Design and Evaluation of Temporal
Summarization Systems

by

Rakesh Guttikonda

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 2014

(© Rakesh Guttikonda 2014

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Abstract

Temporal Summarization (TS) is a new track introduced as part of the Text REtrieval
Conference (TREC) in 2013. This track aims to develop systems which can return impor-
tant updates related to an event over time. In TREC 2013, the TS track specifically used
disaster related events such as earthquake, hurricane, bombing, etc. This thesis mainly
focuses on building an effective TS system by using a combination of Information Retrieval
techniques. The developed TS system returns updates related to disaster related events in
a timely manner.

By participating in TREC 2013 and with experiments conducted after TREC, we ex-
amine the effectiveness of techniques such as distributional similarity for term expansion,
which can be employed in building TS systems. Also, this thesis describes the effec-
tiveness of other techniques such as stemming, adaptive sentence selection over time and
de-duplication in our system, by comparing it with other baseline systems.

The second part of the thesis examines the current methodology used for evaluating T'S
systems. We propose a modified evaluation method which could reduce the manual effort
of assessors, and also correlates well with the official track’s evaluation. We also propose a
supervised learning based evaluation method, which correlates well with the official track’s
evaluation of systems and could save the assessor’s time by as much as 80%.

11

Acknowledgements

Firstly, I would like to thank my advisor, Dr. Olga Vechtomova, for providing continu-
ous support and guidance throughout my Master’s program for almost 2 years. I am also
grateful to her for giving me the freedom to choose the research problem and also offering
me necessary guidance in my approach to solve it.

I would like to express my gratitude to Prof. Gordon Cormack and Prof. Charles
Clarke for taking the time to read my thesis.

Special thanks to my close friend and lab mate, Gaurav, for all the insightful discussions
in work and on personal front. I am also indebted to my close friends: Shrinu, Sandy,
Sardaar, Shivam and others, for making my stay at Waterloo a memorable one.

Also, many thanks to my friends in the lab: Adam, Bahar, Ashif and others, who were
always ready to help.

Finally, I would like to thank my parents and my lovely little sister, for supporting
me all these years while pursuing my dreams. I would like to specially thank my fiancée
Radhika for her love and unwavering support during the stressful times in the last few
months.

v

Dedication

In loving memory of my grandfather, and to my family and Radha.

Table of Contents

List of Tables
List of Figures

1 Introduction

1.1 Motivationo
1.2 The Problem
1.3 Our Approach
1.4 Evaluation
1.5 Contributions

2 Related Work

2.1 TREC: QA track
2.2 Retrieval Models: Probabilistic Retrieval and Language Modeling
2.2.1 Probabilistic Retrieval 0.
2.2.2 Language Modeling
2.3 Sentence Retrieval L
2.4 Automatic Query Expansion L
241 WordNet
2.4.2 Relevance Feedback and Pseudo-Relevance Feedback
2.5 Distributional Similarityo

vi

ix

xi

DD W = =

0d]

2.6 Nugget-based Evaluation in the QA track 18

2.7 Automatic nugget-based evaluation systems:

POURPRE, Nuggeteer 22
271 POURPRE 22
2.7.2 Nuggeteer e 23
TREC 2013: Temporal Summarization Track 25
3.1 Preliminaries and Experimental Setup 25
3.2 Indexing & Scoring Documents 26
3.2.1 Indexing: Hour-wise index files 26
3.2.2 Scoring documents: Using Query Likelihood model 27
3.3 Query Expansion: Distributional Similarity 29
3.3.1 Finding Expansion terms oL 30
3.4 Sentence Selection Criteria & De-duplication 32
3.5 Submitted runs Lo 34
3.6 Results & Discussion 35
Experiments after TREC 39
4.1 Experimental Setup and Baseline runs 39
4.2 Effectiveness of adaptive cutoff based sentence selection 40
4.2.1 Results and Discussion L oL 41
4.3 Effectiveness of stemming oo 43
4.3.1 Results and Discussion oL 44
4.4 Deduplication 45
441 Percent Match. 46
4.4.2 Cosine 47
443 Simhash o 49
4.4.4 Results and Discussion Lo 50

vii

4.5 Automatic Query Expansion using Lin’s distributional similarity
4.5.1 Seed words using KLD L.
4.5.2 Merging lists of expansion words

4.5.3 Results & Discussion,

5 Evaluation of Temporal Summarization Systems

5.1 TST Evaluation for TREC 2013
5.2 Preliminaries e
5.3 Reducing the number of matches evaluated
5.4 Supervised learning approach

5.5 Results & Discussion

6 Conclusion & Future Work

6.1 Conclusion

6.2 Future Work

APPENDICES

A Effectiveness of Adaptive cutoff based sentence selection algorithm
B Effectiveness of Stemming

C Effectiveness of deduplication

References

viil

67
67
68

70

71

74

77

82

List of Tables

2.1 List of nuggets for “What is a golden parachute?” question in TREC 2003
QA track.

2.2 List of nugget matches created by assessor for a system response to “What
is a golden parachute?” (as shown in Voorhees [2004]).

2.3 Kendall’s 7 correlation of POURPRE with official track rankings [Lin and

Demner-Fushman, 2005].

2.4 Kendall’s 7 correlation of POURPRE and Nuggeteer with official track rank-
ings, D represents definition task and O represents other questions task. . .

3.1 Examples of seed and expansion terms for earthquake event type.
3.2 Spand Dy for rgruns

3.3 p and o (in parenthesis) of task metrics namely Expected Latency Gain
(ELG) and Latency Comprehensiveness (LC) over all queries, sorted by
Expected Latency Gain. *run not pooled. Table is as reported in [Aslam
et al, 2014, page 13]. oL

4.1 List of relevant Wikipedia articles crawled for each event type.
4.2 Examples of KLLD identified seed terms for earthquake event type
4.3 Examples of Lin identified expansion terms for seed word “quake”

4.4 Comparisons of the ELG and LC metrics for Lin’s method of expansion vs
baseline (no query expansion) approach with the rest of the parameters and
methods the same.o

X

4.5

5.1
5.2
5.3

5.4

2.5

Al
A2

B.1
B.2

C.1

C.2

C.3

C4

Comparison of our new system with other systems in the track (ordered by
ELG). “Better” means our system is significantly better. “Hy holds” means
the null hypothesis Hy (systems are identical) couldn’t be rejected. “Worse”
means our system performs worse compared to that system.

Sample list of nuggets pooled for the training event “iran earthquake”.
List of matches for the updateld: «1329993579-46708235¢2148ac5707079d2e90d9-0" . .

Per-Query statistics with number of nuggets, pooled updates, match pairs
and matches found by assessors. Numbers in the parentheses indicate the
actual values , while numbers outside the parentheses in columns three and
four indicate the unique counts (matched by the assessor).

Kendall’s 7 correlation of ELG and LC ranking of systems’ when compared
with official track’s ranking oo

Kendall’s 7 correlation of ELG and LC ranking of systems when compared
with the official track’s ranking. L.

Fixed Cutoff Algorithm returning top ‘K’ sentences
Adaptive cutoff based sentence selection algorithm, Dy = 1000

No stemming, D, = 1000 Lo
Use of stemming, D, = 1000

Deduplication Comparison for ELG metric along with the average number
of updates, D;, = 100, Deduplication Cutoft=0.75

Deduplication Comparison for LC metric along with the average number of
updates, Dj, = 100, Deduplication Cutoft=0.75

Deduplication Comparison for ELG metric along with the total number of
sentences, Dj, = 100, Deduplication Cutofft=0.75.

Deduplication Comparison for LC metric along with the total number of
sentences, D), = 100, Deduplication Cutoff=0.75.

61

63

66

72
73

75
76

78

79

List of Figures

1.1

2.1

4.1

4.2

4.3

4.4

4.5

4.6
4.7
4.8
4.9
4.10

5.1

Training Query: “iran earthquake” used in TST 2013.
Evaluation metric for a system’s response for definition questions.

ELG and LC metrics for Adaptive cutoff and Baseline algorithms against
the average number of updates evaluated per query.

ELG vs EG for Adaptive cutoff and Baseline algorithms against the average
number of updates evaluated per query. L.

ELG and LC metrics for Adaptive cutoff and Baseline algorithms against
the total number of sentences returned by the system.

ELG and LC for without stemming runs (varying D, and Sj in adaptive
cutoff algorithm).

ELG and LC for “Stemming” vs “No Stemming” (D,=1000 and varying S},
in adaptive cutoff algorithm)

ELG and LC of runs for various cutoffs of “percent match” threshold

ELG and LC of runs for various cutoffs of “cosine similarity” threshold
ELG and LC of runs for various cutoffs of “simhash similarity” threshold .
ELG and LC of runs for various deduplication methods

ELG and LC of the expanded vs baseline runs with avg. number of updates
evaluated. Lo

Matching interface used by assessor to match the nuggets to updates (Figure
shown for Query 1)..

el

Chapter 1

Introduction

1.1 Motivation

Retrieving important information related to a crisis or a natural disaster, especially when it
is happening or has just happened, has own set of challanges when compared to traditional
Information Retrieval (IR) systems. During the crisis, users urgently require important
information related to the crisis, especially if they are going to face it | ,].
For example, during the hurricane Sandy' which affected eastern part of United States in
2012, it would help the users especially in these affected areas to keep track of important
information like the current direction of the storm, or any important safety regulations
issued by government etc., as soon as they are issued. There is a need for automatic
systems, which can continuously update the user in real time with important information
related to the event but at the same time, ensure the quality and novelty of the information
presented.

1.2 The Problem

The Temporal Summarization (TS) track has been introduced as part of the Text REtrieval
Conference (TREC) in 2013, to solve the problem outlined above. According to the track
organizers [|, “The goal of TS track is to develop systems for efficiently
monitoring the information associated with an event over time”. The track has two main

http://en.wikipedia.org/wiki/Hurricane_Sandy

http://en.wikipedia.org/wiki/Hurricane_Sandy

tasks. In the first task, the systems are expected to return short and relevant sentences
(or updates) for a particular event over time. Whereas, the second task involves tracking
values of pre-defined attributes such as number of injured, or number of dead, etc. related
to the event. In this thesis, we mainly focus on the first task, i.e., building a TS system
that returns relevant updates for disaster related events over time.

The track’s problem statement for the first task can be formulated as follows:

Input:
1. Time ordered stream of documents, i.e., KBA-2013 stream corpus®.
2. Query in the form of xml, with the following attributes:

(a) start time, i.e., minimum timestamp of a document from which the system can
retrieve an update.

(b) end time, i.e., maximum timestamp of a document from which the system can
retrieve an update.

(c) query.
(d) query type € {accident, bombing, earthquake, shooting, storm}.
(e) attributes € {deaths, displaced, financial impact, injuries, locations}.
Output: The following in a tab-separated file format for all updates:
1. Query Identifier.

2. Team Identifier.

w

Run Identifier.

e

Document Identifier (as in the KBA Corpus).
5. Sentence Identifier (i.e., Base zero index of the sentence in the document above).

6. Decision timestamp (i.e., time at which the system has made the decision, must be
greater than or equal to the document timestamp).

7. Confidence Value (a strictly positive number which measures the system’s confidence
in this sentence being a reasonable update).

2http://trec-kba.org/kba-stream-corpus-2013. shtml

http://trec-kba.org/kba-stream-corpus-2013.shtml

<event>

<id>TRAIN-1</id>

<title>2012 East Azerbaijan earthquakes</title>
<start>1344687797</start>
<end>1345551797</end>
<query>iran earthquake</query>
<type>earthquake</type>
<locations/>

<deaths/>

<injuries/>

</event>

Figure 1.1: Training Query: “iran earthquake” used in TST 2013.

For example, Figure 1.1 shows the training query released for the TS track. The query
starts at 1344687797 (UNIX timestamp in GMT), i.e., 2012-08-11-12 (in yyyy-mm-dd-hh
format), and spans for a period of 10 days i.e. 240 hours. All the updates (i.e., sentences)
retrieved by a system should be from the documents within this period.

In addition, participants are required to adhere to the following rules:

1. Participants cannot use statistical models trained on the data that exists after the
event end time.

2. The document statistics like TF-IDF, if used, should be calculated only from the
documents that are available before the decision timestamp.

3. External corpus can be used for training purposes, but only if the documents exist
before the query start time.

1.3 Ouwur Approach

Unlike most IR systems where the retrieval unit is a document and the document collection
is static, the T'S problem deals with a different set of conditions. In temporal summarization
systems, the retrieval unit is a sentence which has to be retrieved from documents in a
time ordered fashion, and the document collection is dynamic (increasing with time). Also,
there is no “ranking” for the sentences returned by the TS systems, unlike the ranking of

results (documents) in IR systems. So, evaluation metrics like P@k, MAP, or nDCG (see
[, chap. 12]), are not directly applicable to this track.

One of the main challenges in the TS track is to return sentences with low-latency, and
also at the same time, the system needs to maintain the quality of output in the presence
of the dynamic corpus. So, the decision for inclusion of a sentence to the list of updates is
important and is almost real-time, i.e., as soon as the sentence is seen.

We follow a streamlined approach to build our system using a combination of IR tech-
niques, along with certain heuristics for sentence selection and deduplication. In our ap-
proach, we first retrieve the documents for the given query, using Query Likelihood model
(i.e. language modeling approach) | :]. Then, we work on the set of
documents (D) which score higher than the cutoff score, so that we return sentences only
from good scoring documents (which are likely to be relevant for the given query), and
also reduce processing time.

In order to select and score the sentences from this reduced set of documents D, we use
query expansion techniques to expand the query and then score the sentences using Okapi-
BM25 | , | with respect to the expanded query. We specifically use Lin’s
score based distributional similarity algorithm [Lin,] for expanding the query. After
scoring the sentences, we use an adaptive cutoff score based sentence selection algorithm
to decide whether a sentence should be returned in the output. Also, before returning the
sentences in the output, we use deduplication algorithm to check if the current sentence is
a near-duplicate to any of the already returned sentences.

Chapters 3 and 4 of this thesis explain the approach in detail and also compare the
performance of our system to other baseline systems. Chapter 3 explains our approach used
to build the system while participating in TREC 2013 and discusses the performance of
our system in TREC 2013. Chapter 4 explains the improvements made to our system after
the TREC conference. Chapter 4 also explains the performance of different techniques by
comparing to the baseline systems on the evaluation metrics explained in the next section.

1.4 Evaluation

Temporal Summarization track uses nugget-based evaluation, which was first introduced
in TREC 2003 as part of the Question Answering (QA) track [)].

[] defines nugget as, “.. a fact for which the assessor could make a binary decision as
to whether a response contained that nugget”. For the TS track, [] define

43

nugget as, “.. a very short sentence, including only a single sub-event, fact, location, date,
etc., associated with topic relevance”.

In order to evaluate the systems in the TS track, for every test query (i.e. an event) the
assessors pool a list of nuggets from Wikipedia event pages related to the event, along with
their timestamps obtained from the revision history of the page. The TS track defines met-
rics, namely Expected Latency Gain (ELG) and Latency Comprehensiveness (LC), which
are computed based on the nuggets covered in the system’s response (i.e. list of updates).

Notation:

Using the notation as followed in [|, let N be the set of nuggets pooled by
assessors from wikipedia event pages, and let S be the set of updates returned by the sys-
tem. Let n (€ N) denote a single nugget, and u (€ S) denote a single update of the system.

An update matching function, M (n, S), is defined as follows | ,]:

M(n, S) = argmingucs.nauu.t

i.e., nugget n is matched to the earliest update u which contains the nugget n. If there
is no matching update u for nugget n, then the set is empty (¢). Similarly, the set of all
nuggets for which w is the earliest update can be defined as | , |:

M Y(u,S)={neN:Mn,S)=u}

Now, the two main metrics used for evaluating the systems are defined as follows [
, 2014]:
1
Expected Gain (EG) = Il Z g(M(n,S),n)
| | neEN:M(n,S)#¢

1
Comprehensiveness (C) = —=———— Z Z g(u,n)
> nen B(1)
n ueS neM—1(u,S)

where,

Gain: g(u,n) = R(n) x discount factor (i.e. latency/verbosity penalty of u)

n.i

(&

Rgraded (n) - emazn’eN'n‘,‘i

Rpinary(n) = 1 if n.i > 0; or 0 otherwise;

2 ut—nt
Lat lty: L =1——arct 3600 % 6
atency penalty: L(u,n) Loretan <3600 * 6)

1l words|, — |matchi dsly,vn
Verbosity penalty: V(u) =1+ Jall words [matching words], v

avg.|words|y,

Expected Latency Gain (ELG) and Latency Comprehensiveness (LC) are calculated from
EG and C respectively by including the latency penalty L in Gain g as shown above.

As one can observe, defining the matching function M is one of the critical steps of
evaluation. In the current evaluation method of the track, the assessors manually match
the nuggets N to the set of updates S. Given the size of updates (~ 7816 unique sentences
pooled from all the runs for the 9 test queries) and the nuggets(~ 1077 for the 9 test
queries), matching is a time consuming process involving around 15 to 20 man hours per
query (as per information gathered from the track organizers).

In this thesis, we propose a modified approach for evaluation, which reduces the number
of matches to be checked by assessor considerably, thereby improving the productivity. We
also then extend the idea to a supervised learning based evaluation method, where there
is little human involvement in matching the nuggets to the updates. We show that the
ranking of systems using the new evaluation mechanism correlates well with the official
track’s evaluation, and could save the assessor’s time by almost 80%. Chapter 5 of this
thesis explains our method in detail along with comparisons to the official track’s evaluation
and POURPRE | ,].

1.5 Contributions

The main contributions of the thesis are the following:

1. We present a novel approach using a combination of IR techniques to build a TS
system which can track updates for disaster related events.

2. We show that distributional similarity techniques are useful for finding term expan-
sions and can be used as a query expansion technique in TS systems.

3. We propose a method to automatically identify seed words for the Lin’s distributional
similarity algorithm [Lin, |, and propose a method to automatically merge the
related words lists.

. We propose an adaptive cutoff score based sentence selection algorithm and show
that it is useful for building TS systems, where latency is an important factor.

. We investigate different deduplication techniques for T'S system, and show that Co-
sine similarity is better than other deduplication algorithms like Charikar’s simhash
[, |, and a baseline percentage match.

. We propose a modified approach for matching nuggets to sentences by assessors.
This method reduces the manual effort required from assessors, thereby improving
productivity and facilitating larger scale of evaluation.

. We propose a supervised learning based evaluation mechanism (using distributional
similarity & machine learning approach) for evaluating TS systems, which correlates
well with the official track’s evaluation. We show that with the new evaluation
mechanism assessor’s time could be saved by 80% when compared to the original
track’s evaluation.

Chapter 2

Related Work

This chapter starts with a brief overview of the Text REtrieval Conference (TREC) Ques-
tion Answering (QA) track which has some similarity to TST. Afterwards, we present an
overview of the standard retrieval models and query expansion techniques with methods
such as distributional similarity which can be used in building and evaluation of Temporal
Summarization systems. In the end, the chapter concludes with the overview of nugget-
based evaluation methods and existing automatic nugget based evaluation systems such as
POURPRE which we use for comparisons in Chapter 5.

2.1 TREC: QA track

The Text REtrieval Conference (TREC)! hosts a series of tracks every year focusing on
different research areas and applications in information retrieval. Some of the tracks of

TREC-2013 are :

113

1. Contextual Suggestion track: “... investigates search techniques for complex infor-
mation needs that are highly dependent on context and user interests.”|

, 2014]

2. Web track: “.. to explore and evaluate retrieval approaches over large-scale subsets
of the Web.”| ,]

http://trec.nist.gov/

http://trec.nist.gov/

This year marks the beginning of Temporal Summarization Track (TST)? which this
thesis mainly focuses upon. The objective and the problem statement for TST were dis-
cussed in Chapter 1. TST bears some similarities with the QA track organized by TREC
which we explain below.

