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Abstract

This thesis considers spectral approaches to finding maximum cocliques in
graphs. We focus on the relation between the eigenspaces of a graph and the
size and location of its maximum cocliques.

Our main result concerns the computational problem of finding the size of
a maximum coclique in a graph. This problem is known to be NP-Hard for
general graphs. Recently, Codenotti et al. showed that computing the size of a
maximum coclique is still NP-Hard if we restrict to the class of circulant graphs.
We take an alternative approach to this result using quotient graphs and coding
theory. We apply our method to show that computing the size of a maximum
coclique is NP-Hard for the class of Cayley graphs for the groups Znp where p is
any fixed prime.

Cocliques are closely related to equitable partitions of a graph, and to parallel
faces of the eigenpolytopes of a graph. We develop this connection and give
a relation between the existence of quadratic polynomials that vanish on the
vertices of an eigenpolytope of a graph, and the existence of elements in the
null space of the Veronese matrix. This gives a us a tool for finding equitable
partitions of a graph, and proving the non-existence of equitable partitions.
For distance-regular graphs we exploit the algebraic structure of association
schemes to derive an explicit formula for the rank of the Veronese matrix. We
apply this machinery to show that there are strongly regular graphs whose τ -
eigenpolytopes are not prismoids.

We also present several partial results on cocliques and graph spectra. We
develop a linear programming approach to the problem of finding weightings of
the adjacency matrix of a graph that meets the inertia bound with equality, and
apply our technique to various families of Cayley graphs. Towards characterizing
the maximum cocliques of the folded-cube graphs, we find a class of large facets
of the least eigenpolytope of a folded cube, and show how they correspond to the
structure of the graph. Finally, we consider equitable partitions with additional
structural constraints, namely that both parts are convex subgraphs. We show
that Latin square graphs cannot be partitioned into a coclique and a convex
subgraph.
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Chapter 1

Introduction

Algebraic graph theory is the study of graphs using their symmetries and asso-
ciated matrices. The symmetries of a graph have implications for its structure,
and the adjacency matrix encodes everything about the graph in matrix form.
Naturally these objects can be studied algebraically. There are many classical
applications of the spectral analysis of matrices to graphs [4]. The spectrum of
the adjacency matrix of a graph can be used to: bound the chromatic number
of a graph; determine whether a graph is bipartite; determine whether a graph
is connected; bound the diameter of a graph; bound the size of a maximum
clique and the size of a maximum coclique; and more. The spectrum of a graph
is closely linked to its structural properties.

In this thesis we will focus on the relation between the spectrum of a graph
and the size (and location) of its maximum cocliques. There are two main
bounds on the size of a maximum coclique in a graph that arise from its spec-
trum, the inertia bound and the ratio bound. Graphs that meet the ratio bound
have the additional property that the partition of the graph into a maximum
coclique and its complement is equitable. Equality in the ratio bound also im-
plies that eigenvectors for the least eigenvalue of the graph can be constructed
from the characteristic vectors of its maximum cocliques. This is an example of
structural information encoded by an eigenspace of a graph.

The connection between the least eigenspace of a graph and its maximum
cocliques was used by Godsil and Newman [17] to show that for some graphs
it is possible to characterize the maximum cocliques using the spectrum. Re-
cently Godsil and Meagher used this approach to prove an Erdős-Ko-Rado type
theorem for elements of the symmetric group [15]. Their main result charac-
terizes the maximum intersecting families of symmetric group elements. They
achieve this by characterizing the maximum cocliques in a family of graphs.
Their proof utilizes the least eigenspace of these graphs to characterize their
maximum cocliques. This algebraic argument can be viewed geometrically.

From an eigenspace of a graph, we can construct a natural family of com-
binatorially equivalent polytopes. These eigenpolytopes are closely related to
the theory of graph representations [13], [14]. Godsil and Meagher [16] give a
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1. INTRODUCTION

proof of the Erdős-Ko-Rado Theorem, and proofs of Erdős-Ko-Rado type the-
orems for elements of the symmetric group and binary strings, based on the
eigenpolytopes of the associated families of graphs. Again, the central method
is the classification of maximum cocliques through the combinatorial properties
of the eigenpolytopes. Eigenpolytopes also geometrically encode information
about the equitable partitions of a graph. The ability to characterize extremal
objects by analyzing the eigenpolytopes of a graph is a promising aspect of this
theory.

The connection between the eigenspaces of a graph and its structure are par-
ticularly strong for distance-regular graphs. Distance-regular graphs are a class
of graphs with rich algebraic structure. They give rise to association schemes and
provide an ideal environment to apply algebraic arguments. Distance-regular
graphs are well-studied objects in algebraic graph theory. They arise natu-
rally from the study of highly regular objects. The classification of distance-
regular graphs based on their parameters, and the study of individual families
of distance-regular graphs is a vibrant area of study. In this thesis we will see
distance-regular graphs in several contexts.

1.1 Main Results

Our main result concerns the computational problem of finding the size of a
maximum coclique in a graph. This problem is known to be NP-Hard for general
graphs. In [7], Codenotti et al. showed that computing the size of a maximum
coclique is still NP-Hard if we are restricted to the class of circulant graphs. This
is a surprising result, as we might expect that assuming additional structure
would decrease the hardness of the problem. In Chapter 3 we will examine
the method from [7], and extract the key tools used in the proof. The auxiliary
graph construction employed by Codenotti et al. can readily be applied to other
classes of graphs. However, the rest of their proof cannot. We depart from [7]
by using quotient graphs and coding theory, and outline a method for proving
complexity results analogous to the result in [7] that can be applied to other
classes of graphs. In particular, we apply our method to show that computing
the size of a maximum coclique is NP-Hard for the class of Cayley graphs for
the groups Znp where p is any fixed prime (Theorem 3.0.2). We also look at the
spectrum of the auxiliary graphs we employ in the proof, and draw conclusions
about their structure (Corollary 3.13.4).

Cocliques are closely tied to equitable partitions of graphs. For example, if
a graph is ratio tight, then each maximum coclique gives an equitable partition
of the graph into two parts. Equitable partitions are also closely related to
the face lattices of the eigenpolytopes of the graph. Each equitable partition
corresponds to a pair of parallel faces of some eigenpolytope of the graph. This
implies that an equitable partition into two parts gives a partition of the vertices
of an eigenpolytope into parallel faces. Chapter 5 focuses on this connection. We
note that the existence of parallel faces of a polytope that partition its vertex
set corresponds to the existence of quadratic polynomials that vanish on the
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1.1. MAIN RESULTS

vertices of the polytope. Our second main result is to re-formulate the existence
of these quadratic polynomials to the existence of elements in the null space of
the Veronese matrix derived from the eigenspace of the graph. This gives us a
tool for finding equitable partitions of a graph, and for establishing that there
are no equitable partitions of a specific form. We show that for distance-regular
graphs, the parameters of the association scheme give an explicit formula for
the rank of the Veronese matrix (Lemma 5.7.3). Strongly regular graphs are
distance-regular graphs with minimum non-trivial diameter. We show that in
the case of strongly regular graphs, the rank of the Veronese matrix can be
determined exactly (Corollary 5.8.1). We also present some computations of
the rank of the Veronese matrix. We use these calculations to show that there
are strongly regular graphs whose τ -eigenpolytopes are not prismoids.

We also present several partial results on cocliques and graph spectra. In
Chapter 2 we will look at the inertia bound for graphs. The inertia bound
gives an upper bound on the size of a maximum coclique in a graph, based on
the number of non-negative or non-positive eigenvalues of a weighted adjacency
matrix. For a single graph, there are a wide array of valid weighted adjacency
matrices. This makes finding the optimal value of the inertia bound difficult.
It is an open question whether there exist graphs that do not have a weighted
adjacency matrix that gives equality in the inertia bound. We focus on this
problem, and consider what can be said for various families of Cayley graphs.
By using weightings based on the connection set of a Cayley graph, we are able
to find inertia tight weightings for a large number of cyclic interval graphs. To
extend these computational results, we develop a linear program to compute
the optimal weightings that use the connection set of the graph. We apply this
linear programming approach to the circulant graphs, and the cubelike graphs.
The data we obtained suggests that this method does not produce inertia tight
weightings for all Cayley graphs.

While we do not know whether or not there are graphs that do not meet the
inertia bound, we have examples of families of graphs that meet the bound with-
out weighting the adjacency matrix. The folded-cube graphs are an example of
a family of graphs that meet the inertia bound with their unweighted adjacency
matrices. For graphs that meet the ratio bound, we are able to characterize the
maximum cocliques by analyzing the least eigenspace, or least eigenpolytope.
For graphs that meet the inertia bound, it is less clear how the cocliques are
related to the eigenpolytopes. In Chapter 4 we will consider the least eigen-
polytopes of the folded-cube graphs. Folded-cube graphs are distance-regular
graphs, and have a natural family of “canonical” maximum cocliques derived
from the distance partitions of the graph. Towards showing that the canon-
ical cocliques are exactly the maximum cocliques of a folded-cube graph, we
find a class of large facets of the least eigenpolytope (Lemma 4.10.3). We also
show that our geometric analysis can be used to derive dual eigenvalues of the
association scheme corresponding to the folded cube (Corollary 4.11.2).

Higman and Haemers [21] considered equitable partitions of strongly regular
graphs into two parts. They derived spectral conditions on strongly regular
graphs that have equitable partitions where one part is a coclique, and the
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1. INTRODUCTION

other part is strongly regular. In Chapter 6 we see how this result can be
applied to rule out equitable partitions of strongly regular graphs. We also
consider equitable partitions with additional structural constraints, namely that
both parts are convex subgraphs. We show that Latin square graphs cannot be
partitioned into a coclique and a convex subgraph (Lemma 6.4.1). We will also
see how the ideas explored in the thesis apply to examples of strongly regular
graphs.

4



Chapter 2

Cayley Graphs and The
Inertia Bound

The inertia bound is a bound on the size of a largest coclique in a graph. It was
first introduced by Cvetković in 1971 [4], and uses the number of non-negative
or non-positive eigenvalues of a matrix as an upper bound on the size of a
coclique. We get a valid bound using the spectrum of the adjacency matrix
of the graph. However, we also get a valid bound by using weightings of the
adjacency matrix. As a consequence, it is difficult to determine the best possible
value of the bound.

Given a bound, we have the following natural question. What can be said
about those graphs that meet the bound with equality? What structural prop-
erties lead to equality in the bound, and what deductions can we make given
a graph that meets the bound with equality? In the case of the inertia bound,
the answer is not known. We do not have a characterization of the graphs that
are inertia tight. Moreover, as a consequence of the difficulty of determining
the best possible value of the inertia bound, it is unknown whether or not there
exist graphs that are not inertia tight.

In this chapter we will look at the question of whether or not there exist
graphs that are not inertia tight. As we will see, the search space of valid
weighted adjacency matrices grows very quickly with the size of our graph. So
in order to make any headway, we will restrict ourselves to graphs that have
additional structure, namely Cayley graphs. The vertex-transitivity of Cayley
graphs, together with the fact that we have nice formulae for their eigenvalues,
makes them good candidates for investigating this problem.

The Andrásfai graphs are a family of circulant graphs that are inertia tight.
They generalize naturally to the cyclic interval graphs, but it is not known
whether these graphs have inertia tight weightings. We will present some com-
putational evidence that they are inertia tight. Our method is to assign weights
to the generators of the graph. This method has the advantage of generating
weighted adjacency matrices that have easily expressible eigenvalues.

5



2. CAYLEY GRAPHS AND THE INERTIA BOUND

We will see that by weighting the generators of a Cayley graph, we can
formulate the problem of finding an optimal weighting as a linear program.
This allows for efficient computations. We apply our linear program to the
circulant graphs on at most 32 vertices, and the cubelike graphs on 32 vertices.
We are able to find inertia tight weightings for graphs that are not amenable to
other ad hoc weighting methods.

2.1 Graphs

Graphs are well-studied combinatorial objects. For background on basic graph
theoretic concepts, we refer to reader to Diestel [10]. For algebraic graph the-
ory, we will follow Godsil and Royle [18]. We have attempted to use standard
terminology throughout this thesis.

A graph X = (V,E) consists of a set V = V (X) of vertices, together with a
multiset E = E(X) of 2-multisets of elements of V called the edges of X. A loop
is an edge containing one vertex, for example {x, x}, and a multiple edge is an
edge that appears more than once in E. A graph is simple if it does not contain
any loops or multiple edges. We will refer to an edge {x, y} in the abbreviated
form xy.

An arc is an element of V × V . We also refer to arcs as directed edges, and
we view the edge {x, y} as being equivalent to the two opposite arcs (x, y) and
(y, x). A graph is directed if E is a subset of V × V , and undirected if for each
arc of E, its reverse arc is also an element of E. For the purposes of this thesis,
graphs are simple and undirected. We will have occasion to consider loops and
directed edges when working with Cayley graphs. However, we mention them
only to eliminate them from consideration. All of our results apply only for
undirected graphs.

A subgraph of a graph X = (V,E) is a graph Y = (V ′, E′) where V ′ ⊆ V
and E′ ⊆ E. If V ′ ⊆ V , and E′ ⊆ E is the set of all edges in E that are subsets
of V ′, then Y = (V ′, E′) is an induced subgraph of X. We denote the subgraph
of X induced by the vertices V ′ as X[V ′].

Let x be a vertex of a graph X. If {x, y} is an edge of X, then we say
that y is adjacent to x or that y is a neighbour of x. We refer to the set of all
neighbours of x as the neighbourhood of x. The size of the neighbourhood of
x is the degree of x, or deg(x). We say a graph is regular if every vertex has
the same degree. The valency of a regular graph is the degree of its vertices. A
graph with valency k is k-regular.

A walk is a sequence of vertices x1 . . . xm so that each xi+1 is adjacent to xi.
A path is a walk with no repeated vertices. We say that a graph is connected if
any two vertices in X are joined by a path. The distance between two vertices
in a connected graph X is the length of a shortest path between them. The
diameter of a graph, diam(X), is the greatest distance between two vertices.

6



2.2. SPECTRA AND INTERLACING

2.2 Spectra and Interlacing

Let X be a graph on n vertices. The adjacency matrix of X is a n × n matrix
A(X) with entries 0 and 1. The rows and columns of A(X) are both indexed
by a fixed ordering of V (X). The xy-entry of A(X) is equal to the number of
arcs from x to y in X. Since our graphs are simple, A(X) is a 01-matrix. Also
since our graphs are undirected, A(X) is a symmetric matrix.

Let A be a n × n complex-valued matrix, z ∈ Cn be a vector, and θ ∈ C.
If Az = θz, we say that θ is an eigenvalue for A with eigenvector z. We also
refer to z as a θ-eigenvector for A. The multiset of eigenvalues of a matrix is
its spectrum. When A is the adjacency matrix of a graph X, we refer to the
eigenvalues, eigenvectors and spectrum of A as the eigenvalues, eigenvectors and
spectrum of X respectively.

We have the following facts about the spectrum of a graph, taken from Godsil
and Royle [18]. We omit the proofs.

2.2.1 Lemma (Lemma 8.4.2 in [18]). The eigenvalues of a real symmetric ma-
trix A are real numbers.

2.2.2 Theorem (Theorem 8.4.5 in [18]). Let A be a real symmetric n × n
matrix. Then Rn has an orthonormal basis consisting of eigenvectors of A.

These two results imply that if X is a graph, then the eigenvalues of X are
all real. We take the multiplicity of an eigenvalue θ to be the dimension of the
space spanned by the eigenvectors for θ. From the above theorem we have that
the sum of the multiplicities of the eigenvalues of X is n. Therefore we can
order the spectrum of a graph X from largest to smallest as

θ1 ≥ θ2 ≥ . . . ≥ θn.

We also write the spectrum of X as follows. Let Θ be the set of distinct eigen-
values of X, and let mθ be the multiplicity of θ, then the spectrum of X is

{(θ)mθ : θ ∈ Θ}.

2.2.3 Example. If X is a k-regular graph, then every row of A = A(X) contains
exactly k entries with value 1. Therefore if 1 is the n-dimensional all-ones vector,
A1 = k1, and 1 is a k-eigenvector of X.

2.2.4 Example. If X is a graph with n vertices, and no edges, then A(X) is
the zero matrix. So for any real n-dimensional vector z, Az = 0z. Thus the
eigenvalues of X are θi = 0 for all 1 ≤ i ≤ n.

We use interlacing to relate the spectrum of a graph to the spectrum of its
induced subgraphs. Let A be an n× n real symmetric matrix with spectrum

θ1(A) ≥ . . . ≥ θn(A),

7



2. CAYLEY GRAPHS AND THE INERTIA BOUND

and let B be an m×m real symmetric matrix with spectrum

θ1(B) ≥ . . . ≥ θm(B).

The eigenvalues of B interlace the eigenvalues of A if

θi(A) ≥ θi(B) ≥ θn−m+i(A)

for all 1 ≤ i ≤ m.
If A is a square matrix, a principal submatrix of A is a matrix that can be

obtained from A by removing some subset of the rows of A, together with the
corresponding subset of columns of A (i.e., if we remove the ith row, then we
also remove the ith column). The eigenvalues of a principal submatrix of A
interlace the eigenvalues of A.

2.2.5 Theorem (Theorem 9.1.1 in [18]). Let A be a real symmetric matrix and
let B be a principal submatrix of A. Then the eigenvalues of B interlace the
eigenvalues of A.

Note that if X is a graph and A = A(X), then the principal submatrices
of A correspond to induced subgraphs of X. This follows as if B is a principal
submatrix of A, then B is obtained by deleting the rows and columns of A
indexed by some subset of V (X). Thus if Y is an induced subgraph of X, then
the eigenvalues of Y interlace the eigenvalues of X.

2.3 The Inertia Bound

A coclique in a graph X is a subset S of the vertices of X so that there are
no edges of X joining any two vertices in S. Cocliques are also referred to as
independent sets. Note that if S is a coclique, then the induced subgraph X[S]
is a graph on |S| vertices with no edges. From Example 2.2.4 we recall that the
eigenvalues of X[S] are all 0. Let

θ1 ≥ . . . ≥ θn

be the eigenvalues of X, and let |S| = m. Then by Theorem 2.2.5 we see that

θi ≥ 0 ≥ θn−m+i

for all 1 ≤ i ≤ m. The independence number of a graph X is the size of its
maximum cocliques. We denote the independence number of X by α(X). From
the above observation we can derive a bound on the size of a coclique in a graph,
and hence a bound on α(G).

Given a real symmetric matrix A, we denote the number of positive eigen-
values of A by n+(A), the number of negative eigenvalues of A by n−(A) and
the number of zero eigenvalues of A by n0(A). So if A is a n× n matrix,

n = n+(A) + n0(A) + n−(A).

8



2.3. THE INERTIA BOUND

The ordered triple
(n+(A), n0(A), n−(A))

is called the inertia of the matrix A (the term “inertia” was coined by Sylvester
in 1852 due to the fact that this property is invariant for congruence classes of
matrices).

We can use the inertia of a weighted adjacency matrix of X to bound its
independence number. The following theorem is given as Theorem 9.6.3 in
Godsil and Royle [18], we also present the proof from [18].

2.3.1 Theorem (The Inertia Bound). Let X be a graph on n vertices with
adjacency matrix A. Let B be a real symmetric n×nmatrix such that B[i, j] = 0
whenever A[i, j] = 0. Then

α(X) ≤ min{n− n+(B), n− n−(B)}

Proof. Let S be a coclique in X. Since B has the property that B[i, j] = 0
whenever A[i, j] = 0, the principal submatrix of B indexed by the elements of
S is the zero matrix. Thus the eigenvalues of X[S] interlace the eigenvalues of
B.

Let θ1 ≥ . . . ≥ θn be the eigenvalues of B and let |S| = m. Then we have
that

θi ≥ 0 ≥ θn−m+i

for all 1 ≤ i ≤ m. In particular, 0 ≤ θi for 1 ≤ i ≤ m implies that B has at
least m non-negative eigenvalues. So

m ≤ n− n−(B).

Finally we note that −B is a real symmetric n× n matrix, and −B[i, j] = 0
whenever A[i, j] = 0. If z is a θ-eigenvector for B, then −Bz = −θz. So the
eigenvalues of −B are −θn ≥ . . . ≥ −θ1. Applying our interlacing argument
again we conclude that

m ≤ n− n−(−B).

But n−(−B) = n+(B), so we have that

m ≤ n− n+(B).

Therefore for any coclique S in X,

|S| ≤ min{n− n+(B), n− n−(B)},

and we have the result.

The inertia bound gives an important connection between the spectrum of
a graph and its structural properties. It is originally due to Cvetković, and
is sometimes referred to as the Cvetković bound [4]. The bound can also be
derived using the Witt index of a matrix (for example, Elzinga and Gregory use
this formulation [11],[12]).

9



2. CAYLEY GRAPHS AND THE INERTIA BOUND

2.4 Inertia Tight Graphs

We call the matrix B in Theorem 2.3.1 a weighted adjacency matrix for the
graph X. The entries of B correspond to weighting the edges of the graph with
real numbers. If there is a weighted adjacency matrix B for X so that equality
holds in the inertia bound, then we say that X is inertia tight.

2.4.1 Example. The Petersen Graph is the graph on the 2-subsets of {1, 2, 3, 4, 5},
where two sets are adjacent if and only if they are disjoint. The spectrum of
the Petersen Graph is

{(3)1, (1)5, (−2)4}.

By using the regular adjacency matrix of the Petersen Graph, Theorem 2.3
implies that the size of a largest coclique is at most 4. The sets

{1, 2}, {1, 3}, {1, 4}, {1, 5}

form a coclique of size 4, so the Petersen Graph is inertia tight.

A graph X is bipartite if there is a partition of the vertex set of X into two
cocliques. Let X be a bipartite graph and (S, T ) be a partition of V (X) into
cocliques. Note that every edge of X joins a vertex of S to a vertex of T . If we
order the vertices of V (X) so that every vertex of S comes before every vertex
of T , then the adjacency matrix A(X) of X takes the form

A(X) =

(
0 P
PT 0

)
,

where P is a |S| × |T | matrix. Now if z is a θ-eigenvector for A(X), we can
write z = (x, y) where x, y are |S|, |T |-dimensional respectively. So A(X)z = θz
implies that (

0 P
PT 0

)(
x
y

)
=

(
Py
PTx

)
= θ

(
x
y

)
,

and so (
0 P
PT 0

)(
x
−y

)
=

(
−Py
PTx

)
= −θ

(
x
−y

)
.

Thus if θ is an eigenvalue of X, then −θ is also an eigenvalue of X.
Now if we suppose that X is a bipartite graph and 0 is not an eigenvalue

of X, then the inertia of X is (n/2, 0, n/2) and the inertia bound implies that
α(X) ≤ n/2. However, since X is bipartite, α(X) ≥ n/2. Therefore X is inertia
tight.

Of course, it is possible that a bipartite graph X is inertia tight with respect
to its unweighted adjacency matrix, and has 0 as an eigenvalue.

2.4.2 Example. Let P3 be the path on 3 vertices. The spectrum of P3 is

{
√

2, 0,−
√

2}.

The inertia bound gives α(P3) ≤ 2, which is tight.

10
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2.4.3 Example. Let C4 be the cycle on 4 vertices. The spectrum of C4 is

{2, (0)2,−2}.

The inertia bound gives α(C4) ≤ 3, but α(C4) = 2, so if we use the unweighted
adjacency matrix, the resulting bound is not tight.

These two examples show that if 0 is an eigenvalue of bipartite graph X, then
we cannot guarantee that the inertia bound is tight if we use the unweighted
adjacency matrix A(X). However, we can apply the bound for all weighted
adjacency matrices B. So we cannot conclude that these graphs are not inertia
tight. Let us look at C4 again.

2.4.4 Example. The adjacency matrix for C4 is

A(C4) =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .

We represent a general weighted adjacency matrix for C4 as

B(a, b, c, d) =


0 a 0 d
a 0 b 0
0 b 0 c
d 0 c 0

 .

Now if we set a = c = 1 and b = d = 0 we have that the spectrum of B(1, 0, 1, 0)
is

{(1)2, (−1)2}.
Thus C4 is inertia tight. Note that the weighting B(1, 0, 1, 0) is the adjacency
matrix of a subgraph of C4 corresponding to two disjoint edges.

This example hints at a strategy for proving that all bipartite graphs are
inertia tight.

2.4.5 Proposition. If X is a bipartite graph, then there is a weighted adjacency
matrix B for X that meets the inertia bound.

Proof. Let M be a maximum matching of X. Define B to be the weighted
adjacency matrix for X that results from assigning every edge in M weight 1,
and the remaining edges weight 0. The matrix B is the adjacency matrix for

|M |K2 ∪ (n− 2|M |)K1

and has spectrum
{(−1)|M |, 0n−2|M |, 1|M |}.

So the inertia of B is (|M |, n − 2|M |, |M |) and by the inertia bound we have
α(X) ≤ n− |M |.

Now by König’s Theorem we have that for any bipartite graph, the size
of a maximum matching plus the size of a maximum coclique is equal to the
total number of vertices in X. Thus α(X) = n− |M | and B is an inertia tight
weighting.

11



2. CAYLEY GRAPHS AND THE INERTIA BOUND

For non-bipartite graphs we use a similar strategy to find inertia tight weight-
ings. A clique in a graph X is a set of vertices T so that every pair of vertices in
T is joined by an edge. Cliques and cocliques are “dual” objects. For a graph
X we denote by X the complement of X, defined as the graph on V (X) where
two vertices are adjacent if and only if they are not adjacent in X. So cocliques
in X are cliques in X. The size of a maximum clique in X is the clique number
of X which we denote by ω(X).

If S is coclique in X and T is a clique in X, then |S ∩ T | ≤ 1. This is easily
seen, as if s, t ∈ S∩T then s is simultaneously adjacent to and not adjacent to t.
Now suppose we have a partition of V (X) into m cliques, T1, . . . , Tm. Since the
sets Ti are disjoint, and |S ∩ Ti| ≤ 1 for each 1 ≤ i ≤ m, we have that |S| ≤ m.
If S is a maximum coclique, this implies that α(X) ≤ m.

Let X and Y be graphs with disjoint vertex sets. Then the union X ∪ Y of
X and Y is the graph

(V (X) ∪ V (Y ), E(X) ∪ E(Y )).

If A(X) and A(Y ) are the adjacency matrices of X and Y respectively, then the
adjacency matrix of X ∪ Y is (

A(X) 0
0 A(Y )

)
.

If x is a θ-eigenvector for X, then (x, 0) is a θ-eigenvector for X ∪ Y . Likewise
if y is a θ-eigenvector for Y , then (0, y) is a θ-eigenvector for X ∪ Y . So the
spectrum of X ∪ Y is the union of the spectra of X and Y .

Returning to our clique partition, suppose T is a clique on m vertices. Then
the adjacency matrix of T is Jm−Im where Jm is the m×m matrix will all values
1, and Im is the m ×m identity matrix. The spectrum of Jm is {m, (0)m−1},
and every vector is a 1-eigenvector of Im, so it follows that the spectrum of T
is {m− 1, (−1)m−1}.

Now consider our graph X partitioned into cliques T1, . . . , Tm. We obtain
the weighted adjacency matrix B by weighting all of the edges in each Ti with
value 1 and all other edges of X with value 0. Let mi = |Ti| for each i. By
the above notes we see that each mi − 1 is an eigenvalue of B, and −1 is an
eigenvalue of B with multiplicity

m∑
i=1

(mi − 1) = n−m.

Therefore the inertia bound gives α(X) ≤ m.
So we can try to prove inertia tightness by finding a partition T1, . . . , Tm of

X into cliques with m as small as possible. An obvious strategy is to try to
make the cliques Ti as large as possible. Since each Ti ≤ ω(X), the best possible
outcome is for each Ti to be a maximum clique, in which case

α(X) ≤ n/ω(X).

12



2.5. CAYLEY GRAPHS

2.4.6 Example. Denote the set {1, 2, . . . , n} by [n]. Let Sn be the symmetric
group of order n. The elements of Sn are permutations of the set [n]. For
α ∈ Sn we denote the image of i under α as α(i). We say that two permutations
α, β ∈ Sn are non-intersecting if α(i) 6= β(i) for each 1 ≤ i ≤ n. Let Xn be the
graph with vertex set Sn where α, β ∈ Sn are adjacent if and only if they are
non-intersecting.

Now, Xn has n! vertices. If we fix 1 ≤ i, j ≤ n and let Si,j be the set of
permutations α so that α(i) = j, then Si,j is a coclique in Xn. The size of Si,j
is (n− 1)! as every bijection between [n] \ i and [n] \ j gives an element in Si,j
and vice versa. Thus α(X) ≥ (n− 1)!. If α is any cycle of order n in Sn, then

Tα = {α, α2, . . . , αn}

is a clique in Xn of size n. Thus ω(X) ≥ n.
The Clique-Coclique bound for Cayley graphs implies that α(X)ω(X) ≤ n!.

So we have that
n! ≤ α(X)ω(X) ≤ n!,

and we have equality everywhere.
In fact, the clique Tα is a subgroup of Sn. Thus the cosets of Tα partition

Sn. Moreover, if T is a coset of Tα, then T is also a clique. To see this note
that T is obtained by composing each element of Tα by some β ∈ Sn. Thus

αi(a) 6= αj(a)

for i 6= j and 1 ≤ a ≤ n implies

αi(β(a)) 6= αj(β(a))

for i 6= j and 1 ≤ a ≤ n. Since β is a permutation of [n] this implies that the
elements of T are pairwise non-intersecting.

Therefore, there is a weighted adjacency matrix B for Xn that achieves
tightness in the inertia bound.

We have seen examples of graphs that are inertia tight by virtue of their
unweighted adjacency matrix, and examples of graphs that are inertia tight by
virtue of a weighted adjacency matrix. Can we find a weighted adjacency matrix
for every graph that meets the inertia bound? This is an important, and open,
question. Can we always meet the inertia bound, and if not how bad can the
bound be?

For the remainder of this chapter we will address these questions. Specifically
we will look at the inertia bound applied to Cayley graphs.

2.5 Cayley Graphs

Cayley graphs are a class of vertex-transitive graphs constructed using groups.
The Cayley graphs we will be working with in this thesis will all be constructed
using finite Abelian groups. For that reason our definitions are specifically for

13
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finite Abelian groups. However, our definitions generalize easily to non-Abelian
groups, as do the basic facts in this section and Section 2.6. We take our
treatment of Cayley graphs largely from Godsil and Royle [18].

Let G be a finite Abelian group with group operation +, and let C be a
subset of G. The Cayley graph X = X(G,C) is defined on G by the following
adjacency rule. Given a, b ∈ G, the arc (a, b) is a directed edge of X if and only
if b− a ∈ C.

Note that if the identity element, 0, of G is in C, then (a, a) is an edge of X
for all a ∈ G. So X is loopless if 0 /∈ C, and every vertex is the end of a loop
otherwise. Also note that we have defined Cayley graphs as directed graphs.
Define

−C = {−c : c ∈ C}.

If C = −C, then for a, b ∈ G, b− a ∈ C implies

−(b− a) = a− b ∈ C

and both (a, b) and (b, a) are in E(X). Thus X is an undirected graph.
For the purposes of this thesis, we will always take Cayley graphs to be

loopless and undirected.

2.5.1 Example. X = X(Zm, {1,m−1}) is a Cayley graph for the integers modulo
m. Each i ∈ Zm is adjacent to i − 1 and i + 1 in Zm. So X is the cycle on m
vertices. Cayley graphs for the groups Zm are called circulants. We will see this
class of Cayley graphs in this chapter, and in Chapter 3.

2.5.2 Example. For a vector space V , let ei denote the ith standard basis vector
of V . The graph

X = X(Z3
2, {ei : 1 ≤ i ≤ 3})

is a Cayley graph for the group Z3
2. It is easily seen that X is isomorphic to the

cube graph. Cayley graphs for the groups Zm2 are called cubelike graphs. We
will revisit cubelike graphs in Section 2.13.

Given graphs X,Y , the map f : V (X) → V (Y ) is an isomorphism if f is a
bijection between V (X) and V (Y ), and ab ∈ E(X) if and only if

f(a)f(b) ∈ E(Y ).

An isomorphism is an automorphism if X = Y .
Note that the identity map on V (X) is an automorphism of X. Also, if f is

an automorphism of X, then its inverse f−1 is also an automorphism of X.
Define the composition of two functions f : A → B and g : B → C as

f ◦ g : A→ C given by

(f ◦ g)(x) = g(f(x)).

If f, g are automorphisms of X, then f ◦g is an automorphism of X. This shows
that the set of automorphisms of a graph X is a group with group operation ◦.
We denote the automorphism group of X as Aut(X).

14
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Note that if X = X(G,C) is a Cayley graph, then we can define an auto-
morphism of X for every element of G. For g ∈ G define fg : G→ G as

fg(h) = h+ g.

The map fg ∈ Aut(X) as fg is a bijection with f−1g = f−g. It also preserves the
directed edges of X as ab ∈ E(X) if and only if

b− a = (b+ g)− (a+ g) ∈ C

if and only if f(a)f(b) ∈ E(X). Thus

{fg : g ∈ G} ⊆ Aut(X).

A graph X is vertex transitive if for any two vertices a, b ∈ V (X), there is
an automorphism f ∈ Aut(X) so that f(a) = b. Every Cayley graph is vertex
transitive. This follows as if a, b ∈ G, then b− a ∈ G and so fb−a ∈ Aut(X). So
fb−a is an automorphism of X with

fb−a(a) = a+ (b− a) = b.

2.6 Spectra of Cayley Graphs

Let G be an Abelian group, and let X = X(G,C) be a Cayley graph for G. We
can use the linear characters of G to determine the spectrum of X. We refer the
reader to Isaacs [22] for background on group representations and characters
(all of the results we will need are found in Chapter 2 of [22]).

A linear character χ : G → C is a homomorphism from G to C \ {0}. If
G is an Abelian group, the linear characters of G are exactly the irreducible
characters of G. The set H of linear characters of G forms a group with group
operation defined by

(χ ◦ φ)(g) = χ(g)φ(g).

Moreover, H is isomorphic to G, and in particular, there are |G| linear characters
for G.

Let χ be a linear character for G. Consider the vector zχ ∈ CG where
zχ[g] = χ(g) for all g ∈ G. Let A = A(X) be the adjacency matrix for X. Now
consider Azχ. The g-entry of Azχ is the inner product of the g-row of A with
zχ. So

(Azχ)[g] = 〈Ag, zχ〉 =
∑
h∈G

A[g, h]zχ[h] =
∑
h∈G

A[g, h]χ(h).

