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Abstract 

In this thesis, we propose a stochastic power management strategy for in-wheel motor electric 

vehicles (IWM-EVs) to optimize energy consumption and to increase driving range. The 

driving range for EVs is a critical issue since the battery is the only source of energy. 

Considering the unpredictable nature of the driver’s power demand, a stochastic dynamic 

programing (SDP) control scheme is employed. The Policy Iteration Algorithm, one of the 

efficient SDP algorithms for infinite horizon problems, is used to calculate the optimal policies 

which are time-invariant and can be implemented directly in real-time application. Applying 

this control package to a high-fidelity model of an in-wheel motor electric vehicle developed 

in the Autonomie/Simulink environment results in considerable battery charge economy 

performance, while it is completely free to launch since it does not need further sensor and 

communication system. 

In addition, a skid avoidance algorithm is integrated to the power management strategy to 

maintain the wheels’ slip ratios within the desired values. Undesirable slip ratio causes poor 

brake and traction control performances and therefore should be avoided. The simulation 

results with the integrated power management and skid avoidance systems show that this 

system improves the braking performance while maintaining the power efficiency of the power 

management system. 
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Chapter 1  

Introduction 

1.1 Background 

Today, electric propulsion vehicle technologies, such as battery electric vehicle (BEV), 

hybrid electric vehicle (HEV) and plugin HEV (PHEV), are becoming more and more 

commercialized and popular. From 487,000 electric propulsion vehicles sold globally in 

2012 to 592,000 in 2013, it shows around 23% increase in just one year [1]. Significant 

increases in the gas price and green-house gas emissions of the conventional internal 

combustion engine (ICE) vehicles, which caused many environment damages, are the main 

concerns which lead worldwide costumers to show more interest in those electrified 

vehicles. Electric motors with regenerative braking capabilities help electric propulsion 

vehicles have better efficiencies because, firstly, their efficiency is about 75% while ICE 

efficiency is about 35% due to high heat loss of engines; secondly, electric motors harvest 

up to 85% of kinetic energy of braking for recharging the batteries; and finally, they reduce 

idle emissions by turning the engine off and use motor in congestion stop and go situations. 
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1.1.1 Battery Electric Vehicles 

BEV is a promising green transportation technology among electric propulsion vehicles 

due to no usage of any kind of fossil fuels, and consequently, no greenhouse-gas emissions 

since it has no engine and all driving torque is delivered by electric motor(s). On the other 

hand, high initial price of BEVs, low capacity and limited life of today’s batteries are the 

current challenges limiting BEVs broad market presence. However, recent advances in 

lithium-ion battery technologies, power electronics and controller designs, and, an increase 

in the number of charge station in cities and highways place BEVs in the center of many 

attentions [2]. BEV sale growth in 2013 shows a big jump of more than 360% fueled by 

Tesla Model S EV, Toyota RAV4 EV, Nissan Leaf, Honda fit EV, GM Chevy Spark EV, 

Ford Focus EV, Mitsubishi I and Smart EV (Table 1-1). The high level perspective of this 

type of powertrain architecture is shown in Figure 1-1.  

1.1.2 In-Wheel Motor Electric Vehicles 

One attractive and high-performance type of BEVs is in-wheel motor electric vehicle 

(IWM-EV) which is powered by two or four electric motors attached to the wheels, instead 

of one central electric motor, which work independently from each other in two operating 

modes: driving and regenerative braking.  

In Figure 1-2, the architecture of an IWM-EV is depicted whereas f1, f2, r1 and r2 mean 

front right, front left, rear right and rear right electric motors, respectively. The key 

components involved in power management problem are in-wheel motors, battery and 

power management controller.  
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Figure 1-1 High-level architecture of an EV powertrain [3] 

 

Table 1-1 BEV 2013 Sales 

BEV 2012 Sale 2013 Sale %Change 

Tesla Model S EV 460 14950 315% 

Toyota RAV4 EV  108 915 747.22% 

Nissan Leaf 6791 18078 166.21% 

Honda fit EV 48 495 931.25% 

GM Chevy Spark EV 0 397 - 

Ford Focus EV 346 1450 319% 

Smart EV 0 603 - 

Mitsubishi I 469 1006 114% 

Total 8222 37894 360.89%    
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IWM architecture improves the controllability and power efficiency of the electric 

vehicle due to several reasons. Firstly, electric motors are more efficient than ICEs; 

secondly, electric motors have very fast response, and finally, an IWM-EV has four 

independent actuators (motors) for driving and braking, and therefore, it has more 

flexibility to distribute the desired power or regenerative braking between motors in an 

effective manner. These advantages enable IWM-EVs to perform high performance anti-

lock braking and traction control at each wheel, chassis motion control like direct yaw 

control, and, better estimations of road surface conditions. In addition to these advantages, 

the compact drivetrains inside the wheels free up space allow the designers to optimize the 

vehicle layout and presents revolutionary vehicle concepts. Figure 1-3 shows an in-wheel 

motor’s subsystems in detail. 

 

Battery

IWM(f1)

IWM(r2)

IWM(r1)

IWM(f2)

Power Management 
Controller

 

Figure 1-2  A Schematic IWM- EV architecture 
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1.1.3 Power Management Problem 

One prominent obstacle to wide applications of the BEVs in current stage is the low driving 

range and slow charge process. Therefore, power management controller, which is a high 

level vehicle’s controller and responsible for efficient driving and decreasing power 

consumption, receives high degree of importance in BEVs. For BEVs, the power 

management may contain systems for the reduction of energy expenditure by motors, 

auxiliary devices such as air conditioner and lighting, wheel slippage reduction, and 

efficient management of energy sources like the battery and ultra-capacitor. Noticing that 

the battery is the only energy source of BEVs, it is vital to find more efficient strategies for 

their energy consumption systems. 

 

  

Figure 1-3  Protean In-wheel motor components [4] 

© 2014 Protean Electrics 
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The power management for an IWM-EV contains the design of a high-level control 

algorithm which determines a proper split of the driver’s demanded power (𝑃𝑑𝑒𝑚) between 

the in-wheel motors to minimize the battery consumption, while satisfying constraints, 

such as drivability and stability. An optimal power distribution controller coordinates the 

motors operation in their high efficiency operating points and causes the minimum battery 

power consumption. It should be noticed that 𝑃𝑑𝑒𝑚 is specified by the driver pedal 

commands, therefore, it is function of desired speed and acceleration. Hence, it can be 

claimed that, in the real-world driving, 𝑃𝑑𝑒𝑚 has a stochastic nature and is not a 

predetermined set of data. 

1.1.4 Stochastic Dynamic Programming (SDP) 

The situation and commands in the real-world driving are nondeterministic, thus 

stochastic strategies are widely studied for the electric vehicles power management. SDP 

or Markov decision process is one of the most prominent algorithms for optimal control of 

the stochastic processes: 

“Markov decision processes, also referred to as stochastic dynamic programs or 

stochastic control problems, are models for sequential decision making when outcomes are 

uncertain. The Markov decision process model consists of decision epochs, states, actions, 

rewards, and transition probabilities. Choosing an action in a state generates a reward and 

determines the state at the next decision epoch through a transition probability function. 

Policies or strategies are prescriptions of which action to choose under any eventuality at 

every future decision epoch. Decision makers seek policies which are optimal in some 

sense.” [5] 
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By this compact and rather complete definition from stochastic programming, we can 

see that the key ingredients of this process are: 

1. A set of decision epochs or time steps. 

2. A set of system states. 

3. A set of available actions for the actuators 

4. A set of immediate cost or rewards which are functions of states and/or actions 

5. A set of state and action dependent transition probabilities. 

We assume that all of these elements are known to the control system at the time of each 

decision, at every time step, the controller observes the states of the system and chooses an 

action for the actuators based on the observed states. Every action causes subsequent cost 

or reward and changes the system to a new state at the next time step or epoch according 

to a probability distribution. A policy determines how to choose actions in any possible 

state. The policy generates a sequence of rewards and costs. It is intended by the control 

designer to find the SDP policy to maximize a function of this reward sequence. One of 

the possible choices for these functions is the expected total discounted reward or the long-

run average reward.  

The Markov decision process is a sequential decision model in which, the set of 

available actions, the rewards, and the transition probabilities, depend only on the current 

state and action and not on states occupied and actions chosen in the past. The model is 

sufficiently broad to allow modeling most realistic sequential decision-making problems. 

Symbolically representation of this sequential decision making model is shown in 

Figure 1-4.  
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Figure 1-4 Symbolic representation of a sequential decision problem [5] 

 

1.2 Motivation 

For deterministic driving scenarios and power demand profiles, Dynamic Programming, 

DP, is an excellent off-line method to find the optimal solution. But, in the real-world 

problems, the future driving power demand is uncertain depending on the road traffic, 

terrain profile, weather, etc. Moreover, the dynamic programming algorithm is highly 

computational and cannot be used for real-time application during the driving. Thus, we 

need to implement a method that considers the stochastic nature of the problem and can be 

used online. To overcome the DP drawbacks, in this study, we propose the use of SDP to 

resolve the power management problem. 

Stochastic power management for the IWM-EVs provides us several advantages in 

comparison to the other power management methods. First, this control scheme is highly 
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cost effective since it is free to launch. Despite the intelligent vehicle systems which 

employ extra sensors and communicating systems to determine future speed profile of the 

vehicles, SDP only handles past driving information to predict the future situation and does 

not need extra sensors. Second, SDP rule-base is developed for general real-time 

application and can be implemented for real-word driving application easily. Third, SDP 

can handle nonlinear cost functions and constraints seamlessly and we can take advantage 

of this potential to integrate safety and stability controller, such as skid avoidance and anti-

brake systems to the power management strategy.     

 

1.3 Outline 

This thesis is organized as follows. In Chapter 2, a review of the literature related to the 

IWM-EV control and power management is provided. In Chapter 3, a high fidelity model 

and a control oriented model of the IWM-EV are developed. In Chapter 4, the stochastic 

modeling of the vehicle power management problem is investigated and the detailed 

stochastic optimization algorithm is presented. To evaluate the controller, the simulation 

results and the analyses of the proposed control, methods are given in Chapter 5 followed 

by the concluding remarks and the future works in Chapter 6. 
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Chapter 2  

Literature Review 

This chapter provides an overview of the research literature that constitutes the basis of the 

thesis. The studied literature focusses on the IWM-EV control and power management. 

IWM-EV is a BEV in which the electric motors are mounted inside the wheels. In many 

aspects, IWM-EVs have advantages in comparison with other electric and hybrid electric 

vehicles, which were discussed in Chapter 1. While there is no commercial IWM-EV 

currently in the market, many concepts and research vehicle platforms of IWM-EVs have 

been built and experimented. In section 2.1, some of these models are introduced and 

evaluated. 

The second part of the literature study is the motion control capabilities arising from the 

IWM-EVs. IWM-EVs are able to perform torque vectoring of left and right wheels and 

torque distribution between front and rear wheels. These features provide huge 

maneuverability potentials to the IWM-EVs. 
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The third part of the literature review is on power management. Power management, or 

optimal torque/power distribution is the main concern of this thesis. In section 2.3, 

literature related to the power management problem will be studied. The last part of the 

literature review is on the application of stochastic dynamic programming to solve vehicle 

control problem. SDP is a powerful tool to solve nonlinear problems with constraints under 

uncertainties. The solution of this method can be easily implemented in real time 

applications. 

