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Abstract

Incomplete data often arise in the study of life history processes. Examples include

missing responses, missing covariates, and unobservable latent processes in addition to right

censoring. This thesis is on the development of statistical models and methods to address

these problems as they arise in oncology and chronic disease. Methods of estimation and

inference in parametric, weakly parametric and semiparametric settings are investigated.

The specific problems are discussed as follows.

Studies of chronic diseases routinely sample individuals subject to conditions on an

event time of interest. In epidemiology, for example, prevalent cohort studies aiming to

evaluate risk factors for survival following onset of dementia require subjects to have sur-

vived to the point of screening. In clinical trials designed to assess the effect of experimental

cancer treatments on survival, patients are required to survive from the time of cancer di-

agnosis to recruitment. Such conditions yield samples featuring left-truncated event time

distributions. Incomplete covariate data often arise in such settings, but standard methods

do not deal with the fact that the covariate distribution is also affected by left truncation.

In Chapter 2 we develop a likelihood and algorithm for estimation for dealing with incom-

plete covariate data in such settings. An expectation-maximization algorithm deals with

the left truncation by using the covariate distribution conditional on the selection criterion.

An extension to deal with sub-group analyses in clinical trials is described for the case in

which the stratification variable is incompletely observed.

In studies of affective disorder, individuals are often observed to experience recurrent

symptomatic exacerbations of symptoms warranting hospitalization. Interest lies in mod-
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eling the occurrence of such exacerbations over time and identifying associated risk factors

to better understand the disease process. In some patients, recurrent exacerbations are

temporally clustered following disease onset, but cease to occur after a period of time.

We develop a dynamic mover-stayer model in which a canonical binary variable associ-

ated with each event indicates whether the underlying disease has resolved. An individual

whose disease process has not resolved will experience events following a standard point

process model governed by a latent intensity. If and when the disease process resolves, the

complete data intensity becomes zero and no further events will arise. In Chapter 3, an

expectation-maximization algorithm is developed for parametric and semiparametric model

fitting based on a discrete time dynamic mover-stayer model and a latent intensity-based

model of the underlying point process. The method is applied to a motivating dataset

from a cohort of individuals with affective disorder experiencing recurrent hospitalization

for their mental health disorder.

Interval-censored recurrent event data arise when the event of interest is not readily

observed but the cumulative event count can be recorded at periodic assessment times.

Extensions on model fitting techniques for the dynamic mover-stayer model are discussed

in Chapter 4 which incorporate interval censoring. The likelihood and algorithm for esti-

mation are developed for piecewise constant baseline rate functions and are shown to yield

estimators with small empirical bias in simulation studies. Data on the cumulative number

of damaged joints in patients with psoriatic arthritis are analysed to provide an illustrative

application.

Future research is outlined and discussed in Chapter 5.
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Chapter 1

Introduction

1.1 An Overview of Life History Data

Life history data pertain to the events and conditions that individuals experience over their

lifetime. Often events are transient and it is meaningful to model event occurrence, but

in other settings interest lies in modeling changes of state where events are more naturally

viewed as representing transitions in the status of an individual. Often it is of interest to

study the effect of fixed or time-varying covariates on event occurrence or state transitions.

Life history analysis is carried out by fitting models and conducting statistical inferences

about particular features of the stochastic mechanisms giving rise to life history data. Such

methods are relevant to diverse areas including population and clinical research, sociology,

actuarial science, and engineering. A brief overview of the topics covered in this research

is presented as follows.
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1.1.1 Analysis of Time to Event Data

Survival analysis involves the modeling of time to event data, where the event times are

clearly specified in terms of an unambiguous time origin, a consistent nonnegative scale

of measurement and precisely defined event of interest. The time origin can be birth, the

calendar time of randomization in a clinical trial, or the time of purchase of a product

warranty settings. The survival time can be measured in real time or operational time as

appropriate. The event of interest can be death, disease onset, marriage, warranty claim,

and so on. In survival analysis, subjects are usually followed over a specified time period,

thus incomplete data arise in the form of censored observations.

Let T denote the failure time, which can be either continuous or discrete, and let

C denote the censoring time. When the study ends before an individual experiences the

event of interest or if an individual drops out or becomes lost of follow-up during the study,

C < T and the time of interest is right-censored, then the observed time X = min(T,C)

and the censoring indicator δ = I(T < C) are recorded. Interval censoring arises when

the event of interest is only known to occur within a time interval (e.g. T ∈ [L,R]) as

is often the case in studies involving periodic follow-ups. Current status data is a special

case of interval-censored data where all the subjects’ event times are either left-censored

or right-censored.

Truncation is a term used to describe the effect of a selection condition in which indi-

viduals are screened for inclusion in a study. Individuals are included in the study and their

event times can be observed only if events occur within the truncation region. Truncation

differs from censoring in the sense that it is an inclusion criterion. Data are left-truncated
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when individuals are only included if they have not yet experienced the event of interest

at a certain time point and they are then prospectively followed to observe right-censored

event times. A common type of left truncation arises when subjects free of an event enter

a study at random ages and are followed from this “delayed entry time” until the event is

observed, subject to right censoring.

Let F (t) = P (T < t), F(t) = P (T ≥ t), f(t) = d
dt
F (t),

λ(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)

∆t
=
f(t)

F(t)
,

and Λ(t) =
∫ t

0
λ(u)du denote the cumulative distribution function, survival function, den-

sity function, hazard function and cumulative hazard function for T respectively, where θ

parameterizes the distribution of T . We can then construct the likelihood functions for

survival data assuming independent censoring as

L(θ) =
∏
i∈O

f(Ti; θ)
∏
i∈L

F (Ti; θ)
∏
i∈R

F(Ti; θ)
∏
i∈I

[F(Li; θ)−F(Ri; θ)]

where O, L, R and I represent the subsets where event times are exactly observed, left-

censored, right-censored and interval-censored. Only partial information about the event

times is available if censoring occurs. Conditional probability is needed when data involves

truncation.

Regression models are often used to study the relationship between the event time T and

the vector of explanatory variables Z that might affect the distribution of T . Proportional

hazards regression models offer a popular formulation where the effect of one unit increase
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in a covariate is assumed to result in a multiplicative effect on the hazard rate. The

proportional hazards assumption states

h(t|Z) = h0(t)g(Z; β) ,

where h0(t) is the baseline hazard function, and g(Z) is a function which describes how the

hazard changes according to the covariates, often the special form g(Z; β) = exp(Z ′β) is

used, where β reflects the effect of covariate vector Z on the event process. Note that h0(t)

could be of a parametric form, or a non-parametric form. The Cox proportional-hazards

regression model leaves the baseline hazard function unspecified and this semi-parametric

model is most widely used in survival analysis (Cox, 1972). The partial likelihood function

can then be constructed to facilitate estimation and inference.

1.1.2 Analysis of Recurrent Events

In some epidemiological and medical studies, an event of interest may occur multiple times

for the same subject during the period of follow-up. Such processes are referred to as recur-

rent event processes, and the data consisting of information on the events and covariates

over time are called recurrent event data. Examples include migraines, seizures, heart at-

tacks, strokes, sporting injuries, hospitalization and so on. Researchers are often interested

in characterizing the event process, identifying the sources of variation across individuals

in the study population, comparing different groups of processes, and quantifying the effect

of covariates on event occurrence.
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There are several approaches to analyze recurrent event data. Cook and Lawless (2007)

gives a recent account for the statistical research done on different frameworks. Intensity

functions and counting processes are very useful in modeling and data analysis (Andersen

et al., 1993), but Markov or semi-Markov processes are perhaps most often employed in

modeling recurrent events.

Suppose process starts at t = 0, and T1 < T2 < . . . , where Tj is the time of the jth event.

Let N(t) =
∑∞

j=1 I(Tj ≤ t) record the number of events over [0, t], N(s, t) = N(t)−N(s)

record the number of events over (s, t], and {N(t), t ≥ 0} denote a counting process. The

event process is usually censored at time C which is often assumed to be independent

of the event process, and the observed data are (Xj, δj), where Xj = min(Tj, C) and

δj = I(Xj < C). Assuming a continuous time framework for which two events do not

occur at the same time, the event intensity function is the instantaneous probability of an

event occurring at time t, conditional on the process history

λ(t|H(t)) = lim
∆t→0

P (∆N(t) = 1|H(t))

∆t
,

where H(t) = {N(s), 0 ≤ s < t} denotes the event history up to time t, and ∆N(t) =

N(t + ∆t−) − N(t−) is the number of events over [t, t + ∆t). If an individual is observed

over [0, τ ], the joint probability of m events at t1, . . . , tm is

m∏
j=0

λ(tj|H(tj)) exp

(
−
∫ τ

0

λ(u|H(u))du

)
,

where m = N(τ) is the number of events that occurred over [0, τ ].
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Marginal methods are developed based on rate and mean functions when interest lies

in the expected number of events as a function of time since study entry (Lawless and

Nadeau, 1995; Lin et al., 2000). Poisson models are often used as the canonical model for

rate function analysis, with λ(t|H(t)) = ρ(t), where ρ(t) is the rate function for Poisson

process and µ(t) = E(N(t)) =
∫ t

0
ρ(u)du is the mean function. The number of events

in any time interval follows a Poisson distribution, with the number of events in disjoint

intervals being statistically independent. If ρ(t) is a constant, a time-homogeneous Poisson

process is assumed.

When events are generated according to processes with a cyclical feature, methods based

on times between events are often appropriate and these are usually based on a natural

adaption of methods for survival analysis. Methods involving hazard rate functions are

frequently employed. Gap times Wj = Tj − Tj−1, j = 1, 2, . . ., with

P (Wj > w|Tj−1 = tj−1, H(tj−1)) = exp

(
−
∫ tj−1+w

tj−1

λ(u|H(u))du

)
,

are often useful. Renewal models are the canonical models for gap time analysis, with

λ(t|H(t)) = h(B(t)), where h(·) is hazard function for Wj and B(t) = t−tN(t−) denotes the

time since last event. Times between successive events are often assumed to be independent

and identically distributed in renewal processes. Gap times are statistically independent

for the homogenous Poisson process; they are not independent in general.

Proportional hazard models representing multiplicative relationship are usually used,

such as in the conditional model (Prentice et al., 1981), the marginal event-specific model

(Lin et al., 2000), and the counting process formulation (Andersen et al., 1993). Andersen
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and Gill (1982) proposed a semiparametric regression model where the baseline rate func-

tion is not assumed to have any particular parametric form; the generalized Nelson-Aalen

(Breslow) estimate can be obtained for the baseline mean function. Non-parametric esti-

mation of µ(t) was proposed by Lawless and Nadeau (1995) for the one-sample problem.

Unobserved heterogeneity between individuals can be modeled by random effects as in

Lawless (1987b,a), for example. Data for recurrent event processes may provide the exact

times of successive events. Sometimes only the total numbers of events occurring in specific

time intervals are observed resulting interval-censored recurrent data (Thall and Lachin,

1988; Lawless and Zhan, 1998).

1.1.3 Latent Variables

Missing data is inevitable in large cohort studies. Decisions need to be made on how to

deal with incomplete covariates and responses. Simply ignoring missing data may result

in a loss of information and can cause bias in estimators. Three missing data mechanisms

are often under discussion.

Missing Completely at Random (MCAR): If the probability that an observation is

missing is independent of the value of the observation or the value of any other variables,

the data are said to be missing completely at random (MCAR). In this case any particular

data are just as likely to be missing as any other data. That is, if we let Y denote the data

that are always observed, X denote the data that are sometimes missing, and R denote

the missing status, then

P (R = 1|Y,X) = P (R = 1)
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for data MCAR and the informative part of the full likelihood is proportional to f(y|x)f(x),

where f(x) and f(y|x) is the probability density function (p.d.f.) of X and conditional

p.d.f. of Y given X. This nice feature of MCAR data means that the analysis remains

unchanged; one may lose power but the estimators remain the usual maximum likelihood

estimators.

Missing at Random (MAR): Here the probability of missing data is conditionally in-

dependent of the unobserved data given the values of the observed data. That is,

P (R = 1|Y,X) = P (R = 1|Y ) ,

thus the likelihood is still proportional to f(y|x)f(x) if the probability model for the missing

data mechanism is functionally independent of the response model. When data are MAR,

it can produce biased estimators of parameters in marginal (semi-parametric) models, but

maximum likelihood estimators remain optimal provided the model for the missing data

process does not involve any parameters in the response model (i.e. that the missing data

process is non-informative).

Although the MCAR and the MAR assumptions are often realistic and particularly

convenient in the sense that they lead to considerable simplification in the issues surround-

ing the analysis of the incomplete data, a challenging situation arises if data are neither

MCAR nor MAR.

Missing Not at Random (MNAR): In this case, the probability a measurement is

available depends on both observed and unobserved quantities and so P (R|Y,X) cannot

be simplified. The only way to obtain a consistent estimate of the parameters of interest is
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to model the missingness and often the associated parameters are not identifiable. Model

diagnostics for the missing data model are also difficult to carry out in most cases, and so

one is in the difficult position of relying heavily on model assumptions which cannot be

adequately checked.

There have been some ad hoc approaches for dealing with missing data in analysis. By

far the most common and simplest approach adopted by some statistical software packages

is to exclude individuals that have missing values and to restrict analyses to the fully

observed data set. This strategy, called list-wise deletion, or complete case analysis, is

generally inappropriate if the researchers are interested in making inferences on the entire

target population instead of the portion of it represented by available data. It normally

results in a substantial loss in power and precision while consistent estimates are obtained

under the MCAR assumption and bias arises when the data are not MCAR.

There are a few approaches that involve replacing missing values via imputation, in-

cluding mean substitution in which the missing value is replaced with the mean of the

variable estimated from available data, and regression substitution that imputes using re-

gression analysis. These simple imputation methods are inadequate as they may reduce

standard errors, inflate test statistics, give inappropriately narrow confidence intervals and

invalid tests (Musil et al., 2002; Fielding et al., 2008). More modern approaches rely on

maximum likelihood theory and multiple imputation (Schafer, 1999). King et al. (2001)

reviewed many of the practical strengths and limitations of multiple imputation.

Little and Rubin (2002) gives a very thorough treatment of the issue of missing data.

They give an extensive discussion of the theory in the context of multivariate normal models
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with incomplete observations; see also Anderson (1957), Afifi and Elashoff (1966), and

Hocking and Smith (1968). Ibrahim (1990) examined the general problem of incomplete

data for any generalized linear model (GLM) with discrete covariates and showed that the

E-step of the EM algorithm can be written as a weighted complete data log-likelihood for

any GLM. Horton and Laird (1999) described the method of weights in detail, illustrated its

application with several examples, discussed its advantages and limitations, and reviewed

extensions and applications of the method. We consider this approach in the research that

follows.

Another type of latent variable is one that can never be observed, but is introduced as a

way of generalizing a model. For instance, in both survival and recurrent event data, some

subjects may not be observed to experience the event of interest despite the lengthy follow-

up. Cure rate models (Boag, 1949; Berkson and Gage, 1952) are often used to analyze

and describe survival data when long-time survivors exist. These models accommodate

a sub-population of individuals who are not susceptible to the event of interest. This

accommodation leads to survival curves which flatten out earlier than one would expect

from a more standard distribution.

Note that here the meaning of “cure” may differ in different contexts. In chronic

diseases that cannot be cured, a mixture model of this sort allows for the possibility that

the disease may go into remission thereby eliminating the rise of any complications. In

studies of mental health, it could be that environmental factors triggering acute episodes

are eliminated. In cancer studies, cure could be said to occur when the mortality rate in

the diseased group becomes the same as that of the otherwise matched control group, this

could happen following a successful surgery, for example. In short, cure models are often
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used to model long-term survivors rather than cured patients in the general sense.

Boag (1949) first proposed a model to estimate the cure fraction in mixture model and

Berkson and Gage (1952) further developed it to the standard cure rate model as

F(t) = p+ (1− p)F∗(t) ,

where F(t) and F∗(t) denote the probability of being event free at time t for the mixed

group and the uncured group respectively, and p is the cure rate reflecting the proportion

of the population that is not susceptible. In mixture models often the probability of being

cured is modeled by logistic regression and many standard models for survival data can be

used for the uncured patients; the Weibull distribution and the Cox proportional hazards

model are two popular choices (Farewell, 1982; Kuk and Chen, 1992; Taylor, 1995; Sy and

Taylor, 2000). Many variations of mixture cure models have been proposed (Peng et al.,

1998; Peng and Dear, 2000).

Mover-stayer models are more general than cure rate models, and are often discussed in

the context of Markov models. They assume the study population consists of movers and

stayers, where the movers make transitions following some ordinary multistage process and

the stayers make no such transitions. Early references to the mover-stayer model include

Blumen et al. (1955) and Goodman (1961). Further studies have lead to extensions by

Spilerman (1972) and Frydman (1984). Models that incorporate dynamic mover-stayer

indicators were developed by researchers including Cook et al. (2002) and Yamaguchi

(2003).
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1.2 Introduction to Topics

In the following sections, we describe three topics of statistical research. They involve

handling missing covariates in survival data subject to left truncation (Chapter 2), dealing

with right-censored recurrent event data in disease processes subject to resolution (Chapter

3), and addressing the challenges in the interval-censored recurrent event data from disease

processes subject to resolution (Chapter 4).

1.2.1 Missing Covariates with Left-Truncated Event Times

Studies of chronic diseases routinely sample individuals subject to specified conditions on

an event time of interest. In epidemiology, for example, prevalent cohort studies may aim

to evaluate risk factors for death following onset of dementia. Such designs require subjects

to have survived from the date of disease onset to the date of the screening assessment

(Wolfson et al., 2001). In clinical research, randomized trials are often designed to assess

the effect of experimental cancer treatments on survival and patients must survive from

the time of cancer diagnosis to contact to be recruited; there may be additional conditions

imposed on the times of non-fatal events related to the disease process (Hortobagyi et al.,

1996). When the date of disease onset is to be used as the time origin for survival analyses,

samples chosen this way feature left truncation and standard methods of survival analysis

can be readily adapted to deal with this feature (Cox and Oakes, 1984; Andersen et al.,

1993; Klein and Moeschberger, 1997; Kalbfleisch and Prentice, 2002; Lawless, 2002).

Incomplete covariate data often arise in studies with time to event outcomes (Little and

12



Rubin, 2002). This may be a consequence of the study protocol if resources are limited and

a particular subset of individuals are identified for detailed examination of biomarkers, for

example. In other cases it may be due to chance (e.g. noncompliance of study investigators

or participants). There is a large literature on the various frameworks and methods for

fitting regression models to survival data with incomplete covariate information. Methods

based on the EM algorithm are developed by Lipsitz and Ibrahim (1996), Chen and Little

(1999) and Herring et al. (2004) among others. Estimating function approaches incorpo-

rating inverse probability weights are given by Lipsitz and Ibrahim (1998), and Wang and

Chen (2001) develop augmented estimating equations yielding more efficient estimation.

Bayesian approaches for this same problem are developed by Ibrahim et al. (2008) and

Bradshaw et al. (2010), and Chen and Little (2001) consider an interesting alternative ap-

proach for dealing with missing covariates in the context of linear transformation models.

