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Abstract

Systems that are assembled from independently developed features suffer from feature
interactions, in which features affect one another’s behaviour in surprising ways. To ensure
that a system behaves as intended, developers need to analyze all potential interactions –
and many of the identified interactions need to be fixed and their fixes verified. The feature-
interaction problem states that the number of potential interactions to be considered is
exponential in the number of features in a system. Resolution strategies combat the feature-
interaction problem by offering general strategies that resolve entire classes of interactions,
thereby reducing the work of the developer who is charged with the task of resolving
interactions. In this thesis, we focus on resolving interactions due to conflict. We present
an approach, language, and implementation based on resolver modules modelled in the
situation calculus in which the developer can specify an appropriate resolution for each
variable under conflict. We performed a case study involving 24 automotive features, and
found that the number of resolutions to be specified was much smaller than the number
of possible feature interactions (6 resolutions for 24 features), that what constitutes an
appropriate resolution strategy is different for different variables, and that the subset of
situation calculus we used was sufficient to construct nontrivial resolution strategies for six
distinct output variables.
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Chapter 1

Introduction

As the size and complexity of software systems grows, large-scale systems are measured not
only in lines of code, but also in terms of variability. The demand for variety, customization,
and portability across multiple platforms leads to increasingly larger and more complicated
requirements. The complexity and variability of these systems is addressed by decomposing
the system into units of functionality that may be optional. In feature-oriented software
development, a system’s functionality is decomposed into features, where each feature
is an identifiable unit of functionality or variation [8]. Users view features as system
capabilities. For example, telephony users may subscribe to features such as Call Waiting
or Caller ID, which extend the basic functionality provided to them through the base call
service. An automobile may have Anti-Lock Brakes or Cruise Control features, which
enhance driver safety or vehicle performance. Each of these features are optional and may
be selected or billed according to the users’ preferences. Feature orientation also has the
added benefit that features can serve as a shared vocabulary among diverse stakeholders
(e.g., marketers, customers, other engineers) in a way that other types of software fragments
— such as modules, objects, or components — cannot.

Decomposition of a system into features also allows for incremental software develop-
ment. Since features encapsulate separate units of functionality, they can be easily added
or updated in new releases of the system. Additionally, this decomposition enables the
parallel development of features by developers on the same team or by third parties.

Feature-oriented software development also helps to manage variability between in-
stances of a system. Software product lines group families of similar software products
(e.g., smartphones, cars). These families are managed and evolved in terms of their fea-
tures. Each individual product in a product line comprises a basic service and a subset of
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optional features [36].

Although features are considered individually, they are often not truly separate con-
cerns and problems arise when developers try to integrate them into a coherent product.
Consider, for example, a user in a telephony system who subscribes to Call Waiting (CW)
and Call Forwarding on Busy (CFB). Separately, the behaviours of these features are well-
defined. In the event a subscriber to CW is currently involved in a call, she will receive
notification of any new incoming calls and have the option of putting either the incoming
call or the current call on hold. If a subscriber to CFB receives an incoming call in this
situation, the call will be rerouted to a predefined user-set forwarding number. When the
same user subscribes to both of these features, there is a conflict between the two features.
When the subscriber is busy, CW will inform the user of an incoming call, while CFB will
attempt to forward the incoming call to another number. In this case, the behaviour of the
system is not well-defined. It is unclear whether an incoming call should be forwarded au-
tomatically, or whether the user should be notified and given the opportunity to place one
of the calls on hold. This is an example of a feature interaction — where the presence
of multiple features in the system causes the behaviour of individual features to deviate
from their respective specifications.

There are many types of feature interactions. Formal definitions for each type of in-
teraction often vary across different kinds of modelling languages used to express feature
behaviour. In this thesis, feature behaviour is expressed as the transitions of a state ma-
chine and the realization in a world model of world-change actions output by the collection
of composed features. We are primarily concerned with conflict interactions. A conflict
interaction is a type of interaction that occurs when the next world state cannot be
computed because the set of world-change actions cannot be executed simultaneously [32].
This definition is seen in many previous works on feature interaction detection [1, 15, 38].
More specifically, a conflict arises when multiple features attempt to assign different values
to the same instance of an output variable in a single execution step [24].

The consequences of feature interactions range from unexpected or unpredictable be-
haviour to potentially dangerous situations. For example, the software controllers for the
braking features on the 2010 Toyota Prius interacted badly, reducing drivers’ overall ability
to brake and leading to multiple crashes and injuries [35]. To be safe, software developers
must consider how features interact and must resolve undesired interactions. However,
because features are optional in many products, or can be turned on and off dynamically,
developers must look for potential interactions in different combinations of features. For
each identified interaction, the developer must first determine if it is problematic. If it is
problematic, she must devise a resolution for the interaction.
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A resolution defines appropriate behaviour for the system in the event that a feature in-
teraction occurs. The details of a resolution depend on the domain, the developer’s original
intention in specifying feature behaviour, and the nature of the interaction. For example,
a resolution strategy to resolve the conflict between Call Waiting and Call Forwarding on
Busy may be to seek user input: notifying the subscriber if an incoming call arrives when
the subscriber is already on the phone and giving her the choice of putting one of the
calls on hold or forwarding the new call to a predefined number. Whereas this resolution
strategy would not be appropriate for an interaction between cruise-control features in an
automotive system. Performing multiple acceleration changes in quick succession could
lead to jolting behaviour and interfere with the driver’s safety.

Resolving interactions is a lot of work, because appropriate resolutions may vary, even
within the same domain. The developer must find all interactions, and fix the problematic
ones, among all possible combinations of features; and the number of feature combinations
to consider is exponential in the number of possible features in the system. Thus, as the size
of the system and the number of features grows, a software team finds that the development
of new features is eventually dominated by the Feature Interaction Problem: the need
to analyze, resolve, and verify interactions [5].

One approach to the Feature Interaction Problem is to employ a default strategy for
resolving interactions, thereby reducing the number of interactions that need to be indi-
vidually addressed by the developers. Default resolution strategies include resolution by
feature priority [18, 22, 29], feature precedence [3, 9, 21], negotiating compromises [16], set-
ting interaction thresholds [12], involving the user [13], rolling back conflicting actions [29],
disabling feature activation [20], terminating features [29], and terminating the applica-
tion. However, most of these strategies are coarse grained (e.g., based on the priority or
precedence of the features themselves rather than the features’ interacting actions); they
provide suboptimal win/lose resolutions in which some features’ actions are sacrificed in
favour of other features’ actions; and they often require an upfront total or partial ordering
on features [40].

Thesis Statement:

Rather than trying to resolve every feature interaction due to conflict indi-
vidually or devising one resolution strategy to handle all feature interactions,
many aspects of the Feature Interaction Problem can be addressed by focusing
on the outputs of the system and specializing default resolution strategies to
apply to these outputs. This allows developers to specify appropriate win/win
resolutions that do not require a total or partial ordering on features. It is
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possible to reduce the work done by the developer to be linear in the num-
ber of types1 of output variables modified by multiple features, rather than
exponential in the number of features. It also preserves the advantages of
feature-oriented software development; it is agnostic to the number of features
in the system and maintains feature obliviousness, allowing for the incremental
and parallel development of features.

1.1 Contributions

The contributions of this thesis are as follows:

• We introduce a new approach to resolving features’ interactions, in which the reso-
lution strategies are specific to the variables being acted on.

• We present an implementation of the approach, in which feature actions and developer-
provided resolution strategies are encoded in the situation calculus [30] and are exe-
cuted by a GOLOG interpreter [28]. We identify sufficient and necessary conditions
on the developer-provided resolutions that ensure that a resolution has desired prop-
erties (e.g., is deterministic, is conflict-free, terminates).

• We performed a case study in which we used our approach and implementation to
model the actions of 24 automotive features and to specify appropriate resolutions for
6 distinct output variables. The results of the case study demonstrate that different
output variables require different resolution strategies. The case study also assessed
the expressiveness of situation calculus as a suitable language for encoding feature
actions and resolution strategies.

1.2 Organization

This thesis is organized as follows. In the next chapter, we give an overview of feature-
oriented requirements modelling and the feature-interaction problem. In Chapter 3, we
describe an approach to resolving feature interactions in terms of resolution strategies
per output variable, including how to encode feature actions and resolution strategies

1In the case of multiple instantiations of the same type of output variable, the developer only needs to
specify one resolution to apply to all variable instances.
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in situation calculus. In Chapter 4, we identify necessary and sufficient conditions for
resolutions to satisfy desired properties (e.g., are deterministic, are conflict-free, terminate),
and we present the results of our case study. Chapter 5 summarizes related work, and
Chapter 6 concludes the thesis.
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Chapter 2

Preliminaries

Throughout this thesis, we use examples from the automotive domain. Each feature ex-
tends a Basic Driving Service (BDS), which serves as a base system whose functionality is
entirely self-contained [8]. An automotive system comprises BDS and a subset of optional
features.

2.1 Feature-Oriented Requirements

We are primarily concerned with the requirements stage of feature-oriented software devel-
opment. Behavioural requirements for each feature are modelled independently and then
composed into a system. There are many ways to model feature behaviour, but we focus
on state-machine approaches [17]. The language we describe here is based on the Feature-
Oriented Requirements Modelling Language (FORML) [31] as it provides a rich syntax for
expressing feature behaviour.

A system’s behaviour is expressed in terms of its reactions to changes and conditions in
its environment, and its actions on environmental variables. Monitored variables such
as car.speed represent environmental phenomena that are sensed by or act as inputs to
the system. Changes to monitored variables prompt reactions in the system behaviour.
Controlled variables represent environmental phenomena that are controlled or affected
by system outputs.

A world model is a conceptual model of the system’s environment. Figure 2.1 shows
a partial world model for an automotive product with the features Cruise Control, Lane-
Change Control, Headway Control, and Speed-Limit Control. A world model shows as-
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leftLane
0..1

contains
features

1

Lane Change Control
(LXC)

activate : bool

lane
changing : {true, false,
                   unknown}

Speed Limit Control
(SLC)

activate : bool

car
speed : int
oscillation : real
steering : real
acceleration : real
ignition : bool

*

roadSegment
speedLimit : int
curvature : real

    
    on

*

1

1

Headway Control
(HC)

activate : bool

0..4

driver
handsOnWheel : {true, false,
                             unknown}

1..*
1

currentLane

Cruise Control 
(CC)

setSpeed : int
activate : bool

0..1

*

rightLane

*

*

alert
l ightType : {engine, oil, brakes}
chimeType : int

brake
hydraulicPressure : real
pressed : bool

on

cabin
airFlowRate : real 1

wheel
angle : real

Figure 2.1: Partial world model for a car with several features
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Basic Driving Service

Inactive

Active

acceleration
 
 
 
 
 
 
 
 

deceleration
 
 
 
 
 
 
 
 

steering

t1: when(car.ignition = true)

t2: when(car.ignition = false)

Control

t3: [ true]/
a1: car.acceleration := 
          Acceleration()

Control

t4: when(brake.pressed=true)/
a1: car.acceleration := 
          Acceleration()

Control

t5: [steering != wheel.angle]/
a1: car.steering := Steering()

Cruise Control

Inactive

Active

Speed Limit Control

Inactive

Active

 

Monitor Control

t2: [car.speed != car.CC.setSpeed]
a1: car.accleration := 
     ccAcceleration()t1: when(CC.activate = true)/

a1: CC.setSpeed := car.speed

Monitor Control

t2: [car.speed > car.roadSegment.speedLimit]
a1: car.accleration := 
    slcAcceleration()t1: when(SLC.activate = true)

Figure 2.2: Behaviour model of BDS and some automotive features

sociations between concepts in the world. For example, a car always has one driver and
may be one of many other car objects on a roadSegment. This model also shows con-
cept attributes; for example, a car has the attributes speed, oscillation, steering, and
acceleration. The attributes of the world model comprise the monitored and controlled
variables in the system’s environment.

A world state is an instantiation of the world model that reflects the current values
of all the monitored and controlled variables. A world state contains objects, which are
instantiations of concepts in the world model. The objects in a world state are dynamic:
they may be added, removed, or modified as part of the behaviour of the system. Dot
notation is used to refer to monitored and controlled variables in a world state. For example,
the attribute acceleration of the object car is denoted car.acceleration. The value of the
variable car.acceleration in the world state wsi is denoted wsi :: car.acceleration.

A feature’s behaviour is modelled as a state machine, called a feature machine.
Figure 2.2 shows feature machines for the Basic Driving Service (BDS) and two optional
features, Cruise Control (CC) and Speed-Limit Control (SLC). A state in a feature machine
reflects the current state of a feature’s execution. States may be hierarchical, containing
several sub-states that more finely describe feature behaviour. Superstates may also contain
concurrent regions that execute in parallel. For example, the CC feature has Active and
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Inactive superstates that reflect different aspects of the feature’s behaviour. The Active
state of BDS contains three concurrent regions responsible for monitoring and controlling
different environmental phenomena. A world state reflects the current execution states of
the feature machines for all features in the system, as well as the values of all monitored
and controlled variables as described above.

Transitions between states are triggered by events, or changes to monitored variables.
These triggering events are represented as expressions over variables in the previous and
current world states, wsp and wsc, respectively. In Figure 2.2, the transition from the
Inactive to Active superstate in the CC feature machine is triggered by the event of the
feature CC’s activate attribute becoming true:

wsp :: car.CC.activate = false ∧ wsc :: car.CC.activate = true

As shorthand, we use the UML construct when(c) to denote the condition c becoming true.
So, the triggering event above is expressed in Figure 2.2 as

when(car.CC.activate = true)

A transition may also be guarded by an expression over the current values of monitored
variables. The transition will be executed only if the guard condition evaluates to true. For
example, the transition between the Monitor and Control sub-states in the SLC feature
machine is guarded by the condition car.speed > speedLimit. This evaluates to true if
and only if the current speed of the vehicle is greater than the speed limit of the current
segment of road.

In total, a transition between states may be labelled with an identifier id, a triggering
event te, a guard condition gc, and one or more actions a1, . . . , an.

id : te [gc]/a1 . . . an

A transition from state s1 to s2 is enabled if the machine is currently in state s1, the guard
condition evaluates to true, and the triggering event occurs. An action corresponds to a
prescribed change to controlled variables in the current world state. There are three types
of actions, sometimes referred to as world-change actions:

• +o(list(a = 〈expr〉)) Adds object o to the (next) world state. Attributes of o are
initialized with the evaluations of the given expressions.

• −o Removes object o from the (next) world state.
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• o.a := 〈expr〉 Assigns the evaluation of the expression expr to the controlled variable
o.a.

For example, many automotive features modify vehicle acceleration to maintain driver
preferences or respond to safety concerns. This is modelled by assigning appropriate values
to the controlled variable car.acceleration. Often, the details of calculating of these values
are abstracted as uninterpreted functions, such as the action in transition t3 of the BDS
feature machine:

a1 : car.acceleration := CCAcceleration()

An execution step of a feature machine consists of the execution of at most one tran-
sition for every concurrent region of the feature’s current execution states. An execution
step of a system is the concurrent execution of each feature’s execution step. In each exe-
cution step, the features’ executing transitions and actions result in a (new) current world
state, determined by the new execution states in each feature machine, the effects of the
transitions’ actions on the controlled variables, and changes in the values of noncontrolled
variables made by the environment [32].

Figures 2.3 and 2.4 show the result of performing world change actions on a world state.
Each world state in the figures is an instantiation of the world model shown in Figure 2.1.
Transitions between these world states are the result of actions performed by the Lane
Change Control feature (LXC).

The first world state, ws0, shows the current controlled objects in the world, along with
the values of their attributes. The transition from ws0 to ws1 results from the addition
of the object leftLane, shown in green. This change is the result of the following world
change action, performed by a lane detection feature not described in this document:

+ car.leftLane(changing = false)

The next world state, ws2, results from a driver decision to change into the left lane.
LXC sets the values of the variables car.currentLane.changing and car.leftLane.changing
to true with the world-change actions:

car.currentLane.changing := true

car.leftLane.changing := true

which represent the fact that the current lane of the vehicle will soon become the right
lane and the left lane will become the current lane. This change is highlighted in yellow in
the figure.
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contains
features

Lane Change Control
(LXC)

active = true

currentLane
changing = false

Speed Limit Control
(SLC)

active = true

car
speed = 60
oscillation = 0
steering = 0
acceleration = 0

    
    on

Headway Control
(HC)

active = false

driver
handsOnWheel = true                       unknown}

Cruise Control 
(CC)

setSpeed = 60
active = true

alert
l ightType = engine
chimeType = 1

brake
hydraulicPressure = 0

on

cabin
airFlowRate = 0

roadSegment
speedLimit : 60
curvature : 0

(a) World State ws0

contains
features

Lane Change Control
(LXC)

active = true

currentLane
changing = false

Speed Limit Control
(SLC)

active = true

car
speed = 60
oscillation = 0
steering = 0
acceleration = 0

    
    on

Headway Control
(HC)

active = false

driver
handsOnWheel = true                       unknown}

Cruise Control 
(CC)

setSpeed = 60
active = true

alert
l ightType = engine
chimeType = 1

brake
hydraulicPressure = 0

on

cabin
airFlowRate = 0

roadSegment
speedLimit : 60
curvature : 0

leftLane
changing = false

(b) World State ws1

Figure 2.3: Progression of the world state as a result of executing WCAs
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contains
features

Lane Change Control
(LXC)

active = true

currentLane
changing = true

Speed Limit Control
(SLC)

active = true

car
speed = 60
oscillation = 0
steering = 0
acceleration = 0

    
    on

Headway Control
(HC)

active = false

driver
handsOnWheel = true                       unknown}

Cruise Control 
(CC)

setSpeed = 60
active = true

alert
l ightType = engine
chimeType = 1

brake
hydraulicPressure = 0

on

cabin
airFlowRate = 0

roadSegment
speedLimit : 60
curvature : 0

leftLane
changing = true

(a) World State ws2

contains
features

Lane Change Control
(LXC)

active = true

rightLane
changing = false

Speed Limit Control
(SLC)

active = true

car
speed = 60
oscillation = 0
steering = 0
acceleration = 0

    
    on

Headway Control
(HC)

active = false

driver
handsOnWheel = true                       unknown}

Cruise Control 
(CC)

setSpeed = 60
active = true

alert
l ightType = engine
chimeType = 1

brake
hydraulicPressure = 0

on

cabin
airFlowRate = 0

roadSegment
speedLimit : 60
curvature : 0

currentLane
changing = false

leftLane
changing = true

(b) World State ws3

Figure 2.4: Progression of the world state as a result of executing WCAs
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Finally, the world state ws3 shows the effects of completing the lane change into the left
lane. The value of the attribute currentLane.changing is set by the world-change action
car.currentLane.changing := false (shown in yellow), the former current lane is now a
new lane on the right, and there is no longer a lane on the left. These changes are realized
by the following world-change actions in the lane detection feature:

− car.leftLane
+ car.rightLane(changing = false)

2.2 Feature Interactions

Composing independently developed features naturally leads to feature interactions. A
feature interaction encompasses any scenario in which a feature behaves differently in
the presence of one or more other features in the system than it behaves in isolation.

Some interactions are intended. For example, the Headway Control (HC) feature ex-
tends the functionality of Cruise Control (CC) by reducing the acceleration of the vehicle
if there is an upcoming obstacle in the road. In isolation, Cruise Control accelerates the
vehicle to maintain a driver-set preference. This behaviour is inhibited in the presence
of Headway Control, which prevents the vehicle from accelerating to the driver-set speed
when there is an obstacle in the road. This feature interaction is a deliberate part of the
design of Headway Control.

Other interactions cause unintended or unexpected behaviour. Consider the combina-
tion of Headway Control and Speed-Limit Control, the latter of which ensures that vehicle
acceleration remains within the speed limit of the road. If the vehicle travels faster than
the speed limit and at the same time approaches an obstacle, both features will simulta-
neously send messages to the actuators responsible for controlling vehicle acceleration. If
their messages are different, the behaviour of the vehicle is undefined. Acceleration may
be set to an unpredictable value.

