
On Végh’s Strongly Polynomial
Algorithm for Generalized Flows

by

Venus Hiu Ling Lo

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2014

c© Venus Hiu Ling Lo 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144147432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis contains an exposition of the new strongly polynomial algorithm for the
generalized flow problem by László Végh (2013). It has been a long-standing open question
whether such an algorithm exists, until it was resolved by Végh in 2013. Generalized
flows have many applications in economic problems, such as transportation of goods and
foreign currency exchange. The main presentation follows Végh’s paper, but this exposition
contains some simplifications and differences in the algorithm and its analysis. The main
difference is that we consider the running time of the strongly polynomial algorithm up to
one arc contraction before starting fresh on a smaller network. This increases the running
time of the algorithm slightly, but the analysis becomes easier.

iii

Acknowledgements

I would like to thank my supervisor, Professor Joseph Cheriyan for training me patiently
throughout my time in this graduate program. He spent many hours in helping me prepare
both this thesis and my thesis presentations. I would also like to thank Ian Post for his
help. He provided many insights into the construction of the algorithm and simpler ways
to understand the proofs. He also helped me develop a network-based explanation of
Hochbaum’s construction. Without their help in understanding the literature, this thesis
would not have been possible.

I would like to thank Professors Chaitanya Swamy and Ricardo Fukasawa for being
my readers and giving me invaluable feedback. I would also like to thank my officemate,
Zhihan Gao, for proofreading.

Finally, I would like to thank my parents for their support, regardless of what I decide
to pursue in life. I thank God for giving me this amazing opportunity to study at Waterloo.

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 The Search for Strongly Polynomial Algorithms 1

1.2 Problem Setup . 3

1.3 Linear Program and Transformations . 5

1.4 Applications and Extensions . 6

1.5 Optimality Conditions for the Standard Model 7

1.5.1 Duality and Complementary Slackness Conditions 7

1.5.2 Optimality Conditions via Flow-Generating Cycles 10

1.6 Earlier Algorithms for Generalized Flows 11

1.6.1 Onaga’s Algorithm Based on Augmenting Paths 11

1.6.2 Goldberg-Plotkin-Tardos Fat-path Algorithm 12

1.7 Hochbaum’s Transformation to Minimum Cost Generalized Flows 13

1.7.1 Intuition Behind Transformation: 2 Non-zero Entries 14

1.7.2 Intuition Behind Transformation: 1 Non-zero Entry 15

1.7.3 Hochbaum’s Construction . 15

1.8 Contributions of Végh’s Paper . 18

1.9 Summary . 18

v

2 Definitions and Notations 21

2.1 Using an Uncapacitated Network . 21

2.2 Labels . 23

2.2.1 Motivation Behind Labels: Converting Currencies 23

2.2.2 A More General Look at Labels . 24

2.3 ∆-Fatness and ∆-Feasibility . 25

2.4 High Excess and Low Excess Nodes: Sending Flow 28

2.5 Summary . 30

3 Weakly Polynomial Algorithm 32

3.1 Structure of the Algorithm . 32

3.1.1 Main Algorithm . 32

3.2 Elementary Step . 35

3.2.1 Achieving Goals of Elementary Step 36

3.2.2 Finding α and Maintaining ∆′-feasibility 40

3.3 Runtime Analysis . 44

3.3.1 Bounding Shrinking, Expanding, and Neutral Iterations 45

3.3.2 Total Number of Iterations . 46

3.4 Initialization and Termination . 46

3.4.1 Tight-Flow on V, µ . 46

3.4.2 Initialization . 47

3.4.3 Termination . 47

3.5 Summary . 50

4 Strongly Polynomial Algorithm 53

4.1 Abundant Arcs . 53

4.1.1 Definition of Abundant Arcs . 53

4.1.2 Guaranteeing Abundant Arcs . 56

vi

4.2 Filtration . 58

4.2.1 Purpose of Filtration and Tight-Flow 58

4.2.2 Analysis of Filtration . 63

4.3 Runtime Analysis . 66

4.4 Others Considerations . 68

4.4.1 Initialization and Termination . 68

4.4.2 Reducing Runtime by log n Factor 68

4.5 Summary . 69

5 Runtime Analysis of Strongly Polynomial Algorithm 72

5.1 Increases to Φ in Strongly Polynomial Algorithm 72

5.1.1 Bounding
∑

θ/∈ΘF logα(θ) . 78

5.2 Abundant Arcs . 80

5.3 Summary . 81

6 Bounding the Bit Sizes 84

6.1 Rounding our Labels . 85

6.2 Effect of Round-Label on Runtime . 88

6.3 Bit Sizes of Numbers Computed . 90

6.4 Summary . 92

7 Conclusion 95

A Differences in Notation with Végh’s Paper 97

References 98

vii

List of Tables

1.1 History of strongly polynomial algorithms for network flow problems 3

1.2 Hochbaum’s Transformation: The new columns 16

1.3 Graph and Network Notations . 19

1.4 Summary of Notations in Chapter 1 . 20

2.1 Summary of Notations in Chapter 2 . 31

3.1 Partitioning arcs to compute α2 . 42

3.2 Summary of Notations in Chapter 3 . 52

4.1 Summary of Notations in Chapter 4 . 71

5.1 Result of running Elementary Step after Filtration 75

5.2 Summary of Notations in Chapter 5 . 83

6.1 Summary of Notations in Chapter 6 . 94

A.1 Differences in notation with Végh’s paper 97

viii

List of Figures

1.1 Example of a generalized flow . 3

1.2 Using generalized flow to represent traditional maximum flow 4

1.3 Transformation of supply and demand nodes to capacitated arcs 5

1.4 Transformation of capacitated arc to two uncapacitated arcs 6

1.5 Flow-generating cycle . 10

1.6 Column with one positive and one negative entry. 14

1.7 Column with two positive entries. 14

1.8 Replacing a two-headed arc with two arcs and two new auxiliary nodes. . . 15

2.1 Uncapacitated version of original problem 22

2.2 Labels in currency exchange . 24

2.3 Simplicity in using labels . 25

2.4 Relabelled network using f, µ . 26

2.5 Relabelled network using f, µ . 26

2.6 ∆-fat graph . 27

2.7 Relationship between sets T0, T , and L . 29

3.1 Running the algorithm . 34

3.2 Result of Elementary Step . 37

3.3 Updates in Elementary Step . 39

3.4 Partitioning arcs to compute α2 . 41

ix

4.1 How to contract an arc . 55

4.2 Bounded progress until contraction when nodes are in D 58

4.3 Flow update in Filtration . 60

4.4 Feasibility in Tight-Flow (V \T, µ) . 61

4.5 Possible actions in each iteration . 65

5.1 Flowchart for Lemma 26 . 73

x

Chapter 1

Introduction

Very recently, László Végh introduced a strongly polynomial algorithm for the generalized
flow problem. The search for such an algorithm had been a long-standing open problem
and his progress was considered significant progress in the network flow community.

This thesis is an exposition on Végh’s algorithm and my focus will be on understand-
ing how Végh achieved a strongly polynomial running time. Tables of the notations for
describing the network and for the generalized flow problem up to Chapter 1 are provided
on page 20 at the end of the chapter. This will be useful for readers who are interested in
a particular section rather than the full thesis.

1.1 The Search for Strongly Polynomial Algorithms

The generalized flow problem is an extension of the traditional maximum flow problem,
where arcs can modify the amount of flow passing through them. Algorithms to solve the
problem have existed since research commenced around the 1960s by Dantzig and Jewell
[7], but Végh’s algorithm in [9] is the first strongly polynomial algorithm.

Definition 1. An algorithm for a flow problem is strongly polynomial if its running time
is a polynomial of n and m, where n is the size of the node set and m is the size of the
arc set. Furthermore, if we require that the inputs are rational numbers, then all numbers
that are computed during the algorithm must also be rational numbers with bit sizes that
are polynomially bounded in the bit sizes of the original inputs. [9]

1

This is different than a polynomial algorithm, also known as a weakly polynomial
algorithm, where the running time may also be dependent on logU , where U is an upper
bound on the numerical inputs (e.g. capacities, costs).

There are several reasons why one might want to find a strongly polynomial algorithm
for network flow problem. Firstly, strongly polynomial algorithms could perform better
in practice than weakly polynomial algorithms; this is the the case for the traditional
maximum flow problem. Numerical inputs, like capacities, could be very large and it
may be best if the running time is independent of these inputs. But strongly polynomial
algorithms for more general network flow problems may not perform better than other
algorithms in practice, because most “real world” instances have restricted bit sizes (e.g.
largest numeric data fits into 64 bits) [4]. In the case of the minimum cost flow problem,
current weakly polynomial algorithms run faster than strongly polynomial algorithms in
practice, that is, with “real world” data.

Secondly, strongly polynomial algorithms are viewed as the holy grail in the search for
better algorithms for optimization problems [4]. In 1972, Edmonds and Karp originally
posed the question of finding a strongly polynomial algorithm for the minimum cost flow
problem, Éva Tardos gave the first such algorithm in 1985. For the generalized flow prob-
lem, the first weakly polynomial algorithm was introduced in 1991 by Goldberg, Plotkin,
and Tardos, but there was little progress towards strongly polynomial algorithms until
Végh’s contribution.

The final, and perhaps most important reason, is the relationship between generalized
flow problems and linear programming (LP) [9]. The generalized flow problem is closely
related to another extension, called the minimum cost generalized flow problem (MCGF).
These two problems are related in the same way that the traditional maximum flow problem
and minimum cost flow problem are related. It turns out that MCGF is also closely
related to general linear programming. A general linear program can be transformed to
another linear program with at most three non-zero entries per column. On the other
hand, Hochbaum proved that any linear program with at most two non-zero entries per
column can be transformed to an instance of MCGF (see Section 1.7). Being able to
solve MCGF in strongly polynomial time is a step towards solving any linear program in
strongly polynomial time, another long-standing open problem. On the other hand, LPs
having three non-zero entries per column could be much harder to solve than LPs having
at most two-non-zero entries per column (recall that 2-SAT is solvable in polynomial time
but not 3-SAT). In this case, we would be interested in the largest class of linear programs
that can be solved in strongly polynomial running time.

The next table summarizes the progress for finding strongly polynomial algorithms for

2

network flow problems.

Problem Runtime Year

Max flow O(n2m) Dinic 1970

Min cost flow O(nm3/2)× runtime of max flow Tardos 1985
Generalized flow O(n3m2) Végh 2013
MCGF - -
(≤ 2 non-zero per col)
Linear programming - -
(≤ 3 non-zero per col)

Table 1.1: History of strongly polynomial algorithms for network flow problems

1.2 Problem Setup

In the generalized flow problem, we are given a network G with node set V and arc set E.
Let n = |V | and m = |E|. Throughout this thesis, all paths and cycles refer to directed
paths and cycles.

γ = 2
1

2
3

t

γ = 1/2

γ = 1/2

γ = 3

u = 1

f = 1

γ = 1

f = 3/2

u = 2 u = 4

f = 3

u = 2

f = 1/2
γ = 4
u = 1
f = 0

f = 0

u = 1

Figure 1.1: Example of a generalized flow

3

Similarly to the traditional maximum flow problem, we are trying to maximize the
flow sent to a special sink node t subject to the capacities u : E → R on the arcs (see
Figure 1.1). A feasible flow is any flow f : E → R≥0 that has non-negative net flow (i.e.
total inflow less total outflow) at every node other than t, and moreover, satisfies capacity
constraints. The first difference is that we also have gain factors, γ : E → R>0, on the
arcs. When ε units of flow leave node i and go into arc ij, the flow is multiplied by the gain
factor γij so that γijε units of flow arrive at node j. If γij > 1, then we generate flow over
the arc ij. In contrast, if γij < 1, then we lose flow. Note that the arc capacities apply
to the outgoing flow, so that uij bounds the flow leaving node i. That is, the capacity
constraint for any arc ij is fij ≤ uij (and not γijfij ≤ uij). By a positive flow, we mean a
nonzero, feasible flow.

The second difference is that the network does not have a source node to provide flow.
Instead, the network is able to generate its own positive flow if it contains a cycle such
that the product of the gain factors of its arcs is greater than 1. In this case, we can send
some ε > 0 units of flow around the cycle and end with more than ε units of flow arriving
at the start node of the cycle. The excess created can be sent to the sink t. It is easy to
observe that a positive flow exists only if such a cycle exists.

The traditional maximum flow problem is a special case of the generalized flow problem.
To construct the maximum flow problem, we can use the same network and give all arcs
a gain factor of 1. In order to allow for an arbitrary amount of flow to leave the source
s, we can construct a loop at s with a gain factor greater than 1 and infinite capacity.
By pushing flow on this loop, we can create any amount of flow at s to be sent over to t,
capturing the maximum flow problem.

G

��
��

'

&

$

%

@@
�
��
b
b
bb
�
�=

�

J
J
J
Ĵ

J
J
J
JĴ

�
�
�
���

s

u =∞
γ = 2

t

��
��

Figure 1.2: Using generalized flow to represent traditional maximum flow. All arcs other
than the loop at s gets γij = 1.

4

1.3 Linear Program and Transformations

Let fij denote the flow leaving node i on arc ij and fji denote the flow entering node i on
arc ji. It is possible to have both arcs ij and ji in our network. The linear program to
represent the generalized flow program is:

max
∑
jt∈E

γjtfjt −
∑
tj∈E

ftj∑
ji∈E

γjifji −
∑
ij∈E

fij ≥ 0 ∀i ∈ V − t

0 ≤ fij ≤ uij ∀ij ∈ E

Some of the literature uses an equation constraint for the first constraint. However, this
relaxation has the same optimal solution [7], because we can always remove extra excess
by pushing flow in reverse on the cycle that created the excess.

Using Capacitated Arcs to Represent Supplies and Demands
In the original setup, nodes do not have supplies and demands, but we can simulate sup-
plies and demands using gain factors and capacities on arcs. If a node has a supply of b
units, we can set up a loop with b units of capacity and gain factor of 2 (Figure 1.3a).
Pushing b units along this loop will generate b units of excess. On the other hand, if a
node i has a demand of b units, we can set up an arc it with capacity b and a very large
gain factor, say (maxij∈E{γij, 1})m (Figure 1.3b). Then every optimal solution must use
all b units of capacity as no other path can generate as much flow into t. If the capacity is
not used, there is no feasible solution. By removing the arc it subsequently, node i must
satisfy its demand.

��
��@@

�
��
b
b
bb
�
�=

i

u = bi

γ = 2

(a) Supply node

u = b

��
��

A
A
A
A
AU

B
B
B
BBN

�
�
�
���

i

t

γ =LARGE

��
��

(b) Demand node

Figure 1.3: Transformation of supply and demand nodes to capacitated arcs

5

Using Supplies and Demands to Replace Capacitated Arcs
We can also reverse the above process and use supply and demand nodes to change a
capacitated network to an uncapacitated network [9]. We can replace an arc ij with a new
node k, and add arcs ik and jk with infinite capacities. The gain factors on these arcs are
γ′ik = γij and γ′jk = 1 (Figure 1.4). Let a positive value represent a demand and negative
value represent a supply. Node k is given a demand of γijuij and node j is given a supply
of −γijuij. Sending some fij ≤ uij units from i to j is equivalent to sending fij units from
i to k, and having the remainder of the demand satisfied by sending γijuij − γijfij units
from j to k. This results in min{γijfij, γijuij} units at node j. This is the same as sending
fij units on arc ij in the capacitated network.

i&%
'$

-

&%
'$
j

γij

uij

(a) Capacitated arc

bj = −γijuij

&%
'$

&%
'$

- �i jk

γij 1

bk = γijuij

&%
'$

(b) Uncapacitated arc with supplies and de-
mands

Figure 1.4: Transformation of capacitated arc to two uncapacitated arcs

1.4 Applications and Extensions

The generalized flow problem has many important applications, particularly in economical
problems.

Transportation of Goods with Losses: Consider the problem of sending goods from
locations to a centralized processing plant, such as sending oil from different wells to a
refinery plant. During transportation, there may be losses due to inefficiency and evap-
oration inside the pipes. Clearly, we want to minimize our wastage by maximizing the
amount of oil reaching the plant. We can model the pipelines with arcs and wells with
nodes, where the sink represents our plant. The gain factors on the arcs are set to be less
than 1, to model the retention rate after travelling through a particular pipe.

Foreign Currency Exchange Market and Arbitrage [1]: Let the nodes represent
the different currencies with the sink t being the local currency. If clients can exchange
currency i for currency j at the bank, then we will add an arc ij with γij equal to the
exchange rate. Arbitrage occurs when we can make a profit by a sequence of currency

6

exchanges. In the foreign currency exchange scenario, this would happen if we can borrow
one unit of currency i, exchange into different currencies in a cycle and end up with more
than one unit of currency i. We could then repay the debt and exchange the profit to the
local currency. The problem of finding an arbitrage opportunity is equivalent to finding a
positive flow in the generalized flow network.

Extensions to Other Problems: If we replace the objective function with an arbitrary
linear objective function min

∑
ij cijfij, then this becomes a minimum cost generalized flow

problem (MCGF). In this case, we would not have a sink node to maximize flow into, but
rather demands at a subset of nodes which we must satisfy. Some of the applications that
can be modeled with this extension includes the oil transportation problem above, except
that we want to minimize the cost of sending a fixed amount of flow.

1.5 Optimality Conditions for the Standard Model

We want to understand the optimality conditions for the standard generalized flow model
first, because early algorithms were based on this model. In Section 2.1, I will give opti-
mality conditions that are specialized for Végh’s setup.

1.5.1 Duality and Complementary Slackness Conditions

The dual linear program, with a dual variable zi for each node i ∈ V −t and a dual variable
wij for each arc ij ∈ E, is as follows:

min
∑
ij∈E

uijwij

zi − γijzj + wij ≥ 0 ∀ij ∈ E; i, j 6= t

zi + wit ≥ γit ∀it ∈ E
− γtizi + wti ≥ −1 ∀ti ∈ E
z ≥ 0, w ≥ 0

It is customary, however, to use the inverse of a dual variable zi when we discuss

7

generalized flows: µi = 1/zi. The transformed dual program is:

min
∑
i∈V−t

uijwij

γij
µi
µj
− wijµi ≤ 1 ∀ij ∈ E

µi > 0 ∀i ∈ V − t
µt = 1

It is possible for zi = 0 to occur, which means that 1/µi = 0 and µi = ∞. We will
use the convention that ∞/∞ = 0 so that the label is feasible when the associated dual
solution is feasible.

We will use the dual program to identify the complementary slackness conditions. Let
the excess be the net flow of a node:

ei =
∑
j:ji∈E

γjifji −
∑
j:ij∈E

fij ∀i ∈ V

The complementary slackness conditions for the standard form of the generalized flow
are:

• ei = 0 or 1/µi = 0 (i.e. µi =∞), ∀i ∈ V − t

• fij = uij or wij = 0, ∀ij ∈ E

• fij = 0 or γij
µi
µj
− wijµi = 1, ∀ij ∈ E

It is easier to interpret the second and third conditions in terms of the residual graph.
The residual graph Gf (ignoring the numerical values of the residual capacities) is defined
in the same way as in the traditional maximum flow. The node set is V (G) and the arc
set is Ef = {ij : ij ∈ E, fij < uij} ∪ {ji : ij ∈ E, fij > 0}. For a reverse arc ji, we let
γji = 1/γij. It is important to note that we can have both an original arc ji and a reverse
arc ji, and that they can have different gain factors. When I mention ji throughout this
thesis, it will be clear from the context whether I am referring to an original arc or a reverse
arc in the residual graph.

Let us focus on the last two complementary slackness conditions. If fij < uij, then the
second complementary slackness condition and the dual constraint implies that γij

µi
µj
≤ 1.

8

If fij > 0, then the third complementary slackness condition and γji = 1/γij rearranges to
γji

µj
µi

= 1
1+wijµi

≤ 1. The last inequality follows from wij ≥ 0 and µi > 0. We can simplify

this to requiring that γij
µi
µj
≤ 1 for all ij in the residual graph. This is summarized in the

following definition:

Definition 2. Let µ be feasible labels. Then µ is a set of conservative labels for f if
γij

µi
µj
≤ 1 for all ij in the residual graph of f .

The optimality conditions simplify to having a pair of feasible primal and dual solutions
(f, µ) such that:

• ei = 0 or µi =∞, ∀i ∈ V − t

• µ is a set of conservative labels.

We already saw that if (f, µ, w) satisfy the complementary slackness conditions, then
(f, µ) satisfy the new optimality conditions. On the other hand, if we have (f, µ) such
that the above conditions are satisfied, then it is easy to find w so that (f, µ, w) satisfy the
complementary slackness conditions. Consider any arc ij. If fij < uij, then set wij = 0. If
fij = uij > 0, then set wij by rearranging the condition γij

µi
µj
− wijµi = 1:

wij =
1− γij µiµj
−µi

=
γij
µj
− 1

µi
≥ 0

The last inequality is true because the reverse arc ji is in Ef and µ is a set of conservative
labels. This means that γji

µj
µi
≤ 1, which rearranges to 1

µi
≤ 1

γjiµj
=

γij
µj

.

Not only are labels important in certifying that a solution is optimal, they can help us
identify the best path to send excess to t.

Definition 3. Given conservative labels µ, an arc ij is tight if γij
µi
µj

= 1, and a path P is

tight if all arcs ij ∈ P are tight.

