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Abstract 

This thesis presents a clockless stochastic low-density parity-check (LDPC) 

decoder implemented on a Field-Programmable Gate Array (FPGA). 

Stochastic computing reduces the wiring complexity necessary for 

decoding by replacing operations such as multiplication and division with 

simple logic gates. Clockless decoding increases the throughput of the 

decoder by eliminating the requirement for node signals to be synchronized 

after each decoding cycle. With this partial-update algorithm the decoder’s 

speed is limited by the average wire delay of the interleaver rather than the 

worst-case delay. This type of decoder has been simulated in the past but 

not implemented on silicon. The design is implemented on an ALTERA 

Stratix IV EP4SGX230 FPGA and the frame error rate (FER) performance, 

throughput and power consumption are presented for (96,48) and (204,102) 

decoders. 
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Chapter 1                                            

Introduction 

1.1 Background  

Channel coding is a technique used in digital communications to minimize the rate of errors 

when messages are transmitted over a noisy channel.  Figure 1.1 illustrates a high level view of 

a baseband communication system where messages are encoded at the transmitter end and then 

enter a channel where noise is superimposed on the encoded message. At the receiver end, the 

decoder attempts to recover the initial message and minimize errors introduced by the noisy 

channel. Channel coding is done by adding controlled redundant parity-check symbols to a 

signal prior to transmission, allowing the decoder to reconstruct the original message with high 

reliability at the receiver end.  
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Figure 1.1: Block diagram of a communication system with channel coding. 

 

Low-Density Parity-Check (LDPC) codes are a family of forward error control codes 

first proposed by Gallager in his PhD thesis in 1960 and further developed in the following 

years [1,2]. An LDPC code is represented by a parity-check matrix H that has a low density of 

nonzero elements. This thesis focuses on the binary case where the only elements in 𝐇 are ‘1’s 

and ‘0’s. The matrix 𝐇 can be represented by a Tanner graph, a network of two types of nodes, 

parity-check nodes and variable nodes, which exchange signals during the decoding process. 

The nonzero elements of 𝐇 dictate the connections between these nodes in a network of wires 

known as the interleaver.  Due to the computing requirements for decoding, LDPC codes were 

not used widely following their discovery and were almost completely forgotten. Turbo codes 

[3], another type of error correcting code, were discovered in 1993 by Berrou et al. and were 

found to approach the Shannon capacity limit, the theoretical maximum rate at which 
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information can be transmitted over a noisy communications channel. In 1997, LDPC codes 

were rediscovered by MacKay et al. [4] and through the use of a probabilistic decoder rivaled 

the performance of Turbo codes [4,5]. Following this discovery, the field of LDPC codes has 

grown substantially.  

The Sum-Product Algorithm (SPA) is an iterative decoding process which 

approximates a maximum likelihood decoder but it more suitable for circuit implementations 

[6-10]. Due to the many multiplication and division operations in the SPA, LDPC decoders 

usually operate in the logarithmic domain which converts these multiplication operations into 

summations. The SPA has a high degree of parallelism, so to maximize throughput in high-

speed applications, parallel LDPC decoder implementations are common [11].  

 

1.2 Motivation 

Stochastic computing is a method of random numerical computation first proposed in 1953 by 

von Neumann [40]. Stochastic computing utilizes uncertainties and probabilities to perform 

useful calculations. Continuous values can be represented by streams of random bits which 

often results in lower complexity circuits. A decoding method which relies of the principles of 

stochastic computing was proposed by Gaudet et al. in [41] as an alternative to the SPA. This 

type of decoder benefits from lower complexity of the interleaver, however due to the serial 

nature of stochastic computing, the calculations within individual nodes must be done serially, 

reducing the throughput. To offset this deficiency, higher clock frequencies are often used. 

However, a large high-speed clock network results in high power dissipation due to the high 



4 

 

switching activity of the clock. Furthermore, longer wires are required to meet the challenges of 

the routing constraints of the LDPC interleaver, limiting the clock speed and hence the 

throughput. Various techniques have been proposed to circumvent this problem such as 

asynchronous decoding [12,13] and clockless decoding [14,15].  

In a clockless decoder, the communication across the interleaver is restricted only by 

the wiring delay. Furthermore, the decoding process no longer waits for all node calculations to 

be completed before beginning the next decoding cycle. Since the wire delays will vary across 

the interleaver in this continuous decoding technique, the decoding speed is limited by the 

average of the wire delays rather than the largest wire delay. This type of decoder has been 

demonstrated in high-level simulations in [14]. 

This thesis presents a Field-Programmable Gate Array (FPGA) implementation of a 

clockless stochastic LDPC decoder and corresponding performance measurements. This work 

demonstrates the feasibility for a practical clockless stochastic decoder. 

 

1.3 Thesis Organization  

This thesis is organized as follows: Chapter 2 reviews the sum-product algorithm (SPA) as well 

as LDPC codes, stochastic decoders, and their synchronous, asynchronous and clockless 

implementations. Chapter 3 presents the design of a clockless stochastic LDPC decoder with 

details of individual components. Chapter 4 reports the frame error rate, throughput, and power 

performance of the decoder and discusses some trade-offs between them. The FPGA logic 
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utilization is also discussed in this chapter. Chapter 5 discusses possible future work and 

applications of this decoder and concludes the thesis.  
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Chapter 2                                                

Background 

This chapter summarizes the concepts of LDPC codes, Tanner graphs and the sum product 

algorithm in Sections 2.1 and 2.2. Stochastic decoding is introduced in section 2.3 while 

sections 2.4 and 2.5 present the concepts of noise-dependent scaling and edge memories. 

Section 2.6 summarizes clockless stochastic decoding of LDPC codes and its benefits. 

 

2.1 Low-Density Parity-Check Codes 

Discovered in the early 1960s [1,2], LDPC codes are a class of linear block codes with a sparse 

parity-check matrix, 𝑯 of size (𝑛 − 𝑘) by 𝑛 [37,38]. LDPC codes can be defined for any order 

of Galois field but this thesis will focus on LDPC codes over GF(2). The length of the message 

is k symbols (usually bits) while the encoded message is of length n. LDPC codes have a code 

rate of 𝑅 = 𝑘/𝑛  which represents the ratio of message bits to codeword bits.  A binary vector 𝒄 

is a codeword if 𝒄𝑯𝑻 = 𝟎. In other words, a codeword must be orthogonal to every row of 𝑯. 