2.1 Experimental and Concept Models 

Recently, several research IWM-EVs have been introduced and evaluated in the 

literature [6], [7], [8], [9]. These research vehicles are designed by the universities and 

companies to demonstrate the capabilities and performance of the IWM-EV technology. 

Besides experimental models, model-based evaluation is a rapid method to investigate the 

IWM-EVs capability [10].  

In [6], it is discussed that in-wheel motors with integrated inverters, control and brakes 

can be retrofitted to a variety of different vehicles in both pure EV and hybrid 

configurations such as a sub-compact 3-door C segment vehicle, luxury 4-door sedan, full 

size pick-up truck, mid-size commercial van. The compact package of IWMs allows the 

electric drive to be added to every existing vehicle without requiring any significant 

modification to the vehicle platform and keep the integration costs down. 

Yoichi Hori, [7] introduced  “UOT Electric March II”, shown in Figure 2-1, a novel 

experimental IWM-EV with four in-wheel motors made for an intensive study of advanced 

motion control of an IWM-EV.  
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“C-ta” is an ultra-high-efficient electric commuter concept car developed in  (Figure 2-2 

and Figure 2-3) [8]. Light and efficient design of this IWM-EV helped it to achieve ultra-

low charge consumption of 25.3 km/kWh and acceptable cruising distance of 125 km on a 

single charge with a little battery of 5 kWh capacity. The electronic control unit (ECU) 

utilized in this study consists of a real-time operating system (OS) and a FPGA to control 

the speed and torque distributions. The task of torque distribution between in-wheel motors 

in the vehicle is assigned to the real-time OS. 

In [10], the ADVISOR package, a MATLAB/Simulink based simulation program for 

rapid analysis of the performance and fuel economy of light and heavy-duty vehicles, is 

used to simulate an IWM-EV performance and investigate the chassis control systems, 

such as traction control, electronic differential  control, direct yaw moment control and 

regenerative braking control systems. The results indicate that the performances of the four 

IWM-EV are significantly improved owning to the application of the innovative 

architecture of motors and advanced control systems.  

In [9], the authors’ laboratory developed a completely original IWM-EV which has 

active front and rear steering systems and high-torque direct drive in-wheel motors in the 

all wheels. In this paper, the main features of this vehicle are briefly introduced and the 

studies on pitching control, slip-ratio control and yaw-rate and slip-angle control with 

lateral force sensors are explained with experimental results. 
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Figure 2-1  UOT Electric March II  [7] © 2004 IEEE   

 

 

Figure 2-2 C-ta Layout of components 

[8] © 2011 SAE International   

 

Figure 2-3 Concept Car “C-ta” [8]  

© 2011 SAE International   
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2.2 Control and Dynamic Performance 

There are many studies, such as [9], [11], [12], [13], [14], [15], [16], [17], [18], [19] and 

[20] that take advantage of fast and accurate torque response and torque-vectoring 

capabilities of IWM-EVs to improve the performance of this type of electric vehicles in 

terms of the maneuverability, handling and stability.  

Jacobsen [11] studied the active safety potential of passenger cars with the IWMs at the 

rear axle. A mathematical analysis is done, employing a modified bicycle model. The 

maximum yaw moment limits are investigated for two driving situations, entering the curve 

and lateral translations and compared the vehicle with traditional wheels. As a result, the 

time delay of reaching the steady-state yaw speed while entering a curve reduced down to 

30 percent, and the maximum lateral acceleration increased by approximately 40 percent, 

while the results are independent of the vehicle longitudinal speed. 

In [12], [20] and [19], the performance of motion control strategies for IWM-EVs, 

including optimal dynamic traction force distribution and direct yaw moment control 

(DYC), were studied. In [12], this investigation is done experimentally using two electric 

vehicles, and the dynamic distribution control is proposed to resolve the actuator 

redundancy. The experimental results using DYC clearly showed an improvement in the 

vehicle handling and stability.  

In [17], the body slip angle is estimated by making use of the important merit that 

electric vehicle's motor torque can be measured and controlled accurately. W. Kim and K. 

Yi [18] developed traction and braking force controller to enhance turning performance of 

electric vehicle equipped with in-wheel motors.  
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Lin et al. [13] investigated the effects of IWMs on the unsprung mass of the vehicle and 

the impact on the vehicle performance and comfort, and proposed a method of attaching 

the motor to the wheel through springs and dampers exclusively. It is verified that the 

vibration of EVs with suspended-motor motorized-wheel is similar to EVs with detached-

motorized wheels. 

De Novellis  et al. [14] employed a control allocation algorithm to enhance the handling 

of a four-wheel-driven fully electric vehicle with individually controlled motors, and 

analyzed the alternative cost functions developed for the allocation.  As a result, the cost 

functions, based on minimizing the tire slip, led to better control performance than the 

functions based on the energy efficiency for the case-study vehicle. 

K. Jalali et al. [15] developed an advanced torque vectoring controller to generate the 

required corrective yaw moment through the torque intervention of the individual in-wheel 

motors to stabilize the vehicle during both normal and emergency driving maneuvers. 

Novel algorithms were developed for the left-to-right torque vectoring control on each axle 

and for the front-to-rear torque vectoring distribution action, and several maneuvers were 

simulated to demonstrate the performance and effectiveness of the proposed advanced 

torque vectoring controller, and the results were compared to those obtained using an ideal 

genetic fuzzy yaw moment controller. At the end, the advanced torque vectoring controller 

was implemented in a hardware- and operator-in-the-loop driving simulator. 

2.3 Power Management Strategies 

Despite of HEV power management problems which have been widely studied IWM-

EVs, power management research is relatively an open area. Traditional EVs have no 
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choice to manage its energy flow because it has only one traction motor, but IWM-EVs 

have multiple power source, hence the power management strategy becomes important. A 

good review on the current IWM-EV power management strategies is presented in [21]. 

Power management based on the efficiencies of the IWMs are presented in of [22] and 

[23]. Gu et al. [23] investigated the energy efficiency optimization problem of an electric 

vehicle driven by four IWMs by developing a comprehensive energy efficiency model of 

the permanent magnet synchronous motor including the inverter. It is concluded that, to 

maximize the energy efficiency, for a fixed torque distributor controller, in all driving or 

braking conditions, the total demanded torque should be distributed evenly between IWMs 

for EVs driven by permanent magnet synchronous motors. The vehicle test results show 

that the energy efficiency of the evenly distributed torque control is higher than the control 

strategy proposed by the control allocation in the literature. 

Qian [24] proposed an energy management strategy which is derived by one time step 

optimization of the front and rear motor torques for given total torque demands. The 

simulation results validate the proposed strategy since it can save up to 27.4% in the UDDS 

cycle was compared with a traditional EV. The optimal power split derivation procedure is 

shown in Figure 2-4.  
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Figure 2-4 Optimal driving torque distribution strategy [24] 
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Chen [25] presented an energy optimization method for IWM-EVs  based on terrain 

profile preview for a constant speed driving cycle by using dynamic programming to obtain 

the global optimal energy point for the front-rear torque distributions. The optimization 

results showed that terrain profile changes the optimal torque distributions and energy 

savings. For small slope angle terrains, up to 28.9% energy consumption improvement is 

achieved, while for larger slope angle terrains, this number is around 5%.  

K. Maeda  et al. [26] developed a four-wheel driving force distribution method based 

on driving stiffness and slip ratio estimation. Since vehicle velocity measurement by 

sensors is not fast enough, driving stiffness and slip ratio estimation is applied. Due to the 

slip ratio estimation, vehicle velocity sensor is not needed and the distribution speed 

becomes faster. At the end, the authors show the effectiveness of their proposed method 

experimentally. 

In [27],  a nonlinear model predictive controller, NMPC, for the regenerative braking 

control of lightweight IWM-EVs was presented. The proposed controller not only 

improves the energy recovery of the regenerative braking by determining the front and rear 

braking torques independently, but also prevents the wheel locks during deceleration when 

the tire–road friction coefficient is low. The battery power consumption power is included 

in the cost function to be minimized while the longitudinal slip ratio is considered as the 

hard constraint to maintain the safety objective.  The simulation results, based on a vehicle 

model in CarSim®, showed that the proposed NMPC has a good vehicle-speed-tracking 

performance, and it is capable of restoring considerably more regenerative braking energy 

than a conventional linear controller with a feed forward term and another nonlinear model 

predictive controller with no consideration of the energy recovery. 
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Chen et al. [28] presented an energy management system, EMS, for a IWM-EV for a 

certain trip with terrain preview based on the operating efficiencies of in-wheel motors and 

a traffic model. The optimal vehicle velocity and globally optimal in-wheel motor actuation 

torque distributions are simultaneously obtained to minimize the IWM-EV energy 

consumption by employing the dynamic programming method.  

Torque vectoring control strategies for the  IWM-EVs which minimize the energy 

consumption by determining optimal slip ratio for wheels were proposed in [29] and [30]. 

In [29], a controller is designed to ensure that the slip ratio of each wheel is limited by the 

optimal value.  In [30], the battery power depletion relation, as the function of wheels slip 

ratios and force distribution ratio, 𝑘𝑜𝑝𝑡, is derived and differentiated to find the 𝑘𝑜𝑝𝑡, which 

makes the battery charge deletion minimized: 

𝑘𝑜𝑝𝑡 =
𝑁𝑟

𝑁𝑟 + 𝑁𝑓
 (2-1) 

The control allocation is another power management algorithm which is for distributing 

the desired total control effort among a redundant set of actuators of an over-actuated 

systems while energy-efficient control allocation strategies for IWM-EV’s motion control 

are proposed in [31], [32], [33], [34] and [35].  This problem is optimized globally by a 

Karush-Kuhn-Tucker (KKT)-based optimization  algorithm in [34]. In [35], an adaptive 

energy-efficient control allocation (A-EECA) is developed for the planar motion control 

of IWM-EVs which was low computational cost. In all of these studies, torque distributions 

are developed based on the IWMs efficiency maps. 
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Y. Chen and J. Wang [36], developed and compared three different IWM-EV power 

distributions pattern for normal cornering and circling maneuvers:  

1. Front power assignment 

2. Rear power assignment  

3. All wheel power assignment  

 Through both simulation and experimental results, it is showed that the three different 

power distribution methods achieve almost the same vehicle performances in terms of 

the vehicle sideslip angle, yaw rate and trajectory. Moreover, when a power distribution 

method is applied to only one pair of wheels, i.e., either the front or rear pair, the other 

pair of wheels can be utilized to estimate the vehicle longitudinal speed and yaw rate 

and consequently generate the reference wheel speeds for the wheels. Both simulation 

and experimental results validate the designs of the three power distribution pattern. 

2.4 Stochastic Dynamic Programming 

SDP has been extensively studied in the literatures since it can handle constrained 

nonlinear optimization problems under uncertainties [37]. This strategy has been used for 

optimal EMS in HEVs [38] and PHEVs [39] to find the optimal power-split between engine 

and motor. Because of different dynamic and architecture of IWM-EVs, we studied and 

evaluate this method in this thesis. 