Let k be a node such that ek > 0, and P be any path from k to t on the residual graph.
If P is tight for conservative labels µ, then it is easy to show that P is the path of highest
gain from k to t. Consider the products of the γij

µi
µj

for all ij on path P . Using the fact

that µt = 1 for feasible labels µ, we have:

µk
∏
ij∈P

γij =
∏
ij∈P

γij
µi
µj
≤ 1

9

The equality is due to µt = 1 in a feasible label. The above inequality implies that if we
send one unit of flow from k to t, we can get at most 1/µk units arriving at t, with equality
holding if we use a tight path. If there is no tight path from k to t, then we need to update
the labels until we can find a tight path without violating dual feasibility.

1.5.2 Optimality Conditions via Flow-Generating Cycles

Another method to certify an optimal flow is through finding flow-generating cycles.

Definition 4. A cycle C is a flow-generating cycle if
∏

ij∈C γij > 1.

If we have a flow-generating cycle C, then we can push ε amount of flow starting at
some node i ∈ C, and receive more than ε flow arriving back at i, thereby creating excess
at i.

e = 1/2

��
��

��
��

��
��

J
J
J
J
J
J
J]

-

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CW

�
�
�

�
�

��	

?

�
�
�
�
�
�
�
�
�
�
�
�
�
�
���

1

2
3

t

γ = 1 γ = 1/2

γ = 3

f = 1

f = 3f = 3/2

��
��

Figure 1.5: C = 2, 3, 1 is a flow-generating cycle. If we start by pushing one unit from
node 2 around the cycle, 1.5 units arrive back at node 2, creating an excess of 0.5 units.

If we can find a flow-generating cycle C in Gf , and a path from node i ∈ C to the
sink t, then we can increase the flow to t. Therefore, another way to state the optimality
conditions is that there is no i-t path in Gf for node i ∈ V − t such that [7]:

• i is on a flow-generating cycle in Gf ; OR

10

• ei > 0.

Let us look at the relationship between flow-generating cycles and labels. Conservative
labels can only exist for f if Gf contains no flow-generating cycles. For a cycle C contained
in Gf , the requirement γij

µi
µj
≤ 1 for arcs ij ∈ C implies that

∏
ij∈C γij =

∏
ij∈C γij

µi
µj
≤ 1.

1.6 Earlier Algorithms for Generalized Flows

The generalized flow problem has been studied extensively since 1960s by Dantzig and
Jewell. This section looks at how early algorithms solved the generalized flow problem.

Algorithms generally find an initial feasible flow by cancelling all flow-generating cycles
in the residual graph. Cancelling flow-generating cycles simply means that we find a flow-
generating cycle in Gf and push flow around it until an arc uses up its residual capacity.
We can repeat this procedure until there are no more flow-generating cycles. The issue is
that we could create new flow-generating cycles when we cancel an old one. This can be
solved by always cancelling the cycle with the maximum mean-gain γ(C)1/|C| [7]. We can
run Radzik’s maximum-mean-gain-cycle-cancelling algorithm to find an initial flow with no
flow-generating cycles in the residual graph in O(m2n log2 n) runtime [6, 7]. Subsequently,
we can try to send the excesses created to t using one of the algorithms described below.

1.6.1 Onaga’s Algorithm Based on Augmenting Paths

Onaga’s algorithm is built on the augmenting path algorithm of the traditional maximum
flow problem [5]. First we choose a node k with ek > 0. Then we send the excess to t along
a tight path up to the maximum residual capacity. We repeat this process until all nodes
with positive excesses do not have a path to t in Gf . The labels may need to be updated
from time to time to tighten paths. The correctness of the algorithm is based on the next
lemma.

Lemma 5. Assume we have conservative labels µ. If ek > 0 and we send flow from k to t
along a tight path, then no new flow-generating cycles are created in Gf .

Proof. Assume by contradiction that we introduce a new arc ij into Gf by pushing flow on
the reverse arc ji, such that ij is part of a new flow-generating cycle C. Since ji was tight,
γji

µj
µi

= 1 = γij
µi
µj

, so ij is also tight. This means that there is some other arc pq ∈ (C− ij)
such that γpq

µp
µq
> 1. This violates the assumption that µ is a conservative label.

11

Since this algorithm was built on the augment path algorithm for traditional maximum
flow, this algorithm has pseudo-polynomial worst-case runtime.

1.6.2 Goldberg-Plotkin-Tardos Fat-path Algorithm

The fat-path algorithm was the first scaling algorithm introduced for generalized flows [2].
Let ∆ ∈ R>0 be our scaling parameter. A ∆-phase refers to the set of iterations with
scaling parameter ∆. Whenever we augment flow in the ∆-phase, we require that ∆ units
of flow reaches t. We still want to use tight paths to send flow in order to ensure that we
do not create new flow-generating cycles, but now we also need to ensure that the paths
we use have sufficient residual capacity.

Recall from the end of Subsection 1.5.1 that if ek > 0 and Gf contains a k-t path, then
one unit of flow leaving k will result in at most 1/µk units of flow arriving at t. This means
that ∆µk units must leave node k in order for ∆ units to arrive at t. Furthermore, if we
sent flow along a path P , then every ij ∈ P needs to have residual capacity of ∆µi to
accommodate ∆ units arriving at t. The algorithm runs as follows after flow-generating
cycles are cancelled:

1. Start with some ∆ = ∆start and f = 0.

2. Find conservative labels µ, with the additional requirement that there is a tight i-t
path for all i ∈ V − t, if such a path exists in Gf .

3. In phase ∆:

• Build a subgraph H of the residual graph with all the original nodes. Arc ij is
in H if ij ∈ Ef and its residual capacity in Gf is at least ∆µi.

• Set µ to be conservative labels for H, with the additional requirement that there
is a tight i-t path for all i ∈ V − t, if such a path exists in H.

• While there exists a node k ∈ V − t such that ek ≥ ∆µk and our subgraph
contains a tight k-t path Pk, send ∆µk units from k along Pk so that ∆ units
arrive at t.

4. Set ∆ = ∆/2, and cancel new flow-generating cycles. If ∆ > ∆end, then go back to
step 3.

12

The last step requires us to cancel new flow-generating cycles, because we are not
necessarily using a highest gain path but rather a highest gain path with respect to the
arcs with sufficient residual capacity.

The algorithm terminates when we reach a small ∆ = ∆end. When our scaling pa-
rameter ∆end is small, we will obtain optimal labels [7]. Optimal labels can help us find
an optimal flow with one traditional maximum flow computation. This will be shown in
details in Section 3.4 when I present the termination procedure for Végh’s algorithm.

Both ∆start and ∆end are chosen to be polynomials of the network size and logarithmic
in the numerical input. Since we reduce ∆ by a factor of 2 at the end of each phase, it is
clear that this algorithm is inherently weakly polynomial due to the number of phases.

1.7 Hochbaum’s Transformation to Minimum Cost Gen-

eralized Flows

In Section 1.1, I mentioned that every linear program with at most two non-zero entries
per column can be transformed to a MCGF problem in polynomial time [3]. Before I show
the construction, I will first give a pictorial interpretation to motivate the construction.

Let our current linear program, (LP-1), be in the following form:

max cTx (LP-1)

Ax = b

x ≥ 0

In the linear program of a generalized flow problem, we have a positive entry and a
[-1] in a column representing an arc. In comparison, (LP-1) could have any two non-zero
entries in a column, or even one non-zero entry. If a column of matrix A has non-zero
entries in rows i and j, we will call the corresponding variable xij (i.e. column ij). It is
possible to have a column corresponding to xii if there is only one non-zero entry in row
i. We can interpret the rows as nodes, and the columns as arcs that are directed in an
awkward manner described in the next subsection. Thus we are not concerned with the
ordering of ij versus ji yet. The bi on the right side of (LP-1) represents the demand or
supply at a node i.

13

1.7.1 Intuition Behind Transformation: 2 Non-zero Entries

(LP-1) could have a column ij with both a positive entry βi and a negative entry −βj,
where βi, βj > 0. This looks like an arc ij, except that the outflow to j is −βjxij and
the inflow to i is βixij when we compute the excesses at the two nodes (Figure 1.6a).
However, we can scale the variable xij by βj to arrive at an arc with a gain factor of βi/βj
(Figure 1.6b). A flow fij would translate to a solution of (LP-1) by setting xij = βjfij.

i "!

�"!

j

inflow = βixij outflow = −βjxij

(a) Before scaling

"!

"!

�i j

γ = βi
βj

(b) After scaling; xij = βjfij

Figure 1.6: Column with one positive and one negative entry.

It becomes difficult when column ij has two positive entries or two negative entries. Let
us focus on the positive case with βi and βj; the negative case is similar. Pictorially, this

suggests a two-headed arc
←→
ij , with inflows of βixij and βjxij at nodes i and j respectively.

i"!

� -"!

j

inflow = βixij outflow = βjxij

Figure 1.7: Column with two positive entries.

We may be tempted to multiply row j by -1, but this could affect another column that
represents a normal arc incident to j. Instead, we will attach a new graph G′ to G, where
G′ and j′ ∈ V ′ are mirror copies of G and j ∈ V respectively. We give j′ the negative
supply/demand −bj. For any arc originally with a head at j, we will have an arc with tail
at j′, and vice versa. This means we can replace the original double-headed ij with an arc
j′i to represent the flow into i. On j′i, the outflow at j′ is multiplied by −βj and the inflow
at i is multiplied by βi. Similarly, we should create a new node i′ to act as the mirror copy
of i, and an arc i′j to replace the inflow into j (Figure 1.8).

14

outflow = −βixi′j

"!

"!

"!
�

�
�
�
�
�
�
�
�
�
�3

Z
Z
Z

Z
Z
Z

Z
Z
Z

ZZ}

i j

i′ j′

inflow = βjxi′jinflow = βixj′i

outflow = −βjxj′i

"!

Figure 1.8: Replacing a two-headed arc with two arcs and two new auxiliary nodes.

We can scale the flow in the same manner as Figure 1.6. Furthermore, we can do the
same transformation for a two-tailed node, by creating new arcs ij′ and ji′.

Finally, in order to include the reverse arc of a normal arc ij into G′, we can add an
arc j′i′.

1.7.2 Intuition Behind Transformation: 1 Non-zero Entry

We can think of these columns as loops. First assume that the entry is βi > 0 at column
ii. This can be be viewed as a loop with gain factor βi + 1, so that 1 unit leaving i will
come back as βi + 1 units, giving us a net flow of βi. On the mirror node i′ in G′, we want
a loop to result in a net flow of −βi = (1 − βi) − 1. This means adding an arc with gain
factor 1 − βi. However, a generalized flow requires that all gain factors are positive. To
ensure that βi + 1 > 0 and 1 − βi > 0, we should scale to get 1 > βi > −1. The above
construction is exactly the same if the original entry is −βi.

1.7.3 Hochbaum’s Construction

Our new linear program (LP-2) will be built as follows [3]:

1. The rows will be V ∪ V ′ where V ′ is a second copy of the initial rows. Let bi′ = −bi
for row i′.

2. If column ij has two positive entries, we will replace it with two columns i′j and j′i.
Fill in the columns using Table 1.2.

15

3. If column ij has two negative entries, we will replace it with columns ij′ and ji′. Fill
in the columns using Table 1.2.

4. If column ij has a negative entry at i and a positive entry at j, we will replace it
with columns ij and j′i′. Fill in the columns using Table 1.2.

5. If there is one non-zero entry in column ii, we will replace it with columns ii and i′i′.
Fill in the columns using Table 1.2.

6. Set the costs on the new arcs to be 1/2 of the cost on the original arcs (i.e. Do not
negate costs).

Position Two-headed ij Two-tailed ij Normal ij Loop
βi, βj −βi, −βj −βi, βj βi

i′j j′i ij′ ji′ ij j′i′ ii i′i′

i 0 βi −βi 0 −βi 0 βi 0
j βj 0 0 −βj βj 0 0 0
i′ −βi 0 0 βi 0 βi 0 −βi
j′ 0 −βj βj 0 0 −βj 0 0

Table 1.2: This table summarizes the new columns after Hochbaum’s transformation. All
other entries are 0. If we negate the above inputs for the normal arc and the loop, the
resulting columns would also be negated.

For simplicity, let the original arc ij be denoted e and the two new arcs be denoted
e1 ∈ E1 and e2 ∈ E2 in the following lemmas and proofs. In the matrix A, we will denote
the entry at row i and column e as ai,e.

Lemma 6. Given a feasible solution x(1) to (LP-1), setting xe1 = xe2 = x
(1)
e will give

us a feasible solution to (LP-2). Given a feasible solution x(2) to (LP-2), setting x̄e =

(x
(2)
e1 + x

(2)
e2)/2 will give us a feasible solution to (LP-1). Furthermore, the objective values

are preserved.

Proof. Let us look at a fixed i ∈ V . Without loss of generality, we may assume that
columns in E1 contains the original entry at position i and columns in E2 contains the
negated entry at position i′. That is:

16

• At i ∈ V , ai,e1 = ai,e and ai,e2 = 0 for e1 ∈ E1 and e2 ∈ E2.

• At i′ ∈ V ′, ai′,e1 = 0 and ai′,e2 = −ai,e for e1 ∈ E1 and e2 ∈ E2.

For solution x in row i of (LP-2):∑
e∈E1

ai,exe +
∑
e∈E2

ai,exe =
∑
e∈E1

ai,exe + 0 = bi

For solution x in row i′ of (LP-2):∑
e∈E1

ai′,exe +
∑
e∈E2

ai′,exe =
∑
e∈E2

−ai,exe + 0 = −bi

Thus, x is feasible to (LP-2). The cost of x in (LP-2) is equal to the cost of x(1) in
(LP-1): ∑

e1∈E1

1

2
cexe1 +

∑
e2∈E2

1

2
cexe2 =

∑
e∈E

cexe

Next, consider the feasibility of x̄ in (LP-1). For i ∈ V :

∑
e∈E

ai,ex̄e =
∑
e∈E

ai,e

(
x

(2)
e1 + x

(2)
e2

2

)

=
∑
e1∈E1

ai,e1x
(2)
e1

2
−
∑
e2∈E1

−ai,e2x
(2)
e2

2
=
bi
2
− −bi

2
= bi

Thus x̄ is feasible to (LP-1). The cost of x̄ in (LP-1) is equal to the cost of x(2) in
(LP-2):

∑
e∈E

ce

(
x

(2)
e1 + x

(2)
e2

2

)
=
∑
e∈E1

1

2
cex

(2)
e1

+
∑
e∈E2

1

2
cex

(2)
e1

Finally, we should scale (LP-2) so that it is the linear program of a generalized flow
problem. That is, if a column has both a positive and a negative entry, scale the negative
entry to -1. If a column has only one non-zero entry, we should scale the entry so that it
is in the interval (−1, 0) when it is negative and in the interval (0, 1) when it is positive.

17

1.8 Contributions of Végh’s Paper

Végh’s algorithm is a scaling algorithm. He achieves a strongly polynomial algorithm by
introducing several new ideas and techniques. Two of the ideas, which are easier to explain
on a standalone basis, are described here. Namely, he uses abundant arcs and continuous
scaling. More details will be presented throughout this thesis, with a final summary at the
Conclusion.

Abundant arcs have been used in previous strongly polynomial, scaling-type algorithms
for minimum cost flows and maximum flows. When we are at a scaling phase ∆, we can
bound the difference between the optimal solution and the current solution. Thus, arcs
that have a large flow relative to ∆ can be guaranteed to have positive flow in some optimal
solution. Later, I will show that such an arc can be contracted so that we may work on a
smaller network. As long as we can find a contraction within a strongly polynomial number
of iterations, we will be able obtain a strongly polynomial algorithm. This technique will
be deferred until Chapter 4.

The second technique, continuous scaling, is a new idea not used in any previous al-
gorithm for the generalized flow problem. Historically, scaling algorithms move from one
phase to the next by dividing the scaling parameter ∆ by the same constant in each phase.
In the Fat-Path algorithm, discussed in Subsection 1.6.2, the constant was 2. In addi-
tion to having weakly polynomial running time, another problem with scaling by a fixed
constant is that we could create new flow-generating cycles. Instead, Végh’s continuous
scaling technique allows the algorithm to choose the best scaling parameter that will main-
tain certain desirable properties. The choice of the new parameter will also play a role in
ensuring that abundant arcs appear within a reasonable number of iterations. The risk is
that ∆ could decrease quite slowly. In Section 5.1, we will see that the continuous scaling
technique runs sufficiently quickly for contractions to occur within a number of iterations
that is polynomial in n.

1.9 Summary

In Chapter 1, I introduced the generalized flow problem in its standard form, along with
methods for identifying an optimal flow using both flow-generating cycles and labels. A
flow-generating cycle is a cycle where the product of the gain factors is greater than 1, so
that we can push flow around it and create an excess at the starting node. Clearly, if there
is a path from a flow-generating cycle to the sink t, then we can create excess on the cycle

18

and increase the flow into t by pushing the excess on the path. Apart from identifying
optimal solutions, labels are important because they help us identify paths of highest gain
to t. When we have a tight path relative to a conservative label µ, we can push flow on this
path without creating new flow-generating cycles, while ensuring that we are achieving the
best gain possible.

Finally, I presented two old algorithms for the generalized flow problem. The first
algorithm, by Onaga, is based on a modification of the augmenting path problem. The
second, by Goldberg-Plotkin-Tardos, is a scaling type algorithm. Végh’s algorithm is an
enhancement of a scaling algorithm with several new techniques, of which two were briefly
mentioned: continuous scaling and contraction of abundant arcs.

The following table summarizes the notation that we use:

Item Notations or Definitions

Nodes V Lower-case letters, e.g., i, j.
May be represented by numbers in some diagrams.

Arcs E ij where i is the tail and j is the head

Set of nodes Upper-case letters, e.g., S, T0, T , L

Arcs in S ⊆ V E[S] = {ij ∈ E : i, j ∈ S}

Arcs across cut E[S, V \S] = {ij ∈ E : i ∈ S, j /∈ S} where S ⊆ V

Table 1.3: Graph and Network Notations

The next table summarizes the notations that will be used for the generalized flow
problem throughout this thesis, and will be expanded after each chapter.

19

Notation Meaning

Chapter 1: Introduction
γij Gain factor of arc ij, always > 0

bi Demands (> 0) or supplies (< 0) at node i

ei Excess at node i, ei =
∑

ji γjifji −
∑

ij fij − bi

fij Flow on arc ij

µi Label at node i; inverse of dual solution, always > 0

Ef The set of residual arcs: {ij : fij < uij} ∪ {ji : fij > 0}

Gf The residual graph with node set V and arc set Ef

Table 1.4: Summary of Notations in Chapter 1

20

Chapter 2

Definitions and Notations

This chapter will focus on the setup and definitions in Végh’s paper. A table of all the
notations up to Chapter 2 is provided on page 31 at the end of the chapter. This will be
useful for readers who are interested in a particular section rather than the full thesis. Some
concepts were already introduced in Chapter 1, but will be repeated here for completeness.

2.1 Using an Uncapacitated Network

We will transform the network to its uncapacitated version with supplies and demands (see
Figure 1.4). We can achieve this by adding an arc it for all i 6= t. As a result, we can add
an auxiliary arc it, with very small gain factor like γit = 1/U for large U (see Chapter 6 to
define an appropriate U). The arc it is only used if there is no other path to send excess
to t, and left out of all the figures to keep them clean. If we must use it, that means ei > 0
in the optimal solution when we translate back to the original, capacitated network. Our
example from Figure 1.1 transforms into Figure 2.1.

The primal and dual linear programs of the uncapacitated generalized flow problem
are:

max
∑
jt∈E

γjtfjt −
∑
tj∈E

ftj∑
j:ji∈E

γjifji −
∑
j:ij∈E

fij ≥ bi ∀i ∈ V − t

f ≥ 0

min
∑
i∈V−t

−bizi

zi − γijzj ≥ 0 ∀ij ∈ E; i, j 6= t

zi ≥ γit ∀it ∈ E
− γtizi ≥ −1 ∀ti ∈ E
z ≥ 021

γ = 2
1

2
3

t

γ = 1/2

γ = 1/2

γ = 3

u = 1

γ = 1
u = 2 u = 4

u = 2
γ = 4
u = 1

u = 1

(a) Capacitated

γ = 3

t

1t

1

2 3
23

12 13

3t
2t

γ = 1

γ = 2

γ = 1

γ = 4

γ = 1

γ = 1/2

b = +3

b = −3

b = −2

b = +2 b = +2

b = +1

b =∞

γ = 1

γ = 1/2

γ = 1

b = +2

γ = 1γ = 1

b = +4

b = −2

(b) Uncapacitated

Figure 2.1: Uncapacitated version of Figure 1.1.

Again, we will use labels instead of dual variables (see Subsection 1.5.1). Let µi = 1/zi,
where µi is called the label at node i. Then our dual program becomes:

max
∑
i∈V−t

bi
µi

γij
µi
µj
≤ 1 ∀ij ∈ E

µi > 0 ∀i ∈ V − t
µt = 1

We need to update the definition of excess for the supplies and demands. For the sink
node t, we use the convention that bt =∞.

22

Definition 7. The excess at a node i ∈ V with respect to a flow f is ei(f) =
∑

j:ji∈E γjifji−∑
j:ij∈E fij − bi.

When the context is unclear and we are comparing the excess between multiple flows,
we will use the notation ei(f). When the context is clear, we will simply use ei.