There also exists a generator matrix 𝑮 consisting of the basis vectors of the decoder and from 
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which 𝑮𝑯𝑻 = 𝟎. The generator matrix can be used to encode messages and is defined in terms 

of 𝑯 from the expressions 𝑯 = [−𝑷𝑻|𝑰𝒏−𝒌]  and  𝑮 = [𝑰𝒌|𝑷].  

An LDPC code can also be displayed graphically as a bipartite Tanner Graph [16]. 

Within a Tanner Graph there exists two types of nodes: variable nodes (shown as circles) and 

parity-check nodes (shown as squares). A line connecting a variable node to a parity-check node 

is represented by a ‘1’ in 𝑯. The variable nodes each represent a single codeword bit while each 

parity-check node represents a single parity-check equation. A line connecting a variable node 

to a parity-check node suggests that this bit is included in that particular parity-check equation. 

An example block code with 𝑛=16 and 𝑘=8 is shown in Figure 2.1 with its corresponding 

Tanner Graph shown in Figure 2.2. The parity-check matrix notation (k, n-k) denotes a Tanner 

graph with ‘a’ variable nodes and ‘b’ parity-check nodes. 

 

Figure 2.1: Example of a (16,8) parity-check matrix. 

 



8 

 

 

Figure 2.2: Tanner graph representation of the (16,8) parity-check matrix from Figure 2.1. 

 

2.2 Decoding using the SPA 

There are two main types of decoding algorithms: hard-decision decoders and soft-decision 

decoders. Referring to Figure 1.1, the decoding process starts when a message vector 𝑚 is 

encoded to a code vector 𝑐 and transmitted through a channel. The code vector received from 

the channel, 𝑦, is equal to the original codeword with the addition of noise from the channel: 

𝑦 = 𝑐 + 𝑁. The noise, 𝑁, can be modeled mathematically as AWGN. A binary hard-decision 

decoder begins by calculating the probability 𝑝 that individual bits of 𝑦 are either ‘1’ or ‘0’. The 

received codeword is then defined through hard decision making (e.g., if a symbol has a 0.55 

probability of being ‘1’, or any probability greater than 0.5, then it is assumed to be ‘1’). The 

hard-decision decoder then attempts to decode the original message by evaluating the parity-

check equations defined in 𝐇 to determine if the received codeword is a valid codeword, and if 

not, which bits are erroneous. A soft-decision decoder operates on the probabilities that 

particular bits are either ‘0’ or ‘1’ and with knowledge of the channel probability distribution 

function (PDF) uses information from the parity-check bits to produce a more accurate 
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estimation of the bit-value probabilities. In an iterative decoder, the hard decision bits can be 

calculated after each iteration to check for a valid codeword, otherwise the decoder continues to 

attempt to produce more accurate probabilities. 

The Sum-Product algorithm (also known as belief propagation or the message passing 

algorithm) is an iterative soft-decision decoder. The goal of the Sum-Product Algorithm (SPA) 

is to calculate the probability that any given bit in the transmitted codeword �⃗� =

(𝑐0, 𝑐1, 𝑐2, … 𝑐𝑛−1) is equal to ‘1’ given the received codeword �⃗⃗� = (𝑦0, 𝑦1, 𝑦2, … 𝑦𝑛−1). A 

channel probability 𝑃𝑖 is received by each variable node calculated from 𝑦𝑖 using the equation 

(for the additive white Gaussian noise (AWGN) channel) [16]:  

 
𝑃𝑖 =

1

1 + exp (
−2𝑦𝑖

𝜎
)
 (2.1) 

 

where 𝜎 is the noise variance. The variable node 𝑖 then sends a probability 𝑞𝑖𝑗 (which is equal to 

𝑃𝑖 for the first iteration) to each connected parity-check node 𝑗 which then calculates a new 

probability 𝑟𝑗𝑖 to update all connected variable nodes from its parity-check equation 

 𝑟𝑗𝑖 = 
1

2
+

1

2
∏(1 − 𝑞𝑖′𝑗)

𝑖′

 (2.2) 
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where 𝑖′ are all the variable nodes (𝑖0, 𝑖1, 𝑖2 … ) connected to parity-check node 𝑗 with the 

exception of 𝑖, the node being updated. The connected parity-check nodes are then updated 

using the equations:  

 
𝑞𝑖𝑗(1) =  𝐾𝑖𝑗𝑃𝑖 ∏𝑟𝑗′𝑖

𝑗′

 (2.3) 

 
𝑞𝑖𝑗(0) =  𝐾𝑖𝑗(1 − 𝑃𝑖)∏(1 − 𝑟𝑗′𝑖

𝑗′

) (2.4) 

 

where 𝐾𝑖𝑗 is a normalization constant selected such that 𝑞𝑖𝑗(1) + 𝑞𝑖𝑗(0) = 1. Note that only 

𝑞𝑖𝑗(1) is used in the parity-check node equation. At each iteration, the probability that any 

particular bit is equal to ‘1’ or ‘0’, or the hard decision bit, can be calculated using: 

 
𝑄𝑖(1) = 𝐾𝑖𝑃𝑖 ∏𝑟𝑗𝑖

𝑗

 (2.5) 

 

 

𝑄𝑖(0) = 𝐾𝑖(𝑃𝑖 − 1)∏𝑟𝑗𝑖
𝑗

 (2.6) 

 

where the product is computed across all parity-check nodes 𝑗 connected to variable node 𝑖. 

𝑄𝑖(1) and 𝑄𝑖(0) are the probabilities that codeword 𝑖 is equal to ‘1’ or ‘0’, respectively, and 

𝐾𝑖is a normalization constant selected such that  𝑄𝑖(1) + 𝑄𝑖(0) = 1. This process is continued 

until either the hard decision bits form a valid codeword or until a maximum number of 
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iterations has been completed. If the decoder reaches the maximum number of iterations an 

error is declared and the bit error rate can be computed by comparing the hard decision bits with 

the original codeword.  