TREC started the QA track® for the first time in 1999 (TREC 8) to change the model of
an IR system from retrieving traditional ranked document lists to retrieving answers for the

query [, ; , |. This user model assumes that the users
would prefer getting answers rather than search for the answers in the documents returned.
Recent tracks like ICLICK | , : ,] organized at NTCIR?,

focus on this model of presenting information retrieved from web search engines instead
of showing URLs of documents. For these tasks, systems are expected to return textual
information gathered from various documents directly upon only one click on the search
button [, |. Such systems are evaluated on the amount of “information
units” (nuggets) the textual output contains.

The QA track conducted from 1999 till 2007 covered the following question types: Fac-
toid based questions (1999-07), List based questions (2003-07), Definition questions/Other
(2003-07) and Complex interactive questions (2006-07).

QA track originally started with the factoid based question types. For example, “How
many calories are there in a Big MAC?” is a factoid based question | ,].
The answer is a fact or a short string. By 2006, the factoid answers were expected to
be temporally correct | , |. For example, “Who is the president of United
States?” is one such question, where the current president “Barack Obama” should be the
answer but not “Bill Clinton” or any of the previous presidents.

QA track started the List and Definition questions in 2003. List questions are similar
to the factoid based questions but have multiple short answers. For example, “List the
names of chewing gums.” is one such question. For answering such questions, systems
need to collect answers from multiple documents | :].

Definition questions on the other hand, ask about interesting information of a person or
thing and expect more descriptive answers than factoid based questions | ,].
For example, “Who is Albert Ghiorso?” or “What is a golden parachute?” are definition
questions. For definition questions, systems are expected to return snippets extracted
from documents that can answer the question | :]. Systems are allowed to

2http://www.trec-ts.org/
3http://trec.nist.gov/data/qamain.html
4http://research.nii.ac.jp/ntcir/index-en.html

http://www.trec-ts.org/
http://trec.nist.gov/data/qamain.html
http://research.nii.ac.jp/ntcir/index-en.html

return multiple snippets for a question, but they should not repeat the information while
answering the question | ,]-

The TS track conducted this year bears similarity to the QA track, especially with the
definition based questions. Mainly the similarities are:

1. Retrieval unit for both TS track and QA track is textual string instead of document.
In TS track, systems are expected to return sentences extracted from documents,
where as in QA track systems should return answer strings which can be an entire
sentence, or part of a sentence, or multiple sentences together.

2. Both tracks follow nugget based evaluation model. A nugget is a short string of text
which covers a important facet of information about the target in the query. Both
tracks judge the systems’ performance based on the nuggets covered in the response.
While TST incorporates graded importance for nuggets, for official track scores TST
uses binary importance scores for nuggets similar to vital and okay categories in the
QA track | : -

However, both tracks differ in the following:

1. TST uses temporal statistics while evaluating a system’s response. A system is ex-
pected to return important updates related to the query as soon as possible along with
maintaining novelty in the updates. QA track doesn’t use such temporal constraints
for evaluation.

2. TST track uses a time ordered collection of documents (KBA corpus) and for a given
query with time period, only documents before the query start time and during the
query time can be used to return the sentences. QA track uses a static collection
(AQUAINT corpus | :]) and answer strings in the system’s response can be
from any document within the corpus.

2.2 Retrieval Models: Probabilistic Retrieval and Lan-
guage Modeling

This section presents an overview of the standard techniques for retrieving ranked lists of
documents from a document collection given a query. In this section, we summarize the
retrieval methods explained in Chapters 8 and 9 of [2010].

[] explain the derivations in a detailed manner for the reader to understand easily.

10

2.2.1 Probabilistic Retrieval

Using the notation followed in [, page 259], suppose we are given three
random variables (r.v.) namely: D for documents (sample space: collection of documents),
@ for query (sample space: any textual string accepted by search engine as query) and R
for relevance (binary r.v.). The probability that document d is relevant for a query ¢ is
given by (as shown in [, page 259, Eq 8.1]),

p(R=1|D=d,Q =q) (2.1)

According to Probability Ranking Principle | , , page 295], “If an IR sys-
tem’s response to each request is a ranking of the documents in the collections in order of
decreasing probability of usefulness to the user who submitted the request, then the overall
effectiveness of the system to its users will be the best that is obtainable on the basis of
the data”, which is equivalent to ranking the documents by 2.1.

Applying Bayes theorem to equation 2.1, we get (as shown in [, page
260, Eq 8.5]):
p(D,QIR=1)p(R =1)
»(R=1|D,Q) = 2.2
= 1nQ W(D.Q) 22
Now maximizing the probability p, is equivalent to maximizing the odds ratio ﬁ,
which is equivalent to maximizing log(%) [, , page 260]. So, if we

apply this transformation to equation 2.1, the relative ordering of documents will not
change. “Thus log-odds and probability are rank-equivalent (i.e., ranking by one produces
the same ordering as ranking by the other).” | , , page 260].

Hence, transforming equation 2.2 using above, and after expansion of joint probabilities,
we get (see [, page 261, Eq 8.13]):

p(D, QIR = 1)p(R =1)
p(D, QR = 0)p(R = 0)

which is the core equation for the probabilistic retrieval.

p(D|Q, R =1)
p(D|Q, R =0)

log is rank equivalent to log (2.3)

[| suggested the following equation 2.4, which can be obtained
from transformation of above equation as shown in [2010],

Sea(kr+1)
2 <qt e e wt) (2.4)

teq

11

where, f; 4 is the frequency of the term ¢ in document d, w; is the Inverse Document
Frequency (IDF) weight, i.e., log%, where N is the total number of documents and N, is
the number of documents which contain the term ¢, [; is length of document, [y, is the
average document length and parameters k; = 1.2,b = 0.75 | , , page
272].

This equation 2.4, also known as “BM25”, is adapted to retrieve sentences for our TS
system.

2.2.2 Language Modeling
The language modeling approach was first suggested by [.

The equation 2.3 discussed in the earlier section, after denoting R =1 as r, and R = 0 as
7, can be modified as shown in [, page 287]:

og P2 QIp(r) - p(QID, r)p(Dlr)p(r)
g D0 pE 8 pQID, D) (25)
p(QID.r)p(r|D)
% Q1D 7| D) (26)
= logp(Q|D,r) —logp(Q|D,T) + logit(p(r| D) (2.7)

The last term in the above equation can be ignored, as it is independent of query ¢
and just indicates the prior probability of relevance of document D = d. The condition on
D = d with non relevant-documents (7) doesn’t correlate well with the user requirements.
Hence, the first term log p(Q|D,r) alone can be used for ranking document D = d with
respect to query @ = q | , , bage 288|.

Assuming independence between the query terms, the probability can then be calculated
as follows (as shown in [, page 292]):

plgld) = Hp(tild) (2.8)
~ [[reir 2.9

teq

12

Now using the document language model as the Maximum likelihood model, and with

Dirichlet smoothing | ,] over the collection, the probability of a
term t appearing in document d becomes (see [, page 291]):
Jra + pM (1)
tld) = —————= 2.10
plthd) = 2 (2.10)

Hence, substituting the above in equation 2.9, we get:

plald) =] (fthr—“M(t)) t (2.11)

teq la+p

After applying the logarithm and simplifying the parameters, we finally arrive at the

following equation as shown in [, page 295, Eq 9.32]):
[[
E qt-log<1+@-—c)—n-log(1—l——d) (2.12)
teq poo b K

where, t is the term, ¢ is the query term vector, ¢, is the term frequency of ¢ in the query,
ft.a is the term frequency of ¢ in document d, I is the length of the collection (the total
number of terms in the collection), [; is the number of times the term ¢ appears in the
collection, and p is the Dirichlet smoothing factor.

We use Equation 2.12 for retrieving documents from the collection for a given query as
described in the subsequent chapters.

2.3 Sentence Retrieval

Sentence Retrieval is one of the key components of Temporal Summarization system and
hence in this section we provide a brief overview of the existing sentence retrieval methods
developed by researchers. Sentence Retrieval was studied earlier by researchers for various
tasks such as Question Answering track of TREC, Summarization, Novelty® track of TREC.

[| provides an excellent survey and background of the aspects involved in
Sentence Retrieval.

5http ://trec.nist.gov/data/novelty.html

13

http://trec.nist.gov/data/novelty.html

Standard document retrieval models such as TF-IDF, BM25, Language Models etc.,

have been adapted for sentence retrieval by researchers. [] adapted a simple
approach of TF-IDF at sentence level (i.e. TF-ISF), where the relevance of sentence s for
a given query ¢ is given by (as shown in [, page 3]),
n+1
R(slq) =) _log(tfiq + Dlog(tfis + 1)509(m)

teq

where, t is the term, ¢ is the query term vector, tf; , is the term frequency of ¢ in ¢, tf; s is
the term frequency of ¢t in s, n is the number of sentences in collection, sf; is the number
of sentences which contain term ¢.

[2003] show that finding relevant sentences from relevant documents for the
novelty task is much more difficult than detecting novel sentences from relevant sentences.
While finding relevant sentences, the authors find that TF-ISF technique performed better
(though not statistically significant) than language modeling with KLD and query modeling
(with two stage smoothing)| :] for the TREC 2002 novelty track.

[2007] compare the Language Model retrieval method |
, | with other methods such as TF-IDF and Okapi-BM25 for the Question An-
swering track of TREC 2004. The authors show that Language Modeling approach with
dirichlet priors performs better than other approaches such as TF-IDF and Okapi-BM25.
[| also show that the Query Likelihood model outperforms methods
such as TF-IDF and word overlap for identifying relevant sentences for the topics used

in Question Answering track. [] find that advanced language
modeling techniques such as translation model (Model S) | , |, mixture model
[: |, relevance models | : |, etc. perform better than
the simple Query Likelihood model on the dataset prepared by [| from TREC

2003 QA track.

Various query expansion techniques such as Pseudo-relevance feedback, co-occurrence
based expansion of query terms from external corpus, WordNet have also been suggested
by researchers to improve the sentence retrieval module in the Novelty track of TREC 2002
[, 2002; , 2002; , 2003].

In this thesis, we don’t try to compare different retrieval models or propose a new
retrieval model for documents/sentences in TS system, but mainly focus on other tech-
niques/aspects involved in building a Temporal Summarization system for a particular re-
trieval model. We use the standard retrieval model of Okapi-BM25 as the baseline method
for retrieving sentences.

14

2.4 Automatic Query Expansion

The vocabulary mismatch problem | , | suggests that words used in a
query by the user of a web search engine often mismatch with the vocabulary used in
the document. So, using any of the standard retrieval models such as Okapi-BM25 or
Language Modeling approach, the documents which do not use exactly the same words
due to the use of synonyms (e.g. “buy” and “purchase”), plurals (e.g. “colours” instead
of “colour”), abbreviations (“U.S.” instead of “United States”) etc. will not be retrieved
or might appear low in the ranked list due to fewer words matching the query.

In order to deal with these vocabulary problems, various techniques have been proposed
to improve the recall (covering more relevant documents of all the relevant documents)
of IR systems. However, the downside of these methods might be that the precision of
systems might go down due to extraneous documents retrieved in the process of expanding
the query. A number of techniques have been proposed since early years, like, relevance
feedback in the vector space model | ,], using co-occurence statistics for terms
[: |, stemming | : |, statistical analysis of term
distributions [, | for automatic query expansion.

A detailed survey on AQE is beyond the scope of the thesis, but survey papers such as
[I; [l; [| and IR books such

as [1999] and [2008] cover the topic in detail.
[] identifies three main sources for the query expansion terms:

1. Hand built dictionaries, thesauri and ontologies, for example, WordNet.
2. Documents used in the retrieval process, for example, top K documents for query.

3. External collections, such as Wikipedia.

Below we explain some of the Query Expansion techniques which could be used for TS
systems.

2.4.1 WordNet

WordNet®| , | is a lexical database of english words, where words are grouped into
sets of synonyms called “synsets”. Each synset represents a concept, and WordNet also

6 Available for free at http://wordnet.princeton.edu/

15

http://wordnet.princeton.edu/

maintains various lexical relationships between different synsets. For example, WordNet
stores hypernym/hyponym (e.g. bird is hypernym for pigeon and pigeon is hyponym for
bird) relationships between noun synsets.

The following noun synsets exist for the word “hero”:

1. hero (the principal character in a play or movie or novel or poem).
2. champion, fighter, hero, paladin (someone who fights for a cause).
3. bomber, grinder, hero, hero sandwich, hoagie, hoagy (different names of sandwiches).

4. Hero, Heron, Hero of Alexandria (Greek mathematician who devised a method for
calculating area of a triangle).

In order to find expanded words for the query terms using WordNet, one has to first
identify the correct synset for the word (depending on the context of the word in the query).
After finding the best synset, one can choose the words present in synset along with the
words present in any related synset as the expanded terms | ,].
And finally while using the expanded words in any of the retrieval methods, appropriate
weights can be assigned to the expanded words.

WordNet was used by [], where after several experiments it was hypoth-
esized to be ineffective for usage in IR, due to the loss in precision (unless the correct
synset is chosen). Later some of the problems in WordNet such as lack of proper names in
WordNet, and existence of polysemous words (words having multiple synsets) have been
handled by [1998]. WordNet was effectively used by
[] as a promising method for query expansion in the QA track of TREC.

2.4.2 Relevance Feedback and Pseudo-Relevance Feedback
The main idea behind Relevance Feedback is to get feedback from the user for document
relevance, and then expand the query by selecting important terms from the identified

relevant documents | , , page 273].

The method for Relevance Feedback involves the following steps (see [,
page 274]):

1. Retrieve documents for the user’s query.

16

2. User browses the documents and identifies/marks the relevant documents.

3. System ranks the words from the identified relevant documents and selects the top
K words as expansion terms.

4. Execute the final query with adjusted weights (generally % of original weight for
expanded terms) and present the user with final list of documents.

Pseudo-Relevance Feedback (PRF) on the other hand, eliminates the user interaction
step of identifying the relevant documents | , , page 275]. PRF assumes
that top N documents retrieved for the user query are relevant and then proceeds with the
steps 3 and 4 shown above. The performance of PRF highly depends on the number of
relevant documents retrieved in the top N documents which are used for finding expanded
terms | , , page 275].

2.5 Distributional Similarity

Statistical based approaches such as term-term co-occurrence measures using entire corpus
were suggested by researchers for AQE | , ; , ;

, ; , |. The methods involve either corpus
specific global techniques or query specific local techniques, calculating co-occurrence mea-
sures for query terms at either document level, topic level or even at sentence or paragraph
level in the corpus collection | : |. Different similarity measures
like Dice coefficient, Jaccard, Cosine, Average Conditional Probability, and Normalized
Mutual Information could be used for selecting query expansion terms, and were evaluated
by [|, where the authors show that Dice, Jaccard and Cosine perform
better than the others.

One of the main disadvantages of the statistical approaches based on the co-occurrence
of the terms is that they do not check for the linguistic meaning in which the terms are
used. Also, for the co-occurrence based methods only the terms which occur along with the
query terms within the vicinity of either document level, paragraph level or topic level are
found as expansion terms. Distributional Similarity methods overcome these limitations
by considering words that occur in similar contexts (even from different documents) to be
related | :].

Distributional similarity measures suggested by [1998]; [2003] are
some of the standard measures to calculate similarity between terms [,].

17

[2012] adapted BM25 ranking function for calculating simi-
larity between context features of the words, and found it to be competitive compared to
other distributional similarity measures. Below we only describe the Lin’s distributional
similarity metric which is used as a query expansion technique in subsequent chapters.

Given a list of seed words (related to the query), and a corpus of well formed sentences
or documents which are seemed to be relevant to the query, Lin’s similarity measure can
identify related words for each of the seed words. Lin’s distributional similarity method
uses grammatical dependency relations as features, and the Mutual Information is used as
the weight of the feature [Lin,]

The method for calculating Lin’s similarity is as follows [Lin,]:

1. A standard NLP parser like Stanford NLP7 could be used to extract dependency
triples from the text corpus. A dependency triple consists of two words and a gram-
matical relationship between them in the sentence.

2. Let f(w,r,w") denote the frequency of the dependency triple containing words w and
w’ with the relationship r. Wild card character is denoted by *, and the f(w,r, %)
denotes the sum of the frequency counts of all the dependency triples containing word
w and relationship r.

f(w7r7w/) Xf(*7r7*)

3. Mutual Information I(w,r, w') = log Flor a5 f Gera?)

4. Each seed word (s) is represented by a feature vector V' consisting of pairs < r,w >
with I(s,r,w) > 0.

5. The similarity measure between seed word (s) and a candidate word (c) is given as:

sim(s, c) = E<T,w>€V(s)ﬂV(c)(I(Sa r,w) + I(c,r,w))
| z<r,w>€V(s) 1(87 T U)) + Z<1",'LU>€V(C)](07 r, U))

2.6 Nugget-based Evaluation in the QA track

In TREC 2003, nugget based evaluation was designed to evaluate a system’s response for
definition questions. “There were 50 definition questions for TREC 2003, of which 30
were seeking information about a person (e.g. Vlad the Impaler, Benhur), 10 about an

"http://www-nlp.stanford.edu/software/lex-parser.shtml

18

http://www-nlp.stanford.edu/software/lex-parser.shtml

vital Agreement between companies and top executives

vital Provides remuneration to executives who lose jobs

vital Remuneration is usually very generous

okay Encourages execs not to resist takeover beneficial to shareholders
okay Incentive for execs to join companies

okay Arrangement for which IRS can impose excise tax

S UL W N+~

Table 2.1: List of nuggets for “What is a golden parachute?” question in TREC 2003 QA
track.

organization (e.g. Freddie Mac, Bausch & Lomb) and 10 questions about some other thing
(e.g. golden parachute, TB, etc.)” | :]

As a response to definition questions, systems return an unordered set of [document
id, answer string] pairs for every question. Every answer string is supposed to contain a
facet of information about the target in the question. As such there were no limits placed
on the length of each individual answer string or number of such pairs, but systems were
penalized for retrieving extraneous or duplicate information | ,].

)]:

1. The assessor is presented with a list of answer strings obtained from all the systems’
responses for every question. The assessor then builds a single list of “information
nuggets” along with their importance level (“vital” or “okay”) from the list of answer
strings for every question. According to [|, “an information nugget is
defined as a fact for which the assessor could make a binary decision as to whether
a response contained the nugget”.

The evaluation of the systems for this task is performed as follows |

Table 2.1 shows the list of nuggets found and classified by the assessor for the defi-
nition question “What is a golden parachute?” in 2003 QA track.

2. The assessor then manually matches the nuggets to the answer strings returned by
a system. For each answer string returned by the system, the assessor checks if the
answer string covers the same information as covered in the nugget. If a particular
system response covered the nugget more than once, then only one of the answer
strings is matched to the nugget. According to [|, assessors ignored
the wording differences and considered only the conceptual matches between nuggets
and systems’ responses, and hence the manual evaluation was necessary.

Table 2.2 shows the list of nuggets matched to a sample system’s response for the
“What is a golden parachute?” question in 2003 QA track.