These methods do not deal with the setting where individuals are only sampled if they

satisfy some response-dependent selection criterion (e.g. truncation). In this setting the

sample covariate distributions are different from the population covariate distribution due

to selection effects and in fact different individuals will have different sample covariate

distributions if they have different selection criteria (Begg and Gray, 1987; Bergeron et al.,

2008; Cook and Bergeron, 2011).

1.2.2 A Dynamic Mover-Stayer Model for Recurrent Events

Recurrent data arise frequently in studies of chronic disease, actuarial science, industrial

research and sociology. In health research, examples include exacerbations of symptoms
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in patients with respiratory disease (Grossman et al., 1998), seizures in individuals with

epilepsy (Pledger et al., 1994), and recurrent episodes of bleeding in patients with thrombo-

cytopenia (Heddle et al., 2003; Webert et al., 2006). There has been considerable statistical

research in the last twenty years on methods for the analysis of recurrent event data (Cook

and Lawless, 2007). Models and methods can be broadly classified as intensity-based (An-

dersen et al., 1993), based on marginal mean or rate functions (Lawless and Nadeau, 1995),

or based on random effect models (Lawless, 1987a).

Frequently the recurrent event process ends upon on the occurrence of a terminal event.

Graft rejection episodes in transplant recipients, for example, cease to occur upon total

graft rejection (Cole et al., 1995), skeletal complications in patients with bone metastases

end when a patient dies (Hortobagyi et al., 1998), and recurrent hospitalizations for cardio-

vascular events end upon death (Bourassa et al., 1993). There has been considerable recent

work on the development of statistical methods for the analysis of recurrent events in the

presence of a terminal event. This phenomenon is naturally handled with intensity-based

models (Andersen et al., 1993), but robust marginal methods have been developed (Cook

and Lawless, 1997; Ghosh and Lin, 2000, 2002), as have models and methods incorporating

random effects (Liu et al., 2004; Ye et al., 2007).

We consider the setting in which recurrent events arise in a chronic disease processes but

where some individuals have particularly long periods of time from their last event to a right

censoring time. This is motivated by the need to model recurrent event processes in which

the recurrent events arise because of a transient underlying condition which can resolve.

Unlike the case of a terminal event such as death, in this setting it is not known if and

when the underlying condition has resolved. We handle this complication through use of
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a dynamic mover-stayer model. The model is comprised of an intensity function for event

occurrence among individuals still experiencing the underling condition generating the

events and a series of conditional probabilities for modeling the resolution of the underlying

process.

Mixture models have been used extensively to model the presence of a so-called “cured

fraction” in cancer studies featuring long-term survivors. Farewell (1982, 1986) proposed

a parametric mixture model incorporating a logistic regression model for the latent cure

status and a Weibull model for the survival times of those in the uncured group. Peng et al.

(1998) extended this approach to incorporate the generalized F failure time distribution

and Taylor (1995) extended this further to enable nonparametric estimation of the survival

distribution among susceptible individuals through a Kaplan-Meier type estimate. Kuk and

Chen (1992) extended the cure rate model to accommodate a semiparametric proportional

hazard model for the survival time and proposed estimation via an EM algorithm. Peng

and Dear (2000) further studied the semiparametric approach by allowing covariate effects

on the cure rate. A zero-tail constraint was introduced by Sy and Taylor (2000) to deal

with identifiability issues. Yamaguchi (1992) described a further interesting generalization

of the notion of a cured fraction by introducing a latent failure time at which subjects

became nonsusceptible to the event of interest. Asymptotic properties of maximum likeli-

hood estimates from the cure rate model, including the existence, strong consistency and

asymptotic normality, were studied by Fang et al. (2005); asymptotic variances were also

derived to facilitate inferences using Wald-based pivotals.

Cure rate survival models are a special case of a more general class of mover-stayer

models. In mover-stayer models the population is comprised of two sub-populations. In
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one sub-population, the so-called “mover” group, transitions among states are made ac-

cording to a general multi-state process. In the other sub-population individuals have a

zero probability of moving from the initial state, and these individuals are called “stayers”.

Often Markov models are adopted for the multi-state process for movers, but any multi-

state model can be specified in principle. Goodman (1961) proposed methods for consistent

parameter estimation to address inconsistency of estimators developed by Blumen et al.

(1955) in the discrete-time setting. Spilerman (1972) further generalized the mover-stayer

model to allow the individual mobility rate to follow a continuous distribution. Frydman

(1984) described how to obtain maximum likelihood estimates based on the observed like-

lihood, while Fuchs and Greenhouse (1988) used the EM algorithm with extensions to

handle incomplete follow-up in the panel studies. Models incorporating dynamic mover-

stayer indicators have received some attention including the multistate models by Heckman

and Walker (1987), Yamaguchi (1994, 1998, 2003) and Cook et al. (2002).

1.2.3 Interval-Censored Recurrent Event Data from Disease Pro-

cesses Subject to Resolution

There are many chronic disease processes for which affected individuals experience recur-

rent adverse events. In some settings the events are apparent when they occur, as is the

case in individuals with respiratory disease experiencing recurrent exacerbations (Gross-

man et al., 1998), epilepsy where the events may be recurrent seizures (Pledger et al., 1994),

neurology when the events are recurrent migraine headaches among those with migraineur

(Pascual et al., 2000), and angina where the events may be recurrent acute episodes (Peters
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et al., 2003). Statistical methods for recurrent event analysis in such settings include those

reliant on intensity-based models (Andersen et al., 1993), random effect models (Lawless,

1987a), and marginal methods (Lawless and Nadeau, 1995; Lin et al., 2000). Cook and

Lawless (2007) give a comprehensive account of the frameworks for analysis.

In some settings the occurrence of events is not evident, but rather can only be deter-

mined upon a radiographic examination, when blood tests are carried out, or by detailed

clinical examination. Examples include the development of new tumours in bladder cancer

patients (Byar et al., 1986), the occurrence of asymptomatic fractures in patients with os-

teoporosis (Riggs et al., 1981), and the development of new skeletal metastases in patients

with cancer metastatic to bone (Hortobagyi et al., 1996).

A nonparametric approach to compare the recurrence rate of two treatment groups

based on panel count data was proposed by Thall and Lachin (1988), and the nonparametric

tests are further studied by researchers including Sun and Fang (2003), Zhang (2006), Park

et al. (2007) and Balakrishnan and Zhao (2009). Mean function estimation was developed

by Sun and Kalbfleisch (1995), which was later shown by Wellner and Zhang (2000) to be

seen as a pseudo-maximum likelihood estimator under a non-homogeneous Poisson model.

They proved its consistency, along with their proposed maximum likelihood estimator not

relying on the Poisson assumption. Some procedures to conduct semiparametric regression

analysis for interval-censored recurrent events are developed by Sun and Wei (2000), Cheng

and Wei (2000), Zhang (2002) and Wellner and Zhang (2007). Regression on panel count

data with informative observation times are also investigated by Huang et al. (2006), Sun

et al. (2007) and Zhao and Tong (2011).
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Lawless and Zhan (1998) consider multiplicative recurrent event models with piecewise

constant baseline rate functions fitted using semiparametric methods via estimating func-

tions as well as fully specified random effect models fitted using maximum likelihood. Such

piecewise constant models share the advantages of parametric models and yet provide some

robustness to misspecification of the parametric form of rate functions. Chen et al. (2005)

extend these methods to deal with multi-type recurrent events. Sun and Zhao (2013) give

an excellent account of the recent developments on methods for recurrent event analysis

when data are subject to interval censoring.

In some settings the chronic condition generating the events can resolve and from the

point of resolution individuals will no longer be at risk of events. Establishment of suitable

medications, removal of stressors in mental health studies (Kessing et al., 2004a), or other

lifestyle changes may minimize risk of future events, but it can be difficult to determine

if and when such changes have taken place. In other settings the disease process resolves

naturally. Polymyalgia rheumatica (Salvarani et al., 2002), for example, is a disease with

different stages, and in the most active phase patients experience acute episodes of pain in

the shoulder and pelvic joints. This active phase is of variable length (Healey, 1984) and

upon completion of this phase the acute episodes cease to arise.

Many patients with systemic lupus erythematosus experience flares due to lupus nephri-

tis. This condition, however, can go into remission and when this happens patients cease to

experience acute flares in lupus nephritis (Barber et al., 2006). Syndesmophytes are bony

growths that arise in patients with psoriatic arthritis, ankylosing spondylitis and other

arthritic conditions and they are of scientific interest because they reflect a consequence of

the underlying condition. Their development, however, is only detectable by radiographic
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examination. These rheumatic conditions can go into remission (Gladman et al., 2001;

Zochling and Braun, 2006), and hence in this setting one is faced with both the challenge

of interval-censored recurrent event times and the need to accommodate the possibility

that the underlying condition has resolved.

1.3 Motivating Studies

In this section, we will look at the corresponding studies that motivated the methodological

developments of this research.

1.3.1 Breast Cancer Patients with Skeletal Metastases

Here we consider data from a trial of 285 breast cancer patients with skeletal metastases

diagnosed within three years of randomization (Hortobagyi et al., 1996). The primary

purpose of this trial was to examine the effect of an experimental bisphosphonate therapy

(n=133) compared to the control (standard care) therapy (n=152) on the reduction in

skeletal complications arising because of these bone metastases. Secondary interest lies

in the the effect of therapy on the time to death; the survival times of 42 (14.7%) of the

patients were censored for death. We consider an analysis in which separate estimates

of the treatment effect are desired for patients that are estrogen receptor (ER) positive

and those that are ER negative, while controlling for whether the patient was 50 years of

age or older at the time of diagnosis. The ER status is missing for 14.3% of patients in

the experimental arm and 17.1% of patients in the control arm, but age of diagnosis was
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completely observed. Among the 114 individuals in the experimental arm with ER status

available, 94 (82%) were ER positive, and among the 126 individuals in the control arm

with available ER status, 97 (77%) were ER positive. The model in Section 2.2 is therefore

suitable to address this question.

1.3.2 Danish Study of Individuals with Affective Disorder

A study of individuals with affective disorder was carried out in Denmark based on a

registry of hospitalizations. For this study, a patient entered the cohort at the onset of

affective disorder, defined by the first hospitalization for any mental disorder of inorganic

etiology between 1994 and 1999. A total of 10523 individuals satisfied this selection con-

dition. Over the course of the study period there was an average of 1.618 re-admissions

(S.D.=1.720), with a minimum of 1 and a maximum of 90.

Kvist et al. (2007) examined the impact of misspecification of the frailty distribution,

using a non-parametric estimator for the joint gap times and a marginalized estimator for

marginal gap times. Cook and Lawless (2013) investigated trends in this recurrent event

process and discussed the tests for trends in detail. We are now interested in extending

analyses to accommodate the patients with long observed event-free periods (stayers) and

ones with shorter durations (movers) in the recurrent event setting.

The present goal is to describe a model for the pattern of event occurrence where the

events are the acute exacerbations of affective disorder and data feature individuals with

unusually long periods of time without recurrence at the end of follow-up; see Figure 1.1.

This pattern prompted the development (Winokur, 1975) and examination (Kessing et al.,
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2004b) of a theory that the disease process may “burn-out” for some affected individuals.

This theory, in part, motivated the development of the dynamic mover-stayer model to be

described in the Chapter 3 that follows. The data summary is given in Table 1.1 and we

focus on the 9228 patients who remained unipolar over the entire course of study.
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Figure 1.1: Timeline plots of recurrent acute episodes of affective disorder from time of
disease onset for a selected sample of individuals from the Danish registry between 1994
and 1999

Here the recurrent event data are right-censored either due to lost of follow-up or death,

whichever occurs first. Though suicide could be associated with recurrence of affective

disorder, it usually happens shortly after the disease onset, and Kessing et al. (1998)

found no significant association between suicides and event reoccurrence, and only a small

percentage patients died by the end of study in this cohort.
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Table 1.1: Data summary of the Danish registry dataset from 1994 to 1999

10523 patients in the entire course of study.

Female Male Total
n(%) 6721(63.9%) 3802(36.1%) 10523

No. of visits total 11132 5889 17021
mean(std) 1.656(1.935) 1.549(1.247) 1.618(1.247)

range 1-90 1-21 1-90
Death n(%) 300(4.5%) 227(6.0%) 527(5.0%)
Bipolar at entry n(%) 602(9.0%) 504(13.3%) 1106(10.5%)
Bipolar at end n(%) 737(11.0%) 558(14.7%) 1295(12.3%)

9228 patients who have been unipolar over the entire course of study.

Female Male Total
n(%) 5984(64.8%) 3244(35.1%) 9228

No. of visits total 9397 4769 14166
mean(std) 1.570(1.348) 1.470(1.101) 1.535(1.268)

range 1-26 1-16 1-26
Death n(%) 271(4.5%) 204(6.3%) 475(5.1%)

1.3.3 Joint Damage in Patients with Psoriatic Arthritis

Psoriatic arthritis is an inflammatory arthritis and an autoimmune disease that commonly

occurs among patients with psoriasis. Patients with psoriatic arthritis may experience

swelling, pain and inflammation in the affected joints. The University of Toronto Psoriatic

Arthritis Clinic is the largest center in the world for specialized care and comprehensive

research in this disease. The clinic, started in 1978, has been recruiting and following

patients continuously since then. Data collected at clinic entry and regular follow-up clinic

visits arise from a complete history, physical examination, blood and urine tests, and
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radiographic examination. Over 1100 patients have been closely followed over the years.

The development of joint damage is of primary interest to clinicians since this damage

impairs quality of life and functional ability. Understanding the risks of rapid onset and

accumulation of damage is therefore the basis of much of the scientific research in this

condition (Gladman et al., 1995). Factors studied include information on family history

of psoriatic arthritis and genetic information based on human leukocyte antigen (HLA)

markers, for example. Radiological examinations of the hands, feet and spine are scheduled

every two years, but the actual assessment times vary considerably. Moreover there are

some patients who experience no joint damage over the entire course of follow-up, and

others who develop damaged joints for some time but then experience long periods in

which no further damage is observed. One possible explanation for the latter scenario

is that these patients experience remission and hence are no longer at risk for further

damage. A key point is that individuals transition from the mover (susceptible) to stayer

(resolved) sub-group as time passes. Figure 1.2 displays the timing of the assessments and

the number of additional damaged joints detected over the respective intervals for a sample

of 15 individuals; here we restrict attention to patient data over the first 30 years from

disease onset. The variability in the frequency of visits is apparent, as is the variation in

the event counts both between patients.

1.4 Outline of the Thesis

This thesis aims to study and develop appropriate statistical methods to address several

kinds of incompleteness problems in lifetime data: missing covariates with left truncation in
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Figure 1.2: Plot of assessment times and number of additional radiological damaged joints
detected between assessments (red numbers) from onset of psoriatic arthritis for a selected
sample of patients from University of Toronto Psoriatic Arthritis Clinic recruited between
1978 and 2013; follow-up restricted to within 30 years of disease onset

survival analysis, unobserved latent indicator in disease process that is subject to resolution

with right censoring and interval censoring in recurrent event data. The remainder of this

thesis is organized as follows.

Chapter 2 focuses on the missing covariate problem in survival data with left truncation.

In Section 2.1 we define notation, give the complete data likelihood, and describe how to

carry out the maximization step of the EM algorithm using standard software. Additional
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technical details on EM algorithm including the realization of the E-step and estimation

of the information-based variance are given in Appendix 2A. We then assess the empirical

performance of estimators arising from a complete case analysis, a misspecified likelihood

which uses the population rather than the appropriate sample covariate distribution, and

the proposed method. Extensions to facilitate robust estimation using piecewise-constant

baseline hazards are described in Appendix 2B. The extension dealing with the case of a

missing stratification variable to be used in a secondary sub-group analysis is developed

in Section 2.2 and the illustrative application is given in Section 2.3. Concluding remarks

and a recap of the contributions are given in Section 2.4.

In Chapter 3 we consider the situation in which events arise in a chronic disease pro-

cesses but where individuals under observation tend to have a long period from their last

event to a censoring time. We handle this using a dynamic mixture model formulation.

We consider a point process model augmented to include a dynamic mover-stayer indicator

which is generated each time an event occurs. In Section 3.1 we introduce the notation

and model formulation for general case. In Section 3.2 we first give the complete data

likelihood for a general model, then describe how to implement the EM algorithm, and

give specific details on how to fit a semiparametric latent Markov model. The performance

of the proposed algorithm for parametric and semiparametric models is examined empiri-

cally in Section 3.3. Several models are fitted to the motivating Danish study of affective

disorder in Section 3.4 and concluding remarks are given in Section 3.5.

Chapter 4 describes methods which aim to handle interval-censored recurrent events

arising from disease processes subject to resolution. The dynamic mover-stayer model of

Shen and Cook (2013a) is reviewed in Section 4.1, the detailed EM algorithm for fitting a
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dynamic mover-stayer model to interval-censored recurrent event data under a piecewise

constant baseline rate function is described in Section 4.2. We empirically exam the per-

formance of the proposed approach in Section 4.3. Data from a psoriatic arthritis cohort

is analysed in Section 4.4 and general remarks are given in Section 4.5.

Further comments regarding proposed methods and topics warranting future research

are discussed in Chapter 5.
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Chapter 2

Incomplete Covariates and

Left-Truncated Survival Data

The aim of this chapter is to consider the missing covariate problem in survival data with

left truncation and propose a simple strategy for dealing with it. We describe an EM

algorithm (Dempster et al., 1977) for dealing with incomplete discrete covariate data. The

algorithm involves the conceptualization of a complete data set which includes information

on both the missing covariates and the number of unsampled individuals in the population

who did not satisfy the truncation condition (Turnbull, 1976). The maximization step

is shown to be easily implemented using standard survival analysis software provided it

can accommodate left-censored data. A generalization of this algorithm is then developed

for sub-group analyses in clinical trials where information on the stratification variables is

missing. An application to data from a recently completed trial of patients with metastatic

cancer is used for illustration.
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2.1 Notation and Statement of the Problem

2.1.1 The Observed Data Likelihood
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Figure 2.1: Lexis diagram of calendar event times and left-truncated failure time data

We consider first a cohort study in which a sample of m individuals is obtained by

randomly sampling from a population of diseased individuals. As shown in Figure 2.1, let

A denote the calendar time at which subjects are accrued, and B denote the calendar time

of the end of the study; the duration of the study is then C = B − A. Let Di denote the

calendar time of disease onset and Ei denote the calendar time of the event, say death,

for individual i; then Ti = Ei −Di is the corresponding survival time from disease onset.