H. Zhang et al [40]  studied the optimization problem of power management in plug-in 

hybrid electric vehicles (PHEVs) subject to uncertain and dynamical driving cycles. A 

stochastic driving cycle model is presented in this paper and the finite-horizon SDP is 
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utilized to globally optimize vehicle performance in stochastic sense. Simulation results 

show that the proposed strategy makes a significant progress in improving fuel economy. 

D. F. Opila et al. [41] studied power management controllers designed using shortest 

path stochastic dynamic programming (SP-SDP). The controllers are evaluated on Ford 

Motor Company's highly accurate proprietary vehicle model over large numbers of real-

world drive cycles, and compared to a controller developed by Ford for a prototype vehicle. 

Results show that the SPSDP-based controllers yield 2-3% better performance than the 

Ford controller on real-world driving data with even more improvement on a government 

test cycle. In addition, the SPSDP-based controllers can directly quantify tradeoffs between 

fuel economy and drivability. 

Stochastic drive cycle generation is a necessary tool to evaluate stochastic power 

management strategies. V. Schwarzer [42] presented a methodology to generate drive 

cycles based on probabilistic driving profiles. The described approach can be utilized for 

the stochastic optimization of an energy management controller, EMC, for EVs. The 

introduced method is implemented in a drive cycle generation tool, and the approach is 

validated using a model of a parallel HEV powered by fuel cells. Simulation results are 

presented and the advantage of the proposed method over conventional approaches is 

proven. 
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Chapter 3  

IWM-EV System Modeling 

In this chapter, the IWM-EV models, utilized for design and evaluation of the stochastic 

power management strategy, are developed and explained as high fidelity model and 

control-oriented model.  

High fidelity model, which is explained in subsection 3.1, is an accurate and detailed 

representation of IWM-EV and includes validated models of motors, braking system, 

battery, tires, chassis and driver. To have a reliable evaluation, the performance of designed 

control strategy should be tested by a high fidelity model of vehicle which is similar to the 

real vehicles as much as possible. In this study, an experimentally validated high fidelity 

BEV vehicle model from the Autonomie software is utilized, and modified to have the 

desired baseline vehicle model. Additionally, high fidelity model is used to validate the 

control-oriented model, and to do the sensitivity analysis as well as to study the effect of 

each vehicle’s state of the power management solution. 
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The process of parameter optimization of devised control strategy (SDP) is a highly 

iterative process, thus high fidelity models cannot be used in this process since they are 

complex and computationally expensive to run. The control-oriented model, built in 

subsection 3.3, is a simple and fast model which is accurate enough to characterize the 

system with the most prominent states of the vehicle from controller point of view.  

The parameters of both high fidelity and control-oriented models are from a baseline 

IWM-EV introduced in [25]. Baseline IWM-EV parameters are listed in Table 3-1. 

Although the design and the evaluation procedures are done for a specific baseline vehicle, 

the algorithms presented in this thesis are general and can be implemented in every IWM-

EV 

 

 

 

  



24 

Table 3-1 Baseline Vehicle Parameters [25] 

SYMBOL PARAMETERS VALUES 

M Vehicle Mass 800 kg 

𝑬𝒃𝒂𝒕,𝒎𝒂𝒙 Battery Capacity 200 Ah 

𝑽𝒃𝒂𝒕 Nominal Voltage of one cell battery 3.3 V 

𝑵𝒃𝒂𝒕 Number of battery cells in series 22 

𝑷𝒎𝒐𝒕𝒐𝒓 In-wheel motor max power 7.5 kw 

A Vehicle front area 1.66 m2 

𝝆 Air density 1.2 
𝑘𝑔

𝑚3 

L Vehicle wheelbase 1.84 m 

𝐋𝐟 front wheelbase  0.92 m 

𝐋𝐫 rear wheelbase 0.92 m 

𝒉 Height of center of gravity 0.6 m 

𝑹𝒆𝒇𝒇 Tire effective radius 0.33 m 

𝑻𝒃𝒓𝒂𝒌𝒆
𝒓𝒆𝒈𝒆𝒏,𝐦𝐚𝐱

 Maximum Regenerative Braking Torque 80 Nm 

𝝁𝒎𝒂𝒙 Maximum Friction Coefficient 0.8 
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3.1 High Fiedelity Model (Numerical Model) 

High fidelity vehicle model, or numerical model, consists of extract lookup tables or math 

models for vehicle subsystems which have been developed by accurate experiments in 

various conditions and driving scenarios. Therefore, several modeling software packages 

have been developed to provide high fidelity vehicle models for researchers and designers.  

The Autonomie is a software environment, developed by Argonne National Lab, to 

design and evaluate vehicle models in a simulated environment. It includes many pre-built 

vehicle systems models, thus it enables users to simulate their desired models simply and 

seamlessly. The software automatically builds a Simulink-based vehicle model and solves 

the state equations by using the Simulink solver [43],[44]. 

Although there are many pre-defined models in Autonomie, there is no IWM-EV 

architecture currently (Autonomie1210). Among the pre-defined models in the Autonomie 

models library, the nearest models to the IMW-EV architecture are the BEVs default 

models. To capture the key feature of an IWM-EV, the Autonomie’s BEV model should 

be modified to contain multiple power sources, i.e., electric motors. The operation of 

modification of the Autonomie’s predefined BEV model to an IWM-EV model is done in 

the Simulink® environment where we added another electric motor to the model. Since all 

states of the right and left wheels in a straight road driving are the same, four motors of the 

IWM-EV are simplified to two motors to assign one motor for the front wheels and one 

motor for the rear wheels. Figure 3-1 shows the default BEV model which is available in 

the Autonomie environment. Figure 3-2 shows the IWM-EV model modified in the 

Simulink environment.  
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Figure 3-1 High Fidelity Autonomie Model, before modification 

 

Figure 3-2 High Fidelity Autonomie Model, after modification 
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From Figure 3-1 and Figure 3-2, we can see that the high fidelity vehicle model consists 

of: 

1. battery block 

2. IWM block 

3. Wheel block 

4. Chassis block 

The Battery model contains 72 battery cells. A battery cell block model is shown in 

Figure 3-4. Inside the battery cell block, the battery cell voltage, 𝑉𝑐𝑒𝑙𝑙 is calculated by 

utilizing lookup-tables for SoC-𝑉𝑐𝑒𝑙𝑙, SoC-Ohmic resistance and SoC-Polarization 

resistances. The current polarization is also considered in this high fidelity model of the 

battery. Figure 3-5 depicted the 𝑉𝑐𝑒𝑙𝑙 calculation block, and the experimental relation of the 

SoC-𝑉𝑐𝑒𝑙𝑙 is demonstrated in Figure 3-3.  

 

Figure 3-3 𝑺𝒐𝑪 − 𝑽𝒄𝒆𝒍𝒍 profile  
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Figure 3-4 Battery cell block 
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Figure 3-5 𝑽𝒄𝒆𝒍𝒍 calculation block 
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The IWM subsystem in this modeling package is shown in Figure 3-6. The subsystem 

mainly consists of the efficiency maps for driving and regenerative braking as shown by 

gray color in the block. These efficiency maps are shown in Figure 3-7. This IWM model 

determines the maximum continuous and instantaneous torque based on the rotational 

speed and heat index to saturate the commanded torques before applying to the wheels 

(Figure 3-8). 

 

 

Figure 3-6 IWM model block 
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Figure 3-7 Motor efficiency maps for (a) driving (b) braking 
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Figure 3-8 Maximum torques determination block for driving and regenerative 

braking 
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The original wheel block, obtained from the Autonomie model, simplifies the 

rotational acceleration equation and assumes that the rotational speed is equal to vehicle 

speed divided by the effective radius of the wheel. Since we need the exact model of the 

rotational speed to calculation the slip ratios, we modified the wheel model and consider 

the rotational acceleration equation which is introduced in equation (3-11). The modified 

wheel model is depicted in Figure 3-9. 

  

Figure 3-9 High Fidelity Wheel Model 
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3.2 Sensitivity Analysis of Power Management Problem   

The first question that should be answered, before formulating the power management 

problem for IWM-EVs, is that which vehicle states have pivotal effect on the optimal 

solution of power management problem, and how they affect the power consumption. This 

investigation is called sensitivity analysis.  

Minimizing the charge depletion and maximizing the driving range are the main purpose 

of power management system. For this, we take the change of SoC, Δ𝑆𝑜𝐶 as the cost 

function in the sensitivity analysis, and the control input as power assigned to front 

wheel, 𝑃𝑤
𝑓
. The effect of several vehicle states on the optimal 𝑃𝑤

𝑓
 for one time step (Δ𝑡) is 

studies here.  In Figures Figure 3-10, Figure 3-11 and Figure 3-12, the plots of Δ𝑆𝑜𝐶 vs 𝑃𝑤
𝑓
 

for different 𝑃𝑑𝑒𝑚, speed and slip ratios are shown.  

In Figure 3-10, we see how the optimal 𝑃𝑤
𝑓
 changes when the speed of the vehicle 

changes. In low speed scenario, 𝑣 = 5 𝑚/𝑠 𝑃𝑤
𝑓
 has a symmetrical solution, 𝑃𝑤

𝑓
= 700 watt 

and 𝑃𝑤
𝑓
= 4300 watt are both the solution of the optimal power distribution problem. The 

same is true as of high speed scenarios, 𝑣 = 20 𝑚/𝑠 while the 𝑃𝑤
𝑓
= 2000 watt and 𝑃𝑤

𝑓
=

3000 watt are both the solutions. Differently, the optimal solution for 𝑣 = 10 𝑚/𝑠 is 

unique and it is half of the  𝑃𝑑𝑒𝑚 i.e 𝑃𝑤
𝑓

𝑜𝑝𝑡
= 2500 watt. 

Figure 3-11 shows the plots of 𝑃𝑤
𝑓
 vs Δ𝑆𝑜𝐶 for different front wheel slip ratio, 𝜆𝑓, 

constant speed of  10m/s and  𝑃𝑑𝑒𝑚 = 10000 watt. We see that, for low slip ratios, 𝜆𝑓 =

0.01 and 𝜆𝑓 = 0.2, the optimal solutions is almost symmetrical; but for high 𝜆𝑓 , 𝜆𝑓 = 0.5, 

the optimum 𝑃𝑤
𝑓
 is less than half, 𝑃𝑤

𝑓
= 3000. Figure 3-12 demonstrates the optimal 
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solution of the problem for different 𝑃𝑑𝑒𝑚. It is shown that, for most of the 𝑃𝑑𝑒𝑚, the 

optimum solution is symmetrical except for high 𝑃𝑑𝑒𝑚 in which the Δ𝑆𝑜𝐶 is independent 

of the control input and, for all 𝑃𝑤
𝑓
, is the same.  

 

 

 

 

Figure 3-10 the effect of vehicle speed on 𝚫𝑺𝒐𝑪f 
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Figure 3-11 the effect of front wheel slip ratio on  𝚫𝑺𝒐𝑪 
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a) 𝑃𝑑𝑒𝑚 = 1 𝑘𝑤 

 
b) 𝑃𝑑𝑒𝑚 = 5 𝑘𝑤 

 
c) 𝑃𝑑𝑒𝑚 = 10 𝑘𝑤 

 
d) 𝑃𝑑𝑒𝑚 = 20 𝑘𝑤 

Figure 3-12 The effect of power distribution on the cost function (charge depletion) 
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3.3 Control-Oriented Model (Mathematical Model) 

The control oriented model is introduced in this section. It comprises math models of 

chassis, wheels, in-wheel motors and battery. 