The complementary slackness conditions, with respect to the flow variables f and the
labels µ, becomes

• Primal condition: ei = 0 or 1
µi

= 0 ∀i ∈ V − t

• Dual condition: fij = 0 or γij
µi
µj

= 1 ∀ij ∈ E

However, since every node i has an arc to t, none of the µi can be ∞. Thus, the first
condition must be satisfied by requiring ei = 0 at all i 6= t.

In the second condition, fij > 0 implies that ij and its reverse arc ji are both in Gf .
Since γji = 1/γij, the second condition is equivalent to saying that all arcs in the residual
graph satisfy γij

µi
µj
≤ 1. This is exactly the definition of conservative labels in Subsection

1.5.1, because the residual graph contains all of E and {ji : ij ∈ E, fij > 0}.

2.2 Labels

A set of labels µ can be used to relabel a network. The idea of relabelling a network is
similar to working with reduced costs on the minimum cost flow problem.

2.2.1 Motivation Behind Labels: Converting Currencies

We discuss one motivation for relabeling a network by revisiting the foreign currency
application (see Section 1.4). Consider a large corporation in Canada with a subsidiary
in United States, which in turns owns a subsidiary in England, and the English company
owns a subsidiary in Hong Kong. The three subsidiaries must send their profit (supply) to
their respective parent company. Our goal is to determine how much money the Canadian
corporation receives in the end. We can model this as a generalized flow, where the sink
is the Canadian corporation. The gain factors would be the exchange rate between the
countries of a subsidiary and its parent.

23

We cannot simply add up the profits together as the profits are in different currencies.
We can find labels that represent the exchange rate between each country and Canadian
dollars. Dividing the profits by the labels would adjust everything to Canadian dollars,
and would allow us to add up all the profits earned by the Canadian corporation.

µ = HKD
CAD

&%
'$

&%
'$

&%
'$

- - -HK ENG USA CAN

γ = GBP
HKD

γ = USD
GBP

γ = CAD
USD

µ = 1µ = USD
CAD

µ = GBP
CAD

&%
'$

Figure 2.2: Labels in currency exchange

2.2.2 A More General Look at Labels

How did we get the labels for our currency exchange example in Figure 2.2? If the residual
graph contains no flow-generating cycles (see Section 1.5.2), then conservative labels can
be found as follows [9]. Let P ∗i be a path of highest gain from i to t for each node i ∈ V − t.

µi =
1∏

kl∈P ∗i
γkl

In the previous example, the labels µ represent the exchange rates from Canadian
dollars. In general, if node i has a supply, then dividing the supply at node i by µi allows
us to compute the maximum amount of flow that can be sent to sink t from node i. Given
the equation ei =

∑
ji γjifji −

∑
ij fij − bi, if we divide both ei and bi by µi, then we must

apply the same idea to the other terms. The equation expands as follows:

ei
µi

=
∑
ji∈E

γji
µj
µi

fji
µj
−
∑
ij∈E

fij
µi
− bi
µi

We can define our relabelled terms as follows:

• Relabelled flow: fµij = fij/µi

• Relabelled demand/supply: bµi = bi/µi

• Relabelled excesses: eµi = ei/µi

24

• Relabelled gain factors: γµij = γij
µi
µj

Recall from Subsection 1.5.1 that an arc ij is tight if γµij = 1, using our relabelled
notations. Furthermore, if P is a tight path from i to t, then P is the path of highest gain
to send excesses from i. Even when we are sending flow between arbitrary nodes i and j,
we should only send flow on a tight i-j path P ′. P ′ is a segment of the highest gain path
from i to t and thus would also be the highest gain path from i to j.

γ = 1
&%
'$

&%
'$

&%
'$?

��
��
�
��
��*

-

Z
Z
Z
Z
Z
Z
Z
ZZ~

3

1

γ = 2

2

4

γ = 3

γ = 1/2

µ = 1µ = 2

µ = 2/3

µ = 1/3

&%
'$

(a) Original flow: One unit leaving node
1⇒ Three units entering node 4

3

1

2

4

µ = 2/3

µ = 2

γµ = 1

γµ = 1

γµ = 1

γµ = 1/6

µ = 1/3

µ = 1

(b) Relabelled flow: Three relabelled units
leaving node 1⇒ Three relabelled units en-
tering node 4

Figure 2.3: Simplicity in using labels; green arcs are non-tight and red arcs (bold) are
tight.

In Figure 2.3a, it is not clear what amount of flow would arrive at node 4 if we try
to send one real unit of flow from node 1. This would depend on which path we take to
send the flow. Figure 2.3b shows the result of relabelling. Red arcs are tight and green
arcs are non-tight. Sending one real unit of flow from node 1 is equivalent to sending three
relabelled units. Furthermore, we know that the maximum flow that can arrive at node 4
is three relabelled units, the equivalent of three real units.

Moving back to the example from Figure 2.1, the original network with some initial
flow and labels, as well as its relabelled network, are presented in Figure 2.5.

2.3 ∆-Fatness and ∆-Feasibility

As with previous scaling algorithms, Végh’s algorithm maintains a pair of feasible primal
and dual solutions for a given scaling parameter ∆ ∈ R. The labels µ are conservative

25

µ = 1

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

- �

�
�
�
�
��

C
C
C
C
CCW

�
�
�
�
�
�3

Z
Z

Z
Z

ZZ}

C
C
C
C
C
C
C
C
C
C
C
CW

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�7

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
SSo

?

6

?

t

1t

1

2 3
23

12 13

3t
2t

µ = 1/4
µ = 3/4

µ = 1/2

µ = 1/4µ = 1/4

µ = 1/4

µ = 1µ = 1

µ = 1

1 0

0

3

1/2
3/2

1/2

1

0

4

0

2

e = 1/2

&%
'$

(a) Feasible flow and labels.

1

0

4

0

2

0

6

0

6

2

4

2

2t

t

1t

1

2 3
23

12 13

bµ = −8

eµ = 2 bµ = +4

bµ = −6

bµ = +8

bµ = −8

bµ = +8

bµ = +4

bµ = +1

bµ =∞

bµ = 1
3t

(b) Relabelled with µ.

Figure 2.4: Relabelling a network. fij, f
µ
ij are in purple (on the arcs). Non-tight arcs are

green and tight arcs are red (bold) in (b).

Figure 2.5: Relabelling a network. fij, f
µ
ij are in purple (on the arcs). Non-tight arcs are

green and tight arcs are red (bold) in (b).

only on arcs with a large amount of flow relative to ∆. In order words, we relax the
dual optimality condition. The algorithm will update the primal and dual solutions for
decreasing values of ∆ until we arrive at an optimal pair.

In order to define which arcs have large flow relative to ∆, we need to define ∆-fat arcs.
We can think of the ∆-fat graph as a subgraph of the residual graph, containing only those
arcs where the residual capacity is more than ∆.

Definition 8. The ∆-fat graph with respect to some ∆ and fµ, denoted Gµ
f (∆) = (V,Eµ

f (∆)),
contains the arcs Eµ

f (∆) = E ∪ {ji : fµij > ∆}. An arc in this graph is said to be a ∆-fat
arc.

The second set of arcs in the above definition refers to the reverse arcs in a residual
graph. For a reverse arc ji ∈ Eµ

f (∆), we will set γji = 1/γij.

26

2t

t

1t

1

2 3
23

12 13

3t

eµ = 2

Figure 2.6: ∆-fat graph Gµ
f (∆) constructed from previous example in Figure 2.4b

Recall the complementary slackness condition from Section 2.1: ei = 0 if i 6= t and
γµij = 1 if fij > 0. During the algorithm, we will only require arcs to be tight when they
are ∆-fat. As ∆ decreases, we will get closer to an optimal dual solution.

For the primal solution f , we will take a different approach. Instead of relaxing the
optimality condition for the primal solution, we will require a stronger feasibility constraint
and require each node to have a reserve of excess.

Definition 9. The reserve at node i is Ri =
∑

ji:γµji<1 γjifji. This is the flow going into

node i using non-tight arcs. Furthermore, we can also define the relabelled reserve as
Rµ
i = Ri/µi =

∑
ji:γµji<1 γ

µ
jif

µ
ji.

Notice that if our primal-dual pair (f, µ) is optimal, then all the non-tight arcs should
have zero flow because of the second complementary slackness condition. Let i be any
node in V − t. If ei ≥ Ri, then all flows into i on non-tight arcs could be “reset to zero”
without violating primal feasibility. Removing all outflow from i on non-tight arcs can only
increase the excess at i.

27

Definition 10. A pair of solutions (f, µ) is a ∆-feasible pair if it satisfies the following
three conditions:

• f and µ are both feasible

• γµij ≤ 1 for all arcs in Eµ
f (∆)

• ei ≥ Ri for all i 6= t

The first condition of ∆-feasibility is clear. Let us assume that it holds.

The second condition, which requires µ to be conservative only on the ∆-fat graph,
implies that γµij = 1 whenever fµij > ∆ because both ij and its reverse arc ji are in Eµ

f (∆).
This means that γµij ≤ 1 and γµji ≤ 1; therefore ij must be tight. For a node i, this also
implies that Rµ

i ≤ deg(i)∆ since all non-tight arcs have small relabelled flow, where deg(i)
is the sum of in-degree and out-degree of node i.

The third condition allows us to reset the flow on non-tight arcs to zero without violating
primal feasibility. Removing flow on non-tight arcs will mean that our pair (f, µ) satisfies
dual optimality conditions completely, albeit not the primal optimality conditions.

2.4 High Excess and Low Excess Nodes: Sending Flow

When our scaling parameter is ∆, we will maintain the invariant that eµi ≤ 4(deg(i) + 2)∆
for all nodes i ∈ V − t.. The algorithm will run by sending excesses from nodes with high
excess to nodes with low excesses, as we will see in Chapter 3. As a result, let us define the
special sets of nodes that are crucial for both the weakly and strongly polynomial versions
of Végh’s algorithm.

Definition 11. The set of high excess nodes is T0 ⊆ {i : eµi ≥ (deg(i) + 2)∆}. Nodes are
added to T0 at one particular step of the algorithm, but they are removed immediately if
the relabelled excess falls below (deg(i) + 2)∆.

Definition 12. The set of low excess nodes is L = {i : eµi < (deg(i) + 1)∆}.

Since our sink t has bt = ∞, its excess is always et = −∞ and we must have t ∈ L.
Furthermore, low excess nodes cannot become high excess nodes as a result of receiving
flow.

28

As we described in Subsection 2.2.2, we always want to send flow along tight paths
because this is the path of highest gain. This also keeps our (f, µ) ∆-feasible. If we
send ∆ units of relabelled flow from node k ∈ T0 to l ∈ L on a tight path P , then eµk
decreases by ∆ and remains positive, eµl increases, and all other relabelled excesses remain
the same. So f is still a feasible flow. Our labels µ did not change and are feasible. For
the second condition of ∆-feasibility, we could create a new arc ji to Eµ

f (∆) when we
pushed flow on arc ij ∈ P . Since γµij = 1 on our tight path, we have γµji = 1. For the
third condition, we do not change the reserve at any of the nodes since we do not use
non-tight arcs, so we can simply consider the excess at node k. After augmenting flow,
eµk ≥ (deg(k) + 2)∆ − ∆ > deg(k)∆ ≥ Rµ

k . Thus all three conditions of ∆-feasibility are
satisfied by our choice of thresholds in the definitions of T0 and L.

We need to identify the set of nodes that are reachable from T0 using tight paths:

Definition 13. T denotes a subset of the set of nodes reachable from T0. In detail, T ⊆
{i : There exists a tight path from some j ∈ T0 to i in Eµ

f (∆)}.

Our definition of T allows for trivial tight paths, so that all nodes in T0 are also in T .

HHHHj

'

&

$

%

'

&

$

%
T0 : eµi ≥ (degi + 2)∆

(subset)

T : Reachable from T0 by tight path

L : eµi < (degi + 1)∆

�
�
�=

'

&

$

%

Figure 2.7: Relationship between sets T0, T , and L

Thus if T ∩L 6= ∅, then there exists some low excess nodes reachable by the high excess
nodes and we can send flow. Using the definition of T , we can divide E into 4 subsets:

• E[T] = {ij ∈ E : i, j ∈ T}

• E[V \T] = {ij ∈ E : i, j ∈ V \T}

29

• E[T, V \T] = {ij ∈ E : i ∈ T, j ∈ V \T}

• E[V \T, T] = {ij ∈ E : i ∈ V \T, j ∈ T}

2.5 Summary

In Chapter 2, we used an uncapacitated network to model the generalized flow problem
by replacing capacities with supplies and demands at nodes. I used a foreign currency
example to motivate the use of labels. Labels are used to relabel the network to the base
unit of t, so that we can easily identify tight paths and determine the amount of flow being
sent and received at nodes.

We discussed the optimality conditions for the uncapacitated model. An optimal
primal-dual pair ensures that the excesses are 0 for all i ∈ V − t and that all arcs with
positive flow are tight. We also discussed the definitions of ∆-fat arcs and ∆-feasibility.
The idea of ∆-feasibility is that we are relaxing the dual optimality conditions in order to
send flow. On the other hand, we maintain a reserve of excess at nodes (that is, we have
ei ≥ Ri, ∀i ∈ V − t) so that our algorithms can perform various updates without violating
primal feasibility.

I also defined high excess, low excess, and reachable nodes. These nodes will be critical
to running Végh’s algorithm in Chapter 3. The idea is that we will move excesses from T0

to L, but only on tight paths.

30

Notation Meaning

Chapter 1: Introduction
γij Gain factor of arc ij, always > 0

bi Demands (> 0) or supplies (< 0) at node i

ei Excess at node i, ei =
∑

ji γjifji −
∑

ij fij − bi

fij Flow on arc ij

µi Label at node i; inverse of dual solution, always > 0

Ef The set of residual arcs: {ij : fij < uij} ∪ {ji : fij > 0}

Gf The residual graph with node set V and arc set Ef

Introduced in Chapter 2: Definitions and Notations
fµij, b

µ
i , eµi , γµij Relabelled quantities; see Subsection 2.2.2

Eµ
f (∆) The set of ∆-fat arcs: E ∪ {ji : fµij > ∆}

Gµ
f (∆) The graph with node set V and arc set Eµ

f (∆)

Ri The reserve at i;
∑

ji:γµji<1 γjifji

T0 High excess nodes; T0 ⊆ {i : eµi ≥ (deg(i) + 2)∆}

T Reachable nodes;
T ⊆ {i : i is reachable from a node in T0 via a tight path in Eµ

f (∆)}

L Low excess nodes; {i : eµi < (deg(i) + 1)∆}

Table 2.1: Summary of Notations in Chapter 2

31

Chapter 3

Weakly Polynomial Algorithm

Since the strongly polynomial algorithm is quite complicated, I will first give a simpler
version of the algorithm which runs in weakly polynomial time. The strongly polynomial
version is an extension that incorporates the idea of abundant arcs and contractions.

A table of all the notations up to Chapter 3 is provided on page 52 at the end of the
chapter. This will be useful for readers who are interested in a particular section rather
than the full thesis.

3.1 Structure of the Algorithm

3.1.1 Main Algorithm

The algorithm works by maintaining a ∆-feasible pair (see Section 2.3). Unlike previous
algorithms where we move positive excess directly to the sink, Végh’s algorithm is slightly
more relaxed in that we are allowed to move flow from high excess nodes in T0 to low excess
nodes in T ∩ L (see Section 2.4). The algorithm maintains the invariant that excesses are
at most 4(deg(i) + 2)∆ for all i ∈ V − t. This invariant and the definition of ∆-feasibility
means that we get closer and closer to an optimal pair of solutions as ∆ gets smaller. Let
us consider how we are able to achieve this goal. We start an iteration with a ∆-feasible
pair (f, µ) and the sets T0 and T .

Action 1: Augment Flow
In order to augment flow from a high excess node to a low excess node, we want to use

32

a tight path because it is the path of highest gain (see Subsection 2.2.2). We know that
all the nodes in T are reachable from T0 using tight paths in Eµ

f (∆), so we check for low
excess nodes in T . If T ∩ L 6= ∅, then we can send ∆ units of relabelled flow from some
node i ∈ T0 to node j ∈ T ∩ L.

Immediately after sending flow from node i to node j, it is possible that eµi < (deg(i) +
2)∆, which means that i no longer belongs in T0. If so, the obvious correction is to remove
node i from T0. We should also reset T to T0 because there could be nodes in T that are
reachable from i only. As we will see later, Végh’s algorithm will always reset T to T0 after
an augmentation in order to simplify the runtime analysis.

What if T ∩ L = ∅? Let us consider other actions that we might perform when we
cannot augment flow.

Action 2: Tight arc leaving T
Assume T 6= ∅. Since none of the nodes in T are low excess nodes, we want to check for
more nodes that are reachable by T0. To do this, we will look for tight arcs in Eµ

f (∆)
leaving T . If such an arc ij exists, then node j is also reachable from T0 and should be
added into T . In the next iteration, we can look in the new T for low excess nodes.

Continuing our example from Figure 2.5, actions 1 and 2 are demonstrated on Fig-
ure 3.1 with ∆ = 2/5.

Action 3: None of the above
There are two reasons why we cannot perform the previous two actions. The first reason
is that T0 = ∅, which implies T = ∅. In this case, we need to raise the excesses on nodes
relative to ∆ without augmenting flow.

The second reason is that T 6= ∅, but T ∩ L = ∅ and all arcs ij ∈ Eµ
f (∆) leaving T are

non-tight. Notice that only original arcs are leaving T in Gµ
f (∆), otherwise arc ij and its

reverse arc ji are both in Eµ
f (∆) and must be tight by the definition of ∆-feasibility. That

is, {ij : ij ∈ Eµ
f (∆), i ∈ T, j ∈ V \T} = E[T, V \T]. Thus we want to tighten an arc by

increasing γµij for some ij ∈ E[T, V \T].

These obstructions to augmenting flows can be solved by modifying the labels µ or the
scaling parameter ∆. We will call this procedure the Elementary Step.

33

T

t

1t

1

2 3
23

12 13

3t
2t

eµ = 2

(a)Gµf (∆): T0 = {2}. Expand T to proceed.

T

t

1t

1

2 3
23

12 13

3t
2t

eµ = 2

(b) Gµf (∆): T ∩ L 6= ∅ ⇒ augment flow.

1

0

4

0

2

0

6

0

6

4

2

12/5

eµ = 2/5

t

1t

1

2 3
23

12 13

3t
2t

bµ = −8
bµ = +4

bµ = −6

bµ = −8

bµ = +4

bµ = +1
bµ = 1

eµ = 8/5

bµ =∞

bµ = +8
bµ = +8

(c) G: New flow after augmenting along
P = 2, 12. Compare with Figure 2.4a.

eµ = 2/5

t

1t

1

2 3
23

12 13

3t
2t

eµ = 8/5

(d) Gµf (∆): After augmenting flow, T =
T0 = ∅. Node 2 is neither in T0 nor L.

Figure 3.1: Depicting the progress of the algorithm with ∆ = 2/5. Pink nodes indicate
i ∈ T0 (shaded) and blue nodes indicate i ∈ L in (a), (b), and (d). Red arcs (bold) are
tight and green arcs are non-tight.

34

Algorithm 1: Main Algorithm, weakly polynomial version

1 Initialization: Find a ∆start-feasible pair (f, µ) using Tight-Flow, and set T0 = T = ∅;
2 while ∆ ≥ ∆end do
3 Build L = {i : eµi < (deg(i) + 1)∆};
4 if T ∩ L 6= ∅ then
5 Send ∆ units of relabelled excess from i ∈ T0 to j ∈ L on a tight i-j path in

Eµ
f (∆);

6 if eµi < (deg(i) + 2)∆ then remove i from T0;
7 Reset T = T0;

8 else if ∃ tight arc ij in E[T, V \T] then
9 T = T ∪ {j};

10 else
11 Proceed to Elementary Step
12 end

13 end
14 Termination: Perform Tight-Flow using optimal µ∗;

I will leave the details of Initialization and the Tight-Flow subroutines until Section
3.4. The main idea is that Initialization will return solutions f and µ, as well as a starting
scaling parameter ∆start such that (f, µ) is ∆start-feasible. It is also well known that if
∆ < ∆end for some small ∆end in a scaling algorithm, then we can find the optimal flow
using one maximum flow computation [7].

Lines 3-7 corresponds to the first action of augmenting flow and doing the necessary
updates to T0 and T . Lines 8-9 corresponds to the second action of expanding T when there
is a tight arc leaving T . If we cannot perform either action, we will move onto Elementary
Step, which will be described next.

3.2 Elementary Step

Elementary Step should serve one of two goals: (1) Tighten an arc in E[T, V \T], or (2)
add a node to T0. Let us consider how each of these goals can be achieved.

35

3.2.1 Achieving Goals of Elementary Step

Goal 1: Tighten ij
First assume that T 6= ∅. Then for all arc ij ∈ E[T, V \T], the following holds with strict
inequality:

γij
µi
µj

< 1

The obvious action is to either increase label µi or to decrease label µj. We will choose
the convention of only increasing labels. To tighten a specific ij, we can näıvely multiply
µi by α1 = 1/γµij. This could adversely affect the other arcs in the network and cause some
arcs to violate dual feasibility. We want to multiply all the labels in T by some α1 > 1
so that the relabelled gain factors are unchanged for all arcs that lie within T or within
V \T . Arcs in E[V \T, T] will be fixed later. Finally, because we are updating all the µi for
i ∈ T , we need to ensure that our α1 is not so large that some γij

αµi
µj

> 1 and violate dual

feasibility. Thus, our update would be:

• Choose α1 = min{1/γµij : ij ∈ E[T, V \T]}.