19

2,3 a. The arrangement, which includes lucrative stock options, a hefty salary, and
a “golden parachute” if Gifford is fired,
1 b. Oh, Eaton also has a new golden parachute clause in his contract.
c. But some, including many of BofA’s top executives, joined the 216 and cashed
in their “golden parachute” severance packages.
d. The big payment that Eyler received in January was intended as a “golden
parachute”
e. Cotsakos’ contract included a golden parachute big enough to make a future
sale of the company more likely
f. syndication, the golden parachute for production companies
6 g. But if he quits or is dismissed during the two years after the merger, he will be
paid $24.4 million, with DaimlerChrysler paying the “golden parachute” tax
for him and the taxes on the compensation paid to cover the tax.
h. If he left, On leaving, O’Neill could would be able to collect a golden parachute
package providing three years of salary and bonuses, stock and other benefits.
4 i. After the takeover, as jobs disappeared and BofA’s stock tumbled, many saw
him as a bumbler who had sold out his bank, walking away with a golden
parachute that gives him $5 million a year for the rest of his life.
j. And after BofA disclosed that he had a golden parachute agreement giving
him some $50 million to $100 million if he left following the merger, he sent a
voice mail message to bank employees that he intended to stay.

Table 2.2: List of nugget matches created by assessor for a system response to “What is a
golden parachute?” (as shown in [2004]).

20

n = Number of vital nuggets returned in a response
a = Number of okay nuggets returned in a response
N = Total number of vital nuggets in the assessors list
[= Number of non-whitespace characters in the entire answer string summed

over all answer strings in the response;

Then,

Recall of the system (R) = %
Allowance (o) = 100 * (n + a)
1 if | <
Precision (P) =<} ’ li ! O‘.
1 — =%, otherwise

F-score : F(B) = $;2i2;3*+P]; :

For TREC 2003 : 3 = 5,
For TREC 2004, 2005 : 8 =3

Figure 2.1: Evaluation metric for a system’s response for definition questions.

3. Recall of a system is defined to be the ratio of the number of vital nuggets discovered

in system’s response to the total number of vital nuggets found by the assessor.

According to [|, researchers found evaluation of the precision of the
system to be tricky because of the inconsistency while calculating the total number
of nuggets (vital & okay) discovered in each system’s response by the assessors. So
for the evaluation of precision, verbose system’s response is penalized just as in the
evaluation of summarization systems [)].

F-score F(f3) is calculated for each system’s response as described in Figure 2.1. For
the 2003 QA track, the value of 8 = 5 and for 2004, 2005 tracks the value of § = 3
was used | : ; ;]. This shows that the track organizers felt the

recall of a system was three to five times more important than the precision for the
QA track.

21

2.7 Automatic nugget-based evaluation systems:
POURPRE, Nuggeteer

In the evaluation method described in the previous section, even though the answer key
(list of nuggets) needs to be created only once for every question, assessors need to man-
ually match these nuggets to the answer strings returned by every system. This human
involvement in judging a system’s response is a bottleneck for the evaluation process. In
future, if there are more systems to evaluate the current manual evaluation is not easily
scalable and also the current evaluation which requires assessor’s judgements cannot be
directly used on a new system. [] proposed an automatic
evaluation system, POURPRE, which can automatically match nuggets to answer strings
without human involvement. It was found that the POURPRE’s automatic scoring metric
correlates well with the QA track’s evaluation.

2.7.1 POURPRE

[2002] first successfully implemented the BLEU metric (also known as IBM
BLEU), which automatically evaluates the machine translation output of a system. BLEU
uses an n-gram co-occurrence statistics to compare user translated reference outputs with
the system’s output. The system’s output is then scored upon the number of matches it
has with the reference outputs. It was found that the BLEU’s metric of a system correlates
highly with the human judgement of the system for the machine translation. The same
idea was extended to evaluate the document summarization output by ROUGE, a system
developed by [2003].

POURPRE works on the same ideas as BLEU or ROUGE. However, in POURPRE
instead of n-gram matches, the authors use unigram matches | ,
|. The authors hypothesize that using n-grams (n > 2), will not be directly useful
because n-gram matches essentially check for the fluency of the sentences which is necessary
in machine translation, whereas in matching concepts (i.e. nuggets to answer strings) it is
not much useful.

So essentially in POURPRE, for matching a nugget to an answer string, the system
checks for the percentage of words in the nugget that overlap with the sentence, also called
as the match score. The nugget is matched to the answer string in the output to which
it has the highest match score, and the other answer strings are assumed to not contain
the nugget. Once the match scores for all the nuggets have been found, the recall of the
system is defined to be the sum of the match scores of all vital nuggets divided by the

22

RUN Percentage match score | IDF match score
TREC 2004 (8 = 3) 0.833 0.812
TREC 2003 (5 = 3) 0.886 0.876
TREC 2003 (5 = 5) 0.878 0.875

Table 2.3: Kendall’'s 7 correlation of POURPRE with official track rankings [
, 2005].

total number of vital nuggets in assessors list. Precision was also calculated in the similar
manner using the same formula used by manual evaluation in Figure 2.1.

POURPRE also uses a modified version of percentage match of nugget to sentence, by
taking into account the Inverse Document Frequency (IDF) scores. This is a meaningful
modification because matching common words like “in”, “the”, “year”, is not same as
matching not so common words like “parachute” (in the nugget example). So, the modified
match score is the sum of the IDF scores of the matched words in the nugget divided by

the total IDF of all the words in the nugget.

[2005] have shown that POURPRE method of automatically
matching nuggets to answer string correlates well with the human judgements and also at
the same time better than directly using BLEU or ROUGE system for automatic evalua-
tion. The correlation results of POURPRE on the QA tracks of TREC is outlined in Table
2.3.

2.7.2 Nuggeteer

Nuggeteer is another automatic evaluation system proposed by []
for nugget based evaluation methods. Nuggeteer is build upon the premise that “If a
system response was ever judged by a human assessor to contain a particular nugget, then
other identical responses also contain that nugget” | , .

[| build a binary classifier for every nugget, using n-gram weight, informativeness
measure for each n-gram and a matching threshold between a response and a nugget as
shown below.

23

RUN POURPRE | Nuggeteer
TREC 2005 (O) (8 = 3) 0.709 0.858
TREC 2004 (O) (8 = 3) 0.833 0.898
TREC 2003 (D) (5 = 3) 0.886 0.879
TREC 2003 (D) (8 = 5) 0.878 0.849

Table 2.4: Kendall’s T correlation of POURPRE and Nuggeteer with official track rankings,
D represents definition task and O represents other questions task.

According to [2006],

for each n-gram (w;;1w;y9...w;y,) € response (S = wiws...w;),

k=n
n-gram weight (W ZI DF(w;y)
k=1

1, if count(g, wiy1Wito...wiyy) > 0
0, otherwise

Zg’eG (9 vwi+1wi+2---wi+n)

Gl

Z(ga Wi 1Wi4-2-- wz—l—n {

Informativeness (I) =1 —

Recall R(g,S) = W(g, w;...wirr) * I(g, w;.. wi 1)

0

e
I
Il
o

where, count(..) function tells the number of times n-gram appears in a system response
containing nugget g.

The thresholds for deciding whether a nugget g is contained in system response S, is
based on the bayesian model generated on the training data for all the nuggets |
,]. The Kendall’s 7 correlation results shown in Table 2.4 were achieved for
the TREC QA tracks conducted in various years.

Overall, Nuggeteer shows comparable correlation values when compared to POURPRE
for the automatic evaluation of Definition and Relationship question types. Nuggeteer’s
main advantage is that it uses already judged response instead of the nugget for better
comparison while judging a new response.

Towards the end of the thesis we propose a similar supervised learning based evaluation
mechanism for the TS track which can considerably reduce the manual effort and assessor’s
time, making the evaluation scalable and easily applicable to judge new systems.

24

Chapter 3

TREC 2013: Temporal
Summarization Track

This chapter explains in detail our approach used to build a TS system for TREC 2013.
At the end of this chapter, we discuss the performance of our system by comparing it to
other systems in the track, and discuss the shortcomings and scope for improvements in
our approach. We submitted four runs to the track, out of a total of 26 runs submitted.
University of Waterloo submitted a total of eight runs to the track, which includes our four
runs. The problem statement of TS track of TREC 2013 is discussed earlier in Section 1.2
of Chapter 1. The evaluation metrics were also discussed in the same chapter earlier.

Three students from University of Waterloo (myself, Gaurav Baruah and Adam Roegi-
est) participated in the TS track submitting individual runs. Since all of us were working
on the same problem, we worked together to build a common base framework by down-
loading the documents, indexing the content and scoring the documents with respect to
the test queries, which could then be used to build the runs with individual methods. The
experimental setup detailed in Sections 3.1 and 3.2, is a joint work which is also described
in | ,].

3.1 Preliminaries and Experimental Setup

The TS track of TREC 2013 uses KBA-2013 stream corpus' as the time-ordered document
collection, which was downloaded locally into our system. The data inside the corpus

1Details available at http://trec-kba.org/kba-stream-corpus-2013.shtml

25

http://trec-kba.org/kba-stream-corpus-2013.shtml

is serialized with thrift format, so the C++ thrift sample from https://github.com/
trec-kba/streamcorpus was used to extract the content from thrift format |

].
The Named Entity (NE) tags were ignored while converting the document to TREC
format, as it was found that some of the NE tags like place, person, etc. were wrongly

tagged. The main reason for the conversion to TREC style format is for the ease of
processing the documents in further stages | , .

?

3.2 Indexing & Scoring Documents

We did not use search engine frameworks like Lucene, Indri, or Wumpus for indexing the
document collection, even though they incorporate many standard Information Retrieval
techniques for retrieving and scoring the documents for a given query.

The main reasons for not using the already available search frameworks, like Wumpus,
are | :]:

1. The document collection stream used for this track is temporal in nature, i.e., the
documents should be indexed according to time in the order they appear (i.e., in-
creasing order of timestamps), and given the query start and end time stamps, only
documents from these timestamps should be retrieved. Hence, to use Wumpus, sig-
nificant amount of changes need to be done in the indexing, and also to process the
results for removing the documents which are not in the query time period.

2. We noticed duplicate document identifiers in the corpus, and it would require some
preprocessing steps (to remove the documents), before the Wumpus could index the
collection.

In light of the above, and the submission deadline time constraints, we felt it was better
to index the document collection and score the documents using our own method.

3.2.1 Indexing: Hour-wise index files

The document collection is time ordered, and for each query, we need to use only the
documents that appear before the query start time for statistics like TF-IDF. So, building

26

https://github.com/trec-kba/streamcorpus
https://github.com/trec-kba/streamcorpus

one standard inverted index file for the whole document collection is not appropriate for
our requirement. We could have built different index files for each query, using only
the documents that appear before that query’s start time, but for a new query, indexing
should be done again, which doesn’t make the system scalable as the documents need to
be processed again.

So, it was intuitive that indexing the documents hour-wise would be the most appro-
priate method, as there are a total of 11,948 hours of documents in the collection, and
even for a query whose start time is around 10,000th hour, only 10000 index files need to
be merged to get collection statistics, which is easier compared to going through the entire
document collection for 10,000 hours to build index.

For every hour in the document collection (ranging from 05-Oct-2011 00 hrs, to 13-Feb-
2013 23 hrs), we built the following files for documents within every hour | ,

|:

1. hourTF.gz: Contains <Word : Term-Frequency> tuples for all the terms appearing
in the documents in that hour. Number of terms in the collection (I¢) up until that
hour and the number of terms in that hour (I/z), are also stored in the file.

2. features.gz: Contains Term-Frequency feature vectors of documents in one file, with
each line containing features of one document (docld: list of <word : freq_count>).

3. meta.gz: Metadata in a file with each line containing doc-id, source .gz file of the
document, document timestamp and document length.

With these files, the whole document collection was reduced to approximately 600 GB
(compressed), and as mentioned earlier, this helps us to compute the term statistics up to
the query start time easily [, |. To tokenize the documents into terms,
we used whitespace tokenizer with only alphabetic characters retained.

3.2.2 Scoring documents: Using Query Likelihood model

Language Model with Dirichlet smoothing (LMD) was used to score the documents with
respect to the query (described in Equation 2.12 earlier), as shown below:

) l
scoreryp :th-log (1—1—@ . —C> —n-log (1—1—5) (3.1)

teq pool

27

where, t is the term, ¢ is the query term vector, ¢; is the term frequency of ¢ in the query,
fta is the term frequency of ¢ in document d, I is the length of the collection (the total
number of terms in the collection), I, is the number of times the term ¢ appears in the
collection, and g is the Dirichlet smoothing factor. We set the value of ;1 = 1000 |

, 2014)].

All the documents within the query duration (between start time and end time of the
query) were scored using the Equation 3.1, the feature vector file (features.gz) which has
the frequency counts of all the terms appearing in each document, and the hourTF.gz file
which has the collection length [». The cumulative frequency [; for all the query terms is
calculated using the hourTF.gz files from the document collection start until the current
hour.

The following algorithm was used to compute document scores, i.e. scoreryp (as shown
in [: , page 3]):

for each hour from collectionStart_time until query start_time:
1_t += hour-term-counts(t)
1.C+=1_H
end for
for each hour from query start_time until query end_time:
for each document in hour:
compute LMD score for document
write out LMD score to query.score file
end for
update 1_t and 1_C for the hour
end for

The scores for all the documents within a particular hour are written to a separate
file, query.score, which will be used in later stages. After the documents are scored, only
sentences from the top scoring documents are considered for further processing (as they
are more likely to be relevant).

We used an arbitrary fixed cutoff score of 0 for document selection, i.e., all documents
whose scorepyp > 0 were extracted from the corpus for further processing (denoted by
document set D) | , |. However, later in Section 3.4, we propose an
adaptive cutoff score algorithm, which chooses the document cutoff score for hour A + 1
dynamically based on the scores of the documents in hour h.

28

Note that, a cutoff score is used instead of using top K documents because: As per the
track regulations, at a particular time instance we cannot use the future documents within
that hour. If at all top K documents in the hour need to be found, the decision timestamps
for the sentences in the run should be at least the end of the hour, which would in turn
increase the latency of the update and the penalty on gain metric.

With this basic framework built until now, we used separate algorithms to process the
document set D and prepare our runs.

3.3 Query Expansion: Distributional Similarity

From the training topic, it was observed that the query is very short in length (e.g. “iran
earthquake”), and we already know that the query size used in major search engines like
Google is less than 3 words?. After initial processing of the documents within the first few
hours of the collection, we observed that the average sentence length is ~ 34 words. Since
the query is very small in length and also the sentence length is very small, intuitively it
seems that chances of finding query terms in the sentence will be low. Also, it was found
from the list of nuggets released for the training topic that 78 relevant nuggets (out of a
total of 103 nuggets) did not contain any of the query terms (“iran” or “earthquake”).

So, to improve the recall (coverage of relevant nuggets) of our system we use query
expansion techniques (expanding the query with relevant words), and score the sentences
with respect to the expanded query. After expanding the query with related terms, we
used the following formula (adapted from Equation 2.4) to score the sentences.

_ ft,S(kl + 1)
50 Cantnee =) (q’f S EDE T “’t) (3:2)

teq

where, f; s is the frequency of term ¢ in sentence s, [, is length of sentence, 4., is the
average sentence length (found to be 34 earlier) and parameters ky = 1.2,b = 0.75 (as
prescribed by | , , page 272]).

The above equation is a direct adaptation of Okapi-BM25 function, where the sentence
is now treated as a document. So, the weight of the term w,; should now be the Inverse
Sentence Frequency (ISF) weight i.e. log(%), where N = Total number of sentences, and
N; =number of sentences containing term ¢. [| shows an interesting observation

2http://www.hitwise.com/us/about-us/press-center/press-releases/2009/
google-searches-jun-09/

29

http://www.hitwise.com/us/about-us/press-center/press-releases/2009/google-searches-jun-09/
http://www.hitwise.com/us/about-us/press-center/press-releases/2009/google-searches-jun-09/

that there is very high correlation between the ISF and the Inverse Term Frequency (ITF),
i.e. log(ll—f), where [is length of the collection and [; is the number of times t appears
in collection. [2010] also confirms that both ISF and ITF could be used
as effective query term weights for the sentence retrieval. So, we used w; = log(ll—f) as an
approximation for the ISF weight of the term while scoring sentences.

Kindly note that we did not weight the expansion terms with respect to the query
terms, unlike general query expansion techniques described in Chapter 2. This is because
the sentences to be ranked are already selected from the top scoring documents which are
likely to be relevant to the query topic, and hence the expansion terms if found in the
sentences of these documents must be used in the context relevant to the query. Under
this assumption, we use the Equation 3.2 to score the sentence, without any additional
weight for the expansion terms with respect to the query terms.

3.3.1 Finding Expansion terms

As seen earlier in Section 1.2 of Chapter 1, a query can belong to one of the following
event types: {accident, bombing, earthquake, shooting, storm}. The following steps were
performed, to find the expansion terms.

Step 1: For each of the event types, seed words (= 30 words per event type) were
found manually from Wikipedia articles of each event type. In particular, we ensured that
the Wikipedia article for an event type occurred prior to the all the events specified in the
test queries. The seeds words picked from the articles were not specific to that particular
event but tend to occur more commonly in all articles of that event type.

For example, for the event type of earthquake, we used the Wikipedia articles on major
earthquakes® before 2012 to find the following seed words:
{earthquake, damaged, leveled, killed, injured, dead, died, wounded, survive, assistance,
cities, displaced, aftershock, aftermath, seismic, magnitude, quake, death, toll, recovery,
victims, homeless, destroyed, ambulance, disaster, shelter, panic, stranded}.

Step 2: A list of training topics was also created, one for each event type. It was
ensured that the training topics appeared before the track’s test topics in time, for each of
the event types. This is in accordance with the track’s guidelines, which allows the use of
documents from earlier time but not from the future.

For example, the training topic “iran earthquake” was used for earthquake event type,
with query end time as 1345551797 unix timestamp, i.e. Aug 21, 2012. The test queries for

3http://en.wikipedia.org/wiki/List_of_21st-century_earthquakes

30

http://en.wikipedia.org/wiki/List_of_21st-century_earthquakes

seed word | Top 10 expansion terms generated with
Distributional Similarity

quake earthquake tremor disaster magnitude after-
shock temblor toll damage province death
damaged destroyed killed left hit injured struck
wounded leveled brought died

cities counties areas towns regions provinces parts
villages people states residents

assistance | aid help food relief money work medicine
team sympathy water

disaster earthquake quake emergency relief tremor
crisis aftershock catastrophe development re-
gion

Table 3.1: Examples of seed and expansion terms for earthquake event type.

this event type included “guatemala earthquake”, whose query start time is 1352306147,
i.e. Nov 7, 2012, which is later than the training event.

Step 3: Top K (= 10,000) sentences were then extracted from the document set D
retrieved for each training topic (e.g. “iran earthquake” for earthquake event type). The
sentences were scored using the BM25 function in Equation 3.2 using the seed words list
as the query terms.

Step 4: The top K sentences retrieved in the above step, and the seed words, are given
as input to the Lin’s distributional similarity algorithm (refer Section 2.4 of Chapter 2) to
find the expansion terms.

Table 3.1 shows examples of seed words and their related words found for the training
topic “iran earthquake”. One can observe from Table 3.1 that the distributional similarity
algorithm performs quite well in retrieving expansion words related to the seed word of the
query topic.

These expansion words along with the initial seed words and query terms, constitute
the expanded query (¢ in Equation 3.2) for calculating the sentence score (scoregentence) i
Equation 3.2. For the TREC submission, the expansion terms were carefully hand-picked,
which was possible because the number of event types (= 5) and expansion terms for each
event type was small. For example, in Table 3.1, words such as “brought”, “left”, “parts”,
“work”, etc. were not used in the final expanded query.

Clearly, the manual selection of words in this method is a hinderance for the scalability

31

of the system to new event types. However, for any new query belonging to one of the five
event types the same expansion terms list can be used, since the expansion terms found are
related to the event type and are not specific to the query. We also present an automatic
expansion method without manual selection, developed after TREC, which is explained in
detail in Chapter 4.