3.3.1 Chassis Model 

Vehicle forces and moments are shown in Figure 3-13. The vehicle longitudinal 

acceleration is given by: 

𝑎𝑥 =
1

𝑚
(𝐹𝑑 − 𝐹𝑎 − 𝐹𝑟𝑟 − 𝐹𝑔) 

(3-1) 

where 𝐹𝑑 is the total driving force, 𝐹𝑎 is the aerodynamic force, 𝐹𝑟𝑟 is the roll resistance 

force and 𝐹𝑔 is the gravity force that is equal to zero for flat road driving. In this thesis 

superscript 𝑖 = {𝑓1, 𝑓2, 𝑟1, 𝑟2} represents wheel position in the vehicle whether front (𝑓) 

or rear (𝑟) and left (1) or right (2). For example 𝑖 = 𝑓1 represents front left wheel. The 

total driving force is summation of all wheel driving forces: 

𝐹𝑑 = ∑ 𝐹𝑑
𝑖

𝑖={𝑓1,𝑓2,𝑟1,𝑟2}

 (3-2) 

Wheel driving forces are created by the wheel-road friction and are the main external forces 

that move the vehicle to the desired direction. They are functions of normal force on the 

wheel and the friction coefficient: 
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𝐹𝑑
𝑖 = 𝐹𝑁

𝑖 𝜇𝑖 
(3-3) 

In the above formula, 𝜇𝑖 is the friction coefficient of wheel 𝑖 and 𝐹𝑁
𝑖  is the wheel 𝑖 normal 

force. Aerodynamic force, 𝐹𝑎, is a kind of the drag force caused by movement of the vehicle 

in the presence of the air and calculated by: 

𝐹𝑎 =
1

2
𝜌𝐴𝐶𝑎𝑣

2 
(3-4) 

where 𝜌 is the air density, 𝐴 is the effective area, and 𝐶𝑎 is aerodynamic coefficient. 

Equation for the roll resistance force, 𝐹𝑟𝑟 is: 

𝐹𝑟𝑟 = 𝑚𝑔 𝑐𝑜𝑠 𝜃 𝐶𝑟𝑟 (3-5) 

Where 𝐶𝑟𝑟 is roll resistance coefficient and the equation of gravitational force, 𝐹𝑔 is: 
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Figure 3-13 Vehicle Forces and Moments 
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𝐹𝑔 = 𝑚𝑔𝑠𝑖𝑛𝜃 (3-6) 

where the angle 𝜃 is the slope of the road. The normal forces can be determined by writing 

the moments about the contact points for front and rear wheels. By writing and rearranging 

the moment equations, we have: 

{
𝐹𝑁

𝑓1
=

𝑚𝑔

2𝐿
(𝐿𝑟 𝑐𝑜𝑠 𝜃 − ℎ 𝑠𝑖𝑛 𝜃) −

1

2𝐿
(𝑚𝑎𝑥ℎ + 𝐹𝑎ℎ)

𝐹𝑁
𝑟1 =

𝑚𝑔

2𝐿
(𝐿𝑓 𝑐𝑜𝑠 𝜃 + ℎ 𝑠𝑖𝑛 𝜃) +

1

2𝐿
(𝑚𝑎𝑥ℎ + 𝐹𝑎ℎ) 

 (3-7) 

As these equations show, the normal forces are functions of the total weight of the vehicle, 

front and rear wheelbase and the vehicle acceleration.  

In the midst of SDP algorithm, we need to calculate the normal loads without having 

any knowledge about the vehicle acceleration, and thus by substituting equations (3-1) and 

(3-3) for the acceleration and driving forces, we can eliminate 𝑎𝑥 from the normal force 

equations: 

{
 
 

 
 𝐹𝑁

𝑓1
= 0.5

𝑚𝑔𝑐𝑜𝑠𝜃(𝐿𝑟 − ℎ𝜇𝑟) + 𝐹𝑟𝑟ℎ

𝐿 + ℎ(𝜇𝑓 − 𝜇𝑟)
  

𝐹𝑁
𝑟1 = 0.5

𝑚𝑔𝑐𝑜𝑠𝜃(𝐿𝑓 + ℎ𝜇𝑓) − 𝐹𝑟𝑟ℎ

𝐿 + ℎ(𝜇𝑓 − 𝜇𝑟)

 (3-8) 
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3.3.2 Wheels Model 

The well-known “Magic tire model” [45] is used to determine tire characteristics such 

as friction coefficient. Based on the magic formula, the wheel’s friction coefficient is a 

nonlinear function of the slip ratio: 

𝜇𝑖 = 𝜇𝑚𝑎𝑥𝐷 𝑠𝑖𝑛(𝐶 𝑡𝑎𝑛−1(𝐵𝜆𝑖 − 𝐸(𝐵𝜆𝑖 − 𝑡𝑎𝑛−1(𝐵𝜆𝑖)))) (3-9) 

whereas 𝜇𝑚𝑎𝑥 is the maximum tire-road friction coefficient and 𝜆𝑖 is the slip ratio of 

wheel 𝑖, 𝑖 = {𝑓1, 𝑓2, 𝑟1, 𝑟2}. The meanings of the parameters B, C, D, and E can be easily 

found in [45]. They are assumed to be known in this study. However, 𝜇𝑚𝑎𝑥  is strongly 

affected by the tire–road contact conditions. For some icy roads, 𝜇𝑚𝑎𝑥 can be as low as 

0.1–0.3, and thus significantly limits the braking forces. Friction coefficients vs. slip ratios 

for both high 𝜇𝑚𝑎𝑥 and low 𝜇𝑚𝑎𝑥 are shown in Figure 3-14; and the tire’s parameters are 

listed in Table 3-2 that are for a typical 215/70 passenger car tire. The slip ratio is defined 

separately for driving and braking cases by: 
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Table 3-2 Tire Friction Parameters [27]  

PARAMETER VALUE 

B 8.98 

C 1.62 

D 1 

E 0.5 

    

 

Figure 3-14 𝝁 vs. 𝝀 calculated by the magic formula 
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{
𝜆𝑖 =

𝑟𝜔𝑖 − 𝑣

𝑟𝜔𝑖
          𝑑𝑟𝑖𝑣𝑖𝑛𝑔

𝜆𝑖 =
𝑟𝜔𝑖 − 𝑣

𝑣
         𝑏𝑟𝑎𝑘𝑖𝑛𝑔

 (3-10) 

whereas 𝑣 is the vehicle speed and 𝜔𝑖 is the wheel rotational speed. External force and 

torque on each wheel are shown in Figure 3-13. By taking all moments about the center of 

front and rear wheels into consideration, equation of rotation for the wheel can be derived 

as: 

𝜔𝑖̇ =
1

𝐼𝑊
𝑖
(𝑇𝑤

𝑖 − 𝐹𝑑
𝑖  𝑟𝑒𝑓𝑓

𝑖 ) (3-11) 

whereas 𝐼𝑊
𝑖  is rotational  inertia for the 𝑖-th wheel, 𝑇𝑤

𝑖  is the torque delivered to the wheel 

𝑖 and 𝑟𝑒𝑓𝑓 is effective radius of the tire. In this study, only longitudinal driving is 

considered; therefore, it’s assumed that the left and right motors produce same torque, and 

the angular velocity of left and right wheels are the same: 

𝑇𝑤
𝑓1

= 𝑇𝑤
𝑓2

 

𝑇𝑤
𝑟1 = 𝑇𝑤

𝑟2 

𝜔𝑓1 = 𝜔𝑟2 

𝜔𝑟1 = 𝜔𝑟2 

(3-12) 

Therefore, one equation for the front wheel’s angular velocity and one equation for rear 

wheel are sufficient to model the rotation of the wheels: 
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𝜔̇𝑓1 =
1

𝐼𝑊
𝑓1

(𝑇𝑤
𝑓1

− 𝐹𝑑
𝑓1

𝑟𝑒𝑓𝑓) 
(3-13) 

𝜔̇𝑟1 =
1

𝐼𝑊
𝑟1 (𝑇𝑤

𝑟1 − 𝐹𝑑
𝑟1𝑟𝑒𝑓𝑓) (3-14) 

3.3.3 In-Wheel Motor Model 

While the driver controls the vehicle’s speed and acceleration by the throttle and brake 

pedals, in fact, he/she outlines the demanded driving power, 𝑃𝑑𝑒𝑚,  that is, the power should 

be excreted to the wheels to achieve the desired vehicle’s velocity and acceleration. 

Positive 𝑃𝑑𝑒𝑚 is interpreted as the driving, and negative 𝑃𝑑𝑒𝑚 will be considered as the 

brake command. For every motor/generator, two power flows are defined:  

 𝑃𝑀𝑊: Power from (to) motors to (from) wheels. 

 𝑃𝑀𝐵: Power from (to) motors to (from) batteries. 

In the IWM-EV, the motors are directly mounted on the wheels, and thus there is no 

transmission shafts, gear boxes and differentials; and consequently, there is no power lost 

between motors and wheels. Therefore, 𝑃𝑀𝑊 is equal to the power exerted to the 

wheel 𝑃𝑤, 𝑃𝑀𝑊 = 𝑃𝑤. To satisfy the driver’s commands, the sum of all 𝑃𝑤 should be equal 

to 𝑃𝑑𝑒𝑚: 

∑ 𝑃𝑤
𝑖

𝑖={𝑓1,𝑓2,𝑟1,𝑟2}

= 𝑃𝑑𝑒𝑚 (3-15) 
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Moreover, 𝑃𝑀𝐵 equals to 𝑃𝑏𝑎𝑡𝑡 , which is the charging/discharging battery power, and 

𝑃𝑀𝐵 = 𝑃𝑏𝑎𝑡𝑡 = 𝐼𝑏𝑎𝑡𝑡𝑉𝑏𝑎𝑡𝑡; where 𝑉𝑏𝑎𝑡𝑡 and 𝐼𝑏𝑎𝑡𝑡 are the battery discharging/charging 

voltage and current, respectively. Because of frictional, thermal and other motor power 

losses, motor-battery powers 𝑃𝑀𝐵 is not the same as the motor-wheels powers 𝑃𝑀𝑊. 

Therefore, motor efficiencies are defined as: 

𝜂𝑡𝑟𝑎𝑐 =
𝑃𝑀𝑊

𝑃𝑀𝐵
=

𝑃𝑤
𝑃𝑏𝑎𝑡𝑡

                    𝑓𝑜𝑟 𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 
(3-16) 

𝜂𝑟𝑒𝑔𝑒𝑛 =
𝑃𝑀𝐵

𝑃𝑀𝑊
=

𝑃𝑏𝑎𝑡𝑡

𝑃𝑤
       𝑓𝑜𝑟 𝑟𝑒𝑔𝑒𝑛 𝑏𝑟𝑎𝑘𝑖𝑛𝑔 (3-17) 

Each motor’s efficiency is primarily a function of motor’s angular velocity and torque [46]. 

