
On The Integrality Gap of
Directed Steiner Tree

Problem

by

Mohammad Shadravan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2014

c© Mohammad Shadravan 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144147437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of
the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

In the Directed Steiner Tree problem, we are given a directed graph G =
(V,E) with edge costs, a root vertex r ∈ V , and a terminal set X ⊆ V . The goal
is to find the cheapest subset of edges that contains an r-t path for every terminal
t ∈ X. The only known polylogarithmic approximations for Directed Steiner
Tree run in quasi-polynomial time and the best polynomial time approximations
only achieve a guarantee of O(|X|ε) for any constant ε > 0. Furthermore, the
integrality gap of a natural LP relaxation can be as bad as Ω(

√
|X|).

We demonstrate that ` rounds of the Sherali-Adams hierarchy suffice to re-
duce the integrality gap of a natural LP relaxation for Directed Steiner Tree in
`-layered graphs from Ω(

√
k) to O(` · log k) where k is the number of terminals.

This is an improvement over Rothvoss’ result that 2` rounds of the consider-
ably stronger Lasserre SDP hierarchy reduce the integrality gap of a similar
formulation to O(` · log k).

We also observe that Directed Steiner Tree instances with 3 layers of edges
have only an O(log k) integrality gap bound in the standard LP relaxation,
complementing the fact that the gap can be as large as Ω(

√
k) in graphs with 4

layers.
Finally, we consider quasi-bipartite instances of Directed Steiner Tree mean-

ing no edge in E connects two Steiner nodes V − (X ∪ {r}). By a simple
reduction from Set Cover, it is still NP-hard to approximate quasi-bipartite in-
stances within a ratio better than O(log |X|). We present a polynomial-time
O(log |X|)-approximation for quasi-bipartite instances of Directed Steiner Tree.
Our approach also bounds the integrality gap of the natural LP relaxation by
the same quantity. A novel feature of our algorithm is that it is based on the
primal-dual framework, which typically does not result in good approximations
for network design problems in directed graphs.

v

Acknowledgements

First and foremost I would like thank my advisors Professor Jochen Könemann
and Professor Zachary Friggstad, their support have been invaluable during my
studies at Waterloo. Also I would like to thank Professor Chaitanya Swamy and
Professor Konstantinos Georgiou for spending the time to read this thesis and
for their insightful comments.

vii

To my parents.

viii

Table of Contents

List of Figures xi

1 Introduction 1
1.1 Steiner Tree Problems . 2

1.1.1 Motivation . 3
1.2 LP/SDP Hierarchies . 5
1.3 Quasi-bipartite Instances . 9
1.4 Our Results . 10
1.5 Overview of the Thesis . 11

2 Background 13
2.1 Lift and Project . 13
2.2 Sherali-Adams Hierarchy . 15
2.3 Example: Applying Sherali-Adams to the Gap Example of Cut

Based LP-relaxation . 24
2.4 Strengthened Integrality Gap Bound for Group Steiner Tree . . . 27
2.5 Layered Instances . 30

2.5.1 Reduction from Directed Steiner Tree to Group Steiner Tree 30
2.6 Lower Bound for the Integrality Gap of 4-Layer DST 31

3 Sherali-Adams Hierarchy and Directed Steiner Tree 35
3.0.1 Our Results and Techniques 35

3.1 Preliminaries . 37
3.1.1 Rounding for 3-Layered Graphs 38

3.2 Rounding for `-Layered Graphs 40
3.2.1 Cost Analysis . 40
3.2.2 Feasibility . 41
3.2.3 A Rounding Algorithm 42

3.3 Conclusion . 43

4 A Logarithmic Integrality Gap Bound for Directed Steiner Tree
in Quasi-bipartite Graphs 45
4.1 The Rounding . 46
4.2 The Primal-Dual Phase . 48

ix

5 Open Problems 55

Bibliography 57

x

List of Figures

1.1 The outer polytope is the relaxation P , the yellow one is PI the
integral hull of P and the dashed polytope is the strengthened
polytope. 6

1.2 A hierarchy starting from the original polytope and ending with
the integral hull. 7

1.3 An example of a Quasi-bipartite graph. Root is the white cir-
cle, terminals are the black circles and Steiner vertices are the
rectangles. There is no edge between Steiner vertices. 10

2.1 α is the integrality gap and β is the approximation factor. OPT
and OPTf are optimal integral and fractional solutions respec-
tively. Round is the solution returned by the algorithm. 14

2.2 Conditioning on a variable xi, a point y can be written as a convex
combination of two conditioned solutions which are in lower level
of hierarchy . 20

2.3 A ring of n vertices and a fractional solution that assigns 1/2 to
each edge. All vertices are terminals. 25

2.4 A 3-layered DST instance with terminals X = {x, y, z} (left)
and the corresponding GST instance T (G) (right). Each node in
T (G) corresponds to a path P in G and is labelled in the figure
with the endpoint of P in G. A terminal group in T (G) in the
figure consists of all leaf nodes with a common label. A DST
solution and its corresponding GST solution are drawn with bold
edges. 32

2.5 Zosin Khuller example for k = 4 33

4.1 A partial Steiner tree with ` = 3 non-root components (the root
is pictured at the top). The only edges shown are those in some
Fi. The white circles are the heads of the various sets Bi and the
black circles are terminals that are not heads of any components.
The squares outside of the components are the free Steiner nodes
B. Note, in particular, that each head can reach every node in its
respective component. We do not require each Fi be a minimal
set of edges with this property. 47

xi

4.2 The two cases in the proof of Lemma 4.2.4. The left figure illus-
trates the case u 6∈ Bj and has J = {1}. Note that in this case
we have u ∈ βj ∩Mj . The right figure illustrates the case u ∈ Bj
and has J = {1, 2}. In this case, v lies in both moats M1 and
M2. In both cases, the edge uv is drawn with dashed edges and
the paths Pi′ , i

′ ∈ J + j are drawn with solid edges. 54

xii

Chapter 1

Introduction

In combinatorial optimization problems, we are given a discrete structure such
as a graph, and an objective function that we want to optimize with respect to
certain conditions on the underlying structure. For example, finding a shortest
path between two nodes in a graph is an example of a combinatorial optimization
problem. Some of the combinatorial optimization problems can be solved using
an efficient algorithm whose running time is polynomial in terms of input size.
We call this class of problems polynomially solvable or “P”. Nonetheless, a large
class of practically relevant problems are called “NP”-hard”, and do not admit
efficient exact algorithms.

A decision problem is a problem whose output is either “Yes” or “No”. Class
“P” contains all decision problems that have polynomial-time algorithms, and
roughly speaking, the class “NP” is the set of all decision problems such that
for any “Yes” instance of the problem, there is a short, easily verifiable “proof”
that the answer is “Yes”. A short proof is one whose encoding is bounded by
some polynomial in the size of the instance. Clearly P ⊆ NP . Arguably the
biggest open question is that whether P = NP .

It has been shown that there are problems in “NP” that are representative
of the entire class, in the sense that if they have polynomial-time algorithms,
then P = NP, and if they do not, then P6= NP. These are the NP-complete
problems. A problem B is NP-complete if B is in “NP”, and for every problem
A in “NP”, there is a polynomial-time reduction from A to B. Also a problem H
is NP-hard if and only if there is an NP-complete problem L that is polynomial
time reducible to H.

Although most of the combinatorial optimization problems are NP -hard and
it is unlikely to find an efficient method to obtain the optimal solution, we might
expect to achieve a near optimal solution instead. The efficient algorithms,
designed for NP -hard optimization problems, which obtain a solution close to
the optimal solution are called approximation algorithms. The ratio between
the value of solution found by the algorithm and the value of optimal solution
is called the approximation factor.

1

1. INTRODUCTION

1.0.1 Definition. An α-approximation algorithm for an optimization problem
is a polynomial time algorithm that for all instances of the problem produces a
solution whose value is within a factor α of the value an optimal solution.

However, some of the problems are even very hard to be approximated, for
instance there is no α-approximation algorithm for them, for every constant α.
On the other hand, some problems admit approximation algorithms that can
compute solutions whose value is within a (1 + ε)-factor of the optimal solution
OPT for any ε > 0. These algorithms are called polynomial time approximation
schemes (PTAS).

An important family of combinatorial optimization problems are network
design problems. In network design problems the goal is to design a network
(i.e., find a subgraph of a given graph) that satisfies certain connectivity re-
quirements. Edges of the given graph describe the cost of the possible links the
network may have, and each requirement is in the form of connecting (or, more
generally, providing large connectivity between) a pair of vertices of the graph.
The goal is to find the network of minimum cost (i.e., the subgraph of mini-
mum length), where connectivity requirements can be compromised. Most of
the known network design problems are NP -hard. In the following, we will ex-
plore the common network design problems that we face in this thesis, including
Undirected Steiner Tree, Group Steiner Tree and Directed Steiner Tree.

1.1 Steiner Tree Problems

The following three problems are the main variations of the Steiner tree problem
that we face with them in this thesis.

1.1.1 Definition. (Undirected Steiner Tree Problem). We are given an undi-
rected graph G = (V,E, c) with nonnegative edge costs c : E → R+, and a
subset S ⊆ V , called terminal vertices. A minimum Steiner tree is a tree T in
G spanning all vertices of S, of minimum cost, where the cost of a tree T is
defined as c(T) :=

∑
e∈T ce. The non-terminal vertices V \ S of the graph are

called the Steiner vertices.

For arbitrary weighted graphs, the best approximation ratio achievable within
polynomial time was steadily improved from 2 down to 1.39 in a series of pa-
pers [22, 35, 54, 5, 44, 32, 29, 49]. On the negative side, it is known that, it
is NP -hard to find solutions of cost less than 96/95 times the optimal cost [6].
Hence, the best one can hope for is an approximation algorithm with a small
but constant approximation guarantee.

1.1.2 Definition. (Group Steiner Tree Problem) In this problem, we are given
an undirected graph G = (V,E, c) with non-negative edge costs ce ≥ 0, e ∈ E,
a root node r, and a collection of subsets X1, X2, . . . , Xk of nodes. The goal is
to find the cheapest subset of edges F such that for every group Xi, there is a
path from r to some node in Xi using only edges in F .

2

1.1. STEINER TREE PROBLEMS

It is easy to see that the Group Steiner Tree problem generalizes the Undi-
rected Steiner Tree problem (consider each group as a single terminal). The
Group Steiner Tree problem generalizes the set cover problem and therefore is
at least as hard as this problem. In set cover problem, we are given a collection of
weighted subsets of a given ground set and seek a minimum-weight sub collection
whose union is the entire ground set. It is known that for the set cover problem
there is no (1− ε). log k approximation for every ε > 0, where k is the number of
elements in the ground set [15]. Furthermore, Halperin and Krauthgamer [26]
showed that for every fixed ε > 0, the Group Steiner Tree problem admits no
efficient log2−ε k approximation, where k denotes the number of groups, unless
NP has quasi-polynomial algorithms, i.e. NP ⊆ DTIME(npolylog(n)). Garg,
Konjevood and Ravi [16] design a randomized O(log n. log k) approximation al-
gorithm for this problem on tree instances. They use the result of [34] on prob-
abilistic approximation of finite metric spaces by tree metrics problem, and give
a randomized O(log2 n. log k)-approximation algorithms on general graphs. In
Chapter 2, we will show that [16] implicitly shows an O(h. log k) approximation
for Group Steiner Tree problem on trees with height of h.

1.1.3 Definition. (Directed Steiner Tree Problem) In the Directed Steiner Tree
(DST) problem, we are given a directed graph G = (V,E, c) with edge costs
ce ≥ 0, e ∈ E. Furthermore, we are given a root node r ∈ V and a collection of
terminals X ⊆ V and the goal is to find the cheapest collection of edges F ⊆ E
such that there is a directed r− t path using only edges in F for every terminal
t ∈ X. Throughout, we will let n = |V |, m = |E|, and k = |X|.

If X ∪ {r} = V , then the problem is simply the minimum-cost arbores-
cence problem which can be solved efficiently[21]. However, the general case is
well-known to be NP-hard. In fact, the problem can be seen to generalize the
Group Steiner Tree problem, and therefore cannot be approximated within an
O(log2−ε(n)) factor for any constant ε > 0 unless NP ⊆ DTIME(npolylog(n))
[26].

1.1.1 Motivation

Undirected Steiner Tree Problem. The Steiner tree problem is one of the
fundamental problems in the field of network design. This problem was first
introduced by J. Steiner in the Euclidian plane for 3 points [7]. The decision
version of this problem is NP -Complete even when the graph is induced by
points in the plane.

The Steiner tree problem has many applications, for example in circuit lay-
out or network design. In optimizing the area of Very Large Scale Integrated
(VLSI) layouts, a given set of pins (terminal endpoints of a circuit) is to be
connected using minimum total wire-length. When all wires are point-to-point,
with no intermediate junctions other than points of P , the optimum solution
is a minimum spanning tree (MST) over P . However, we can usually intro-
duce intermediate junctions, called Steiner points, in connecting the points of
P . Thus the problem we are seeking to solve under this assumption would be

3

1. INTRODUCTION

a minimum Steiner tree problem. Steiner trees are important in global routing
and wire-length estimation [9], as well as in various non-VLSI applications such
as phylogenetic tree reconstruction in biology [30], network routing, and civil
engineering, among many other areas [37].
Group Steiner Tree Problem.

The problem was introduced by Reich and Widmayer [48] and finds ap-
plication in VLSI design. From a practical point of view the group Steiner
problem models several scenarios in VLSI layout design [27]. For example, in
one model in VLSI design, each terminal is a collection of ports and we seek
a minimum length net containing at least one port from each terminal group.
In addition, Group Steiner Tree problem models the network design problems
with location-theoretic constraints studied by Marathe, Ravi and Sundaram [41].
The location-theoretic objective requires that we choose a subset S of nodes and
locate services at the vertices in S, such that every node is within a bounded
distance from at least one vertex in S.
Directed Steiner Tree Problem. The directed version of the Steiner tree
problem is a natural generalization of the Undirected Steiner Tree problem. It
has many applications in network design and network routing [11]. For example,
multicasting involves the distribution of the same data from a central server to
several nodes in the network and the problem is to choose a set of edges (or
communication links) of minimum cost for the server to route the data. The
connection between this problem and the Steiner problem is clear. However,
there are many networks in practice where the communication links are asym-
metric and cannot be modeled by undirected edges. The problem of multicast
routing in asymmetric networks has received considerable attention [47].

A version of Directed Steiner Tree problem in the rectilinear plane has a
great interest in VLSI designs. Given a set P of n points in the first quadrant
of the rectilinear plane, a rectilinear Steiner arborescence tree is a directed tree
rooted at the origin, consisting of all paths from the root to points in P with
horizontal edges oriented in left to right direction and vertical edges oriented
in bottom-up direction. Shi and Su [53] showed that computing the minimum
rectilinear arborescence is NP -hard. Lu and Ruan [39] showed, by employing
Arora’s techniques (the PTAS for connectivity problems in planar graphs), that
there is a polynomial-time approximation scheme for this special case of the
problem.

Also from theoretical point of view, the importance of Directed Steiner Tree
problem is that a wide variety of well-known network design problems in both di-
rected and undirected graphs, such as (undirected) Steiner tree problem, Group
Steiner Tree problem, node weighted Steiner tree problem and (non-metric,
multilevel) facility location problem can be reduced to this problem in approx-
imation preserving ways.

Zelikovsky [10] showed for any DST instance G, and integer ` ≥ 1, there
is an `-layered DST instance (defined in 2.5.1) such that OPTG ≤ OPTH ≤
`·k1/`·OPTG and that a DST solution in H naturally corresponds to a DST solu-
tion in G with the same cost. Charikar et al. [11] exploited this fact and present
an O(`2k1/` log k)-approximation with running time poly(n, k`) for any integer

4

1.2. LP/SDP HIERARCHIES

` ≥ 1. In particular, this can be used to obtain an O(log3 k)-approximation
in quasi-polynomial time and for any constant ε > 0 a polynomial-time O(kε)-
approximation. Finding a polynomial-time polylogarithmic approximation re-
mains an important open problem.

1.2 LP/SDP Hierarchies

Consider an integer linear program for a combinatorial optimization problem in
the form of

OPT = min{cTx|Ax ≥ b;x ∈ {0, 1}n}, (1.2.1)

where the system Ax ≥ b represents the problem structure. The constraint
x ∈ {0, 1}n is needed to obtain an integral solution, since in combinatorial
optimization problems usually we need to choose some discrete objects and
this binary decision is naturally formulated by 0-1 variables. Therefore the set
K = {Ax ≥ b;x ∈ {0, 1}n} represents the set of all feasible solutions (or integral
solutions) for the problem and the goal is to find those feasible solutions that
optimize the objective function cTx. Note that since c is linear, optimizing over
set K is equivalent to optimizing over convex hull of all integral solutions, we
denote by PI = conv(K).

As it turns out, if the combinatorial problem that we are studying is NP-
hard, we can not efficiently find the optimum solution over all feasible solutions
K. Thus we can instead relax the condition x ∈ {0, 1}n that requires all solu-
tions to be integral, to x ∈ [0, 1]n which allows us to have fractional solutions,
and obtain a linear program

OPTf = min{cTx|Ax ≥ b;x ∈ [0, 1]n}, (1.2.2)

i.e., the polytope P = {Ax ≥ b;x ∈ [0, 1]n} is the relaxed polytope of PI that
we instead optimize over. From definition we can see PI ⊆ P . Also we call the
linear program 1.2.2 the linear programming relaxation of the integer program
1.2.1

Although losing the 0-1 constraints will allow us to find the optimal frac-
tional solution, with value OPTf , it is not directly a feasible solution for our
problem (we ignored integrality constraints). Hence we need to obtain an inte-
gral feasible solution from the optimal fractional solution that we found. That
is the concept of rounding a fractional solution to an integral solution in approx-
imation algorithms. And the challenge is to obtain an integral feasible solution
as close as possible to the integral optimal solution, with value OPT . In most of
the approximation algorithms the approximation guarantee derived from com-
paring its value to that of the linear programming relaxation. Therefore if α
is the approximation factor of an algorithm, often it is compared with OPTf
instead of OPT . Therefore we can not have α ≤ OPT/OPTf . This ratio known
as integrality gap of the integer program is defined as follows:

1.2.1 Definition. (Integrality Gap) Given a LP-relaxation P for a minimization
problem, let OPTf (I) and OPT (I) denote the cost of an optimal fractional and

5

1. INTRODUCTION

optimal integral solution to instance I, and The integrality gap of the relaxation
P for the problem Π is defined as

SupI
OPT (I)

OPTf (I)
,

where the supremum is over all instances of Π.

