations 

results in nearly same distribution. On the other hand, when the threshold was 

considered to be 0.5, the first approximation results in oscillatory profile and because 

of this an erroneous multimodal distribution is obtained as shown in Figure 3.4b. 

Thus, the discontinuity in the measurements because of 0.2 threshold has very local 

and overall little effect in the remaining parameter region whereas the effect of a 0.5 

threshold spreads over the entire region. Accordingly, if only polynomials from the 

base resolution are used, the model cannot be approximated accurately over the entire 

region thus justifying the need for a multi-resolution approximation. 
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(a) 

 

(b) 

Figure 3-3: (a) Penicillin, at end of the batch, as a function of     and    for 

(a) 0.2 threshold and (b) 0.5 threshold 
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 (a) (b) 

 

 (c) (d) 

Figure 3-4: 2-D representation of the joint probability distribution of    and    obtained by 

(a) PC approximation for 0.2 threshold, (b) Multi-resolution approximation for 0.2 threshold 

(c) PC approximation for 0.5 threshold and (d) Multi-resolution approximation for 0.5 

threshold 
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3.4 Conclusions 

A robust optimization problem is solved when the uncertainty in model parameters is 

obtained by using the Bayes' Theorem. At each function evaluation, PC expansions 

are used to propagate the parametric uncertainty into the objective function thus 

allowing for the calculation of the expected value and the variance of the objective 

function by analytical expressions. The use of a model approximation for the 

calculation of the likelihood function reduces the computational time further when 

compared to solving the full nonlinear model repeatedly. The multi-resolution based 

model approximation proposed in the work, proved to be especially useful when 

approximating the functions that exhibit sharp gradients with respect to the uncertain 

parameters. The overall methodology has been shown to be much more efficient as 

compared to conventional Monte Carlo approach thus making it attractive for both 

off-line optimizations as well as for potential application in on-line problems. When 

compared with the optimization results based on the normal description of parametric 

uncertainty, the Bayesian description results in significantly different uncertainty 

descriptions and correspondingly in significantly different optimal solutions. 
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Chapter 4 

Simultaneous model identification and 

optimization in presence of model-plant 

mismatch 

(Submitted to Chemical Engineering Science) 

4.1 Introduction 

Mathematical models have become an integral part of the process development and 

subsequent production environment. Besides providing novel insights into the 

underlying process, they are also used in various model-based optimization and 

optimal control strategies. When a model is an exact representation of the actual 

process and is calibrated against noise-free process data, optimizing the model is 

identical to optimizing the process itself. In such case, the optimal policies derived 

from model-based optimization can be applied in an “open loop” fashion. However, 

the above conditions are extremely difficult to meet in practical situations. In the 

presence of any model uncertainty resulting from either incorrect model structure or 

measurement noise, the model-based optimization algorithms will result in sub-

optimal policies or, in a worst case scenario, may also result in violation of process 

constraints. To tackle this problem, one possible solution is to search for optimal 

policies that are robust to model uncertainties (Beyer et al., 2007; Samsatli et al., 

1998; Diwekar et al, 1996; Nagy et al., 2004; Ruppen et al., 1995; Terwiesch et al., 

1994). Although this approach can ensure feasibility within a priori known bounds of 

uncertainty, the optimal policies are often conservative and, in some processes, may 

lead to significant loss in economic objectives. As an alternative, another possibility 

is to use an iterative approach where the model is updated using new measurements at 
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previously calculated optimal policy and the updated model is, then, re-optimized for 

the next optimal policy (Ruppen et al., 1998; Eaton et al., 1990; Chen et al., 1987; 

Marlin et al., 1997). This process is referred to as a “two-step” approach and is 

repeated until a convergence is achieved. 

This chapter deals with the application of latter approach to batch/fed-batch 

processes. Assuming the process data is available only at the end of batch, the 

problem is solved in a run-to-run optimization framework. However, there is no 

restriction on applying the proposed algorithm to online optimization problems if 

measurements are available online. 

The convergence of the standard two-step approach is governed by; (1) whether the 

sub-optimal policies provide enough excitation to update all the parameters and (2) 

how close the model can describe the actual process. The first condition can be 

addressed, to a certain extent, by incorporating design of experiments in the 

optimization objectives (Martinez et al., 2013). In this way, a trade-off between the 

optimal policies and the policies that generate more informative process data can be 

achieved. Then, if the model is a true of representation of the process, the two-step 

approach will converge to the actual process optimum, where the total number of 

iterations needed for convergence, will depend on measurement noise and the extent 

of excitation. 

Regarding the second condition, mentioned above, model-plant mismatch is 

inevitable in almost all practical applications. In an attempt to capture the process 

behavior accurately, models often become too complex and computationally 

demanding rendering them unsuitable for optimization or control purposes. Also, with 

a limited number of measurable states and in the presence of measurement noise, it is 

not possible to estimate all the parameters accurately and, therefore, model reduction 

techniques are often used to reduce the number of parameters that can be identified 

from the given process data. Because of these reasons, one has to generally rely on 

simpler but inaccurate model structures for optimization and control. If the structural 
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inaccuracy is not considered explicitly in the model, calibrating the model over 

different operating conditions may result in significantly different parameter 

estimates in order to compensate for the model error around different operating 

points. As a result of this parametric variability, it is possible that the optimization 

objectives may get compromised. The change in parameter estimates may be of such 

an extent that the predicted gradients of the optimization objectives no longer 

coincide with the gradients measured from the process or, in a worst case scenario, 

they may even get reversed thus leading to premature convergence to sub-optimal 

operating policies. 

For convergence to the process optimum, it is necessary that the model accurately 

predicts the optimality conditions of the process as given by the first-order Karush-

Kuhn-Tucker (KKT) conditions. Following this idea, a class of algorithms has been 

developed where the optimization objectives and the constraints are corrected for the 

bias as well as the difference between their predicted and measured gradients 

(Roberts et al., 1979; Tatjewski, 2002; Gao et al., 2005; Chachuat et al., 2009; 

Marchetti et al., 2009; Costello et al., 2011). These algorithms differ in the way the 

model is updated and on how the modifications to the objective function and 

constraints are implemented. For instance, in their pioneer work, Roberts et al. (1979) 

modified only the optimization objective to account for the difference between 

predicted and measured output derivatives assuming the constraints are process 

independent and are known. The modification term was based on the Lagrange 

multipliers where the Lagrangian function was obtained by integrating the 

identification and optimization objectives. In subsequent studies, Tatjewski (2002) 

and Gao et al. (2005) replaced the parameter estimation step by introducing a linear 

term in the outputs that corrects for the difference between the predicted and 

measured outputs. In a more recent version of these algorithms, referred to as 

modifier adaptation (Chachuat et al., 2009; Marchetti et al., 2009 and Costello et al., 

2011), the authors eliminated the model update step altogether and updated only the 

optimization objectives based on differences between the gradients in the optimality 
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condition. Since the convergence to a process optimum was driven solely by the 

correction in the optimization gradients, the final model-based optimal solution 

remained unaffected by the elimination of the model-update step. However, this 

approach results in a bias between the predicted and measured outputs and as result, 

the algorithm can no longer be applied to the problems where prediction accuracy is 

required. One such case, as recently pointed out by Costello et al. (2011), is when the 

optimal input profiles are implemented within a closed-loop control to ensure that the 

process is operated to meet safety and environmental constraints. Here, the model is 

required to provide accurate reference trajectories for low-level controllers. The 

prediction accuracy of the model is also very relevant for biotechnological processes 

where it is important to predict the evolution of toxic by-products along a batch 

culture. Thus, to address a broad range of problems, it is very important to satisfy 

both identification and optimization objectives at the optimum. One of the major 

bottlenecks in implementation of this class of algorithms is their sensitivity to the 

noise in measured gradients (Marchetti et al., 2009). To avoid too much 

aggressiveness in the corrections and to achieve a smoother convergence, the 

corrections have to be filtered using an empirical filter.  

In another class of algorithm, Srinivasan et al. (2002) proposed an alternate 

approach where the identification objective is modified to account for the difference 

between predicted and measured optimality conditions. By this modification, the 

parameter estimates can be obtained so as to provide a trade-off between the 

identification and optimization objectives based on preselected weights. 

In this work, we propose a linear correction to the model outputs in a way that the 

updated model parameters not only minimize the bias between the predicted and 

measured outputs, but it also correct for the optimization objectives. The corrections 

made over the previous iterations are progressively integrated and by implementing 

this progressive correction in the model, the conflict between the identification and 

optimization objectives is reduced significantly. Another key advantage of this 
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approach is that it provides a model-based filter that is shown to outperform the 

external exponential filter, used in the previous studies, in terms of the rate at which 

convergence can be achieved. A preliminary discussion of this methodology has been 

presented in Mandur et al. (2013b). 

The contents of this chapter are organized as follows: Section 4.2 provides a brief 

background on two-step approach and modifier adaptation algorithms and also 

discusses the motivation in detail. Section 4.3 presents the methodology and theory 

behind the proposed model correction. The methodology is then illustrated with a 

case study in Section 4.4 and finally Section 4.5 concludes the chapter. 

4.2 Preliminaries 

Let us consider a process model, described by a set of differential equations as 

follows: 

  ̇   (       )     

     ( )    (P.4.1) 

Where,         is the vector of model states,         is the vector of model 

parameters,         is the vector of inputs,          is the vector of measured output 

variables,         is a set of differential equations based on mass and energy 

balances,        is a mapping between the model states and predicted outputs 

and         are the vectors of uncertainties representing modelling and measurement 

errors respectively. 

The standard two-step optimization approach starts with a model identification step 

where the model is calibrated using the process measurements at some initial input 

conditions. The identification objective is generally based on the minimization of the 

errors between predicted and measured outputs.  



 

 65 

For example, the standard least squares estimation problem can be formulated as 

follows: 

           
 

∑ ‖  (  )   (    )‖
 

 

   
  

            ̇   (        )  

    ( ) (P.4.2) 

Where,         is the vector of predicted outputs, N is the number of time points 

and subscript k is the current iteration.  

The identification is then followed by an optimization step, formulated as follows: 

             
 

 (      )  

            ̇   (        )  

    ( )  

  (      )    (P.4.3) 

Where,   is the objective function to be minimized and         is a vector of 

equalities or inequalities. 
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Let the functions   and    be continuously differentiable at a set of input 

conditions   . If    is a process optimum, then there exists a unique vector,         

such that: 

 
  (     )

  
    

  (     )

  
   (4.1a) 

    (     )    (4.1b) 

     (4.1c) 

  (     )    (4.1d) 

These conditions are collectively known as Karush-Kuhn-Tucker (KKT) 

conditions, where µ is a vector of KKT multipliers. For the model-based optimal 

solution to converge to   , it is necessary that the model predicts the KKT above 

conditions accurately. Since    is not known a priori, this can be only guaranteed if 

the identification step (P.4.2) results in a unique set of model parameters (  ) such 

that the model satisfies the following conditions for all set of values of        : 

 
  (      )

   
 

  (    )

   
 (4.2a) 

 
   (      )

   
 

   (    )

   
 (4.2b) 

When there is only measurement noise (         ), the above conditions can be 

satisfied over a finite number of iterations where: 

 
∑   

 
   

 
    (4.3) 

Where,         is the set of parameter values satisfying the conditions (4.2a) and 

(4.2b) 
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However, in the presence of model structure error (   ),    does not exist. Since 

the error term   represents the unmodelled dynamics of the process, it is a time 

varying function of model states ( ) and inputs ( ). Then, when the inaccurate 

model, given by  ̇   (        ), is calibrated over different input conditions, the 

parameter estimates change so as to compensate for the modelling error which varies 

with respect to the input conditions. Consequently, there is no unique set of parameter 

estimates that can satisfy the identification objective (P.4.2) over the entire space of 

input conditions. For any particular set of parameter estimates (  ), the model is 

accurate only in the neighbourhood of the corresponding input values (  ) whereas 

away from this region, the prediction accuracy of the model continues to decrease as 

the distance increases. As a result, the model may not predict the gradients of the 

optimization objective and constraints accurately. In a worst case scenario, it is also 

possible that the change in model parameters as the input conditions change is of such 

an extent that the predicted and measured gradients have opposite signs, in which 

case the model-based optimization can no longer drive the changes in the inputs in the 

direction of process optimum. This implies: 

  (       )   (     )   (4.4) 

In this case, the two-step approach will converge to a non-optimal solution where 

the measured gradients are still non-zero, or in other words, the predicted KKT 

conditions do not match with those measured from the process. Therefore, to ensure 

convergence of the algorithm to a process optimum, the differences between the 

predicted and measured gradients of the optimization problem must be eliminated or 

at least minimized at each intermediate input condition. 