Motor efficiency map is the key to evaluate its performance. Figure 3-7 shows efficiency 

maps vs. angular velocities and torques based on the experimental data from Autonomie. 

It can be seen from Figure 3-7 that, when the wheel speed is low, the motor efficiency 

drops rapidly. The efficiency map is not strictly concave or convex, which gives a merit to 

the power distribution strategy.  

We call equation (3-15) the drivability criteria. The power management controller 

specifies values of the motor powers 𝑃𝑤
𝑖  by considering the drivability criteria as a 

constraint. The torques caused by these powers on the wheels are calculated by: 

𝑇𝑖 =
𝑃𝑤

𝑖

𝜔𝑖
 

(3-18) 

As the same as torque and angular velocity, the powers at left and right wheels are the 

same: 
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𝑃𝑤
𝑓1

= 𝑃𝑤
𝑓2

= 𝑃𝑤
𝑓

2⁄  

𝑃𝑤
𝑟1 = 𝑃𝑤

𝑟2 = 𝑃𝑤
𝑟 2⁄  

(3-19) 

Additionally, every motor has a maximum limit for the output power (𝑃𝑚𝑜𝑡𝑜𝑟,𝑚𝑎𝑥
𝑓1

) and 

cannot produce power more than that value. Based on the data from Table 3-1 we have: 

{
𝑃𝑤

𝑓1
≤ 7500

𝑃𝑤
𝑟1 ≤ 7500

 
(3-20) 

In a braking situation, the motors work as generators and harvest kinetic energy and 

recharge the batteries. However, regenerative braking is limited for producing braking 

torque, 𝑇brake
regen

. Based on the data from Table 3-1, we have: 

𝑇𝑏𝑟𝑎𝑘𝑒
𝑟𝑒𝑔𝑒𝑛

≤ 80 
(3-21) 

which means that regenerative braking cannot produce very hard brakes and friction brakes 

should be actuated to support regenerative brakes. Therefore, in severe braking situations 

where braking torque, 𝑇𝑏𝑟𝑎𝑘𝑒, of more than 80 Nm is needed, we know that the portion of 

braking torque is assigned to the friction brakes, 𝑇𝑏𝑟𝑎𝑘𝑒
𝑓𝑟𝑖𝑐

.  

𝑇𝑏𝑟𝑎𝑘𝑒 = 𝑇𝑏𝑟𝑎𝑘𝑒
𝑓𝑟𝑖𝑐

+ 𝑇𝑏𝑟𝑎𝑘𝑒
𝑟𝑒𝑔𝑒𝑛

 
(3-22) 
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The direct consequence of this limitation is that, we cannot assume anymore that all of 

the braking power is harvested and charged the batteries, and we should be aware that part 

of barking power is lost by friction brakes, as the same as the conventional today’s vehicles. 

3.3.4 Battery 

The battery SoC equation is derived by utilizing static equivalent circuit model, and the 

rate of the change of the SoC for a battery is: 

𝑑

𝑑𝑡
(𝑆𝑜𝐶) =

𝐼

𝐸𝑚𝑎𝑥
 (3-23) 

where 𝐸𝑚𝑎𝑥 is the total amount of charge that can be stored in the battery pack. The battery 

equivalent circuit is depicted in Figure 3-15. An internal resistor is considered for the 

battery model.  Therefore, the battery current equation is  

𝐼 =
𝑉

𝑅
 

 

Rbatt

Voc I

Rload

 

Figure 3-15 Circuit battery model 
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𝐼 =
𝑉𝑜𝑐 − 𝑉𝑙𝑜𝑎𝑑

𝑅𝑏𝑎𝑡𝑡
 

𝐼2 =
𝐼𝑉𝑜𝑐 − 𝑃𝑙𝑜𝑎𝑑

𝑅𝑏𝑎𝑡𝑡
 

𝐼2𝑅𝑏𝑎𝑡𝑡 − 𝐼𝑉𝑜𝑐 + 𝑃𝑙𝑜𝑎𝑑 = 0 

𝐼 =
𝑉𝑜𝑐 + √𝑉𝑜𝑐2 − 4𝑅𝑏𝑎𝑡𝑡𝑃𝑏𝑎𝑡𝑡

2𝑅𝑏𝑎𝑡𝑡
 

In the above formula, 𝑅𝑏𝑎𝑡𝑡 is battery resistance and 𝑃𝑏𝑎𝑡𝑡 is battery power. By 

convention, positive 𝑃𝑏𝑎𝑡𝑡 indicates discharging and negative 𝑃𝑏𝑎𝑡𝑡 indicates charging. And 

thus, for SoC rate of change, we have: 

𝑑

𝑑𝑡
(𝑆𝑜𝐶) =

−𝑉𝑜𝑐 + √𝑉𝑜𝑐
2 − 4𝑅𝑏𝑎𝑡𝑡𝑃𝑏𝑎𝑡𝑡   

2𝐸𝑚𝑎𝑥𝑅𝑏𝑎𝑡𝑡
 

(3-24) 

The battery power is derived from 

𝑃𝑏𝑎𝑡𝑡 = ∑ 𝑃𝑤
𝑖 . (𝜂𝑖)

−𝑠𝑔𝑛(𝑃𝑤
𝑖 )

 
𝑖={𝑓1,𝑓2,𝑟1,𝑟2}

 (3-25) 

where 𝜂𝑖 is the efficiency of the 𝑖-th IWM. The battery has a maximum limit for the power 

output during draining and power input during recharging. While driving, if 𝑃𝑑𝑒𝑚 is higher 

than 𝑃𝑏𝑎𝑡𝑡,𝑚𝑎𝑥, then the battery cannot provide 𝑃𝑑𝑒𝑚. The same is true for the regenerative 

braking, if high amount of power is harvested by the brakes, the battery will not save all 

the regenerated power. And thus, we have the following inequality for the battery power: 

−𝑃𝑏𝑎𝑡𝑡,𝑚𝑎𝑥 ≤ 𝑃𝑏𝑎𝑡𝑡 ≤ 𝑃𝑏𝑎𝑡𝑡,𝑚𝑎𝑥 
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3.4 Parameter Estimation and Model Validation 

To verify the modeling process of control-oriented model, the simulation results of the 

IWM-EV high fidelity model and control-oriented model must be compared. Small 

difference in these two models are acceptable because of different approaches used for 

modeling. To minimize the differences between high fidelity model and control-oriented 

model, we utilize the parameter estimation methods. Typically, in every control oriented 

model, there are unknown parameters that can be identified so that the simulation results 

of the two models become similar. This process is called parameter estimation. The high 

fidelity model devised in Section 3.1 is used to estimate the internal resistance of the 

control-oriented battery model, and to validate the accuracy in the sense that the simulation 

results of vehicle’s control-oriented model and Autonomie high fidelity model are 

consistent for the same drive cycles.  

Given its importance to the power management, charge depletion profile of two models 

should be the same, and thus the main parameter that can be manipulated is battery 

resistor, 𝑅𝑏𝑎𝑡𝑡 .  𝑅𝑏𝑎𝑡𝑡 is estimated based on the simulation results for urban driving cycle 

(Federal Test Procedure, FTP-75) and highway driving cycle (Highway Fuel Economy 

Test, HWFET). Root mean square error (RMSE) is used to calculate the difference between 

𝑆𝑜𝐶 of two models: 

𝑅𝑀𝑆𝐸 =
√∑ (𝑌̂(𝑖) − 𝑌(𝑖))

2
𝑁
𝑖=1

𝑁
 

(3-26) 
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where 𝑌̂ is the 𝑆𝑜𝐶 of the control-oriented model, 𝑌 is the 𝑆𝑜𝐶 of the high fidelity model 

and 𝑁 is the length of the sampling vector. The estimation is done by minimizing RMSE 

over  𝑅𝑏𝑎𝑡𝑡: 

𝑅𝑏𝑎𝑡𝑡,𝑒𝑠𝑡 = 0.063 𝛺 
(3-27) 

Plots in Figure 3-16 compare the profiles of speed and SoC of the control-oriented and 

high fidelity Autonomie model for FTP75 drive cycle. Figure 3-16 shows good agreement 

between the two models, and therefore, it can be concluded that, control oriented model 

despite of its simplicity, represents the dominant dynamics of the vehicle powertrain 

system satisfactorily. 
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(a) Speed profiles 

 
(b) SoC profiles 

Figure 3-16 Comparison of speed, battery power, total torque and SoC for 

Autonomie and Control Oriented Model following FTP75 drive cycle 
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Chapter 4  

Stochastic Power Management 

Strategy Design 

In the real-world driving, there are many uncertainties for vehicle systems controllers, such 

as traffic flow, road speed limit, driver’s desired speed, acceleration, etc. Thus, the driver’s 

input, i.e., throttle and brake pedal commands have a stochastic and unpredictable nature. 

These uncertainties affect the power management problem since some power management 

strategies need information about the future power demand. 

Offline optimal control strategies, such as Deterministic Dynamic Programming (DDP) 

or Pontryagin’s Minimum Principle (PMP) which treat the 𝑃𝑑𝑒𝑚 as a known external input 

to follow a given driving cycle, are not applicable because they do not provide optimal 

solution to different driving cycles. 

In this study, a stochastic model of driver’s power demand and a SDP algorithm is 

utilized to solve the real-time power management problem. SDP is a computational 
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technique for solving stochastic, state-dependent optimization problems that find the 

optimum sequences of actions. Unlike DDP, the SDP control policies are time-invariant 

and can be used in real-time application as the same as DDP, and it can easily handle 

nonlinear problems with multiple constraints. A SDP model consists of five elements: 

decision epochs, states, actions, transition probabilities and rewards. We describe these 

elements in detail as follows. 

4.1 Decision Epochs and Periods 

The decision epochs, denoted by 𝑇, are the points of time at which the decisions are 

made and exerted to the plant. They consist of either a discrete set or a continuum, and 

either a finite or an infinite set. In discrete time problems, time is divided into periods or 

stages; and decisions are made at the beginning of all decision epoch. When the set of 

decision epochs is finite, the decision problem will be called a finite horizon problem; 

otherwise it will be called an infinite horizon problem.  

The real-time power management problem is an infinite horizon problem since the 

system dynamics and the cost are time-invariant and no final time or terminal constraint is 

defined. A key benefit of the infinite horizon problem is that the generated control policy 

is time-invariant, and thus, can be easily implemented [5]. 

4.2 State and Action Sets 

At each decision epoch, the system occupies a state, 𝑠, and the controller choose action 

𝑎 from the set of allowable actions in state 𝑠, denoted by 𝐴𝑠 by observing the system and 

considering the states of the system. The set of possible system states is denoted by 𝑆, 𝑠 ∈
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𝑆,  and the set of all possible actions is defined as 𝐴. Here, we assume that 𝑆 and 𝐴 do not 

vary with 𝑡 and they are discrete and arbitrary finite sets.  

Determination of the proper number of states as the controller input is an important step 

for the SDP, since the SDP algorithm would develop rules for all state sets and large 

number of states would make the problem solving slow and computationally intensive. 

This issue is called the curse of dimensionality. We should avoid it by trying to choose the 

least number of the states to capture the dominant dynamics of the system.  