If the integrality gap is large then the optimal fractional and integral solu-
tions may differ greatly. Hence we should in some way strengthen the relaxation
P , and obtain P ′ ⊂ P , such a way that P ′ still contains PI , i.e. we do not loose
any integral solution. Such a tightening would be aimed at decreasing the inte-
grality gap.

Figure 1.1: The outer polytope is the relaxation P , the yellow one is PI the
integral hull of P and the dashed polytope is the strengthened polytope.

There are several general techniques that can be used to strengthen the
relaxation P . The well-known ones are the techniques producing LP/SDP
hierarchies such as Lovasz Schrijver (LS) [38], Sherali-Adams (SA) [52] and
Lasserre (Las) [36]. The idea behind them is the lift and project method
which will be discussed in the next chapter. But the common fact about
these hierarchies of relaxations is that they provide a sequence of convex bodies
P = P0 ⊆ P1 ⊆ · · · ⊆ Pn = PI (n is the number of variables in P), ranging
from P to PI . Optimizing over Pr requires O(nO(r)) time, assuming there is a
polynomial time separation oracle for P . Although optimizing over Pn is equiv-
alent to finding the optimal integral solution, it is not efficient as optimizing
ove Pn requires exponential time. In general, it is known that the Lasserre SDP
hierarchy is strictly stronger than all others, i.e., the r-th level Lasserre tighten-
ing is contained in the r-th level Sherali-Adams or Lovasz-Schrijver tightening,
(Lasr(P) ⊆ SAr(P)).

For example a natural linear programming (LP) relaxation for Directed

6

1.2. LP/SDP HIERARCHIES

Figure 1.2: A hierarchy starting from the original polytope and ending with the
integral hull.

Steiner Tree is given by LP (P0).

min
∑
e∈E

cexe (P0)

s.t. x(δin(S)) ≥ 1 ∀ S ⊆ V − r, S ∩X 6= ∅
xe ∈ [0, 1] ∀e ∈ E

The variables xe indicate whether we pick an edge in the solution or not.
Thus the objective function of the above LP is the total cost of the edges we
pick in the solution. An integral solution returned by the above LP is a feasible
solution for the Directed Steiner Tree problem. Because the cut constraints
x(δin(S)) ≥ 1, is saying that for every cut separating the root from some other
terminals there should be a crossing edge. It guarantees that for every terminal
vertex in t ∈ X, there exists at least a directed path from root to t (otherwise
consider all vertices can reach to t as a set S and consider the cut δin(S) then
x(δin(S)) = 0). Although, every integral solution is not necessarily a Directed
Steiner Tree (there might be many different paths to a terminal vertex), the
optimal integral solution is a Directed Steiner Tree (because if a vertex has
more than one incoming edge then you can keep one of them which is the last
edge in a path from root to t and remove the rest and still have a feasible
solution).

Zosin and Khuller [25] demonstrated that the integrality gap of the above
LP-relaxation can, unfortunately, be as bad as Ω(

√
k), where k is the number

of terminals, even in instances where G is a 4-layered graph. We will illustrate
their example in Chapter 2. Recently, Rothvoss [50] showed that 2` rounds
of the Lasserre hierarchy suffice to reduce the integrality gap of a similar LP
relaxation to only O(` · log k) in `-layered graphs.

SDP Hierarchies Results. Hierarchies of convex programming relax-
ations, a.k.a. lift-and-project methods, have recently been used successfully in

7

1. INTRODUCTION

the design of approximation algorithms. One successful application of Chlam-
tac [13] uses the 3rd level of the Lasserre relaxation to find O(n0.2072)-colorings
for 3-colorable graphs. Though the O(

√
log n) approximation of Arora, Rao and

Vazirani [2] for Sparsest Cut does not explicitly use hierarchies, their triangle
inequality is implied by O(1) rounds of Lasserre. Certain hierarchies give a se-
quence of improvements in the integrality gap in their first O(1) levels, this has
been shown for Vertex-Cover in planar graphs [40], Knapsack [31], and Maxi-
mum Matching [42]. The importance of O(1) level of these hierarchies is that
their running time would be polynomial time and they can be used to design
a polynomial time approximation algorithms. There are results where the im-
proved approximation is the state-of-the-art for the respective problems such
results include recent work on Chromatic Number [47], Hypergraph Independent
Set [14], MaxMin Allocation [4], and Sparsest-Cut [23].

On the negative side, unfortunately, starting with the work of Arora, Bol-
lobas, Lovasz, and Tourlakis [1] on Vertex-Cover, there has been a long line
of work showing that for various problems, even after a large (super-constant)
number of rounds, various lift and project methods do not yield smaller inte-
grality gaps than a basic LP/SDP relaxation. In particular, Raghavendra and
Steurer [45] have recently shown that a super constant number of rounds of
certain SDP hierarchies does not improve the integrality gap for any constraint
satisfaction problem (MAX-CSP).

LP Hierachies Results. LP Hierarchies also have been used successfully
in the tightening of integrality gap of LP-relaxations or in the design of ap-
proximation algorithms. For example Mathieu and Sinclair show that after k
levels of the Sherali-Adams hierarchy, the integrality gap for the matching poly-
tope reduces to an asymptotically tight expression 1 + 1/k. [42] Bateni et al [4]
consider the problem of MaxMin allocation of indivisible goods. They develop
an nε-approximation for this problem that runs in nO(1/ε) time and obtain a
polylogarithmic approximation that runs in quasipolynomial time, by applying
Sherali-Adams hierarchy to a natural LP relaxation of the problem. The tech-
nical core of their result for this case comes from an algorithm for an interesting
new optimization problem on directed graphs, MaxMinDegree Arborescence,
where the goal is to produce an arborescence of large outdegree. Recently,
Gupta et al [23] gave a 2-approximation algorithm based on Sherali-Adams hi-
erarchy for Non-Uniform Sparsest Cut that runs in time nO(k), where k is the
treewidth of the graph. This improves on the previous 22k-approximation in
time poly(n)2O(k) due to Chlamtac et al. [13], which was also taking advantage
of the Sherali-Adams hierarchy.

LP/SDP Hierarchies in Comparison. There also several example show-
ing the strength of SDP hierarchies compared to LP hierarchies. For instance,
the LP-based hierarchies of Lovasz-Schrijver and Sherali-Adams cannot even
reduce the Max-Cut gap below 2 − ε after Ω(n) [51] and nδ [12] many rounds,
respectively. Though, a single round of the SDP based hierarchies reduces the
gap to 1.13. Karlin, Mathieu and Nguyen [31] studied the integrality gap of the
Knapsack linear program in the Sherali-Adams and Lasserre hierarchies. First,
they show that an integrality gap of 2 − ε persists up to a linear number of

8

1.3. QUASI-BIPARTITE INSTANCES

rounds of Sherali-Adams, despite the fact that Knapsack admits a fully polyno-
mial time approximation scheme. Second, they show that the Lasserre hierarchy
closes the gap quickly. Specifically, after t rounds of Lasserre, the integrality
gap decreases to t/(t−1). This was the first positive result that uses more than
a small number of rounds in the Lasserre hierarchy.

Unique Game Conjecture Results. In computational complexity the-
ory, the Unique Games Conjecture (UGC) is a conjecture made by Khot in
2002 [33]. The conjecture states that the problem of determining the approx-
imate value of a certain type of game, known as a unique game, is NP-hard.
It has broad applications in the theory of hardness of approximation. If it is
true, then for many important problems it is not only too hard to get an exact
solution (as implied by the P versus NP problem), but also too hard to get a
good approximation. In many cases, including all constraint satisfaction prob-
lems and various graph partitioning problems, the best algorithms are based
on fairly simple SDP relaxations. The unique game conjecture (UGC) foretells
that for these problems, no tighter relaxation than these simple SDPs will yield
a better approximation ratio in the worst-case. Arguably, Lasserre SDPs is
the strongest known method that is possible to show that the Unique Games
conjecture is wrong, as even the possibility of the 4th level of Lasserre SDP re-
laxation improving upon the Goemans-Williamson 0.878 approximation factor
for Max Cut has not been ruled out. Recently, it has also been shown that O(1)
rounds of the Lasserre hierarchy are able to solve all candidate gap instances
of Unique Games [3]. (On the other hand, for some of the weaker hierarchies,
integrality gaps for super-constant rounds are known for various Unique-Games
hard problems [34].)

1.3 Quasi-bipartite Instances

In Chapter 4, we consider the class of quasi-bipartite DST instances. An instance
of DST is quasi-bipartite if the Steiner vertices V \X form an independent set
(i.e., no two Steiner vertices are adjacent).

1.3.1 Definition. (Quasi-bipartite graphs) We are given a directed graph G =
(V,E, c) with cost c : E → R+ on edges, a vertex root r ∈ V , and a set of
terminal vertices X ⊆ V . We call the vertices in V \X Steiner vertices. There
is no edges e = uv in E where u, v /∈ X, i.e, there is no edge between Steiner
vertices.

Throughout assume k = |X|, n = |V | and m = |E|. Such instances still cap-
ture the set cover problem, and thus do not admit an (1−ε) log k-approximation,
for any ε > 0 if P 6= NP [15]. Quasi-bipartite instances have been studied in
the context of undirected Steiner trees as well. The class of graphs was first
introduced by Rajagopalan and Vazirani [46] who studied the integrality gap of
(P0) for the bidirected map [46] of given Undirected Steiner Tree instances. They
also provide a (3/2+ε) primal-dual approximation algorithm for the Undirected
Steiner Tree problem on such instances, for every ε > 0. The same concept has

9

1. INTRODUCTION

Figure 1.3: An example of a Quasi-bipartite graph. Root is the white circle,
terminals are the black circles and Steiner vertices are the rectangles. There is
no edge between Steiner vertices.

been used by subsequent authors on the Undirected Steiner Tree problem, e.g.
Robins and Zelikovsky use loss-contracting approach [49] to solve the Steiner
Tree Problem in quasi-bipartite graphs, achieving an approximation ratio of
1.28 within time O(kn2).

Note that Gröpl et al. [20] show the upper bound of 73/60 for the more
restricted case of uniform quasi-bipartite graphs, where all edges incident to a
non-terminal node have the same cost. Then Byrka et al [8] show 73/60 + ε
approximation for the case of quasi-bipartite instances. Currently, the best
approximation for quasi-bipartite instances of Undirected Steiner Tree is 73

60
by Goemans et al. [19] who also bound the integrality gap of bidirected cut
relaxation [19] by the same quantity. This is a slight improvement over a prior
(73
60 + ε)-approximation for any constant ε > 0 by Byrka et al. [8]. The best

approximation for general instances of Undirected Steiner Tree is ln(4) + ε for
any constant ε > 0 [8]. However, the best integrality gap upper bound on the
bidirected cut relaxation for non-quasi-bipartite instances is only 2.

These results, motivate us to consider the Directed Steiner Tree problem on
this family of graphs. In Chapter 4, we present a logarithmic approximation
algorithm for the Directed Steiner Tree problem on these instances. Our algo-
rithm is based on the well-studied primal-dual method. As a result, we can also
give a logarithmic bound on the integrality gap of the natural LP-relaxation for
the Directed Steiner Tree problem. In contrast to undirected network design
problems, primal-dual algorithms have been used very rarely in the design of
approximation algorithms for directed network design problems. Our algorithm
is one of the few known application of this method in directed network design
problems.

1.4 Our Results

We have two main contribution in this thesis. In our first contribution, we
consider applying the Sherali-Adams hierarchy to the natural LP -relaxation
of the Directed Steiner Tree problem, and in the second one, we consider the

10

1.5. OVERVIEW OF THE THESIS

Directed Steiner Tree problem on quasi-bipartite graphs.
As we discussed earlier, Zosin and Khller [25] showed that the integrality

gap for this relaxation might be as bad as Ω(
√
n). However, we show that

the l-rounds of Sherali-Adams hierarchy reduces the integrality gap of l-layered
instances to O(l. log k). In particular, we will prove the following theorem:

1.4.1 Theorem. If the DST instance G is an `-layered graph, then the inte-
grality gap of `-th level Sherali-Adams tightening of LP (P0) is O(` · log k).

This is an improvement over Rothvoss’s result [50] which utilizes 2l levels
of the stronger Lasserre hieratichy. In addition, we show that for 3-layered
instances the integrality gap of LP (P0) is already O(log k). Note that since
solving l-level Sherali-Adams tightening of Directed Steiner Tree LP-relaxation
requires O(n`) time (the starting LP is polynomially solvable), our result does
not imply a polylogarithmic approximation in polynomial time. But we can
still get polylogarithmic approximation in quasi-polynomial time, or O(kε) in
polynomial time as Charikar et al [11] found previously. Therefore, it is still
an important open question whether there is a polylogarithmic approximation
algorithm in polynomial time for Directed Steiner Tree or not.

Furthermore, we consider the special case of quasi-bipartite instances of the
Directed Steiner Tree problem, and affirmatively answer the above question. In
particular, we design a logarithmic approximation algorithm for the Directed
Steiner Tree problem on quasi-bipartite instances. Our approach is based on the
primal-dual method. As a result, we prove a logarithmic integrality gap upper
bound for the natural LP relaxation of the Directed Steiner Tree problem on
these instances. Our main theorem is the following:

1.4.2 Theorem. The integrality gap of LP (P0) is at most 3 ·HK = O(log k)
in quasi-bipartite graphs with k terminals where Hk is the k’th Harmonic num-
ber. Furthermore, a Steiner tree witnessing this integrality gap bound can be
constructed in polynomial time.

This is the first logarithmic integrality gap bound for the quasi-bipartite
instances of the Directed Steiner Tree problem.

1.5 Overview of the Thesis

In Chapter 2, we will present basic definitions and theorems related to Sherali-
Adams hierarchy, such as local decomposition theorem that is at the heart of
our algorithm in Chapter 3. Next, we take a fresh look at the Group Steiner
Tree problem, and give an O(l. log k) approximation algorithm, for l-layered
instances.

In Chapter 3, we present our first contribution, the application of the Sherali-
Adams hierarchy to the natural LP -relaxation of the Directed Steiner Tree
problem. In Chapter 4, we present our second contribution, in which we design
an LP -based logarithmic approximation algorithm for quasi-bipartite instances

11

1. INTRODUCTION

of the Directed Steiner Tree problem. Finally, in Chapter 5, we state some open
problems.

12

Chapter 2

Background

2.1 Lift and Project

Suppose we have a combinatorial optimization problem, and we can formulate
it as an integer program (IP), say min{cTx|Ax ≥ 0x ∈ {0, 1}n}. The objective
function in the problem is cTx, which is linear. Also, the set PI = {Ax ≥ 0, x ∈
{0, 1}n} describes the rest of feasible integral solutions for the problem. Thus
we are seeking to optimize over PI .

If the problem is NP -hard, then we can not solve the integer program effi-
ciently, unless P = NP . Therefore, we usually relax the integer program to a
linear program (LP) and find the optimal solution of the LP. For example we
relax the variables xi ∈ {0, 1} for every i in the IP to a variable in [0, 1].

In fact, we can efficiently solve a linear program in polynomial time in the
number of variables and constraints. Also by using ellipsoid method[20] , we can
solve linear programs with superpolynomially many constraints in polynomial
time given that we have a polynomial time separation oracle. The separation
oracle decides whether a given point is feasible or not, and if it is not feasible,
it separates the infeasible point from the feasible region by a separating plane.

Hence, we can efficiently optimize over P = {Ax ≥ 0, x ∈ [0, 1]n}, the relaxed
polytope, instead of PI . However, P is a relaxation of PI , and there might be
a huge difference between their optimal solutions. Thus, the next step is to
somehow convert the fractional optimal solution in P to an integral solution
in PI , by rounding a fractional solution into an integral solution. One of the
common methods of rounding a fractional solution to an integral solution is the
randomized rounding method, in which for each variable xi, we decide whether
it should be 0 or 1, with some probability that we choose based on the fractional
optimal solution that we found.

There is no efficient way to find the integral hull of integral solutions PI .
But what we can obtain by solving LP is fractional solutions. A great number
of known approximation algorithms are based on the idea that cleverly convert
those fractional solutions into integral ones. We call this process rounding. Lets

13

2. BACKGROUND

denote by Round the value of integral solution we find from rounding. In order
to show that approximation factor, the ratio Round

OPTI
, is upper bounded, instead

we show Round
OPTf

is upper bounded; because we compare the rounded solution

with the optimal fractional solution. But this could automatically show that
OPTI

OPTf
is upper bounded and this is the notion of integrality gap.

Figure 2.1: α is the integrality gap and β is the approximation factor. OPT
and OPTf are optimal integral and fractional solutions respectively. Round is
the solution returned by the algorithm.

For many optimization problems the natural LP-relaxation has a big inte-
grality gap which prohibits us from achieving a good approximation factor via
that LP. One idea is to add some constraints to the LP and thereby reduce
the integrality gap. Finding strong valid inequalities (that preserve every fea-
sible integral solution) to tighten a given relaxation is a non-trivial task, and
sometimes lead to produce large LPs (e.g. when the problem is NP-hard).

Another more systematic way to approach the integral hull started by the
work of Gomory-Chvátal [15] in which after a linear number of applying a pro-
cedure to the LP we reach the integral hull. However, each of these steps may
be computationally difficult. For example optimizing over first level of Gomory-
Chvátal is NP-hard. The developed procedures based on lift and project meth-
ods are providing operators (converting a convex body to another one) that
gradually tighten the LP-relaxation and yield the integral hull in finitely many
steps. So that the efficiency of applying each step does not cost very much in
terms of size of that level (can be done in polynomial time). However, the total
time in all these iterations to obtain the integral hull can of course be exponen-
tial assuming P 6= NP . What these approaches give us is a hierarchy of convex
bodies The first one is the polytope from our LP and the last one is the integral
hull. In addition, each convex body is contained in the previous one.

