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Abstract 

Agricultural management is essential for achieving optimum crop production and maintaining soil 

quality. Soil microorganisms are responsible for nutrient cycling and are an important consideration 

for effective soil management. The overall goal of the present research was to better understand 

microbial communities in agricultural soils as they relate to soil management practices. For this, we 

evaluated the differential impact of two contrasting drainage practices on microbial community 

composition and characterized active denitrifiers from selected agricultural sites. 

Field drainage is important for crop growth in arable soils. Controlled and uncontrolled tile 

drainage practices maintain water in the field or fully drain it, respectively. Because soil water content 

influences nutrient concentration, moisture, and oxygen availability, the effects of these two disparate 

practices on microbial community composition was compared in paired fields that had diverse land 

management histories. Libraries of the 16S rRNA gene were generated from DNA from 168 soil 

samples collected from eight fields during the 2012 growing season. Paired-end sequencing using 

next-generation sequencing was followed by read assembly and multivariate statistical analyses. 

Results showed that drainage practice exerted no measureable effect on the bacterial communities. 

However, bacterial communities were impacted by plant cultivar and applied fertilizer, in addition to 

sampled soil depth. Indicator species were only recovered for depth; plant cultivar or applied fertilizer 

type had no strong and specific indicator species. Among indicator species for soil depth (30-90 cm) 

were Chloroflexi (Anaerolineae), Betaproteobacteria (Janthinobacterium, Herminiimonas, 

Rhodoferax, Polaromonas), Deltaproteobacteria (Anaeromyxobacter, Geobacter), 

Alphaproteobacteria (Novosphingobium, Rhodobacter), and Actinobacteria (Promicromonospora).  

Denitrification in agricultural fields transforms nitrogen applied as fertilizer, reduces crop 

production, and emits N2O, which is a potent greenhouse gas. Agriculture is the highest 

anthropogenic source of N2O, which underlines the importance of understanding the microbiology of 

denitrification for reducing greenhouse gas emissions by altered management practices. Existing 

denitrifier probes and primers are biased due to their development based mostly on sequence 

information from cultured denitrifiers. To circumvent this limitation, this study investigated active 

and uncultivated denitrifiers from two agricultural sites in Ottawa, Ontario. Using DNA stable-

isotope probing, we enriched nucleic acids from active soil denitrifiers by exposing intact replicate 

soil cores to NO3
-
 and 

13
C6-glucose under anoxic conditions using flow-through reactors, with parallel 
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native substrate controls. Spectrophotometric chemistry assays and gas chromatography confirmed 

active NO3
-
 depletion and N2O production, respectively. Duplicate flow-through reactors were 

sacrificed after one and four week incubation periods to assess temporal changes due to food web 

dynamics. Soil DNA was extracted and processed by density gradient ultracentrifugation, followed by 

fractionation to separate DNA contributed by active denitrifiers (i.e., “heavy” DNA) from that of the 

background community (i.e., “light” DNA). Light and heavy DNA samples were analyzed by paired-

end sequencing of 16S rRNA genes using next-generation sequencing. Multivariate statistics of 

assembled 16S rRNA genes confirmed unique taxonomic representation in heavy fractions from 

flow-through reactors fed 
13

C6-glucose, which exceeded any site-specific or temporal shifts in 

putative denitrifiers. Based on high relative abundance in heavy DNA, labelled taxa affiliated with the 

Betaproteobacteria (71%; Janthinobacterium, Acidovorax, Azoarcus, Dechloromonas), 

Alphaproteobacteria (8%; Rhizobium), Gammaproteobacteria (4%; Pseudomonas), and 

Actinobacteria (4%; Streptomycetaceae). Metagenomic DNA from the original soil and recovered 

heavy fractions were subjected to next-generation sequencing and the results demonstrated 

enrichment of denitrification genes with taxonomic affiliations to Brucella, Ralstonia, and 

Chromobacterium in heavy fractions of flow-through reactors fed 
13

C6-glucose. The vast majority of 

heavy-DNA-associated nitrite-reductase reads annotated to the copper-containing form (nirK), rather 

than the heme-containing enzyme (nirS). Analysis of recovered nirK genes demonstrated low 

sequence identity across common primer-binding sites used for the detection and quantification of 

soil denitrifiers, indicating that these active denitrifiers would not have been detected in molecular 

surveys of these same soils. 
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Chapter 1 

Introduction 

1.1 Soil microbial communities 

1.1.1 Soil as a microbial and functional reservoir 

Soil is heavily populated by microorganisms, with an estimated prokaryotic density of 10
9
 cells g

-1
 

in the top meter and 10
8
 cells g

-1
 from 1 to 8 meters depth [1]. The majority of this microbial biomass 

represents uncharacterized diversity and “within the soil microbial population, there is a wealth of 

genetic information waiting to be discovered” [2]. Soil microorganisms provide indispensable 

services, including enabling crop production through agriculture, sustainability of animal 

productivity, and air and water quality regulation. These services depend on land management 

practices ensuring the maintenance of soil health, which is understood as the functioning of the 

underlying processes that maintain the capacity of soil to support life [3]. The microbiological 

component of soil is responsible for originating and consuming nutrients during biogeochemical 

cycling, which regenerates and maintains soil quality [4]. Organic matter degradation [5], pest control 

[6], and soil structure maintenance [7] are other examples of microbial life-supporting processes in 

soil.  

 

1.1.2 Describing soil microbial communities 

High demand of food production, extensive land management, and land-usage changes can lead to 

an unbalanced system that deteriorates soil. Moreover, industrialization and use of chemicals for crop 

production and pest management in agriculture contaminate soils and have the potential to affect the 

microbial communities that maintain ecosystem functioning [8]. Understanding microbial community 

composition is a necessary prerequisite for effective soil management to ensure that sustainable soil 

functionality is preserved. 

Microbial communities can be described in terms of their taxonomic diversity, which encompasses 

measures of richness and evenness. Richness refers to the total number of species and evenness to the 

abundance distributions of individual species [2]. For prokaryotes, “species” are usually defined as 

operational taxonomic units (OTUs), which are sequences grouped by phylogenetic similarity and are 

used in lieu of the traditional species concept [9]. Measuring microbial diversity is an important 
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component of assessing temporal and spatial changes in community structure or function [10]. Using 

diversity indices as measurements of biodiversity, alongside functional assessments, is necessary to 

understand the importance of diversity in relation to community function. Community function has 

been evaluated with process level measurements that estimate microbial activity in soil. Examples of 

process level measurements include the dehydrogenase enzyme activity assessment of soil microbial 

respiration capacity [11] and the hydrolysis of fluorescein diacetate by non-specific enzymes related 

to microbial catabolic activity [12]. Also, metabolic fingerprints of communities can be obtained with 

commercial products like the Ecoplate (Biolog), which uses a suite of carbon sources to test the 

carbon metabolism capacity of the community [13].  

Process-level measurements have been used to evaluate the community stability (i.e., resistance 

and resilience) as a function of taxonomic and functional diversity. For example, soil communities 

with reduced catabolic diversity, due to agricultural land usage, were more affected by environmental 

stresses (e.g., pH, salinity, heavy metals, temperature, and water disturbance) than pasture soils with a 

greater catabolic diversity [14]. Although the authors could not exclude the potential influence of soil 

physicochemical properties in the greater stability of one population over the other, they concluded 

that catabolic diversity was an indicator of community stability. On the other hand, inoculating 

differentially diverse communities into sterile soils demonstrated no correlation between diversity 

reduction and soil functioning based on measurements of DNA and protein activity, nitrification 

capacity, aerobic respiration, decomposition capacity, and resistance to heat and copper stresses [15]. 

However, the ability to detect altered functions at the process level depends on the monitored process 

[15,16] and it has been suggested that these methods do not identify changes in the community 

diversity due to microbial functional redundancy [2]. Nonetheless, these studies help clarify the 

functional role of microbial communities in soil ecosystems. 

 

1.1.3 Factors affecting soil microbial communities 

Soil microorganisms are governed by edaphic factors like salinity [17], pH [18], soil nutritional 

status [19], oxygen tension, and soil structure [20]. Human activities also affect soil communities and 

the effect of land management has been documented [19,21]. 

Salinity was identified as the major driver of microbial community composition based on an 

analysis of 202 environmental samples that included soil, sediment, and water from a wide range of 
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temperatures, salinity levels, pH, and nutrient content [17]. Substrate type (i.e., soil, sediment, or 

water) was the second driver of community composition, such that communities that originated from 

soil are more closely related to one another.  

 The effect of pH on soil microbial communities has been widely studied [22,23]. Both richness 

and overall community diversity (i.e., richness, evenness, and structure) are largely affected by pH 

[18], with higher values for both parameters at neutral pH (6-7) and lowest values at acidic pH (3-4). 

In fact, a survey of 98 soil samples from across North America revealed that community diversity and 

composition could be explained largely by pH [18]. From this investigation, pH was postulated as a 

good continental-scale predictor of microbial community composition, without discarding the 

importance of soil ecosystem type and factors at the local scale (i.e., vegetation type, soil nutritional 

status, moisture content).  

Soil structure includes the size, shape, and arrangement of particles such as sand, silt, and clay, 

along with their association with organic matter [24]. The resulting aggregate formation leads to 

physical and chemical alterations that affect microbial communities. Moreover, a study found 

dominant associations of Alphaproteobacteria to larger soil particles (i.e., sand) and both Holophaga 

and Acidobacterium affiliations with smaller soil particles (i.e., silt and clay) [20]. Differential 

microbial distributions could result from smaller soil particles providing higher organic matter 

content and isolation from predators and competitors. Small soil particles possess both oxic and 

anoxic niches, whereas coarse particles are more exposed to oxygen, biotic interactions, and have 

limited nutrients. 

Carbon content also plays an important role in shaping the diversity and structure of soil microbial 

communities. A study of 29 soil samples demonstrated that carbon-poor soils had microbial 

composition shifts associated with soil depth [25]. In the study, deeper soil communities were less 

diverse and had strongly dominant species, whereas surface communities had more OTUs and 

increased evenness. Conversely, communities from high-carbon content soil showed uniform 

diversity independent of depth, explained by carbon content and resource heterogeneity. 

Land management practices have the potential to alter soil physicochemical characteristics and 

consequently affect the diversity and structure of microbial communities. For example, colonizing 

plant species, grazing, and fertilizer application influenced the rhizosphere microbial communities’ 

structure, but no changes in diversity were detected between differently managed grasslands [19,21]. 

In particular, nitrogen-fixing bacteria were related to rhizosphere soil dominated by leguminous plant 
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species [21]. Another study revealed that the microbial community diversity and structure was similar 

between unfertilized and manure fertilized soil, but distinct from soil receiving sewage sludge 

applications [26]. The impact of land use intensity on microbial communities from grasslands has 

been investigated in sites with and without fertilization, mowing, and grazing [19,27]. Observations 

from a study analyzing the distribution of different N-cycling microorganisms showed that bacterial 

and denitrifier abundances were unaffected by different land use intensities. Conversely, ammonia 

oxidizing bacteria and archaea (AOB and AOA) were more abundant in the fertilized and mowed 

grasslands, but the difference was only significant for AOA. Furthermore, fertilized and frequently 

mowed sites showed reduced heterogeneity of soil characteristics, yet the microbial distribution of 

AOB and AOA was highly heterogeneous. Finally, nitrate reducers were not differentially distributed 

between low and high land usage intensities [27]. Therefore, factors independent from 

biogeochemical soil properties affected the spatial distribution of these organisms (i.e., soil structure, 

microclimate, and oxygen availability). 

 

1.2 Denitrifiers 

Denitrifiers are essential microbial contributors to the nitrogen cycle, releasing gaseous N-oxides 

and N2 into the atmosphere. Denitrification is a major source of nitrous oxide (N2O), a greenhouse gas 

(GHG) with a lifetime of 122 years [28], which has increased its concentration in the atmosphere by 

18% since pre-industrialization, mainly due to human activities [29]. Denitrification in oceans is a 

major natural source of N2O, contributing 20% of the 17.7 Tg N of N2O emitted annually [29]. 

However, at present, N2O released by human activities nearly equals the emissions generated by 

oceans and soils under natural vegetation [29]. Agriculture is the dominant anthropogenic source of 

N2O; 14% of the nitrogen globally applied to soils is lost from amended agricultural fields due to 

denitrification [30], which contributes 16% of new annual N2O emissions [29]. On the other hand, 

denitrification represents an important element of municipal wastewater treatment and bioremediation 

[31-34] . Therefore, it is not surprising that denitrifier communities have been explored in far ranging 

environments, including marine and lake sediments[31,35], soils [36,37], wastewater treatment 

reactors [31,32,34], surface water [31], and ground water [38]. 

Dissimilatory denitrification is a respiratory process by which nitrogen oxides are reduced 

enzymatically, coupled with oxidation of inorganic or organic molecules, driving ATP synthesis 
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through the proton motive force. This metabolism is widespread among facultative aerobes of the 

Bacteria [32,34,39]. Bacterial denitrification occurs primarily under anoxic conditions in the presence 

of both nitrate (NO3
-
) and organic carbon; these conditions activate nitrate transport into the cell [40] 

and its successive reduction to nitrite (NO2
-
), nitric oxide (NO), nitrous oxide (N2O), and dinitrogen 

gas (N2). Nonetheless, denitrification has also been observed in the presence of oxygen, in bacteria 

whose periplasmic nitrate reductase is able to reduce NO3
-
 before it is transported into the cell [40]. 

 

1.2.1 Coding genes and enzymes involved in denitrification 

The genes and enzymes involved in denitrification are well characterized [33,35,40-42] and 

multiple enzymes are involved in sequential nitrate reduction to dinitrogen gas (Table 1). 

 

Table 1. Functional genes, enzymes, and reactants involved in denitrification. Modified from 

Verbaendert, 2011[43]. 

Enzyme 
Gene Substrate Product 

Name Characteristic Catalytic subunit 

Nitrate 

reductase 

Membrane-bound Nar narG NO3
-
 NO2

-
 

Periplasmic Nap napA 

Nitrite 

reductase 

Cytochrome cd1 

periplasmic enzyme 

Cd-Nir nirS NO2
-
 NO 

Copper periplasmic 

enzyme 

Cu-Nir nirK 

Nitric 

oxide 

reductase 

Two-component type, 

membrane-bound 

Nor norB NO N2O 

Single-component type, 

membrane-bound 

qNor qnorB 

 Membrane bound qCuANOR unknown   

Nitrous 

oxide 

reductase 

Periplasmic in Gram-

negative bacteria 

Nos nosZ N2O N2 
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Nitrate reductase is found not only in denitrifiers, but in all nitrate reducing organisms [37], 

including Escherichia coli, which makes the corresponding gene less useful for dissimilatory 

denitrifier community assessments. Also, both the periplasmic and membrane bound versions of the 

enzyme might be found in the same organism and expressed in different environmental conditions 

[44]. The phylogeny of the narG gene, which encodes the catalytic subunit of the membrane-bound 

nitrate reductase, approximates that of the 16S rRNA gene, although the same observation did not 

hold true for napA-based phylogenies [33]. 

Nitrite reductase produces the first gaseous compound of denitrification, making it a crucial 

enzyme for the process, catalyzing the key denitrification reaction [33]. For this reason, the genes 

encoding the catalytic subunit of the two existing versions of this enzyme have been studied widely 

and represent key genes for monitoring denitrifier communities. Nitrite reductase distributions are 

limited to denitrifying bacteria, both nirS and nirK have not yet been reported as occurring in the 

same strain [45]. Both nirS and nirK phylogenies are not consistent with 16S rRNA gene phylogeny 

[33].  

The nitric oxide reductase gene (qnorB) is not exclusive to dissimilatory denitrifying bacteria [35], 

due to a possible NO detoxification role in other microorganisms [40,46]. Two enzyme variants have 

been known for decades and a third type was recently discovered for which the coding gene remains 

unknown [33]. Both norB and qnorB are mutually exclusive [35] and not well related to the 16S 

rRNA gene phylogeny of denitrifiers [33]. 

The nosZ gene, encoding the nitrous oxide reductase, is not present in all denitrifiers and this 

absence results in truncated denitrification within some strains [34,36]. An atypical nosZ gene is also 

present in non-denitrifying bacteria that lack other denitrification genes and even within bacteria that 

reduce nitrate to ammonium [47], probably indicating the suitability of N2O as electron acceptor [45] 

and microbial adaptation for exogenous N2O reduction. Also, this enzyme is recognized as the most 

susceptible reductase involved in the process, having oxygen [48], pH [49], temperature [50], and 

heavy metal sensitivity [51]. Either the absence of N2O reductase or its inhibition could potentially 

lead to increased N2O production [36,40]. The gene phylogeny resembles trees generated with 16S 

rRNA gene [33]. 

Because denitrification is widely distributed among phylogenetically diverse microorganisms, 

partly due to horizontal gene transfer of nir, nor, and nos genes [33], it is not possible to study 

denitrifiers with a molecular approach by targeting a genetic marker such as the 16S rRNA gene. 
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Instead, functional genes are targeted for characterizing denitrifier communities [32,33,40,52]. As a 

result, establishing robust probes and primers for these markers are important research goals for 

qualitative and quantitative monitoring of denitrifier communities. 

Existing primers for PCR amplification of denitrifier functional genes are biased because they were 

designed based on limited genomic information from cultured strains. For example, Heylen and 

coworkers examined 277 denitrifying isolates from activated sludge but only ~50% of the isolates 

produced an amplicon for nirS or nirK using previously published primers [53]. Another recent effort 

to improve existing primers for the amplification of nirK from Rhodanobacter spp. involved the 

design of a genus-specific primer set [38], demonstrating that the design of universal primer sets will 

be challenging and certainly not feasible solely by using available gene sequences from cultivated 

strains. To date, commonly used primers for nirK amplification include nirK876 and nirK1040 [54], 

cd3aF and R3cd are preferred for nirS amplification [34,55,56], and nosZ2F and nosZ2R are 

employed for nosZ amplification [36]. However, some functional genes might not be as informative 

as others when evaluating denitrifier responses to environmental stimulus. For example, soil 

community structure changes were observed using nirK and nirS with DGGE fingerprinting, but not 

with nosZ [57]. Similarly, gene abundances did not capture the environmental impact on denitrifiers 

when using nosZ as a marker. The nirK gene was the most valuable tool in this research because it 

seemed to be more sensitive to external factors, followed by nirS [57]. 