As stated in the Introduction, modifier adaptation algorithms enforce the matching 

conditions (Equations (4.2a) and (4.2b)) by adding correction terms directly to the 

corresponding optimization quantities.  
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Accordingly, the modified optimization problem is as follows: 

             
 

 (     )     
    

            ̇   (       )  

    ( )  

  (     )         
 (    )    (P.4.4) 

Where,    and    are referred to as modifiers that are used to correct for the 

gradients of objective function and constraints respectively and    is a modifier 

introduced to correct for the bias in predicted and measured constraints. The 

corrections are calculated at the      iteration as follows: 

     
 

  (     )

   
 

  (      )

   
 (4.5a) 

      
 

   (     )

   
 

   (      )

   
 (4.5b) 

     
   (     )    (      ) (4.5c) 

To avoid excessive corrective actions and to reduce the sensitivity to measurement 

noise, these corrections are filtered before implemented in (P.4.4) as follows: 

       
  (   )     (4.6) 

Where,   represent the vector of modifiers defined as:   [        ] and K 

represents the filter gain. 

It should be noted that whether the model is updated or not, the corrected 

optimization objective does not depend on the model. Therefore, the aggressive 

changes in the inputs, resulting from inaccurate predictions of the modified objective 
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function or constraints, have to be controlled by the filter gain which may further 

reduce the speed of convergence. Also, there is no systematic way to choose a priori 

the filter gain. In the case study presented later, it is observed that when the model is 

used to correct for the errors in gradients as proposed in the current study, it results in 

more accurate predictions during the search for optimal solution thus leading to faster 

convergence with less oscillatory behaviour. 

4.3 Proposed Methodology 

The basic idea in the proposed methodology is to search for model parameters such 

that the differences between the predicted and measured gradients of optimization 

problem given in Equations (4.2a) and (4.2b) are minimized along with the minimum 

prediction error from identification problem (P.4.2). However, since the identification 

and optimization objectives are independent of each other, in the presence of model 

structure error, the values of model parameters that satisfy both objectives do not 

exist. In other words, the parameter estimates that minimize the difference in 

gradients may not minimize the prediction error at the same time. To this end, a linear 

correction term is added to the model outputs such that the conflicting objectives can 

be reconciled. 

Let    be the minimum sum of squared errors between the predicted and measured 

outputs in problem (P.4.2), corresponding to the parameter estimates    as follows: 

    ∑ ‖  (  )   (     )‖
 

 

   
 (4.7) 

Let     be the change in parameter estimates, with respect to   , required to 

minimize the difference between the predicted and measured gradients (Equations 

(4.2a) and (4.2b)) at k
th

 iteration. The updated model parameters i.e.       , then, 

no longer minimizes the updated sum of squared errors. This is schematically 
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illustrated in Figure 4.1 which shows a probability density function of a model 

parameter centered on the estimate   , calculated by least squares. 

 

Figure 4-1: Illustration of lack of fit 

 

The corresponding sum of squared errors using the perturbed parameter value    

    can be represented as: 

   
  ∑ ‖  (  )   (         )‖

 
 

   
 (4.8) 

Let us introduce a vector of corrections     to the model outputs such that the sum 

of squared errors,   
  with the corrected model remains equal to the original value of 

   (given by Equation (4.7)): 

 

∑ ‖  (  )  ( (         )    )‖
 

 

   

 ∑ ‖  (  )   (     )‖
 

 

   
 

(4.9) 

To satisfy (4.9), the equality can be satisfied term by term as follows: 

θ 

P(θ) 

θk Δθk 
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   (  )   (         )       (  )   (     ) 
   

(4.10) 

The correction term can then be solved from (4.10) by: 

     (         )   (     ) 
   

(4.11) 

Let the model outputs   (         ) be approximated around    using Taylor 

Series Expansions. This will result in the following expression:  

  (         )   (     )    (  )       
   

(4.12) 

Where, D is the Jacobian matrix of output derivatives with respect to model 

parameters. After substituting Equation (4.12) into (4.11), the correction term    can 

be expressed as: 

      (  )       
   

(4.13) 

Assuming the model to be linear in the neighborhood of   , the correction term    

is approximated by the first-order derivative as follows: 

      (  )     
   

(4.14) 

Since the linear approximation of the model is generally valid only within a certain 

region around   , for     outside this region, it would not be possible to restore the 

prediction error with the updated model to its minimum as the LHS of the equality, 

given by Equation (9), may have significant error. Therefore, to enforce the 

approximate validity of the linear approximation, a constraint on     is imposed 

which is based on a relative truncation error, defined as follows: 
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 (         )    (  )    

 (     )
 

   

(4.15) 

Based on its definition, the calculation of     is calculated using an optimization 

problem as follows: 

 

            
  

(  |
  (     )

  
 

  (          )

  
|

   |
  (     )

  
 

  (          )

  
|) 

 

            ̇   (           )  

    ( )    (  )     

         
  (P.4.5) 

Where,    and    are vectors of normalizing weights for the objective function 

and constraints gradients respectively and     
  is the constraint or limit on truncation 

error that is imposed to ensure the approximated validity of the linear approximation 

of the correction term. 

It is important to note here that the above constraint on     is somewhat equivalent 

to the filter gain in modifier adaptation algorithms as the restriction on     also 

restricts the ability of the model to predict gradients of the optimization problem 

exactly which is very critical when the gradients are associated with significant level 

of noise. On the other hand, in contrast with the filter gain in modifier adaptation 

algorithms,     is based on a physical rationale since it represents an allowable 

model prediction error. 
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To summarize the procedure, the estimation of model parameters is divided into 

two steps: 

Step 1: The parameters are updated to minimize the error between the outputs as 

predicted by the previously corrected model and those measured from the process. 

Let us define this update in parameter estimates by        
.  

Step 2: The change in model parameters     and the corresponding model 

correction is, then, calculated such that the updated model predict the gradients of the 

optimization problem at current input conditions and at the same time, to adjust the 

prediction error to the same value obtained in the previous step. 

The overall update step can be written as: 

   
      

         
     (4.16) 

The corrected model with the updated parameter estimates   
  is then optimized for 

the next iteration. It should be noted, here, that the model correction term is being 

carried forward into the next iteration and as a result, it has a cumulative effect. The 

prediction inaccuracies of the model continue to decrease as the model is corrected 

progressively towards the process optimum. Finally, at the optimum, the corrected 

model simultaneously satisfies both the identification and objective objectives. 

4.3.1 Conditions for Convergence 

At a given set of input conditions, let us define a bounded space for model parameters 

such that     [       ]: 

 The corrected model is stable (4.17a) 

    (     
 )       (Positive definite) (4.17b) 
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Then if the bound on truncation error     
  is such that     : 

 |
  (     )

  
 

  (       
 )

  
|    (C.4.1) 

Where,   is the tolerance with which the above differences between the measured 

and predicted gradients of the cost function are minimized, then, the algorithm has a 

guaranteed convergence towards the process optimum. 

Since the update in input conditions    is based on model-based optimization, the 

algorithm will converge only if: 

 
  (       

 )

  
   (4.18) 

From condition (C.4.1), since the predicted gradients are always matches to the 

ones measured from the process, the Equation (4.18) holds only when: 

 |
  (     )

  
|    (4.19) 

4.3.2 Termination Criteria 

Let the algorithm converges to a stationary point   
 . Then, at   

 : 

        
   (4.20a) 

       (4.20b) 

Since at convergence   
      , the parameter estimates     

  minimizing the 

prediction error at      also minimize the prediction error at    and, therefore, the 

parameter change in Step 1 is zero. Similarly no further corrections are required for 

the gradients as they have already been corrected in the previous iteration. Hence, the 

update in Step 2 is also zero. 
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Equations (4.20a) and (4.20b) can then be used to define termination criteria. 

However, in the presence of measurement noise, the above criteria cannot be exactly 

achieved. To this end, the convergence of the algorithm can be evaluated in terms of 

convergence in the probability distribution of model parameters. The difference 

between the distributions in two successive iterations is calculated using the 

Kullback-Leibler (K-L) divergence (Cover et al., 1991). If    and     
  are the 

distributions of parameters     
         

 and     
  respectively, the K-L 

divergence between    and     
  is given by; 

  (     
      )  ∫      

 ( )    
     

 ( )

   ( )
   (4.21) 

The condition based on Equation (4.20a) is then formulated as: 

  (     
       )     (C.4.2) 

Similarly, for Equation (4.20b), the difference between the distributions of      
  

       
 and   

  is measured as   (        
 ), where,   

  is the distribution of   
  

  (        
 )     (C.4.3) 
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4.3.3 Summary of algorithm 

Figure 4.2 presents the flowchart of the algorithm. The algorithm begins with the 

identification step using the initial inaccurate model structure. For estimation, the 

problem posed in (P.4.2) is used. Then, the update in model parameters and 

corresponding model correction is calculated to correct for the model for both 

identification and optimization objectives by using the minimization problem posed 

in (P.4.5). The updated model is then optimized for the next operating conditions 

where the above steps are repeated with the updated model. The procedure is repeated 

until a termination criteria based on either (4.20a & 4.20b) or (C.4.2 & C.4.3) are 

satisfied. 
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Figure 4-2: Proposed Algorithm with linear model corrections 
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4.4 Case Study 

4.4.1 Problem formulation 

The proposed optimization algorithm is applied to a penicillin production process 

where the goal is to maximize the amount of penicillin at the end of batch. To 

generate the experimental data for model identification and correcting the model for 

optimization, the in-silico experiments are conducted using a process simulator based 

on the following set of ordinary differential equations (Bajpai and Reuss, 1980; Birol 

et al. 2002): 
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(4.24) 

 
  

  
                (4.25) 

The set of Equations (4.22)-(4.24) describes the rate of change in the concentrations 

of biomass ( ), penicillin ( ) and substrate ( ) respectively and Equation (4.25) 

describes the rate of change in the culture volume ( ). The constants in these 

equations are defined as follows;    is the specific growth rate of biomass,    is the 

specific rate of penicillin production,    and    are saturation constants,    is a 

substrate inhibition constant,    is a constant representing the rate of consumption of 
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penicillin by hydrolysis,    ⁄  and    ⁄  are the yields per unit mass of substrate for the 

biomass and penicillin respectively,    represents the consumption rate of substrate 

needed for maintaining the biomass and    is the concentration of substrate in the 

feed. The values used for these constants are listed in Table 4.1. 

To formulate a model with structural inaccuracy, it is assumed that the user does 

not have prior knowledge about the consumption of penicillin by hydrolysis and, as a 

result, the rate of change in the penicillin concentration is modelled as: 

 
  

  
 (

    

     
  

  

)  
 

 

  

  
 (4.26) 

Assuming the dynamics for the other states to be known accurately, the uncertain 

model is then given by the set of Equations (4.22) and (4.24-4.26). To simplify the 

numerical calculations, it is further assumed that only two model parameters    

and    will be updated in the algorithm whereas the rest of the model parameters are 

fixed at their nominal values, estimated at initial input conditions as listed in Table 

4.2. The choice of these two parameters as the uncertain ones was based on a 

preliminary sensitivity analysis. 

 

Table 4-1: Parameters' values for process simulator (Equations 4.22-4.25) 

                    
 ⁄
   

 ⁄
       

0.092 0.15 0.005 0.0002 0.1 0.04 0.45 0.9 0.014 600 
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Table 4-2: Initial set of input conditions used to estimate the parameters in uncertain 

model 

Biomass Conc. (X0) 0.1 (g/l) 

Substrate Conc. (S0) 0.1 (g/l) 

Product Conc. (P0) 0 (g/l) 

Initial Culture Volume (V0) 100 (L) 

Input Feed (F) 0.04 (L/hr) 

 

The uncertain model is, then, optimized iteratively as per the procedure 

summarized in Figure 4.2, where the final objective is to maximize the amount of 

penicillin at the end of batch, subject to a terminal constraint on the culture volume. 

The initial substrate concentration    and the input feed rate   are selected as the 

decision variables whereas the rest of the input variables are fixed at their initial 

values listed in Table 4.2. Accordingly, the optimization problem is formulated as 

follows: 

    
    

       (           )  

            (    )     (    )  (    )  

  (           )       (P.4.6) 

For reference, the process optimum corresponds to           and            

with the final penicillin measured to be       
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4.4.2 Results and discussion 

In the first part of discussion, the convergence properties of the algorithm will be 

discussed. The performance of the algorithm is evaluated in terms of (1) the rate of 

convergence and (2) the final converged solution. 

The bound on truncation error     
  is the major factor that affects the rate of 

convergence. Let us recall the calculation of    . The parameter estimates    that 

minimize the prediction error at k
th

 iteration may not predict the gradients of the 

optimization problem correctly for which a change in estimates     is required. 