In the lift and project procedures we lift the solution space to a higher
dimensional space (by adding some auxiliary variables) and by adding some
constraints we refine that region and again project it to the original space.
The idea is that we simulate nonlinear programming by linear programming.
For example consider the constraint x(1 − x) = 0. This nonlinear constraint
guarantees that x ∈ {0, 1}, so it is powerful enough to simulate any binary
integer programming. However, solving binary IPs is NP-hard and we cannot
hope to solve this problem in polynomial time. The idea behind Lift and Project

14

2.2. SHERALI-ADAMS HIERARCHY

methods is that we replace each nonlinear term with a new auxiliary variable.
For instance, we replace xi.xj with a new variable xij .

Consider the vertex cover problem defined as follows. We are given an
undirected graph G = (V,E), our goal is to select a subset of vertices S with
minimum size such that for every edges e = uv ∈ E, either u ∈ S or v ∈ S. We
can write a quadratic program for the above problem:

min
∑
v∈V

xv (2.1.1)

s.t. (1− xu)(1− xv) = 0 ∀ {u, v} ∈ E
xv ∈ [0, 1] ∀v ∈ V

The constraint (1−xu).(1−xv) = 0 implies that, ∀{u, v} ∈ E, either xu = 1
or xv = 1 or both (i.e., for each edge at least one of the endpoints will be
picked). In the lift and project methods we simulate nonlinear programs by
linear programs, in the above quadratic program we replace nonlinear terms
with a new auxiliary variable, so we replace xuxv, ∀uv ∈ E with a new variable
xuv. Thus, we write the constraint in the above quadratic program as 1− xu −
xv + xuv = 0. Therefore we obtain the following linear program:

min
∑
v∈V

xv (2.1.2)

s.t. 1− xu − xv + xuv = 0 ∀ {u, v} ∈ E
xv ∈ [0, 1] ∀v ∈ V

It is obvious that every integral solution x for the above nonlinear program
yields a valid solution for the linear program in the lifted space. Because you
can simply set xuv = xuxv. But not every solution to the lifted problem is
integral since there is no way to force xuv = xuxv.

2.2 Sherali-Adams Hierarchy

The Sherali-Adams hierarchy was first introduced in [23]. It has both SDP-
based and LP-based definition. In this thesis, we will focus on the LP-based
definition. In the following, we provide a recursive definition of this hierarchy.
The hierarchy consists of several levels, starting from the original polytope P, in
level r = 0, and ending in PI , the integral hull of P. Each intermediate level of
hierarchy gives us a convex body defined with a set of linear constraints, there-
fore each level of the Sherali-Adams hierarchy is a polytope. The constraints in
each level of the hierarchy are defined based on the constraints in the previous
level. Also we present a non-recursive definition and prove their equivalence.
Next, we show some properties of the hierarchy, in particular, the local decom-
position theorem, and present the notion of conditioning a solution on a subset
of variables.

15

2. BACKGROUND

Let P = {x ∈ Rn : Ax ≤ b} be a polytope with m linear constraints∑n
i=1Aj,i.xi ≥ bi, 1 ≤ j ≤ m. Suppose the “box constraints” 0 ≤ xi and xi ≤ 1

(equivalently −1 ≤ xi) appear among these constraints for each 1 ≤ i ≤ n.
For r ≥ 0, let Pr(n) = {S ⊆ {0, 1, · · · , n} : |S| ≤ r} denote the collection of
subsets of {1, · · · , n} of size at most r. We also let RPr(n) denote Rα, where
α = |Pr(n)| = nO(r). We index a vector in RPr(n) by sets in Pr(n). Let
y(r) denote a vector with one coordinate for each element in Pr+1(n). Also
we denote by y|Pr′ (n)

, the restriction of the vector y on indexes in Pr′(n), for

r′ < r. Thus y|Pr′ (n)
∈ RPr′ (n). Before we give a definition of Sherali-Adams

hierarchy, we define the notion of cone:

2.2.1 Definition. A cone K ⊆ Rn+1 is a set of points that is closed under
scaling: if x ∈ K then c.x ∈ K for all c ≥ 0.

2.2.2 Definition. SAr(P), the r-th level of Sherali-Adams hierarchy is a cone
in RPr+1(n), defined as follows:

• SA0(P) = {t(1, x1, · · · , xn) ∈ Rn+1|x ∈ P, t ≥ 0}, is the cone constructed
from P : for each constraint aTx−b ≥ 0 in P, we add constraint a′T ·y(0) ≥
0, to the SA0(P), where a′ ∈ RP1(n), a′{i} = ai and a′∅ = −b. i.e.,∑n
i=1 aixi ≥ b, a constraint of P, is replaced by

∑n
i=1 aixi ≥ bx0 as a

constraint for the cone SA0(P) (this is called homogenization P).

• For every constraint aT y(r−1) ≥ 0 of SAr−1(P), and for every i ∈ [n] we
have two constraints in SAr(P):

1. xi ∗ aT y(r−1) ≥ 0

2. (1− xi) ∗ aT y(r−1) ≥ 0

Where ∗ distributes over all terms of aT y(r−1) =
∑
S∈Pr(n)

aSyS and
xi ∗ yS = yS∪{i}.

For example, suppose aT y(r−1) = a∅y∅ + a{1}y{1} + a{2}y{2} + a{1,2}y{1,2},

then x1 ∗aT y(r−1) = x1 ∗a∅y∅+x1 ∗a{1}y{1}+x1 ∗a{2}y{2}+x1 ∗a{1,2}y{1,2} =
a∅y{1} + a{1}y{1} + a{2}y{1,2} + a{1,2}y{1,2}.

2.2.1 Remark. Note that if we restrict SA0(P) to points y with y∅ = 1, and
project it to Rn, we obtain P, i.e. SA0(P)|y∅=1 = {(1, x1, · · · , xn)|x ∈ P}. Since
a′T y ≥ 0 implies

∑
i∈[n] a

′
{i}y{i}+a

′
∅y∅ =

∑
i∈[n] a

′
{i}y{i}−b·1 ≥ 0, so aT y|[n] ≥ b,

where y|[n] is the restriction of vector y to Rn, i.e., if y = (x0, x1, · · · , xn), then
y|[n] = (x1, x2, · · · , xn).

It can be shown that the following non-recursive definition is equivalent to
the above definition:

16

2.2. SHERALI-ADAMS HIERARCHY

2.2.3 Definition. (non-recursive definition of Sherali-Adams hierarchy) For ev-
ery constraint aTx ≥ b of P, and for every U ∈ Pr(n), and W ⊆ U , consider
the constraint

C = (aTx− b)
∏
s∈W

xs
∏

s∈U\W

(1− xs) ≥ 0 (2.2.1)

and replace every term
∏
s∈I xs, where I ∈Pr+1(n), with variable yI (replace

constants c with cy∅), we call this new expression the linearization of C and
denote it by Φ(C). Add this constraint to the set of constraints of SAr(P).

2.2.2 Theorem. The recursive definition of Sherali-Adams hierarchy in 2.2.2
and the non-recursive definition in 2.2.3 are equivalent, i.e., every point in cone
defined in 2.2.2 is inside the cone defined in 2.2.3 and vice versa.

Proof. Proof is by induction on r, the level of the Sherali-Adams hierarchy.
The base case r = 0 is trivial. Since for r = 0, the above product is simply
aTx − b ≥ 0. Thus its linearization is

∑n
i=1 aix{i} − bx∅ ≥ 0, which is the

constraint (a′)T y(1) ≥ 0 defined in the first case of the recursive definition.
Now for the induction step, consider a constraint γ ≥ 0 of SAr(P). From
the recursive definition, γ ≥ 0 is the linearization of C = xi ∗ (aT y(r−1)) ≥ 0
(or C ′′ = (1 − xi) ∗ (aT y(r−1)) ≥ 0), where β = aT y(r−1) ≥ 0 is a constraint
of SAr−1(P). Thus by induction hypothesis, β = Φ(B), where B = (aTx −
b)
∏
s∈W xs

∏
s∈U\W (1 − xs) ≥ 0, U ∈ Pr−1(n). So, Φ(C) = Φ(xi ∗ β) =

Φ(xi∗B), where xi∗B = (aTx−b)
∏
s∈W∪{x} xs

∏
s∈U\W (1−xs) ≥ 0, considering

W ′ = W ∪{xi}, and U = U ∪{xi}, we have U ′ ⊆Pr(n). So the linearization of
C, Φ(C), is in the promised form. So every constraint of SAr(P) is in the form
of linearization of a product like 2.2.1. Similarly we can prove the converse, i.e.,
the linearalization of every expression like 2.2.1 is also a constraint of SAr(P).

2.2.4 Definition. Define the projection of SAr(P) to the singleton sets as the
r-th round Sherali-Adams relaxation of P . We denote it by Sr(P) = {x ∈
Rn|∃y ∈ SAr(P) s.t. y∅ = 1 and xi = y{i},∀i ∈ [n]}.

2.2.3 Remark. Note that in contrast to other Lift and Projects methods based on
semidefinite programming such as Lasserre hierarchy, the r-th round of Sherali-
Adams relaxation is indeed a polytope itself (in other methods like Lasserre, we
only know that each level of the hierarchy is a convex body).

In theorem 2.2.4 we show Sherali-Adams relaxation Sr(P) of the polytope
P preserves all integral solutions. In other words, the Sherali-Adams relaxation
tightens the polytope P such that we don’t loose any feasible integral solution
to P. Furthermore, each level of Sherali-Adams relaxation is contained in the
previous level; i.e., as we increase the level of Sherali-Adams relaxation, we
indeed have a stronger tightening of the initial polytope P, and finally after
at most n-th level, we will end up with the integral hull of P, which allows us
to solve an integer programming defined on P. However as it is expected, the
running time to solve the n-th level of Sherali-Adams relaxation is exponential
in the number of variables.

17

2. BACKGROUND

2.2.4 Theorem. if x̄ ∈ P ∩ {0, 1}n then x̄ ∈ Sr(P) for every r ≥ 0.

Proof. Let x̄ be an integral solution of P. For every S ∈ Pr+1(n) define
yS =

∏
i∈S x̄i. We want to show that y ∈ SAr(P) and hence x̄ ∈ Sr(P). We

prove this by induction on r. The case r = 0 is trivial since P = S0(P).Suppose
we know y ∈ SAr−1(P) now we want to show that y ∈ SAr(P). For variable
xi and constraint aT y(r−1) ≥ 0 in the set of constraints defining SAr−1(P), we
have two constraints in SAr(P). For the first constraint, xi ∗ (aT y(r−1)) ≥ 0,
If x̄i = 0 we have xi ∗ yS = yS∪{i} = x̄i.

∏
i∈S x̄i = 0. So xi ∗ (aT y(r−1)) =

0 ≥ 0. If x̄i = 1 then xi ∗ yS = yS∪{i} = x̄i.
∏
i∈S x̄i = yS . Therefore xi ∗

(aT y(r−1)) = aT y(r−1). Note that from induction hypothesis aT y(r−1) ≥ 0 since
y ∈ SAr−1(P). Therefore, (1−xi)∗(aT y(r−1)) ≥ 0. Hence, in both cases x̄i = 0
and x̄i = 1, y(r) satisfies the first constraint. The argument for the second
constraint is similar. Thus, y ∈ SAr(P).

The following lemma shows that every level of the hierarchy is contained in
its previous level.

2.2.5 Theorem. Sr(P) ⊆ Sr−1(P) for every r ≥ 1.

Proof. Based on the recursive definition 2.2.2, the set of constraints defining
SAr−1(P) is subset of the set of constraints defining SAr(P). Therefore every
point satisfies constraints of SAr(P) will satisfy constraints of SAr−1(P), thus
SAr(P) ⊆ SAr−1(P). Also since Sr(P) and Sr−1(P) are both the projection of
SAr(P) and SAr−1(P) respectively to y∅ = 1, we have Sr(P) ⊆ Sr−1(P).

In the following we describe the main property of the Sherali-Adams re-
laxation, which is called local decompsition, or local consistency. In stronger
hierarchies such as Lasserre hierarchy, we have a stronger version of this prop-
erty which is called decomposition theorem [31]. Let’s fix a subset S of variables.
The local decomposition theorem states that every point in the r-th level of hi-
erarchy, can be written as a convex combination of some points in the lower
level of hierarchy (r − |S|-level), that are integral on S.

To begin with, we first define conditioning a solution on a variable xi, and
then generalize it to a set of variables. The intuition behind conditioning comes
from an interesting probabilistic interpretation of the Sherali-Adams hierarchy.
We can consider the normalization of every y ∈ SAr(P) with y∅ > 0, i.e., y

y∅
(its

projection to y∅ = 1), as a probability distribution over every integral solutions
on the subset S, with |S| ≤ r, such that for every A ⊆ S, the yA represents the
probability of the event xi = 1 ∀i ∈ A, assuming y∅ = 1:

Pr[xi = 1 ∀i ∈ A] = yA

From inclusion-exclusion formula one can see the probability of the event xi =
1 ∀i ∈ A & xi = 0 ∀i ∈ S \A is

Pr[xi = 1 ∀i ∈ A & xi = 0 ∀i ∈ S \A] =
∑

B:A⊆B, B⊆S

(−1)|S\B|yB

18

2.2. SHERALI-ADAMS HIERARCHY

In other words, we can associate every subset I ⊆ [n] such that |I| ≤ r with
a distribution D(I) of integral assignments on I. In addition these probabil-
ity distributions D(I) are consistent, i.e., for every two subsets I and J , with
|I|, |J | ≤ r, for W ⊆ I ∩ J and U ⊆ W we have PrD(I)[xi = 1 ∀i ∈ U & xi =
0 ∀i ∈W \ U] = PrD(J)[xi = 1 ∀i ∈ U & xi = 0 ∀i ∈W \ U].

As an extreme case for n-th round of SA relaxation, we have distribution
D(I) associated with I = [n], thus we have probability distribution αT over
all integral assignments T ∈ {0, 1}n of all variables. Because those probabilities
sum up to 1, we can write

∑
T∈{0,1}n αT = 1. So this gives a convex combination

over integral solutions on all variables. Hence we can write every y ∈ SAn(P)
as a convex combination of integral solutions, i.e., y is in integral hull of P. You
can see [17] for the proof of the above properties for every solution in the r-th
round of SA relaxation.

With this interpretation, the notion of conditioning a solution y ∈ Sr(P) on a
set S is derived from conditional probability distributions. As mentioned above
consider the probability distribution D(I) over integral solutions, associated
with set I. Conditioning on a set S intuitively means we consider the conditional
distribution D(I) on the events (xi = 1 ∀i ∈ S) or (∃i ∈ S s.t. xi = 0). Thus if we
denote them by u = y′S and v = y′−S respectively, the probability associated for
a set I with |I| ≤ r would be uI = yI∪S

yS
from conditional probability. However,

we independently define the notion of conditioned solutions and our proofs will
be based on the following definitions.

2.2.5 Definition. Let y ∈ SAr(P) with y∅ > 0, we denote by y′i and y′−i,
conditioning on a variable xi, which is defined as (y′i)S := yS∪{i}, and (y′−i)S :=

yS − (y′i)S ,∀S ∈Pr(n). Hence y′i and y′−i are in RPr(n).

Clearly from the above definition y|Pr(n) = y′i + y′−i. Also, in the next
lemma, we prove that y′i, y

′
−i ∈ SAr−1(P). In addition, if u = y′−i and v = y′i,

call µ = u
u∅
∈ Sr−1(P) and ν = v

v∅
∈ Sr−1(P), the normalization of u and

v. We can see ν{i} =
v{i}
v∅

=
y{i}
y{i}

= 1, and µ{i} =
u{i}
u∅

=
y{i}−y{i}

u∅
= 0.

i.e., normalization of conditioned solutions are integral (zero-one) at the i-th
coordinate. So y = α.µ + β.ν, where α = u∅ and β = v∅. Therefore we have
written y as a convex combination of two points (µ and ν) in one lower level of
the Sherali-Adams relaxation of P, Sr−1. By conditioning a point y ∈ SAr(P)
on a variable xi, we obtain points in one lower layer of hierarchy such that their
normalizations are zero-one at the i-th coordinate, and we can write y as sum
of them.

2.2.6 Lemma. w ∈ SAr(P) iff w′−i, w
′
i ∈ SAr−1(P) for every i ∈ [n].

Proof. First suppose w ∈ SAr(P) and i ∈ [n]. From definition we have
w|Pr(n) = w′−i +w′i. Also, w ∈ SAr(P), so for every constraint aT y(r−1) ≥ 0 in

SAr−1(P), we have constraints xi ∗ aT y(r−1) ≥ 0 and (1 − xi) ∗ aT y(r−1) ≥ 0.
Hence,

19

2. BACKGROUND

Figure 2.2: Conditioning on a variable xi, a point y can be written as a convex
combination of two conditioned solutions which are in lower level of hierarchy

xi ∗ aTw =
∑

S∈Pr(n)

aTS (xi ∗ wS) =
∑

S∈Pr(n)

aTS (wS∪{i}) (2.2.2)

=
∑

S∈Pr(n)

aTS (w′i)S = aTw′i ≥ 0 (2.2.3)

So aTw′i ≥ 0 for every i ∈ [n] iff the constraint xi ∗ aTw ≥ 0 holds. Thus
w′i ∈ SAr−1(P) iff w ∈ SAr(P).
Similarly, from the second constraint we will have (1− xi) ∗ aTw = aTw − xi ∗
aTw = aTw − aTw′i ≥ 0 so aT (w − w′i) ≥ 0 or aTw′−i ≥ 0 iff the constraint
(1− xi) ∗ aw holds for every i ∈ [n]. So w ∈ SAr(P) iff w′−i, w

′
i ∈ SAr−1(P) for

every i ∈ [n].

One way of generalizing the notion of conditioning on a set I of variables is
that the normalization of conditioned solution is a solution in a lower level of
the hierarchy, with 1 on all variables in I.

2.2.6 Definition. Suppose y ∈ SAr(P), and I ⊆ [n] with |I| ≤ r then condi-
tioned solution y′I is defined as (y′I)S := yS∪I for each S ∈Pr−|I|+1(n).

We can prove the following theorem:

2.2.7 Theorem. Suppose y ∈ SAr(P), then y′I ∈ SAr−|I|(P). Also if u =
y′I
yI

is the normalization of y′I , then uI = 1.