One pitfall of analyzing DNA extracted directly from an environmental sample is that the detected 

genes might not be expressed or may belong to organisms that are not active, yet still contribute DNA 

[41]. Cultivation approaches bias toward community members that are readily grown, which may not 

represent those involved in a particular environment or process in situ [58]. A high proportion of 

microorganisms are recalcitrant to cultivation, mostly due to the large number of parameters that 

remain unknown in selecting culture media and conditions for microbial growth [52]. Evidence 

suggests that the study of denitrifier communities is best addressed by combining both traditional 

microbiology (i.e., cultivation and isolation of denitrifiers) [52] and molecular methods, 

encompassing genomic and metagenomic data (e.g., PCR, qPCR, DGGE, FISH, and gene 

sequencing) [38]. In this way, researchers retrieve genomic sequences that represent the diversity of 

the functional genes and best enable the development of appropriate tools for studying the 

composition and diversity of microorganisms in the environment.  
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1.2.2 Denitrification in soil and influencing factors 

Among the environments in which denitrification has been studied, soil is notable because it 

harbors such a diverse pool of microorganisms [59], for which the majority are uncultured and 

uncharacterized. Soil originates two thirds of atmospheric N2O [60] and agricultural soils are the 

largest source of N2O because of fertilizer N application through mineral fertilizers, manure, and 

recycled crop residues [30,36,60]. Factors affecting soil denitrification are oxygen tension, carbon 

and nitrogen properties and availability, pH, temperature, and other microbial populations through 

food web dynamics. To what extent each factor is responsible for observed denitrification rates and 

for indirectly altering other factors of importance for the process is not well known.  

Because agriculture is of high economic and social importance, many studies have assessed 

agricultural management practices (e.g., fertilization, tillage, irrigation, harvest) and their effects on 

microbially mediated processes of the N cycle. As summarized in the subsequent sections, 

understanding factors influencing soil denitrification is important for ensuring that soil management 

practices result in lower N2O emissions, reduced fertilizer applications, and increased agriculture 

biomass yields.  

 

1.2.2.1 Nitrogen effect 

Nitrogen inputs affect soil bacterial communities by changing the relative abundance of specific 

bacterial groups [61]. The type of fertilizer employed also impacts the microbial communities found 

in agricultural soils, as has been shown for denitrifiers enriched in the presence of urea [56]. Organic 

fertilizers can lead to increased nitrogen turnover that also benefits crop yields [56,62], for example 

by increasing endophytic nitrifiers [62]. N inputs during fertilization are followed by denitrification 

and N2O emission increases because the molecule is not fully reduced in the presence of NO3
-
, which 

is a more energetically favorable electron acceptor [63]. This effect can be increased by organic 

fertilizers that contribute organic C [64] and higher water content to soil [63]. Commonly, N2O 

emissions increase in fields fertilized with higher N content materials and emissions increase if the N 

applied is released rapidly, as is the case with inorganic fertilizers [65]. 
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1.2.2.2 Carbon effect 

Denitrifiers are mostly heterotrophic microorganisms; as a result, C availability is an important 

factor influencing soil denitrification. Carbon is a direct controller of microbial communities in soils 

[25], but carbon can also affect the communities indirectly. For example, soil carbon promotes soil 

respiration and microbial activity, generating O2-limited microsites that increase denitrification [66]. 

Denitrification activity is also affected by carbon concentration. Henry and collaborators 

demonstrated that C limitation can increase N2O emissions. They also demonstrated that the type of 

soil C affects the composition of the denitrifier communities, but not denitrifier abundance [67]. 

However, the detected effects were not attributed to the C:N ratio; the authors concluded that C is not 

a major factor controlling these parameters of denitrifier populations. 

 

1.2.2.3 Oxygen effect 

Denitrification is considered an anaerobic process [68] because the denitrification pathway is active 

in anoxic environments in the presence of NO3
-
 or NO2

-
 [33]. Oxygen availability is an important 

regulator of the transcription of genes involved in the denitrification pathway [69]. In addition, 

oxygen decreases denitrification rates significantly because it is a more energetically favorable 

electron acceptor than NO3
-
 [70]. Despite this, some strains denitrify under oxic conditions [44], 

where oxygen availability may lead to incomplete denitrification because the N2O reductase is 

oxygen sensitive [40]. Soil oxygen content is affected by water content and texture [63]. Soil N2O 

emissions were highest when water-filled pore space (WFPS) increased, yet it is important to note 

that ammonia oxidizers likely contributed three quarters of total evolved N2O [49]. Given the 

importance of WFPS on denitrifier-mediated N2O emissions, rain is an important element modifying 

WFPS in agricultural fields, which can lead to dominant denitrifier N2O emissions at WFPS over 

80% [65]. 

 

1.2.2.4 Plant effect 

An effect of N input is seen in plant primary production, where increased N input reduces plant 

diversity in grasslands and increases plant biomass in monoculture plots [61]. Evidence of plant 

influence on rhizosphere microbial communities has been documented and may relate directly to 

plant-life stage (e.g., exudate composition) or soil conditions modified by plant-life stage demands 
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(e.g., water demand) [56]. Plant organic C contributions play a role in denitrification [63]. These 

contributions may exceed the effects of plant community composition, according to the observation 

that higher N inputs lead to higher C availability in the soil, promoting copiotrophs over oligotrophs, 

as evidenced by Bacteroidetes increases and Acidobacteria reductions [61]. However, the plant-

species dependence hypothesis has been formulated for denitrifiers and other communities of 

importance for the N cycle [71]. Plant influences on microbial communities might be dependent on 

microbial taxonomy or function; denitrifiers might nonetheless be influenced by plant presence [72]. 

The rhizosphere possesses an increased abundance of denitrifying enzymes over the bulk soil [73], 

probably due to C supply and O2 content, which may have important consequences for N2O 

production potential.  

 

1.2.2.5 pH and fertilizer effect 

Soil pH is linked to the amounts and types of fertilizer applied. For example, reduced soil pH is 

associated with increasing ammonium nitrate inputs, decreasing from 7.4 to 6.0 in a fertilization 

gradient of 0 to 800 kg ha
-1 

yr
-1

 and from 6.9 to 5.0 in a fertilization gradient of 0 to 267 kg ha
-1 

yr
-1

 

[61]. Soil pH modifies microbial community structure [23] and influences microbial community 

diversity [61]. Specific taxa correlate positively or negatively with soil pH (e.g., Acidobacteria 

decrease and Bacteroidetes and Actinobacteria increase in acidic soil).  

N-fertilizer type influences soil pH [72], as seen in soils fertilized with sewage sludge (pH 4.7) or 

ammonium sulfate (pH 4.0), in comparison to the unfertilized control plot (pH 5.6), those receiving 

calcium nitrate (pH 6.3), or manure (pH 6). Also associated with lower pH was a decrease in nitrate 

reducers, denitrifiers, and AOA abundance (AOB were not influenced); the greatest reduction was in 

the ammonium sulfate plots. A complementary study showed that the denitrifier composition was 

notably different in the acidic pH plots [64]. However, denitrifier potential activity and community 

composition were not related. 

Soil pH is affected by urea addition, decreasing from 4.6 to 4.1 when urea was added as sole 

fertilizer source and from 5.5 when manure is the fertilizer to 5.1 when a mixture of manure/urea was 

used [56]. In such plots, denitrifiers increased as a result of N supplementation. This increase was 

more pronounced when urea was added to the fertilizer mixture than when manure or straw were the 

sole fertilizers. Denitrification activity responses to pH are different when evaluated shortly after pH 
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alteration and after long-term establishment [49]. The assumption that denitrification decreases as pH 

decreases [63] was recently tested by acidifying soil from its original pH of 7.4 to pH 5.6 (WFPS 

50%) and 6 (WFPS 65%). The result was lower N2O emissions in both cases and denitrification 

dominating within the acidified soil sample with a WFPS of 65%. The same study demonstrated 

superior denitrification activity from soil maintained at pH 4.5 (82% of N2O emissions) than from soil 

maintained at pH 7.0 since 1961 (Craibstone, Scotland). One possibility is that acid-resistant 

denitrifiers become selected in acidic soils, facilitating denitrification at low pH, with N2O reduction 

inhibited by low pH [49]. For basification of long-term low pH soil from 4.5 to 7, the study showed a 

shift from denitrification as the main source of N2O (82% of N2O produced) to ammonia oxidation 

(87% of N2O produced). Similarly, basification of soil from original pH 7.4 to pH 8.1 at two WFPS 

(50% and 65%) showed that ammonia oxidation contributed more N2O than denitrification, which 

was related to an increased amount of ammonia (NH3) at higher pH and possible mitigation of pH 

inhibition of denitrifier N2O reduction [49]. 

 

1.2.2.6 Denitrifier community effect 

Soil denitrifiers have a direct impact on nitrogen biogeochemistry and N2O fluxes. Whether this 

influence is due to community structure, abundance, or diversity is not yet clear. Some evidence 

indicates that denitrifier abundance is the most direct controller [71,72,74], whereas another study 

showed that community structure is an important element [75]. Conversely, some authors found no 

relationship between denitrifier activity and community abundance [76] nor structure [64,71,72]. As 

expected, the microbial component of N cycling is convoluted and more information is required to 

better understand the factors that affect soil denitrifier activity and community composition.  

 

1.2.2.7 Agricultural management effect 

As described above, factors that influence denitrification are carbon availability, NO3
-
 

concentration, and O2 tension. In agricultural soils, these parameters are modified by anthropogenic 

soil alterations and also by climate events. Factors that alter soil O2 content are rainfall events and 

irrigation that change soil WFPS [63], reducing or eliminating oxygen in soil. Soil carbon content is 

influenced by organic fertilizers [64], plant exudates [56], and plant cultivar [65]. Soil nitrogen 

content is modified by fertilizer type and application rate [61]. Soil structure is important because it 
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influences O2 tension and soil drainage [77]. Also, soil mechanical operations might increase soil 

erosion and reduce organic matter content [78]. Structure also suffers from grazing livestock in fields 

[79], whereas tillage modifies soil structure and might promote N2O emissions [65].  

 

1.2.3 Alternative soil processes contributing N2O and N2 

Nitrogen cycling is an intricate network of reactions executed by diverse functional populations 

that may share NOX pools and niches. These groups of microorganisms are thought to become active 

in different environmental conditions and may compete for substrates, cross-feed metabolites, 

transform chemicals, and differentially contribute to the pool of N cycle substrates. Co-denitrification, 

ammonia oxidation, anaerobic ammonium oxidation (anammox), and nitrate ammonification, also 

called dissimilatory nitrate reduction to ammonium (DNRA), are capable of transforming nitrogen in 

soil and together can contribute N2O and N2. 

Co-denitrification, suggested by some authors to be referred to as denitrification, implies the use of 

N atoms from substrates other than those involved in the denitrification pathway (e.g., azide, 

salicylhydroxamic acid, amino acids). Such atoms would react with NO to form N2O [80], 

consequently increasing produced N2O and N2. To date, few reports address co-denitrification 

separately and understanding of co-substrate preference, utilization mechanisms, and importance is 

limited. Some evidence from an experiment using temperate grassland soil found that co-

denitrification might exceed denitrification by accounting for 92% of N2 produced; the study also 

highlighted the fungal importance in N2O production via co-denitrification [81].  

DNRA might be a source of N2O in soil. Although poorly studied, DNRA was recently shown to 

correlate with pH, sand content, NO2
-
 concentration, low redox potential, and low NO3

-
 content 

(C:NO3
-
 ratio and bulk density), and to negatively correlate with C and organic N content in soil [82], 

which contrasts with the hypothesis that C abundance correlates with DNRA activity [83]. DNRA 

capacity in temperate arable soils was demonstrated [82], but the activity seemed to be limited to a 

narrow set of conditions, which might be found in the rhizosphere. Therefore, the authors suggested it 

is unlikely that DNRA contributes significantly to the N budget in temperate arable soil. In contrast to 

these findings, a pristine forest was found to have DNRA outcompete denitrification for NO3
-
 

reduction without significant N2O production [84]. 
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Anammox produces N2 from NO, using ammonia as electron donor. The process involves 

hydrazine as an intermediate and an anammoxosome organelle is essential for the process. Anammox 

activity is mostly found in marine environments [85,86] and estimates suggest that 50% of global N2 

derives from anammox activity [87]. Anammox has been detected in freshwater [88] and different 

soil types, including agricultural soils where anammox activity is not thought to be substantial in 

comparison to denitrification [89]. Anammox bacteria have an important role in wastewater treatment 

where implementation of this process over nitrification/denitrification can reduce treatment costs by 

diminishing aeration requirements for nitrification and by avoiding C supplementation for treatment 

of effluents that have minimal organic carbon for denitrification [87]. 

Ammonia oxidation by nitrifying AOB contributes NO2
-
, but also produces N2O as byproduct of 

chemical decomposition of the hydroxylamine intermediate. Furthermore, AOB can denitrify, which 

is referred to as nitrifier denitrification. This process was first observed in Nitrosomonas spp. [90] and 

later verified for all betaproteobacterial AOB [91]. Heterotrophic niftrification has been observed in 

soil microbial isolates. Notably, N2O production under oxic conditions for Alcaligenes faecalis goes 

beyond the observed activity of Nitrosomonas, suggesting a possible important role of heterotrophic 

nitrification in N2O production [92]. However, direct evidence of such a process in soil is lacking. 

Categorizing bacterial groups as devoted to a certain metabolic process can be misleading when 

evaluating interactions among microorganisms and the overall role of such species in the 

environment. Illustrating how flexible the boundaries of microbial metabolism can be, methanotrophs 

can denitrify [93] and the possibility exists that methane-oxidizing bacteria (MOB) produce N2O in 

soils by ammonia oxidation, resulting from ammonia competition for the methane monooxygenase 

enzyme active site [94] due to homology between ammonium monoxygenase and methane 

monooxygenase [95]. 

At the activity level, denitrification can be distinguished from anammox in aquatic environments 

using isotope-labelled substrate incubations (i.e., 
15

NO3
-
 and 

14
NH4

+
 incubations), where anammox 

produces 
29

N2, whereas denitrification yields 
30

N2. In soils, co-denitrification would generate 
29

N2, 

making that isotope the contribution of anammox and co-denitrification [89]. Denitrification activity 

comprises both bacterial and fungal activity, which can be attributed to the source microorganism 

through incubations in the presence of antimicrobial compounds (e.g., streptomycin for bacterial 

activity inhibition and cycloheximide for fungal activity inhibition) to estimate the relative 

contribution of each organism [81]. Recent work based on isotopologue values for N2O production by 
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denitrifying bacteria and fungi might advance denitrification attribution to the source microorganism 

[96]. DNRA estimations remain a challenge and although experimental approaches have been 

described, they only suggest the presence of the process and do not estimate rate contributions [82]. 

At the genomic level, N2O production by ammonia oxidizers is estimated using the amoA gene. N2 

emissions from anaerobic ammonia oxidizers are estimated with anammox-associated 

Planctomycetales 16S rRNA genes [88]. In turn, denitrifiers are linked to N2O emissions with nirK, 

nirS, and nosZ gene detection and quantification [34,74,76]. 

 

1.3 Methods in microbial ecology  

Microbial ecology and taxonomy use 16S rRNA genes to explore, classify, and identify microbial 

species [97]. Fingerprinting methods such as denaturing gradient gel electrophoresis (DGGE) and 

terminal restriction fragment length polymorphism (T-RFLP) can visually differentiate and enumerate 

bacterial species in a sample [98,99]. Fingerprinting methods allow the comparison of multiple 

samples over time or in response to treatments or disturbances.  

Recently, technological advances made microbial diversity characterizations possible with 

Illumina, Ion Torrent, and Roche’s 454 sequencing platforms. Different methodologies for massively 

parallel sequencing of taxonomic gene markers are available and constantly improved, allowing 

characterization of microbial communities of many disparate environments. A pioneering study 

compared different soil ecosystems with Illumina 16S rRNA gene sequencing and found high species 

richness, but poor phylum richness in agricultural soils, whereas forest soil had higher phylum 

richness [100]. Also, they reported Bacteroidetes, Betaproteobacteria, and Alphaproteobacteria as 

the most abundant lineages in the forest and arable soils studied. This new era of “big data” 

acquisition and data analysis promises to continue advancing our understanding of microbial 

communities’ composition and dynamics. 

Microbial communities can also be studied through the analysis of metagenomic libraries. The soil 

metagenome refers to the entire collection of microbial genomes from a particular soil [101]. Once 

the DNA is extracted from a soil sample, it can be cloned into a vector and transformed into an 

appropriate host. A metagenomic library comprises the obtained clones and can be screened for 

sequences that associate to a function or for the metabolic activity itself [102]. 
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One goal in microbial ecology is associating microbial identity and function [59]. One 

methodological approach for linking function to particular microbial taxa is by combining fluorescent 

in situ hybridization (FISH) and microautoradiography. FISH uses fluorescent rRNA gene-binding 

probes to identify microorganisms, whereas microautoradiography detects radiolabeled substrate 

uptake in the same microbial cells [103].  

A molecular approach for targeting nucleic acids of active and potentially uncultivated 

microorganisms is DNA stable-isotope probing (DNA-SIP) [104]. This method allows for a specific 

functional group of organisms to be enriched while incorporating a stable-isotope labeled substrate 

into their DNA. Subsequent density-gradient ultracentrifugation of the DNA and molecular analyses 

can identify the active microorganisms [105], regardless of their ability to be isolated in pure culture. 

The combination of DNA-SIP and metagenomics is valuable in the discovery of novel enzymes that 

can be employed for industrial benefit [106]. Likewise, DNA-SIP has revealed novel versions of 

functional genes involved in known metabolic pathways [58]. Now, exploration of microbial diversity 

and metabolism from genomic material of the active population obtained through DNA-SIP is 

facilitated by the advent of high-throughput sequencing [107]. 

 

1.4 Research description 

Agricultural practices influence soil microbial communities and denitrifier populations [57,61,65]. 

Microbial community structure assessments have been conducted previously with fingerprinting 

methods [64], gene abundance counts [74], and recently by sequencing [61]. This information can 

then be linked with activity assays to estimate microbial potential for different processes [72,108]. 

Available data are in many cases qualitative or semi-quantitative in terms of microbial composition 

and quantitative in terms of microbial processes rates. This study addressed the role of agricultural 

practices as factors that shape soil bacterial communities and denitrifier populations and potential 

activities. Also, this study explored denitrifying gene sequences from active uncultured members of 

soil communities, which will improve current database coverage for future denitrification research.  
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1.4.1 Research overview 

Across Canada, the Watershed Evaluation of Beneficial Management Practices program studies the 

impact of agricultural beneficial management practices (BMPs) at the watershed level. One of the 

study sites identified as WEBs (derived from Watershed Evaluation of Beneficial Management 

Practices), is located within the South Nation Watershed in Ottawa, Ontario where the effect of 

controlled (CTD) versus uncontrolled (UCTD) tile drainage is evaluated. 

UCTD consists of perforated belowground pipes (i.e., “tiles”) through which groundwater drains 

from the fields. Using this drainage method may negatively impact water quality once the drainage 

enters receiving waters. The alternative is implementation of CTD that enables regulation of the field 

water table depth during crop growth. CTD increases crop yield and reduces nutrient loading of 

surface water by prolonging the residence time of the drained water in the field [109,110]. Although 

the use of CTD is now an approved BMP, it is possible for this practice to promote anoxic conditions 

that increase GHG emissions (i.e., N2O). Therefore, characterization of the microbial community and 

denitrifier populations in fields under controlled and uncontrolled drainage management will assist in 

defining the possible role of this BMP in the release of NO and N2O. 