3.4 Sentence Selection Criteria & De-duplication

To avoid redundancy in updates, and to improve their quality, we need to shortlist sentence
updates as well as avoid duplicate sentences.

In order to select sentences, we could return top K (for some fixed value of K') sentences
every hour. But since the decision for selection of a sentence is made at the end of the hour
here, there would be a latency penalty that would be applied due to the delay in update
(which might have appeared early in the hour).

And also a rigid cutoff score, such as 0 used for scorepyp of documents, could not be
used for scoregepience to shortlist sentences, due to the diversity in the documents returned
every hour (sentences might have lower scores in earlier hours, but are more important due
to the low latency factor). Hence, an incremental cutoff score (scoreuoss) different for
every hour was used to decide whether a sentence should be included in the list of updates
or not.

The following algorithm was used to select the sentence/update into the list of updates:

S_h = 5000; //max num of sentences per hour (parameter for algorithm)
D_h = 3000; //max num of documents per hour (parameter for algorithm)
score_cutoff = 0; //cutoff = 0 for first hour

dscore_cutoff = DBL_MIN;

updatelist[] //list of updates

for every hour ‘h’ between the start and end timestamps:
i=0;
scorel]; //list of sentence scores for current hour
dscorel[]; //list of doc scores for current hour

for every document ‘d’ in hour ‘h’:
if doc_score(d) < dscore_cutoff:

32

continue;

dscore[] .add(doc_score(d));
for every sentence ‘s’ in document ‘d’:
if score_sentence(s) > score_cutoff:
add ‘s’ to updatelist[];
score[] .add(score_sentence(s));
end if
end for

end for

if scorel].length() > S_h: //update score_cutoff
sort scorel[] desc
score_cutoff = score[S_h];

end if

if dscore[].length() > D_h: //update dscore_cutoff
sort dscorel[] desc
dscore_cutoff = dscore[D_h];
end if
end for

return updatelist[]

For the first hour, all the sentences were included in the update set. For subsequent
hours, only sentences with scoresentence > SCOT€cutorf, i.6. minimum score cutoff from the
previous hour, were added to the update set. Similarly, an incremental minimum cutoff
score was computed for documents, which is dependent upon Dj; number of documents
every hour. For a sentence to be included in updates, both the sentence score cutoff and
document score cutoff should be passed.

The two parameters, S, and Dp,, in the above mentioned algorithm select the number of
sentences returned in the update. We submitted four different runs for different parameter
values, which is explained in detail in the next section.

The deduplication step kicks in while adding a sentence to the update list. If more
than 90% of the words in the current sentence are covered in any of the previously re-

33

RunlID Sentences Documents
per hour (S,) | per hour (D},)
rgl and rg2 5000 3000

rg3d and rgd 1000 500

Table 3.2: Sy, and Dy, for rg runs

turned sentences, it was discarded as a duplicate. For the TREC submission, we followed
the mentioned deduplication algorithm, but after TREC, we compared different dedupli-
cation techniques which could be used in TS systems. Experiments conducted after TREC
conference which investigate various techniques are detailed in Chapter 4.

Also, for all the four runs submitted to TREC, the confidence score for the update
returned in our run was defined to be scorésentence * SCOT€document | ,].
This was particularly done to ensure that the high scoring sentences from high scoring
documents receive greater confidence score.

3.5 Submitted runs

We submitted four different runs, namely: rgl, rg2, rg3, and rg4, to the TS track
of TREC. Other runs from the University of Waterloo are: CosineEgrep, NormEgrep,
UWMDSqlec2t25 and UWMDSqlec4t50.

The four rg runs differed in the number of sentences and documents selected per hour.
Table 3.2 lists the number of sentences and documents shortlisted for each rg run. The in-
cremental minimum cut-off scores change every hour based on the score of the S sentence
of the previous hour, as shown in the algorithm in the previous section.

The reason for submitting different runs is to test the right cutoff for the number of
sentences selected per hour. The track’s evaluation metrics, Expected Gain and Compre-
hensiveness, are similar to standard IR metrics, Precision and Recall respectively. While
Expected Gain (EG) tells us about the gain received by the system for covering relevant
nuggets in all the updates returned, Comprehensiveness (C) metric indirectly measures the
number of relevant nuggets covered out of all the relevant nuggets.

The formulae for the metrics as explained in Section 1.4 of Chapter 1 are:

BG=ro > g(M(nS).n) (33)
| |n€N:M(n,S)7$¢

34

C= ' Z g(u,n) (3.4)

ZnGN R<n) ueS neM—1(u,S)

Hence, intuitively one can expect that, as the number of updates increases, there is a
possibility that the system covers new nuggets and hence Comprehensiveness (C) metric
(i.e. Recall) might increase. But at the same time, with an increase in the number of
updates, the Expected Gain of the system might decrease due to the faster growth of |S]
in denominator of Equation 3.3. So, to achieve the right balance between the two metrics,
the parameter values for Sj, and Dy need to be varied, and hence the four runs.

While testing on the training topic, it was observed that the sentence scores are not
accounting for the verbosity of sentences, even with the BM25 score (after changing b
parameter). Verbosity of sentences is important because, ELG (Expected Latency Gain)
metric assigns penalty for verbose sentences. So we prepared two runs by multiplying the
sentence score (SCOT€senience in Eq 3.2) with log(1 + 1729); (see document length normal-
ization in | : , page 301]). This was tried for the TREC submission as
an experimental change to Okapi-BM25 scoring function for TST. Even though runs rgl
and rg2 have the same parameters, the scoring formulae for both differ. Runs rg3 and rg4

differ in the same way.

So, while runs rgl and rg3 use Eq 3.2 for scoring the sentence, for runs rg2 and rg4,
the scoring formula is:

ft d(kl + 1)) lavg
sentence = X : X X log(1 + —= 3.5
SCoresenience =) <Qt (D) + blaflang)) T fog) 100 (B5)

teq

3.6 Results & Discussion

Table 3.3 shows the results of various runs submitted to the Temporal Summarization task.
The track’s metrics, Expected Latency Gain and Latency Comprehensiveness, are reported
for different runs.

Our run (rgl) achieved the highest value (0.571) in Latency Comprehensiveness (LC)
metric in the competition. Also, this value is nearly twice the average value of the Latency
Comprehensiveness achieved by all systems. Similarly, our other runs, namely rg2, rg3 and
rg4 achieved very high values in the LC metric. The main reasons for this high value of

35

RunID ELG LC
PRIS-clusterb 0.136 (0.090) | 0.126 (0.164)
[CTNET-run2 0.127 (0.075) | 0.251 (0.169)
[CTNET-runl 0.125 (0.075) | 0.253 (0.169)
hltcoe-TuneExternal2* 0.117 (0.073) 0.203 (0.156)
hltcoe-TuneBasePred2* 0.114 (0.117) 0.244 (0.188)
PRIS-cluster3 0.103 (0.050) | 0.176 (0.203)
PRIS-cluster2 0.074 (0.031) | 0.260 (0.217)
wog Tr-uog TINMTm1MM3 0.069 (0.053) | 0.216 (0.203)
PRIS-cluster4 0.067 (0.026) | 0.288 (0.262)
PRIS-clusterl 0.067 (0.026) | 0.292 (0.270)
hltcoe-BasePred 0.067 (0.057) 0.368 (0.272)
hltcoe-Baseline 0.063 (0.046) 0.381 (0.261)
uogTr-uog TrNSQ1 0.060 (0.031) 0.184 (0.171)
ALL- 0.058 (0.061) | 0.288 (0.288)
hltcoe-EXTERNAL 0.054 (0.027) | 0.413 (0.291)
uogTr-uog TrNMTm3FMM4 0.049 (0.028) 0.170 (0.143)
uogTr-uog TrNMM 0.045 (0.023) 0.254 (0.231)
uogTr-uog TrEMMQ2 0.040 (0.024) 0.259 (0.254)
wim GY 2013-SUS1 0.036 (0.029) | 0.148 (0.149)
UWaterlooMDS-rg4 0.028 (0.019) | 0.516 (0.339)
UWaterlooMDS-rg3 0.026 (0.015) 0.506 (0.323)
UWaterlooMDS-rg2 0.022 (0.018) 0.562 (0.349)
UWaterlooMDS-rg1 0.021 (0.016) 0.571 (0.358)
UWaterlooMDS-UWMDSqlec4t50 0.018 (0.016) | 0.530 (0.325)
UWaterlooMDS-UWMDSqlec2t25 0.017 (0.016) | 0.537 (0.322)
UWaterlooMDS-CosineEgrep 0.010 (0.015) 0.018 (0.027)
UWaterlooMDS-NormEgrep 0.001 (0.002) 0.061 (0.117)
BJUT-Q0* 0 (0.0) 0 (0.0)

Table 3.3: 1 and o (in parenthesis) of task metrics namely Expected Latency Gain (ELG)
and Latency Comprehensiveness (LC) over all queries, sorted by Expected Latency Gain.
*run not pooled. Table is as reported in | , , page 13].

36

LC metric and low ELG are due to the large number of updates returned in our runs and
due to the query expansion.

The following observations can be made from the results of the track:

1. The track’s metrics, Expected Latency Gain and Latency Comprehensiveness, are
nearly inversly related just like Precision and Recall. We can observe from the table
that, with decrease in ELG metric, the LC of the run increases. Since both metrics
are important for a system, a good system should maintain a right balance between
these two values. However, in the track, there is no single metric (combining these
two metrics) with which the systems could be ranked.

2. With decrease in the number of updates returned by the system per hour, we observe
that the ELG metric increases and LC metric decreases. Intuitively this is under-
standable, because of the greater decrease in |S| in the denominator (in Equation
3.3) compared to the decrease in gain in the numerator while calculating EG metric.
Similarly, with a larger number of updates returned per hour, the chances of covering
new nuggets increase, and hence the gain of the system increases but the denominator
remains the same for Comprehensiveness metric (in Equation 3.4), so overall there is
an increase in LC value with the increasing number of updates.

For example, runs rgl and rg3 use the same methodology for ranking sentences.
However, they differ only in the cutoff (S},) value for selecting the number of sentences
per hour. Run rgl returns a maximum of 5000 sentences per hour, whereas rg3 returns
a maximum of 3000 sentences per hour. From the table, ELG(rgl) < ELG (rg3) and
LC(rgl) > LC(rg3). Similar observations can be made for runs rg2 and rg4.

3. We see that the sentence length normalization, i.e. multiplying the sentence score
by log(1 + %) as explained in Equation 3.5, shows very marginal improvement or
nearly indifferent in both the metrics (which include penalty for verbose sentences).

Based on the above observations, we attribute the low scores in Expected Latency Gain
metric of our system to the following factors:

1. Large number of sentence updates (around 3000 or 5000) returned per hour.

2. Weak deduplication algorithm, which checks for duplicate sentences based on the
percentage of words covered in an earlier update, with cutoff of 90% of words.

37

In Chapter 4, we try to overcome the above problems with better deduplication al-
gorithms and by tuning parameters for the sentence selection cutoffs. We also make the
system more robust and scalable, by proposing an automatic method for expanding the
terms, in lieu of the current manual selection of seed and expansion terms.

38

Chapter 4

Experiments after TREC

This chapter investigates various techniques that could be applied while building a Tem-
poral Summarization system. In particular, this chapter investigates the effectiveness of
adaptive sentence cutoff selection algorithm, stemming, various deduplication algorithms
and finally query expansion using Lin’s distributional similarity [l.in,]. We study the
effectiveness of these techniques so that researchers can use these methodologies towards
building an effective Temporal Summarization system for TREC in future years. Also, in
this chapter, we propose an automatic query expansion method using Lin’s distributional
similarity where seed words and expanded words are identified automatically, unlike the
hand-crafted manual selection done in Chapter 3.

4.1 Experimental Setup and Baseline runs

We use the same experimental setup as in the previous chapter which was built while
participating in TREC 2013. In Section 3.1 and 3.2 of Chapter 3, we explained the process
of experimental setup which involves downloading KBA corpus, indexing the collection
and extracting documents for the TREC queries using Language Modeling approach.

Once the documents have been extracted for further processing of sentences, we carried
out the following experiments for studying the effectiveness of various methods. The base-
line run for each of the experiments varies but predominantly the baseline run is built by
ranking and selecting sentences with respect to the original query without query expansion.

39

4.2 Effectiveness of adaptive cutoff based sentence se-
lection

Sentence selection is one of the important steps while building a Temporal Summariza-
tion system. A sentence should be returned in the list of updates based on the novelty,
importance, and especially without any latency from the time when it appeared in the
news/document stream. In Section 3.4 of Chapter 3, we introduced a sentence selection
algorithm with an adaptive cutoff for the sentence scores.

To study the effectiveness of the adaptive cutoff based sentence selection criteria, we
consider a baseline algorithm which returns the top ranked sentences every hour (during
query time period) similar to the ranked document lists (top ranked documents) presented
in a web search engine.

In the adaptive cutoff based algorithm presented in Section 3.4 earlier, if S > S
(parameter for the algorithm) sentences are returned for hour h, then the sentence score of
the S sentence would be used as a cutoff (lower bound) for the sentences in hour h + 1,
i.e., only sentences which are above the cutoff score would be returned in hour h + 1 and
SO on.

In the baseline run, top K (parameter for the algorithm) sentences are returned at the
end of every hour during the query time period. Since the decision is taken at the end of
the hour, the decision timestamp for every sentence is the end of the hour.

Adaptive sentence selection has the following advantages over baseline:

1. The decision of the sentence selection is made at the time the sentence is seen (or
scored), without waiting till the end of the hour for selecting the top sentences in the
hour. Thus, this method avoids the latency penalty for the sentence returned.

2. Only sentences which have a good score (greater than the determined cutoff) are
returned every hour, unlike the output of the top K sentences every hour in the
baseline run.

3. The adaptive cutoff score is a monotonically increasing function over the query time
period, so sentences returned in the later time periods of the query have higher cutoffs
compared to the sentences returned in the previous hours. This is particularly useful
in TST, because the relevant information in the documents is more abundant as the
time progresses and gain associated might be lower due to the latency with which

40

information is presented to the user. So, our sentence selection algorithm inherently
prefers sentences returned in the early hours compared to return of similarly scored
sentences in the later hours.

4.2.1 Results and Discussion

The experiments involved preparing runs for both the adaptive cutoff based selection algo-
rithm and the baseline (top K sentences per hour) algorithm. While preparing the runs,
it was ensured that the rest of the steps are the same for both algorithms, i.e., sentence
scoring using BM25 function, no query expansion, and no deduplication was performed for
both the approaches.

Multiple runs were prepared for the adaptive cutoff based algorithm by varying the pa-
rameter S, (sentences per hour) in the algorithm mentioned in Section 3.4. The values
for parameter S, were picked in the range from 1 to 1000. Dj, (documents per hour) was
selected to be 1000. For every combination of < Sy, D}, >, there is one run created which
is a point on the graph with a particular EG, ELG, C, LC, and Avg. Number of Updates

per query.

Expected Latency Gain Latency Comprehensiveness

0.2 0.45

=g ELG_Adaptive 0.4
=g ELG_Baseline

0.18

0.16 0.35
0.14 0.3
0.12 0.5
T 01 Q
= - 0.2
M 0.08
0.15
0.06
0.04 0.1
0.02 0.05
0 0
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
Avg. Number of Updates Avg. Number of Updates

Figure 4.1: ELG and LC metrics for Adaptive cutoff and Baseline algorithms against the
average number of updates evaluated per query.

Whereas for the baseline run, which returns top K sentences every hour within the

41

query time period, the value of K was increased from 1 to 40 in increments of 1. For each
value of K, there is one run created, and a point is plotted on the graph with the metric
values.

Figure 4.1, shows the ELG and LC metric values for both algorithms, i.e., adaptive
cutoff based sentence selection and the baseline. The X-axis for both graphs shows the
average number of updates present in the run which were evaluated. We can observe from
the figure that adaptive cutoff selection algorithm outperforms the baseline algorithm in
both track metrics. With the increase in updates in the run, the ELG of the run decreases
but LC of the run increases. For the same number of updates evaluated in the runs, the
adapative cutoff algorithm performs better than the baseline.

ELG vs EG (Adaptive) ELG vs EG (Baseline)
0.2 0.16
0.18 —t— ELG_Adaptive —t— ELG_Baseline
b EG_Adaptive 0.14 —+— EG_Baseline

0.16
0.12

0.14
0.12 0.1
0.1 0.08
0.08 0.06

0.06
0.04

0.04
0.02 0.02
0 0

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140
Avg. Number of Updates Avg. Number of Updates

Figure 4.2: ELG vs EG for Adaptive cutoff and Baseline algorithms against the average
number of updates evaluated per query.

Figure 4.2 compares the ELG and EG metrics for the adaptive cutoff and baseline
algorithms. We can see that for the baseline algorithm EG of the run is always greater
than the ELG metric, which means that the sentences were penalized due to the latency
factor. However for the adaptive cutoff algorithm, the latency penalization is not seen and
the ELG of the system is almost near or slightly higher than the EG of the run.

Figure 4.3, shows the ELG and LC metric values for both algorithms against the total
number of updates returned by the TS system. Clearly from the figure, with increase in
the number of sentences outputted the ELG decreases and the LC increases. It should be

42

Expected Latency Gain Latency Comprehensiveness

0.2 0.45
0.18 g [1L.G_Adaptive 0.4
' —+— ELG_Baseline
0.16 0.35
0.14 0.3
012 0.25
S 0.1 Q
- - 0.2
M 0.08
0.15
0.06 R
0.04 T 0.1 —a— LC_Adaptive
0.02 0.05 g 1.C_Baseline
0 0
0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000
Total Sentences Total Sentences

Figure 4.3: ELG and LC metrics for Adaptive cutoff and Baseline algorithms against the
total number of sentences returned by the system.

noted that, for the same number of sentences returned by the TS systems, adaptive cutoff
selection algorithm outperforms the baseline.

Appendix A shows the list of runs for both algorithms, for which the graphs have been
plotted.

Thus, we propose that the adaptive cutoff selection algorithm presented in Section 3.4
of Chapter 3 can be used as a reliable sentence selection algorithm while making decisions
on the sentences to be returned in the list of updates.

4.3 Effectiveness of stemming

In this section, we detail the experiments conducted for studying the effectiveness of using
stemming in tokenization of query and sentences. We prepared multiple runs for two dif-
ferent methods, one without using stemming and another method by using Porter stemmer
[, |. For both methods, the rest of the criteria such as adaptive cutoff based
sentence selection, no deduplication, and no query expansion were same.

43

Expected Latency Gain (No Stem) Latency Comprehensiveness (No Stem)

0.25 0.45

=% Docs = 100

0.4

0.2 0.35

0.3
0.15
o 0.25
&)
-
=02
M 0.1
0.15
0.05 01
0.05
0 0

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180

Avg. Number of Updates Avg. Number of Updates

Figure 4.4: ELG and LC for without stemming runs (varying D, and S, in adaptive
cutoff algorithm).

4.3.1 Results and Discussion

Figure 4.4 shows the ELG and LC values for the runs which do not use stemming. The
parameter values for D), (in adaptive sentence selection) was chosen from {100, 300, 500,
1000}, and the values for S;, were picked in the range from 1 to 1000. The X-axis in both
graphs of Figure 4.4 show the average number of updates evaluated per query. From the
graphs, we can observe that choosing the value of D; = 1000, yields better ELG when
compared to D, = 100 for the same number of updates, but at the same time, it has lower
LC compared to D;, = 100.

In order to compare the effectiveness of stemming, we fixed the value of D, = 1000
and then prepared different runs changing S; for both “with stemming” and “without
stemming” approaches. Figure 4.5 shows the performance of systems in ELG and LC
metrics. From the graph plots in Figure 4.5, we do not see much difference in the ELG and
LC values for “stemming” vs “no stemming” approaches when approximately the same
number of updates are returned.