Then, in order to ensure that the prediction error is also minimized with the updated 

parameters, the model outputs are corrected with a term   . The larger the change in 

parameters      the more accurately the model predicts the measured gradients of the 

optimization problem. On the other hand selecting a large     will have a negative 

effect on the model correction,    (Equation (4.14)). Since    is based on the linear 

approximation of the model around   , as     increases, the validity of the linear 

approximation decreases. Thus, as explained in the previous section, to control the 

accuracy of the linear approximation, a constraint on     is imposed by bounding the 

truncation error     
 . To summarize, the larger values of      

  will allow for large 

moves in     which favours a faster convergence towards the process optimum but 

this might increase the prediction error incurred by the model. On the other hand, the 

smaller values will restrict the moves in     to generate better predictions but the 

model may not be able to correct for the optimization gradients accurately, making 

the algorithm more sensitive to the modelling error. To illustrate this relative effect, 

the algorithm is solved for     
           . The convergence in the optimal    

for these two scenarios is compared in Figure 4.3. In all the iterations, the input feed 

rate   converged to the same optimal value (         ) so as to satisfy the volume 

constraint and, therefore, it is not considered further in the discussion. From Figure 

4.3, it is evident that regardless of the choice of     
 , the algorithm eventually 

converges to the process optimum. 
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However, the rate of convergence is significantly different for the two cases. In 

some of the intermediate iterations for     
    , the values of     are not 

sufficiently large for the model to predict the optimization gradients in the correct 

direction, resulting in an oscillatory and much slower convergence. Whereas, 

for     
    , the corrections for the optimization are more accurate as a result of 

which the algorithm converges much faster. However, this improved convergence is 

at the cost of prediction accuracy. On comparing the total prediction error for all 

iterations, it was found that on average, this value is nearly 2.5 times higher 

for     
    . 

 

 

Figure 4-3: Comparison of the effect of     
  on convergence of optimal   
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The key feature of this algorithm, as discussed in previous sections, is not only the 

convergence to a process optimum but also that the final corrected model predicts the 

process behaviour accurately and this is corroborated from Figure 4.4 where the 

model is used to predict the process variables around the optimum. As can be seen, 

the predictions are in close agreement with the measurements. 

 

 

Figure 4-4: Predictions of corrected model at converged optimal solution 

(    Predictions;     Noise-free measurements) 
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In the next section, the performance of the proposed algorithm is compared with (1) 

the standard two-step approach and (2) the modifier adaptation algorithms. 

4.4.2.1 Comparison with Standard “two-step” approach 

The convergence in the optimal     corresponding to both “two-step” and proposed 

methodology is shown in Figure 4.5. Based on these results, where the proposed 

algorithm converges to the process optimum          , the two-step approach 

converges prematurely to          . The measured penicillin at the end of batch 

at           is        which is nearly     less as compared to the       

measured at the true process optimum. 

 

 

Figure 4-5: Convergence of optimal    
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The reason for this premature convergence is that the model is inadequate for 

predicting the true process optimum, or in other words, it cannot satisfy the Equations 

(4.2a) and (4.2b). For all          , the change in model parameters, to compensate 

for the model structure error, is of such an extent that the predicted gradients no 

longer drive the optimization objective in the direction of its true optimum. On the 

other hand, in the proposed algorithm, the prediction error and the differences 

between the predicted and measured gradients of the optimization problem were both 

used to update the model, thus correcting for the structural uncertainty along the 

iterations. 

4.4.2.2 Comparison with modifier adaptation algorithms 

When compared to the class of modifier adaptation algorithms, the proposed 

correction in this work offers an added advantage in terms of the rate of convergence. 

As discussed in previous section, in the modifier adaptation algorithms, the 

optimization objective and the constraints are corrected by adding the differences 

between the predicted and measured gradients directly to their respective equations 

(Problem P.4.4). Since the model is not updated explicitly, the corrected optimization 

problem may have significant errors in predictions and, generally, this is controlled 

by filtering the corrections using an empirical filter. For the comparative study, we 

used first-order exponential filters with three different values for the gain   

                 . Figure 4.6, then, compares the convergence in the optimal    for 

the two algorithms for noise free case. In these results, the optimal     corresponding 

to        is highly oscillatory and it is quite clear that, without enough filtering, 

the gradient corrections are more aggressive, leading to significant prediction errors 

in the input space. However, as the filter gain is decreased, the convergence is much 

smoother but at the cost of decreased rate of convergence. On the other hand, the 

proposed algorithm converges much faster and smoothly to the true optimum. The 

reason is that the model itself is updated to correct for the gradients in the 

optimization problem, which provides a model based filtering that have superior 
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prediction capabilities as compared to the exponential filter in modifier adaptation 

algorithms. 

Finally, the convergence of these algorithms is compared in the presence of 

measurement noise. The modifier adaptation and the proposed algorithms are each 

solved 10 times with different realizations of the noise and the performance is 

evaluated in terms of integral absolute error (IAE) and standard deviation in the 

optimal   , as summarized in Table 4.3. The convergence in the average optimal    is 

shown in Figure 4.7 in the form of error plots. From these results, it is evident that the 

proposed algorithm is more robust to model errors in the presence of noise. The filter 

gain that provided smooth convergence in the noise-free situation cannot filter the 

noise as efficiently as the truncation error (    
 ) in the proposed algorithm. When the 

corrections are added directly to the optimization problem, the effect of noise in 

gradients on the optimization objective is additive. Whereas, in the proposed 

algorithm, the noise in gradients affects the parameter estimates         but since 

the optimization problem is not linear with parameters, this effect is not additive. 
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Figure 4-6: Comparison of proposed and modifier adaption algorithms on 

convergence of optimal    
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(a) 

 

(b) 

Figure 4-7: Average convergence of optimal    for (a) Modifier Adaptation algorithm 

and (b) Proposed algorithm 
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Table 4-3: Comparison of convergence properties for the proposed algorithm vs 

modifier adaptation 

 IAE Std. deviation   

Proposed Algorithm  8.8597 3.5563 

Modifier Adaptation 9.5525 5.5805 

 

 

From Figure 4.7 and Table 4.3, it can be seen that there is a significant amount of 

variability in the transient phase for the modifier adaptation algorithm. This is partly 

related to the fact that the model parameters are never updated, in which case the 

initial uncertainty in their estimates is propagated throughout the iterations. As a 

result, for each noise realization, the algorithm may have a significantly different 

search path if the filter gain is low enough to allow for smaller corrections, as seems 

to be the case in this example. Increasing the gain decreases this variability in 

transient but it increases the sensitivity of the algorithm to the noise in gradients, 

resulting in larger oscillations around the optimum as already shown in the noise free 

case (Figure 4.6). 
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4.5 Conclusions 

An iterative optimization algorithm has been proposed where the process models are 

corrected iteratively for model-plant mismatch in order to guarantee the convergence 

to the process optimum. The correction is based on linear approximation of the model 

and is added in a way that upon convergence, the model not only predicts the process 

behaviour accurately but also satisfies the process optimality conditions. To achieve 

this goal, the parameter estimation is performed in two sequential steps where a 

standard estimation problem to minimize the prediction errors is solved first. Then, in 

the second step, the differences between the predicted and measured gradients of the 

optimization problem are minimized. The key advantage of this approach is that it 

provides a model-based filter which has been shown to outperform the exponential 

filter needed in previously reported algorithms where the gain is selected ad-hoc. The 

efficiency of the algorithm is illustrated using a fed-batch bioprocess. The rate of 

convergence depends on the truncation error, used to validate the linear 

approximation of the correction. For nonlinear models, this approximation may only 

be valid over a smaller region, therefore limiting the rate of convergence. To this end, 

an improved approximation of the model has to be used that will be considered in a 

future study. 
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Chapter 5 

On improving the convergence of simultaneous 

model identification and optimization algorithm 

(To be submitted) 

5.1 Introduction 

Model-based optimization provides a systematic framework to improve the 

profitability of the process while respecting various process constraints, especially 

those related to safety and environmental regulations. However, its successful 

implementation rely on the accuracy of underlying process models in terms of three 

major factors; (1) how close the model represents the actual process, (2) at what 

operating conditions and how the experiments are to be carried out and (3) the quality 

of the measurements involved. The standard modelling approach is usually an 

iterative procedure that begins with the estimation of model parameters using an 

initial set of experiments. The calibrated model is, then, validated over different 

operating conditions and if the prediction error is significant, the parameters are 

updated using additional experimental data. This process is repeated until the model 

with required prediction accuracy is obtained. The basic idea behind the 

aforementioned procedure is to learn more precisely about the model parameters from 

different experiments and to obtain the estimates with minimum possible uncertainty. 

If the model structure captures the true dynamics of the process, the above 

approach may converge to a unique set of parameter values that can predict the 

process behavior accurately over an entire range of possible operating conditions. 

This is theoretically possible if a sufficient number of experiments have been 

performed to accurately identify all the model parameters. However, in most practical 
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situations, there is usually a restriction on the number of experiments than can be 

performed, either because of the duration of experiments or budget constraints. Then, 

if the main goal is to use the model for process optimization, it is desirable to perform 

a selected limited number of experiments along the direction of process optimum. To 

this end, a “two-step” approach can be implemented where the operating conditions 

for the next experiment are, basically, obtained by optimizing the model identified in 

the previous step. In other words; first, a model is identified around particular 

operating conditions and, then in the subsequent step, it is used to calculate the 

optimal operating conditions for the next iteration where the model is re-calibrated 

using the new measurements. The updated model is re-optimized again and the 

procedure is repeated until a convergence is obtained (Chen et al., 1987). However, 

the optimal operating conditions along the search may not provide sufficient 

excitation required for accurately identifying the model parameters. A possible 

solution to this problem is to use a combined approach where the next operating 

conditions are obtained by defining a trade-off between process optimality and a 

required excitation for proper model identification. 

On the other hand, when there is mismatch between the proposed model structure 

and the actual process, the calibrated model will be accurate only around the region of 

operating conditions where the parameters are estimated. The reason behind this 

discrepancy is that, for models with incorrect structure, the reduced set of parameters 

has to compensate for the unmodelled dynamics. Since these dynamics are basically a 

varying function of the operating conditions, calibrating the inaccurate model over 

different operating conditions will result in different parameter estimates. Often, this 

variability in parameter estimates may be of such an extent that the predicted 

gradients of the optimization problem no longer coincides with those measured from 

the process or, in a worst case, they may be of an opposite sign thus driving the 

optimization away from the actual process optimum. Overall, in these situations, the 

aforementioned standard “two-step” approach will converge to sub-optimal operating 

conditions. 
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To ensure convergence towards the process optimum, it is necessary that the model 

should predict the optimality conditions of the process accurately (Beigler et al., 

1985). To achieve this goal, a class of algorithms has been proposed in literature 

(Roberts et al., 1979; Tatjewski, 2002; Gao et al., 2005; Chachuat et al., 2009; 

Marchetti et al., 2009; Costello et al., 2011) where the optimization objective and 

constraints are adjusted for the differences between their predicted and measured 

gradients. Since these corrections are added directly to the corresponding functions in 

the optimization problem, they have to be filtered in order to avoid aggressive 

corrections so as to obtain a smoother convergence. However, if the process data is 

very noisy, this may slow down the rate of convergence significantly. In another 

study (Srinivasan et al., 2002), unlike the standard estimation approach where the 

parameters are estimated only to correct for the prediction error, the authors also 

included the difference between the predicted and measured objective functions’ 

gradients as a feedback and, as a result, the parameters were updated to obtain a 

trade-off between the identification and optimization objectives. If the mismatch 

between these objectives is significant around the optimum, one of the two objectives 

has to be compromised.  

In Chapter 4, we proposed an alternative approach where a correction is added to 

the model outputs in a way that, upon convergence, the updated set of model 

parameters not only minimizes the prediction error but also predicts the gradients of 

the optimization problem with a minimum error thus simultaneously satisfying the 

identification and optimization objectives. At a given iteration, the proposed 

correction was based on the linearization of model outputs around the parameter 

estimates that minimizes the prediction error. Thus, the correction was given by a 

linear function of the change in model parameters that also minimizes the difference 

between predicted and measured gradients of the optimization problem for that 

iteration. However, this linear approximation limited the change in parameter 

estimates only to a region where the assumption of linearity is valid. For nonlinear 

problems it was found that this region could be very small thus limiting the ability to 
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correct for the gradients of the optimization problem, resulting in slower convergence 

to the optimum. 

In this chapter, the previous study is expanded to improve upon the convergence of 

the algorithm in two ways; (1) the correction term is considered to be a quadratic 

function of the model parameters and (2) a robust formulation is considered for the 

optimization problem where a weighted sum of the nominal performance and its 

variability due to model uncertainties is minimized. An additional novel contribution 

of this work is related to the description of parametric uncertainty used in the robust 

optimization problem. The conventional method for estimating uncertainty in 

parameter estimates is based on linearization of the model which, for normally 

distributed measurement errors, results in normally distributed uncertainty in 

parameter estimates. However, the assumption of linearization may not be valid for 

the given level of measurement noise, especially in nonlinear problems. Instead, a 

more accurate approach based on the Bayes Theorem is adopted in this work where 

linearization assumptions are not required. To this end, a comparative study is also 

presented where the effect of Bayesian and normal description of parametric 

uncertainty is compared with respect to the convergence of the algorithm. 