Proof. We can prove the claim by induction on the size of I. If |I| = 1, and
I = {i} then y′I = y′i and y′i ∈ SAr−1(P) by lemma 2.2.6. If |I| ≥ 1, then
(y′I)S = yS∪{I} from definition. If i ∈ I and I ′ = I \ {i} and u = y′i then
(u′I′)S = uI′∪S = yI′∪S∪{i} = yI∪S , therefore y′I = u′I′ but u′ ∈ SAr−1(P) and
from induction hypothesis u′I′ ∈ SAr−1−|I′|(P) = SAr−|I|(P)

20

2.2. SHERALI-ADAMS HIERARCHY

2.2.8 Lemma. Suppose that y ∈ SAr(P). Then for any A ⊆ B ⊆ [n] with
|B| ≤ r + 1, we have yB ≤ yA.

Proof. It can be proved by induction on |B \ A| with the base case being
|B| = |A| + 1. If B = A ∪ {i}, where i /∈ A then using constraint xi ≤ 1 and
from the non-recursive definition of SA, if we multiply both sides by Πj∈Axj and
then linearize it, we have yA∪{i} ≤ yA. Suppose we have proved for |B \A| < k.
Now for the case |B \A| = k, if B = B′∪{i}, where i /∈ B, we can say yB′ ≤ yA
from induction hypothesis. Also yB ≤ y′B . Therefore, we have yB ≤ yA

We can also define conditioning on a subset of variables S = I ∪ J with
I ∩ J = ∅, such that the normalization of conditioned solution is all 1 on I,
and all 0 on J . We can generalize the notion of conditioning on a set S =
{i1, i2, · · · , ik} ⊆ [n] with |S| ≤ r in a way that we recursively condition on each
element ij of S. It can be shown that the resulting expression is independent
of order of elements (after we proved equivalence of non-recursive and recursive
definitions). Then a non-recursive equivalent definition is presented in definition
2.2.12.

2.2.7 Definition. Conditioning a solution y ∈ SAr(P) on a set S, where |S| ≤ r
with an integer vector T ∈ {0, 1}S , denoted by yS(T) ∈ RPr−|S|+1(n) is defined
recursively as follows:

Let i ∈ S is an arbitrary element in S, set S′ = S \{i}, and say w = yS′(T
′),

where T ′ is the restriction of T on S′.

yS(T) :=

{
w′i, if Ti = 1

w′−i, if Ti = 0

and the base case is defined as y∅(∅) := y. Also define the normalization of

yS(T) with (yS(T))∅ > 0, as YS(T) = yS(T)
(yS(T))∅

.

2.2.9 Lemma. yS(T) ∈ SAr−|S|(P). Also YS(T) is integral on S, i.e., (YS(T)){i} ∈
{0, 1} for i ∈ S.

Proof. It can be proved by induction on the size of S. The base case |S| = 1
is proved in lemma 2.2.7. Let i ∈ S and S′ = S \ {i} and say w = yS′(T

′).
From the above recursive definition of yS(T), we have yS(T) is either w′i or
w′−i. From induction hypothesis w ∈ SAr−|S′|(P), thus from lemma 2.2.7,
w′i, w

′
−i ∈ SAr−|S′|−1(P) = SAr−|S|(P).

For the second part, note that w′i = 1 and w′−i = 0. In addition, if u = w′−i and
v = w′i, then µ = u

u∅
∈ Sr−1(P) and ν = v

v∅
∈ Sr−1(P), are the normalization

of u and v. So YS(T) is either ν or µ. Also as we saw ν{i} = 1, and µ{i} = 0.
Thus (YS(T)){i} is either µ{i} = 0 or ν{i} = 1.

2.2.10 Theorem. Let y ∈ SAr(P) and S = {i1, · · · , ik} ⊆ [n] with |S| ≤ r.
Then y|Pr−k+1(n) =

∑
T∈{0,1}S yS(T).

21

2. BACKGROUND

Proof. We prove by induction on |S|. Let S′ = {i1, · · · , ik−1}. Let u = yik
and v = y−ik From definition 2.2.5, we know y = u + v, and from induction
hypothesis we know

u =
∑

T∈{0,1}S′
uS′(T) =

∑
T∈{0,1}S ,Tik

=1

yS(T) (2.2.4)

and

v =
∑

T∈{0,1}S′
vS′(T) =

∑
T∈{0,1}S ,Tik

=0

yS(T) (2.2.5)

So y|Pr−k+1(n) = u+ v =
∑
T∈{0,1}S yS(T)

From the above lemma we can conclude that for a set S with |S| ≤ r + 1,
we can write every point in level r of the Sherali-Adams relaxation as a convex
combination of some points in r − |S| level, such that their normalizations are
integral on the set S, as follows:

2.2.11 Theorem. (local decomposition) Let x ∈ Sr(P) and S = {i1, · · · , ik} ⊆
[n] with |S| ≤ r then we can write x as a convex combination of some points in
Sr−|S|. In particular, x|Pr−k+1(n) =

∑
T∈{0,1}S αTYS(T), where

∑
T∈{0,1}S αT =

1 and αT ≥ 0 for every T ∈ {0, 1}S .

Proof. Let y ∈ SAr(P) and its projection is x. From theorem 2.2.10

y|Pr−k+1(n) =
∑

T∈{0,1}S
yS(T) =

∑
T∈{0,1}S

(yS(T))∅
yS(T)

(yS(T))∅
(2.2.6)

Note that yS(T) ∈ SAr−|S|(P), so yS(T)
(yS(T))∅

∈ Sr−|S|(P). Define αT = (yS(T))∅
then

1 = y∅ =
∑

T∈{0,1}S
(yS(T))∅ =

∑
T∈{0,1}S

αT . (2.2.7)

We can give an equivalent non-recursive definition for definition 2.2.7, and
this also shows that the above recursive definition is independent of the order
of elements we pick in the set S.

2.2.12 Theorem. (non-recursive definition of conditioning on a set) Let S ⊆
[n], with |S| ≤ r and S = I ∪ J , I ∩ J = ∅. Also,

T (i) :=

{
1, if i ∈ I
0, if i ∈ J

Then, (yS(T))K =
∑
H⊆J(−1)|H|yI∪H∪K , for every K ∈Pr−|S|+1(n).

22

2.2. SHERALI-ADAMS HIERARCHY

Proof. We prove the theorem by induction on the size of S. Let e ∈ S and
S′ = S \ {e}. If T (e) = 1 then e ∈ I. Let w = yS′(T), then by induction
hypothesis

wK =
∑
H⊆J

(−1)|H|yI′∪H∪K ,

for every K ∈Pr−|S′|+1(n), where I ′ = I \ {e}. Therefore,

(w′e)K =
∑
H⊆J

(−1)|H|yI∪H∪K

For every K ∈ Pr−|S′|(n). Also since yS(T) = w′e, the induction step in the
case T (e) = 1 is true. Now if T (e) = 0 it means e ∈ J . Let w = yS′(T), then
by induction hypothesis

wK =
∑
H⊆J′

(−1)|H|yI∪H∪K

For every K ∈Pr−|S′|+1(n). Then

(w′e)K =
∑
H⊆J′

(−1)|H|yI∪{e}∪H∪K .

For everyK ∈Pr−|S′|(n). LetH ′ = H∪{e}, then (w′e)K =
∑
I∪{e}⊆J(−1)|H

′|−1yI∪H′∪K .

Also from definition 2.2.7, yS(T) = w − w′e, thus

(yS(T))K = wK − (w′e)K =
∑
H⊆J′

(−1)|H|yI∪H∪K +
∑

I∪{e}⊆J

(−1)|H
′|yI∪H′∪K ,

For every K ∈Pr−|S′|([n]) = Pr−|S|+1([n]), where the first sum is over all sub-
sets of J not containing e and the second sum is over all subsets of J containing
e, therefore (yS(T))K =

∑
H⊆J(−1)|H|yI∪H∪K , for every K ∈ Pr−|S|+1([n]).

This completes the induction step.

Finally we show that the nth level of the hierarchy is exactly the convex hull
of integral solutions.

2.2.13 Theorem. Sn(P) = PI .

Proof. Suppose y ∈ SAn(P) and x ∈ Sn(P) is its projection and S =
{1, · · · , n} As a result of previous theorem x|Pr−|S|+1(n) =

∑
T∈{0,1}S αT yS(T),

where
∑
T∈{0,1}S αTYS(T) = 1. But note that YS(T) is integral on S, i.e

(YS(T)){i} ∈ {0, 1}. So x is a convex combination of some integral solutions
in Sn(P). So it is in the integral hull.

Finally, assuming that optimizing over P can be done in polynomial time, the
following theorem shows the running time required for solving an optimization
problem over Sr(P).

23

2. BACKGROUND

2.2.14 Theorem. If there is a polynomial time separation oracle for P, then
there is a separation oracle for Sr(P) with running time of nO(r), i.e., there is
an nO(r) algorithm for optimizing a linear function over Sr(P)

Proof. Using lemma 2.2.5 a separation oracle for Sr(P) can be obtained by
a separation oracle for Sr−1(P) and calling it for each i ∈ [n] for each of the
conditioned solution on y′i and y′−i. Therefore we are calling the separation

oracle nO(r) times.

2.3 Example: Applying Sherali-Adams to the
Gap Example of Cut Based LP-relaxation

In this section we want to show an example utilizing the decomposition theorem
to show that first layer of Sherali-Adams hierarchy eliminates the well-known
bad example for the natural cut based LP-relaxation of Undirected Steiner Tree
problem with integrality gap of 2 − ε, for every ε > 0. That example is the
graph G an instance of the Undirected Steiner Tree problem that consists of a
single ring on n terminal verices X = {1, · · · , n}, and all edges have unit cost.
The following is the cut based LP-relaxation of Undirected Steiner Tree, where
X is the set of terminals and V the set of vertices and the set of edges, and r is
the root.

min
∑
e∈E

cexe

s.t. x(δ(S)) ≥ 1 ∀ S ⊆ V − r, S ∩X 6= ∅
xe ∈ [0, 1] ∀e ∈ E

Suppose the set of edges of G are E = {e1, · · · , en} and we denote by xi and ci
the variable corresponding to ei in the LP and the cost of edge ei respectively.
The following is the LP for the special graph G.

min

n∑
i=1

ceixei (Q)

s.t. xi + xj ≥ 1 ∀ i 6= j ∈ [n]

xi ∈ [0, 1] ∀i ∈ [n]

The optimal solution for the Steiner tree problem is a minimum spanning
tree, with n−1 edges. On the other hand, the standard LP has a solution where
xi = 1/2 for each edge of G. Therefore, the ratio of the optimal fractional solu-
tion to optimal integral solution in this example is 2(n−1)/n which approaches
to 2 when n goes to infinity. In addition, since there is a 2 approximation algo-
rithm based on this cut based LP-relaxation, the ratio can not be worse than
2.

24

2.3. EXAMPLE: APPLYING SHERALI-ADAMS TO THE GAP EXAMPLE OF CUT

BASED LP-RELAXATION

Figure 2.3: A ring of n vertices and a fractional solution that assigns 1/2 to
each edge. All vertices are terminals.

First we apply one round of Sherali-Adams and see what is the worst inte-
grality gap ratio on the special graph G. We will denote by OPT the optimal
integral solution of the Undirected Steiner Tree LP-relaxation for the ring graph
instance G. Let Q be the polytope for the above LP corresponding to the ring
graph G, and suppose

OPTSA = min

{
n∑
i=1

ci · y{i} : y ∈ SA1(Q)

}
(SA1)

2.3.1 Lemma. The integrality gap of the first level of Sherali-Adams tightening
of Q is at most 3/2. i.e., OPT/OPTSA ≤ 3/2.

Proof. Suppose vector y ∈ SA1(Q) is an optimal fractional solution for SA1,
and x ∈ S1(Q) is the projection of y over singleton variables. Then since the
structure of G is symmetric, we may assume that xi = xj = α,∀i, j (by taking
average over all rotations of vertices of G). Now apply the local decomposition
theorem by conditioning on an arbitrary edge i, we can write

y = αw + (1− α)z, (2.3.1)

where w = y′i and z = y′−i are the conditioning solutions which are integral
on the i-th edge. Both w, z ∈ SA0(Q) and therefore feasible solution for
Q. But z{i} = 0, so if we consider constraints z{i} + z{j} ≥ 1, this implies
that z{j} = 1,∀j 6= i. By looking at the j-th coordinate of 2.3.1 we have
y{j} = αw{j} + (1 − α)z{j}. Also we have xi = xj ,∀j, i (symmetric), thus
y{j} = α,∀j 6= i. By equation 2.3.1, α = y{j} = αw{j} + (1 − α).1. So,
w{j} = α

2α−1 . On the other hand since y{j} = α and z{j} = 1 for all j 6= i, then
w{j} = β,∀j 6= i, for some β > 0.
Hence, from the constraint in Q we have w{j} + w{k} ≥ 1. So β ≥ 1/2.
Consequently, α

2α−1 ≥ 1/2 which yields α ≥ 2/3. As a result, OPTSA =∑n
i=1 ci · y{i} = α.n and the integrality ratio OPT/OPTSA is at most n−1

2/3n ,

which approaches 3/2 when n goes to infinity.

25

2. BACKGROUND

Now we generalize this lemma for the k-th round of Sherali-Adams. Suppose

OPTk = min

{
n∑
i=1

ci · y{i} : y ∈ SAk(Q)

}
(SAK)

2.3.2 Theorem. Suppose n > k + 2, then the integrality gap of the k-th level
of Sherali-Adams tightening of Q is at most k+2

k+1 . i.e., OPT/OPTk ≤ k+2
k+1 .

Proof. We use induction on k. The base case k = 1 is proved in the previous
lemma. Now suppose y ∈ SAk(Q) is an optimal fractional solution. Again since
the structure of G is symmetric we may assume y{i} = α,∀i. Similar to previous
lemma apply the local decomposition theorem. For an arbitrary edge i, we can
write

y = αw + (1− α)z, (2.3.2)

where w = y′i and z = y′−i are the conditioning solutions which are integral
on the i-th edge. Both w, z ∈ SAk−1(Q) and therefore feasible solution for
Q. But z{i} = 0, so if we consider constraints z{i} + z{j} ≥ 1, this implies
that z{j} = 1,∀j 6= i. By equation 2.3.2, α = y{j} = αw{j} + (1 − α).1. So,
w{j} = α

2α−1 . On the other hand, since y{j} = α and w{j} = 1 for all j 6= i.
Then β = w{j},∀j 6= i.
So we know w{i} = 1 and w{j} = β,∀j 6= i. Before we complete the proof, we
prove the following.

2.3.3 Remark. The variable γ ∈ SAk−1(Q) defined as γc = zc,∀c, |c| ≤ k, such
that j /∈ c and γc = β such that j ∈ c, where β = γc′ for |c′| = |c| and j /∈ c′ is
also a feasible solution in SAk−1(Q).

Proof. First of all note that γ is a symmetric variable, i.e., γS = γS′ for
|S| = |S′|. Consider a constraint of SAk−1(Q) corresponds to

C = Φ(Πi∈IxiΠj∈Jxj(xl + xm − 1)) ≥ 0, (2.3.3)

where |I| + |J | ≤ k. If C does not contain variable yS such that j ∈ S, then
if z satisfies the constraint, γ also will satisfy it (they are the same except at
coordinates S that j ∈ S). But if C contains yS with j ∈ S, consider a variable
i that there is no yS in C that i ∈ S. There exists such a variable because
|I| + |J | ≤ k < n and for the variables yS in a constraint in the form of 2.3.3
S ⊆ I ∪J ∪{l,m}. Also |I ∪J ∪{l,m}| ≤ k+ 2 < n, thus there exists a variable
i that is not involved in any variable in C. Now consider a permutation π of
variables that maps all variables yS where i ∈ S to yS′ where S′ = S \ {i} ∪ {j}
because of the symmetry in the constraint of Q if we replace yS with yS′ in C
it would be also another constraint C ′ of SAk−1(Q). But C ′ does not contain
a variable yS with j ∈ S so if z satisfies C ′, the γ also would satisfy it. But γ
is symmetric, so γ satisfies C before applying π on variables as well. Hence γ
satisfies all constraints of SAk−1(Q).

Now that we know γ ∈ SAk−1(Q) we can use induction hypothesis and we
have γ{i} = β ≥ k/k + 1. Similar to previous lemma:

26

2.4. STRENGTHENED INTEGRALITY GAP BOUND FOR GROUP STEINER TREE

2α− 1

α
≥ k

k + 1
so,

=⇒ (2k + 2)α− (k + 1) ≥ kα

=⇒ kα+ 2α− k − 1 ≥ 0

=⇒ α(k + 2) ≥ k + 1

=⇒ α ≥ k + 1

k + 2

Hence
∑n
i=1 ci.y{i} = α.n and the integrality ratio is n−1

(k+1)/(k+2)n , approaches
k+2
k+1 .

2.4 Strengthened Integrality Gap Bound for Group
Steiner Tree

Garg, Konjevod and Ravi [16] design a O(log n. log k) approximation algorithm
for Tree instances of Group Steiner Tree problem, where n is the number of
vertices and k is the number of groups. Since their algorithm is based on the
natural LP for Group Steiner Tree problem, they also bound the integrality gap
of this problem on tree instances with the same amount. In this section, we
provide a more granular bound and show that the gap is O(h. log k), where h is
the height of tree.

2.4.1 Theorem. The Group Steiner Tree problem admits an O(h. log k) ap-
proximation algorithm based on its natural LP -relaxation on tree instances of
height h. In particular, the integrality gap of the LP -relaxation of Group Steiner
Tree problem on these instances is O(h.logk).

To prove the above theorem, we follow the Garg, Konjevod and Ravi [16]
randomized algorithm with the following two properties:

2.4.2 Lemma. There exists a randomized algorithm that takes a tree instance
I of the Group Steiner Tree problem and outputs a set of edges Ê such that:

1. E[cost of edges in Ê] ≤ OPT (I)

2. For any group g, Pr[Ê connects the root to g] ≥ 1
h

First assume we have such a randomized algorithm. We run the algorithm
L = O(h. log k) times, and construct the tree as described in their proof of Group
Steiner Tree. Similarly we would have Pr[group g does not get connected in L
round] ≤ (1− 1/h)L ≤ 1/k. Then, we take union of all of these edges. If some

27

2. BACKGROUND

group is still not connected to the root, we find the cheapest way to connect
this group to the root by a path. The expected cost of final solution would be
still (L+ 1).OPT (I), as shown in their proof.