• Set µ′i = α1µi for i ∈ T .

• Set µ′i = µi for i ∈ V \T .

Goal 2: Add node i to T0

We could also try adding nodes to T0. This would occur if T0 = ∅ or the update to
add nodes is easier to achieve than tightening arcs. We will add a node i to T0 when
eµi = 4(deg(i)+2)∆. This threshold is chosen partly to make the runtime analysis simpler.
As our labels µ are strictly increasing, we cannot increase eµi and must decrease ∆ by some
factor α2 instead. The choice of α2 is unclear, and will be discussed in Subsection 3.2.2.
The desired update would be:

• Choose α2 so that eµi = 4(deg(i)+2)∆
α

for some i ∈ V \T −t and eµj ≤ 4(deg(j)+2) ∆
α2

for all j ∈ V − t.

• Set ∆′ = ∆/α2.

36

T

t

1t

1

2 3
23

12 13

3t
2t

eµ = 8/5

eµ = 2/5

Figure 3.2: Proceeding from Figure 3.1, we get α = 5 and ∆′ = 2/25 after Elementary
Step. Initially, T = ∅ and no changes are made to the flow and to labels. After Elementary
Step, T0 = T = {2}.

Combining Goals 1 and 2
We want to combine the updates described into one subroutine, so that we update both
the labels and the scaling parameter by the same α. Updating ∆ clearly has no effect on
whether arcs are tight or not. For node i ∈ T , updating both µi and ∆ simultaneously
means that we do not change the relationship between its relabelled excess and its scaling
parameter. We only increase relabelled excess relative to the new scaling parameter for
node i ∈ V \T because µ′i = µi. The α that we will use for our update is the minimum of
α1 and α2. In Figure 3.2, we see a demonstration of Elementary Procedure after we cannot
augment flow or expand T in Figure 3.1.

The updated µ is feasible to the dual program. We know that sink t is in V \T when
we proceed to Elementary Step, otherwise t ∈ T ∩ L and we could have augment flow.
Therefore, we do not change t’s label (µ′t = 1). Consider the first constraint in the dual

37

program (see Section 2.1): γµij ≤ 1. We do not change the left side of the inequality for ij
in E[T] ∪ E[V \T]. For ij ∈ E[T, V \T], we multiplied the left side by α ≤ 1/γµij, so the
inequality is still satisfied. For ij ∈ E[V \T, T], we increased the denominator in γij

µi
µj

, and

again the inequality is maintained. Thus µ is feasible.

We will skip the feasibility of the flow f because we still need to update f . One prob-
lem with our current set of updates is that we could potentially violate ∆-feasibility (see
Definition 10). In particular, there could be an arc ij with fµij ≤ ∆ and γµij < 1 before
Elementary Step. Since its reverse arc ji is not ∆-fat, it was not in the Eµ

f (∆) and ij
did not have to be tight. Our updates decrease ∆ to ∆′ and could result in f ′ij/µ

′
i > ∆′,

causing both ij and ji to become ∆′-fat. We need to either tighten ij or modify the flow
on ij so that it is not ∆′-fat in order for (f ′, µ′) to be a ∆′-feasible pair.

Regaining ∆′-feasibility
Consider an arc ij with i ∈ T . Tight arcs with node i ∈ T stay tight because node j is
also in T . For the non-tight arcs, we start with fij/µi ≤ ∆ and our label updates ensure
that f ′ij/µ

′
i = fij/(αµi) ≤ ∆/α = ∆′. So these arcs do not violate ∆′-feasibility.

Now let us consider an arc with node i ∈ V \T . Tight arcs inside V \T stay tight, so
the problem lies with arcs in E[V \T, T] and non-tight arcs in E[V \T]. First, notice that
for arc ij ∈ E[V \T, T], we must have fµij ≤ ∆. Otherwise the reverse arc ji is also in
Eµ
f (∆) and both arcs must be tight. This means that we should add node i to T rather

than proceed to Elementary Step. The non-tight arcs in E[V \T] also satisfies fµij ≤ ∆. As
µ′i = µi, the only other update that we can do is to set f ′ij = fij/α on these arcs. Then we
achieve f ′ij/µ

′
i = (fij/α)/µi ≤ ∆/α.

38

f ′ij = fij/α

V \T

T
µ′i = αµi

Figure 3.3: Flow and labels are updated in Elementary Step; red arcs (bold) are tight and
green arcs are non-tight. We update labels for nodes in T and flows on the highlighted
arcs.

Finally, we need to check that e′i ≥ R′i. In Lemma 15 of Subsection 3.2.2, we will see
that this condition is achieved with our current updates.

These updates to the labels and flows are summarized in Figure 3.3.

Concluding Elementary Step
After performing all the updates, we achieve one of the two goals. If there is a node
i ∈ V \T such that e′µ

′

i = 4(deg(i) + 2)∆′, then we need to add i to T0. Because every
node in T0 must also be in T , we can update T by taking T = T ∪ T0. Note that we do
not need to update T for new nodes reachable by new tight arcs because this update can
be performed in the next iteration. Finally, because we reduced the inflow into nodes in
T with our flow update, it is possible that the relabelled excess could have dropped below
(deg(i) + 2)∆′ for some node i ∈ T0, and we would need to remove node i. Similar to the
update after augmentation, we need to reset T = T0 whenever we remove a node from T0.
The difference is that we reset T only if T0 loses a node, rather than always reset T .

Updating both ∆ and µ by the same factor α is a new idea and called continuous scaling
by Végh. Continuous scaling makes it easier for us to correct our solution pair so that it

39

remains ∆-feasible after the Elementary Step. The Elementary Step proceeds as follows:

Algorithm 2: Elementary Step

1 Compute α1 = minimum value to tighten an arc in E[T, V \T];
2 Compute α2 = minimum value to raise a node’s relabelled excess to 4(deg(i) + 2)∆′;
3 Set α = min{α1, α2};
4 Set ∆′ = ∆/α;
5 for i ∈ V do
6 if i ∈ T then µ′i = αµi;
7 if i ∈ V \T then µ′i = µi;

8 end
9 for ij ∈ E do

10 if ij ∈ E[V \T, T] then f ′ij = fij/α;

11 else if ij ∈ E[V \T] and γµ
′

ij < 1 then f ′ij = fij/α;

12 else f ′ij = fij;

13 end

14 Build up T0 = T0 ∪ {i : i ∈ V \T, e′µ
′

i = 4(deg(i) + 2)∆′};
15 Update T = T ∪ T0 ;

16 if ∃i ∈ T0 : e′µ
′

i < (deg(i) + 2)∆′ then
17 Remove i from T0;
18 Reset T = T0;

19 end

The first for-loop (lines 5-8) will update the labels. Th second for-loop (lines 9-13) will
update the flows. Finally, lines 14-19 performs the concluding updates to ensure that the
definition of T0 is satisfied.

3.2.2 Finding α and Maintaining ∆′-feasibility

When we enter Elementary Step, the following conditions hold for our ∆-feasible pair
(f, µ):

(i) eµi < 4(deg(i) + 2)∆ for all i ∈ V \T .

(ii) eµi ≥ (deg(i) + 1)∆ for all i ∈ T .

(iii) γµij < 1 for all ij ∈ E[T, V \T].

40

(iv) fµij ≤ ∆ for all ij ∈ E[V \T, T].

Let us see why (i) must hold. Assume by contradiction that there exists i ∈ V \T such
that eµi = 4(deg(i) + 2)∆. Relabelled excesses cannot increase past (deg(i) + 2)∆ outside
Elementary Step by the definition of low excess nodes (see Section 2.4). The choice of
∆start (see Section 3.4) means that we cannot have this with equality at ∆ = ∆start and
thus we should have gone through at least one Elementary Step. Then i should have been
added to T0 at the previous Elementary Step and should have remained there until its
excess drops.

We know that (ii) must hold, otherwise we can augment flow. Next, (iii) must hold
because we cannot expand T . As discussed previously, if (iv) does not hold, then ji ∈
Eµ
f (∆) and ij must be tight. This implies that i should be added to T instead of proceeding

to Elementary Step.

To tighten an arc in E[T, V \T] without violating dual feasibility, choose α1 = min{1/γµij :
ij ∈ E[T, V \T]} (see Subsection 3.2.1). Clearly, 1 < α1 <∞ because there exists at least
one arc to t ∈ V \T . The computation for α1 is quite simple. Given that γµij < 1 for all
ij ∈ E[T, V \T], we simply need to multiply these terms by the smallest value amongst
1/γµij for ij going across the cut to ensure that we do not increase the relabelled gains
above 1. Thus, α1 = min{1/γµij : ij ∈ E[T, V \T]} > 1.

The computation for α2 is more complicated. To ensure that e′µ
′

i = 4(deg(i) + 2)∆′

for some i ∈ V \T after all the updates in Elementary Step, we should determine α2

by considering the updated relabelled excess. First, let us partition the arcs incident to
i ∈ V \T into four types:

T

V \T
i

(a) F1(i)

T

V \T
i

(b) F2(i)

i

T

V \T

(c) F3(i)

T

V \T
i

(d) F4(i)

Figure 3.4: Partitioning arcs to compute α2; red arcs (bold) are tight and green arcs are
non-tight.

41

Set Flow related with the set

F1(i) = {ji : γµji < 1, ji ∈ E[V \T]} r1(i)=

∑
ji∈F1(i) γjifji

F2(i) = {ji : γµji = 1, ji ∈ E[V \T]} ∪ {ji : ji ∈ E[T, V \T]} r2(i)=

∑
ji∈F2(i) γjifji

F3(i) = {ij : γµij < 1, ij ∈ E[V \T]} ∪ {ij : ij ∈ E[V \T, T]} r3(i)=

∑
ij∈F3(i) fij

F4(i) = {ij : γµij = 1, ij ∈ E[V \T]} r4(i)=

∑
ij∈F4(i) fij

Table 3.1: Partitioning arcs to compute α2

The partition tells us that both F1 and F3 are updated in the Elementary Step. The
new relabelled excess should satisfy:

e′i
µ′i

=

r1(i)
α2

+ r2(i)− r3(i)
α2
− r4(i)

µi
≤ 4(deg(i) + 2)

∆

α2

α2 = min{4(deg(i) + 2)∆µi + r3(i)− r1(i)

r2(i)− r4(i)− bi
: i ∈ V \T}

If the denominator is 0 for all nodes i ∈ V \T , we will say that α2 =∞. We also know
that α2 > 1 by rearranging the following inequality:

ei
µi

=
r1(i) + r2(i)− r3(i)− r4(i)− bi

µi
≤ 4(deg(i) + 2)∆

Claim 14. Elementary Step will compute an α such that 1 < α < ∞ and at least one of
the following will happen:

• An arc ij in E[T, V \T] is now tight.

• A node i ∈ V \T satisfies e′µ
′

i = 4(deg(i) + 2)∆′.

Proof. This follows from the minimality of α1, α2 and the way that both terms were
computed.

Lemma 15. Elementary Step will return a ∆′-feasible pair (f ′, µ′)

42

Proof. To show ∆′-feasibility, I will show that condition 2 and condition 3 of Definition
10 holds. That is, all arcs in Eµ′

f ′ (∆
′) satisfy γµ

′

ij ≤ 1 and e′i ≥ R′i for all i 6= t. These
two conditions implies the new flow and labels are feasible (condition 1). Recall that the
reserve Ri is the incoming flow on non-tight arcs to i (see Definition 9).

Condition 2: Arcs in Eµ′

f ′ (∆
′) satisfy γµ

′

ij ≤ 1
This is due to the flow updates that we chose to perform (see Figure 3.3 and the preceding
argument).

Condition 3: ei ≥ Ri for all i 6= t
For nodes in V \T , the only decrease on incoming flow is on non-tight arcs. Thus the de-
crease on ei and Ri are the same during the flow modification step. We could also change
the outflow of i, but this only increases ei without affecting Ri.

For nodes in T , Elementary Step only modifies the flow coming in from V \T . Since
α > 1, all the arcs in E[V \T, T] are now non-tight. Consider the change in excess:

e′i = ei −
∑

ji∈E[V \T,T]

(γjifji − γjif ′ji)

≥ ei −
∑

ji∈E[V \T,T]

(∆µi − γjif ′ji)

The second line is true because fji/µj ≤ ∆ for all ji ∈ E[V \T, T] and γji
µj
µi
≤ 1. This

gives us γjifji ≤ ∆µi. Let λi denote the number of arcs ji ∈ E[V \T, T]. We also know
that ei/µi ≥ (deg(i) + 1)∆ since we did not augment flow to i.

e′i ≥ ei −
∑

ji∈E[V \T,T]

(∆µi − γjif ′ji)

≥ (deg(i) + 1)∆µi − λi∆µi +
∑

ji∈E[V \T,T]

γjif
′
ji

= (deg(i) + 1− λi)∆µi +
∑

ji∈E[V \T,T]

γjif
′
ji > R′i

We know that there are at most (deg(i)−λi) non-tight arcs ji ∈ E[T], each contributing
inflow of at most γjif

′
ji ≤ ∆′µ′i by the same argument as above. The remaining non-tight

arcs are in E[V \T, T]. Thus the last inequality is true.

43

3.3 Runtime Analysis

Since our focus is the strongly polynomial algorithm, in this section I will only present
some of the proofs needed for the runtime analysis. Rather, the focus is on the structure
of the proof as the same setup will be used when we discuss the runtime analysis for the
strongly polynomial algorithm.

The runtime analysis for the weakly polynomial algorithm has two main components,
which will be defined in the following subsections:

• A potential function Φ; and

• A partition of the iterations into three types: shrinking, expanding, and neutral.

Φ will be a non-negative function that decreases by 1 whenever we perform a shrinking
iteration. If we can bound the total increase in Φ by some value Q, then we know that
there are at most Q shrinking iterations. That is, if Φ(θ) is the value of Φ in iteration θ,
then Q is:

Q =
∑

iterations θ

max{Φ(θ+1) − Φ(θ), 0}

An example of a shrinking iteration is a flow augmentation. This suggests that Φ
should be related to eµi /∆ because eµi decreases by ∆ when i sends flow. The iterations
will be defined so that the number of expanding and neutral iterations can be bounded as
a polynomial of the number of shrinking iterations (see Subsection 3.3.1).

Our potential function is:

Φ =
∑
i∈T0

(⌊
eµi
∆

⌋
− (deg(i) + 1)

)

The value of Φ starts at 0, because T0 starts at ∅. Φ is always non-negative, because
eµi ≥ (deg(i) + 2)∆ always holds for i ∈ T0. Thus each node in T0 contributes at least 1 to
Φ. I will show that we can bound the total number of iterations based on Q. This analysis
is common to both the weakly and strongly polynomial algorithm, and will be presented
in full details. I will then state, without proof, the maximum value of Q for the weakly
polynomial algorithm.

44

3.3.1 Bounding Shrinking, Expanding, and Neutral Iterations

Let T (θ) represent the set T at the beginning of iteration θ. The iterations of the algorithm
can be divided into three types based on the change in T :

• Shrinking - T (θ)\T (θ+1) 6= ∅. That is, T loses at least one node, but can gain new
nodes.

• Expanding - T (θ) ⊂ T (θ+1).

• Neutral - Not shrinking nor expanding.

Lemma 16. Given Q, the total number of iterations in the algorithm is 2nQ.

Proof. First, I will show that we have at most Q shrinking iterations. A shrinking iteration
can occur in two ways: either when we augment flow from T0 or when we remove nodes
from T0 in the Elementary Step. After we augment flow from node i ∈ T0 to node j ∈ T∩L,
we reset T = T0 and node j is removed from T . At the same time, either eµi decreases by
∆ if node i stays in T0 or i is removed from T0. Both cases decrease Φ by 1 because each
term in Φ is at least 1 at the beginning of the iteration. Similarly, if the relabelled excess
of a node i ∈ T0 falls below the (deg(i) + 2)∆ threshold and is removed during Elementary
Step, then i is removed from T0 and T shrinks. This also decreases Φ by 1. Since every
shrinking iteration decreases Φ by 1, we have at most Q shrinking iterations.

There are at most n expanding iterations between two shrinking iterations because we
are bounded by the number of nodes.

Finally, consider a neutral iteration θ. Neutral iterations can only happen in the Ele-
mentary Step, as the main algorithm shrinks T when we augment flow or expands T when
we find tight arcs leaving T . In Elementary Step, we cannot remove nodes from T0 because
we would also remove nodes from T (steps 16-18) and result in a shrinking iteration. Now
consider the two choices of α. If α = α2 so that we add a node to T0, then T grows by
one node and this becomes an expanding iteration. If α = α1, then we tighten an arc in
E[T, V \T] and do not change T . Thus the only action that Elementary Step can perform
is to tighten an arc going from T to V \T . In iteration θ + 1, we can either augment flow
or expand T . This implies that every neutral iteration is followed by a shrinking iteration
or an expanding iteration, and thus there are at most n neutral iterations between two
shrinking iterations.

Since there are at most Q shrinking iterations and at most 2n iterations between every
two shrinking iterations, there are at most 2nQ iterations.

45

3.3.2 Total Number of Iterations

The challenge is to find an upper bound on Q. Since excesses of nodes in T0 can only
decrease, we can only increase Φ when we add a node to T0.

Theorem 17. During the algorithm, each node i enters T0 at most log ∆start

∆end times. As a

result, Q ≤ 13m log ∆start

∆end .

The proof of the first statement is omitted as we will see this bound computed for the
strongly polynomial algorithm. I will show the proof of the second statement as the proof
of the strongly polynomial algorithm follows the same structure.

Proof of second statement in Theorem 17. When a node i enters T0 through the Elemen-
tary Step, its relabelled excess is exactly 4(deg(i) + 2)∆. Thus it contributes 4(deg(i) +
2) − (deg(i) + 1) = 3deg(i) + 7 to Φ. Given that a node i enters T0 a limited number of
times, we can bound:

Q ≤
∑
i∈V−t

log
∆start

∆end
(3deg(i) + 7) ≤ (6m+ 7n) log

∆start

∆end
≤ 13m log

∆start

∆end

Combining Lemma 16 and Theorem 17 implies that the total number of iterations is at
most 26mn log ∆start

∆end . Both ∆start and ∆end are chosen to be polynomials of n, m, and the
bit sizes of numerical input. Thus, the total number of iterations is weakly polynomial.

3.4 Initialization and Termination

3.4.1 Tight-Flow on V, µ

The Tight-Flow subroutine is used both at Initialization and Termination. In order to run
Tight-Flow, we need some labels µ. The idea is to send as much excess to t as possible, using
the tight arcs identified thus far. Since we are only working on tight arcs, we can use rela-
belled quantities and treat the problem as a traditional flow problem. If we give t a demand

46

of 0, then we are simply computing a maximum flow into t subject to non-negative excesses.

Algorithm 3: Tight-Flow at Initialization and Termination

1 Tight-Flow on (V, µ): begin
2 Construct subgraph with nodes V .
3 Add all tight arcs with both ends in V .
4 All arcs get capacities uij =∞.
5 All nodes except t gets supplies/demands bµi . The sink t gets demand of 0.
6 Compute g: A maximum flow into t such that all nodes have non-negative

excesses.
7 end

Define our flow f so that fij = gijµi for the original network. We can define the flow f
using the above relationship because g is simply the relabelled flow on a relabelled network.

3.4.2 Initialization

To initialize a starting pair (f, µ), we first compute an initial feasible flow. To do this, sim-
ply map the zero-flow on the capacitated network to the uncapacitated network. Next, we
want to remove all flow-generating cycles on the residual graph using Radzik’s maximum-
mean-gain-cycle-cancelling algorithm (see Subsection 1.5.2, Section 1.6). By ensuring that
there are no flow-generating cycles, we will be able to find conservative labels µ, albeit
creating excesses at nodes.

We want to redefine a flow f before we start our algorithm. To do this, run Tight-Flow
with our µ so that all positive flows are on tight arcs. Notice that we satisfy the dual
optimality condition but not the primal optimality condition. We will also set ∆start =
maxi∈V−t e

µ
i as the first scaling parameter. This ensures that eµi ≤ ((deg(i) + 2)∆start) for

all i ∈ V so that we can initialize T0 = ∅. Our choice of ∆start also ensures that (f, µ) is
a ∆start-feasible pair (see Definition 10). Clearly f and µ are feasible to the primal and
dual respectively. Condition 2 is satisfied because we only have positive flow on tight arcs.
Condition 3 is satisfied because Ri = 0 and our feasible flow f implies that ei ≥ 0.

3.4.3 Termination

Let ∆end = 1/(17mU3) for some large U defined in Chapter 6. When the algorithm
terminates at ∆ < ∆end, we have a ∆-feasible pair (f, µ) (which is also ∆end-feasible), but
f might not be optimal. An optimal flow can be found by running Tight-Flow(V, µ).

47

Lemma 18. Let (f, µ) be a ∆-feasible pair for some ∆ < ∆end. Then Tight-Flow(V, µ)
returns an optimal primal-dual pair (f ′, µ).