The SPA involves many multiplication and division operations for both node 

computations and for the normalization conditions of the variable nodes. Therefore, a hardware 

implementation of such a decoder would be extremely area inefficient as hardware multipliers 

are much more complex than hardware adders. To bypass this problem, hardware SPA decoders 

operate in the logarithm domain. Rather than calculating the channel probability 𝑃𝑖 initially, a 

Log-Likelihood Ratio (LLR) 𝐿𝑖 = log (
𝑃(𝑦𝑖=0)

𝑃(𝑦𝑖=1)
) is calculated. For an AWGN channel, this is 

calculated using the following equation. 

 𝐿𝑖 =
2𝑦𝑖

𝜎2
 (2.7) 

 

The variable and parity-check node likelihood signals are then updated using the 

following equations. 

 𝐿(𝑟𝑗𝑖) = [∏𝑠𝑖𝑔𝑛(𝐿(𝑞𝑖′𝑗))

𝑖′

] · 𝜙 (∑𝜙(|𝐿(𝑞𝑖′𝑗)|

𝑖′

)) (2.8) 

 𝜙(𝑥) = log (
𝑒𝑥 + 1

𝑒𝑥 − 1
) (2.9) 

 𝐿(𝑞𝑖𝑗) =  𝐿𝑖 + ∑𝐿(𝑟𝑗′𝑖)

𝑗′

 (2.10) 
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𝐿(𝑟𝑗𝑖) is the log-likelihood ratio signal sent from parity-check nodes to variable 

nodes and 𝐿(𝑞𝑖𝑗) is the ratio sent from variable to parity-check nodes. The hard decision 

bits can be calculated using: 

 
𝐿(𝑄𝑖𝑗) =  𝐿𝑖 + ∑𝐿(𝑟𝑗𝑖)

𝑗

 (2.11) 

 

Where bit 𝑖 is equal to ‘1’ if 𝐿(𝑄𝑖𝑗) < 0 and is equal to ‘0’ otherwise. This is the same 

equation used for calculating 𝐿(𝑞𝑖𝑗) except signals from all of the connected nodes are 

considered. The log-domain SPA can be implemented in a circuit much more efficiently than 

the SPA since the multiplication operations have been reduced to summation operations. The 

calculation of 𝜙(𝑥) can be done using a look-up table (LUT) efficiently since it is an even 

function [42]. An additional LUT is required for the initial logarithm transformation of the 

received channel probability.  A simulation of the block code from Figure 2.1 is shown in 

Figure 2.3 using the log-domain SPA Equations 2.7 to 2.11. Note that this decoder is used as a 

demonstration and a practical LDPC decoder would use a much larger code resulting in much 

better performance. Figure 2.3 shows the frame error rate (FER), or the fraction of errors that 

were detected at varying signal-to-noise ratios (SNRs) through an entire decoding process after 

repeating the simulation many times until a significant number of errors have been detected. 

This simulation was calculated using AWGN applied to zero-value codewords. 
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Figure 2.3: Numerical simulation of the frame error rate (FER) of the (16,8) parity-check 

matrix shown in Figure 2.1. 

 

 

2.3 Stochastic Decoding 

Stochastic computing is the process of using randomness to achieve useful computation.  

Continuous value signals can be represented by a stream of randomly generated bits where the 

values are communicated from the statistical means of the bit streams. The probability of 
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stochastic stream is equal to the ratio of ‘1’s to ‘0’s and so there are many possible 

representations of any probability. For example the probability 0.6 can be represented by the 

streams 10110 or 0110101011. The order in which the ‘1’s appear in the stochastic sequence is 

not important.  

 

Figure 2.4: Stochastic gates for multiplication (top) soft XOR (middle) and division (bottom). 

The output bits will approximate the calculated value with more accuracy as more bits are used. 
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Many operations have simple equivalent single-gate stochastic representations [17,18], 

illustrated in Figure 2.4.  The multiplication of two probabilities, such as that in Equation 2.3, 

has an equivalent stochastic operation, a bitwise AND gate. Similarly, two probabilities can 

undergo a soft XOR operation through the use of an XOR gate while division operations, such 

as that of the normalization condition required to solve Equation 2.4, are equivalent to a J-K flip 

flop in the stochastic domain. Stochastic division contains a memory element which emphasizes 

the fact that stochastic computation is a serial process. Stochastic addition and subtraction of 

probabilities should be normalized since they are not closed operations. A probability can be 

inverted with the use of a single inverter gate to calculate 𝑃0 = 1 − 𝑃1. These stochastic gate 

representations are easier to implement in digital hardware and so stochastic decoders benefit 

from the decreased wiring complexity [27-33]. In addition, only a single wire is required to 

communicate a stochastic signal. The SPA equations can therefore be re-written in the 

stochastic domain. The equation for a variable node with two inputs, 𝑃𝑎  and 𝑃𝑏, and output 𝑃𝐶 

is: 

 𝑃𝑐 =
𝑃𝑎𝑃𝑏

𝑃𝑎𝑃𝑏 + (1 − 𝑃𝑎)(1 − 𝑃𝑏)
 (2.12) 

 

Figure 2.5 shows a stochastic digital circuit implementation of a variable node. Note 

that a J-K flip flop is required for the normalization component of Equation 2.4 meaning that 

variable node computations will have a memory. This is expected since a stochastic stream is 

defined in terms of the serial arrangement of bits.  
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Figure 2.5: Simple circuit implementation of a 2-input stochastic variable node. 

 

Since the parity-check node equation is simply an addition, its stochastic equivalent is 

just an XOR operation between its inputs. 

 𝑃𝑐 = 𝑃𝑎(1 − 𝑃𝑏) + 𝑃𝑏(1 − 𝑃𝑎) (2.13) 

 

A basic two-input parity-check node is shown in Figure 2.6.  

 

Figure 2.6: Simple circuit implementation of a 2-input parity-check node. 

 

The decoding process starts with initializing the J-K flip-flops in the variable node with 

stochastic bits from the received channel probabilities. Following this, at every clock edge both 
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sets of nodes are updated with signals from their connected nodes. The decoding process 

continues until either a valid codeword is found, identified by the parity-check equations at the 

parity-check nodes being satisfied, or until a pre-defined number of clock cycles has completed 

at which point an error is declared and the next frame begins.  