First consider the natural LP for the Group Steiner Tree problem.

min
∑
e

cexe (2.4.1)

s.t.
∑

e∈δin(S)

xe ≥ 1 ∀S ⊆ V , s.t S separates r from group gi for some i

They round a fractional feasible solution to the above LP formulation as follows:

1. “Mark” each edge with probability xe/xp(e). If there is no parent edge,
then mark the edge with probability xe.

2. Pick an edge e if all its ancestor edges are marked, and e itself is marked.

Then they show the following lemma that every edge will be picked with
probability xe.

2.4.3 Lemma. Pr[edge e is picked] = xe

This lemma implies that E[c(Ê)] ≤
∑
e∈E cexe by linearity of expectation.

Therefore we have the first property. Also as stated in the Garg, Konjevod and
Ravi proof, we can show the following lemma.

For terminal vertex v in group g, suppose e is the incident edge to v in the
tree. For convenience, we denote xe by xv.

2.4.4 Lemma. 1/4 ≤
∑
v∈g xv ≤ 1, for every group g.

The above lemma gives us a lower bound on the expected number of root-
paths which end in vertices of a group. Lets define the random variable Z to be
the number of paths from the root to any vertex v in a group g. Therefore, we
have 1/4 ≤ E[Z] ≤ 1.

They claim if we have a new solution x′, with x′e ≤ xe,∀e ∈ E. Then
Pr[failure to connect g using x′] ≥ Pr[failure to connect g using x]. They con-
struct a minimal feasible x′ in several steps by rounding all values of xe to the
nearest power of 2, and also removing edges with “small”” values. The mini-
mality of x′ implies that the flow going down to the leaves is exactly 1. The
key insight of GKR is to prove an upper bound on Z in order to lower bound
Pr[Z ≥ 1].

2.4.5 Lemma. E[Z|Z ≥ 1] ≤ O(h)

Proof. Let εi be the event that Pi ⊆ S′, i.e., the entire set Pi is chosen
by the random process. For some vertex u ∈ g, let us first show that ∆u =∑
w Pr[εu ∩ εw] ≤ O(h).x′u. Summing this over all u ∈ g gives us O(h), since

28

2.4. STRENGTHENED INTEGRALITY GAP BOUND FOR GROUP STEINER TREE

the x′u’s sums up to at most 1 by minimality of x′, and hence complete the
proof.

For any w ∈ g, let e be the lowest edge shared by the path from u to the
root, and the path from w to the root. Let the child edge of e on the path to w
be denoted by ce.

Pr[εw|εu] =
x′w
x′p(w)

.
x′p(w)

x′p(p(w))

· · · .
x′ce
x′e

=
x′w
x′e
. (2.4.2)

Hence Pr[εu∩εw] = (x′u.x
′
w/x

′
e). Now we sum over all w such that the paths

from u to root and w to root have the edge e as their least common ancestor
edge as above. Now use the fact that

∑
suchw x

′
w ≤ O(x′e), since all the flow

going to such ws must have been supported on the edge e before rounding down.
Hence, the sum of Pr[εu ∩ εw] over all the relevant w for some edge e is O(x′u).
Now there are at most h edges on the path from u to the root. So we get
∆u = O(h.x′u).

GKR make use of a sophisticated probabilistic result, the Janson inequality.
However, the desired bound can be achieved much easier:

2.4.6 Lemma. Pr[Z ≥ 1] ≥ Ω(1
h)

Proof. By the law of total probability

1/4 ≤ E[Z] = Pr[Z = 0].E[Z|Z = 0] + Pr[Z ≥ 1].E[Z|Z ≥ 1] ≤ 0 + Ω(h).
(2.4.3)

thus Pr[Z ≥ 1] ≥ Ω(1
h).

So the second property is also can be satisfied. Now as we mentioned in
the beginning we repeat the algorithm O(h. log k) times, and connect every not
connected group via shortest path. The probability that a group would not be
connected is (1− 1/h)k ≤ 1/k. So the expected cost of the final solution would
be L.OPTf +

∑
g 1/k.OPT ≤ (L+ 1).OPT = O(h. log k).OPT .

2.4.7 Theorem. The integrality gap of LP 2.4.1 (the input graph is tree) is
O(h. log k), where h is the height of tree and k is the number of groups.

Proof. As we stated at the beginning, We run the algorithm L = O(h. log k)
times, and select the edges as described in the lemma 2.4.2. Let Ei is the set of
edges we obtain after i-th iteration. Hence, Pr[group g does not get connected
in L round] ≤ (1 − 1/h)L ≤ 1/k. Then, we take union of all of these edges.
If some group is still not connected to the root, we find the cheapest way to
connect this group to the root by a path. The cost of the cheapest path from
some vertex in g to the root is at most OPT . Since OPT connects some vertex
v in g to the root r, the path in the optimal solution that connects v and r is at
least the cheapest path that was taken as part of the solution. So the expected

29

2. BACKGROUND

cost of the final solution is∑
i

E[cost of Êi] +
∑

group g
Pr[g is not connected].OPT

= L.OPT +
∑

group g
Pr[g is not connected].OPT

≤ (L+ 1).OPT = O(h. log k).OPT

2.5 Layered Instances

Zelikovsky [54] introduces l-layered instances of the Directed Steiner Tree as
follows:

2.5.1 Definition. Say that an instance G = (V,E) of DST with terminals X is
`-layered if V can be partitioned as V0, V1, . . . , V` where V0 = {r}, V` = X and
every edge uv ∈ E has u ∈ Vi and v ∈ Vi+1 for some 0 ≤ i < `.

He provided the following useful insight:

2.5.1 Theorem. For every l ≥ 1, there is a tree T (potentially using edges in
the metric closure) of cost c(T) =

∑
e∈T ce ≤ l.|X|1/l.OPT , such that every

r − s path(with s ∈ X) in T contains at most l edges.

In other words, for any DST instance G and any integer ` ≥ 1, Zelikovsky
show that there is an `-layered DST instance H such that OPTG ≤ OPTH ≤
` · k1/` · OPTG and that a DST solution in H naturally corresponds to a DST
solution in G with the same cost [10]. Charikar et al. [11] exploit this fact
and present an O(`2k1/` log k)-approximation1 with running time poly(n, k`)
for any integer ` ≥ 1. In particular, this can be used to obtain an O(log3 k)-
approximation in quasi-polynomial time and for any constant ε > 0 a polynomial-
time O(kε)-approximation.

Algorithm 1 in the next chapter is designed for these layered instances.
We use a reduction from Directed Steiner Tree problem to Group Steiner Tree
problem. In this reduction we convert an instance of Directed Steiner Tree to
an instance of Group Steiner Tree problem.

2.5.1 Reduction from Directed Steiner Tree to Group Steiner
Tree

SupposeG is an `-layered instance of Directed Steiner Tree with root r, terminals
X, and layers {r} = V0, V1, . . . , V` = X. We will assume every v ∈ V can be
reached by r. In particular, for every v ∈ V1 we have rv ∈ E.

1The algorithm in [11] is presented as an O(`k1/` log k)-approximation and relied on an
incorrect claim in [?]. A correction to this claim was made in [10] which gives in the stated
DST approximation bound.

30

2.6. LOWER BOUND FOR THE INTEGRALITY GAP OF 4-LAYER DST

Say a path in G is rooted if it begins at r. The notation 〈vj , vj+1, vj+2, . . . , vi〉
refers to a path in G that follows edges vjvj+1, vj+1vj+2, . . . , vi−1vi ∈ E in
succession. The subscript of a vertex in this notation will always indicate which
layer the node lies in. For any node v ∈ V (G) we let

Q(v) = {〈r, v1, v2, . . . , vi〉 : vi = v}

and for any e ∈ E(G) we let

Q(e) = {〈r, v1, v2, . . . , vi〉 : vi−1vi = e}

denote all rooted paths ending at node v or ending with edge e, respectively.
More generally, for a vertex v and another vertex u or an edge e, we let Q(v, u)
and Q(v, e) denote all paths starting at v and ending at u or ending with edge
e, respectively. It will also sometimes be convenient to think of a path as a set
of edges {vjvj+1, . . . , vi−1vi}.

2.5.2 Definition. Suppose G = (V,E) is an `-layered instance of DST with
root r and k terminals X. Then we consider the Group Steiner Tree instance
on a tree T (G) with terminals Xt, t ∈ X defined as follows.

• The vertex set of T (G) consists of all rooted paths ∪v∈GQ(v) in G.

• For any rooted path P 6= 〈r〉, we connect P to its maximal proper subpath
and give this edge cost ce, where P ∈ Q(e). Denote this edge by m(P).

• For each terminal t ∈ X, we let Xt = Q(t): the set of all r− t paths in G.

This construction is illustrated in Figure 2.4.
The following holds simply by construction of T (G).

2.5.2 Lemma. Let |V | = n. The graph T (G) constructed from an `-layered
Directed Steiner Tree instance G is a tree with height ` when rooted at 〈r〉. For
every GST solution in T (T) there is a DST solution in G of no greater cost,
and vice-versa.

2.6 Lower Bound for the Integrality Gap of 4-
Layer DST

In the following we describe the example by Zosin and Khuller, which has the
integrality gap of Ω(

√
k) Zossin and Khuller define a graph for which the inte-

grality gap of LP P0 is as big as θ(
√
k), where k is the number of terminals.

The graph G consists of 5 levels of nodes and 4 levels of edges. The 5 levels
of nodes are:

• Level 1. Root r;

• Level 2. a node aS for each set S of
√
k elements from k elements,

(
k√
k

)
nodes;

31

2. BACKGROUND

r

a b

c d e

x y z

r

a b

c d e d e

x y y z z y z z

Figure 2.4: A 3-layered DST instance with terminals X = {x, y, z} (left) and
the corresponding GST instance T (G) (right). Each node in T (G) corresponds
to a path P in G and is labelled in the figure with the endpoint of P in G. A
terminal group in T (G) in the figure consists of all leaf nodes with a common
label. A DST solution and its corresponding GST solution are drawn with bold
edges.

• Level 3. a node bS′ for each set S′ of
√
k + 1 elements from k elements,(

k√
k+1

)
nodes;

• Level 4. node cS′ for each set S′ of
√
k + 1 elements from k elements,(

k√
k+1

)
nodes;

• Level 5. k terminals.

The four levels of edges are defined as follows:

• Level 1. root r is connected to every node aS on level 2, and the weight
of this edge is k;

• Level 2. aS in level 2 connected to bS′ in level S, off S ⊆ S′.

• Level 3. every node bS′ on level 3 connected to a node cS′ on level 4, that
corresponds to the same set S′ of

√
k + 1 elements. The weight of this

edge is
√
k;

• Level 4. a node cS′ on level 4 is connected to terminal on level 5 if the
terminal belongs to the set S′ of the node, the weight of this edge is 0.

2.6.1 Lemma. There exists a fractional feasible solution x for LP P0 with total
cost of

∑
e∈E cexe = O(k).

Proof. The argument is based on constructing a flow fi correspond to each
terminal i as follows. For each node aS in level 2, push k

(k−
√
k).(k√

k)
units of flow

32

2.6. LOWER BOUND FOR THE INTEGRALITY GAP OF 4-LAYER DST

Figure 2.5: Zosin Khuller example for k = 4

fi from root r to aS of k−
√
k commodities correspond to terminals i /∈ S, and

assign the value xe of the edge e between r and aS to be k

(k−
√
k).(k√

k)
.

The total flow from r will be k and total fractional weight of edges on level 1
will be k

1−1/
√
k

. From node aS we push k

(k−
√
k).(k√

k)
units of flow of commodity

i to the node bS′ such that i ∈ S′. From node bS′ we push all the flow of√
k + 1 commodities that enter then node to the node cS′ and from it to the

corresponding terminals. We assign xe to be k

(k−
√
k).(k√

k)
for e = bS′cS′ , and

the total fractional weight of edges on level 3 will be k
1+1/

√
k

. The flow is a

feasible flow (for every vertex v /∈ X ∪ {r} the incoming flow and outcoming
flow are equal) with total fractional weight O(k), and because of the symmetric
structure of the graph, the total flow for all terminals are equal. As a result,
the total flow for each terminal is equal to the total flow from r divided by k
which is 1. Hence the assigned x variables satisfy cut constraints in the LP, so
x is feasible fractional solution for the LP with

∑
e∈E cexe = O(k).

2.6.2 Lemma. The minimum Directed Steiner Tree, has weight at least Θ(k
√
k)

Proof. Define the density of a tree (not necessarily covering all terminals but all
leafs are terminal) to be its total weight divided by the number of terminals. In
order to prove the lemma, we instead prove that the density of a tree T (all leafs

33

2. BACKGROUND

of T are terminals) is Θ(
√
k). Let T be a directed tree with minimum density

that spans t terminals. We can assume without loss of generality, that T has
only one edge on level 1. Since otherwise, we could consider its minimal density
subtree (the subtree with minimum density among all subtrees consisting of one
edge e = rv incident to the root and the subtree rooted at v). If t ≤

√
k then

its weight is at least k (the weight of edge from level 1) and its density is at
least

√
k. If t ≥

√
k then it has at least t−

√
k+ 1 edges from level 3 (if e = uv

is the edge from level 1 and v corresponds to set S then every terminal vertex
t /∈ S corresponds to different child of v, say bS′ , where S′ = S

⋃
t) and its

weight is at least (n−
√
k+1).

√
k+k and its density is

√
k. Thus, the density of

minimum Directed Steiner Tree, which is greater than the density of minimum
density tree is at least

√
k. Hence, its total weight is at least k

√
k.

2.6.3 Theorem. The integrality gap of Directed Steiner Tree problem on the
above instance is Ω(

√
k).

34

Chapter 3

Sherali-Adams Hierarchy
and Directed Steiner Tree

We are given a directed graph G = (V,E) with edge costs ce ≥ 0, e ∈ E.
Furthermore, we are given a root node r ∈ V and a collection of terminals
X ⊆ V . Throughout, we will let n = |V |, m = |E|, and k = |X|.

As we stated in Chapter 1, a natural LP relaxation for Directed Steiner Tree
is given by LP (P0).

min
∑
e∈E

cexe (P0)

s.t. x(δin(S)) ≥ 1 ∀ S ⊆ V − r, S ∩X 6= ∅ (3.0.1)

xe ∈ [0, 1] ∀e ∈ E

In Chapter 2, we saw that the integrality gap of this relaxation can, unfortu-
nately, be as bad as Ω(

√
k), even in instances where G is a 4-layered graph.

A related problem that will frequently occur throughout this chapter is the
Group Steiner Tree (GST) problem mentioned in Chapter 1. As we proved in
Chapter 2, unlike DST, the integrality gap of the natural LP relaxation (P4)
(introduced in Section 3.1.1) is polylogarithmically bounded.

3.0.4 Theorem (Garg, Konjevod, and Ravi [16]). The integrality gap of LP
(P4) is O(min{`, log n} · log k) in GST instances that have n nodes, k terminal
groups, and are trees with height ` when rooted at r.

Only the bound of O(log n log k) is explicitly show in [16] but as we proved
in Theorem 2.4.7, the bound O(` · log k) easily follows from their techniques

3.0.1 Our Results and Techniques

For any feasible, minimal DST solution F , every node has indegree 1. We are
then justified in adding the simple constraint x(δin(v)) ≤ 1 for each v ∈ V − r

35

3. SHERALI-ADAMS HIERARCHY AND DIRECTED STEINER TREE

to the standard LP formulation and obtain the following LP relaxation.

min
∑
e∈E

cexe (P1)

s.t. x(δin(S)) ≥ 1 ∀ S ⊆ V − r, S ∩X 6= ∅ (3.0.2)

x(δin(v)) ≤ 1 ∀ v ∈ V − r (3.0.3)

xe ∈ [0, 1] ∀e ∈ E

Both LPs (P0) and (P1) have the same optimum integer solution cost.
Using the ellipsoid method, it is possible to design a separation oracle for

the `-th level lift of (P1) in the Sheral-Adams hierarchy with running time
being polynomial in n and k`. However, we will start with a much simpler LP
relaxation with only polynomially many constraints.

min
∑
e∈E

cexe (P2)

s.t. x(δin(t)) ≥ 1 t ∈ X (3.0.4)

x(δin(v)) ≤ 1 ∀ v ∈ V − r (3.0.5)

x(δin(v)) ≥ xe ∀ v ∈ V − (X ∪ {r}), e ∈ δout(v) (3.0.6)

xe ∈ [0, 1] ∀e ∈ E

While Constraints (3.0.6) are not present in LP (P1), they are satisfied by
any optimal, integer or fractional, solution x to LP (P1): if xe > x(δin(v))
for some solution x to LP (3.0.6) then we could decrease xe to x(δin(v)) and
maintain feasibility.

Our main result is the following. The notation SA`(P) (defined properly in
Chapter 2) refers to the `-th level lift of polytope P ⊆ [0, 1]n in the Sherali-
Adams hierarchy, which can be optimized over in time that is polynomial in
the size of LP (P2) and m`, where m is the number of constraints. Thus, we
consider the following LP.

min

{∑
e∈E

ce · y∗{e} : y ∈ SA`(P)

}
(P3)

where P is the polytope given by the constraints of the LP relaxation (P2).

3.0.5 Theorem. If the DST instance G is an `-layered graph, then the inte-
grality gap of LP (P3) is O(` · log k).

Furthermore, given oracle access to some fixed y∗ ∈ SA`(P) (i.e., if we can
somehow find a feasible solution y∗ ∈ SA`(P)) there is a randomized algorithm
that, with high probability, finds a Directed Steiner Tree solution in expected
time O(poly(n)) and with expected cost at most O(` · log k) times the cost of
y∗.

36

3.1. PRELIMINARIES

Rothvoss proved an analogous result for the Lasserre hieararchy, but his ar-
guments relied on a particular decomposition theorem proven by Karlin, Math-
ieu, and Nguyen [31]. This decomposition theorem does not hold in weaker LP
hierarchies such as Sherali-Adams, so we must proceed in a different manner.

At a high level, we prove Theorem 3.0.5 by mapping a point y∗ in the Sherali-
Adams lifted polytope into a LP solution with the same cost as y∗ for a related
Group Steiner Tree instance. Using Theorem 3.0.4, we find a GST solution with
cost O(` · log k) times the cost of y∗ and this will naturally correspond to a DST
solution in G.

As a special case, we obtain the following interesting bound that shows that
even without lift-and-project techniques the integrality gap of the natural LP
for 3-layer graphs is logarithmic.