To be included in the study it is necessary that Ti > Li = A − Di, and so the survival

time of a recruited individual is left-truncated at Li. If C†i (A < C†i < B) is a random

calendar time at which an individual is lost to follow-up, let Ci = min(B,C†i )−Di denote
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the censoring time measured from disease onset, Xi = min(Ti, Ci) denote the observation

time, and δi = I(Xi = Ti) indicate whether individual i is observed to die. Consider a

proportional hazards model

h(s|Zi; θ) = h0(s;α) exp(Z ′iβ)

specified to assess the effect of a covariate vector Zi on the survival time, where h0(s;α)

is the baseline hazard function indexed by α, β is a vector of regression coefficients, and

θ = (α′, β′)′. Let H0(s, t;α) =
∫ t
s
h0(u;α)du, H(s, t|Zi; θ) =

∫ t
s
h(u|Zi; θ)du and we denote

H0(0, t;α) and H(0, t|Zi; θ) by H0(t;α) and H(t|Zi; θ) respectively. We assume Zi ⊥ Di so

that the composition of the population with respect to the risk factors is stable over time,

as is the effect of these risk factors on disease occurrence. We also assume Ti ⊥ (Di, C
†
i )|Zi

so that the distribution of the event time does not depend on the calendar time of disease

onset and censoring is conditionally independent of the event time.

Suppose a sample of m individuals is recruited at the start of the study. For illustration

we suppose that the covariate vector is of the form Zi = (Zi1, Zi2)′ and contains risk

factors for event at the time of diagnosis, where Zi1 is a binary covariate which is not

observed for all individuals and Zi2 is another binary covariate which is always observed,

i = 1, . . . ,m ; extensions to handle other types of categorical covariates are straightforward.

Let Ri = I(Zi1 is observed), R = {i : Ri = 1}, and R̄ = {i : Ri = 0}. The conditional

probability mass function for Zi1 given Zi2 is P (Zi1|Zi2; η) where

logitP (Zi1 = 1|Zi2) = η0 + η1Zi2 ,
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with η = (η0, η1)′ and ψ = (θ′, η′)′. We assume that Zi1 is missing at random according to

P (Ri = 1|Di, Zi, Ti, Ci) = P (Ri = 1|Zi2), where this model does not share any parameters

with ψ and hence missingness is non-informative.

In the absence of left truncation (i.e. if Li = 0, i = 1, . . . ,m), the observed data

likelihood is

L(ψ) =
∏
i∈R

{
hδi(Xi|Zi; θ) exp (−H(Xi|Zi; θ))P (Zi1|Zi2; η)

}
(2.1)

×
∏
i∈R̄

{∑
Zi1

hδi(Xi|Zi; θ) exp (−H(Xi|Zi; θ))P (Zi1|Zi2; η)

}
.

When a sample features left truncation, the correct probability mass function for the

covariate vector of individual i is P (Zi|Ti > Li;ψ), so the likelihood in this setting is

L(ψ) =
∏
i∈R

{
hδi(Xi|Zi; θ) exp (−H(Li, Xi|Zi; θ))P (Zi1|Zi2, Ti > Li;ψ)

}
(2.2)

×
∏
i∈R̄

{∑
Zi1

hδi(Xi|Zi; θ) exp (−H(Li, Xi|Zi; θ))P (Zi1|Zi2, Ti > Li;ψ)

}
,

where

P (Zi1|Zi2, Ti > Li;ψ) =
P (Zi1|Zi2; η) exp (−H(Li|Zi; θ))∑

Zi1

P (Zi1|Zi2; η) exp (−H(Li|Zi; θ))
. (2.3)

The likelihood (2.2) can be maximized directly, but this can be challenging if the

dimension of ψ is high. An expectation-maximization (EM) algorithm can alternatively be

used with a complete data likelihood analogous to (2.2) where missing covariate values are

part of the complete data. The maximization step of such an algorithm, however, would
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require optimizing a complicated function of ψ since one cannot factor the complete data

likelihood to isolate the components θ and η; see (2.3). We propose a computationally

more appealing complete data likelihood by incorporating contributions associated with

individuals not selected for inclusion in the sample.

2.1.2 A Turnbull-type Complete Data Likelihood

Corresponding to individual i in the sample with left truncation time Li, one can concep-

tualize Ji individuals who are identical in all respects (i.e. with the same covariate vector

and disease onset time as individual i), except they did not remain event-free (alive) long

enough to qualify for inclusion in the sample. Turnbull (1976) used the evocative term

“ghosts” to refer to such individuals and we consider a complete data likelihood which in-

cludes those individuals. All that is known about these individuals, however, is that their

respective survival times are less than Li, and hence their survival times are left-censored

at Li. The complete data likelihood incorporating these ghosts can be written as

LC(ψ) = LC1(θ) · LC2(η) ,

where

LC1(θ) ∝
∏
i∈R

{
hδi(Xi|Zi)F(Xi|Zi) [F (Li|Zi)]Ji

}
·

∏
i∈R̄

{
1∏

z1=0

{
hδi(Xi|(z1, Zi2))F(Xi|(z1, Zi2)) [F (Li|(z1, Zi2))]Ji

}I(Zi1=z1)
}
,
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and

LC2(η) ∝
∏
i∈R

P (Zi1|Zi2)Ji+1
∏
i∈R̄

{
1∏

z1=0

P (Zi1 = z1|Zi2)I(Zi1=z1)

}Ji+1

,

where F(t|Zi) = exp(−H(t|Zi)), F (t|Zi) = 1−F(t|Zi), and we suppress the dependence on

parameters on the right-hand sides for convenience. The primary appeal of this complete

data likelihood is that it does not involve probabilities incorporating truncation, as is the

case in (2.3), and as a consequence one can factor the complete data likelihood and carry

out the maximization step much more easily.

Let the observed data for individual i be denoted by Yi = {(Zi, Ri, Li, Xi, δi)} if Ri = 1

or {(Zi2, Ri, Li, Xi, δi)} if Ri = 0, and let Y = (Y ′1 , . . . , Y
′
m)′. We let `C(ψ) = logLC(ψ)

and define Q(ψ;ψr) = E(`C(ψ)|Y ;ψr) as the conditional expectation of the complete data

log-likelihood given the observed data, where the expectation is taken using the estimate

ψr from the rth iteration of the EM algorithm. We can then write

Q(ψ;ψr) = Q1(θ;ψr) +Q2(η;ψr) (2.4)

with Q1(θ;ψr) = E(`C1(θ)|Y ;ψr) given by

∑
i∈R

[δi log h(Xi|Zi) + logF(Xi|Zi) + J r
i logF (Li|Zi)] (2.5)

+
∑
i∈R̄

ζri [δi log h(Xi|(1, Zi2)) + logF(Xi|(1, Zi2)) + J 1r
i logF (Li|(1, Zi2))]

+
∑
i∈R̄

(1− ζri )[δi log h(Xi|(0, Zi2)) + logF(Xi|(0, Zi2)) + J 0r
i logF (Li|(0, Zi2))]
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with

J r
i = E(Ji|Zi, Ri = 1, Ti > Li, Xi, δi;ψ

r) ,

J zr
i = E(Ji|(z, Zi2), Ri = 0, Ti > Li, Xi, δi;ψ

r) ,

and

ζri = E(Zi1|Zi2, Ri = 0, Ti > Li, Xi, δi;ψ
r) .

Expressions for these conditional expectations are provided in the Appendix 2A.

Existing software for parametric survival analysis can be used to maximize Q1(θ;ψr),

provided it can handle left-censored observations. This can be achieved by creating pseudo-

datasets in which for each i ∈ R two lines are generated. One line corresponds to the

observed or right-censored observation depending on whether δi = 1 or δi = 0 respectively.

The second line is introduced to correspond to the left-censored failure time of the “ghosts”,

and has weight J r
i . For each i ∈ R̄ four lines are required. First, a contribution for the

observed or right-censored failure time is required with the value Zi1 = 1 and weight ζri ;

a second line corresponding to the left-censored observation time with Zi1 = 1 will have

weight ζri J 1r
i . A second pair of analogous lines is required to reflect the case in which

Zi1 = 0, where the first will have weight 1− ζri and correspond to the sampled individual,

and the second with weight (1− ζri )J 0r
i corresponding to the left-censored failure time of

the “ghosts”. Weibull regression models, for example, can be fitted with right and left-

censored data, using standard packages for parametric regression including R (survreg),

S-PLUS (survReg or censorReg) and SAS (PROC LIFEREG). Alternatively a more flexible

piecewise constant baseline hazard function can be adopted, in which case the M -step can
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be carried out using software for fitting generalized linear regression models. The details

on how to construct the data frame for this algorithm are described in Appendix 2B.

The function Q2(η;ψr) = E(`C2(η)|Y ;ψr) in (2.4) is

∑
i∈R

[(J r
i + 1) logP (Zi1|Zi2)] (2.6)

+
∑
i∈R̄

1∑
z1=0

[ζri ]z1 [1− ζri ]1−z1 (J z1r
i + 1) logP (Zi1 = z1|Zi2)

and can also be maximized using software for logistic regression by creating a pseudo-

dataset with one line for each individual i ∈ R with weight J r
i + 1 and observed value of

Zi1. For each i ∈ R̄ two lines are required: one with weight ζri (J 1r
i + 1) and Zi1 = 1, and

one with weight (1 − ζri )(J 0r
i + 1) and Zi1 = 0. Specification of a quasi-likelihood model

with a logit link function and variance function V (µ) = µ(1 − µ) will yield the updated

estimate ηr+1.

2.1.3 Empirical Performance of the Proposed Method

Here we evaluate the frequency properties of estimators obtained by the proposed algo-

rithm, and we begin by a description of the method of data generation. We let P (Zik =

1) = 0.5, k = 1, 2 and the odds ratio for the association between Zi1 and Zi2 be 2, so

η0 = −0.347 and η1 = log 2. Suppose the survival time is Weibull distributed with hazard

h(s|Zi; θ) = h0(s;α) exp(Z ′iβ) ,
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where h0(s;α) = ρκ(ρs)κ−1, α1 = log ρ, α2 = log κ and α = (α1, α2)′ ; we set ρ = 1 and

κ = 1.5. We consider a calendar time origin of zero, and suppose disease onset happens

according to a stationary process in the population giving Di ∼ Unif(0, A) where Di⊥Zi.

The desired degree of left truncation is obtained by choosing A to satisfy

T% = 100 · (1− P (Ei > A)) = 100 · (1− EZi

[
EDi|Zi

P (Ti > A−Di|Di, Zi)
]
)

where T% is the truncation percentage; we consider T%=25 and 50.

To generate covariate data compatible with the sampling requirement, given Di, we

generate Zi according to P (Zi|Ti > Li). We then generate Ui ∼ Unif(0, 1), and solve for

the failure time Ti in Ui = exp(−H(Li, Ti|Zi)). The probability that an individual included

in the study is administratively censored given the disease onset time Di and covariates

Zi, is

P (Ei > B|Ei > A,Di, Zi) = P (Ti > B −Di|Di, Zi)/P (Ti > Li|Di, Zi) .

We obtain the administrative censoring rate given Zi by

P (Ei > B|Ei > A,Zi) = EDi|Ei>A,Zi

[
P (Ei > B|Ei > A,Di, Zi)

]
,

and solve for B in

100 · P (Ei > B|Ei > A) = 100 · EZ|Ei>AP (Ei > B|Ei > A,Z) ,
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to obtain the desired rate, where

P (Zi|Ei > A) = P (Ei > A|Zi)P (Zi)/
∑
Zi

P (Ei > A|Zi)P (Zi) .

Additional random censoring is incorporated by generating an exponential withdrawal time

to give a net censoring rate of 25%.

To simulate incomplete data for Z1, we assume a missing at random mechanism with

P (Ri = 1|Zi, Di, Ei > A,Xi, δi) = P (Ri = 1|Zi2)

and let

logitP (Ri = 1|Zi2) = γ0 + γ1zi2 .

The net frequency of complete data in the sample is then

P (Ri = 1) = EZi2|Ei>A(P (Ri = 1|Zi2))

If we fix γ1 = log 4, and the percentage of missing covariate values at M%, one can solve

for γ0 correspondingly; we set M% = 25, 50 (i.e, P (Ri = 1) = 0.75, 0.50). Five hundred

datasets (nsim = 500) of m = 500 individuals were simulated.

For each simulated dataset we conducted four analyses: i) an analysis based on the

sample including all values of the covariates (NO MISS), possible because this is a simula-

tion study, ii) a complete case (CC) analysis which restricts attention to individuals in R,

iii) an analysis based on a misspecified likelihood (MISSPEC) with the form of (2.2) but
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with P (Zi1|Zi2; η) in place of P (Zi1|Zi2, Ti > Li;ψ), and iv) the proposed EM algorithm

(EM). The analysis in ii) is based on a correctly specified model and yields consistent

estimates of θ under this missing data mechanism, but it is inefficient since it disregards

data from individuals in R̄. The analysis in iii) is based on the correct model for the

survival time given the covariates but an incorrect model for the covariates since the popu-

lation covariate distribution is used; the estimator for ψ is therefore inconsistent. For this

analysis, the asymptotic theory on the behavior of maximum likelihood estimators under

misspecified models could be exploited (Cox, 1961; White, 1982; Rotnitzky and Wypij,

1994), but we elect to study this through simulation. The analysis based on iv) is correct

and so a consistent estimator of ψ is obtained, which should be more efficient than the

estimator from the complete case analysis. The simulation study sheds light on the bias

and efficiency trade-offs for these various approaches. Across all parameter configurations

considered here, the proposed EM algorithm converged reasonably quickly with longer

computing times occurring under higher rates of missing data and left truncation.

The empirical biases and empirical standard errors of the estimators from all four ap-

proaches are displayed in Table 2.1; we do not report performance of estimators of η in the

first two rows of each configuration (NO MISS and CC) since the covariate distribution

would not typically be modeled in these settings. The analysis based on subjects with

complete data yielded estimates which had negligible empirical bias for the parameters of

interest, as expected. The complete case analysis leads to estimates with negligible empir-

ical bias but lower efficiency reflected by the greater empirical standard errors. Under the

misspecified model, there were small empirical biases of estimators for θ (most appreciable

for the α components), and much larger empirical biases of estimators for η, reflecting
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misspecification of the covariate model. As expected the estimates from the proposed EM

had negligible empirical biases for the components of θ and η, and empirical standard

errors which were smaller than those from the complete case analysis. Note that the effi-

ciency gains from the correct analysis were appreciable for all elements of θ except for β1,

the regression coefficient of the partially observed covariate. Broadly similar conclusions

were seen in the case η1 = 0 (i.e. when covariates are independent) with slightly lower

improvement in efficiency with the proposed EM algorithm (results not reported).
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2.2 Sub-group Analysis in Clinical Trials

When assessing a treatment effect on a time to event response in randomized trials it is

customary to define the time origin as the date of randomization. When this time origin

is adopted, one is implicitly making treatment comparisons after marginalizing over the

left truncation times as well as any covariates. The time of randomization is the time

at which evidence of a treatment effect could emerge and so from this standpoint it has

face validity. Often however, protocols dictate that analyses be stratified according to risk

factors whose effects are manifest at the time of disease onset, and hence can influence

whether individuals will satisfy the entry criteria for the clinical trial. In cancer trials, for

example, it may be appropriate to stratify on tumour type, or HER2 (human epidermal

growth factor receptor 2) status (Gennari et al., 2008). Important secondary analyses may

in fact be directed at assessing treatment effects by HER2 status and investigating whether

there is evidence of differences in treatment effect between strata defined by HER2 status.

The most sensible time origin for these types of analyses is the time of disease onset,

and in fact this is essential to adopt to ensure valid covariate models when such data are

incomplete.

We consider here the problem of conducting pre-specified subgroup analyses in which

the subgroups are defined by patient characteristics and have biological rationale (Yusuf

et al., 1991). We presume that the other criteria for valid sub-group analyses are satisfied

and thus the trial is compliant with the CONSORT statement (Moher et al., 2001). Con-

sider the setting of Section 2.1 with Di, (Zi1, Zi2)′ and Ri defined as in Section 2.1.1 but

now suppose that at the time of accrual individuals are randomized to one of two treat-
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ment arms. To accommodate the fact that treatment does not begin until recruitment

we define a time-dependent variable Zi3(s) such that Zi3(s) = 0 for 0 < s < Li and for

Li ≤ s, Zi3(s) = 1 if individual i is randomized to receive an experimental treatment, and

Zi3(s) = 0 otherwise. We then let Zi(s) = (Zi1, Zi2, Zi3(s))′ denote the full covariate vec-

tor and Z∗i (s) = (Zi2, Zi3(s))′ denote a sub-vector containing covariates which are always

observed. Next let Z̄i(s) = {Zi(u), 0 ≤ u ≤ s} and Z̄∗i (s) = {Z∗i (u), 0 ≤ u ≤ s} denote the

corresponding histories at s, and Z̄i = Z̄i(∞) and Z̄∗i = Z̄∗i (∞) denote the full paths of the

respective covariates.

If interest lies in estimating the effect of treatment according to subgroup defined by

Zi1, then a natural model is

h(s|Zi(s); θ) = h0(s;α) exp(Zi1β1 + Zi2β2 + Zi3(s)β3 + Zi1Zi3(s)β4) . (2.7)

If we let Hi(t; θ) = H(t|Z̄i(t); θ) =
∫ t

0
h(s|Zi(s))ds, then the complete data likelihood is

LC(ψ) ∝
∏
i∈R

{
hδi(Xi|Zi(Xi)) exp(−Hi(Xi)) [1− exp(−Hi(Li))]

Ji P (Zi1|Z̄∗i })Ji+1
}
·

∏
i∈R̄

{
hδi(Xi|Zi(Xi)) exp(−Hi(Xi)) [1− exp(−Hi(Li))]

Ji P (Zi1|Z̄∗i )Ji+1
}Zi1

·

∏
i∈R̄

{
hδi(Xi|Zi(Xi)) exp(−Hi(Xi)) [1− exp(−Hi(Li))]

Ji P (Zi1|Z̄∗i )Ji+1
}(1−Zi1)

.

Note that E(Ji|Z̄i, Ti > Li;ψ
r) and E(Ji|Zi1 = z, Z̄∗i , Ti > Li;ψ

r) are given by (2A.1)

and (2A.2) respectively since the treatment variable is defined to be zero prior to the left
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truncation time. Here, however, ζri = E(Zi1|Z̄∗i , Ri = 0, Ti > Li, Xi, δi;ψ
r) is

hδi(Xi|(1, Z∗i (Xi)); θ
r) exp(−H(Xi|(1, Z̄∗i (Xi)); θ

r))P (Zi1 = 1|Zi2; ηr)∑1
z=0 h

δi(Xi|(z, Z∗i (Xi)); θr) exp(−H(Xi|(z, Z̄∗i (Xi)); θr))P (Zi1 = z|Zi2; ηr)
.

Calculations like those of Section 2.1.3 can be carried out to satisfy the 25% censoring rate

and particular truncation and marginal missing data rates.