To find the least number of main states of the SDP problem, first, we note that for IWM-

EV power management problem, despite of the HEV, the state of the charge of battery is 

not an important state to affect the optimal power distribution calculation. This is because 

the battery is the only source of power and independent of its charge level, and we should 

use it to provide the demanded power. Second, in section 3.2, we showed the effect of 

{𝑃𝑑𝑒𝑚, 𝑣, 𝜆𝑓 , 𝜆𝑟} of the optimal power management command. To obtain analytical relation 

between these states and optimum power distribution, we should consider that, as shown 

in equation (3-24), the rate of Δ𝑆𝑜𝐶 is function of 𝑃𝑏𝑎𝑡𝑡. Additionally, 𝑃𝑏𝑎𝑡𝑡 changes with 

motor efficiencies, 𝜂𝑡𝑟𝑎𝑐
𝑖  and 𝜂𝑟𝑒𝑔𝑒𝑛

𝑖  and demanded power, 𝑃𝑑𝑒𝑚 as shown in equations 

(3-16) and (3-17). On the other hand, the motor efficiency depends on the motor rotational 

speed, 𝜔, and torque, 𝑇𝑤; and rotational acceleration depends on the driving forces which 

have strong ties to the vehicle speed by equations (3-3), (3-9) and (3-10).  In conclusion, it 

can be claimed that Δ𝑆𝑜𝐶 is the function of 𝑃𝑑𝑒𝑚, vehicle speed and wheels’ rotational 

speed. Since the slip ratio is only functions of vehicle speed and rotational speed, we 

substitute the rotational speeds by the slip ratio. By doing this, we make sure that the state 
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space will cover all of the slip ratio values which are critical for the optimal decisions. 

Accordingly, the states of SDP problem for this study are: 

𝑠𝑡𝑎𝑡𝑒𝑠: {

𝑃𝑑𝑒𝑚

𝑣
𝜆𝑓
𝜆𝑟

 

Since these states are originally continuous, we should discretize it to obtain discretized 

set of states. This is necessary to utilized SPD algorithm. The appropriate discretization 

resolution of the power demand and the time span of decision period should be 

simultaneously chosen such that we have an appropriate transition probability matrix of 

the 𝑃𝑑𝑒𝑚. By trial and error, we found discretization sets for the problem states as below: 

𝑃 = −12: 1: 19 𝑘𝑊 

𝑣 = [0 5 10 25]  𝑚/𝑠 

𝜆𝑓 = [ -1 -0.35 -0.21 -0.1  -0.001   0  0.001  0.1   0.21   0.35  1 ] 

𝜆𝑟 = [ -1 -0.35 -0.21 -0.1  -0.001   0  0.001  0.1   0.21   0.35  1 ] 

𝑑𝑡𝑆𝐷𝑃 = 0.1 𝑠𝑒𝑐 

Front in-wheel motor power 𝑃𝑤
𝑓
, is considered as the control input. By imposing the 

drivability constraint, the rear motor power 𝑃𝑤
𝑟 is calculated according to the power balance 

requirement: 

𝑃𝑓 + 𝑃𝑟 = 𝑃𝑑𝑒𝑚 
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4.3 Decision Rules and Policies 

A decision rule specifies the proper action in each state and decision epoch. Decision 

rules can be in the forms of Markovian or history depending on how they incorporate past 

information. They also may be deterministic or randomized. Our primary focus will be on 

deterministic Markovian decision rules. 

A policy, plan, or strategy specifies the decision rule to be used at all decision epoch. It 

provides a prescription for action selection under any possible future system state or 

history. A policy 𝜋 is a sequence of decision rules, 𝜋 = (𝑑1, 𝑑2, … , 𝑑𝑁−1 ), for a system 

with 𝑁 decision epochs. We call a policy stationary if 𝑑𝑡 = 𝑑 for all 𝑡 ∈ 𝑇. A stationary 

policy has the form 𝜋 = (𝑑, 𝑑, … ); we denote it by 𝑑∞. 

4.4 Rewards and Costs 

The system receives reward 𝑟𝑡(𝑠, 𝑎 ) at decision epoch 𝑡 by choosing action 𝑎 in state 𝑠 

whereas positive 𝑟𝑡(𝑠, 𝑎 ) may be considered as reward and income, and negative as cost. 

For a stationary problem with discrete state set, we have several candidates for the 

functions of rewards. 𝑋𝑡 is state random variable and 𝑌𝑡 is action random variable. 

a. The expected total reward: 

𝑣𝜋 ≡ 𝑙𝑖𝑚
𝑁→∞

𝐸𝑠
𝜋 {∑𝑟(𝑋𝑡, 𝑌𝑡)

𝑁

𝑡=1

} 
(4-1) 

b. The expected total discounted reward: 
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𝑣𝜆
𝜋 ≡ 𝑙𝑖𝑚

𝑁→∞
𝐸𝑠

𝜋 {∑𝜆𝑡−1𝑟(𝑋𝑡, 𝑌𝑡)

𝑁

𝑡=1

} 
(4-2) 

For 0 ≤ 𝜆 < 1 

c. The average reward: 

𝑔𝜋(𝑠) = 𝑙𝑖𝑚
𝑁→∞

1

𝑁
𝐸𝑠

𝜋 {∑𝑟(𝑋𝑡, 𝑌𝑡)

𝑁

𝑡=1

} 
(4-3) 

The proposed stochastic power management strategy in this study employs the expected 

total discounted reward introduced in equation (4-2). The limit in the equation (4-2) exists 

when |𝑟(𝑠, 𝑎)| < 𝑀, ∀𝑠 ∈ 𝑆, ∀𝑎 ∈ 𝐴𝑠  and 𝑀 < ∞. 

 For the infinite horizon deterministic Markovian SDP problem, the expected total 

discounted cost is in the following form:  

𝐽𝜋(𝑥0) = 𝑙𝑖𝑚
𝑁→∞

𝐸
𝑤𝑘

{∑ 𝛾𝑘𝑔(𝑥𝑘, 𝜋(𝑥𝑘))

𝑁−1

𝑘=0

}   
(4-4) 

where 𝜋(𝑥) is the control policy, g is the instantaneous cost, 0 < 𝛾 < 1 is the discount 

factor, and 𝐽𝜋(𝑥0) indicates the resulting expected cost when the system starts at state 𝑥0; 

and follows the policy 𝜋(𝑥). For the IWM-EV power management problem, the cost is a 

sum of the battery SoC decrease and a penalty for 𝑃𝑑𝑒𝑚 deviation; it takes the form: 
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𝑔 = 𝛥𝑆𝑜𝐶 + 𝛼.𝑀 (4-5) 

whereas 𝛼 penalizes 𝑀 is measured by a squared error between the demanded power and 

the actual power produced by wheels 

𝑀 = (𝑃𝑑𝑒𝑚 − 𝑃𝑓 − 𝑃𝑟)
2

 
(4-6) 

4.5 Transition Probabilities 

At every decision epoch, the system state at the next decision epoch is determined by 

the probability distribution 𝑝𝑡( . |𝑠 , 𝑎) by choosing action 𝑎 in state 𝑠. The non-negative 

function 𝑝𝑡(𝑗|𝑠, 𝑎) denotes the probability of the system in state 𝑗 ∈ 𝑆 at time 𝑡 +  1, 

whereas the controller chooses action 𝑎 ∈ 𝐴𝑠 in state 𝑠 at time 𝑡. The function 𝑝𝑡(𝑗|𝑠, 𝑎) is 

called a transition probability function. 

The collection of objects {𝑇, 𝑆, 𝐴𝑠 , 𝑝1(. |𝑠, 𝑎), 𝑟1(𝑠, 𝑎)} is referred as a Markov decision 

process. The term Markov is used since the transition probability and reward functions 

depend on the past only through the current state of the system and the action selected in 

that state.  

In this study, the transition probabilities for the TPM are derived by using standard 

driving cycles’ data. The velocity profiles of the driving cycles are considered as the 

observation samples and the demanded power of driving is calculated based on it. The drive 

cycles have been used to construct the observation samples of the stochastic system that 

are The Federal Test Procedure (FTP), Highway Fuel Economy Driving Schedule 
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(HWFET) and New York City Cycle (NYCC) as shown in Figure 4-1. Since the proposed 

control strategy employs demanded power TPM, we should calculate the demanded power 

profile from the combined driving cycle. Power demand profile of the combined driving 

cycles is shown in Figure 4-2. Based on the presented power demand profile, the transition 

probabilities is calculated and shown in Figure 4-3. One another possible approach in 

deriving the TPM is data logging from real-world vehicles which may consider as future 

work for further investigation in the power demand uncertainty problem. 
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Figure 4-1 Speed Profile of the combined driving cycles   

 

 

 

 

 

Figure 4-2 𝑷𝒅𝒆𝒎 Profile for the combined driving cycles   
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To obtain the TPM from the driving cycles’ data, the transition probability matrix is 

estimated by maximum likelihood estimation method. The demanded power 𝑃𝑑𝑒𝑚 is 

assumed to take finite number of values whereas 𝑁𝑃 is the number of 𝑃𝑑𝑒𝑚 discretization: 

𝑃𝑑𝑒𝑚 ∈ {𝑃𝑑𝑒𝑚
1 , 𝑃𝑑𝑒𝑚

2 , … , 𝑃𝑑𝑒𝑚
𝑁𝑃 } 

Despite of the stochastic nature of 𝑃𝑑𝑒𝑚, it can be assumed that it has the Markov 

property, i.e., the probability distribution of the next step, and 𝑃𝑑𝑒𝑚 is the function of the 

current time step states. There probabilities are called transition probabilities:  

 

 

Figure 4-3 Transition Probability of power demand 
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𝑃𝑟{𝑃𝑑𝑒𝑚,𝑘+1 = 𝑃𝑑𝑒𝑚
𝑗

|𝑃𝑑𝑒𝑚,𝑘 = 𝑃𝑑𝑒𝑚
𝑖  } = 𝑝𝑖,𝑗 

𝑖, 𝑗 = 1,2, … ,𝑁𝑃 

∑𝑝𝑖,𝑗

𝑁𝑃

𝑗=1

= 1 

(4-7) 

whereas 𝑝𝑖,𝑗 is one step transition probability that the system demanded power is 𝑃𝑑𝑒𝑚
𝑗

 at 

time 𝑘 +  1, and 𝑃𝑑𝑒𝑚
𝑖  at time 𝑘.  By assuming Markov property, power management 

problem can be considered as a Markov decision process to determine optimal power 

distribution between front and rear wheels. 

The transition probability matrix is estimated on the basis of simulation results of 

sample drive cycles. To represent mixed city, suburban, and highway driving situations, 

four driving cycles are considered and 𝑃𝑑𝑒𝑚 profiles are extracted for a typical driver. The 

profiles of observed 𝑃𝑑𝑒𝑚 is mapped into the sequence of quantized states 𝑃𝑑𝑒𝑚
𝑖  by utilizing 

nearest-neighbor method. Then, the transition probability is estimated by the maximum 

likelihood estimation method [5], which counts the observation data as: 

𝑝̂𝑖.𝑗 =
𝑚𝑖,𝑗

𝑚𝑖
       𝑖𝑓 𝑚𝑖 ≠ 0 (4-8) 

where 𝑚𝑖,𝑗 is the number of occurrences of the transition from 𝑃𝑑𝑒𝑚
𝑖  to 𝑃𝑑𝑒𝑚

𝑗
, and 𝑚𝑖 =

∑ 𝑚𝑖,𝑗
𝑛
𝑗=1  is the total number of the times that 𝑃𝑑𝑒𝑚

𝑖  has occurred.  
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4.6 Stochastic Dynamic Programming Approach 

There are several algorithms to solve a SDP problem. In this study, the policy iteration 

method, as the widely used algorithm to solve stochastic dynamic programs, is utilized to 

determine the optimal control policy for the control oriented model explained in 

section 3.3. 