Proof. Our algorithm ensures that eµi ≤ 4(deg(i) + 2)∆ for all i ∈ V − t.∑
i∈V−t

eµi (f) ≤
∑
i∈V−t

4(deg(i) + 2)∆ < 8(m+ n)∆end ≤ 16m∆end

Now define a new flow f̃ such that f̃ij = 0 if arc ij is not tight and f̃ij = fij if arc
ij is tight. Since f̃ is a feasible flow using only the tight arcs, we know that f̃µ is a
feasible solution to Tight-Flow (V, µ). Also, ei ≥ Ri = 0 implies that (f̃ , µ) is ∆- feasible.
Since fµij ≤ ∆ when arc ij is non-tight, this means that we removed at most m∆ units of

relabelled excess when we constructed f̃µ. Given that ∆ < ∆end = 1/(17mU3), we get the
following inequality: ∑

i∈V−t

eµi (f̃) ≤
∑
i∈V−t

eµi (f) +m∆ < 17m∆end =
1

U3

Let g be the resulting flow when we run Tight-Flow(V, µ). We can define a new flow
f ′ on the generalized network by f ′µij = gij. I will show that

∑
i∈V−t e

µ
i (f ′) < 1/(17mU3),

which will help us show that f ′ is an optimal flow.

The following equation is true because summing the net flow (i.e. inflow less outflow)
over all nodes is always zero.

∑
i∈V

(∑
ji∈E

f ′µji −
∑
ij∈E

f ′µij

)
−
∑
i∈V−t

bµi =
∑
i∈V

(∑
ji∈E

f̃µji −
∑
ij∈E

f̃µij

)
−
∑
i∈V−t

bµi

We can rewrite the previous equation using the excess notation.∑
i∈V−t

eµi (f ′) +
∑
jt∈E

f ′µjt −
∑
tj∈E

f ′µtj =
∑
i∈V−t

eµi (f̃) +
∑
jt∈E

f̃µjt −
∑
tj∈E

f̃µtj

Since g = f ′µ is a maximum flow and f̃µ is a feasible flow on Tight-Flow(V, µ), we know
that

∑
jt∈E f

′µ
jt −

∑
tj∈E f

′µ
tj ≥

∑
jt∈E f̃

µ
jt −

∑
tj∈E f̃

µ
tj. This implies that

∑
i∈V−t e

µ
i (f ′) ≤∑

i∈V−t e
µ
i (f̃) < 1/U3.

To show that f ′ is an optimal flow, let us look at the complementary slackness conditions
with f ′ and µ (see Section 2.1). We know that arcs ij with f ′ij > 0 are all tight arcs. So we

48

need to show that ei = 0 for all i ∈ V − t. By contradiction, assume there exists k ∈ V − t
such ek > 0. Let Z be the set of nodes that are reachable from k using arcs in the residual
graph of f ′. Consider the excesses of nodes in Z (see explanations below).

eµk(f ′) ≤
∑
i∈Z

eµi (f ′)

=
∑
i∈Z

(∑
ji∈E

f ′µji −
∑
ij∈E

f ′µij − b
µ
i

)

=
∑
i∈Z

∑
ji∈E:
j∈Z

f ′µji −
∑
ij∈E:
j∈Z

f ′µij

−∑
i∈Z

bµi

= −
∑
i∈Z

bµi

= − 1

µk

∑
i∈Z

bi
µk
µi

Clearly sink t /∈ Z, otherwise we can increase the flow to t by pushing some ε amount
from k. Furthermore, there is no original arc leaving Z. In the second and third lines
above, this means that if we have an arc ij with node i ∈ Z, then node j ∈ Z. Moreover,
any original arc ji entering Z has zero flow, otherwise we have a residual arc ij leaving Z.
This means that f ′µji = 0 if j /∈ Z and gives us the third line.

Chapter 6 defines U to be 2 times the product of all the numerators and denominators
used to represent supplies/demands bi and gain factors γij. So bi is an integer multiple of
1/U . Since there is a tight path Pi from node k to node i ∈ Z, we know that µk/µi =∏

e∈Pi 1/γe. Thus this term is also an integer multiple of 1/U and
∑

i∈Z biµk/µi is an integer
multiple of 1/U2.

Lastly, we assumed that there is an arc kt ∈ E, where γkt ≥ 1/U . By feasibility of
µ, we know that γµkt ≤ 1. This implies that 1/U ≤ 1/µk, and the last term of the above
inequality must be at least 1/U3 whenever it is positive.∑

i∈V−t

eµi (f ′) ≥
∑
i∈Z

eµi (f ′) ≥ 1/U3

This is a contradiction to
∑

i∈V−t e
µ
i (f ′) < 1/U3.

49

3.5 Summary

In this chapter, I introduced the weakly polynomial version of Végh’s algorithm. In the
algorithm, we want to augment flow from high excess T0 to low excess nodes L. Failing
this, we will try to expand the set of reachable nodes T in hopes of reaching a low excess
node by tight arcs. If we cannot do either, then we will update the scaling parameter ∆
and the labels µ. In contrast to previous algorithms, both ∆ and µ are scaled by the same
factor α. The choice of α will allow us to either expand the set of high excess nodes T0 or
tighten an arc in E[T, V \T].

The runtime analysis is based on a non-negative potential function Φ. We partitioned
up our iterations into three groups: shrinking, expanding, and neutral. Expanding and
neutral iterations are bounded by 2n times the number of shrinking iterations that can
occur. Furthermore, the initial value of Φ is 0 and shrinking iterations always decrease Φ
by 1. This means that the number of shrinking iterations is bounded by Q, where Q is the
maximum increase to Φ over all iterations.

Finally, we saw how we can initialize and terminate the algorithm. Initialization requires
us to find a ∆start-feasible pair (f, µ), and uses both cycle-cancelling and the Tight-Flow
subroutine. The Tight-Flow subroutine simply finds a maximum flow into t using only the
tight arcs. At termination, we call Tight-Flow again with our optimal µ∗. Computing a
maximum flow into t with µ∗ will bring us to the optimal flow f ∗.

50

Notation Meaning

Chapter 1: Introduction
γij Gain factor of arc ij, always > 0

bi Demands (> 0) or supplies (< 0) at node i

ei Excess at node i, ei =
∑

ji γjifji −
∑

ij fij − bi

fij Flow on arc ij

µi Label at node i; inverse of dual solution, always > 0

Ef The set of residual arcs: {ij : fij < uij} ∪ {ji : fij > 0}

Gf The residual graph with node set V and arc set Ef

Introduced in Chapter 2: Definitions and Notations
fµij, b

µ
i , eµi , γµij Relabelled quantities; see Subsection 2.2.2

Eµ
f (∆) The set of ∆-fat arcs: E ∪ {ji : fµij > ∆}

Gµ
f (∆) The graph with node set V and arc set Eµ

f (∆)

Ri The reserve at i;
∑

ji:γµji<1 γjifji

T0 High excess nodes; T0 ⊆ {i : eµi ≥ (deg(i) + 2)∆}

T Reachable nodes;
T ⊆ {i : i is reachable from a node in T0 via a tight path in Eµ

f (∆)}

L Low excess nodes; {i : eµi < (deg(i) + 1)∆}

51

Notation Meaning

Introduced in Chapter 3: Weakly Polynomial Algorithm
α1 Smallest scaling factor needed to tighten an arc in E[T, V \T]

α2 Smallest scaling factor needed to raise e′µ
′

i to 4(deg(i) + 2)∆′ for i ∈ V \T

Φ Potential function for measuring number of iterations

Q Total increase to Φ over all iterations

Table 3.2: Summary of Notations in Chapter 3

52

Chapter 4

Strongly Polynomial Algorithm

It is well known that if we use a scaling algorithm and there exists an arc ij such that the
flow fij is large relative to ∆, then there exists an optimal solution where f ∗ij > 0. Call
such an arc an abundant arc. This tells us that there exists optimal labels µ∗ such that
γµ
∗

ij = 1 (see Section 2.1), and we can contract the arc without losing information about
the dual solution. This is the idea behind the strongly polynomial algorithm.

We will first see how abundant arcs are defined in generalized flows, and how they
should be contracted. Next, we want to find conditions that can guarantee the appearance
of abundant arcs in a strongly polynomial number of iterations. This is done through the
new subroutine Filtration. Finally, the chapter will conclude by giving an overview of the
runtime analysis.

Végh called the set of iterations between two contractions a major iteration. We will
look at the algorithm’s structure and its runtime in a major iteration.

A table of all the notations up to Chapter 4 is provided on page 71 at the end of the
chapter. This will be useful for readers who are interested in a particular section rather
than the full thesis.

4.1 Abundant Arcs

4.1.1 Definition of Abundant Arcs

For an arc ij, suppose we can guarantee that there exists an optimal flow f ∗ such that
f ∗ij > 0. By the second complementary slackness condition (see Section 2.1), there exists

53

optimal labels µ∗ such that µ∗j = γijµ
∗
i . Since our algorithm is seeking optimal labels rather

than an optimal flow, we can contract the arc ij without losing any information. Optimal
labels on the contracted network can be mapped back to optimal labels on the original
network, and an optimal flow can then be computed.

Lemma 19. If fµij/∆ ≥ 17m, then there exists an optimal flow f ∗ where f ∗ij > 0. We will
call ij an abundant arc.

To prove Lemma 19, we will use the next lemma to bound the maximum change in flow
on arcs between the current solution and the optimal solution. The proof for Lemma 20
will be deferred until Chapter 5.2.

Lemma 20. Given a current flow f , labels µ, and scaling parameter ∆, there exists an
optimal flow f ∗ and labels µ∗ such that

max
ij∈E
|fµij − f ∗

µ∗

ij | ≤
∑
i∈V−t

eµi (f) + (m+ 1)∆

Proof of Lemma 19. Using Lemma 20, we know that:

max
ij∈E
|fµij − f ∗

µ∗

ij | ≤
∑
i∈V−t

eµi (f) + (m+ 1)∆

≤
∑
i 6=t

4(deg(i) + 2)∆ + (m+ 1)∆

≤ (8m+ 8n− 8)∆ + (m+ 1)∆ < 17m∆

Thus if fµij ≥ 17m∆, then ij has positive flow in some optimal solution.

To understand how contractions work, it is simpler to consider our relabelled network.
If pq is an abundant arc, then pq must be tight because (f, µ) is ∆-feasible. Assume that
p 6= t. Let k be the new node obtained by contracting pq.

For the new node k, we will set:

• µ′k = µq

• bµk = bµp + bµq

For the images of the original arcs ij (i.e. ij 6= pq) and original nodes i (i.e. i 6= k) on
the contracted network, we will set:

54

• γµimage(ij) = γµij

• µimage(i) = µi

• bµimage(i) = bµi

γµpq = 1

1 2

3 4

1 2

3 4

k

p

q

µp

µq

µq

Figure 4.1: How to contract an arc

To find the real gain factors and supplies/demands for the contracted network, we can
reverse the definitions of the relabelled terms. If p = t, then the new sink continues to get
the label of 1 rather than µj, and the rest of the transformation follows.

For simpler presentation of the algorithm, we can reset our flow f and the scaling
parameter ∆ using Initialization.

We can add a step (lines 15-16) to contract arcs to our weakly polynomial algorithm

55

in Subsection 3.1.1, and replace the terminating condition with |V | = 1.

Algorithm 4: Main Algorithm with Contractions

1 Initialization: Find a ∆start-feasible pair (f, µ) using Tight-Flow, and set T0 = T = ∅;
2 while |V | > 1 do
3 while @ij : fµij/∆ ≥ 17m do
4 Build L = {i : eµi < (deg(i) + 1)∆};
5 if T ∩ L 6= ∅ then
6 Send ∆ units of relabelled excess from i ∈ T0 to j ∈ L on a tight i-j path

in Eµ
f (∆);

7 if eµi < (deg(i) + 2)∆ then remove i from T0;
8 Reset T = T0;

9 else if ∃ tight arc ij, such that ij ∈ E[T, V \T] then
10 T = T ∪ {j};
11 else
12 Proceed to Elementary Step;
13 end

14 end
15 Find all arc ij with fµij/∆ ≥ 17m. Contract these arcs;

16 Reset f and ∆ using Initialization;

17 end
18 Termination: Expand network. Perform Tight-Flow using optimal µ∗;

4.1.2 Guaranteeing Abundant Arcs

The fact that abundant arcs can be contracted is a well-known property. Rather, the
challenge is to guarantee the existence of abundant arcs in our network without observing
the value of flows on arcs. We use information about the supplies/demands, labels, and
scaling parameter:

Lemma 21. If |bµi |/∆ ≥ 20mn for i ∈ V − t, then there is an abundant arc going in or
out of node i.

Proof. Assume by contradiction that we do not have an abundant arc. We will look at
the supply and demand case separately. By feasibility of µ, we know that γµij ≤ 1 for all arcs.

56

Case 1: i is a demand node
We can obtain a contradiction using eµi ≥ 0 and bµi ≥ 20mn∆.

0 ≤ eµi =
∑
j:ji∈E

γµjif
µ
ji −

∑
j:ij∈E

fµij − b
µ
i ≤ (17m∆)(deg(i))− 0− 20mn∆ < 0

Case 2: i is a supply node
We can obtain a contradiction using eµi ≤ 4(deg(i) + 2)∆ and bµi ≤ −20mn∆.

(4n+ 8)∆ ≥ 4(deg(i) + 2)∆ ≥ eµi =
∑
j:ji∈E

γµjif
µ
ji −

∑
j:ij∈E

fµij − b
µ
i

≥ 0− (17m∆)(deg(i)) + 20mn∆

≥ −17m(n− 1)∆ + 20mn∆

≥ (3mn+ 17m)∆

One of the benefit of using |bµi |/∆ = |bi|/(µi∆) is that this term only changes under
very specific conditions. We know |bi| is a constant, and µi and ∆ only change in the
Elementary Step. Elementary Step updates ∆′ = ∆/α and gives us two scenarios:

• If i ∈ T , then µ′i = αµi. Thus |bµ
′

i |/∆′ = |b
µ
i |/∆.

• If i ∈ V \T , then µ′i = µi. Thus |bµ
′

i |/∆′ = α|bµi |/∆.

As α > 1, this means |bµi |/∆ is monotone increasing and can only get closer to being
incident to an abundant arc. The increases only occur when i ∈ V \T . Furthermore,
the current value of |bµi |/∆ could be extremely small such that it becomes impossible to
measure the progress until the 20mn threshold can be met.

As a result, we want to focus on nodes where |bµi |/∆ is greater than a lower threshold
that is “comparable to n”, so that we know how much progress must be made before it is
guaranteed to be incident to an abundant arc. We take this lower threshold to be 1/n. We
will define a set of nodes D that are close to contractions because their |bµi |/∆ values are
above 1/n (see Figure 4.2). Then:

D = {i ∈ V − t :
|bµi |
∆
≥ 1/n}

57

Since the values of |bµi |/∆ are monotone increasing, nodes that entered D cannot leave
D within a major iteration. Furthermore, if (V \T)∩D 6= ∅, then running Elementary Step
would provide measurable progress towards the next contraction because we are increasing
some |bµi |/∆ that is reasonably large.

1
n

6

Iteration θ

20mn

Progress to make until contraction

|bµi |
∆

Figure 4.2: Bounded progress until contraction when nodes are in D

Clearly, a problem occurs when we run Elementary Step with (V \T) ∩ D = ∅. This
brings us to the subroutine Filtration, which will fix our network to ensure that Elementary
Step is making some progress even when (V \T) ∩D = ∅.

4.2 Filtration

The Filtration subroutine is called whenever we need to proceed to Elementary Step but
(V \T) ∩D = ∅.

4.2.1 Purpose of Filtration and Tight-Flow

The most desirable outcome would be to add nodes in V \T to D. For example, if the
excesses of nodes in V \T are extremely small and Elementary Step will choose a large α,
then we might be able to push some |bµi |/(∆/α) over the 1/n threshold and add i to D.

58

We will attempt to do this by running a modified version Tight-Flow on V \T to move flow
to the sink. Filtration will then update the current flow f with the flow on V \T computed
by Tight-Flow.

Filtration’s version of Tight-Flow on V \T runs in a similar manner to Tight-Flow on
V as described in Subsection 3.4.1. We will look at the subgraph on V \T containing only
the tight arcs. That is, the arc set is ETight

µ [V \T] = {ij ∈ E[V \T] : γµij = 1}. Nodes will
get supplies and demands bµi . On this subgraph, we want to maximize the flow into t while
maintaining non-negative excess at all other nodes. It is not clear that there is a feasible
solution. In fact, how do we know that V \T contains supply nodes to satisfy the demands
within this subset of nodes? Claim 22 (below) proves that a feasible solution exists.

Let us assume for now that Tight-Flow on (V \T, µ) has a feasible solution. Tight-Flow
computes a flow g that sends as much excess from the supplies within V \T to the sink t
as possible, using only tight arcs. Since relabelling the subgraph and using only tight arcs
means that we have scaled everything down to the same unit of measure, we should expect
that the excesses are bound by the supplies and demands on the subgraph. We will see
the formal statement of the lemmas and their proofs after the algorithm:

Algorithm 5: Filtration

1 Tight-Flow on (V \T, µ): begin
2 Construct subgraph with nodes V \T ;
3 Add all tight arcs with both ends in V \T (i.e. ETight

µ [V \T]);

4 All arcs get capacities uij =∞;
5 All nodes except t gets supplies/demands bµi . The sink t gets demand of 0;
6 Compute g: A maximum flow into t such that all nodes have non-negative

excesses;

7 end
8 for ij ∈ E do

9 if ij ∈ E[T] ∪ E[T, V \T] then f
′µ
ij = fµij;

10 if ij ∈ E[V \T, T] then f
′µ
ij = 0;

11 if ij ∈ E[V \T] then f
′µ
ij = gij;

12 end

Lines 8-12 are a new flow f ′ on our original network, based on the flow g computed by
Tight-Flow.

59

and fµij = 0 otherwise.

6

?

�

	

�Set flow to 0

T : same as previous fµ

same as previous fµ

V \T : Use new fµij = gij on tight arcs,

�

	

�

Figure 4.3: Flow update in Filtration

For this chapter only, I will use the notation eµi (g) =
∑

ji∈ETight
µ [V \T] gji−

∑
ij∈ETight

µ [V \T] gij−
bµi for i ∈ V \T−t (where bµi refers to to relabelled demand/supply on the original network).

Claim 22. In Filtration, the Tight-Flow computation on (V \T, µ) has a feasible solution
g, such that eµi (g) ≥ 0 for i ∈ V \T − t.

Proof. Consider the current flow f . There are no tight arcs in E[T, V \T], otherwise we
should add a node to T rather than proceed to Filtration. By the definition of ∆-feasibility
(see Definition 10), we can remove all the flow on incoming non-tight arcs because ei ≥ Ri.
We can also remove flow on outgoing arcs without reducing excesses (see Figure 4.4). Thus,
our current relabelled flow restricted to the subgraph on V \T with tight arcs is a feasible
solution.

By letting xij = fµij on tight arcs in E[V \T], the relabelled flow becomes a feasible flow
in this subgraph.

Lemma 23. The Tight-Flow computation will return a flow g on the subgraph such that
eµi (g) ≤ nmaxj∈V \T−t |bµj | for i ∈ V \T − t.

Corollary 24. The Filtration subroutine will return a flow f ′ such that eµi (f ′) ≤ R′µi +
nmaxj∈V \T−t |bµj | for i ∈ V \T − t.

60

i

V \T .

T

Figure 4.4: Feasibility in Tight-Flow (V \T, µ). Crossed out arcs do not ruin the feasibility
of the flow.

The corollary follows because all the flow on E[V \T, T] have been set to 0 and does not
affect the excess. Consider a node i ∈ V \T − t. When we map g back to the full network
and define f ′, the relabelled excess of node i is eµi (g) plus the flow on ji ∈ E[T, V \T].
Since all arcs in E[T, V \T] non-tight, they contribute equally to excesses eµi (f ′) and R′µi
(see Definition 9). We will now see the proof for Lemma 23.

Proof. This lemma clearly holds for nodes with zero excesses. Let us consider a particular
node k where eµk(g) > 0. As Tight-Flow is a maximum flow computation, we can consider
the standard residual graph of the flow g. Let Z be the set of nodes reachable from k using
arcs in the residual graph of g. We know t /∈ Z, otherwise we can increase the flow at t by
pushing some ε amount from k. Following the same argument about Z as in Lemma 18,
we know there is no arc ij with i ∈ Z, j /∈ Z. Moreover, all original arc ji entering Z has

61

zero flow, otherwise we have a residual arc ij leaving Z.

eµk(g) ≤
∑
i∈Z

eµi (g)

=
∑
i∈Z

 ∑
ji∈ETight

µ [V \T]

gji −
∑

ij∈ETight
µ [V \T]

gij − bµi

=
∑
i∈Z

 ∑
ji∈ETight

µ [V \T]:
j∈Z

gji −
∑

ij∈ETight
µ [V \T]:
j∈Z

gij

−∑
i∈Z

bµi

≤
∑
i∈Z

|bµi |

≤ n max
j∈V \T−t

|bµj |

Since we only sum over the flow on arcs with both ends in Z, the excesses in Z are
created only from the supplies in Z.