Analyses based on the full sample with no missing covariates (NO MISS), a complete

case analysis (CC) and the proposed EM algorithm were carried out. In Table 2.2 the

empirical biases and standard errors are reported for truncation and missing data rates

of 25% and 50% respectively for 500 simulated datasets of m = 500 individuals. The

estimators of β3 and β3 + β4, the two estimates of treatment effect for individuals with

Z1 = 0 and Z1 = 1 respectively, are of greatest interest. As was the case in Section 2.1,

we see small biases in these three analyses with the proposed algorithm giving improved

efficiency over the complete case analysis for most parameters.
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2.3 Analysis of Data from a Metastatic Cancer Trial

Table 2.3 gives the results of fitting a model based on (2.7) under the complete case

analysis and fitting a model based on the proposed EM algorithm; standard errors were

obtained based on 500 bootstrap samples for the proposed EM algorithm. Note that there

is no evidence of a treatment effect for any patients irrespective of estrogen receptor (ER)

status. This is not surprising since this was a palliative trial in which the aim was to

improve quality of life. Among individuals who are ER positive, the relative risks were

close to one for both analyses, but the point estimate for ER negative patients suggests a

19.5% relative risk reduction based on the complete case analysis (p=0.491). The proposed

EM algorithm, which exploits the information about the missing ER status from the left

truncation time, gives a relative risk reduction estimate of 25.9% (95% CI: 0.415, 1.327;

p=0.311).

Table 2.3: Relative risk estimates from complete case analysis and the proposed EM al-
gorithm for fitting a Weibull proportional hazards model with ER status as the partially
observed covariate (Z1), age at diagnosis (Z2 = I(age ≥ 50)), treatment, and an ER status
by treatment interaction; standard errors based on 500 bootstrap samples for proposed
EM algorithm

ER Negative ER Positive

Method RR 95% CI p-value RR 95% CI p-value

Complete Case 0.805 (0.433, 1.493) 0.491 1.048 (0.792, 1.387) 0.741
Proposed EM 0.741 (0.415, 1.322) 0.311 1.029 (0.775, 1.367) 0.842
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2.4 Remarks

We have considered issues in the analysis of incomplete covariate data under a form of

response-biased sampling which is widely encountered in epidemiologic research as well

as clinical trials. This response-bias arises any time that there are conditions imposed

on individuals for inclusion in a study, but in prevalent cohort studies the condition that

individuals be event-free (e.g. alive) at the time of diagnosis leads to left-truncated event

times. Left truncation can readily be handled using standard software when covariates

are complete (Klein and Moeschberger, 1997). When covariates are incompletely observed,

one strategy is to specify an observed data likelihood based on the joint distribution of the

response times and the covariates. This can be challenging because the correct covariate

distribution must condition on the selection criterion being satisfied and therefore involves

parameters of the survival distribution. To address this we describe an EM algorithm

based on a complete data likelihood including contributions from individuals who did not

satisfy the truncation condition. Standard software for parametric survival analysis which

handles left censoring can then be used at the maximization step. The proposed algorithm

is shown to perform well for both the setting of prevalent cohort studies and clinical trials

where subgroup analyses are of interest but covariates are incomplete.
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Appendix 2A: Additional Details for the EM Algo-

rithm

Appendix 2A.1: Form of Conditional Expectations

For each i ∈ R, the only “missing” information is Ji, the number of “ghosts” who did not

satisfy the truncation condition of the respective individual. If ψr denotes the parameter

estimate at the rth iteration of the EM algorithm, to take the relevant expectations in

(2.5) and (2.6) we note E(Ji|Zi, Ri = 1, Ti > Li, Xi, δi;ψ
r) = E(Ji|Zi, Ti > Li;ψ

r) and

that

J r
i = E(Ji|Zi, Ti > Li;ψ

r) (2A.1)

=
P (Ti < Li|Zi; θr)
P (Ti ≥ Li|Zi; θr)

=
1− exp(−H(Li|Zi; θr))

exp(−H(Li|Zi; θr))
, for i ∈ R .

For i ∈ R̄, in addition to the number of “ghosts”, the value of Zi1 is missing. We note

E(Ji|(z, Zi2), Ri = 0, Ti > Li, Xi, δi;ψ
r) = E(Ji|(z, Zi2), Ti > Li;ψ

r) and let

J zr
i = E(Ji|(z, Zi2), Ti > Li;ψ

r)

=
P (Ti < Li|(z, Zi2); θr)

P (Ti ≥ Li|(z, Zi2); θr)
=

1− exp(−H(Li|(z, Zi2); θr))

exp(−H(Li|(z, Zi2); θr))
, for i ∈ R̄, (2A.2)

denote the expectation conditional on a particular value of Zi = (z, Zi2)′, z = 0, 1. We

then note ζri = E(Zi1|Zi2, Ri = 0, Ti > Li, Xi, δi;ψ
r) = E(Zi1|Zi2, Ti > Li;ψ

r) , for i ∈ R̄,
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which we obtain through

ζri =
hδi(Xi|(1, Zi2); θr)F(Xi|(1, Zi2); θr)P (Zi1 = 1|Zi2; ηr)

1∑
z=0

hδi(Xi|(z, Zi2); θr)F(Xi|(z, Zi2); θr)P (Zi1 = z|Zi2; ηr)

. (2A.3)

Appendix 2A.2: Estimation of Information-Based Variances

Standard errors can be obtained using the nonparametric bootstrap as done in the example,

or using the approach of Louis (1982), implemented as follows. Let U(ψ) = (U ′1(θ), U ′2(η))′

where U1(θ) = ∂ logLC(ψ)/∂θ and U2(η) = ∂ logLC(ψ)/∂η, and

I(ψ) = −∂U(ψ)/∂ψ′ =

 I1(θ) 0

0 I2(η)

 (2A.4)

where I1(θ) = −∂U1(θ)/∂θ′ and I2(η) = −∂U2(η)/∂η′. Then if I(ψ) is the information

matrix from the observed data likelihood (2.2),

I(ψ) = EM{I(ψ)|Y } − EM{U(ψ)U ′(ψ)|Y } (2A.5)

where M represents the missing data which is simply the number of “ghosts” J for indi-

viduals in R, and is the number of ghosts and the covariate Z1 for individuals in R̄. The

expectations are carried out by individual, given their respective observed data. The first

term in (2A.5) for example, is simply obtained by extracting the usual observed informa-

tion matrices from the two analyses estimating θ and η at the final iteration of the EM

algorithm and the second term is given by taking the outer product of the stacked score
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vectors and averaging using the weights estimated at the final iteration.

Appendix 2B: An EM Algorithm for Piecewise Expo-

nential Models

Here we consider an extension of the algorithm of Section 2.1, i.e., Section 2.2 of Shen and

Cook (2013b), to deal with more flexible weakly parametric proportional hazards models

with piecewise constant baseline hazard functions. Let 0 = b0 < b1 < . . . < bK−1 < bK =∞

denote pre-specified cut points giving K sub-intervals Bk = [bk−1, bk), k = 1, . . . , K. The

baseline function has the form h0(t) = αk if t ∈ Bk, k = 1, . . . , K.

Let Ai = [Li,∞) denote the truncation region for individual i, and Aci = [0, Li). In the

observational setting of Section 2.1, a complete data likelihood is given, but here we replace

the term F (Li|Zi)Ji with
∏Ji

j=1 f(tij|Zi), where tij is the failure time of the jth “ghost”

for individual i known to fall in Aci . The reason for considering a different form is that

the maximization step of the complete data likelihood becomes trivial under a piecewise

constant model if the failure times are observed; this can be exploited in the algorithm

that follows.

Let Ik(t) = I(t ∈ Bk) and let wk(t) =
∫ t

0
Ik(u)du denote the amount of time that a

particular subject is at risk in Bk over the interval [0, t). We can then write f(t|Zi) =

h(t|Zi) exp(−H(t|Zi)) as

f(t|Zi) =

[
K∏
k=1

[
αk exp(Z

′

iβ)
]Ik(t)

]
exp

(
−
[∑K

k=1wk(t)αk

]
exp(Z

′

iβ)
)
. (2B.1)
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Let δik = Ik(Xi) indicate whether the observation time Xi = min(Ti, Ci) is in interval Bk

for individual i, and let Sik =
∫ Xi

0
I(u ∈ Bk)du denote the total time individual i was at

risk of failure during the interval Bk. By replacing F (Li|Zi)Ji with
∏Ji

j=1 f(tij|Zi) in the

complete data likelihood of Section 2.1 and by taking the logarithm, we obtain

`C(ψ) =
∑
i∈R

{ K∑
k=1

[
δiδik

(
logαk + Z

′

iβ
)
− αkSikeZ

′
iβ
]

+

Ji∑
j=1

K∑
k=1

[
Ik(tij)

(
logαk + Z

′

iβ
)
− wk(tij)αkeZ

′
iβ
]

+ (Ji + 1) logP (Zi1|Zi2)
}

+
∑
i∈R̄

[
Zi1

{ K∑
k=1

[
δiδik

(
logαk + Z

′

iβ
)
− αkSikeZ

′
iβ
]

+

Ji∑
j=1

K∑
k=1

[
Ik(tij)

(
logαk + Z

′

iβ
)
− wk(tij)αkeZ

′
iβ
]

+ (Ji + 1) logP (Zi1|Zi2)
}

+ (1− Zi1)
{ K∑
k=1

[
δiδik

(
logαk + Z

′

iβ
)
− αkSikeZ

′
iβ
]

+

Ji∑
j=1

K∑
k=1

[
Ik(tij)

(
logαk + Z

′

iβ
)
− wk(tij)αkeZ

′
iβ
]

+ (Ji + 1) logP (Zi1|Zi2)
}]
,

where the event time for the jth ghost corresponding to individual i, tij, is only known to

be in the interval Aci = [0, Li). As before we can split this likelihood into two parts

`C(ψ) = `C1(θ) + `C2(η) ,
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where `C1(θ) is

∑
i∈R

K∑
k=1

{[
δiδik log(αke

Z
′
iβ)− αkSikeZ

′
iβ
]

+

Ji∑
j=1

[
Ik(tij) log(αke

Z
′
iβ)− wk(tij)αkeZ

′
iβ
]}

(2B.2)

+
∑
i∈R̄

{
Zi1

K∑
k=1

{[
δiδik log(αke

Z
′
iβ)− αkSikeZ

′
iβ
]

+

Ji∑
j=1

[
Ik(tij) log(αke

Z
′
iβ)− wk(tij)αkeZ

′
iβ
]}

+ (1− Zi1)
K∑
k=1

{[
δiδik log(αke

Z
′
iβ)− αkSikeZ

′
iβ
]

+

Ji∑
j=1

[
Ik(tij) log(αke

Z
′
iβ)− wk(tij)αkeZ

′
iβ
]}}

,

and `C2(η) is given by (2.5). Thus

Q(ψ;ψr) = E(`C(ψ)|Y ;ψr) = Q1(θ;ψr) +Q2(η;ψr) ,

where as before Q1(θ;ψr) = E(`C1(θ)|Y ;ψr), and Q2(η;ψr) = E(`C2(η)|Y ;ψr). At the rth

step of the EM algorithm, we need J r
i , J 1r

i , J 0r
i and ζri , given by (A.1), (A.2) and (A.3)

respectively. The expectations regarding tij are given as follows. If the complement of the

truncation interval does not intersect with Bk (i.e. Cijk = Aci ∩ Bk = ∅ because bk−1 > Li),

then E(Ik(Tij)|Zi, Tij < Li, Ji) = 0. If bk−1 < Li, Cijk = Aci ∩ Bk = [Lijk, Rijk) 6= ∅, where

Lijk = max(bk−1, 0) = bk−1, and Rijk = min(bk, Li). We then take the expectation of (2B.2)

at the rth step of the EM algorithm, using

ιrik = E(Ik(tij)|Zi, Ri = 1, Tij < Li, Ji;ψ
r) = P (Tij ∈ Bk|Zi, Tij < Li, Ji;ψ

r)

=
F(Lijk|Zi;ψr)−F(Rijk|Zi;ψr)
F(0|Zi;ψr)−F(Li|Zi;ψr)

=
F(bk−1|Zi;ψr)−F(min(bk, Li)|Zi;ψr)

1−F(Li|Zi;ψr)
,
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and

ιzrik = E(Ik(tij)|(z, zi2), Ri = 0, Tij < Li, Ji;ψ
r)

=
F(bk−1|(z, zi2);ψr)−F(min(bk, Li)|(z, zi2);ψr)

1−F(Li|(z, zi2);ψr)
,

where z = 0, 1.

Regarding the time at risk, Cijk = Aci ∩ Bk = ∅, (i.e., Li < bk−1), each ghost j corre-

sponding to individual i, j = 1, . . . , Ji failed before entering interval Bk, and thus they

were never at risk of failure in Bk; in that case, E(wk(tij)|Zi, Tij < Li, Ji) = 0. If

Cijk = Aci ∩ Bk = [Lijk, Rijk) 6= ∅, bk−1 < Li, it is possible that they could have failed

before entering Bk, in which case there is no period at risk corresponding to the interval

[bk−1, bk). At the rth step of the EM algorithm, we have,

ωrik = E(wk(tij)|Zi, Ri = 1, Tij < Li, Ji;ψ
r) =

∫ min(bk,Li)

bk−1

F(u|Zi;ψr)−F(Li|Zi;ψr)
1−F(Li|Zi;ψr)

du,

and

ωzrik = E(wk(tij)|(z, zi2), Ri = 0, Tij < Li, Ji;ψ
r)

=

∫ min(bk,Li)

bk−1

F(u|(z, zi2);ψr)−F(Li|(z, zi2);ψr)

1−F(Li|(z, zi2);ψr)
du, z = 0, 1.

Let Ki = max{k : bk−1 < Xi} be the maximum interval over which individual i is

known to have been at risk and Kij = max{k : bk−1 < Li} denote the the maximum
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interval over which the ghosts for individual i could have been at risk. Furthermore, let

Qi1k(θ;ψ
r) = δiδik

(
logαk + Z

′

iβ
)
− αk exp(Z

′

iβ + logSik)

be the expectation of this kth element of the first term in the first row of (2B.2) and let

Gi1k(θ;ψ
r) = J r

i

[
ιrik

(
logαk + Z

′

iβ
)
− αk exp(Z

′

iβ + logωrik)
]

denote the expectation of the kth element in the second term in the first row of (2B.2).

Then if i ∈ R,

Qi1(θ;ψr) =

Ki∑
k=1

Qi1k(θ;ψ
r) +

Kij∑
k=1

Gi1k(θ;ψ
r). (2B.3)

Similarly, for i ∈ R̄, let

Qz
i1k(θ;ψ

r) = δiδik

(
logαk + (z, zi2)

′
β
)
− αk exp(zβ1 + z′i2β2 + logSik) ,

and

Gz
i1k(θ;ψ

r) = J r
iz

[
ιzrik

(
logαk + (z, zi2)

′
β
)
− αk exp(zβ1 + zi2β2 + logωzrik )

]
,

and then define

Q̄i1(θ;ψr) =
1∑
z=0

(ζri )z(1− ζri )1−z

 Ki∑
k=1

Qz
i1k(θ;ψ

r) +

Kij∑
k=1

Gz
i1k(θ;ψ

r)

 . (2B.4)
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Combining (2B.3) and (2B.4) we then obtain

Q1(θ;ψr) =
∑
i∈R

Qi1(θ;ψr) +
∑
i∈R̄

Q̄i1(θ;ψr). (2B.5)

The function in (2B.5) can be maximized using standard software for fitting Poisson or

exponential regression models. A sample section of the data frame at the rth iteration is

given in Table 2.4 and 2.5 for a subject with Ri = 1 or 0 respectively. If one creates a

factor variable based on column K, we could fit a Poisson model with covariates Z1, Z2 and

factor(K) with response int-stat×stat, offset log(len), and weight weightz×weightJ .

The updated estimate of θ is θr+1 and the parameter estimates for the baseline hazard can

be obtained from the coefficients of the factor variable K. The updated estimates of η are

obtained as described in Section 2.1.

Table 2.4: The first part of the pseudo-data frame for maximizing Q1(θ;ψr) with respect
to θ for an arbitrary individual i ∈ R.

R K Z1 Z2 len int-stat stat weightZ weightJ

1 1 zi1 zi2 Si1 δi1 δi 1 1
...

...
...

...
...

...
...

...
...

1 Ki zi1 zi2 SiKi
δiKi

δi 1 1

1 1 zi1 zi2 ωri1 ιri1 1 1 J r
i

...
...

...
...

...
...

...
...

...
1 Kij zi1 zi2 ωriKij

ιriKij
1 1 J r

i
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Table 2.5: Second part of the pseudo-data frame for maximizing Q1(θ;ψr) with respect to
θ for an arbitrary individual i ∈ R̄.

R K Z1 Z2 len int-stat stat weightZ weightJ

0 1 1 zi2 Si1 δi1 δi ζri 1
...

...
...

...
...

...
...

...
...

0 Ki 1 zi2 SiKi
δiKi

δi ζri 1

0 1 1 zi2 ω1r
i1 ι1ri1 1 ζri J 1r

i
...

...
...

...
...

...
...

...
...

0 Kij 1 zi2 ω1r
iKij

ι1riKij
1 ζri J 1r

i

0 1 0 zi2 Si1 δi1 δi 1− ζri 1
...

...
...

...
...

...
...

...
...

0 Ki 0 zi2 SiKi
δiKi

δi 1− ζri 1

0 1 0 zi2 ω0r
i1 ι0ri1 1 1− ζri J 0r

i
...

...
...

...
...

...
...

...
...

0 Kij 0 zi2 ω0r
iKij

ι0riKij
1 1− ζri J 0r

i
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Chapter 3

A Dynamic Mover-Stayer Model for

Recurrent Event Processes Subject

to Resolution

In this chapter we describe a new flexible process model which involves a series of mover-

stayer indicators with each one realized upon the occurrence of an event of interest. This

indicator can signal the end of the event process and therefore can explain particularly long

periods of time between the last observed event and a censoring time. An EM algorithm

is used to carry out estimation with right-censored recurrent event data and is shown

to perform well empirically for parametric and semiparametric analyses. The proposed

method is then applied to data from Danish study of individuals with affective disorder.
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3.1 Notation and Model Formulation

We suppose the process of interest begins with an initiating event representing the onset of

disease. This could be, for example, the first seizure among individuals with epilepsy, the

first acute exacerbation in persons with asthma, or the first hospitalization in individuals

with affective disorder. We let T0 = 0 denote the time of the initiating event and let Tj

represent the time of the jth subsequent event, j = 1, 2, . . .. The number of events over

time period (0, t] is denoted by N(t) =
∑∞

j=1 I(Tj ≤ t), and {N(s), 0 ≤ s} denotes the

corresponding counting process.

Information on the nature of the event, individuals’ characteristics at the event time,

and any fixed covariates, are recorded in a p × 1 covariate vector Xj observed upon the

occurrence of the jth event. We let X̄(t) = {X0, . . . , XN(t)} denote the history of this

covariate vector when viewed in continuous time; because N(t) is right-continuous this

history includes Xj if t = tj. Likewise we let X̄j = {X0, . . . , Xj} denote the covariate

history as a function of event count. To accommodate the possibility that the condition of

interest is resolved upon the occurrence of the jth event, we let Zj denote a time-dependent

indicator variable such that Zj = 1 if the individual remains at risk for future events

following the jth event, and Zj = 0 otherwise, j = 0, 1, . . .. The indicator Zj is a latent

variable, but we learn that Zj = 1 upon the occurrence of the (j + 1)st event, j = 0, 1, . . ..