Fertilizer type might affect the microbial community in CTD and UCTD fields. This can be 

explored by studying WEBs fields, which receive either mineral fertilizers or a mixture of mineral 

and organic fertilizers. Also, a second site in the South Nation watershed operating under CTD and 

manure fertilization, known as the Winchester site, was included. Its characterization will aid in 

recognizing the effect of agricultural practices on the microbial component of soil. 

An important goal of microbial community studies is to identify the active microorganisms in a 

given situation. For this research, active denitrifiers are a target of interest due to the importance of 

the guild for agriculture and the environment. DNA-SIP was used on selected samples to enrich the 

active community under nitrate-reducing conditions for phylogenetic analysis. The experimental 

setup allowed denitrification-rate calculation. Finally, metagenomic sequencing of the active 

denitrifier DNA allowed functional-gene recovery and exploration. 
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1.4.2 Objectives and hypotheses 

This research aimed to explore the effect that two different drainage practices (i.e., CTD and 

UCTD), employed for agriculture, have on microbial diversity. The hypothesis is that the 

implemented drainage practice modifies moisture content and oxygen availability in soil, thus 

potentially altering the community composition. This research also aimed to characterize active 

denitrifiers from differentially managed soils, amended with either manure or mineral nitrogen 

fertilizers and operated under CTD or UCTD systems. The hypothesis is that using culture-

independent techniques will lead to recovery of novel denitrifiers that are distinct from cultured 

isolates. Another aim was to recover and explore nitrite reductase sequences by combining DNA-SIP 

and metagenomics. The hypothesis is that gene sequences recovered from active microorganisms 

without the prerequisite of cultivation will identify denitrifier genes that differ from those of known 

cultivated representatives. 
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Chapter 2 

Materials and methods 

My thesis research involved the characterization of total bacterial communities and denitrifying 

organisms from two distinct agricultural sites with varying drainage management practices and 

fertilizer application regimes. Bacterial community profiling with next-generation sequencing 

involved collecting soil samples during the 2012 growing season. Additional soil cores were collected 

in October 2012 for denitrifying community characterization with DNA-SIP and metagenomics. 

2.1 Microbial community characterization 

2.1.1 Sampling sites 

Two study sites were used for this research, both located in Ottawa, Ontario (Table 2). First, the 

WEBs site (named after the Watershed Evaluation of Beneficial Management Practices study) is 

divided into fields operated under contrasting management practices. The site was amended with 

either a mineral-based or a mixture of mineral- and manure-based nitrogen fertilizers. These fields 

were operated under CTD or UCTD systems, which maintain water in the field or fully drain it, 

respectively. Second, the Winchester site is divided into fields operated under manure fertilization 

and CTD.  

 

Table 2. Study sites characteristics and implemented management practices. 

Site Coordinates Fields 
Drainage 

mode
1
 

Fertilizer Crop 

WEBs 45°16’ N, 75°10’ W 1 UCTD Mineral-based Soybean 

  2 CTD Mineral-based Soybean 

 45°15’ N, 75°11’ W 11 and 12 CTD 
Mineral- and 

manure-based  
Forage 

  13 and 14 UCTD 
Mineral- and 

manure-based  
Forage 

Winchester 45°3’ N, 75°20’ W 1 to 6 CTD Manure Silage corn 

1
CTD is controlled tile drainage, UCTD is uncontrolled tile drainage. 
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WEBs fields 1 and 2 were amended only with mineral fertilizer (urea) over the past ten years. Corn 

and soybean were grown on these fields, exclusively. On May 16, 2012 the fields were planted with 

Soybean (Dekalb 26-10RY). Soybean emerged on May 23, 2012 and herbicide (Roundup) was 

applied between May 23 and 28, 2012. Harvest occurred on September 24, 2012. Drainage for field 2 

was controlled; water was kept in the field from May 17, 2012 to November 20, 2012. 

WEBs fields 11 to 14 received both mineral fertilizer (urea) and manure (dairy lagoon and soiled 

bedding). These fields have grown soybean (2005), corn (2006-2010), and forage (2011-2012). 

During 2012, no fertilizer, pesticide, or herbicide was applied and minor reseeding was done on 

damaged patches. The fields grew alfalfa and were harvested on June 14, July 13, August 21, and 

October 25, 2012. Drainage for fields 11 and 12 was controlled; water was kept in the fields from 

May 18, 2012 to November 19, 2012. 

Winchester’s fields 1 to 6 receive manure and grow corn. On May 31, 2012 they received manure. 

Corn was planted on June 6, 2012 and emerged on June 14, 2012. Herbicide (Roundup) was applied 

on June 28, 2012. Corn was harvested on October 29, 2012. Drainage for all fields was controlled; 

water was kept in the fields starting May 31, 2012 and only released from fields 1-3 on November 30, 

2012. 

During the growing season of 2012, soil samples from WEBs and Winchester were collected for 

DNA-based microbial community characterization at multiple time points. Soil samples from 

different depths (0-30, 30-60, and 60-90 cm for WEBs and 0-15, 15-30, and 30-60 cm for 

Winchester) and different locations with varying proximity to tiles (above tile and between tiles for 

WEBs and between tiles for Winchester) were collected and stored (unsieved) at -20°C until DNA 

extraction (Appendix A). 

 

2.1.2 DNA extraction 

DNA was extracted from 0.25 to 0.30 g of soil using the PowerSoil DNA Isolation Kit (MO BIO), 

which uses chemical and mechanical cellular lysis and removes humic acids, proteins, and other 

contaminants through precipitation and washing steps. Mechanical lysis was done for 45 seconds at 5 

m s
-1

 in a bead beater (FastPrep 24, MP Biomedicals). Purified DNA was stored at -20°C in EDTA-

free 10 mM Tris solution provided by the manufacturer until use. 
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DNA was subject to electrophoresis in 1% (w/v) agarose gels (BioShop) in TAE buffer, gels 

contained ethidium bromide (1 µg mL
-1

, Calbiochem) for nucleic acid visualization. For reference, a 1 

Kb Plus DNA Ladder (Invitrogen) was included as a marker. Gel images were acquired with an 

AlphaImager HP (Alpha Innotech). In addition, DNA concentration and quality was evaluated using a 

NanoDrop 2000 spectrophotometer (Thermo Scientific). 

 

2.1.3 Next-generation sequencing 

2.1.3.1 16S rRNA gene library construction 

A fragment of approximately 465 bp from the 16S rRNA gene was amplified by PCR from 168 soil 

DNA samples (WEBs and Winchester sites) using a modified version of a previously published 

protocol [111]. Modification included migration from V3-region amplification to V3/V4-region 

amplification for obtaining two variable regions of the 16S rRNA gene. Primers employed for the 

PCR were 341F (5’-CCTACGGGAGGCAGCAG) and 806R (5’-GGACTACHVGGGTATCTAAT) 

[98,112] with adaptors for Illumina next-generation sequencing. Each sample was PCR amplified in 

triplicate. Each PCR mixture contained 1.5 µL of bovine serum albumin (10 mg mL
-1

, Sigma-

Aldrich), 2.5 µL of ThermoPol reaction buffer (10X, New England BioLabs), 0.05 µL dNTPs (100 

nM, New England BioLabs), 0.05 µL forward primer (100 µM, Integrated DNA Technologies), 0.5 

µL reverse-indexed primer (10 µM, Integrated DNA Technologies), 0.125 µL Taq DNA polymerase 

(5000 U mL
-1

, New England BioLabs), 1 µL soil DNA template (2-20 ng µL
-1

), and nuclease free 

H2O (Thermo Scientific) to 25 µL. The reaction was done in a T100 Thermal Cycler (Bio-Rad). The 

program had an initial denaturation step of 30 seconds at 95°C, 30 cycles of 15 seconds at 95°C, 30 

seconds at 50°C, and 30 seconds at 68°C, followed by a final extension step of 5 seconds at 68°C. 

Controls included non-template and positive reactions.  

Individual PCR products were subjected to electrophoresis to verify amplification, specificity, and 

size. For each soil DNA sample, three independent PCR amplifications were combined and then gel 

quantified using the band analysis tool in AlphaView Software (Alpha Innotech). Purified and 

spectrophotometrically quantified V3/V4 amplicons served as quantification standards. Equal 

amounts of all soil PCR-products were combined in one sample. The mix was electrophoresed in a 

1% agarose gel and visualized by UV transillumination. The 16S rRNA gene amplicon band was 
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excised and then purified with the Wizard SV Gel and PCR Clean-up System (Promega). The 

obtained 16S rRNA V3/V4 amplicon mixture was eluted in Buffer EB (Qiagen). 

Library quantification was done with spectrophotometry, gel quantification, and qPCR. Primers 

employed for the qPCR were 341F (5’-CCTACGGGAGGCAGCAG) and 518R (5’-

ATTACCGCGGCTGCTGG) [98]. Sample mix contained 1.2 µL of bovine serum albumin (10 mg 

mL
-1

, Sigma-Aldrich), 10 µL of SsoAdvanced SYBR Green Supermix (2X, Bio-Rad), 0.04 µL 

forward primer (100 µM, Invitrogen), 0.04 µL reverse-indexed primer (100 µM, Invitrogen), 1 µL 

DNA library, and nuclease-free H2O (Thermo Scientific) to 20 µL. The reaction was done in a C1000 

Thermal Cycler with a CFX96 optical module (Bio-Rad). The program had an initial denaturation 

step of 30 seconds at 95°C, 35 cycles of 5 seconds at 95°C, and 20 seconds at 50°C, finally melt 

curve analysis from 65°C to 95°C with increments of 0.5°C held for 2 seconds. Purified and 

spectrophotometrically quantified V3/V4 amplicons served as a quantification standard. 

 

2.1.3.2 Illumina sequencing 

Template was prepared for sequencing according to manufacturer guidelines using the MiSeq 

Reagent Kit v2 (500 cycles, Illumina). Briefly, template was denatured with NaOH and diluted to 

12.5-17 pM, then mixed with denatured Illumina PhiX control at the same molarity in a 19:1 ratio. 

Template was loaded into a MiSeq v2 Reagent Tray (Illumina) and sequencing proceeded using the 

MiSeq System (Illumina).  

During the Illumina run, clusters of monoclonal V3/V4 sequences in the library were generated and 

then sequenced to generate V3/V4 paired-end reads of 250 bp, including an additional index read 

linking each sequence to the sample of origin. Image analysis, base calling, quality score calculation, 

and demultiplexing (read sorting by index) were done using MiSeq Control Software (version 

2.3.0.3). 

 

2.1.4 Bioinformatic analysis 

Obtained 16S rRNA gene sequences were processed using QIIME [113] and AXIOME [114] for 

taxonomic exploration of the communities as described below. PANDAseq was used for paired-end 

read assembly [115]. Sequences were clustered with CD-HIT using a 97% similarity threshold to 
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yield OTUs [116]. OTUs were assigned to bacterial taxonomy using the RDP classifier [117] based 

on the Greengenes database [118]. Chimeric sequences were filtered with UCHIME [119].  

AXIOME generated principal coordinate analysis (PCoA) [120] and nonmetric multidimensional 

scaling (NMS) ordinations [121]. The former identifies patterns in the data and summarizes them in 

the ordination using synthetic variables or axes that express the percentage of the variance captured 

from the original dataset, the latter finds patterns based on a ranked distance matrix. Both ordinations 

were done using Bray-Curtis distances [122], which measures the quotient of the shared abundances 

and the total abundance, therefore representing the difference between communities. Multi-response 

permutation procedure (MRPP) analysis tested individual community membership to a predefined 

group and tested group segregation [123]. MRPP was controlled by AXIOME as well as indicator 

species analysis [124], which identified members of the community that are associated with a 

particular group according to group fidelity and specificity. Indicator value and median sequence 

abundance cutoff to limit indicator species were 0.7 and 100, respectively, with p < 0.05. Indicator 

species analysis for crop and fertilizer type applied was performed on data from WEBs fields 1 and 2, 

WEBs fields 11-14, and Winchester fields together. Indicator species analysis for drainage practice 

was performed on data from WEBs fields 1 and 2 together and WEBs fields 11-14 together. Depth 

indicator species analysis was performed independently on WEBs field 1, WEBs field 2, WEBs fields 

11-12, WEBs fields 13-14, and Winchester fields together. All AXIOME-mediated analyses were 

based on a rarefied OTU table. Representative OTU sequences were aligned with PyNAST [125] and 

the alignment used to build a phylogeny using FastTree [126] to compute UniFrac distances [127] 

(the evolutionary divergence exclusive to each community) used for QIIME-generated PCoA 

ordination plots. Pearson product-moment correlation coefficient (PPMCC) and pairwise Wilcoxon 

signed rank test comparisons were used for statistical analysis of taxa behavior in R [128]. 

 

2.2 Denitrifying community characterization 

2.2.1 Sampling sites 

Fields 1 (45°16’18.578” N, 75°10’6.743” W) and 2 (45°16’19.485” N, 75°10’3.483” W) from 

WEBs site and the boundary between fields 3 and 4 (45°3’42.221” N, 75°20’31.976” W) from 

Winchester site were sampled on October 22, 2012, from 15 to 20 cm depth and from between tile 

locations. For detailed site and field characteristics, refer to section 2.1.1.  
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2.2.2 DNA-SIP 

2.2.2.1 Denitrifying incubation in flow-through reactors 

DNA-SIP was conducted in flow-through reactors (FTRs), allowing enrichment of the active 

community under nitrate-reducing conditions and denitrification rate calculation. Soil samples were 

incubated using FTRs [129], which consist of an air-tight cell containing an undisturbed soil core 

(Figure 1). The soil sample contained in a Plexiglass ring (2 cm height, 4.7 cm diameter) was covered 

by a polypropylene-membrane filter (0.2 µm pore size, 50 mm diameter, Pall Life Sciences) and a 

fiberglass filter (extra-thick, 1 µm pore size, 47 mm diameter, Pall Life Sciences) at the upper and 

lower ends. O-rings (50 mm diameter) were placed on top of the fiberglass filters and the reactors 

then closed with Plexiglass lids at the upper and lower ends held in place with screws. The bottom lid 

had an input channel used to supply a feed solution to the soil core and the top lid had an output 

channel used to recover the flow through. Carved rings on the lids promoted uniform flow of the feed 

solution through the sample. 

 

Figure 1. Flow-through reactor functional scheme.  

 

Feeding solution was kept at room temperature in amber glass bottles and was purged continuously 

with humidified and filtered argon gas (Praxair) to ensure the absence of O2. The solution was 

conducted through Viton tubing lines (0.89 mm internal diameter, opaque black, Ismatec and 

Masterflex) at a flow rate controlled by an 8-channel peristaltic pump (Minipuls 3, Gilson). 

The DNA-SIP incubation in FTRs was conducted at room temperature, protected from light, and 

consisted of two experimental stages. First, there was a starvation period of 22 days in which the 

reactors were fed with a sterile, O2-free solution of KNO3 (1 mM), KBr (0.5 mM), and NaCl (8 mM) 
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at a flow rate of 1 mL h
-1

. This was followed by a denitrification period in which the reactors were fed 

with a sterile, O2- free solution of KNO3 (1 mM), KBr (0.5 mM), NaCl (8 mM), and either 
12

C6-

glucose or 
13

C6-glucose (0.31 mM) at a flow rate of 1 mL h
-1

. Bromide was used as a nonreactive 

tracer. 

Eight FTRs were included for each of three agricultural sites studied (refer to section 2.2.1); all 

were subjected to the starvation period after which four FTRs were fed with 
12

C6-glucose solution and 

four FTRs with 
13

C6-glucose solution, constituting four pairs of FTRs per agricultural site. Two 

randomly chosen pairs were sacrificed after 8 days of denitrification (total incubation time 30 days) 

and the remaining two pairs were sacrificed after 27 days of denitrification (total incubation time 49 

days). For the FTRs with longer incubation times, the feeding flow rate was increased from 1 to 2 mL 

h
-1

 at denitrification day 18 (total incubation-time day 40). After the incubation, the soil was 

recovered and stored at -20°C until DNA extraction.  

 

2.2.2.2 Denitrifying incubation monitoring  

Nitrogen metabolites were monitored periodically during the incubation using spectrophotometric 

methods and gas chromatographic techniques to verify that denitrification activity was induced when 

required and that it was the dominant respiratory process occurring in the FTRs. Both input and 

output solutions were monitored for NO3
-
, NO2

-
, pH, and Br

-
; the output solution was also measured 

for CO2, N2O, and NH3/NH4
+
. Gas sampling for CO2 and N2O analysis was done in air-tight vials. 

 

2.2.2.2.1 Solution chemistry 

Flow-throw samples were collected every other day and stored at -20°C until analysis. Nitrate was 

quantified as total NOx following its reduction to NO2
-
 according to an established protocol [130]. 

Briefly, 100 µL standards and samples were mixed in triplicate in a 96-well plate (clear, flat bottom, 

Greiner), with the addition of 100 µL saturated VCl3 solution (Sigma-Aldrich; 800 mg in 100 mL of 1 

M HCl) and 100 µL Griess reagent (SULF, Sigma-Aldrich, 2% w/v in 5% HCl, and NEED, Sigma-

Aldrich, 0.1% w/v in water, which were prepared separately and premixed in equal volumes 

immediately before use). The plate was incubated for 30 minutes at 37°C and then the absorbance 

read at 550 nm using a plate reader (FilterMaxF5 Multi-Mode Microplate Reader, Molecular 
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Devices). Nitrate concentration in the sample was determined as the remainder of NOx minus NO2
-
. 

Soft Max Pro 6.2.2 (Molecular Devices) was used to analyze sample data. Standards ranged from 2.5 

to 350 µM KNO3 (ACS, Bio Basic Inc.). 

Nitrite was quantified according to a previously published method [130]. The procedure was 

similar as for NO3
-
 quantification except for the use of the saturated VCl3 solution step, which was 

omitted. Soft Max Pro 6.2.2 (Molecular Devices) was used to analyze sample data. Standards ranged 

from 2.5 to 350 µM NaNO2 (reagent grade, Bio Shop). 

Ammonia and ammonium were quantified according to a previously published method [131]. 

Briefly, in a 96-well plate (dark, flat bottom, Greiner), 100 µL standards and samples in triplicate 

were mixed with 200 µL of ortho-phthaldialdehyde (OPA) solution. OPA solution was prepared at 

least 24 hours before use by combining 500 mL of 30 g L
-1

 borate buffer (20 Mule Team), 2.5 mL of 

8 g L
-1

 Na2SO3 ( 98% pure; Sigma-Aldrich), and 25 mL of 40 g L
-1

 OPA in ethanol (97% pure; 

Sigma) and stored at room temperature in a dark glass bottle. The plate was incubated for four hours 

at room temperature in the dark and then the fluorescence read with excitation at 360 nm and 

emission at 465 nm using a plate reader (FilterMaxF5 Multi-Mode Microplate Reader, Molecular 

Devices). Soft Max Pro 6.2.2 (Molecular Devices) was used to analyze sample data. Standards ranged 

from 0.5 to 75 µM NH4Cl (ACS; BDH). 

pH was measured twice per week with Mettler Toledo’s In Lab Expert Pro pH electrode. Bromide 

was measured every other day with Thermo Scientific Orion bromide electrode.  