But since A is the adjacency matrix of a graph, A[g, h] = 1 exactly when g and
h are adjacent, and 0 otherwise. Since X is a Cayley graph with connection
set C, we have that g is adjacent to h exactly when h − g ∈ C. To state this
another way, the neighbours of g are exactly

{g + c : c ∈ C}.
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So

(Azχ)[g] =
∑
c∈C

χ(g + c) =
∑
c∈C

χ(g)χ(c) = χ(g)
∑
c∈C

χ(c) = zχ[g]
∑
c∈C

χ(c).

Thus we have shown that zχ is an eigenvector for X with eigenvalue∑
c∈C

χ(c).

Now suppose that χ and φ are distinct linear characters of G. Consider the
vectors zχ and zφ. Since χ and φ are distinct irreducible characters, they are
orthogonal with respect to the inner product

〈χ, φ〉 = (1/|G|)
∑
g∈G

χ(g)φ(g).

However, this implies that zχ and zφ are orthogonal vectors in Cn. Thus the
set of linear characters of G gives an orthogonal set of n vectors in Cn,

{zχ : χ is a linear character of G}

that form a basis of Cn. As a consequence we have that{∑
c∈C

χ(c) : χ is a linear character of G

}
is the spectrum of X = X(G,C).

2.6.1 Example. Let G = Zn and X = X(G,C), so X is a circulant. Let ω ∈ C
be a primitive nth root of unity (i.e., ω ∈ C is such that ωn = 1, and ωk 6= 1
for any k < n). For 1 ≤ i ≤ n define the character χi by

χi(g) = (ωi)g.

It is easily checked that the χi are distinct linear characters of G. So the
eigenvalues of X are {∑

c∈C
(ωi)c : 1 ≤ i ≤ n

}
.

If we let
ω = cos(2π/n) + i sin(2π/n),

then
<(ωj) = cos(2πj/n)

and since −C = C, we have that∑
c∈C

(ωi)c =
∑
c∈C

cos(2πic/n).

Thus the spectrum of X is{∑
c∈C

cos(2πi/n) : 1 ≤ i ≤ n

}
.
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2.7. ANDRÁSFAI GRAPHS

2.7 Andrásfai Graphs

The Andrásfai graphs are a class of Cayley graphs that meet the inertia bound
with their unweighted adjacency matrices. We will also see that they are
triangle-free circulants whose maximum cocliques are exactly the neighbour-
hoods of the vertices.

For a non-negative integer k we define the kth Andrásfai graph as And(k) =
X(Z3k−1, C). Here the connection set C is the set of integers 0 ≤ i ≤ 3k − 2
so that i is congruent to 1 modulo 3. We immediately see that And(k) is a
circulant on 3k − 1 vertices with degree k.

To see that And(k) is triangle-free, consider the neighbours of 0. Suppose
3i+ 1 and 3j + 1 are adjacent neighbours of 0. Then

(3i+ 1)− (3j + 1) = 3(i− j) ∈ C,

which is a contradiction. We can also easily show that And(k) has diameter
2. Note that we can partition the vertex set of And(k) into the residue classes
modulo 3. We have C0 the vertices with residue 0, C the vertices with residue
1, and C2 the vertices with residue 2. If 3i+ 2 ∈ C2, then 3i+ 2 = (3i+ 1) + 1.
Since 1 ∈ C, 3i+ 2 is adjacent to 3i+ 1 ∈ C, which is adjacent to 0. Thus every
vertex in C2 is at distance 2 from 0. If 3i ∈ C0, then 3i is adjacent to 3i + 1
which is adjacent to 0, so again every vertex in C0 \ {0} is at distance 2 from 0.
Thus And(k) has diameter 2.

We give the following argument from Godsil [19] to show that And(k) meets
the inertia bound.

2.7.1 Lemma (Lemma 6.5.1 from [19]). α(And(k)) = k, and And(k) is inertia
tight.

Proof. Since And(k) is triangle-free, and the valency of And(k) is k, the
neighbourhood of any vertex of And(k) is a coclique of size k. Moreover, since
And(k) has diameter 2, these cocliques are maximal. Thus α(And(k)) ≥ k.
To prove the reverse, we show that And(k) meets the inertia bound with its
unweighted adjacency matrix.

Following Example 2.6.1, the spectrum of And(k) is{∑
c∈C

ωic : 0 ≤ i ≤ 3k − 2

}
,

where ω is a primitive (3k − 1)th root of unity. Using the connection set for
And(k) we have ∑

c∈C
ωic =

k−1∑
j=0

ωi(3j+1) = ωi
k−1∑
j=0

(ω3i)j .

Now evaluating this sum we see

k−1∑
j=0

(ω3i)j =
ω3ik − 1

ω3i − 1
=

(ωi)3k − 1

ω3i − 1
= (ωi − 1)(ω3i − 1)−1.
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Therefore∑
c∈C

ωic = ωi(ωi − 1)(ω3i − 1)−1 = ωi(ω2i + ωi + 1)−1 = (ωi + 1 + ω−i)−1.

In order to bound α(And(k)) using the inertia bound, we need to determine
either the number of strictly negative or strictly positive eigenvalues. We will
use the number of strictly negative eigenvalues. We want to determine the values
j for which (ωj + 1 + ω−j)−1 < 0.

Let

ω = cos(2π/(3k − 1)) + i sin(2π/(3k − 1))

where i is the imaginary unit. Now

(ωj + 1 + ω−j)−1 = (1 + 2 cos(2πj/(3k − 1)))−1.

In order for

cos(2πj/(3k − 1)) < −1/2

we must have
2π

3
<

2πj

3k − 1
<

4π

3
.

Thus

(3k − 1)/3 < j < (6k − 2)/3

and k ≤ j ≤ 2k − 1. So there are exactly k values of j for which∑
c∈C

ωjc < 0.

Thus Theorem 2.3.1 implies that α(And(k)) ≤ k, and we have the result.

We have seen that α(And(k)) = k, and that the neighbourhood of any vertex
is a maximum coclique in And(k). In fact, the reverse is also true. If S is a
coclique of size k in And(k), then there is some i ∈ Z3k−1 so that S is the set of
neighbours of i. This is not difficult to show, but we omit the proof (see Lemma
6.10.2 in Godsil and Royle [18]).

2.8 Cyclic Interval Graphs

Andrásfai graphs are a subfamily of a larger family of circulant graphs. To
see how we can generalize the definition of And(k), we first give an alternative
definition of the Andrásfai graphs.

The following proposition is essentially Exercise 39 in Chapter 6 of Godsil
and Royle [18].

2.8.1 Proposition. And(k) is isomorphic to the graph X = X(Z3k−1, C
′),

where C ′ = {i : k ≤ i ≤ 2k − 1}.
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Proof. Recall that And(k) = X(Z3k−1, C) where C is the subset of Z3k−1
consisting of the integers that are congruent to 1 modulo 3. We define the
function f : V (X)→ V (And(k)) by

f(i) = 3(i− k) + 1 (mod 3k − 1).

First we show that f is a bijection. Let g : V (And(k)) → V (X) be defined
as g(a) = ka. Since 3k is congruent to 1 modulo 3k − 1,

g(f(i)) = g(3(i− k) + 1) = k(3(i− k) + 1) = (3k)(i− k) + k = i.

Thus g is the inverse of f , and f is a bijection from Z3k−1 to itself.
Finally, we show that f is a graph homomorphism between And(k) and X.

Note that f(C ′) = C, as i ∈ C ′ implies k ≤ i ≤ 2k − 1, so 1 ≤ f(i) ≤ 3k − 2.
Thus f(i) is congruent to 1 modulo 3. Also note that f is a linear function. This
completes the proof, as if i, j are neighbours in X, then there is some a ∈ C ′ so
that j − i = a. Now

f(j − i) = f(j)− f(i) = f(a) ∈ C,

so f(i), f(j) are adjacent in And(k).

This alternative definition of And(k) lends itself more readily to generaliza-
tion.

The cyclic interval graph C(n, r) is the Cayley graph C(n, r) = X(Zn, C)
where

C = {i : r ≤ i ≤ n− r}.

Proposition 2.8.1 shows that And(k) ∼= C(3k−1, k). The name “cyclic interval”
comes from the fact that these graphs have an alternative construction.

The graph C(n, r) is isomorphic to the graph on the set of cyclic shifts of [r]
in [n] where two sets are adjacent if and only if they are disjoint. To see these
graphs are isomorphic, consider the function that maps i ∈ [n] to the cyclic shift
of [r] that begins with i. This set is adjacent to the cyclic shifts that begin with
i + r ≤ j ≤ i + n − r (working modulo n). Thus this map is an isomorphism.
We will use these two definitions of C(n, r) interchangeably (but it will be clear
which we are using).

We are interested in determining whether or not C(n, r) meets the inertia
bound. So we need to determine α(C(n, r)). First we note that as a consequence
of the Pigeonhole Principle, if 2r > n, then any two cyclic shifts of [r] will
intersect non-trivially. Thus C(n, r) is the empty graph on n vertices when
2r > n. If 2r ≤ n, then C(n, r) will have some edges. In order for S to be
a coclique in C(n, r), it must be the case that the elements of S are pairwise
intersecting. Thus the sets Si consisting of the cyclic shifts of [r] that contain i
form cocliques of size r in C(n, r). The following lemma demonstrates that the
sets Si are exactly the maximum cocliques of C(n, r).

2.8.2 Lemma (Lemma 7.7.1 in [18]). If 2r ≤ n, then α(C(n, r)) = r. Moreover,
the maximum cocliques are exactly the sets Si for 1 ≤ i ≤ n.
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Proof. Let T be a maximum coclique in C(n, r). Since C(n, r) is a Cayley
graph, it is vertex transitive. So without loss of generality we assume that
[r] ∈ T . Define the sets

Ti = {A ∈ T : i ∈ A}.

Note that every A ∈ T is either in T1 or Tr. This must be the case as if
A = [r], then a ∈ T1 and Tr. If A 6= [r], then A ∩ [r] 6= ∅ implies that there is
some least 1 ≤ i ≤ r so that i ∈ A. If i = 1, then A ∈ T1. If i > 1, then since A
is a cyclic shift of [r], we see that r ∈ A and A ∈ Tr. Thus

|T | = |T1|+ |Tr| − 1.

Suppose that 1 ≤ i ≤ r is the smallest number so that every A ∈ Tr contains
i ∈ A. Since each A ∈ T1 intersects each B ∈ Tr, each B ∈ T1 contains i. Thus

|T1| ≤ r − i+ 1,

and |Tr| ≤ i. Therefore |T | ≤ r, and α(C(n, r)) = r. Moreover, in order to
achieve equality we must have

|T1| = r − i+ 1,

so T1 contains all of the cyclic shifts whose largest element is in the range [i, r].
Likewise we must have Tr the set of all cyclic shifts whose least element is in
the range [1, i]. Thus T = Si.

We can determine the spectrum of C(n, r) as follows. Recall that C(n, r) =
X(Zn, C) with C = {r, . . . , n−r}. Let ω be a primitive nth root of unity. Then
the character χi defined by

χi(a) = ωia

gives an eigenvector for C(n, r) with eigenvalue

∑
c∈C

χi(c) =

n−r∑
c=r

ωic = ωir
ωi(n−2r+1)

ωi − 1
.

We can apply the trick we used to prove Lemma 2.7.1 to derive a more useful
formula for the eigenvalues of C(n, r) for specific values of n and r.

2.9 Triangle-Free Cyclic Interval Graphs

The graphs C(n, r) are triangle free for

(n+ 1)/3 ≤ r ≤ n/2.

We have seen that when (n+ 1)/3 = r, the cyclic interval graph C(n, r) meets
the inertia bound with its unweighted adjacency matrix. When r = n/2, the
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inertia bound is tight for C(n, r) using its unweighted adjacency matrix. In this
case, C(n, r) ∼= rK2, and has spectrum

{(−1)r, (1)r}.

So α(C(n, r)) ≤ r by the inertia bound, and by choosing one vertex per copy of
K2 we have a coclique that meets this bound.

What happens for (n + 1)/3 < r < n/2? In this case we computed the
inertia bound value for all values of r and n so that 2 ≤ r ≤ 14. Of those 104
graphs, 64 meet the inertia bound with their unweighted adjacency matrices and
are inertia tight. That leaves 40 unaccounted for. We saw in Section 2.4 that
one strategy for weighting the adjacency matrix of a graph in order to achieve
equality in the inertia bound is to partition the graph into cliques.

A clique in C(n, r) is a set of non-overlapping intervals of [n]. Since each
interval has length r, clearly

ω(C(n, r)) = bn/rc.

If n = rj + a for 0 ≤ a < r, then we can partition the vertices of C(n, r) into
r cliques of size j, together with a cliques of size 1. The spectrum of Kj is
{(−1)j−1, j − 1} and the spectrum of K1 is {0}. So the spectrum of rKj ∪ aK1

is
{(−1)r(j−1), (0)a, (j − 1)r},

and the inertia bound gives α(C(n, r)) ≤ r+ a. Thus if a = 0, we can partition
the vertices of C(n, r) into r cliques with n/r vertices, and C(n, r) is inertia
tight. However, if a 6= 0, then

α(C(n, r)) = r < r + a,

and this weighting does not show that C(n, r) is inertia tight (if indeed it is).
For (n+1)/3 < r < n/2, we see that n = 2r+a for some 0 < a < r−1. Thus

the clique approach fails to show that our 40 stubborn graphs are inertia tight.
In order to show that these graphs are inertia tight, we use another method.

2.10 Generator Weightings

Given a graph X, in order to find an optimal bound in Theorem 2.3.1, we
are looking for a real symmetric matrix B with the property that B[i, j] = 0
whenever A(X)[i, j] = 0. We want to find such a matrix B so that the number
of strictly negative eigenvalues of B is as small as possible. Valid matrices
B correspond exactly to edge weightings of the graph X where there are no
restrictions on the weights we can assign to each edge. As such the search space
of valid matrices is very large. However, when X is a Cayley graph, there is a
natural class of edge weightings of X.

Let X = X(G,C) be a Cayley graph for a finite Abelian group G. Then C
is inverse-closed (i.e., −C = C), and every edge e ∈ E(X) has a corresponding
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inverse pair of generators in C. This follows as e = {x, y} ∈ E(X) implies that
for x, y ∈ G, both x − y and y − x are in C. So there is some c ∈ C with
x = y+ c. Note that every vertex x ∈ G is incident with an edge corresponding
to c for each c ∈ C, the edge {x, x + c}. So there are two edges incident with
x corresponding to the inverse pair {c,−c} (unless c = −c, in which case x is
incident with one edge corresponding to the inverse “pair” {c, c}). Thus if we
partition C into inverse pairs (or singletons)

C = {c1,−c1} ∪ · · · ∪ {ck,−ck},

we see that X decomposes into Cayley graphs Xi = X(G, {ci,−ci}) each of
which is either a 2-regular graph or a 1-regular graph.

We can use this decomposition of X to construct a weighted adjacency ma-
trix B. Let the vertices of X be ordered as V (X) = {x1, . . . , xn}. If

C = {c1,−c1} ∪ · · · ∪ {ck,−ck},

define the generator weighting {α1, . . . , αk} of X to be the matrix B with entries

B[i, j] =

{
αl, if xi − xj ∈ {cl,−cl}
0, if xi is not adjacent to xj .

We determine the eigenvalues of B as follows.
Let χ be a linear character of G, and define zχ ∈ Cn by zχ(xi) = χ(xi). We

have shown that zχ is an eigenvector for X with eigenvalue∑
c∈C

χ(c).

Consider Bzχ. The xi entry of Bzχ is

Bzχ[i] =

n∑
j=1

B[i, j]zχ[j] =
∑
c∈C

αcχ(c),

where αc is the weight corresponding to the generator c ∈ C. So calculating
the eigenvalues of a weighted adjacency matrix B corresponding to a generator
weighting is achieved in much the same way as calculating the eigenvalues of
X. Our generator weightings correspond exactly to weightings of the character
sums over the connection set.

Using this method we were able to assign generator weightings for each of
the 40 cyclic interval graphs from the previous section that achieve equality
in the inertia bound. This shows that all of the cyclic interval graphs with
(n+ 1)/3 ≤ r ≤ n/2 and 2 ≤ r ≤ 14 are inertia tight.

To achieve this we were able to find suitable weightings by inspection. But
ideally we would like to be able to find optimal generator weightings for a large
set of graphs, or even a class of graphs, quickly. In the next section we show
that we can employ a linear program to make this task easier.
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2.11 A Linear Program

In this section we will see how to construct a linear program to find generator
weightings of a Cayley graph that result in optimal inertia bound values. Our
method does not require more linear programming or integer programming than
can be found in Appendix A and Chapter 6 of Cook et al. [8]. We let X =
X(G,C) be a Cayley graph for a finite Abelian group G.

Let C = C1 ∪ · · · ∪Ck be a partition of the connection set C so that each Ci
is inverse closed. Our method will work for any such partition, but in order to
consider all possible generator weightings we will assume that each Ci has size
1 or 2 (i.e., each Ci consists of some g ∈ G and its inverse). Let α ∈ Rk be a
vector of generator weights, and define

Bα =

k∑
i=1

αiA(X(G,Ci)).

So Bα is the weighted adjacency matrix obtained from A(X) by weighting the
edges of X with generator weights α. Recall that the eigenvalues of Bα are{

k∑
i=1

αi

(∑
c∈Ci

χ(c)

)
: χ is a linear character of G

}
.

Let
(n+(Bα), n0(Bα), n−(Bα))

be the inertia of Bα. We want to find a weighting α that minimizes

min{n− n−(Bα), n− n+(Bα)}.

For each α ∈ Rk we can compute the eigenvalues of Bα explicitly. Let χ1, . . . , χn
be an ordering of the linear characters of G, and let

vj =

k∑
i=1

αi
∑
c∈Ci

χj(c)

be the jth eigenvalue of X (according to the ordering of the characters). Now
we can express our problem as a mathematical program (P ).

(P ) min s

s.t. vj =
∑k
i=1 αi

∑
c∈Ci χj(c) for 1 ≤ j ≤ n

aj =

{
1, if vj > 0

0, else
for 1 ≤ j ≤ n

bj =

{
1, if vj < 0

0, else
for 1 ≤ j ≤ n

s ≥ min{n− 1Ta, n− 1T b}
α ∈ Rk
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Here 1 is the vector with all entries equal 1, and a and b are the vectors with
a[j] = aj and b[j] = bj respectively. This program computes the best possible
inertia bound value over all possible generator weightings of X. However, in
order to use (P ) to compute an optimal weighting for a given graph, we need
to transform it into a linear program.

The program (P ) is close to being a linear program. We only need to replace
the definition of aj and bj with linear constraints, and replace the constraint

s ≥ min{n− 1Ta, n− 1T b}

with a linear constraint.
The second task is easily accomplished. We introduce a decision variable

d ∈ {0, 1} and use the constraints

s ≥ n(1− d)− 1Ta

s ≥ nd− 1T b.

Since the values of a, b and 1 are non-negative,

0 ≤ 1Ta, 1T b ≤ n.

Thus when d = 1, the first inequality is weaker than the second, and when d = 0
the reverse is true. So if

min{n− 1Ta, n− 1T b} = n− 1Ta,

setting d = 0 results in s = n − 1Ta as desired. The other case is handled
likewise.

The first task is more troublesome. Consider the constraint

aj =

{
1, if vj > 0

0, else

for some 1 ≤ j ≤ n. If we let M be some large fixed real number, then the
constraints

Maj − vj ≥ 0

Maj − vj ≤ M

enforce the conditions: 0 < vj ≤ M implies aj = 1; and, −M ≤ vj < 0 implies
aj = 0. However, when vj = 0 , aj = 0 and aj = 1 both satisfy these two
constraints. In order to fix this problem, we let ε > 0 be some small fixed real
number. The constraints

Maj − vj ≥ 0

Maj − vj ≤ M − ε

enforce the conditions

aj =

{
1, if ε ≤ vj ≤M
0, if −(M − ε) ≤ vj ≤ 0

.
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Thus we have eliminated the possibility that aj = 0 or 1 are both feasible values.
The price of these modifications is that we have reduced the space of fea-

sible solutions to our program. By adding the last set of constraints, we have
constrained each eigenvalue to lie in the interval [−M,M ] for some positive real
number M . This restriction does not affect the optimal value of our program.
If α is a generator weighting and Bα is the resulting weighted adjacency matrix,
then for any positive real number a, the matrix aBα is a weighted adjacency
matrix. Moreover, θ is an eigenvalue for Bα if and only if aθ is an eigenvalue
for aBα, so Bα and aBα have the same inertia, and thus give the same value in
the inertia bound. Finally, we note that

aBα = Baα,

and so aBα is also a generator weighting of X. Therefore, if α is an optimal
solution to (P ), there is some a ∈ R so that aα is an optimal solution to P , and
the eigenvalues of Baα are all contained in [−M,M ].

Adding ε results in a more serious restriction. In fact, the last two constraints
imply that the eigenvalues vj all lie in the set

S = [−(M − ε), 0] ∪ [ε,M ].

It is possible that there are optimal solutions α to (P ) so that there is no scalar
multiple of Bα whose eigenvalues all lie in the set S. Thus by using these
constraints we are not only reducing the number of feasible solutions, but we
may also be changing the optimal value of our original program.

The resulting linear program is still useful for searching for optimal generator
weightings of X. In particular, given a graph X, our program may find a
generator weighting that meets the inertia bound. But, if there is a gap between
α(X) and the value returned by the program, it does not give a certificate that
better generator weightings do not exist.

We give our final program as a mixed linear integer program, (MILP ).

(MILP ) max −s
s.t. vj =

∑k
i=1 αi

∑
c∈Ci χj(c) for 1 ≤ j ≤ n

Maj − vj ≥ 0 for 1 ≤ j ≤ n
Maj − vj ≤ M − ε for 1 ≤ j ≤ n
Mbj + vj ≥ 0 for 1 ≤ j ≤ n
Mbj + vj ≤ M − ε for 1 ≤ j ≤ n

s ≥ n(1− d)− 1Ta

s ≥ nd− 1T b

a ∈ {0, 1}n

b ∈ {0, 1}n

d ∈ {0, 1}
α ∈ Rk

Note that in (MILP ) we have the constraint α ∈ Rk, and some of our eigenval-
ues vj may have irrational values. However, in practice, we will use a rational
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approximation to the eigenvalues of our matrix, and we will constrain α to be
a rational vector, α ∈ Qk. We also have a choice of M and ε when we compute
solutions to (MILP ). For our computations we used M = 106 and ε = 10. A
ratio of ε = M/105 seemed to work best with the software we used, and ε = 10
(as opposed to ε = 1 or 10−1) gave weightings that were clearest to read.

2.12 Computational Findings

In his PhD thesis, Elzinga [11] used a computer search to show that all graphs
on at most 10 vertices have a weighted adjacency matrix that meets the inertia
bound. He extended these calculations to show that all vertex-transitive graphs
on at most 12 vertices have a weighted adjacency matrix that meets the inertia
bound. The method Elzinga employs uses α-critical graphs.

A graph G is α-critical if for all edges e ∈ E(G), α(G \ e) > α(G). In order
to show that the inertia bound is met by all graphs, it would suffice to prove
that all α-critical graphs are inertia tight. This follows, as if G is not α-critical,
then there is some subset S ⊆ E(G) for which α(G \ S) = α(G) and G \ S is
α-critical. Now if G \ S is inertia tight, then we can extend an inertia tight
weighting of the edges of G \ S to an inertia tight weighting of the edges of G
simply by assigning weight 0 to the edges in S.

Elzinga [11] used a computer to find the α-critical graphs on at most 10
vertices, then found optimal weightings by inspection. In some cases, a non-
trivial weighting was required to meet the inertia bound.

2.12.1 Example. The Paley graphs are a family of Cayley graphs defined as
follows. For a prime power q with q congruent to 1 modulo 4, the Paley graph
of order q is P (q) = X(GF (q), C) where GF (q) is the finite field with q elements,
and C is the set of non-zero squares in GF (q). For example if q = 5, then GF (5)
is the set of integers modulo 5, and the non-zero squares are 1 and 4. Thus P (5)
is the 5-cycle.

The graph P (13) is the Cayley graph on Z13 with connection set

{1, 3, 4, 9, 10, 12}.

We can partition the vertices of P (13) according to their distance from 0. Since
P (13) has diameter 2 this partition has three parts,

{0}, {1, 3, 4, 9, 10, 12}, {2, 5, 6, 7, 8, 11}.

The last set of vertices induces a graph isomorphic to the triangular prism graph
(two disjoint triangles joined by a perfect matching), and thus has independence
number 2. So any coclique in P (13) containing 0 has size at most 3. Since P (13)
is vertex transitive, we have that α(P (13)) = 3. Can we find a weighting that
shows P (13) is inertia tight?

Note that the neighbourhood of 0 in P (13) is a 6-cycle. So the size of a
largest clique in P (13) is 3. We can partition P (13) into four copies of K3,
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together with one copy of K1, as

{0, 9, 10}, {1, 2, 5}, {3, 4, 7}, {8, 11, 12}, {6}.

The resulting weighted adjacency matrix has spectrum

{(−1)8, (0)1, (2)4},

and implies that α(P (13)) ≤ 5. We can try replacing {3, 4, 7} and {6} with
{3, 6} and {4, 7}. Now our partition consists of three copies of K3 and two
copies of K2. The resulting spectrum is

{(−1)8, (1)2, (2)3}

and gives the same value in the inertia bound. So α(P (13)) ≤ 5 is the best
bound achievable by a partition of P (13) into cliques.

Elzinga considered P (13) and found by inspection a weighting of the gen-
erators that gives α(P (13)) ≤ 4. His weighting assigns value 1 to the edges
corresponding to the generators {1, 12} and weight −1 to all of the other edges.

We ran (MILP ) using the eigenvalues of P (13). The program found an
optimal weighting with weight 0.31234 assigned to generators {1, 12}, weight
0.16395 assigned to generators {3, 10} and weight 0.0237 assigned to {4, 9}.
The objective value of this solution is 4. So we have strong evidence that
α(P (13)) ≤ 4 is the best bound obtainable by a weighting of the generators of
P (13).

The question of whether P (13) is inertia tight is still open.

We were interested in approaching the question of whether there are graphs
that are not inertia tight by using the mixed integer linear program (MILP ).
The linear program corresponding to a given Cayley graph is relatively small.
If X(G,C) has n vertices, then (MILP ) has 3n+ 2 variables and a number of
constraints linear in n. So the resulting programs can be solved very efficiently.
Our calculations were performed using the mathematics software system Sage
[30] run on a laptop computer.

We generated the complete set of circulant graphs on n vertices for 23 ≤ n ≤
32. From these graphs we considered the non-bipartite connected graphs and
computed their independence numbers, and inertia bound values. For graphs
that did not meet the inertia bound with their unweighted adjacency matrix,
we ran (MILP ) to find a weighting of the generators that gave an optimal
tightening of the inertia bound over weightings of the generators.

In our calculations we omitted the graphs that are inertia tight using their
unweighted adjacency matrix. We also omit the graphs X for which the clique
number ω(X) and independence number α(X) satisfy ω(X)α(X) = |V (X)|, as
those graphs can be partitioned into α(X) copies of Kω(X), and are thus inertia
tight.

Table 2.12 is a summary of the data. The columns give: the size of the graphs
n; the total number of graphs on n vertices; the number that are inertia tight
using the unweighted adjacency matrix; the number for which ω(X)α(X) =
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|V (X)|; and finally the results of running (MILP ) on the graphs that are not
inertia tight and for which ω(X)α(X) < |V (X)|. The entries in the final column
are in the form {a : b} where a is the difference between the optimal value of
(MILP ) and α(X) (i.e., the slack in the inertia bound value) and b is the
number of graphs that achieve that difference.

Table 2.1: Circulant LP Data Summary
n Total I.T. ωα = n (MILP ) Differences

23 186 6 0 {0 : 176}, {1 : 3}, {2 : 1}
24 1234 7 583 {0 : 439}, {1 : 158}, {2 : 37}, {3 : 10}
25 419 5 76 {0 : 324}, {1 : 13}, {2 : 1}
26 1358 7 25 {0 : 1103}, {1 : 206}, {2 : 17}
27 919 9 110 {0 : 753}, {1 : 42}, {2 : 5}
28 3027 8 643 {0 : 1762}, {1 : 541}, {2 : 70}, {3 : 3}
29 1180 7 0 {0 : 1100}, {1 : 65}, {2 : 8}
30 8621 12 2677 {0 : 4791}, {1 : 1024}, {2 : 89}, {3 : 10}
31 2190 5 0 {0 : 2005}, {1 : 165}, {2 : 15}
32 8244 3 1422 {0 : 4671}, {1 : 1753}, {2 : 369}, {3 : 16}, {4 : 10}

From the data we see that the worst possible inertia value slack is growing
with n. This shows that neither the method of weighting the generators of
X, nor the method of partitioning X into disjoint cliques performs well as n
increases. So in order to show that all of the circulants for 23 ≤ n ≤ 32 vertices
are inertia tight, we will need to find another approach.

2.13 Cubelike Graphs

Cubelike graphs are Cayley graphs for the groups Zn2 . We also looked at the
inertia bound values given by weighting the generators of a cubelike graph. In
particular, we looked at the cubelike graphs on 32 vertices. Our thanks to
Gordon Royle for providing a user-friendly list of the non-isomorphic cubelike
graphs on 32 vertices.

There are 1372 non-isomorphic cubelike graphs on 32 vertices. We again
restricted our attention to those that are non-bipartite and connected. Of
these 1304 graphs, only 6 meet the inertia bound with their unweighted ad-
jacency matrix. That leaves 1298 graphs, 1177 of which have the property that
ω(X)α(X) = 32.

We ran (MILP ) on the remaining 121 cubelike graphs on 32 vertices. We
found that 41 of these had generator weightings that gave equality in the inertia
bound, 41 had optimal generator weightings that gave an inertia bound value
of α(X) + 1 and the remaining 39 had optimal generator weightings that gave
an inertia bound value of α(X) + 2.
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From this data we see that our linear programming approach performs bet-
ter for the cubelike graphs on 32 vertices than for the circulants on 32 vertices.
However, we still have 80 cubelike graphs on 32 vertices for which inertia tight-
ness is not determined.

2.14 Open Problems

The central open problem for the inertia bound is whether or not there exist
graphs that have no inertia tight weighting. We have seen that this prob-
lem is very difficult. Even for P (13), a graph on 13 vertices with considerable
structure, ruling out inertia tight weightings is computationally infeasible. The
computational tools we have developed in this chapter suggest some “easier”
open problems.

We can constrain the question of whether or not inertia loose graphs exist
to the question: given a subset of weighted adjacency matrices, is it possible to
find a weighting that is inertia tight? For example, we saw that partitioning a
graph into disjoint cliques gives inertia tight weightings for Cayley graphs with
α(X)ω(X) = |V (X)|. However, we also were able to show that P (13) does not
have a partition into cliques that gives equality in the inertia bound. We can ask
the same question for generator weightings. Is there a Cayley graph for which
there is no inertia tight generator weighting? Our data suggests that these
graphs do exist. However, the results of our linear program do not constitute a
proof.
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Chapter 3

Computational Complexity
of Maximum Coclique

In this chapter we consider the computational complexity of the Maximum
Coclique problem. The Maximum Coclique problem is the problem of finding
a coclique of maximum size in a given graph. It is well known that for the
class of all graphs, the Maximum Coclique problem is NP-Hard. That is, given
the assumption that P 6=NP, there is no algorithm that solves the Maximum
Coclique problem for all graphs and runs in polynomial time.

Throughout this chapter, we use very little complexity theory. We will only
rely on a few facts about the classes of computational problems (such as P, NP,
NP-Complete and NP-Hard). The class P consists of those problems that can
be solved in polynomial time (i.e., for each Π ∈P there is an algorithm that
solves each instance of Π in time bounded by a fixed polynomial in the size of
the input). In order to show that a problem Π1 is NP-hard, we will reduce a
problem Π2 that is known to be NP-Hard to Π1. By this we mean that we will
show that given an oracle Ω that solves Π1 in polynomial time, we can describe
an algorithm that solves Π2 in polynomial time. For a more rigourous treatment
of this subject we refer to Papadimitriou [29].

The Maximum Coclique problem is equivalent to the Maxclique problem.
This follows from the fact that cocliques in a graph X are cliques in X, the
complement of X. In this chapter we will formulate our results in terms of
cliques, and the Maxclique problem. But our results apply equally for cocliques,
and the Maximum Coclique problem.

Finding the clique number ω(X) of a given graph X is a hard problem in
general. However, we can make this problem easy by restricting the class of
graphs we are working with. For instance, if we look at the Maxclique problem
on the class of forests (i.e., acyclic graphs), there is a very fast algorithm that
returns a clique of maximum size. If a forest X has an edge, we return the edge,
if not we return any vertex. Since X contains no cycles, it contains no triangles
and so ω(X) = 1 or 2. This is a very trivial example, however it leads us to a
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more general question. Given a class X of graphs, what is the computational
complexity of the Maxclique problem restricted to X ∈ X ?

In [7], Codenotti et al. consider this problem where X is the class of circulant
graphs (i.e., Cayley graphs for the groups Zm). The class of circulants is a very
restricted class of graphs, but Codenotti et al. were able to prove the following
result.

3.0.1 Theorem (Theorem 1 in [7]). The Maxclique problem restricted to cir-
culant graphs is NP-Hard.

Despite the additional structure of circulant graphs, the computational com-
plexity of the Maxclique problem is the same as for the class of all graphs.

This result is counter-intuitive, as Cayley graphs are vertex transitive. So in
order to find a clique of maximum size in a Cayley graph X, it suffices to pick
any vertex x ∈ V (X), and try to find a maximum clique in the neighbourhood
of x. However, the result of Codenotti et al. shows that for circulants the extra
regularity is not helpful.

In this chapter we develop a new method to prove the following similar
theorem.

3.0.2 Theorem. For a fixed prime p, the Maxclique problem restricted to Cay-
ley graphs for the family of groups Znp is NP-hard.

While Codenotti et al. are able to rely on a result in additive number theory,
this fails for the class of Cayley graphs we consider. Our method employs
quotient graphs and coding theory to prove Theorem 3.0.2. As a result, our
method has greater potential for generalization, and application to different
classes of Cayley graphs.

3.1 3-Sum Respecting Assignments

In order to show that the Maxclique problem is at least as hard for a class
of Cayley graphs as it is for the class of all graphs, we exhibit a polynomial-
time reduction. Towards our specific construction, we first develop a general
construction of an auxiliary Cayley graph whose cliques are related to the cliques
of an input graph. This is a generalization of the method used by Codenotti
et al. in [7]. Our auxiliary graph will grow exponentially with the size of the
input, we will fix this later.