The organization of this chapter is as follows. Section 5.2 & 5.3 covers the theory 

for the proposed modifications with the overall optimization methodology 

summarized in Section 5.4. The methodology is, then, illustrated using a penicillin 

production process as a case study in Section 5.5 and finally we conclude the chapter 

with the future work in section 5.6. 
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5.2 Model Correction 

5.2.1 Preliminaries 

The uncertainties in the model, either because of insufficient excitation from the 

measurements or incorrect model structure, often results in non-optimal operating 

policies. The standard two-step approach aims to tackle this problem by continuously 

updating the model parameters at the sub-optimal operating conditions, calculated 

using the last calibrated model. The first step in this approach is the model 

identification, where the model parameters are, in general, estimated by minimizing 

the sum of squared error between the predicted and the measured variables at some 

given operating conditions.  

Mathematically, this can be expressed as follows: 

           
 

∑ ‖  (  )   (    )‖
 

 

   
  

            ̇   (        )  

    ( ) (P.5.1) 

Where,         is the vector of model states,         is the vector of model 

parameters,         is the vector of process input variables,         and          are 

the vectors of predicted and measured output variables, N is the number of time 

points,         is a set of differential equations representing the correlation between 

the model states and the input variables and, finally,         is a mapping between 

the model states and the predicted outputs. 
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Once the parameter estimates are obtained, the model is optimized as follows: 

             
 

 (      )  

            ̇   (        )  

    ( )  

  (      )    (P.5.2) 

Where,   is the objective function (or the cost) to be minimized and         is a 

vector of equality or inequality constraints. 

However, when there is a mismatch between the model structure and the actual 

process, i.e. the set of model equations given by  (        ) does not represent the 

actual process behaviour, the convergence of the two-step approach cannot be 

guaranteed. Since the unmodelled dynamics are, in general, a varying function of the 

model states and the inputs, when such model is calibrated against given experimental 

data, the parameter estimates have to compensate for this variable error. As a result, 

there is no unique set of parameter values that can satisfy the identification objective 

(P.5.1) for all the possible realizations of input conditions. It is also possible that the 

set of parameter estimates that minimizes the prediction error at a given set of 

operating conditions   , may not minimize this error in the neighbourhood of   . 

Therefore, the model may predict incorrectly the gradients of the optimization 

objective function, i.e.: 

 
  (       )

   
 

  (     )

   
 (5.1) 

This is also true for the constraints. In a worst case scenario, there is a possibility 

that the set of above predicted gradients drives the model-based optimization search 

away from the process optimum and as a result of that: 
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  (       )   (     ) (5.2) 

To address these problems, if it is desired to estimate the parameters to predict 

these gradients correctly, the minimization of the prediction error, solved by problem 

P.5.1, has to be relaxed to a certain extent. To reduce this contradiction between the 

identification and optimization objectives, in Chapter 4, we proposed a linear 

correction term in the model outputs such that it attempts to correct for the modelling 

error as the algorithm proceeds towards the process optimum. Upon convergence, the 

updated model parameters not only minimize the difference between the predicted 

and measured gradients but also the prediction error. In the next sub-section, the 

theory behind this model correction is summarized and a new correction based on 

quadratic approximation is proposed which is shown to improve the rate of 

convergence significantly over the previously proposed linear correction. 

5.2.2 Quadratic Model Correction 

The standard identification problem (P.5.1) results in the parameter estimates that 

minimize the sum of squared error between the predicted and measured outputs. Let 

   represents the minimum sum of squared errors corresponding to the parameter 

estimates   , as follows: 

    ∑ ‖  (  )   (     )‖
 

 

   
     (5.3) 

Let     be the change in parameter estimates   , required to minimize the 

difference between the predicted and measured gradients of the optimization 

objective function and the constraints at the current operating conditions. However, 

with       , the updated sum of squared errors between the predicted and 

measured outputs is no longer at its minimum and can be expressed as follows: 
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  ∑ ‖  (  )   (         )‖

 
 

   
 (5.4) 

To minimize this error, or in other words, to have   
    , a vector of constant 

corrections     is introduced to the model outputs in Equation (5.4), such that: 

 

∑ ‖  (  )  ( (         )    )‖
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(5.5) 

To satisfy Equation (5.5), the corresponding error terms on the both sides of the 

equality should satisfy: 

   (  )   (         )       (  )   (     ) (5.6) 

Following a rearrangement, the correction term can be expressed as:  

     (         )   (     ) (5.7) 

Using a Taylor Series Expansion, the model outputs with the updated model 

parameters,  (         ) can be expanded around    as follows: 

 

 (         )

  (     )    (  )     
 

 
    

   (  )       
(5.8) 

Where,   is the Jacobian whose elements are the derivatives of outputs with respect 

to model parameters and   is the corresponding Hessian 

Combining Equations (5.7) and (5.8), the correction term is, then, given by: 

      (  )     
 

 
    

   (  )       (5.9) 
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Neglecting terms higher than second order, the above correction can be 

approximated by the quadratic expansion around    as follows: 

      (  )     
 

 
    

   (  )     (5.10) 

The region where the above quadratic expansion is valid can be calculated by using 

the relative truncation error as follows: 
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   (  )      (     )
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(5.11) 

The calculation of the change in model parameter,     is, then, calculated from an 

optimization problem as follows: 
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  (P.5.3) 

Where,    and    are weights for the objective function and the constraints’ 

gradients respectively and     
  is a limit on the relative truncation error representing 

the required degree of accuracy for the quadratic approximation of the model. 
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To summarize, the estimation of parameters procedure is divided into two steps. In 

the first step, the estimates are obtained independent of the optimization objectives to 

minimize the prediction error at the given operating conditions. In the subsequent 

step, the change in these estimates is computed such that the model predicts the 

measured gradients of the optimization problem with a minimum possible error and, 

at the same time, a quadratic correction is added to the model so as to maintain the 

prediction error to its minimum value from the first step. The updated model with the 

parameter estimates   
  is, then, optimized for the optimal operating conditions where 

the model is re-calibrated with the new correction, followed by re-optimization. This 

procedure is repeated until convergence to the process optimum is achieved. The 

termination criteria and the conditions for guaranteed convergence are the same as 

presented in Chapter 4. 

5.3 Robust Optimization 

The rate at which the algorithm will converge highly depends on the change in 

parameter estimates     along the iterations. For faster convergence, it is desirable to 

have larger values for     but this is restricted by the relative truncation error     
  

which restricts the values of     to a region where the proposed model correction is 

assumed to be valid. The new correction, as proposed above, addresses this problem 

by increases this region but it does not explicitly address the robustness in the 

presence of noise. To this end, a robust optimization problem is proposed where a 

weighted sum of the nominal objective and its variability is minimized. 

5.3.1 Parametric Uncertainty 

The effect of modelling error and the measurement noise is usually expressed by 

computing the confidence region for the parameter estimates. In principle, this region 

represents the probabilities by which the different parameter estimates predict the 

given experimental data. The conventional method to compute this region is based on 
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linearization of model around the parameter estimates. Then, for normally distributed 

measurement errors, the resulted parametric uncertainty is also normal and can be 

expressed by the following hyper-ellipsoid (Beck et al., 1977): 

    {  (    )
   

  (    )     

 ( ) (5.12) 

Where,             is a covariance matrix of the measurement errors and    

 ( ) 

is the chi-square distribution with    degrees of freedom and   confidence level. This 

description is, however, valid only if either the model is linear or the uncertain 

parameter region is small enough that the underlying assumption of linearity is valid. 

For nonlinear problems, a more generic approach is required. In this study, it is 

proposed to compute the parametric distribution using the Bayes’ theorem as follows: 

  (   )  
 (   )  ( )

∫  (   )  ( )  
 (5.13) 

Here,  (   ) is the posterior probability of the parameters, conditional on the 

given set of measurements D,  ( ) is the prior probability of parameters, 

representing any information about the parameters available a priori and  ( ) 

represents the likelihood of parameters which basically defines the error distribution. 

Assuming the errors between the output measurements and predictions to be 

independent and normally distributed, the likelihood function is given by a   -

dimensional multivariate normal distribution as follows: 

  (   )  
 

(  )         
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   (    ( ))) (5.14) 

In this study, the effect of both the normal and the Bayesian parametric 

distributions is investigated. Since the procedure requires the likelihood function to be 

solved multiple times over the parameter space, using a full nonlinear model is 

usually computationally expensive. Instead, an approach based on Polynomial Chaos 
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(PC) expansions is used. Since the Bayesian Inference considers the model 

parameters as well as the model outputs as random variables, the PC expansions can 

be used to build a surrogate representation of the model outputs as a function of 

parameters by propagating the prior parametric distribution into the model outputs, as 

shown in chapter 3. Once the uncertainty description is obtained, the PC expansions 

are used to propagate this uncertainty into the optimization objective function to 

compute its variability. 

5.3.2 Polynomial Chaos Expansions 

In this sub-section, a brief background for PC-based uncertainty propagation is 

presented. 

Let us define a probability space (     ), where   is the sample space,   is the  -

algebra over   and   is a probability measure on  . If  {  ( )}   
  is a set of 

independent random variables with a standard probability distribution, then, the PC 

expansion of any random variable X with a finite variance will be as follows: 
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(5.15) 

Where,    is the basis function of the order p (Ghanem et al., 1991),   is the 

random event and  ( ) is the corresponding deterministic coefficient. The expansion 

can be expressed in more compact form (Ghanem et al., 1991) as: 

  ( )  ∑  ̂   (          )
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The fundamental property of a PC expansion is that all basis functions are 

orthogonal to each other, i.e.  

 〈    〉  ∫  ( )  ( ) ( )      〈  
 〉 (5.17) 

The coefficients in the expansion can, then, easily be computed using Galerkin 

projections as follows: 

  ̂  
〈    〉

〈   
 〉

 (5.18) 

To propagate the effect of parametric uncertainty into the desired variable, the first 

step is to formulate the PC expansions for the uncertain model parameters. To 

compute the expansion coefficients, a one-to-one mapping between the set of 

parameters   and the set of independent random variables   is needed. For the case of 

uncorrelated parameters, this can be achieved by an inverse transformation as 

follows: 

       (∫  (  )  
 

 

) (5.19) 

Where,     is the inverse of the cumulative density function for the independent 

random variable    and  (  ) is the probability of the model parameter   . 

For the case of correlated parameters, the following transformations based on 

conditional and marginal probabilities can be applied: 
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The formulation of PC expansion for uncorrelated parameters is straightforward 

where the mapping by Equation (5.19) can be used to compute the coefficients of the 

respective expansions. However, for the case of correlated parameters, the mapping 

for the parameters based on conditional probabilities will result in PC expansions that 

are conditional on the other parameters. For such situation, the approach presented in 

our recent work (Mandur et al. 2013b) can be applied where the case of two 

correlated parameters is illustrated. Once the PC expansions for the uncertain 

parameters are formulated, to propagate this uncertainty into the desired variable, e.g. 

the optimization cost, a map is built between the desired variable and the independent 

random variables as follows: 

1. Select the value of independent random variables   at the required 

collocation points  

2. Calculate the set of parameter values from their PC expansions  

3. Solve the nonlinear model with this set of parameter values for the desired 

output. 

Using this map, the coefficients in the PC expansion of the desired variable can be 

calculated from Equation (5.18).  

Due to the orthogonality of basis functions (equation), the variability of the output 

variable can be calculated by an analytical expression as follows: 

    ( )  ∑ ̂ 
    

   

 

   

 (5.22) 
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5.4 Proposed optimization methodology 

The overall methodology is summarized by the flowchart in Figure 5.1. The 

algorithm begins with the identification step with the objective function as posed in 

P.5.1 and the initial model correction term as zero. The change in model parameters 

and the new model correction is, then, calculated using the problem P.5.3. With the 

updated model parameters, the nominal or robust optimization problem is solved. 

Then, the procedure is repeated with the updated model corrections at new optimal 

operating conditions until it converges to a steady state. 
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Figure 5-1: Proposed Algorithm with quadratic correction and robust formulation 
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5.5 Case Study 

The proposed algorithm is illustrated on a fed-batch bioprocess for penicillin 

production. The actual process is considered to be described by a system of 

differential equations ((5.23)-(5.26)) as follows (Bajpai and Reuss, 1980; Birol et al. 

2002): 
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Where,     and   represent the concentrations of biomass, penicillin and substrate 

respectively and   is the culture volume. The rate constants and other parameters are 

defined as follows:    and    are specific growth rates for the biomass and penicillin 

respectively with    and    as respective saturation constants,    represents the 

substrate inhibition in the growth kinetics of the penicillin,    accounts for the 

consumption of penicillin by hydrolysis,    ⁄  and    ⁄  are the yields per unit mass of 

substrate for the biomass and penicillin respectively,     accounts for the 

consumption of substrate in maintaining the biomass and, finally,     is the 

concentration of substrate in the feed. 
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The above Equations ((5.23)-(5.26)) are used to generate in silico data for the 

output variables as well as for the gradient of the cost function in the optimization 

problem. 