Running the Filtration subroutine could mean that we are no longer eligible to call
Elementary Step. Recall from Subsection 3.2.2 that in order to run Elementary Step, we
must have no low excess nodes in T (i.e. T ∩ L = ∅) and all nodes in T0 must satisfy
the definition of being a high excess node. When we replace the flows on E[V \T, T] with
zero flow, we could have reduced the excess of a node in T so that it violates one of these
conditions. Consequently, we should update our sets and move onto the next iteration
without performing Elementary Step. The strongly polynomial algorithm is presented
next:

62

Algorithm 6: Main Algorithm, strongly polynomial version

1 Initialization: Find a ∆start-feasible pair (f, µ) using Tight-Flow, and set T0 = T = ∅;
2 while |V | > 1 do
3 while @ij : fµij/∆ ≥ 17m do
4 Build L = {i : eµi < (deg(i) + 1)∆};
5 if T ∩ L 6= ∅ then
6 Send ∆ units of relabelled excess from i ∈ T0 to j ∈ L on a tight i-j path

in Eµ
f (∆);

7 if eµi < (deg(i) + 2)∆ then remove i from T0;
8 Reset T = T0;

9 else if ∃ tight arc ij, such that ij ∈ E[T, V \T] then
10 T = T ∪ {j};
11 else
12 if (V \T) ∩D = ∅ then Call Filtration;
13 if ∃i ∈ T0 : eµi < (deg(i) + 2)∆ then
14 Remove i from T0 and reset T = T0;
15 Proceed to next iteration (go to line 3);

16 if ∃i ∈ T : eµi < (deg(i) + 1)∆ then Proceed to next iteration (go to line
3);

17 Call Elementary Step;

18 end

19 end
20 Find all arc ij with fµij/∆ ≥ 17m. Contract these arcs;

21 Reset f and ∆ using Initialization.

22 end
23 Termination: Expand network. Perform Tight-Flow using optimal µ∗;

Lines 11-17 are where the changes occur. Line 12 checks whether we should run Fil-
tration. Lines 12 to 15 checks whether we are allowed to proceed to Elementary Step after
the flow update from Filtration.

4.2.2 Analysis of Filtration

Let assume that we proceed to Elementary Step after Filtration. If we skip Elementary
Step, then T has shrunk (step 12-14) or T will shrink in the next iteration because T∩L 6= ∅
and we will send flow (step 15).

63

Running Filtration before Elementary Step gives us the following benefits:

1. This is the only operation that sends flow directly to the sink t through the Tight-
Flow computation.

2. If we proceed to Elementary Step, then our α will either add a node in V \T to D or
tighten an arc going into a low excess node.

When we consider the weakly polynomial algorithm, we were always sending flow to
some low excess node, which may or may not be t. The total excess over all i ∈ V − t
may not necessarily have decreased, and could simply have been rebalanced. On the other
hand, when we run Tight-Flow in Filtration, excesses are sent directly to the sink.

The second benefit allows us to make faster progress. Previously, Elementary Step may
either add a node to T0 or tighten an arc (see Section 3.2). After running Elementary Step,
it is possible that there is still no tight paths from T0 to L. For example, we could have
tightened ij where j /∈ L. If we run Elementary Step after Filtration, we are guaranteed
to either add nodes to D, which can happen at most n−1 times, or we will tighten ij with
j ∈ L.

Claim 25. If we proceed to Elementary Step after Filtration, then the α chosen will either
add a node in V \T to D or tighten an arc going into a low excess node.

Proof. Assume that we do not tighten an arc going into a low excess node. Let ei, ∆, µi
denote the parameters before Filtration and e′i, ∆′, µ′i denote the parameters after Elemen-
tary Step. We know that Elementary Step does not modify the flow again if we performed
Filtration, because all arcs that have their flows modified by α were replaced with zero
flows in Filtration.

Case 1: α = α1 so that we tighten an arc ji ∈ E[T, V \T] (Here, ji refers to an orig-
inal arc).

If i ∈ L, then our claim is true. So assume e′i/µ
′
i ≥ (deg(i)+1)∆′. Since µ′i = µi, running

Filtration before Elementary Step means that (the inequalities are explained below):

(deg(i) + 1)∆′ ≤ e′i/µ
′
i ≤ R′µi + n max

k∈V \T−t
|bµk |

≤ deg(i)∆′ + n max
k∈V \T−t

|bµk |

64

The first line results from Corollary 24, and the second line comes from bounding the
relabelled reserves (see discussion after Definition 10). By rearranging the last inequality,
we get:

1/n ≤
maxk∈V \T−t |bµk |

∆′

This means that a node k ∈ V \T − t is added to D, whereas it was not in D at the
start of the iteration because we proceeded to Filtration.

Case 2: α = α2 so that some node i ∈ V \T − t is added to T0.
This means e′i/µ

′
i = 4(deg(i) + 2)∆′. Since e′i/µ

′
i > (deg(i) + 1)∆′, apply the same

argument as in case 1. Again we added some k ∈ V \T − t to D.

This claim, together with the two scenarios where we might skip Elementary Step,
implies that we either expand D or shrink T within the next two iterations. Expanding D
is desirable because it leads to more contractions. Furthermore, there are at most n − 1
such iterations. Shrinking T also indicates good progress. As we showed in the weakly
polynomial algorithm (see Section 3.3), the total number of shrinking iterations is bounded
by 2nQ, where Q is the total increase to our potential function. An overview of the different
actions that the algorithm can take is summarized in the following diagram.

Figure 4.5: Possible actions in each iteration

65

4.3 Runtime Analysis

We analyze the runtime for any one major iteration. Recall that a major iteration is the
set of iterations between two contractions.The overall runtime is n times this quantity.
Similar to the runtime analysis performed for the weakly polynomial algorithm, we will
consider the increases and decreases to Φ (see Section 3.3) in a major iteration.

Recall from Section 3.3 that our potential function is Φ =
∑

i∈T0

(⌊
ei
µi∆

⌋
− (degi + 1)

)
.

Let us first consider the actions that could reduce the value of Φ. In the weakly polyno-
mial algorithm, shrinking iterations consisted of flow augmentations and Elementary Steps
where nodes were removed from T0. These iterations decreased Φ by 1. In the strongly
polynomial algorithm this continues to occur. In addition, we can now shrink T by running
Filtration and removing nodes from T0 rather than moving onto Elementary Step. Like the
other shrinking iterations, this also reduces the value of Φ by 1. As a result, the number of
shrinking iterations continue to be bounded by the total increase to Φ, denoted Q. Recall
from Section 3.3 that Q =

∑
iterations θ max{Φ(θ+1) − Φ(θ), 0}.

Expanding iterations do not change and occur for the same reason as in the weakly
polynomial algorithm. There is one new possibility for a neutral iteration. This happens
when we run Filtration and find that T ∩ L 6= ∅. However, this means that at the next
iteration, we must send flow. Thus neutral iterations continue to be followed by an ex-
panding or a shrinking iteration. The total number of iterations remains 2nQ and Lemma
16 still holds.

Next, we need to consider an upper bound on Q. We will prove an upper-bound of Q
for a major iteration rather than over the full algorithm. After a contraction, T0 is reset to
∅ and we can bound the increases to Φ afresh. The problem with the weakly polynomial
algorithm was that we could only give a weakly polynomial bound on Q. It is clear that if
Q can be bounded by a strongly polynomial term in Theorem 17, then the total number
of iterations must be strongly polynomial.

The following lemma will be proven in Section 5.1.

Lemma 26. In a major iteration, node i enters T0 at most 10n log n times.

Using this strongly polynomial bound on the number of times that i can enter T0 and
the same structure as Theorem 17, we can conclude with the proof on the total number of
iterations over the whole algorithm.

Theorem 27. The strongly polynomial algorithm terminates in at most 260mn3 log n it-
erations.

66

Proof. Each time i enters T0, it increases Φ by [4(deg(i) + 2)− (deg(i) + 1)]. Between two
contractions, Lemma 26 implies that:

Q ≤
∑
i∈V−t

[4(deg(i) + 2)− (deg(i) + 1)](10n log n) ≤ (6m+ 7n)(10n log n) ≤ 130mn log n

Given that there are at most n contractions and 2nQ iterations in each major iteration,
there are at most 260mn3 log n iterations over the full algorithm.

Because each iteration can run in strongly polynomial time, the total running time is
strongly polynomial. We give a loose bound on the runtime of the algorithm next. Végh
found a faster runtime by maintaining the previous flow f after every contraction (see
Subsection 4.4.2), modifying Elementary Step, and using special data structures.

Theorem 28. The total runtime of the algorithm is at most O(m2n4 log2 n).

Proof. Consider the actions that we may perform in an iteration. If we augment flow, it
takes us O(m) time to identify and update a path. If we expand T by identifying a tight
arc ij ∈ E[T, V \T], it also takes us O(m) time. In Elementary Step, we compute α1 and
α2, of which the latter will be more difficult to compute as we need to look at n nodes and
m arcs. This takes O(mn) time. We also check whether nodes can be added to or removed
from T0, which takes O(n) time.

The bottleneck of Filtration is computing a traditional maximum flow in Tight-Flow.
We could have non-integer values when we run Tight-Flow, so we can use the Sleator-Tarjan
maximum flow algorithm [8], which runs in O(mn log n) time. We need to translate Tight-
Flow into a traditional maximum flow problem with a source node instead of supplies and
demands. This can be done by creating a source node s and arcs si for each i ∈ V \T − t.
Arc si is given a lower arc capacity of lij = −∞ and an upper arc capacity of uij = −bµi .
A maximum flow g to this problem always has gsi = usi because {s} is the minimum cut
(all other arcs have uij = ∞). Thus if i is a supply node, the arc si will provide bµi units
of flow. If i is a demand node, the arc si will provide −bµi units of flow and we will need a
net flow of bµi units on the other arcs in order to have a feasible flow.

Finally, Initialization can be performed inO(m2n log2 n) time, using Radzik’s maximum-
mean-gain-cycle-cancelling algorithm [6, 7] (see Subsection 1.5.2, Section 1.6) and a maxi-
mum flow computation when we run Tight-Flow. Termination is also a Tight-Flow com-
putation. Neither of these routines are bottlenecks in the runtime analysis.

Thus each iteration has a runtime of O(mn log n). There are O(mn3 log n) iterations
(Theorem 27), which gives a total runtime of O(m2n4 log2 n).

67

4.4 Others Considerations

4.4.1 Initialization and Termination

Initialization of the strongly polynomial algorithm is exactly the same as the weakly poly-
nomial algorithm (see Subsection 3.4.2).

However, we terminate with one node remaining. We need optimal labels to the initial
network. Since we know the order of contraction, we can undo the contractions in the
reverse order. We know that if an arc ij was contracted, then γµ

∗

ij = 1 must hold and we
can compute labels of an additional node with every expansion of the network. When we
have expanded the whole network, we have optimal labels µ∗ and we can invoke Tight-
Flow(V, µ∗) to find an optimal flow.

Lemma 29. Suppose the labels µ∗ are optimal. Then Tight-Flow(V, µ∗) returns an optimal
flow f ∗.

Proof. Tight-Flow can return some maximum flow g. Define f ′ such that f
′µ∗

ij = gij.

Also, there exists an optimal solution f ∗ that satisfies the complementary slackness
conditions along with µ∗. Since f ∗ij = 0 when γµ

∗

ij < 1 by complementary slackness

conditions, f ∗µ
∗

is a feasible solution to the Tight-Flow computation. Looking at the net
flow into the sink t:∑
jt

γµ
∗

ji f
′µ∗

jt −
∑
tj

f
′µ∗

tj =
∑
jt

gjt −
∑
tj

gtj ≥
∑
jt

γµ
∗

ji f
∗µ∗
jt −

∑
tj

f ∗µ
∗

tj ≥
∑
jt

γµ
∗

ji f
′µ∗

jt −
∑
tj

f
′µ∗

tj

The first inequality results from f ∗µ
∗

being a feasible flow and g being an optimal flow
to Tight-Flow. The second inequality follows from f ′ being a feasible flow and f ∗ being
an optimal flow to the generalized flow problem.

4.4.2 Reducing Runtime by log n Factor

In Végh’s original paper, he was able to achieve at most O(mn3) iterations, thus shaving off
a log n factor. He does this by keeping the current flow f after every contraction. However,
if we contract i and j, the relabelled excess at the new node k would be eµi +eµj and possibly
greater than the threshold 4(degk + 2)∆. In order to synthesize the same conditions as
Initialization so that eµi < (deg(i) + 2)∆′ for all i ∈ V − t, Végh set ∆′ = 16∆. Simply put,
he backtracks some progress in terms of the scaling parameter to keep the current flow.

68

The biggest effect is on the definition of D (see Subsection 4.1.2). We want to maintain
the same set D rather than lose nodes because ∆ increased somewhat arbitrarily. Thus,
we would need to redefine D as follows:

D = {i : |bµi |/∆ ≥
1

16Cn
}

Here, C represents the total number of contractions that have occurred. Every time we
decrease the left term by 16 due to a contraction, we also decrease the right term. Therefore,
every node that was in D before a contraction stays in D after the contraction. The total
number of iterations where D can grow is 2n− 1, which is the number of original and new
nodes.

The runtime analysis is constructed in a similar manner, with a few modification to
account for the iterations where we perform a contraction.

4.5 Summary

In this chapter, I introduced the contractions of abundant arcs. An arc ij is abundant if
it satisfies fµij ≥ 17m∆, because we can guarantee that there exists an optimal solution
where f ∗ij > 0. Since we know the relationship between µ∗i and µ∗j , we can contract the
arc ij to work on a smaller network.

The difficulty is in showing that an abundant arc must appear within a strongly poly-
nomial number of iterations. We know that |bµi |/∆ ≥ 20mn implies that i is incident to an
abundant arc. Using our set D = {i : |bµi |/∆ ≥ 1/n} and our new subroutine Filtration,
we were able to bound the number of iterations between two contractions. Many of the
relevant lemmas will be proved in Section 5.1.

Although I presented the algorithm by resetting the flow f after every contraction,
Végh’s paper performed other updates so that we can continue with the current flow. This
saves him a factor of log n in the runtime analysis, but adds another level of complexity.

69

Notation Meaning

Introduced in Chapter 1: Introduction
γij Gain factor of arc ij, always > 0

bi Demands (> 0) or supplies (< 0) at node i

ei Excess at node i, ei =
∑

ji γjifji −
∑

ij fij − bi

fij Flow on arc ij

µi Label at node i; inverse of dual solution, always > 0

Ef The set of residual arcs: {ij : fij < uij} ∪ {ji : fij > 0}

Gf The residual graph with node set V and arc set Ef

Introduced in Chapter 2: Definitions and Notations
fµij, b

µ
i , eµi , γµij Relabelled quantities; see Subsection 2.2.2

Eµ
f (∆) The set of ∆-fat arcs: E ∪ {ji : fµij > ∆}

Gµ
f (∆) The graph with node set V and arc set Eµ

f (∆)

Ri The reserve at i;
∑

ji:γµji<1 γjifji

T0 High excess nodes; T0 ⊆ {i : eµi ≥ (deg(i) + 2)∆}

T Reachable nodes;
T ⊆ {i : i is reachable from a node in T0 via a tight path in Eµ

f (∆)}

L Low excess nodes; {i : eµi < (deg(i) + 1)∆}

70

Notation Meaning

Introduced in Chapter 3: Weakly Polynomial Algorithm
α1 Smallest scaling factor needed to tighten an arc in E[T, V \T]

α2 Smallest scaling factor needed to raise e′µ
′

i to 4(deg(i) + 2)∆′ for i ∈ V \T

Φ Potential function for measuring number of iterations

Q Total increase to Φ over all iterations

Introduced in Chapter 4: Strongly Polynomial Algorithm
D {i : |bµi |/∆ ≥ 1/n}

ETight
µ [V \T] {ij ∈ E[V \T] : γµij = 1}

Table 4.1: Summary of Notations in Chapter 4

71

Chapter 5

Runtime Analysis of Strongly
Polynomial Algorithm

This chapter will present the proofs that were omitted in Chapter 4. A table of all the
notations up to Chapter 5 is provided on page 83 at the end of the chapter. This will be
useful for readers who are interested in a particular section rather than the full thesis.

5.1 Increases to Φ in Strongly Polynomial Algorithm

Let Θ be the set of all iterations. In order to bound Q - the total increase to our potential
function Φ in a major iteration (see Section 3.3) - we need to look at two types of iterations:

• ΘF : The set of iterations where we run Filtration

• ΘD: The set of iterations where we grow D by at least one node (see Subsection
4.1.2)

We will show that Q is at most 130mn log n. Similar to the weakly polynomial algo-
rithm, Φ only increases when a node enters T0 through the Elementary Step and eµi =
4(deg(i) + 2)∆. Our goal is to show that the following lemma holds in a major iteration:

Lemma 26. In a major iteration, node i enters T0 at most 10n log n times.

72

This implies that there are at most 260mn3 log n iterations in the algorithm, as proven
in Theorem 27.

The proof of Lemma 26 will follow the structure of this flowchart:

Lemma 31

|ΘD| ≤ n− 1

Node i enters T0 at most 10n log n times in a major iteration

Node i enters T0 at most
∑

θ/∈ΘF logα(θ) + |ΘD| in a major iteration

Lemma 26

Lemma 30

∑
θ/∈ΘF logα(θ) bounded by some function Γ

Lemma 32

Γ bounded by 9n log n

Figure 5.1: Flowchart for Lemma 26

We will always use the convention that α(θ) = 1 if we do not perform Elementary Step
in iteration θ.

Lemma 30. In a major iteration, node i enters T0 at most
∑

θ/∈ΘF α
(θ) + |ΘD| times.

Proof. Within this proof, we will write eµi as ei/µi for the relabelled excess of a node i,
because the proof could update one of ei and µi and not the other in an iteration (see
Table 5.1). In other words, the proof analyzes the relabelled excess over some updates to
the labels µ.

Fix a node i that we will focus on throughout this proof. Let τ1, τ2, . . . , τλ be the
iterations where node i enters T0. For each l = 1, . . . , λ, there exists some iteration θ

73

between τl−1 and τl such that: (
ei
µi∆

)(θ)

< (deg(i) + 2)

The superscript (θ) indicates that we are looking at this term at the beginning of
iteration θ. Let us consider why this statement is true. Before τ1, the inequality would be
true by the choice of ∆start. Between iterations τl−1 and τl for l > 1, i must have left T0

after τl−1, at which time it would have satisfied the above inequality.

Within this section, we use the “interval notation” [τx, τy] for x ≤ y to denote a set
of consecutive iterations {τx, τx + 1, . . . , τy − 1, τy}. Let τ̄l be the largest index before τl
such that (ei

µi∆
)(τ̄l) < (deg(i) + 2). That is, for all iterations θ ∈ [τ̄l + 1, τl], we must have

(ei
µi∆

)(θ) ≥ (deg(i) + 2).

Case 1: ∃θ ∈ [τ̄l, τl] such that θ ∈ ΘD

There are at most n− 1 such intervals in a major iteration.

Case 2: ∀θ ∈ [τ̄l, τl], θ /∈ ΘD

The next two sub-claims shows that we can give an upper-bound on the number of intervals
as a function of α.

Sub-claim 1. Let i be the specific node chosen at the start of the proof. If i ∈ V \T (θ),
then we do not perform Filtration in iteration θ ∈ [τ̄l, τl − 1].

Proof of subclaim 1. First, consider the case that we perform Filtration but not Elementary
Step. Let e′i be the excess at node i after Filtration. Then we can bound the new relabelled
excess by: (

ei
µi

)(θ+1)

= e′µi ≤ R′µi + n max
j∈V \T−t

|bµj |

≤ deg(i)∆ + n
∆

n
≤ (deg(i) + 1)∆

The first inequality results from Corollary 24 because we do not modify µ when Elementary
Step is not called. The bound on Rµ′

i follows from the discussion after Definition 10. The
bound on maxj∈V \T−t |bµj | results from θ /∈ ΘD, so that none of the nodes in V \T can enter

D. This contradicts the choice of τ̄l since we must have (ei/(µi∆))(θ+1) ≥ (deg(i) + 2) for
θ ∈ [τ̄l, τl − 1].

74

Now consider the case where we perform Elementary Step after Filtration. The excess
at i does not change after running Elementary Step, because the arcs that are updated
(tight arcs in E[V \T] and all arcs in E[V \T, T]) already have zero flow after running
Filtration. In terms of excesses, labels, and scaling parameter:

Time Excess Label Scaling Parameter

Beginning of iteration θ ei µi ∆
After Filtration e′i µi ∆
End of iteration θ = Beginning of iteration θ + 1 e′i µ′i = µi ∆′ = ∆/α

Table 5.1: Result of running Elementary Step after Filtration

Since θ + 1 ∈ [τ̄l + 1, τl], we know:

(deg(i) + 2) ≤ (
ei
µi∆

)(θ+1) =
(e′i/µ

′
i)

∆′

≤
R′µ

′

i + nmaxj∈V \T−t |bµj |
∆′

≤ deg(i) +
nmaxj∈V \T−t |bµj |

∆′

By rearranging, there exists j such that |bµj |/∆′ ≥ 2
n
. This is a contradiction to θ /∈ ΘD

because j can be added to D.

Sub-claim 2. Let i be the specific node chosen at the start of the proof. If we run Elemen-
tary Step without Filtration in iteration θ, then (ei

µi∆
)(θ+1) ≤ (α(θ))2 max{(ei

µi∆
)(θ), deg(i)}.