 

2.4 Edge Memories  

The variable node circuit shown in Figure 2.5 is not ideal since it can result in locked states 

during the decoding process. Locked states are cases where the output of the node remains the 

same over several decoding cycles. This lack of switching activity can slow the convergence of 

the decoder. Tanner graphs with cycles are particularly susceptible to this phenomenon. A cycle 

can result in a particular group of nodes becoming locked in a fixed state [33] 

To circumvent this problem edge memories (EMs) were proposed by Tehrani et al. in 

[31].  EMs are memory elements, usually shift registers, which are used instead of J-K flip-flops 

and update their values based on the inputs of the variable node. The purpose of EMs is to re-

randomize stochastic streams so that consecutive bits are independent of each other. The output 

bit of the variable node can be classified as either regenerative or degenerative. A regenerative 

bit is the case where the inputs to a variable node are equal. A degenerative bit is produced 

when the node inputs are not equal. If the variable node produces a regenerative bit it is used as 

the output of the node and also stored in the EM. When a degenerative bit is produced it is 

ignored and the output of the variable node is instead selected from the EM at a random address. 

This mechanism prevents the decoder from becoming stuck in a “lock” state where there is no 
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switching activity at a variable node for a period of time. The EM must also have a forgetting 

mechanism where new regenerative bits replace old ones. EMs are usually preloaded with bits 

from the channel probability prior to decoding. Decoding can also begin with the EMs 

initialized to a zero state at the cost of slower decoder convergence. 

 

2.5 Noise-Dependent Scaling 

As the SNR changes, so will the amount of switching activity. This is because the channel 

probabilities will not use the full scale. Less switching activity results in slower convergence 

and poorer FER performance. Noise-dependent scaling (NDS) is a method of ensuring a 

constant amount of switching activity across different SNRs [31]. This is done by scaling the 

received LLRs by a parameter proportional to the SNR. The scaled LLR 𝐿𝑖
′  is calculated using: 

 𝐿𝑖
′ = (

2𝛼𝜎2

𝑌
)𝐿𝑖 =

4𝛼𝑦𝑖

𝑌
 (2.14) 

where 𝐿𝑖 is the LLR calculated using Equation 2.7. The parameter 𝛼 is chosen experimentally 

for best performance. 𝑌 is set to be the maximum expected unscaled LLR value, usually set to 

𝑌 = 6. Notice that the 𝜎 cancels in the above equation. This suggests that the noise power will 

have no effect on the magnitude of 𝐿𝑖′ and therefore the switching activity. However, in a 

practical decoder the LLR value 𝐿𝑖 is usually the decoder input so a channel noise measurement 

will still be required to obtain 𝜎. This scaling operation is usually done using a LUT.  
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2.6 Clockless Decoding 

Two alternatives to synchronous decoding are asynchronous decoding and clockless decoding 

[12-15]. Asynchronous decoding eliminates the global clock and instead uses a handshaking 

mechanism for nodes to communicate across the interleaver. Using these request-acknowledge 

signals rather than a large clock network, as illustrated in Figure 2.7, eliminates the problem of 

varying clock delays across different nodes. This increases the overall throughput as well as 

reduces power consumption. However the introduction of request-acknowledge signals does 

incur a cost as there is an increase in the size and wiring complexity of the interleaver.  

 

Figure 2.7: Simple circuit implementation of a 2-input parity-check node. 

 

When a parity-check node finishes its calculation it must wait for every other parity-

check node to complete as well before updating the variable nodes. Since the wiring delay 

between different nodes will vary, the speed of the decoder will be limited by the largest wire 

delay in the interleaver.  
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If a node were to send its calculated bit immediately to its connected nodes rather than 

waiting, some of the inputs of the connected nodes would be new while others would be 

outdated. However, since stochastic computations depend on the time averages of binary signals 

the intermediate bit produced by a node with outdated inputs doesn’t have a significant impact 

on the overall decoding process. Ignoring this synchronization constraint eases the restrictions 

on the decoder design and allows for the exploration of larger design spaces than previously 

possible. Clockless decoding removes these two limitations by ignoring the synchronization 

constraint amongst nodes. As soon as a node has completed its calculation it immediately sends 

its output to the connected nodes. This partial-update algorithm, described in [19-21], allows for 

the decoding speed to be determined by the average wire delay. A sample Tanner graph is 

shown in Figure 2.8 with illustrated wire delays shown in blue in nanoseconds, for illustrative 

purposes. 
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Figure 2.8: Simple Tanner graph demonstrating the effects of wire delays, shown in blue in 

nanoseconds. 

 

If a synchronous decoder were used for this graph the throughput would be restricted by 

the largest wire delay, the delay between parity-check node 1 and variable node 0, while a 

clockless decoder would not. This can be seen in Figure 2.9 which shows a simulated set of 

communications between the nodes of Figure 2.8 for both a synchronous decoder and a 

clockless decoder with their respective wire delays. The nodes in this simulation are the 

simplest stochastic variable and parity-check node designs shown in Figures 2.5 and 2.6. Here, 

the synchronous decoder uses the maximum clock frequency allowed by the wire delays. 
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Figure 2.9: Simulation of the parity-check node signals of the Tanner graph in Figure 2.8 using 

both a synchronous and clockless circuit. 

 

Comparing the first signal of parity-check node 0 (the connection from parity-check 

node 0 to variable node 0) of the synchronous and clockless decoders in Figure 2.9, the 

synchronous signal has a period of 31.5 ns while the clockless signal has a period of 14 ns. The 

ratio of these periods, 2.25, is approximately equal to 2, the ratio of the largest wire delay to the 

average wire delay. Because of the different wire delays the nodes of the clockless decoder will 

often use outdated signals for its computations resulting in more switching activity. However, 
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these extra signals do not have a significant negative effect on the calculations or the speed of 

convergence. A stochastic LDPC decoder using the partial-update scheduling algorithm was 

simulated in [15] using 90 nm technology and resulted in a lower error floor, the flattening of 

the error rate curve at high SNR, than a synchronous decoder. There has been no physical 

demonstration of this type of decoder to date. The goal of this thesis is to demonstrate a proof-

of-concept design of a clockless stochastic LDPC decoder and to learn as much as possible from 

this implementation. 
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Chapter 3                                                   

FPGA Implementation 

This chapter describes the architecture of clockless stochastic LDPC decoder. Section 3.1 

summarizes the overall design. Section 3.2 and 3.3 presents the designs of an AWGN generator 

and the (pseudo) random number generators required for real-time testing of the decoder 

hardware. Section 3.4 describes the comparator used for generating stochastic bits. The designs 

of the variable and parity-check nodes are presented in Sections 3.6 and 3.7. 