As was done for the observed covariate vector, here we let Z̄(t) = {Z0, . . . , ZN(t)} and

Z̄j = {Z0, . . . , Zj}.

The complete process history is denoted by H(t) = {(N(s), X(s), Z(s)), 0 ≤ s ≤ t},

which includes the values of the latent variables realized over [0, t], and the history excluding
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Z̄(t) is denoted by H(t) = {(N(s), X(s)), 0 ≤ s ≤ t}. We let t− denote an infinitesimal

amount of time before t. Assuming two events cannot occur at the same time, the complete

data intensity function is

λ(t|H(t−)) = lim
∆t→0

P (∆N(t) = 1|H(t−))

∆t
= ZN(t−)λ(t|H(t−)) , (3.1)

where ∆N(t) = N((t+ ∆t)−)−N(t−) denotes the number of the events over the interval

[t, t+ ∆t) and

λ(t|H(t−)) = lim
4t→0

P (4N(t) = 1|H(t−))

4t
(3.2)

is a canonical event intensity function. We use the term complete data intensity function

for (3.1) because it contains the complete information over [0, t) including information on

the latent process; we use the term canonical intensity for (3.2) because it can be any

intensity function useful for modeling recurrent event processes not subject to resolution.

It may, for example, correspond to any point process model including modulated

Markov models for which

λ(t|H(t−)) = λ0(t;α) exp(X ′N(t−)β) ,

or modulated semi-Markov models for which

λ(t|H(t−)) = hN(t−)(B(t);α) exp(X ′N(t−)β) ,

where hj(wj;α) is the baseline hazard for the inter-arrival time wj = tj − tj−1 and B(t) =
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t − tN(t−) is the backwards recurrence time at t > 0 (Lawless, 1995). Mixed Markov

and semi-Markov processes offer alternative frameworks (Cook and Lawless, 2007). The

canonical intensity is not relevant alone for modeling the data, however, and the complete

intensity is not useable since Z̄(t−) is not observed. The observed data intensity function

is obtained by marginalizing over the latent process and is of the form

E{λ(t|H(t−))|H(t−)} = E(ZN(t−)|H(t−)) · λ(t|H(t−)) . (3.3)

As in models with fixed continuous frailty terms, here it is most convenient to adopt a

latent variable approach to estimation and hence construct a complete data likelihood

based on (3.1); we do so in the next section.

In general Xj can depend on the complete process history at t−j and the fact that an

event occurred at tj, so we denote the probability model by

P (Xj|H(t−j ), dN(tj) = 1) = P (Xj|H(t−j ), Z̄j−1 = 1j−1, dN(tj) = 1) (3.4)

where Z̄j−1 = 1j−1 is an j × 1 vector of ones, and we somewhat informally let dN(t) =

lim∆t→0 ∆N(t) = 1 if an event occurs at time t and dN(t) = 0 otherwise.

The probability of remaining at risk following the jth event can depend upon H(t−j )

and Xj, so at tj we write this as

P (Zj = 1|H(t−j ), dN(tj) = 1, Xj) = P (Zj = 1|H(t−j ), Z̄j−1 = 1j−1, dN(tj) = 1, Xj) . (3.5)

This probability may therefore depend on the times of previous events and the history of
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the observable covariates over [0, tj] and is only relevant if Z̄j−1 = 1j−1. Discrete waiting

time models are suitable for the resolution of the process and we may specify them based

on logistic models. If Ẋj = (1, X ′j)
′, a simple model is of the form

logitP (Zj = 1|H(tj), dN(tj) = 1, Xj) = Ẋ ′jηj (3.6)

in which the odds the process does not resolve upon the occurrence of the jth event at tj

depends on the features Xj upon event occurrence. It is often convenient and reasonable

to constrain ηj = η and so there is one set of regression coefficients common across all

logistic models.

Example: Suppose the canonical intensity is Markov with λ(t|H(t−)) = λα(λt)α−1, and a

logistic model is used for the latent indicator with (3.6) taking the form

logitP (Zj = 1|H(tj), dN(tj) = 1, Xj) = η0 + η1j + η2X ,

where Xj = (j,X)′ with X being an indicator of a treatment (X = 1) or control (X = 0)

condition. In this case exp(η1) is the relative odds, given X, that the process remains

unresolved at the jth event compared to at the previous event; the parameter η1 therefore

reflects the tendency for the process to remain unresolved upon the occurrence of each

event, regardless of the times of the events. The coefficient η2 reflects the possible effect of

treatment on the odds the process remains unresolved after a given number of events.

The mean function gives the expected number of events as a function of the time and
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so is defined by

E{N(t)|X} =
∞∑
n=0

nP (N(t) = n|X) .

To compute this, note that

P (N(t) = n|X) = P (N(t) = n|Z̄n = 1n, X)P (Z̄n = 1n|X) +

P (Tn ≤ t|Z̄n−1 = 1n−1, X)P (Z̄n−1 = 1n−1|X) ,

where

P (N(t) = n|Z̄n = 1n, X) = Λ(t|X)n e−Λ(t|X)/n! ,

with Λ(t|X) =
∫ t

0
λ(s|X)ds and

P (Tn ≤ t|Z̄n−1 = 1n−1, X) = 1−
n−1∑
r=0

P (N(t) = r|Z̄r−1 = 1r−1, X) ,

since the latent process is a Poisson process, and

P (Z̄n = 1n|X) = P (Z0 = 1|X)
n∏
j=1

P (Zj = 1|Z̄j−1 = 1j−1, X) .

Figure 3.1 contains plots of the mean function based on the canonical intensity, and

the mean functions for the marginal (observed) processes discussed here for the treatment

(X = 1) and control (X = 0) groups; we set λ = 36, α = 0.50, η1 = log 0.95, η2 = log 0.75

and determined η0 to give E(N(1)) = 0.75 (left panel) or E(N(1)) = 3 (right panel). As

expected there is a large difference in the expected number of events between the canonical

and marginal models since the latter incorporate the chance that the process resolves
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during follow-up. The covariate effect on the mover-stayer process leads to two marginal

mean functions (under the proposed model) with the difference between them reflecting

magnitude of the effect of treatment on the mover-stayer indicator.
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Figure 3.1: Plots of the cumulative canonical intensity (λt)α and mean functions for the
treatment (X = 1) and control (X = 0) group in the dynamic mover-stayer model; λ = 36,
α = 0.5, η1 = log 0.95, η2 = log 0.75, η0 is obtained to give E(N(1)) = 0.75 (left panel)
and 3.0 (right panel)
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3.2 Parameter Estimation and Statistical Inference

3.2.1 An EM Algorithm for Parametric Modeling

To describe the algorithm for estimation we return to the general case with a canoni-

cal Markov intensity of an unspecified form. Let θ1 denote the parameter indexing the

canonical intensity in (3.2), θ2 parameterize (3.5), and θ3 parameterize (3.4).

If the latent process were observable over an interval [0, C], the complete data likelihood

would be proportional to the probability of observing {(tj, Xj, Zj), j = 0, 1, . . . , n} over

[0, C] and is given by

LC ∝ LC1(θ1) · LC2(θ2) · LC3(θ3)

where

LC1(θ1) ∝
n∏
j=1

{
λ(tj|H(t−j )) exp

(
−
∫ tj

tj−1

λ(u|H(u−))du

)}
exp

(
−
∫ C

tn

λ(u|H(u−))du

)
,

LC2(θ2) ∝ P (Z0|H(0−), dN(0) = 1, X0)
n∏
j=1

P (Zj|H(t−j ), dN(tj) = 1, Xj) ,

LC3(θ3) ∝ P (X0|H(0−), dN(0) = 1)
n∏
j=1

P (Xj|H(t−j ), dN(tj) = 1)

and H(0−) = ∅. Terms involving the probability model for the observed covariates can

be omitted if the covariate process is non-informative (i.e. the parameters indexing the

distribution of the covariates are not functionally related to the parameters of the processes
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of interest). In this case we use the partial complete data likelihood

LC(θ) ∝ LC1(θ1) · LC2(θ2) , (3.7)

where

LC1(θ1) ∝
n∏
j=1

{
λ(tj|H(t−j ))

}
exp

(
−

n∑
k=0

∫ tk+1

tk

Z
I(k=n)
k λ(u|H(u−))du

)
(3.8)

is the contribution pertaining to θ1, with t0 = 0 and tn+1 = C, and

LC2(θ2) ∝ P (Z0|H(0−), Z̄−1 = ∅, dN(0) = 1, X0) ·
n∏
j=1

P (Zj|H(t−j ), Z̄j−1 = 1j−1, dN(tj) = 1, Xj)

∝ P (Z0|H(0−)) ·
n∏
j=1

P (Zj|H(t−j ), Z̄j−1 = 1j−1) (3.9)

is the contribution related to the latent process, where H(0−) = ∅, and θ = (θ′1, θ
′
2)′. The

missing variable in the above complete data likelihood is Zn, the indicator of whether the

process continues following the occurrence of the last observed event.

The expectation-maximization (EM) algorithm of Dempster et al. (1977) offers a con-

venient way of maximizing the observed data likelihood. To do this we define

Q(θ; θ̂) = Q1(θ1; θ̂) +Q2(θ2; θ̂) (3.10)

where Q1(θ1; θ̂) = E(logLC1(θ1)|H(C); θ̂) and Q2(θ2; θ̂) = E(logLC2(θ2)|H(C); θ̂). Since
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logLC1(θ1) and logLC2(θ2) are linear in Zn, only

ζ(θ̂) = P (Zn = 1|H(C); θ̂), (3.11)

given by

P (Zn = 1|H(t−n ), Z̄n−1 = 1n−1; θ̂2) exp(−
∫ C
tn
λ(u|H(u−); θ̂1) du)

P (Zn = 1|H(t−n ), Z̄n−1 = 1n−1; θ̂2) exp(−
∫ C
tn
λ(u|H(u−); θ̂1) du) + P (Zn = 0|H(t−n ), Z̄n−1 = 1n−1; θ̂2)

,

is required at the E-step to compute (3.10). The maximum likelihood estimator is obtained

by iteratively maximizing (3.10) as follows. If θ̂r denotes the estimate of θ at the rth

iteration, we maximize Q(θ; θ̂r) with respect to θ to obtain θ̂r+1. This process is repeated

iteratively until ‖θ̂r+1 − θ̂r‖ ≤ ε where ε is a pre-specified tolerance, at which point we let

the final value be the maximized likelihood estimate. Variance estimation can be carried

out using the method of (Louis, 1982); see Appendix 3A for details.

3.2.2 An EM Algorithm for Semiparametric Modeling of a Markov

Process

The model formulation in the parametric setting is quite general. Next we consider a

special model with a Markov canonical intensity with a proportional latent rate function

and consider semiparametric modeling of the canonical Markov intensity. To do this we

introduce subscripts to index individuals and adopt counting process notation.

Let m be the number of subjects in the study, ni be the number of events for subject
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i, [0, Ci] denote the period of observation for subject i and let Yi(u) = I(u ≤ Ci) indicate

whether they are under observation at time u. Let Zi(u) = ZiNi(u−) denote the latent

variable expressed as a continuous time varying indicator. Under a Markov latent intensity

λ(t|H(t−)) = λ0(t) exp(Xβ); ,

where λ0(t) = dΛ0(t)/dt is the baseline latent intensity for an individual with X = 0. We

also let Λ0(s, t) =

∫ t

s

dΛ0(u). In counting process notation the complete data likelihood

for the recurrent event process (Cook and Lawless, 2007) is

LC1(λ0(·), β) =
m∏
i=1

[
ni∏
j=1

[Yi(u)dΛ(u|Xi)]
Yi(u)dNi(u) exp

(
−
∫ ∞

0

Zi(u)Yi(u)dΛ(u|Xi)

)]

and LC2(θ2) is the same as in (3.9). The complete log-likelihood is then

`C(θ) = `C1(λ0(·), β) + `C2(θ2) ,

where

`C1(λ0(·), β) =
m∑
i=1

{∫ ∞
0

Yi(u)dNi(u)(log dΛ0(u) +Xiβ)−
∫ ∞

0

Zi(u)Yi(u)dΛ0(u) exp(Xiβ)

}
,

and

`C2(θ2) =
m∑
i=1

[ ni−1∑
j=0

logP (Zij|H(t−ij), Z̄j−1 = 1j−1) + logP (Zini
|H(t−ini

), Z̄ni−1 = 1ni−1)
]
,
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where we define Z̄−1 as the null set. Here θ = (λ0(·), β′, θ′2) where λ0(·) is the latent baseline

rate function, β is the covariate effect on the intensity of the latent process, and for the

particular model discussed in Section 3.1, for example, θ2 = (η0, η1, η2) is the parameter

vector for the mover-stayer probability model. Then (3.10) becomes

Q(θ; θ̂) = Q1(λ0(·), β; θ̂) +Q2(θ2; θ̂) ,

and

Q1(λ0(·), β; θ̂) =
m∑
i=1

{∫ ∞
0

Yi(u)dNi(u)(log dΛ0(u) +Xiβ)−
∫ ∞

0

ζi(u; θ̂)Yi(u)dΛ0(u) exp(Xiβ)

}

where if u < Tini
, ζi(u; θ̂) = 1; and if Tini

≤ u ≤ Ci, ζi(u; θ̂) = E(Zi(u)|Hi(Ci); θ̂)

is given by (3.11) with exp(−
∫ C
tn
λ(u|H(u−); θ̂1)du) reduced to exp(−Λ(tini

, Ci|Xi; θ̂1)),

where Λ(s, t|Xi; θ̂1) =
∫ t
s
λ(u|Xi; θ̂1)du and θ1 = (λ0(·), β)′. The argument u in ζi(u; θ̂) is

therefore introduced to facilitate writing a general expression for this expectation.

When maximizing Q1(λ0(·), β; θ̂) with respect to λ0(·) and β, we obtain the two equa-

tions

m∑
i=1

[
Yi(u)dNi(u)− ζi(u; θ̂)Yi(u) exp(Xiβ)dΛ0(u)

]
= 0, 0 < u (3.12)

m∑
i=1

[∫ ∞
0

Yi(u)dNi(u)Xi −
∫ ∞

0

ζi(u; θ̂)Yi(u)dΛ0(u) exp(Xiβ)Xi

]
= 0 . (3.13)
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For a given β, we obtain the “profile” estimate

dΛ̂0(u; β) =

∑m
i=1 Yi(u)dNi(u)∑m

i=1 Yi(u)ζi(u; θ̂) exp(Xiβ)
,

and substitute this into (3.13) to obtain the equation

m∑
i=1

∫ ∞
0

Yi(u)dNi(u)

[
Xi −

∑m
i=1 Yi(u)ζi(u; θ̂) exp(Xiβ)Xi∑m
i=1 Yi(u)ζi(u; θ̂) exp(Xiβ)

]
.

This looks very much like the usual Cox partial likelihood score equation with offsets. For

each subject i we can construct a pseudo-dataset with ni+1 lines: first ni lines correspond

to the period from 0 to tini
and have an offset of zero; the last line corresponds to the

period from tini
to Ci and has an offset of log ζi(u; θ̂). Existing software can therefore be

used to obtain updated estimates of λ0(·) and β.

The second term is

Q2(θ2; θ̂) =
m∑
i=1

[ ni−1∑
j=0

logP (Zij = 1|H(t−ij), Z̄j−1 = 1j−1)

+ ζi(θ̂) logP (Zini
= 1|H(t−ini

), Z̄ni−1 = 1ni−1)

+ (1− ζi(θ̂)) logP (Zini
= 0|H(t−ini

), Z̄ni−1 = 1ni−1)
]
.

where ζi(θ̂) = ζi(u; θ̂) for Tini
≤ u. Maximization of Q2(θ2; θ̂) with respect to θ2 can be

done by fitting logistic regression to pseudo-datasets, which contains ni + 2 lines for each

subject i: the first ni lines correspond to Zi0 = 1, . . . , Zi,ni−1 = 1 and have weight 1; the

next line corresponds to the possibility that Zini
= 1 and has weight ζi(θ̂); the final line
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corresponds to the other possibility that Zini
= 0 and has associated weight 1− ζi(θ̂).

Additional details for the EM algorithm including its implementation and variance

estimation are given in Appendix 3A.

3.3 Empirical Studies

Here we conduct simulation studies to evaluate the performance of the EM algorithm in

fitting the dynamic mover-stayer model with a latent Markov process. We first generate

a treatment indicator X as a Bernoulli random variable with P (X = 1) = 1 − P (X =

0) = 0.5. The Zj are generated according to model (3.6) with a common η vector with

η1 = log 0.95 and η2 = log 0.75 so that for given X, the probability of remaining a mover

decreases with each event to create the scenario that is consistent with the burn-out theory

and for each value of j the odds of remaining a mover are 25% lower in the treatment

group with X = 1. For the baseline intensity of the latent Markov process of the form

λα(λt)α−1 we fix α = 1 to correspond to a time-homogeneous latent process, and α = 0.50

to correspond to a time-nonhomogeneous latent process; we set β = log 0.75 to correspond

to a 25% reduction in the rate of events among individuals at risk of events. For a given α

and β, λ is determined so that the expected number of events over (0, C] is specified at the

particular value six among individuals who remain movers throughout the interval (0, C].

We then solve for η0 so that the marginal expectation satisfies E[N(C)] = 0.75, 1.5,

or 3.0. Five hundred datasets of m = 500 individuals were simulated for each parame-

ter configuration. Parametric analysis and semiparametric analysis were carried out for
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each simulated dataset. Standard errors were obtained using the method of Louis (1982)

and the performance of the estimators was assessed in terms of empirical bias, empiri-

cal and model-based standard errors, and empirical coverage probability. The empirical

bias (EBIAS), empirical standard error (ESE), average model-based standard error (ASE)

computed according to Louis (1982), and empirical coverage probability expressed as a

percentage (ECP) are given in Table 3.1, 3.2 and 3.3, for the parametric analyses; the em-

pirical coverage probability is defined as the fraction of simulations for which the sample

confidence interval contained the true parameter value. The empirical bias and empirical

standard errors are also reported for the semiparametric analyses.