 

2.2.2.2.2 Total dissolved inorganic carbon as carbon dioxide 

Two mL of standard or sample collected in an air-tight vial were sucked into a disposable syringe 

(10 mL capacity with 23G needle) containing 1 mL of HCl (6 N) for acidification. The needle was 

then replaced by a rubber stopper (5 x 11 mm for 8-9 OD mm tubing, VWR) and 4 mL of He gas 

(Ultra High Purity, Praxair) were injected into the syringe through the rubber stopper. Syringe 

contents were mixed and 30 minutes were allowed for headspace equilibration. One mL of headspace 

was drawn into a disposable syringe (1 mL capacity with 25G needle) and 500 µL were injected into 

a gas chromatograph (GC-2014, Shimadzu Scientific Instruments) equipped with a Porapak Q 80-100 

column (6’ x 1/8’’ x 0.085’’ SS, Alltech), a methanizer, and a FID. The retention time for CO2 was 

1.3 minutes with the following GC settings: injector temperature at 100°C, oven temperature at 80°C, 
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methanizer at 380°C, FID at 250°C, He as carrier gas (Ultra High Purity, Praxair) flowing at 20 mL 

min
-1

, and supply of compressed air (Ultra Zero, Praxair) and hydrogen (Ultra High Purity, Praxair). 

Samples were analyzed immediately after collection twice a week. Peak area was integrated with GC 

Solution software (version 2.31.00, Shimadzu Corporation). Standards were analyzed in duplicate and 

ranged from 0.25 to 6 mM of NaHCO3 in water (ACS, Bio Basic Inc.). The methodology was 

developed based on reported methods [132,133]. 

 

2.2.2.2.3 Nitrous oxide 

One mL of sample was collected in an air-tight vial purged with He and allowed to equilibrate with 

the headspace for one hour. Four hundred µL of head space were taken into a disposable syringe (1 

mL capacity with 25G needle) and injected into a gas chromatograph (GC-2014, Shimadzu Scientific 

Instruments) equipped with a Porapak Q 80-100 column (6’ x 1/8’’ x 0.085’’ SS, Alltech) and an 

ECD. The retention time for N2O was 1.2-1.3 minutes with the following GC settings: injector 

temperature at 120°C, oven temperature at 100°C, 
63

Ni ECD at 325°C with 1.50 nA current, and P5 

carrier gas (4.97% methane in argon, Certified Standard, Praxair) flowing at 25 mL min
-1

. Samples 

were analyzed twice a week immediately after equilibration. Peak area was integrated with GC 

Solution software (version 2.31.00, Shimadzu Corporation). Nitrous oxide (Extendapak, Praxair) was 

used as reference for peak identification. This methodology was developed based on reported 

methods [134-136]. 

 

2.2.2.3 Denitrification potential 

For each incubated soil and feeding flow rate, the NO3
-
-N reduction rate was calculated once stable 

concentrations of NO3
-
 were obtained. The formula used is [129]: 

 

Where C0 is the NO3
-
-N concentration in the inflow, COUT is the NO3

-
-N measured in the outflow, Q 

is the solution feeding rate, and V is 27.7 cm
3
, the reactor volume. A two-way analysis of variance 

(ANOVA: two-factor with replication) was done using the Data Analysis Tools in Excel (Microsoft). 

 

V

QCC
R OUT )( 0 
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2.2.2.4 DNA ultracentrifugation and gradient fractionation 

Extracted DNA was prepared for ultracentrifugation and the resulting gradient fractionated 

according to a previous protocol [105]. Briefly, DNA was mixed with CsCl solution and 

ultracentrifuged to form a density gradient in which the DNA was separated by density. The gradient 

was then divided into 12 fractions with fractions 3-5 containing “heavy” DNA. Refractive index of 

each fraction was measured with a digital hand-held refractometer (AR200, Reichert). The DNA was 

recovered using 4 µL of linear polyacrylamide (LPA; co-precipitant pink, Bioline), washed, dried, 

and suspended in TE buffer. The DNA was stored at 4°C when processed or at -20°C for long-term 

storage.  

 

2.2.2.5 DNA-fraction characterization 

Fingerprint patterns of PCR amplicons of the 16S rRNA gene V3 region were generated for each 

DNA fraction using DGGE as described by Muyzer et al. 1993 [98,137]. Briefly, PCR sample mix 

was similar to the one described in section 2.1.3.1, except 0.1 µL Taq DNA polymerase was used. 

Primers 341f-GC clamp (5‘-CGCCCGCCGCGCGCGGCGGGCGGG 

GCGGGGGCACGGGGGGCCTACGGGAGGCAGCAG) and 518r (5‘-ATTACCGCGGCTGCT 

GG) were employed. The program had an initial denaturation step of 5 minutes at 95°C, 35 cycles of 

1 minute at 95°C, 1 minute at 55°C, and 1 minute at 72°C, followed by a final extension step of 7 

minutes at 72°C. PCR amplicons were run in 10% polyacrylamide (acrylamide/bisacrylamide 37.5:1 

solution 40% w/v, Bio Basic Canada Inc.) gels with a denaturing gradient from 30% to 70% (100% 

denaturant is 7 M urea; Bio Basic Inc. and 40% redistilled formamide; Invitrogen) for 840 minutes at 

85 V in a DGGE-2001-110 system (CBS Scientific). Five µL of each PCR were loaded into each gel 

well alongside a custom ladder used as reference for normalization. Gels were post stained for 1.5 

hours with SYBR Green I (Invitrogen) in TAE buffer and imaged with a Molecular Imager (Pharos 

FX Plus, Bio-Rad) equipped with an external laser and Quantity One 4.6.9 image acquisition 

software. Gel images were normalized and clustered with GelCompar II version 6.6 (Applied Maths) 

using Pearson correlations of densitometric curves and UPGMA clustering. 

 



 

28 

2.2.3 Heavy- and light- DNA fractions DGGE-band sequencing 

Predominant bands identified from the DGGE fingerprints were excised from the gel. Each band-

containing gel fragment was suspended in 50 µL of TE buffer and kept at 4ºC for 12 hours. The 

suspension was used as PCR template for re-amplification and amplicon purity was confirmed with 

DGGE as in section 2.2.2.5. PCR product was purified with the Wizard SV Gel and PCR Clean-up 

System and sequenced with Sanger technology at the TCAG DNA Sequencing Facility of the Centre 

for Applied Genomics (Toronto, ON). Sequences were then assigned microbial identity using the 

ribosomal database project (RDP) classifier [117] and BLAST [138]. 

 

2.2.4 Heavy- and light-DNA fraction next-generation sequencing and analysis 

Eighteen samples corresponding to nine composite-heavy and nine composite-light DNA fractions 

were prepared from the density gradient DNA fractions described in section 2.2.2.4 as follows. A 

heavy DNA sample corresponds to a mixture of fractions 4 and 5, whereas a light DNA sample 

corresponds to a mixture of fractions 10 and 11 of DNA extracted from reactors fed with 
13

C6-

glucose. For the reactors sacrificed after eight days of denitrifying enrichment, a total of six heavy 

and six light DNA samples were obtained (two duplicate reactors per agricultural site times three 

sites), whereas a total of three heavy and three light DNA samples were obtained for the reactors 

sacrificed after 27 days of enrichment (two duplicate reactors per agricultural site pooled into a single 

sample times three sites). The 18 samples were prepared for Illumina sequencing as mentioned in 

section 2.1.3. Finally, obtained 16S rRNA gene sequences were analyzed as mentioned in section 

2.1.4. For indicator species analysis, the indicator value and sequence abundance cutoff values to 

limit indicator species were 0.8 and 2000, respectively, with p < 0.05. 

 

2.2.5 Bulk soil DNA and heavy DNA metagenomic sequencing and analysis 

Four samples were selected for nitrite reductase-coding DNA analysis and sequence retrieval 

comparison between denitrifier-enriched and unenriched soil. Samples included: a) DNA from bulk 

soil from WEBs field 2 (45°16’19.485” N, 75°10’3.483” W) sampled on October 22, 2012, b) DNA 

from bulk soil from Winchester’s fields 3 and 4 boundary (45°3’42.221” N, 75°20’31.976” W) 

sampled on October 22, 2012, c) DNA-SIP heavy DNA from WEBs field 2 (fractions 4, 5, and 6; 



 

29 

reactor E2-1), d) DNA-SIP heavy DNA from Winchester’s fields 3 and 4 boundary (fractions 4, 5, 

and 6; reactor I-2).  

 

2.2.5.1 Metagenomic-DNA library preparation and sequencing  

DNA from all samples was sent to the DNA Services Facility of the University of Illinois at 

Chicago for shotgun metagenomic sequencing. Briefly, the Nextera XT DNA Sample Preparation Kit 

(Illumina) was employed to independently fragment and tag the DNA of each sample using 

transposons. The fragmented DNA was then subjected to PCR to attach sample-association indices 

and sequencing adapters. The samples were then combined to produce a library that was paired-end 

sequenced in an Illumina MiSeq. Image analysis, base calling, quality score calculation, and 

demultiplexing (read sorting by index) were done using MiSeq Control Software (version 2.3.0.3). 

 

2.2.5.2 Bioinformatic analysis 

Reads were uploaded to MG-RAST [139] for sequence annotation. The metagenomes were 

automatically assigned the following identifiers: 4543546.3 (WEBs field 2 bulk soil read1), 

4543547.3 (WEBs field 2 bulk soil read 2), 4543549.3 (Winchester’s fields 3 and 4 boundary bulk 

soil read 1), 4543550.3 (Winchester’s fields 3 and 4 boundary bulk soil read 2), 4543544.3 (WEBs 

field 2 heavy DNA read 1), 4543545.3 (WEBs field 2 heavy DNA read 2), 4542721.3 (Winchester’s 

fields 3 and 4 boundary heavy DNA read 1), and 4543548.3 (Winchester’s fields 3 and 4 boundary 

heavy DNA read 2). Each metagenome was processed with the online analysis tools provided by MG-

RAST as follows. All functional annotations were obtained by comparing the sequences against the 

GenBank database with maximum E-value cutoff of 0.00001, 60% minimum identity cutoff, and 

minimum alignment length cutoff of 15 amino acids. Next, the search term “nitrite reductase” was 

used to filter the obtained hits. Further hit selection was manually conducted to discard sequences that 

did not correspond to dissimilatory nitrite reductases. The obtained annotations were exported to the 

MG-RAST workbench for download. The sequences were catalogued into nirS or nirK based on their 

header description. The classified sequences were respectively aligned to Proteobacteria nirS and 

nirK sequences from the KEGG database [140] using MAFFT 7 [141]. The only modification to the 

default settings for multiple alignments was to allow adjustment of nucleotide sequence direction. 

The alignments were exported into MEGA 6 [142] for analysis and primer region identification.  
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Chapter 3 

Results and discussion 

3.1 Microbial community characterization 

3.1.1 Agricultural soil DNA next-generation sequencing 

Arable soils are managed with the main purpose of sustainably increasing crop yields. Food 

demand increases with economic development and population growth. Furthermore, climate change 

presents risks for crop production with altered climate trends that affect growing season length, water 

availability, and temperature [143,144]. Farming, on the other hand, represents a risk to the 

environment associated with increased GHG emissions, groundwater contamination, and a decline of 

soil fertility and growing capacity due to poor management and excessive land use [29,145]. As a 

result, research into agriculture practices can help establish best management practices to help ensure 

food security while reducing environmental impact. 

This research evaluated the effect that two drainage practices had on the microbial communities in 

two agricultural sites in Ottawa, Ontario. The selected fields from the WEBs site were fields 1 and 2 

with implemented UCTD and CTD, respectively, fields 11 and 12 with CTD, and fields 13 and 14 

with UCTD. Finally, Winchester field boundaries 2/3 and 4/5 with CTD were studied. Sampling was 

done in 2012 and included different soil depths and position with respect to drainage pipes. Moisture 

was expected to increase with depth. That said, above-tile locations were expected to be associated 

with lower moisture than the between tile locations, because the tiles collect and drain water primarily 

from above their physical location.  

Sequencing of amplified 16S rRNA gene sequences from DNA extracts obtained from all soil 

samples collected from the WEBs and Winchester sites resulted in 11,450,780 paired-end reads. Each 

sequenced sample contributed an average of 68,159 sequences. The largest number of sequences 

contributed for a sample was 156,580 and the smallest was 16,695. After assembly of paired-end 

reads, clustering, and chimera checking, the number of remaining sequences was reduced to 

10,622,116 (minimum 15,687, maximum 149,322). For analyses requiring an equal sequence 

contribution from each sample (i.e., Bray-Curtis PCoA, UniFrac PCoA ordinations, and MRPP), all 

samples were rarefied to 15,687 sequences. For identifying indicator species, the sample data were 



 

31 

partitioned into relevant sample sets and within-sample series searches involved rarefying to the 

number of sequences contributed by the lowest sample in each series. 

 

3.1.1.1 Identifying factors influencing agricultural soil microbial communities 

The field community composition was evaluated with next-generation sequencing to elucidate the 

effect that the drainage practice imposed had on soil microbial communities. Sequences 

corresponding to the V3/V4 region of the 16S rRNA gene were obtained from 168 samples from the 

WEBs and Winchester sites (Appendix A).  

The microbial communities in each of the soil samples were analyzed with multivariate statistics. 

The main factors that visually influenced the ordination of the soil communities were plant cultivar 

and fertilizer application (Figure 2A). In addition, soil depth was strongly associated with separation 

of soil bacterial communities (Figure 2B). Together, these factors were more clearly responsible for 

distinguishing sample data than the sampled field location (Figure 2C) or drainage practice (Figure 

2D). PCoA using the UniFrac metric showed similar trends (data not shown). Depth was one of the 

most important factors influencing soil bacterial community composition (Figure 2B). Indeed, the 

MRPP values showed support for significant depth-specific grouping (T=-41.1; A=0.10, p=0.001). 

Similarly, previous reports identified depth as an important factor determining microbial community 

composition, even suggesting that its impact might be equivalent to that of ecosystem origin [146]. 

The documented changes have been linked to modified soil properties along the depth gradients 

[147]. 

Although agricultural soil bacterial communities were most similar when originating from soils 

sharing common management practices and field histories (e.g., Figure 2A, 2C), communities from 

soybean and corn cover were distinct from communities beneath alfalfa (Figure 2A). These groupings 

were supported by MRPP values (p=0.001), with a high negative value for between-group separation 

(T=-75.9), although with relatively low within-group similarity (A=0.13) presumably due to the 

variability introduced by soil depth. Previous research has identified plant type as a major driver of 

community composition, mainly due to the environment created by root exudates in the rhizosphere 

[148]. Although soybean and alfalfa communities could be predicted to be similar to one another, 

because both are leguminous plants, examining field histories provides a potential explanation for this 

lack of clustering of soybean and alfalfa soil samples. The sampled soybean fields in 2012 are used 
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alternately to produce corn, which might cause these communities to be similar to those from corn 

fields. Also, the sites growing alfalfa in 2012 have had a crop rotation that included soybean and corn. 

Therefore, the observed ordination results may be a result of multiple factors that include fertilizer 

type and field history. It is important to note that the selected sites are farmed for commercial 

purposes, operated by their owners, which makes management of these sites difficult to control with 

respect to treatment and history. 

Importantly, drainage practice did not appear to influence bacterial communities in the fields 

sampled here (Figure 2D). Furthermore, the MRPP values showed only weak statistical support for 

drainage practice group differences (T=-7.8; A=0.01, p=0.001). Moisture was expected to be 

influenced by the drainage practice, because CTD keeps water in the field and UCTD allows water to 

exit the field. However, we observed no trend in moisture data related to drainage practice or depth 

(data not shown), probably due to 2012 being a relatively dry year. The average rainfall in Ottawa 

between May 1 and September 30, 2012 was 74 mm, very similar to the 73 mm of 2011, in 

comparison to 107 mm and 82 mm in 2010 and 2013, respectively, for same time period [149].  

Although the corresponding field data showed a slight increase in crop yield from CTD fields, 

these differences were not statistically significant [110]. Also, there is no evidence of GHG emissions 

increasing from CTD fields, while a considerable reduction of nitrate in CTD field groundwater is 

observed (unpublished report by the South Nation River Conservation Authority, 2013). Whether 

these observations would be replicated in a wet season remains undetermined. So while limited, these 

results demonstrate that CTD implementation in the fields does not modify the microbial community 

or GHG emissions and might nonetheless help retain N in the fields and improve plant biomass. 
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Figure 2. PCoA ordinations and inset MRPP data (based on a Bray-Curtis distance matrix) of 

next-generation sequencing data for agricultural soils according to crop and fertilizer type 

aplied (A), sampled depth (B), sampled field (C), and implemented drainage practice (D). CTD 

is controlled tile drainage, UCTD is uncontrolled tile drainage. 

 

3.1.1.2 Taxa exploration 

Ribosomal RNA gene sequences obtained from the next-generation sequencing effort from all 

samples were clustered into OTUs using a 97% similarity threshold and then classified 

taxonomically. Microbial phyla with sequence abundances above 10% were Chloroflexi, 
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Proteobacteria, Actinobacteria, and Acidobacteria for WEBs fields 1 and 2 (Figure 3), 

Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes for WEBs fields 11-14 (Figure 4), 

and Chloroflexi, Proteobacteria, Actinobacteria, and Acidobacteria for Winchester (Figure 5). For all 

studied sites, the phylum Acidobacteria had similar average abundances in the top, middle, and 

deeper soil samples. For example, Acidobacteria abundances in WEBs fields 1 and 2 were 16.4±2.4, 

16.6±2.4%, and 12.2±4.5% in soil samples from 0-30, 30-60, and 60-90 cm depth, respectively 

(Figure 3).  

Actinobacteria relative abundances increased over the growing season and peaked around August 

(Figure 3, Figure 5). This was observed in all sampled depths and was particularly noticeable in 

deeper soil (Figure 4). For example, Actinobacteria 16S rRNA gene relative abundance in WEBs 

fields 11-14 went from 22.1±1% average in April to 40.2±6% average in November, in soils from 60-

90 cm depth. In these particular fields, the phylum’s overall increment in soil from 0-30 and 30-60 cm 

depth was less pronounced, but the trend remained visible nonetheless. A Pearson product-moment 

correlation coefficient (PPMCC) test showed that the abundance increment of the phylum was 

significant for WEBs fields 1 and 2 (r(46)=0.69, p=6.6E-8), WEBs fields 11-14 (r(52)=0.38, 

p=0.005), and Winchester site (r(39)=0.46, p=0.002). Also, pairwise comparisons using the Wilcoxon 

signed rank test showed that Actinobacteria abundances for the first and last month of sampling were 

significantly different for WEBs fields 1 and 2 (p=4.9E-4) and Winchester site (p=0.031), but not for 

WEBs fields 11-14 (p=0.49). 