 

3.1 Overview 

The clockless stochastic LDPC decoder was implemented on an ALTERA Stratix IV 

EP4SGX230 FPGA using the Quartus II set of computer aided design tools [36]. The design 

consists of the following modules: 

 An AWGN generator which (pseudo) randomly generates zero-codeword LLRs and 

then scales them according to the noise power. 

 A comparator used for the conversion of LLRs into stochastic streams. 

 A controller to initialize the decoder and to begin and terminate frames. 
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 The parity-check and variable nodes and the interleaver connecting them.  

A block diagram of the decoder is shown in Figure 3.1. At each initialization phase 

LLRs are generated and scaled. The LLRs are then converted into a stochastic stream using an 

external or local clock. These stochastic bits are then passed on to the variable nodes for 

decoding or preloading the EMs during initialization. This initialization phase could be skipped 

by preloading the EMs with ‘0’s at the expense of the decoder’s speed of convergence. 

However, since this decoder uses zero-value codewords for testing purposes the variable nodes 

would begin decoding with a bias towards the correct codeword. The EMs in the variable nodes 

use random addresses generated from LFSRs. The decoding process terminates when a valid 

codeword is detected by the variable nodes or until the controller declares an error.  

The Verilog hardware description files (HDL) for the interleaver as well as any other 

modules dependent on 𝑯 are generated using a C++ script which reads in 𝑯 in alist format, an 

efficient way of representing large, sparse binary matrices. 𝑯 is then converted into matrix form 

where the ‘1’s  indicate connections between the variable and parity-check nodes. This matrix is 

then used to generate the HDL for the interleaver, the module where the variable and parity-

check node modules are instantiated and their connecting wires are assigned according to 𝑯. 

The script also generates sets of (pseudo) random seeds to initialize the linear feedback shift 

registers (LFSRs). 

The 96x48 and 204x102 parity-check matrices used for the designs in this thesis 

research were acquired from [22]. However, the script used here can generate HDL files for any 
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regular (3,6) LDPC code, or any code with a Tanner graph having parity-check nodes with six 

connections and variable nodes with three connections.  
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Figure 3.1: Block diagram of the clockless stochastic LDPC decoder. 
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3.2 AWGN Generator 

The decoder uses zero-value codewords with AWGN for testing purposes. The most common 

method of generating AWGN on-chip is using the Box-Muller transformation, shown below 

[23,24]. 

 𝑌 = √−2ln (𝑥1) cos (2𝜋𝑥2) (3.1) 

 

where 𝑥1 and  𝑥2 are two uniformly distributed random numbers and 𝑌 is a normally distributed 

random number. To implement this algorithm in a digital circuit, two LUTs and a multiplier are 

required. In addition, the square root operation is very non-linear and therefore the quantization 

error of the LUTs will be large if the LUT uses linear indexing. To avoid this nonlinearity as 

well as significantly reduce the area consumption of the AWGN generator, a new design is 

proposed here. 

An AWGN distribution can be generated using a single LUT by dividing the LUT into 

a set of bins with sizes calculated from the desired distribution. The Gaussian distribution is first 

calculated across upper and lower bounds 𝑥𝑈 and 𝑥𝐿 which are calculated using the following 

equation: 

 𝑥𝐿,𝑈 = µ ±  𝜎√−2ln (𝛽) (3.2) 

where µ and 𝜎 are the mean and standard deviation of the AWGN distribution and 𝛽 is the ratio 

of the probability at the outer bounds to the probability at the distribution center. In this design 

𝛽 = 0.01 was used. The distribution is then divided into a number of bins. The bin counts are 
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normalized and then used to partition the LUT. For example, the bin with the highest count, the 

peak of the distribution, will occupy the most space in the LUT. Therefore when a uniformly 

distributed random bit, such as that generated from an LFSR, is used as an input it will have a 

probability of falling on an address with the largest bin approximately equal to the probability 

of the bin calculated from the distribution. A hardware simulation of this design generating a 

Gaussian distribution with 𝜎 = 1 and zero mean is shown in Figure 3.2 compared with a 

numerically generated distribution using the Box-Muller Algorithm and the ideal Gaussian 

distribution calculated using MATLAB.  

Before being sent to the stochastic bit generators, the LLRs are first converted into 

channel probabilities using a separate 8-bit LUT which evaluates the following equation [11]: 

 𝑃𝑖 =
𝑒

𝐿𝑖
′

𝐺

𝑒
𝐿𝑖
′

𝐺 + 1

 (3.2) 

 

𝐿𝑖
′  is the scaled LLR and 𝑃𝑖 is the channel probability. 𝐺 is a scaling parameter which is adjusted 

based on the SNR to decrease the quantization error as the LLRs are sent between LUTs.  
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Figure 3.2: Comparison of the Gaussian distributions generated from a Box-Muller numerical 

simulation (shaded bars), the proposed Gaussian generation technique (black bars), and the 

scaled ideal probability distribution (line). The distributions are quantized to 8-bits, the same as 

the generator used in the decoder and are shown with a logarithmic scale. The distribution 

edges of the proposed AWGN generator could be improved by increasing the number of bins 

and/or the bit resolution. The Gaussian distribution has µ=0 and σ2=0.5012. The histogram 

plots were generated with a sample size of 18 000, roughly equivalent to 90 frames of the 

(204,102) decoder, which is sufficiently large to illustrate the distribution shape. 
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3.3 Random Number Generator 

Random numbers are used by the AWGN generator, the stochastic comparator, and the 

generation of addresses for the EMs. These random numbers are generated using 16-bit LFSRs 

[25,26]. The LFSRs are constructed using the primitive polynomial 𝑥16 + 𝑥5 + 𝑥3 + 𝑥2 + 1 

which generates (216-1) 16-bit random numbers (RNs) before repeating the cycle. The choice of 

a primitive polynomial configuration ensures that the LFSR produces a maximum length 

sequence. These RNs are then split into two 8-bit RNs which are used by the AWGN generator 

and the stochastic stream generators. Since the EMs are 8-bit registers they only require a 3-bit 

address and so the 8-bit EM RNs are further divided. Also, different EMs will have different 

stored bits and so the same address can be used for more than one EM. For a (96,48) code with 

96 variable nodes and 288 EMs (each node has three outputs) only 96 random addresses are 

used.  