The interactions we have described occur between two features. However, some in-
teractions may manifest themselves only in particular combinations of three or more fea-
tures [25]. Consider telephony a scenario in which user A calls user B. User A subscribes
to Calling Number Delivery Blocking, a feature that hides her identity (in the form of her
phone number) from the person she is calling. User B subscribes to Call Forwarding on
Busy and forwards all of her calls to user C. User C subscribes to Ring Back When Free,
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a feature that stores a calling number in the event that the subscriber is busy; Ring Back
When Free tries to establish a connection to the deferred call as soon as the subscriber is
free. When user A places a call to user B, which is then forwarded to user C, if user C
is currently busy, there is ambiguity in the specifications as to whether user A’s number
or user B’s number will be called back when user A is free. In the case of the latter, this
might interfere with the appropriate behaviour of the Calling Number Delivery Blocking
feature. When composing a system, software developers must look for interactions in all
possible combinations of features.

The literature [8] lists multiple types of feature interactions, but for the purposes of
this thesis we are concerned with only one type of interaction.

2.2.1 Feature Interactions due to Conflicts

A conflict interaction occurs when the set of actions in an execution step are impossible
to execute simultaneously because they modify the same controlled variable. Alma et
al. [24] proposed a general definition for these kinds of feature interactions in the automotive
domain. Two features are in conflict if they attempt to modify the same controlled variable
in the environment by assigning different values to the same actuator or to two distinct
actuators that are responsible for that controlled variable.

For example, if two features try to set the same controlled variable to different values,
there is no way for both of these requests to be satisfied in the same execution step.
The result is an undefined or unpredictable world state. In the semantics of FORML,
the resulting next world state is a special conflict state, which terminates the execution
trace [32].

In Figure 2.2, we see the potential for conflict when both SLC and CC are Active and
car.CC.setSpeed > car.roadSegment.speedLimit: SLC will try to decrease acceleration
at the same time that CC tries to increase it:

CC.t2.a1 : car.acceleration := ccAcceleration()

SLC.t2.a1 : car.acceleration := slcAcceleration()

The next world state cannot be determined as the result of executing both of these
actions, because the controlled variable car.acceleration can have only one value assigned
to it.
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Chapter 3

Resolution

Our aim is to resolve feature interactions in a way that addresses key aspects of the feature
interaction problem. We developed a strategy with the following high-level goals.

1. Maintain the advantages of feature-oriented software development. This includes
preserving the ability to express feature behaviour as an independent feature machine
that is oblivious to the presence of other features.

2. Enable conflict-free feature composition. Feature composition should resolve feature
interactions due to conflict if they are present and should preserve feature behaviour
in the absence of interactions.

3. Allow resolutions to be based on all conflicting actions rather than on the features
that perform them. This limits the impact that adding or removing features has on
the specification of resolutions.

4. Resolutions should be agnostic to the number of features in the system and the
number of features in an interaction. In addition, the number of resolutions specified
by developers should be small with respect to the number of interactions and should
not grow super-linearly with the number of features.

5. The resolutions we devise should be deterministic and total. Determinism guarantees
that, given a current world state and a set of changes to monitored variables, there
should be only one possible value for each controlled variable in the next world state.
As a result, system behaviour is predictable. Totality guarantees that there will
always be a valid next world state.
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We first give an overview of our approach to resolving feature interactions due to
conflicting actions and describe how it fits into the execution model of a system composed of
feature machines. We then present the details of our implementation and provide examples
of resolutions in the automotive domain.

3.1 Overview

We draw inspiration for our approach from the Software Cost Reduction (SCR) [19] re-
quirements method. SCR specifications follow a dataflow execution model [23], in which
requirements are represented as a directed graph. Each node in the graph is a function that
calculates the current value of a variable. Edges indicate the flow of data values between
nodes. A node executes its function as soon as all of its required input data are available,
and it outputs the result along directed edge(s) to the next node(s).

An SCR specification defines a function for each local and controlled variable. This
function calculates what the value of the variable will be at the end of an execution step.
Each function takes as input the current values of all monitored variables, the most recently
computed values of local variables, and the current modes of all mode classes (analogous
to states in a state-machine) and deterministically calculates the next value of the variable
for which it is defined. There are no conflicts in an SCR specification because they are
resolved during specification: each function that computes the value of a controlled variable
encodes all features’ contributions to that variable’s next value.

Although SCR specifications are always conflict free, they do not allow for the parallel
or incremental development of features. When a new unit of functionality is added to the
system, all affected functions must be updated to reflect this behaviour. In SCR, there
is no way to treat features as separate concerns. We want to allow for the independent
and separate development of features, while also utilizing the ideas presented in SCR of
controlled variable functions to eliminate the possibility of conflicts.

In our approach, we define a resolution module, similar to the controlled variable func-
tions in SCR, for each controlled variable that defines the next value of that variable. A
controlled variable resolver takes as input the features’ actions on that variable and employs
a feature-independent resolution strategy to assign a conflict-free value to the variable. In
this way, our approach is unique in the fact that features do not need to be known in
advance.

Figure 3.1 depicts the architectural structure of our approach. We define a feature
machine for each feature. At the start of an execution step, the values of monitored vari-
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ables in the current and previous world states, wsc and wsp, respectively, prompt changes
in the execution states of feature machines. The feature machines execute in parallel,
each reacting to changes in the values of monitored variables. In each execution step, the
outputs of each feature machine are the set of actions on the transitions that execute in
that step. The features’ actions are partitioned according to the controlled variable they
modify. For each controlled variable in the current world state, we define a resolver module
that calculates, given all of the features’ actions on the controlled variable, a sequence of
actions to be executed atomically on the variable. Note that our resolvers differ from the
controlled-variable functions in SCR. In SCR, all information about how features affect the
values of a controlled variable is encoded in the controlled variable function. The functions
in SCR take as input only the current values of monitored variables. In our approach,
each feature’s contribution to the value of a controlled variable is encoded in its feature
machine. The outputs of these machines, and inputs to the resolution modules, are actions
on the controlled variables as well as the values of monitored variables. In this way, we use
the notion of a controlled variable function to calculate conflict-free values of controlled
variables in the next world state, but also support independent and modular modelling of
features.

The next world state, wsn is the result of executing in parallel the output actions of
each resolver, together with the next states of each feature machine and the changes to non-
controlled variables. Thus, a complete execution step of the requirements model proceeds
as follows:

1. Changes occur to the values of one or more monitored variables.

2. Feature machines react in parallel by executing transitions and outputting transition
actions.

3. Our resolution introduces a third phase in the execution step, in which the feature-
machine actions pass through resolver modules, one resolver per controlled variable.
The output of each resolver is a sequence of actions on the controlled variable to be
performed atomically.

4. The next world state, wsn, is determined by the result of performing the state tran-
sitions in step 2 the world-change actions produced in step 3, and environmental
updates to the values of non-controlled variables.

The set of resolver modules in a system is dynamic. The number and type of resolvers
changes as the number and type of controlled variables in the world state changes. Recall
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that a world-change action can add or remove an object from the world state, where each
object consists of one or more controlled variables. When a controlled variable is added
to the world state, a corresponding resolver module is added to the architectural model
of the system. Figure 3.1 shows the result of executing the action +o1(a2) that adds the
object o1 with attribute a2 to the world. A new resolver module for o1.a2 is added to
the system. In future execution steps, the resolver module will take as input all actions
that assign values to this controlled variable and will produce a resolution in the form of
a conflict-free sequence of actions. When a controlled variable is removed from the world
state, the corresponding resolver module is removed from the architectural model of the
system. In Figure 2, object o2 has attribute am. Therefore, after executing the action −o2,
the resolver for o.am is removed and all subsequent requests to modify o.am are ignored.

Note that not all controlled variables will be involved in feature interaction conflicts. If
a variable is only ever modified by one feature, there is no need for the developer to specify
a resolution module for it. Static analysis of the system may be performed to determine
which variables require resolution modules [24]. This will further reduce the work of the
developer.

The developer is responsible for specifying a resolution strategy for each type of con-
trolled variable. We note that a new feature can introduce new concepts and attributes
to the world model through world change actions, which in turn introduces new controlled
variables for which resolution modules need to be written; but the number of variables for
which resolver modules are written is often less than the number of features and there-
fore much less than the number of possible interactions. Moreover, as will be seen, the
resolution does not depend on the specific features in the system, or the specific feature
interactions to be resolved. As such, this approach to resolving interactions addresses
the feature-interaction problem by drastically reducing the amount of work done by the
developer.

3.2 Details

In this section, we focus on the details of the resolver modules. We describe a language
that is suitable for expressing the inputs and outputs of a resolver as well as for specifying
a resolver’s resolution strategy. We then provide an implementation that uses situation
calculus and a subset of the GOLOG programming language.
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3.2.1 Input Action Language

Our resolution language needs to be rich enough to encode the inputs to a resolver module.
This includes values of monitored variables and world-change actions. Recall the three main
types of world-change actions that manipulate controlled variables: addition of an object,
removal of an object, and variable assignment. Object addition causes a new resolver
module for each of the object’s attributes (if deemed necessary by static analysis) to be
added to the execution model, whereas object removal causes the resolvers associated with
the object’s attributes to be removed from the execution model. Therefore, our resolution
language needs to encode only variable assignments.

An assignment assigns a variable to the value of an expression. An expression may be
a simple value, or it may be a computation on other variables or uninterpreted functions1.
The resolution language must be able to encode any relevant information about assignment
expressions, as the inputs to a resolver.

3.2.2 Requirements for a Resolution Language

How conflicting assignments to a controlled variable are resolved depends on multiple
factors, including the variable’s range of values, the system domain, and the effect the
variable has on the behaviour of the system or on the system’s environment. As such, the
developer or domain expert are in the best position to determine the most appropriate
resolution strategy for conflicting actions on a controlled variable. Our goal is to provide
a language that is suitable for them to program appropriate resolutions.

Consider two features, A and B, that affect vehicle steering. Feature A monitors lane
markings and detects that the vehicle has veered too far to the left and compensates by
turning the vehicle to the right. Simultaneously, feature B monitors skidding during turns
and detects that the vehicle is over-steering to the right, and attempts to correct this by
turning the vehicle to the left. In order to achieve maximum stability, an appropriate
resolution needs to consider the actions from both features. A reasonable resolution might
be to set car.steering to the average of the values assigned by features A and B.

In general, the resolution language needs to be expressive enough to reason about a
collection of actions and compute a conflict-free resolution. Examples of resolution strate-
gies include computing the minimum, average, or sum of the assignment expressions that
are output by the feature modules. These resolution strategies consider all assignments

1The details of uninterpreted functions may be contained in another document or are to be specified
later in development.
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Symbol Type Description

Sc constant starting state
do(a, s) function result of performing action a in situation s
Poss(a, s) predicate a can be performed in s

Table 3.1: Domain independent situation calculus symbols

to a controlled variable and they focus on the values of the expressions rather than the
sources of the assignments. Such strategies offer an alternative to a win/lose resolution in
which only one feature’s actions (e.g., those of the highest-priority feature) are allowed to
execute.

Even when it is possible to specify variable-specific resolutions, feature-based priorities
sometimes still play a role and our resolution language should support them. For example,
in automotive systems, it is common to give higher priority to actions that preserve driver
safety, such as Speed-Limit Control (SLC), compared to actions that maintain driver-
set preferences, such as Cruise Control (CC). Additionally, we may wish resolutions to
prioritize driver actions over feature actions. As such, we categorize actions as being driver-
controlled, safety, or non-safety and devise a resolution language that supports reasoning
about action categories as well as the values of assignment expressions themselves.

3.2.3 Situation Calculus

Situation calculus [30] is a first-order language that is well-suited to expressing actions,
domain-knowledge, and the effects that actions have on the current domain state. We
chose to use situation calculus because it naturally supports the expression of both the
input actions to our resolver modules and their resolutions.

Situation calculus constructs are grouped into three basic categories: situations, fluents,
and actions. A situation is a first-order term that represents a world state, or a valuation
of all variables. A situation is the result of performing a sequence of actions on a defined
starting state, Sc

2.

Actions in the situation calculus are first-order logic terms that reflect a prescribed
change to a situation, or world state. These actions may take one or more arguments as
inputs. For our purposes, situation-calculus actions are analogous to world-change actions

2We deviate from the traditional situation-calculus terminology of “initial-state” to avoid confusion
with the concept of the initial state for a state-machine model.
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in a feature machine. Performing an action a on a situation Sc is expressed using the
special function do, and results in a new situation sn:

sn = do(a, Sc)

Fluents are functions and predicates that take a situation as one of their arguments;
they are referred to as fluents because their valuations depend on the situation to which
they are applied. Fluents can be used to refer to the values of variables in a particular
world state. For example, the functional fluent carSpeed(s) returns the value of the car’s
speed in the world state represented by situation s.

The developer uses a combination of situations, actions, and fluents to specify allowable
steps in the execution of a system. Additional specifications are characterized with axioms
that constitute a domain theory D. Starting-state axioms are assertions on the values
of fluents in a starting state Sc. Successor-state axioms define the effects of performing
an action a in a situation s. The developer uses fluents to specify assertions on variable
values in the successor situation that results from performing an action. Precondition
axioms specify whether an action a may be performed in a given situation s; they are
expressed with the special predicate Poss(a, s). Table 3.1 contains a summary of special
situation-calculus constructs.

3.2.4 Encoding Inputs to a Resolver Module

The inputs to a resolver module for a controlled variable of type o.a are (1) the values of
monitored variables at the start of the execution step (i.e., the values of the monitored
variables in the world state wsc), and (2) the set of world-change actions that are output
by all the feature modules and that assign values to o.a.

The developer encodes the inputs to a resolver as starting-state axioms, which assert
constraints on the valuations of fluents in the starting situation Sc. The starting situation
of each resolver module will reflect the current world state, wsc. Given a monitored vari-
able m in wsc, the developer asserts the relational fluent m(v, Sc) to be true if the value
of m in wsc is equal to v (wsc :: m = v). To express the set of input actions, she as-
serts another relational fluent assignRqst(L, Sc) where L represents the set of assignment
expressions output by the feature modules. That is, if the features perform the actions
o.a := e1, . . . , o.a := en, then L = [e1, . . . , en]. Note that the number n of actions output
by the feature modules depends on the transitions that execute in the feature machines
and varies between execution steps.
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To distinguish between safety, driver, and non-safety actions, the developer may define
assignRqst fluents for each category. The fluents assignRqstSafety(L, Sc),
assignRqstDriver(L, Sc), and assignRqstNonSafety(L, Sc) correspond to assignment ex-
pressions partitioned according to the above categories. In general, the developer may
define a fluent for every level of prioritization she wishes to express. The purpose of this
is to allow for resolutions that distinguish between broad categories of actions. Note that,
throughout the development of each resolution module, the developer gains a sense of the
appropriate categories features may belong to. During composition, the features must be
grouped into these categories so that their actions can be appropriately partitioned before
they are sent to the resolution modules.

Additionally, we can reason about the structure of an assignment expression e. For
example, if it is important for the resolution to distinguish between assignments that
depend on a monitored variable m, we can encode this information by asserting a fluent
dependsOnm(e, Sc). The expression e will then appear both in the list of input actions, and
in this additional fluent. Such information may be useful when reasoning about a feature’s
motives for assigning a controlled variable. The level of detail these fluents express is left to
the developer (e.g., whether an expression is dependent on a variable, increases a variable,
increases a variable by a precise amount, and so on).

Example 1. Suppose a developer is responsible for programming the resolver module for
the controlled variable car.acceleration. Relevant monitored variables include car.speed
and car.acceleration. The developer distinguishes between three levels of prioritization:
safety, non-safety, and driver features.

In a particular world-state wsc, the feature modules for Cruise Control, Speed-Limit
Control, and Basic Driving Service output the following respective actions:

car.acceleration := ccAcceleration()

car.acceleration := slcAcceleration()

car.acceleration := Acceleration() + 5

Thus, the starting-state axioms that encode these inputs are:

car.speed(wsc :: car.speed, Sc)

car.acceleration(wsc :: car.acceleration, Sc)

assignRqstSafety([slcAcceleration()], Sc)

assignRqstDriver([Accleration() + 5], Sc)

assignRqstNonSafety([ccAcceleration], Sc)
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Symbol Type Description

empty(L) Predicate list L is empty
member(L, e) Predicate element e is in list L
first(L) Function returns the first element of the list L
rest(L) Function removes the first element from the list L
append(L, e) Function append element e to list L
order(L) Function orders list L from maximum to minimum
remove(L, e) Function remove element e from list L
average(L, v) Predicate average value in L is v
minimum(L, v) Predicate minimum value in L is v
maximum(L, v) Predicate maximum value in L is v
sum(L, v) Predicate sum of values in L is v
<, >, =, 6= Predicate equality and inequality
+, −, ∗, / Function arithmetic operations

Table 3.2: Domain independent resolution symbols

3.2.5 Encoding the Resolutions of a Resolver

Each resolver module is responsible for assigning a value to one controlled variable. There-
fore, the developer defines only one situation-calculus action assign(v) per resolver; the
action assigns the resolved value v to the controlled variable in question.

The developer uses precondition axioms to specify how the value v is computed. A
precondition axiom Poss(a, s), dictates the conditions under which the situation-calculus
action a may be performed in the situation s. Thus, the developer defines a precondition
Poss(assign(v), s) to specify the conditions under which the output of the resolver module
in situation s is assign(v). We express precondition axioms using the fluents described
above. Some helper predicates and functions that we deem useful for specifying resolutions
are listed in Table 3.2. This list is by no means exhaustive — the developer may define
any first-order logic predicate and function needed to provide appropriate resolutions for
her domain.

Example 2. Recall the acceleration example discussed in Example 1. There are several
safety and convenience features that modify the controlled variable
car.acceleration. These include Cruise Control (CC) and Speed Limit Control (SLC),
which aim to keep the monitored variable car.speed at a driver-set preference and below
the speed limit of the road, respectively. Additionally, the headway control (HC) feature
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changes the vehicle’s acceleration in response to upcoming obstructions or other cars on the
road; and the driver can affect vehicle acceleration by pressing her foot on the accelerator
pedal.

Based on our understanding of how these features ought to interoperate with each
other, we devised the following resolution3. Our resolution considers three different levels
of priority: driver, safety, and non-safety actions. Driver actions to modify the car’s
acceleration have the highest priority, followed by actions from safety features, followed
by actions from non-safety features. If there are multiple driver-related input actions, the
resolver module will assign the minimum value. If there are no driver-related actions, then
safety actions will be considered. If there is more than one safety action, then the minimum
value is selected to be the output action. For example, if there are no driver-related actions
and the two safety features, Speed-Limit control and Headway Control, both contribute
input actions car.acceleration := e1 and car.acceleration := e2, then the output action
will be the minimum of these two values.

Our resolution is expressed in situation calculus as follows:

Poss(assign(v), s) ≡
(∃l.assignRqstDriver(l, s) ∧minimum(l, v))∨
(∀l.(assignRqstDriver(l, s)→ empty(l))∧
∃l2.assignRqstSafety(l2, s) ∧minimum(l2, v))∨

(∀l.(assignRqstDriver(l, s) ∨ assignRqstSafety(l, s)→
empty(l))) ∧ (∃l3.assignRqstNonSafety(l3, s)∧
minimum(l3, v))

The interpreter will first see if there are any elements in the list of input driver actions and
take the minimum value of this list. If the list of driver actions is empty, it will attempt
to find the minimum value of the list of input safety actions. Finally, if there are no driver
or safety actions, the interpreter will output the minimum value of non-safety actions.