For the process model, the consumption of penicillin by hydrolysis occurring in the 

actual process is assumed to be unknown to the user. Accordingly, the rate of change 

in the penicillin concentration is inaccurately modelled, as: 
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Assuming the dynamics of the other states to be known accurately, the set of 

Equations (5.23) and (5.25)-(5.27), then, represents the inaccurate model of the 

process to be used in the proposed algorithm. 

The optimization objective is to maximize the amount of penicillin at the end of 

batch by manipulating the initial substrate concentration    and the input feed rate   

while ensuring that the culture volume does not exceed a maximal volume of 120L. 

Mathematically, the problem is formulated as: 

    
    

       (             )  

            (    )     (         )  

  (             )       (P.5.4) 

The algorithm starts with a parameter estimation step at initial input conditions 

listed in Table 5.1. Here, only two parameters    and    are updated in the algorithm 

whereas the remaining parameters are kept at their initial values, that were estimated 

in the first iteration with the incorrect model. The reasons for selecting a subset of 

parameters are; (1) to reduce the sensitivity to noise and (2) to reduce the 
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computational load in the robust optimization problem. It has been shown that as the 

number of parameters increase, the propagation of parametric uncertainty using PC 

expansions needs more model runs, thus increasing the overall computational time 

since this propagation step has to be repeated several times in optimization 

framework (Mandur et al., 2013b). In situations where the optimal inputs provide 

insufficient excitation to estimate all the parameters, updating only a subset of 

parameters becomes even more relevant. However, this is beyond the scope of this 

study. 

 

 

Table 5-1: Set of initial input conditions 

Biomass Conc. (X0) 0.1 (g/l) 

Substrate Conc. (S0) 0.1 (g/l) 

Product Conc. (P0) 0 (g/l) 

Initial Culture Volume (V0) 100 (L) 

Input Feed (F) 0.04 (L/hr) 
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5.5.1 Results and discussion 

As mentioned in the introduction, the key motivation behind this work was to 

improve the convergence of the previously proposed algorithm (c.f. Chapter 4) in two 

directions: (1) by using a new model correction term based on quadratic expansion of 

the model and (2) by addressing robustness in the optimization problem to reduce the 

effect of modelling errors and the noise. 

The effect of the model correction is discussed first. It is worth mentioning, here, 

that in all optimizations the optimal feed rate   always converged to a value 

of             satisfying the constraint on culture volume and, therefore, it will not 

be considered in the following discussion. At any iteration, the trade-off between the 

identification and optimization objectives is obtained by the proposed model 

correction and the maximum truncation error (    
 ), for which this correction is 

assumed to be valid. It was hypothesized that, for highly nonlinear models, the linear 

approximation used in our previous work may be valid only in a small neighbourhood 

of the operating point. Thus, when using linear corrections, a small value of the 

truncation error bound     
  had to be used to improve the predictive accuracy in the 

transients which limited the extent to which correction for the optimization gradients 

can be made. To test the effect of a quadratic correction, the algorithm is solved using 

both quadratic and linear corrections for     
     and the corresponding 

convergence of the optimal    is compared in Figure 5.2. It is clear from this figure 

that with the linear correction, the algorithm is not even able to match the sign of the 

predicted and measured gradients for some of the iterations, thus, leading to an 

oscillatory profile during the transient. On the other hand, the quadratic 

approximation of the given model allows for much larger changes in the parameter 

estimates in all the iterations, increasing the ability to fit the measured optimization 

gradients more accurately. As a result, the new correction resulted in a smooth and 

much faster convergence towards the process optimum. In these results, the 
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measurements were assumed to be noise free so as to evaluate the performance of the 

algorithm when only the modelling error is present. 

 

 

Figure 5-2: Comparing the effect of linear vs. quadratic model correction on the 

convergence of optimal    

 

In the next comparison, the measured outputs as well as the gradients of the 

optimization problem are assumed to be corrupted by Gaussian noise. Comparisons 

are conducted for both types of corrections, i.e. linear and quadratic, and also for two 

different levels of truncation error. Since the noise realizations are random, the 

algorithm is solved for each case 10 times with different realizations of the noise. 

Figure 5.3 shows the convergence of the average optimal value of the inlet substrate 

concentration    along with the associated variability in the search path in each case. 

The effectiveness of the algorithm is, then, evaluated in terms of (1) the integral 

absolute error (IAE) between the predicted and the actual optimal    and (2) the total 

variability in the predicted optimal   , summarized in Table 5.2.  
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Table 5-2: Comparison of model correction based on linear vs quadratic 

approximation 

     
         

     

IAE Std. deviation   IAE Std. deviation   

Linear approximation 8.7292 4.0109 6.3651 2.8862 

Quadratic approximation 5.7419 2.7338 4.8090 2.3256 

 

 

 

 

 

 

  



 

 113 

 

(a) 

 

(b) 

Figure 5-3: Convergence of optimal    based on (a) linear model correction 

and     
    , (b) quadratic model correction and     

    , (c) linear model 

correction and     
     and (d) quadratic model correction and     
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(c) 

 

(d) 

Figure 5-3: Convergence of optimal    based on (a) linear model correction 

and     
    , (b) quadratic model correction and     

    , (c) linear model 

correction and     
     and (d) quadratic model correction and     
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Compared to the linear approximation of the model, the proposed correction based 

on the quadratic approximation resulted in a significant reduction in both IAE and 

variability of the optimal    in all cases. For     
    , these reductions are nearly 

24.45 % and 19.42% respectively whereas for     
    , the numbers are much 

higher with the IAE reduced by nearly 34.22 % and the variability by nearly 31.84 %. 

These results are critical since, in a practical situation, a smaller IAE and variability 

will provide higher confidence to plant personnel that the algorithm is actually 

converging to a process optimum rather than changing at random due to process 

variability and measurement noise.  

To better understand how the measurement noise affects the convergence let us 

recall the parameter estimation procedure and the role of the truncation error. The 

estimation, basically, involves two sequential steps. In the first step, the parameters’ 

and states’ estimates are obtained by minimizing the prediction error with the model 

from previous iteration. The uncertainty in these estimates originates from a 

combination of modelling errors and the noise in measured outputs used in the 

identification objective. Then, in the second step, a change in these estimates is 

calculated such that the model can predict the optimization gradients more accurately. 

To ensure that the model still minimizes the prediction error, a correction to the 

model is added which is based on an approximation around the previous estimates. 

The change in the estimates is limited to a region where this approximation is valid. 

Here, it can be observed that allowing for a larger change will make the estimates 

more sensitive to the noise in gradients whereas allowing for a smaller change will 

make them more sensitive to the modelling errors and the noise in measured outputs. 

Out of the four cases, the correction based on linear approximation and 1% 

truncation error allows for the smallest change and, as a result, the estimates are 

highly affected by both modelling errors and the noise in measured outputs. With the 

correction based on quadratic approximation, the change is of such an extent that the 

effect of modelling errors is reduced significantly, giving much higher reduction in 
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the variability of optimal   . From these results, it can be concluded that, for the same 

level of prediction accuracy, the proposed quadratic correction provides much better 

robustness to noise and modelling error as compared to a linear correction Although, 

the new correction term has an added computational load because of the calculation 

of Hessian matrix, this increase has a marginal effect on the overall computational 

time which is dominated by the optimization step. 

In the second approach, the sensitivity of the algorithm to noise and modelling error 

is reduced by explicitly adding a measure of robustness to the optimization objective. 

For the given case study, a robust optimization problem is formulated as follows: 

    
    

      [ (           )       ( (           ))]  

            (    )     (         )  

 ‖ (             )‖ 
      (P.5.5) 

Where,     represents the variability in the amount of penicillin at final time 

averaged over the uncertain parameter region and w is the weight on the robustness. 

Since, in the parameter estimation step, the parameter estimates are obtained such that 

the model can predict the measured gradient of the nominal objective function, the 

above formulation will promote a trade-off between the corresponding nominal 

performance and its variability. 

The results using a normal distribution for parametric uncertainty will be discussed 

first. Since this uncertainty description is much easier to compute, it is the most 

commonly used description in probabilistic uncertainty analysis. The robust 

optimization problem is, then, solved 10 times with different realizations of noise for 

both 1% and 5% truncation error and     . Since one of the motivations was also 

to compare this approach with the updated model correction, the above problem is 

solved with the previously proposed linear correction. The resulting convergence of 
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the average optimal    in successive runs is shown in Figure 5.4 with the 

corresponding IAE and variability in the optimal    listed in Table 5.3. It is evident 

from these results that the variability is significantly reduced in both cases with nearly 

25.83% for     
     and 10.8% for     

    . 

 

 

 

 

Table 5-3: Comparison of nominal vs. robust iterative optimization (Linear model 

correction) 

     
         

     

IAE Std. deviation   IAE Std. deviation   

Nominal Optimization 8.7292 4.0109 6.3651 2.8862 

Robust Optimization 8.1793 2.9748 5.6249 2.5745 
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(a) 

 

(b) 

Figure 5-4: Robust convergence of optimal    for linear model correction and (a) 

    
     and (b)     
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Based on these results, the proposed quadratic correction provides better 

improvements with respect to the overall variability (see Table 5.2). This difference is 

attributed to the way the two approaches handle the model uncertainties. By allowing 

a larger change in parameter estimates, the quadratic correction aims to reduce the 

effect of modelling error and the noise in measured outputs but, at the time, it 

increases the sensitivity of the algorithm towards the noise in gradients. On the other 

hand, the robust approach aims to reduce the variability irrespective of its source. For 

this, we compared the performance of both approaches when the algorithm reaches 

the steady state and it was observed that, in this region, for     
    , the robust 

formulation results in nearly 27.4% of reduction in the variability as compared to the 

quadratic correction based solution whereas for     
    , the reduction is nearly 

the same for both cases. Thus, these results show that by explicitly taking the 

variability into account, the sensitivity to the overall noise can be reduced to a 

significant level. So, which method works better depends on the degree of 

nonlinearity in the problem and the level of noise in the measurements. However, the 

robust approach can always be used along with the quadratic correction which will 

reduce the overall variability to a greater extent. 

One of the key limitations of the robust formulations is the possibility of an offset 

which is also true for this problem. This offset is due to the presence of variability 

term in the cost function which forces the algorithm to converge to a cost that is 

different from the nominal cost. For a maximal truncation error of     
    , the 

average optimal    converged to ~55.75g/L with an offset of ~1g/L. With the increase 

in weight on variability, this offset increases further. One option to eliminate the 

offset is to switch the algorithm to the nominal mode, corresponding to a cost 

function that does not include the variability, when approaching steady state. 

However, the effectiveness of this solution is dependent on when the switching 

between robust to nominal optimization is done and it may result in higher variability 

after the switching. Another possible solution to reduce the offset, as observed in this 
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study, could be to use more realistic descriptions of model uncertainty such as the 

Bayesian based distributions as discussed below. 

For comparison, using the final optimal solutions from the above results as initial 

conditions, we solved the algorithm for both normal and Bayesian uncertainty 

descriptions with             . The results are summarised in Figure 5.5. It is 

interesting to observe that for     , the Bayesian uncertainty resulted in a steady 

state closer to the process optimum as compared to the normal counterpart. This is 

related to the fact that in the Bayesian uncertainty approach linearization is not 

required, unlike the normal description which is based on linearization of the model. 

Figure 5.6 compares the Bayesian and normal description for one of the initial 

conditions and it is evident that the Bayesian uncertainty is significantly different 

from its normal counterpart and as we increase the weight on the variability term in 

the objective function, the difference between the two uncertainty descriptions 

becomes more evident. 
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(a) 

 

(b) 

Figure 5-5: Comparing the effect of Bayesian vs normal parametric uncertainty on the 

robust convergence of optimal    for (a)     
     and (b)     

    ; (    

Normal with            Bayesian with     ;        Normal with   

  ;     Bayesian with     )  
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Figure 5-6: Comparing normal (dotted) and Bayesian (solid) descriptions of 

parametric uncertainty in    and   . 
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5.6 Conclusion 

A new correction term has been proposed to correct the model for structural 

inaccuracies as the model is optimized progressively towards the process optimum. 

The correction is based on a quadratic approximation of the model. Compared to a 

previously proposed formulation that was based on a linear correction, the proposed 

quadratic correction allows for more accurate predictions of the optimization gradient 

along the iterations, thus, achieving much faster convergence. In addition, a 

significant reduction in variability of the search path has been observed. In the second 

approach, the variability is reduced by explicitly adding a measure of variability in 

the optimization objective. Although, for the problem in this study, the first approach 

performs better in reducing the overall variability, the robust formulation has been 

shown to perform better when the algorithm reaches the steady state and is very 

sensitive to the noise in gradients. In a comparative study, it is also shown that the 

description of parametric uncertainty has a significant effect on the convergence of 

the algorithm. When compared to the Bayesian description, the normal description of 

uncertainty resulted in more conservative solutions and also in a higher offset of the 

final converged solution with respect to the true optimum. 
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Chapter 6 

Conclusions and Future Work 

This thesis presented new optimization methodologies that address and mitigate the 

effect of model uncertainties on the optimal solution. It was assumed that the 

uncertainty in a given model is due to inaccurate model structure and measurement 

noise. When an optimization problem is solved without considering the effect of these 

uncertainties, the resulting optimal solution may have a significant variability 

corresponding to different realizations of the uncertain parameters and, in case that 

the model-plant mismatch is quite significant, this solution will be far away from the 

actual process optimum. Therefore, the central theme of this research was to reduce 

both variability and bias in the optimal solution. These two objectives were 

accomplished independently in Chapters 4 and 5 and then, the respective 

methodologies were combined in Chapter 6 to formulate a robust iterative algorithm 

that has a guaranteed convergence to an actual process optimum with a minimum 

variability. Compared to the previous studies that have addressed the model 

uncertainties, the proposed algorithms resulted in much faster and smoother 

convergence and are less conservative. In the following sections, a summary of the 

key contributions and conclusions is presented. 