4.6.1 Approximate Policy Iteration Algorithm 

An approximate policy iteration algorithm is used to solve the SDP problem. The IWM-

EV model is used as the control oriented model which was introduced in section 3.3. The 

states of this model include four variables: the driver power demand, the vehicle speed, the 

front wheel slip ratio and the rear wheel slip ratio.  The state vector  𝑥 = (𝑃𝑑𝑒𝑚, 𝑣, 𝜆𝑓1, 𝜆𝑟1) 

forms a four-dimensional state space, where 𝑣, 𝜆𝑓1 𝑎𝑛𝑑 𝜆𝑟1originally take continuous 

values, and 𝑃𝑑𝑒𝑚 has finite values. To solve the SDP problem, we discretize 𝜆𝑓1 and 𝜆𝑟1 as  

𝜆𝑓1 = {𝜆𝑓1
1, 𝜆𝑓1

2, … , 𝜆𝑓1
𝑁𝐿𝑓} 

𝜆𝑟1 = {𝜆𝑟1
1, 𝜆𝑟1

2, … , 𝜆𝑟1
𝑁𝐿𝑓} 

In addition, the wheel speed is discretized: 

𝑣 = {𝑣1, 𝑣2, … , 𝑣𝑁𝑣} 

The total state space is then represented by finite grids  {𝑥𝑖 , 𝑖 = 1,2, … ,𝑁𝑃𝑁𝑣𝑁𝐿𝑓𝑁𝐿𝑟}. 

The control variable is 𝑢 = 𝑃𝑓 which is discretized into {𝑃𝑓
1, 𝑃𝑓

2, … , 𝑃𝑓
𝑁𝑢}. Based on the 

Bellman’s optimality equation, the SDP problem is solved by a policy iteration algorithm. 

The policy iteration algorithm consists of a policy evaluation step and a policy 
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improvement step in an iterative manner until the optimal policies converge to constant 

values, and do not change anymore. In the policy evaluation step, given a control policy , 

we calculate the corresponding cost function J(x) by iteratively updating the Bellman 

equation: 

𝐽𝜋
𝑠+1(𝑥𝑖) = 𝑔 (𝑥𝑖 , 𝜋(𝑥𝑖)) + 𝐸

{𝑃𝑑𝑒𝑚
𝑖+1 }

{𝛾𝐽𝜋
𝑠(𝑥’)} (4-9) 

For all i, s is the iteration number, and 𝑥’ is the new state, i.e.: 

𝑥’ = 𝑓(𝑥𝑖,  𝜋(𝑥𝑖)) 
(4-10) 

which is given by the state equations (3-1), (3-13) and (3-14). However, the components 

of state x’ do not necessarily fall exactly on the state grid. In this case, a linear interpolation 

of the cost function along the first two dimensions is used. In order to expedite the 

computations, only a fixed number of iterations are performed regardless of the 

convergence of the estimated cost function [38]. This method has been shown to reduce 

the computation time effectively [5]. In the policy improvement step, the improved policy 

is found through the following equation 

𝜋(𝑥𝑖) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑢∈𝑈(𝑥𝑖)

[𝑔(𝑥𝑖 , 𝑢 ) + 𝐸
{𝑃𝑑𝑒𝑚

𝑖+1 }
{𝛾𝐽𝜋(𝑥́)}] 

(4-11) 

For all i, Jis the approximate cost function obtained from the policy evaluation step. Each 

of the minimizations is performed subject to the constraints. After the new policy is 

obtained, the algorithm comes back to the policy evaluation step to update the cost function 
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by using the new policy. This iterative process is repeated, until 𝐽𝜋 converges within a 

selected tolerance level. This algorithm‘s flowchart is depicted in Figure 4-5. 

The discount factor is 𝛾 =  0.8 and the weighting factor 𝛼 is chosen as 10−4. The policy 

iteration procedure is terminated when the policy of two successive iterations is equal. The 

Figure 4-4 shows the convergence fashion of the policies of the SDP. To plot Figure 4-4, 

we calculated the norm of policy vector in each iteration of the SDP algorithm, and the 

change of the norm of the policy vector in each iteration is plotted. We can see that, after 

5 iterations, the algorithm converged. The resulting policy is in the form of a look-up table, 

𝑃𝑓(𝑃𝑑𝑒𝑚, 𝑣, 𝜆𝑓 , 𝜆𝑟), i.e., the optimal front power 𝑃𝑓 is a function (look-up table) of total 

demanded power, vehicle speed, and front and rear slip ratios. The desired rear motor 

power can then be calculated from 𝑃𝑟 = 𝑃𝑑𝑒𝑚 − 𝑃𝑓.  

 

Figure 4-4 Policy iteration convergence 
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Figure 4-5 The approximate policy iteration algorithm flowchart 

 

Policy Improvement Step (repeat until 𝝅 converge) 

𝜋(𝑥𝑖) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑢∈𝑈(𝑥𝑖)

 𝑔(𝑥𝑖, 𝑢 ) + E
𝑤
{𝛾𝐽𝜋(𝑥́)}  

  

If 𝐽𝜋
𝑠+1(𝑥) = 𝐽𝜋

𝑠(𝑥) 

  

End 

N

State space definition: 

 𝑥 = (𝑃𝑑𝑒𝑚, 𝑣, 𝜆𝑓 , 𝜆𝑟) 
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1, 𝜆𝑓1

2, … , 𝜆𝑓1
𝑁𝐿𝑓} 
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1, 𝜆𝑟1
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4.6.2 Constraints 

There are several constraints for this problem. First of all, the optimization is subject to 

equality constraints as the system equations described in Section Chapter 3. The first 

constraint is the driving torque limit of electric motors: 

𝑇𝑖 ≤ 𝑇𝑚𝑎𝑥 𝑚𝑜𝑡𝑜𝑟     (𝑓𝑜𝑟 𝐷𝑟𝑖𝑣𝑖𝑛𝑔) (4-12) 

The next constraint is the limitation of regenerative breaking. During breaking, if the 

demanded break exceeds the limit, the breaking is divided to regenerative and frictional 

breaking 

𝑇𝑖 = 𝑇𝑟𝑒𝑔𝑒𝑛 + 𝑇𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛: 

𝑇𝑟𝑒𝑔𝑒𝑛 ≤ 𝑇𝑚𝑎𝑥 𝑟𝑒𝑔𝑒𝑛     (𝑓𝑜𝑟 𝐵𝑟𝑒𝑎𝑘𝑖𝑛𝑔) 

(4-13) 

The last constraint is the limitation of battery to deliver power: 

𝑃𝑏𝑎𝑡𝑡,𝑚𝑖𝑛 ≤ 𝑃𝑏𝑎𝑡𝑡 ≤ 𝑃𝑏𝑎𝑡𝑡,𝑚𝑎𝑥 (4-14) 

4.6.3 Benchmarks 

To compare the performance of SDP control scheme, two benchmark power management 

strategies are considered. The first is the equal distribution scheme which is a sort of the 

fixed ratio distribution. Fixed ratio distribution strategies, regardless of the states of the 

vehicle, assign the driving powers as the constant gain of the total demanded powers: 
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𝑃𝑤
𝑓
= 𝛾𝑃𝑑𝑒𝑚 

𝑃𝑤
𝑟 = (1 − 𝛾)𝑃𝑑𝑒𝑚  

(4-15) 

whereas 𝛾 is the distribution ratio and it is between zero and one. The optimal 𝛾 is 

investigated in this study numerically, and as the result, 𝛾 = 0.5 is the globally optimal 

distribution ratio. Therefore, equal distribution is the optimal solution of the fixed ratio 

distribution strategy.  

The second power management strategy, as the benchmark, is the generalized DP rule-

base system. Since the dynamic programming solution is drive cycle dependent, the rules 

from one drive cycle may cause bad results for another drive cycle, thus the generalized 

rule based system from Ref [47] is proposed.  To determine the generalized DP rule-based 

system, first, we solved the dynamic programming for specific drive cycle, FTP75, and 

then calculated a simple linear relation between 𝑃𝑑𝑒𝑚 and 𝑃𝑤
𝑓
. The solution of dynamic 

programming for FTP driving cycle and a single rule extracted from 𝑃𝑓 vs 𝑃𝑑𝑒𝑚 profile is 

shown in Figure 4-6. 

 

Figure 4-6 Dynamic programming optimal 𝑷𝒇 vs total 𝑷𝒅𝒆𝒎 
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4.7 Skid Avoidance System Integration to Power Management Strategy 

To prevent safety issues while using the power management strategy, a skid avoidance 

and anti-lock brake system, ABS, is implemented as part of the power management system 

of the IWM-EV. In the conventional vehicle ABS system, a high frequency bang–bang 

controller as an on–off controller, is used to keep the slip ratios in the desired interval to 

maximize the braking performance. Since the electric motor’s response time is much faster 

than typical ABS of ICE vehicles [9], the task of ABS can be easily handled by electric 

motor power controller. 

In this study, a set of skid avoidance constraints are proposed to be considered in 

development of the stochastic dynamic programing policies. The proposed constraints for 

the slips are presented in Table 4-1. The main logic behind proposing these constrains is 

that, in each IWM, while performing hard brakes if the wheel’s slip ratio violates the 

desired interval, the power management controller should set the brake command to zero 

to relax the braking system and avoid the violation.  

Due to the baseline vehicle wheel specifications, as it can be seen in Figure 3-4, the 

critical slip ratios is equal to ±0.2, and thus the desired slip ratio interval is: 

 𝜆 = [−0.2, +0.2] 

Therefore, we proposed in constraints of Table 4-1 that when 𝜆𝑓 < −0.2, the front IWM 

commanded power, 𝑃𝑓, should be zero; and the same is for the rear IWM. Consequently, 
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the only situation in which the power distribution problem is over-actuated and has two 

degree of freedom is the case that both wheels’ slip ratio are inside the desired interval.  