As long as there is at least one enabled action, there will be a value v that satisfies the
above formula. If there are no input actions, the resolver will not output any actions and
the value of the controlled variable will not change. In Section 4, we discuss the necessary
and sufficient conditions to ensure that resolutions are deterministic and total.

3For the purposes of this thesis, it does not matter whether or not we have a correct understanding of
how feature interactions ought to be resolved. What matters is whether our proposed resolution language
is expressive enough to specify interesting, non-trivial resolution strategies.
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/* Starting-State Axioms */

assignRqstDriver([SlcAcceleration],sc).

assignRqstSafety([Acceleration+5],sc).

assignRqstNonSafety([CcAcceleration],sc).

/* Precondition Axiom */

poss(assign(N),S) :- assignRqstDriver(R,S),minimum(N,R);

assignRqstDriver([],S), assignRqstSafety(R,S), minimum(N,R);

assignRqstDriver([],S), assignRqstSafety([],S), assignRqstNonSafety(R,S),

minimum(N,R).

/*Control Procedures */

primitive_action(assign(N)).

proc(resolveAcceleration, pi(n,assign(n))).

/*Command to run resolver*/

do(pi(v,assign(v)),sc,S).

Figure 3.2: GOLOG implementation of car.acceleration resolution module

3.2.6 Implementation in GOLOG

We use the logic programming language, GOLOG [28], to implement our resolution mod-
ules. GOLOG is a language for writing complex control procedures for situation calcu-
lus actions that operate within the specifications of situation-calculus precondition and
starting-state axioms. We use a GOLOG interpreter [28] written in SWI-Prolog [34]. The
resolver modules themselves are likewise written and compiled with the SWI-Prolog com-
piler. Once compiled, these modules may be run from the command line.

We now explain how a single resolution module is implemented in a combination of
situation calculus and GOLOG. As we walk through the explanation, we will refer to the
resolution of the variable car.acceleration given in Examples 1 and 2. The full encoding
of the resolution module in GOLOG is given in Figure 3.2.

Every resolver has its own domain theory, D, which comprises the situation-calculus
facts, fluents, and axioms that describe the module’s inputs and resolution strategy. In
general, the inputs to the resolver are encoded in situation calculus as starting-state axioms:
one axiom for each priority level of input actions and one axiom for each monitored variable.
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For example, in the car.acceleration example, the inputs to the resolution module are
encoded as the situation-calculus starting-state axioms:

assignRqstSafety([slcAcceleration()], Sc)

assignRqstDriver([Accleration() + 5], Sc)

assignRqstNonSafety([ccAcceleration], Sc)

These axioms represent the world-change actions output by the feature machines in the
world state wsc. The actions are partitioned according to whether they represent a safety
function, the driver, or a non-safety function, respectively. These starting-state axioms are
shown at the top of Figure 3.2.

The resolution strategy for the resolver’s controlled variable is encoded as a precondition
axiom in situation calculus. The precondition axiom Poss(assign(v), s) dictates which
values v may be assigned to the resolver’s controlled variable in a situation s (considering
the input actions and monitored-variable values that pertain to the situation s). The
resolution of conflicting actions for car.acceleration is encoded as the precondition axiom:

Poss(assign(v), s) ≡
(∃l.assignRqstDriver(l, s) ∧minimum(l, v))∨
(∀l.(assignRqstDriver(l, s)→ empty(l))∧
∃l2.assignRqstSafety(l2, s) ∧minimum(l2, v))∨

(∀l.(assignRqstDriver(l, s) ∨ assignRqstSafety(l, s)→
empty(l))) ∧ (∃l3.assignRqstNonSafety(l3, s)∧
minimum(l3, v))

This axiom encodes when it is possible to execute a world-change action of the form

car.acceleration := v

The GOLOG code for this axiom is shown in the second section of Figure 3.2.

The GOLOG program itself specifies how the resolution strategy encoded in Poss(assign(v), s)
is carried out to determine the resolution module’s output. In simple cases, as in the accel-
eration example, the GOLOG program invokes the resolution strategy once to determine a
single output action. In more complicated cases, GOLOG allows the developer to specify
complex procedures by forming sequences or iterations of actions for the resolution mod-
ule to output. We now describe the GOLOG programming language. Situation-calculus
actions form the basis for GOLOG programs. Because our resolutions need to be deter-
ministic, we restrict ourselves to the following GOLOG constructs, where δ, δ1, and δ2
range over all possible GOLOG programs.
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a situation calculus action
δ1 ; δ2 sequence
πv.δ nondeterministic choice of arguments
if φ then δ1 else δ2 conditional
while φ do δ while loop

The GOLOG program to execute the acceleration resolution is:

πv.assign(v)

and will execute according to the assertions of the domain theory defined in Examples
1 and 2. The program πv.assign(v) nondeterministically chooses arguments v to apply
to find one v that satisfies the precondition axiom Poss(assign(v), Sc), contained in the
situation calculus domain theory D. The output of this program will then be this single
action assign(v), which corresponds to the world-change action car.acceleration := v.
This program is shown in Figure 3.2 as the control procedures for the resolution4.

The Prolog command to run the acceleration resolver is:

do(pi(v,assign(v)),sc,S)

where pi(v,assign(v)) is the Prolog equivalent of the GOLOG program above.

The GOLOG interpreter functions as a solver that fulfills the entailment 5

D |= Do(δ, Sc, Sn)

where D is the set of precondition and starting-state axioms in situation calculus that make
up the resolution domain theory, δ is the GOLOG program that defines the resolution
module’s procedure for executing situation-calculus actions, Sc is the starting situation,
and Sn is a valid terminating situation. Given D, δ, and Sc, the GOLOG interpreter
attempts to find a terminating situation Sn that satisfies the above entailment. This
terminating situation is represented as a sequence of situation-calculus actions performed
from the starting state Sc using the function do(a, s) as follows:

Sn = do(an, . . . do(a2, do(a1, Sc)) · · · )
4Note the additional control procedure primitive action(assign(N)). This tells the GOLOG interpreter

that assign(n) is to be treated as a situation-calculus action.
5Note that the GOLOG construct differs from the first-order function do(a, s), which denotes the

situation that results from performing the action a in s.

28



where a1, . . . , an are situation calculus actions that can be mapped to the world-change
actions to be performed at the end of the current execution step.

Revisiting the GOLOG programming language constructs, we explain their semantics
in terms of what it means to fulfill the entailment:

D |= Do(δ, Sc, Sn)

1. a is an atomic GOLOG program consisting of a single primitive situation-calculus
action with either no arguments or with only constants, defined values for all of its
arguments6. Such a program may be executed from the starting state Sc only if
the resolution domain theory allows that action to take place in Sc. Therefore, the
predicate Do(a, Sc, Sn) is characterized as:

Do(a, Sc, Sn)
def
= Poss(a, Sc) ∧ Sn = do(a, Sc)

2. δ1; δ2 is the sequence of two GOLOG programs δ1, δ2. A sequence of GOLOG pro-
grams may be executed from the starting state Sc only if the resolution domain theory
allows δ1 to be executed in Sc and δ2 to be executed from the terminating state of
δ1. Therefore, the predicate Do(δ1; δ2, Sc, Sn) is characterized as:

Do(δ1; δ2, Sc, Sn)
def
= ∃Si.Do(δ1, Sc, Si) ∧Do(δ2, Si, Sn)

Sequences are used when the developer wants the output of a resolution module to
be a sequence of actions.

3. πx.δ signifies the nondeterministic choice of the value for x, and applies that value
as an argument to situation-calculus actions and fluents in the GOLOG program δ.
For example, πx.assign(x) is a GOLOG program that assigns a nondeterministically
chosen value x to the resolver’s controlled variable. Recall that, because GOLOG
programs operate within the restrictions of our situation-calculus domain theory, a
particular argument value v will be chosen only if Poss(assign(v), Sc) is satisfied.
Therefore, the predicate Do(πx.δ, Sc, Sn) is characterized as:

Do(πx.δ, Sc, Sn)
def
= ∃x.Do(δ(x), Sc, Sn)

where δ(x) is the application of the argument x to a situation calculus action or
fluent in the program δ.

6The π construct is used for actions with variable arguments.
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The developer uses this nondeterminism operate to choose nondeterministically from
a set of possible solutions. This operator is also necessary when the task of the
GOLOG program is to find an argument v that satisfies the precondition axiom
Poss(assign(v), Sc).

4. if φ then δ1 else δ2 Conditionals are expressed in GOLOG with pseudo-formulas,
whose situation arguments have been suppressed. These are formulas with situation-
calculus fluents where all situation arguments are suppressed. For example, the for-
mula car.speed(v)∧v > 30 uses the fluent car.speed(wsc :: car.speed, Sc), but with the
situational argument Sc suppressed. The predicate Do(if φ then δ1 else δ2, Sc, Sn)
is characterized as follows:

Do(if φ then δ1 else δ2, Sc, Sn)
def
= (φ(Sc)∧Do(δ1, Sc, Sn))∨(¬φ(Sc)∧Do(δ2, Sc, Sn))

where the formula φ(Sc) is the situation-calculus formula φ(s) applied to the starting
state Sc.

Conditionals are used when the output of a resolution module depends on the valu-
ation of a situation-calculus fluent in that starting state.

5. while φ do δ Iteration is expressed in GOLOG with a while loop that depends on a
situation-calculus pseudo-formula. A situation Sn can result from executing a while
loop from state Sc only if Sn is the result of applying δ to Sc n times and ¬φ does
not hold in Sn. Additionally, for all i < n, applying δ to Sc i times results in the
intermediate state Si where φ holds in Si. The predicate Do(while φ do δ, Sc, Sn)
is characterized as:

Do(while φ do δ, Sc, Sn)
def
= (∀P.(∀sc.P (sc, sc)) ∧ (∀sc, si, sn.P (sc, si)∧

φ(si) ∧Do(δ, si, sn) ⊃ P (sc, sn)) ⊃ P (Sc, Sn)) ∧ ¬φ(Sn)

This definition uses second order logic to express the nondeterministic iteration of
the while loop. By quantifying over all binary relations, we are finding the smallest
set such that (sc, sn) is in the set if and only if we can get from sc to sn by performing
δ some number of times. In other words, we are determining whether the situation
Sn is reachable from the starting situation Sc. Executing the program δ from the
starting situation Sc will result in the terminating situation Sn if and only if

(a) Base Case: ∀sc.P (sc, sc), we can always get from situation Sc to the situation
Sc by performing zero iterations of the program δ.
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(b) Inductive Case: ∀sc, si, sn.P (sc, si)∧φ(si)∧Do(δ, si, sn), if we can execute some
number of iterations of δ to get from a starting state sc to an intermediate state
si, then we can execute one more iteration of δ to get to the state sn.

In other words, we can get from Sc to Sn by performing some number of iterations
of the GOLOG program δ. When we have reached Sn, the condition ¬φ(Sn) must
hold.

The developer uses while loops to iteratively perform the procedure δ, where the val-
uation of the situation-calculus fluent φ in each successive state determines whether
the program δ is applied again.

Referring to the GOLOG program for the acceleration module in Figure 3.2, the in-
terpreter attempts to find a situation Sn that satisfies the entailment D |= Do(δ, Sc, Sn).
The program πv.assign(v) nondeterministically chooses arguments v, searching for some
value v that satisfies the module’s precondition axiom. Assuming the precondition axiom
is deterministic and total, then there will be exactly one such value v. The output will be
a situation Sn, expressed as a sequence of actions performed from the starting state Sc

Sn = do(assign(v), Sc)

This output corresponds to the world change action car.acceleration := v. The next world
state wsn is calculated as the result of performing this action, along with the outputs of
all other resolution modules and the update values of non-controlled variables.

The resolution examples discussed up to this point output a single action to be per-
formed on a controlled variable. For some variables, it may be advantageous to output
a sequence of actions to be performed atomically on a controlled variable. In this case,
we use successor-state axioms to express the changes that each situation-calculus action
makes to the current situation (i.e., variable valuations). For example, if the value of
car.acceleration is vc in the world state wsc, then performing the action assign(v) will
result in a new situation do(assign(v), Sc) in which the value of car.acceleration is now v.
The next action is performed on the new situation, and so on, through the atomic list of
actions until a final situation is reached. To encode the effects of each situation-calculus
action, we specify the successor-state axiom

car.acceleration(v, do(a, s)) ≡ a = assign(v)

This states that the value of the variable car.acceleration will be v after performing the sin-
gle action a in the previous situation s, where a is the situation calculus action assign(v).
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The developer does not need to create a successor-state axiom for every combination of
fluents and actions; only for those that are relevant to the resolution in question. These ax-
ioms form part of the domain theory D described above. The following example illustrates
the use of successor-state axioms.

Example 3. The variable alert.lightType is controlled by alert features that try to get
the driver’s attention. If multiple features want to set a particular light to different values,
one possible resolution is to satisfy all requests sequentially. For example, if one feature
turns a light off and another turns the light on, the resolution is to have the light blink
on and off, to alert the driver to a possible conflict among the features associated with the
warning light. The inputs to the resolution are

alert.lightType(wsc :: alert.lightType, Sc)

assignRqst(L, Sc)

The resolution will cycle through the values in assignRqst(L, Sc), setting the variable
alert.lightType to each value in sequence for a fixed number of iterations. In order to do
this, we first order the list L, to produce a deterministic output, and then append it to
itself 3 times. This is done with an intermediary situation calculus action, setup, which is
encoded with the following successor state axiom:

assignRqst(l, do(a, s)) ≡ a = setup ∧ l = append(append(order(l), order(l)), order(l))

The resolution will then iterate through the list, setting alert.lightType to the first
element of the list, removing this element, and repeating with the remainder of the list.
This behaviour requires the following successor state axioms:

alert.lightType(v, do(a, s)) ≡ a = assign(v)

assignRqst(l, do(a, s)) ≡ a = assign(v) ∧ l = rest(k) ∧ assignRqst(k, s)

The resolution is characterized in the precondition axiom

Poss(assign(v), s) ≡ assignRqst(l, s) ∧ first(l, v)

The GOLOG program is

setup;

while (assignRqsts(l, now) ∧ ¬empty(l))

do πn.assign(n)

32



This program first sets up the list by ordering it (to ensure determinism) and copying it
three times to produce three cycles through the original values. It then uses a while loop
to iterate through the entire list. The condition on the while loop checks whether the list
is empty. If it is not empty, the first value in the list will be assigned and removed from
the list.

The result from this program is a sequence of actions

Sn = do(assign(vn), . . . do(assign(v1), Sc)) · · · )

In general, we translate the sequence of situation calculus actions output by the reso-
lution module back into the terms of our requirements modelling language as the sequence
of variable assignment actions to be performed on the variable in wsc to compute the value
of the variable in the next world state wsn.

alert.lightType := v1, . . . , alert.lightType := vn

Example 4. The controlled variable car.steering is controlled by features that affect the
direction in which the car is travelling. These include Lane-Centring Control (LCC) and
several stability features such as Traction Control (TC) and Stability Control (SC). The
driver can also affect car.steering by rotating the steering wheel.

For this resolution, we distinguish between driver, safety, and non-safety actions. The
purpose of stability features is to correct the bad effects of driver steering on slippery
surfaces. Thus, we give these safety-related actions the highest priority. Driver-related
actions have the next highest priority, followed by non-safety actions. If there are multiple
assignments at the same priority level, the variable car.steering is set to the average of the
assignment expressions. Note that the resolution is not win/lose in that the actions from
all features affect the outcome of the resolution.

Inputs to the resolution module for car.steering are world-change actions of the form

car.steering := 〈expr〉

output by the feature modules of LCC, TC, SC, BDS, and any other features that modify
vehicle steering. We partition these actions further, according to whether they represent
driver, safety, or non-safety-related actions. These actions, along with the values of relevant
monitored variables, such as the current value of car.steering, are input into the resolution
module. In this implementation, inputs are expressed as starting-state axioms for the
situation Sc, as they represent the current world state wsc.
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The inputs to the resolver are:

car.steering(wsc :: car.steering, Sc)

assignRqstDriver(L, Sc)

assignRqstSafety(L, Sc)

assignRqstNonSafety(L, Sc)

The resolution is encoded as a precondition axiom that specifies the conditions under
which the resolver module outputs assign(v) as the conflict-free assignment.

Poss(assign(v), s) ≡
(∃l.assignRqstSafety(l, s) ∧ average(l, v))∨
(∀l.(assignRqstSafety(l, s)→ empty(l))∧
∃l2.assignRqstDriver(l2, s) ∧ average(l2, v))∨

(∀l.(assignRqstSafety(l, s) ∨ assignRqstDriver(l, s)→ empty(l))∧
∃l3.assignRqstNonSafety(l3, s) ∧ average(l3, v))

This resolution gives priority to safety actions and will take the average of multiple
actions at the same priority level, if they exist.

The GOLOG program is
πv. assign(v)

A successful resolved assignment is one that satisfies the precondition axiom specified
above: Poss(assign(v), Sc). In this case, as in the acceleration example, the precondition
axiom is deterministic and the GOLOG program outputs a sequence of only one assignment
action, expressed as the terminating situation Sn = do(assign(v), Sc) where Sn satisfies
the entailment:

Do( πv. assign(v), Sc, Sn)

This corresponds to the single world-change action car.steering := v, which is the output
of the resolution module.
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Chapter 4

Analysis

In this chapter, we demonstrate that our resolutions to feature interactions have the desired
properties that we listed in the beginning of Chapter 3: that the resolutions are conflict-
free, are deterministic and total, and preserve the features’ actions in the absence of an
interaction.

We also show that our resolution addresses the Feature Interaction Problem by focusing
on the outputs of a system. This reduces the work of the developer to be linear in the
number of types of output variables. The focus on outputs also allows the developer to
specify win/win resolutions, maintains feature obliviousness, and allows for agnosticism
with respect to the number of features in the system.

The most important goal of our work is to enable conflict-free feature composition.
Recall that a feature interaction due to conflict occurs when two or more features attempt
to simultaneously execute a set of incompatible world-change actions. The resolution
approach that we have devised eliminates conflicts by computing a conflict-free sequence
of actions. Such a computation is performed for the actions on each controlled variable in
each execution step of the system.

Theorem 1. The set of action sequences output by the resolver modules are conflict-free.

Proof. A feature may execute one or more world change actions in each step. These actions
each belong to one of three categories: adding an object to the world, removing an object
from the world, and modifying the value of a controlled variable. Possible conflicts occur
when:

1. Two or more features attempt to set the value of the same controlled variable to
different values, or
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2. One feature attempts to remove an object from the world while another feature
attempts to modify it.

Case 1: All of the features’ assignments to the same controlled variable are forwarded
to the same resolver module. The resolver outputs one sequence of actions to be exe-
cuted sequentially, thus the resolvers’ actions do not interact. Furthermore, each resolver
produces a resolved sequence of actions for a distinct controlled variable; thus the output
actions of the resolver modules do not conflict1.

Case 2: An action to remove an object from the world state results in the removal
of all the resolver modules associated with the object’s controlled variables. All attempts
to assign a value to any of these variables are ignored. In this way, object removal has
priority over assignment.

In both cases, the set of output actions is conflict-free.

A second goal of our work is that resolutions should be deterministic: for each set
of features’ actions, a resolver produces a unique sequence of assignments to the corre-
sponding controlled variable. Determinism is not guaranteed by the approach itself. The
developer is responsible for ensuring that the resolutions she programs are deterministic
by demonstrating that, in every resolver module, the axiom Poss(assign(v), s) is satisfied
by only one possible value v in any situation s:

Obligation 1. ∀v1.∀v2.∀s.Poss(assign(v1), s)

∧ Poss(assign(v2), s)→ v1 = v2

Then there is only one possible sequence of output actions from the resolver and only one
possible value for the variable in next world state wsn calculated as the result of performing
these actions.

This property also ensures the resolution of all feature interactions due to nondeter-
minism. Since the enabled actions of all features are considered at every execution step,
and a resolution module always output a deterministic set of actions, the possibility for
nondeterminism does not exist.