3.0.6 Theorem. The integrality gap of LP (P0) is O(log k) in 3-layered graphs.

As with Theorem 3.0.5, this is obtained by mapping a point in LP (P0) to
a LP solution for the corresponding GST instance. However, the restriction to
only 3 layers allows us to accomplish this without the use of hierarchies. In
contrast as we saw in Chapter 2, the integrality gap of LP (P0) is Ω(

√
k) in

some graphs with 4 layers.

3.1 Preliminaries

First we restate the properties of the Sherali-Adams hierarchy required for our
proof. Their proofs are provided in Chapter 2. Consider a polytope P ⊆ Rn
specified by m linear constraints

∑n
i=1Aj,i · xi ≥ bj , 1 ≤ j ≤ m. Suppose the

“box constraints” 0 ≤ xi and xi ≤ 1 (equivalently, −xi ≥ −1) appear among
these constraints for each 1 ≤ i ≤ n.

We only use some of the many well-known properties of the Sherali-Adams
hierarchy, the Theorem 2.2.7 and 2.2.8

3.1.1 Lemma. Suppose y ∈ SAr(P) for some r ≥ 0. Then the following hold.

• Suppose y ∈ SAr(P), and I ∈ Pr(n) then y′I ∈ SAr−|I|. Therefore, if
yI > 0, yI∪S

yI
∈ Sr−|I|(P)

• For any A ⊆ B ⊆ [n] with |B| ≤ r + 1, we have yB ≤ yA.

As we stated in Chapter 2 (definition 3.1.2), the following holds simply by
construction of T (G).

3.1.2 Lemma. Let |V | = n. The graph T (G) constructed from an `-layered
Directed Steiner Tree instance G is a tree with height ` when rooted at 〈r〉. For
every GST solution in T (T) there is a DST solution in G of no greater cost,
and vice-versa.

37

3. SHERALI-ADAMS HIERARCHY AND DIRECTED STEINER TREE

3.1.1 Rounding for 3-Layered Graphs

We first demonstrate that the natural LP relaxation (P2) for Directed Steiner
Tree has an integrality gap of O(log k) in 3-layered graphs without using any lift-
and-project machinery. As mentioned earlier, this complements the observation
of Zosin and Khuller [25] that the integrality gap is Ω(

√
k) in some 4-layered

instances.
We show this by directly embedding a solution to the Directed Steiner Tree

LP relaxation (P0) for some 3-layered instance G into a feasible LP solution to
the Group Steiner Tree LP (P4) on instance T (G). The reason we can do this
with 3-layered instances boils down to the fact that for any edge e = uv that
either v ∈ X or |Q(e)| = 1 (Figure 2.4 also helps illustrate this). This property
does not hold in general for instances with at least 4 layers.

Consider a Group Steiner Tree instance H = (V,E) with root r, groups
X1, X2, . . . , Xk ⊆ V , and edge costs ce, e ∈ E. The LP relaxation we consider
for Group Steiner Tree is the following.

min
∑
e∈E

ceze (P4)

s.t. z(δ(S)) ≥ 1 ∀S ⊆ V − r,Xi ⊆ S for some group Xi (3.1.1)

z ≥ 0

Now we can prove our warmup result which we state again for reference.

3.1.3 Theorem. The integrality gap of LP (P0) is O(log k) when G is a 3-
layered graph.

Proof. Let G = (V,E) be a 3-layered instance of Directed Steiner Tree with
layers {r} = V0, V1, V2, V3 = X and T (G) the corresponding Group Steiner Tree
instance. Let x∗ be an optimal solution to LP (P0). Note that for edge uv ∈ E
with v 6∈ X there is a unique rooted path in G ending with e (i.e. |Q(e)| = 1).

We construct a feasible solution z∗ to LP relaxation (P4) for the Group
Steiner Tree instance T (G). For every edge e = uv of G where v 6∈ X, we set
z∗m(P) := x∗e where Q(e) = {P}, and remember that m(P) indicates the last
edge in the path P . All that is left to set is the the z∗-value for the leaf edges
of T (G).

To do this, fix a terminal t ∈ X. By the max-flow/min-cut theorem and
Constraints (3.0.1), there is a flow f t sending 1 unit of flow from r to t satisfying
f te ≤ x∗e for every edge e. Furthermore, for each e ∈ δin(t) we may assume that
x∗e = f te, otherwise we could reduce x∗e while maintaining feasibility. Consider
any path decomposition of f t and say that this decomposition places weight wtP
on a path P ∈ Q(t). That is, f te =

∑
P∈Q(t):e∈P w

t
P for every edge e ∈ G. Then

we set z∗m(P) := wtP for each P ∈ Q(t).

We claim that z∗ is a feasible solution for LP (P4) with cost equal to∑
e∈E cex

∗
e. To see why z∗ is feasible, we prove for every group t that there

is a flow gt of value 1 from 〈r〉 to the nodes in Xt with gtm(P) ≤ z∗m(P) for

every edge m(P), P of H. By the max-flow/min-cut theorem, this means every

38

3.1. PRELIMINARIES

constraint of (P4) is satisfied by z∗. That such a flow exists essentially follows
from the path decomposition of the flow f t. Recall that a path decomposition
of f t placed weight wtP on P ∈ Q(t). So, for each group Xt we define a flow gt

in T (G) by gtm(P) =
∑
P∗∈Q(t):P⊆P∗ w

t
P∗ .

First we verify that gt ≤ z∗ on an edge-by-edge basis. Consider an edge
m(P) in T (G) with P not ending in X. Say P ∈ Q(e), then we have

gtm(P) =
∑

P∗∈Q(t)
P⊆P∗

wtP∗ = f te ≤ x∗e = z∗m(P).

The last equality holds because Q(e) = {P}. If m(P) is an edge in T (G) with
P ∈ Q(t) then gtm(P) = wtP = z∗m(P) by construction. Finally, if P ∈ Q(t′) for

t′ 6= t then gtm(P) = wtP = 0. Therefore, gt satisfies the capacities z∗.

Next we verify flow conservation of gt at intermediate nodes. For every
internal node P 6= 〈r〉 of T (G) with parent edge m(P), P , we have∑

P ′:P ′=P∪{e}

gtm(P ′) =
∑

P ′:P ′=P∪{e}

∑
P∗∈Q(t)
P ′⊆P∗

wtP∗ =
∑

P∗∈Q(t)
P⊆P∗

wtP∗ = gtm(P)

so gt satisfies flow conservation at internal nodes of T (G). Furthermore,

gt(δout(〈r〉)) =
∑

P∗∈Q(t)
〈r〉⊆P∗

wtP∗ =
∑

P∗∈Q(t)

wtP∗ = 1

so gt consists of one unit of flow from 〈r〉 to the leaf nodes. Finally, we verify
that all of the flow gt terminates at a leaf node in Xt by simply noting that
for P ∈ Q(t′) where t′ 6= t we have that no path P ∗ ∈ Q(t) contains P as a
subpath, so gtm(P) = 0.

Next we show that both x∗ and z∗ have the same cost in their respective LPs.
We do this by showing

∑
P∈Q(e) z

∗
m(P) ≤ x

∗
e for every edge e of G and recalling

that the cost of the edge m(P), P in T (G) is equal to ce for any P ∈ Q(e). For
every e ∈ E not ending in X, we have Q(e) = {P} for some rooted path P .
We had set z∗m(P) = x∗e so

∑
P∈Q(e) z

∗
m(P) = x∗e is trivially true for such edges.

Finally, consider some e ∈ E that ends in X. Then∑
P∈Q(e)

z∗m(P) =
∑

P∈Q(e)

wtP = f te = x∗e.

The last equality holds by our earlier observation for edges in δin(t). Now we
know z∗ is feasible for LP (P4) and z∗ has the same cost as x∗. By Theorem
3.0.4, there is a Group Steiner Tree solution of cost at most O(log k) times the
cost of x∗. We conclude by using Lemma 3.1.2 to note that there is then a
Directed Steiner Tree solution of cost at most O(log k).

39

3. SHERALI-ADAMS HIERARCHY AND DIRECTED STEINER TREE

3.2 Rounding for `-Layered Graphs

Our basic approach for proving Theorem 3.0.5 is similar to our approach for
Theorem 3.0.6. We show how to embed a point y in the Sherali-Adams lift of
LP (P2) for an instance G to a feasible solution to LP (P4) for the corresponding
Group Steiner Tree instance T (G). Let P denote the polytope defined by the
constraints of LP (P2).

Describing the embedding is straightforward. For every edge m(P) in T (G),
simply set z∗m(P) := y∗P . The rest of our analysis shows that z∗ is feasible for

LP (P4) for instance T (G) and the cost of z∗ in (P4) is equal to
∑
e∈E ce · y∗{e}.

Before delving into the proofs of these statements, we establish a technical
result about the structure of Sherali-Adams solutions which will be very helpful.

3.2.1 Lemma. Suppose 0 ≤ i < j ≤ `. For any node v ∈ Vi, any edge
e = uw with w ∈ Vj , and any y ∈ SAj−i(P) we have

∑
P∈Q(v,e) yP ≤ y{e}.

Furthermore, if v = r then this bound holds with equality.
Note that |P | = j − i for any P ∈ Q(v, e) so it is valid to index y ∈ SAj−i(P)
with P in the sum.

Proof. We prove the lemma by induction on j − i. The base case j = i+ 1 is
trivial since either Q(v, e) = ∅ (so the sum in question is 0) or Q(v, e) consists
of the singleton path that only uses edge e (so the sum in question is just y{e}
already). Furthermore, if v = r then e ∈ δout(r) so the bound holds with
equality.

Inductively, suppose j > i+1. If y{e} = 0 then by Lemma 3.1.1 we have yP ≤
y{e} = 0 for every P ∈ Q(v, e) so the bound holds with equality. Otherwise,
define the conditioned solution y′{e} ∈ SAj−i−1(P) and let γ ∈ Sj−i−1(P) be its

normalization. So γI =
yI∪{e}
y{e}

for every I ⊆ E, |I| ≤ i − j (cf. Lemma 3.1.1).

Then ∑
P∈Q(v,e)

yP =
∑

e′∈δin(u)

∑
P∈Q(v,e′)

yP∪{e} = y{e}
∑

e′∈δin(u)

∑
P∈Q(v,e′)

γP

≤ y{e}
∑

e′∈δin(u)

γ{e′} = y{e}

where the inequality follows by induction (note that the endpoint of e′ is in
Vj−1). The last equality follows by Constraints (3.0.5) and (3.0.6) of LP (P2)
plus the fact that γ{e} = 1. Finally, if v = r then the inequality above holds
with equality by induction, so

∑
P∈Q(v,e) yP = y{e}.

3.2.1 Cost Analysis

The cost bound is an easy consequence of Lemma 3.2.1.

3.2.2 Lemma. The cost of z∗ in LP (P4) is
∑
e∈E(G) ce · y∗{e}.

40

3.2. ROUNDING FOR `-LAYERED GRAPHS

Proof. ∑
m(P)∈E(T (G))

cm(P) · z∗m(P) =
∑

e∈E(G)

∑
P∈Q(e)

ce · z∗m(P)

=
∑

e∈E(G)

∑
P∈Q(e)

ce · y∗P =
∑

e∈E(G)

ce · y∗{e}

where the last equality is by Lemma 3.2.1 applied with v = r.

3.2.2 Feasibility

Similar to the proof of Theorem 3.0.6, for every group Xt we construct a one
unit of 〈r〉−Xt flow gt in T (G) which satisfies the capacities given by z∗. Thus,
by the max-flow/min-cut theorem we have that z∗(δ(S)) ≥ 1 for every subset
S ⊆ V (T (G))− 〈r〉 such that Xt ⊆ S for some group Xt.

We now fix a terminal t ∈ X and describe the flow gt by giving a path
decomposition of the flow. For each P ∈ Q(t), we assign a weight of y∗P to the
〈r〉 − P path in T (X). So, the flow gtm(P) crossing edge m(P) in T (G) is just∑
P∗∈Q(t):P⊆P∗ y

∗
P∗ .

3.2.3 Lemma. gt is one unit of 〈r〉 −Xt flow in T (G).

Proof. It is an 〈r〉 −Xt flow because we constructed it from a path decompo-
sition using only paths in Q(t). Furthermore,

gt(δoutT (G)(〈r〉)) =
∑

P∗∈Q(t):〈r〉⊆P∗
y∗P∗ =

∑
P∈Q(t)

y∗P

=
∑

e∈δinG (t)

∑
P∈Q(e)

y∗P =
∑

e∈δinG (t)

y∗{e} = 1.

Here, the second last equality follows from Lemma 3.2.1. The last equality
follows from combining Constraint (3.0.4) with Constraint (3.0.5) for v = t.

All that is left is to prove that each flow gt for a terminal group Xt satisfies
the capacities given by z∗. The following lemma is the heart of this argument.
A similar result was proven in [50] which relied on the strong decomposition
property for the Lasserre hierarchy of Karlin, Mathieu, and Nguyen [31]. We
emphasize that our proof only uses properties of the Sherali-Adams LP hierar-
chy.

3.2.4 Lemma. For every rooted path P and every terminal group Xt, we have∑
P∗∈Q(t):P⊆P∗ y

∗
P∗ ≤ y∗P .

Proof. If y∗P = 0 this is trivial since y∗P∗ ≤ y∗P for any P ∗ ⊇ P by Lemma 3.1.1.
Otherwise, form the conditioned solution y′P ∈ SA`−|P |(P) and its normaliza-

tion say γ, we have γI =
y∗P∪I
y∗P

for any |I| ≤ `+ 1− |P |.

41

3. SHERALI-ADAMS HIERARCHY AND DIRECTED STEINER TREE

Say v is the endpoint of P . Note that γ ∈ S`−|P |(P) by Lemma 3.1.1. So, for
any e ∈ δin(t) we have

∑
P∗∈Q(v,e) γP∗ ≤ γ{e} from Lemma 3.2.1 (with i = |P |

and j = `− |P |). Summing over all e ∈ δin(t) and using Constraints (3.0.5), we
have

∑
P∗∈Q(v,t) γP∗ ≤ 1.

Multiplying both sides of this bound by y∗P , we see that
∑
P∗∈Q(v,t) y

∗
P∪P∗ ≤

y∗P . But the left hand side is precisely
∑
P∗∈Q(t):P⊆P∗ y

∗
P∗ , which we were

required to show.

We can now easily verify that the capacity constraints are satisfied.

3.2.5 Corollary. For every terminal group Xt and every edge m(P) of T (G),
gtm(P) ≤ z

∗
m(P).

Proof. By Lemma 3.2.4

gtm(P) =
∑

P∗∈Q(t)
P⊆P∗

y∗P∗ ≤ y∗P = z∗m(P)

3.2.3 A Rounding Algorithm

We have proved the integrality gap bound in Theorem 3.0.5 by demonstrating
that there is a LP solution to LP (P4) for instance T (G) of no greater cost, by
using the integrality gap bound in Theorem 3.0.4, and by using the fact that a
feasible solution to the Group Steiner Tree instance T (G) can be mapped to a
feasible solution to the Directed Steiner Tree instance G with no greater cost.

In fact, we can emulate the rounding algorithm of [16] in GST instance
T (G) without explicitly constructing z∗ or T (G). Algorithm 1 contains the
main subroutine in the rounding algorithm; this is just the main subroutine in
the Group Steiner Tree algorithm in [16]. Note that if P ′ is a subpath of P ,
then y∗P ≤ y∗P ′ by Lemma 3.1.1. So, this algorithm behaves exactly the same as
the corresponding Group Steiner Tree algorithm in the instance T (G) with LP
solution z∗.

Let F be the set of edges returned from one run of Algorithm 1. The analysis
of [16] shows E[cost(F)] = OPTf where OPTf is the optimum LP solution
value to LP (P3). Furthermore, the probability that any particular terminal t
is reached by F is at least Ω

(
1
`

)
(c.f. 2.4.6).

3.2.6 Theorem. Repeating Algorithm 1, 2 · ` · log k times and taking the union
of the returned edge sets is, with probability at least 1

2 , a feasible Directed
Steiner Tree solution with cost O(` · log k) ·OPTf .

Proof. Let H be the union of the returned edges in all iterations. The
probability that a fixed terminal t ∈ X is not connected is bounded by (1 −
1
l+1)2l log k ≤ 1

2k . Thus by union bound the probability that at least one terminal

is not connected is at most
∑
t∈X

1
2k = 1/2.

42

3.3. CONCLUSION

Such a DST solution can be found with high probability by repeating the
algorithm log2 n times. After repeating log2 n times the above procedure the
probability that we have still unconnected terminal is at most (1− 1/2)log2 n ≤
1/n. The solution can be pruned to a Directed Steiner Tree so that it is an
integer solution to LP (P2) if desired.

Algorithm 1 Directed Steiner Tree Rounding Subroutine

1: S0 ← 〈r〉
2: for i = 1, . . . , ` do
3: Si ← ∅
4: for each P ∈ Si−1 do
5: for each e ∈ δout(v) where v is the endpoint of P do

6: Add P ∪ {e} to Si with probability
y∗P∪{e}
y∗P

7: end for
8: end for
9: end for

10: F ← edges used by some path in S`
11: return F

In fact, it is easy to see that in one run of Algorithm 1 we have for any rooted
path P that Pr[P ∈ S|P |+1] = y∗P . This leads to an interesting observation.

3.2.7 Lemma. E
[∑`

i=0 |Si|
]
≤ n

Proof. As noted before, for any edge e = uv with v ∈ Vi and any P ∈ Q(e)
we have Pr[P ∈ Si] = y∗P . Thus, E[|Si ∩ Q(e)|] =

∑
P∈Q(e) y

∗
P = y∗{e} where

the second equality is by Lemma 3.2.1. Summing over all edges e and using
Constraints (3.0.5) shows

∑
e∈E y

∗
{e} ≤ n− 1. Finally, since y∗〈r〉 = y∗∅ = 1 then

E
[∑`

i=0 |Si|
]
≤ n.

This also completes the proof of Theorem 3.0.5 since the total number of
iterations of the loop in Step (4) of Algorithm 1 is precisely

∑`−1
i=0 |Si|, which is

polynomial in expectation. Therefore, with high probability the running time of
the entire rounding algorithm is polynomial in n. Furthermore from Theorem
3.2.6 we can have a feasible directed Steiner tree with high probability.