Given a graph X, and an Abelian group G, let η : V (X)→ G be an assign-
ment of group elements to the vertices of X. For convenience, we will assume
that V (X) = [n], and we denote η(i) by gi. For a positive integer k, we say that
η is a k-sum respecting assignment if the sums∑

s∈S
gs

are distinct for all multisets S of elements of [n] of size k.
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Note that if η is k-sum respecting, then the k-sums kgi must all be distinct.
In particular, at most one gi can have order k. We also have that if η is k-sum
respecting, then η is also i-sum respecting for all i ≤ k. To see this, assume S
and T are two multisets of elements of [n] of size i with∑

t∈T
gt =

∑
s∈S

gi.

Extend S, T to S′, T ′ respectively by adding k − i copies of g1 to each. Now,∑
s∈S′

gs = (k − i)g1 +
∑
s∈S

gs = (k − i)g1 +
∑
t∈T

gt =
∑
t∈T ′

gt

which gives us a contradiction.

3.1.1 Example. Let G be an Abelian group, and X be a graph on n vertices.
The direct product Gn is an Abelian group. Let g ∈ G \ {0} and let gi ∈ Gn
be the element with g in the ith component and 0 in all other components.
Define η(i) = gi. It is easy to see that the k-sums of distinct elements of
{gi : 1 ≤ i ≤ n} are all distinct for any 1 ≤ k ≤ n. Thus if g has order k, then
η is a (k − 1)-sum respecting assignment.

3.1.2 Example. Let G = Z2, and X be a graph on n vertices. The direct product
Gk is an Abelian group for any k ≥ 1. Since every element of G has order at
most 2, any assignment η : V (X)→ Gk will be at most 1-sum respecting.

We now show that 3-sum respecting assignments can be used to construct
auxiliary Cayley graphs with the same clique number as our starting graph. The
ideas and proofs are slight adaptations of those demonstrated by Codenotti et
al. in [7].

First we construct a Cayley graph for G from our given graph X. Given a
graph X and an assignment η of elements of an Abelian group G to the vertices
of X, we define the set C as,

C = {gi − gj : i is adjacent to j in X}.

Define the Cayley graph Γ to be Γ = X(G,C). Since gi − gj ∈ C implies that
gj − gi ∈ C, our graph Γ is indeed a graph (and not a directed graph). This
definition is valid for all assignments η, however from here on we assume that η
is 3-sum respecting.

Note that since η is 3-sum respecting, it is also 2-sum respecting. This
implies that the differences gi − gj are all distinct, as

gi − gj = gk − gl

implies
gi + gl = gk + gj

and we have a contradiction. Thus our connection set C has size 2|E(X)|.
Moreover, η is also 1-sum distinct, so all of the elements gi are distinct, and
gi − gj 6= 0 for any i and j. Thus 0 /∈ C and Γ is loopless.
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For the remainder of this section we assume that Γ is constructed from
X using a 3-sum respecting assignment. The following pair of lemmas show
ω(Γ) = ω(X).

3.1.3 Lemma. If S is a clique in X and i ∈ S, then

T = {gj − gi : j ∈ S}

is a clique in Γ containing 0. Moreover, |S| = |T |.

Proof. Since S is a clique in X, gj − gk ∈ C for all distinct j, k ∈ S. In
particular, gj − gi ∈ C for all j ∈ S. So 0 ∈ T , and 0 is adjacent to all other
elements of T in Γ.

Now suppose j, k ∈ S \ {i}. We have

(gi − gj) + (gj − gk) = gi − gk.

Since gj − gk ∈ C, we have that gi − gj is adjacent to gi − gk in Γ. Thus T is a
clique in Γ containing 0.

To see that |S| = |T | we only need the differences gi − gj to be distinct for
all j ∈ S. We have already noted that this is true when η is 3-sum respecting.

3.1.4 Lemma. If S is a clique in Γ, then there is a clique in X with size |S|.

Proof. If S is a clique in Γ, then we can translate S to a clique T in Γ with
|S| = |T | and 0 ∈ T . To do this we simply take s ∈ S and set

T = {s′ − s : s′ ∈ S}.

So from here on we assume that 0 ∈ S.
Consider gi − gj adjacent to gk − gl in the neighbourhood of 0. Since these

vertices are adjacent, we must have some gs − gt ∈ C so that

(gi − gj) + (gs − gt) = gk − gl.

Rearranging we see that

gi + gs + gl = gj + gt + gk.

Since our assignment is 3-sum respecting, we conclude that the sets of indices
on either side of the equation are the same, {i, s, l} = {j, t, k}. Since none of
the vertices we started with were 0, we see that i 6= j, k 6= l and s 6= t. So there
are two possibilities, either (i, s, l) = (k, j, t), or (i, s, l) = (t, k, j). In the first
case we have that gi − gj is adjacent to gi − gl by the element gj − gl of C. We
see that ijl forms a triangle in X. Likewise, the second case gives triangle ijk
in X. So every triangle in Γ containing 0 corresponds to a triangle in X.

Now suppose that ijk is a triangle in X. We have that

±(gi − gj), ±(gj − gk), ±(gi − gk)
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are all in C, and thus are vertices in the neighbourhood of 0. Note that by the
previous paragraph, the adjacencies between these vertices are the solutions to
the “equation”

±(gi − gj)± (gj − gk) = ±(gi − gk)

(more precisely, the assignments of signs so that the resulting equation is valid).
Which assignments are valid?

Consider the equation

(gi − gj) + (gj − gk) = −(gi − gk).

Rearranging the terms we have that 2gi = 2gk, and the fact that η is 2-sum
respecting implies that i = k. This contradicts the fact that we started with a
triangle in X. The other assignments with a mixture of positive and negative
signs can easily be seen to lead to contradictions as well.

The only valid assignments of signs to the three terms are to make each term
positive, or to make each term negative. From the first assignment we have

(gi − gj) + (gj − gk) = gi − gk

which gives edges

{gi − gj , gi − gk}, {gj − gk, gi − gk}, {gi − gj , gk − gj}.

From the second we have

−(gi − gj)− (gj − gk) = −(gi − gj)

which gives edges

{gj − gi, gk − gi}, {gk − gj , gk − gi}, {gj − gi, gj − gk}.

These six vertices and six edges form an induced 6-cycle in the neighbourhood
of 0. Thus every triangle in X corresponds to an induced 6-cycle in Γ.

Finally, consider the elements of S. Suppose se, sf ∈ S \ {0} where e, f are
edges of X. Since 0, se, sf is a triangle, there is an edge g in X so that e, f, g
are the edges of a triangle in X. Thus there is some vertex p in X so that p is
shared by e and f . Now suppose we have se, sf , sg ∈ S \ {0} so that the vertex
p shared by e and f is different from the vertex q shared by f and g. Since e
and g also share a vertex, we must have that e, f, g are the edges of a triangle in
X. But as we have shown, this triangle corresponds to a 6-cycle in Γ containing
se, sf , sg, a contradiction. Thus there is some vertex p in X so that p is an end
of e for all se ∈ S \ {0}. So without loss of generality, every element of S \ {0}
has the form gp − gq, and

{p} ∪ {q : gp − gq ∈ S}

is a clique in X with size |S|.
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From these two lemmas we immediately have the following corollary.

3.1.5 Corollary. ω(X) = ω(Γ).

Note that Lemmas 3.1.3 and 3.1.4 are constructive. They both provide
methods of finding a maximum clique in one graph, given a maximum clique in
the other. Moreover, each of these implicit algorithms runs in time polynomial
in the size of their inputs.

In [7] this construction is used to show that the Maxclique problem is NP-
Hard for circulants. The proof relies on a result of Bose and Chowla (Theorem
1 in [1]) that guarantees a 3-sum respecting assignment of elements of Zm to
the vertices of X where m is polynomial in the number of vertices of X. After
applying this result to guarantee a favourable assignment, the remainder of the
proof uses the construction above to obtain an auxiliary graph Γ, a circulant,
and reduce the problem of finding a maximum clique in X to finding a maximum
clique in Γ.

3.2 The Graph Γ

In this section we assume that Γ is constructed from X using a 3-sum respecting
assignment. There are more relations between Γ and X aside from their cliques.
To start, we note that X is an induced subgraph of Γ.

3.2.1 Proposition. The vertices {gi : 1 ≤ i ≤ n} induce a subgraph of Γ
isomorphic to X.

Proof. Let S = {gi : 1 ≤ i ≤ n}, and let f : S → V (X) be defined as f(gi) = i.
Clearly f is a bijection between S and V (X).

Suppose gi is adjacent to gj in Γ. Then there is some gs − gt ∈ C so that

gi + (gs − gt) = gj .

Rearranging we have
gi + gs = gj + gt.

Since η is 2-sum respecting we must have that {i, s} = {j, t}. Given that i 6= j
the only possibility is that s = j, t = i, and gj − gi ∈ C. Thus {i, j} ∈ E(X)
and i is adjacent to j in X. Thus f is a bijective homomorphism.

As a direct consequence of Proposition 3.2.1 we have that ω(Γ) ≥ ω(X). So
we could have cited Proposition 3.2.1 instead of Lemma 3.1.3 in the proof of
Corollary 3.1.5. However, the constructive nature of Lemma 3.1.3 is important,
as we want to show that we can easily construct a maximum clique in X given
a maximum clique in our auxiliary graph Γ.

Given a graph X, the line graph of X, denoted L(X), is the graph on E(X)
where two edges are adjacent if and only if they share an endpoint. Let T (X)
be the graph on E(X) where two edges are adjacent if and only if they both lie
in a triangle in X. The graph T (X) is a subgraph of the line graph L(X).
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Let X and Y be graphs, and h : X → Y be a homomorphism. If for all
y ∈ V (Y ) the map induced by h from the neighbours of a vertex in h−1(y) to
the neighbours of y is a bijection, then h is a local isomorphism. The map h is
a covering map if h is a local isomorphism and a surjection. We say that X is
a cover of Y . If |h−1(y)| = r for all y ∈ V (Y ), we say that X is an r-fold cover
of Y .

3.2.2 Lemma. The neighbourhood of 0 in Γ is a 2-fold cover of T (X).

Proof. Let Γ[0] denote the neighbours of 0 in Γ. Define h : Γ[0] → V (T (X))
by

h(gi − gj) = h(gj − gi) = {i, j}.
From the definition of C we see that h is clearly a surjection, and that

|h−1({i, j})| = 2

for all edges {i, j} in X. It remains to show that h is a homomorphism, and a
local isomorphism.

Recall from the proof of Lemma 3.1.4 that gi − gj is adjacent to gk − gl in
Γ[0] if and only if either k = i or j = l, and ijl or ijk respectively is a triangle
in X. Thus if gi − gj is adjacent to gi − gl, then {i, j} and {i, l} are edges of X
that lie in a triangle. So {i, j} is adjacent to {i, l} in T (X). (The case gi − gj
adjacent to gk − gj is similar.) Therefore h is a homomorphism.

Finally, if {i, j} is an edge of X, then

h−1({i, j}) = {gi − gj , gj − gi}.

Consider the map induced by h between the neighbours of gi − gj and the
neighbours of {i, j}. If {i, j} is adjacent to {i, l} in T (X), then gi − gj is
adjacent to gi − gl and

h(gi − gl) = {i, l}
so h induces a surjection. If gk − gl and gs − gt are both neighbours of gi − gj
in Γ, then

h(gk − gl) = {k, l}
and

h(gs − gt) = {s, t}.
If {k, l} = {s, t}, then either k = s or k = t. If k = s, then

gk − gl = gs − gt.

If k = t, then
gk − gl = −(gs − gt).

However, in order to be a neighbour of gi − gj we must have that either k = i
or l = j, and either s = i or t = j. If k = i, then t = i 6= j so we must have
s = i = t which is a contradiction. The other cases give similar contradictions.
Thus h induces an injection, and the induced map is a bijection.
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3.3 Cayley Graphs for Znm
The groups Znm where m and n are positive integers are Abelian groups, so we
can apply the construction from Section 3.1 using these groups. We are working
towards proving that the Maxclique problem is NP-Hard for the class of Cayley
graphs on Znm where m is a fixed prime. For now we let m be some fixed positive
integer.

We saw in Example 3.1.1 that if we are given a graph X, we can naturally
construct an assignment η of elements of Gn to V (X) where n is the number of
vertices of X and G is an Abelian group. Let G = Zm, and take the element
g = 1. Now as in Example 3.1.1 we take gi ∈ Znm to be the element with 1 in
the ith component and 0 in every other component. Since 1 has order m in Zm,
the resulting assignment is (m − 1)-sum respecting. So if we construct Γ as in
Section 3.1.5, we will have a Cayley graph for Znm with ω(Γ) = ω(X) provided
that m ≥ 4.

This is a good start for proving a reduction of the Maxclique problem on
general graphs to the Maxclique problem on the class of Cayley graphs for the
groups Znm. However, our assignment results in a graph Γ on mn vertices, which
is exponential in the number of vertices of X. In order to address this problem,
we will use a quotient graph. First we address the cases m = 3 and m = 2.

3.4 Cayley Graphs for Zn2
Let m = 2, and consider a graph X with auxiliary graph Γ constructed as usual.
Since every element gi has order 2, we are not guaranteed that the 3-sums or
2-sums of the elements gi are distinct. For example 2gi = 2gj for all 1 ≤ i, j ≤ n.
However, if we add the restriction that the summands are distinct, then we can
conclude that the sums are distinct.

3.4.1 Proposition. If m = 2, the 2-sums gi + gj for distinct 1 ≤ i, j ≤ n are
distinct. The 3-sums gi + gj + gk where |{i, j, k}| = 1, 3 are distinct.

Proof. If i 6= j, then gi + gj has exactly two non-zero components, i and j. If

gi + gj = gk + gl

then gk+gl has non-zero components i and j and we conclude that {i, j} = {k, l}.
If |{i, j, k}| = 3 then gi + gj + gk has exactly three non-zero components

i, j, k. If |{i, j, k}| = 1 then

gi + gj + gk = 3gi = gi.

Now clearly if |{i, j, k}| = 1, 3 and |{r, s, t}| = 1, 3, then

gi + gj + gk = gr + gs + gt

implies that {i, j, k} = {r, s, t}.
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Since each gi has order 2 in Zn2 , gi = −gi for all 1 ≤ i ≤ n. Also

gi − gj = gi + gj = −gi + gj ,

and our connection set C is

C = {gi + gj : i and j are adjacent in X}.

So Γ = X(C,Zn2 ) is |E(X)|-regular (as opposed to 2|E(X)|-regular). We show
that the properties in Proposition 3.4.1 are enough to guarantee that ω(Γ) and
ω(X) are closely related.

We begin by noting that unlike the case m ≥ 4, we will not be able to
conclude that ω(Γ) = ω(X) for all graphs X.

3.4.2 Proposition. If Y is a cubelike graph, then ω(Y ) 6= 3.

Proof. Let Y = X(Zn2 , C), and suppose that Y contains a triangle. Without
loss of generality, we consider the triangle {0, a, b} where a, b ∈ C. Since a and b
are adjacent in Y , we have that a+ b ∈ C. Thus a, b, a+ b are all adjacent to 0,
and since a, b ∈ C, a and b are both adjacent to a+ b. Therefore {0, a, b, a+ b}
is a clique of size 4 in Y .

This proposition shows that if ω(X) = 3, we will not be able to translate
cliques of maximum size in Γ into maximum cliques of the same size in X.
However, we can show that this is the only problematic case for m = 2. We
start with a simple observation.

3.4.3 Proposition. Let m = 2 and k ≥ 4. Suppose 0, h1, . . . , hk is a clique in

Γ where hi = g
(1)
i + g

(2)
i . Then there is some g ∈ {gi : 1 ≤ i ≤ n} so that for

each 1 ≤ i ≤ k, there is j ∈ {1, 2} with g = g
(j)
i .

Proof. Since hi and hj are adjacent for each 1 ≤ i, j ≤ k, we have

g
(1)
i + g

(2)
i + gs + gt = g

(1)
j + g

(2)
j

for some gs + gt ∈ C. From the proof of Proposition 3.4.2 we see that we must
have either

g
(1)
i ∈ {g(1)j , g

(2)
j } or g

(2)
i ∈ {g(1)j , g

(2)
j }.

Thus
|{g(1)i , g

(2)
i } ∩ {g

(1)
j , g

(2)
j }| = 1

for all hi and hj .

Suppose that no such element g exists. Consider h1 = g
(1)
1 + g

(2)
1 . For each

hi 6= h1 we have that either

g
(1)
1 ∈ {g(1)i , g

(2)
i } or g

(2)
1 ∈ {g(1)i , g

(2)
i }.

Let S1 be the subset of {h2, . . . , hk} so that each hi ∈ S1 is of the form g
(1)
1 +gi,

and let S2 be defined analogously. Since k ≥ 4, one of S1, S2 is not a singleton.
Without loss of generality let |S1| > 1.
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Since g does not exist, S2 is non-empty. We have hi, hj ∈ S1 and ha ∈ S2.
So

hi = g
(1)
1 + gi, hj = g

(1)
1 + gj , and ha = g

(2)
1 + ga

where ga 6= g
(1)
1 and gi, gj 6= g

(2)
1 . Thus only one of hi and hj can be adjacent

to ha, a contradiction.

3.4.4 Lemma. Let m = 2. If ω(X) = 3, then ω(Γ) = 4. Otherwise, ω(Γ) =
ω(X).

Proof. Suppose that S is a clique in X. Then fix i ∈ S and let

T = {gi + gj : j ∈ S}.

Then T is a subset of the vertices of Γ containing 0. Since i is adjacent to every
other vertex in S, the sums gi + gj ∈ C for all j ∈ S \ {i}. Thus 0 is adjacent
to every gi + gj ∈ T with i 6= j. Also, if gi + gj ∈ T and gi + gk ∈ T , then
since j, k ∈ S we have that gj + gk ∈ C, and so gi + gj is adjacent to gi + gk.
Therefore T is a clique in Γ with |T | = |S|, and ω(X) ≤ ω(Γ).

Now suppose S is a clique in Γ. Assume that |S| ≥ 5. Without loss of
generality 0 ∈ S. By Proposition 3.4.3 there is a vertex i of X so that every
element of S \ {0} is of the form gi + gj . Thus the vertices

{i} ∪ {j : gi + gj ∈ S}

form a clique in X of size |S|. Thus ω(X) = ω(Γ).
This also shows that if ω(X) = 3, then ω(Γ) = 4. This follows as if ω(X) = 3,

then ω(Γ) ≥ 3, and by Proposition 3.4.2 ω(Γ) ≥ 4. However, if ω(Γ) > 4, then
by the remarks above we see that ω(X) > 4 which is a contradiction. Therefore
ω(Γ) = 4.

In the case ω(X) = 2, X has edges but is triangle-free. Thus the neigh-
bourhood of 0 in Γ contains no edges and so ω(Γ) = 2. The case ω(X) = 1 is
trivial.

Recall from Lemma 3.2.2 that when m ≥ 4, the neighbourhood of 0 in Γ is
a 2-fold cover of T (X). In the m = 2 case, |C| = |E(X)|, and Γ[0] is isomorphic
to the graph T (X).

3.5 Cayley Graphs for Zn3
Now we consider the case m = 3. Similar to the case m = 2, we no longer have
that our assignment is 3-sum respecting. However, the assignment is 2-sum
respecting, so the graph Γ is a 2|E(X)|-regular Cayley graph for Zn3 , and has
connection set

C = {gi − gj : i is adjacent to j in X}

as usual. In this case, the assignment is almost 3-sum respecting. The only
problem is the fact that 3gi = 0 for all i.
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3.5.1 Proposition. For m = 3, if gi + gj + gk = gr + gs + gt, then either
{i, j, k} = {r, s, t} or |{i, j, k}| = |{r, s, t}| = 1.

Proof. Suppose that

gi + gj + gk = gr + gs + gt,

and at least one of |{i, j, k}| and |{r, s, t}| is not 1. First note that if |{i, j, k}| =
2, then gi + gj + gk has exactly two non-zero components, and if |{i, j, k}| = 3,
then gi + gj + gk has exactly three non-zero components. So

|{i, j, k}| = |{r, s, t}| 6= 1

(as if one of the sets has size 1, the corresponding sum evaluates to 0).
We have two cases. First suppose that

|{i, j, k}| = |{r, s, t}| = 2.

Now gi + gj + gk has exactly two non-zero components, one takes 1, and the
other takes value 2. The only way that this is possible is if {i, j, k} = {r, s, t}
as sets, and as multi-sets.

Finally, suppose that

|{i, j, k}| = |{r, s, t}| = 3.

In this case gi + gj + gk has exactly three non-zero components, each of which
have value 1, and it is easy to see that we must have {i, j, k} = {r, s, t}.

From this proposition we see that Lemma 3.1.3 applies when m = 3, and we
have that ω(X) ≤ ω(Γ). However, as in the case m = 2, we cannot conclude
that ω(X) = ω(Γ) in all cases. We begin by proving an analogue to Lemma
3.1.4. We will follow the proof of Lemma 3.1.4 very closely, modifying it where
necessary.

3.5.2 Lemma. If S is a clique in Γ with |S| ≥ 4, then there is a clique in X
with size |S|.

Proof. Suppose the S is a clique in Γ with |S| ≥ 4. Without loss of generality
we assume that S contains 0.

First we note that since every non-zero element of Zn3 has order 3, we have
that 3(gi − gj) = 0 for all 1 ≤ i, j ≤ n. So for all gi − gj ∈ C we have
3(gi − gj) = 0, or

(gi − gj) + (gi − gj) = −(gi − gj).

Since gi−gj ∈ C we have that gi−gj is adjacent to −(gi−gj) for all gi−gj ∈ C.
These edges are a perfect matching in Γ[0].

Consider gi−gj adjacent to gk−gl in Γ[0]. Since these vertices are adjacent,
we must have some gs − gt ∈ C so that

(gi − gj) + (gs − gt) = gk − gl.
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Rearranging we see that

gi + gs + gl = gj + gt + gk.

From Proposition 3.5.1 we have that either {i, s, l} = {j, t, k} or |{i, s, l}| =
|{j, t, k}| = 1. In the latter case, we have an edge of the form {gi−gj , gj−gi} as
discussed above. So we assume that {i, s, l} = {j, t, k}. Since i 6= j, k 6= l and
s 6= t, there are two possibilities: either (i, s, l) = (k, j, t); or (i, s, l) = (t, k, j).

In the first case we have that gi − gj is adjacent to gi − gl by the element
gj − gl of C. We see that ijl forms a triangle in X. Likewise, the second case
gives triangle ijk in X. So every triangle containing 0 in Γ corresponds either
to a triangle in X, or an edge in X.

Now suppose that ijk is a triangle in X. We have that

±(gi − gj), ±(gj − gk), ±(gi − gk)

are all in C, and thus are vertices in the neighbourhood of 0. Note that by
the previous paragraph, the adjacencies between these vertices are the edges
{gi − gj , gj − gi}, together with the solutions to the “equation”

±(gi − gj)± (gj − gk) = ±(gi − gk)

(more precisely, the assignments of signs so that the resulting equation is valid).
We determine the valid assignments.

Consider the equation

(gi − gj) + (gj − gk) = −(gi − gk).

Rearranging the terms we have that 2gi = 2gk, and the fact that η is 2-sum
respecting implies that i = k. This contradicts the fact that we started with a
triangle in X. The other assignments with a mixture of positive and negative
signs can easily be seen to lead to contradictions as well.

The only valid assignments of signs to the three terms are to make each term
positive, or to make each term negative. From the first assignment we have

(gi − gj) + (gj − gk) = gi − gk

which gives edges

{gi − gj , gi − gk}, {gj − gk, gi − gk}, {gi − gj , gk − gj}.

From the second we have

−(gi − gj)− (gj − gk) = −(gi − gj)

which gives edges

{gj − gi, gk − gi}, {gk − gj , gk − gi}, {gj − gi, gj − gk}
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(together with the edges {gi − gj , gj − gi}). These six vertices and nine edges
form an induced copy of K3,3 in the neighbourhood of 0. Thus every triangle
in X corresponds to an induced K3,3 in Γ.

In fact, we have also shown that in

Γ[0] \
{
{gi − gj , gj − gi} : i is adjacent to j in X

}
,

the vertices gi − gj and gj − gi are at distance 3. Therefore in Γ[0], there is no
triangle containing an edge of the form {gi − gj , gj − gi}. Thus if S is a clique
containing 0, and |S| ≥ 4, then S contains at most one of gi− gj and gj − gi for
all {i, j} ∈ E(X). Thus the remainder of the proof goes through as normal.

Suppose se, sf ∈ S \ {0} where e, f are edges of X. Since 0sesf is a triangle,
there is an edge g in X so that e, f, g are the edges of a triangle in X. Thus
there is some vertex p in X so that p is shared by e and f . Now suppose we
have se, sf , sg ∈ S \ {0} so that the vertex p shared by e and f is different from
the vertex q shared by f and g. Since e and g also share a vertex, we must have
that e, f, g are the edges of a triangle in X. But as we have shown, this triangle
corresponds to a 6-cycle in Γ containing se, sf , sg, a contradiction. Thus there
is some vertex p in X so that p is an end of e for all se ∈ S \ {0}. So without
loss of generality, every element of S \ {0} has the form gp − gq, and

{p} ∪ {q : gp − gq ∈ S}

is a clique in X with size |S|.

Lemma 3.5.2 allows us to show exactly how the cliques of X correspond to
the cliques of Γ.

3.5.3 Lemma. Let m = 3. If ω(X) = 2, then ω(Γ) = 3. Otherwise ω(Γ) =
ω(X).

Proof. We have already seen that ω(X) ≤ ω(Γ). Suppose that ω(X) ≥ 4.
Then from Lemma 3.5.2, we have that ω(X) ≥ ω(Γ) and hence ω(X) = ω(Γ).

If ω(X) = 3, then ω(Γ) ≥ 3. But again by Lemma 3.5.2 we cannot have
ω(Γ) ≥ 4, so ω(Γ) = 3.

If ω(X) = 2, then ω(X) has some edge {i, j} ∈ E(X). So in Γ[0] we will
have an edge between gi − gj and gj − gi giving a triangle in Γ containing 0.
Thus ω(Γ) = 3.

The case ω(X) = 1 is trivial.

When m = 3, our assignment is not 3-sum respecting, and as a result, the
neighbourhoods of Γ do not form a 2-fold cover of T (X). However, we can prove
a modification of that result.

Let Γ[0] denote the graph induced by the neighbours of 0 in Γ, and let

M =
{
{gi − gj , gj − gi} : i is adjacent to j in X

}
.

3.5.4 Lemma. Γ[0] \M is a 2-fold cover of T (X).
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Proof. Define h : Γ[0]→ V (T (X)) by

h(gi − gj) = h(gj − gi) = {i, j}.

From the definition of C we see that h is clearly a surjection, and that

|h−1({i, j})| = 2

for all edges {i, j} in X. It remains to show that h is a homomorphism, and a
local isomorphism.

We have seen that gi − gj is adjacent to gk − gl in Γ[0] if and only if: either
k = i or j = l and ijl or ijk respectively is a triangle in X; or l = i and
k = j. In the first case, if gi− gj is adjacent to gi− gl, then {i, j} and {i, l} are
edges of X that lie in a triangle. So {i, j} is adjacent to {i, l} in T (X). (The
case gi − gj adjacent to gk − gj is similar.) In the second case, the resulting
edge is an element of M , and does not need to be considered. Therefore h is a
homomorphism.

Now we show h is a local isomorphism. If {i, j} is an edge of X, then

h−1({i, j}) = {gi − gj , gj − gi}.

Consider the map induced by h between the neighbours of gi − gj and the
neighbours of {i, j}. If {i, j} is adjacent to {i, l} in T (X), then gi − gj is
adjacent to gi − gl and h(gi − gl) = {i, l} so h induces a surjection.

If gk − gl and gs − gt are both neighbours of gi − gj in Γ[0] \ M , then
h(gk − gl) = {k, l} and h(gs − gt) = {s, t}. If {k, l} = {s, t}, then either k = s
or k = t. If k = s, then

gk − gl = gs − gt.

If k = t, then
gk − gl = −(gs − gt).

However, in order to be a neighbour of gi − gj we must have that either k = i
or l = j, and either s = i or t = j. If k = i, then t = i 6= j so we must have
s = i = t which is a contradiction.

The other cases give similar contradictions. Thus h induces an injection,
and the induced map is a bijection.

3.6 Quotient Graphs

In order to reduce the Maxclique problem on general graphs to the Maxclique
problem on Cayley graphs for the groups Znm, we need to be able to construct
an auxiliary graph Γ = X(Znm, C) from a graph X so that: we can find a
maximum clique in X efficiently given a maximum clique in Γ; and, the size
of Γ is bounded by a polynomial in the size of X. In Section 3.3 we saw that
we could construct an auxiliary graph Γ with the first property. However, the
graphs we constructed had size exponential in the size of the input graph. In
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order to construct a suitable auxiliary graph for X we will make use of quotient
graphs.

Let X be a graph, and let Π be a partition of V (X). The quotient graph
X/Π is the graph on the cells of Π with adjacency defined as follows. For A,B
cells of Π, A and B are adjacent if and only if there are vertices a ∈ A and
b ∈ B so that a and b are adjacent in X.

If X is a Cayley graph for a group G, then we can construct partitions using
the subgroups of G. If H is a subgroup of G, then the cosets of H partition the
elements of G into cells of equal size. We denote the partition induced by H as
ΠH . If X is a Cayley graph for the group G, then we denote the quotient graph
of X with respect to the partition ΠH as XH = X/ΠH .

Using a partition of G into cosets of H, rather than an arbitrary partition,
gives ΠH additional structure. If Π = {π1, . . . , πk} is a partition of the vertices
of a graph X we call Π an equitable partition if for every x ∈ πi, the number of
neighbours of x in πj depends only on i and j. For ΠH we have the following
result.

3.6.1 Proposition. If H is a subgroup of G, then ΠH is an equitable partition
of any Cayley graph X for G.

Proof. Let ΠH = {π1, . . . , πk} with π1 = H. Let C be the connection set of
X = X(G,C). In X, vertices x and y are adjacent if an only if y − x ∈ C. We
have that H is a subgroup of G, so for x, y ∈ H, we have y − x ∈ H. So x and
y are adjacent in X if and only if y − x ∈ C ∩H. Since H is closed under the
group operation we have that X[π1] is a |H ∩ C|-regular subgraph.

Consider the edges between π1 and πj in X for any j 6= 1. The cell πj is a
coset of H, so without loss of generality πj = H + α. For x, y ∈ H, note that x
is adjacent to y+α ∈ πj if and only if y− x+α ∈ C. For every z +α ∈ πj ∩C
we have that x+ z+α ∈ πj is a neighbour of x, so x has |πj ∩C| neighbours in
πj . Thus the number of neighbours of x ∈ π1 in πj depends only on the index
j.

Note that for any α ∈ G, the map fα : G→ G given by fα(x) = x+ α is an
automorphism of X. Since fα is clearly a bijection, we only need to check that
fα preserves edges. We have that x, y ∈ X are adjacent if and only if y−x ∈ C.
But

y − x = fα(y)− fα(x),

so x, y ∈ X are adjacent if and only if fα(x), fα(y) ∈ X are adjacent, and fα is
an isomorphism.

Finally we consider the edges between πi and πj in X. If πi = H + α, then
f−α(πi) = H. Thus the number of neighbours of x ∈ πi in πj is the number of
neighbours of x−α ∈ H in πj′ = πj−α and depends only on the index j′. This
completes the proof.

We can also show that XH is a Cayley graph for the quotient group G/H.
Given a group G and a subgroup H of G, the quotient group G/H is the group
on the cosets of H in G with group operation defined as follows. For each coset
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of H, H ′, we take a representative α ∈ G so H ′ = H + α. Given cosets H + α
and H + β we define

(H + α) + (H + β) = H + (α+ β).

It is straightforward to show that this operation is well-defined, and defines a
group.

3.6.2 Proposition. XH = X(G/H,C ′) where C ′ = {H + g : g ∈ C}.

Proof. XH is a graph on G/H (the cosets of H in G). It remains to show that
the edges of XH are described exactly by C ′.

Let g ∈ C be an element of the connection set of X. Then for any x ∈ G, x
is adjacent to x + g in X. Thus the coset of H containing x is adjacent to the
coset of H containing x + g in XH . Let x ∈ H + α and x + g ∈ H + β. Now
there is hx, hy ∈ H so x = hx+α and x+ g = hy +β. Combining these we have

hx + α+ g = hy + β

and therefore
H + α+ (H + g) = H + β.

Now suppose that H + α is adjacent to H + β in XH . Then there are some
ha, hb ∈ H so that ha + α ∈ H + α is adjacent to hb + β ∈ H + β in X. Thus
there is some g ∈ C so that

ha + α+ g = hb + β.

Again we have that
H + α+ (H + g) = H + β

where g ∈ C. Therefore XH = X(G/H,C ′).

Note that in the preceding proof we may have that |C ′| 6= |C|, and XH may
have loops even if X does not.

We are working with an auxiliary graph Γ = X(Znm, C). To construct a
“small” graph from Γ we can find a “large” subgroup H of Znm and use ΓH .
Since in Theorem 3.0.2 we are working with the groups Znm with m prime, we
assume from now on that m = p is prime.

For p prime, Zp is a finite field, and Znp is a vector space. In this case a
subgroup H of the additive group Znp is a sub-vector space (or subspace). As
above H induces a partition ΠH of Znp , and we denote the quotient graph of Γ
with respect to ΠH as ΓH . We begin with a brief discussion of the subspaces of
Znp .

3.7 Codes

In this section we give a brief account of linear codes. Coding theory is a vast
subject, and we will only need a very small sample. All of the material in this
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section is standard. We will follow MacWilliams and Sloane [26] for the coding
theory we need.

Suppose we are given a finite field GF (q) where q is a prime power. Given
an integer n, a q-ary linear code (or code) is a subspace D of the vector space
GF (q)n for some integer n. The block length of D is the length of the vectors
in D, or the dimension of the ambient space GF (q)n, n. The size of D is the
number of vectors in D, and is equal to qk where k is the dimension of D as a
subspace of GF (q)n.

In order to preserve clique information in our quotient graphs, we will need
codes with a specific distance property. For our purposes, the distance (or
Hamming distance) between two vectors in x, y ∈ GF (q)n is the number of
indices 1 ≤ i ≤ n for which xi 6= yi. We denote the distance between x and
y by d(x, y). Given a code D, the minimum distance (or distance) of D is the
minimum distance between any two elements of D,

d = min{d(x, y) : x, y ∈ D}.

When working with codes it is often more useful to work with the weight of
the codewords, rather than the distance between them. The weight of a vector
x ∈ D, w(x), is the number of indices 1 ≤ i ≤ n so that xi 6= 0. So 0 ∈ D
is the unique codeword with weight zero, and all other codewords have non-
zero weight. Now if x, y ∈ D, since D is a subspace, x − y ∈ D. Moreover, if
z ∈ GF (q)n

d(x, y) = d(x− z, y − z)
as xi 6= yi if and only if xi − zi 6= yi − zi. So

d(x, y) = d(x− y, 0) = w(x− y).