For high SNR testing where many frames are required, the decoder may need more than 

(216-1) RNs in which case the RNs and the switching activity would repeat. To avoid this 

problem, the LFSRs are reinitialized with new seeds when the decoder approaches (216-1) RNs. 

If K sets of seeds are stored in the decoder, this allows for K(216-1) unique RNs. However, as K 

increases, so does the FPGA logic utilization as well as the compilation time. To maximize the 

number of unique frames, the seeds are divided into two groups each with size K/2. When all 

the seeds have been used they are reset back to the initial seeds but with one group offset by 
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one. Therefore, the two groups will go through every combination before repeating themselves 

allowing for K2(216-1) unique RNs per LFSR. An illustration of this technique is shown in 

Figure 3.3. 

 

Figure 3.3: Illustration of the seed rotating technique. Each block represents a set of seeds used 

by LFSRs. Arrows represent which block of seeds is currently being used. 

 

The stochastic comparator and the EM address generators are used throughout the 

decoding process while the AWGN generators are used only at the beginning of each frame. 

Therefore it is not necessary to update the LFSR seeds used for the AWGN generators. If the 

decoder exceeds (216-1) frames and the channel probabilities repeat, the LFSRs used to generate 

stochastic bits and EM addresses will still be unique and so the switching activity of the decoder 

will also be different. This reduces the size of the AWGN generator module.  
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3.4 Stochastic Stream Generator 

Stochastic bits are generated using a comparator, shown in Figure 3.4, with two inputs: the 8-bit 

channel probability and an 8-bit random number generated from a LFSR. If the channel 

probability is larger than the random number a ‘1’ is generated, otherwise the output is ‘0’. The 

LFSR is triggered by a local oscillator such as a ring oscillator. The LFSR could also be 

triggered by a global clock since clock delays will not impact the decoder performance due to 

the partial-update algorithm. 

 

Figure 3.4: Comparator used for stochastic bit generation. The 8-bit inputs Pi and R are the 

channel probabilities and a random number. 
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3.5 Controller 

The controller routes stochastic bits from the comparators to the interleaver and controls the 

rotation of seeds for the (pseudo) random number generators. The controller also toggles the 

decoder between two main states: 

 Initialization phase: During the initialization phase, the stochastic bits are fed directly 

into the EMs of the variable nodes, bypassing the node equations. During initialization, 

the signals between nodes are suppressed. The beginning of the initialization phase also 

triggers the AWGN generator to produce a new set of noise signal inputs. After a 

certain number of initialization phases have passed, the controller instructs the seed 

module to rotate to a new set and for the LFSRs to be reinitialized. Depending on the 

speed of stochastic bit generation, the initialization phase continues for as long as it 

takes to fill the EMs with channel probabilities. 

 Decoding phase: Immediately after the EMs have been preloaded, the controller 

disables the initialization signal and the connection from the stochastic stream directly 

to the EMs is severed. The channel probabilities are instead set as inputs to the variable 

nodes. The connections between variable and parity-check nodes are allowed to 

communicate freely, limited only by their gate and wire delays. During the decoding 

phase the controller checks for the parity-check equations of each parity-check node to 

be satisfied simultaneously. When this occurs, a valid codeword has been found by the 

decoder and the initialization phase begins for the next decoding frame. While 

decoding the controller also increments a counter using the on-board 50MHz clock. 

When the counter reaches the predefined value 300, an error is declared and the next 
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frame is initialized. The value of this counting limit duration is chosen based on the 

desired performance trade-off between throughput and FER. 

 

3.6 Variable Nodes 

The 3-input continuous time variable node circuit is shown in Figure 3.5. This circuit was 

proposed in [15]. Signal ‘U’ determines whether the node is in a regenerative state (all inputs 

are equal) or a degenerative state. The variable node behavior is summarized in Table 3.1.  

Table 3.1: Summary of the variable node behavior. 

Inputs U state Output 

000 1 regenerative 0 

001 0 degenerative EM 

010 0 degenerative EM 

011 0 degenerative EM 

100 0 degenerative EM 

101 0 degenerative EM 

110 0 degenerative EM 

111 1 regenerative 1 

 

While in a degenerative state the output of the node is selected from the EM from a 

random address generated by an LFSR. When the node changes to a regenerative state signal 

‘U’ generates a pulse triggering the EM to store the new regenerative bit. This bit is also used as 

the node output during a regenerative state. The EM consists of an 8-bit shift register with an 

output selectable using an address. While the initialization signal is ‘1’, the channel probability 

bits are stored directly in the EM. In the FPGA implementation, a series of five inverters is used 
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rather than the one shown in Figure 3.5. This lengthens the duration of the pulses to ensure that 

they are detected by the EM. The number of inverters was chosen by increasing the length of 

the inverter series until the EM detected the pulses reliably. The minimum number of inverters 

needed would is likely dependent on the routing techniques and the FPGA architecture. Note 

that a pulse is not generated in the event of transitioning from one regenerative state to another 

(from all ‘0’ inputs to all ‘1’ inputs or vice versa). Since the inputs are not synchronized, the 

probability of this happening is extremely small, so the gain in performance for detecting this 

transition would be small compared to the extra hardware required to detect a change in the 

inputs. Each variable node has three connections, three inputs and three outputs. Therefore, each 

node has three copies of the circuit in Figure 3.5. If one of these circuits has an output wire 

connected to some parity-check node ‘X’, then the incoming signal from parity-check node ‘X’ 

is excluded from the inputs of that particular circuit.  