The empirical biases are generally small and decrease with increasing expected numbers

of events. There is also good agreement between the empirical and average model-based

standard errors and the empirical coverage probability is compatible with the nominal

level of 95%. The results are roughly comparable for the parametric and semiparametric

analyses and the methods perform well when there is a trend in the latent rate function.
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Table 3.1: Empirical results for maximum likelihood estimates obtained by the EM algo-
rithm for parametric and semiparametric models with λ(t|H(t−)) = λα(λt)α−1 exp(βX)
and P (Zj = 1|Z̄j−1 = 1j−1, X) = expit(η0 + η1j + η2X); m = 500, nsim = 500,
E(N(C)) = 0.75

E(N(C)) = 0.75, η0 = −0.085

Parametric Semiparametric

VALUE EBIAS ESE ASE ECP EBIAS ESE

Time Homogeneous Rate

η0 −−− 0.002 0.107 0.109 95.2 -0.001 0.107
η1 -0.051 -0.007 0.073 0.072 95.6 0.020 0.082
η2 -0.288 -0.006 0.144 0.141 94.2 0.013 0.146
λ 6.857 0.045 0.509 0.499 95.4
β -0.288 -0.012 0.116 0.116 96.0 -0.026 0.125

Λ0(C) 6.857 -0.491 1.146

Time Non-homogeneous Rate

η0 −−− 0.002 0.107 0.109 95.0 -0.001 0.107
η1 -0.051 -0.007 0.074 0.072 95.2 0.020 0.082
η2 -0.288 -0.006 0.144 0.142 94.4 0.013 0.146
λ 47.020 0.899 7.859 7.840 95.8
α 0.500 0.001 0.022 0.023 97.2
β -0.288 -0.012 0.116 0.116 95.8 -0.026 0.125

Λ0(C) 6.857 -0.491 1.146
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Table 3.2: Empirical results for maximum likelihood estimates obtained by the EM algo-
rithm for parametric and semiparametric models with λ(t|H(t−)) = λα(λt)α−1 exp(βX)
and P (Zj = 1|Z̄j−1 = 1j−1, X) = expit(η0 + η1j + η2X); m = 500, nsim = 500,
E(N(C)) = 1.5

E(N(C)) = 1.5, η0 = 0.709

Parametric Semiparametric

VALUE EBIAS ESE ASE ECP EBIAS ESE

Time Homogeneous Rate

η0 −−− -0.000 0.104 0.103 94.8 -0.003 0.104
η1 -0.051 -0.002 0.045 0.044 94.8 0.007 0.052
η2 -0.288 -0.001 0.125 0.125 96.0 0.005 0.128
λ 6.857 0.010 0.365 0.359 94.0
β -0.288 0.002 0.086 0.084 94.8 -0.001 0.087

Λ0(C) 6.857 -0.069 0.666

Time Non-homogeneous Rate

η0 −−− -0.001 0.104 0.103 95.1 -0.004 0.104
η1 -0.051 -0.002 0.045 0.044 94.9 0.007 0.051
η2 -0.288 0.000 0.125 0.125 95.5 0.006 0.128
λ 47.020 0.292 6.219 6.055 93.5
α 0.500 0.001 0.017 0.017 95.5
β -0.288 0.001 0.086 0.084 95.1 -0.001 0.087

Λ0(C) 6.857 -0.070 0.667
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Table 3.3: Empirical results for maximum likelihood estimates obtained by the EM algo-
rithm for parametric and semiparametric models with λ(t|H(t−)) = λα(λt)α−1 exp(βX)
and P (Zj = 1|Z̄j−1 = 1j−1, X) = expit(η0 + η1j + η2X); m = 500, nsim = 500,
E(N(C)) = 3

E(N(C)) = 3, η0 = 1.733

Parametric Semiparametric

VALUE EBIAS ESE ASE ECP EBIAS ESE

Time Homogeneous Rate

η0 −−− 0.003 0.115 0.117 95.4 0.000 0.116
η1 -0.051 -0.000 0.036 0.035 94.6 0.004 0.041
η2 -0.288 0.003 0.135 0.135 94.4 0.007 0.137
λ 6.857 0.010 0.275 0.262 92.8
β -0.288 0.001 0.066 0.061 92.0 0.001 0.067

Λ0(C) 6.857 -0.016 0.335

Time Non-homogeneous Rate

η0 −−− 0.003 0.115 0.117 95.6 0.000 0.116
η1 -0.051 0.000 0.037 0.036 94.8 0.004 0.041
η2 -0.288 0.004 0.135 0.135 94.4 0.007 0.137
λ 47.020 0.454 5.085 4.976 94.0
α 0.500 -0.000 0.013 0.013 95.4
β -0.288 0.001 0.067 0.061 92.0 0.001 0.067

Λ0(C) 6.857 -0.016 0.335
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3.4 Application to a Cohort Study of Individuals with

Affective Disorder

We consider the cohort of 10,523 individuals with a first episode of affective disorder

between January 1, 1994 and December 31, 1999. Among these individuals, 3802 (36.1%)

are male and 6721 (63.9%) are female. A total of 17,021 hospitalizations are made over this

window of calendar time giving a mean of 1.618 visits per individual (S.D.=1.720). A total

of 1106 (10.5%) of these individuals were bipolar at the time of the first admission; among

the 9417 (89.5%) patients who were unipolar at the study entry, 9228 remain as unipolar,

and 189 become bipolar by the end of follow-up. We consider a dataset comprised of 9417

patients who are unipolar at the first admission and who had a total of 14497 admissions

(mean=1.539 and S.D.=1.272). Follow-up of these individuals is censored at the end of

the observation period, upon the diagnosis of bipolar disorder, schizophrenia, or an organic

disorder, or at the time of death. There are 3298 (35.0%) male individuals with total of

4860 visits (mean=1.474 and S.D.=1.105) and 6119 (65.0%) female patients with a total

of 9637 visits (mean=1.575 and S.D.=1.352).

We fit parametric and semiparametric (Andersen and Gill, 1982) Poisson regression

models for the recurrence of acute episodes, with a single covariate indicating gender (X = 1

for females, X = 0 for males). These results are reported in the first three columns

of Table 3.4. Dynamic mover-stayer models are also fitted for which the latent variable

model controls for the cumulative number of events (j) and gender; we denote the vector

of covariates by Ẋj = (1, j,X)′. A reduced dynamic mover-stayer model is also fitted

with Ẋj = (1, j)′ which simply controls for the cumulative number of acute episodes.
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The canonical event intensity model in these dynamic mover-stayer models also controls

for gender. Both parametric (top half) and semiparametric (bottom half) event intensity

models are reported in Table 3.4.

Table 3.4: Results of fitting Poisson model and dynamic mover-stayer model† to study of
affective disorder with parametric and semiparametric models; Markov model is a para-
metric Poisson model or Anderson-Gill (1982) semiparametric model, m = 9417

Dynamic Mover-Stayer Models

Poisson Model Ẋj = (1, j,X) Ẋj = (1, j)

EST S.E. p-value EST S.E. p-value EST S.E. p-value

Parametric Models

Mover-Stayer Model
η0 — — — -0.6344 0.0376 -0.5219 0.0257
η1 — — — 0.5184 0.0232 < 0.0001 0.5210 0.0233 < 0.0001
η2 — — — 0.1682 0.0433 0.0001
Recurrent Event Model
λ 0.1555 0.0058 1.2170 0.0548 1.1729 0.0548
α 0.6970 0.0087 0.9574 0.0140 0.9570 0.0140
β 0.1573 0.0299 < 0.0001 -0.0268 0.0515 0.6023 0.0222 0.0505 0.6600

Semiparametric Models

Mover-Stayer Model
η0 — — — -0.6418 0.0387 -0.5289 0.0264
η1 — — — 0.5760 0.0338 < 0.0001 0.5796 0.0340 < 0.0001
η2 — — — 0.1685 0.0451 0.0002
Recurrent Event Model
β 0.1620 0.0299 < 0.0001 -0.0201 0.0539 0.7088 0.0338 0.0521 0.5158

† Standard errors for estimates from parametric models obtained by Louis’ method
(1982) and by nonparametric bootstrap (200 bootstrap samples) for fitted

semiparametric models; p-values are based on Wald statistics
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We focus the following discussion on the results of the analyses based on the semi-

parametric intensity model. The estimated regression coefficient for gender from the semi-

parametric Andersen-Gill model suggests women have a 17.6% increased rate of recurrence

compared to men (RR = 1.176, 95% CI (1.109, 1.247), p < 0.001). The estimates of

the cumulative mean functions based on the fitted Andersen-Gill model are given in the

left panel of Figure 3.2 and reveal a small absolute difference between genders in the

cumulative expected number of episodes over time. The first semiparametric dynamic

mover-stayer model reveals an insignificant association between gender on the latent in-

tensity of recurrence (RR = 0.980, 95% CI (0.882, 1.089), p = 0.709), but women have

a significantly higher odds of remaining at risk of recurrence based on the mover-stayer

component (OR = 1.184, 95% CI (1.083, 1.293), p < 0.001). The dynamic mover-stayer

model therefore suggests that the higher expected number of episodes for women may arise

from a lower tendency for women to experience resolution of the disease. The right panel

of Figure 3.2 gives the semiparametric estimate of the cumulative canonical event inten-

sity for males and females. These estimates are much higher than those of the left panel

since they correspond to the canonical process which does not accommodate resolution.

Moreover the two estimates are very similar, reflecting the insignificant gender effect seen

in this model.

Upon the removal of gender from the mover-stayer component (see the last three

columns of Table 3.4) the effect of gender on the latent rate remains insignificant (RR =

1.034, 95% CI (0.934, 1.146), p = 0.516). The findings from the parametric and semipara-

metric analyses are in broad agreement.
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Figure 3.2: Plots of the estimated cumulative intensities for females and males with af-
fective disorder; the left panel gives the cumulative mean function estimates based on the
Andersen-Gill model and the right panel gives the cumulative canonical event intensity
based on the dynamic mover-stayer model with covariate Ẋj = (1, j,X)′ in the mover-
stayer component and gender (X) in the canonical intensity model
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3.5 Remarks

In this chapter we have described a dynamic mover-stayer model for the analysis of re-

current event data which is useful when there is a substantial fraction of individuals with

an unduly long final gap time. This formulation is most appropriate when the underlying

condition leading to the recurrent events can resolve but this resolution is not observable.

There are a number of other medical conditions where this scenario can arise, and it is

particularly relevant for registry studies where limited information is collected on individ-

uals between records of events of interest. In the motivating example, the reasons for any

resolution could include the identification of a suitable dose or type of medication or a

change in a stressful environment leading to exacerbations of symptoms. Details on these

and other possible explanations are often unavailable in the settings of registry studies but

accommodation of such eventualities is often sensible in model formulation.

Appendix 3A: Additional Details for the EM Algo-

rithm

Appendix 3A.1: Implementation of the EM Algorithm

For an individual with n events observed at times t1 < t2 < . . . < tn < C, the only missing

quantity is Zn. If we have a single covariate X, the dataframe used at the rth step of

the EM algorithm to maximize Q1(θ1; θ̂r) has the usual counting process form with the

addition of a weight which is 1 for all lines except the last one with form
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ID(i) enum(j) estart estop estatus weight rtrunc tstatus X

1 0 0 t1 1 1 NA 1 X1

1 1 t1 t2 1 1 NA 2 X1

1
...

...
...

...
...

...
... X1

1 n− 1 tn−1 tn 1 1 NA 2 X1

1 n tn C 0 wr NA 2 X1

In a parametric analysis with a baseline rate for the latent process of the form λ0(t;α) =

α2α1(α1t)
α1−1, Q1(θ1; θ̂r) is maximized to give θ̂r+1 by the R command

censorReg(censor(estop, estatus) ∼ X, truncation = censor(estart, rtrunc, tstatus),

weights = weight, distribution = “weibull”, fixed = list(scale = 1)) ,

and in the semiparametric analysis by the call

coxph(Surv(estart, estop, estatus) ∼ X + offset(log(weight)),method = “breslow”) .

The data used to maximized Q2(θ2; θ̂r) has the form
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ID(i) enum(j) Z X weight

i 0 1 X1 1

i 1 1 X1 1

i 2 1 X1 1

i
...

... X1
...

i n− 1 1 X1 1

i n 1 X1 wr

i n 0 X1 1− wr

A simple logistic regression call

glm(Z ∼ enum+X,weights = weight, family = binomial(link = logit))

yields θ̂r+1
2 . New dataframes are then created with wr replaced with wr+1 and the procedure

is repeated until ‖θ̂r+1 − θ̂r‖ < ε for some specified value of ε.

Appendix 3A.2: Variance Estimation via Louis’ Method

Let SC(θ) = ∂ logLC(θ)/∂θ and IC(θ) = −∂SC(θ)/∂θ where LC(θ) is the complete data

likelihood for which Zn is treated as known, given by (3.7). If L(θ), S(θ) = ∂ logL(θ)/∂θ

and I(θ) = −∂S(θ)/∂θ are the observed data likelihood, score and information matrix,

then according to Louis (1982), the observed information matrix is

I(θ) = EZn [IC(θ)|H(C)]− EZn [SC(θ)S ′C(θ)|H(C)] (3A.1)
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where SC(θ) = (S ′C1(θ1), S ′C2(θ2))′ and SCk(θk) = ∂ logLCk(θk)/∂θk, k = 1, 2, and

IC(θ) =

 IC1(θ1) 0

0 IC2(θ2)

 ,

where ICk = −∂SCk(θk)/∂θk, k = 1, 2. We estimate I(θ̂) in (3A.1) by running the EM

algorithm to the point of convergence and using the expression in (3.11) evaluated at the

MLE θ̂ to take the required expectation. Standard software can be readily exploited to do

this in both the parametric and semiparametric settings.

The first matrix on the right hand side of (3A.1) is obtained by extracting the values

stored in the information matrices produced at the final M-step. Each individual con-

tributes to the complete data likelihood and complete data score, so we can compute their

contributions to SC1(θ1) and SC2(θ2), stack them and then take a weighted average to

estimate the second term in (3A.1).

In the semiparametric setting, let u1 < . . . < uR denote the R unique event times

over the entire sample, let dΛ0 = (dΛ0(u1), · · · , dΛ0(uR))′, and let θ1 = (dΛ′0, β)′, then let

SC1(θ1) = (S ′C11(θ1), S ′C12(θ1))′, where SC11(θ1) = (SC11u1(θ1), . . . , SC11uR(θ1))′ and

SC11u(θ1) = SC11(λ0(u)) = Y (u) {dN(u)− Z(u)dΛ0(u) exp(βX)} , 0 < u

SC12(θ1) = SC12(β) =

∫ ∞
0

Y (u)X {dN(u)− Z(u)dΛ0(u) exp(βX)} .
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Then

IC1(θ1) =

 −∂SC11(θ1)/∂θ′1

−∂SC12(θ1)/∂θ′1

 = −

 ∂SC11(θ1)/∂dΛ′0 ∂SC11(θ1)/∂β

∂SC12(θ1)/∂dΛ′0 ∂SC12(θ1)/∂β ,


where

∂SC11(θ1)

∂dΛ′0(u)
= −Y (u)Z(u) exp(βX)

∂SC12(θ1)

∂dΛ′0(u)
= −Y (u)XZ(u) exp(βX)

∂SC11(θ1)

∂β
= −Y (u)Z(u)dΛ0(u) exp(βX)X

∂SC12(θ1)

∂β
= −

∫ ∞
0

Y (u)Z(u)XdΛ0(u) exp(βX)X .

Then we can obtain SC(θ) and IC(θ) and proceed as in the parametric setting.
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Chapter 4

Analysis of Interval-Censored

Recurrent Events with Resolution

Shen and Cook (2013a) proposed a dynamic mover-stayer model for the analysis of right-

censored recurrent event data which accommodates unusually long times from the last

observed event to the censoring time. In this chapter we extend this method to deal

with interval-censored recurrent event data where the underlying process is subject to

resolution using a likelihood based approach, where binary mover-stayer indicators are

used to indicate the status of disease resolution. An expectation-maximization algorithm

is adopted to deal with the difficulty that the exact event times are unknown and the event

process is coarsened so that only counts of events are known between inspection times;

Lawless and Zhan (1998) refer to this as interval-grouped recurrent event data. Piecewise

constant baseline intensity models are adopted for mixed-Poisson processes to provide

flexibility and protection against model misspecification. This approach allows estimation
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of treatment effects on the event rate, baseline intensity modeling and the modeling of

the mover-stayer process. The maximization-step is facilitated by making use of existing

softwares. Data on the cumulative number of damaged joints in patients with psoriatic

arthritis are analysed to provide an illustrative application.

4.1 Model Formulation

First we review the dynamic mover-stayer model of Chapter 3, i.e. Shen and Cook (2013a),

where the notation and model formulation are similar as in the current development. Let

T0 = 0 denote the time of an initiating event such as the onset of a chronic disease, and let

Tj represent the time of the jth subsequent event, j = 1, 2, . . .. If N(t) =
∑∞

j=1 I(Tj ≤ t)

denotes the number of events over (0, t], then {N(s), 0 ≤ s} is a counting process.

Individuals’ characteristics are recorded in p × 1 covariate vector Xj observed upon

the occurrence of the jth event. Shen and Cook (2013a) define Zj as a time-dependent

indicator variable whereby Zj = 1 provided that upon the occurrence of the jth event they

remain at risk of future events, and Zj = 0 otherwise, j = 0, 1, . . .. The resolution of the

chronic condition upon the jth event is reflected by a realization Zj = 0 when Zj−1 = 1.

Here Zj is a latent variable, but we learn that Zj = 1 as soon as the (j+ 1)st event occurs,

j = 0, 1, . . .. We let Z̄(t) = {Z0, . . . , ZN(t)} and Z̄j = {Z0, . . . , Zj}.

The complete process history is denoted byH(t) = {(N(s), Z(s)), 0 ≤ s ≤ t,Xj}, which

includes the values of the latent variables realized over [0, t], and the history excluding

Z̄(t) is denoted by H(t) = {N(s), 0 ≤ s ≤ t,Xj}. We let ∆N(t) = N((t + ∆t)−)−N(t−)
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denote the number of the events over the interval [t, t + ∆t], where t− is an infinitesimal

amount of time before t. The complete data intensity function λ(t|H(t−)), the canonical

event intensity function λ(t|H(t−)) and the intensity function for the observable process

in the absence of censoring E{λ(t|H(t−))|H(t−)} are as defined in (3.1), (3.2) and (3.3)

respectively. The probability of remaining at risk following the jth event given H(t−j ) is as

defined in (3.5)

P (Zj = 1|H(t−j ), dN(tj) = 1, Xj) = P (Zj = 1|H(t−j ), Z̄j−1 = 1j−1, dN(tj) = 1, Xj) ,

where dN(t) = lim∆t→0 ∆N(t) indicates whether an event occurred at time t and Z̄j−1 =

1j−1 denotes an j × 1 vector of ones as it implies Z0 = Z1 = . . . = Zj−1 = 1. A simple

model as in (3.6) can be adopted to model the resolution process with the form

logitP (Zj = 1|H(t−j ), dN(tj) = 1, Xj) = Ẋ ′jγj ,

where Ẋj = (1, X ′j)
′ and γj parameterizes the association between the explanatory variables

and the mover-stayer indicator. Note that for simplicity we could set the covariate vector

to be fixed and observed at study entry and use X to denote it, and let γj = γ so that the

sets of regression coefficients are same across all logistic models.
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4.2 Estimation with Interval-Censored Data

4.2.1 The Complete Data Likelihood for Interval-Censored Data

In what follows we consider data from a single individual. Let a0 denote the time of a

baseline assessment at which a p× 1 fixed covariate vector X is observed. Suppose follow-

up assessments occur at times a1 < · · · < aR and at ar the number of events over interval

Ar = (ar−1, ar] is recorded, denoted by nr = N(ar)−N(ar−1), r = 1, . . . , R. The data for

such an individual is then D = {(ar, nr), r = 1, . . . , R,X}.