Therefore the distance of D can also be expressed as the minimum weight of a
non-zero codeword,

d = min{w(x) : x ∈ D \ {0}}.
As we will see in the next section, by constraining the distance of a code D

in Znp , we will be able to deduce properties of the cliques in the quotient graph
ΓD.

3.8 Codes in Γ

Our goal is to find a code D in V (Γ) = Znp so that ω(X) can easily be computed
from the quotient graph ΓD. We can achieve this by constraining the distance
d of D. For now we assume that Γ = X(Znp , C) is constructed as usual, and p
is any prime (including 2, 3).

3.8.1 Proposition. If D has distance d ≥ 3, then D is a coclique in Γ.

Proof. Consider any element of |D ∩ C|. Since D has distance d ≥ 3, all
non-zero elements of D have weight at least 3. But gi − gj has weight 2 for all
i 6= j. Thus |D ∩ C| = 0, and D is a coclique in Γ.
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It follows from Propositions 3.6.1 and 3.8.1 that ΠD gives a partition of Γ into
cocliques. This immediately implies that any clique in Γ gives a corresponding
clique in ΓD of equal size. So we have ω(ΓD) ≥ ω(Γ). We also have the following
immediate corollary.

3.8.2 Corollary. If d ≥ 3, then ΓD is a Cayley graph for the group Znm/D with
connection set

C ′ = {(D + gi)− (D + gj) : i is adjacent to j in X},

and the map f(g) = D + g gives a bijection between C and C ′.

Proof. It follows immediately from Proposition 3.6.2 that C ′ is the connection
set for ΓD. The distance condition ensures that the cosets D + (gi − gj) are
distinct for all i and j. Thus f is a bijection between C and C ′ and |C| = |C ′|.

Further restricting d gives us more information about ΓD.

3.8.3 Proposition. If D has distance d ≥ 5, then ΓD contains an induced copy
of X.

Proof. Since d ≥ 5, there is no i so that gi ∈ D (as gi has weight 1). Moreover,
if D+g is a coset of D, then for indices i 6= j we cannot have both gi, gj ∈ D+g.
This follows as otherwise there are α, β ∈ D so that α+ g = gi and β + g = gj .
Thus

gi − gj = α− β ∈ D.

However, gi−gj has weight 2 < 5, contradicting the distance of D. Thus D+gi
is a vertex of GD for each 1 ≤ i ≤ v. We show that the vertices

{D + gi : 1 ≤ i ≤ v}

give an induced copy of X in ΓD.

Consider adjacent vertices i, j in X. We have that gi−gj ∈ C, and gi and gj
are connected by an edge in Γ. We also have that gi ∈ D + gi and gj ∈ D + gj ,
so D + gi and D + gj are connected by an edge in ΓD. So X is a subgraph of
ΓD.

Now suppose that i, j are non-adjacent vertices of X. Suppose that D + gi
and D + gj are connected by an edge in ΓD. Then we have α, β ∈ D and
ga − gb ∈ C so that

α+ gi + ga − gb = β + gj ,

or

gi + ga − gb − gj = β − α ∈ D.

But the weight of the left-hand side of the equation is at most 4 and d ≥ 5 so
we have a contradiction.

Therefore X is an induced subgraph of ΓD.

48



3.8. CODES IN Γ

Proposition 3.8.3 immediately implies that ω(X) ≤ ω(ΓD).
Finally, if we increase the distance of D again, we can show that ΓD will

have the same maximum clique size as X, with the exceptions from Section 3.3.
Our approach is to show that the elements of C ′ in each case satisfy the same
properties as those of C with respect to 2-sums and 3-sums. As a result, the
proofs in Sections 3.1 (Corollary 3.1.5 in particular) and 3.3 (Lemmas 3.4.4 and
3.5.3 in particular) will apply unchanged.

3.8.4 Lemma. Let D be a code with distance d ≥ 7. If p ≥ 4, then ω(ΓD) =
ω(X). If p = 3, then ω(ΓD) = ω(X) unless ω(X) = 2, in which case ω(ΓD) = 3.
If p = 2, then ω(ΓD) = ω(X) unless ω(X) = 3, in which case ω(ΓD) = 4.

Proof. We begin by assuming that p ≥ 4. In this case we show that the 3-sums
of elements of C ′ are all distinct. Let D+ (gi + gj + gk) and D+ (ga + gb + gc)
be cosets of D for any {i, j, k} 6= {a, b, c}. Suppose that

D + (gi + gj + gk) = D + (ga + gb + gc).

Then we have α, β ∈ D so that

α+ gi + gj + gk = β + ga + gb + gc,

and as a result,

gi + gj + gk − ga − gb − gc = α− β ∈ D.

This gives an immediate contradiction as the weight of the left-hand side of
this equation is at most 6 and at least 2, while d ≥ 7. Therefore we have that
ω(ΓD) = ω(X).

Now assume that p = 2. In this case we need to show that the cosets
D + (gi + gj) are distinct when i 6= j, and that the cosets D + (gi + gj + gk)
are distinct when |{i, j, k}| = 1, 3. First suppose that |{i, j}| = |{a, b}| = 2,
{i, j} 6= {a, b} and

D + (gi + gj) = D + (ga + gb).

Then we have α, β ∈ D so that

α+ gi + gj = β + ga + gb,

and as a result,

gi + gj − ga − gb = α− β ∈ D.

This gives an immediate contradiction as the weight of the left-hand side of this
equation is at most 4 and at least 2, while d ≥ 7.

Secondly, suppose that |{i, j, k}| = 1 or 3, |{a, b, c}| = 1 or 3, and {i, j, k} 6=
{a, b, c}. Again we assume that

D + (gi + gj + gk) = D + (ga + gb + gc).

49



3. COMPUTATIONAL COMPLEXITY OF MAXIMUM COCLIQUE

Then we have α, β ∈ D so that

α+ gi + gj + gk = β + ga + gb + gc,

and as a result,

gi + gj + gk − ga − gb − gc = α− β ∈ D.

In this case we have that the weight of gi+ gj + gk and ga+ gb+ gc is at most 3,
and so the weight of the left-hand side of the equation is at most 6, and at least
2. This contradicts d ≥ 7. Therefore we have that when p = 2, ω(ΓD) = ω(X)
unless ω(X) = 3 in which case ω(ΓD) = 4.

Finally we consider the case p = 3. In this case we need to show that the
cosets D+(gi+gj+gk) and D+(ga+gb+gc) are distinct unless either {i, j, k} =
{a, b, c} or |{i, j, k}| = |{a, b, c}| = 1. We assume that {i, j, k} 6= {a, b, c} and
that at least one of the sets contains more than one element. Suppose that we
have

D = (gi + gj + gk) = D + (ga + gb + gc).

Then we have α, β ∈ D so that

α+ gi + gj + gk = β + ga + gb + gc,

and as a result,

gi + gj + gk − ga − gb − gc = α− β ∈ D.

In this case we again have that the weight of the left-hand side of the equation
is at most 6, and at least 2. Thus we have that when p = 3, ω(ΓD) = ω(X)
unless ω(X) = 2 in which case ω(ΓD) = 3.

So we have proven that given a code with large enough distance, the result-
ing quotient graph will have the desired maximum clique size. To finish our
reduction, it remains to show that we can find a code efficiently that has d ≥ 7,
and is large enough so that ΓD has size polynomial in the size of X. In the next
section we give the construction of such codes.

3.9 Goppa Codes

To construct codes with the properties we desire, we will use Goppa codes.
Goppa codes are a family of linear codes. Their construction is similar to the
construction of BCH codes. In this section we give a brief description of how
to construct a Goppa code. Again we follow MacWilliams and Sloane [26]. See
Chapter 12, Section 3 of [26] for a more complete treatment of Goppa codes.

A Goppa code is a linear code over the finite field GF (q). In order to
specify the code we need two ingredients: a polynomial G(x) whose coefficients
are elements of GF (qm); and a set L ⊆ GF (pm) of non-roots of G(x). The
polynomial G(x) is called the Goppa polynomial.
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Let L = {α1, . . . , αn} be a subset of the non-roots of G(x). Given a vector
a ∈ GF (q)n, we define the rational function

Ra(x) =

n∑
i=1

ai/(x− αi).

The Goppa code D(G,L) is the set of all vectors a ∈ GF (q)n such that Ra(x) = 0
in the polynomial ring GF (qm)[x]/G(x). Note that D(G,L) is a q-ary linear
code with block length n.

A linear code D is a subspace of a vector space GF (q)n; so D has a basis,
and can be expressed as the row space of a matrix B. We call B the generator
matrix of D. If D has rank k, and block length n, then B is a k × n matrix
with elements from GF (q). We can convert B into reduced row-echelon form,
and so we may assume that B takes the form

B = [Ik|A]

where A is a k × (n − k) matrix over GF (q). The dual code of D is the code
defined by the generator matrix

H = [−AT |In−k].

Since H is a (n− k)× n matrix over GF (q), the code generated by H has rank
n− k and block length n. Note that

BHT = HBT = 0,

so D = ker(HT ). In coding applications, the matrix H is used to check whether
or not a received word is a codeword. The matrix H is called the parity check
matrix for the code D.

Let L = {α1, . . . , αn}. The parity check matrix for the Goppa code D(G,L)
is constructed as follows. Let H ′ be the matrix whose entries are defined as

H ′[i, j] = αijG(αj)
−1

for 1 ≤ i ≤ r and 1 ≤ j ≤ n. The matrix H ′ is a r × n matrix with entries in
GF (qm). Then H is the matrix whose entries are obtained by replacing H ′[i, j]
with the column vector in GF (q)m corresponding to H ′[i, j] ∈ GF (qm). Now
H is a rm× n matrix with entries in GF (q).

In this case H may not have full rank. However, we can still use H as
the parity check matrix for D(G,L). We can also construct a matrix B from
H with row(B) = null(H), so B is a generator matrix for D(G,L). Since
rk(H) + null(H) = n and rk(H) ≤ rm, it follows that the rank of D(G,L) is
k ≥ n− rm.

Finally, we need some information on the distance of Goppa codes. In gen-
eral, if the Goppa polynomial G(x) has rank r, then the code D(G,L) will have
distance d ≥ r + 1 (see [26] Chapter 12, Theorem 1). Note that for both the
rank and distance of D(G,L) the specific values will depend on the polynomial
chosen to construct the code. However, the bounds k ≥ n− rm and d ≥ r + 1
will suffice for our application.
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3.10 Proof of Main Theorem

We are now ready to complete our proof of Theorem 3.0.2. Recall that given
a graph X on n vertices, and a prime p we can construct as in Section 3.3 a
Cayley graph Γ(Znp , C) with the property that ω(X) is easily computed from
ω(Γ). In the case where p > 4, we have from Corollary 3.1.5 that ω(X) = ω(Γ).

If p = 2, we have from Lemma 3.4.4 that ω(X) = ω(Γ) unless ω(Γ) = 4, in
which case ω(X) = 3 or 4. So we can find ω(X) simply by checking to see if
X contains any cliques of size 4. The brute-force approach to this problem is
to simply check all

(
n
4

)
subsets of V (X) to see if the subgraph induced by these

vertices is complete. Since(
n

4

)
=
n(n− 1)(n− 2)(n− 3)(n− 4)

4!
≤ n4

for n ≥ 0, this algorithm runs in time polynomial in n. Thus we can recover
ω(X) from ω(Γ) in time polynomial in n.

If p = 3, then from Lemma 3.5.3 we have that ω(X) = ω(Γ) unless ω(Γ) = 3,
in which case ω(X) = 2 or 3. The same approach as we used for p = 2 shows
that we can recover ω(X) from ω(Γ) in time polynomial in n.

If we are given an oracle that solves the Maxclique problem in polynomial
time for Cayley graphs for the class of groups Znp , then we can solve for ω(Γ),
and find ω(X) in polynomial time. The problem is that the oracle runs in
polynomial time in the size of Γ, which is exponential in the size of X. So in
order for this to work, we need to construct an auxiliary graph Γ′ whose cliques
are the same as the cliques of Γ, and has size polynomial in n. To do this we
will construct Γ′ by taking a quotient graph of Γ.

Recall from Lemma 3.8.4 that if we take D to be a p-ary linear code with
distance d ≥ 7 and block length n, then the quotient graph ΓD whose vertices
are the cells of the partition of Znp given by the cosets of D has ω(ΓD) = ω(Γ).

The size of ΓD is pn−k where k is the rank of D. Thus given a code D with
distance d ≥ 7, and rank k so that pn−k is bounded by a polynomial in n, ΓD
will be an auxiliary graph that matches our requirements.

There is a Goppa code that satisfies our requirements. Take Goppa poly-
nomial G(x) = x6. For any m ≥ 1, G(x) is a polynomial with coefficients in
GF (pm) and non-roots GF (pm)\{0}. So we can let L be any subset of non-zero
elements of GF (pm). Let D(G,L) be the Goppa code constructed from G(x)
and L. From Section 3.9 we have that D(G,L) will have distance d ≥ 7, block
length |L| and rank k ≥ |L| − 6m where |L| ≤ pm − 1.

From the above discussion, we want the block length of D(G,L) to be n,
the number of vertices of X. We also want the rank of D(G,L) to satisfy
pn−k ≤ f(n) for all n ≥ N , where f(x) is a polynomial in x and N is some
fixed integer. The block length of D(G,L) is |L|, and L can be any subset of
GF (pm) \ {0}, so we can choose any such L with |L| = n provided n ≤ pm − 1.
We rearrange the constraint pn−k ≤ f(n) as k ≥ n − logp f(n). In order to
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ensure this inequality is satisfied, we want to choose m so that

k ≥ n− 6m ≥ n− logp f(n),

or m ≤ logp f(n)/6.

3.10.1 Lemma. Let f(x) = x12. There is an integer N so that for all n ≥ N ,
there is some integer m with n ≤ pm − 1 and m ≤ logp f(n)/6.

Proof. The inequality m ≤ logp f(n)/6 can be expressed as m ≤ logp n
2, or

pm ≤ n2. Also the condition n ≤ pm − 1 is equivalent to n < pm as all the
quantities are integers.

Take N = p2. Now for any n ≥ N , we have logp n ≥ 2, and so the interval
(logp n, 2 logp n] contains an integer. Let m be the largest such integer.

By Lemma 3.10.1 we can choosem to be the largest integer in (logp n, 2 logp n].
Then we can take L to be a set of non-zero elements of GF (p)m of size n, and
the Goppa code D(G,L) will have rank k ≥ n− logp f(n).

We have almost completed the proof. This shows that there exists an aux-
iliary graph ΓD for X so that the ω(X) can be computed in polynomial time
from ω(ΓD) and ΓD has size polynomial in n. All that remains to show is that
we can construct ΓD in polynomial time. The construction we have outlined so
far involves constructing Γ, and then forming ΓD as a quotient of Γ. However,
that construction involves constructing a graph with pn vertices, and does not
run in polynomial time.

In order to get around this problem, we note that a Cayley graph is specified
by its connection set. By Corollary 3.8.2 we have that ΓD is a Cayley graph
ΓD = X(Zn−kp , C ′). So in order to show that we can construct ΓD efficiently,
we show how to compute C ′ from C efficiently.

We have already seen an explicit description of a parity check matrix H
for D(G,L) in Section 3.9. Using H we can recover a generator matrix B for
D(G,L) so that D(G,L) = row(B). From the rows of B we can find a basis
{β1, . . . , βk} for D(G,L) and extend this basis to a basis for Znp ,

{β1, . . . , βk, βk+1, . . . , βn}.

Now for any α ∈ Znp , α can be written uniquely as

α =

n∑
i=1

aiβi

where the ai are elements of Zp. Furthermore, in the quotient space Znp/D(G,L),
α lies in the coset

D +

(
n∑

i=k+1

aiβi

)
.

Thus the elements of the connection set

C = {gi − gj : i is adjacent to j in X}
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can be expressed using our basis, and we set

C ′ =

{
n∑

i=k+1

aiβi :

n∑
i=1

aiβi ∈ C

}
.

This is the last piece of the proof of Theorem 3.0.2. We give a summary of
the proof below.

3.10.2 Theorem (Theorem 3.0.2). For a fixed prime p, the Maxclique problem
restricted to Cayley graphs for the family of groups Znp is NP-hard.

Proof. To show that the Maxclique problem is NP-Hard for the class of Cayley
graphs for the groups Znp where p is a fixed prime, we give a polynomial time
reduction from the problem on the class of all graphs. We assume that we are
given an oracle Ω that solves the Maxclique problem on any graph X(Znp , C) in
time polynomial in pn (the size of the input graph).

Let p be a fixed prime. We are given a graph X on n vertices. Suppose
n < p2. In this case we simply solve for ω(X) exhaustively. Since there are only
finitely many graphs with less than p2 vertices, this has no effect on our result.

Assume n ≥ p2. By Lemma 3.10.1, we can choose m to be the largest integer
in (logp n, 2 logp n] (i.e., set m = b2 logp nc).

Construct the field GF (pm) by finding an irreducible polynomial f of degree
m over the field GF (p), and representing GF (pm) as GF (p)[x]/〈f(x)〉 where
〈f(x)〉 is the ideal generated by f(x). This can be done in time polynomial in
m [7], and hence in time polynomial in n.

We choose a subset L ⊆ GF (pm) \ {0} with |L| = n as follows. Let α ∈
GF (pm) be a primitive element. We can find α by calculating ai for all 1 ≤ i ≤
pm − 1 and a ∈ GF (pm). This involves checking at most pm ≤ n2 elements,
each of which requires at most n2 multiplications in GF (pm), so this can be
accomplished in polynomial time. Set

L = {αi : 1 ≤ i ≤ n}.

Set G(x) = x6, and consider the Goppa code D(G,L). We construct a check
matrix H for D(G,L) as in Section 3.9. We set

H ′[i, j] = αijG(αj)
−1

for 1 ≤ i ≤ r and 1 ≤ j ≤ n. Since H ′ is a r × n matrix, with r < n, this
involves at most n2 calculations, each of which involves O(n2) computations in
GF (pm). We obtain a rm × n matrix H from H ′ by replacing each entry of
H ′ with a vector in GF (p)m corresponding to its entry in GF (pm). Again this
requires at most n2 replacement operations, each of which is constant time, as
given a polynomial α ∈ GF (pm) (recall that we are using the representation
GF (pm) = GF (p)[x]/〈f(x)〉) we replace α with the vector of its coefficients in
GF (p).

From H we construct a basis for Znp . We have that H is a rm × n matrix
whose rows span a space of dimension n−k, and whose null space has dimension
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k. We take {β1, . . . , βk} to be a basis for null(H) = D(G,L), and {βk+1, . . . , βn}
to be a basis for row(H). Now B = {β1, . . . , βn} is a basis for Znp . We can find
B by converting H into reduced row-echelon form in time polynomial in n (as
H is at most n× n).

For each 1 ≤ i ≤ n let gi be the ith standard basis vector in Znp . Let

C = {gi − gj : i is adjacent to j in X}.

Each element of C can be uniquely expressed as a sum of elements of B. So we
set

C ′ =

{
n∑

i=k+1

aiβi :

n∑
i=1

aiβi ∈ C

}
.

Describing the elements of C ′ is done in constant time, given the elements of
C. For each α ∈ Znp , to write α as a sum of elements of B, we solve the matrix
equation Bx = α. This can be done in polynomial time for each α ∈ C, so in
total we solve O(n2) equations to find C ′.

From C ′ we construct the graph Γ′ = X(Zn−kp , C ′). Recall that we chose m

so that pn−k is polynomial in n. So constructing the vertices of Γ′ and the at
most

2

(
pn−k

2

)
arcs between them can be done in polynomial time. Once we have Γ′, we run our
Maxclique oracle to compute ω(Γ′). By assumption Ω runs in time polynomial
in the size of the input graph, which is polynomial in n. So Ω returns ω(Γ′) in
time polynomial in n.

Finally, we compute ω(X) from ω(Γ′). If p ≥ 4, Corollary 3.1.5 gives us that
ω(X) = ω(Γ′), so our computation takes constant time. If p = 2, then Lemma
3.4.4 gives us that either ω(X) = ω(Γ′), or that ω(Γ′) = 4 and ω(X) = 3 or 4.
We check the 4-subsets of V (X) exhaustively for cliques to determine whether
ω(X) = 3 or 4. This takes O(n4), so the entire procedure runs in polynomial
time. Likewise for p = 3, Lemma 3.5.3 gives a polynomial time method to
compute ω(X) from ω(Γ′).

As a final note, we point out that in our proof, if our oracle Ω returns a
maximum clique in the auxiliary graph Γ′, then the proofs of Corollary 3.1.5
and Lemmas 3.4.4 and 3.5.3 give a method for finding a maximum clique in X
in polynomial time.

3.11 Generalizing to Direct Powers

An immediate question raised by Theorem 3.0.2 is whether we can generalize
to other families of Cayley graphs. Most naturally, we would hope to be able to
generalize to Cayley graphs for the groups Znm where m is any fixed integer. In
fact, we can do better. In this section we show that we can generalize Theorem
3.0.2 to the class of Cayley graphs for the groups Gn where G is any finite group.
The proof follows easily from the case where G = Zp for some prime p.
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3.11.1 Theorem. Let G be a finite group. The Maxclique problem restricted
to Cayley graphs for the family of groups Gm is NP-hard.

Proof. We are given a graph X on n vertices, and want to construct an
auxiliary graph that is a Cayley graph for a group of the form Gm. There is
some prime p that divides the order of G. This implies that there is a subgroup
H of G so that H ∼= Zp.

We apply the construction from the previous section to construct a graph
ΓD = X(Zmp , C). Recall that our construction ensures that pm is polynomially
bounded in n, ΓD can be constructed in time bounded by a polynomial in n,
and ω(X) can be calculated from ω(ΓD) in time polynomial in n.

Since C ⊆ Zmp the isomorphism between Zmp and Hm maps C to C ′ ⊆ Hm.
Consider the graph Γ′ = X(Gm, C ′). Since C ′ ⊆ H, the graph Γ′ consists of
(|G|/|H|)m connected components, each of which is isomorphic to ΓD (i.e. we
have one copy of ΓD for each coset of Hm in Gm). Therefore either ω(X) =
ω(Γ′), or p = 2, 3 and we have the usual caveats.

Moreover, we know that pm ≤ f(n) where f(x) is some polynomial in x.
There is some integer α so that |G| ≤ pα. Thus

(|G|/|H|)m ≤ (pα−1)m = (pm)α−1 ≤ (f(n))α−1

and the size of Γ′ is bounded by a polynomial in n. This completes the proof.

3.12 Spectra of Γ and ΓD

In this section we determine the spectrum of Γ and ΓD. Since Zmp is a finite
Abelian group, and Γ and ΓD are both Cayley graphs for some Zmp , we will use
the characters of Zmp to find the eigenvalues of Γ and ΓD. We refer back to
Section 2.6 for more details.

Suppose G is a finite Abelian group, and χi are the linear characters of G
for 1 ≤ i ≤ n. Let m be a positive integer, and consider the group Gm whose
elements are the m-tuples of elements of G, and

(a1, . . . , am) ◦m (b1, . . . , bm) = (a1 ◦ b1, . . . , am ◦ bm)

where ◦ is the group operation of G. For a ∈ [n]m, define the function φa :
Gm → C by

φa(b) =

m∏
i=1

χai(bi).

Since each χi is a linear character of G, each φa is a linear character of Gm.
Moreover,

{φa : a ∈ [n]m}

is the set of all linear characters of Gm.
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Recall that the linear characters of Zp are the characters χi : Zp → C defined
by χi(a) = ωia where ω is a primitive pth root of unity. So the spectrum of
X(Znp , C) is {∑

c∈C

(
n∏
i=1

ωaici

)
: a ∈ Znp

}
.

Let X be a graph, and p be a fixed odd prime. Let Γ = X(Znp , C) and ΓD
be defined as usual. The elements of C have the form gi − gj where gi and gj
are standard basis vectors of Znp . Also, if ij ∈ E(X), then both ±(gi − gj) are
in C. So if a ∈ Znp , we have that

φa(C) =
∑

gi−gj∈C

n∏
l=1

(
ωal(gi−gj)

)
=

∑
gi−gj∈C

ωai−aj

=
∑

ij∈E(X)

(
ωai−aj + ωaj−ai

)
=

∑
ij∈E(X)

2<(ωai−aj )

is an eigenvalue of Γ (the order of i and j does not matter as <(ωα) = <(ω−α)).
If we let

ω = cos(2π/p) + i sin(2π/p),

then we see the spectrum of Γ is ∑
ij∈E(X)

2 cos(2π(ai − aj)/p) : a ∈ Znp

 .

So we get an eigenvalue for every assignment of elements of Zp to the vertices of
X, and the eigenvalue we obtain depends on the differences of our assignment
values on adjacent vertices.

3.13 The Ratio Bound

We can use the spectrum of Γ to draw some conclusions about its structure.
In particular we will look at the cocliques of Γ. We have already seen in the
construction of ΓD from Γ that Γ has large cocliques. In order to bound the
size of a coclique in Γ, we could apply the inertia bound as we saw in Chapter
2. However, we will use a different bound on α(G).

3.13.1 Theorem (Theorem 3.5.2 in Brouwer and Haemers [4]). Let Y be a
k-regular graph on n vertices with least eigenvalue τ . Then

α(Y ) ≤ n

1− k/τ
.
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Theorem 3.13.1 is referred to as either the Ratio Bound or the Hoffman
Bound. We omit the proof and direct the reader to [4] for a proof based on
eigenvalue interlacing. We will refer to graphs that meet the ratio bound as
ratio tight.

Without finding the exact value of α(Γ) we can still show that Γ is not ratio
tight. If the right-hand side of the inequality in Theorem 3.13.1 is not integral,
then the inequality cannot be tight. Note that cos(2πi/p) is minimum when
i = (p− 1)/2 or (p+ 1)/2 (provided p is odd). Thus if τ is the least eigenvalue
of Γ, we have that

τ ≥ 2|E(X)| cos(π(p− 1)/p),

and equality is achieved if we can assign elements of Zp to V (X) so that the
difference on any edge is either (p− 1)/2 or (p+ 1)/2.

3.13.2 Lemma. If p is odd, and X is bipartite, then Γ does not meet the ratio
bound.

Proof. Let X have partition (A,B). Let a ∈ Znp be the assignment where each
vertex of A is assigned (p − 1)/2 and each vertex of B is assigned 0. Then for
every edge ij ∈ E(X),

ai − aj ∈ {(p− 1)/2, (p+ 1)/2}.

Thus the least eigenvalue of Γ is

τ = 2|E(X)| cos(π(p− 1)/p).

Since cos(π(p − 1)/p) is irrational, τ is irrational and Γ cannot meet the ratio
bound.

If p = 3 we can show that τ must be irrational independent of the structure
of X.

3.13.3 Lemma. If p = 3, and X has at least one edge, then Γ does not meet
the ratio bound.

Proof. If p = 3, then the eigenvalues of Γ have the form

a+ 2b cos(2π/3)

where 0 ≤ a, b ≤ |E(X)| are integers with a + b = |E(X)|. Since cos(2π/3)
is irrational, any eigenvalue with b > 0 is irrational. Since Γ has negative
eigenvalues, and all of the negative eigenvalues of Γ are irrational, it follows
that τ is irrational and Γ is not ratio tight.

We remark that this analysis becomes more difficult for p > 3, despite the
fact that we can still express all of the eigenvalues as integer sums of cos(2πi/p).
This follows as there are values of i for which cos(2πi/p) is both irrational and
positive, and both irrational and negative. So we need more information about
the edges of X to determine whether τ is irrational or not.
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We note that if Γ is a bipartite graph, then the least eigenvalue of Γ is
−|E(X)|. Also, both partite sets of Γ are cocliques, so α(Γ) ≥ |Γ|/2. So we
have

|Γ|
2
≤ α(Γ) ≤ |Γ|

1− k/(−k)
=
|Γ|
2
.

Thus Γ (and every regular bipartite graph) is ratio tight. So we have the fol-
lowing corollary.

3.13.4 Corollary. If X is bipartite and p is odd, or if p = 3, then Γ is not
bipartite.

Finally, we consider the special case p = 2. For p = 2, the elements of Zn2
all have order 2. In particular, each element of the connection set has order 2.
Therefore, in this case the eigenvalues of Γ are ∑

ij∈E(X)

(−1)ai+aj : a ∈ Znp

 .

Each eigenvalue arises from an assignment of the values 0 and 1 to the vertices
of X. If P is a partition of V (X) into two sets, let B(P ) be the number of edges
of X with an end in each part of P . So given an assignment a ∈ Zn2 , we have a
corresponding partition P , and∑

ij∈E(X)

(−1)ai+aj = −B(P ) + (|E(X)| −B(P )) = |E(X)| − 2B(P ).

If X is bipartite, then there is a partition of V (X) so B(P ) = |E(X)|. Now we
have τ = −|E(X)|, and since Γ is |E(X)| regular, the ratio bound gives

α(Γ) ≤ 2n

1− |E(X)|/(−|E(X)|)
= 2n−1.

In this case we see that Γ meets the ratio bound if and only if Γ is bipartite.
We constructed ΓD as a quotient graph of Γ using an equitable partition

of the vertices. This implies that the eigenvalues of ΓD are eigenvalues of Γ.
Moreover, if θ is an eigenvalue of ΓD with multiplicity m, then the multiplicity
of θ as an eigenvalue of Γ is at least m (Theorem 9.3.3 in Godsil and Royle [18]).
However, the eigenvalues of ΓD are even harder to get a handle on than those
of Γ. In particular, the deductions we have made about the least eigenvalue of
Γ do not apply to ΓD.

3.14 Open Problems

The largest open problem raised in this chapter is the question of whether
Theorem 3.0.2 can be extended to other classes of Cayley graphs. The method
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we have presented in this chapter for constructing reductions may be applicable
to other classes of Cayley graphs.

In their paper [7], Codenotti et al. also consider the colouring problem.
Given a graph X, a colouring is an assignment of colours to the vertices of
X so that adjacent vertices are not assigned the same colour. The chromatic
number χ(X) of X is the smallest number of colours required to construct a
valid colouring of X. For general graphs X, computing χ(X) is known to be
NP-Hard. Codenotti et al. show that computing χ(X) is still an NP-Hard
problem if we restrict X to be a circulant graph (Theorem 4 in [7]). Their proof
does not apply the construction used to prove their Maxclique result. It is not
immediately clear how to prove this result for the class of Cayley graphs for the
groups Znm where m is a fixed integer.
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Chapter 4

Eigenpolytopes of Folded
Cubes

In this chapter we present some results on the folded-cube graphs. Folded cubes
are a family of distance-regular cubelike graphs. As we will see, they provide
another example of a family of graphs that meet the inertia bound with their
unweighted adjacency matrix.

The proof that the folded cubes are inertia tight uses the fact that we can find
a natural family of maximum cocliques for the folded cubes. These canonical
cocliques come from the distance partition of the graph with respect to a vertex.
We will show that the canonical cocliques can be obtained in two different ways.
This leads to the question of whether or not the canonical cocliques are exactly
the maximum cocliques of the folded cubes.

To address this question, we follow a geometrical method of Godsil and
Meagher [15, 16]. Namely, there are distance-regular graphs for which the max-
imum cocliques are closely related to the facets of the τ -eigenpolytope (a poly-
tope derived from the τ -eigenspace of a graph). We will derive two families of
facets for the τ -eigenpolytope of the folded cube. These facets do not give us
a characterization of the maximum cocliques, however they are related to the
structure of the graph and are interesting in their own right.

4.1 Folded Cubes

For the basic properties of the folded-cube graphs, we follow Section 6.9 in
Godsil [19] and Section 9.D in Brouwer et al. [3].

The n-dimensional hypercube is the cubelike graph Hn = X(Zn2 , C) with
connection set

C = {ei :, 1 ≤ i ≤ n}

where ei is the ith standard basis vector of Zn2 . This is one standard definition
of the n-dimensional hypercube. Alternatively, we can define Hn as the graph
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on the subsets of [n] where S and T are adjacent if and only if there is some
element i ∈ [n] so that the size of the symmetric difference of S and T is 1
(i.e., |S4T | = 1). To see that these definitions define the same graph, we note
that we can view the vectors in Zn2 as the characteristic vectors of the subsets
of [n] and that addition in Zn2 corresponds exactly to the symmetric difference
operation.

The hypercube Hn is a n-regular graph on 2n vertices. We can partition Hn

into sets A and B where a ∈ A if a has even weight, and b ∈ B if b has odd
weight. It is easily seen that the edges of Hn connect elements of A to elements
of B, thus Hn is bipartite. If we consider the vertex 0 ∈ Zn2 , we see that the
distance between 0 and x is exactly the weight of x. Thus the diameter of Hn is
n, and there is exactly one vertex at distance n from 0 (the vertex 1). Since is
a Cayley graph, Hn is vertex transitive, and every vertex x has a unique vertex
y so that x and y are at distance n in Hn.

The folded cube of order n is the graph Gn obtained from Hn by identifying
the vertices of Hn that are at maximum distance from each other. By this
we mean that Gn is the quotient graph Hn/P where P is the partition of the
vertices of Hn into pairs of vertices that are at distance n from each other. For
each x ∈ Zn2 , the vertex at maximum distance from x in Hn is the vertex x+1.
Viewed as subsets of [n], the vertex S is at maximum distance in Hn from the
vertex S. Thus the vertices of Gn are the partitions of [n] into two parts, (S, S).
Two partitions are adjacent in Gn if one part of each in adjacent in Hn. So if
(S, S) and (T, T ) are partitions, without loss of generality they are adjacent if
S = T ∪ {i} for some 1 ≤ i ≤ n. This implies that S = T \ {i}, and there are
exactly two edges between (S, S) and (T, T ) in Hn. So the partition P is an
equitable partition of Hn. This also implies that Gn is a n-regular graph.

4.1.1 Example. When n = 3, the hypercube Hn is the familiar cube graph. The
8 vertices of the cube can be partitioned into 4 pairs of vertices at distance 3 as

{000, 111}, {001, 110}, {010, 101}, {100, 011}.

The folded-cube graph G3 in this case is K4, as 000 is adjacent to the vertices of
weight 1 in H3, and any vertex of weight 2 is adjacent to the vertices of weight
1 that are not in the same pair.

4.1.2 Example. When n = 4, the hypercube Hn is the tesseract. The 16 vertices
of the tesseract can be partitioned into 8 pairs of vertices at distance 4 as

{0000, 1111};
{1000, 0111}, {0100, 1011}, {0010, 1101}, {0001, 1110};
{1100, 0011}, {1001, 0110}, {1010, 0101}.