Since there is no synchronization block in the clockless variable node circuit, there is 

the potential for metastability. This phenomenon was investigated by Onizawa in [43] through 

timing simulations and it was concluded that the probability of metastibility is low and the 

effect on the error rate performance is minimal. This is due to the statistical nature of stochastic 

computing where small discrepancies have little effect on the statistical mean. A more detailed 

analysis of the metastability would require an investigation of how the FPGA implements 

specific components, but this is outside the scope of this thesis.   
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Figure 3.5: Circuit implementation of a 3-input clockless stochastic variable node using an edge 

memory (EM). Signal U is used to generate a pulse to trigger the EM. Although only one 

inverter is shown here, several are used to lengthen the duration of the pulse. 

 

The EM, a schematic of which is shown in Figure 3.6, consists of an 8-bit pulse-triggered 

shift register. The output is taken from a multiplexor which randomly selects a bit stored in one 

of the flip-flops. 
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Figure 3.6: Schematic of the edge memory (EM) used in the clockless stochastic variable node. 

 

3.7 Parity-Check Nodes 

Previous implementations of stochastic LDPC decoders have used the parity-check node design 

shown in Figure 3.7 [28]. The red and blue lines represent the effect of a change in input ‘A’ on 

output ‘0’. The red line illustrates a direct path from the input to the final XOR gate while the 

blue line passes through the 6-input XOR gate. The delay introduced by this extra XOR gate 

results in a glitch signal being generated after the red signal has reached the final XOR gate and 

the blue signal has yet to arrive. If the all of the parity-check nodes wait for each other to 

complete their operations, this does not present a problem. However, in a clockless interleaver 

this extra signal reaches the variable nodes and creates unexpected switching activity, 

decreasing the speed of convergence. 
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Figure 3.7: Parity-check node circuit for a synchronous stochastic LDPC decoder. The red and 

blue lines represent the paths from which input ‘A’ affects output ‘0’. 

 

With clockless, decoding all logical path delays must be equal since there is no 

mechanism to synchronize decoding cycles. The clockless parity-check node circuit used in this 

decoder, proposed in [15], is shown in Figure 3.8.  
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Figure 3.8: Circuit implementation of a 6-input clockless stochastic parity-check node. 

 

In this design every input affects each output through only a single path. This eliminates 

the glitch signal at the cost of increased node complexity.   

To determine if the decoder has reached a valid codeword each parity-check node must 

verify that all the inputs satisfy the parity check equations. In Figure 3.7 the parity check signal 

can be taken directly from the output of the 6-input XOR gate. In order for the controller to 

identify a valid codeword the parity-check equations are calculated from the output of the two 
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front-end XOR gates with an additional 2-input XOR gate required to calculated the parity-

check equations for all the inputs. 
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Chapter 4                                                  

Results and Discussion 

This chapter reports the performance of the clockless stochastic LDPC decoder. Section 4.1 

summarizes the FPGA logic utilization of the design. The frame error rate, throughput and 

power measurements are presented in Section 4.2, 4.3, and 4.4, respectively. 

 

4.1 Logic Utilization 

Table 4.1 shows the logic utilization of the (96,48) and (204,102) decoders while Figure 4.1 

shows the chip layout of the FPGA with different modules highlighted. The stored seeds occupy 

a significant portion of the decoder to ensure unique random switching activity high SNR tests 

where many decoding frames are needed for a statistically significant number of errors. The 

section labeled “other” includes the control module, the LFSRs, the LUTs associated with the 

AWGN generator, and the comparators for stochastic bit generation. A larger (408,204) decoder 

was also able to fit on the FPGA, however, due to the long compilation times this decoder was 

not tested extensively. 
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Table 4.1: Summary of the logic utilization of the (96,48) and (204,102) stochastic clockless 

decoders synthesized on a ALTERA Stratix IV EP4SGX230 FPGA. These numbers refer to 

the total logic elements which is the sum of the total number of dedicated logic registers and 

total number of combinational functions. 

Decoder Interleaver Seeds Other Total 

(96,48) 6581 12836 13814 
33231 
(18%) 

(204,102) 11941 23291 25066 
60298 
(33%) 

Available 
   

182400 
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Figure 4.1: FPGA layout of (96,48) decoder (left) and (204,102) decoder (right).  

 

Figure 4.2 and 4.3 show the estimated wire delays of the interleavers for the (96,48) and 

the (204,102) decoders. These delays were estimated using the TimeQuest Timing Analyzer 

[39] in Quartus II which determines the expected path delays between nets in the synthesized 

design. A tool command language (TCL) script was created to report the path delays from the 

variable to the parity-check nodes by specifying the start and destination pins. Since we are only 

interested in the direct paths from a variable to a parity-check node, a MATLAB script was used 

to eliminate the delay measurements which do not correspond to a connection in 𝑯. 
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Figure 4.2: Distribution of interleaver wire delays of the (96,48) decoder. Delays were 

determined by estimating the path delays of the synthesized design. 

 

The largest wire delay from the (96,48) decoder interleaver is 12.306 ns. In a 

synchronous design, this would allow for a maximum clock frequency of 81.26 MHz. However, 

if we assume a clockless design where the limiting factor is the average wire delay, the 

equivalent clockless decoder could operate at 261.35 MHz. Similarly, the (204,102) decoder 

would be limited to 96.28 MHz while a clockless design would operate at 429.64 MHz. Note 

that this is maximum rate of switching activity in the decoder and not necessarily the 
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throughput. That calculation would require an understanding of the decoding latency and the 

relationship between the number of iterations and the bit error rate. 

 

Figure 4.3: Distribution of interleaver wire delays of the (204,102) decoder. Delays were 

determined by estimating the path delays of the synthesized design. A possible explanation for 

the dual peaks is that the during the automatic fitting process some wires were routed using 

global routing, a routing technique used for wires spanning large quadrants of the chip, and 

some wires were routed using local routing, a technique used for smaller wires. Most wires 

routed using global routing would be significantly longer than those which used local routing. 
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4.2 Frame Error Rate 

The frame error rate (FER) is the ratio of the number of failed decoding frames to successful 

ones at a particular SNR. A decoding frame ends when a valid codeword is obtained and is 

identified by the parity-check nodes as satisfying all parity-check equations. The frame also 

ends when the decoding attempt is declared unsuccessful and an error is declared. In a 

synchronous or asynchronous decoder, an error is normally declared after a set number of 

decoding cycles, the number of signal exchanges between the variable and parity-check nodes. 