Table 4-1 Skid Avoidance Constraints 

 𝝀𝒇 < −𝟎. 𝟐 𝝀𝒇 ≥ −𝟎. 𝟐 

𝝀𝒓 < −𝟎. 𝟐 𝑃𝑓 = 0 𝑃𝑟 = 0 𝑃𝑓 = 𝑃𝑑𝑒𝑚 𝑃𝑟 = 0 

𝝀𝒓 ≥ −𝟎. 𝟐 𝑃𝑓 = 0 𝑃𝑟 = 𝑃𝑑𝑒𝑚 Search for the best distribution 

 

The simulation results of implementing the integrated skid avoidance and stochastic power 

management strategy are presented in section 5.2.  
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Chapter 5  

Power Management Strategy 

Evaluation 

In this chapter, the results of utilizing the proposed stochastic power management 

strategy are presented and its performance is compared with the other power distribution 

schemes. For this investigation, we developed the high fidelity IWM-EV model which is 

introduced in section 3.1. The evaluations show that the stochastic power management 

strategy saves up to 22% in power consumption while following the desired drive cycles 

seamlessly. As follows, the integrated power management and skid avoidance system is 

evaluated in section 5.2. We are benefited from the perfect potential of the SDP to handle 

nonlinear problems and constraints by defining constraints for slip ratios to maintain them 

in the desired intervals. 
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5.1 Stochastic Power Management Strategy 

The output of the policy iteration algorithm introduced in section 4.6 is a set of rules 

specifying the front and rear wheels powers based on the current states of the vehicle. After 

obtaining these rules, we need to evaluate the optimality of the strategy by comparing it 

with the other strategies. The most important index for comparing the power management 

strategies is the change of the state of the charge during driving 𝑎𝑠 Δ𝑆𝑜𝐶 = 𝑆𝑜𝐶𝑖 − 𝑆𝑜𝐶𝑓. 

Smaller Δ𝑆𝑜𝐶 is desired for us since it means that less power is consumed, the power 

management strategy is more efficient, and the electric vehicle’s range is larger. 

To evaluate the stochastic power management strategy, we simulated the high fidelity 

vehicle model which employed the stochastic power management system for four different 

drive cycles, as FTP, HWFET, NYCC and USSD. The first three drive cycles of FTP, 

HWFET and NYCC have been used for the observation process of the TPM calculation in 

section 4.4. In addition to these drive cycles, the performance of the stochastic power 

management strategy for USSD drive cycle  is presented to investigate the robustness and 

generality of the obtained power management scheme.  We performed the drive cycle 

simulations for two other power management strategies, equal distribution and generalized 

DP rule-based system introduced in section 4.2 as the benchmarks for the comparison.  

Table 5-1, Table 5-2 and Table 5-3 show the comparison of Δ𝑆𝑜𝐶 for the three control 

schemes for the FTP, HWFET, NYCC and USSD drive cycles for different road 

conditions. The maximum friction coefficient of the results of Table 5-1 is  𝜇𝑚𝑎𝑥 = 0.9 

which typically belongs to asphalt road driving while 𝜇𝑚𝑎𝑥 for Table 5-2 and Table 5-3 are 

0.5 and 0.2 respectively.   
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By Comparison of these tables, it concludes that, for all road conditions, SDP is better 

than equal distribution and generalized DP rule-based up to 22%. The improvement of the 

SDP than the equal distribution increases as the 𝜇𝑚𝑎𝑥 decreases, which means that in 

slippery road condition, SDP strategy performs much better than the equal distribution and 

generalized DP rule-based strategies. The simulation results show that the performance of 

the equal distribution and generalized DP rule based system is almost the same. 

Interestingly, the linear relation for the generalized DP rule-based system is similar to equal 

distribution since it is 𝑃𝑤
𝑓
= 0.42 ∗ 𝑃𝑑𝑒𝑚 + 1300. 

The performance of the stochastic power management strategy for the USSD drive cycle 

is as good as for the other drive cycles in Table 5-1, Table 5-2 and Table 5-3. Therefore, 

we can claim that the stochastic drive cycle is a robust power management strategy for all 

drive cycles and real time applications. 

The powers assigned to the front and rear wheels, 𝑃𝑓 and 𝑃𝑟, versus time for USSD drive 

cycle in a snowy road with 𝜇𝑚𝑎𝑥 = 0.2 as shown in Figure 5-1. Due to these plots, we can 

see that the severe brake demands are assigned to the front wheels. And thus, in several 

instances, the front wheels starts locking and slip ratios goes to -1, besides, the power 

consumption is reduced and  final state of the charge is increased.  
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Table 5-1 𝚫SoC for High-fidelity Model Simulation (𝝁𝒎𝒂𝒙 = 𝟎. 𝟗) 

Drive Cycle Fixed Ratio DP Rules SDP % saved 

FTP 13.8 13.79 13.71 0.65 

HWFET 14.88 14.86 14.68 1.34 

NYCC 1.585 1.58 1.58 0.32 

USSD 8.78 8.77 8.72 0.68 

 

 

 

Table 5-2  𝚫SoC for High-fidelity Model Simulation (𝝁𝒎𝒂𝒙 = 𝟎. 𝟓) 

Drive Cycle Fixed Ratio DP Rules SDP % saved 

FTP 13.89 13.87 13.6 2.09 

HWFET 14.92 14.90 14.73 1.27 

NYCC 1.6 1.59 1.53 4.37 

USSD 8.84 8.82 8.67 1.92 
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Table 5-3 𝚫SoC for High-fidelity Model Simulation (𝝁𝒎𝒂𝒙 = 𝟎. 𝟐) 

Drive Cycle Fixed Ratio DP Rules SDP % saved 

FTP 14.3 14.29 14.19 0.77 

HWFET 15.04 15.01 14.93 0.73 

NYCC 3.41 3.4 2.64 22.58 

USSD 9.09 9.09 9.07 0.22 
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(a)  

 

 

 

 

(b)  

Figure 5-1 Commanded power comparison between SDP and equal power 

distribution for low friction condition 𝝁𝒎𝒂𝒙 = 𝟎. 𝟐   (a) front IWM (b) rear IWM  
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(a)  

 

 

 

 

(b)  

Figure 5-2  Slip ratio comparison between SDP and equal power distribution for 

low friction condition 𝝁𝒎𝒂𝒙 = 𝟎. 𝟐   (a) front IWM (b) rear IWM 
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5.2 Integrated Skid Avoidance and Power Management System  

In Figure 5-2, the slip ratios of a driving simulation at the slippery road condition are 

depicted. We can see that, in many braking instances, the slip ratio of the front wheel 

converges to -1 which means full locking of the wheel. Wheel lockage is a highly 

undesirable event during the driving since it causes braking ineffectiveness and loss of the 

steering controllability.     

In section 4.7, the proposed integrated power management and skid avoidance system 

was introduced. This control strategy optimizes the power consumption and keeps the 

wheels’ slip ratios in the desired intervals simultaneously. The simulation results of 

utilizing this control scheme as the power distribution system is in this section. The result 

of this section shows us that adding skid avoidance constraints to the power management 

prevents the wheels from locking in the severe barking while maintains the optimality of 

the power management strategy. 

Figure 5-3 and Figure 5-4 show the slip ratios and torque profiles of the front and rear 

wheels for SDP strategy, integrated skid avoidance and power management strategy. From 

Figure 5-3, we can see that the integrated strategy has done its task flawlessly and has 

maintained the braking slip rations in the acceptable interval. In fact, the proposed 

integrated control scheme prevents the wheel motors to produce high torques when the slip 

ratio violated from the limits. These results show that the presence of these constraints 

makes the power management controller brake in a more effective manner. Based on the 

charge depletion comparison of Table 5-4, the skid avoidance integrated strategy is similar 

to SDP strategy, which means that adding the skid avoidance constraints to the stochastic 

power management strategy did not change the power depletion of the vehicles at all. In 
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conclusion, we can say that, integrated skid avoidance and stochastic power management 

strategy improves the braking performance and decreases the power consumption in 

comparison to strategies such as equal distribution and generalized DP rule-based. 

 

 

 

 

  



80 

 

 

(a)   

 

 

(b)  

Figure 5-3 Slip ratio comparison for power management system with skip 

avoidance and without skip avoidance constraint for (a) front and (b) rear  wheels  
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(a)   

 

 

(b)  

Figure 5-4 commanded torques comparison for power management system with 

skip avoidance and without skip avoidance constraint  for (a) front and (b) rear  

wheels 
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Table 5-4 𝚫SoC for High-fidelity Model Simulation (𝝁𝒎𝒂𝒙 = 𝟎. 𝟐) 

Drive Cycle SDP 
SDP with  

skid avoidance 

FTP 14.19 14.19 

HWFET 14.93 14.93 

NYCC 2.64 2.64 

USSD 9.07 9.07 
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Chapter 6  

Conclusions and Future Works 

In the first section of this chapter, the conclusions of implementing the proposed strategy 

are discussed. In the second section, the future works are listed. 

6.1 Conclusions 

In this thesis, a novel power management strategy for IWM-EVs is developed. The 

proposed power management strategy utilizes SDP to take into the account the stochastic 

nature of the driving commands of the driver. And then, a skid avoidance algorithm is 

integrated to the power management strategy to keep the wheels’ slip ratio in the desired 

interval.  

To apply SDP, it is assumed that the demanded power by the driver is a Markov process, 

and then, several driving cycles are considered to generate acceptable probability 

distributions for the demanded power. The selected drive cycles were used for the 

evaluation of the proposed strategy. Four states are considered as the stochastic power 

management inputs: the demanded power, the vehicle’s speed, and the front and the rear 
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wheels’ slip ratios. A high fidelity vehicle model and a control-oriented vehicle model are 

developed in this study. The high fidelity modeling is accomplished in the Simulink 

environment for the purpose of power management strategy evaluation, control-oriented 

model verification and sensitivity analysis; and control oriented model is developed for 

parameter optimization of the algorithm. The parameter optimization of the proposed 

strategy is done for a baseline vehicle. 

The evaluation of the proposed power management strategy for different driving cycles 

and road conditions shows that it decreases the charge depletion while providing the 

demanded power for the IWMs without any problem. As the result, the vehicle employing 

this power management strategy can track the driving cycles perfectly and has more final 

SoC in comparison to the equal distribution strategy and DP extracted rule-base strategy. 

The obtained stochastic power management strategy saves up to 22% SoC in comparison 

to equal distribution power management strategy.  

Despite of the intelligent vehicle systems, which employ extra sensors and 

communicating systems to determine future speed profile of the vehicles, SDP is free to 

lunch and only handles past driving information to predict the future situation. 

 Skid avoidance algorithm consists of several constraints which limit the power 

management strategy output based on the wheels’ slip ratios. The response time of the 

IWMs is much faster than a typical ABS, and thus the anti-brake and skid avoidance 

algorithms can be easily handled by motors’ power control. The simulation results of 

integration of the power management strategy and skid avoidance systems show that 

integrated skid avoidance and stochastic power management strategy improve the braking 
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performance and decrease power consumption in comparison to strategies such as equal 

distribution or generalized DP rule-based. 

Up to the author’s knowledge, this thesis contains these contributions: 

 This study is the first utilization of the SDP for the IWM-EVs. 

 It is the first time that the slip ratios are considered as the decision variables of 

the SDP power management problem. 

 Skid avoidance integration with power management strategy is for IWM-EVs. 

6.2 Future Works 

Based on the problems explained and studies in this thesis, there are several research 

opportunities in IWM modeling, stochastic power management and skid avoidance 

algorithms can be considered for continuation of this research: 

 Data gathering from real experiments can be done to have a more reliable 

probability distributions and matrix of TMP. 

 Other algorithms of SDP of reference [5] can be utilized to compare the 

optimality of solutions and find the best SDP for this problem. 

 Better and more sophisticated skid avoidance algorithm can be implemented. 

 Utilizing hardware-in-the-loop, HIL, methods can be used to validate the 

proposed strategies.  
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