We have arranged the vertices of G4 suggestively. The vertex {0000, 1111} is
adjacent to each vertex in the second row. We can also check that every vertex
in the second row is adjacent to every vertex in the third row. Since the vectors
in each row have the same parity, there are no edges between vertices on the
same row. Thus G4 is K4,4 the complete bipartite graph on partite sets of size
4.
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4.2 Structural Properties of Gn

Every vertex of Gn is a partition (S, S) of [n]. When n is odd, we will identify
(S, S) with the set that has size less than n/2. When n is even, we will identify
(S, S) with the set that has size less than n/2 where possible (i.e., we have a
bijection between the sets of size < n/2 and the partitions that contain one
part of size < n/2, and in the even case we also have the partitions into parts
of size n/2). Consider the vertex ∅ in Gn. The neighbours of ∅ are the sets {i}
for 1 ≤ i ≤ n. If S is a subset of [n] with size at most n/2, then the distance
between ∅ and the vertex corresponding to S (either S or (S, S)) is |S|. Since Hn

is vertex transitive, we see that Gn is also vertex transitive. Thus the diameter
of Gn is bn/2c. We break our further discussion of the structure of Gn into two
cases: n even; and n odd.

4.2.1 Proposition. If n is even, then Gn is bipartite.

Proof. Suppose that n is even, and let n = 2r. In this case the vertices of Gn
are the subsets of [n] with size less than r together with the partitions of [n]
into two sets of size r. For 0 ≤ i ≤ r, let Γi be the set of vertices at distance i
from ∅. We have that for 0 ≤ i ≤ r − 1, the set Γi consists of the subsets of [n]
of size i. If (S, S) and (T, T ) are partitions with |S| = |T | = i, then |T | = n− i
and

n = 2r = 2(r − 1) + 2 ≥ 2i+ 2,

so n − i ≥ i + 2 and S is not adjacent to T or T in Hn. Therefore for each
0 ≤ i ≤ r − 1, the set Γi is a coclique in Gn. Also, the set Γr is a coclique in
Gn. This follows directly as if (S, S) ∈ Γr, then |S| = |S| = r and since S is
not adjacent to any vertex of size r in Hn, we have that Γr is a coclique. This
shows that we can partition Gn into A = ∪i oddΓi and B = ∪i evenΓi each of
which is a coclique. Therefore Gn is bipartite when n is even.

Now suppose that n is odd and let n = 2r + 1. In this case the vertices of
Gn are the subsets of [n] with size at most r. Again we consider the vertex ∅ in
Gn. As for the case when n is even, we can partition the vertices into the sets
Γi for 0 ≤ i ≤ r where Γi is the set of subsets of [n] with size i. We have that
Γi consists of the vertices at distance i from ∅, and that for 0 ≤ i ≤ r − 1, the
set Γi is a coclique in Gn. The difference between the even and odd case is the
set Γr. For n odd, Γr is the set of partitions of [n] into (S, S) where |S| = r.
Since sets of size r cannot be adjacent in Hn, if we have an edge between (S, S)
and (T, T ) in Γr, then there is an edge between S and T in Hn. So there is
some 1 ≤ i ≤ n with S = T \ {i}. Thus S ∩ T = ∅. So in Gn, the subgraph
induced by the vertices in Γr is the graph on the r-subsets of [n] where S and T
are adjacent if and only if they are disjoint. This is the Kneser graph K2r+1:r.
So in the case n = 2r + 1, we have an odd cycle through ∅. For example, [r]
and {r + 1, . . . , 2r} are adjacent vertices in Γr, take the path from ∅ to each of
these vertices formed by adding each element in turn. This results in a cycle of
length n. Moreover, since Gn is vertex transitive, n is the length of a shortest
odd cycle in Gn, or the odd girth of Gn.
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We can see immediately that since Gn is bipartite when n is even, the maxi-
mum cocliques will be the sets of size n/2 that arise from the unique 2-colouring
of Gn. The odd case is much more interesting, and we spend the remainder of
the chapter looking at the maximum cocliques in Gn for n odd. In both cases
we can say much more about the structure of Gn. First we will show that the
odd order folded cubes are inertia tight.

4.3 The Inertia Bound

The inertia bound, Theorem 2.3.1, relates the size of a maximum coclique in
a graph to its spectrum. We show that the folded cubes for odd n are inertia
tight using the unweighted adjacency matrix of Gn. The proof we present is an
expanded version of proof given by Godsil in Section 6.10 of [19]. We assume
for the remainder of this section that n is odd.

We saw in Section 3.12 that if X = X(Zn2 , C) is a cubelike graph, then the
eigenvalues of X are computed as follows. Since −1 is the only primitive 2nd
root of unity, {∑

c∈C

(
n∏
i=1

(−1)aici

)
: a ∈ Zn2

}
is the spectrum of X. Thus the spectrum of the n-dimensional hypercube Hn

is {
n∑
i=1

(−1)ai : a ∈ Zn2

}
.

However for a ∈ Zn2 , ai is either 0 or 1, and we have that

n∑
i=1

(−1)ai = (n− wt(a))1 + wt(a)(−1) = n− 2 wt(a).

Therefore the eigenvalues of Hn are n− 2i with multiplicity
(
n
i

)
for 0 ≤ i ≤ n.

We will use the same strategy to derive the eigenvalues of Gn. First we need to
show that Gn is a Cayley graph for Zn−12 .

Let C be the connection set

C = {e1, . . . , en−1} ∪ {1},

and define Xn = X(Zn−12 , C).

4.3.1 Proposition. Xn
∼= Gn.

Proof. In Section 4.1 we constructed Gn by taking a quotient of Hn. Equiva-
lently we can construct Gn from Hn−1 by adding a perfect matching to Hn−1
joining the unique pairs of vertices at distance n − 1. To see that these defini-
tions are equivalent, let Gn be constructed from Hn, and let G′n be constructed
from Hn−1. The vertices of Gn are pairs of elements of Zn2 of the form {x, y}
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where x = 1−y. The vertices of G′n are elements of Zn−12 . Let f be the function
between V (G′n) and V (Gn) defined as follows. For x ∈ Zn2 , we have that xn is
either 0 or 1. Moreover, for each {x, y} ∈ V (Gn) exactly one of x and y has
nth coordinate 0. We map x ∈ Zn−12 to the element of V (Gn) that contains
(x, 0). Now f is clearly a bijection between V (Gn) and V (G′n). To see that f
is a homomorphism, note that if x ∈ Zn−12 and 1 ≤ i ≤ n − 1, then f(x + ei)
contains (x+ei, 0) and so is adjacent to the pair containing (x, 0). This accounts
for the edges of G′n corresponding to Hn−1. However, x is also adjacent to x+1
in G′n. Now

f(x+ 1) = {(x+ 1, 0), (x, 1)}

and thus x is adjacent to f(x) via the generator en. Therefore f is an isomor-
phism between Gn and G′n.

We have constructed Gn from Hn−1 by adding an edge between the pairs
of vertices at maximum distance. Equivalently we add an edge between every
vertex x of Hn−1 and the vertex x + 1. Since Hn−1 = X(Zn−12 , C \ {1}) this
shows that Gn ∼= Xn.

The spectrum of Xn is{∑
c∈C

(
n∏
i=1

(−1)aici

)
: a ∈ Zn−12

}
.

Now for a ∈ Zn−12 the eigenvalue of Xn corresponding to a is

θa =
∑
c∈C

(
n−1∏
i=1

(−1)aici

)
=

n−1∑
i=1

(−1)ai +

n−1∏
i=1

(−1)ai .

Therefore we have

θa = (n− wt(a)− 1)1 + wt(a)(−1) + (−1)wt(a)

= n− 2 wt(a) + ((−1)wt(a) − 1).

When wt(a) is even, (−1)wt(a)−1 = 0, and when wt(a) is odd (−1)wt(a)−1 = −2.
Thus

θa =

{
n− 2 wt(a), if wt(a) even

n− 2(wt(a) + 1), if wt(a) is odd.

If we let wt(a) = 2i, then we have that θa = n−4i is an eigenvalue of Xn. There
are

(
n−1
2i

)
such vectors a that give us this eigenvalue. If we let wt(a) = 2i − 1,

then we have that θa = n − 4i is an eigenvalue if Xn. There are
(
n−1
2i−1

)
such

vectors a that give us this eigenvalue. Therefore for 0 ≤ i ≤ bn/2c we have that
n− 4i is an eigenvalue of Xn with multiplicity(

n− 1

2i

)
+

(
n− 1

2i− 1

)
=

(
n

2i

)
.

If we let n = 2r + 1. Then the eigenvalues of Gn are 2r + 1− 4i for 0 ≤ i ≤ r.
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4.3.2 Lemma. For n odd, Gn is inertia-tight.

Proof. Note that since the eigenvalues of Gn are all odd, 0 is not an eigenvalue
of Gn. So the inertia bound implies that

α(Gn) ≤ min{n−(Gn), n+(Gn)}

where n−(Gn) is the number of negative eigenvalues of Gn and n+(Gn) is the
number of positive eigenvalues of Gn. The first step in showing the Gn is inertia
tight is to calculate n−(Gn) and n+(Gn).

We start with n+(Gn). The eigenvalue 2r + 1− 4i is positive when

2r + 1− 4i > 0

r/2 + 1/4 > i

br/2c ≥ i.

So we have a positive eigenvalue for 0 ≤ i ≤ br/2c. Consequently, the eigenvalue
2r+1−4i is negative when br/2c+1 ≤ i ≤ r. To calculate n+(Gn) and n−(Gn)
we simply sum the corresponding multiplicities. So we have

n+(Gn) =

br/2c∑
i=0

(
2r + 1

2i

)
,

and

n−(Gn) =

r∑
i=br/2c+1

(
2r + 1

2i

)
.

To determine whether α(Gn) is equal to min{n−(Gn), n+(Gn)} we attempt
to find a coclique in Gn with size min{n−(Gn), n+(Gn)}. To do this, recall that
we can partition the vertices of Gn into sets Γi for 0 ≤ i ≤ r. The set Γi is the
set of vertices at distance i from ∅. We saw in the previous section, that with the
exception of Γr, the sets Γi are all cocliques in Gn. So we can construct a large
coclique in Gn by taking either the sets Γi for even i, or for odd i, depending
on the parity of r.

Suppose that r = 2j + 1 is odd. In this case the set

j⋃
i=0

Γ2i

is a coclique in Gn. Therefore

α(Gn) ≥
j∑
i=0

|Γ2i| =
j∑
i=0

(
2r + 1

2i

)
.

We also have that

α(Gn) ≤ n+(Gn) =

br/2c∑
i=0

(
2r + 1

2i

)
=

j∑
i=0

(
2r + 1

2i

)
.
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Therefore, when r is odd, Gn is inertia tight.
Suppose that r = 2j is even. Now instead of the even Γi we take instead the

odd Γi. The set
j−1⋃
i=0

Γ2i+1

is a coclique in Gn. Therefore

α(Gn) ≥
j−1∑
i=0

|Γ2i+1| =
j−1∑
i=0

(
2r + 1

2i+ 1

)
.

Now we use the binomial coefficient identity
(
n
i

)
=
(
n
n−i
)
. We have that

j−1∑
i=0

(
2r + 1

2i+ 1

)
=

j−1∑
i=0

(
4j + 1

4j − 2i

)

=

0∑
i=j−1

(
4j + 1

4j − 2i

)

=

2j∑
i=j+1

(
4j + 1

2i

)
= n−(Gn).

Therefore we see that α(Gn) = n−(Gn) and Gn is inertia tight.

4.4 Canonical Cocliques

To show that Gn is inertia tight when n is odd, we found a family of maximum
cocliques using the distance partition from ∅. Since Gn is vertex transitive, the
distance partition from any vertex gives a maximum coclique in Gn. We call
these the canonical cocliques in Gn. In this section we show that there is an
alternative construction for these cocliques.

Let n = 2r + 1. Let Γ0,Γ1, . . . ,Γr be the partition of the vertices of Gn
where Γi consists of the vertices at distance i from ∅. We have seen that when
r is odd, ∪i evenΓi is a maximum coclique in Gn; and when r is even, ∪i oddΓi
is a maximum coclique in Gn. Note that since Gn is vertex transitive, we
can partition Gn into distance sets Γi(v) for 0 ≤ i ≤ r where Γi(v) is the set
of vertices of Gn at distance i from v. The sets Γi(v) are all cocliques, and
|Γi(v)| = |Γi(∅)|. Thus for any vertex v, either ∪i evenΓi(v) or ∪i oddΓi(v) is a
maximum coclique in Gn (depending on the parity of r).

In fact, these cocliques are distinct for distinct vertices u and v. We will
prove this in the case when r is odd (the even case is analogous). We need to
show that ⋃

i even

Γi(v) 6=
⋃
i even

Γi(u).
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Consider the distance between u and v in Gn. If u and v are at an odd distance
from each other, then u ∈ Γ2i+1(v) for some i. Thus u /∈ ∪i evenΓi(v), and the
two cocliques are distinct. Now suppose that u and v are at an even distance
from each other. Then u ∈ Γ2i(v) for some i. Note that Γr(v) contains edges
of Gn. Also, there are vertices in Γr that are at distance r − 2i from u. Let
x ∈ Γr be such a vertex, and consider y ∈ Γr so that y is adjacent to x.
Now if y is at distance r − 2i from u, then there is a closed walk of length
2(r−2i) + 1 = 2r+ 1−4i containing x, y and u. Thus this closed walk contains
an odd cycle of length at most 2r + 1 − 4i. This contradicts the fact that the
odd girth of Gn is 2r + 1. Therefore y is at distance r − 2i + 1 from u and r
from v. Thus y ∈ ∪i evenΓi(u) and y /∈ ∪i evenΓi(v), and we have the result.

So for each vertex v of Gn, the distance partition of Gn corresponding to v
gives us a distinct maximum coclique. We refer to this set of 2n−1 cocliques as
the canonical cocliques of Gn. Are these the only maximum cocliques in Gn?

Note that the distance partition corresponding to ∅ gives us another natural
coclique. Assume that r = 2j + 1 is odd. The sets Γi for i 6= r are all cocliques
in Gn. So the set

j−1⋃
i=0

Γ2i+1

is a coclique in Gn. We can augment this coclique by adding a coclique in Γr.
The subgraph of Gn induced by the vertices of Γr is isomorphic to the Kneser
graph Kn:r. The maximum cocliques of Kn:r are exactly the sets

Si = {S ⊆ [n] : |S| = r, i ∈ S}

for 1 ≤ i ≤ n by the Erdős-Ko-Rado Theorem. So for any 1 ≤ i ≤ n, the set

Ti = Si
⋃(

j−1⋃
i=0

Γ2i+1

)

is a coclique in Gn. Since the sets Γ2i+1 are disjoint (and disjoint from Si), to
find |Ti| we simply sum their cardinalities,

|Ti| =
(
n− 1

r − 1

)
+

j−1∑
i=0

|Γ2i+1| =
(
n− 1

r − 1

)
+

j−1∑
i=0

(
n

2i+ 1

)
.

We show that Ti is a maximum coclique by showing that is has the same size
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as the canonical coclique T corresponding to ∅. The size of T is

|T | =

j∑
i=0

|Γ2i|

=

(
n

0

)
+

j∑
i=1

(
n

2i

)

=

(
n− 1

0

)
+

j∑
i=1

((
n− 1

2i

)
+

(
n− 1

2i− 1

))

=

r−1∑
i=0

(
n− 1

i

)
.

By manipulating our expression for |Ti| we see that

|Ti| =

(
n− 1

r − 1

)
+

j−1∑
i=0

(
n

2i+ 1

)

=

(
n− 1

r − 1

)
+

j−1∑
i=0

((
n− 1

2i+ 1

)
+

(
n− 1

2i

))

=

(
n− 1

r − 1

)
+

r−2∑
i=0

(
n− 1

i

)

=

r−1∑
i=0

(
n− 1

i

)
= |T |.

Therefore for each 1 ≤ i ≤ n, the set Ti is a maximum coclique of Gn. We can
construct the analogous cocliques when r is even, and the same method shows
that these are maximum cocliques for those graphs.

We have seen that by examining the distance partition of Gn, we can find
two families of maximum cocliques. The canonical cocliques, and the cocliques
of the form Ti. However, these families are in fact the same.

4.4.1 Lemma. The set of cocliques of Gn of the form Ti is exactly the set of
canonical cocliques.

Proof. We prove this for r = 2j. For each 0 ≤ i ≤ n, let

Ti = Si
⋃(

j−1⋃
i=0

Γ2i(∅)

)

be the coclique described above for the distance partition corresponding to ∅.
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Let v be a neighbour of ∅, and let

T =

j−1⋃
i=0

Γ2i+1(v)

be the canonical coclique corresponding to v. Since v is adjacent to ∅, there is
some 1 ≤ a ≤ n so that v corresponds to the partition containing {a} (we will
refer to v as a from here). We show that T = Ta.

Let x be any vertex in Γ2i with i < j. Suppose that x is not at odd distance
from v. Then there is a minimum length path P from v to x of even length. If ∅
is not on P , then ∅P is a minimum length path between ∅ and x of odd length,
contradicting x ∈ Γ2i. Therefore ∅ lies on P . Suppose the edge ∅a is not an
edge of P . Then P has the form

P = aP1b∅b′P2x

where a, b, b′ are distinct neighbours of ∅. Now the path a∅b′P2x is a path from
a to x that is shorter than P , a contradiction. Therefore P has the form a∅P ′x.
Since P is a shortest path from a to x, the subpath P ′ is a shortest path from
∅ to x. However, P ′ is an odd length path which again contradicts x ∈ Γ2i.
Therefore, the vertices in Γ2i for i < j are all vertices at odd distance from a,
and

j−1⋃
i=0

Γ2i(∅) ⊂
j−1⋃
i=0

Γ2i+1(a).

Finally, note that every partition in Γr consists of a set of size r and a set of
size r+ 1. We identify each partition with the smaller of its parts. So for every
S ∈ Sa, the set S has size r, and a ∈ S. Thus we can write S as S = {a} ∪ S′
where S′ = {s1, . . . , sr−1}. We construct a path from a to S by adding the
elements si in turn. This results in a path of length r − 1 from a to S. Note
that the ith vertex of this path is at distance i + 1 from ∅. Therefore it is a
minimum length path between a and S, and S ∈ Γr−1(a). Thus Si ⊂ Γr−1(a)
and Ta ⊆ T . Since |T | = |Ta| we conclude that T = Ta.

This shows that for all 1 ≤ i ≤ n, the coclique Ti is the canonical coclique
corresponding to {i}. Since Gn is vertex transitive, this shows that the coclique
Ti(v) is canonical for all vertices v and 1 ≤ i ≤ n. The proof is identical for the
case r = 2j + 1.

So far we have identified a canonical set of cocliques, and another natural
family that gives an alternative definition of the canonical cocliques. In order
to explore the possibility of a different class of maximum cocliques, we further
develop the structure of Gn.

4.5 Distance-regular Graphs

Distance-regular graphs are a class of graphs with a strong algebraic structure.
We present some of the basic theory of distance-regular graphs following Godsil
[13].
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Let X be a graph, and let x, y be vertices in X. Keeping with our previous
notation, we will denote the distance between x and y in X as d(x, y), and we
will denote the set of vertices in X at distance i from x as Γi(x). We will denote
the diameter of X by d.

A connected graph X is distance regular if there are constants ai, bi and ci
for all 0 ≤ i ≤ d with the following property. For all vertices x, y ∈ V (X), if
d(x, y) = i, then

|Γi−1(x) ∩ Γ1(y)| = ci,

|Γi(x) ∩ Γ1(y)| = ai,

|Γi+1(x) ∩ Γ1(y)| = bi.

4.5.1 Example. The hypercube graph Hn is distance regular for all n. To see
this, let 0 ≤ i ≤ n and let x, y ∈ V (Hn) be arbitrary vertices with d(x, y) = i.
Now let Sx and Sy be the subsets of [n] with characteristic vectors x and y
respectively. Then S = Sx4Sy has |S| = i. The neighbours of y are the vectors
y + ej as 1 ≤ j ≤ n. We have two cases, either j ∈ S or j /∈ S. If j ∈ S, then
d(y + ej , x) = i− 1 and

y + ej ∈ Γi−1(x) ∩ Γ1(y).

If j /∈ S then d(y + ej , x) = i+ 1 and

y + ej ∈ Γi+1(x) ∩ Γ1(y).

Therefore

|Γi−1(x) ∩ Γ1(y)| = i,

|Γi(x) ∩ Γ1(y)| = 0,

|Γi+1(x) ∩ Γ1(y)| = n− i.

Since x and y were arbitrary, ci = i, ai = 0 and bi = n− i, and Hn is distance
regular.

For a distance-regular graphX, we refer to the numbers bi, ai, ci for 0 ≤ i ≤ d
as the parameters of X. Note that if i = 0, then we have that ci = 0, ai = 0
and bi = deg(x). Thus X is a regular graph with valency k = b0. Also, if i = d
then bi = 0. If x and y are vertices at distance i, then the neighbours of y are
partitioned into those as distance i − 1, i and i + 1 from x. Therefore for each
0 ≤ i ≤ d, we have that

bi + ai + ci = k = b0.

So we can derive the ai values given the bi and ci values. In order to compactly
express the parameters of X we define its intersection array to be the following
array of parameters, (

b0 = k b1 b2 . . . bd = 0
c0 = 0 c1 = 1 c2 . . . cd

)
.
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There is another set of parameters that we associate with X. Consider the
distance partition of X with respect to a vertex x. Let ni = |Γi(x)| be the
size of the ith distance set in the partition. For each y ∈ Γi(x), the number
of neighbours of y in Γi+1(x) is bi. Also, for each y ∈ Γi+1(x) the number of
neighbours of y in Γi(x) is ci+1. Therefore the number of edges between Γi(x)
and Γi+1(x) is nibi = ni+1ci+1. Thus ni+1 = nibi/ci+1 depends only on ni
and the parameters of X. Thus we can derive the values ni from n0 = 1 and
the parameters of X. Therefore the values ni are the same for all vertices x of
X, and the distance partition consists of sets of the same size no matter which
vertex we start with.

We can prove that the folded n-cube Gn is a distance-regular graph for all
n by deriving its parameters.

4.5.2 Lemma. The folded cube Gn is distance regular for all n ≥ 1. The size
of the ith distance set in any distance partition of Gn is ni =

(
n
i

)
.

If n = 2r then the parameters of Gn are ci = i for 0 ≤ i ≤ r− 1 and cr = n,
and bi = n− i for 0 ≤ i ≤ r − 1 and br = 0.

If n = 2r + 1 then the parameters of Gn are ci = i for 0 ≤ i ≤ r, and
bi = n− i for 0 ≤ i ≤ r − 1 and br = 0.

Proof. Recall that Gn is vertex transitive. So, if x and y are vertices in Gn
with d(x, y) = i, then there is some automorphism σ of Gn so that σ(x) = ∅.
Moreover,

i = d(x, y) = d(σ(x), σ(y)) = d(∅, σ(y)).

Therefore it suffices to show the distance regularity condition for x = ∅.
Suppose that y is any vertex of Gn with d(∅, y) = i. Then we have y =

{y1, . . . , yi}. If 0 ≤ i < bn/2c, then y has no neighbours x with |x| = i. The
number of neighbours x of y with |x| = i − 1 is the number of ways we can
remove an element from y, or i. Similarly the number of neighbours x of y with
|x| = i+ 1 is n− i.

Let n = 2r and y be a vertex of Gn with d(∅, y) = r. Then y is a partition of
[n] into two parts of size r. The number of neighbours of y that are partitions of
[n] into two sets of size r is 0, as we have already seen. Now for each i ∈ [n] one
of the parts of y contains i. Without loss of generality y = (y1, y2) and i ∈ y1.
Now the partition (y1 \ {i}, y2 ∪ {i}) (denoted y1 \ {i}) is at distance i− 1 from
∅. Performing this operation for each i gives a distinct neighbour of y so cr = n.

Let n = 2r+ 1 and y be a vertex of Gn with d(∅, y) = r. Then y is a subset
of [n] of size r. As above we see that y has r neighbours of size r − 1 in Gn.
Two vertices at distance r from ∅ are adjacent if and only if they are disjoint.
Thus there are n− r neighbours of y at distance r from ∅.

It remains to note that ni =
(
n
i

)
as we have already seen. This completes

the proof that Gn is distance regular with the given parameters.

For a graph X (not necessarily distance regular) and 0 ≤ i ≤ d, we define
the ith distance matrix of X as Ai(X) where Ai(X)[x, y] = 1 if d(x, y) = i and
0 otherwise. The matrices Ai(X) are symmetric matrices with entries 0 and 1,
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so each Ai(X) defines a graph on V (X). We let Xi be the graph with adjacency
matrix A(Xi) = Ai(X). Then Xi is the ith distance graph of X; the graph
where two vertices are adjacent if and only if they are at distance i in X. Note
that A0(X) is the identity matrix, and so X0 is the graph on V (X) where every
vertex has a loop edge and there are no other edges. Every other Xi is a graph
with no loops or multiple edges.

Consider the matrices Ai(X) and Aj(X). The entries of their product
Ai(X)Aj(X) have a combinatorial interpretation. If x, y ∈ V (X), then the
(x, y)-entry of Ai(X)Aj(X) is the inner product of the x-row of Ai(X) and the
y-row of Aj(X) and is equal to the number of vertices in X that are at distance
i from x and at distance j from y. So

(Ai(X)Aj(X))[x, y] = |Γi(x) ∩ Γj(y)|.

We can translate the definition of distance regularity into a condition on
distance matrices. Let X be a distance-regular graph with parameters ai, bi
and ci for 0 ≤ i ≤ d. Then

Ai(X)A1(X) = ciAi−1(X) + aiAi(X) + biAi+1(X).

This follows from the definition of distance regularity, as if d(x, y) = i and
j < i− 1 or j > i+ 1, then |Γj(x) ∩ Γ1(y)| = 0.

Since A0(X) is the identity matrix, we have that Ai(X)A0(X) = Ai(X) for
all 0 ≤ i ≤ d. So if X is distance regular, then the product of Ai(X) with either
A0(X) or A1(X) is a linear combination of distance matrices. In fact, much
more is true.

4.5.3 Lemma (Lemma 2.1 in Chapter 11 of [13]). Let X be a connected graph
with diameter d. Then X is distance regular if and only if Ai(X)Aj(X) is a
linear combination of distance matrices for all 0 ≤ i, j ≤ d.

Proof. If Ai(X)Aj(X) is a linear combination of distance matrices for all
0 ≤ i, j ≤ d, then Ai(X)A1(X) is a linear combination of distance matrices for
all 0 ≤ i ≤ d. As above we note that the coefficient ofAj(X) for j /∈ {i−1, i, i+1}
must be 0 in this linear combination, and we take ci, ai, bi to be the coefficients
of Ai−1(X), Ai(X), Ai+1(X) respectively. Therefore X is distance regular.

Now suppose that X is distance regular. Then for all 1 ≤ i ≤ d+ 1, we have

Ai−1(X)A1(X) = ci−1Ai−2(X) + ai−1Ai−1(X) + bi−1Ai(X).

By rearranging this equation we can express Ai(X) as a linear combination of
Ai−2(X), Ai−1(X) and Ai−1(X)A1(X). Therefore by induction, we can express
Ai(X) as a polynomial p of degree i in A1(X) for all 0 ≤ i ≤ d. Therefore for
0 ≤ i, j ≤ d, we have

Ai(X)Aj(X) = p(A1(X))Aj(X).

Each term of the form A1(X)αAj(X) can be iteratively expanded to a linear
combination of distance matrices. Therefore Ai(X)Aj(X) is a linear combina-
tion of distance matrices.
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So the combinatorial structure of distance-regular graphs gives us a strong
algebraic structure between their distance matrices.

4.6 Association Schemes

Association schemes are extremely important in algebraic combinatorics. They
provide an indispensable tool for working with distance-regular graphs. In this
section we give a very brief introduction to association schemes. We focus on
the basic definitions that we will need in later sections. We follow Brouwer et
al. [3] and Godsil [13].

Let X be a set of size n, and let Ri be a relation on X for 0 ≤ i ≤ d. Let
{R0, . . . , Rd} satisfy the following properties:

(a) {R0, . . . , Rd} is a partition of X ×X;

(b) R0 = {(x, x) : x ∈ X};

(c) each Ri is a symmetric relation;

(d) for (x, y) ∈ Rk, the number of elements z ∈ X with (x, z) ∈ Ri and (z, y) ∈
Rj depends only on the indices i, j, k.

Then the relations Ri form an association scheme with d classes.
Note that we can represent each relation Ri with a n × n matrix Ai with

entries 0 and 1. We translate the conditions (a)-(d) in the definition of an asso-
ciation scheme to give conditions on {A0, . . . , Ad}. The matrices {A0, . . . , Ad}
satisfy the following properties:

(a)
∑d
i=0Ai = J (where J is the n× n matrix with all values 1);

(b) A0 = I (where I is the n× n identity matrix);

(c) Ai is a symmetric matrix;

(d) for 0 ≤ i, j, k ≤ d there exist constants pki,j so that AiAj =
∑d
k=0 p

k
i,jAk.

The numbers pki,j are called the intersection numbers of the scheme.
Note that (d) implies that the product of any of the Ai matrices can be

written as a linear combination of {A0, . . . , Ad}. Thus these matrices generate
a matrix algebra A. This algebra is referred to as the Bose-Mesner algebra of
the association scheme. Furthermore, from (a) we have that {A0, . . . , Ad} is a
linearly independent set, and thus is a basis for the Bose-Mesner algebra of the
scheme.

Define the operation ◦ on the set of n × n real matrices to be entrywise
multiplication. So

(A ◦B)[i, j] = A[i, j]B[i, j]

for all 1 ≤ i, j ≤ n. We will refer to this operation as Schur multiplication.
Note that since the Ai are 01-matrices, Ai ◦Ai = Ai, and from (a) we have that
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4.6. ASSOCIATION SCHEMES

Ai ◦Aj = 0 when i 6= j. Thus Schur multiplication by Ai on A is an idempotent
operation, and we refer to {A0, . . . , Ad} as the basis of Schur idempotents for
A.

From our definition of an association scheme, property (d) implies not only
that the numbers pki,j exist, but also that pki,j = pkj,i. Therefore, we see that

AiAj =

d∑
k=0

pki,jAk =

d∑
k=0

pkj,iAk = AjAi.

Thus the Bose-Mesner algebra is a d + 1-dimensional commutative algebra of
symmetric matrices with constant diagonal. Since the matrices {A0, . . . , Ad}
commute, they are simultaneously diagonalizable. As a result we can find a
second basis for A.

4.6.1 Theorem (Theorem 2.1 from Chapter 12 of [13]). Let {A0, . . . , Ad} be the
Schur idempotents of the Bose-Mesner algebra A of a d-class association scheme.
Then there is a set of idempotent matrices {E0, . . . , Ed} and real numbers pi(j)
for 0 ≤ i, j ≤ d satisfying:

(a)
∑d
i=0Ei = I (where I is the n× n identity matrix);

(b) AiEj = pi(j)Ej for all 0 ≤ i, j ≤ d;

(c) E0 = (1/n)J (where J is the n× n matrix with all values 1);

(d) {E0, . . . , Ed} is an orthogonal basis for A.

We omit the proof of Theorem 4.6.1 and refer the reader to [13].
For all i and j, we have that the column space of Ej is the pi(j) eigenspace

of Ai. As such we refer to the values pi(j) as the eigenvalues of the scheme.
The dimension of the pi(j) eigenspace is denoted as mj , the multiplicity of pi(j)
(since the eigenspaces are common to all of the matrices in A the multiplicity
does not depend on i).

There is a duality between the basis of Schur idempotents {A0, . . . , Ad} and
the basis of idempotents {E0, . . . , Ed}. The matrices Ej are elements of A, and
so we can express each Ei in terms of the Schur idempotents,

Ej = (1/n)

d∑
i=0

qj(i)Ai

(here the factor of 1/n is included by convention for the sake of convenience).
We refer to the numbers qj(i) as the dual eigenvalues of A, as they satisfy a
dual relation to point (b) in Theorem 4.6.1. Namely,

Ej ◦Ai = (1/n)

d∑
k=0

qj(i)Ak ◦Ai = (1/n)qj(i)Ai.
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We also have a set of parameters that are dual to the intersection numbers
of the scheme. Since each Ej can be expressed as a linear combination of the
matrices Ai, and the Ai are Schur idempotent, the matrix Ei◦Ej ∈ A for all i, j.
So we can express Ei ◦ Ej in terms of the matrices Ei, and there are constants
qki,j such that

Ei ◦ Ej =

d∑
k=0

qki,jEk.

The constants qki,j are the Krein parameters of the scheme.
Define the matrix P to be the matrix of eigenvalues of A. So P [i, j] = pi(j)

for all 0 ≤ i, j ≤ d. Likewise define the matrix Q to be the matrix of dual
eigenvalues of A. Note that

Ai = Ai

d∑
j=0

Ej =

d∑
j=0

pi(j)Ej .

Combining this identity for each Ai with the equation

Ej = (1/n)

d∑
i=0

qj(i)Ai,

we see that

Ei = (1/n)

d∑
k=0

d∑
j=0

qi(j)pj(k)Ek

and therefore (1/n)
∑d
j=0 qi(j)pj(k) is 1 if i = k and 0 otherwise. Thus P and

Q are related by PQ = (1/n)I. This relation shows that we can compute the
dual eigenvalues from the eigenvalues of A and vice versa. With a little more
work we can show that if we are given only P (or only Q) we can recover all
of the parameters of the scheme (i.e., the intersection numbers, eigenvalues,
multiplicities, Krein parameters, dual eigenvalues and dual multiplicities).

Finally we give the connection between distance-regular graphs and associa-
tion schemes. From our original definition of an association scheme, the relations
Ri each define a graph. Let Xi be the ith graph of the scheme, and note that
A(Xi) = Ai. Therefore, if X is a distance-regular graph, and we let Xi be the
ith distance graph of X for 0 ≤ i ≤ d, Lemma 4.5.3 implies that the relations
Xi are an association scheme.

In the proof of Lemma 4.5.3 we saw that each Ai could be expressed as
a polynomial of degree i in A1. Schemes with this property are called metric
or P-Polynomial schemes. If X is a distance-regular graph, then the distance
graphs of X form a metric association scheme. Conversely we have the following
lemma.

4.6.2 Lemma (Lemma 3.1 from Chapter 12 of [13]). If {R0, . . . , Rd} is a metric
association scheme, then the relations Ri are the distance relations of a distance-
regular graph.
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So metric association schemes are exactly the schemes that come from graphs
that are distance regular. From Lemma 4.5.2 we have that the folded n-cube
Gn is a distance-regular graph for all n. Therefore the i-distance graphs of Gn
for 0 ≤ i ≤ bn/2c form a metric association scheme.