6.1 Robust Optimization based on Bayesian parametric 

uncertainty 

The first contribution is in the context of robust optimization where the goal is to 

search for an optimal solution such that the corresponding objective function has a 

minimum variability. This class of algorithms involves two major steps: (1) the 

quantification of model uncertainties, expressed in terms of the uncertainty in 
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parameter estimates and (2) the propagation of this parametric uncertainty onto the 

optimization objective and constraints, if any. 

Regarding the first step, the description of parametric uncertainty was obtained 

using the Bayesian approach. Since this approach requires repetitive simulations of 

the model, generally an order of        , an approximation of the model was used 

to speed up the calculations. An adaptive procedure, based on Multi-Resolution 

analysis and Polynomial Chaos (PC) expansions, was developed to formulate the 

approximation with a higher accuracy in the regions of parameter space where the 

posterior distribution is higher. It was shown that this approach has a significant 

advantage when dealing with the models that are highly nonlinear in parameters, 

especially in the case of model discontinuities.  

Then, for the second step, a procedure based on PC expansions was developed to 

propagate the Bayesian description of parametric uncertainty onto the optimization 

objective. When compared to the conventional approach based on Monte-Carlo 

sampling, the proposed PC-based approach reduced the computational time 

drastically from 60-70    to 4-5 min in the case of one uncertain parameter and to 25-

30 min in the case of two uncertain parameters. This opens up the possibility of 

applying this algorithm to online problems. Although the number of simulations in 

this approach grows rapidly with the number of uncertain parameters, it has been 

shown that, for a moderate number of parameters, this number is still much smaller 

than the one required for Monte Carlo sampling.  

In another comparative study, the optimization problem was solved for both 

Bayesian and normally distributed parametric uncertainty. It was shown in two of the 

examples that the optimal solutions based on the Bayesian parametric uncertainty are 

much less conservative with the measured values of the objective function improved 

by approximately 36-50%. For the other two examples, the optimal solutions were 

observed to be less sensitive to the choice of uncertainty descriptions. 
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6.2 Model correction for optimization 

The second contribution is an iterative optimization algorithm where the model is 

corrected for structural error as the algorithm progresses towards the process 

optimum. This algorithm is motivated by the fact that, in the presence of model 

structure error, the parameter estimates that minimize the prediction error in the 

outputs may not predict the measured gradients of the optimization objective 

accurately. To this end, corrections were added to the model outputs such that, with 

the updated parameter estimates, the corrected model achieves a better tradeoff 

between the identification and optimization objectives. The proposed procedure 

involves two sequential steps. In the first step, the parameter estimates    were 

obtained that minimizes the standard identification objective for the inaccurate model. 

Then, in the second step, a change in these estimates     was computed such that the 

difference between predicted and measured gradient of the optimization objective is 

minimized and at the same time, the model outputs were corrected to restore the 

prediction error to its minimum, corresponding to the value in the first step. In the 

initial algorithm, developed in Chapter 4, each correction term was based on the 

linearization of the corresponding model output with respect to the parameter 

estimates in the first step. 

A trade-off between the identification and optimization objectives depends on the 

value of    . The larger values allow the model to predict the measured optimization 

gradients more accurately but at the expense of accuracy in predictions. The value of 

    was controlled by using a bound on a relative truncation error   
  in the 

approximation. In a comparative study, the algorithm was solved for two different 

values of   
  and it was observed that for smaller   

 , the convergence towards the 

process optimum was slower as the model was not able to predict the optimization 

gradients accurately. On the other hand, as expected, the convergence was relatively 

faster for the larger value of   
  but at the cost of a higher prediction error. When 

compared to the previous reported studies, the proposed methodology converges 
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much faster to the process optimum and exhibits less variability along the search path. 

One of the reasons is that the proposed model updating strategy provides a model-

based filter that outperforms the ad-hoc filtering needed in these studies. 

Later in Chapter 5, an updated model correction based on quadratic approximations 

was proposed. In a comparative study, it was observed that for the same values of   
 , 

the IAE in the optimal solution was reduced by approximately 30% when the model 

was corrected using quadratic corrections. Similarly, the variability in the average 

optimal solution was reduced by approximately 25%. As expected for nonlinear 

models, the linear approximation required the use of much smaller values for     

thus making the convergence much slower whereas the quadratic approximation was 

able to capture nonlinearity very well which, for the same   
 , allowed the algorithm 

to select larger values of    .  

It was also shown that, regardless of the value of truncation error and the type of 

approximation in the model correction, the algorithm eventually converges to the 

process optimum. Moreover, upon convergence, both identification and optimization 

objectives were satisfied. 

6.3 Robust run-to-run optimization 

The third and final contribution is a robust run-to-run optimization algorithm 

developed by combining the first two contributions presented above. In the iterative 

algorithm, discussed in the previous section (6.2), the main objective was to eliminate 

the bias between the model-based optimal solution and the actual process optimum. 

However, depending on the value of truncation error, the algorithm can be made less 

sensitive to either modeling error and the noise in measured outputs or the noise in 

measured gradients. To address this trade-off, the effect of model uncertainties was 

accounted for explicitly by adding a measure for robustness in the optimization 

objective. Since the idea behind this approach was to show the relative importance of 
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addressing model uncertainties explicitly, it is presented as a part of Chapter 6 where 

it was also compared with the quadratic model correction. Although, the quadratic 

correction increased the robustness of algorithm towards modelling error and the 

noise in measured outputs, it makes the algorithm more sensitive to the noise in 

measured gradients. On the other hand, the robust iterative approach reduced 

sensitivity with respect to all three sources of uncertainties. In one comparison, the 

results were specifically investigated in the neighborhood of the optimum. For one of 

the examples where the nominal algorithm is more sensitive to the noise in measured 

gradients, it was observed that the robust approach reduces the variability by as much 

as 27%. 

In another comparative study, the algorithm was solved for both Bayesian and 

normal descriptions of parametric uncertainty. In terms of the final optimal solution, 

it was observed that the algorithm converges closer to the process optimum when the 

Bayesian description was implemented. It is well known that the robust algorithms 

cannot eliminate the bias as the objective function that is minimized corresponds to a 

worst-case scenario based on the measured model uncertainties. To this end, the 

common approach is to switch to a nominal optimization when the algorithm is close 

to convergence but this makes the algorithm more sensitive to model uncertainties 

around the optimum. Based on the comparative results in this thesis, it is concluded 

that using more accurate uncertainty description, as it was the case with Bayesian 

approach, can reduce the bias while increasing robustness with respect to 

uncertainties. 

6.4 Future Work 

Based on the findings in this thesis, the following directions were identified for future 

research: 
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1. One important conclusion in this thesis is that there are significant advantages 

in using Bayesian uncertainty in optimization framework especially when 

optimizing nonlinear models with model error. However, its application in 

online optimization problems such as robust RTO and robust MPC is 

somewhat limited, perhaps, due to very high computational time associated 

with its quantification and subsequent propagation into the objective function. 

To this end, when using PC expansions, the overall computational time is 

observed to be of the order of few minutes which opens up the possibility for 

solving Bayesian based robust optimization in online applications. One 

possible research direction is to reduce the computational time further by 

using an intrusive approach in calculating the PC expansions. To this end, the 

challenges involved in reformulating the model equations have to be 

addressed. 

2. In the iterative optimization algorithm (Chapters 4 & 5), the proposed model 

correction is a constant term, calculated at the specific set of operating 

conditions during the iterative search. The convergence of the algorithm can 

be further improved by using past corrections to formulate a new correction 

term that is dependent on the operating conditions, i.e. both a function of the 

parameters and the decision variables. In this way, the model will be corrected 

for structural uncertainty over a larger region of operating conditions. 

3. In this thesis, only a subset of parameters was updated in the iterative 

framework. This was somewhat motivated by the fact that the optimal 

operating conditions may not provide enough excitation to estimate all the 

parameters. For simplicity, only two parameters were updated in the proposed 

algorithm. However, the selection of these parameters was fixed from run to 

run. To this end, it would be more appropriate to select different set of 

parameters every time the model is updated and this could be based on 

information about the sensitivity of the identification and optimization 
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objectives with respect to parameters. Another possibility is to incorporate the 

design of experiments in the optimization objectives and in this way, it could 

be possible to obtain a solution that resolves a trade-off between sufficient 

excitation for model identification and optimality. 

4. One of the applications where the proposed methodologies can be applied is 

the design of growth media for the cell cultures. The cell growth models are 

generally associated with very high uncertainty. First, the complete 

knowledge of intracellular mechanisms is still unknown and it is an active of 

research. Secondly, the measurements of biomass and different metabolites 

are very uncertain, mostly because of inherit variability in the cellular 

mechanisms. There is a strong interest from the biopharmaceutical industry to 

design growth media with optimal concentrations of amino acids and free of 

animal derived compounds. Since the cells continue to secrete toxins, it very 

important to predict the toxins level at the optimal solution before 

implementing this solution to the processes. Since the proposed methodology 

allows for accurate predictions around the optimum, it is quite suitable for this 

application. Moreover, the robust framework will provide an added advantage 

in filtering out the effect of uncertainties. 
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Appendix A 

Matlab Codes 

 

Algorithm to solve iterative procedure 

 

function robust_loop_fmincon2P 

  

clear all; close all; clc; tic; 

  

epsis = [sym('epsi1','real') sym('epsi2','real')]; 

  

pci_epsi1=pcepoly1d('legendre',epsis(1),20); 

pci_epsi2=pcepoly1d('legendre',epsis(2),20); 

  

for z=1:1   

  

U0=[0.1 0.04]; 

  

pci_func=2D_pce(‘epsi1’,’epsi2’); 

pci_den=2D_pce_den(‘epsi1’,’epsi2’); 

 

% Define deviations in input for calculating gradients 

  

dev_1=0.5; 

dev_2=0.5; 

  

opt=odeset('NonNegative',[1,2,3,4],'RelTol',1e-6,'AbsTol',1e-8); 

[exp_data, plantgrd] = pen_sim(U0,dev_1,dev_2); toc 

  

K=dlmread('fmincon_parameters_LCLS.txt'); 

K0=[K(2) K(5)]; prev_corr=0; 

  

[Kout, Pfinal,cov_data_prev] = par_estim(U0,exp_data,prev_corr,K0); 

toc 

[Kout_prime, Pfinal_prime,c,gradpred,cov_data] = 

delta_theta(U0,prev_corr,plantgrd,K,Kout,Kout); toc 

[theta1_PCE, theta2_PCE] = 

twoP_legendre_sse_normal_shiftedmeans(Kout_prime,cov_data,pci_epsi1,

pci_epsi2); toc 

  

new_corr=prev_corr+c; 

disp(plantgrd) 

[x,f,~,~] = 

runobjconstrfunc(U0,new_corr,K,theta1_PCE,theta2_PCE,pci_func,pci_de

n,Kout_prime); toc 
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output=[Kout Pfinal plantgrd Kout_prime Pfinal_prime gradpred x -f 

cov_data_prev cov_data]; 

dlmwrite(['outputdata_12mar_RBTB_trunc1_noise_both_grad_',num2str(z)

,'.txt'], output, 'delimiter', '\t','precision',  '%.12f'); 

dlmwrite(['xdata_12mar_RBTB_trunc1_noise_both_grad_',num2str(z),'.tx

t'], x, 'delimiter', '\t','precision',  '%.4f'); 

  

prev_corr=new_corr; 

U0=x; 

  

correc(:,:,1)=new_corr; 

open(['xdata_12mar_RBTB_trunc1_noise_both_grad_',num2str(z),'.txt']) 

open(['outputdata_12mar_RBTB_trunc1_noise_both_grad_',num2str(z),'.t

xt']) 

  

for i=2:30 

     

opt=odeset('NonNegative',[1,2,3,4],'RelTol',1e-6,'AbsTol',1e-8); 

[exp_data, plantgrd] = pen_sim(U0,dev_1,dev_2); 

  

K=dlmread('fmincon_parameters_LCLS.txt'); 