Only when the average number of updates returned by the system is fewer than 20 per
query, we see that there is a considerable difference in the ELG of both systems. We also
see sharp increase and decrease in ELG of the system when the average number of updates
is less than 20 per query. This is due to the high offset in the gain of the system created

44

Expected Latency Gain Latency Comprehensiveness

== No Stem

0.45
0.4
0.35
03

© 0.25
= 02
0.15
0.1

——4— With Stem

=t No Stem

0.05 ——t— With Stem

0 0
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180

Avg. Number of Updates Avg. Number of Updates

Figure 4.5: ELG and LC for “Stemming” vs “No Stemming” (D;,=1000 and varying S},
in adaptive cutoff algorithm)

by one query for which the system returned only one update.

Appendix B shows the list of runs for both algorithms, for which the graphs have been
plotted in Figure 4.5.

Since overall there is no significant loss or gain in performance with the use of stemming
in TST, we suggest researchers employ different techniques like Query Expansion in order
to increase the recall (LC), i.e. coverage of nuggets in the system’s list of updates.

4.4 Deduplication

In this section, we study different deduplication algorithms which can be used in a TS
system. In the deduplication step of a TS system, a sentence is added to an existing list
of updates returned by the system, if and only if there is no other sentence in the updates
which is a near duplicate of the current sentence. Through this step, we maintain the

novelty of the system’s updates and there will be no penalty received by our system in the
ELG and LC metrics.

The baseline run for the deduplication step is the “exact match” approach, where a
sentence is considered to be duplicate only if there is another sentence already returned in
the system’s list of updates which is “exactly the same” as the current sentence.

45

Let s denote the current sentence and U denote the list of updates returned by the
system so far.

Let the function isDup(s,U) define whether the sentence s is duplicate of any other
sentence s’ € U. For the baseline run, the function is defined as follows:

bool isDup(s, U)

{
for each s’ in U
if (s == 8?)
return true;
return false;
}

4.4.1 Percent Match
In the “percent match” approach, we check for the percentage of words in the sentence

s which are also present in the sentence s’ € U. If the percentage match crosses a fixed
threshold, then the sentence s is considered as a duplicate. The functions are defined as:

bool isDup(s, U)

{
for each s’ in U
if (percent_match(s, s’) > cutoff)
return true;
return false;
}
double percent_match(s, s’)
{
count = O;
for each word w in s
if s’ contains w
count++;
return count/|sl;
}

46

Expected Latency Gain

Latency Comprehensiveness

0.3 —&— Cutoff = 0.75 03
=——4— Cutoff = 0.8
Cutoff = 0.85
0.25 —&— Cutoff = 0.9 0.25
e Cutoff = 0.95 J”
0.2 0.2 -
W0.15 ©0.15 /
S|
=) -
0.1 0.1
- ‘A- —f— Cutoff = 0.75
G W —a— Cutoff = 0.8

%5 20 26 30 35 40 45

Avg. Number of Updates

50

Cutoff = 0.85
=t Cutoff = 0.9
=—p— Cutoff = 0.95

0 5 10 15 20 26 30 35 40 45

Avg. Number of Updates

50

Figure 4.6: ELG and LC of runs for various cutoffs of “percent match” threshold

Figure 4.6 shows that the runs with cutoff for “percent match” = 0.75 perform better
than the runs with other cutoffs in both the metrics ELG and LC. This is because with
lower cutoffs the deduplication algorithm is highly selective and selects only updates which
are unique and not contained in any of the previous updates. This improves the novelty
of updates, and helps to improve the ELG and LC scores.

4.4.2 Cosine

In this deduplication approach, we calculate the cosine similarity between the sentences s
and s’ and when it crosses a fixed threshold, then the sentence s is discarded as a duplicate.
The function is defined as follows:

double cosine_sim(s, s’)
{
vecl = tokenize(s);
vec2 = tokenize(s’);

sum = 0;
for each token t in vecl:
if vec2 contains token t:

47

sum += vecl[t] * vec2[t]; // multiply frequencies

suml = O;
for each token t in vecl:
suml += vecl[t] * vecl[t];

sum?2 = O;
for each token t in vec?2:

sum?2 += vec2[t] * vec2[t];

return sum/sqrt(suml * sum?2);

Expected Latency Gain Latency Comprehensiveness

0.35 0.3

—— Cutoff = 0.75
=——— Cutoff = 0.8

Cutoff =0.85
03 —a— Cutoff = 0.9 0.25 L P aad
—>— Cutoff = 0.95
0.25
0.2
0.2
&} 0.15
Q
20.15 H
0.1 01 Cutoff = 0.7
. ——— —8— Cutoff=0.75
= —— Cutoff=0.8
Cutoff =0.85
0.05 0.05 4 —— CutoT-0.9
—— Cutoff =0.95
0 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Avg. Number of Updates Avg. Number of Updates

Figure 4.7: ELG and LC of runs for various cutoffs of “cosine similarity” threshold

Figure 4.7 shows that the runs with cutoff for “cosine similarity” = 0.75 perform slightly
better than the runs with other cutoffs in both the metrics ELG and LC. This is similar
to the pattern observed in the previous section. Having low cutoff for the deduplication
measure helps in the algorithm to be more selective and return only updates which are
unique. However, having very low thresholds can be a problem in erroneously discarding
a sentence as duplicate.

48

4.4.3 Simhash

Simhash, a locality sensitive hashing scheme was first proposed by Charikar in 2002, which
can detect similar objects based on the hash values [C'harikar, 2002], and is also patented by
Google!'. Simhash was effectively used by Manku et al. [2007] to detect near duplicate doc-
uments from the repository containing multi-billion webpages. The authors used a 64-bit
simhash fingerprint to effectively detect duplicate documents among 8 billion documents.
Henzinger [2006] showed that Simhash performs better (higher precision) than shingling
algorithm [Broder et al.; 1997] while detecting near-duplicate webpages from a collection
of 1.6 billion webpages.

Like the cutoff threshold scores used in the previous sections to detect duplicate sen-
tences, we use a threshold for the similarity value calculated between two sentence hash
values. We used 128-bit simhash for hashing and the sentences are tokenized with the
whitespace space tokenizer while hashing.

Expected Latency Gain Latency Comprehensiveness

0.25 —— Cutoff =0.75

=——4— Cutoff = 0.
Cutoff = 0.85

=t Cutoff = 0.

=—p— Cutoff = 0.95

0.2

0.05 ”“*‘“*qniaa4u>\s§\>’

0 20 40 60 80 100 120 0 20 40 60 80 100 120

Avg. Number of Updates Avg. Number of Updates

Figure 4.8: ELG and LC of runs for various cutoffs of “simhash similarity” threshold

Figure 4.8 shows the ELG and LC metrics of runs for various cutoffs used as deduplica-
tion threshold. We observe that runs with cutoff for “simhash similarity” = 0.75 perform
slightly better than the runs with other cutoffs in both the metrics ELG and LC.

http://www.google.com/patents/US7158961

49

http://www.google.com/patents/US7158961

4.4.4 Results and Discussion

Expected Latency Gain Latency Comprehensiveness
0.35 0.3
—&— Percent Match
=——— Cosine
0.3 Simhash 0.25
=t Baseline i
0.25
0.2 4
0.2
&) o 0.15
Q
20.15 = ;
0.1
0.1 —&— Percent Match
=4 Cosine
0.05 0.05 Simhash
—#— Baseline
0 0
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
Avg. Number of Updates Avg. Number of Updates

Figure 4.9: ELG and LC of runs for various deduplication methods

From Fig. 4.9 we can observe that Cosine similarity outperforms other deduplication
algorithms in the ELG metric, whereas the percent match algorithm is better in the LC
metric. We can also see that as the number of updates returned in the run increases, the
cosine curve stabilizes to the same values of ELG (= 0.12) and LC (& 0.21) as the percent
match curve. So, either of the two deduplication methods (cosine or percent match) could
be used for deduplication with the cutoff as 0.75. For further experiments, we prefer cosine
similarity as the deduplication method due to better performance in ELG with a small
number of updates.

Appendix C shows the list of tables with metrics such as average number of updates,
total number of sentences, ELG, and LC for various runs comparing different deduplication
algorithms.

4.5 Automatic Query Expansion using Lin’s distribu-
tional similarity

In Chapter 3, we detailed the query expansion method using Lin’s distributional similarity
which was used for preparing the runs for the TS track. But the method involved manual

20

selection of seed and expansion words which is a bottleneck for new event types. In this
section, we propose an automatic query expansion method in which seed and expansion
words are found automatically.

4.5.1 Seed words using KLD

Kullback-Leibler divergence (KLD) | :], is a measure for compar-
ing two probability distributions. Given two probability distributions p(z) & g(z), the KL

divergence is given by:
oo

p(z)
D PQ:/ p(x)log——=dx
walPIQ) = | plog”
Large values for KLD indicate that the distributions are different, and when the distribu-
tions are identical, KLD is 0.

Let us assume we have two document collections, namely “R” and “NR” for relevant
and non-relevant documents respectively for a given topic. For example, in TST if the
event type is “earthquake”, we collect all the earthquake related Wikipedia articles into
document collection “R” and all other Wikipedia articles are added to “NR”.

We now use the following method to rank the terms for the given topic:

for each term ‘t’ in R:
p(t) N(t,R)/IRI|; //N(t,R) = number of times t occurs in R
q(t) N(t,NR)/|NR]|; //N(t,NR) = number of times t occurs in NR
KL(t) = p(t)log(p(t)/q(t));

Rank all the terms t in decreasing order of KL(t)

With the parameter K, we automatically choose top K terms from the above list of
terms as the seed words. Intuition here is that, if a term ‘t’ is able to differentiate between
the collections R and NR well, then it is a good candidate as a seed word. The idea here is
to construct language model from relevant documents, also known as relevance model, and
model from collection | :]. We also removed the stop words from the
list of terms ranked by KLD. The stop words list used is developed by
[1071] for SMART IR system?.

2http://www.lextek.com/manuals/onix/stopwords2.html

ol

http://www.lextek.com/manuals/onix/stopwords2.html

For each event type, we crawled the Wikipedia articles automatically from a single
Wikipedia page which contains a list of those events. For example, the Wikipedia page
on “List_of_20th-century_earthquakes”® contains the list of earthquakes that occurred be-
tween 1901 - 2000 with links to corresponding articles. These articles were automatically
downloaded into the collection “R” only if the event occurred before the year 2011 adher-
ing to track guidelines. For the “NR” collection, we downloaded all the articles crawling
Wikipedia pages through links only if that article is not already downloaded to the docu-
ment collection “R”.

Table 4.1 shows the list of relevant wikipedia articles downloaded to set “R” for each
event type. Table 4.2 shows the top terms identified by KLD for earthquake event type.

Earthquakes | http://en.wikipedia.org/wiki/List_of_earthquakes
http://en.wikipedia.org/wiki/List_of_20th-century_
earthquakes
http://en.wikipedia.org/wiki/List_of_21st-century_
earthquakes

Accidents http://en.wikipedia.org/wiki/List_of_accidents_and_
disasters_by_death_toll

Bombings http://en.wikipedia.org/w/index.php?title=Special:
Search&limit=500&o0ffset=0&redirs=0&profile=default&search=
bombings

Shootings http://en.wikipedia.org/w/index.php?7title=Special:
Search&limit=500&offset=0&redirs=0&profile=default&search=
shootings

Storms http://en.wikipedia.org/wiki/2010_Atlantic_hurricane_season
(year in the link ranges from 1901 to 2010)

Table 4.1: List of relevant Wikipedia articles crawled for each event type.

After building the ranked lists of KLD identified terms for each event type, we choose
top K terms as the seed terms.

4.5.2 Merging lists of expansion words

The top 200 seed words (upper bound for the parameter K) for each event type, and
the set of relevant documents “R” for that event type, are given as input to the Lin’s

3http://en.wikipedia.org/wiki/List_of_20th-century_earthquakes

52

http://en.wikipedia.org/wiki/List_of_earthquakes
http://en.wikipedia.org/wiki/List_of_20th-century_earthquakes
http://en.wikipedia.org/wiki/List_of_20th-century_earthquakes
http://en.wikipedia.org/wiki/List_of_21st-century_earthquakes
http://en.wikipedia.org/wiki/List_of_21st-century_earthquakes
http://en.wikipedia.org/wiki/List_of_accidents_and_disasters_by_death_toll
http://en.wikipedia.org/wiki/List_of_accidents_and_disasters_by_death_toll
http://en.wikipedia.org/w/index.php?title=Special:Search&limit=500&offset=0&redirs=0&profile=default&search=bombings
http://en.wikipedia.org/w/index.php?title=Special:Search&limit=500&offset=0&redirs=0&profile=default&search=bombings
http://en.wikipedia.org/w/index.php?title=Special:Search&limit=500&offset=0&redirs=0&profile=default&search=bombings
http://en.wikipedia.org/w/index.php?title=Special:Search&limit=500&offset=0&redirs=0&profile=default&search=shootings
http://en.wikipedia.org/w/index.php?title=Special:Search&limit=500&offset=0&redirs=0&profile=default&search=shootings
http://en.wikipedia.org/w/index.php?title=Special:Search&limit=500&offset=0&redirs=0&profile=default&search=shootings
http://en.wikipedia.org/wiki/2010_Atlantic_hurricane_season
http://en.wikipedia.org/wiki/List_of_20th-century_earthquakes

1. earthquake | 11. reports 21. epicentre
2. tsunami 12. rupture 22. destroying
3. damage 13. buildings 23. event

4. fault 14. estimates | 24. disaster
5. magnitude | 15. collapsed 25. zone

6. quake 16. subduction | 26. waves

7. aftershocks | 17. landslides | 27. scale

8. plate 18. intensity 28. shaking
9. epicenter 19. people 29. islands
10. seismic 20. tectonic 30. shock

Table 4.2: Examples of KLD identified seed terms for earthquake event type

distributional similarity algorithm explained in Section 2.4 of Chapters 2. The output
would be the list of expansion terms (with Lin’s score) found for each seed word.

Lin’s score | Expansion terms
0.47551 earthquake
0.25742 event
0.21607 disaster
0.19040 aftershock
0.18767 shock
0.18450 tsunami
0.12674 magnitude
0.12449 damage
0.12100 tremor
0.11523 mainshock

Table 4.3: Examples of Lin identified expansion terms for seed word “quake”

Table 4.3 shows the expansion words identified for the seed word “quake” and the
corresponding Lin’s score for each word.

After the identification of expansion terms for each seed word as described above, we
choose top K, (parameter) expansion words for each seed word. The top K seed words
and the list of top K. expansion words for each seed word are merged into one list. Since,
a seed word can potentially appear as an expansion word in one list and some expansion
words might be common among the lists, while merging we add the Lin’s score (which is
already normalized) for same word. Then, finally in the merged list we choose the top K

23

(parameter) terms as the final expansion terms.

For tuning the parameters K (for seed words), K. (for Lin’s expansion terms) and
K (final list of expanded terms), we randomly chose the test event (query 9) related to
earthquakes as the training topic. The parameter K, was varied in {20, 35, 50, 65, 80,
100}, the parameter K, in {3, 5, 7, 10, 15, -1 (include all terms)}, and the parameter K
was chosen from {50, 75, 100, 125, 150}.

After evaluating the ELG and LC metrics for the training topic, K, was chosen to be
35, K. = 5 and K = 100, for the automatic query expansion using Lin’s method.

4.5.3 Results & Discussion

In order to evaluate the effectiveness of query expansion using Lin’s distributional similarity
compared to the baseline approach (no query expansion), we first fix the parameters and
the rest of the methods as follows (based on the previous sections):

1. We use adaptive cutoff based sentence selection method for both query expansion
and the baseline approach. We use the sentence selection parameters as D), = 100
and S;, = 250 for both approaches.

2. We use stemming for both query expansion and baseline approaches.

3. We use Cosine similarity with cutoff = 0.75 as the deduplication method for both
approaches.

Table 4.4 shows the ELG and LC values for the runs built using query expansion (Lin’s
distributional similarity) and the baseline run which doesn’t use query expansion.

[2007] show that randomization test, student’s paired t-test and boot-
strap test produce comparable p-values for the TREC ad-hoc retrieval system and suggest
that IR researchers choose these methods compared to Wilcoxon and Sign tests. The au-
thors [, | suggest that randomization test be used as a distribution-free
test for IR evaluation. Especially, with only 8 topics (topic 7 excluded by track organizers
and topic 9 used for training) for TST, the randomization test is easy to perform with the
number of permutations generated = 2%, and the null hypothesis being that “the systems
compared are identical” for the metric. So, unless otherwise specified in this section, we
use randomization test for checking the statistical significance.

54

Topic Id | ELG (expanded) | LC (expanded) | ELG (baseline) LC (baseline)
1 0.0798 0.733 0.079 0.6401
2 0.0924 0.3116 0.1258 0.2102
3 0.2572 0.0626 0.1652 0.0457
4 0.1434 0.199 0.1813 0.1601
) 0 0 0 0
6 0.0965 0.0153 0.0936 0.0088
8 0.0671 0.1232 0.1176 0.0799

49 £0.1009 40.4595 40.1033 40.3788
10 0.1676 0.4995 0.1687 0.3948
AVG 0.1130 0.2430%* 0.1164 0.1925

Note: *p<.05 for randomization test for expanded vs baseline with null hypothesis:
“the systems are identical”. # indicates the training topic was not used for the
average and statistical significance tests.

Table 4.4: Comparisons of the ELG and LC metrics for Lin’s method of expansion vs
baseline (no query expansion) approach with the rest of the parameters and methods the
same.

Table 4.4 shows a statistical significant improvement (p-value < 0.05 for randomization
test) in the LC metric of the expanded run without any significant drop or change in the
ELG metric compared to the baseline.

Figure 4.10 also shows the ELG and LC metrics of the expanded (query expansion with
Lin’s distributional similarity) and the baseline (without query expansion) runs. We can
observe from the figure that query expansion with Lin’s similarity helps in increasing the
LC metric of the runs without losing on the ELG metric for the same number of updates
evaluated.

Table 4.5 compares our system, which uses Lin’s distributional similarity for query
expansion along with other techniques mentioned earlier, to other systems submitted to
the TS track.

Our system performs significantly better than 18 other systems in the track in the ELG
metric, and the null hypothesis Hy (“systems are identical”) for ELG metric couldn’t be
rejected for the remaining 8 systems.

Our system performs significantly better than 4 other systems in the track in LC metric,
and the null hypothesis Hy (“systems are identical”) for LC metric couldn’t be rejected for
15 systems. Our system performs worse compared to 7 other systems in the LC metric,
however there is significant gain in the ELG metric when compared to those systems. This

95

Expected Latency Gain Latency Comprehensiveness

0.35 0.3
== Expanded
0.3 =——4— Baseline 0.25
0.25
0.2
0.2
&} 0.15
Q
2 0.15 ~
0.1
0.1
0.05 0.05
0 0
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Avg. Number of Updates Avg. Number of Updates

Figure 4.10: ELG and LC of the expanded vs baseline runs with avg. number of updates
evaluated.

is because the other systems returned large number of updates and score highly on the L.C
metric and very poorly on the ELG metric.

It is important to note that, our system performs significantly better than 12 other
systems in the track in at least one of the metrics and without performing worse on the
other metrics. There is no system in the track which performs better than our system in
at least one of the metrics without performing worse on the other.