4.7 Polytopes

In this section we will look at polytopes constructed from the eigenspaces of a
graph, and the connections between the structure of the graph and the structure
of its eigenpolytopes. We start with a quick introduction to polytopes. We will
follow Grünbaum [20]. We will skip over the most basic definitions, and refer
the reader to [20]

A subset C of Rn is convex if for all x, y ∈ C and 0 ≤ λ ≤ 1, the point
λx+ (1− λ)y is in C. Given a set of point S ⊆ Rn, the convex hull of S is the
set

conv(S) =

{
k∑
i=1

αisi : si ∈ S,
k∑
i=1

αi = 1

}
.

A hyperplane in Rn is a set of the form

{x ∈ Rn : hTx = a}

where h ∈ Rn and a ∈ R. An open halfspace is a subset of Rn of the form

{x ∈ Rn : hTx < a}.

Note that for every hyperplane H, we have a partition of Rn given by H together
with the two open halfspaces corresponding to H. If C is a convex subset of
Rn, and H is a hyperplane, then H cuts C if both of the open halfspaces
corresponding to H contain a point of C. If H ∩ C 6= ∅ and H does not cut C,
then H is a supporting hyperplane of C.

If C is a closed convex subset of Rn, then C is the intersection of the closed
halfspaces that contain C. Equally, C is the intersection of the closed half-
spaces that contain C for which the corresponding hyperplane is a supporting
hyperplane of C.

Let C be a convex subset of Rn. An extreme point of C is a point x ∈ C so
that for all y, z ∈ C and 0 < λ < 1, if x = λy + (1 − λ)z, then x = y = z. We
refer to the set of extreme points of C as ext(C). For a supporting hyperplane
H, the subset H ∩ C is called a face of C. We also take ∅ and C to be faces
of C; they are referred to as improper faces. If {x} is a singleton face, then
x ∈ ext(C).

A subset K of Rn is a polyhedral set if K is the intersection of finitely
many closed halfspaces in Rn. Since closed halfspaces are convex closed sets,
polyhedral sets are closed and convex. Let F(K) be the set of faces of K.
The set F(K) is finite, and with the subset relation ⊆, it forms a lattice. The
singleton faces are called the vertices of K, and the maximal proper faces of K
are called the facets of K.
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A subset S of Rn is affinely independent if there is no non-trivial affine
combination of the elements of S that gives 0. That is, there are no si ∈ S
and λi ∈ R (with some λi 6= 0) so that

∑k
i=1 λisi = 0 and

∑k
i=1 λi = 0. An

affine combination of elements of S is a point of the form
∑k
i=1 λisi where the

λi ∈ R satisfy
∑k
i=1 λi = 1. The affine hull of S is aff(S) and in the set of

all affine combinations of elements in S. The affine hull of a set is an example
of an affine space. Every affine subspace of Rn is a translation of a linear
subspace of Rn. Thus the dimension of an affine subspace is the dimension of
the linear space we obtain through translation. We define the dimension of S
to be dim(S) = dim(aff(S)).

A polyhedral set C that is compact (i.e., closed and bounded) is called a
polytope. A polytope is equal to the convex hull of its vertices. The faces of
dimension 1 of C are called the edges of C. Note that the vertices and edges of
a polytope define a graph embedded in Rn. We will refer to this as the graph
of the polytope.

4.7.1 Example. Let C ⊂ R3 be defined as

C = conv{(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0),

(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.

The polytope C is the 3-dimensional cube. Its graph is isomorphic to the hy-
percube H3. The facets of C are the 6 faces obtained by taking the convex hull
of the four vertices (a, b, c) where one of a, b, c has constant value.

Let P and Q be polytopes. We say that P and Q are combinatorially equiv-
alent if there is a map φ : P → Q that is an inclusion preserving bijection. So φ
is an isomorphism between the face lattices of P and Q. Combinatorially equiv-
alent polytopes have the same number of faces of dimension k for all integers k.

4.8 Eigenpolytopes

We can construct polytopes from the eigenspaces of graphs. Let X be a graph
on n vertices, and let θ be an eigenvalue of X with multiplicity m. The θ-
eigenvectors of X span a subspace of Rn of dimension m. Let {u1, . . . , um} be
an orthonormal basis of the θ-eigenspace of X. Define the n×m matrix Uθ to be
the matrix whose ith column is ui. The rows of Uθ are indexed by V (X), and we
let the row corresponding to x ∈ V (X) be denoted x(θ). The θ-eigenpolytope
of X is

Pθ = conv{x(θ) : x ∈ V (X)}.
Note that by our definition, the polytope Pθ depends on our choice of basis vec-
tors ui. However, if {u′1, . . . , u′m} is an orthonormal basis for the θ-eigenspace
of X, then there is a linear transformation of Rn that maps each u′i to ui.
Therefore, the polytopes obtained from these bases are combinatorially equiv-
alent. Since we are only concerned with the combinatorial structure of these
polytopes, we ignore the specific choice of basis.
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4.8. EIGENPOLYTOPES

Eigenpolytopes are closely related to the study of representations or Eu-
clidean representations of graphs. In [14], Godsil studied the eigenpolytopes
of distance-regular graphs, focusing on the eigenpolytope corresponding to the
second largest eigenvalue of X. We summarize some observations on eigenpoly-
topes from [14], and on representations of distance-regular graphs from Chapter
13 of [13].

Let X be a distance-regular graph. Let θ be an eigenvalue of X, and define
Uθ as above. Then the matrix Eθ = UθU

T
θ is the matrix representing orthogonal

projection onto the θ-eigenspace of X. Thus Eθ is a matrix idempotent for the
scheme corresponding to X, and can be written as a linear combination of the
distance matrices {A0, . . . , Ad} of X. Therefore the inner product 〈x(θ), y(θ)〉
of any two rows of Uθ depends only on the distance between x and y in X.
In particular, this implies that 〈x(θ), x(θ)〉 is independent of x ∈ V (X), and is
equal to m/n where m is the multiplicity of θ. So the vertices of Pθ all lie on a
sphere in Rm centred at 0.

We hope to use eigenpolytopes to derive information about the structure of
X. We have that each vertex of X gives a point x(θ) in Rm. The fact that all of
these points lie on a sphere implies that each x(θ) is a vertex of Pθ. We would
like the map between vertices of X and vertices of Pθ to be a bijection. We will
see that in the cases we are interested in, this is the case.

A distance-regular graph X is antipodal if the dth distance graph Xd is a
union of cliques. Equally X is antipodal if the vertices at distance d from u
are pairwise at distance d. From [13] we have the following characterization of
eigenpolytopes Pθ for which V (Pθ) = V (X).

4.8.1 Lemma (Lemma 3.1 from Chapter 13 of [13]). Let X be a distance-
regular graph with diameter d and valency k > 2. For θ an eigenvalue of X, the
map x→ x(θ) between V (X) and V (Pθ) is not a bijection if and only if:

(a) θ = k;

(b) θ = −k; or,

(c) X is antipodal, and there is an even number of eigenvalues of X greater
than θ.

Our application of eigenpolytopes will be for eigenvalues θ 6= k, and to graphs
that are not bipartite. So the only potential problem will be for distance-regular
graphs that are antipodal.

Let h ∈ Rn. For each a ∈ R, the sets

Ha = {x ∈ Rn : hTx = a}

are hyperplanes that partition Rn. If P is an eigenpolytope in Rm and h ∈ Rm,
then there is some a ∈ R so that P ∩ Ha 6= ∅. It follows that by finding the
maximum and minimum values of a so that P ∩ Ha 6= ∅, we find faces of P .
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Since P is the convex hull of the rows of a matrix U , if h ∈ Rm, then Uh = z
and

Fmin = {x ∈ P : hTx = zmin}
Fmax = {x ∈ P : hTx = zmax}

are a pair of parallel faces of P .
Moreover, since z = Uh is a linear combination of θ-eigenvectors of X, it

follows that z is a θ-eigenvector. Since the columns of U are a basis for the
θ-eigenspace, we have that every θ-eigenvector z can be obtained in this way.
Therefore if z is a θ-eigenvector for X, then the vertices of X on which z takes
its maximum value, and the vertices of X for which z takes its minimum value,
are the vertex sets of parallel faces of the θ-eigenpolytope.

Finally, we note that equitable partitions give information about the eigen-
polytopes of a graph X. In [13] it is noted that if P is an equitable partition of
X, then there are eigenvectors of X that are constant on the cells of P. If z is
an eigenvector that is constant on the cells of P, then the vertices on which z
takes its maximum (minimum) value are the union of some subset of cells of P.
Therefore there is some eigenvalue θ for which z gives a pair of parallel faces of
Pθ whose vertex sets are unions of cells in P.

Since the folded n-cube Gn for odd n is not bipartite, and not antipodal,
Lemma 4.8.1 implies that the map between vertices of Gn and vertices of the
eigenpolytope Pθ is a bijection for all θ 6= n. In particular, we will be looking
at the eigenpolytope Pτ where τ is the least eigenvalue of Gn. In that case we
have a bijection between V (Gn) and V (Pτ ).

4.9 The τ-Eigenspace

Recall that we are trying to find a characterization for the maximum cocliques
in the folded n-cube Gn for odd n. We approach this problem by looking at
the eigenpolytope Pτ where τ is the least eigenvalue of Gn. This approach has
precedents.

In [15] and [16], Godsil and Meagher use the τ -eigenspace to characterize the
maximum cocliques in two families of graphs. We have seen that the maximum
cocliques in the Kneser graph Kn:k for 2k ≤ n are characterized by the Erdős-
Ko-Rado Theorem. Using the facets of a polytope related to the τ -eigenspace
of Kn:k, Godsil and Meagher were able to characterize the maximum cocliques
of Kn:k thereby giving a proof of the Erdős-Ko-Rado Theorem. (We will see
this example in more detail in Section 6.3.)

In [15] this method is used again to prove an Erdős-Ko-Rado type theorem
for intersecting families of the symmetric group. Let Sn be the symmetric group
on n elements. Recall from Example 2.4.6 that two permutations α, β ∈ Sn are
said to intersect if there is some 1 ≤ i ≤ n so that α(i) = β(i). Let Xn be
the graph on Sn where α, β ∈ Sn are adjacent if and only if α and β are non-
intersecting. Then the maximum cocliques in Xn are exactly the maximum
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intersecting families of Sn. The graph Xn is a Cayley graph for Sn, and Xn

is a graph in the conjugacy class scheme for Sn. The polytope given by the
resulting τ -eigenvectors of Xn is the well-studied perfect matchings polytope of
the complete bipartite graph Kn,n. Again, the facets of this polytope provide a
key piece of the proof that the canonical intersecting families of Sn are exactly
the maximum intersecting families of Sn. (We will look at this example in more
detail in Section 5.3.)

There are two differences between the folded-cube graphs Gn and the graphs
in each of these examples. For the Kneser graph and the derangement graph,
we have that the size of a maximum coclique meets the ratio bound and the
clique-coclique bound respectively. Both of these bounds give relations between
the characteristic vectors of a maximum coclique and τ -eigenvectors. In the
case of the folded n-cube, Gn is neither ratio nor clique-coclique tight. We have
seen that Gn is inertia tight, but the tightness in the inertia bound does not
give a relation between the characteristic vectors of maximum cocliques and
τ -eigenvectors. The second difference is that for both the Kneser graphs and
the derangement graphs, the τ -eigenpolytopes are well-studied combinatorial
polytopes. The structure of the face lattices of these polytopes is well-known.
In our application, there is no existing theory of the face lattice of any of the
eigenpolytopes of Gn.

For the remainder of this chapter we will look at the structure of Pτ for Gn
with n odd. We end this section with an example.

4.9.1 Example. Take n = 7 and consider the folded 7-cube G7. The least
eigenvalue of G7 is −5 with multiplicity 7. Let P−5 be the (−5)-eigenpolytope
for G7. We have that P−5 is a 7-dimensional polytope in R7. The number of
faces of P−5 is given by the array:(

−1 0 1 2 3 4 5 6 7
1 64 672 2240 2800 1624 532 78 1

)
where the ith column contains i and the number of faces of dimension i (by
convention we take the dimension of ∅ to be −1).

In particular, P−5 has 64 vertices, and 78 facets. The facets of P−5 are of
two types. There are 64 facets each containing 7 vertices. These facets are the
neighbourhoods of each vertex in G7. The remaining 14 facets each contain 32
vertices.

The 14 large facets can be grouped into 7 pairs of facets, each pair parti-
tioning the vertex set of P−5. Each pair of facets is a parallel pair, so P−5 is a
prismatoid (we explore prismatoids in Section 5.4). The subgraph of G7 induced
by the vertex set of a facet with 32 vertices is a matching with 16 edges (so the
induced subgraphs of a parallel pair give a perfect matching of G7).

Let the graph of P−5 be denoted G(P−5). The adjacency matrix of G(P−5)
is A2 (the 2-distance matrix in the scheme corresponding to G7). Also, the
maximum cocliques of G7 correspond exactly to the sets u ∪ Γ1(u) for u a
vertex of G(P−5). In G(P−5) the vertices in Γ1(u) induce a copy of the line
graph of K7.
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Using Sage [30] we were able to take a close look at Pτ for the folded 7-cube.
However, as n increases, the number of vertices of Gn increases exponentially,
and the number of faces of Pτ increases dramatically. So we are not able to
explore beyond n = 7. However, we can generalize some of the findings of the
above example to all odd n.

4.10 Facets

Let n = 2r + 1, and consider the folded n-cube Gn. Let Γ0,Γ1, . . . ,Γr be the
distance partition of Gn with respect to ∅. We have seen that each Γi is a
coclique of size

(
n
i

)
for 0 ≤ i ≤ r − 1, and Γr is isomorphic to Kn:r. For each

j ∈ [n] we define the canonical j-matching of Gn to be the following perfect
matching. If x, y /∈ Γr, then x is matched to y if and only if x = y ∪ {j} or
x = y \ {j}. For x ∈ Γr, if j ∈ x, then x is matched to x \ {j}. This leaves
the elements of Γr that do not contain j. For each such x, there is a unique
r-set y such that x ∩ y = ∅ these edges complete our perfect matching. (Note
that this is a slightly complicated definition of the matching given by the edges
corresponding to the element ej of the connection set of Gn viewed as a cubelike
graph.)

Note that we can partition the canonical j-matching into two induced match-
ings of equal size, M = M0 ∪M1. For r even, we take M0 to be the matching
edges joining Γi to Γi+1 for i even, together with the induced matching in Γr,
and we take M1 to be the matching edges joining Γi to Γi+1 for i odd. For r
odd, we take M0 to be the matching edges joining Γi to Γi+1 for i even, and
we take M1 to be the matching edges joining Γi to Γi+1 for i odd together with
the induced matching in Γr. To see that |M0| = |M1| note that the number of
matching edges joining Γi to Γi+1 is the same as the number of i subsets that
do not contain j,

(
n−1
i

)
. So (when r is even),

|M0| =
r/2−1∑
i=0

(
n− 1

2i

)
+ 1/2

(
n− 1

r

)
and

|M1| =
r/2−1∑
i=0

(
n− 1

2i+ 1

)
.

We see that |M0| is half of the number of even subsets of [n−1] and |M1| is half
of the number of odd subsets of [n− 1], thus |M0| = |M1|. The odd case follows
similarly. The existence of M0 and M1 characterizes the canonical matchings.

4.10.1 Lemma. If M is a perfect matching in Gn, and M can be partitioned
into M = M0 ∪M1 with |M0| = |M1| and M0, M1 both induced, then M is
canonical.

Proof. We assume that r is even, and note that the proof for r odd is analogous.
Without loss of generality the matching edge covering ∅ lies in M0. Since M0 is
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induced, this implies that M0 covers exactly one vertex in Γ1, we refer to this
vertex as {j}.

4.10.2 Proposition. For 0 ≤ i ≤ r − 2, the matching edges of M matching
elements of Γi to elements of Γi+1 are exactly those that matching the elements
u of Γi that do not contain j to the elements u ∪ {j} in Γi+1. Moreover these
edges all lie in Mα where α ≡ i (mod 2).

Proof. We proceed by induction. We have already established the base case.
Suppose that the claim holds for all 0 ≤ i′ < i. Without loss of generality,
i ≡ 0 (mod 2) (the identical argument applies in the odd case).

Let A ⊆ Γi be the set of i-subsets that contain j, and B = Γi \ A. Since
the claim holds for i− 1, the vertices in A are covered by matching edges in M1

matching A to a subset of Γi−1. Since M is a perfect matching, B is matched
to a subset B′ of Γi+1.

Suppose that some edge uv ∈ M with u ∈ B and v ∈ B′ lies in M1. Since
B is the set of i-subsets that do not contain j, the neighbours of B in Γi−1 do
not contain j, and are exactly the (i − 1)-subsets matched to A by M1. Thus
the neighbours of u in Γi−1 are all covered by edges in M1, contradicting our
assumption that M1 is induced. Thus uv ∈M0.

Now suppose we have some u ∈ B and v ∈ B′ so that uv ∈ M0 and v 6=
u ∪ {j}. Since j /∈ u and j /∈ v, there are no neighbours of v in A. But the
neighbours of A in Γi+1 is the set of (i+ 1)-subsets of [n] that contain j, which
has the same size as B′. Thus there must be some v′ ∈ Γi+1\B′ with neighbours
in A. Since these vertices are covered by edges in M1, this again contradicts M1

induced. Thus each u ∈ B is matched to u ∪ {j} ∈ B′ by M0.

By Proposition 4.10.2 the matching edge ∅{j} determines all of the matching
edges between Γi and Γi+1 for 0 ≤ i ≤ r − 2 and the partite set to which they
belong. It remains to consider the matching edges between Γr−1 and Γr, and
the matching edges in Γr.

Since Γr is not a coclique in Gn, we cannot apply directly the previous
argument. However, we can use the first part directly. Namely, we know that
the subset A ⊆ Γr−1 consisting of the (r− 1)-subsets containing j is covered by
edges of M0 between Γr−2 and Γr−1. We also know that the edges matching
B = Γr−1 \A to B′ ⊆ Γr are all edges in M1. It remains to show that u ∈ B is
matched to u ∪ {j} ∈ B′.

Note that the size of B′ is
(
n−1
r−1
)
. Since M0 is an induced matching, we have

that B′ is a coclique in Kn:r of maximum size. By the Erdős-Ko-Rado Theorem,
we have that B′ is a canonical coclique, and therefore there is some 1 ≤ j′ ≤ n
so that B′ is the set of r-subsets that contain j′.

Suppose that j′ 6= j. Now B is the set of (r− 1)-subsets that do not contain
j, and B′ is the set of r-subsets that contain j′. Partition B into B = B0 ∪B1

where

B0 = {u ∈ B : j′ /∈ u},
B1 = {u ∈ B : j′ ∈ u}.

83



4. EIGENPOLYTOPES OF FOLDED CUBES

Likewise, partition B′ into B′ = B′0 ∪B′1 where

B′0 = {v ∈ B′ : j /∈ v},
B′1 = {v ∈ B′ : j ∈ v}.

Now consider B′1. Since j ∈ v for all v ∈ B′1, the neighbours of v in B consist
only of v \ {j}. Since j′ ∈ v, we see that v \ {j} ∈ B1. Thus we must match
v ∈ B′1 to v \ {j} ∈ B1. Since

|B1| = |B′1| =
(
n− 2

r − 2

)
,

B1 is matched to B′1 in this way. Likewise, if u ∈ B0, then j, j′ /∈ u, and u∪{j′}
is the unique neighbour of u in B′0.

Thus the M1 edges matching B to B′ match B0 to B′0 and B1 to B′1. How-
ever, in Gn there are edges between B0 and B′1 and edges between B1 and B′0.
So M1 cannot be induced, a contradiction. Therefore j′ = j, and M1 matches
u ∈ B to u ∪ {j} ∈ B′.

Finally, we have that the remaining matching edges in Γr must be M0 edges.
In Kn:r, the complement of any maximum coclique is a perfect matching. Thus
these are exactly the M0 edges, and M is canonical.

For each 1 ≤ i ≤ n, the i-matching gives an equitable partition of the vertices
of Gn into two parts of size |V |/2. From Section 4.8 we recall that this partition
yields parallel faces of an eigenpolytope of Gn. Next we show that they are
facets of the τ -eigenpolytope.

4.10.3 Lemma. For 1 ≤ i ≤ n the i-matching gives a parallel pair of facets of
the τ -eigenpolytope of Gn.

Proof. Let M be the i-matching of Gn, and M0 and M1 be the partition of M
into equal-sized induced matchings. Let V0 be the subset of V covered by M0

and V1 be the subset of V covered by M1. The partition (V0, V1) is equitable,
each u ∈ V0 has 1 neighbour in V0 and n− 1 neighbours in V1, and each u ∈ V1
has 1 neighbour in V1 and n− 1 neighbours in V0.

Let z be the vector in RV (Gn) defined by

zu =

{
1, if u ∈ V0
−1, if u ∈ V1

for all u ∈ V (Gn). Letting A be the adjacency matrix of Gn, we see that

Az = −(n− 2)z.

So z is a τ -eigenvector for Gn.
Let U be a matrix whose columns are an orthonormal basis for the τ -

eigenspace of Gn. Since z is a τ -eigenvector, there is a vector h so that Uh = z.
The τ -eigenpolytope of Gn is

Pτ = conv{x(τ) : x ∈ V (Gn)}.
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So

F1 = conv{v ∈ V (Pτ ) : hT v = 1},
F−1 = conv{v ∈ V (Pτ ) : hT v = −1}

are a pair of parallel faces of Pτ that partition the vertices.

Let z(i) be the τ -eigenvector corresponding to the i-matching. We show that

B = {z(i) : 1 ≤ i ≤ n}

is an orthogonal basis for the τ -eigenspace.

4.10.4 Proposition. For i 6= j, z(i) is orthogonal to z(j).

Proof. Recall the entries of z(i),

z(i)u =

{
1, if either |u| is even and i /∈ u, or |u| is odd and i ∈ u
−1, if either |u| is even and i ∈ u, or |u| is odd and i /∈ u.

For i 6= j,

〈z(i), z(j)〉 =
∑
v∈V

z(i)v z(j)v ,

where

z(i)v z(j)v =


−1, |v| even and i /∈ v, j ∈ v, or |v| odd and i ∈ v, j /∈ v
1, |v| even and i, j /∈ v, or |v| odd and i, j ∈ v
1, |v| even and i, j ∈ v, or |v| odd and i, j /∈ v
−1, |v| even and i ∈ v, j /∈ v, or |v| odd and i /∈ v, j ∈ v.

The map on subsets of [n] that maps v to v \ {i} if i ∈ v and v to v ∪ {i} if
i /∈ v maps

{v : i, j ∈ v or i, j /∈ v} → {v : i /∈ v, j ∈ v or i ∈ v, j /∈ v}

bijectively. However, the vertices of Gn are the subsets of [n] of size at most r.
If we modify the map so that when |v| = r,

v →

{
v ∪ {i},when i /∈ v
v \ {i},when i ∈ v,

then the map is a bijection on the vertices of Gn. (Note that this bijection is
exactly the i-matching M .)

This map pairs sets with different z-product values. Thus 〈z(i), z(j)〉 = 0.
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Since B is an orthogonal set of vectors, it is linearly independent. Since the
multiplicity of τ as an eigenvalue of Gn is n, the vectors z(i) form an orthogonal
basis for the τ -eigenspace.

It remains to show that the parallel faces corresponding to V0 and V1 in
the i-matching are facets of Pτ . Since the z(i) are an orthogonal basis for the
τ -eigenspace, we can take the vectors z(i) to be the columns of the matrix U
used to define Pτ .

Fix 1 ≤ i ≤ n and let M be the i-matching of Gn. Let (V0, V1) be the
partition of V induced by M . For each vector z(j) ∈ B, we define y(j) to be
the restriction of z(j) to the vertices in V0. So y(i) has all entries equal to 1.
The rows of the matrix U ′ formed by eliminating the V1 rows from U are the
vertices in one of the faces corresponding to the i-matching.

4.10.5 Proposition. For j 6= k, y(j) is orthogonal to y(k).

Proof. We proceed similarly to the computation of 〈z(i), z(j)〉.
To begin, we assume that i /∈ {j, k}.
For j 6= k,

〈y(j), y(k)〉 =
∑
v∈V0

y(j)v y(k)v ,

where

y(j)v y(k)v =


−1, |v| even and j /∈ v, k ∈ v, or |v| odd and j ∈ v, k /∈ v
1, |v| even and j, k /∈ v, or |v| odd and j, k ∈ v
1, |v| even and j, k ∈ v, or |v| odd and j, k /∈ v
−1, |v| even and j ∈ v, k /∈ v, or |v| odd and j /∈ v, k ∈ v.

Recall, that V0 is the set of subsets of [n] of size at most r that either are
even and do not contain i, or are odd and do contain i. So we can remove i
from the odd subsets in V0, and treat V0 as two copies of the even subsets of

[n − 1] of size at most r. Thus from the preceding case analysis, y
(j)
v y

(k)
v = 1

for exactly twice the number of even subsets of [n− 1] that have size at most r

and either contain both j and k, or neither. Likewise, y
(j)
v y

(k)
v = −1 for exactly

twice the number of even subsets of [n− 1] that have size at most r and either
contain exactly one of j and k. These numbers are equal, so we conclude that
〈y(j), y(k)〉 = 0.

Now suppose that j = i. In this case, y
(i)
v = 1 for all v ∈ V0. So

〈y(i), y(k)〉 =
∑
v∈V0

y(k)v .

Now,

y(k)v =

{
1, |v| even, k /∈ v, or |v| odd, k ∈ v
−1, |v| even, k ∈ v, or |v| odd, k /∈ v.

Again, from the argument above, y
(k)
v takes values 1 and −1 equally often, so

〈y(i), y(k)〉 = 0.
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Since {y(j) : 1 ≤ j ≤ n} is an orthogonal set of vectors, it is a linearly
independent set of vectors. Therefore the matrix U ′ has rank n, and the rows of
U ′ span a space of dimension n. So the corresponding face has affine dimension
n− 1. Since Pτ ⊆ Rn, this implies that these faces are facets of Pτ .

We have shown that there are n pairs of parallel facets of Pτ that partition
the vertices of Pτ into equal parts. These partitions correspond to the n canon-
ical perfect matchings of Gn. This generalizes one of the families of facets of
P−5 of G7 from Example 4.9.1 that we found via computer. It also shows that
the polytope Pτ is a prismatoid for every odd-order folded cube.

4.11 Dual Eigenvalues

In this section we see that the other family of facets of P−5 of G7 that we saw
in Example 4.9.1 also generalizes to a family of facets of Pτ of Gn for all odd n.
To prove this generalization we will derive some of the dual eigenvalues of the
scheme corresponding to Gn.

Let U be a matrix whose columns form an orthonormal basis for the τ -
eigenspace, and set Eτ = UUT . As we have seen, we can construct an or-
thonormal basis for the τ -eigenspace from the i-matchings of Gn. Let Ai be the
i-distance matrix of Gn.

4.11.1 Lemma. If U ′ is a matrix whose columns are the vectors z(i), then
U ′U ′T =

∑r
i=0(−1)i(n− 2i)Ai.

Proof. Note that if U ′v is the v-row of U ′, then

U ′v[i] =

{
1, if |v| is even and i /∈ v, or if |v| is odd and i ∈ v
−1, if |v| is even and i ∈ v, or if |v| is odd and i /∈ v.

Suppose that v is a subset of [n]. Then v is at distance |v| from ∅. Since
U ′∅[i] = 1 for all i,

〈U ′∅, U
′
v〉 =

n∑
i=1

U ′v[i] =

{
n− 2|v|, if |v| is even

2|v| − n, if |v| is odd.

So,

〈U ′∅, U
′
v〉 = (−1)d(∅,v)(n− 2d(∅, v)).

Since Gn is vertex transitive, we have that

〈U ′u, U ′v〉 = (−1)d(u,v)(n− 2d(u, v))

for all u, v ∈ V . This completes the proof.
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Note that the values (−1)i(n − 2i) for 0 ≤ i ≤ r are the eigenvalues of Gn
(which we have seen represented as n− 4i for 0 ≤ i ≤ r).

Recall that for the association scheme corresponding to Gn, the dual eigen-
values are the values qj(k), where Ej = 1/2n−1

∑r
k=0 qj(k)Ak. By convention

we order the matrix idempotents of the scheme E0, . . . , Er so that Ei corre-
sponds to the ith eigenvalue of Gn (where the eigenvalues of Gn are ordered
from largest to smallest). So Er = Eτ where τ is the least eigenvalue of Gn.

4.11.2 Corollary. The dual eigenvalues qr(k) are the eigenvalues of Gn.

Proof. The matrix Eτ = Er is obtained by taking Er = UUT where the
columns of U are the normalized columns of U ′. Since each z(i) has squared
length 2n−1,

U = (1/
√

2n−1)U ′

and

Er = (1/2n−1)U ′U ′T = (1/2n−1)

r∑
k=0

(−1)k(n− 2k)Ak.

So qr(k) = (−1)k(n− 2k).

We can use Corollary 4.11.2 to find another set of facets of Pτ .
Let θ be an eigenvalue of Gn and let x ∈ V (Gn). Let U be a matrix whose

columns are a orthonormal basis for the θ-eigenspace of Gn. Define the vector
zx ∈ RV (Gn) to be the vector with entries zx[y] = 〈x(θ), y(θ)〉 for all y ∈ V (Gn).
Note that zx = Ux(θ)T , and as such zx is a θ-eigenvector of Gn. Therefore we
have faces

Fmax = conv{y(θ) : zx[y] is maximum},
Fmin = conv{y(θ) : zx[y] is minimum}

of the eigenpolytope Pθ. Using this eigenvector we can show that the neigh-
bourhood of any vertex of Gn gives a facet of Pτ .

4.11.3 Corollary. For any x ∈ V (Gn), let Γ1(x) be the neighbours of x in Gn.
Then {y(τ) : y ∈ Γ1(x)} is the vertex set of a facet of Pτ .

Proof. Let x ∈ V (Gn) and define the τ -eigenvector zx as above. Note that
Er = UUT , and so since zx = Ux(τ)T , we have that zx is the x column of Er.
From Corollary 4.11.2 we have

Er = (1/2n−1)

r∑
k=0

(−1)k(n− 2k)Ak.

Therefore, the y-entry of zx depends only on the distance between x and y in
Gn, and

zx[y] = (−1)d(x,y)(n− 2d(x, y)).
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This implies that

Fmax = conv{x(τ)},
Fmin = conv{y(τ) : d(x, y) = 1}.

Therefore we see that the vertices y(τ) for Γ1(x) are the vertices of a face of Pτ .
We show that this face is a facet of Pτ when x = ∅. Since Gn is vertex

transitive, it follows that the neighbourhood of each vertex gives a distinct facet
of Pτ . Let z(i) be the basis vectors for the τ -eigenspace of Gn constructed as in
Lemma 4.10.3, and let U ′ be the matrix formed by taking the z(i) as columns.
Recall that

z(i)[x] =

{
1, if |x| is even and i /∈ x, or |x| is odd and i ∈ x
−1, if |x| is even and i ∈ x, or |x| is odd and i /∈ x.

For each x ∈ Γ1(∅), the size of x is 1, and exactly one of the neighbours contains
i for any given 1 ≤ i ≤ n. Thus the submatrix of U ′ indexed by the rows
corresponding to the elements of Γ1(∅) is similar to −J + 2I. Therefore it has
rank n, and the space spanned by its rows has affine dimension n− 1. Thus the
face of Pτ with vertices x(τ) for x ∈ Γ1(∅) is a facet of Pτ .

4.12 Open Problems

In Example 4.9.1 we saw that the facets of P−5 for G7 are exactly the facets
given by Lemma 4.10.3 and Corollary 4.11.3. We were able to show that these
facets are also present in the τ -eigenpolytope of the folded n-cube for all odd
n. However, we were not able to show that these are all of the facets of these
polytopes. Nor were we able to show that there are not other faces of the τ -
eigenpolytope that contain a large proportion of the vertices of Pτ (as is the case
for the τ -eigenpolytopes for the Kneser and derangement graphs). There may
be other equitable partitions of Gn into two parts that give parallel faces of the
τ -eigenpolytope, or eigenpolytopes for other eigenvalues. All of these questions
are as yet unanswered.

We started this chapter with the goal of characterizing the maximum co-
cliques of the folded cubes. That question is still open. We used a computer to
confirm that the canonical cocliques of Gn are exactly the maximum cocliques
of Gn for n ≤ 9. We found that the distance partition of Gn gives us the
canonical cocliques and the canonical matchings, and were able to relate the
canonical matchings to facets of the τ -eigenpolytope. But it is still unclear how
to apply information about the τ -eigenpolytope to obtain information about the
maximum cocliques of Gn.
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Chapter 5

Veronesian Rank

In Chapter 4 we saw a connection between cocliques in graphs and parallel faces
of their eigenpolytopes. In this chapter we will look at polytopes that have the
property that their vertex set can be partitioned into two parallel faces.

We will begin by taking a closer look at one of the polytopes from Section 4.9.
In that section we mentioned that the Erdős-Ko-Rado Theorem for elements of
the symmetric group can be proved by analysing the faces of a polytope. We
give an overview of this proof, and see exactly how the faces of polytopes are
used to draw conclusions about the cocliques of a class of graphs.

Polytope proofs of Erdős-Ko-Rado type theorems rely on the eigenpolytope
of a graph having the property that its vertex set can be partitioned into two
parallel faces. Polytopes with this property are called prismoids. For distance
regular graphs, prismoid decompositions of eigenpolytopes correspond to equi-
table partitions of the graph into two parts.

There is also an algebraic aspect to prismoids. The property of being a pris-
moid corresponds to the existence of quadratic polynomials that vanish on the
points of the polytope. The space of solutions to these quadratics is a subspace
of the null space of a matrix associated with the polytope. This translates the
geometric problem of determining whether a polytope is a prismoid into the
algebraic problem of finding vectors in the null space of a matrix.

The Veronese matrix gives us a new tool for characterizing the equitable
partitions of a graph. We show that the equitable partitions of a graph into
two parts form a subset of the null space of the Veronese matrix. For distance
regular graphs, we can use the parameters of the association scheme of the graph
to find the rank of this space explicitly. We show that this formula applied to
strongly regular graphs gives the null space of the Veronese matrix exactly, and
rules out the existence of equitable partitions of specific strongly regular graphs
into two parts.
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5.1 Intersecting Permutations

In Section 4.9 we mentioned that polytopes could be used to prove a version
of the Erdős-Ko-Rado Theorem for the symmetric group. We begin by taking
a more detailed look at that argument. Recall that Sn is the symmetric group
on n elements, and permutations α, β ∈ Sn are said to intersect if there is some
1 ≤ i ≤ n so that α(i) = β(i). We note that the sets

Ip,q = {α ∈ Sn : α(p) = q}

give natural intersecting families in Sn (note that the Ip,q are the cosets of point
stabilizers in Sn). The Erdős-Ko-Rado Theorem for intersecting families of the
symmetric group characterizes the intersecting families of maximum size.