Proof of sub-claim 2. Let e′i, µ
′
i, ∆′ be the parameters after running Elementary Step,

which are equivalent to the parameters at the beginning of iteration θ + 1 as we do not
contract. Recall from Figure 3.4c that F3(i) = {ij : γµij < 1, ij ∈ E[V \T]} ∪ {ij : ij ∈
E[V \T, T]}, and all arcs in this set satisfies fµij ≤ ∆. Elementary Step decreases the flow

75

on arc ij ∈ F3(i) by (1− 1
α

). Then:

e′i
µ′i∆

′ =
αe′i
µi∆

≤ α

µi∆

ei + (1− 1

α
)
∑

ij∈F3(i)

fij

≤ αei
µi∆

+
α− 1

∆

∑
ij∈F3(i)

fµij

≤ αei
µi∆

+
α− 1

∆
deg(i)∆

≤ α2 max{ ei
µi∆

, deg(i)}

In the last inequality, we choose a loose bound of α2 ≥ 2α − 1 (recall α ≥ 1) because it
will be more convenient in later proofs when we need to take logarithms.

Returning to the proof of Lemma 30, we can prove the following facts for our chosen
node i:

1. For iterations θ ∈ [τ̄l + 1, τl], we know (ei/(µi∆))(θ) > deg(i)

2. For iterations θ ∈ [τ̄l, τl − 1], (ei/(µi∆))(θ+1)

max{(ei/(µi∆))(θ),deg(i)} ≤ (α(θ))2 if i ∈ V \T (θ)

3. For iterations θ ∈ [τ̄l, τl − 1], (ei/(µi∆))(θ+1)

max{(ei/(µi∆))(θ),deg(i)} ≤ 1 if i ∈ T (θ)

Earlier, our choice of iteration τ̄l ensures that (ei/(µi∆))(θ) > (deg(i) + 2) for all itera-
tions θ ∈ [τ̄l + 1, τl]. Thus, Fact (1) must be true.

For Fact (2), we know that eµi is not affected by augmentations because node i /∈ T ,

nor is it affected by expansions of T . In these cases, µ′i∆
′ = µi∆, so (ei/(µi∆))(θ+1)

max{(ei/(µi∆))(θ),deg(i)} ≤
(ei/(µi∆))(θ+1)

(ei/(µi∆))(θ) = 1 = (α(θ))2. If we run Elementary Step, then Fact (2) is true by our two

sub-claims.

For Fact (3), we know that node i is not sending flow because it is not in T0. Further-

more, we know that node i /∈ L, otherwise we would have e′µ
′

i < (deg(i) + 1)∆′ + ∆′ =
(deg(i)+2)∆′ after the augmentation (see Section 2.4). So eµi is unaffected by flow augmen-
tations. If we expand T , there is no change to the relabelled excess. Both Filtration and
Elementary Step will only reduce the excess into node i because we decrease the flow on arcs

in E[V \T, T]. Thus e′i ≤ ei and µ′i∆
′ = µi∆, so (ei/(µi∆))(θ+1)

max{(ei/(µi∆))(θ),deg(i)} ≤
(ei/(µi∆))(θ+1)

(ei/(µi∆))(θ) ≤ 1.

76

For our chosen node i, let us consider the increase in ei/(µi∆) from iteration τ̄l to
iteration τl (see below for explanations).

4 =
4(deg(i) + 2)

(deg(i) + 2)
≤ (ei/(µi∆))(τl)

max{(ei/(µi∆))(τ̄l), deg(i)}

=
(ei/(µi∆))(τ̄l+1)

max{(ei/(µi∆))(τ̄l), deg(i)}
×

∏
θ∈[τ̄l+1,τl−1]

(ei/(µi∆))(θ+1)

(ei/(µi∆))(θ)

=
∏

θ∈[τ̄l,τl−1]

(ei/(µi∆))(θ+1)

max{(ei/(µi∆))(θ), deg(i)}

The first line is true because (ei/(µi∆))(τl) = 4(deg(i) + 2) when i entered T0. Fur-
thermore, we chose τ̄l such that deg(i) + 2 > max{(ei/(µi∆))(τ̄l), deg(i)}. In the sec-
ond line, we use telescopic products to represent the previous term. In the third line,
we know that (ei/(µi∆))(θ) ≥ (deg(i) + 2) for θ ∈ [τ̄l + 1, τ − 1], so (ei/(µi∆))(θ) =
max{(ei/(µi∆))(θ), deg(i)} and we can combine all the terms.

Later, Claim 31 will help us bound α(θ) on iterations θ /∈ ΘF (see Figure 5.1), so we
want to focus on these iterations. We look at iterations where our chosen node i is in V \T
because ΘF ∩ {θ : i ∈ V \T (θ), θ ∈ [τ̄l, τl − 1]} = ∅ (by sub-claim 1). It is possible that
our node i enters and leaves T throughout iterations [τ̄l, τl − 1]. That is, i ∈ T (θ′) and
i ∈ V \T (θ) for some θ, θ′ ∈ [τ̄l, τl − 1] and θ 6= θ′. Using Fact 3, ei/(µi∆) decreases when
i ∈ T (θ′), and so we can ignore these iterations (second inequality below). Continuing our
above analysis:

4 ≤
∏

θ∈[τ̄l,τl−1]

(ei/(µi∆))(θ+1)

max{(ei/(µi∆))(θ), deg(i)}

≤
∏

θ∈([τ̄l,τl−1]∩{θ:i∈V \T (θ)})

(ei/(µi∆))(θ+1)

max{(ei/(µi∆))(θ), deg(i)}

≤
∏

θ∈([τ̄l,τl−1]∩{θ:i∈V \T (θ)})

(α(θ))2

≤
∏

θ∈([τ̄l,τl−1]\ΘF)

(α(θ))2

The third inequality follows from Fact 2. The last inequality follows from α(θ) ≥ 1 and

77

([τ̄l, τl − 1] ∩ {θ : i ∈ V \T (θ)}) ⊆ ([τ̄l, τl − 1]\ΘF), because we cannot run Filtration when
i ∈ V \T .

We can take logarithms on both sides of the inequality.

1 ≤
∑

θ∈[τ̄l,τl−1]\ΘF
logα(θ) ≤

∑
θ∈[τl−1+1,τl]\ΘF

logα(θ)

The second inequality is true because α(θ) ≥ 1 for all iterations θ, so we can sum over
a larger interval. Finally, take the sum over all intervals where [τl−1 + 1, τl] ∩ΘD = ∅. We
also know there are at most |ΘD| intervals where we can add a node into D, giving us:

λ ≤
∑
θ/∈ΘF

logα(θ) + |ΘD|

It is clear that |ΘD| ≤ n− 1, so the challenge is to bound the other term of the above
inequality.

5.1.1 Bounding
∑

θ/∈ΘF logα(θ)

In order to find an upper bound on this term, we use a secondary potential function, Γ. Γ
will be a non-negative function that increases when we add nodes to D but decreases by
α(θ) in each non-filtration iteration θ. By this, we mean iterations θ /∈ ΘF . This will allow
us to bound

∑
θ/∈ΘF logα(θ). First, for each node i ∈ D, define:

Γi = log
32mn∆

|bµi |

Since the value of |bµi |/∆ = |bi|/(µi∆) is monotone increasing, we know that Γi is
monotone decreasing. Let Γ =

∑
i∈D Γi and consider how we can increase or decrease

Γ. Recall from Subsection 4.1.2 that when a node enters D, it stays in D throughout
the major iteration. The next two lemmas show that

∑
θ/∈ΘF logα(θ) ≤ Total increase to

Γ ≤ 9n log n.

Claim 31. In a major iteration, the total increase to Γ is at least
∑

θ/∈ΘF logα(θ).

78

Proof. We claim that Γi decreases by logα for some node i ∈ D in each non-filtration
iteration. There are three actions that we can perform in an iteration θ /∈ ΘF :

• Augmenting flow - Γi remains the same for all nodes i ∈ D, and α = 1⇒ logα = 0.

• Expanding T - Γi remains the same for all nodes i ∈ D, and α = 1⇒ logα = 0.

• Elementary Step - Since we do not run Filtration, there is some node i ∈ (V \T)∩D.

At the end of the iteration, Γ′i = log 32mn(∆/α)
|bµi |

= Γi − logα.

Furthermore, we know that Γ′i > 0 at the end of an iteration (except the last iteration of
a major iteration), otherwise 32mn∆′ ≤ |bµi | implies that we can contract an arc incident to
i. By counting the increases to Γ separately, we know that Γ decreases by at least logα in
every iteration where we do not run Filtration. Since Γ is always a non-negative function,
the total increase to Γ is at least the total decrease to Γ, which is

∑
θ/∈ΘF logα(θ).

Now that we have an upper bound on
∑

θ/∈ΘF logα(θ) based on Γ, let use determine an
upper bound on the total increase to Γ.

Claim 32. In a major iteration, the total increase to Γ is at most 9n log n.

Proof. Since Γi is monotone decreasing once node i enters D, the potential function Γ can
only increase when we add a new node i to D. Including nodes at the start of a major
iteration is considered adding them at the first iteration.

At entry, we know that |bµi |/∆ ≥ 1/n. This gives us:

Γi ≤ log 32mn2 ≤ 5 + logm+ log n2 ≤ 5 + 4 log n ≤ 9 log n

Summing up over n− 1 nodes, the total increase to Γ is at most 9n log n.

Claim 31 and Claim 32 tells us that
∑

θ/∈ΘF logα(θ) ≤ Total increase to Γ ≤ 9n log n.
Following the flowchart 4.5, we see that each node enters T0 at most 10n log n between two
contractions and we obtain Lemma 26.

79

5.2 Abundant Arcs

In this section, we will see a proof of Lemma 20. This was omitted in Subsection 4.1.1,
where we used Lemma 20 to show that fµij ≥ 17m∆ implies arc ij is abundant (Lemma
19):

Lemma 20. Given a current flow f , labels µ, and scaling parameter ∆, there exists an
optimal flow f ∗ and labels µ∗ such that

max
ij∈E
|fµij − f ∗

µ∗

ij | ≤
∑
i∈V−t

eµi (f) + (m+ 1)∆

Proof. Let us define an auxiliary flow f̃ from our current f to simplify our analysis:

f̃ij =

{
fij : if ij is tight
0 : if ij is not tight

If we can show that maxij∈E |f̃µij − f ∗µ
∗

ij | ≤
∑

i∈V−t e
µ
i (f̃) for some optimal flow f ∗,

then the lemma must be true. This is due to the triangle inequality and
∑

i∈V−t e
µ
i (f̃) ≤∑

i∈V−t e
µ
i (f) + m∆, because we removed at most ∆ units of relabelled flow from each

non-tight arc.

|fµij − f ∗
µ∗

ij | ≤ |f
µ
ij − f̃

µ
ij|+ |f̃

µ
ij − f ∗

µ∗

ij | ≤ ∆ + (
∑
i∈V−t

eµi (f) +m∆)

Out of all optimal f ∗, we will choose the optimal flow that minimizes
∑

ij |f̃ij − f ∗ij|.

Define a new subgraph H, where V (H) is the original node set and E(H) = {ij : f̃ij <
f ∗ij} ∪ {ji : f̃ij > f ∗ij}. The flow on the arcs are define as:

hij =

{
f ∗ij − f̃ij : if ij ∈ E (forward arc)

γji(f̃ji − f ∗ji) : if ji ∈ E (backward arc)

We can interpret hij as the difference in flow between f̃ij and f ∗ij.

Let Ef̃ , Ef ∗ denote the arcs in the residual graphs of flows f̃ and f ∗ respectively.

Observe that E(H) ⊆ Ef̃ , since we included a forward arc whenever f̃ij is not at capacity

(f̃ij < f ∗ij) and a backward arc whenever f̃ij has positive flow (f̃ij > f ∗ij ≥ 0). By the

same argument, E(
←−
H) ⊆ Ef ∗ where

←−
H denotes the subgraph with reverse arcs of E(H).

We will use this to show the next sub-claim.

80

Sub-claim 3. The subgraph H is acyclic.

Proof of sub-claim 3. By contradiction, assume that there exists a directed cycle C con-
tained in H. For this proof only, I will use the notation γ(C) =

∏
ij∈C γij. Since we have

a feasible µ, we know that γ(C) = γµ(C) ≤ 1. But then the reverse cycle
←−
C must be

contained in
←−
H , and 1/γ(C) = γ(

←−
C) = γµ

∗
(
←−
C) ≤ 1. This means that γ(C) = 1 and

γµ
∗

ij = 1 for arcs ij ∈ C.

We can push flow around C without gaining or losing excesses. In the optimal f ∗, let us
push ε > 0 units of relabelled flow around C, meaning that we set the new flow as follows:

f ∗µ
∗

ij =

{
f ∗µ

∗

ij − ε : if ij ∈ C i.e. (f̃ij < f ∗ij)

f ∗µ
∗

ij + ε : if ji ∈ C i.e. (f̃ij > f ∗ij)

Because we used relabelled flows and units, this has the same outcome as pushing flow
on a cycle of a traditional maximum flow problem. Excesses at the nodes are unchanged.
The way we modified f ∗ means that we decreased

∑
ij |f̃ij − f ∗ij| without changing the

flow into sink t and this is a contradiction to our choice of f ∗.

Thus H is acyclic and contains all the paths that excesses in f̃ takes to become the
optimal f ∗. We can decompose H into at most m paths which we can use to push excesses
into the sink t. Furthermore, one unit of relabelled excess leaving from node i can contribute
at most one unit of relabelled flow arriving at sink t, and only if we use a tight i-t path (see
Subsection 2.2.2). Thus, the total relabelled excesses that will go into sink t is bounded
by
∑

i∈V−t e
µ
i (f̃), as required.

5.3 Summary

This chapter contains two major proofs to support the strongly polynomial algorithm

In the first proof, I showed how we can bound the number of times that any node can
enter T0 between two contractions. This helps us bound the potential function Φ and the
total number of iterations in the strongly polynomial algorithm. The proof looks at the
change in relabelled excess for i ∈ V \T after an Elementary Step. By bounding the change
and using a secondary potential function Γ, we saw a strongly polynomial bound on the
number of times that i enters T0.

81

In the second proof, I showed that given a current flow f , labels µ, and scaling pa-
rameter ∆, there exists an optimal flow f ∗ and labels µ∗ such that maxij∈E |fµij − f ∗

µ∗

ij | ≤∑
i∈V−t e

µ
i (f) + (m+ 1)∆. This proof was based on flow decomposition techniques.

Notation Meaning

Introduced in Chapter 1: Introduction
γij Gain factor of arc ij, always > 0

bi Demands (> 0) or supplies (< 0) at node i

ei Excess at node i, ei =
∑

ji γjifji −
∑

ij fij − bi

fij Flow on arc ij

µi Label at node i; inverse of dual solution, always > 0

Ef The set of residual arcs: {ij : fij < uij} ∪ {ji : fij > 0}

Gf The residual graph with node set V and arc set Ef

Introduced in Chapter 2: Definitions and Notations
fµij, b

µ
i , eµi , γµij Relabelled quantities; see Subsection 2.2.2

Eµ
f (∆) The set of ∆-fat arcs: E ∪ {ji : fµij > ∆}

Gµ
f (∆) The graph with node set V and arc set Eµ

f (∆)

Ri The reserve at i;
∑

ji:γµji<1 γjifji

T0 High excess nodes; T0 ⊆ {i : eµi ≥ (deg(i) + 2)∆}

T Reachable nodes;
T ⊆ {i : i is reachable from a node in T0 via a tight path in Eµ

f (∆)}

L Low excess nodes; {i : eµi < (deg(i) + 1)∆}

82

Notation Meaning

Introduced in Chapter 3: Weakly Polynomial Algorithm
α1 Smallest scaling factor needed to tighten an arc in E[T, V \T]

α2 Smallest scaling factor needed to raise e′µ
′

i to 4(deg(i) + 2)∆′ for i ∈ V \T

Φ Potential function for measuring number of iterations

Q Total increase to Φ over all iterations

Introduced in Chapter 4: Strongly Polynomial Algorithm
D {i : |bµi |/∆ ≥ 1/n}

ETight
µ [V \T] {ij ∈ E[V \T] : γµij = 1}

Introduced in Chapter 5: Theorems and Proofs
ΘF Set of iterations where Filtration is called

ΘD Set of iterations where D expands by at least one node

Table 5.2: Summary of Notations in Chapter 5

83

Chapter 6

Bounding the Bit Sizes

In Definition 1, I stated that all numbers computed by the algorithm must be rational
numbers with bit sizes that are polynomially bounded in the bit sizes of the original
inputs. This chapter fixes the algorithm presented in Chapter 4 so that fij and µi do not
get exponentially large or small. A table of all the notations up to Chapter 6 is provided
on page 94 at the end of the chapter. This will be useful for readers who are interested in
a particular section rather than the full thesis.

Since our algorithm performs multiplications and divisions, it is not clear that the bit
sizes of the computed numbers are polynomially bounded. The next example demonstrates
how we can obtain an output that is exponential in the size of the original input after a
strongly polynomial number of iterations [4]. Let U ≥ 2 be our input.

Algorithm 7: Example of Getting Exponential Bit Size

1 Set counter= 1;
2 for counter = 1, . . . , n do
3 U = U × U ;
4 counter = counter +1;

5 end
6 return U ;

The value returned by this algorithm is U (2n). The bit size of the output is 2n logU ,
and thus exponential in the bit size of the input.

In the algorithms presented in Chapters 3 and 4, the values of α, ∆, µ, and f are always
rational numbers if the inputs are rational. Our goal is to round these numbers so that
the numerators and denominators have reasonable bit sizes and avoid the above scenario.

84

6.1 Rounding our Labels

The number U has been mentioned several times throughout this thesis. Recall that in
Section 2.1, we added auxiliary arcs it for each node i 6= t with gain factors of 1/U so that
ei = 0 in the optimal solution. Since U is an extremely large number, the auxiliary arc is
never used unless there is no other path to send the flow. In Subsection 3.4.3, we used U
again to define ∆end, such that ∆ < ∆end implies we have optimal labels. In this section,
we will also use U to help with rounding our numbers.

Let U be 2 times the product of all the numerators and denominators used to represent
supplies and demands bi and gain factors γij. Since U is the product of at most 4m numbers,
the bit size of U is strongly polynomial in the bit size of the largest input number. We may
assume that U ≥ 500n5, otherwise the weakly polynomial algorithm also runs in strongly
polynomial time.

By feasibility of the labels, we know that µi ≤ U because γµit ≤ 1. However, the
numerators and denominators for labels could get extremely large (e.g. U (2n)/(U (2n) + 1))
so that their bit sizes are exponential. This also affects the bit sizes of the relabelled terms.
If we could round the labels so that µi is always a polynomially bounded integer multiple
of 1/U4 for all i, then the upper-bound on µi would help us conclude that all labels are
polynomially bounded. In this section, we will round our α and our µ to achieve this effect.

We need to define two more numbers in order to do our rounding:

q = 40mU4 q̄ = 40mU2 = q/U2

For some a ∈ R, we define bacq to be the largest integer multiple of 1/q such that
bacq ≤ a. We define daeq to be the smallest integer multiple of 1/q such that daeq ≥ a.
These notations simply tells us whether we are rounding up or down to the next multiple
of 1/q. We can also define bacq̄ and daeq̄ similarly.

Recall that in the original Elementary Step (see Section 3.2), we computed α1 to tighten
an arc in E[T, V \T] and α2 to raise some node’s relabelled excess relative to the new scaling
parameter ∆/α. In our updated algorithm, we will round down α2 to a multiple of 1/q.
First compute α2,i for each node i ∈ V \T − t according to Subsection 3.2.2. Then α2 is the
minimum of all α2,i after rounding them to the nearest multiple of 1/q. This could mean

that e′µ
′

i is slightly smaller than 4(deg(i) + 2)∆′ for all nodes i ∈ V \T , so we will add node
i to T0 if α = bα2,icq. Notice that we do not round α1 because we cannot add node j to T
and send flow on arc ij when ij is almost tight rather than tight. We will also round up
∆′ to a multiple of 1/q. In the proof of Claim 37, we will see that the bit sizes of α1, α2,
and ∆ are polynomial in logU .

85

Let µo be the labels after the initial updates to the labels by α, and µ′ be the labels
after applying a new subroutine, Round-Label, to µo to ensure all numbers are the right
sizes. Round-Label is discussed after presenting the new Elementary Step.

Algorithm 8: Elementary Step with Rounding

1 Compute α1 = minimum value to tighten an arc in E[T, V \T];

2 Compute α2,i = minimum value to raise i’s relabelled excess to 4(deg(i) + 2) ∆
α2

for

each i ∈ V \T − t;
3 Compute α2 = min{α2,i : i ∈ V \T − t};
4 Let α = min{α1, bα2cq};
5 Let ∆′ = d∆/αeq;
6 for i ∈ V do
7 if i ∈ T then µoi = αµi;
8 if i ∈ V \T then µoi = µi;

9 end
10 for ij ∈ E do
11 if ij ∈ E[V \T, T] then f ′ij = fij/α;

12 else if ij ∈ E[V \T] and γµ
o

ij < 1 then f ′ij = fij/α;

13 else f ′ij = fij;

14 end
15 for i ∈ V \T − t do
16 if α = bα2,icq then T0 = T0 ∪ {i};
17 end
18 Update T = T ∪ T0;

19 if ∃i ∈ T0 : e′µ
o

i < (deg(i) + 2)∆′ then
20 Remove i from T0 ;
21 Reset T = T0

22 end
23 Round-Label (µo);

In the previous Elementary Step, we did not need to track the individual α2,i to decide
which nodes should be added to T0 because nodes were added at a specific threshold. In
the Elementary Step with Rounding, we need to track the α2,i to know if nodes can be
added to T0 before reaching the threshold.