Proteobacteria was the most abundant phylum in the studied soils throughout the season, 

independent of sampled depth or field. In all sites the average abundance was in the range of 34-42%, 

with standard deviations from 2.1 to 12.7 (Figure 3, Figure 4, and Figure 5). Chloroflexi were 

abundant in WEBs fields 1 and 2 and Winchester (Figure 3 and Figure 5). Importantly, deeper soil 

samples showed the greatest abundance of the phylum across the entire season. For example, 

Chloroflexi average abundance in Winchester was 3.6±0.8 and 3.8±1.1% in soils from 0-30 and 30-60 

cm depth, respectively, but 13.4±4.2% in soil from 60-90 cm depth (Figure 5). Chloroflexi-abundance 

pairwise comparisons using the Wilcoxon signed rank test for WEBs fields 1 and 2 showed that the 

phylum abundance in soil from 0-30 cm depth was significantly different from abundance in soil from 

30-60 and 60-90 cm depth (p=1.7E-5 and p=0.031, respectively), but abundances in soil from 30-60 

and 60-90 cm depth were not significantly different (p=0.148). For Winchester, Chloroflexi 

abundances in soil from 0-15 and 15-30 cm depth were not significantly different (p=0.615), but 
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Chloroflexi abundance in soil from 30-60 cm depth was significantly different from abundance in soil 

from 0-15 and 15-30 cm depth (p=0.002 for both cases). Finally, Bacteroidetes was only above 10% 

abundance in WEBs fields 11-14 (Figure 4). 
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Figure 3. Choroflexi, Proteobacteria, Actinobacteria, and Acidobacteria relative abundance for 

soils from WEBs fields 1 and 2 for between tile (B) and above tile (T) sampling locations for 

sampled months of 2012 at different depths (0-30 cm in clear circles, 30-60 cm in grey circles, 

and 60-90 cm in black circles). 
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Figure 4. Proteobacteria, Actinobacteria, Acidobacteria, and Bacteroidetes relative abundance for 

soils from WEBs fields 11-14 for sampled months of 2012 at different depths (0-30 cm in clear 

circles, 30-60 cm in grey circles, and 60-90 cm in black circles). 
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Figure 5. Choroflexi, Proteobacteria, Actinobacteria, and Acidobacteria relative abundance for 

soils from Winchester fields 2/3 and 4/5 boundaries for sampled months of 2012 at different 

depths (0-15 cm in clear circles, 15-30 cm in grey circles, and 30-60 cm in black circles). 
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The importance of Acidobacteria, Actinobacteria, Proteobacteria, and Bacteroidetes for soil 

bacteria community structure has been noted previously [22,61,150]. Several studies have detected 

abundance changes for these phyla in response to pH, nitrogen, and carbon. A study of 88 soils from 

North and South America, for example, showed that Acidobacteria, Actinobacteria, and 

Bacteroidetes varied in response to pH. Soil samples with pH below 5 had increased Acidobacteria 

abundance and lower Actinobacteria and Bacteroidetes, which increased in soils above pH 6 [22]. 

Another study showed opposite findings with respect to pH when characterizing the community from 

soils amended with different NH4NO3 inputs; researchers observed trends that included Acidobacteria 

decrease at low pH and Actinobacteria and Bacteroidetes increase at low pH. The response was 

related to the enhanced plant productivity and consequent increase in soil C, attested to by increases 

in Bacteriodetes and Betaproteobacteria (copiotrophs) and decreases in Acidobacteria (oligotrophs) 

in highly fertilized soil [61]. The pH of Winchester soil increases with depth, being 6.2, 6.5, and 7.4 

for soil sampled at depth 0-15, 15-30, and 30-60, respectively (measured in the laboratory for 

September samples). These pH values might be in the range that does not affect the communities 

(Figure 5). Also, the data show consistent proportions of Acidobacteria, Actinobacteria, and 

Proteobacteria across sites during the sampled months, despite the difference of crops, fertilizer type 

applied, drainage practice imposed, and overall field histories. One possibility is that differential 

management in these fields does not alter edaphic factors to the point where an altered structure 

would be evident at the phylum level, despite the fact that the communities from these sites differ 

from each other (Figure 2). 

A seasonal study characterizing a wheat field recognized community structure variation during the 

sampling year [151]. In that study, the July community was different from communities profiled in 

January, May, and September. Also, the communities obtained from soils sampled in May and 

September were similar. The authors interpreted the recovery of similar communities in these months 

as a result of high nutrient availability caused by fertilization and residues left after harvest, 

respectively. A different study found that microbial communities were more active in July; DNA and 

RNA fingerprints for that time point showed that the communities were different. Soil moisture and 

air temperature were associated to these changes [147]. In the current data set, Actinobacteria 

increase could be attributed to nutrient load associated to the crop. For WEBs sites 1 and 2 and 

Winchester, the emergence of the crop coincided with cumulative increasing abundance of the 

phylum. Also, WEBs fields 11-14 showed the least noticeable Actinobacteria increase, which might 

relate to multiple harvests from these sites. In agreement with this hypothesis, Actinobacteria was 
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reported to increase in response to glucose and sucrose [152] and to decrease in a harvested site in 

comparison to an unmanaged site [153]. Studies have shown that improved soils (i.e., soils managed 

to increase nutrient content) have a different microbial community structure than those from 

unmanaged sites [154]. However, the reasons for this observation vary and are not fully established. 

My data comes from managed and improved sites and captured seasonal variations for Actinobacteria 

and a characteristic depth distribution profile for Chloroflexi. Further work and soil characterization 

needs to be done to elucidate the factors contributing to these observations in the selected fields. 

 

3.1.1.3 Indicator species analysis 

Indicator species analysis was used to recognize the bacterial OTUs (“species”) that were 

associated with particular crop and fertilizer groups (soybean/mineral, alfalfa/mix, and corn/manure), 

drainage practice groups (CTD and UCTD), and depth groups (0-15, 15-30, 0-30, 30-60, and 60-90). 

No significant indicators were found for crop, fertilizer, or drainage groups. For depth, very few 

indicator species were associated with surface soil, in contrast to many indicators identified for deeper 

soil samples across all sites (Figure 6-Figure 10).
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Figure 6. Indicator species associated with soil from 60-90 cm depth for WEBS field 1 with indicator value ≥ 0.7, sequence 

abundance median ≥ 100, and p ≤ 0.05. The corresponding OTU number is shown in brackets. Additionally, OTU abundance 

median for soil from 0-30 cm depth (clear circles), 30-60 cm depth (grey circles), and 60-90 cm depth (black circles) are shown. 
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Figure 7. Indicator species associated with soil from 30-60 cm depth (A) and 60-90 cm depth (B) for WEBS field 2 with 

indicator value ≥ 0.7, sequence abundance median ≥ 100, and p ≤ 0.05. The corresponding OTU number is shown in brackets. 

Additionally, OTU abundance median for soil from 0-30 cm depth (clear circles), 30-60 cm depth (grey circles), and 60-90 cm 

depth (black circles) are shown. 
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Figure 8. Indicator species associated with soil from 60-90 cm depth for WEBS fields 11 and 12 with indicator value ≥ 0.7, 

sequence abundance median ≥ 100, and p ≤ 0.05. The corresponding OTU number is shown in brackets. Additionally, OTU 

abundance median for soil from 0-30 cm depth (clear circles), 30-60 cm depth (grey circles), and 60-90 cm depth (black 

circles) are shown. 
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Figure 9. Indicator species associated with soil from 0-30 cm depth (A), 30-60 cm depth (B), and 60-90 cm depth (C) for WEBS 

fields 13 and 14 with indicator value ≥ 0.7, sequence abundance median ≥ 100, and p ≤ 0.05. The corresponding OTU number 

is shown in brackets. Additionally, OTU abundance median for soil from 0-30 cm depth (clear circles), 30-60 cm depth (grey 

circles), and 60-90 cm depth (black circles) are shown. 
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Figure 10. Indicator species associated with soil from 30-60 cm depth for Winchester with indicator value ≥ 0.7, sequence 

abundance median ≥ 100, and p ≤ 0.05. The corresponding OTU number is shown in brackets. Additionally, OTU abundance 

median for soil from 0-15 cm depth (clear circles), 15-30 cm depth (grey circles), and 30-60 cm depth (black circles) are 

shown. 
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Alphaproteobacteria have been associated with C-rich environments like the rhizosphere [155]. 

Accordingly, relatively few indicators in my research belonged to this class in deeper soils (Figure 6 

and Figure 8). Geobacter from the Deltaproteobacteria class was recovered both from an Fe(III) 

enrichment and untreated saturated C horizon [155], which highlights their ability to thrive in oxygen-

limited conditions, like those that might be found in deeper soil layers (Figure 8). Likewise, the same 

study found spore-forming microorganisms like Anaeromyxobacter in horizons with lower pH, lower 

nutrients, and changing moisture conditions. This genus was also an indicator of the WEBs and 

Winchester deeper soil samples (Figure 6 and Figure 10). Betaproteobacteria, despite being favored 

by C-rich environments [146] like those found in the rhizosphere, were indicators for deeper soil in 

the present study (Figure 6-Figure 10). Notably, some of the detected indicators are capable of using 

electron acceptors different from oxygen for respiration. For example, identified members of the 

Oxalobacteraceae (Janthinobacterium, Herminiimonas) and Comamonadaceae (Polaromonas) 

(Figure 6, Figure 8, and Figure 9), are capable of denitrification [45,156,157].  

Other phylum-level distributions have also been observed previously in response to depth. The 

phylum Actinobacteria was previously found to increase in abundance with deeper soil horizons 

[153]. Members of the Actinomycetales order, for example, have sporulation capacity that favors 

survival in nutrient-content variable environments [158]. The phylum was represented among the 

indicators by families Gaiellaceae, Micrococcaceae, Promicromonosporaceae 

(Promicromonospora), and Rubrobacteraceae in soil samples from 30-90 cm depth (Figure 6, Figure 

7, Figure 9, and Figure 10). The phylum Gemmationadetes has been found to increase in intermediate 

soil horizons, the distribution was attributed to pH, with alkaline pH favoring the phylum [153]. 

Accordingly, class Gemm-1 was identified as an indicator in the sites from 30-90 cm depth (Figure 6-

Figure 8 and Figure 10). The phylum Bacteroidetes has been observed to decrease with soil depth 

[146] and are recognized copiotrophs [159], which might explain why the data show this phylum 

associated with surface soil (Figure 9). The phylum Verrucomicrobia was more abundant in soils 

from 10-50 cm depth [146], consistent with my findings (data not shown) and was identified in one 

site as an indicator from 30-60 cm depth (Figure 7). However, the ecology of Verrucomicrobia is 

largely unexplored. 

The phylum Chloroflexi featured as an important indicator for soil from 30-90 cm depth (Figure 6, 

Figure 7, Figure 9, and Figure 10). Chloroflexi are commonly found in soils [153,155] and recent 

work showed that Chloroflexi representatives require up to 12 week-incubation periods to grow on 

media [160]. Because deeper soil has lower diversity [146] and evidence suggests that deeper soil 
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conditions might reduce the chance of observing dominant species [147], it could be hypothesized 

that microorganisms that have low growth rates and enzymes suited to low-nutrient content 

environments might benefit from the reduced competition of this niche. Acidobacteria have been 

suggested to withstand soil moisture variation and to be adapted to low nutrient environments by 

means of high substrate affinity enzymes [161], which would explain why the phylum appears as 

indicator for deep soil in the present study (Figure 6-Figure 9). Similarly, a Nitrospira genome 

analysis in conjunction with experimental data have shown adaptation to low-nutrient environments 

[162] and this microorganism was an indicator for deeper soil (Figure 6-Figure 10). 

 

3.2 Denitrifying community characterization 

Cultivation-independent and isotope-based incubations, followed by metagenomics, were used to 

identify the complement of denitrifying bacteria from intact agricultural soil cores fed 
13

C6-glucose, 

using flow-through reactors (FTRs) under water-saturated conditions. The studied sites have been 

amended historically with either manure- or mineral-based fertilizers and operated under CTD or 

UCTD systems. Two incubation time points were employed to evaluate denitrifier temporal shifts. 

Also, nitrate reducing rates were calculated. Finally, nitrite reductase enzymes recovered from 

denitrifier-enriched DNA were analyzed to evaluate the likelihood to recover these genes in a 

denitrifier molecular survey of these soils.  

 

3.2.1 Denitrifying flow-through reactors behavior 

Eight FTRs per agricultural field were prepared for DNA-SIP incubation to enrich nucleic acids 

from the denitrifying population without the requirement of cultivation. The FTR microcosms helped 

preserve the in situ spatial distribution of the soil microbial communities during the study. 

Commonly, soil denitrification rate evaluations [49,67] and DNA-SIP studies [58,163,164] employ 

homogenized and sieved soil, which can influence the observed rates and alter microbial substrate 

uptake.  

The DNA-SIP incubation had two stages. First, a 21-day starvation period with NO3
-
 addition was 

imposed to promote the uptake of readily available carbon sources in the soil. Second, a 

denitrification period was triggered by 
12

C6-glucose or 
13

C6-glucose supply to four replicate reactors 



 

48 

along with NO3
-
, constituting of four pairs of denitrifying reactors per agricultural field studied, to be 

sacrificed at two different time points. During the incubation, both the feeding solution and outflow 

were monitored periodically to evaluate the community metabolic response to the imposed incubation 

conditions. 

During the starvation period, the community was expected to reach a steady state with minimum 

denitrification activity, verified by quantitative recovery of fed NO3
-
 and a low recovery of CO2 

(Figure 11). In this stage, nitrite was below the detection limit and N2O showed low levels that 

declined over time (data not shown). These observations suggested that the community had used the 

available carbon for reduction of provided NO3
-
 and thereafter metabolic activities were at a 

minimum given the absence of electron donors for respiration and energy production. The second part 

of the incubation was initiated once a steady state was achieved.  

After glucose was supplied, denitrification was induced and became the dominant respiratory 

process occurring in the FTRs, as seen by NO3
-
 reduction and CO2 production (Figure 11). At that 

point of the incubation, anoxic conditions, electron acceptor (NO3
-
), and electron donor (glucose) 

were present, meeting the requisites for denitrification [69]. Nitrite and N2O were also detected as 

products of the denitrification process. Nitrite levels were low during the denitrification stage of the 

incubation ranging from below the detection limit (i.e., 10 µM) to 537 µM. Observed values implied 

nitrite was being used actively by nitrite reductase in sequential denitrification reactions for 

generation of chemical energy.  

Precautions were taken to prevent other carbon assimilation pathways from occurring in the FTRs. 

All feeding solutions were kept anoxic and the soil cores were protected from light. Among alternate 

metabolic pathways, fermentation was of concern because it occurs in oxygen-limited environments 

[165]. The pH of the non-buffered solution ranged from 6 to 7.5 showing no acidification of the flow 

through, suggesting that minimal fermentation occurred. Expected pH values attributed to acetic or 

butyric acids evolved from glucose fermentation, according to a batch experiment, would be around 

pH 5 [165]. Alternatively, to prevent fermentation, some researchers prefer to use succinate for DNA-

SIP studies, representing a non-fermentable substrate [164], although we did not do this here. Also, 

ammonia and ammonium were quantified as ammonium to corroborate that N did not deviate from 

denitrification due to DNRA, which has been associated with both C-rich [83] and C-deficient [82] 

environments. As expected, ammonia and ammonium were present in concentrations below 20 µM 

with an average of 7 µM during the length of the incubation, indicating that ammonium was not being 
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actively produced. Nitric oxide consumption through anammox was not expected in the studied soil, 

because previous molecular surveys were unable to detect anammox bacteria in the same field sites 

(Moore and Neufeld unpublished work, 2011). 

During the denitrification stage of the incubation, N2O was detected in all reactor outflows (data 

not shown), indicating that incomplete denitrification was occurring. This might have been because a 

constant supply of NO3
-
 was maintained, NO3

-
 is more thermodynamically favorable as an electron 

acceptor than N2O [166]. This may also have been because of enzyme kinetics, if initial reactions of 

denitrification yielded more product than N2O reductase could transform [167]. Alternatively, the 

denitrifier community itself might have been dominated by populations of denitrifiers that do not 

possess the nitrous oxide reductase gene [34]. However, once the flow rate was increased from 1 to 2 

mL h
-1

, N2O was no longer detected in the outflow. This indicated that the supply of more organic 

carbon was necessary for N2O reduction, implying that C was limiting when the flow was kept at 1 

mL h
-1

. Similarly, previous studies have shown that C content can be sufficient to support nitrate 

reduction and still be limited for denitrification enzyme activity [67]. The N2O detection method was 

qualitative and not quantitative, so the described N2O behavior during the incubation is based on 

qualitative observations. 

Carbon dioxide was quantified and represented dissolved inorganic carbon, which is expected as a 

product of the metabolism of the substrate provided as electron donor. The following balanced 

reaction dictates the stoichiometry of the reaction: 

5C6H12O6 + 24NO3
-
 → 6H

+
 + 30HCO3

-
 + 12N2 + 12H2O 

 

According to the reaction and considering that the input solution had 0.31 mM glucose, the 

generated CO2 could have a maximum of 1.86 mM. The average value for CO2 observed during the 

denitrification stage of the incubation was 0.81 mM, with a minimum and maximum of 0.32 mM and 

1.17 mM, respectively (Figure 11). Mass balances for C and N were not calculated because all carbon 

and nitrogen species were not quantified. Also, a portion of the C and N must have been consumed 

during microbial proliferation for cellular component synthesis. However, FTR behavior denotes that 

denitrification was the main process during the second stage of the incubation. 
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Figure 11. NO3

-
 consumption and CO2 production during the FTR DNA-SIP incubation. Both the starvation and denitrification periods 

(i.e., 22 and 27 days, respectively) of the incubation are shown. During the starvation stage NO3
-
 was supplied to the reactors and during 

the denitrification stage both NO3
-
 and 

13
C6-glucose were supplied to the reactors. At two incubation time points (i.e., days 30 and 49) two 

randomly chosen FTRs were sacrificed from each studied field (i.e., WEBs field 1, WEBs field 2, and Winchester fields 3 and 4 boundary). 

For the FTRs with longer incubation times, the feeding flow rate was increased from 1 to 2 mL h
-1

 at incubation day 40. Error bars 

represent the standard deviation for replicate FTRs.
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The glucose concentration in the feed solution was 1.5 times the required C to reduce the supplied 

N. The first incubation time point (i.e., 8 days after the denitrification stage had started) was reached 

when 5 to 9 µmoles of 
13

C had been consumed per cm
3
 of incubated soil, because previous reports 

suggested a consumption range of 5-500 µmoles of 
13

C per gram of soil for successful labeling [105]. 

The soil retrieved at the second time point (i.e., 27 days after the denitrification stage had started) 

metabolized from 31.5 to 35 µmoles of 
13

C per cm
3
 of incubated soil. The incubation time was kept to 

the minimum necessary to avoid cross-feeding and consequent labeling of non-denitrifying bacteria. 

 

3.2.2 Community denitrifying capacity 

The denitrification potential for the three field soils incubated under denitrifying conditions was 

calculated at the two imposed feeding flow rates as the nitrate reduction rate during stabilized 

conditions, using the equation presented in section 2.2.2.3 (Table 3).  

 

Table 3. Denitrification potential of agricultural soils during the FTR incubations at two 

imposed feeding flow rates during stabilized conditions. 