5.1.1 Theorem. If I is an intersecting family of Sn, then |I| ≤ (n− 1)!. More-
over, if |I| = (n− 1)!, then there are 1 ≤ p, q ≤ n so that I = Ip,q.

Theorem 5.1.1 was first proved by Cameron and Ku in [6]. Several proofs of
this theorem have been given. Wang and Zhang in [34] give a very short elemen-
tary proof. Larose and Malvenuto prove a graph-theoretic formulation of Theo-
rem 5.1.1 by characterizing the maximum cocliques in a family of graphs. In [15]
Godsil and Meagher give a characterization of the cocliques in the derangement
graph using an algebraic argument. Their argument can be re-formulated using
the τ -eigenpolytope of the derangement graph. We give a brief overview of this
argument.

Let Xn be the graph on Sn where α, β ∈ Sn are adjacent if and only if
α and β are non-intersecting. Recall that the cocliques of Xn are exactly the
intersecting families of Sn. So the statement of Theorem 5.1.1 is equivalent to:
α(Xn) = (n−1)! and the maximum cocliques of Xn are exactly the sets Ip,q for
1 ≤ p, q ≤ n.

The graph Xn is known as the derangement graph of Sn (see also Example
2.4.6). A derangement is an element α of Sn so that α(i) 6= i for any 1 ≤ i ≤ n.
Let D ⊆ Sn be the set of all derangements of Sn. Then D does not contain the
identity permutation, and D is inverse closed. Note that for all α, β ∈ Sn, the
automorphism f : Sn → Sn defined as f(σ) = σ(α−1β) maps α to β. Moreover,
if α−1β is a derangement, then α and β are non-intersecting. Now we see
that Xn is a Cayley graph for Sn with Xn = X(Sn, D). Therefore, if d(n) is
the number of derangements in Sn, then Xn is a d(n)-regular, vertex-transitive
graph.

Since Sn is not an Abelian group, finding the eigenvalues of Xn is a little
more difficult than for the other Cayley graphs we have seen. However, Ku and
Wales [23] have shown that the least eigenvalue of Xn is

τ = −d(n)/(n− 1).

Therefore we can find α(Xn) using the ratio bound. Recall from Theorem 3.13.1
that for any k-regular graph Y on n vertices with least eigenvalue τ ,

α(Y ) ≤ n

1− k/τ
.
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In our case we have Xn is a d(n)-regular graph on n! vertices with least eigen-
value −d(n)/(n− 1), and thus

α(Xn) ≤ n!

1− d(n)/(−d(n)/(n− 1))
=
n!

n
= (n− 1)!.

We have that for all 1 ≤ p, q ≤ n, the sets Ip,q are cocliques in Xn with size
(n− 1)!. Therefore α(Xn) = (n− 1)! and Xn is ratio-tight.

5.2 Eigenvectors

Theorem 3.13.1 can be extended to give τ -eigenvectors for ratio-tight graphs.
We give a proof of this extension from Meagher and Spiga [28].

5.2.1 Theorem. Let Y be a k-regular graph on n vertices with least eigenvalue
τ . Let S be a maximum coclique in Y , and let vS be the characteristic vector
of S. Then

α(Y ) ≤ n

1− k/τ
and if equality holds, then vS − |S|/|Y |1 is a τ -eigenvector for Y .

Proof. Let A be the adjacency matrix for Y . Consider the matrix

M = A− τI − (k − τ)/nJ.

Note that 1 is an eigenvector for M with eigenvalue 0. Now suppose that z is
an θ-eigenvector for A that is orthogonal to 1. Then

Mz = (θ − τ)z,

and z is a (θ − τ)-eigenvector for M . Since A is the adjacency matrix of a
k-regular graph, k is the largest eigenvalue of A, and τ < 0. Therefore the
spectrum of M is

{0} ∪ {θ − τ : θ 6= k is an eigenvalue of A},

and M is positive semi-definite.
Since vS is the characteristic vector of a coclique of Y , we have that

vTSAvS = 0.

Since M is positive semi-definite,

0 ≤ vTSMvS = vTSAvS − τvTS IvS −
k − τ
n

vTS JvS

= −τ |S| − k − τ
n
|S|2.

This implies that
|S| ≤ n/(1− k/τ)
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and the bound in the theorem follows.
Now if Y meets the bound, then we have a coclique S so that vTSMvS = 0.

Since M is positive semi-definite this implies that vS is a 0-eigenvector for M
and we have that

0 = AvS − τvS −
k − τ
n

1,

and therefore vS − |S|/n1 is a τ -eigenvector for Y .

5.3 A Polytope

If we let vp,q be the characteristic vector of Ip,q then from Theorem 5.2.1 we
have that the vectors vp,q−1/n are τ -eigenvectors for Xn. In fact, these vectors
are a basis of the τ -eigenspace (see Godsil and Meagher [15]).

Define the matrix M as the matrix with the vectors vp,q as its columns for
1 ≤ p, q ≤ n. The rows of M are indexed by the elements of Sn. So for each
1 ≤ p, q ≤ n, the entries of the α-row Mα of M are 1 if α(p) = q and 0 otherwise.
Therefore Mα contains exactly n entries with value 1, and so 1 is in the column
space of M . Therefore if z is a τ -eigenvector for Xn, then z ∈ col(M).

Define Pn to be the polytope

Pn = conv{Mα : α ∈ Sn}.

While Pn is not an eigenpolytope according to our definition (i.e., the columns of
M do not form an orthonormal basis of an eigenspace of Xn), it is closely related
to the τ -eigenspace of Xn. Note that the polytope formed by taking the convex
hull of the rows of M − 1/nJ is a translation of Pn and thus is combinatorially
equivalent to Pn. This polytope is the convex hull of a matrix whose columns
form a basis for the τ -eigenspace of Xn (but again, not an orthonormal basis).

Suppose z is the characteristic vector of a maximum coclique in Xn. Then
since z − 1/n1 is a τ -eigenvector for Xn, there is some h so that Mh = z.
Therefore the rows of M indexed by the maximum-valued entries of z contain
the vertex set of a face F1 of Pn. Likewise the rows of M indexed by the
minimum-valued entries of z contain the vertex set of a face F2 of Pn. Since z
is 01-valued, we see that F1 and F2 partition the rows of M . We also note that
these faces are parallel.

The complete bipartite graph Kn,n is the bipartite graph with partite sets
A = B = [n] where each a ∈ A is adjacent to each b ∈ B. Note that if
α ∈ Sn, then the edges {i, α(i)} for 1 ≤ i ≤ n are a perfect matching in Kn,n.
In RE(Kn,n), the characteristic vector of this perfect matching is the row of
M indexed by α, Mα. Therefore Pn is the polytope in RE(Kn,n) defined as
the convex hull of the characteristic vectors of the perfect matchings of Kn,n.
This polytope is called the perfect matchings polytope of Kn,n and is denoted
PM(Kn,n).

For general graphs Y , the perfect matchings polytope PM(Y ) is a well-
studied object. In the case when Y is bipartite , Birkhoff’s Theorem (Theorem
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6.12 in Cook et al. [8]) gives a description of PM(Y ) as an intersection of
half-spaces. If S is a subset of E(Y ) and x ∈ RE(Y ) we let

x(S) =
∑
s∈S

xs.

For a vertex y of Y , we denote the edges incident with y by δ(y).

5.3.1 Theorem (Birkhoff’s Theorem). If Y is a bipartite graph, then

PM(Y ) = {x ∈ RE(Y ) : xe ≥ 0,∀e ∈ E(Y );x(δ(y)) = 1,∀y ∈ V (Y )}.

Theorem 5.3.1 implies that the faces of PM(Y ) are exactly the sets

Fe = {x ∈ PM(Y ) : xe = 0}

where e ∈ E(Y ). Therefore the facets of PM(Y ) all have this form.
Since Kn,n is bipartite, Theorem 5.3.1 applies to PM(Kn,n) = Pn. Now we

recall that F1 and F2 are faces that partition the vertices of Pn. Since every face
lies in a facet, we have that F1 and F2 both lies in facets of Pn. In particular,
there is some Fe so that F2 ⊆ Fe. This implies that xe = 1 for all x ∈ F1. Since
the edges of Kn,n correspond to pairs (p, q) we conclude that z indexes all of
the rows Mα for which α(p) = q for some 1 ≤ p, q ≤ n. This proves that the
maximum cocliques of Xn are exactly the sets Ip,q.

This proof gives an example of how we can apply polytopes to characterize
cocliques of graphs. In particular, we have an example of a class of polytopes,
PM(Kn,n) whose vertices can be partitioned into parallel faces (one of which
is a facet). We take a closer look at polytopes with this property in the next
section.

5.4 Prismoids and Prismatoids

Following Grünbaum [20], a prismoid is a d-dimensional polytope P with the
following property. There are two (d− 1)-dimensional parallel hyperplanes con-
taining polytopes P1 and P2 so that P is the convex hull of the vertices of P1

and P2, or
P = conv(P1 ∪ P2).

As we saw in the previous section, the perfect matchings polytope of the graph
Kn,n is an example of a prismoid. Note that there is no restriction on the
polytopes P1 and P2 other than that they lie in parallel hyperplanes.

5.4.1 Example. Let P be a polytope in Rn. Define P ′ ⊆ Rn+1 by

P ′ = {(x, 0) : x ∈ P}.

Then P ′ is a polytope in Rn+1, and P ′ is combinatorially equivalent to P . Let
y ∈ P be an arbitrary point in P . Now

P ′′ = conv(P ′ ∪ {(y, 1)})
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is a prismoid in Rn+1. Prismoids of this form are called pyramids.
Pyramids give an extreme example of a prismoid with parallel faces of dif-

ferent dimension. In this example the parallel faces of P ′′ are P ′ and {(y, 0)}.
So P ′′ is partitioned into a single vertex, and a facet.

5.4.2 Example. The n-dimensional hypercube gives another example of a pris-
moid. Let Hn be the polytope in Rn defined as the convex hull of the 01-vectors
in Rn. Then for any 1 ≤ i ≤ n we have that

F0 = {x ∈ Hn : xi = 0}
F1 = {x ∈ Hn : xi = 1}

are parallel faces of Hn that partition its vertices. Moreover, each of F0 and F1

is isomorphic to the hypercube Hn−1. Therefore both F0 and F1 are facets of
Hn.

If P is a prismoid whose vertices are partitioned into parallel faces (P1, P2)
where P1 and P2 are facets of P , then we call P a prismatoid. There is not a
large amount of literature on prismatoids. However, recently Santos [31] used
prismatoids to construct an infinite family of counterexamples to the Hirsch
Conjecture. Santos and his coauthors in [27] and [32] further explore prismatoids
with a fixed combinatorial width.

The τ -eigenpolytope of the folded-cube graph Gn for n odd gives another
example of a prismatoid. Recall from Chapter 4 that the folded cube Gn is a
distance-regular graph. The τ -eigenpolytope of Gn is the polytope Pτ defined by
the convex hull of the rows of a matrix Uτ whose columns form an orthonormal
basis for the τ -eigenspace of Gn. In Lemma 4.10.3 we saw that for each 1 ≤ i ≤
n, the canonical i-matching Mi of Gn gave a natural partition of the vertices of
Gn into two sets of equal size. The corresponding partition of the rows of Uτ
gives two parallel facets in Pτ . Therefore Pτ is a prismatoid.

We also found another set of facets of Pτ . From Corollary 4.11.3 we have
that if x is a vertex of Gn, and Γ(x) is the set of neighbours of x, then the rows
of Uτ corresponding to the vertices Γ(x) give the vertex set of a facet of Pτ .
In the proof of Corollary 4.11.3 we saw that the supporting hyperplane that
defines this facet is parallel to a supporting hyperplane of Pτ that contains only
the vertex of Pτ corresponding to x. However, Pτ is not a pyramid, as the facet
defined by Γ(x) together with the vertex corresponding to x do not contain all
of the vertices of Pτ .

To see this, recall that the matrix Eτ = UτU
T
τ is a matrix idempotent in

the association scheme defined by the distance matrices of Gn. Therefore Eτ
is a linear combination of distance matrices Ai, and thus the (x, y)-entry of Eτ
depends only on the distance between x and y in Gn. Moreover in Corollary
4.11.2 we derived the dual eigenvalues corresponding to Eτ , which give the
coefficients of this linear combination. Since the coefficients for the Ai are all
distinct, the (x, y)-entry and (x, z)-entry of Eτ are distinct if d(x, y) 6= d(x, z)
in Gn. Finally, let the vertices of Pτ corresponding to Γ(x) be {y1, . . . , yn}, and
let the face defined by their convex hull be F . Since these vertices are affinely
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independent, if z ∈ F , then there are αi ≥ 0 so that

n∑
i=1

αi = 1 and

n∑
i=1

αiyi = z.

Therefore if z is a vertex of Pτ that is not one of the yi, and z ∈ F , then z can
be expressed as an affine combination of the yi for some coefficients αi. Now,
abusing notation by setting the dual eigenvalues of Eτ to be qτ (i),

〈x, z〉 = 〈x,
n∑
i=1

αiyi〉

=
n∑
i=1

αi〈x, yi〉

=

n∑
i=1

αiqτ (1)

= qτ (1).

So we see that there are no vertices of Pτ in F other than the yi.
In general, we are interested in the face lattice of a polytope, as we are

trying to relate the combinatorial structure of the polytope to the combinatorial
structure of the graphs they are constructed from. In terms of the face lattice,
prismoids and prismatoids are not especially interesting classes of polytopes.
If P is a polytope, and F and F ′ are faces of the polytope that partition the
vertices, then there is a polytope P ′ that is combinatorially equivalent to P
for which the faces corresponding to F and F ′ are parallel (see [20, p. 38]).
So for general polytopes, we are interested only in the vertices that belong to
individual faces. However, we are not working with general polytopes. We are
looking at eigenpolytopes of graphs (more specifically, distance-regular graphs).
For these polytopes, the existence of parallel faces that partition the vertices
has an important combinatorial interpretation.

5.5 Equitable Partitions

We have defined a prismoid as a polytope whose vertices can be partitioned into
parallel faces. Let P ⊆ Rn be a polytope, and

H = {x ∈ Rn : xTh ≤ α}

be a supporting hyperplane for P . Since P is a polytope, P is a bounded subset
of Rn. Therefore there is some β ∈ R so that xTh ≥ β for all x ∈ P . Letting β
be the least such number, we have that

H ′ = {x ∈ Rn : xTh ≥ β}

97



5. VERONESIAN RANK

is a supporting hyperplane of P . Note that H and H ′ are parallel hyperplanes,
and F = H ∩ P and F ′ = H ′ ∩ P define faces of P . We refer to h ∈ Rn as the
direction of H and H ′. If P is a prismoid, and F and F ′ partition the vertex set
of P , then we call h a prismoid direction of P . Likewise if F and F ′ are facets,
we refer to h as a prismatoid direction of P .

5.5.1 Example. The hypercube Hn ⊆ Rn is a prismatoid. For each 1 ≤ i ≤ n
we let ei be the ith standard basis vector of Rn, and define

Pi = {x ∈ Rn : xT ei ≤ 1}
P ′i = {x ∈ Rn : xT ei ≥ 0}.

Now Pi and P ′i are supporting hyperplanes for Hn, and the faces Fi = Pi ∩Hn

and F ′i = P ′i ∩ Hn are parallel facets of Hn. Thus each ei is a prismatoid
direction of Hn. So it is possible for a polytope to be a prismatoid with respect
to several direction vectors.

Let X be a connected k-regular graph. Let θ be an eigenvalue of X, and let
U be a matrix whose columns form an orthonormal basis for the θ-eigenspace
of X. Take P to be the θ-eigenpolytope of X (so P is the convex hull of the
rows of U). If z is a θ-eigenvector of X, then there is some h so that Uh = z.
As we have seen, the maximum and minimum entries of z index the vertices of
parallel faces of P . If we suppose that z has two distinct entries α and β, then

Fa = {x ∈ P : xTh = α}
Fb = {x ∈ P : xTh = β}

are parallel faces of P that partition its vertex set. Thus h is a prismoid direction
of P . This direction vector gives an equitable partition of X.

5.5.2 Lemma. Let P be the θ-eigenpolytope of a k-regular connected graph
X, and suppose

Fa = {x ∈ P : xTh = α}
Fb = {x ∈ P : xTh = β}

are parallel faces of P that partition its vertex set. If A,B ⊆ V (X) are the
subsets of V (X) corresponding to the vertices of Fa and Fb, then (A,B) is an
equitable partition of X.

Proof. Let A be the adjacency matrix of X. Then for each x ∈ V (X), the
x-row of A is the characteristic vector of the set of neighbours of x. If z is a
θ-eigenvector for X, then Az = θz. Thus for each x ∈ V (X),

θzx = [Az]x = ATx z =
∑

xy∈E(X)

zy.

Now suppose that z is a θ-eigenvector for X with two entries, α and β. Let
A and B be the subsets of V (X) so za = α for all a ∈ A and zb = β for all

98



5.5. EQUITABLE PARTITIONS

b ∈ B. Now we apply the above identity to an arbitrary vertex x ∈ A. We have
the following system of equations:

θα = |A ∩ Γ(x)|α+ |B ∩ Γ(x)|β
k = |A ∩ Γ(x)|+ |B ∩ Γ(x)|.

Since θ, α, β and k are all known, we can solve for |A ∩ Γ(x)| and |B ∩ Γ(x)|.
We find that

|A ∩ Γ(x)| = kβ − θα
β − α

, and |B ∩ Γ(x)| = α(θ − k)

β − α
.

Since x ∈ A was chosen arbitrarily, we see that the number of neighbours of
x ∈ A that lie in A and the number that lie in B are independent of x. A similar
calculation shows that if we consider x ∈ B, then the number of neighbours of
x that lie in A and the number that lie in B are independent of x. Therefore
(A,B) is an equitable partition of X.

Note that we only assumed that α 6= β and did not consider the case where
one of α or β is 0. Suppose α = 0, so z is the characteristic vector of a subset
A of X (appropriately scaled). Then for x ∈ A we have that 0 = |B ∩ Γ(x)|
which implies that X is not connected. Therefore this does not happen. Also,
this implies that if we are considering connected graphs, then the eigenvectors
of X are never characteristic vectors of our graph. This is the reason why we
needed to consider shifts of eigenvectors in Section 5.3.

Lemma 5.5.2 shows that by finding prismoid directions of an eigenpolytope
of X, we can find equitable partitions. In our applications we have been trying
to classify combinatorial structures using the face lattice of a polytope. The
face lattice gives us all of the prismoid directions of a polytope. We want to
know if this in turn gives us all of the possible equitable partitions of our graph
into two parts. Our next lemma shows that while equitable partitions into two
parts and prismoid directions are strongly related, we do not have a bijection
between them.

5.5.3 Lemma. Let X be a k-regular connected graph, and let (A,B) be an
equitable partition of the vertices of X. Then there is an eigenvector z for X
that is constant on A and on B (but takes distinct values on each).

Proof. We follow Godsil [14]. Let P be an equitable partition of X. If A is the
adjacency matrix of X, then the space of vectors in RE(X) that are constant on
the cells of P is invariant under A. This follows as

[Az]x =
∑

xy∈E(X)

zy,

and the number of neighbours of x in each of the cells of P depends only on the
cell of P containing x. Since this subspace is A-invariant, it contains eigenvectors
of A. Since X is k-regular, the vector 1 is a k-eigenvector for X that is constant
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on the cells of P . If P has more than one cell, than the space of vectors constant
on the cells of P is not spanned by 1. Thus there are eigenvectors that are
constant on the cells of P and take on more than one value. This proves the
result.

As a result, we have that an equitable partition (A,B) gives a prismoid
direction for some eigenpolytope of X. However, it may not be the one we
are interested in. If X is a distance-regular graph, then we have the following
corollary.

5.5.4 Corollary. If X is distance regular with ith distance graph Xi, and (A,B)
is an equitable partition of X, then (A,B) is an equitable partition of Xi.

Proof. Since (A,B) is an equitable partition of X, by Lemma 5.5.3 we have
that there is an eigenvector z for X that is constant on the vertices in A and B.
Since X is distance regular, its distance graphs all have the same eigenspaces.
Thus the entries of z partition the vertices of some eigenpolytope of Xi. So by
Lemma 5.5.2 we have that (A,B) is an equitable partition of Xi.

Note that the proof of Lemma 5.5.3 implies that if P is an equitable partition
of X, then there is some eigenpolytope Q of X containing two parallel faces
whose vertex sets are cells of P . Moreover, if h is the direction of these faces,
and P1, . . . , Pm are the cells of P , then there are values α1, . . . , αm ∈ R so that

Qi = {x ∈ Q : xTh = αi}

gives a partition of the vertices of Q and the vertices contained in Qi correspond
exactly to the vertices in Pi.

Finally we mention that for the applications we have seen, we are looking
for cocliques in graphs that are vertex transitive, and graphs that are distance
regular. In the case of the folded-cube graphs for example, we have that Gn is
distance regular. As a result, the distance partitions of Gn are equitable par-
titions, and the canonical cocliques we identified are derived from the distance
partition of the graph. Lemmas 5.5.2 and 5.5.3 suggest that prismoid direc-
tions in eigenpolytopes give a promising tool for characterizing cocliques with
an associated equitable partition.

5.6 The Veronese Matrix

We have seen that prismoid directions give parallel faces of a polytope. More-
over, if P ⊆ Rm is a polytope defined as the convex hull of the rows of a n×m
matrix M , and Mh = z, then the parallel hyperplanes

Hα = {x ∈ Rm : xTh = α}

partition the vertices of P according to the entries of z. Let the distinct entries
of z be α1, . . . , αn. Then for every row Mj of M , we have that

n∏
i=1

(MT
j h− αi) = 0.
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Therefore the rows Mj give solutions to the equation

n∏
i=1

(xTh− αi) = 0.

The left-hand side of this equation is a polynomial of degree n in the variables
x1, . . . , xm. We let S ⊆ Rm be the set of solutions to this equation.

We would like to use this polynomial to derive information about the par-
titions of the vertices of P . For s ∈ S all we know is that sTh = αi for some
1 ≤ i ≤ n. This is not a particularly useful piece of information. So we change
our point of view. Consider the set of polynomial equations{

n∏
i=1

(MT
j x− αi) = 0 : 1 ≤ j ≤ n

}
. (5.6.1)

Now h gives a solution to each of these equations simultaneously. The intersec-
tion of the sets of solutions to the individual equations in (5.6.1) for all 1 ≤ j ≤ n
is a subset S of Rm. Now for every s ∈ S we have that Ms = zs where the set
of distinct entries of zs is a subset of {α1, . . . , αn}. Therefore the vectors in S
are all direction vectors that give partitions of the vertices of P into at most n
parts.

If we suppose that P is a prismoid, then there is some prismoid direction
h. Let α and β be the distinct entries of z = Mh. Now every row Mj of M
satisfies

(MT
j h− α)(MT

j h− β) = 0, (5.6.2)

and is therefore h is a solution to the quadratic polynomials{
(MT

j x− α)(MT
j x− β) = 0 : 1 ≤ j ≤ n

}
.

As we have already seen, each simultaneous solution to these quadratic polyno-
mials corresponds to a direction vector that gives a partition of the vertices of
P into at most two parts. We want to use this set of solutions to classify the
prismoid directions of P . However, the solutions to these quadratic polynomials
only give us prismoid directions h for which the ratio of the entries of z = Mh
is α/β (or its inverse).

Note that if we expand the quadratic in Equation (5.6.2) we have

0 = (MT
j h− α)(MT

j h− β)

= (MT
j h)2 − (α+ β)MT

j h+ αβ

=
∑

1≤a,b≤n

hahb[Mj ]a[Mj ]b −
∑

1≤a≤n

(α+ β)ha[Mj ]a + (αβ)1.

Let M j be the jth column of M . From α, β and h we can derive the coefficients
of a linear combination of 1, the columns Ma and the Schur products of columns
Ma ◦M b that give the zero vector. Thus α, β and h give us elements of the null
space of a matrix.
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Given a n×m matrix M , define the Veronese matrix of M to be the n×
(
m+1
2

)
matrix v(M) whose columns are the Schur products

{M i ◦M j : 1 ≤ i ≤ j ≤ m}.

The Veronese matrix of M is named for the Veronese map found in algebraic
geometry. The Veronese map of order d is the map Φd defined by

Φd(x0, . . . , xn) = (. . . , y, . . .),

where y runs over all possible monomials in the xi of degree d [9]. So our matrix
v(M) comes from the Veronese map of order 2.

The solutions to our system of quadratic polynomials correspond to the
elements in the null space of the matrix

Mver = [1 |M | v(M)].

The dimensions of Mver are n×
(
m+2
2

)
. We define the Veronesian rank of M to

be rk(Mver). So the null space of Mver contains the space of prismoid directions
of P . By the rank-nullity theorem, the null space of Mver is

(
m+2
2

)
− rk(Mver).

So by calculating the Veronesian rank of M we obtain information about the
prismoid directions of P .

We conclude this section by giving an alternative matrix with the same rank
as Mver. If M is a n×m matrix, then we define the matrix M ′ to be the n×m2

matrix whose columns are the Schur products

{M i ◦M j : 1 ≤ i, j ≤ m}.

The matrix M ′ has the same set of columns as v(M), but with some repetition
(as M ′ contains columns M i ◦M j and M j ◦M i). In practice we will find M ′

easier to work with than v(M).

5.6.1 Proposition. Given a matrix M , the Veronesian rank of M is

rk(Mver) = rk([1 |M ]′).

Proof. Consider the matrix [1 |M ]′. The columns of this matrix are exactly 1,
the columns of M (each appearing twice) and the columns of [M ]′. Therefore
the set of columns of [1 |M ]′ is exactly the set of columns of Mver (with some
repetition). It follows that the column spaces of these matrices are the same,
and thus

rk([1 |M ]′) = rk(Mver).

So we can use the matrix [1 |M ]′ to calculate the Veronesian rank of M .

5.7 Association Schemes

Recall from Section 4.6 that the Bose-Mesner algebra A of an association scheme
is the matrix algebra generated by the basis {A0, . . . , Ad}. The matrices Ai
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are adjacency matrices of graphs on n vertices and are simultaneously diag-
onalizable. The matrix idempotents of A are the orthogonal projectors onto
the d eigenspaces of the matrices Ai. We denote the matrix idempotents as
E0, . . . , Ed.

The matrix idempotents of A form a basis for A. The Bose-Mesner algebra
is closed under Schur multiplication, so the matrices Ei ◦Ej are elements of A,
and can be uniquely expressed as a linear combination of {E0, . . . , Ed}. The
Krein parameters of the scheme are the constants qki,j so that

Ei ◦ Ej =

d∑
k=0

qki,jEk.

The Krein parameters satisfy an important set of inequalities known as the
Krein conditions.

5.7.1 Theorem (Theorem 2.3.2 in Brouwer et al. [3]). For 1 ≤ i, j, k ≤ d, the
Krein parameters qki,j are non-negative.

Suppose that U is a matrix whose columns are an orthonormal basis for the
ith eigenspace of the matrices Aj . We let the dimension of the ith eigenspace be
mi. So U is a n×mi matrix. Note that Ei can be derived from U as UUT = Ei.
The Veronesian rank of U is entirely determined by the Krein parameters and
eigenvalues of the scheme.

5.7.2 Example. Let i = 0, and U be a matrix whose columns are an orthonormal
basis for the 0th eigenspace. Recall that E0 = 1/nJ . Therefore U = (1/

√
n)1,

and from Proposition 5.6.1 we have that the Veronesian rank of U is

rk([1 |U ]′) = rk([1 | (1/
√
n)1 | (1/

√
n)1 | (1/n)1]) = 1.

So the Veronesian rank of U is m0 when i = 0.

If i > 0 we can express the Veronesian rank of U as a sum of the multiplicities
of the eigenvalues of the scheme. Define σj as

σj =

{
0, if qji,i = 0

1, else.
(5.7.1)

5.7.3 Lemma. Assume i > 0, and let U be a matrix whose columns form an
orthonormal basis of the ith eigenspace of A. Then

rk(Uver) = m0 +mi +
∑
k 6=0,i

σkmk.

Proof. From Proposition 5.6.1 we have that

rk(Uver) = rk([1 |U ]′).
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For any matrix M we have that

rk(M) = rk(MTM) = rk(MMT ),

therefore
rk([1 |U ]′) = rk([1 |U ]′([1 |U ]′)T ).

We let
V = [1 |U ]′([1 |U ]′)T

and compute the (a, b) entry of V .
We denote the jth row of a matrix M by Mj . Recall that the columns of

M ′ are the Schur products of all pairs of columns of M . So,

Va,b = ([1 |U ]′([1 |U ]′)T )a,b = 〈[1 |U ]′a, [1 |U ]′b〉
= 〈[1 |U ]a, [1 |U ]b〉2

= 1 + 2〈Ua, Ub〉+ 〈Ua, Ub〉2.

Since UUT = Ei, we have that 〈Ua, Ub〉 = [Ei]a,b. Therefore

V = J + 2Ei + Ei ◦ Ei
= (n+ q0i,i)E0 + (2 + qii,i)Ei +

∑
k 6=0,i

qki,iEk.

To calculate the rank of V , we consider its eigenvalues. Suppose that v is a
vector in the jth eigenspace of A. Then since the matrices El are orthogonal
projections onto the lth eigenspace, we have Elv = 0 for l 6= j, and Ejv = v.
Thus,

V v =


(n+ q0i,i)v, if j = 0

(2 + qii,i)v, if j = i

qji,iv, else,

whenever v is the in jth eigenspace of A. Since V can be expressed as a linear
combination of the matrix idempotents, it is an element of the Bose-Mesner
algebra. Therefore the eigenspaces of A contain all of the eigenvectors of V .
Therefore, the spectrum of V is

{n+ q0i,i, 2 + qii,i} ∪ {q
j
i,i : j 6= 0, i},

and the multiplicity of the eigenvalue given by v is equal to the dimension of
the eigenspace to which it belongs.

It follows that rk(Uver) is the sum of the ranks of the matrices Ek for which
the corresponding eigenvalue is non-zero. From Theorem 5.7.1 we have that
qki,j ≥ 0 for all 1 ≤ i, j, k ≤ d. So (n+ q0i,i) > 0 and (2 + qii,i) > 0. Therefore

rk(Uver) = m0 +mi +
∑
k 6=0,i

σkmk,

as required.
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As we saw in Chapter 4, if X is a distance-regular graph, and X0, . . . , Xd

are the ith distance graphs of X, then the adjacency matrices Ai = A(Xi) give
a metric association scheme. Therefore Lemma 5.7.3 can be used to calculate
the Veronesian rank of a matrix U whose columns are an orthonormal basis of
an eigenspace of X. Since the eigenpolytope P is defined to be the convex hull
of the rows of U , this gives us the dimension of the null space of Uver which is
related to the prismoid directions of P . In the next section, we will see that the
Veronesian rank of U can be calculated exactly for distance-regular graphs with
small diameter.

5.8 Strongly Regular Graphs

We give a brief treatment of strongly regular graphs, and compute the Verone-
sian ranks associated with their eigenvalues. We will revisit strongly regular
graph again in Chapter 6 where our treatment will be more thorough. Our
source for the basic theory of strongly regular graphs is Brouwer and van Lint
[5] and Chapter 10 of Godsil and Royle [18].

A strongly regular graph is a distance-regular graph X with diameter 2. We
will let X be a strongly regular graph on n vertices with valency k. The distance
matrices of X are A0, A1 and A2 and they generate a 2-class metric association
scheme. Let the matrix idempotents of this scheme be E1, E1 and E2. Note
that our definition implies that X is connected, and so X has three eigenvalues,
k ≥ θ ≥ τ . We let E1 be the orthonormal projector onto the θ-eigenspace of
A1, and E2 be the projector onto the τ -eigenspace of A1. We let the rank of E1

be mθ, and the rank of E2 be mτ .
We will see in Chapter 6 that we can derive the values of θ, τ and their

multiplicities from the parameters ofX. However, for the material in this section
we only need to find some of the Krein parameters in terms of the eigenvalues
and dual eigenvalues of the scheme. Recall that the eigenvalues of the scheme
are the values pi(j) so that

Ai =

d∑
i=0

pi(j)Ej = pi(0)E0 + pi(1)E1 + pi(2)E2.

Since the matrices Ei sum to the identity matrix, and A0 is the identity matrix,
we have that p0(j) = 1 for all j. We have defined p1(0) = k, p1(1) = θ and
p1(2) = τ . The values p2(0), p2(1), p2(2) are the eigenvalues of A2.

Since X has diameter 2, A2 is the adjacency matrix of the complement of
X. Therefore

A2 = J − I −A1,

and we can compute the eigenvalues of A2 using the eigenvectors of A1. The
vector 1 spans the k-eigenspace of A1, and

A21 = J1− I1−A11 = (n− 1− k)1
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shows that n − k − 1 is an eigenvalue of A2. If v is a σ-eigenvector of A1 that
is orthogonal to 1, then

A2v = Jv − Iv −A1v = (−1− σ)v,

and v is a (−1− σ)-eigenvector of A2. Therefore we have

p2(0) = n− k − 1, p2(1) = −1− θ, p2(2) = −1− τ.

Recall that the matrix of eigenvalues is the matrix P with P [i, j] = pi(j). Thus

P =

1 k n− k − 1
1 θ −1− θ
1 τ −1− τ

 .

The dual eigenvalues of the scheme are the values qi(j) so that

Ej = (1/n)

d∑
i=0

qj(i)Ai.

Recall that the matrix of dual eigenvalues Q, given by Q[i, j] = qi(j) has the
property that PQ = 1/nI. Therefore we can find Q by inverting P , so

Q = 1/nP−1 =
1

n(θ − τ)

θ − τ −k − (n− 1)τ k + (n− 1)θ
θ − τ n− k + τ k − n− θ
θ − τ τ − k k − θ

 .

The Krein parameters, eigenvalues and dual eigenvalues of an association
scheme are related by several identities. We will use the following identities
from Lemma 2.3.1 in [3]:

(i) qk0,j = δjk

(iii) qki,j = qkj,i

(v)
∑d
i=0 q

k
i,j = mj

(viii) pi(k)qj(i) =
∑d
l=0 q

k
j,lpi(l)

for all 0 ≤ i, j, k ≤ d, where δab = 1 if a = b and 0 otherwise.

5.8.1 Corollary. Let X be a strongly regular graph, and U(σ) be a matrix
whose columns form an orthonormal basis for the σ-eigenspace of G. Then

rk(U(θ)ver) = rk(U(τ)ver) = n.