[Kout, Pfinal,cov_data_prev] = 

par_estim(U0,exp_data,prev_corr,Kout_prime); toc 

[Kout_prime, Pfinal_prime,c,gradpred,cov_data] = 

delta_theta(U0,prev_corr,plantgrd,K,Kout,Kout_prime); toc 

[theta1_PCE, theta2_PCE] = 

twoP_legendre_sse_normal_shiftedmeans(Kout_prime,cov_data,pci_epsi1,

pci_epsi2); toc 

  

new_corr=prev_corr+c; 

disp(plantgrd) 

[x,f,~,~] = 

runobjconstrfunc(U0,new_corr,K,theta1_PCE,theta2_PCE,pci_func,pci_de

n,Kout_prime); 

  

prev_corr=new_corr; 

U0=x; 

  

output=[Kout Pfinal plantgrd Kout_prime Pfinal_prime gradpred x -f 

cov_data_prev cov_data]; 

dlmwrite(['outputdata_12mar_RBTB_trunc1_noise_both_grad_',num2str(z)

,'.txt'], output,'-append', 'delimiter', '\t','precision',  

'%.12f'); 

dlmwrite(['xdata_12mar_RBTB_trunc1_noise_both_grad_',num2str(z),'.tx

t'], x, '-append', 'delimiter', '\t','precision',  '%.4f'); 

  

correc(:,:,i)=new_corr; 

save(['correc_12mar_RBTB_trunc1_noise_both_grad_',num2str(z),'.mat']

,'correc'); 

  

end 

end 

toc  
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Process simulator 

  

function [exp_data, plantgrd] = pen_sim(U0,dev_1,dev_2) 

  

U=U0; Y0=[0.1 0 U(1) 100]; 

[~, Y] = ode15s(@model,[0:6:8*24], Y0, opt); 

disp([Y(end,2)*Y(end,4) Y(end,4) Y(end,2)])  

  

U=[U0(1)+dev_1 U0(2)]; Y0=[0.1 0 U(1) 100]; 

[~, Y1] = ode15s(@model,[0:6:8*24], Y0, opt); 

U=[U0(1) U0(2)+dev_2]; Y0=[0.1 0 U(1) 100]; 

[~, Y2] = ode15s(@model,[0:6:8*24], Y0, opt); 

  

% Generating Exp. Data 

  

std_data=sqrt([4 0.4 4]); 

exp_data=[normrnd(Y(:,1),std_data(1),size(Y,1),1) 

normrnd(Y(:,2),std_data(2),size(Y,1),1) 

normrnd(Y(:,3),std_data(3),size(Y,1),1)]; 

  

% Calculating plant gradients 

  

dphidu_1=(Y1(end,2)*Y1(end,4)-Y(end,2)*Y(end,4))/dev_1; 

dphidu_2=(Y2(end,2)*Y2(end,4)-Y(end,2)*Y(end,4))/dev_2; 

dphidu_1=normrnd(dphidu_1,5); 

dphidu_2=normrnd(dphidu_2,5); 

  

plantgrd=[dphidu_1 dphidu_2]; 

  

function dY = model(~, Y) 

  

dY=zeros(4,1); 

  

X=Y(1); 

P=Y(2); 

S=Y(3); 

V=Y(4); 

  

% Input Feed rate 

F=U(2); 

  

% Substrate conc. in the feed 

sf=600; % g/l 

  

% Model Parameters 

K=[0.092 0.15 0.005 0.0002 0.1 0.04 0.45 0.9 0.014]'; 

  

% Biomass 

mux=K(1); 

Kx=K(2); 

% Product  

mup=K(3); 

Kp=K(4); 
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KI=K(5); 

Kh=K(6); 

% Substrate 

Yxs=K(7); 

Yps=K(8); 

mx=K(9); 

  

% Loss in the culture volume due to evaporation 

Floss=V*2.5*10^-4*(exp(5*(298-273)/(373-273))-1); 

  

% ODEs 

dY(1)=mux*S*X/(Kx*X+S)-(X/V)*(F-Floss); 

dY(2)=mup*S*X/(Kp+S*(1+S/KI))-Kh*P-(P/V)*(F-Floss); 

dY(3)=-mux*S*X/(Kx*X+S)/Yxs-mup*S*X/(Kp+S*(1+S/KI))/Yps-mx*X+F*sf/V-

(S/V)*(F-Floss); 

dY(4)=F-Floss; 

  

end 

end 

  

 

Function to estimate model parameters 

 

function [Kout, Pfinal, cov_data_prev] = 

par_estim(U,exp_data,prev_corr,K0) 

  

Y0=[0.1 0 U(1) 100]; 

  

lb=1e-6*ones(1,2); 

ub=5*ones(1,2); 

  

options=psoptimset('Display','iter','UseParallel','always',... 

    'TolX',1e-6,'TolFun',1e-6,'TolCon',1e-8,... 

    'CompletePoll','on','CompleteSearch','on'); 

[x,~] = fmincon(@sseobj,K0,[],[],[],[],lb,ub,[],options);  

Kout=x; sseobj(x); Pfinal=Y(end,2)*Y(end,4); 

  

K(2)=x(1); 

K(5)=x(2); 

[T,~,DXDP] = sens_sys('altered_model_jac',[0:6:8*24],[0.1 0 U(1) 

100],opt,K',[],[],U); 

  

V=diag([4 0.4 4]); 

  

Jac=0; 

for m=1:length(T) 

    J=[DXDP(m,1:3,2)' DXDP(m,1:3,5)'];     

    Jac=Jac+J'*inv(V)*J;     

end 

param_var=inv(Jac); 

cov_data_prev=[param_var(1,1) param_var(2,2) param_var(1,2)]; 

  

function F = sseobj(x) 
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[~,Y] = ode15s(@process_model_inhibit,[0:6:8*24],Y0,opt,K,U,x); 

Y=Y-prev_corr; 

  

sseX=(Y(:,1)-exp_data(:,1)).^2/4; %/var(itr,1); 

sseP=(Y(:,2)-exp_data(:,2)).^2/0.4; %/var(itr,2); 

sseS=(Y(:,3)-exp_data(:,3)).^2/4; %/var(itr,3); 

F=sum(sseX)+sum(sseP)+sum(sseS); 

end 

end 

  

 

Function to calculate delta_theta 

 

function [Kout_prime,Pfinal_prime,correc,gradpred,cov_data] = 

delta_theta(U0,prev_corr,plantgrd,K,K0,Kini) 

  

K(2)=K0(1); 

K(5)=K0(2); 

[~,DX,DXDP] = sens_sys('altered_model_jac',[0:6:8*24],[0.1 0 U0(1) 

100],opt,K',[],[],U0); 

  

xLast = []; % Last place computeall was called 

myf = []; % Use for objective at xLast 

myc = []; % Use for nonlinear inequality constraint 

myceq = []; % Use for nonlinear equality constraint 

  

lb=1e-6*ones(1,2)-K0; 

ub=5*ones(1,2)-K0; 

  

iniK=Kini-K0; 

  

options=optimset('Display','iter','UseParallel','always',... 

    'TolX',1e-6,'TolFun',1e-6,'TolCon',1e-8,'MaxFunEvals',400); 

[x,~] = 

fmincon(@dt_obj,iniK,[],[],[],[],lb,ub,@dt_constr,options,... 

    U0,prev_corr,plantgrd,DX,DXDP,K,K0); 

  

[~,~,~,Y,correc,gradpred]=grad_calc(x,U0,prev_corr,plantgrd,DX,DXDP,

K,K0); 

Kout_prime=K0+x; Pfinal_prime=Y(end,2)*Y(end,4); 

  

K(2)=x(1)+K0(1);  

K(5)=x(2)+K0(2); 

[T,~,DXDP] = sens_sys('altered_model_jac',[0:6:8*24],[0.1 0 U0(1) 

100],opt,K',[],[],U0); 

  

V=diag([4 0.4 4]); 

  

Jac=0; 

for m=1:length(T) 

    J=[DXDP(m,1:3,2)' DXDP(m,1:3,5)'];     

    Jac=Jac+J'*inv(V)*J;     

end 
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param_var=inv(Jac); 

cov_data=[param_var(1,1) param_var(2,2) param_var(1,2)]; 

  

function y = dt_obj(x,U0,prev_corr,plantgrd,DX,DXDP,K,K0) 

    if ~isequal(x,xLast) % Check if computation is necessary 

        [myf,myc,myceq,~,~,~] = 

grad_calc(x,U0,prev_corr,plantgrd,DX,DXDP,K,K0); 

        xLast = x; 

    end 

    % Now compute objective function 

    y = myf; 

%     disp(K0+x) 

end 

  

function [c,ceq] = dt_constr(x,U0,prev_corr,plantgrd,DX,DXDP,K,K0) 

    if ~isequal(x,xLast) % Check if computation is necessary 

        [myf,myc,myceq,~,~,~] = 

grad_calc(x,U0,prev_corr,plantgrd,DX,DXDP,K,K0); 

        xLast = x; 

    end 

%     Now compute constraint functions 

    c = myc; % In this case, the computation is trivial 

    ceq = myceq; 

end 

  

end 

 

 

Function to calculate objective function and constraint for 

delta_theta optimization procedure 

  

 

function [f1,c1,ceq1,Y,c,gradpred,trunc_err] = 

grad_calc(x,U0,prev_corr,plantgrd,DX,DXDP,K,K0) 

  

devpred_1=0.5; devpred_2=0.5; 

opt=odeset('NonNegative',[1,2,3,4],'RelTol',1e-6,'AbsTol',1e-8); 

  

[~,Y] = ode15s(@process_model_inhibit,[0:6:8*24],[0.1 0 U0(1) 

100],opt,K,[U0(1) U0(2)],K0+x); 

[~,Y1] = ode15s(@process_model_inhibit,[0:6:8*24],[0.1 0 

U0(1)+devpred_1 100],opt,K,[U0(1)+devpred_1 U0(2)],K0+x); 

[~,Y2] = ode15s(@process_model_inhibit,[0:6:8*24],[0.1 0 U0(1) 

100],opt,K,[U0(1) U0(2)+devpred_2],K0+x); 

  

c=DXDP(:,:,2)*(x(1))+DXDP(:,:,5)*(x(2)); 

Y(:,1:4)=Y(:,1:4)-c-prev_corr; 

Y1(:,1:4)=Y1(:,1:4)-c-prev_corr; 

Y2(:,1:4)=Y2(:,1:4)-c-prev_corr; 

gradpred1=(Y1(end,2)*Y1(end,4)-Y(end,2)*Y(end,4))/devpred_1; 

gradpred2=(Y2(end,2)*Y2(end,4)-Y(end,2)*Y(end,4))/devpred_2; 

gradpred=[gradpred1 gradpred2]; 
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f1=abs(gradpred1-plantgrd(1))+0.01*abs(gradpred2-plantgrd(2)); 

  

Y_prime=DX-prev_corr; 

trunc_err=Y-Y_prime; 

trunc_e=abs(Y./Y_prime-1); 

c1=max(trunc_e(end,:))-0.01; 

ceq1=[]; 

  

end 

 

 

Function to formulate PCE expansion for normal distribution 

 

function [theta1_PCE, theta2_PCE] = 

twoP_legendre_sse_normal_shiftedmeans(Kout_prime,cov_data,pci_epsi1,

pci_epsi2) 

 

K=[Kout_prime cov_data]; 

  

gleq=[1     -0.997263861849     0.00701814576495 

2   -0.985611511545     0.0162774265831 

3   -0.964762255588     0.0253910098329 

4   -0.934906075938     0.0342745478477 

5   -0.896321155766     0.0428359896785 

6   -0.849367613733     0.0509978738117 

7   -0.794483795968     0.0586839394615 

8   -0.73218211874  0.0658220603578 

9   -0.66304426693  0.0723456094297 

10  -0.587715757241     0.078193695762 

11  -0.506899908932     0.083311711103 

12  -0.421351276131     0.0876518688047 

13  -0.331868602282     0.0911736454878 

14  -0.239287362252     0.0938441590423 

15  -0.144471961583     0.0956384754512 

16  -0.0483076656877    0.0965398415811 

17  0.0483076656877     0.0965398415811 

18  0.144471961583  0.0956384754512 

19  0.239287362252  0.0938441590423 

20  0.331868602282  0.0911736454878 

21  0.421351276131  0.0876518688047 

22  0.506899908932  0.083311711103 

23  0.587715757241  0.078193695762 

24  0.66304426693   0.0723456094297 

25  0.73218211874   0.0658220603578 

26  0.794483795968  0.0586839394615 

27  0.849367613733  0.0509978738117 

28  0.896321155766  0.0428359896785 

29  0.934906075938  0.0342745478477 

30  0.964762255588  0.0253910098329 

31  0.985611511545  0.0162774265831 

32  0.997263861849  0.00701814576495]; 
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mu = [K(1) K(2)]; 

Sigma = [K(3) K(5); K(5) K(4)]; 

  

chi2val=chi2inv(0.99,2); 

rect_coord=[mu(1)-sqrt(chi2val*Sigma(1,1)), mu(2)-

sqrt(chi2val*Sigma(2,2)), 2*sqrt(chi2val*Sigma(1,1)), 

2*sqrt(chi2val*Sigma(2,2))]; 

x_1=rect_coord(1)+rect_coord(3); 

x_2=rect_coord(2)+rect_coord(4); 