3.3 Conclusion

We showed that only ` rounds of the Sherali-Adams hierarchy suffice to reduce
the integrality gap of LP (P2) to O(` · log k) in `-layered graphs. In fact, our
analysis shows that we could have omitted the constraints of the form (2.2.3)
where U \W 6= ∅ and still achieved the same integrality gap bound. This is be-
cause all arguments in our analysis that require “conditioning” never condition
a variable to 0.

43

Chapter 4

A Logarithmic Integrality
Gap Bound for Directed
Steiner Tree in
Quasi-bipartite Graphs

In this chapter we consider the class of quasi-bipartite DST instances. We are
given a quasi-bipartite directed graph G = (V,E, c) with cost c : E → R+ on
edges, a vertex root r ∈ V , and a set of terminal vertices X ⊆ V . Thus, there
is no edge between Steiner vertices.

Our main theorem is the following.

4.0.1 Theorem. The integrality gap of LP (P0) is at most 3 ·HK = O(log k)
in quasi-bipartite graphs with k terminals where Hk is the k’th Harmonic num-
ber. Furthermore, a Steiner tree witnessing this integrality gap bound can be
constructed in polynomial time.

Theorem 4.0.1 is also tight since any of the well-known Ω(log k) integrality
gap constructions for set cover instances with k items translate directly to an
integrality gap lower bound for LP (P0), using the usual reduction from Set
Cover to 2-layered quasi-bipartite instances of Directed Steiner Tree.

We prove the above theorem by designing a primal-dual algorithm using LP
(P0). The algorithm constructs a Directed Steiner Tree in an iterative manner.
An iteration starts with a partial Steiner tree, consisting of multiple directed
components containing the terminals in X. The algorithm constructs a feasible
solution for the dual of (P0), and augments the given partial solution by a
carefully chosen collection of arcs. The cost of these arcs can be bounded using
the dual solution, and adding these arcs to the partial starting solution reduces
the number of connected components.

There are a few examples of primal-dual algorithms for directed network
design problems, for instance the strong connectivity problem [43]. Often the

45

4. A LOGARITHMIC INTEGRALITY GAP BOUND FOR DIRECTED STEINER
TREE IN QUASI-BIPARTITE GRAPHS

difficulty of overlapping moats (the growing sets in a primal-dual algorithm
that we increase their associated dual variables by time until one constraint
goes tight and then we expand the corresponding moat) in instances of such
problems is hard to control. We are able to do this here, exploiting the quasi-
bipartite nature of our instances crucially. On the other hand, the primal-dual
method is quite successful in undirected graphs: Goemans and Williamson give
a primal-dual 2-approximation for the more general Steiner forest problem [18].

We note that Hibi and Fujito [28] had previously given a greedy algorithm
that achieves a performance ratio of O(log k) for quasi-bipartite DST instances.
Their approach iteratively chooses low-density full Steiner trees and adds them
to the existing partial solution similar to [10]. This approach seems unlikely to
yield integrality gap bounds for DST.

4.1 The Rounding

We now present an algorithmic proof of Theorem 4.0.1. As we will follow a
primal-dual strategy, we give the LP dual of (P0) first.

max
∑
S

yS (D)

s.t.
∑

S:e∈δin(S)

yS ≤ ce ∀e ∈ E (4.1.1)

y ≥0

In LP (D), the sums range only over sets of nodes S such that S ⊆ V − r and
S ∩X 6= ∅.

Our algorithm builds up partial solutions in the following sense.

4.1.1 Definition. A partial Steiner tree is a tuple U = ({Bi, hi, Fi}`i=0, B)
where, for each 0 ≤ i ≤ `, Bi is a subset of nodes, hi ∈ Bi, and Fi is a subset of
edges with endpoints only in Bi such that the following hold.

• The sets B0, B1, . . . , B`, B form a partition V .

• B ⊆ V −X − r (i.e. B is a subset of Steiner nodes).

• h0 = r and hi ∈ X for each 1 ≤ i ≤ `.

• For every 0 ≤ i ≤ ` and every v ∈ Bi, Fi contains an hi − v path.

We say that B is the set of free Steiner nodes in U and that hi is the head of Bi
for each 0 ≤ i ≤ `. The edges of U , denoted by E(U), are simply ∪`i=0Fi. We
say that B1, . . . , B` are the non-root components of U and that B0, . . . , B` are
simply the components of U .

46

4.1. THE ROUNDING

r

Figure 4.1: A partial Steiner tree with ` = 3 non-root components (the root is
pictured at the top). The only edges shown are those in some Fi. The white
circles are the heads of the various sets Bi and the black circles are terminals
that are not heads of any components. The squares outside of the components
are the free Steiner nodes B. Note, in particular, that each head can reach every
node in its respective component. We do not require each Fi be a minimal set
of edges with this property.

Figure 4.1 illustrates a partial Steiner tree. Note that if U is a partial Steiner
tree with ` = 0 non-root components, then E(U) is in fact a Steiner tree.

Our algorithm essentially builds up partial Steiner trees in an iterative man-
ner while taking care to ensure the cost does not increase by a significant amount
between iterations. Specifically, we prove the following in Section 4.2. Let OPTf
refer to the optimum solution value for LP (P2).

4.1.1 Lemma. Given a partial Steiner tree U with ` ≥ 1 non-root components,
there is a polynomial-time algorithm that finds a partial Steiner tree U ′ with `′

non-root components where 0 ≤ `′ < ` such that E(U) ⊆ E(U ′) and

cost(E(U ′)) ≤ cost(E(U)) + 3 ·OPTf ·
`− `′

`
.

Theorem 4.0.1 follows from Lemma 4.1.1 in a standard way. Proof. [of
Theorem 4.0.1] Initialize a partial Steiner tree Uk with k non-root components
as follows. Initially, B is the set of all Steiner nodes, B0 = {r} and F0 = ∅.
Furthermore, label the terminals as t1, . . . , tk ∈ X and for each 1 ≤ i ≤ k let
Bi = {ti}, hi = ti and Fi = ∅. Note that cost(E(Uk)) = 0.

47

4. A LOGARITHMIC INTEGRALITY GAP BOUND FOR DIRECTED STEINER
TREE IN QUASI-BIPARTITE GRAPHS

Iterate Lemma 4.1.1 to obtain a sequence of partial Steiner trees U`0 ,U`1 ,U`2 , . . . ,U`a
where U`i has `i non-root components, k = `0 > `1 > . . . , > `a = 0 and such

that E(Ui) ⊆ E(Ui+1) with cost(E(Ui+1)) ≤ cost(E(Ui)) + 3 ·OPTf · `i−`i+1

`i
for

each 0 ≤ i < a. Return E(U`a) as the final Steiner tree.
That E(Ua) can be found efficiently follows simply because we are iterating

the algorithm mentioned in Lemma 4.1.1 at most k times. The cost of this
Steiner tree can be bounded as follows.

cost(E(Ua)) ≤ 3 ·OPTf ·
a−1∑
i=0

`i − `i+1

`i
= 3 ·OPTf ·

a−1∑
i=0

`i∑
j=`i+1+1

1

`i

≤ 3 ·OPTf ·
a−1∑
i=0

`i∑
j=`i+1+1

1

j
= 3 ·OPTf ·

k∑
j=1

1

k

= 3 ·OPTf ·Hk.

4.2 The Primal-Dual Phase

In this section, we prove Lemma 4.1.1 with a primal-dual algorithm. Similar to a
usual primal-dual algorithm, we start with a feasible solution yS = 0, ∀S ⊆ V −
r, S ∩X 6= ∅, for the dual program and an infeasible solution xe = 0 ∀e ∈ E for
the primal program. Then we increase dual variables for some growing subsets
of vertices we call them moats. At the beginning they only include terminal
vertices M1 = {t1}, · · · ,Mk = {tk}. For the moat sets Mi, we simultaneously
increase dual variables yMi

by a parameter time that we indicate by ∆ until
one constraint, say

∑
S:e∈δin(S) yS ≤ ce, for some edge e = uv ∈ δin(Mi), in

the dual program goes tight (
∑
S:e∈δin(S) yS = ce). This happens after time

ε = mini,e∈δin(Mi)(ce −
∑
S:e∈δin(S) yS). Then we grow the moat Mi by adding

the vertex v to Mi.
The main difference of our primal-dual algorithm with usual ones such as

the primal-dual algorithm for Undirected Steiner Tree problem is that in those
algorithms the growing moats are disjoint (if they collide then the algorithm
terminates), but in our algorithm they are allowed to have intersection and by
taking advantage of a novel structure that we define, the partial Steiner tree, and
the fact that the graph is quasi-bipartite, we handle the overlap of the moats.
The intuition is that each moat would have a subgraph which we will later call
it the virtual body of the moat. We will instead show that the virtual body
of the moats are disjoint. Also we will establish some invariants which hold
during growing the moats, which help us to control the overlaps. Normally,
primal-dual methods that simultaneously grow around multiple “moats” fail to
produce good solutions in directed graphs. This is primarily due to the fact that
it is difficult to keep the moats disjoint. However, the quasi-bipartite structure
allows us to control the extent to which these moats overlap.

48

4.2. THE PRIMAL-DUAL PHASE

Fix a partial Steiner tree U = ({Bi, hi, Fi}`i=0, B) with ` ≥ 1 non-root com-
ponents. Lemma 4.1.1 promises a partial Steiner tree U ′ with `′ < ` non-root
components with E(U) ⊆ E(U ′) and cost(E(U ′)) ≤ cost(E(U)) + 3 ·OPTf · `−`

′

`
At a high level, this will be accomplished by simultaneously growing dual around
each of the ` heads h1, . . . , h` until some stopping condition is satisfied. If the
growing process takes ∆ units of time, then the fact that we maintain fea-
sibility in the dual ensures the total dual packed (

∑
S yS) has value at most

` · ∆ ≤ OPTf . Roughly speaking, once the stopping condition is satisfied we
will find a collection of edges F ′ with cost at most 3·∆·b that connects the heads
of b ≥ 1 non-root components to the head of some other non-root component
Bi′ . The component Bi′ absorbs these other b components and we set Fi′ to
the union of the Fi for the absorbed components Bi, plus the edges in F ′.

We remark that the idea of growing dual until some termination condition
happens, and selecting a subset of edges, then repeating the primal-dual algo-
rithm and combining all selected edges until we find a feasible solution was also
used in the [21] to show the integrality gap of a natural relaxation for undirected
node-weighted Steiner tree is O(log k).

Our algorithm is described in Algorithm 2. It maintains a collection of
“moats” Mi ⊆ V and edges F ′i for each 1 ≤ i ≤ `, while ensuring that the
dual solution y remains feasible. To help describe what should be done when
an edge goes tight, Algorithm 2 also maintain a “virtual body” βi ⊆ V for each
0 ≤ i ≤ ` that contains Bi and some free Steiner nodes from B in the moat Mi.
This virtual body will maintain the property that every free Steiner node in βi
can be reached from Bi by along some edge e ∈ Fi′ .

Note that we will not grow a moat around r = h0, as no sets S in the dual
contain r, but we will still maintain a virtual body β0 for notational simplicity
even though β0 will not change throughout the growing phase.

The following invariants will be maintained, where we say ∆ is the total time
the algorithm has been raising dual variables.

1. For each 1 ≤ i ≤ `, hi ∈ Mi and Mi ⊆ V − r so there is a variable yMi

in the dual. Furthermore, all edges in F ′i have both endpoints in Mi and
for every v ∈Mi there is a unique v − hi path in the subgraph G(Mi, F

′
i)

with cost at most ∆.

2. Mi ∩Mj ⊆ B and Mi ∩ βj = ∅ for distinct 1 ≤ i, j ≤ `. Furthermore,
Mi ∩ β0 = ∅ for all 1 ≤ i ≤ `.

3. For each 1 ≤ i ≤ ` we have Bi ⊆ βi ⊆ Bi ∪Mi. Furthermore, for each
v ∈ βi −Bi there is some uv ∈ F ′i with u ∈ Bi. Finally, β0 = B0.

4. y is feasible for LP (D) with value exactly ` ·∆.

The usual conventions of primal-dual algorithms will be adopted. We think
of the dual-growing procedure as a continuous process that increases the value
of some dual variables over time. Say that some edge e goes tight if the dual
constraint for e becomes tight as the dual variables are being increased. If
multiple edges go tight at the same time, then we process them in any order

49

4. A LOGARITHMIC INTEGRALITY GAP BOUND FOR DIRECTED STEINER
TREE IN QUASI-BIPARTITE GRAPHS

with the understanding that if, say, both e and e′ become tight at the same time
and e is processed first, then e′ is only processed after e if e still lies on some
set δin(Mj) for some moat Mj after the moats are updated from processing e.

We remark that when the condition in Step (6) is checked then there is
certainly some moat Mi with uv ∈ Mi. However, it might be that j = i in
which case we will also require some other i′ to have v ∈Mi′ .

Algorithm 2 Dual Growing Procedure

[h!]

1: Mi ← {hi}, 1 ≤ i ≤ `
2: F ′i ← ∅, 1 ≤ i ≤ `
3: βi ← Bi for 0 ≤ i ≤ `
4: y ← 0
5: Raise yMi′ uniformly with variable ∆ indicating time parameter, for each

moat Mi′ until some edge uv goes tight
6: if u ∈ βj for some 0 ≤ j ≤ ` and v ∈Mi′ for some i′ 6= j then
7: return the partial Steiner tree U ′ referenced in Lemma 4.2.4.
8: else
9: Let Mi be the unique moat with uv ∈ δin(Mi) . c.f. Proposition 4.2.2

10: Mi ←Mi + u
11: F ′i ← F ′i + uv
12: if u ∈ βi then
13: βi ← βi + v

14: go to Step (5)

4.2.1 Lemma. Invariants 1-4 are maintained by Algorithm 2. Furthermore, the
condition in Step (6) eventually becomes true (i.e. the algorithm terminates).

Proof. Clearly the invariants are true after the initialization steps. To see
termination, note that each iteration increases the size of a moat by 1 and
leaves the other moats unchanged. The algorithm cannot iterate the main loop
indefinitely because we would eventually have that some moat Mj would have
some uv ∈ δin(Mj) go tight where u ∈ B0 = β0. In this case the algorithm
would terminate1.

Invariant 1:
To see the first condition, simply note that the sets Mi and F ′i are grown in
the same way that a BFS tree is grown in the primal-dual interpretation of
Dijkstra’s algorithm. If an edge rv from the root goes tight where v ∈Mi, then
r ∈ β0 and v ∈Mi would cause the algorithm to terminate, so r is never added
to a moat.

1Implicitly, we are assuming here that there is some r − t path in G for every t ∈ X.
However, this must be the case as, otherwise, there is no feasible DST solution.

50

4.2. THE PRIMAL-DUAL PHASE

Invariant 4:
Feasibility is clear since we never raise a dual variable yMj if some edge e ∈
δin(Mj) is tight. Algorithm 2 raises the value of exactly ` dual variables at a
time. So the total value of the dual is exactly ` ·∆.

Now suppose the conditions hold at the moment some edge e = uv goes tight
and suppose the termination conditions in Step (6) are not satisfied. We show
that the Invariants 2 and 3 continue to hold after the updates in Steps (10)-(13)
are executed.

We establish the following proposition before verifying these invariants.

4.2.2 Proposition. If the algorithm reaches Step (9) after uv goes tight, then
there is exactly one moat Mi such that uv ∈ δin(Mi).

Proof. There is at least one since uv went tight. If e ∈ δin(Mj) as well for some
j 6= i then v ∈Mi ∩Mj so v ∈ B by Invariant 2. But since G is quasi-bipartite,
then u ∈ X + r so u ∈ βj′ for some 0 ≤ j′ ≤ r. But then the termination
condition in Step (6) would have been satisfied with u ∈ βj′ and v ∈ Mi ∩Mj

where one of i 6= j′ or j 6= j′ because i 6= j.

Now let i be the index of the unique moat Mi with uv ∈ δin(Mi) from Step
(9).

Invariant 2:
The only change to a moat this iteration is that u is added to Mi. If (Mi +
u) ∩ βj 6= ∅ for some j 6= i then the algorithm would have terminated because
u ∈ βj and v ∈Mi. So, (Mi + u) ∩ βj = ∅.

Now suppose (Mi + u) ∩Mj 6⊆ B for some j 6= i. Then u ∈Mj and u ∈ Bj′
for some j′. By Invariant 3, Bj′ ⊆ βj′ so u ∈ βj′ as well. But then Invariant 2
and u ∈ Mj ∩ βj′ means j = j′ so j′ 6= i. But u ∈ βj′ and j′ 6= i contradicts
what we showed in the previous paragraph: (Mi + u) ∩ βj′ = ∅.

Finally, the only possible change to some virtual body is that v might have
been added to βi. This can only happen if u ∈ βi. In this case, for any j 6= i
we claim that Mj ∩ (βi + v) = ∅. Otherwise v ∈ Mj for some j 6= i, but then
the algorithm would have terminated with u ∈ βi and v ∈Mj .

Invariant 3:
If v is not added to βi in Step (13), then there is nothing to show. Also, it
cannot be that i = 0 because we do not grow moats around r = h0. Thus, β0
continues to be B0.

If v is added to βi then v ∈ Mi so βi + v ⊆ Bi ∪Mi continues to hold. We
also note that for every j 6= i, v 6∈ βj by Invariant 2 and the fact that v ∈ Mi.
Since βi ∩ βj = ∅ and v 6∈ βj , then (βi + v) ∩ βj = ∅

For the final statement, suppose v 6∈ Bi. Then v ∈ B by the fact that v ∈Mi

and Mi ∩ Bj ⊆ Mi ∩ βj = ∅ for j 6= i (Invariants 2 and 3). Since v ∈ B, since
G is quasi-bipartite, and since uv is an edge of G, then u 6∈ B.

51

4. A LOGARITHMIC INTEGRALITY GAP BOUND FOR DIRECTED STEINER
TREE IN QUASI-BIPARTITE GRAPHS

Now, since u ∈ βi then either u ∈ Bi or u ∈ Mi − Bi. The latter cannot
happen, because u 6∈ B means u ∈ Bj for some j. But u ∈Mi−Bi means j 6= i
which contradicts u ∈Mi ∩Bj ⊆Mi ∩ βj for j 6= i (Invariants 2 and 3 again).

Thus, u ∈ Bi. Since the edge uv is also added to F ′i , then the last statement
of Invariant 3 continues to hold when v is added to βi.