In conclusion, we suggest that query expansion techniques like Lin’s distributional
similarity along with deduplication and adaptive cutoff based sentence selection, can be
used effectively for building temporal summarization systems for tracking updates of known
event types.

o6

Run ELG LC ELG Significance | LC Significance
clusterb 0.1465 | 0.1321 | H, holds Better*
run2 0.1317 | 0.2154 | Hy holds Hj holds
runl 0.1301 | 0.2169 | Hy holds Hy holds
TuneExternal2 0.1242 | 0.2010 | Hy holds H, holds
TuneBasePred?2 0.1197 | 0.2315 | Hy holds Hjy holds
our system 0.1130 | 0.2430 | - -
cluster3 0.1054 | 0.1695 | Hy holds Hy holds
cluster2 0.0768 | 0.2364 | Hy holds Hj holds
uog TrNMTmIMM3 | 0.073 0.2146 | Hy holds Hj holds
BasePred 0.0715 | 0.3517 | Better®* H, holds
clusterl 0.0693 | 0.2726 | Better* H, holds
cluster4 0.0692 | 0.2681 | Better* Hj holds
Baseline 0.0670 | 0.3656 | Better** Hy, holds
uogTrNSQ1 0.0630 | 0.1839 | Better** Hy holds
EXTERNAL 0.0575 | 0.4023 | Better** Worse*
uogTrNMTm3FMM4 | 0.0517 | 0.1780 | Better* Hy holds
uog TrNMM 0.0477 | 0.2598 | Better** Hy holds
uog TrEMMQ2 0.0429 | 0.2757 | Better* Hy holds
SUS1 0.0375 | 0.1488 | Better** Better**
rgd 0.0278 | 0.4751 | Better** Worse**
rg3 0.0263 | 0.4635 | Better** Worse**
rg2 0.0227 | 0.5170 | Better** Worse**
rgl 0.0211 | 0.5170 | Better** Worse**
UWMDSqlec4t50 0.0189 | 0.5002 | Better** Worse™*
UWMDSqglec2t25 0.0186 | 0.5050 | Better** Worse**
CosineEgrep 0.0073 | 0.0155 | Better** Better**
NormEgrep 0.0012 | 0.062 Better** Better*

Note: * p<.05, ** p<.01

Table 4.5: Comparison of our new system with other systems in the track (ordered by ELG).
“Better” means our system is significantly better. “Hy holds” means the null hypothesis
Hyj (systems are identical) couldn’t be rejected. “Worse” means our system performs worse
compared to that system.

57

Chapter 5

Evaluation of Temporal
Summarization Systems

In this chapter we revisit the current evaluation methodology used by TS track. After
identifying the limitations of the existing evaluation, we propose a modified evaluation
method which reduces manual effort of assessors and also correlates well with the official
track’s evaluation of systems. We then extend the idea to a supervised learning approach
which further reduces the manual effort of assessors and correlates well with the official
track’s evaluation of systems.

5.1 TST Evaluation for TREC 2013

TS track’s evaluation method was already introduced in Section 1.4 of Chapter 1. In
summary, the evaluation method is as follows | ,]:

1. For each test query (i.e. event), an assessor (T'ST used only one assessor) pools a list
of nuggets along with their timestamps and the importance level of each nugget (as
1, or 2, or 3, with 3 being the most important). [| define nugget as
“a very short sentence, including only a single sub-event, fact, location, date, etc.,
associated with topic relevance”.

Nuggets are pooled from the Wikipedia event pages of the event along with the
timestamp obtained from the revision history of the page. Table 5.1 shows a sample
list of nuggets pooled for the training event.

o8

queryld | nuggetID timestamp | importance | nugget string

Train TRAIN-1.001 | 1344701957 3 2012 Tabriz earthquake

Train TRAIN-1.002 | 1344701957 3 a pair of destructive earthquakes
Train TRAIN-1.003 | 1344701957 1 ccurred in northwestern Iran
Train TRAIN-1.004 | 1344701957 2 Saturday August 11, 2012

Table 5.1: Sample list of nuggets pooled for the training event “iran earthquake”.

queryld updateld nuggetld start | end
1 1329993579-41f6708235e2148ac570e7079d2e90d9-0 | VMTS13.01.078 | 133 150
1 1329993579-4f6708235e2148ac570e7079d2e90d9-0 | VMTS13.01.077 | 154 175
1 1329993579-416708235e¢2148ac570e7079d2¢90d9-0 | VMTS13.01.064 | 73 128
1 1329993579-41f6708235e2148ac570e7079d2e90d9-0 | VMTS13.01.050 | O 30

Table 5.2: List of matches for the updateld: «1329993579-4f6708235¢2148ac570e7079d2e90d9-0”

2. For every test query (i.e. event), a list of updates from all the runs are pooled by track

organizers. The track organizers select the top 60 updates (ranked by the confidence
level of updates) per query from every run submitted to the track and add them to
the pool of updates.

. The assessor then prepares a list of matches (i.e. nugget-update pairs) for all the

updates pooled. The assessor is provided with a user interface!, as shown in Figure
5.1, to help the assessor mark the nuggets present in the update. These matches are
also stored using the interface after selection of the nuggets by the assessor. Note
that an update can contain multiple nuggets and a nugget can be present in multiple
updates.

Table 5.2 shows the list of matches stored for a particular updateld. “start” and
“end” in the table specify the character positions in the update which contains the
nugget.

The list of matches generated above is then used to evaluate the runs using a script,
which calculates various metrics like Expected Gain, Expected Latency Gain, Com-
prehensiveness and Latency Comprehensiveness (discussed in Chapter 1).

In the above evaluation method, one of the main bottlenecks is step #3, in which the

assessor manually identifies the nuggets in every pooled update using the interface shown

http://fiji.ccs.neu.edu/~mattea/ts13/matchview/

29

http://fiji.ccs.neu.edu/~mattea/ts13/matchview/

Queries Query: 2012 Buenos Aires Rail Disaster ~ Category: Human accident

Updates | st Page | [Prev Page | 1-100/ 688 | Next Page | [100 v] per Page Nuggets Search:

Nugget Dependencies Importance Tracking

train accident in Buenos Aires,
Argentina.

ara 1SUENOS Alres STANoN, KIINg SU PEOpIE and INJUINg NUNATEas more.

2. unknown number were killed

Dozens dead in rush hour train crash Argentina train crash kills more than 40 Passengers told reporters the crash sounded like a bomb blast. -
3. Hundreds injured

4.in 2012

4 votes #13.2 - Wed Feb 22, 2012 11:30 AM EST TheBMOC -3996429 That's assuming the train accident wasn't an accident.

5. February 22, 2012 in 2012
0. Dozens killed unknown number were killed
A packed train has slammed into a barricr at a Buenos Aires station, killing 49 people and injuring hundreds of moming commuters . 7.550 injured Hundreds injured

8. about 1,000 passengers on board the
6:01 - INTERSTATES are accident free. i
9. the train crashed at the buffer stop
0. crashed at speed of 26 kilometers per
Worst Crash Argentina 's worst railway crash oceurred in 1970, when twd3rains collided near Benavidez . 48 kilometers from Buenos Aircs|

. killing more than 200 people. :
¢ Lk The locomotive and the first three cars

were crushed.
"It was a very serious accident,” he said. 2. the train was travelling t0o fast
13. train crashes into platform the train crashed at the buffer stop

Sunny afiernoon. 4110 problems with the brakes on
: previous stations.
5. worst train accident in Argentina since
Argentina Train Accident An injured person, centre, is being rescucd afier a train accident in Buenos Aires. 1970

0.t Once Station train crashes into platform

EANE NEENEEANNEENNT

Picture: AP Source: AP At least 49 dead, hundreds injured in Argentina crash Train smashed into end of station platform Windows AT R D worst train. accident in Argentina
exploded, cars separated, people thrown A PACKED commuter train entering a Buenos Aires station at moming rush hour ovemight since 1970
smashed into a retaining wall, crumpling cars and leaving at least 49 dead, 600 injured and dozens trapped in the twisted wreckage. 8 Sarmiento Line

9. train operated by Trenes de Buenos
Aires

=
2

From msnbc. com staff and news services: BUENOS AIRES , Argentina — A packed train slammed into the end of the line in Buenos

Figure 5.1: Matching interface used by assessor to match the nuggets to updates (Figure
shown for Query 1).

in Figure 5.1. According to the TREC TST organizers, the assessor spent around 15 to
20 hours per query manually matching all the pooled updates with nuggets. Especially for
query 6, the assessor spent nearly 30 hours. With more systems participating in the track,
the number of pooled updates would be even larger, thereby making the matching process
more time consuming. Similarly with an increase in the number of topics, this process of
annotation would consume more time.

Table 5.3 shows the per-query statistics of the number of nuggets pooled, number of
pooled updates, number of possible matching pairs evaluated by the assessor (i.e. number
of nuggets x number of updates), and the number of actual matches found by the assessor.

In the column “#Updates” of Table 5.3, the value within the parentheses indicates the
number of pooled updates for a particular query, where as the value outside the parentheses
indicates the number of unique pooled updates for the query which was actually evaluated
by the assessor.

Similarly for the column “#matchpairs” of Table 5.3, the value within the parentheses
indicates the number of match pairs for a particular query, where as the value outside the
parentheses indicates the number of unique match pairs for the query which was actually
evaluated by the assessor.

60

queryld | #Nuggets | #Updates #matchpairs found matches

1 56 688 (779) 38528 (43624) 1167 (1172)
2 89 737 (912) 65593 (81168) 829 (836)
3 139 651 (762) 90489 (105918) 270 (271)
4 97 1192 (1463) | 115624 (141911) 727 (730)
5 108 1069 (1069) | 115452 (115452) 108 (109)
6 418 1331 (1517) | 556358 (634106) 750 (760)
8 88 924 (1128) 81312 (99264) 245 (245)
9 45 703 (873) 31635 (39285) 360 (361)
10 37 521 (610) 19277 (22570) 349 (366)

ALL 1077 7816 (9113) | 1114268 (1283298) | 4805 (4850)

Table 5.3: Per-Query statistics with number of nuggets, pooled updates, match pairs and
matches found by assessors. Numbers in the parentheses indicate the actual values , while
numbers outside the parentheses in columns three and four indicate the unique counts
(matched by the assessor).

In the last column of the Table 5.3, the value within the parentheses indicates the actual
number of nugget-update pairs found by the assessor, but some of the pairs contained
invalid nuggetld’s which were not present in the pooled nuggets list. So, the correct value
of the matches found is indicated outside the parentheses.

In the sections below, we propose methods for reducing the number of match pairs and
the number of updates evaluated by the assessor, and use the matches found from these
pairs for evaluating the systems (using Step 4 mentioned earlier). We check the correlation
between the systems’ rankings using the matches found by our method against the official
track’s rankings.

5.2 Preliminaries

In this section we define the formulae for computing a match score between a nugget and
a sentence. These formulae will be used in the subsequent sections which describe the
modified method for finding matches by assessors.

Notation: N denotes the nugget, S denotes the sentence, N NS denotes the set of
words common between N and S, N — S indicates the set of words in N but not in S, w
denotes a word, w’ denotes the best expanded word of w (with max Lin score) present in
S, Lin(w,w") indicates the Lin’s similarity score between w and w’ (which is always < 1),

61

RR(w,w") indicates the reciprocal rank of w’ in the list of expanded words of w, IDF(w)
indicates the IDF weight of the word w in the collection of documents appearing before
the particular query, | N| and |S| denote the length of nugget and sentence respectively.

N
PercentMatch(N, S) = | |;|S|
IDF
ScorelDF(N, S) = ZweNmS (w)
ZwGN I.DF(U})
ScoreLIN(N, §) = Dwenns IDF(W) + 3 ey _sures (IDF(w) * Lin(w, w'))
| > won IDF(w)
PercentLIN(N, S) = [N S|+ pen—swres Lin(w, w')
’ [N]
ScoreRR(N, S) = 2wenns IDF(w) + ZUJENfS;w/ES (IDF(w) * RR(w,w'"))
| > wen IDF(w)
PercentRR(N, S) = [N NS|+ ZweNfS;w’ES RR(w,w')
’ [N

5.3 Reducing the number of matches evaluated

Table 5.3 shows the number of matching pairs and the number of updates evaluated by the
assessor to identify the actual matches. From the table we can observe that out of the total
possible 1,283,298 (or 1,114,268 unique) nugget-update pairs, only 4,805 pairs were found
by the assessor as relevant. The remaining pairs were evaluated to be not relevant, i.e. the
update doesn’t contain the nugget. We hypothesize that if we can reduce the number of
pairs evaluated by the assessor, i.e. automatically remove the pairs which do not match
and without erroneously removing the actual matching pairs, it would save the assessor’s
time.

Upon close observation of the matches file generated by assessors, it was found that more
than 98% of the updates which have at least one nugget present in them, also can contain
up to a maximum of 5 nuggets. Only less than 2% of the total updates in the matches
generated have more than 5 nuggets present in them. Intuitively this is understandable as
well, because updates (i.e. sentences) in the given document collection have an average of
34 words (found earlier in Chapter 3), and with unique nuggets pooled by assessors (which

62

K | #matches | #Percentage Matches ELG LC
evaluated evaluated correlation | correlation
5 45565 3.5506 0.93883 0.90837
10 91130 7.1012 0.96149 0.94024
15 136695 10.6519 0.97211 0.95225
20 182260 14.2025 0.97742 0.96286
25 | 227825 17.7531 0.98805 0.98408
30 | 273390 21.3037 0.98274 0.97878
35| 318955 24.8543 0.99202 0.98939

Table 5.4: Kendall’s 7 correlation of ELG and LC ranking of systems’ when compared with
official track’s ranking

contain at least two to three words), the update can be estimated to contain fewer than
10 nuggets in an average case.

We employ this intuitive idea to retain only top K nuggets as potential matches (ranked
by the ScoreLIN) for every update in the list of updates. Varying the parameter K, we
prepare the matches file assuming the assessor judged only the matches of top K nuggets
for each update.

Table 5.4 shows the correlation of the systems’ ranking for ELG and LC metrics with
the official track’s ranking. We observe that by showing only 5 nuggets per update to the
assessor for identifying potential matches, a high correlation (>0.9) with the official TREC
ranking of systems is achieved, i.e. with annotating only & 3.55% of the original matches
the ranking of the systems is stable. Generally, a “good” value of Kendall’s 7 is 0.8 but
researchers use a threshold of 0.9 | ,]

The exact estimate of the time saved for assessor is not calculated theoretically because
the assessor still annotates the entire list of updates as before (shown in Figure 5.1) and the
exact time gained by showing only top K nuggets for every update as potential matches is
unknown. However, we estimate that there would be substantial amount of time saved for
the assessor for queries like topic 6 (see Table 5.3), where for all the 1331 unique pooled
updates the assessor has to identify matches from a huge list of 418 nuggets, which is a
time consuming effort given the size of the list of nuggets. With the new method only
top K nuggets will be shown for every update which reduces the assessor’s time browsing
through the list of all nuggets.

Another method to improve the efficiency of the system for the assessor is by ranking the
nuggets using ScoreLLIN for every update. This way the assessor can go through the ranked

63

list of nuggets for every update with decreasing probability of relevance, and according to
Probability Ranking Principle this system would be more efficient for the assessor than the
existing system.

In the next section, we propose a supervised learning approach where the assessor does
not need to manually match all the pooled updates. With sufficient training sample size
of updates per query, our system predicts the matches for the remaining pooled updates
and the total matches generated can be used to rank the systems with high correlation to
the official track’s rankings in both metrics.

5.4 Supervised learning approach

Let us assume we are given a labeled dataset of matches with features, i.e. we have nugget-
update pairs with certain feature values and class labels: “true” or “false” assigned based
on whether or not the update contains the nugget. In this section, we try to build a binary
classifier which can predict the label of a new nugget-update pair based on the feature
values.

We selected the following features for the nugget-update pair (N, S): |N|, |S],
PercentMatch(N, S), ScoreIDF(N, S), ScoreLIN(V, S), PercentLIN(N, S), ScoreRR(N, S),
PercentRR(N, S), which are detailed in Section 5.2 earlier.

Our total dataset for the TS track (for all the queries) as shown in Table 5.3 has
1,283,298 negative labels and 4,805 positive labels. This is a highly imbalanced (or skewed)
dataset like many of the practical applications of bioinformatics, text classification, detec-
tion of oil spills, etc. which faces the challenge of misclassification of minority class being
costly [, : , |. Different resampling strategies like
random oversampling of the minority class samples with replacement, random undersam-
pling of majority class, focused undersampling or oversampling, synthetic generation of
new samples (SMOTE) | , |, selective pre-processing of imbalanced data
(SPIDER) | : | have been proposed by researchers to increase
the classification accuracy of the minority class. Survey papers such as | ,

; , 2005; , 2009; , 2012; , 2013]
explain different strategies proposed by researchers to solve this problem.

We initially picked a random subsample (of 30% size) from the whole data set for
training and testing classifiers. We trained and tested different classifiers: J48, Naive Bayes,
Logistic Regression and Nearest Neighbour (NN1), with resampling techniques: random
oversampling, random undersampling and SMOTE. However, the classifiers achieved low

64

classification rate on the minority class i.e. the F-measure of the “true” class for the test
data was lower than state-of-the-art systems like POURPRE.

Working on the same assumption as explained in the previous section, we now retain
only the top 30 nuggets (ranked by ScoreLIN) for every update (assuming the smallest
nugget can be of one word and the update size is 34 on average obtained in Chapter 3).
This helps in reducing the total dataset size from 1,283,298 pairs to 273,390 pairs only. We
work on the reduced dataset as follows:

1. We first fix the training sample size (T% of total updates). For a fixed T, we cross-
validated the following classifiers: J48, Naive Bayes, J48 with AdaBoost. J48 with
AdaBoost | , | performs well on the random training sample of sizes
(T = 10, 20, 30, 40) with cross-validation and in general is proven to work well for
imbalanced datasets by [2008].

2. For a fixed T, we split the total data set randomly into training (with T% updates)
and test for every query, repeating 100 times.

3. We then train the J48 with AdaBoost classifier on one full training sample per query,
and predicted the values on the corresponding test sample, repeating 100 times for
the samples created above per query.

4. Then the corresponding “training” and “predicted” outputs for each query are com-
bined to form a single match file. 100 match files are randomly chosen.

5. Each match file is then used to rank the systems and the Kendall’s 7 correlation coef-
ficient is calculated with the official rankings. The Kendall’s 7 correlation coefficient
is averaged over the 100 match files and is reported with 95% confidence interval of
the mean in the Table 5.5.

5.5 Results & Discussion

Table 5.5 shows the results of the supervised learning approach with varying training size.
For training size of more than 20%, rankings of systems by our method correlates well (7
> 0.9) with the official track’s rankings. This means that only 20% of the updates per
query need to be marked/annotated by the assessor, and these annotations along with
predictions by our classifier on the rest of the sentences can be used to rank systems.

65

Train %Updates | %Matches evaluated | ELG correlation | LC correlation
10 2.1297 0.869 (£0.007) | 0.907 (£0.005)
20 4.2617 0.905 (4£0.007) | 0.926 (£0.004)
30 6.3913 0.925 (4£0.005) | 0.933 (£0.004)
40 8.5210 0.939 (40.004) | 0.942 (£0.004)
50 10.6530 0.945 (40.003) | 0.948 (£0.003)

Note: Values in parentheses indicate the 95% confidence interval.

Table 5.5: Kendall’s 7 correlation of ELG and LC ranking of systems when compared with
the official track’s ranking.

POURPRE when used to automatically match nuggets to sentences, without any user
annotation, achieves 7 = 0.834 for the ELG metric, but doesn’t correlate well with the
systems ranking by LC metric (7 = 0.77). We adapted POURPRE for TST by using a
threshold for the match score which maximizes the classification accuracy.

In summary, with our proposed method of using binary classifier for predicting nuggets
in sentences where assessor annotates only 20% of the updates, the ranking of the systems
is reliable. This also means that the assessor’s time could be saved by 80% when compared
to the original track’s evaluation where all the updates need to be annotated. And as
the percentage of the training sample increases, the system tends to become closer to the
actual track’s evaluation.