  

if rect_coord(1)<0 

    rect_coord(1)=0; 

end 

if rect_coord(2)<0 

    rect_coord(2)=0; 

end 

epsi_1 = linspace(rect_coord(1), x_1,100); 

epsi_2 = linspace(rect_coord(2), x_2,100); 

  

[X1,X2] = meshgrid(epsi_1,epsi_2); 

F = mvnpdf([X1(:) X2(:)],mu,Sigma); 

F = reshape(F,length(epsi_2),length(epsi_1)); 

  

% contour(epsi_1,epsi_2,F); hold on 

theta1=X1; theta2=X2; p_theta=F; 

  

mp_theta1=[]; 

for i=1:length(epsi_1) 

    mp_theta1(i)=trapz(theta2(:,i),p_theta(:,i)); 

end 

  

cum_p=trapz(theta1(1,:),mp_theta1); 

p_theta=p_theta/cum_p; 

  

mp_theta1=[]; 

for i=1:length(epsi_1) 

    mp_theta1(i)=trapz(theta2(:,i),p_theta(:,i)); 

end 

  

cp_theta2=p_theta./repmat(mp_theta1,size(p_theta,1),1); 

  

cump_theta1=[]; cump_theta1(1)=0; 

for j=2:length(mp_theta1) 

    cump_theta1(j)=trapz(theta1(1,1:j),mp_theta1(1:j)); 

end 

  

epsi1=gleq(:,2); 

 

theta1_i=theta1(1,cump_theta1<=0.9999); 

cump_theta1_i=cump_theta1(cump_theta1<=0.9999); 

theta1=interp1(cump_theta1_i',theta1_i',unifcdf(epsi1,-

1,1),'linear','extrap'); 
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pci=pci_epsi1; 

  

c=[]; err=[]; 

c(1,1)=(gleq(:,3)'*0.5*theta1)/sum(gleq(:,3)*0.5); 

err(1,1)=sum((theta1-repmat(c(1,1),length(theta1),1)).^2); 

  

for i=2:20 

c(i,1)=sum(gleq(:,3).*subs(pci(i)).*theta1*0.5)/sum(gleq(:,3).*subs(

pci(i)^2)*0.5); 

err(i,1)=sum((theta1-repmat(c(1,1),length(theta1),1)-

subs(pci(2:i))*c(2:i,1)).^2); 

  

if(err(i,:)<1e-6) 

    pci=pci(1:i);  

    break; 

end 

end 

 

theta1=pci*c; % theta1=c; 

 

  

cump_theta2=zeros(size(p_theta,1),size(p_theta,2)); 

  

for i=1:size(cp_theta2,2) 

    cump_theta2(1,i)=0; 

for j=2:size(cp_theta2,1) 

    cump_theta2(j,i)=trapz(theta2(1:j,i),cp_theta2(1:j,i)); 

end 

end 

  

epsi2=gleq(:,2); 

theta2_new=[]; 

  

for i=1:size(cp_theta2,2) 

    theta2_i=theta2(cump_theta2(:,i)<=0.999,i); 

    cump_theta2_i=cump_theta2(cump_theta2(:,i)<=0.999,i); 

    theta2_new(:,i)=interp1(cump_theta2_i,theta2_i,unifcdf(epsi2,-

1,1),'linear','extrap'); 

end 

theta2=theta2_new; 

  

pci=pci_epsi2; 

  

a=[]; err=[]; 

a(1,:)=(gleq(:,3)'*0.5*theta2(:,:))/sum(gleq(:,3)*0.5); 

err(1,:)=sum((theta2(:,:)-repmat(a(1,:),size(theta2,1),1)).^2); 

  

for i=2:20 

    

a(i,:)=((gleq(:,3).*subs(pci(i)))'*theta2(:,:)*0.5)/sum(gleq(:,3).*s

ubs(pci(i)^2)*0.5); 

    err(i,:)=sum((theta2(:,:)-repmat(a(1,:),size(theta2,1),1)-

subs(pci(2:i))*a(2:i,:)).^2); 
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if(max(err(i,:))<1e-8) 

    pci=pci(1:i);  

    break; 

 

end 

end 

 

epsi1=gleq(:,2); 

a_new=[]; 

  

for i=1:size(a,1) 

    a_i=a(i,cump_theta1<=0.9999); 

    cump_theta1_i=cump_theta1(cump_theta1<=0.9999); 

    a_new(:,i)=interp1(cump_theta1_i',a_i',unifcdf(epsi1,-

1,1),'linear','extrap'); 

end 

 

a=a_new'; 

 

pci_2=pci_epsi1; 

  

 

b=[]; err=[]; 

b(1,:)=(gleq(:,3)'*0.5*a')/sum(gleq(:,3)*0.5); 

err(1,:)=sum((a'-repmat(b(1,:),length(a'),1)).^2); 

  

for i=2:20 

    

b(i,:)=((gleq(:,3).*subs(pci_2(i)))'*a'*0.5)/sum(gleq(:,3).*subs(pci

_2(i)^2)*0.5); 

    err(i,:)=sum((a'-repmat(b(1,:),length(a'),1)-

subs(pci_2(2:i))*b(2:i,:)).^2); 

  

if(max(err(i,:))<1e-6) 

    pci_2=pci_2(1:i);  

    break; 

elseif(max(err(i,:))-max(err(i-1,:))>1) 

    pci_2=pci_2(1:i-1); 

    b=b(1:i-1,:); 

    err=err(1:i-1,:); 

    break; 

end 

end 

 

theta2=pci*(pci_2*b)'; % theta2=b; 

 

theta1_PCE=theta1; 

theta2_PCE=theta2; 

 

end 
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Function to calculate robust process optimum 

  

function [x,f,eflag,outpt] = 

runobjconstrfunc(U0,new_corr,K,theta1_PCE,theta2_PCE,pci_func,pci_de

n,Kout_prime) 

  

% if nargin == 1 % No options supplied 

%     opts = []; 

% end 

  

xLast = []; % Last place computeall was called 

myf = []; % Use for objective at xLast 

myc = []; % Use for nonlinear inequality constraint 

myceq = []; % Use for nonlinear equality constraint 

  

fun = @objfun; % the objective function, nested below 

cfun = @constr; % the constraint function, nested below 

  

gleq=[1 -0.978228658146 0.0556685671162 

2   -0.887062599768 0.125580369465 

3   -0.730152005574 0.186290210928 

4   -0.519096129207 0.233193764592 

5   -0.269543155952 0.26280454451 

6   0   0.272925086778 

7   0.269543155952  0.26280454451 

8   0.519096129207  0.233193764592 

9   0.730152005574  0.186290210928 

10  0.887062599768  0.125580369465 

11  0.978228658146  0.0556685671162]; 

  

epsi_1=gleq(:,2); epsi_2=gleq(:,2); 

epsi1=[]; epsi2=[]; w=[]; 

  

for j=1:length(epsi_1) 

    epsi1=[epsi1; ones(length(epsi_2),1)*epsi_1(j)]; 

    epsi2=[epsi2; gleq(1:end,2)]; 

    w=[w; gleq(j,3)*gleq(:,3)]; 

end 

theta1=subs(theta1_PCE); theta2=subs(theta2_PCE); 

  

% Call fmincon 

  

lb=[0.001 0.001]; 

ub=[100 100]; 

  

options=optimset('Display','iter',... 

    'TolX',1e-6,'TolFun',1e-6,'TolCon',1e-6); 

[x,f,eflag,outpt] = 

fmincon(fun,U0,[],[],[],[],lb,ub,cfun,options,new_corr,K,theta1,thet

a2,epsi1,epsi2,w,pci_func,pci_den,Kout_prime); 
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function y = 

objfun(x,new_corr,K,theta1,theta2,epsi1,epsi2,w,pci_func,pci_den,Kou

t_prime) 

    if ~isequal(x,xLast) % Check if computation is necessary 

        [myf,myc,myceq] = 

compute_robust_loop2P(x,new_corr,K,theta1,theta2,epsi1,epsi2,w,pci_f

unc,pci_den,Kout_prime); 

        xLast = x; 

    end 

    % Now compute objective function 

    y = myf; 

end 

  

function [c,ceq] = 

constr(x,new_corr,K,theta1,theta2,epsi1,epsi2,w,pci_func,pci_den,Kou

t_prime) 

    if ~isequal(x,xLast) % Check if computation is necessary 

        [myf,myc,myceq] = 

compute_robust_loop2P(x,new_corr,K,theta1,theta2,epsi1,epsi2,w,pci_f

unc,pci_den,Kout_prime); 

        xLast = x; 

    end 

    % Now compute constraint functions 

    c = myc; % In this case, the computation is trivial 

    ceq = myceq; 

end 

  

end 

end 

 

 

Function to calculate robust objective function and constraints in 

process optimization procedure 

 

function [f1,c1,ceq1,S,variance] = 

compute_robust_loop2P(U,new_corr,K,theta1,theta2,epsi1,epsi2,w,pci_f

unc,pci_den,Kout_prime) 

  

nsamples=length(theta1); 

spmd 

    if (labindex==4) 

        ai=(labindex-1)*floor(nsamples/numlabs)+1; 

        if (rem(nsamples,numlabs)>0) 

            bi=nsamples; 

        else 

            bi=labindex*floor(nsamples/numlabs); 

        end 

    else 

        ai=(labindex-1)*floor(nsamples/numlabs)+1; 

        bi=labindex*floor(nsamples/numlabs); 

    end 

end 
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opt=odeset('NonNegative',[1,2,3,4],'RelTol',1e-6,'AbsTol',1e-8); 

  

numofgridpts=length(theta1); 

S=zeros(length(theta1),1); 

constr=zeros(length(theta1),1); 

Khat=K; 

spmd 

    for i=ai:bi 

        Khat(2)=theta1(i); 

        Khat(5)=theta2(i); 

        [~,dX] = ode15s(@process_opt_model_inhibit,[0:6:8*24],[0.1 0 

U(1) 100],opt,U,Khat); 

        dX(:,:)=dX(:,:)-new_corr; 

        S(i,:)=dX(end,2)*dX(end,4); 

        constr(i,:)=dX(end,4); 

    end 

end 

Shat=zeros(length(theta1),1); 

chat=zeros(length(theta1),1); 

for i=1:4 

    Shat=Shat+S{i}; 

    chat=chat+constr{i}; 

end 

S=Shat; 

constr=chat; 

  

a=(w'*0.25*S)/sum(w*0.25); 

numofterms=length(pci_den)+1; 

  

coeffs=(w'*(0.25*pci_func(epsi1,epsi2).*repmat(S,1,numofterms-

1)))./pci_den; 

error=sum((repmat(S,1,numofterms)-

cumsum([repmat(a(1,1),numofgridpts,1) 

pci_func(epsi1,epsi2).*repmat(coeffs,numofgridpts,1)],2)).^2); 

lim=find(error==min(error)); 

a=[a(1,1) coeffs(1:lim-1)]; 

  

% mean=a(1); 

variance=sum((a(2:end).^2).*pci_den(1:lim-1)); 

% f1=-mean+0*variance; 

c1=max(constr)-120; 

ceq1=[]; 

  

opt=odeset('NonNegative',[1,2,3,4],'RelTol',1e-6,'AbsTol',1e-8); 

K(2)=Kout_prime(1); K(5)=Kout_prime(2);  

[~,dX] = ode15s(@process_opt_model_inhibit,[0:6:8*24],[0.1 0 U(1) 

100],opt,U,K); 

dX(:,:)=dX(:,:)-new_corr; 

S=dX(end,2)*dX(end,4); 

  

f1=-S+0.02*variance; 

 

end 
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Uncertain Model 

 

function dY = process_model_inhibit(t, Y, K, U ,UP) 

  

dY=zeros(4,1); 

  

X=Y(1); 

P=Y(2); 

S=Y(3); 

V=Y(4); 

  

% Input Feed rate 

F=U(2); % l/h [LCLS] 

  

% Substrate conc. in the feed 

sf=600; % g/l 

  

% Biomass 

mux=K(1); 

Kx=UP(1); 

% Product  

mup=K(3); 

Kp=K(4); 

KI=UP(2); 

  

% Substrate 

Yxs=K(6); 

Yps=K(7); 

mx=K(8); 

  

% Loss in the culture volume due to evaporation 

Floss=V*2.5*10^-4*(exp(5*(298-273)/(373-273))-1); 

  

% ODEs 

dY(1)=mux*S*X/(Kx*X+S)-(X/V)*(F-Floss); 

dY(2)=mup*S*X/(Kp+S*(1+S/KI))-(P/V)*(F-Floss); 

dY(3)=-mux*S*X/(Kx*X+S)/Yxs-mup*S*X/(Kp+S*(1+S/KI))/Yps-mx*X+F*sf/V-

(S/V)*(F-Floss); 

dY(4)=F-Floss; 

  

end 

 