Theorem 2. Given the set of situation-calculus facts, fluents, and axioms D for a resolver
module, Obligation 1 on the precondition axiom in D, and the corresponding resolution

1It is possible that actions on different controlled variables may interfere to produce a non-conflict type
of interactions. At present, these interactions would need to be explicitly resolved. In the future, we will
investigate more generic methods for resolving such interactions.
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procedure δ, then the following entailment holds:

D |= ∀sc, sn, s′n.Do(δ, sc, sn) ⊃ (Do(δ, sc, s
′
n) ⊃ sn = s′n)

Proof. This is a sketch of the proof — full details are given in the appendix.

This is proven by structural induction on the GOLOG resolution program, δ. The base
case proves the entailment for a program δ = a where a is a primitive situation calculus
action:

D |= ∀sc, sn, s′n.Do(a, sc, sn) ⊃ (Do(a, sc, s
′
n) ⊃ sn = s′n)

By the soundness of first-order logic, we can prove this entailment holds by using natural
deduction to formally deduce the following:

D ` ∀sc, sn, s′n.Do(a, sc, sn) ⊃ (Do(a, sc, s
′
n) ⊃ sn = s′n)

The inductive step assumes two GOLOG programs δ1 and δ2 that both satisfy the above
entailment, and we prove that a GOLOG program of each of the following forms satisfy
the above entailment.

• Sequence δ = δ1; δ2

D ` ∀sc, sn, s′n.Do(δ1; δ2, sc, sn) ⊃ (Do(δ1; δ2, sc, s
′
n) ⊃ sn = s′n)

• Nondeterministic choice of arguments δ = πv.δ1

D ` ∀sc, sn, s′n.Do(πv.δ1, sc, sn) ⊃ (Do(πv.δ1, sc, s
′
n) ⊃ sn = s′n)

• Conditional δ = if φ then δ1 else δ2

D ` ∀sc, sn, s′n.Do(if φ then δ1 else δ2, sc, sn) ⊃ (Do(if φ then δ1 else δ2, sc, s
′
n) ⊃ sn = s′n)

• While loop δ = while φ do δ1

D ` ∀sc, sn, s′n.Do(while φ do δ1, sc, sn) ⊃ (Do(while φ do δ1, sc, s
′
n) ⊃ sn = s′n)
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A third goal is that the resolutions be total: for any non-empty set of features’ actions
on a controlled variable, there exists a non-empty sequence of conflict-free actions output
by the variable’s resolver module. To ensure that the resolutions are total, the developer
must demonstrate that each resolver’s precondition axiom can be satisfied.

The case in which there are no input actions to the resolver also needs to be considered.
If there are no features attempting to modify a controlled variable, then no world-change
actions should be executed on this variable in the current execution step. Thus, if there
are no input actions to a resolver module, the resolver should have no outputs. We only
want to output actions if there is at least one action being performed on the variable in
question.

Obligation 2. ∀s. (∃v.Poss(assign(v), s) ≡ ∃L.assignRqst(L, s) ∧ ¬empty(L))

where assignRqst(L, s)∧¬empty(L) is true if and only if there is at least one input action,
at any priority level, in the situation s.

Note that particular attention must be paid to computations that have while loops.
For every such loop, the developer must demonstrate that the loop terminates:

∀s.(∃s′.(∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3))

⊃ P (s, s′)) ∧ ¬φ[s′] ≡ ∃L.assignRqst(L, sc) ∧ ¬empty(L))

Theorem 3. Given the set of situation-calculus facts, fluents, and axioms D, for a resolver
module; Obligation 2 on the resolver’s precondition axiom; the corresponding GOLOG
program δ; and obligations for each while loop in δ, then the following entailment holds:

D |= ∀sc. (∃sn.Do(δ, sc, sn) ≡ ∃L.assignRqst(L, s) ∧ ¬empty(L))

Proof. As above, this is proven by structural induction on the GOLOG program δ. For
each step of the proof, we consider two cases: one in which there exist input actions, and
one in which there are no input actions. See Appendix for details.

As a fourth goal, a resolution should preserve the functionalities of the features being
composed. If the set of features’ actions on a controlled variable in an execution step are
non-conflicting (there is only one input assignment), then the resolution should include all
actions on that variable. This requires an obligation on both the precondition axiom and
the GOLOG program δ:

Obligation 3. D,Ob3, assignRqst([v], Sc) ` ∃sn.Do(δ, Sc, Sn) ∧ Sn ≈ do(assign(v), Sc)
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where assignRqst([v], Sc) states that there is only one input assignment action to the
resolution module. Additionally, we use the notation Sn ≈ do(assign(v), Sc) to account
for sequences of situation calculus actions that, when translated back into the modelling
language, are equivalent to performing the assignment action o.a := v. See Example 3 in
Section 3.2.6 for more details.

Theorem 4. Given the set of situation-calculus facts, fluents, and axioms D, for a re-
solver module; Obligation 3; and the corresponding GOLOG program δ, then feature
functionality will be preserved in the absence of feature-interaction conflicts.

Proof. The obligation

D,Ob3, assignRqst([v], Sc) ` ∃sn.Do(δ, Sc, Sn) ∧ Sn ≈ do(assign(v), Sc)

along with the determinism property proved in Theorem 1, ensures that if there is only
one input action the resolution module for the controlled variable o.a := v, encoded as the
starting-state axiom assignRqst([v], Sc), then the output of the resolver module will be a
sequence of actions that translate back into the modelling language action o.a := v. Note
that since we require the translation to be equivalent to this action, we also except outputs
of the form:

o.a := v, . . . , o.a := v

where the variable o.a is repeatedly assigned the same value v. This must be proven for
every resolver module.

4.1 Case Study

We conducted a case study to analyze whether the expressive power of the situation calculus
is suitable for expressing feature interaction resolutions. We examined the requirements
specifications of 24 automotive features that were provided to us by our industrial partners,
although the feature names we give are based on common features found on the internet. In
the models we investigated, we encountered a total of 8 controlled variables. Two of these
variables were modified by only one feature. The remaining 6 were modified by several
features. This supports our claim that new controlled variables are introduced to a system
at a much slower rate than new features. Table 4.1 shows the variables, along with the
number of features that modify them.
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Variable name Number of features that modify it

car.acceleration 4
car.steering 6
alert.lightType 8
brake.hydralicPressure 9
alert.chimeType 5
cabin.airF lowRate 6

Table 4.1: Case Study Variables

Three of these variables, car.acceleration, car.steering, and alert.lightType were used
during the course of developing our approach and the implementation discussed in Sec-
tion 3. We examined the requirements specification of the features, their FORML models,
and any proposed resolutions mentioned in the specifications to determine the necessary
inputs and functionality for the resolution modules.

The remaining three variables, brake.hydraulicPressure, alert.chimeType, and
cabin.airF lowRate, were used to evaluate whether or not the resolution language is strong
enough to express appropriate resolutions for a variety of controlled variables. We now
provide the details of the variables in our case study and their appropriate resolutions.

4.1.1 Brake Pressure

There are three categories of features that modify the controlled variable

brake.hydraulicPressure

. The Automatic Braking (AB) feature enhances driver actions by detecting when the
driver applies a large amount of pressure to the brake pedal. It optimizes hydraulicPressure
to minimize stopping distance. This feature falls into the first category of driver-related
behaviour. The second category includes safety or stability features such as Trailer Stabil-
ity (TS) and Stability Control (SC). These features apply different levels of brake pressure
to each of the four wheels to keep the vehicle on a straight path and counteract vehicle
oscillation, respectively. The third category of features maintains driver-set acceleration
preferences or provides feedback to the driver. These are grouped into a non-safety feature
category.

We give the highest priority to safety and stability features. There are two ways in
which safety features apply brake pressure. Some safety features reduce vehicle speed by
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applying an even application of brake pressure to all four wheels. Other safety features
apply brake pressure unevenly with the goal of controlling vehicle oscillation or stabil-
ity. Our resolution differentiates between these cases by observing the monitored variable
car.oscillation. If car.oscillation is less than a low threshold value, the resolution sets
brake.hydralicPressure to the maximum of all assignment values. If it is greater than
the threshold, we assume that multiple stability features are working to correct the oscil-
lation of the vehicle and our resolution sets brake.hydralicPressure to the average of all
assignment values.

The precondition axiom for the resolution is

Poss(assign(v), s) ≡
(∃l.assignRqstSafety(l, s) ∧ ((maximum(l, v)∧
car.oscillation(s) < threshold) ∨ (car.oscillation(s) ≥
threshold ∧ average(l, v))))∨

(∀l.(assignRqstSafety(l, s)→ empty(l))∧
(∃l2.assignRqstDriver(l2, s) ∧maximum(l2, v)))∨

(∀l.(assignRqstSafety(l, s) ∨ assignRqstDriver(l, s)
→ empty(l)) ∧ (∃l3.assignRqstNonSafety(l3, s)

∧maximum(l3, v)))

The GOLOG program for the resolution module is

proc resolve πv. assign(v)

This outputs a sequence of one assignment, which adheres to the restrictions stated in
the precondition axiom.

4.1.2 Warning Chime

The controlled variable alert.chimeType is used to alert the driver by features such as
Cruise Control (CC), Basic Braking (BB), Parking Brake (PB), Manual Park Brake (MPB),
and Road Change Alert (RCA). As the primary purpose of this variable is to capture the
driver’s attention, we operate under the assumption that values for this variable can be
ranked from less to more urgent. We define the function rankList(L) that takes a list of
values and returns a corresponding list of rankings, and we define the function getType(x)
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that returns the chime type that corresponds to the ranking x. The inputs to the resolution
are encoded in the predicate assignRqst([. . .], sc).

The resolution will set alert.chimeType to the most urgent chime value. The precon-
dition axiom is

Poss(assign(v), s) ≡ ∃l.assignRqst(l, s) ∧ r = rankList(l)

∧maximum(r, x) ∧ v = getType(x)

Similar to the example above, the GOLOG program outputs one assignment:

proc resolve πv. assign(v)

4.1.3 Air Flow Rate

There are several features that control cabin temperature and air quality. Each of these
features modifies the variable cabin.airF lowRate. The Air Quality System (AQS) circu-
lates air to reduce pollution levels, Air Conditioning (AC) and Heater Control (HC) use air
flow to circulate cooler or warmer temperatures, and Air Recirculation (AR) recirculates
air at the driver’s request.

We prioritize features that circulate air to improve air quality over features that circulate
air to improve the air temperature. The input actions from air-quality features are encoded
in the predicate assignRqstQuality([. . .], sc). Inputs from air-temperature features are
represented as
assignRqstTemp([. . .], sc). In both cases, we set the air flow rate to be the maximum
assigned value. The precondition axiom for this variable is

Poss(assign(v), s) ≡
(∃l.assignRqstQuality(l, s) ∧maximum(l, v))∨
(∀l.(assignRqstQuality(l, s)→ empty(l))∧
∃l2.assignRqstTemp(l2, s) ∧maximum(l2, v))

We also make use of the simple GOLOG program

proc resolve πv. assign(v)
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4.2 Discussion

One goal of our resolution approach is to provide the modeller with a language that is
powerful enough to express resolution functions that are tailored to fit the domain and the
behaviour of each controlled variable of a system. In general, situation calculus can be
used to refer to the current values of all monitored variables and to features’ assignment
expressions, and can be used to compute relatively sophisticated resolutions. If needed, the
developer can define additional first-order-logic functions and predicates that are helpful
to reason about input actions or specify output actions. The purpose of our case study
was to gauge the expressiveness of our approach by specifying variable-specific resolutions
for a diverse set of controlled variables. We found that the controlled variables in our case
study called for unique variable-specific resolutions, and we were able to express all desired
resolutions.

Situation calculus is capable of expressing win/win resolutions, where input is taken
from all features and not just those that have the highest priority in the system. In the
case of the steering example, all features contribute to the value of the controlled variable
car.steering. Thus, all features “win” in that they all contribute to the value of this
variable.

One of the major advantages of our resolution is the absence of a required priority
scheme among features. The developer still has the option to define priorities between
groups of features, as we did in our examples by grouping of features into safety and non-
safety categories. However, this classification of features into groups is easier than identi-
fying a total or partial ordering on all features. When adding new features, or removing
existing features from the system, the developer does not need to reassess the prioritiza-
tion. She need only determine to which category the new feature belongs. Classification
decisions do not need to be revised as new features are added to the system.

Additionally, the developer does not need to know how many features modify each
controlled variable. Our resolution approach is agnostic to the number of features in the
system as well as the number of feature interactions that arise from their composition. The
inputs to the resolution modules are lists of arbitrary size. Thus, features can be developed
independently and can be added to the system incrementally. If a feature introduces a new
type of controlled variable, the developer does need to introduce a new resolution module.
The work involved in specifying a new resolver includes determining the appropriate inputs,
writing the situation-calculus precondition axiom and any necessary successor state axioms,
and also satisfying the three proof obligations for determinism, totality, and preservation
of original behaviour that are given in the beginning of this chapter. However, our case
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study suggests that the introduction of new controlled variables are rare; we discovered a
total of only 8 controlled variables, 6 of which are modified by more than one feature, in
a group of 24 automotive features. In this way, our approach preserves the advantages of
feature-oriented software development. Features can still be developed independently and
added and evolved incrementally.

The focus on controlled variables allows all feature interactions due to conflicts to be
resolved with a linear amount of work in the number of types of controlled variables that
are modified by multiple features. At composition time, a simple static analysis can be
performed on each controlled variable to determine whether the behavioural specification
of more than one feature includes a world-change action to modify this variable. If it is
modified by more than one variable, the possibility of a conflict interaction exists. Then,
the developer need specify only one resolution module per type of susceptible controlled
variable, which will be instantiated every time an instance of that controlled variable is
added to the world through a world-change action. As we saw in the case study, new types
of controlled variables appear to be introduced at a much slower rate than features in the
system; however, further studies should be conducted to provide a more comprehensive
evaluation. This addresses the scalability aspect of the Feature Interaction Problem.

Some of the resolutions we considered suggest that there are dependencies among con-
trolled variables. For example, brake.hydralicPressure affects car.acceleration. Our res-
olution does not consider dependencies between controlled variables and therefore does not
address feature interactions that arise due to these dependencies. We conjecture that such
interactions could be addressed by clustering related variables and resolving their conflicts
or by imposing a partial ordering on controlled variables and using the resolutions of some
variables as inputs to the resolver modules of others. We leave these investigations to
future work.

4.2.1 Threats to Validity

The requirements documents on which we base our resolutions provide information on a
subset of automotive features. We specified what we considered to be appropriate resolu-
tions to conflicting assignments made by these features. It is possible that other features
could modify the same variables in a way that would warrant a different resolution strategy.
This would weaken our claim that the addition of features does not impact the resolution
strategies. These claims should be validated with future case studies.

This case study was conducted solely on an automotive domain. We can conclude
that the behaviour of each controlled variable considered required a unique resolution.
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It is possible that resolutions in another domain would be more difficult to express in
our resolution language. The conclusions we draw about the variation in appropriate
resolutions across controlled variables, as well as the claim that controlled variables are
introduced at a much slower rate than the rate of new features should be backed up
with future case studies on more comprehensive collections of features and across different
domains.

Additionally, the resolutions presented in the previous section were interpreted and
written by the author of this thesis. To ensure that no bias was introduced to conform the
behaviour of these controlled variables to something expressible in our resolution language,
more case studies should be conducted across different domains by different developers.
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Chapter 5

Related Work

5.1 Priority-Based Resolutions

The majority of related work on resolving feature interactions relies on a priority ranking
among features [11, 14, 18, 20, 22]. Priority-based approaches need a total or partial
ordering on features to support the resolution strategy. When a new feature is developed,
its place in the priority ordering must be determined, making it difficult to add new features.
In the case of a conflict, only the actions of the highest-priority feature are executed,
blocking the behaviour of all other features. Our resolution considers all enabled actions,
regardless of feature priority.

Some priority-based approaches offer finer-grained resolutions. Laney et al. [26, 27]
propose resolutions in which priorities are considered at the granularity of individual fea-
ture requirements. During feature composition, the developer specifies which aspects of
a feature’s behaviour may be relaxed in the event of a conflict. Interactions are resolved
on a case-by-case basis. Thus, this approach does not address the feature interaction
problem: the number of interactions to consider, resolve, and verify is potentially expo-
nential in the number of features. In addition, the resolutions are win/lose in that only
the highest-priority requirements are satisfied in case of a conflict.

5.2 Precedence-Based Resolutions

Precedence-based resolution strategies [3, 9, 21], in which features are executed in a spec-
ified order, display similar problems to priority-based approaches. Features are given a
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total or partial precedence ordering, and the task of determining a precedence order for n
features requires that the developer consider up to n! orderings.

Some work has been done to mitigate the task of specifying priorities or precedences
among large collections of features by categorizing features [40] and using automated de-
tection of feature interactions to find acceptable orderings [40]. However, these approaches
still suffer from course-grained resolutions based on feature priorities and offer only win/lose
resolutions to feature interactions.

5.3 Negotiation-Based Resolutions

Griffeth and Velthuijsen reduce a developer’s work by resolving conflicts through automated
negotiation [16]. The general idea behind negotiation-based resolution is to offer alternative
feature behaviours in the event of a conflict, to maintain the essential intent of the feature
developer. This approach has been applied to multi-agent systems [33] using situation
calculus as the action language. Negotiation requires multiple rounds of communication
between negotiating agents that act on the behalf of features. Many safety-critical systems
have strict timing requirements and cannot afford of multiple rounds of communication.
Our approach resolves interactions in a single multi-phase execution step, by calculating
variable-specific resolutions to conflicting assignments. These calculations are fast and
each resolver is independent, so all resolvers may execute in parallel. Furthermore, features
themselves do not need to interact with each other. This promotes feature modularity and
obliviousness — key attributes of feature-oriented software development.

Finkelstein et al. propose a strategy for negotiating inconsistencies in software by defer-
ring judgement to the user [13]. The reasoning behind this action is that a user has their
own perspective and expectations as to how a product should behave, and can use their
judgement as a run-time resolution strategy. This approach is infeasible in the automotive
domain, as feature interactions occur and require resolutions too quickly to involve user
input.

5.4 Undoing Conflicts

A run-time technique to resolve feature interactions was introduced by Marples et al. [29],
to rollback, or undo, previous actions when the system detects that multiple features
are responding to the same stimulus. When this occurs, a Feature Manager explores all
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possible resolutions by sending and receiving messages to and from all features to reach
a stable, conflict-free state. However, the exploration of all possible resolutions and the
message passing between features can be a lengthy process; this approach is not suitable
for systems with strict timing requirements. Additionally, if features fail to participate in
the negotiation, they are terminated from the system.

Some approaches prevent the activation of low-priority features, or terminate the lowest
priority feature involved in a conflict [20]. This removes undesired feature interactions by
undoing any behaviour that feature contributed to the system. Our approach allows all
features to remain in the system, and considers the actions they output, regardless of their
priority-level.

Alma Juarez-Dominguez mentions in her work another resolution strategy related to
relaxed requirements that only considers feature interactions due to conflicts only if the
values of the conflicting variable differ by a certain threshold [12]. This strategy reduces
the number of interactions that need to be dealt with by ignoring those that pose very
little trouble to the behaviour of the system. Appropriate threshold values depend on the
variable being modified and the actuators in the system. This specification is left to the
domain expert and is, similar to our approach, linear in the number of actuators.
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Chapter 6

Conclusions

In this thesis, we have presented an approach for resolving feature interactions that ad-
dresses key aspects of the Feature Interaction Problem by providing means for developers
to specify an appropriate resolution strategy for each controlled variable rather than for
each possible feature interaction.

We described a language necessary for expressing the inputs and outputs of each res-
olution module and provided an implementation in situation calculus and GOLOG. Ad-
ditionally, we defined proof obligations for the developer, to ensure that each resolution
is deterministic, total, and preserves the behaviour of feature modules in the absence of
feature interactions.