66

Chapter 6

Conclusion & Future Work

6.1 Conclusion

In this thesis we have laid out a streamlined approach to build a Temporal Summarization
system to track real time updates for disaster related event types such as accident, bombing,
earthquake, shooting, and storm. We studied the effectiveness of various techniques which
could be used in building a Temporal Summarization system. We propose a modified
evaluation method for the evaluation of Temporal Summarization systems which can reduce
the manual effort required from assessor, but at the same time correlate well with the official
TS track’s evaluation for TREC 2013.

In Chapter 3, we outlined the process of building the TS system while participating in
the Temporal Summarization track of TREC 2013. We implemented novel techniques like
adaptive cutoff based sentence selection for the selection of sentences in the updates, and
used Lin’s distributional similarity as a query expansion technique to find related words to
a set of seed words of particular event type.

In Chapter 4, we used the same experimental setup to test the effectiveness of various
techniques and algorithms while building a temporal summarization system. In particular,
we tested the adaptive cutoff based sentence selection algorithm and found it to be effective
compared to the baseline algorithm of returning top K sentences per hour. We also found
that through adaptive sentence selection, there was no latency penalty awarded to the
Expected Gain achieved by the system unlike the baseline approach. We found that there
is not much difference in the runs built using stemming and no stemming. It was observed
that deduplication algorithms are useful in the Temporal Summarization system, and found

67

that Cosine Similarity performs well compared to other approaches like Simhash. Later
we showed that Lin’s distributional similarity technique of finding related terms for query
expansion is a promising approach to improve the coverage of nuggets (recall or LC) by
the TS system without affecting the ELG.

In Chapter 5, we propose an evaluation method where the assessor is shown a ranked
list of nuggets (or only top K nuggets) for each update, and the matches thus found by
the assessor could be used for the evaluation of the systems. We later propose a supervised
learning method to predict matches for the pooled updates with sufficient training size
for each query. We show that with only 20% of training data (i.e. 20% of total updates
annotated by the assessor), our semi-automatic evaluation system correlates well with the
official track’s evaluation of systems, i.e., the assessor’s time could be saved by nearly 80%
without affecting the evaluation of systems.

6.2 Future Work

Temporal Summarization track is introduced for the first time at TREC 2013. The orga-
nizers used 9 topics to evaluate the systems. We would like to test our new TS system
(described in Chapter 4) on more topics by participating in the next year’s Temporal Sum-
marization track.

We would also like to do the following as part of future work:

1. Investigate the time taken by an assessor to build the matches (nugget-update) pairs,
for the following approaches:

(a) The current approach of matching all the pooled updates to all the nuggets per
query.

(b) The approach of showing only top K (=5) nuggets as ranked by the ScoreLIN
(described in Chapter 5) for every update.

(¢) The approach of showing ranked list of nuggets for every update.
(d) The machine learning approach, where only 20% of the updates per query are

matched by the assessor.

2. Investigate other query expansion techniques, such as Pseudo-Relevance Feedback
(PRF), combination of PRF and Lin’s Distributional Similarity, etc.

68

. Investigate different retrieval models for the retrieval of sentences for Temporal Sum-
marization systems.

. In the machine learning approach, we would like to use textual features like tagged
entities and typed dependency relations to further improve the classification accuracy.

. Current evaluation of the track uses two metrics, namely Expected Latency Gain
(ELG) and Latency Comprehensiveness (LC). Direct comparison of two systems is
difficult due to the existence of two metrics both of which are important. We would
like to investigate the design of a single metric along the lines of n-DCG, TBG
[) |, which could be useful in ranking the systems.

. In the current evaluation of TS systems used for TREC 2013, top 60 updates per
query are pooled for every system. If a system returns more updates, the possibility
of the system covering more pooled updates increases, hence the LC metric could
increase. However, the user may not want to see so many updates. We wish to
explore the design of an evaluation metric which correlates well with user satisfaction.

69

APPENDICES

70

Appendix A

Adaptive Cutoff vs Fixed Cutoft

71

K | Total Sentences | #Updates EG ELG C LC

1 2162 12.2222 0.1462 | 0.0788 | 0.0861 | 0.0895
2 4322 21.8889 0.1331 | 0.0519 0.117 0.1077
3 6482 30.8889 0.0846 | 0.0391 | 0.1495 | 0.1261
4 8642 38.6667 0.075 0.0406 | 0.1617 | 0.1329
5 10802 44.8889 0.0769 | 0.0421 | 0.1728 0.139
6 12962 52.1111 0.0688 | 0.0405 | 0.1867 | 0.1576
7 15122 55.7778 0.0654 | 0.0382 | 0.1965 | 0.1689
8 17282 61.8889 0.0624 | 0.0385 | 0.2013 | 0.1741
9 19441 66.7778 0.0603 | 0.0382 | 0.2141 | 0.1935
10 21600 69 0.0586 | 0.0373 | 0.2209 | 0.2028
11 23758 72.2222 0.0565 | 0.0368 | 0.2234 | 0.2136
12 25916 74.8889 0.0551 | 0.0357 | 0.2249 | 0.2196
13 28074 77.8889 0.0514 | 0.0349 | 0.2336 | 0.2425
14 30231 81.3333 0.0508 | 0.0344 | 0.2411 | 0.2515
15 32386 83.7778 0.0508 | 0.0334 | 0.2419 | 0.2542
16 34539 86.5556 0.0606 | 0.0335 | 0.2512 | 0.2569
17 36692 89.1111 0.0592 | 0.0324 | 0.2572 | 0.2662
18 38843 91.6667 0.0598 | 0.0323 | 0.2584 | 0.2679
19 40990 93.5556 0.0571 | 0.0322 | 0.2584 | 0.2682
20 43137 95.3333 0.0565 | 0.0319 | 0.2584 | 0.2682
21 45285 97.3333 0.0535 | 0.0312 | 0.2561 | 0.2697
22 47431 98.6667 0.055 0.0311 | 0.2582 | 0.2746
23 49577 100 0.0544 | 0.0307 | 0.2582 | 0.2747
24 51722 101.778 0.0529 | 0.0299 | 0.2582 | 0.2755
25 53867 104.778 0.0507 | 0.0297 | 0.2585 | 0.2802
26 56011 105.889 0.0499 | 0.0294 | 0.2585 | 0.2826
27 58153 108.111 0.0502 | 0.0315 | 0.2593 | 0.2837
28 60295 108.667 0.0499 | 0.0314 | 0.2593 | 0.2837
29 62437 111.222 0.0482 | 0.0306 | 0.2593 | 0.2914
30 64579 114 0.0483 | 0.0335 | 0.2663 | 0.3009
31 66720 116.333 0.0468 | 0.0351 | 0.2663 0.303
32 68859 117.778 0.0472 | 0.0341 | 0.2701 | 0.3038
33 70998 119.778 0.0471 | 0.0338 | 0.2704 0.305
34 73138 121.889 0.0466 0.034 0.2729 | 0.3104
35 75278 123 0.0475 | 0.0341 | 0.2754 | 0.3112
36 77416 124.889 0.0473 | 0.0336 | 0.2757 | 0.3112
37 79553 126 0.0474 | 0.0363 | 0.2765 | 0.3132
38 81689 127.444 0.0473 | 0.0362 | 0.2765 | 0.3132
39 83824 129.556 0.0478 | 0.0361 | 0.2813 | 0.3181

Table A.1: Fixed Cutoff Algorithm returning top ‘K’ sentences

72

S, | Total Sentences | #Updates | EG ELG C LC
1 525 3.2222 0.1032 | 0.1621 | 0.0279 | 0.0429
5 1268 5.6667 0.1328 | 0.1886 | 0.042 | 0.0644
10 1683 7.5556 0.1452 | 0.1886 | 0.0467 | 0.0723
20 2603 12.4444 | 0.1063 | 0.1437 | 0.0888 | 0.1347
25 3104 17.1111 | 0.0958 | 0.1229 | 0.1079 | 0.157
30 3628 18.4444 | 0.0832 | 0.1198 | 0.1092 | 0.1594
35 4014 19.6667 | 0.0908 | 0.1298 | 0.1194 | 0.1776
40 4834 22 0.1171 | 0.1154 | 0.1239 | 0.1847
45 5411 24.5556 | 0.1125 | 0.11 | 0.1265 | 0.1895
50 5743 25.7778 | 0.1105 | 0.1074 | 0.1289 | 0.1936
60 6526 28.7778 | 0.1104 | 0.1026 | 0.1405 | 0.2013
75 8438 36.1111 0.1142 | 0.1002 | 0.1598 | 0.2323
90 10735 41.1111 | 0.0804 | 0.0892 | 0.1636 | 0.2392
100 11445 42.7778 | 0.0773 | 0.0851 | 0.1636 | 0.2392
125 18757 56.2222 | 0.0672 | 0.0762 | 0.1754 | 0.2554
150 25373 65.2222 | 0.0603 | 0.0657 | 0.1874 | 0.2674
175 29912 70.8889 | 0.0568 | 0.0616 | 0.1965 | 0.2773
200 34264 76 0.058 | 0.0642 | 0.2074 | 0.2904
250 42372 83.7778 | 0.0558 | 0.0603 | 0.2223 | 0.3178
300 55708 93.8889 | 0.0543 | 0.0569 | 0.2269 | 0.3215
350 69219 103.111 | 0.0483 | 0.0537 | 0.2366 | 0.3317
400 78921 108.333 | 0.0471 | 0.053 | 0.2419 | 0.3386
450 87880 113.444 | 0.0472 | 0.0537 | 0.2478 | 0.3501
500 98849 120.222 | 0.0469 | 0.0533 | 0.26 | 0.3696
600 122536 134.111 | 0.0433 | 0.0513 | 0.2761 | 0.3859
700 141578 140.111 | 0.0424 | 0.0506 | 0.2828 | 0.3916
800 163227 145 0.0422 | 0.0505 | 0.287 | 0.3996
900 185143 152 0.0407 | 0.0488 | 0.2913 | 0.4031
1000 205649 158.889 | 0.0404 | 0.0485 | 0.3003 | 0.4178

Table A.2: Adaptive cutoff based sentence selection algorithm, D, = 1000

73

Appendix B

Stemming vs No Stemming

74

S, | Total Sentences | #Updates | EG ELG C LC
1 525 3.2222 0.1032 | 0.1621 | 0.0279 | 0.0429
5 1268 5.6667 0.1328 | 0.1886 | 0.042 | 0.0644
10 1683 7.5556 0.1452 | 0.1886 | 0.0467 | 0.0723
20 2603 12.4444 | 0.1063 | 0.1437 | 0.0888 | 0.1347
25 3104 17.1111 | 0.0958 | 0.1229 | 0.1079 | 0.157
30 3628 18.4444 | 0.0832 | 0.1198 | 0.1092 | 0.1594
35 4014 19.6667 | 0.0908 | 0.1298 | 0.1194 | 0.1776
40 4834 22 0.1171 | 0.1154 | 0.1239 | 0.1847
45 5411 24.5556 | 0.1125 | 0.11 | 0.1265 | 0.1895
50 5743 25.7778 | 0.1105 | 0.1074 | 0.1289 | 0.1936
60 6526 28.7778 | 0.1104 | 0.1026 | 0.1405 | 0.2013
75 8438 36.1111 0.1142 | 0.1002 | 0.1598 | 0.2323
90 10735 41.1111 | 0.0804 | 0.0892 | 0.1636 | 0.2392
100 11445 42.7778 | 0.0773 | 0.0851 | 0.1636 | 0.2392
125 18757 56.2222 | 0.0672 | 0.0762 | 0.1754 | 0.2554
150 25373 65.2222 | 0.0603 | 0.0657 | 0.1874 | 0.2674
175 29912 70.8889 | 0.0568 | 0.0616 | 0.1965 | 0.2773
200 34264 76 0.058 | 0.0642 | 0.2074 | 0.2904
250 42372 83.7778 | 0.0558 | 0.0603 | 0.2223 | 0.3178
300 55708 93.8889 | 0.0543 | 0.0569 | 0.2269 | 0.3215
350 69219 103.111 | 0.0483 | 0.0537 | 0.2366 | 0.3317
400 78921 108.333 | 0.0471 | 0.053 | 0.2419 | 0.3386
450 87880 113.444 | 0.0472 | 0.0537 | 0.2478 | 0.3501
500 98849 120.222 | 0.0469 | 0.0533 | 0.26 | 0.3696
600 122536 134.111 | 0.0433 | 0.0513 | 0.2761 | 0.3859
700 141578 140.111 | 0.0424 | 0.0506 | 0.2828 | 0.3916
800 163227 145 0.0422 | 0.0505 | 0.287 | 0.3996
900 185143 152 0.0407 | 0.0488 | 0.2913 | 0.4031
1000 205649 158.889 | 0.0404 | 0.0485 | 0.3003 | 0.4178

Table B.1: No stemming, D; = 1000

75

S, | Total Sentences | #Updates | EG ELG C LC
1 459 3.5556 0.1072 | 0.1679 | 0.0268 | 0.04
5) 1177 6.1111 0.146 | 0.2155 | 0.048 | 0.0726
10 1689 8.5556 0.2401 | 0.2271 | 0.0537 | 0.0803
20 2484 11.6667 | 0.2182 | 0.1909 | 0.0658 | 0.0949
25 2973 14.3333 | 0.1821 | 0.1624 | 0.0887 | 0.1251
30 3332 15.7778 | 0.1763 | 0.1482 | 0.0916 | 0.1299
35 3902 18.1111 | 0.1693 | 0.1386 | 0.1026 | 0.1529
40 4440 20.2222 | 0.1215 | 0.1252 | 0.1087 | 0.1636
45 5044 22.8889 | 0.1149 | 0.1155 | 0.1252 | 0.1852
50 5594 24.2222] 0.1141 | 0.1124 | 0.1285 | 0.1897
60 6547 27.6667 | 0.1102 | 0.1065 | 0.1402 | 0.2036
75 8841 36.3333 0.114 | 0.0999 | 0.1484 | 0.2169
90 10873 43.3333 | 0.1122 | 0.0984 | 0.1576 | 0.2303
100 13611 47.1111 | 0.0923 | 0.0911 | 0.1604 | 0.2363
125 17684 55.6667 | 0.0644 | 0.0724 | 0.1717 | 0.2531
150 25814 64.4444 | 0.0583 | 0.0641 | 0.192 | 0.2739
175 32885 70.8889 | 0.0579 | 0.0632 | 0.1999 | 0.2794
200 37293 75.6667 | 0.0537 | 0.0601 | 0.2014 | 0.2838
250 47945 84.2222 | 0.0551 | 0.0591 | 0.226 | 0.3213
300 58004 93.5556 | 0.0524 | 0.057 | 0.2352 | 0.3301
350 67286 101.111 | 0.0503 | 0.0551 | 0.2377 | 0.3342
400 78575 110.556 0.048 | 0.053 | 0.2499 | 0.354
450 89141 116.333 | 0.0471 | 0.0524 | 0.2531 | 0.3598
500 97943 123.333 | 0.0473 | 0.0525 | 0.2607 | 0.3679
600 121218 134.333 | 0.0415 | 0.0491 | 0.2689 | 0.3765
700 142951 144.111 | 0.0427 | 0.0509 | 0.2848 | 0.3954
800 166385 150 0.0417 | 0.05 | 0.289 | 0.4033
900 189295 158.667 | 0.0406 | 0.049 | 0.3023 | 0.4256
1000 208436 163 0.0398 | 0.0481 | 0.3042 | 0.4291
Table B.2: Use of stemming, D, = 1000

76

Appendix C

Percent Match vs Cosine similarity
vs Simhash

7

Sp | percentmatch | cosine | simhash | ELG_percent | ELG_cosine | ELG_simhash
1 1.6667 2 2.6667 0.2761 0.2936 0.2054
5 3.5556 4.4444 | 4.6667 0.1267 0.2984 0.157
10 4.8889 5.8889 | 6.2222 0.1681 0.2843 0.2083
15 5.8889 6.8889 | 8.4444 0.185 0.2341 0.1727
20 6.3333 7.5556 | 8.7778 0.1971 0.2386 0.175
25 7.1111 9.3333 | 9.8889 0.1662 0.219 0.1835
30 7.8889 9.8889 | 12.4444 0.1624 0.2091 0.1563
35 8 11.6667 | 11.4444 0.1742 0.1733 0.1429
40 8.3333 12.5556 | 12.3333 0.1712 0.167 0.1369
45 10.6667 13.1111 | 13.6667 0.1797 0.1658 0.1327
50 11.3333 13.8889 | 13.1111 0.1305 0.1575 0.1249
60 11.5556 14,7778 | 15.8889 0.1325 0.1618 0.1266
75 11.7778 16.6667 19 0.1281 0.147 0.126
90 13 17.1111 | 20.4444 0.1301 0.1492 0.1031
100 13.1111 17.8889 21 0.1306 0.1415 0.1101
125 14.8889 21 25 0.1331 0.128 0.111
150 16.8889 22,7778 | 26.1111 0.1211 0.1204 0.1014
175 18.6667 24.7778 28 0.1275 0.1244 0.1094
200 19.8889 26 28.6667 0.1268 0.1223 0.1006
250 22.8889 31 34.1111 0.1231 0.1149 0.093
300 24 33.2222 | 36.5556 0.1189 0.1133 0.1022
350 24.8889 33.4444 39 0.1157 0.1126 0.0878

Table C.1: Deduplication Comparison for ELG metric along with the average number of
updates, Dy, = 100, Deduplication Cutoff= 0.75

78

Sh | percentmatch | cosine | simhash | LC_percent | LC_cosine | LC_simhash
1 1.6667 2 2.6667 0.0365 0.0376 0.0437
5 3.5556 4.4444 | 4.6667 0.0609 0.0707 0.0608
10 4.8889 5.8889 | 6.2222 0.0804 0.0781 0.0828
15 5.8889 6.8889 | 8.4444 0.1201 0.0882 0.1311

20 6.3333 7.5556 | 8.7778 0.1255 0.0975 0.1367

25 7.1111 9.3333 | 9.8889 0.1018 0.1033 0.1412

30 7.8889 9.8889 | 12.4444 0.1102 0.1036 0.1479

35 8 11.6667 | 11.4444 0.1222 0.1145 0.1196

40 8.3333 12.5556 | 12.3333 0.1202 0.1112 0.1274

45 10.6667 13.1111 | 13.6667 0.134 0.1159 0.1296

50 11.3333 13.8889 | 13.1111 0.1378 0.1181 0.1344
60 11.5556 14.7778 | 15.8889 0.1399 0.1332 0.1393
75 11.7778 16.6667 19 0.139 0.1413 0.1488
90 13 17.1111 | 20.4444 0.1628 0.1595 0.1808

100 13.1111 17.8889 21 0.1646 0.167 0.1919

125 14.8889 21 25 0.1826 0.172 0.202

150 16.8889 22.7778 | 26.1111 0.1883 0.1766 0.1927

175 18.6667 24.7778 28 0.1906 0.1797 0.2025

200 19.8889 26 28.6667 0.1942 0.1836 0.1999

250 22.8889 31 34.1111 0.2171 0.2132 0.2206

300 24 33.2222 | 36.5556 0.2178 0.2113 0.2296

350 24.8889 33.4444 39 0.2178 0.2101 0.2405

Table C.2: Deduplication Comparison for LC metric along with the average number of
updates, Dy, = 100, Deduplication Cutoff= 0.75