After the usual updates, we still need to round µ one more time to ensure that both
the numerators and denominators of the labels are polynomially bounded. The next sub-
routine, Round-Label, will only increase the number of tight arcs in the network and will

86

not affect any arcs that are already tight. The idea of Round-Label is to ensure that
each µi is either equal to 1/γ(P) for some tight i-t path P or rounded to a multiple of
U2/q = 1/(40mU2). This can be achieved by looking at some set S = {t} and adding
nodes into S as we fix our labels. Round-Label is presented next:

Algorithm 9: Round-Label (µo)

1 Initialize S = {t}, µ′ = µo.
2 while S 6= V do

3 δ1 = min{1/γµ
′

ij : ij ∈ Eµ′

f ′ (∆
′), i ∈ V \S, j ∈ S}.

4 δ2 = min{ dµ
′
ieq̄
µ′i

: i ∈ V \S}.
5 δ = min{δ1, δ2}.
6 for i ∈ V \S do
7 µ′i = µ′iδ
8 end

9 S = S ∪ {i ∈ V \S : dµ′ieq̄ = µ′i} ∪ {i ∈ V \S : ∃ij ∈ Eµ′

f ′ (∆
′), j ∈ S, and γµ

′

ij = 1}
10 end

First we need to check that Round-Label maintains a ∆′-feasible pair.

Lemma 33. Let µo be the label after the original updates by Elementary Step but before
Round-Label, and µ′ be the labels after Round-Label. Then µoi ≤ µ′i ≤ (1 + 1

40mU
)µoi .

Furthermore, the new pair (f ′, µ′) is a ∆′-feasible pair.

Proof. Round-Label could increase our labels by rounding the µo values up or tightening
arcs in E[V \S, S]. We know that µ′i ≤ dµoi eq̄ by the choice of δ2:

µ′i ≤ µoi +
1

q̄
= µoi (1 +

1

q̄µoi
)

Since the labels defined in Initialization guarantees that µoi ≥ 1/U (see Subsection
2.2.2) and labels are monotone increasing, we can bound the above inequality by:

µ′i ≤ µoi (1 +
1

q̄/U
) = µoi (1 +

1

40mU
)

Next, we want to check that (f ′, µ′) is ∆′-feasible. Condition 1 of Definition 10 requires
that f ′ and µ′ are feasible to the primal and dual respectively. The label at t is still µ′t = 1.

Since Conditions 2 requires that all ij ∈ Eµ′

f ′ (∆
′) satisfy γµ

′

ij ≤ 1 and E ⊆ Eµ′

f ′ (∆
′), verifying

87

Condition 2 implies that µ′ is dual feasible. Furthermore, Condition 3 is a stronger version
of the primal feasibility and requires that e′i ≥ R′i. Thus verifying Condition 3 implies that
f ′ is primal feasible.

For Condition 2 , we know that δ ≤ δ1 ensures that tight arcs remain tight after
Round-Label. For non-tight arcs, we have:

f ′ij
µ′i
≤
f ′ij
µoi
≤ ∆′

The first inequality follows from the first part of the lemma, and the second part follows
from Elementary Step returning a ∆′-feasible pair before going into Round-Label.

For Condition 3, we know that Round-Label does not modify excesses at nodes. On the
other hand, we might increase the number of tight arcs, so that R′i could decrease. Thus,
e′i ≥ R′i still holds.

6.2 Effect of Round-Label on Runtime

The bound on the increase in µ′i due to Round-Label will help us compare ∆µi before run-
ning Elementary Step with Rounding to ∆′µ′i after running it. Previously, ∆µi decreased
by a factor of α if node i ∈ V \T and stayed the same if node i ∈ T . But Round-Label
increases our µ′i slightly, so ∆µi is not necessarily monotone decreasing. Instead, we need
to obtain a new bound.

Lemma 34. If we are not in the last iteration and we run the Elementary Step with
Rounding, then the following must be true:

• For i ∈ T : ∆′µ′i ≤ (∆µi)(1 + 1
U

).

• For i ∈ V \T : ∆′µ′i ≤ (∆µi)
1+1/U
α

.

Proof. We know ∆′ = d∆
α
eq and we can bound µ′i by Lemma 33.

For i ∈ T :
During the first update in Elementary Step, we set µoi = αµi. Thus we get µ′i ≤ αµi(1 +

1
40mU

). This gives us:

∆′µ′i ≤ (d∆
α
eq)(αµi(1 +

1

40mU
))

≤ (
∆

α
+

1

q
)(αµi(1 +

1

40mU
))

88

Observe that we can terminate the algorithm when ∆′ < ∆end = 1
17mU3 in the strongly

polynomial algorithm too if this condition precedes |V | = 1. Thus we have ∆
α
≥ 1

17mU3 ≥
2U
q

. This simplifies the above inequality to:

∆′µ′i ≤ (
∆

α
+

∆/α

2U
)(αµi(1 +

1

40mU
))

≤ ∆µi(1 +
1

2U
)(1 +

1

40mU
)

≤ ∆µi(1 +
1

U
)

For i ∈ V \T :
During the first update in Elementary Step, we set µoi = µi. Applying the same set of
inequalities but with one less factor of α in the numerator gives:

∆′µ′i ≤ (∆µi)
1 + 1/U

α

Since ∆µi is no longer monotone decreasing, using our previous definition of D (see
Subsection 4.1.2) could allow nodes in D to leave. Instead, let g be the number of times

where we run Elementary Step, and set D = {i ∈ V − t :
|bµi |
∆
≥ 1

n(1+1/U)g
}.

Lemma 30 will change slightly because we could add a node to T0 even when e′µ
′

i <
4(deg(i) + 2)∆′. This can be fixed by using log2−ε rather than log2 in the proof; the lemma
will still hold with an increase of a small constant factor to the runtime. We need to find
a new bound for Q (see Section 5.1) to determine the maximum number of iterations.

Lemma 35. Let Q be the maximum increase to Φ in a major iteration. Then Q =
O(mn4 log n), and our algorithm has at most O(mn6 log n) iterations.

Proof. First let us consider how Claim 32 is affected. We could increase Γ by adding nodes
to T0 or when we run Round-Label in Elementary Step. Recall that Γi = log 32mn∆

|bµi |
for

each i ∈ D (see Subsection 5.1.1), where we now have
|bµi |
∆
≥ 1

n(1+1/U)g
.

89

Γi ≤ log[(32mn)(n(1 + 1/U)g)] ≤ 5 + 4 log n+ g log(1 + 1/U)

≤ 5 + 4 log n+ g/U

≤ 9 log n+
2nQ

500n5

The last line follows from our assumption that U > 500n5. Furthermore, we know that if
Q is the max increase to Φ, then there are at most 2nQ Elementary Steps performed by
Lemma 16.

Our total increase to Γ is:

Γ ≤
∑
i∈V−t

(9 log n+
2nQ

500n5
)

≤ 9n log n+
Q

250n3

We can apply our new bound on Γ to Lemmas 30 and 31 to see that each node i enters
T0 at most 10n log n+ Q

250n3 times. We can apply this new bound to Lemma 26:

Q ≤
∑
i∈V−t

[4(deg(i) + 2)− (deg(i) + 1)](10n log n+
Q

250n3
)

≤ (13m)(10n log n+
Q

250n3
)

By rearranging the above inequality, we get:

Q(1− 13m

250n3
) ≤ 130mn log n

Q ≤ 130mn log n

1− 13m
250n3

≤ (130mn log n)(250n3)

So Q = O(mn4 log n), and the number of iterations is O(mn6 log n) by replacing Q in
Theorem 27.

6.3 Bit Sizes of Numbers Computed

We want to show that all the numbers computed by the algorithm have bit sizes that are
polynomial in logU .

90

Claim 36. All our labels are integer multiples of U/q = 1/(40mU3), and the bit sizes of
our labels are polynomial in logU .

Proof. This is clearly true for sink t. Consider any other nodes and proceed by induction
on the size of S. There are two reasons why node i was added to S. Firstly, node i
was added because µ′i = dµ′ieq̄. This means that µ′i is an integer multiple of 1/q̄ = U2/q.
Otherwise, i was added because there is a tight arc ij to j ∈ S. Then there exists node
k ∈ S such that:

• Node k was added previously when µ′k = dµ′keq̄ or k = t; and

• There is a tight path P in S from node i to node k.

Then µ′i = µ′k/γ(P). By induction, we know that µ′k is an integer multiple of U2/q. We
also know that U is an integer multiple of γ(P). Thus µ′i is an integer multiple of U/q.

Since µi ≤ U , this tells us that µi is a rational number where the numerator is at most
40mU4 and its bit size is O(logU).

It is easy to see that the bit size of ∆ is always polynomially bounded in logU . We
know that ∆ are always positive integer multiples of 1/q = 1/(40mU4) from rounding.
Furthermore, Initialization chose our first scaling parameter to be ∆start = maxi∈V−t e

µ
i

(see Subsection 3.4.2). By applying Lemma 23 with T = ∅ during Initialization, we know
that ∆start ≤ nmaxj∈V−t |bµj | ≤ nU . Thus ∆ is polynomially bounded.

Claim 37. All flow values fij have bit sizes that are polynomial in logU .

Proof. Initially, fij = 0 for all arcs ij ∈ E. We will show that fij remains polynomially
bounded after each update.

The first way that fij can be modified is through the Tight-Flow computations, which
are simply maximum flow computations. Since our labels have bit sizes that are polynomial
in logU , the inputs to Tight-Flow (bµi) are also rational numbers with bit sizes that are
polynomial in logU . This means that the computed f ′ij/µi, and thus f ′ij, must have bit
sizes that are polynomially bounded after Tight-Flow.

The second way that fij can be modified is through flow augmentations. Adding (or
subtracting) ∆ units to fµij is the same as adding (or subtracting) ∆µi units to fij. We know
that ∆µi is a polynomially bounded multiple of U/q2 because ∆ and µi are polynomially
bounded integer multiples of 1/q and U/q respectively in our new Elementary Step. After a

91

maximum of O(mn6 log n) augmentations, the total increase (or decrease) is polynomially
bounded.

Finally, we can update fij in Elementary Step by dividing fij by α. If α = bα2cq,
then the result clearly follows. If α = α1, then we know that 1/α = γkl

µk
µl

for some

kl ∈ E[T, V \T] that was tightened. Now γkl is a rational number where the numerator
and denominator are at most U by definition. Furthermore, Claim 36 tells us that µk/µl is
a rational number where both the numerator and denominator are bounded by Uq. Thus
α1 is a rational number where both the numerator and denominator are bounded by U2q.
Since we perform Elementary Step at most O(mn6 log n) times, fij remains polynomially
bounded after this update.

6.4 Summary

This chapter showed how we can round the labels µ and the scaling parameter ∆ so that
the bit sizes of the numbers that we compute are polynomially bounded in the bit sizes of
the input.

The new subroutine, Round-Label, runs after every Elementary Step. This procedure
would slow down our algorithm, but our algorithm still has strongly polynomial running
time. Round-Label rounds all the labels so that they are polynomially bounded integer
multiples of U/q, so µi can be written as a rational number where the denominator is
between 1 and q = 40mU4 for all i ∈ V . Since µi ≤ U , we know that the numerator of µi
is an integer between 1 and Uq = 40mU5. Thus the labels can be represented by rational
numbers where the bit sizes are polynomially bounded by logU . Next, we saw that all the
fij are also polynomially bounded. This means that Végh’s algorithm is a true strongly
polynomial algorithm.

92

Notation Meaning

Introduced in Chapter 1: Introduction
γij Gain factor of arc ij, always > 0

bi Demands (> 0) or supplies (< 0) at node i

ei Excess at node i, ei =
∑

ji γjifji −
∑

ij fij − bi

fij Flow on arc ij

µi Label at node i; inverse of dual solution, always > 0

Ef The set of residual arcs: {ij : fij < uij} ∪ {ji : fij > 0}

Gf The residual graph with node set V and arc set Ef

Introduced in Chapter 2: Definitions and Notations
fµij, b

µ
i , eµi , γµij Relabelled quantities; see Subsection 2.2.2

Eµ
f (∆) The set of ∆-fat arcs: E ∪ {ji : fµij > ∆}

Gµ
f (∆) The graph with node set V and arc set Eµ

f (∆)

Ri The reserve at i;
∑

ji:γµji<1 γjifji

T0 High excess nodes; T0 ⊆ {i : eµi ≥ (deg(i) + 2)∆}

T Reachable nodes;
T ⊆ {i : i is reachable from a node in T0 via a tight path in Eµ

f (∆)}

L Low excess nodes; {i : eµi < (deg(i) + 1)∆}

93

Notation Meaning

Introduced in Chapter 3: Weakly Polynomial Algorithm
α1 Smallest scaling factor needed to tighten an arc in E[T, V \T]

α2 Smallest scaling factor needed to raise e′µ
′

i to 4(deg(i) + 2)∆′ for i ∈ V \T

Φ Potential function for measuring number of iterations

Q Total increase to Φ over all iterations

Introduced in Chapter 4: Strongly Polynomial Algorithm
D {i : |bµi |/∆ ≥ 1/n}

ETight
µ [V \T] {ij ∈ E[V \T] : γµij = 1}

Introduced in Chapter 5: Theorems and Proofs
ΘF Set of iterations where Filtration is called

ΘD Set of iterations where D expands by at least one node

Introduced in Chapter 6: Bounding the Bit Sizes
U 2 times the product of all the numerators and denominators used to represent

supplies and demands bi and gain factors γij

q = 40mU4

q̄ = 40mU2 = q/U2

Table 6.1: Summary of Notations in Chapter 6

94

Chapter 7

Conclusion

In this thesis, I presented an exposition of Végh’s strongly polynomial algorithm for the
generalized flow problem. This is the first strongly polynomial algorithm for the problem
and resolves a long-standing open question.

In Chapter 1, we saw the standard model for generalized flow. Under the standard
model, we have a capacitated network with gain factors on the arcs, and we are trying to
maximize flow into a sink t. We saw the optimality conditions for the standard model as
well as two earlier algorithms that solved the problem. The first algorithm is an extension
of the augmenting path algorithm for traditional maximum flow problems, and thus does
not run in polynomial time. The second algorithm is a scaling algorithm, which implies
that it runs in weakly polynomial time. Furthermore, I showed that any linear program
can be converted into an instance of the minimum cost generalized flow problem (MCGF).
Being able to solve the generalized flow problem is an important step towards solving
MCGF in strongly polynomial time. Finally, I gave an overview of two techniques that
Végh used to obtain a strongly polynomial running time from a scaling algorithm.

In Chapter 2, we started to focus on Végh’s algorithm. This required us to work on
an uncapacitated network and revise the optimality conditions. I gave a more in-depth
explanation of labels, which are inverses of the dual variables. Labels were used to relabel
the network, and we explored the benefits of using a relabelled network over the original
network. We also saw the definitions of ∆-fat arcs and ∆-feasibility, which relaxed the
dual optimality conditions (i.e. conservative labels) but had stronger primal feasibility
conditions (see Section 2.3). The definition of ∆-feasibility required us to maintain a pair
of feasible solutions (f, µ) that became closer and closer to a pair of optimal solutions as
our scaling factor ∆ got smaller. Finally, we saw the definitions of high excess nodes T0,

95

low excess nodes L, and reachable nodes T (see Section 2.4). These nodes determine where
and when we can augment flow in the algorithm.

In Chapter 3, we looked at a simpler version of Végh’s algorithm which runs in weakly
polynomial time. This algorithm performs one of three actions during each iteration:
augment flow, expand T , or perform Elementary Step to fix the ∆-fat graph when we
could not perform the previous two actions. Elementary Step helped us to either add
nodes to T0 or to identify more reachable nodes by finding tight arcs leaving T (see Section
3.2). I also gave an overview of the runtime analysis to understand why the algorithm
terminates in a weakly polynomial number of iterations. Finally, we saw how to initialize
a beginning flow and labels, and how to terminate with an optimal flow when we achieve
optimal labels.

In Chapter 4, we looked at abundant arcs (see Section 4.1) and how we can guarantee
their existence. Abundant arcs can be contracted so that we work on a smaller network.
We then looked at the set D of nodes that are close to contraction (see Subsection 4.1.2),
as well as the conditions required in order for Elementary Step to bring us closer to the
next contraction. If Elementary Step will not bring us closer to the next contraction, then
we run the new subroutine Filtration (see Section 4.2). Finally, we saw in the runtime
analysis that Filtration and contracting abundant arcs meant that we could put a strongly
polynomial bound on the number of iterations.

In Chapter 5, the lemmas and proofs of two major concepts were presented. First,
I presented the omitted proofs from Chapter 4 that shows why Végh’s algorithm termi-
nates in a strongly polynomial number of iterations. Second, I proved that we can bound
the maximum difference in flow on arcs between our current flow and the optimal (i.e.
maxij∈E |fµij − f ∗

µ∗

ij |) flow using the relabelled excess and our scaling factor ∆.

In Chapter 6, we saw a modification of Elementary Step that ensures all numbers
computed have bit sizes that are polynomially bounded in the bit sizes of the inputs. This
means that Végh’s algorithm is a true strongly polynomial algorithm.

96

Appendix A

Differences in Notation with Végh’s
Paper

This table summarizes all the differences in the notation and definitions between my thesis
and Végh’s paper [9].

Item My Notation/Definition Végh’s Notation/Definition

∆-fat graph Gµ
f (∆) n/a

Low excess nodes L N

Close to contraction node set D {i : |bµi |/∆ ≥ 1/n} {i : |bµi |/∆ ≥ 1/16Cn},
C = # of contractions completed

Set of contracting iterations n/a C

Set of filtrating iterations ΘF F

Set of iterations that grow D ΘD D

Scaling factor in Round-Label δ ε

Table A.1: Differences in notation with Végh’s paper

97

References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows: theory,
algorithms, and applications, Chapter 15. Prentice Hall, 1993.

[2] Andrew V. Goldberg, Serge A. Plotkin, and Éva Tardos. Combinatorial algorithms for
the generalized circulation problem. Mathematics of Operations Research, 16(2):351–
381, 1991.

[3] Dorit S. Hochbaum. Monotonizing linear programs with up to two nonzeroes per
column. Operations Research Letters, 32(1):49–58, 2004.

[4] Thomas McCormick. Graph theory and network flows. Course Notes for OR&IE 633,
Cornell University, 1999.

[5] Kenji Onaga. Dynamic programming of optimum flows in lossy communication nets.
IEEE Transactions on Circuit Theory, 13(3):282–287, 1966.

[6] Tomasz Radzik. Approximate generalized circulation. Technical Report 93-2, Cornell
Computational Optimization Project, Cornell University, 1993.

[7] Maiko Shigeno. A survey of combinatorial maximum flow algorithms on a network with
gains. Journal of the Operations Research Society of Japan-Keiei Kagaku, 47(4):244–
264, 2004.

[8] Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Journal
of computer and system sciences, 26(3):362–391, 1983.

[9] László A. Végh. Strongly polynomial algorithm for generalized flow maximization.
CoRR, abs/1307.6809, 2013.

98

	List of Tables
	List of Figures
	Introduction
	The Search for Strongly Polynomial Algorithms
	Problem Setup
	Linear Program and Transformations
	Applications and Extensions
	Optimality Conditions for the Standard Model
	Duality and Complementary Slackness Conditions
	Optimality Conditions via Flow-Generating Cycles

	Earlier Algorithms for Generalized Flows
	Onaga's Algorithm Based on Augmenting Paths
	Goldberg-Plotkin-Tardos Fat-path Algorithm

	Hochbaum's Transformation to Minimum Cost Generalized Flows
	Intuition Behind Transformation: 2 Non-zero Entries
	Intuition Behind Transformation: 1 Non-zero Entry
	Hochbaum's Construction

	Contributions of Végh's Paper
	Summary

	Definitions and Notations
	Using an Uncapacitated Network
	Labels
	Motivation Behind Labels: Converting Currencies
	A More General Look at Labels

	-Fatness and -Feasibility
	High Excess and Low Excess Nodes: Sending Flow
	Summary

	Weakly Polynomial Algorithm
	Structure of the Algorithm
	Main Algorithm

	Elementary Step
	Achieving Goals of Elementary Step
	Finding and Maintaining '-feasibility

	Runtime Analysis
	Bounding Shrinking, Expanding, and Neutral Iterations
	Total Number of Iterations

	Initialization and Termination
	Tight-Flow on V,
	Initialization
	Termination

	Summary

	Strongly Polynomial Algorithm
	Abundant Arcs
	Definition of Abundant Arcs
	Guaranteeing Abundant Arcs

	Filtration
	Purpose of Filtration and Tight-Flow
	Analysis of Filtration

	Runtime Analysis
	Others Considerations
	Initialization and Termination
	Reducing Runtime by logn Factor

	Summary

	Runtime Analysis of Strongly Polynomial Algorithm
	Increases to in Strongly Polynomial Algorithm
	Bounding -.25ex-.25ex-.25ex-.25exF log()

	Abundant Arcs
	Summary

	Bounding the Bit Sizes
	Rounding our Labels
	Effect of Round-Label on Runtime
	Bit Sizes of Numbers Computed
	Summary

	Conclusion
	Differences in Notation with Végh's Paper
	References