We showed that the desired resolution for a controlled variable depends on the roles that
the variable plays in overall system behaviour. Our approach allows for resolution strategies
that are tailored to the specifics of each controlled variable. We provided evidence, in
the form of a case study that different controlled variables warrant different resolution
strategies.

Existing approaches to resolving feature interactions lie at two extremes. Resolving
every feature interaction individually provides detailed and appropriate resolutions, but
poses a scalability problem as more features are introduced into the system. Devising one
resolution strategy to handle all feature interactions addresses the scalability issue, but
results in sub-optimal resolutions. Our approach provides an alternative to these extremes
by addressing the scalability problem and enabling the developer to specify detailed reso-
lutions. The work involved in resolving feature interactions is linear in the number of types
of controlled variables.

49



This approach makes possible resolutions that are not win/lose. The actions from all
features are considered when determining the resolution for feature interactions. Thus, the
developer has more information to work with and more flexibility when deciding the course
of action in the event many features are trying to modify the same controlled variable.

Finally, this approach preserves the advantages of feature-oriented software develop-
ment by allowing for conflict-free feature composition. The developer does not need to be
aware of the number of features in the system. This eases the task of adding and removing
features as well as supports feature modularity and obliviousness.
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Appendix A

Proofs

This appendix contains the details for the proofs outlined in Chapter 4. We use the
soundness property of first and second-order logic to provide natural deduction proofs for
the entailments that follow. Our natural deduction proofs refer to the following inference
rules, taken from [39].

(Ref) Σ, A ` A
(¬E) If Σ,¬A ` B and Σ,¬A ` ¬B, then Σ ` A.
(¬I) If Σ, A ` B and Σ, A ` ¬B, then Σ ` ¬A.
(⊃E) If Σ ` A ⊃ B and Σ ` A, then Σ ` B.
(⊃I) If Σ, A ` B, then Σ ` A ⊃ B.
(∧E) If Σ ` A ∧B, then Σ ` A and Σ ` B.
(∧I) If Σ ` A and Σ ` B, then Σ ` A ∧B.
(∨E) If Σ, A ` C and Σ, B ` C, then Σ, A ∨B ` C.
(∨I) If Σ ` A, then Σ ` A ∨B and Σ ` B ∨ A.
(≡E) If Σ ` A ≡ B, then Σ ` A ⊃ B and Σ ` B ⊃ A.
(∀E) If Σ ` ∀x.A(x), then Σ ` A(t).
(∀I) If Σ ` A(u) where u does not occur in Σ, then Σ ` ∀x.A(x).
(∃E) If Σ, A(u) ` B where u does not occur in Σ or in B, then Σ, ∃x.A(x) ` B.
(∃I) If Σ ` A(t), then Σ ` ∃x.A(x) where A(x) is the result of replacing some

occurences of t in A(t) with x.
(=E) If Σ ` A(t1) and Σ ` t1 = t2, then Σ ` A(t2) where A(t2) is the result of

replacing some occurences of t1 in A(t1) with t2
(=I) Σ ` u = u
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We use the following domain-independent axioms in D:

Ax.1. ∀a, s0.∃s.s = do(a, s0)

Ax.2. ∀a, v, v′.¬(v = v′) ⊃ ¬(a(v) = a(v′))

Ax.3. ∀s, a, s′.¬(a = a′) ⊃ ¬(do(a, s) = do(a′, s))
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Theorem 2. Given a resolution domain theory D in the situation calculus and a Golog
resolution procedure δ, the following restriction on the precondition axiom in D:

Ob 1. ∀v1.∀v2.∀s.Poss(assign(v1), s) ∧ Poss(assign(v2), s) ⊃ v1 = v2

is a necessary and sufficient condition for the following entailment:

D |= ∀sc, sn, s′n.Do(δ, sc, sn) ⊃ (Do(δ, sc, s
′
n) ⊃ sn = s′n)

Proof. We first show this is a sufficient condition with an inductive proof on the structure
of the Golog resolution procedure δ. The inductive definition of Do(δ, sc, sn) is given in
Section 3.2.6.

Base Case

• Primitive action δ = a

Do(a, sc, sn)
def
= Poss(a, sc) ∧ sn = do(a, sc)

Do(a, sc, s
′
n)

def
= Poss(a, sc) ∧ s′n = do(a, sc)

To prove
D |= ∀sc, sn, s′n.Do(a, sc, sn) ⊃ (Do(a, sc, s

′
n) ⊃ sn = s′n)

we give a natural deduction proof of the following:

D ` ∀sc, sn, s′n.(Poss(a, sc)∧sn = do(a, sc)) ⊃ (Poss(a, sc)∧s′n = do(a, sc) ⊃ sn = s′n)

1. D, (Poss(a, sc) ∧ sn = do(a, sc)), (Poss(a, sc) ∧ s′n = do(a, sc)) ` sn = do(a, sc) ∧E
2. D, (Poss(a, sc) ∧ sn = do(a, sc)), (Poss(a, sc) ∧ s′n = do(a, sc)) ` s′n = do(a, sc) ∧E
3. D, (Poss(a, sc) ∧ sn = do(a, sc)), (Poss(a, sc) ∧ s′n = do(a, sc)) ` s′n = sn =I

4. D, (Poss(a, sc) ∧ sn = do(a, sc)) ` (Poss(a, sc) ∧ s′n = do(a, sc)) ⊃ s′n = sn ⊃I

5. D ` (Poss(a, sc) ∧ sn = do(a, sc)) ⊃ ((Poss(a, sc) ∧ s′n = do(a, sc)) ⊃ s′n = sn) ⊃I

6. D ` ∀sc, sn, s′n.(Poss(a, sc) ∧ sn = do(a, sc)) ⊃ ((Poss(a, sc) ∧ s′n = do(a, sc))

⊃ s′n = sn) ∀I

Inductive Step: Assume the programs δ1 and δ2 satisfy the properties

P1. D |= ∀sc, sn, s′n.Do(δ1, sc, sn) ⊃ (Do(δ1, sc, s
′
n) ⊃ sn = s′n)

P2. D |= ∀sc, sn, s′n.Do(δ2, sc, sn) ⊃ (Do(δ2, sc, s
′
n) ⊃ sn = s′n)
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• Sequence δ = δ1; δ2

Do(δ1; δ2, sc, sn)
def
= ∃si.Do(δ1, sc, si) ∧Do(δ2, si, sn)

Do(δ1; δ2, sc, s
′
n)

def
= ∃s′i.Do(δ1, sc, s′i) ∧Do(δ2, s′i, s′n)

To prove

D |= ∀sc, sn, s′n.Do(δ1; δ2, sc, sn) ⊃ (Do(δ1; δ2, sc, s
′
n) ⊃ sn = s′n)

we give a natural deduction proof of the following:

D ` ∀sc, sn, s′n.(∃si.Do(δ1, sc, si)∧Do(δ2, si, sn)) ⊃ ((∃s′i.Do(δ1, sc, s′i)∧Do(δ2, s′i, s′n)) ⊃ sn = s′n)

1. D, (Do(δ1, sc, si) ∧Do(δ2, si, sn)), (Do(δ1, sc, s
′
i) ∧Do(δ2, s′i, s′n)) ` Do(δ1, sc, si) ∧E

2. D, (Do(δ1, sc, si) ∧Do(δ2, si, sn)), (Do(δ1, sc, s
′
i) ∧Do(δ2, s′i, s′n)) ` Do(δ1, sc, s′i) ∧E

3. D, (Do(δ1, sc, si) ∧Do(δ2, si, sn)), (Do(δ1, sc, s
′
i) ∧Do(δ2, s′i, s′n)) ` Do(δ1, sc, si) ⊃

(Do(δ1, sc, s
′
i) ⊃ si = s′i) P1

4. D, (Do(δ1, sc, si) ∧Do(δ2, si, sn)), (Do(δ1, sc, s
′
i) ∧Do(δ2, s′i, s′n)) ` si = s′i ⊃E

5. D, (Do(δ1, sc, si) ∧Do(δ2, si, sn)), (Do(δ1, sc, s
′
i) ∧Do(δ2, s′i, s′n)) ` Do(δ2, si, sn) ∧E

6. D, (Do(δ1, sc, si) ∧Do(δ2, si, sn)), (Do(δ1, sc, s
′
i) ∧Do(δ2, s′i, s′n)) ` Do(δ2, s′i, s′n) ∧E

7. D, (Do(δ1, sc, si) ∧Do(δ2, si, sn)), (Do(δ1, sc, s
′
i) ∧Do(δ2, s′i, s′n)) ` Do(δ2, si, s′n) =E

8. D, (Do(δ1, sc, si) ∧Do(δ2, si, sn)), (Do(δ1, sc, s
′
i) ∧Do(δ2, s′i, s′n)) ` Do(δ2, si, sn) ⊃

(Do(δ2, si, s
′
n) ⊃ sn = s′n) P2

9. D, (Do(δ1, sc, si) ∧Do(δ2, si, sn)), (Do(δ1, sc, s
′
i) ∧Do(δ2, s′i, s′n)) ` sn = s′n ⊃E

10. D ` (Do(δ1, sc, si) ∧Do(δ2, si, sn)) ⊃ ((Do(δ1, sc, s
′
i) ∧Do(δ2, s′i, s′n)) ⊃ sn = s′n) ⊃I

11. D ` ∀sc, sn, s′n.(Do(δ1, sc, si) ∧Do(δ2, si, sn)) ⊃ ((Do(δ1, sc, s
′
i)∧

Do(δ2, s
′
i, s

′
n)) ⊃ sn = s′n) ∀I

• Nondeterministic choice of action arguments δ = πv.δ

Do(πv.δ, sc, sn)
def
= ∃v.Do(δ(v), sc, sn)

Do(πv.δ, sc, s
′
n)

def
= ∃v.Do(δ(v), sc, s

′
n)
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Here, the notation δ(v) stands for the application of the argument v to one or more
primitive actions or conditions in δ. Therefore, to prove

D |= ∀sc, sn, s′n.Do(πv.δ(v), sc, sn) ⊃ (Do(πv.δ(v), sc, s
′
n) ⊃ sn = s′n)

it suffices to prove the following two formulas for all actions a and all conditions φ,

D |= ∀sc, sn, s′n.(∃v.Do(a(v), sc, sn)) ⊃ ((∃v.Do(a(v), sc, s
′
n)) ⊃ sn = s′n) (A.1)

D |= ∀sc, sn, s′n.(∃v.Do(φ(v)?, sc, sn)) ⊃ ((∃v.Do(φ(v)?, sc, s
′
n)) ⊃ sn = s′n) (A.2)

First, note that the only action we worry about in our domain D is assign(v). So,
to prove formula (6.1), we provide a natural deduction proof of the following:

D `∀sc, sn, s′n.(∃v.Poss(assign(v), sc) ∧ sn = do(assign(v), sc))

⊃ ((∃v.Poss(assign(v), sc) ∧ s′n = do(assign(v), sc)) ⊃ sn = s′n)

1. D, Poss(assign(v1), sc) ∧ sn = do(assign(v1), sc), Poss(assign(v2), sc)

∧ s′n = do(assign(v2), sc) ` Poss(assign(v1), sc) ∧ sn = do(assign(v1), sc) Ref

2. D, Poss(assign(v1), sc) ∧ sn = do(assign(v1), sc), Poss(assign(v2), sc)

∧ s′n = do(assign(v2), sc) ` Poss(assign(v1), sc) ∧E
3. D, Poss(assign(v1), sc) ∧ sn = do(assign(v1), sc), Poss(assign(v2), sc)

∧ s′n = do(assign(v2), sc) ` Poss(assign(v2), sc) ∧ s′n = do(assign(v2), sc) Ref

4. D, Poss(assign(v1), sc) ∧ sn = do(assign(v1), sc), Poss(assign(v2), sc)

∧ s′n = do(assign(v2), sc) ` Poss(assign(v2), sc) ∧E
5. D, Poss(assign(v1), sc) ∧ sn = do(assign(v1), sc), Poss(assign(v2), sc)

∧ s′n = do(assign(v2), sc) ` ∀v1.∀v2.∀s.Poss(assign(v1), s)∧
Poss(assign(v2), s) ⊃ v1 = v2 Ob 1

6. D, Poss(assign(v1), sc) ∧ sn = do(assign(v1), sc), Poss(assign(v2), sc)

∧ s′n = do(assign(v2), sc) ` Poss(assign(v1), sc) ∧ Poss(assign(v2), sc) ⊃ v1 = v2 ∀E
7. D, Poss(assign(v1), sc) ∧ sn = do(assign(v1), sc), Poss(assign(v2), sc)

∧ s′n = do(assign(v2), sc) ` v1 = v2 ⊃E
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8. D, Poss(assign(v1), sc) ∧ sn = do(assign(v1), sc), Poss(assign(v2), sc)

∧ s′n = do(assign(v2), sc) ` sn = do(assign(v1), sc) ∧E
9. D, Poss(assign(v1), sc) ∧ sn = do(assign(v1), sc), Poss(assign(v2), sc)

∧ s′n = do(assign(v2), sc) ` s′n = do(assign(v2), sc) ∧E
10. D, Poss(assign(v1), sc) ∧ sn = do(assign(v1), sc), Poss(assign(v2), sc)

∧ s′n = do(assign(v2), sc) ` s′n = do(assign(v1), sc) =E

11. D, Poss(assign(v1), sc) ∧ sn = do(assign(v1), sc), Poss(assign(v2), sc)

∧ s′n = do(assign(v2), sc) ` sn = s′n =I

12. D,∃v.(Poss(assign(v), sc) ∧ sn = do(assign(v), sc)), (∃v.Poss(assign(v), sc)

∧ s′n = do(assign(v), sc)) ` sn = s′n ∃E
13. D ` (∃v.Poss(assign(v), sc) ∧ sn = do(assign(v), sc)) ⊃

(∃v.(Poss(assign(v), sc) ∧ s′n = do(assign(v), sc)) ⊃ sn = s′n) ⊃I

14. D ` ∀sc, sn, s′n.(∃v.Poss(assign(v), sc) ∧ sn = do(assign(v), sc)) ⊃
(∃v.(Poss(assign(v), sc) ∧ s′n = do(assign(v), sc)) ⊃ sn = s′n) ∀I

Now, we prove formula (6.2) by showing a natural deduction proof of

D ` ∀sc, sn, s′n.(∃v.φ(v)[sn] ∧ sc = sn) ⊃ ((∃v.Poss(φ(v)[s′n] ∧ sc = s′n)) ⊃ sn = s′n)

1. D, (∃v.φ(v)[sn] ∧ sc = sn), (∃v.Poss(φ(v)[s′n] ∧ sc = s′n)) ` φ(v1)[sn] ∧ sc = sn ∃E
2. D, (∃v.φ(v)[sn] ∧ sc = sn), (∃v.Poss(φ(v)[s′n] ∧ sc = s′n)) ` sc = sn ∧E

3. D, (∃v.φ(v)[sn] ∧ sc = sn), (∃v.Poss(φ(v)[s′n] ∧ sc = s′n)) ` φ(v2)[s
′] ∧ sc = s′n ∃E

4. D, (∃v.φ(v)[sn] ∧ sc = sn), (∃v.Poss(φ(v)[s′n] ∧ sc = s′n)) ` sc = s′n ∧E

5. D, (∃v.φ(v)[sn] ∧ sc = sn), (∃v.Poss(φ(v)[s′n] ∧ sc = s′n)) ` sn = s′n =E

6. D ` (∃v.φ(v)[sn] ∧ sc = sn) ⊃ ((∃v.Poss(φ(v)[s′n] ∧ sc = s′n)) ⊃ sn = s′n) ⊃I

7. D ` ∀sc, sn, s′n(∃v.φ(v)[sn] ∧ sc = sn) ⊃ ((∃v.Poss(φ(v)[s′n] ∧ sc = s′n)) ⊃ sn = s′n) ∀I

• Conditional δ = if φ then δ1 else δ2
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Do(if φ then δ1 else δ2, sc, sn)
def
= Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn)

Do(if φ then δ1 else δ2, sc, s
′
n)

def
= Do(φ?; δ1, sc, s

′
n) ∨Do(¬φ?; δ2, sc, s

′
n)

To prove

D |= ∀sc, sn, s′n.Do(if φ then δ1 else δ2, sc, sn) ⊃ (Do(if φ then δ1 else δ2, sc, s
′
n) ⊃ sn = s′n)

we give a natural deduction proof of the following.

D ` ∀sc, sn, s′n.Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn) ⊃
(Do(φ?; δ1, sc, s

′
n) ∨Do(¬φ?; δ2, sc, s

′
n) ⊃ sn = s′n)

1. D, (Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn)), (Do(φ?; δ1, sc, s
′
n) ∨Do(¬φ?; δ2, sc, s

′
n))

, φ[sc] ` ¬¬φ[sc] ¬I
2. D, (Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn)), (Do(φ?; δ1, sc, s

′
n) ∨Do(¬φ?; δ2, sc, s

′
n))

, φ[sc] ` ¬(¬φ[sc] ∧ si = sc) ¬I
3. D, (Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn)), (Do(φ?; δ1, sc, s

′
n) ∨Do(¬φ?; δ2, sc, s

′
n))

, φ[sc] ` ¬(Do(¬φ?; δ2, sc, sn)) ¬I
4. D, (Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn)), (Do(φ?; δ1, sc, s

′
n) ∨Do(¬φ?; δ2, sc, s

′
n))

, φ[sc] ` Do(φ?; δ1, sc, sn) ∨E
5. D, (Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn)), (Do(φ?; δ1, sc, s

′
n) ∨Do(¬φ?; δ2, sc, s

′
n))

, φ[sc] ` ¬(Do(¬φ?; δ2, sc, s
′
n)) ¬I

6. D, (Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn)), (Do(φ?; δ1, sc, s
′
n) ∨Do(¬φ?; δ2, sc, s

′
n))

, φ[sc] ` Do(φ?; δ1, sc, s
′
n) ∨E

7. D, (Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn)), (Do(φ?; δ1, sc, s
′
n) ∨Do(¬φ?; δ2, sc, s

′
n))

, φ[sc] ` Do(φ?; δ1, sc, sn) ⊃ (Do(φ?; δ1, sc, sn) ⊃ sn = s′n) Seq

8. D, (Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn)), (Do(φ?; δ1, sc, s
′
n) ∨Do(¬φ?; δ2, sc, s

′
n))

, φ[sc] ` sn = s′n ⊃E

9. D, (Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn)), (Do(φ?; δ1, sc, s
′
n) ∨Do(¬φ?; δ2, sc, s

′
n))

` φ[sc] ⊃ sn = s′n ⊃E

10. D, (Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn)), (Do(φ?; δ1, sc, s
′
n) ∨Do(¬φ?; δ2, sc, s

′
n))

,¬φ[sc] ` ¬φ[sc] ¬I
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11. D, (Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn)), (Do(φ?; δ1, sc, s
′
n) ∨Do(¬φ?; δ2, sc, s

′
n))

,¬φ[sc] ` ¬(φ[sc] ∧ si = sc) ¬I
12. D, (Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn)), (Do(φ?; δ1, sc, s

′
n) ∨Do(¬φ?; δ2, sc, s

′
n))

,¬φ[sc] ` ¬(Do(φ?; δ1, sc, sn)) ¬I
13. D, (Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn)), (Do(φ?; δ1, sc, s

′
n) ∨Do(¬φ?; δ2, sc, s

′
n))

,¬φ[sc] ` Do(¬φ?; δ2, sc, sn) ∨E

14. D, (Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn)), (Do(φ?; δ1, sc, s
′
n) ∨Do(¬φ?; δ2, sc, s

′
n))

,¬φ[sc] ` ¬(Do(φ?; δ1, sc, s
′
n)) ¬I

15. D, (Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn)), (Do(φ?; δ1, sc, s
′
n) ∨Do(¬φ?; δ2, sc, s

′
n))