79

Sh | percentmatch | cosine | simhash | ELG_percent | ELG_cosine | ELG_simhash
1 328 243 304 0.2761 0.2936 0.2054
5 770 675 791 0.1267 0.2984 0.157
10 1072 954 1042 0.1681 0.2843 0.2083
15 1443 1235 1438 0.185 0.2341 0.1727
20 1624 1396 1635 0.1971 0.2386 0.175
25 1881 1681 1903 0.1662 0.219 0.1835
30 2171 1866 2140 0.1624 0.2091 0.1563
35 2373 2199 2279 0.1742 0.1733 0.1429
40 2621 2376 2524 0.1712 0.167 0.1369
45 2935 2614 2808 0.1797 0.1658 0.1327
50 3181 2828 2975 0.1305 0.1575 0.1249
60 3436 3179 3353 0.1325 0.1618 0.1266
75 3869 3832 3933 0.1281 0.147 0.126
90 4725 4479 4742 0.1301 0.1492 0.1031
100 4925 4820 5115 0.1306 0.1415 0.1101
125 5902 5680 6478 0.1331 0.128 0.111
150 6642 6485 7056 0.1211 0.1204 0.1014
175 7619 7467 8191 0.1275 0.1244 0.1094
200 8037 8094 8710 0.1268 0.1223 0.1006
250 9552 9795 10607 0.1231 0.1149 0.093
300 10810 11357 | 11575 0.1189 0.1133 0.1022
350 11375 11932 | 12809 0.1157 0.1126 0.0878

Table C.3: Deduplication Comparison for ELG metric along with the total number of
sentences, D;, = 100, Deduplication Cutoff= 0.75

80

Sh | percentmatch | cosine | simhash | LC_percent | LC_Cosine | LC_Simhash
1 328 243 304 0.0365 0.0376 0.0437
5 770 675 791 0.0609 0.0707 0.0608
10 1072 954 1042 0.0804 0.0781 0.0828
15 1443 1235 1438 0.1201 0.0882 0.1311
20 1624 1396 1635 0.1255 0.0975 0.1367
25 1881 1681 1903 0.1018 0.1033 0.1412
30 2171 1866 2140 0.1102 0.1036 0.1479
35 2373 2199 2279 0.1222 0.1145 0.1196
40 2621 2376 2524 0.1202 0.1112 0.1274
45 2935 2614 2808 0.134 0.1159 0.1296
50 3181 2828 2975 0.1378 0.1181 0.1344
60 3436 3179 3353 0.1399 0.1332 0.1393
75 3869 3832 3933 0.139 0.1413 0.1488
90 4725 4479 4742 0.1628 0.1595 0.1808
100 4925 4820 5115 0.1646 0.167 0.1919
125 5902 5680 6478 0.1826 0.172 0.202
150 6642 6485 7056 0.1883 0.1766 0.1927
175 7619 7467 8191 0.1906 0.1797 0.2025
200 8037 8094 8710 0.1942 0.1836 0.1999
250 9552 9795 10607 0.2171 0.2132 0.2206
300 10810 11357 | 11575 0.2178 0.2113 0.2296
350 11375 11932 | 12809 0.2178 0.2101 0.2405

Table C.4: Deduplication Comparison for LC metric along with the total number of sen-
tences, D), = 100, Deduplication Cutoff= 0.75

81

References

James Allan, Courtney Wade, and Alvaro Bolivar. Retrieval and novelty detection at the
sentence level. In Proceedings of the 26th annual international ACM SIGIR conference
on Research and development in informaion retrieval, pages 314-321. ACM, 2003.

Javed Aslam, Fernando Diaz, Matthew Ekstrand-Abueg, Virgi Pavlu, and Tetsuya Sakai.
Trec 2013 temporal summarization. In Proceedings of TREC 2013, 2014.

Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. Modern information retrieval, volume
463. ACM press New York, 1999.

Niranjan Balasubramanian, James Allan, and W Bruce Croft. A comparison of sentence
retrieval techniques. In Proceedings of the 30th annual international ACM SIGIR con-
ference on Research and development in information retrieval, pages 813-814. ACM,

2007.

Gaurav Baruah, Rakesh Guttikonda, Adam Roegiest, and Olga Vechtomova. University of
waterloo at the trec 2013 temporal summarization track. In Proceedings of TREC 2013,
2014.

Jagdev Bhogal, Andy Macfarlane, and Peter Smith. A review of ontology based query
expansion. Information processing €& management, 43(4):866-886, 2007.

Bodo Billerbeck and Justin Zobel. Questioning query expansion: An examination of be-
haviour and parameters. In Proceedings of the 15th Australasian database conference-
Volume 27, pages 69-76. Australian Computer Society, Inc., 2004.

Catherine Blake. A comparison of document, sentence, and term event spaces. In Pro-
ceedings of the 21st International Conference on Computational Linguistics and the 44th
annual meeting of the Association for Computational Linguistics, pages 601-608. Asso-
ciation for Computational Linguistics, 2006.

82

Andrei Z Broder, Steven C Glassman, Mark S Manasse, and Geoffrey Zweig. Syntactic
clustering of the web. Computer Networks and ISDN Systems, 29(8):1157-1166, 1997.

Stefan Biittcher, Charles LA Clarke, and Gordon V Cormack. Information retrieval: Im-
plementing and evaluating search engines. MIT Press, 2010.

Claudio Carpineto and Giovanni Romano. A survey of automatic query expansion in
information retrieval. ACM Computing Surveys (CSUR), 44(1):1, 2012.

Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceed-
ings of the thiry-fourth annual ACM symposium on Theory of computing, pages 380-388.
ACM, 2002.

Nitesh V Chawla. Data mining for imbalanced datasets: An overview. In Data mining and
knowledge discovery handbook, pages 853—-867. Springer, 2005.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. Smote:
synthetic minority over-sampling technique. arXiv preprint arXiv:1106.1813, 2011.

Stanley F Chen and Joshua Goodman. An empirical study of smoothing techniques for
language modeling. Computer Speech € Language, 13(4):359-393, 1999.

Kevyn Collins-Thompson, Paul Ogilvie, Yi Zhang, and Jamie Callan. Information filtering,
novelty detection, and named-page finding. In TREC, 2002.

Kevyn Collins-Thompson, Paul Bennett, Fernando Diaz, Charles LA Clarke, and Ellen
Voorhees. Trec 2013 web track overview. In 22nd Text REtrieval Conference, Gaithers-
burg, Maryland, 2014.

W Bruce Croft and John Lafferty. Language modeling for information retrieval, volume 13.
Springer, 2003.

Hoa Trang Dang, Jimmy Lin, and Diane Kelly. Overview of the trec 2006 question an-
swering track. In Proceedings of TREC 2006, 2007.

Adriel Dean-Hall, Charles LA Clarke, Jaap Kamps, Paul Thomas, Nicole Simone, and
Ellen Voorhees. Overview of the trec 2013 contextual suggestion track. In 22nd Text
RFEtrieval Conference, Gaithersburg, Maryland, 2014.

Tamas E Doszkocs. Aid, an associative interactive dictionary for online searching. Online
Information Review, 2(2):163-173, 1978.

83

Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algorithm. In
ICML, volume 96, pages 148-156, 1996.

George W. Furnas, Thomas K. Landauer, Louis M. Gomez, and Susan T. Dumais. The
vocabulary problem in human-system communication. Communications of the ACM, 30
(11):964-971, 1987.

Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto Bustince, and Francisco
Herrera. A review on ensembles for the class imbalance problem: bagging-, boosting-,
and hybrid-based approaches. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, 42(4):463-484, 2012.

D Graff. The aquaint corpus of english news text. philadelphia, pa, linguistic data consor-
tium, 2002.

Donna Harman and Paul Over. The duc summarization evaluations. In Proceedings of the
second international conference on Human Language Technology Research, pages 44-51.
Morgan Kaufmann Publishers Inc., 2002.

David J Harper and Cornelis Joost Van Rijsbergen. An evaluation of feedback in document
retrieval using co-occurrence data. Journal of documentation, 34(3):189-216, 1978.

Haibo He and Edwardo A Garcia. Learning from imbalanced data. Knowledge and Data
Engineering, IEEE Transactions on, 21(9):1263-1284, 20009.

Monika Henzinger. Finding near-duplicate web pages: a large-scale evaluation of algo-
rithms. In Proceedings of the 29th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 284-291. ACM, 2006.

Nathalie Japkowicz et al. Learning from imbalanced data sets: a comparison of various
strategies. In AAAI workshop on learning from imbalanced data sets, volume 68. Menlo
Park, CA, 2000.

Jiwoon Jeon, W Bruce Croft, and Joon Ho Lee. Finding similar questions in large ques-
tion and answer archives. In Proceedings of the 14th ACM international conference on
Information and knowledge management, pages 84-90. ACM, 2005.

Makoto P Kato, Matthew Ekstrand-Abueg, Virgil Pavlu, Tetsuya Sakai, Takehiro Ya-
mamoto, and Mayu Iwata. Overview of the ntcir-10 1lclick-2 task. In Proceedings of the
10th NTCIR Conference, 2013.

84

Myoung-Cheol Kim and Key-Sun Choi. A comparison of collocation-based similarity mea-
sures in query expansion. Information processing & management, 35(1):19-30, 1999.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The Annals of
Mathematical Statistics, pages 79-86, 1951.

Victor Lavrenko and W Bruce Croft. Relevance based language models. In Proceedings of
the 24th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 120-127. ACM, 2001.

Chin-Yew Lin and Eduard Hovy. Automatic evaluation of summaries using n-gram co-
occurrence statistics. In Proceedings of the 2003 Conference of the North American Chap-
ter of the Association for Computational Linguistics on Human Language Technology-
Volume 1, pages 71-78. Association for Computational Linguistics, 2003.

Dekang Lin. Automatic retrieval and clustering of similar words. In Proceedings of the
17th international conference on Computational linguistics-Volume 2, pages T68-774.
Association for Computational Linguistics, 1998.

Jimmy Lin and Dina Demner-Fushman. Automatically evaluating answers to definition
questions. In Proceedings of the conference on Human Language Technology and Empir-
ical Methods in Natural Language Processing, pages 931-938. Association for Computa-
tional Linguistics, 2005.

Jimmy Lin and Dina Demner-Fushman. Will pyramids built of nuggets topple over? In
Proceedings of the main conference on Human Language Technology Conference of the
North American Chapter of the Association of Computational Linguistics, pages 383—
390. Association for Computational Linguistics, 2006.

Rushi Longadge and Snehalata Dongre. Class imbalance problem in data mining review.
arXiv preprint arXw:1305.1707, 2013.

Rila Mandala, Tokunaga Takenobu, and Tanaka Hozumi. The use of wordnet in informa-
tion retrieval. In Use of WordNet in Natural Language Processing Systems: Proceedings
of the Conference, pages 31-37, 1998.

Gurmeet Singh Manku, Arvind Jain, and Anish Das Sarma. Detecting near-duplicates for
web crawling. In Proceedings of the 16th international conference on World Wide Web,
pages 141-150. ACM, 2007.

85

Christopher D Manning, Prabhakar Raghavan, and Hinrich Schiitze. Introduction to in-
formation retrieval, volume 1. Cambridge university press Cambridge, 2008.

Gregory Marton and Alexey Radul. Nuggeteer: Automatic nugget-based evaluation using
descriptions and judgements. In Proceedings of the main conference on Human Language
Technology Conference of the North American Chapter of the Association of Computa-
tional Linguistics, pages 375-382. Association for Computational Linguistics, 2006.

Andreas Merkel and Dietrich Klakow. Comparing improved language models for sentence
retrieval in question answering. In Computational Linguistics in the Netherlands Con-
ference Proceedings, 2007.

Donald Metzler, Yaniv Bernstein, W Bruce Croft, Alistair Moffat, and Justin Zobel. Sim-
ilarity measures for tracking information flow. In Proceedings of the 14th ACM inter-

national conference on Information and knowledge management, pages 517-524. ACM,
2005.

George A. Miller. Wordnet: A lexical database for english. COMMUNICATIONS OF
THE ACM, 38:39-41, 1995.

V Garcia JS Sanchez RA Mollineda and R Alejo JM Sotoca. The class imbalance problem

in pattern classification and learning. 2007.

Saeedeh Momtazi, Matthew Lease, and Dietrich Klakow. FEffective term weighting for
sentence retrieval. In Research and Advanced Technology for Digital Libraries, pages
482-485. Springer, 2010.

Vanessa Graham Murdock. Aspects of sentence retrieval. PhD thesis, University of Mas-
sachusetts Amherst, 2006.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for au-
tomatic evaluation of machine translation. In Proceedings of the 40th annual meeting on
association for computational linguistics, pages 311-318. Association for Computational
Linguistics, 2002.

Laurence AF Park and Kotagiri Ramamohanarao. Query expansion using a collection
dependent probabilistic latent semantic thesaurus. In Advances in Knowledge Discovery
and Data Mining, pages 224-235. Springer, 2007.

Marius Pasca and Sanda Harabagiu. The informative role of wordnet in open-domain
question answering. In Proceedings of NAACL-01 Workshop on WordNet and Other
Lezical Resources, pages 138143, 2001.

86

Jay M Ponte and W Bruce Croft. A language modeling approach to information retrieval.
In Proceedings of the 21st annual international ACM SIGIR conference on Research and
development in information retrieval, pages 275-281. ACM, 1998.

Martin F Porter. An algorithm for suffix stripping. Program: electronic library and infor-
mation systems, 14(3):130-137, 1980.

Yonggang Qiu and Hans-Peter Frei. Concept based query expansion. In Proceedings of
the 16th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 160-169. ACM, 1993.

S.E. Robertson, S. Walker, S. Jones, M.M. Hancock-Beaulieu, and M. Gatford. Okapi at
trec-3. pages 109-126, 1996.

Stephen E Robertson. The probability ranking principle in ir. Journal of documentation,
33(4):294-304, 1977.

Stephen E Robertson and Steve Walker. Some simple effective approximations to the 2-
poisson model for probabilistic weighted retrieval. In Proceedings of the 17th annual
international ACM SIGIR conference on Research and development in information re-
trieval, pages 232-241. Springer-Verlag New York, Inc., 1994.

Joseph John Rocchio. Relevance feedback in information retrieval. 1971.

Tetsuya Sakai and Hideo Joho. Overview of ntcir-9. In Proceedings of NTCIR-9 Workshop,
pages 1-7, 2011.

Tetsuya Sakai, Makoto P Kato, and Young-In Song. Click the search button and be happy:
Evaluating direct and immediate information access. In Proceedings of the 20th ACM

international conference on Information and knowledge management, pages 621-630.
ACM, 2011.

Gerard Salton and C Buckley. The smart information retrieval system, 1971.
Barry Schiffman. Experiments in novelty detection at columbia university. In TREC, 2002.

Hinrich Schiitze and Jan O Pedersen. A cooccurrence-based thesaurus and two applications
to information retrieval. Information Processing € Management, 33(3):307-318, 1997.

Chris Seiffert, Taghi M Khoshgoftaar, Jason Van Hulse, and Amri Napolitano. Resampling
or reweighting: a comparison of boosting implementations. In Tools with Artificial
Intelligence, 2008. ICTAI’08. 20th IEEFE International Conference on, volume 1, pages
445-451. TIEEE, 2008.

87

Mark D Smucker and Charles LA Clarke. Time-based calibration of effectiveness mea-
sures. In Proceedings of the 35th international ACM SIGIR conference on Research and
development in information retrieval, pages 95-104. ACM, 2012.

Mark D Smucker, James Allan, and Ben Carterette. A comparison of statistical significance
tests for information retrieval evaluation. In Proceedings of the sixteenth ACM conference
on Conference on information and knowledge management, pages 623-632. ACM, 2007.

Mark D Smucker, Charles L. Clarke, and Gordon V Cormack. Experiments with clueweb09:
Relevance feedback and web tracks. Technical report, DTIC Document, 2009.

Jerzy Stefanowski and Szymon Wilk. Selective pre-processing of imbalanced data for im-
proving classification performance. In Data Warehousing and Knowledge Discovery,
pages 283-292. Springer, 2008.

Olga Vechtomova. Query expansion for information retrieval. In Encyclopedia of Database
Systems, pages 2254-2257. Springer, 2009.

Olga Vechtomova. A semi-supervised approach to extracting multiword entity names from
user reviews. In Proceedings of the 1st Joint International Workshop on Entity-Oriented
and Semantic Search, page 2. ACM, 2012.

Olga Vechtomova and Stephen E Robertson. A domain-independent approach to finding
related entities. Information Processing & Management, 48(4):654-670, 2012.

Ellen M Voorhees. Query expansion using lexical-semantic relations. In SIGIR’94, pages
61-69. Springer, 1994.

Ellen M Voorhees. Question answering in trec. In Proceedings of the tenth international
conference on Information and knowledge management, pages 535-537. ACM, 2001.

Ellen M. Voorhees. Overview of the trec 2003 question answering track. In Proceedings of
TREC 2003, 2004.

Ellen M. Voorhees. Overview of the trec 2004 question answering track. In Proceedings of
TREC 2004, 2005.

Ellen M. Voorhees. Overview of the trec 2005 question answering track. In Proceedings of
TREC 2005, 2006.

Ellen M Voorhees and Dawn M Tice. The trec-8 question answering track evaluation. In
TREC, 1999.

38

Julie Weeds and David Weir. A general framework for distributional similarity. In Proceed-
ings of the 2003 conference on Empirical methods in natural language processing, pages
81-88. Association for Computational Linguistics, 2003.

Jinxi Xu and W Bruce Croft. Query expansion using local and global document analysis.
In Proceedings of the 19th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 4-11. ACM, 1996.

ChengXiang Zhai and John Lafferty. Two-stage language models for information retrieval.
In Proceedings of the 25th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 49-56. ACM, 2002.

Min Zhang, Ruihua Song, Chuan Lin, Shaoping Ma, Zhe Jiang, Yijiang Jin, Yiqun Liu,
Le Zhao, and S Ma. Expansion-based technologies in finding relevant and new informa-
tion: Thu trec 2002: Novelty track experiments. NIST SPECIAL PUBLICATION SP,
(251):586-590, 2003.

89

	List of Tables
	List of Figures
	Introduction
	Motivation
	The Problem
	Our Approach
	Evaluation
	Contributions

	Related Work
	TREC: QA track
	Retrieval Models: Probabilistic Retrieval and Language Modeling
	Probabilistic Retrieval
	Language Modeling

	Sentence Retrieval
	Automatic Query Expansion
	WordNet
	Relevance Feedback and Pseudo-Relevance Feedback

	Distributional Similarity
	Nugget-based Evaluation in the QA track
	Automatic nugget-based evaluation systems: POURPRE, Nuggeteer
	POURPRE
	Nuggeteer

	TREC 2013: Temporal Summarization Track
	Preliminaries and Experimental Setup
	Indexing & Scoring Documents
	Indexing: Hour-wise index files
	Scoring documents: Using Query Likelihood model

	Query Expansion: Distributional Similarity
	Finding Expansion terms

	Sentence Selection Criteria & De-duplication
	Submitted runs
	Results & Discussion

	Experiments after TREC
	Experimental Setup and Baseline runs
	Effectiveness of adaptive cutoff based sentence selection
	Results and Discussion

	Effectiveness of stemming
	Results and Discussion

	Deduplication
	Percent Match
	Cosine
	Simhash
	Results and Discussion

	Automatic Query Expansion using Lin's distributional similarity
	Seed words using KLD
	Merging lists of expansion words
	Results & Discussion

	Evaluation of Temporal Summarization Systems
	TST Evaluation for TREC 2013
	Preliminaries
	Reducing the number of matches evaluated
	Supervised learning approach
	Results & Discussion

	Conclusion & Future Work
	Conclusion
	Future Work

	APPENDICES
	Effectiveness of Adaptive cutoff based sentence selection algorithm
	Effectiveness of Stemming
	Effectiveness of deduplication
	References