Let θ1 index the canonical event intensity (3.2), and θ2 index the mover-stayer model

(3.5). A complete data log-likelihood can be constructed by considering the event times

and the latent mover-stayer indicators as observed from the sample. When the covariate

process is non-informative, the contribution to such a log-likelihood from an individual is

then

`C(θ) = `C1(θ1) + `C2(θ2) (4.1)

where

`C1(θ1) =

∫ ∞
0

Y (u)
[
dN(u) log λ(u|H(u−))− ZN(u)λ(u|H(u−))du

]
(4.2)

pertains to the latent event process and

`C2(θ2) =
n∑
j=0

logP (Zj|H(t−j ), Z̄j−1 = 1j−1, X) (4.3)

pertains to the latent mover-stayer model, where Z̄−1 = ∅ and H(0−) = ∅.
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Suppose interest lies in modeling data from individuals over the interval [0, τ ] where τ

is fixed. We focus here on settings with latent multiplicative Poisson processes, where

λ(t|H(t−)) = ρ(t|X) = ρ0(t) exp(X
′
β)

and ρ0(t) is the canonical baseline rate function. Given a set of cut-points 0 = b0 < b1 <

b2 < · · · < bK = τ , flexible piecewise constant baseline rate functions are obtained by

letting ρ0(t) = ρk for t ∈ Bk = [bk−1, bk), k = 1, . . . , K. One can then write

ρ(t|X; θ1) = ρ0(t;α) exp(X ′β) =
K∏
k=1

[exp(αk +X ′β)]dk(t) .

where αk = log ρk, k = 1, . . . , K, α = (α1, . . . , αK)′, θ1 = (α′, β′)′ and dk(t) = I(t ∈ Bk) =

I(bk−1 ≤ t < bk), k = 1, . . . , K.

We let Crk = Ar ∩ Bk = [Cr,k−1, Crk) and let Kr = {k : Ar ∩ Bk 6= ∅} represent the

labels for the qr (0 ≤ qr ≤ K) pieces intersecting Ar, denoted {kr` , ` = 1, . . . , qr}. If we let

nrk =
∫
I(u ∈ Crk)dN(u) denote the number of events over Crk and wk(t) =

∫ t
0
I(u ∈ Bk)du

denote the time at risk in Bk over (0, t], then (4.2) can be rewritten as

`C1(θ1) =
K∑
k=1

R∑
r=1

nrk(αk +X ′β)−

K∑
k=1

[Znwk(aR) + (1− Zn)wk(tn)] exp(αk +X ′β) .

If we use wrk(t) =
∫ t

0
I(u ∈ Crk)du to denote the time at risk in Crk over (0, t], then
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wk(aR) =
∑R

r=1wrk(aR), wk(tn) =
∑R

r=1 wrk(tn) and (4.2) becomes

`C1(θ1) =
K∑
k=1

R∑
r=1

{
nrk(αk +X ′β)−

[
Znwrk(aR) + (1− Zn)wrk(tn)

]
exp(αk +X ′β)

}
. (4.4)

4.2.2 Derivation of the Conditional Expectations

Since the actual events times and the final mover-stayer indicator are not observed, the

quantities nrk, wk(aR), wk(tn), and Zn in (4.1) are unknown and we require expressions for

their conditional expectations (Dempster et al., 1977). We focus initially on the expecta-

tions given D and Zn, and consider first the case in which Zn = 1. We let

η
(1)
rk = E(nrk|D,Zn = 1) =

nrµrk∑
k∈Kr µrk

, (4.5)

where

µrk =

∫
I(u ∈ Crk)ρ(u|X)du = exp(αk +X ′β)|Crk| ,

denotes the cumulative intensity over Crk and

|Crk| = max(0,min(bk, ar)−max(bk−1, ar−1))

denotes the length of Crk, k ∈ Kr, r = 1, . . . , R (Lawless and Zhan, 1998). Here we use a

superscript (1) to reflect the fact that their expectation is given Zn = 1. Given Zn = 1 we
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can write

ω
(1)
rk = E(wrk(aR)|D,Zn = 1) = |Crk| .

Next we consider the case when Zn = 0 and use a superscript (0) to reflect the fact

that the conditional expectation is given Zn = 0. If s denotes the index for the inspection

interval containing tn (i.e. tn ∈ As), then when r < s,

η
(0)
rk = E(nrk|D,Zn = 0) = E(nrk|D,Zn = 1)

as in (4.5) for any k ∈ Kr. When r > s,

η
(0)
rk = E(nrk|D,Zn = 0) = 0

for any k ∈ Kr by the definition ofAs. Note that E(nsk|D,Zn = 0), k ∈ Ks, can be obtained

by conceptualizing a progressive time nonhomogeneous multistate Markov process with a

finite number of states labelled N(as−1), . . . , N(as) where only ` → ` + 1 transitions are

allowed with a common “transition” intensity ρ(u|X), ` = N(as−1), . . . , N(as) − 1 and

N(as) = n is an absorbing state. We let

ns = (nsk, k = ks1, . . . , k
s
qs)

denote the counts over the sub-intervals of As, let

n̄sk = n(as−1) +
∑
j∈Ks

I(j ≤ k)nsj
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denote the cumulative count at Csk, and let

n̄s = (n̄sk, k = ks1, . . . , k
s
qs)

denote the vector of cumulative counts. We can then write the joint probability of the

latent states over As given the observed data when Zn = 0, P (ns|D,Zn = 0), as

P (N(Csk) = n̄sk for all k ∈ Ks|N(as−1) = n(as−1), N(as) = n(as), X, Zn = 0) ,

where n(as−1) = n−ns and n(as) = n by the definition of As. This can in turn be written

as

P (ns|D,Zn = 0) =
P (N(Csk) = n̄sk for all k ∈ Ks|N(as−1) = n(as−1), X, Zn = 0)

P (N(as) = n|N(as−1) = n(as−1), X, Zn = 0)
,

(4.6)

where the numerator is equal to

∏
k∈Ks

P (N(Csk) = n̄sk|N(Cs,k−1) = n̄s,k−1, X, Zn = 0) (4.7)

by the Markov property and the denominator is

∑
ns∈Ns

∏
k∈Ks

P (N(Csk) = n̄sk|N(Cs,k−1) = n̄s,k−1, X, Zn = 0) , (4.8)

where Ns = {ns : ns =
∑

k∈Ks nsk} is the set of all vectors ns compatible with observed

total over As.
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To determine the terms in (4.7), for a given vector ns we further consider the specific

subinterval Cs` containing tn (i.e. tn ∈ Cs`). For k ∈ Ks, when k < `,

P (N(Csk) = n̄sk|N(Cs,k−1) = n̄s,k−1, X, Zn = 0) = µnsk
sk exp(−µsk)/nsk! ,

where µsk = exp(αk +X ′β)|Csk|. When k > `,

P (N(Csk) = n̄sk|N(Cs,k−1) = n̄s,k−1, X, Zn = 0) = 1 .

When k = `, a time-homogeneous Markov process governors events over Cs` with allowable

transitions 0 → 1 → . . . → N` = ns` occurring with rate exp(α` + X ′β). Note that the

probability of making transition from state i to state j, i, j = 0, . . . , N`, within time t is

Pij(t) = (exp(α` +X ′β) t)j−i exp(− exp(α` +X ′β) t)/(j − i)! (4.9)

if 0 ≤ i ≤ j < N`, with PiN`
(t) = 1 −

∑N`−1
j=i Pij(t) if 0 ≤ i ≤ N` − 1. Given this we can

calculate P (N(Cs`) = n̄s`|N(Cs,`−1) = n̄s,`−1, X, Zn = 0) as P0N`
(|Cs`|).

Note P (ns|D,Zn = 0) in (4.6) can then be used to compute the conditional expectation

for the counts in each sub-interval of As since

η
(0)
sk = E(nsk|D,Zn = 0) =

ns∑
nsk=0

nskP (nsk|D,Zn = 0) , (4.10)

where

P (nsk|D,Zn = 0) =
∑

ns∈Ns

I(Nsk = nsk)P (ns|D,Zn = 0)
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for any k ∈ Ks.

The conditional expectation of the time at risk in each Crk when Zn = 0 can be obtained

by following similar idea. Since tn ∈ As, it is easy to see that when r < s,

ω
(0)
rk = E(wrk(tn)|D,Zn = 0) = |Crk|

for all k ∈ Kr, and when r > s

ω
(0)
rk = E(wrk(tn)|D,Zn = 0) = 0

for all k ∈ Kr by the definition of As. When r = s, Ks = {ks` , ` = 1, . . . , qs}, for a given

count vector ns = (nsk, k ∈ Ks), we can further find a ` such that tn ∈ Cs`. Once again,

for k ∈ Ks, when k < `, we have

E(wsk(tn)|D,Zn = 0) = |Csk| ,

and when k > `,

E(wsk(tn)|D,Zn = 0) = 0

by the definition of Cs`. When r = s and k = `,

ws`(tn) =

∫ tn

0

I(u ∈ Cs`)du =

∫
Cs`
I(tn > u)du =

∫
Cs`
I(N(u) < n)du ,

91



and for u ∈ Cs`, the later expression can be helpful since

P (N(u) < n|D,Zn = 0,ns)

=
∑

n−ns`≤j<n

P (N(u) = j|D,Zn = 0,ns)

=
∑

n−ns`≤j<n

P (N(u) = j|N(Cs,`−1) = n− ns`, X, Zn = 0)P (N(Cs`) = n|N(u) = j,X, Zn = 0)

P (N(Cs`) = n|N(Cs,`−1) = n− ns`, X, Zn = 0)

=

ns`−1∑
j=0

P (N(u) = j|N(Cs,`−1) = 0, X, Zn = 0)P (N(Cs`) = ns`|N(u) = j,X, Zn = 0)

P (N(Cs`) = ns`|N(Cs,`−1) = 0, X, Zn = 0)
(4.11)

by the Markov property. Note that over Cs`, we again have a continuous time Markov

process with a time homogenous transition intensity exp(α` + X ′β) and transitions only

from ` to ` + 1 for ` = 0, . . . , N` − 1 where N` = ns`, we can therefore use (4.9) to obtain

the values of the individual items in (4.11) for given u ∈ Cs`, and obtain

E(ws`(tn)|D,Zn = 0,ns) =

∫
Cs`
P (N(u) < n|D,Zn = 0,ns)du

via numerical integration. Finally, for any k ∈ Ks, we could calculate

ω
(0)
sk = E(wsk(tn)|D,Zn = 0) =

∑
ns∈Ns

E(wsk(tn)|D,Zn = 0,ns)P (ns|D,Zn = 0) ,

where P (ns|D,Zn = 0) is given in (4.6).

Finally we consider ζ = E(Zn|D). Note that P (Zn = 1|D) can be written as

P (D|Zn = 1)P (Zn = 1|H(t−n ), Z̄n−1 = 1n−1, X)

P (D|Zn = 1)P (Zn = 1|H(t−n ), Z̄n−1 = 1n−1, X) + P (D|Zn = 0)P (Zn = 0|H(t−n ), Z̄n−1 = 1n−1, X)
,
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where

P (D|Zn = 1) = P (n1, . . . , nR|a1, . . . , aR, X, Zn = 1) =
R∏
r=1

µnr
r e
−µr

nr!
,

with

µr =

∫
Ar

ρ(u|X)du =
∑
k∈Kr

µrk

denoting the cumulative intensity over Ar, while

P (D|Zn = 0) = P (n1, . . . , nR|a1, . . . , aR, X, Zn = 0)

=
s−1∏
r=1

µnr
r e
−µr

nr!
· P (N(as) = n(as)|N(as−1) = n(as−1), X, Zn = 0) ,

where P (N(as) = n(as)|N(as−1) = n(as−1), X, Zn = 0) is given in (4.8). Therefore, ζ is an

fraction with numerator

µns
s e
−µs

ns!

R∏
r=s+1

e−µsr · P (Zn = 1|H(t−n ), Z̄n−1 = 1n−1, X) (4.12)

and denominator given by the sum of (4.12) and

P (N(as) = n|N(as−1) = n(as−1), X, Zn = 0) · P (Zn = 0|H(t−n ), Z̄n−1 = 1n−1, X) ,

where P (Zn = 1|H(t−n ), Z̄n−1 = 1n−1, X) follows some particular model assumption such

as

P (Zn = 1|H(t−n ), Z̄n−1 = 1n−1, X) = expit(γ0 + γ1n+ γ2X) .
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4.2.3 The EM Algorithm

For the EM algorithm, we have

Q(θ; θ̃) = Q1(θ1; θ̃) +Q2(θ2; θ̃) ,

where Q(θ; θ̃) = E(`C(θ)|D, θ̃) and Qj(θj; θ̃) = E(`Cj(θj)|D, θ̃), j = 1, 2, θ1 = (α′, β′)′,

θ2 = γ and θ = (θ′1, θ
′
2)′.

Given the expressions in Section 4.2.2, adopting notations as

η̃
(1)
irk = E(nirk|Di, Zini

= 1; θ̃)

η̃
(0)
irk = E(nirk|Di, Zini

= 0; θ̃)

ω̃
(1)
irk = E(wirk(Ci)|Di, Zini

= 1; θ̃)

ω̃
(0)
irk = E(wirk(tini

)|Di, Zini
= 0; θ̃)

ζ̃i = E(Zini
|Di; θ̃)

we’d have Q1(θ1; θ̃) to be maximized with respect to the event process as

Q1(θ1; θ̃) =
m∑
i=1

{
ζ̃i

K∑
k=1

Ri∑
r=1

[
η̃

(1)
irk(αk +X ′iβ)− exp(αk +X ′iβ + log ω̃

(1)
irk)
]

+

(1− ζ̃i)
K∑
k=1

Ri∑
r=1

[
η̃

(0)
irk(αk +X ′iβ)− exp(αk +X ′iβ + log ω̃

(0)
irk)
]}

.

One can construct a pseudo-data frame for each individual as in Table 4.1, which in fact
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can be written more concisely as in Table 4.2 and use

glm(n ∼ X + factor(k) + offset(log w),weight = wt, family = poisson, link = log)

to obtain the updated estimates of θ1 after some manipulation on the coefficients of the

model fitted.

Table 4.1: Pseudo-data frame for recurrent event process for one subject using the pro-
posed method, where r is the index of the inspection interval, k is the index of the piece
of the baseline rate, X is the covariate, w is the expected time at risk, n is the expected
number of events, and wt is the weight

r k X w n wt

1 k1
1 x ω̃

(1)

1k11
η̃

(1)

1k11
ζ̃

...
...

...
...

...
...

1 k1
q1

x ω̃
(1)

1k1q1
η̃

(1)

1k1q1
ζ̃

1 k1
1 x ω̃

(0)

1k11
η̃

(0)

1k11
1− ζ̃

...
...

...
...

...
...

1 k1
q1

x ω̃
(0)

1k1q1
η̃

(0)

1k1q1
1− ζ̃

...
...

...
...

...
...

R kR1 x ω̃
(1)

RkR1
η̃

(1)

RkR1
ζ̃

...
...

...
...

...
...

R kRqR x ω̃
(1)

RkRqR
η̃

(1)

RkRqR
ζ̃

R kR1 x ω̃
(0)

RkR1
η̃

(0)

RkR1
1− ζ̃

...
...

...
...

...
...

R kRqR x ω̃
(0)

RkRqR
η̃

(0)

RkRqR
1− ζ̃
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Table 4.2: Pseudo-data frame for recurrent event process for one subject using the pro-
posed method (simplified version), where r is the index of the inspection interval, k is the
index of the piece of the baseline rate, X is the covariate, w is the expected time at risk,
n is the expected number of events, and wt is the weight

r k X w n wt

1 k1
1 x ω̃

(1)

1k11
η̃

(1)

1k11
1

...
...

...
...

...
...

1 k1
q1

x ω̃
(1)

1k1q1
η̃

(1)

1k1q1
1

...
...

...
...

...
...

s− 1 ks−1
1 x ω̃

(1)

s−1,ks−1
1

η̃
(1)

s−1,ks−1
1

1
...

...
...

...
...

...

s− 1 ks−1
qs−1

x ω̃
(1)

s−1,ks−1
qs−1

η̃
(1)

s−1,ks−1
qs−1

1

s ks1 x ω̃
(1)
sks1

η̃
(1)
sks1

ζ̃
...

...
...

...
...

...

s ksqs x ω̃
(1)
sksqs

η̃
(1)
sksqs

ζ̃

s ks1 x ω̃
(0)
sks1

η̃
(0)
sks1

1− ζ̃
...

...
...

...
...

...

s ksqs x ω̃
(0)
sksqs

η̃
(0)
sksqs

1− ζ̃

s+ 1 ks+1
1 x ω̃

(1)

s+1,ks+1
1

η̃
(1)

s+1,ks+1
1

ζ̃
...

...
...

...
...

...

s+ 1 ks+1
qs+1

x ω̃
(1)

s+1,ks+1
qs+1

η̃
(1)

s+1,ks+1
qs+1

ζ̃

...
...

...
...

...
...

R kR1 x ω̃
(1)

RkR1
η̃

(1)

RkR1
ζ̃

...
...

...
...

...
...

R kRqR x ω̃
(1)

RkRqR
η̃

(1)

RkRqR
ζ̃
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In addition, Q2(θ; θ̃) to be maximized with respect to the mover-stayer model is

Q2(θ; θ̃) =
m∑
i=1

[
ni−1∑
j=0

logP (Zij = 1|H(t−ini
), Z̄i,j−1 = 1j−1, Xi)

+ζ̃i logP (Zini
= 1|H(t−ini

), Z̄i,ni−1 = 1ni−1, Xi)

+(1− ζ̃i) logP (Zini
= 0|H(t−ini

), Z̄i,ni−1 = 1ni−1, Xi)
]
.

Again we could construct a pseudo-data frame as in Table 4.3 and use

glm(Z ∼ j + X,weight = wt, family = quasi− binomial, link = logit)

to obtain updated estimates of θ2.

Table 4.3: Pseudo-data frame for mover-stayer model for one subject using the proposed
method, where Z is the mover-stayer indicator, j is the number of events, X is the covariate,
wt is the weight

Z j X wt

1 0 x 1
...

...
...

...
1 n− 1 x 1

1 n x ζ̃

0 n x 1− ζ̃

Quite often the long periods of time without recurrence at the end of follow-up is

unnoticed and thus the latent mover-stayer process is ignored in data analysis. Naively

treating all subjects as movers will lead to biased estimates of treatment effect and un-
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derestimated estimates of event rate; and the association between disease resolution and

number of events and treatment is taken as zero. Generally speaking, we could use these

naive estimates as the initial value in our proposed EM algorithm. We repeat E-step and

M-step above until some pre-specified convergence criterion is met and the final estimate

of θ is obtained. Repeat the proposed EM algorithm over multiple datasets and report

empirical bias (EBIAS) and empirical standard error (ESE).