,¬φ[sc] ` Do(¬φ?; δ2, sc, s
′
n) ∨E

16. D, (Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn)), (Do(φ?; δ1, sc, s
′
n) ∨Do(¬φ?; δ2, sc, s

′
n))

,¬φ[sc] ` Do(¬φ?; δ2, sc, sn) ⊃ (Do(¬φ?; δ2, sc, sn) ⊃ sn = s′n) Seq

17. D, (Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn)), (Do(φ?; δ1, sc, s
′
n) ∨Do(¬φ?; δ2, sc, s

′
n))

,¬φ[sc] ` sn = s′n ⊃E

18. D, (Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn)), (Do(φ?; δ1, sc, s
′
n) ∨Do(¬φ?; δ2, sc, s

′
n))

` ¬φ[sc] ⊃ sn = s′n ⊃E

19. D, (Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn)), (Do(φ?; δ1, sc, s
′
n) ∨Do(¬φ?; δ2, sc, s

′
n))

` ¬φ[sc] ∨ φ[sc] ⊃ sn = s′n ⊃E

20. D, (Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn)), (Do(φ?; δ1, sc, s
′
n) ∨Do(¬φ?; δ2, sc, s

′
n))

` ¬φ[sc] ∨ φ[sc] ∨I
21. D, (Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn)), (Do(φ?; δ1, sc, s

′
n) ∨Do(¬φ?; δ2, sc, s

′
n))

` sn = s′n ∨I
22. D `(Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn)) ⊃ ((Do(φ?; δ1, sc, s

′
n)∨

Do(¬φ?; δ2, sc, s
′
n)) ⊃ sn = s′n) ⊃I

23. D `∀sc, sn, s′n.(Do(φ?; δ1, sc, sn) ∨Do(¬φ?; δ2, sc, sn)) ⊃ ((Do(φ?; δ1, sc, s
′
n)∨

Do(¬φ?; δ2, sc, s
′
n)) ⊃ sn = s′n) ∀I
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• While loop δ = while φ do δ1

Do(δ =while φ do δ1, sc, sn)
def
= (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2)∧

φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, sn)) ∧ ¬φ[sn])

Do(δ =while φ do δ1, sc, s
′
n)

def
= (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2)∧

φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, sn)) ∧ ¬φ[s′n]

To prove

D |= ∀sc, sn, s′n.Do(while φ do δ1, sc, sn) ⊃ (Do(while φ do δ1, sc, s
′
n) ⊃ sn = s′n)

we give a natural deduction proof of the following:

D ` ∀sc, sn, s′n.(∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3)
⊃ P (s1, s3)) ⊃ P (sc, sn)) ∧ ¬φ[sn] ⊃ ((∀P.(∀s1.P (s1, s1))

∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, s
′
n))

∧ ¬φ[s′n])) ⊃ sn = s′n)

In this proof, we make use of the binary relation R, which we characterize as follows:

R(s1, s3) ≡ (∀s1.R(s1, s1)) ∧ (∀s2.R(s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3)) (DefR)

1. D, (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3))

⊃ P (sc, sn)) ∧ ¬φ[sn], (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2)

∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, s
′
n)) ∧ φ[s′n] ` R(s1, s3) ≡ (∀s1.

R(s1, s1)) ∧ (∀s2.R(s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3)) DefR

2. D, (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3))

⊃ P (sc, sn)) ∧ ¬φ[sn], (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2)

∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, s
′
n)) ∧ φ[s′n] ` (∀s1.

R(s1, s1)) ∧ (∀s2.R(s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3)) ⊃ R(s1, s3) ≡E

3. D, (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3))

⊃ P (sc, sn)) ∧ ¬φ[sn], (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2)

∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, s
′
n)) ∧ φ[s′n] ` (∀P.(∀s1.P (s1, s1))

∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, sn)) ∧E
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4. D, (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3))

⊃ P (sc, sn)) ∧ ¬φ[sn], (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2)

∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, s
′
n)) ∧ φ[s′n] ` (∀s1.R(s1, s1))

∧ (∀s2.R(s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ R(s1, s3)) ⊃ R(sc, sn)) ∀E
5. D, (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3))

⊃ P (sc, sn)) ∧ ¬φ[sn], (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2)

∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, s
′
n)) ∧ φ[s′n] ` R(sc, sn) ⊃E

6. D, (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3))

⊃ P (sc, sn)) ∧ ¬φ[sn], (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2)

∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, s
′
n)) ∧ φ[s′n] ` (∀P.(∀s1.P (s1, s1))

∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, s
′
n)) ∧E

7. D, (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3))

⊃ P (sc, sn)) ∧ ¬φ[sn], (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2)

∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, s
′
n)) ∧ φ[s′n] ` (∀s1.R(s1, s1))

∧ (∀s2.R(s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ R(s1, s3)) ⊃ R(sc, s
′
n)) ∀E

8. D, (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3))

⊃ P (sc, sn)) ∧ ¬φ[sn], (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2)

∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, s
′
n)) ∧ φ[s′n] ` R(sc, s

′
n) ⊃E

9. D, (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3))

⊃ P (sc, sn)) ∧ ¬φ[sn], (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2)

∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, s
′
n)) ∧ φ[s′n] ` R(sc, sn) ≡

(∀s1.R(s1, s1)) ∧ (∀s2.R(sc, s2) ∧ φ[s2] ∧Do(δ1, s2, sn)) DefR

10. D, (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3))

⊃ P (sc, sn)) ∧ ¬φ[sn], (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2)

∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, s
′
n)) ∧ φ[s′n] ` R(sc, sn) ⊃

(∀s1.R(s1, s1)) ∧ (∀s2.R(sc, s2) ∧ φ[s2] ∧Do(δ1, s2, sn)) ≡E

11. D, (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3))

⊃ P (sc, sn)) ∧ ¬φ[sn], (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2)

∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, s
′
n)) ∧ φ[s′n] ` (∀s1.

R(s1, s1)) ∧ (∀s2.R(sc, s2) ∧ φ[s2] ∧Do(δ1, s2, sn)) ⊃E
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12. D, (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3))

⊃ P (sc, sn)) ∧ ¬φ[sn], (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2)

∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, s
′
n)) ∧ φ[s′n] ` (∀s2.

R(sc, s2) ∧ φ[s2] ∧Do(δ1, s2, sn)) ∧E
13. D, (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3))

⊃ P (sc, sn)) ∧ ¬φ[sn], (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2)

∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, s
′
n)) ∧ φ[s′n] ` R(sc, si)∧

φ[si] ∧Do(δ1, si, sn)) ∀E
14. D, (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3))

⊃ P (sc, sn)) ∧ ¬φ[sn], (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2)

∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, s
′
n)) ∧ φ[s′n] ` Do(δ1, si, sn)) ∧E

15. D, (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3))

⊃ P (sc, sn)) ∧ ¬φ[sn], (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2)

∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, s
′
n)) ∧ φ[s′n] ` R(sc, s

′
n) ≡

(∀s1.R(s1, s1)) ∧ (∀s2.R(sc, s2) ∧ φ[s2] ∧Do(δ1, s2, s′n)) DefR

16. D, (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3))

⊃ P (sc, sn)) ∧ ¬φ[sn], (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2)

∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, s
′
n)) ∧ φ[s′n] ` R(sc, s

′
n) ⊃

(∀s1.R(s1, s1)) ∧ (∀s2.R(sc, s2) ∧ φ[s2] ∧Do(δ1, s2, s′n)) ≡E

17. D, (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3))

⊃ P (sc, sn)) ∧ ¬φ[sn], (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2)

∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, s
′
n)) ∧ φ[s′n] ` (∀s1.

R(s1, s1)) ∧ (∀s2.R(sc, s2) ∧ φ[s2] ∧Do(δ1, s2, s′n)) ⊃E

18. D, (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3))

⊃ P (sc, sn)) ∧ ¬φ[sn], (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2)

∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, s
′
n)) ∧ φ[s′n] ` (∀s2.

R(sc, s2) ∧ φ[s2] ∧Do(δ1, s2, s′n)) ∧E
19. D, (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3))

⊃ P (sc, sn)) ∧ ¬φ[sn], (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2)

∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, s
′
n)) ∧ φ[s′n] ` R(sc, si)∧

φ[si] ∧Do(δ1, si, s′n)) ∀E
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20. D, (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3))

⊃ P (sc, sn)) ∧ ¬φ[sn], (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2)

∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, s
′
n)) ∧ φ[s′n] ` Do(δ1, si, s′n)) ∧E

21. D, (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3))

⊃ P (sc, sn)) ∧ ¬φ[sn], (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2)

∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, s
′
n)) ∧ φ[s′n] ` sn = s′n P1

22. D ` (∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3))

⊃ P (sc, sn)) ∧ ¬φ[sn] ⊃ ((∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2)

∧ φ[s2] ∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (sc, s
′
n)) ∧ φ[s′n] ⊃ sn = s′n) ⊃I

Thus, for any resolution procedure δ, the restriction Ob 1 on the precondition axiom
is sufficient to ensure the resolution module is deterministic.

We now show that this is a necessary condition. Consider the resolution procedure
δ = πv.assign(v). Assume the obligation

∀v1.∀v2.∀s.Poss(assign(v1), s) ∧ Poss(assign(v2), s) ⊃ v1 = v2

does not hold in D. Note that by de Morgan’s law,

¬(∀v1.∀v2.∀s.Poss(assign(v1), s) ∧ Poss(assign(v2), s) ⊃ v1 = v2)

≡ ∃v1.∃v2.∃s.(Poss(assign(v1), s) ∧ Poss(assign(vs), s)) ∧ ¬(v1 = v2)

We show the entailment

D |= ∀sc, sn, s′n.Do(δ, sc, sn) ⊃ (Do(δ, sc, s
′
n) ⊃ sn = s′n)

will not hold by providing a natural deduction proof of the following:

D,∃v1.∃v2.∃sn.(Poss(assign(v1), sn) ∧ Poss(assign(v2), sn)) ∧ ¬(v1 = v2) `
¬(∀sc, sn, s′n.Do(δ, sc, sn) ⊃ (Do(δ, sc, s

′
n) ⊃ sn = s′n)
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1. D, (Poss(assign(v1), s) ∧ Poss(assign(v2), s)) ∧ ¬(v1 = v2),

s1 = do(assign(v1), s), s2 = do(assign(v2), s),∀sc, sn, s′n.Do(δ, sc, sn)

⊃ (Do(δ, sc, s
′
n) ⊃ sn = s′n) ` Poss(assign(v1), s) ∧ s1 = do(assign(v1), s) ∧I

2. D, (Poss(assign(v1), s) ∧ Poss(assign(v2), s)) ∧ ¬(v1 = v2),

s1 = do(assign(v1), s), s2 = do(assign(v2), s),∀sc, sn, s′n.Do(δ, sc, sn)

⊃ (Do(δ, sc, s
′
n) ⊃ sn = s′n) ` Do(assign(v1), s, s1) Def

3. D, (Poss(assign(v1), s) ∧ Poss(assign(v2), s)) ∧ ¬(v1 = v2),

s1 = do(assign(v1), s), s2 = do(assign(v2), s),∀sc, sn, s′n.Do(δ, sc, sn)

⊃ (Do(δ, sc, s
′
n) ⊃ sn = s′n) ` Poss(assign(v2), s) ∧ s2 = do(assign(v2), s) ∧I

4. D, (Poss(assign(v1), s) ∧ Poss(assign(v2), s)) ∧ ¬(v1 = v2),

s1 = do(assign(v1), s), s2 = do(assign(v2), s),∀sc, sn, s′n.Do(δ, sc, sn)

⊃ (Do(δ, sc, s
′
n) ⊃ sn = s′n) ` Do(assign(v2), s, s2) Def

5. D, (Poss(assign(v1), s) ∧ Poss(assign(v2), s)) ∧ ¬(v1 = v2),

s1 = do(assign(v1), s), s2 = do(assign(v2), s),∀sc, sn, s′n.Do(δ, sc, sn)

⊃ (Do(δ, sc, s
′
n) ⊃ sn = s′n) ` Do(δ, s, s1) ⊃ (Do(δ, s, s2) ⊃ s1 = s2 ∀E

6. D, (Poss(assign(v1), s) ∧ Poss(assign(v2), s)) ∧ ¬(v1 = v2),

s1 = do(assign(v1), s), s2 = do(assign(v2), s),∀sc, sn, s′n.Do(δ, sc, sn)

⊃ (Do(δ, sc, s
′
n) ⊃ sn = s′n) ` Do(δ, s, s2) ⊃ s1 = s2 ⊃E

7. D, (Poss(assign(v1), s) ∧ Poss(assign(v2), s)) ∧ ¬(v1 = v2),

s1 = do(assign(v1), s), s2 = do(assign(v2), s),∀sc, sn, s′n.Do(δ, sc, sn)

⊃ (Do(δ, sc, s
′
n) ⊃ sn = s′n) ` s1 = s2 ⊃E

8. D, (Poss(assign(v1), s) ∧ Poss(assign(v2), s)) ∧ ¬(v1 = v2),

s1 = do(assign(v1), s), s2 = do(assign(v2), s),∀sc, sn, s′n.Do(δ, sc, sn)

⊃ (Do(δ, sc, s
′
n) ⊃ sn = s′n) ` ¬(v1 = v2) ⊃ ¬(assign(v1)) = assign(v2)) Ax.2

9. D, (Poss(assign(v1), s) ∧ Poss(assign(v2), s)) ∧ ¬(v1 = v2),

s1 = do(assign(v1), s), s2 = do(assign(v2), s),∀sc, sn, s′n.Do(δ, sc, sn)

⊃ (Do(δ, sc, s
′
n) ⊃ sn = s′n) ` ¬(assign(v1)) = assign(v2)) ⊃E

10. D, (Poss(assign(v1), s) ∧ Poss(assign(v2), s)) ∧ ¬(v1 = v2),

s1 = do(assign(v1), s), s2 = do(assign(v2), s),∀sc, sn, s′n.Do(δ, sc, s)
⊃ (Do(δ, sc, s

′
n) ⊃ sn = s′n) ` ¬(assign(v1)) = assign(v2))

⊃ ¬(do(assign(v1), s) = do(assign(v2), s)) Ax.3
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11. D, (Poss(assign(v1), s) ∧ Poss(assign(v2), s)) ∧ ¬(v1 = v2),

s2 = do(assign(v1), s), s2 = do(assign(v2), s),∀sc, sn, s′n.Do(δ, sc, sn)

⊃ (Do(δ, sc, s
′
n) ⊃ sn = s′n) ` ¬(do(assign(v1), s) = do(assign(v2), s)) ⊃E

11. D, (Poss(assign(v1), s) ∧ Poss(assign(v2), s)) ∧ ¬(v1 = v2),

s2 = do(assign(v1), s), s2 = do(assign(v2), s),∀sc, sn, s′n.Do(δ, sc, sn)

⊃ (Do(δ, sc, s
′
n) ⊃ sn = s′n) ` ¬(s1 = s2) =E

12. D, (Poss(assign(v1), s) ∧ Poss(assign(v2), s)) ∧ ¬(v1 = v2),

s2 = do(assign(v1), s), s2 = do(assign(v2), s) ` ¬(∀sc, sn, s′n.Do(δ, sc, s)
⊃ (Do(δ, sc, s

′
n) ⊃ sn = s′n)) ¬I

13. D, (Poss(assign(v1), s) ∧ Poss(assign(v2), s)) ∧ ¬(v1 = v2) `
s2 = do(assign(v1), s) ∧ s2 = do(assign(v2), s) ⊃ ¬(∀sc, sn, s′n.Do(δ, sc, s)
⊃ (Do(δ, sc, s

′
n) ⊃ sn = s′n)) ⊃I

14. D,∃v1.∃v2.∃s.(Poss(assign(v1), s) ∧ Poss(assign(v2), s)) ∧ ¬(v1 = v2) `
¬(∀sc, sn, s′n.Do(δ, sc, sn) ⊃ (Do(δ, sc, s

′
n) ⊃ sn = s′n)) ∃E

Thus, we know that the restriction is a necessary condition to ensure that all resolution
procedures δ satisfy the proof obligation Ob1.
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Theorem 3. Given a resolution domain theory D in the situation calculus and a Golog
resolution procedure δ, if in D, the following restriction is on the precondition axiom:

Ob 2. ∀s. (∃v.Poss(assign(v), s) ≡ ∃L.assignRqst(L, s) ∧ ¬empty(L))

is a necessary and sufficient condition for the following entailment:

D |= ∀sc. (∃sn.Do(δ, sc, sn) ≡ ∃L.assignRqst(L, s) ∧ ¬empty(L))

unless δ contains one or more loops. In this case, for every loop of the form while φ do
δ1, the following additional property must hold:

∀s.(∃s′.(∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2]

∧Do(δ1, s2, s3) ⊃ P (s1, s3)) ⊃ P (s, s′)) ∧ ¬φ[s′]

≡ ∃L.assignRqst(L, s) ∧ ¬empty(L))

Proof. We first show this is a sufficient condition by inducting on the Golog resolution
procedure δ.