Flow rate  

(mL h
-1

) 

Nitrate reduction rate (N·nmol cm
−3

 h
−1

)
 1
 

WEBs (1)
2
 WEBs (2)

2
 

Winchester (3 and 4 

boundary)
2
 

1 35.91±1.57 34.17±1.00 35.66±2.57 

2 66.14±4.55 65.86±3.91 71.49±4.11 

1
 Mean ± SD, n=4 

2
 Site (field) 

 

Site and field of origin of the studied soils (i.e., soil characteristics and management practice 

histories) might affect observed nitrate reduction rates, but that effect might differ according to the 

feeding solution flow rate imposed to the FTRs during the incubation. A two-way analysis of variance 

(two-way ANOVA) tested the nitrate reduction capacity of the soils under imposed 1 and 2 mL h
-1

 

feeding solution flow rates. The soils did not show significantly different nitrate reduction rates, 

despite proceeding from different sites and fields and having diverse management histories (F(2,18) = 
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2.57, p = 0.105). However, the soils showed significantly different nitrate reduction rates when 

challenged with different feeding flow rates (F(1,18) = 607.52, p = 2.54E-15). The interaction of site 

and field of origin of the studied soils and feeding flow rate had no significant effect on the observed 

nitrate reduction rates (F(2,18) = 1.61, p = 0.230).  

WEBs fields 1 and 2 have disparate drainage modes that might change moisture content in the CTD 

field (WEBs field 2). However, recorded moisture data from the study sites revealed no trend 

associated with drainage practices or depth (data not shown), which could be attributed to a 

particularly dry year. Drainage practice impacts on the community, if present, should persist to 

consider moisture a long term modifier of the denitrifier community in these fields, referred to as a 

distal control [42], but the rates were similar (Table 3). Because evidence of drainage influences on 

active denitrifiers is lacking, the possibility exists that the management practice has no impact on that 

part of the community. An alternative possibility is that the community responded to the imposed 

laboratory conditions, indicating that there is a common seed of denitrifiers that readily responds to 

events favoring denitrification in the same manner.  

The Winchester site differed from WEBs fields 1 and 2 in that it had received manure as a 

fertilizing agent for the past ten years, instead of commercial fertilizers. Another difference between 

the fields was crop rotation (see section 2.1.1). The denitrification rates obtained for Winchester were 

similar to those obtained for the WEBs fields (Table 3), implying that despite the diverse background 

of the soils, the potential for denitrification was equivalent. Reports suggest that the fertilizer applied 

to agricultural fields affects the microbial communities, particularly when accompanied by a pH shift 

[72]. Importantly, a pH change does not always affects microbial community structure [61]. In 

addition, the denitrifier community composition does not always correlate with potential 

denitrification activity [64].  

For the studied WEBs fields 1 and 2 and Winchester site, no differences in the denitrification 

potential were found, despite contrasting drainage practices and fertilization regimes applied to the 

fields. However, increasing the rate of N and C supplementation caused denitrification rates to 

increase significantly (Table 3). This is an important observation and has major implications in 

scenarios of fertilizer application, root exudate secretion, and organic matter degradation, as reported 

by previous research [60,73]. 
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3.2.3 Heavy and light DNA fingerprints 

3.2.3.1 Clustering DGGE fingerprints 

Soil DNA from the FTRs was extracted and processed by density gradient ultracentrifugation, 

followed by fractionation to separate DNA contributed by active denitrifiers (i.e., heavy DNA) from 

that of the background community (i.e., light DNA). DGGE of the amplified 16S rRNA gene was 

used to generate fingerprints of the microbial communities concentrated in the heavy and light DNA 

fractions. Fingerprints from the six reactors fed with 
13

C6-glucose showed that heavy DNA 

corresponded to fraction 5 of the gradient from each reactor and it grouped separately from the light 

DNA corresponding to fraction 11 (Figure 12). Such grouping is expected as a consequence of the 

directed DNA labeling and confirms sufficient label incorporation during the SIP incubation. 

Interestingly, three main bands (Figure 12, bands 1-3) were common to heavy DNA in all the 

reactors, despite them being derived from distinct agricultural field sites.  
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Figure 12. An UPGMA dendogram of the 16S rRNA gene DGGE fingerprints of heavy and 

light DNA-SIP fractions from FTRs sacrificed after 30 days of incubation (i.e., 8 days of 

denitrification activity after glucose addition) with numbered picked bands (triangles). Two 

replicate FTRs from WEBs field 1 (E1-1 and E1-2), WEBs field 2 (E2-1 and E2-2), and 

Winchester fields 3 and 4 boundary (I-1 and I-2) are shown. 
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3.2.3.2 Identified taxa by DGGE-band sequencing 

Dominant putative denitrifier DGGE bands (numbered in Figure 12) were excised, re-amplified, 

and sequenced. Taxonomic assignment using the RDP classifier [117] assigned all but one sequence 

to the Betaproteobacteria class (Table 4); the exception was band 7, which was assigned to 

Flavobacteria. Sequenced bands classified to the Burkholderiales order, included members of the 

Oxalobacteraceae family (Figure 12, bands 1-3), a band from the Comamonadaceae family (Figure 

12, band 4), and a band from the Burkholderiaceae family (Figure 12, band 5). The order 

Rhodocyclales was represented by the Rhodocyclaceae family (Figure 12, band 6). Finally, a member 

of the order Flavobacteriales, family Flavobacteriaceae (Figure 12, band 7) and two members of the 

order Neisseriales, family Neisseriaceae (Figure 12, bands 8 and 9) were retrieved. For comparison, 

the sequences were submitted to BLAST [138] for taxa attribution with the GenBank database [168] 

(Table 4). Agreement between databases was not consistent at the genus level, but family-level 

affiliations were consistent for all band sequences. 

 

Table 4. Identity of abundant DNA-SIP denitrifiers obtained through DGGE-band sequencing. 

Band Family 

Genus 

RDP (% similarity) GenBank (% similarity, E value) 

1 Oxalobacteraceae Oxalicibacterium (33) Janthinobacterium (96, 7E-48) 

2 Oxalobacteraceae Herminiimonas (39) Massilia (99, 1E-53) 

3 Oxalobacteraceae Massilia (36) Massilia (99, 4E-53) 

4 Comamonadaceae Acidovorax (97) Acidovorax (100, 2E-55) 

5 Burkholderiaceae Pandoraea (28) Ralstonia (96, 4E-39) 

6 Rhodocyclaceae Azonexus (28) 
Dechloromonas, Azonexus, 

Azoarcus, Thauera (98, 1E-29) 

7 Flavobacteriaceae Meridianimaribacter (15) NA 

8 Neisseriaceae Pseudogulbenkiania (97) Chromobacterium (100, 2E-54) 

9 Neisseriaceae Pseudogulbenkiania (51) Chromobacterium (93, 3E-47) 

NA, not applicable because the sequence was not successfully classified.  
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Acidovorax sp. is a denitrifier that has been found in waste water treatment plant (WWTP) systems 

[169], sludge [52], and drinking water denitrification reactors, including Acidovorax facilis [170]. 

Ralstonia and Thauera, that inhabit soil, have denitrifiers among their member species [45], such as 

R. basilensis M91-3 [171], T. aromatica, and T. mechernichensis [52]. Azonexus has both denitrifying 

and non-denitrifying species, including A. fungiphilus LMG 19789
T
, which has no known denitrifying 

capacity and A. caeni, (isolated from WWTP sludge), which can reduce nitrate to N2. A close relative 

of Azonexus is Dechloromonas agitata CKB
T
 [172], a species with denitrifying capacity [52]. 

Azoarcus has many denitrifier representatives isolated from aquatic and soil environments, including 

strains of A. tolulyticus, A. toluclasticus, and A. toluvorans [173]. Bulk soil Azoarcus species have 

been suggested to have an anaerobic metabolism and to use nitrate as electron acceptor [174].  

Janthinobacterium sp. was affiliated with the heavy DNA bands. Strain A1-13, which was isolated 

from arable soil, was reported as able to reduce nitrate with high N2O contributions [156]. Another 

band affiliated with Pseudogulbenkiania sp. The strain NH8B, which was isolated from an 

agricultural soil, reduces N2O, which might implicate this genus as a N2O emission mitigating agent 

[175]. Interestingly, P. subflava BP-5
T
 is not able to reduce nitrite to N2, whereas Chromobacterium 

subtsugae PRAA4-1
T
, one of its closest relatives, has this capacity [176] and within this genus C. 

violaceum is able to reduce nitrate and nitrite [177]. 

Both Massilia spp. [164] and Meridianimaribacter flavus [178] were affiliated with the DGGE 

band sequences and were found previously to be unable to reduce nitrate. Researchers were unable to 

detect a nitrite reductase gene in Massilia strains although the authors speculated primer mismatches 

prevented amplification; the nitrous oxide reductase gene was detected and its activity confirmed 

using SIP incubations under N2O reducing conditions with succinate as electron donor [164]. 

Meridianimaribacter is a relatively new genus with little published information. Herminiimonas sp. 

SP-B was isolated from cold marine sediment and identified as psychrophilic denitrifier, using a 

mixture of acetate, propionate, and butyrate as electron donors to reduce nitrate [157]. This genus has 

five known species, of which three have shown nitrate reduction [179].  

Pandoraea has been also isolated from soil, but is more commonly known as an opportunistic 

pathogen [180]. The presence of a nitrate reductase coding gene involved in DNRA is known for 

Pandoraea sp. RB-44 and P. pnomenusa, narZ genes X636_23310 and U875_11400, respectively, 

annotated in the KEGG database [140]. Oxalicibacterium has never been found to grow anaerobically 
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by reducing nitrate or nitrite, although Herminiimonas, Janthinobacterium, and Massilia species are 

among its close relatives [181,182].  

 

3.2.4 Heavy and light DNA next-generation sequencing 

Sequences corresponding to the V3/V4 region of the 16S rRNA were obtained from 18 samples as 

follows: 6 heavy-DNA samples from soil incubated under denitrification conditions for 8 days, 3 

heavy-DNA samples from soil incubated under denitrification conditions for 27 days, 6 light-DNA 

samples from soil incubated under denitrification conditions for 8 days, and 3 light-DNA samples 

from soil incubated under denitrification conditions for 27 days.  

Sequencing 16S rRNA gene amplicons from the heavy and light fractions from the FTR resulted in 

568,443 paired-end sequences. Each sequenced sample contributed an average of 31,580 paired-end 

sequences (minimum 12,545 and maximum 79,018). After assembly of paired-end sequences, 

clustering by similarity, and chimera check, the remaining number of assembled sequences was 

558,857 (minimum 12,486 and maximum 77,789). For beta-diversity analysis requiring equal 

sequence contributions from each sample (i.e., Bray-Curtis PCoA, UniFrac PCoA, NMS, MRPP, and 

indicator species), these were rarefied to 12,486 sequences.  

 

3.2.4.1 Clustering next-generation sequencing community data 

UniFrac-based PCoA ordination revealed relevant taxa associated with the samples (Figure 13A) 

and showed that heavy DNA separated from light DNA (Figure 13B). In addition, samples that were 

incubated the longest grouped more closely together (Figure 13C). In comparison, a PCoA ordination 

based on a Bray-Curtis distance matrix showed heavy and light DNA separation, but no incubation-

length effect (data not shown). Taxa associated with the heavy DNA were Rhizobiales, 

Comamonadaceae, Oxalobacteraceae, Neisseriaceae, Azoarcus, Acidovorax, and Janthinobacterium 

(Figure 13A), which overlapped with DGGE results (Table 4).  
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Figure 13. Weighted-UniFrac PCoA ordination of next-generation sequencing data of heavy 

and light DNA-SIP fractions from FTRs with associated taxa (A), colored by DNA-type (B) and 

incubation time point under denitrifying conditions (C).  

 

Alternative ordination methods confirmed separation of heavy and light DNA samples (Figure 

14A) and also did not indicate changes in community composition with increased incubation time 

(Figure 14B). A MRPP test supported heavy and light DNA difference (p=0.001) with a high 

negative value for between-group separation (T=-10.2) and high within-group similarity (A=0.22), 
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which can also be seen with the spread of the samples on the ordination. MRPP values showed no 

support for incubation-time differences (T=-0.3, A=0.01, and p=0.24).  

 

Figure 14. NMS ordination and inset MRPP data (based on a Bray-Curtis distance matrix) of 

next-generation sequencing data of heavy and light DNA-SIP fractions from FTRs colored by 

DNA-type (A) and incubation time point under denitrifying conditions (B).  
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NMS and PCoA ordinations possess different characteristics that shape their suitability for 

identifying patterns in ecological data. Generally, NMS is recommended due to its freedom in pattern 

search because it is not limited to identifying linear relationships. PCoA is an ordination method that 

is being used increasingly because of its amenability to any distance matrix [183]. For the Illumina 

sequencing data, both methods identified the grouping of samples according to light or heavy DNA, 

which is due to the differential taxonomic representation of denitrifiers in the heavy DNA. Also, 

results imply similarity of the active communities enriched from three fields from two agricultural 

sites irrespective of their soil of origin and corresponding site management practices. 

 

3.2.4.2 Taxa exploration and indicator species 

Comparison of the taxonomic profiles from heavy and light DNA showed distinct patterns for 

heavy and light DNA (Figure 15A and Table 5). The heavy DNA was dominated by the 

Betaproteobacteria class (Figure 15B) of the Oxalobacteraceae and Comamonadaceae families 

(Figure 15C). Abundant heavy DNA genera included Janthinobacterium, Acidovorax, Ralstonia, and 

Azoarcus (Figure 15D). Several Alphaproteobacteria were also represented in the heavy DNA, in 

addition to a group of the Actinobacteria phylum (Table 5). Similarly, previous characterization of 

199 cultivated denitrifiers classified the majority of isolates as Betaproteobacteria (50.4%), followed 

by Alphaproteobacteria (36.8%), Gammaproteobacteria (5.6%), and Epsilonproteobacteria (2%) 

[52].  

Indicator species analysis of the DNA-SIP fractions revealed species or taxa associated with the 

denitrifiers, indicating microorganisms capable of reducing nitrate in the established conditions 

(Table 6). The identified indicators were highly similar to taxa associated with the heavy DNA itself 

(Table 5). Janthinobacterium lividum was a prominent indicator species with high sequence 

abundance, despite being undetected by most denitrification studies.  
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Figure 15. Taxa associated with DNA-SIP fractions after 8 days of denitrification at the phylum 

(A), class (B), family (C), and genus (D) levels. Two replicate FTRs from WEBs field 1 (E1-1 and 

E1-2), WEBs field 2 (E2-1 and E2-2), and Winchester fields 3 and 4 boundary (I-1 and I-2) are 

shown. Boxed numbers point to taxa in the figure legends. 
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Table 5. Relative abundance of Actinobacteria and Proteobacteria taxa above 0.5% associated with heavy DNA and light DNA in brackets 

for different incubation time points under denitrifying conditions obtained from next-generation sequencing. 

Taxonomic position 

(phylum, class, order, 

family, and genus) 

16S rRNA gene sequence abundance (%) 

8 days
 1
 27 days 

2
 8 days 

3
 27 days 

4
 

WEBs1 WEBs2 Winchester WEBs1 WEBs2 Winchester Average Average 

            

Actinobacteria 4.8 (3.8) 3.7 (3.6) 2.5 (6.2) 5.6 (9.3) 3.5 (10.5) 6.0 (12.7) 3.7 (4.5) 5.1 (10.8) 

         

Actinobacteria 3.9 (1.5) 2.7 (1.3) 2.0 (3.6) 4.7 (5.2) 2.8 (3.9) 5.6 (5.3) 2.8 (2.2) 4.4 (4.8) 

 Actinomycetales         

  Streptomycetaceae 2.6 (0.1) 0.6 (0.1) 0.6 (0.4) 1.4 (0.1) 0.3 (0.2) 3.4 (0.3) 1.3 (0.2) 1.7 (0.2) 

         

Proteobacteria 82.7 (39.7) 84.7 (35.3) 90.0 (41.4) 87.2 (44.5) 85.3 (42.8) 90.6 (40.4) 85.8 (38.8) 87.7 (42.6) 

            

Alphaproteobacteria 10.9 (12.7) 4.7 (11.4) 9.2 (10.2) 42.6 (21.6) 28.4 (19.3) 22.4 (11.0) 8.3 (11.4) 31.1 (17.3) 

 Rhizobiales         

  Other 0.2 (0.1) 0.2 (0.1) 0.3 (0.1) 11.6 (0.2) 13.0 (0.2) 8.8 (0.2) 0.2 (0.1) 11.1 (0.2) 

  Bradyrhizobiaceae 1.8 (1.7) 1.1 (1.5) 0.6 (1.4) 7.7 (3.1) 6.4 (2.7) 2.4 (1.1) 1.1 (1.5) 5.5 (2.3) 

   Bradyrhizobium 1.6 (1.7) 0.7 (1.4) 0.5 (1.2) 7.0 (3.0) 5.5 (2.5) 2.3 (1.0) 0.9 (1.4) 4.9 (2.2) 

  Phyllobacteriaceae 0.7 (0.2) 0.4 (0.1) 0.5 (0.4) 3.8 (0.5) 1.7 (0.3) 0.7 (0.5) 0.5 (0.3) 2.1 (0.4) 

   Other 0.2 (0.1) 0.1 (0.0) 0.3 (0.2) 1.7 (0.2) 0.9 (0.1) 0.5 (0.2) 0.2 (0.1) 1.0 (0.1) 
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   Mesorhizobium 0.4 (0.1) 0.3 (0.1) 0.1 (0.2) 2.2 (0.2) 0.8 (0.2) 0.1 (0.3) 0.3 (0.1) 1.0 (0.2) 

  Rhizobiaceae 5.7 (0.2) 0.5 (0.1) 4.1 (0.5) 14.1 (0.6) 4.3 (0.3) 6.9 (0.3) 3.4 (0.3) 8.4 (0.4) 

   Other 2.7 (0.0) 0.0 (0.0) 1.5 (0.2) 0.3 (0.0) 0.1 (0.0) 4.7 (0.1) 1.4 (0.1) 1.7 (0.0) 

   Agrobacterium 0.4 (0.1) 0.1 (0.0) 0.8 (0.1) 10.7 (0.2) 1.6 (0.1) 1.8 (0.2) 0.4 (0.1) 4.7 (0.2) 

   Rhizobium 2.6 (0.1) 0.4 (0.1) 1.8 (0.2) 3.1 (0.3) 2.6 (0.2) 0.4 (0.1) 1.6 (0.1) 2.1 (0.2) 

 Rhodospirillales         

  Rhodospirillaceae 0.7 (1.8) 0.5 (1.6) 0.9 (1.1) 0.8 (1.8) 1.0 (1.6) 0.5 (0.7) 0.7 (1.5) 0.8 (1.4) 

   Azospirillum 0.0 (0.0) 0.0 (0.0) 0.7 (0.0) 0.6 (0.0) 0.6 (0.0) 0.4 (0.0) 0.2 (0.0) 0.5 (0.0) 

            

Betaproteobacteria 66.0 (10.1) 73.2 (9.6) 74.5 (16.7) 42.3 (8.8) 53.4 (11.3) 60.0 (15.7) 71.2 (12.1) 51.9 (11.9) 