Since a clockless decoder operates using the partial-update algorithm where wire delays result 

in some connections communicating faster than others, there is no clear definition of a decoding 

cycle. Instead an error is declared after a counter reaches a predefined termination time, Te. The 

longer this duration, the more time the decoder has to converge on a valid codeword and 

therefore the lower the FER. However, as Te increases, the throughput decreases. The FER of 

the (96,48) decoder is shown in Figure 4.2 and the FER if the(204,102) decoder in Figure 4.3. 

These are compared with numerical simulations of the Log-domain SPA of the decoders. The 

NDS parameter 𝑎 was chosen based on experimentation and value of 𝑎 = 2 was found to 

produce the best results. The parameter 𝑌 was set to 𝑌 = 6 for best results. The simulated FERs 

are obtained by evaluating Equations 2.7 to 2.11 for 50 iterations before declaring an error or 

until a valid codeword was obtained.   

For a synchronous stochastic decoder, the bit error rate (BER) can be measured by 

calculating the hard decision bits using a simple up/down counter at each variable node. At the 

end of a decoding sequence, assuming a valid codeword has not been detected, each variable 

node will output a ‘1’ if its counter is greater than zero or a ‘0’ otherwise. This sequence of bits 
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can be compared with the original message to determine the number of bit errors. For a 

clockless decoder, a time averaging circuit would be required at each variable node since there 

are no clock cycles to trigger a counter. For the purposes of this thesis, it was decided that the 

FER was sufficient for demonstrating the proof-of-concept decoder. 
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Figure 4.4: Frame error rate (FER) measurements of the (96,48) clockless stochastic decoder 

implemented on an FPGA. Results are shown with noise-dependent scaling parameters a=2 and 

a=3. Measurements are compared with a numerical decoding simulation. 
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Figure 4.5: Frame error rate (FER) measurements of the (96,48) clockless stochastic decoder 

implemented on an FPGA. Results are shown with noise-dependent scaling parameter a = 2. 

Measurements are compared with a numerical decoding simulation. 

 

 

4.3 Throughput  

The throughput is the rate at which bits are decoded. As discussed earlier, the throughput 

depends heavily on the choice of Te as that affects the duration of each decoding frame. Figure 

4.4 shows the throughput for the (96,48) decoder and the (204,102) decoder. As expected, the 
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throughput is lower at low BERs since a longer duration of switching activity is required to 

reach a valid codeword.  

 

Figure 4.6: Coded throughput measurements of the (96,48) and (204,102) clockless stochastic 

decoders implemented on an FPGA. 
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4.4 Power Measurements 

Since the throughput varies at different SNRs, so does the power consumption of the 

decoder. The switching activity will also change, although this is minimized by the NDS. The 

power consumptions of the (96,48) and (204,102) decoders are shown in Figure 4.5. The FPGA 

power measurements were made using the technique developed by former MASc student Joyce 

Li in [34]. Although Quartus II contains a module for estimating the power consumption based 

on timing simulations, this technique has a large error [35]. The method used for power 

measurements in this thesis measures the power delivered to the FPGA directly using a 

voltmeter and a pair of 0.01Ω resistors. This power measurement is then subtracted from a 

similar measurement of the FPGA programmed with minimal logic. More details of the power 

measurement technique can be found in [34].  
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Figure 4.7: Power consumption of (96,48) and (204,102) decoders implemented on an FPGA. 

 

The energy/bit of each decoder is shown in Figure 4.8, determined by dividing the 

power consumption by the throughput.  
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Figure 4.8: Energy-per-coded bit of (96,48) and (204,102) decoders implemented on an FPGA. 

 

The results shown in this chapter have demonstrated that the implementation of the 

clockless stochastic LDPC decoder was successful. The (96,48) and (204,102) decoders here are 

not a large as what a practical decoder would use, and a larger code  would have a higher 

throughput and would likely operate in the GHz range. 

 The (204,104) decoder has a coded energy-per-bit of 0.7 nJ at 6 dB. While this is not as small 

as the LDPC decoder implementations in [34], the purpose of the design was to build a proof-

of-concept design and not to perform power optimization. 
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Chapter 5                                                     

Conclusion 

The advantages of stochastic LDPC decoders include lower wiring complexity and lower power 

consumption. However, due to the serial nature of stochastic computing the throughput is 

limited by the clock speed. A clockless implementation of this type of decoder eliminates this 

limitation by allowing node computations to be completed purely through combinational logic. 

In this thesis research, an implementation of a clockless stochastic LDPC decoder was 

implemented on silicon. To our knowledge, this is the first implementation of its kind on an 

FPGA. 

The results reported in Chapter 4 show that the clockless stochastic LDPC was 

successfully implemented on the FPGA. The clockless interleaver design eliminates the large 

high-speed clock network present in synchronous decoders reducing the limitations that the wire 

delays place on the throughput.  

The HDL files for the decoder were generated using a C script and the FPGA was 

programmed using Quartus II. The variable and check-nodes were designed to operate in 

continuous time without the synchronization of node calculations. To reduce the noise floor and 

increase the speed of convergence, EMs and NDS were employed to increase the switching 
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activity and therefore the speed of convergence. The large amount of random numbers required 

for the AWGN generator and stochastic bit generation were produced using LFSRs with a seed 

rotating technique that ensured that the decoder could evaluate many frames before repeating 

random numbers.  

The scaling parameters here were chosen based on optimal performance through 

experimentation. However, a more detailed analysis of the error floor of this decoder is 

necessary for a quantitative determination of the optimal parameter choices. This type of 

analysis could also be used to predict the optimal clock speed for the generation of noise 

channel stochastic bits and for EM addresses. 

LDPC decoders suffer from error floors at high SNR. It is possible that continuous time 

implementations will help to alleviate this issue in the future. 
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