Base Case

• Primitive action δ = a

To prove

D |= ∀sc. (∃sn.Do(a, sc, sn) ≡ ∃L.assignRqst(L, s) ∧ ¬empty(L))

we give a natural deduction proof of the following:

D ` ∀sc. (∃sn.Poss(assign(v), sc) ∧ sn = do(assign(v), sc) ≡ ∃L.assignRqst(L, s) ∧ ¬empty(L))

1. D ` ∀s. (∃v.Poss(assign(v), s) ≡ ∃L.assignRqst(L, s) ∧ ¬empty(L)) Ob 2

2. D ` (∃v.Poss(assign(v), sc) ≡ ∃L.assignRqst(L, sc) ∧ ¬empty(L)) ∀E
3. D,∃L.assignRqst(L, sc) ∧ ¬empty(L) ` ∃v.Poss(assign(v), sc) ≡E

4. D,∃L.assignRqst(L, sc) ∧ ¬empty(L), Poss(assign(v), sc) ` ∀a, s0.∃sn.sn
= do(a, s0) Ax.1

5. D,∃L.assignRqst(L, sc) ∧ ¬empty(L), Poss(assign(v), sc) ` ∃sn.sn
= do(assign(v), sc) ∀E
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6. D,∃L.assignRqst(L, sc) ∧ ¬empty(L), Poss(assign(v), sc), sn = do(assign(v), sc)

` Poss(assign(v), sc) ∧ sn = do(assign(v), sc) ∧I
7. D,∃L.assignRqst(L, sc) ∧ ¬empty(L), Poss(assign(v), sc), sn = do(assign(v), sc)

` ∃sn.Poss(assign(v), sc) ∧ sn = do(assign(v), sc) ∃I
8. D,∃L.assignRqst(L, sc) ∧ ¬empty(L), Poss(assign(v), sc),∃sn.sn =

do(assign(v), sc) ` ∃sn.Poss(assign(v), sc) ∧ sn = do(assign(v), sc) ∃E
9. D,∃L.assignRqst(L, sc) ∧ ¬empty(L), Poss(assign(v), sc) ` ∃sn.sn

= do(assign(v), sc) ⊃ ∃sn.Poss(assign(v), sc) ∧ sn = do(assign(v), sc) ⊃I

10. D,∃L.assignRqst(L, sc) ∧ ¬empty(L), Poss(assign(v), sc) `
∃sn.Poss(assign(v), sc) ∧ sn = do(assign(v), sc) ⊃E

11. D,∃L.assignRqst(L, sc) ∧ ¬empty(L),∃v.Poss(assign(v), sc) `
∃sn.Poss(assign(v), sc) ∧ sn = do(assign(v), sc) ∃E

12. D,∃L.assignRqst(L, sc) ∧ ¬empty(L) ` ∃v.Poss(assign(v), sc) ⊃ ∃sn.
Poss(assign(v), sc) ∧ sn = do(assign(v), sc) ⊃I

13. D,∃L.assignRqst(L, sc) ∧ ¬empty(L) ` ∃sn.Poss(assign(v), sc) ∧ sn
= do(assign(v), sc) ⊃E

14. D,∃L.assignRqst(L, sc) ∧ ¬empty(L) ` ∀sc.∃sn.Poss(assign(v), sc)∧
sn = do(assign(v), sc) ∀I

15. D ` ∃L.assignRqst(L, sc) ∧ ¬empty(L) ⊃ ∀sc.∃sn.Poss(assign(v), sc)∧
sn = do(assign(v), sc) ⊃I

16. D,¬(∃L.assignRqst(L, sc) ∧ ¬empty(L)) ` ¬(∃v.Poss(assign(v), sc)) ≡E

17. D,¬(∃L.assignRqst(L, sc) ∧ ¬empty(L)) ` ¬(∃sn.sn = Poss(assign(v), sc)∧
sn = do(assign(v), sc)) Def

18. D ` ∃L.assignRqst(L, sc) ∧ ¬empty(L) ≡ ∀sc.∃sn.Poss(assign(v), sc)∧
sn = do(assign(v), sc) ⊃I

Inductive Step: Assume the programs δ1 and δ2 satisfy the properties

P1. D |= ∀sc.(∃sn.Do(δ1, sc, sn) ≡ ∃L.assignRqst(L, sc) ∧ ¬empty(L))

P2. D |= ∀sc.(∃sn.Do(δ2, sc, sn) ≡ ∃L.assignRqst(L, sc) ∧ ¬empty(L))

• Sequence δ = δ1; δ2
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To prove

D |= ∀sc.(∃sn.Do(δ1; δ2, sc, sn) ≡ ∃L.assignRqst(L, sc) ∧ ¬empty(L))

We give a natural deduction proof of the following

D ` ∀sc.(∃sn.∃si.Do(δ1, sc, si) ∧Do(δ2, si, sn) ≡ ∃L.assignRqst(L, sc) ∧ ¬empty(L))

1. D ` ∀sc(∃sn.Do(δ1, sc, sn) ≡ ∃L.assignRqst(L, sc) ∧ ¬empty(L)) P1

2. D ` ∃sn.Do(δ1, sc, sn) ≡ ∃L.assignRqst(L, sc) ∧ ¬empty(L) ∀E
3. D,∃L.assignRqst(L, sc) ∧ ¬empty(L) ` ∃sn.Do(δ1, sc, sn) ≡E

4. D,∃L.assignRqst(L, sc) ∧ ¬empty(L), Do(δ1, sc, si) ` ∃sn.Do(δ1, si, sn) ∀E
5. D,∃L.assignRqst(L, sc) ∧ ¬empty(L), Do(δ1, sc, si), Do(δ1, si, s) ` Do(δ1, sc, si)

∧Do(δ1, si, sn) ∧I
6. D,∃L.assignRqst(L, sc) ∧ ¬empty(L), Do(δ1, sc, si), Do(δ1, si, sn) `
∃si.Do(δ1, sc, si) ∧Do(δ1, si, sn) ∃I

7. D,∃L.assignRqst(L, sc) ∧ ¬empty(L),∃sn.Do(δ1, sc, sn), Do(δ1, si, sn) `
∃si.Do(δ1, sc, si) ∧Do(δ1, si, sn) ∃E

8. D,∃L.assignRqst(L, sc) ∧ ¬empty(L), Do(δ1, si, sn) ` ∃s.Do(δ1, sc, sn) ⊃
∃si.Do(δ1, sc, si) ∧Do(δ1, si, sn) ⊃I

9. D,∃L.assignRqst(L, sc) ∧ ¬empty(L), Do(δ1, si, sn) ` ∃si.Do(δ1, sc, si)
∧Do(δ1, si, sn) ⊃E

10. D,∃L.assignRqst(L, sc) ∧ ¬empty(L), Do(δ1, si, sn) ` ∃sn.∃si.Do(δ1, sc, si)
∧Do(δ1, si, sn) ∃I

11. D,∃L.assignRqst(L, sc) ∧ ¬empty(L),∃sn.Do(δ1, si, sn) ` ∃sn.∃si.Do(δ1, sc, si)
∧Do(δ1, si, sn) ∃E

12. D,∃L.assignRqst(L, sc) ∧ ¬empty(L) ` ∃sn.Do(δ1, si, sn) ⊃ ∃sn.∃si.Do(δ1, sc, si)
∧Do(δ1, si, sn) ⊃I

13. D,∃L.assignRqst(L, sc) ∧ ¬empty(L) ` ∃sn.∃si.Do(δ1, sc, si) ∧Do(δ1, si, sn) ⊃E

14. D ` ∃L.assignRqst(L, sc) ∧ ¬empty(L) ⊃ ∃sn.∃si.Do(δ1, sc, si) ∧Do(δ1, si, sn) ⊃I

15. D,¬(∃L.assignRqst(L, sc) ∧ ¬empty(L)) ` ¬(∃sn.Do(δ1, sc, sn)) ≡E

16. D,¬(∃L.assignRqst(L, sc) ∧ ¬empty(L)) ` ¬(∃sn.∃si.Do(δ1, sc, si) ∧Do(δ2, si, sn)) Def
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17. D ` ∃sn.∃si.Do(δ1, sc, si) ∧Do(δ2, si, sn) ≡ ∃L.assignRqst(L, sc) ∧ ¬empty(L) ≡I

18. D ` ∀sc.∃sn.∃si.Do(δ1, sc, si) ∧Do(δ2, si, sn) ≡ ∃L.assignRqst(L, sc) ∧ ¬empty(L) ∀I

• Nondeterministic choice of action arguments δ = πv.δ1

As above, since we only have one action that takes a single argument, to prove

D |= ∀sc.(∃sn.Do(πv.δ1, sc, sn) ≡ ∃L.assignRqst(L, sc) ∧ ¬empty(L))

it suffices to prove

D ` ∀sc.(∃sn.∃v.Do(assign(v), sc, sn) ≡ ∃L.assignRqst(L, sc) ∧ ¬empty(L))

This has the same proof as the base case step above.

• Conditional δ = if φ then δ1 else δ2

To prove

D |= ∀sc.(∃sn.Do(if φ then δ1 else δ2, sc, sn) ≡ ∃L.assignRqst(L, sc) ∧ ¬empty(L))

we give a natural deduction proof of:

D ` ∀sc.(∃sn.(∃si.φ[sc] ∧ si = sc ∧Do(δ1, si, sn)) ∨ (∃si.¬φ[sc] ∧ si = sc ∧Do(δ2, si, sn))

≡ ∃L.assignRqst(L, sc) ∧ ¬empty(L))

1. D, φ[sc], si = sc ` ∃si.si = sc

2. D, φ[sc], si = sc ` ∀sc.(∃sn.Do(δ1, sc, sn) ≡ ∃L.assignRqst(L, sc) ∧ ¬empty(L)) P1

3. D,∃L.assignRqst(L, sc) ∧ ¬empty(L)), φ[sc], si = sc ` ∃sn.Do(δ1, si, sn) ≡E

4. D,∃L.assignRqst(L, sc) ∧ ¬empty(L)), φ[sc], si = sc, Do(δ1, si, sn) ` φ[sc]∧
si = sc ∧Do(δ1, si, sn) ∧I

5. D,∃L.assignRqst(L, sc) ∧ ¬empty(L)), φ[sc], si = sc, Do(δ1, si, sn) ` ∃si.φ[sc]∧
si = sc ∧Do(δ1, si, sn) ∃I

6. D,∃L.assignRqst(L, sc) ∧ ¬empty(L)), φ[sc], si = sc, Do(δ1, si, sn) ` (∃si.φ[sc]∧
si = sc ∧Do(δ1, si, sn))

∨ (∃si.¬φ[sc] ∧ si = sc ∧Do(δ2, si, sn)) ∨I
7. D,∃L.assignRqst(L, sc) ∧ ¬empty(L)), φ[sc], si = sc, Do(δ1, si, sn) ` ∃sn.(∃si.φ[sc]

∧ si = sc ∧Do(δ1, si, sn))

∨ (∃si.¬φ[sc] ∧ si = sc ∧Do(δ2, si, sn)) ∃I

68



8. D,∃L.assignRqst(L, sc) ∧ ¬empty(L)), φ[sc] ` ∃si.si = sc ⊃ ∃sn.Do(δ1, si, sn) ⊃
∃sn.(∃si.φ[sc] ∧ si = sc ∧Do(δ1, si, sn)) ∨ (∃si.¬φ[sc] ∧ si = sc ∧Do(δ2, si, sn)) ⊃I

9. D,∃L.assignRqst(L, sc) ∧ ¬empty(L)), φ[sc] ` ∃sn.(∃si.φ[sc] ∧ si = sc∧
Do(δ1, si, sn)) ∨ (∃si.¬φ[sc] ∧ si = sc ∧Do(δ2, si, sn)) ⊃E

10. D,∃L.assignRqst(L, sc) ∧ ¬empty(L)),¬φ[sc], si = sc ` ∃si.si = sc =I

11. D,∃L.assignRqst(L, sc) ∧ ¬empty(L)),¬φ[sc], si = sc ` ∀sc.∃sn.Do(δ2, sc, sn) P1

12. D,∃L.assignRqst(L, sc) ∧ ¬empty(L)),¬φ[sc], si = sc ` ∃sn.Do(δ2, si, sn) ∀E
13. D,∃L.assignRqst(L, sc) ∧ ¬empty(L)),¬φ[sc], si = sc, Do(δ2, si, sn) ` ¬φ[sc]∧

si = sc ∧Do(δ2, si, sn) ∧I
14. D,∃L.assignRqst(L, sc) ∧ ¬empty(L)),¬φ[sc], si = sc, Do(δ2, si, sn) ` ∃si.¬φ[sc]∧

si = sc ∧Do(δ2, si, sn) ∃I
15. D,∃L.assignRqst(L, sc) ∧ ¬empty(L)),¬φ[sc], si = sc, Do(δ2, si, sn) ` (∃si.φ[sc]∧

si = sc ∧Do(δ1, si, sn)) ∨ (∃si.¬φ[sc] ∧ si = sc ∧Do(δ2, si, sn)) ∨I
16. D,∃L.assignRqst(L, sc) ∧ ¬empty(L)),¬φ[sc], si = sc, Do(δ2, si, sn) ` ∃sn.(∃si.φ[sc]

∧ si = sc ∧Do(δ1, si, sn)) ∨ (∃si.¬φ[sc] ∧ si = sc ∧Do(δ2, si, sn)) ∃I
17. D,∃L.assignRqst(L, sc) ∧ ¬empty(L)),¬φ[sc] ` ∃si.si = sc ⊃ ∃sn.Do(δ2, si, sn) ⊃

∃sn.(∃si.φ[sc] ∧ si = sc ∧Do(δ1, si, sn)) ∨ (∃si.¬φ[sc] ∧ si = sc ∧Do(δ2, si, sn)) ⊃I

18. D,∃L.assignRqst(L, sc) ∧ ¬empty(L)),¬φ[sc] ` ∃sn.(∃si.φ[sc] ∧ si = sc∧
Do(δ1, si, sn)) ∨ (∃si.¬φ[sc] ∧ si = sc ∧Do(δ2, si, sn)) ⊃E

19. D,∃L.assignRqst(L, sc) ∧ ¬empty(L)), φ[sc] ∨ ¬φ[sc] ` ∃sn.(∃si.φ[sc]∧
si = sc ∧Do(δ1, si, sn)) ∨ (∃si.¬φ[sc] ∧ si = sc ∧Do(δ2, si, sn)) ∨E

20. D,∃L.assignRqst(L, sc) ∧ ¬empty(L)) ` φ[sc] ∨ ¬φ[sc] ⊃ ∃sn.(∃si.φ[sc]∧
si = sc ∧Do(δ1, si, sn)) ∨ (∃si.¬φ[sc] ∧ si = sc ∧Do(δ2, si, sn)) ⊃I

21. D,∃L.assignRqst(L, sc) ∧ ¬empty(L)) ` ∃sn.(∃si.φ[sc] ∧ si = sc ∧Do(δ1, si, sn))

∨ (∃si.¬φ[sc] ∧ si = sc ∧Do(δ2, si, sn)) ⊃E

22. D ` ∃L.assignRqst(L, sc) ∧ ¬empty(L)) ⊃ ∃sn.(∃si.φ[sc] ∧ si = sc ∧Do(δ1, si, sn))

∨ (∃si.¬φ[sc] ∧ si = sc ∧Do(δ2, si, sn)) ⊃I

23. D,¬(∃L.assignRqst(L, sc) ∧ ¬empty(L)) ` ¬(∃sn.Do(δ1, sc, sn)) ≡E

24. D,¬(∃L.assignRqst(L, sc) ∧ ¬empty(L)) ` ¬(∃sn.(∃si.φ[sc] ∧ si = sc∧
Do(δ1, si, sn)) ∨ (∃si.¬φ[sc] ∧ si = sc ∧Do(δ2, si, sn))) Def

25. D ` ∃L.assignRqst(L, sc) ∧ ¬empty(L)) ≡ ∃sn.(∃si.φ[sc] ∧ si = sc ∧Do(δ1, si, sn))

∨ (∃si.¬φ[sc] ∧ si = sc ∧Do(δ2, si, sn))) ≡I

26. D ` ∀sc.∃L.assignRqst(L, sc) ∧ ¬empty(L)) ≡ ∃sn.(∃si.φ[sc] ∧ si = sc∧
Do(δ1, si, sn)) ∨ (∃si.¬φ[sc] ∧ si = sc ∧Do(δ2, si, sn))) ∀I
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• While loop δ = while φ do δ1

To prove
D |= Do(while φ do δ1, Sc, Sn)

we give a natural deduction proof of:

D ` ∀sc.(∃sn.((∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧Do(φ?; δ1, s2, s3)

⊃ P (s1, s3)) ⊃ P (sc, sn)) ∧ φ[sn]) ≡ ∃L.assignRqst(L, sc) ∧ ¬empty(L))

Note that by assumption we have the additional condition

∀s.(∃s′.(∀P.(∀s1.P (s1, s1)) ∧ (∀s1, s2, s3.P (s1, s2) ∧ φ[s2] ∧Do(δ1, s2, s3)
⊃ P (s1, s3)) ⊃ P (s, s′)) ∧ ¬φ[s′] ≡ ∃L.assignRqst(L, sc) ∧ ¬empty(L))

for the while loop. This condition is equivalent to what we are trying to prove.

Thus, for any resolution procedure δ, the proof obligation Ob 2 is sufficient to ensure
that the following entailment holds:

D |= ∀sc.(∃sn.Do(δ, sc, sn) ≡ ∃L.assignRqst(L, sc) ∧ ¬empty(L))

We now show that this is a necessary condition. Consider the resolution procedure
δ = πv.assign(v). Assume the condition

∀sc.(∃v.Poss(assign(v), sc) ≡ ∃L.assignRqst(L, sc) ∧ ¬empty(L))

does not hold in D. We first consider the case where

¬(∀sc.(∃v.Poss(assign(v), sc) ⊂ ∃L.assignRqst(L, sc) ∧ ¬empty(L))

Note that by de Morgan’s law,

¬(∀sc.(∃v.Poss(assign(v), sc) ⊂ ∃L.assignRqst(L, sc) ∧ ¬empty(L)))

⇔ ∃sc.∀v.¬Poss(assign(v), sc) ∧ ∃L.assignRqst(L, sc) ∧ ¬empty(L)

We show that the entialment for totality will not hold by providing a natural deduction
proof of the following:

D,∃L.assignRqst(L, sc) ∧ ¬empty(L),∃sc.∀v.¬Poss(assign(v), sc) ` ¬(∀sc.(∃sn.Do(δ, sc, sn)

≡ ∃L.assignRqst(L, sc) ∧ ¬empty(L)))
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1. D,∃s.∀v.¬Poss(assign(v), s),∀sc.∃sn.Do(δ, sc, sn),∀v.¬Poss(assign(v), s′)

` ∀sc.∃sn.∃v.Poss(assign(v), sc) ∧ sn = do(assign(v), sc) Def

2. D,∃sn.∀v.¬Poss(assign(v), s),∀sc.∃s.Do(δ, sc, sn),∀v.¬Poss(assign(v), s′)

` ∃sn.∃v.Poss(assign(v), s′) ∧ sn = do(assign(v), s′) ∀E
3. D,∃s.∀v.¬Poss(assign(v), s),∀sc.∃sn.Do(δ, sc, sn),∀v.¬Poss(assign(v), s′),

Poss(assign(v), s′) ∧ sn = do(assign(v), s′) ` Poss(assign(v), s′) ∧E
4. D,∃s.∀v.¬Poss(assign(v), s),∀sc.∃sn.Do(δ, sc, sn),∀v.¬Poss(assign(v), s′),

Poss(assign(v), s′) ∧ sn = do(assign(v), s′) ` ¬Poss(assign(v), s′) ∀E
5. D,∃s.∀v.¬Poss(assign(v), s),∀v.¬Poss(assign(v), s′),

Poss(assign(v), s′) ∧ sn = do(assign(v), s′) ` ¬(∀sc.∃sn.Do(δ, sc, sn)) ¬I
6. D,∃s.∀v.¬Poss(assign(v), s),∃sn.∀v.¬Poss(assign(v), s′),

∃sn.∃v.Poss(assign(v), s′) ∧ sn = do(assign(v), s′) ` ¬(∀sc.∃sn.Do(δ, sc, sn)) ∃E
7. D,∃s.∀v.¬Poss(assign(v), s) ` (∃sn.∀v.¬Poss(assign(v), s′)) ⊃

(∃sn.∃v.Poss(assign(v), s′) ∧ sn = do(assign(v), s′)) ⊃ ¬(∀sc.∃sn.Do(δ, sc, s)) ⊃I

8. D,∃s.∀v.¬Poss(assign(v), s) ` ¬(∀sc.∃sn.Do(δ, sc, sn)) ⊃E

9. D,∃L.assignRqst(L, sc) ∧ ¬empty(L),∃s.∀v.¬Poss(assign(v), s) ` ¬(∀sc.∃sn.Do(δ, sc, sn)) +

Now consider the second case, where

¬(∀sc.(∃v.Poss(assign(v), sc) ⊃ ∃L.assignRqst(L, sc) ∧ ¬empty(L))

Note that by de Morgan’s law,

¬(∀sc.(∃v.Poss(assign(v), sc) ⊃ ∃L.assignRqst(L, sc) ∧ ¬empty(L)))

⇔ ∃sc.∃v.Poss(assign(v), sc) ∧ ∀L.¬(assignRqst(L, sc) ∧ ¬empty(L))

We show that the entialment for totality will not hold by proving the following:

D,∀L.¬(assignRqst(L, sc) ∧ ¬empty(L)),∃v.Poss(assign(v), sc) ` ¬(∀sc.(∃sn.Do(δ, sc, sn)

≡ ∃L.assignRqst(L, sc) ∧ ¬empty(L)))

Note that the natural deduction proofs shown above prove exactly this, that for all δ,
there will exists some sn such that Do(δ, sc, sn) if the precondition axiom allows assignment
in sc.
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We have now shown that the restriction

∀s.∃v.Poss(assign(v), s)

is a necessary and sufficient condition for totality.
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Appendix B

Implementations

This appendix contains source code for the GOLOG implementations of the resolution
modules.

accelResolution.pl

#!/usr/bin/swipl -q -t main -f

:- use_module(library(optparse)).

opts_spec([ [opt(feature), longflags([’feature’]), help(’list of feature rqst’)]

, [opt(goal),longflags([’goal’]),help(’goal to be called’)]

, [opt(safety),longflags([’safety’]),help(’list of safety rqst’)]

, [opt(driver),longflags([’driver’]), help(’list driver rqst’)]]).

main :-

opts_spec(OptsSpec),

opt_arguments(OptsSpec, Opts, _PositionalArgs),

memberchk(feature(FeatureList), Opts),

memberchk(driver(DriverList), Opts),

memberchk(safety(SafetyList), Opts),

(nonvar(DriverList) -> call_call(assert(driverRqsts(DriverList,sc)), Result)

; true),

(nonvar(SafetyList) -> call_call(assert(safetyRqsts(SafetyList,sc)), Result)

; true),

(nonvar(FeatureList) -> call_call(assert(accelRqsts(FeatureList,sc)), Result)
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; true),

(nonvar(FeatureList) -> call_call(do(resolveAcceleration,sc,S), Result),

writeln(S) ; true),

halt.

call_call(Goal, true) :-

call(Goal), !.

call_call(_Goal, false).