 Burkholderiales         

  Comamonadaceae 14.7 (1.3) 1.8 (1.0) 4.3 (3.4) 10.1 (1.5) 5.8 (1.4) 3.3 (2.2) 6.9 (1.9) 6.4 (1.7) 

   Other 3.0 (0.8) 0.9 (0.6) 1.8 (1.3) 3.4 (0.9) 3.1 (0.9) 2.4 (0.6) 1.9 (0.9) 3.0 (0.8) 

   Acidovorax 10.7 (0.2) 0.3 (0.1) 1.8 (0.3) 6.1 (0.2) 1.7 (0.1) 0.2 (0.3) 4.3 (0.2) 2.7 (0.2) 

  Oxalobacteraceae 44.6 (1.3) 65.8 (1.1) 33.1 (5.3) 21.3 (1.8) 31.5 (1.8) 33.0 (3.2) 47.9 (2.6) 28.6 (2.2) 

   Other 9.6 (0.8) 9.5 (0.6) 12.1 (3.5) 7.0 (0.7) 5.8 (0.6) 10.1 (2.1) 10.4 (1.6) 7.6 (1.1) 

   Janthinobacterium 34.7 (0.4) 51.1 (0.4) 20.8 (0.7) 10.4 (0.8) 21.6 (1.0) 22.8 (0.9) 35.6 (0.5) 18.3 (0.9) 

   Ralstonia 0.0 (0.0) 5.1 (0.0) 0.0 (0.0) 1.6 (0.0) 3.4 (0.0) 0.0 (0.0) 1.7 (0.0) 1.7 (0.0) 

 Neisseriales         

  Neisseriaceae 0.0 (0.0) 0.0 (0.0) 26.0 (0.6) 0.0 (0.0) 0.0 (0.0) 2.1 (0.0) 8.7 (0.2) 0.7 (0.0) 

   Other 0.0 (0.0) 0.0 (0.0) 25.9 (0.6) 0.0 (0.0) 0.0 (0.0) 1.8 (0.0) 8.6 (0.2) 0.6 (0.0) 

 Rhodocyclales         

  Rhodocyclaceae 4.7 (0.2) 2.0 (0.1) 9.9 (1.2) 9.3 (0.1) 13.1 (0.1) 20.6 (0.5) 5.5 (0.5) 14.3 (0.3) 

   Azoarcus 2.6 (0.0) 1.6 (0.0) 5.2 (0.3) 0.7 (0.0) 2.2 (0.0) 6.8 (0.2) 3.1 (0.1) 3.2 (0.1) 



 

64 

   Azospira 0.0 (0.0) 0.0 (0.0) 1.7 (0.0) 1.0 (0.0) 4.3 (0.0) 0.0 (0.0) 0.6 (0.0) 1.8 (0.0) 

   Dechloromonas 1.4 (0.1) 0.3 (0.0) 1.6 (0.5) 7.2 (0.0) 5.4 (0.0) 3.4 (0.1) 1.1 (0.2) 5.3 (0.0) 

   Rhodocyclus 0.0 (0.0) 0.0 (0.0) 0.3 (0.0) 0.0 (0.0) 0.0 (0.0) 9.3 (0.1) 0.1 (0.0) 3.1 (0.0) 

            

Gammaproteobacteria 3.1 (5.4) 4.0 (4.6) 3.5 (7.3) 0.9 (6.9) 1.3 (5.1) 6.9 (5.3) 3.6 (5.7) 3.1 (5.7) 

 Pseudomonadales         

  Pseudomonadaceae 2.0 (0.3) 2.8 (0.2) 1.9 (2.7) 0.2 (1.4) 0.6 (0.2) 1.0 (1.1) 2.2 (1.1) 0.6 (0.9) 

   Pseudomonas 2.0 (0.3) 2.8 (0.2) 1.9 (2.7) 0.2 (1.4) 0.6 (0.2) 1.0 (1.1) 2.2 (1.1) 0.6 (0.9) 

 Xanthomonadales         

  Xanthomonadaceae 0.3 (0.8) 0.4 (0.6) 1.2 (1.8) 0.3 (1.1) 0.4 (1.5) 5.8 (1.5) 0.7 (1.1) 2.2 (1.4) 

   Lysobacter 0.0 (0.0) 0.1 (0.0) 0.9 (0.3) 0.0 (0.1) 0.0 (0.1) 5.5 (0.5) 0.4 (0.1) 1.8 (0.2) 

            

Deltaproteobacteria 2.6 (11.3) 2.7 (9.5) 2.7 (7.1) 1.3 (7.1) 2.2 (6.9) 1.3 (8.4) 2.6 (9.3) 1.6 (7.5) 

         

All percentages were obtained for each taxon at the corresponding hierarchical level, which added to the partiality of this list, causes the addition 

of values to not yield 100%. 

“Other” refers to sequences that were classified to the immediate higher taxonomical rank, but were not classified at the current level. 

Order level was included with hierarchical orientation purposes and deliberately lack abundances. 

1
 Average of two independently sequenced samples from two reactors. 

2
 Value obtained from sequencing a composite sample from two independent reactors. 

3
 Average of six independently sequenced samples from six reactors from three sites. 

4
 Average of three independently sequenced composite samples from six reactors from three sites. 
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Table 6. Indicator species associated with denitrifier DNA obtained from DNA-SIP (indicator 

value ≥ 0.8, sequence abundance ≥ 2000, and p ≤ 0.05). 

OTU Consensus lineage 
Sequence 

count 

Indicator 

value 

20368 Proteobacteria; Alphaproteobacteria; Rhizobiales 8703 1.00 

348 Proteobacteria; Betaproteobacteria; Burkholderiales; 

Oxalobacteraceae; Janthinobacterium; lividum 

3500 0.98 

202 Proteobacteria; Betaproteobacteria; Burkholderiales; 

Oxalobacteraceae; Janthinobacterium 

67170 0.98 

361 Proteobacteria; Betaproteobacteria; Rhodocyclales; 

Rhodocyclaceae; Azoarcus 

6647 0.97 

20701 Proteobacteria; Alphaproteobacteria; Rhizobiales; Rhizobiaceae 3286 0.96 

20567 Proteobacteria; Alphaproteobacteria; Rhizobiales; Rhizobiaceae; 

Agrobacterium 

4580 0.95 

20576 Proteobacteria; Alphaproteobacteria; Rhizobiales; Rhizobiaceae; 

Rhizobium 

4503 0.92 

17646 Actinobacteria; Actinobacteria; Actinomycetales; Streptomycetaceae 3753 0.88 

331 Proteobacteria; Betaproteobacteria; Burkholderiales; 

Oxalobacteraceae 

21974 0.88 

20556 Proteobacteria; Alphaproteobacteria; Rhizobiales 2433 0.88 

1515 Proteobacteria; Betaproteobacteria; Rhodocyclales; 

Rhodocyclaceae; Dechloromonas 

3930 0.87 

1005 Proteobacteria; Betaproteobacteria; Burkholderiales; 

Comamonadaceae; Acidovorax 

2352 0.84 
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Oxalobacteraceae was the most abundant family in the active fractions, regardless of incubation 

length (Table 5), with Janthinobacterium being the most abundant genus among the observed 

denitrifiers at both incubation lengths. Janthinobacterium is not widely covered in the literature and 

might be an important denitrifier according to these results, especially given its presence as a depth-

dependent indicator species in WEBs site (Figure 6). Furthermore, it could be of environmental 

concern given its high N2O emission capacity [156]. 

Incubation length helped us identify Agrobacterium as an active denitrifier, although it was 

observable after the short incubation as well. Moreover, this genus was more predominant in WEBs 

site field 1, with 10.7% abundance. An unclassified Rhizobiales family (“other” in Table 5) became 

notably abundant after 27 days of enrichment (average of 11.1%), whereas it was poorly represented 

after 8 days of denitrifying activity (average of 0.2%). This was observed for other 

Alphaproteobacteria as well. Other examples are the Rhizobiaceae family and Bradyrhizobium. 

Similarly, Dechloromonas, a Betaproteobacteria, was an active genus after 8 days of incubation, but 

it greatly increased in abundance with incubation time, going from an average abundance of 1.1 to 

5.3%. Conversely, Azoarcus, Rhizobium, and the Streptomycetaceae family had similar abundances 

across sites and incubation lengths, whereas Acidovorax was very abundant in one of two reactors 

from the WEBs site field 1 (reactor E1-2, Figure 15D) and was active in samples from all sites. 

Azospirillum, Ralstonia, and Azospira were active only in a few FTRs after the short incubation 

and appeared in the active fraction after the long incubation, which might be due to sample 

heterogeneity. The growth of R. solanacearum, for example, has been shown to be reduced by 8 mM 

nitrite concentrations at pH 7 [184]. The reactors showed higher nitrite concentrations than this, 

which might explain the delayed appearance of the microorganism. Azospirillum was an important 

genus recovered from rice paddy soil with a denitrifier-targeted single-cell isolation effort, which 

resulted in 20 isolates out of 37 from this lineage [185]. Also, Azospirillum lipoferum and B. 

japonicum stimulated each other’s capacity for denitrification, where the presence of the former 

enhanced the growth of the latter [186], which might explain why in the present study both genera 

appeared after the longer incubation under denitrifying conditions. 

Several unclassified taxa from the Neisseriaceae family were only observed in the Winchester 

site’s active fraction with important abundance (25.9%; “other” in Table 5).  

Two activated sludge studies support the denitrifier taxa mentioned above by retrieving either 

denitrifier isolates or 16S rRNA gene sequences from active denitrifiers using DNA-SIP. In the first 
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study, 10% of the isolates were Acidovorax, 5.5% Pseudomonas, 4% Dechloromonas, 3% Rhizobium, 

1% Azospira, and 0.5% Neisseraceae [52]. Similarly, from 201 clones obtained from denitrifier DNA 

identified with labeled acetate, 14% of the clones were related to Acidovorax, 4% to Dechloromonas, 

and 0.5% to Pseudomonas. From 137 clones obtained from denitrifier DNA enriched with labeled 

methanol incubations, 3% of clones were associated to Ralstonia [187]. Notably, genera like 

Ochrobactrum, Paracoccus, Comamonas, Thauera, Rhodobacter, and Arcobacter were not found in 

our SIP heavy DNA despite being abundant denitrifiers in these reviewed studies. Finally, a 

denitrifier cultivation study using soil planted with corn associated 73% of isolates to Agrobacterium 

tumefaciens and 12% to Streptomyces cinnabarinus, where the end products of denitrification for 

these isolates are N2O and N2, respectively [188]. Overall, the SIP-identified active denitrifiers agree 

with those reported in the literature. However, this research shows evidence of their activity under the 

employed incubation conditions and captured the effect of incubation length. Furthermore, the 

reported active denitrifier abundance data might be closer to phenomena observed in agricultural 

fields because a cultivation-independent method was used.  

 

3.2.5 Bulk-soil DNA and heavy DNA metagenomic sequencing 

3.2.5.1 Comparison of the metagenome of bulk vs. denitrifier-enriched soil DNA 

Denitrifier-enriched DNA and the original soil DNA samples were sequenced directly in order to 

access the metagenomic information in the heavy DNA. As described in previous sections, the 

denitrifying incubation resulted in a taxonomic shift within the heavy DNA (Figure 15), which 

confirmed denitrifier enrichment. After metagenomic sequencing of the selected samples, the 

expectation was to observe a higher proportion of denitrifier DNA (e.g., nitrite reductase genes) in 

heavy DNA samples compared to corresponding libraries from the original soil samples. However, 

this was not the case. Very similar gene abundances of nirK and nirS were observed, in relation to the 

total number of 16S rRNA genes recovered for each sample (Table 7). This similar proportion of 

nitrite reductase genes concealed distinct taxonomic affiliations in the bulk soil and heavy DNA 

(Figure 16). 
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Table 7. Nir sequences annotated by MG-RAST by comparison to GenBank sequences (E-value 

≤ 0.00001, identity ≥ 60%, and minimum alignment length of 15 amino acids) from original-soil 

and denitrifier-enriched DNA for WEBs and Winchester after metagenomic paired-end next-

generation sequencing. 

Library 

Sequence abundance 

nirK
1
 nirS

1
 16S rRNA 

WEBs bulk soil read 1 43 (0.89) 3 (0.06) 4,810 

WEBs bulk soil read 2 74 (2.32) 2 (0.06) 3,191 

WEBs heavy DNA read 1 572 (1.65) 25 (0.07) 34,638 

WEBs heavy DNA read 2 243 (1.64) 11 (0.07) 14,832 

Winchester bulk soil read 1 180 (2.25) 4 (0.05) 8,011 

Winchester bulk soil read 2 109 (2.29) 2 (0.04) 4,769 

Winchester heavy DNA read 1 51 (0.91) 22 (0.39) 5,628 

Winchester heavy DNA read 2 43 (1.18) 12 (0.33) 3,636 

1
 Number of gene sequences identified and % relative to 16S rRNA gene in brackets. 
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Figure 16. Taxonomic affiliation of identified nirK genes for WEBs and Winchester bulk soil 

and heavy DNA read 1 (R1) and read 2 (R2) metagenomic libraries. Numbers point to 

taxonomic affiliation in the figure legend. 
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3.2.5.2 Identification of nitrite reductase genes 

The metagenomic data indicated that nirK-containing denitrifiers were dominant (Table 7). This 

observation is consistent given recent findings on Nir-type niche selection. A soil study found that 

abundance for both Nir genes was partly determined by soil structure: nirS community structure 

responded to soil nitrate, clay, and pH, whereas nirK was naturally influenced by copper; nirK 

genotype was responsive to management practices implemented in the studied sites [189]. The 

nirS/nirK ratio in soil has also been observed to respond to cattle influence and to correlate with pH, 

nitrate, and moisture [75]. The results of this study cannot be directly compared to available literature, 

because Nir gene recovery is commonly done with prior amplification using primers that might 

selectively and partially recover these genes [38]. This study shows evidence of environmental 

selection of Nir genes and nirK in the WEBs and Winchester fields. Brucella, Ralstonia, and 

Chromobacterium related nirK sequences were abundant in heavy DNA compared to bulk soil DNA 

(Figure 16). 

 

3.2.5.3 Similarity of nirK priming sites and targeting primers  

Initially, curated proteobacterial nirS and nirK sequences from the KEGG database were aligned to 

evaluate their primer-binding sites (data not shown). Notably, nirS genes from this database are more 

conserved across the primer-binding sites than nirK genes. Conversely, previous reports state that 

nirS primer design could be more challenging [32]. The nirK genes recovered from WEBs 

metagenomic sequencing were aligned to genes of Proteobacteria isolates and then the primer-

binding sites of the obtained sequences were compared to different primers (i.e., forward primers 

nirK1F [31], F1aCu [32], and nirK876 [54] and reverse primers nirK5R [31], R3Cu [32], and 

nirK1040 [54]) (Figure 17). The number of matches and mismatches for curated nirK sequences with 

respect to the same primers were determined (Table 8).  
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Figure 17. Evaluation of match between published nirK primers (i.e., nirK1F, F1aCu, nirK876, 

nirK5R, R3Cu, and nirK1040) and the primer-binding region for identified nirK partial genes 

from WEBs heavy DNA read 1 metagenomic library. 
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Table 8. Gene primer-binding region evaluation for selected curated nirK sequences from the 

KEGG database. 

Microorganism Sequence Primer Match/Mismatch 

Burkholderia pseudomallei 

1710b 

BURPS1710b_A0477 nirK1F (11/6) 

F1aCu (12/5) 

nirK876 (11/6) 

nirK5R/R3Cu/nirK1040 (9/11) 

Burkholderia pseudomallei 

1710b 

BURPS1710b_A0520 nirK1F (6/11) 

F1aCu (11/6) 

nirK876 (11/6) 

nirK5R/R3Cu/nirK1040 (9/11) 

Chromobacterium violaceum CV_2007 nirK1F (8/9) 

F1aCu (12/5) 

nirK876 (12/5) 

nirK5R/R3Cu/nirK1040 (12/8) 

Oligotropha carboxidovorans 

OM5 (Mississippi) 

OCAR_5468 nirK1F (7/10) 

F1aCu (10/7) 

nirK876 (12/5) 

nirK5R/R3Cu/nirK1040 (12/8) 

Oligotropha carboxidovorans 

OM5 (Mississippi) 

OCAR_7249 nirK1F (10/7) 

F1aCu (12/5) 

nirK876 (12/5) 

nirK5R/R3Cu/nirK1040 (6/14) 

Pseudomonas denitrificans H681_24715 nirK1F (15/2) 

F1aCu (17/0) 

nirK876 (17/0) 

nirK5R/R3Cu/nirK1040 (20/0) 

Ralstonia pickettii 12D Rpic12D_4128 nirK1F (7/10) 

F1aCu (12/5) 

nirK876 (12/5) 

nirK5R/R3Cu/nirK1040 (10/10) 

Ralstonia pickettii 12J Rpic_4015 nirK1F (7/10) 

F1aCu (12/5) 

nirK876 (12/5) 

nirK5R/R3Cu/nirK1040 (10/10) 

Ralstonia solanacearum 

FQY_4 

F504_4973 nirK1F (7/10) 

F1aCu (12/5) 

nirK876 (12/5) 

nirK5R/R3Cu/nirK1040 (10/10) 
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For partial sequences retrieved from this research, primer-binding regions showed few perfect 

matches to tested nirK primers (Figure 17). For example, identified nirK sequences that were similar 

to that of Chromobacterium violaceum showed lower sequence similarity to primers than observed 

for curated sequence from the same species. The same was observed for Burkholderia pseudomallei 

related sequences. Among nirK gene sequences retrieved from the KEGG database, both high and 

low primer-binding region similarities were observed (Table 8). Sequences with low similarity to 

primers belong to Actinobacillus sp., Azoarcus sp., Azozpirillum sp., Burkholderia sp., 

Chromobacterium violaceum, Kangiella koreensis, and Ralstonia solanacearum. On the contrary, 

curated sequences of Pseudomonas denitrificans, Rhodopseudomonas sp., Brucella sp., Rhizobium 

etli, Sinorhizobium sp., and Achromobacter xylosoxidans had primer-binding sites that showed high 

similarity to amplification primers.  

An important observation among denitrifiers is that some might possess more than one copy of the 

nitrite reductase gene; Afipia sp. 1NLS2 illustrates this scenario with three nirK copies that are 

dissimilar; and Oligotropha carboxidovorans strain Om5 has two non-identical gene copies [45]. The 

possibility exists that the data captured different gene versions from the same active denitrifier, which 

could cause some differences in matches and mismatches for sequences related to the same strain 

(data not shown). 