To complete the analysis of the algorithm, we now describe how to construct
the partial Steiner tree after Step (6) has been reached. The correctness of this
construction is proven in Lemma 4.2.1.

The invariants enforce the following property.

4.2.3 Claim. Invariants 2 and 3 imply βi ∩ βj = ∅ for any distinct 0 ≤ i, j ≤ `.

Proof. If 1 ≤ i, j then βi ∩ βj ⊆ (Bi ∩Mi) ∩ (Bj ∪Mj) by Invariant 3. We
have Bi ∩ Bj = ∅ and Bi ∩ Mj = Bj ∩ Mi = ∅ by Invariants 2 and 3, so
βi ∩ βj ⊆Mi ∩Mj . If u ∈ βi ∩ βj , then u ∈Mj which contradicts βi ∩Mj = ∅
(Invariant 2).

On the other hand, the case i = 0 is similar. We have βi∩βj ⊆ B0∩(Bj∪Mj)
by Invariant 3. By Invariants 2 and 3 and the fact that B0 ∩ Bj = ∅ we have
B0 ∩ (Bj ∪Mj) = ∅.

So, let j be the unique index such that u ∈ βj at the time the condition
in Step (6) becomes true. There is exactly one such j as otherwise we have
u ∈ βj ∩ βj′ ⊆ (Bj ∪Mj) ∩ (Bj′ ∪Mj′) = Mj ∩Mj′ by Invariants 2 and 3 and
the fact that Bj ∩Bj′ = ∅ . But then u ∈Mj ∩ βj′ , which contradicts Invariant
2. Next, let J = {i′ 6= j : v ∈ Mi′} and note that J consists of all indices i′

(except, perhaps, j) such that uv ∈ δin(Mi′). By the termination condition,
J 6= ∅.

For each i′ ∈ J , let Pi′ be any v − hi path using edges in F ′i′ (one exists by
Invariant 1). Now, if u ∈ βj −Bj then let Pj simply denote the path consisting
of the single edge wu ∈ F ′ with w ∈ Bj whose existence is ensured by Invariant
3. If u ∈ Bj , then let Pj be the trivial path consisting of node u and no edges.
Let E(P) and V (P) denote the vertices and edges on a path P , respectively.

Construct a partial Steiner tree U ′ obtained from U and Algorithm 2 as
follows.

• The sets Bj′ , Fj′ and head hj′ are unchanged for all j′ 6∈ J + j.

• Replace the components {Bi}i∈J+j with a componentB := ∪i′∈J+j (Bi′ ∪ V (Pi′))
having head h := hj . The edges of this component in U ′ are F :=
∪i′∈J+j(Fi′ ∪ E(Pi′)) + uv.

• The free Steiner nodes B
′

of U ′ are the Steiner nodes not contained in any
component.

Namely, B
′

consists of those nodes in B that are not contained on any path
Pi′ , i

′ ∈ J + j.

52

4.2. THE PRIMAL-DUAL PHASE

4.2.4 Lemma. When Step (7) is reached, the Steiner tree U ′ constructed above
satisfies the conditions guaranteed by Lemma 4.1.1.

Proof. We first verify that U ′ as constructed above is indeed a valid partial

Steiner tree. Clearly the new sets B
′
, {Bi}i6∈J+j and B partition V and B

′
is a

subset of Steiner nodes.
Note that if 0 ∈ J+j in the above construction, then j = 0 because no moat

contains r. Thus, if B0 is replaced when B is constructed, then h = r.
Next, consider any w ∈ B. If w ∈ Bj then there is an h− v path in Fj ⊆ F .

If w ∈ Bi′ , i′ 6= j then it can be reached in (B,F) by following the sequence of
paths and edges Pj , uv, Pi′ , all of which lie in F , followed by the hi′ − w path
in Fi′ . Finally, if w 6∈ Bi′ , i′ ∈ J + j then w lies on some path Pi′ , in which case
it can be reached in a similar way.

It is also clear that E(U) ⊆ E(U ′) and that the number of non-root compo-
nents in U ′ is `− |J | < `. Also, cost(E(U ′))− cost(E(U)) is at most the cost of
the paths {Pi′}i′∈J+i plus cuv.

Say the algorithm terminates at time ∆. By Invariant 4, the total value of
the feasible solution y is ` · ∆ ≤ OPTf . There are two cases to consider and
both of them show the cost increase is bounded by 3∆|J |. This shows the cost

increase is at most 3 ·OPTf · |J|` . Figure 4.2 illustrates these cases.

Case: u 6∈ Bj
Then u ∈Mj for the moat Mj at the time of termination (i.e. when Step (7) is
reached). Since Mj ∩ Bj′ ⊆ Mj ∩ βj′ = ∅ for any j′ 6= j by Invariants 2 and 3,
then u ∈ B.

Since G is quasi-bipartite, then v ∈ Bi′ for some i′ ∈ J . By the termination
condition and the fact that Mi ∩ Bi′ = ∅ for i 6= i′ by Invariant 2, we have i′

is the only index in J . A simple extension of Invariant 1 shows the cost of the
path uv followed by the v − hi′ path in F ′i is at most ∆.

Since u is a Steiner node then Pj = {wu} for some wu ∈ F ′j meaning cwu ≤ ∆
by Invariant 1. Thus, cost(E(U ′))− cost(E(U)) ≤ cost(Pi′) + cuv + cwu ≤ 2∆ ≤
3∆|J |.

Case: u ∈ Bj .
Then Pj = ∅. The cost of each of the paths Pi′ , i

′ ∈ J is also at most ∆
by Invariants 1. Finally, at any stage of the algorithm the edge uv lies in at
most |J |+ 1 cuts of the form δin(Mi′) for some moat Mi′ (namely, only indices
in J + j could have had their moats contributing to the load of uv). Thus,
cuv ≤ ∆(|J |+ 1) ≤ 2∆|J |. Overall, the cost increase is at most 3∆|J |.

53

4. A LOGARITHMIC INTEGRALITY GAP BOUND FOR DIRECTED STEINER
TREE IN QUASI-BIPARTITE GRAPHS

u

w

v

hj

h1

hj

h1 h2

v

u

Figure 4.2: The two cases in the proof of Lemma 4.2.4. The left figure illustrates
the case u 6∈ Bj and has J = {1}. Note that in this case we have u ∈ βj ∩Mj .
The right figure illustrates the case u ∈ Bj and has J = {1, 2}. In this case, v
lies in both moats M1 and M2. In both cases, the edge uv is drawn with dashed
edges and the paths Pi′ , i

′ ∈ J + j are drawn with solid edges.

54

Chapter 5

Open Problems

An intriguing possibility for getting a polynomial-time polylogarithmic approx-
imation for Directed Steiner Tree would be to show that a constant-number
of rounds of some hierarchy suffice. Alternatively, perhaps the projection of
SA`(P) to the singleton variables y{e}, e ∈ E can be optimized over in time

that is polynomial in 2` and the size of LP (P2). Similar running time improve-
ments have been explored in other work, e.g. [24].

In Chapter 4, we have shown that the integrality gap of LP relaxation (P0) is
O(log k) in quasi-bipartite instances of Directed Steiner Tree. The gap is known
to be Ω(

√
k) in 4-layered instances [25] and O(log k) in 3-layered instances.

Since quasi-bipartite graphs are one way to generalize 2-layered instances, it is
natural to ask if there is a generalization of 3-layered instances which has an
O(log k) or even an o(

√
k) integrality gap.

One possible generalization of 3-layered graphs would be when the subgraph
of G induced by the Steiner nodes has no node with both positive indegree and
outdegree. None of the known results on Directed Steiner Tree suggest such
instances have a bad gap.

55

Bibliography

[1] Arora, Bollobas, Lovasz, and Tourlakis, Proving integrality gaps without
knowing the linear program, Theory of Computing – An Open Access Jour-
nal, http://theoryofcomputing.org, vol. 2, 2006.

[2] Arora, Rao, and Vazirani, Expander flows, geometric embeddings and graph
partitioning, STOC: ACM Symposium on Theory of Computing (STOC),
2004.

[3] Boaz Barak, Fernando G. S. L. Brandão, Aram Wettroth Harrow,
Jonathan A. Kelner, David Steurer, and Yuan Zhou, Hypercontractiv-
ity, sum-of-squares proofs, and their applications, CoRR abs/1205.4484
(2012).

[4] MohammadHossein Bateni, Moses Charikar, and Venkatesan Guruswami,
Maxmin allocation via degree lower-bounded arborescences, STOC (Michael
Mitzenmacher, ed.), ACM, 2009, pp. 543–552.

[5] Berman and Ramaiyer, Improved approximations for the steiner tree prob-
lem, ALGORITHMS: Journal of Algorithms 17 (1994).

[6] Bern and Plassmann, The steiner problem with edge lengths 1 and 2, IPL:
Information Processing Letters 32 (1989).

[7] Marcus Brazil, Ronald L. Graham, Doreen A. Thomas, and Martin Zachari-
asen, On the history of the Euclidean Steiner tree problem, Arch. Hist.
Exact Sci. 68 (2014), no. 3, 327–354. MR 3200931

[8] Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità,
An improved LP-based approximation for steiner tree, STOC (Leonard J.
Schulman, ed.), ACM, 2010, pp. 583–592.

[9] A. E. Caldwell, A. B. Kahng, S. Mantik, I. L. Markov, and A. Zelikovsky,
On wirelength estimations for row-based placement, Proceedings of the In-
ternational Symposium on Physical Design (ISPD-98) (New York), ACM
Press, April 6–8 1998, pp. 4–11.

[10] Gruia Calinescu and Alexander Zelikovsky, The polymatroid steiner prob-
lems, J. Comb. Optim 9 (2005), no. 3, 281–294.

57

BIBLIOGRAPHY

[11] Moses Charikar, Chandra Chekuri, Ashish Goel, and Sudipto Guha,
Approximation algorithms for directed steiner tree problems, Technical
Note CS-TN-97-56, Stanford University, Department of Computer Science,
March 1997.

[12] Moses Charikar, Konstantin Makarychev, and Yury Makarychev, Integral-
ity gaps for sherali-adams relaxations, STOC (Michael Mitzenmacher, ed.),
ACM, 2009, pp. 283–292.

[13] Chlamtac, Approximation algorithms using hierarchies of semidefinite pro-
gramming relaxations, FOCS: IEEE Symposium on Foundations of Com-
puter Science (FOCS), 2007.

[14] Eden Chlamtac and Gyanit Singh, Improved approximation guarantees
through higher levels of SDP hierarchies, APPROX-RANDOM (Ashish
Goel, Klaus Jansen, José D. P. Rolim, and Ronitt Rubinfeld, eds.), Lecture
Notes in Computer Science, vol. 5171, Springer, 2008, pp. 49–62.

[15] Irit Dinur and David Steurer, Analytical approach to parallel repetition,
CoRR abs/1305.1979 (2013).

[16] Garg, Konjevod, and Ravi, A polylogarithmic approximation algorithm for
the group steiner tree problem, ALGORITHMS: Journal of Algorithms 37
(2000).

[17] Konstantinos Georgiou, Integrality gaps for strong linear programming and
semidefinite programming relaxations, November 2010.

[18] Goemans and Williamson, A general approximation technique for con-
strained forest problems, SICOMP: SIAM Journal on Computing 24 (1995).

[19] Michel X. Goemans, Neil Olver, Thomas Rothvoß, and Rico Zenklusen, Ma-
troids and integrality gaps for hypergraphic steiner tree relaxations, CoRR
abs/1111.7280 (2011).

[20] M. GRÖTSCHEL, L. Lovász, and A. SCHRIJVER, Relaxations of vertex
packing, jco (1986), 330–343.

[21] Guha, Moss, Naor, and Schieber, Efficient recovery from power outage
(extended abstract), STOC: ACM Symposium on Theory of Computing
(STOC), 1999.

[22] Guitart and Basart, A high performance approximate algorithm for the
steiner problem in graphs, RANDOM: International Workshop on Ran-
domization and Approximation Techniques in Computer Science, LNCS,
1998.

[23] Anupam Gupta, Kunal Talwar, and David Witmer, Sparsest cut on bounded
treewidth graphs: Algorithms and hardness results, CoRR abs/1305.1347
(2013).

58

BIBLIOGRAPHY

[24] Venkatesan Guruswami and Ali Kemal Sinop, Faster SDP hierarchy solvers
for local rounding algorithms, Electronic Colloquium on Computational
Complexity (ECCC) 19 (2012), 111.

[25] Halperin, Kortsarz, Krauthgamer, Srinivasan, and Wang, Integrality ratio
for group steiner trees and directed steiner trees, SICOMP: SIAM Journal
on Computing 36 (2007).

[26] Halperin and Krauthgamer, Polylogarithmic inapproximability, STOC:
ACM Symposium on Theory of Computing (STOC), 2003.

[27] C. S. Helvig, Gabriel Robins, and Er Zelikovsky, New approximation algo-
rithms for routing with multi-port terminals, September 19 2000.

[28] Tomoya Hibi and Toshihiro Fujito, Multi-rooted greedy approximation of
directed steiner trees with applications, WG (Martin Charles Golumbic,
Michal Stern, Avivit Levy, and Gila Morgenstern, eds.), Lecture Notes in
Computer Science, vol. 7551, Springer, 2012, pp. 215–224.

[29] Hougardy and Promel, A 1.598 approximation algorithm for the steiner
problem in graphs, SODA: ACM-SIAM Symposium on Discrete Algorithms
(A Conference on Theoretical and Experimental Analysis of Discrete Algo-
rithms), 1999.

[30] Hwang, Richards, and Winter, The steiner tree problem, ANNALSDM:
Annals of Discrete Mathematics 53 (1992).

[31] Anna R. Karlin, Claire Mathieu, and C. Thach Nguyen, Integrality gaps
of linear and semi-definite programming relaxations for knapsack, CoRR
abs/1007.1283 (2010).

[32] Marek Karpinski and Alexander Zelikovsky, New approximation algorithms
for the steiner tree problems, Tech. Report TR-95-036, International Com-
puter Science Institute, Berkeley, CA, August 1995.

[33] Khot, On the unique games conjecture (short), FOCS: IEEE Symposium
on Foundations of Computer Science (FOCS), 2005.

[34] Subhash Khot and Rishi Saket, SDP integrality gaps with local ell1-
embeddability, FOCS, IEEE Computer Society, 2009, pp. 565–574.

[35] Kou, Markowsky, and Berman, A fast algorithm for steiner trees, AC-
TAINF: Acta Informatica 15 (1981).

[36] Lasserre, An explicit exact SDP relaxation for nonlinear 0-1 programs,
IPCO: 8th Integer Programming and Combinatorial Optimization Con-
ference, 2001.

[37] Zi-Cheng Liu and Ding-Zhu Du, On Steiner minimal trees with Lp distance,
Algorithmica 7 (1992), 179–191.

59

BIBLIOGRAPHY

[38] L. Lovász and A. SCHRIJVER, Cones of matrices and set-functions and
0-1 optimization, siopt 1 (1991), no. 2, 166–190.

[39] Bing Lu and Lu Ruan, Polynomial time approximation scheme for the rec-
tilinear steiner arborescence problem, J. Comb. Optim 4 (2000), no. 3,
357–363.

[40] Avner Magen and Mohammad Moharrami, Robust algorithms for on
minor-free graphs based on the sherali-adams hierarchy, APPROX-
RANDOM (Irit Dinur, Klaus Jansen, Joseph Naor, and José D. P. Rolim,
eds.), Lecture Notes in Computer Science, vol. 5687, Springer, 2009,
pp. 258–271.

[41] Madhav V. Marathe, R. Ravi, and R. Sundaram, Improved results on
service-constrained network design problems, Network design: connectiv-
ity and facilities location (Princeton, NJ, 1997), DIMACS Ser. Discrete
Math. Theoret. Comput. Sci., vol. 40, Amer. Math. Soc., Providence, RI,
1998, pp. 269–276. MR 1613008 (99a:68135)

[42] Claire Mathieu and Alistair Sinclair, Sherali-adams relaxations of the
matching polytope, STOC (Michael Mitzenmacher, ed.), ACM, 2009,
pp. 293–302.

[43] Vardges Melkonian and Éva Tardos, Primal-dual-based algorithms for a
directed network design problem, INFORMS Journal on Computing 17
(2005), no. 2, 159–174.

[44] Promel and Steger, RNC-approximation algorithms for the steiner problem,
STACS: Annual Symposium on Theoretical Aspects of Computer Science,
1997.

[45] Prasad Raghavendra and David Steurer, Integrality gaps for strong SDP
relaxations of UNIQUE GAMES, FOCS, IEEE Computer Society, 2009,
pp. 575–585.

[46] Sridhar Rajagopalan and Vijay V. Vazirani, On the bidirected cut relaxation
for the metric steiner tree problem, Proceedings of the Tenth Annual ACM-
SIAM Symposium on Discrete Algorithms (N.Y.), ACM-SIAM, January
17–19 1999, pp. 742–751.

[47] Ram Ramanathan, An algorithm for multicast tree generation in networks
with asymmetric links, INFOCOM, 1996, pp. 337–344.

[48] Reich and Widmayer, Beyond steiner’s problem: A VLSI oriented gener-
alization, WG: Graph-Theoretic Concepts in Computer Science, Interna-
tional Workshop WG, 1989.

[49] Gabriel Robins and Alexander Zelikovsky, Improved steiner tree approxi-
mation in graphs., Proceedings of the Eleventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms (N.Y.), ACM Press, January 9–11 2000,
pp. 770–779.

60

BIBLIOGRAPHY

[50] Thomas Rothvoß, Directed steiner tree and the lasserre hierarchy, CoRR
abs/1111.5473 (2011).

[51] Schoenebeck, Trevisan, and Tulsiani, A linear round lower bound for lovasz-
schrijver SDP relaxations of vertex cover, ECCCTR: Electronic Colloquium
on Computational Complexity, technical reports, 2006.

[52] Sherali and Adams, A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems, SIJDM:
SIAM Journal on Discrete Mathematics 3 (1990).

[53] Shi and Su, The rectilinear steiner arborescence problem is NP-complete,
SICOMP: SIAM Journal on Computing 35 (2006).

[54] Alexander Zelikovsky, A series of approximation algorithms for the acyclic
directed steiner tree problem, Algorithmica 18 (1997), no. 1, 99–110.

61