/* To compile:

* swipl -g main -o accelResolution.exe -c golog_swi.pl helper.pl accelResolution.pl

*

* Inputs:

* --driver [..]: driver-related WCAs

* --safety [..]: safety-related WCAs

* --feature [..]: nonsafety-related WCAs

*/

/************************************************************/

/* Acceleration Resolution Module */

/************************************************************/

/* Precondition Axioms */

poss(assign(N),S) :- driverRqsts(R,S),min(N,R);

driverRqsts([],S), safetyRqsts(R,S), min(N,R);

driverRqsts([],S), safetyRqsts([],S), accelRqsts(R,S), min(N,R).

/*Control Procedures */

primitive_action(assign(N)).

proc(resolveAcceleration, pi(n,assign(n))).

steeringResolution.pl

#!/usr/bin/swipl -q -t main -f

:- use_module(library(optparse)).
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opts_spec([ [opt(feature), longflags([’feature’]), help(’list of feature rqst’)]

, [opt(goal),longflags([’goal’]),help(’goal to be called’)]

, [opt(safety),longflags([’safety’]),help(’list of safety rqst’)]

, [opt(driver),longflags([’driver’]), help(’list driver rqst’)]]).

main :-

opts_spec(OptsSpec),

opt_arguments(OptsSpec, Opts, _PositionalArgs),

memberchk(feature(FeatureList), Opts),

memberchk(driver(DriverList), Opts),

memberchk(safety(SafetyList), Opts),

(nonvar(DriverList) -> call_call(assert(driverRqsts(DriverList,sc)), Result)

; true),

(nonvar(SafetyList) -> call_call(assert(safetyRqsts(SafetyList,sc)), Result)

; true),

(nonvar(FeatureList) -> call_call(assert(steerRqsts(FeatureList,sc)), Result)

; true),

(nonvar(FeatureList) -> call_call(do(resolveSteering,sc,S), Result),

writeln(S) ; true),

halt.

call_call(Goal, true) :-

call(Goal), !.

call_call(_Goal, false).

/** To compile **/

/*swipl -g main -o steeringResolution.exe -c golog_swi.pl helper.pl steeringResolution.pl */

/************************************************************/

/* Steering Resolution Module */

/************************************************************/

/* Precondition Axioms */

poss(assign(N),S) :- safetyRes(N,S),!.

poss(assign(N),S) :- driverRes(N,S),!.
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poss(assign(N),S) :- nonsafetyRes(N,S),!.

/*Resolution Scenarios*/

/*Highest priority to safety rqst*/

safetyRes(N,S) :- safetyRqsts(L,S), avg(N,L).

/*Next highest to driver*/

driverRes(N,S) :- safetyRqsts([],S), driverRqsts(L,S), avg(N,L).

/*Next highest to nonsafety*/

nonsafetyRes(N,S) :- safetyRqsts([],S), driverRqsts([],S), nonsafetyRqsts(L,S),

avg(N,L).

/*Control Procedures */

primitive_action(assign(N)).

proc(resolveSteering, pi(n,assign(n))).

warningLightResolution.pl

#!/usr/bin/swipl -q -t main -f

:- dynamic lightRqsts/2.

:- use_module(library(optparse)).

opts_spec([ [opt(feature), longflags([’feature’]), help(’list of feature rqst’)]

, [opt(goal),longflags([’goal’]),help(’goal to be called’)]

]).

main :-

opts_spec(OptsSpec),

opt_arguments(OptsSpec, Opts, _PositionalArgs),

memberchk(feature(FeatureList), Opts),

(nonvar(FeatureList) -> call_call(assert(lightRqsts(FeatureList,sc)), Result)

; true),

(nonvar(FeatureList) -> call_call(do(resolveWarningLights,sc,S), Result),

writeln(S) ; true),

halt.
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call_call(Goal, true) :-

call(Goal), !.

call_call(_Goal, false).

/** To compile **/

/*swipl -g main -o warningLightResolution.exe -c golog_swi.pl

helper.pl warningLightResolution.pl */

/************************************************************/

/* Warning Light Resolution Module /

/************************************************************/

/* Precondition Axioms */

poss(setLight(N),S) :- lightRqsts(L,S), member(N,L).

/*Successor Axioms */

lightRqst(L,do(A,S)) :- A=setup, lightRqsts(Lc,S), append(Lc,Lc,L1), append(L1,Lc,L).

lightRqsts(R,do(A,S)) :- A=setLight(N), lightRqsts(Rp, S), remove(N, Rp, R).

/* Defined Fluents */

noRqsts(S) :- lightRqsts([],S).

/*Control Procedures */

primitive_action(setLight(N)).

primitive_action(setup).

/*proc(resolveWarningLights, while(some(n,lightRqst(n)), pi(n,setLight(n)))).*/

proc(resolveWarningLights, setup : (star(pi(n,setLight(n))) : ?(noRqsts(now)))).

brakePressure.pl

#!/usr/bin/swipl -q -t main -f
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:- use_module(library(optparse)).

opts_spec([ [opt(feature), longflags([’feature’]), help(’list of feature rqst’)]

, [opt(goal),longflags([’goal’]),help(’goal to be called’)]

, [opt(safety),longflags([’safety’]),help(’list of safety rqst’)]

, [opt(oscil),longflags([’oscillation’]),help(’current value of car.oscillation’)]

, [opt(driver),longflags([’driver’]), help(’list driver rqst’)]]).

main :-

opts_spec(OptsSpec),

opt_arguments(OptsSpec, Opts, _PositionalArgs),

memberchk(feature(FeatureList), Opts),

memberchk(driver(DriverList), Opts),

memberchk(safety(SafetyList), Opts),

memberchk(oscil(Osc), Opts),

(nonvar(DriverList) -> call_call(assert(driverRqsts(DriverList,sc)), Result)

; true),

(nonvar(SafetyList) -> call_call(assert(safetyRqsts(SafetyList,sc)), Result)

; true),

(nonvar(FeatureList) -> call_call(assert(accelRqsts(FeatureList,sc)), Result)

; true),

(nonvar(Osc) -> call_call(assert(oscillation(Osc,sc)), Result) ; true),

(nonvar(FeatureList) -> call_call(do(resolveBrakes,sc,S), Result),

writeln(S) ; true),

halt.

call_call(Goal, true) :-

call(Goal), !.

call_call(_Goal, false).

/* To compile:

* swipl -g main -o brakePressure.exe -c golog_swi.pl helper.pl brakePressure.pl

*

* Inputs:

* --driver [..]: driver-related WCAs
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* --safety [..]: safety-related WCAs

* --feature [..]: nonsafety-related WCAs

*/

/************************************************************/

/* Brake Pressure Resolution Module */

/************************************************************/

/* Precondition Axioms */

poss(assign(N),S) :- safetyRes1(N,S),!.

poss(assign(N),S) :- safetyRes2(N,S),!.

poss(assign(N),S) :- driverRes(N,S),!.

poss(assign(N),S) :- slowestRes(N,S).

/*Resolution Scenarios*/

/*Highest priority to safety rqst w/o oscillation*/

safetyRes1(N,S) :- safetyRqsts(R,S), oscillation(O,S), O<10,max(N,R).

/*Highest priority to safety rqst w/ oscillation*/

safetyRes2(N,S) :- safetyRqsts(R,S), oscillation(O,S), O>= 10, avg(N,R).

/*Next highest priority to driver actions */

safetyRes(N,S) :- safetyRqsts([],S), driverRqsts(R,S), max(N,R).

/*Otherwise, pick slowest speed*/

slowestRes(N,S) :- driverRqsts([],S), safetyRqsts([],S), accelRqsts(R,S), max(N,R).

/*Control Procedures */

primitive_action(assign(N)).

proc(resolveBrakes, pi(n,assign(n))).

warningChime.pl

#!/usr/bin/swipl -q -t main -f

:- use_module(library(optparse)).
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opts_spec([ [opt(feature), longflags([’feature’]), help(’list of feature rqst’)]

, [opt(goal),longflags([’goal’]),help(’goal to be called’)]]).

main :-

opts_spec(OptsSpec),

opt_arguments(OptsSpec, Opts, _PositionalArgs),

memberchk(feature(FeatureList), Opts),

(nonvar(FeatureList) -> call_call(assert(assignRqsts(FeatureList,sc)), Result)

; true),

(nonvar(FeatureList) -> call_call(do(resolveChime,sc,S), Result),

writeln(S) ; true),

halt.

call_call(Goal, true) :-

call(Goal), !.

call_call(_Goal, false).

/* To compile:

* swipl -g main -o warningChime.exe -c golog_swi.pl helper.pl warningChime.pl

*

* Inputs:

* --feature [..]: all WCAs

*/

/************************************************************/

/* Warning Chime Resolution Module */

/************************************************************/

/* Precondition Axioms */

poss(assign(N),S) :- assignRqsts(L,S), max(N,L).

/*Control Procedures */

primitive_action(assign(N)).

proc(resolveChime, pi(n,assign(n))).

airFlowRate.pl
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#!/usr/bin/swipl -q -t main -f

:- use_module(library(optparse)).

opts_spec([ [opt(quality), longflags([’quality’]), help(’list of feature rqst’)]

, [opt(goal),longflags([’goal’]),help(’goal to be called’)]

, [opt(temp),longflags([’temp’]), help(’list driver rqst’)]]).

main :-

opts_spec(OptsSpec),

opt_arguments(OptsSpec, Opts, _PositionalArgs),

memberchk(quality(QualList), Opts),

memberchk(temp(TempList), Opts),

(nonvar(QualList) -> call_call(assert(qualRqsts(QualList,sc)), Result) ; true),

(nonvar(TempList) -> call_call(assert(tempRqsts(TempList,sc)), Result) ; true),

(nonvar(TempList) -> call_call(do(resolveAirFlowRate,sc,S), Result),

writeln(S) ; true),

halt.

call_call(Goal, true) :-

call(Goal), !.

call_call(_Goal, false).

/* To compile:

* swipl -g main -o airFlowRate.exe -c golog_swi.pl helper.pl airFlowRate.pl

*

* Inputs:

* --quality [..]: air quality-related WCAs

* --temp [..]: temperature-related WCAs

*/

/************************************************************/

/* Air Flow Rate Resolution Module */

/************************************************************/

/* Precondition Axioms */

81



poss(assign(N),S) :- qualityRes(N,S),!.

poss(assign(N),S) :- temperatureRes(N,S).

/*Resolution Scenarios*/

/*Highest priority to quality rqst*/

qualityRes(N,S) :- qualRqsts(R,S),max(N,R).

/*Next highest priority to temperature features */

temperatureRes(N,S) :- qualRqsts([],S), tempRqsts(R,S), max(N,R).

/*Control Procedures */

primitive_action(assign(N)).

proc(resolveAirFlowRate, pi(n,assign(n))).

82



References

[1] Pansy K. Au and Joanne M. Atlee. Evaluation of a state-based model of feature
interactions. In Feature Interactions in Telecommunications Systems, pages 153–167,
1997.

[2] Ed Baroth and Chris Hartsough. Visual object-oriented programming. chapter Visual
Programming in the Real World, pages 21–42. Manning Publications Co., Greenwich,
CT, USA, 1995.

[3] D. Batory, J.N. Sarvela, and A. Rauschmayer. Scaling step-wise refinement. IEEE
Transactions on Software Engineering, 30(6):355–371, June 2004.

[4] T.F. Bowen, Ching-Hua Chow, F.S. Dworak, Nancy Griffeth, and Yow-Juian Lin.
Views on the feature interaction problem. Technical Report Technical Memorandum
TM-ARH-012849, Bellcore, October 1988.

[5] T.F. Bowen, F.S. Dworack, C.H. Chow, N. Griffeth, G.E. Herman, and Y.-J. Lin. The
feature interaction problem in telecommunications systems. In Proceedings of the 7th
International Conference on Software Engineering for Telecommunication Switching
Systems (SETSS), pages 59–62, 1989.

[6] Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-Marganiec. Feature
interaction: a critical review and considered forecast. Comput. Netw., 41(1):115–141,
January 2003.

[7] Muffy Calder and Evan H. Magill, editors. Feature Interactions in Telecommunications
and Software Systems VI, May 17-19, 2000, Glasgow, Scotland, UK. IOS Press, 2000.

[8] E.J. Cameron, N. Griffeth, Y. Lin, and H. Velthuijsen. “Definitions of Services, Fea-
tures, and Feature Interactions”, December 1992. Bellcore Memorandum for Discus-
sion, presented at the International Workshop on Feature Interactions in Telecommu-
nications Software Systems.

83



[9] A. Chavan, L. Yang, K. Ramachandran, and W. H. Leung. Resolving feature inter-
action with precedence lists in the feature language extensions. In Proceedings of the
9th International Conference on Feature Interactions (ICFI), pages 114–128, 2007.

[10] Yi-Liang Chen, S. Lafortune, and Feng Lin. Priority assignment algorithms for resolv-
ing blocking in modular control of discrete event systems. In Proceedings of the 35th
IEEE Conference on Decision and Control,, volume 3, pages 2743–2748, Dec 1996.

[11] Yi-Liang Chen and Stephane Lafortune. Resolving feature interactions using modular
supervisory control with priorities. In Feature Interactions in Telecommunications
Systems IV, pages 108–121. IOS Press, 1997.

[12] Alma L. Juarez Dominguez. Detection of Feature Interactions in Automotive Active
Safety Features. PhD thesis, University of Waterloo, Waterloo, ON, Canada, 2012.

[13] A. C W Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. Inconsis-
tency handling in multi-perspective specifications. IEEE Transactions on Software
Engineering, 20(8):569–578, Aug 1994.

[14] Norbert Fritsche. Runtime resolution of feature interactions in architectures with
separated call and feature control. In Feature Interactions in Telecommunications
Systems III, pages 43–63. IOS Press, 1995.

[15] Anders Gammelgaard and Jens E. Kristensen. Interaction detection, a logical ap-
proach. In Feature Interactions in Telecommunications Systems, pages 178–196, 1994.

[16] N.D. Griffeth and H. Velthuijsen. The negotiating agents approach to runtime feature
interaction resolution. In Feature Interactions in Telecommunications Systems, pages
217–235, 1994.

[17] David Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231–274, June 1987.

[18] J.D. Hay and J.M. Atlee. Composing features and resolving interactions. In ACM
SIGSOFT Foundations of Software Engineering (FSE), pages 110–119, 2000.

[19] Constance L. Heitmeyer. Software cost reduction. Technical report, Naval Research
Laboratory, 2002.

[20] S. Homayoon and H. Singh. Methods of addressing the interactions of intelligent
network services with embedded switch services. IEEE Communications Magazine,
26(12):42–46, Dec 1988.

84



[21] M. Jackson and P. Zave. Distributed feature composition: A virtual architec-
ture for telecommunications services. IEEE Transactions on Software Engineering,
24(10):831–847, October 1998.

[22] Y. Jia and J.M. Atlee. Run-time management of feature interactions. In ICSE Work-
shop on Component-Based Software Engineering (CBSE), 2003.

[23] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Advances in dataflow
programming languages. ACM Comput. Surv., 36(1):1–34, March 2004.

[24] Alma L. Juarez-Dominguez, Nancy A. Day, and Jeffrey J. Joyce. Modelling feature
interactions in the automotive domain. In Proceedings of the 2008 International Work-
shop on Models in Software Engineering, MiSE ’08, pages 45–50, New York, NY, USA,
2008. ACM.

[25] Mario Kolberg, Evan H. Magill, Dave Marples, and Stephan Reiff-Marganiec. Second
feature interaction contest. In Calder and Magill [7], pages 293–310.

[26] R. Laney, L. Barroca, M. Jackson, and B. Nuseibeh. Composing requirements using
problem frames. In 12th IEEE International Proceedings of the Requirements Engi-
neering Conference, pages 122–131, Sept 2004.

[27] R.C. Laney, T.T. Tun, M. Jackson, and B. Nuseibeh. Composing features by manag-
ing inconsistent requirements. In Proceedings of the 9th International Conference on
Feature Interactions (ICFI), pages 129–144, 2007.

[28] Hector J. Levesque, Raymond Reiter, Yves Lespérance, Fangzhen Lin, and Richard B.
Scherl. GOLOG: A Logic Programming Language for Dynamic Domains. J. Logic
Programming, pages 59–84, 1997.

[29] D. Marples and E.H. Magill. The use of rollback to prevent incorrect operation of
features in intelligent network based systems. In Feature Interactions in Telecommu-
nications Systems V, pages 115–134, 1998.

[30] John McCarthy and Patrick J. Hayes. Some philosophical problems from the stand-
point of artificial intelligence. In Machine Intelligence, pages 463–502. Edinburgh
University Press, 1969.

[31] P. Shaker, J.M. Atlee, and Shige Wang. A feature-oriented requirements modelling
language. In Requirements Engineering Conference (RE), 2012 20th IEEE Interna-
tional, pages 151–160, Sept 2012.

85



[32] Pourya Shaker. A Feature-Oriented Modelling Language and a Feature-Interaction
Taxonomy for Product-Line Requirements. PhD thesis, University of Waterloo, Wa-
terloo, ON, Canada, 2013.

[33] Steven Shapiro and Yves Lespérance. Modeling Multiagent Systems with CASL -
A Feature Interaction Resolution Application. In Cristiano Castelfranchi and Yves
Lespérance, editors, Intelligent Agents VII Agent Theories Architectures and Lan-
guages, volume 1986 of Lecture Notes in Computer Science, pages 244–259. Springer
Berlin Heidelberg, 2001.

[34] SWI-Prolog. Swi-prolog [online].

[35] U.S. National Highway Traffic Safety Administration. Safercar.gov [online].

[36] D.M. Weiss and R.C.T. Lai. Software Product Line Engineering, A Family Based
Development Process. Addison Wesley, 1999.

[37] Pamela Zave. Requirements for evolving systems: A telecommunications perspective.
In Proceedings of the 5th IEEE International Symposium on Requirements Engineering
(RE), pages 2–9, 2001.

[38] Pamela Zave and Michael Jackson. Conjunction as composition. ACM Trans. Softw.
Eng. Methodol., 2(4):379–411, October 1993.

[39] Lu Zhongwan. Mathematical Logic for Computer Science. World Scientific, New
Jersey, second edition, 1989.

[40] P. Ann Zimmer and Joanne M. Atlee. Ordering features by category. Journal of
Systems and Software, 85(8):1782–1800, August 2012.

86


	List of Tables
	List of Figures
	Introduction
	Contributions
	Organization

	Preliminaries
	Feature-Oriented Requirements
	Feature Interactions
	Feature Interactions due to Conflicts


	Resolution
	Overview
	Details
	Input Action Language
	Requirements for a Resolution Language
	Situation Calculus
	Encoding Inputs to a Resolver Module
	Encoding the Resolutions of a Resolver
	Implementation in GOLOG


	Analysis
	Case Study
	Brake Pressure
	Warning Chime
	Air Flow Rate

	Discussion
	Threats to Validity


	Related Work
	Priority-Based Resolutions
	Precedence-Based Resolutions
	Negotiation-Based Resolutions
	Undoing Conflicts

	Conclusions
	Proofs
	Implementations
	References