A comparison of the taxa associated with retrieved nirK sequences and the bacterial taxonomic 

assignment based on 16S rRNA gene found in the heavy DNA (Figure 16, Figure 18, and Figure 19), 

reveals some disagreement. Previously researchers tried to pair nitrite reductase gene and 16S rRNA 

gene phylogenies and realized that the functional gene is not useful for taxonomic inference, probably 

due to horizontal gene transfer that complicates taxonomy attribution based on functional gene 

sequences [33]. However, denitrifier diversity and function can be studied simultaneously with DNA-

SIP and a handful of studies are available using specialized reactor biomass [190], activated sludge 

[187,191,192], and soil [58,175]. The present research is the first to recover functional genes and go 

beyond denitrifier-community taxonomic evaluation by using metagenomic sequencing of SIP-

derived heavy DNA. My results (Figure 17) support previous findings indicating that available 

primers are likely to miss a fraction of the denitrifiers and this study proved that fraction to be 

potentially important for the denitrification process. 
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Figure 18. Taxa associated to WEBs bulk soil and heavy DNA read 1 (R1) and read 2 (R2) 

metagenomic libraries based on the 16S rRNA gene for the Betaproteobacteria.  
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Figure 19. Taxa associated to Winchester bulk soil and heavy DNA read 1 (R1) and read 2 (R2) 

metagenomic libraries based on the 16S rRNA gene for the Betaproteobacteria. 
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Chapter 4 

Conclusions and future research 

This research was done as part of a major project called “Grow more and emit less”, aiming to 

evaluate the impact of agricultural management in GHG emissions. Agricultural practices have the 

potential to affect the soil microbial community structure and diversity [19,21] by modifying pH [18], 

soil nutrient content [19], oxygen, and soil structure characteristics [20]. However, particular sites 

must be characterized because observations might vary from one site to another given the number of 

interacting variables (i.e., soil edaphic factors and microbial communities, climate, crop, and 

management practices).  

The first objective of this research consisted of characterizing the microbial community from soils 

with contrasting drainage management to identify community responses to the imposed practice. It 

was hypothesized that the community would be influenced by the drainage practice established in the 

sites and moisture and oxygen variations were expected in response to drainage practice. However, 

results revealed that the selection of CTD or UCTD for field management did not influence the site’s 

microbial community (Figure 2D). The community data collected across the farming season of 2012 

showed that cultivar type and fertilizer type applied explained most of the between-communities 

variation (Figure 2A), followed by soil depth (Figure 2B). These factors have been acknowledged as 

major modifiers of microbial composition in soil [146,148].  

 The studied sites are owned and operated by farmers according to market demands. Therefore, the 

fields’ management has several constraints, one of which is the implemented drainage system and the 

type of fertilizer employed (i.e., manure, commercial, or a mixture). On the other hand, crop rotation 

is flexible and all the characterized fields have grown similar crops in recent years. As a result, and 

also due to lack of soil characterization, our analysis was not able to determine which factors caused 

the observed ordination grouping (Figure 2). However, I identified that the drainage management 

used in these fields did not impact soil microbial communities in the dry 2012 growing season 

(average rainfall in Ottawa between May 1 and September 30, 2012 of 74 mm). Along with field data 

collected by other parties as part of this integrated and collaborative project, my research suggests 

that CTD may be employed in fields without enhancing GHG emissions. Nonetheless, further work is 

necessary to better characterize the factors influencing the microbial communities, which led to the 

observed bacterial community structure in these soils. Such work includes detailed soil 



 

77 

characterization and monitoring the communities in upcoming years to confirm that the drainage 

practice would not affect the community under different weather scenarios, since 2012 was a year 

with little precipitation.  

My study revealed that Actinobacteria relative abundance increased during the growing season for 

WEBs fields 1 and 2 (r(46)=0.69, p=6.6E-8; Figure 3), WEBs fields 11-14 (r(52)=0.38, p=0.005; 

Figure 4), and Winchester site (r(39)=0.46, p=0.002; Figure 5), possibly reflecting nutrient 

accumulation in the field as the crop grows. Actinobacteria have been shown to increase with carbon 

source supplementation [152] and decrease with harvesting [153]. Also, Chloroflexi abundance 

significantly increased within deeper soil samples (p=1.7E-5; Figure 3 and p=0.002; Figure 5). 

Chloroflexi are likely able to withstand deeper soil conditions, despite having low growth rates due to 

reduced competition associated with lower microbial diversity in deeper soil. Other obtained indicator 

species for deeper soil, like Acidobacteria and Nitrospira, are equipped with high substrate affinity 

enzymes and other adaptations for nutrient-limited niches [161,162]. However, assigning functional 

significance to these depth-associated OTUs is difficult. Some phyla are poorly characterized and few 

representatives are available due to their resistance to cultivation. Currently, genomic sequencing 

serves the purpose of predicting potential functional roles for members of these phyla. 

The second objective of this research involved the study of denitrification in the farming sites 

employed to detect active denitrifiers and retrieve their genomic information. Denitrification has been 

known for more than one hundred years and was initially discovered by Gayon and Dupetit (1883) in 

sewage [193]. Since then, microbiological methods used for denitrification research have included 

microbial cultivation and phenotypic characterization through biochemical tests that, alongside 

enzymatic characterization, established baseline data for subsequent denitrification studies. Formerly 

employed methods biased denitrifier representatives in databases to those that were readily grown on 

media. Currently, the advent of genome sequencing helps understand and fill gaps on microbial 

physiology, allowing the reevaluation of species and strains that before could not be affiliated with 

denitrification activity. Furthermore, Shapleigh and Philippot acknowledged the difficulty in 

assigning denitrification function to microorganisms due to the limitations of evaluation methods 

employed (i.e., biochemical, molecular, or genome based) [45,68].  

Among the best studied denitrifiers are Paracoccus denitrificans, which belongs to the 

Alphaproteobacteria, and Pseudomonas stutzeri and Pseudomonas aeruginosa from the 

Gammaproteobacteria. Other genera with high numbers of denitrifier representatives are Brucella, 
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Burkholderia, Ralstonia, Thauera, and Shewanella. Many of these microorganisms were used as 

models to develop primers to identify and quantify denitrifiers in the environment. The best primers 

to amplify Nir sequences, to my knowledge, are nirK876 and nirK1040 for nirK designed with 

degeneracies to be as universal as possible [54]. Both cd3aF and R3cd are recognized as being 

primers of choice for the heme-containing nitrite reductase [34,55,56]. Despite being designed for 

universal gene amplification, it is known these primers fail to recognize denitrification potential in 

some species [38,53]. 

To circumvent the issues of culture bias and primer-dependent detection of denitrifiers, DNA-SIP 

was chosen in this project to detect relevant and potentially active denitrifiers in the study fields 

(Figure 15). Interestingly, a common group of denitrifiers was found in the studied sites (e.g., 

Janthinobacterium, Acidovorax, Azoarcus, Dechloromonas, Rhizobium, and Pseudomonas), despite 

the diverse history of the fields, which could indicate that under denitrifying conditions, a core 

microbial consortium thrives regardless of soil origin and “background” community. However, the 

community behavior in the field during the growing season and especially in denitrification-favoring 

events like fertilizer application and rain should not be deduced from these experiments without in 

situ testing to corroborate the identities of naturally denitrifying microorganisms in the field.  

An important contribution of my research is the identification of an active core of denitrifiers that 

may be highly important for affecting plant growth and soil biogeochemical activity. Furthermore, a 

major contribution of this study is the recovery of putative nirK sequences obtained without the 

prerequisite of cultivation and without relying on primers for detection. Our sequences showed low 

similarity across regions used for primer binding (Figure 17), which suggests that molecular surveys 

of these sites would have failed to identify potentially active denitrifiers. Also, active denitrifiers from 

the studied sites carried nirK genes rather than nirS genes (Table 7). Denitrifier Nir-type distribution 

in the environment has been studied; both enzymes are functionally equivalent. Initially, nirS genes 

were reported to be more abundant than nirK [194], suggesting that one Nir type could be more 

widely distributed than the other. Later, evidence suggested that the environment could differentially 

affect nirS- and nirK-carrying microorganisms. For example, the presence of plants in a plot changed 

the nirS/nirK ratio [72]. Recently, community phylogeny studies were used to make inferences about 

the possible underlying causes of differential distribution of Nir genes in different environments. A 

study found that the global Nir-type distribution was related to environment salinity for aquatic 
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denitrifier communities[195]. The authors also postulated that different Nir-type harboring denitrifiers 

in soil respond to different environmental factors, such as nitrogen species. 

Future work to assess functional denitrifier enrichment could involve RNA extraction for RNA-

SIP, cDNA synthesis, and shotgun sequencing. This approach would be potentially more sensitive to 

Nir gene enrichment after labelled substrate incubation. Also, assembly of the obtained Nir sequences 

could be attempted to yield complete Nir genes for analysis and primer design. Heavy DNA analysis 

was only done for Nir genes, but other functional genes (i.e., nosZ) should also be explored to 

complement my results. In addition, evaluating multiple match length and confidence thresholds for 

Nir gene annotation would be an important next step to confirm that annotations associated with 
13

C-

DNA sequences (Table 7, Figure 16, and Figure 17) were genuine nitrite reductase homologues. 

In sum, this work assessed agricultural management impacts on soil microbial communities and 

employed FTRs for the first time for DNA-SIP denitrifier functional gene recovery. The employed 

methodologies facilitated the study of the total bacterial community in response to agricultural 

management practices and the characterization of a fraction of the community responsible for GHG 

emission, demonstrating the value of novel molecular techniques for environmental microbiology 

studies. 
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Appendix A 

List of soil samples 

Soil samples used for WEBs and Winchester bacterial diversity analyses. 

Site Field Sampled date Depth (cm) Position 

WEBs 1 16-Apr-12 0-30 B 

WEBs 1 16-Apr-12 30-60 B 

WEBs 1 16-Apr-12 60-90 B 

WEBs 1 18-Apr-12 0-30 T 

WEBs 1 18-Apr-12 30-60 T 

WEBs 1 18-Apr-12 60-90 T 

WEBs 2 16-Apr-12 0-30 B 

WEBs 2 16-Apr-12 30-60 B 

WEBs 2 16-Apr-12 60-90 B 

WEBs 2 18-Apr-12 0-30 T 

WEBs 2 18-Apr-12 30-60 T 

WEBs 2 18-Apr-12 60-90 T 

WEBs 1 19-Jun-12 0-30 B 

WEBs 1 19-Jun-12 30-60 B 

WEBs 1 19-Jun-12 0-30 T 

WEBs 1 19-Jun-12 30-60 T 

WEBs 2 19-Jun-12 0-30 B 

WEBs 2 19-Jun-12 30-60 B 

WEBs 2 19-Jun-12 0-30 T 

WEBs 2 19-Jun-12 30-60 T 

WEBs 1 25-Jul-12 0-30 B 

WEBs 1 25-Jul-12 30-60 B 

WEBs 1 25-Jul-12 0-30 T 

WEBs 1 25-Jul-12 30-60 T 

WEBs 2 25-Jul-12 0-30 B 

WEBs 2 25-Jul-12 30-60 B 

WEBs 2 25-Jul-12 0-30 T 

WEBs 2 25-Jul-12 30-60 T 

WEBs 1 22-Aug-12 0-30 B 

WEBs 1 22-Aug-12 30-60 B 

WEBs 1 22-Aug-12 0-30 T 

WEBs 1 22-Aug-12 30-60 T 

WEBs 2 22-Aug-12 0-30 B 
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WEBs 2 22-Aug-12 30-60 B 

WEBs 2 22-Aug-12 0-30 T 

WEBs 2 22-Aug-12 30-60 T 

WEBs 1 11-Sep-12 0-30 B 

WEBs 1 11-Sep-12 30-60 B 

WEBs 1 11-Sep-12 60-90 B 

WEBs 1 11-Sep-12 0-30 T 

WEBs 1 11-Sep-12 30-60 T 

WEBs 1 11-Sep-12 60-90 T 

WEBs 2 11-Sep-12 0-30 B 

WEBs 2 11-Sep-12 30-60 B 

WEBs 2 11-Sep-12 60-90 B 

WEBs 2 11-Sep-12 0-30 T 

WEBs 2 11-Sep-12 30-60 T 

WEBs 2 11-Sep-12 60-90 T 

WEBs 11 16-Apr-12 0-30 B 

WEBs 11 16-Apr-12 30-60 B 

WEBs 11 16-Apr-12 60-90 B** 

WEBs 11 20-Apr-12 0-30 T 

WEBs 11 20-Apr-12 30-60 T 

WEBs 11 20-Apr-12 60-90 T** 

WEBs 12 16-Apr-12 0-30 B 

WEBs 12 16-Apr-12 30-60 B 

WEBs 12 16-Apr-12 60-90 B 

WEBs 12 20-Apr-12 0-30 T 

WEBs 12 20-Apr-12 30-60 T 

WEBs 12 20-Apr-12 60-90 T 

WEBs 13 16-Apr-12 0-30 B 

WEBs 13 16-Apr-12 30-60 B 

WEBs 13 16-Apr-12 60-90 B 

WEBs 13 20-Apr-12 0-30 T 

WEBs 13 20-Apr-12 30-60 T 

WEBs 13 20-Apr-12 60-90 T** 

WEBs 14 16-Apr-12 0-30 B 

WEBs 14 16-Apr-12 30-60 B 

WEBs 14 16-Apr-12 60-90 B** 

WEBs 14 20-Apr-12 0-30 T 

WEBs 14 20-Apr-12 30-60 T 

WEBs 14 20-Apr-12 60-90 T** 

WEBs 11 22-Jun-12 0-30 B 
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WEBs 11 22-Jun-12 30-60 B 

WEBs 11 22-Jun-12 0-30 T 

WEBs 11 22-Jun-12 30-60 T 

WEBs 12 22-Jun-12 0-30 B 

WEBs 12 22-Jun-12 30-60 B 

WEBs 12 22-Jun-12 0-30 T 

WEBs 12 22-Jun-12 30-60 T 

WEBs 13 22-Jun-12 0-30 B 

WEBs 13 22-Jun-12 30-60 B 

WEBs 13 22-Jun-12 0-30 T 

WEBs 13 22-Jun-12 30-60 T 

WEBs 14 22-Jun-12 0-30 B 

WEBs 14 22-Jun-12 30-60 B 

WEBs 14 22-Jun-12 0-30 T 

WEBs 14 22-Jun-12 30-60 T 

WEBs 11 10-Jul-12 0-30 NA 

WEBs 11 10-Jul-12 30-60 NA 

WEBs 12 10-Jul-12 0-30 NA 

WEBs 12 10-Jul-12 30-60 NA 

WEBs 13 10-Jul-12 0-30 NA 

WEBs 13 10-Jul-12 30-60 NA 

WEBs 14 10-Jul-12 0-30 NA 

WEBs 14 10-Jul-12 30-60 NA 

WEBs 11 25-Jul-12 0-30 NA 

WEBs 11 25-Jul-12 30-60 NA 

WEBs 12 25-Jul-12 0-30 NA 

WEBs 12 25-Jul-12 30-60 NA 

WEBs 13 25-Jul-12 0-30 NA 

WEBs 13 25-Jul-12 30-60 NA 

WEBs 14 25-Jul-12 0-30 NA 

WEBs 14 25-Jul-12 30-60 NA 

WEBs 11 22-Aug-12 0-30 NA 

WEBs 11 22-Aug-12 30-60 NA 

WEBs 12 22-Aug-12 0-30 NA 

WEBs 12 22-Aug-12 30-60 NA 

WEBs 13 22-Aug-12 0-30 NA 

WEBs 13 22-Aug-12 30-60 NA 

WEBs 14 22-Aug-12 0-30 NA 

WEBs 14 22-Aug-12 30-60 NA 

WEBs 11 20-Sep-12 0-30 NA 
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WEBs 11 20-Sep-12 30-60 NA 

WEBs 12 20-Sep-12 0-30 NA 

WEBs 12 20-Sep-12 30-60 NA 

WEBs 13 20-Sep-12 0-30 NA 

WEBs 13 20-Sep-12 30-60 NA 

WEBs 14 20-Sep-12 0-30 NA 

WEBs 14 20-Sep-12 30-60 NA 

WEBs 11 7-Nov-12 0-30 NA 

WEBs 11 7-Nov-12 30-60 NA 

WEBs 11 7-Nov-12 60-90 NA 

WEBs 12 7-Nov-12 0-30 NA 

WEBs 12 7-Nov-12 30-60 NA 

WEBs 12 7-Nov-12 60-90 NA 

WEBs 13 7-Nov-12 0-30 NA 

WEBs 13 7-Nov-12 30-60 NA 

WEBs 13 7-Nov-12 60-90 NA 

WEBs 14 7-Nov-12 0-30 NA 

WEBs 14 7-Nov-12 30-60 NA 

WEBs 14 7-Nov-12 60-90 NA 

Winchester F2/F3 25-Jun-12 0-15 B 

Winchester F2/F3 25-Jun-12 15-30 B 

Winchester F2/F3 25-Jun-12 30-60 B 

Winchester F4/F5 25-Jun-12 0-15 B 

Winchester F4/F5 25-Jun-12 15-30 B 

Winchester F4/F5 25-Jun-12 30-60 B 

Winchester F2/F3 25-Jul-12 0-15 B 

Winchester F2/F3 25-Jul-12 15-30 B 

Winchester F2/F3 25-Jul-12 30-60 B 

Winchester F4/F5 25-Jul-12 0-15 B 

Winchester F4/F5 25-Jul-12 15-30 B 

Winchester F4/F5 25-Jul-12 30-60 B 

Winchester F2/F3 20-Aug-12 0-15 B 

Winchester F2/F3 20-Aug-12 15-30 B 

Winchester F2/F3 20-Aug-12 30-60 B 

Winchester F4/F5 20-Aug-12 0-15 B 

Winchester F4/F5 20-Aug-12 15-30 B 

Winchester F4/F5 20-Aug-12 30-60 B 

Winchester F2/F3 17-Sep-12 0-15 B 

Winchester F2/F3 17-Sep-12 15-30 B 

Winchester F2/F3 17-Sep-12 30-60 B 
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Winchester F4/F5 17-Sep-12 0-15 B 

Winchester F4/F5 17-Sep-12 15-30 B 

Winchester F4/F5 17-Sep-12 30-60 B 

Winchester F2/F3 22-Oct-12 0-15 B 

Winchester F2/F3 22-Oct-12 15-30 B 

Winchester F2/F3 22-Oct-12 30-60 B 

Winchester F4/F5 22-Oct-12 0-15 B 

Winchester F4/F5 22-Oct-12 15-30 B 

Winchester F4/F5 22-Oct-12 30-60 B 

Winchester F2/F3 20-Nov-12 0-15 B 

Winchester F2/F3 20-Nov-12 15-30 B 

Winchester F2/F3 20-Nov-12 30-60 B** 

Winchester F4/F5 20-Nov-12 0-15 B 

Winchester F4/F5 20-Nov-12 15-30 B 

Winchester F4/F5 20-Nov-12 30-60 B 

Winchester F2/F3 7-Dec-12 0-15 B 

Winchester F2/F3 7-Dec-12 15-30 B 

Winchester F2/F3 7-Dec-12 30-60 B 

Winchester F4/F5 7-Dec-12 0-15 B 

Winchester F4/F5 7-Dec-12 15-30 B 

Winchester F4/F5 7-Dec-12 30-60 B 

B, between tile samples 

T, above tile samples 

NA, not applicable 

** These samples were excluded due to DNA extraction and amplification problems. 