Note that for the naive method where we assume Zini
= 1 for all subjects, according to

Lawless and Zhan (1998), the log-likelihood that we need to maximize after one E-step is

m∑
i=1

K∑
k=1

Ri∑
r=1

[
η̃

(1)
irk(αk +X ′iβ)− exp(αk +X ′iβ + log ω̃

(1)
irk)
]
,

That is, for subject i, we could create a pseudo-data frame as in Table 4.4 and use

glm(n ∼ X + factor(k) + offset(log w), family = poisson, link = log)

to obtain the updated estimates of θ1 after some manipulation. Repeat until the preset

convergence criterion is met.

4.3 Simulation Studies

In this section, a simulation study is conducted to evaluate the performance of the method

we proposed to deal with interval-censored recurrent event data with disease resolution.

Here for subject i, we let the treatment Xi be binary and follow a Bernoulli distribution
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Table 4.4: Pseudo-data frame for recurrent event process for one subject using the naive
method, where r is the index of the inspection interval, k is the index of the cut-interval,
X is the covariate, w is the expected time at risk, n is the expected number of events

r k X w n

1 k1
1 x ω̃

(1)

1k11
η̃

(1)

1k11
...

...
...

...
...

1 k1
q1

x ω̃
(1)

1k1q1
η̃

(1)

1k1q1
...

...
...

...
...

R kR1 x ω̃
(1)

RkR1
η̃

(1)

RkR1
...

...
...

...
...

R kRqR x ω̃
(1)

RkRqR
η̃

(1)

RkRqR

with equal probability of being on either one of the two treatments. We then generate the

initial mover-stayer indicators Zij, j = 0, · · · , ni, following the model

logitP (Zij = 1|H(t−ij), dN(tij) = 1, Xi) = γ0 + γ1j + γ2Xi ,

where ni is the total number of events observed over the entire study period (0, τ ] if there

is administrative censoring only. For simplicity we set τ = 1 for all subjects. γ1 and γ2 are

set as log 0.95 and log 0.75 respectively, so that for given treatment Xi, the odds of being

a mover decreases by 5% with the occurrence of each additional event, and the odds of

being a mover are 25% lower in the Xi = 1 group compared to the Xi = 0 group if the

number of events that occurred are the same. For the purpose of illustration, we assume a

homogenous Poisson process, where gap times follow an Exponential distribution with rate
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λ exp(Xiβ), where λ is the baseline intensity and β is the treatment effect on the event

rate. We let β = log 0.75 so that there is a 25% reduction in event rate if the movers are

on treatment Xi = 1. Then we can solve for λ if the expected number of events among

movers up to time τ is specified, as 6 or 12 for example, we could then solve for γ0 given

the averaged expected number of events among the mixed sample of movers and stayers,

say 1.5, 3 or 6.

We could let the number of assessments follow a Poisson distribution with rate specified

to allow assessment times to vary as is often the case in observation studies. For simplicity,

we assume each subject has same number of assessments with R = 4 or R = 8 as evenly

pre-scheduled and precisely followed clinic visits. For the interval-censored recurrent event

data, we only obtain the number of events between clinic visits and the treatment that the

subject is on.

As for the convergence criterion, we could let ϑ = (α1, α2−α1, · · · , αK−α1, β, γ0, γ1, γ2)

and the EM procedure is stopped when max(|ϑnew−ϑold|) < ε, where ε is some pre-specified

value, say ε = 10−6.

We conduct 2000 simulations with respect to each set of parameter values and let

the sample size be m = 500 or 2000. We then apply our proposed EM algorithm while

adopting a piecewise constant baseline hazard model. The entire observation period (0, τ ]

is evenly divided into K = 3 intervals on which the baseline intensity is constant. Both

empirical biases (EBIAS) and empirical standard errors (ESE) are reported to summarize

the performance of the estimates.

As we can see from the simulation results in Table 4.5 and Table 4.6, the empirical biases
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Table 4.5: Simulation results where the gap times follow Exponential distribution by adopt-
ing a piecewise constant model when the data are subject to administrative censoring only,
m = 500 or m = 2000, nsim = 2000, E(N(1)|Zn = 1) = 6

R=4 R=8

m=500 m=2000 m=500 m=2000

Prmt Value EBIAS ESE EBIAS ESE EBIAS ESE EBIAS ESE

E(N(1)) = 1.5

γ0 0.7091 0.0041 0.1009 0.0001 0.0499 0.0039 0.1005 0.0002 0.0497
γ1 -0.0513 -0.0014 0.0510 0.0005 0.0256 -0.0022 0.0481 0.0000 0.0237
γ2 -0.2877 -0.0038 0.1237 0.0004 0.0628 -0.0040 0.1224 0.0001 0.0624

α1 1.9253 0.0009 0.0654 0.0004 0.0329 0.0003 0.0621 0.0000 0.0306
α2 1.9253 -0.0113 0.1035 -0.0023 0.0504 -0.0036 0.0897 -0.0006 0.0441
α3 1.9253 -0.0095 0.2668 -0.0069 0.1310 -0.0086 0.2052 -0.0043 0.1016
β -0.2877 0.0005 0.0896 -0.0019 0.0431 0.0005 0.0871 -0.0017 0.0410

E(N(1)) = 3

γ0 1.7331 0.0100 0.1174 0.0038 0.0584 0.0105 0.1165 0.0037 0.0580
γ1 -0.0513 0.0008 0.0424 -0.0007 0.0206 0.0002 0.0398 -0.0006 0.0192
γ2 -0.2877 -0.0068 0.1395 -0.0030 0.0684 -0.0076 0.1376 -0.0029 0.0677

α1 1.9253 -0.0017 0.0500 -0.0014 0.0252 -0.0013 0.0474 -0.0012 0.0240
α2 1.9253 -0.0004 0.0661 0.0009 0.0326 0.0001 0.0589 0.0010 0.0291
α3 1.9253 -0.0021 0.1163 0.0003 0.0594 -0.0014 0.1003 -0.0006 0.0499
β -0.2877 -0.0004 0.0641 0.0002 0.0313 -0.0001 0.0631 0.0002 0.0307

are generally small with acceptable empirical standard errors. When the parameter settings

are all the same, both the empirical bias and the empirical standard error decrease as the

sample size increases. When the sample sizes are the same, the estimators overall result

in smaller empirical biases and smaller empirical standard errors with more frequent clinic

assessments given all the other parameters are the same, which agrees with our intuition.
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Table 4.6: Simulation results where the gap times follow Exponential distribution by adopt-
ing a piecewise constant model when the data are subject to administrative censoring only,
m = 500 or m = 2000, nsim = 2000, E(N(1)|Zn = 1) = 12

R=4 R=8

m=500 m=2000 m=500 m=2000

Prmt Value EBIAS ESE EBIAS ESE EBIAS ESE EBIAS ESE

E(N(1)) = 3

γ0 1.4123 0.0032 0.0944 -0.0002 0.0484 0.0036 0.0938 -0.0002 0.0481
γ1 -0.0513 -0.0018 0.0221 -0.0003 0.0113 -0.0022 0.0211 -0.0003 0.0108
γ2 -0.2877 0.0010 0.1089 0.0004 0.0542 0.0005 0.1085 0.0003 0.0541

α1 2.6184 0.0032 0.0447 0.0001 0.0221 0.0024 0.0415 0.0000 0.0205
α2 2.6184 -0.0026 0.0779 -0.0000 0.0389 0.0007 0.0654 0.0004 0.0329
α3 2.6184 -0.0039 0.2066 0.0004 0.0999 -0.0004 0.1426 0.0004 0.0701
β -0.2877 -0.0042 0.0592 -0.0012 0.0289 -0.0040 0.0560 -0.0011 0.0274

E(N(1)) = 6

γ0 2.4275 0.0037 0.1145 0.0003 0.0575 0.0046 0.1125 0.0005 0.0568
γ1 -0.0513 -0.0005 0.0187 -0.0001 0.0091 -0.0009 0.0175 -0.0002 0.0086
γ2 -0.2877 0.0041 0.1194 0.0007 0.0599 0.0039 0.1186 0.0007 0.0591

α1 2.6184 0.0020 0.0342 0.0006 0.0168 0.0013 0.0321 0.0005 0.0157
α2 2.6184 -0.0008 0.0482 0.0003 0.0234 0.0005 0.0409 0.0004 0.0204
α3 2.6184 -0.0011 0.0783 -0.0011 0.0386 0.0004 0.0623 -0.0006 0.0312
β -0.2877 -0.0026 0.0410 -0.0008 0.0197 -0.0024 0.0402 -0.0008 0.0192

When the expected numbers of events among the movers are the same, the covariate effects

on the recurrent event rate has smaller empirical biases and smaller empirical standard

errors when the marginal expected number of events among the mixture of movers and

stayers is bigger, given the same sample size and the same number of clinical examinations.

In such cases, the empirical standard errors in event rate estimation are also smaller with
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insignificant biases. If the marginal expected numbers of events are the same, both the

association between explanatory variables and the mover-stayer indicator and the covariate

effect on event rate are better assessed with smaller standard errors and trivial biases when

the expected number of events among movers is larger.

4.4 Modeling Joint Damage in a Psoriatic Arthritis

Cohort Study

HLA-B27 (human leukocyte antigen B27) is a protein found on the surface of white blood

cells. It can be tested from a blood sample. Its prevalence in general population varies

significantly. It is found to be strongly associated with inflammatory disease such as

ankylosing spondylitis and psoriatic arthritis. We are interested in examining the effect of

the genetic marker HLA-B27 on the development of damage as measured by radiographic

examination among patients with psoriatic arthritis. The damage is assessed in each of 42

joints, including 30 hand joints (wrists, metacarpophalangeals, proximal interphalangeals

and distal interphalangeals) and 12 foot joints (metatarsophalangeals and interphalangeal

fist toes). Each joint is scored as 0 (normal), 1 (soft tissue swelling), 2 (surface erosions), 3

(joint space narrowing), 4 (disorganization, including subluxation, pencil-in-cup deformity

and ankylosis) or 5 (requiring surgery). A joint scoring 2 or higher is counted damaged.

We consider a sub-cohort of patients with psoriatic arthritics from University of Toronto

Psoriatic Arthritis Clinic. These 207 selected patients have disease onset time and HLA-

B27 information available. They entered the clinic and were followed-up between 1978
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and 2013. The observation period is limited to be within 30 years after disease onset.

The reported age of disease onset is taken as the time origin and dates of radiological

assessments and numbers of new damaged joints were recorded at the following assessment

visits. The average time since disease onset to first radiological assessment is 5.54 years

(S.D. 6.02, range 0.03 to 27.23). The average number of radiological assessments within

30 years of disease onset is 3.63 (S.D. 2.83, range 1 to 13). A total of 32 (15.5%) patients

are HLA-B27 positive.

The data suggested that some patients experience remission during the follow-up. We

fit the proposed algorithm on the interval-censored recurrent event data to study the oc-

currence of joint damage. Piecewise constant baseline rate functions are adopted to model

the recurrent event process not subject to resolution with one fixed covariate HLA-B27

(X = 1 if HLA-B27 positive, X = 0 if HLA-B27 negative); The canonical baseline rate

are assumed to be constant for every 10 years. A dynamic mover-stayer model is fitted

with the number of damaged joints (j) and HLA-B27 (X) being the explanatory variables

in the logistic regression. A recurrent event model treating all patients as susceptible for

joint damage is fitted for comparison, in which a piecewise constant baseline rate model is

assumed as well and the effect of HLA-B27 on event rate is also of interest.

The estimation results, presented in Table 4.7, demonstrate that the event rate is no-

ticeably underestimated when all the patients are assumed to experience joint damage over

the entire observation period. The effect of HLA-B27 on event rate is also underestimated

though it is not significant is either model. The increased number of damaged joints is

associated with higher odds of continuing to have new damaged joints.
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Table 4.7: Results of fitting piecewise constant baseline rate model and dynamic mover-
stayer model to study the occurrence of joint damage among patients with psoriatic arthritis
whose follow-ups are within 30 years of disease onset; m = 207, standard errors based on
100 bootstraps

Recurrent Dynamic
Event Model Mover-Stayer Model

EST SE EST SE

Mover-Stayer Model
γ0 — — 1.6360 0.2566
γ1 — — 0.1525 0.1066
γ2 — — -0.2011 0.3173

Recurrent Event Model
α1 -0.4672 0.0971 -0.0115 0.1094
α2 -0.8794 0.1487 -0.5087 0.1882
α3 -0.9524 0.3647 -0.1330 0.5366
β -0.1629 0.2693 -0.0693 0.3569

4.5 Remarks

We developed an EM algorithm to analyze interval-censored recurrent event data. A

dynamic mover-stayer model was fitted to handle the feature that disease process may

resolve at some point and the latent event intensity is assumed to be piecewise constant

for baseline function. Some calculation is done under the framework of a progressive time

nonhomogeneous finite-numbered multistate Markov process with an absorbing state. Our

method worked well in producing small bias despite the difficulty that the exact event

times are unobserved, whether the disease process has resolved and the precise resolution

time are undetected as well.
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The computational challenges associated with models featuring latent processes is made

relatively easy through the specification of an EM algorithm which can exploit existing

software at the maximization step. While there is a wide class of intensity functions that

can be adopted for the right-censored setting, when event times are interval-censored the

simplicity of the Poisson assumption for the conditional event process makes it much more

attractive than other models.

106



Chapter 5

Further Research

These three topics of statistical research focus on developing appropriate methods for

the analysis of different incomplete lifetime data that are easy to implement with the

help of existing software packages. They are all likelihood based approaches and use the

EM algorithm to handle the unobserved information in the dataset. Parametric, weakly

parametric, non-parametric and semiparametric models are utilized in different settings.

The proposed methods are shown to work well empirically and application is done on

corresponding motivating studies. It would be interesting to explore these topics further.

5.1 Incomplete Covariates with Left Truncation

In Chapter 2, i.e. Shen and Cook (2013b), we have focused on the setting with two binary

covariates for which specification of the population covariate distribution is easy. More

complex settings could involve incomplete categorical or continuous covariates and similarly
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more complex observed covariates. Specification of a model for the joint distribution of the

covariates in these settings would be considerably more challenging and indeed one may

be willing to give up the potential efficiency gains from the proposed method in order to

ensure robustness of the findings. We have also focused on the simplest kind of missing

data mechanism, where missingness is driven by a covariate that is always observed. More

elaborate missing data mechanisms may require modeling of the missing data process.

Standard software can also be used to obtain point estimates of regression coefficients

from Cox regression models with incomplete covariates via inverse probability weighted

estimating equations. This approach has been considered by several authors (Robins et al.,

1994; Lipsitz et al., 1999) and it is of interest to explore this approach in the context of

left-truncated data.

In addition to the two settings described so far, truncated data arise naturally in studies

of multistate Markov processes. Consider a progressive multistate process comprised of

three states with transitions possible from state 1 to state 2 and from state 2 to state 3.

The transition time from state 2 to state 3 is typically treated as left-truncated because

of the delayed entry time to state 2. When incomplete covariate data arise from such

processes likelihoods may have a different form from those considered here depending on

the selection process. For example, individuals may be observed from the start of the

process, or may be selected for follow-up based on being in state 2; the latter would be

more similar to the problem considered in this paper.

Covariates are often imprecisely observed due to misclassification for discrete covariates

or measurement error for continuous covariates and there is a large literature on methods for

fitting regression models with covariate measurement error (Carroll et al., 2006). When a
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structural modeling approach is taken models for the latent covariate are adopted, and such

models would again require one to specify these models in such a way that the covariate

distribution addressed the selection effects arising due to left truncation; this would be

necessary for an analysis based on either the observed data likelihood or an EM algorithm.

5.2 Dynamic Mover-Stayer Model for Recurrent Events

The formulation in Section 3.1 is quite flexible given the general form of the latent intensity.

We have emphasized simple latent Markov models in our derivations and simulations. Nat-

ural extensions include the use of baseline rates which stratify on the cumulative number

of events, latent semi-Markov models, or models with hybrid time scales. The expectation-

maximization algorithm was described for parametric and semiparametric baseline rates

within the latent Markov family of models, but adaptations to these other intensities are

relatively straightforward. The introduction of random effects to offer a further avenue

for explaining heterogeneity, while possible, may require large sample sizes to ensure con-

vergence. Price and Manatunga (2001) illustrate the interplay between cure rate models

and frailty models and Yu (2008) describes a mixture cure model with the latent mover-

stayer and frailty variables realized at the time origin. Aalen (1992) discusses the use of a

compound Poisson random effect distribution as a means of accommodating a fraction of

nonsusceptible individuals as well as heterogeneity in risk among susceptible individuals.

More general dynamic mover-stayer models can be specified by building upon these static

latent variable models. Issues of estimability arise and become more challenging the more

flexible the model components become and examination of profile likelihood contours can
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be instructive when investigating reasons for convergence problems.

Model assessment is challenging in settings with latent variables and this is particularly

true of mixture models of this type. A particular issue of concern is the fact that there

may be multiple configurations of the baseline intensity and the mover-stayer model which

render similar mean functions. Clear ideas regarding which component of the model co-

variates are to be placed can help circumvent this challenging problem. Model expansion

could be investigated using a likelihood ratio test. Cross-validation is important when the

main goal is prediction.

In many settings with recurrent events, the events are not observed but only known

to occur between to assessment times. In cohort studies of patients with osteoporosis for

example, asymptomatic fractures may be detected upon periodic radiographic examination.

Establishment of suitable medications or other changes in lifestyle and diet may minimize

risk of further fractures, but it can be difficult to determine if these changes have taken

place. The dynamic mover-stayer model offers a way of describing this phenomenon but

adaptations to enable model fitting with interval-censored data are required. Cook et al.

(2002) offer one such approach in the content of parametric Markov models.

5.3 Interval-Censored Recurrent Processes Subject to

Resolution

Some degree of robustness to misspecification is achieved through use of a piecewise con-

stant baseline rate function, but extensions to deal with semiparametric models would be
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worthy of development. Possible avenues include adapting the pseudo-likelihood estima-

tor proposed by Sun and Kalbfleisch (1995) for the mean function, or the semiparametric

maximum likelihood approach of Wellner and Zhang (2000). Here, however, one might

expect more challenges in maximization of the observed data likelihood whether by direct

maximization or an extension of the algorithm we present here.

Cook et al. (2002) describe a generalized mover-stayer model for multistate data under

interval censoring, which is somewhat similar in spirit to what we have described. In

this model, conditional on the mover-stayer indicators, subjects move according to time-

homogeneous Markov transition intensities. Here however, the first time an individual

enters a state, a latent mover-stayer indicator is realized which can render it an absorbing

state. Thus individuals can make transitions between a number of states before finally

entering their absorbing state.

Often recurrent events arise in settings where the event process is terminated by some

event. For example in transplant studies recurrent graft rejection episodes arise when

recipients are experiencing graft versus host disease (Cole et al., 1994). This condition

resolves at a latent time when the graft is fully accepted, but the process can also end

in severe cases by total graft rejection or death of the patient. Adapting these methods

to handle this situation is feasible but may again be more naturally addressed by casting

the process into a multistate framework as in Conlon et al. (2013). Extensions of these

methods would be useful for this setting as well.
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