Proof. We will prove this corollary for U = U(θ), as the proof for U(τ) is very
similar.
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To compute rk(Uver) we use Lemma 5.7.3. We have that

rk(Uver) = m0 +m1 + σm2

where σ is 0 if q21,1 = 0, and 1 otherwise. We assume that σ = 0 and derive a
contradiction.

Let q21,1 = 0. From identity (i) we have that q20,1 = 0. Now identity (v) gives
us that

q21,0 + q21,1 + q21,2 = m1

which implies that q21,2 = m1. Also identity (iii) gives us that q21,0 = 0. Finally,
we apply identity (viii) with i = 0, j = 1 and k = 2, so

p0(2)q1(0) = q21,0p0(0) + q21,1p0(1) + q21,2p0(2).

Using the matrices P and Q above, we see that

(n− k − 1)(1/n) = 0(1) + 0(k) +m1(n− k − 1),

which simplifies to 1/n = m1. This is a contradiction as m1 is a positive integer.
Therefore q21,1 > 0 and σ = 1. Thus

rk(Uver) = m0 +m1 +m2 = n,

as required.

5.9 The Absolute Bound

Lemma 5.7.3 gives us a tool for calculating the Veronesian rank of U when U is
constructed from an eigenspace of a distance-regular graph. In this section we
will use a classical bound on the sums of multiplicities of an association scheme
to bound the Veronesian rank of U .

Let A be the Bose-Mesner algebra of an association scheme with matrix
idempotents Ei and multiplicities mi for 0 ≤ i ≤ d. For 0 ≤ i, j, k ≤ d, let
qki,j be the Krein parameters of the scheme. The absolute bound gives a bound
on the sums of multiplicities mi for which the associated Krein parameters are
non-zero. We present the proof given in Brouwer et al. [3] as Theorem 2.3.3.

Fix 0 ≤ i, j ≤ d. For 0 ≤ k ≤ d, define

σk =

{
0 if qki,j = 0

1 else.

5.9.1 Theorem (The Absolute Bound). For all 0 ≤ i, j ≤ d,

d∑
k=0

σkmk ≤

{
mimj for i 6= j

mi(mi + 1)/2 for i = j.
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Proof. Consider the matrix Ei ◦ Ej . By definition we have

Ei ◦ Ej =

d∑
k=0

qki,jEk.

Since each Ei is the orthogonal projector onto the ith eigenspace of the matrices
in A, and the Ei are pairwise orthogonal, we have that rk(Ei ◦ Ei) is equal to
the sum of the ranks of the matrices qki,jEk. Therefore

rk(Ei ◦ Ej) =

d∑
k=0

σkmk.

Now we derive a bound on rk(Ei◦Ej). We have two cases. Suppose first that
i 6= j. For matrices A,B let A⊗B be the standard Kronecker product. Note that
the entries of Ei⊗Ej are pairwise products of the entries of Ei and Ej . It follows
that Ei ◦Ej is a submatrix of Ei⊗Ej , and therefore rk(Ei ◦Ej) ≤ rk(Ei⊗Ej).
Since rk(A⊗B) = rk(A) rk(B) we have that rk(Ei ◦ Ej) ≤ mimj as required.

Now suppose that i = j. If U is a n × mi matrix whose columns are an
orthonormal basis for the ith eigenspace of A, then Ei = UUT . The columns
of Ei are linear combinations of the columns of U . The entries of Ei ◦ Ei are
the squares of the entries of Ei, and the columns of Ei are the Schur squares of
the columns of Ei. Therefore the columns of Ei are linear combinations of the
Schur squares of the columns of U , together with the Schur products of distinct
columns of U . Thus

rk(Ei ◦ Ei) ≤ mi +

(
mi

2

)
= mi(mi + 1)/2.

Since we are interested in the null space of the Veronese matrix of U , it is
natural to look for examples where Uver has small rank. Specifically we would
like to find distance-regular graphs X with U a matrix whose columns form a
basis for the eigenspace of the least eigenvalue of X and for which rk(Uver) is
as large as possible. Recall that if X has n vertices, and the dimension of the
eigenspace is m, then U is a n × m matrix, and Uver is a n ×

(
m+2
2

)
matrix.

So if we want the rank of Uver to be as close to the number of columns of Uver
as possible, we need n to be sufficiently large by comparison to m. In general,
since

n =

d∑
i=0

mi,

this is not particularly restrictive.

5.9.2 Corollary. Let U be a matrix whose columns are an orthonormal basis
for the ith eigenspace of a distance-regular graph X. If qii,i 6= 0, then

rk(Uver) ≤
(
m1 + 2

2

)
−mi − 1
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and equality is achieved exactly when qki,i 6= 0 for all 0 ≤ k ≤ d, and the absolute

bound holds with equality. If qii,i = 0, then

rk(Uver) ≤
(
m1 + 2

2

)
− 1

and equality is achieved exactly when qki,i 6= 0 for all k 6= i, and the absolute
bound holds with equality.

Proof. Suppose that U is a matrix whose columns are an orthonormal basis
for the ith eigenspace. We can use Theorem 5.9.1 to give an upper bound on
rk(Uver). From Lemma 5.7.3 we have that

rk(Uver) = m0 +mi +
∑
k 6=0,i

σkmk.

From Lemma 2.3.1 (ii) in [3] we have that the Krein parameters satisfy q0i,j =

δijmi. Therefore q0i,i = mi 6= 0. So we can simplify our expression to

rk(Uver) = mi +
∑
k 6=i

σkmk.

Now if we assume that qki,i 6= 0 for all 0 ≤ k ≤ d, then Theorem 5.9.1 implies
that

rk(Uver) = mi +
∑
k 6=i

σkmk

=

d∑
k=0

σkmk

≤
(
mi + 1

2

)
=

(
mi + 2

2

)
−mi − 1.

Therefore, if we make the additional assumption that the absolute bound holds
with equality, we have that the rank of the null space of Uver is mi + 1.

If we add the additional assumption that qii,i = 0, then the same argument
shows that

rk(Uver) ≤
(
m1 + 2

2

)
− 1

and if the absolute bound holds with equality, then the rank of the null space
of Uver is 1. Since these assumptions maximize the Veronesian rank of U ,
we have that Uver never has full column rank, and the best possible result is
rk(Uver) =

(
m1+2

2

)
− 1.

The second bound in Corollary 5.9.2 has an alternative derivation. Recall
from Section 4.8 that if U is a matrix whose columns are an orthonormal basis
for the ith eigenspace of a distance-regular graph X, then the rows of U all lie
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on a sphere in Rmi centred at the origin. Specifically, Uj is the jth row of U ,
then

〈Uj , Uj〉 = mi/n

for all 1 ≤ j ≤ n. Therefore, the entries of each Uj satisfy the quadratic

mi∑
i=1

x2i = mi/n.

This quadratic gives an element of the null space of Uver, and thus rk(Uver) ≤(
m1+2

2

)
−1. This quadratic is an example of an element of the null space of Uver

that does not give us a prismoid direction of the corresponding eigenpolytope.

5.10 Computational Results

We have seen that the null space of the Veronese matrix is related to the struc-
ture of the eigenpolytopes of a graph. The simplest examples are given by
matrices whose Veronese matrix has a null space of low dimension. If we are
given a matrix M , constructing Mver and finding its rank is computationally
easy, while extracting information about its null space is more difficult.

We used Sage [30] to generate computational data on the Veronese ranks of
matrices from the eigenspaces of a number of graphs. Our data set consisted
of 4973 graphs in total, most of which were either distance regular or vertex
transitive. Restricting ourselves to eigenvalues with multiplicity at least 3, we
found 588 graphs with Veronese null space of rank 1. Of these graphs, there are
a few interesting examples.

5.10.1 Example. The Desargues graph (found on pg 418 of Brouwer et al. [3])
is a distance-regular graph of diameter 5 on 20 vertices. It is both bipartite and
antipodal. Its intersection array is

{3, 2, 2, 1, 1; 1, 1, 2, 2, 3},

and its spectrum is

{(3)1, (2)4, (1)5, (−1)5, (−2)4, (−3)1}.

Since the graph is bipartite, its spectrum is symmetric around 0. Let θ be an
eigenvalue, U the matrix we obtain from the θ-eigenspace, and V the matrix we
obtain from the (−θ)-eigenspace. For each of the eigenvalues of the Desargues
graph rk(Uver) 6= rk(Vver). When θ = 2, the matrix Uver has 15 columns, and
rk(Uver) = 14.

The other two interesting examples are strongly regular graphs: the Schläfli
graph, and the McLaughlin graph. We will return to those in the next chapter.

The data we generated was helpful in suggesting the results in Section 5.8.
However, we were not able to make many inferences from the computations.
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Chapter 6

Strongly Regular Graphs

Strongly regular graphs are distance-regular graphs of the smallest (interest-
ing) diameter. We have seen connections between cocliques in distance-regular
graphs and their equitable partitions. In this chapter we will take a closer look
at the equitable partitions of strongly regular graphs. We will also consider eq-
uitable partitions of strongly regular graphs into two parts that have additional
structural properties.

In [21], Higman and Haemers characterized the strongly regular graphs with
strongly regular partitions. These are equitable partitions into two parts each
of which is either a clique, a coclique or a strongly regular graph. When one of
the cells is a coclique, there are implications for the inertia bound and the ratio
bound. We will give a brief account of the theory in [21], and see examples of
graphs that have strongly regular partitions, and a family of graphs that has no
equitable partitions into two parts. The criteria for a graph to have a strongly
regular partition give restrictions on the spectrum of the graph.

Following the idea of adding additional structure to equitable partitions, we
also look at convex subgraphs. We present a theorem of Lambeck classifying
the convex subgraphs of a family of distance-regular graphs. We will see that
this classification leads to partitions of distance-regular graphs into two parts,
both of which are convex. These partitions are connected to partitions of the
Kneser graphs Kn:k into a maximum coclique and its complement.

Finally we summarize some computations on strongly regular graphs. These
computations bring together the ideas from all of the preceding chapters of the
thesis. We look at the eigenpolytopes of two non-isomorphic strongly regular
graphs with the same parameter set, and see that the parameters of a distance-
regular graph do not determine the combinatorial types of its eigenpolytopes.

6.1 Strongly Regular Graphs

Recall in Section 5.8 we defined strongly regular graphs as distance-regular
graphs of diameter 2. In this section we will expand the basic theory of strongly
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regular graphs that we will use later in the chapter. We will follow Brouwer and
van Lint [5] and Chapter 10 in Godsil and Royle [18].

Let X be a strongly regular graph on n vertices. We take the valency of
X to be k. The association scheme corresponding to X has Schur idempotents
A0, A1, A2 where A0 = I, A1 = A(X) and A2 is the distance 2 relation on
X. We also have matrix idempotents E0, E1, E2 where Ei is the orthogonal
projector onto the ith eigenspace of X. We take E0 = 1/nJ to project onto
the k-eigenspace of dimension 1. By convention we will take E1 to project onto
the θ-eigenspace of dimension mθ, and E2 to project onto the τ -eigenspace of
dimension mτ where k > θ > τ .

Recall from Section 4.5 that if we let {Γ0(x),Γ1(x),Γ2(x)} be the distance
partition of X with respect to some vertex x, then there are constants ai, bi, ci
with the following property. For all vertices x, y ∈ V (X), if d(x, y) = i, then

|Γi−1(x) ∩ Γ1(y)| = ci,

|Γi(x) ∩ Γ1(y)| = ai,

|Γi+1(x) ∩ Γ1(y)| = bi.

We also saw that since k = ai + bi + ci for each i, the parameters of a distance-
regular graph can be compressed into its intersection array. The intersection
array of X is (

k b1 0
0 1 c2

)
.

Note that the only “unknowns” in this intersection array are the parameters b1
and c2, and that those two values determine all of the ai values. We will take
our notation from [18] and denote these parameters as a = a1 = k − b1 − 1
and c = c2. Along with n and k, these values complete the parameters of a
strongly regular graph, which are given in the form (n, k; a, c). We refer to X as
an (n, k; a, c) strongly regular graph.

The parameters a and c have the following property (as a specialization of the
parameters of a distance-regular graph). Let x and y be any two vertices of X.
Then the number of common neighbours of x and y is a if x and y are adjacent,
and c if x and y are not adjacent. Strongly regular graphs are often defined
as a k-regular graphs with parameters a and c that satisfy the given property.
Since there is no provision for connectedness, a strongly regular graph is called
primitive if both X and X are connected graphs, and imprimitive otherwise.
Lemma 10.1.1 in [18] classifies the imprimitive strongly regular graphs as graphs
X that are isomorphic to mKk+1 for some integer m (or graphs X for which
X is isomorphic to mKk+1). We have already assumed that our graph X is
connected, for the remainder of this section we also assume that X is primitive.

Since the Schur idempotents sum to the matrix J with all entries 1, we have
that

A2 = J − I −A1 = A(X).
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Therefore, X is a strongly regular graph that generates the same association
scheme as X. If X is a (n, k; a, c) strongly regular graph, then X is a (n, k; a, c)
strongly regular graph where:

k = n− k − 1;

a = n− 2− 2k + c;

c = n− 2k + a.

As we have already seen, the spectrum of X is

{(n− k − 1)1, (−1− τ)mτ , (−1− θ)mθ}.

We can use the parameters of X to compute θ and τ in terms of a and c.
Let A1 = A and consider the (i, j)-entry of Al. By induction we see that this
is equal to the number of walks in X from the ith vertex to the jth vertex of
length l. If x and y are vertices of X, then the number of walks of length 2
from x to y can be computed as follows. If x = y, then every edge incident to
x gives a walk of length 2. If x and y are adjacent, then they share a common
neighbours, and thus there are a walks of length 2 from x to y. Similarly, if x
and y are non-adjacent then there are c walks of length 2 from x to y. Therefore

A2 = kI + aA+ c(J − I −A),

or
A2 − (a− c)A− (k − c)I = cJ.

Let z be a σ-eigenvector of A. If σ = k, then z is a multiple of 1; otherwise, z
is orthogonal to 1. Assume that σ 6= k, so Jz = 0. Now A2z = σ2z, and

0 = cJz = A2z − (a− c)Az − (k − c)Iz = σ2z − (a− c)σz − (k − c)z.

Since z is not the zero vector, we have that σ is a root of the quadratic

x2 − (a− c)x− (k − c).

Therefore

σ =
(a− c)±

√
(a− c)2 + 4(k − c)

2
.

We have assumed thatX is primitive, and as a result, c < k. Thus the two values
of σ are both non-zero and have opposite signs. So we have k > θ > 0 > τ , and
θ, τ can be written as a function of the parameters k, a, c.

We can take this one step further and derive the multiplicities mθ and mτ

from (n, k; a, c). We have that the multiplicities of the eigenvalues of X sum
to n. We also have that the trace of A1 is the sum of its eigenvalues. Since
A1 has zero diagonal, its eigenvalues sum to zero. Thus we have the system of
equations:

n = 1 +mθ +mτ

0 = k(1) + θ(mθ) + τ(mτ ).
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Solving this system we find that

mθ = − (n− 1)τ + k

θ − τ
, and mτ =

(n− 1)θ + k

θ − τ
.

Therefore we can derive mθ and mτ from the parameters n, k, a, c.
Given an (n, k; a, c) strongly regular graph X, we can derive all of the con-

stants we are interested in without considering the structure of X. Unfortu-
nately X is not determined by its parameters in general, so we cannot draw any
immediate conclusions about the cocliques or other structure of X from its pa-
rameters. The preceding material does show that parameters of strongly regular
graphs are easily derived, which is not the case for distance-regular graphs in
general. Also, implicit in our presentation are a number of feasibility conditions
on the parameter sets (n, k; a, c). For example mθ and mτ must be integers.
These conditions (and others) can be applied to give a list of feasible parameter
sets of strongly regular graphs.

Andries Brouwer’s website [2] contains a list of feasible parameter sets, to-
gether with the graphs that achieve those parameter sets where they are known.
Not all strongly regular graphs are determined by their parameter sets. As we
will see later, there are two non-isomorphic (16, 6; 2, 2) strongly regular graphs.
The strongly regular graphs on n < 16 vertices are all unique [2]. We conclude
this section by revisiting the Petersen graph (Example 2.4.1).

6.1.1 Example. The Petersen graph P is the Kneser graph K5:2. Its vertices are
the 2-subsets of [5], and two subsets are adjacent if and only if they are disjoint.
So P is a 3-regular graph on 10 vertices. If x and y are adjacent vertices of P ,
then |x ∪ y| = 4, and thus x and y have 0 common neighbours. If x and y are
not adjacent, then |x ∩ y| = 1, and |x ∪ y| = 3. Thus there is a unique vertex
z so that x ∩ z = y ∩ z = ∅, and x and y have 1 common neighbour. This also
shows that P is connected. Therefore P is a (10, 3; 0, 1) strongly regular graph.

Using the formulae above, we see that the spectrum of P is {(3)1, (1)5, (−2)4}.
From the spectrum of P we see that α(P ) ≤ 4 by the inertia bound, and
α(P ) ≤ 4 by the ratio bound. As we have already seen, the Erdős-Ko-Rado
Theorem characterizes the maximum cocliques of P . They are the families of 2-
subsets that contain a common element (e.g., {1, 2}, {1, 3}, {1, 4}, {1, 5}). So we
have that the Petersen graph is ratio tight, and inertia tight using its unweighted
adjacency matrix.

Let Pτ be the (−2)-eigenpolytope of P , and let Pθ be the 1-eigenpolytope of
P . For a polytope of dimension m, let fi denote the number of faces of dimension
i, and define the f -vector of the polytope to be the vector (f0, . . . , fm). The
f -vectors of Pτ and Pθ are

f(Pτ ) = (1, 10, 30, 30, 10, 1),

f(Pθ) = (1, 10, 45, 90, 75, 22, 1).

For Pτ : the faces of dimension 1 are the vertices of P ; the faces of dimension 2
are the non-edges of P ; and, the faces of dimension 3 are all of the cocliques of
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size 3. The facets of Pτ come in parallel pairs. They are the maximum cocliques
of P and their complements. Each coclique gives an equitable partition of P
into two parts.

For Pθ, we consider the 22 facets. There are 12 facets of Pθ with 5 vertices.
These are the 6 equitable partitions of P into disjoint 5-cycles. The remaining
10 facets are the second neighbourhoods of the vertices of P . So they are paired
with the vertices of P and result from the distance partitions of P .

Note that the characteristic vectors of the cocliques of size 4 in the Petersen
graph give a basis for the τ -eigenspace. Specifically, if S is a coclique of size 4,
and vS is the characteristic vector of S, then zS = vS−(3/5)1 is a τ -eigenvector
of P . Let U be the matrix formed by taking the vectors zS as columns. Then
the convex hull of the rows of U is a polytope that is combinatorially equivalent
to the τ -eigenpolytope of P . Moreover, the null space of Uver has dimension
at least 5 as each of the canonical cocliques gives a prismoid direction of the
resulting polytope. Computing the Veronesian rank of Uver, we have from
Corollary 5.8.1 that rk(Uver) = 10, and Uver has 15 columns. Therefore the
vectors corresponding to the prismoid directions of the τ -eigenpolytope of P
span the null space of Uver.

6.2 Strongly Regular Partitions

We have been interested in equitable partitions of graphs. In Section 5.5 we
showed that if X is regular, and P is an equitable partition of V (X) into two
parts, then P corresponds to a prismoid direction of an eigenpolytope of X.
Higman and Haemers [21] looked at equitable partitions of strongly regular
graphs with additional structure. They were interested in partitions of a strongly
regular graph X into parts P1, P2 so that the subgraphs X[P1] and X[P2] are
also strongly regular. In this section we give a summary of some of the results
from [21].

Let X0 be a strongly regular graph. Let (P1, P2) be a partition of V (X0), and
let the subgraphs induced by this partition be X1 = X0[P1] and X2 = X0[P2].
If X1 and X2 are both regular graphs, the partition (P1, P2) is equitable. If X1

and X2 are both one of a strongly regular graph, a clique, or a coclique, then
we call this partition strongly regular.

We let Xi be a graph on ni vertices. If Xi is regular, the valency of Xi

is ki. If Xi is strongly regular then the parameters of Xi are (ni, ki; ai, ci).
If Xi is strongly regular, a clique, or a coclique, then the spectrum of Xi is
{k1i , θ

mθi
i , τ

mτi
i } (note that ki, θi and τi are not necessarily distinct).

Note that we can order the vertices of X0 so that

A(X0) = A0 =

(
A1 C
CT A2

)
,

where A1 = A(X1), A2 = A(X2) and C is the incidence matrix given by the
edges of X0 between P1 and P2. Higman and Haemers apply a basic interlacing
argument to show the following theorem.
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6.2.1 Theorem (Theorem 2.2 in [21]). Suppose X0 is strongly regular, and X1

is regular. Then

τ0 ≤
k1n0 − k0n1
n0 − n1

≤ θ0

Moreover the partition is equitable if and only if equality holds in one of the
inequalities.

Note that the ratio bound for strongly regular graphs is an immediate con-
sequence of Theorem 6.2.1. If X1 is a coclique, then it is a 0-regular graph.
Thus we have

τ0 ≤
−k0n1
n0 − n1

≤ θ0

and so

n1 ≤
n0

1− k0/τ0
.

The implication of Theorem 6.2.1 for graphs that are ratio tight is that the
partition is equitable with k2 = k1 − k1 + τ0. From this fact it is easy to show
that if v1 is the characteristic vector of P1, then v1−n1/n01 is a τ0-eigenvector
for X0.

We can derive the inertia bound for strongly regular graphs as well.

6.2.2 Theorem (Theorem 2.3 in [21]). If X0 is a strongly regular graph and
X1 is a coclique, then n1 ≤ min{mθ0 ,mτ0}.

Theorem 6.2.2 is proved by considering the matrix

A = A0 − (k0 − τ0)/n0J − τ0I.

The matrix A has rank mτ0 and the A1 block of A0 becomes a non-singular
submatrix of A. So we have n1 ≤ mτ0 . An analogous construction for θ0
completes the proof.

Haemers and Higman go on to show that if X0 and X1 are strongly regular,
and the partition is regular, then the spectrum of X2 is determined. As an
easy corollary, this gives five simple conditions on the eigenvalues of X0 and X1

that determine whether the partition is strongly regular. Both of these results
are lengthy to state, and we will not need to appeal them directly, so we omit
them (they are Theorem 2.4 and Corollary 2.5 in [21] for the interested reader).
These results do admit a very nice corollary in the case where X1 is a coclique.

6.2.3 Theorem (Theorem 2.6 in [21]). Let X0 be a strongly regular graph, and
X1 be a coclique. Then

n1 = mτ0 =
n0

1− k0/τ0
if and only if X2 is strongly regular.

116



6.2. STRONGLY REGULAR PARTITIONS

So in order for the partition to be strongly regular and X1 to be a coclique,
X1 must be a coclique in X0 that meets both the ratio bound and the inertia
bound (with the unweighted adjacency matrix of X0). Theorem 6.2.3 allows
us to eliminate feasible parameter sets for strongly regular graphs that cannot
have a strongly regular partition where one part is a coclique.

For example, we saw in Example 6.1.1 that the Petersen graph P meets both
the ratio bound, and the inertia bound. Therefore the equitable partitions of
P given by the maximum cocliques are strongly regular partitions. In this case
the strongly regular graph X2 is isomorphic to 3K2, and so is not primitive.

The Petersen graph is the Kneser graph K5:2. As we have seen, the Kneser
graph Kn:k is a distance-regular graph. When k = 2, the diameter of Kn:2 is 2,
and Kn:2 is a strongly regular graph. The parameters of Kn:2 are((

n

2

)
,

(
n− 2

2

)
;

(
n− 4

2

)
,

(
n− 3

2

))
,

and the spectrum of Kn:2 is{(
n− 2

2

)1

, (1)n(n−3)/2, (3− n)n−1

}
.

From the Erdős-Ko-Rado Theorem we know that the maximum cocliques in
Kn:2 are the sets {X ∈ V (Kn:2) : i ∈ X} for all 1 ≤ i ≤ n. So α(Kn:2) = n− 1.
We see immediately that n− 1 = mτ , so Kn:2 is inertia tight. Also,(

n
2

)
1−

(
n−2
2

)
/(3− n)

= n− 1,

so Kn:2 is also ratio tight. Thus Theorem 6.2.3 implies that if S is a maximum
coclique in Kn:2, then the partition (S, S) is strongly regular, and S induces a
strongly regular subgraph of Kn:2. Working out the parameters we find that S
induces a copy of Kn−1:2 in Kn:2.

We saw in Section 6.1 that the complement of a strongly regular graph is a
strongly regular graph. If (A,B) is an equitable partition of a graph X, then
(A,B) is also an equitable partition of X. Thus the strongly regular partition
(S, S) of Kn:2 is also a strongly regular partition of Kn:2 into a clique of size
n − 1, and a subgraph isomorphic to Kn−1:2. The complement of the Kneser
graph Kn:2 is the Johnson graph Jn:2. This strongly regular partition of the
Johnson graph Jn:2 has an additional interesting property, it is an equitable
partition of Jn:2 into convex subgraphs. We will look at convex partitions in
the next two sections.

The graphs Kn:2 give an infinite family of strongly regular graphs with
strongly regular partitions. We end this section with an example of an infi-
nite family of graphs with no equitable partitions into two parts. In Example
2.12.1 we defined the Paley graphs as family of Cayley graphs for GF (q) where
q a prime power congruent to 1 modulo 4. Recall that two vertices of P (q) are
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adjacent if and only if their difference is a non-zero square in GF (q). The graph
P (q) is strongly regular with parameters(

q,
q − 1

2
;
q − 5

4
,
q − 1

4

)
,

and spectrum {(
q − 1

2

)1

,

(
−1 +

√
q

2

)mθ
,

(
−1−√q

2

)mτ}

where mθ = mτ = (q − 1)/2. Consider the case where q = p1 for some prime
p. We have that θ and τ are both irrational numbers, so P (p) cannot be ratio
tight. As a result, Theorem 6.2.3 implies that there is no equitable partition of
P (p) into a coclique and a strongly regular graph. In fact, we can rule out all
equitable partitions of P (p) with two cells.

Let (A,B) be a partition of the vertices of P (p). If (A,B) is equitable, then
there are constants a, b, c, d so that for each x ∈ A, there are a neighbours of x
in A, and c neighbours of x in B, and for each x ∈ B there are d neighbours
of x in A and b neighbours of x in B. We count the number of edges E(A,B)
joining A to B in P (p). We have that

|E(A,B)| = c|A| = d|B|.

We also have that |A|+ |B| = p, and that

a+ c = b+ d = (p− 1)/2.

Using the first two equations, we calculate the size of A as

|A| = p/(c+ d).

Since |A| ∈ Z, and p prime, we conclude that c+ d is either p or 1. Since P (p)
is connected, c, d ≥ 1, and so c+ d = p. Finally, we have that

a+ c+ b+ d = p− 1,

which implies that a+ b = −1, a contradiction. Therefore the Paley graph P (p)
has no equitable partitions with two parts. In fact, this is a corollary of a more
general lemma.

6.2.4 Lemma. Let X be a k-regular graph on p vertices for p prime. If k < p/2,
then X has no equitable partitions with two cells.

Proof. As in the preceding paragraph, we let (A,B) be an equitable partition
with constants a, b, c, d. We can show that c+ d = p, which contradicts the fact
that

a+ c+ b+ d = 2k < p.

118



6.3. CONVEX SUBGRAPHS

6.3 Convex Subgraphs

Let X be a connected graph, and Y be a subgraph of X. Since Y is a subgraph,
for any x, y ∈ Y , we have dY (x, y) ≥ dX(x, y). We call Y a geodetic subgraph if
for all x, y ∈ Y , dY (x, y) = dX(x, y). For x, y ∈ X, we define

CX(x, y) = {z ∈ X : dX(x, z) + dX(z, y) = dX(x, y)}.

Clearly, CX(x, y) is the union of all of the shortest x, y-paths in X. If CX(x, y) ⊆
Y for all x, y ∈ Y with dX(x, y) = t, then Y is t-convex. We call Y a convex
subgraph of X if Y is t-convex for all t ≤ diam(X).

In his thesis [24], Lambeck looked at characterizing the convex subgraphs
of families of distance-regular graphs. One of the families he considered is the
Johnson graphs. The Johnson graph Jn:k is the graph on the k-subsets of [n]
where two k-subsets are adjacent if and only if they intersect in k− 1 elements.
The Johnson graph Jn:k is the maximum distance graph of the Kneser graph
Kn:k. If A is the Bose-Mesner algebra of the association scheme generated by
the distance relations on Kn:k, then Ad = A(Jn:k). This scheme is called the
Johnson scheme.

Lambeck proved that the convex subgraphs of Jn:k are the graphs induced
by the following “intervals.” Let A ⊆ B ⊆ [n], and set

I(A,B) = {S ∈ V (Jn:k) : A ⊆ S ⊆ B}.

6.3.1 Theorem (Proposition 5.7 from [24]). The non-complete convex sub-
graphs of Jn:k are exactly the subgraphs induced by the sets I(A,B) where
A ⊆ B ⊆ [n].

Note that the subgraph of Jn:k induced by I(A,B) is isomorphic to a Johnson
graph,

Jn:k[I(A,B)] ∼= J|B|−|A|:k−|A|.

Recall that in Section 4.8 we mentioned in passing that the Erdős-Ko-Rado
Theorem can be proved by analysing the cocliques of the Kneser graph Kn:k.
The proof follows the format of the proof of the Erdős-Ko-Rado Theorem for Sn
given in Section 5.3. We define the canonical intersecting families of k-subsets
of [n] to be the sets Si of all k-subsets containing 1 ≤ i ≤ n. The Theorem
states that the sets Si are exactly the maximum cocliques of Kn:k. Since Kn:k

is a ratio tight graph, the characteristic vectors of the sets Si give τ -eigenvectors
as in Theorem 5.2.1.

If we let U be the matrix whose columns are the characteristic vectors of the
families Si, then we can show that the column space of U is the τ -eigenspace
of Kn:k. Let P be the polytope defined as the convex hull of the rows of U .
From Godsil and Meagher [16] we have that the vertex sets of the faces of P
are exactly the sets I(A,B). Each of the partitions (Si, Si) of V (Kn:k) gives
a partition of the vertices of P into parallel faces. These partitions are also
equitable partitions of Jn:k into two convex subgraphs. However, the equitable
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partition of Kn:k is not into convex subgraphs, as one of the graphs is a coclique,
and the other subgraph is not convex.

Recall the τ -eigenpolytope of the Petersen graph from Example 6.1.1. The
Petersen graph is the Kneser graph K5:2. The sets I(A,B) give all of the faces
of the τ -eigenpolytope of K5:2. When A = B = ∅, we have I(A,B) = {∅}, the
face of dimension −1. When A = B = {i, j}, we have I(A,B) = {{i, j}} giving
the vertices. When A = {i}, and B = {i, j, k},

I(A,B) = {{i, j}, {i, k}}

giving all of the cocliques of size 2 as the edges of the polytope. When A = ∅
and B = {i, j, k},

I(A,B) = {{i, j}, {i, k}, {j, k}},
and when A = {i} and B = {i, j, k, l},

I(A,B) = {{i, j}, {i, k}, {i, l}}.

These are all of the cocliques of size 3, and the vertex sets of the faces of
dimension 3. When A = {i} and B = [5], then I(A,B) is the ith canonical
coclique, and gives a facet with 4 vertices. When A = ∅ and B = {i, j, k, l},
I(A,B) is the set of all of the 2-subsets of B. This is a set of size 6 and gives the
vertex set of a facet parallel to the facet with 4 vertices formed by the canonical
coclique with A = [5] \ B. The last face is the entire polytope, given by A = ∅
and B = [5].

Finally, we note that the polytope P is not an eigenpolytope of Kn:k as we
defined them in Chapter 4. However, P is combinatorially equivalent to the
τ -eigenpolytope of Kn:k. To see this, note that P is the convex hull of a matrix
U whose columns are a basis for the τ -eigenspace of Kn:k. Therefore there is
a matrix M so that U ′ = UM and the columns of U ′ form an orthonormal
basis for the τ -eigenspace. Since M is an affine mapping from Rmτ to itself, M
maps P to the polytope P ′ defined as the convex hull of the rows of U ′, and
P ′ is combinatorially equivalent to P (see Grünbaum [20, p. 38]). Therefore
the polytope P has the same face lattice as the τ -eigenpolytope of Kn:k, but
the angles between the vertices are not the same, and we cannot apply the
parameters of the Johnson scheme directly to derive geometrical information
about P .

The Johnson graphs give a family of examples of graphs with partitions into
two convex subgraphs. In this case the partitions of X are exactly the partitions
in the d-distance graph Xd of X given by maximum cocliques. For strongly
regular graphs X, the diameter of X is 2, and the maximum distance graph is
X, which is strongly regular. So we would hope to find examples of families of
strongly regular graphs that can be partitioned into convex subgraphs.

6.4 Convex Partitions

For a graph X, we define a convex partition of X to be an equitable partition
(A,B) where both A and B induce either a clique or a convex subgraph of X.
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Let X be a (n, k; a, c) strongly regular graph. If (A,B) is a convex partition, and
B is not a clique, then B has diameter 2. From the definition of convexity, we
see that if x, y ∈ B are at distance 2 in X, then B contains C(x, y). Since X is
strongly regular, x, y have c common neighbours, and each of these neighbours
must be in B. Thus if B is a (nB , kB ; aB , cB) strongly regular graph, then
cB = c.

However, B convex does not imply B strongly regular, as if x, y ∈ B are
adjacent vertices of X, then the convexity assumption does not constrain the
vertices in the neighbourhoods of both x and y. The only exception is if X is
a triangle-free strongly regular graph. In this case a = 0, and adjacent vertices
x and y in X (and thus in B) have no common neighbours. Therefore if X is
a triangle-free strongly regular graph, and X1 is a strongly regular subgraph of
X, then X1 is convex if and only if c1 = c.

In Section 6.1 we saw that the Johnson graphs Jn:2 are strongly regular
graphs with strongly regular convex partitions. In the remainder of this section,
we introduce another family of strongly regular graphs, and show that they have
no convex partitions.

A Latin square of order n is an n× n array with entries in [n] so that every
row and column contains each 1 ≤ i ≤ n. For example, if G is a group of order
n, we can order the elements of G as {g1, . . . , gn}. Now define the n× n array
A by letting the (i, j)-entry of A be k, where gi ◦ gj = gk. Since G is a group,
gk 6= gi ◦ gl for any l 6= j. Therefore A is a Latin square of order n. So Latin
squares exist for each positive integer.

We can define a graph on the cells of a Latin square by specifying an adja-
cency relation. If A is a Latin square, define the Latin square graph X(A) to be
the graph on the triples (a, b, c) where 1 ≤ a, b ≤ n, and c is the (a, b)-entry of
A. Two triples (a, b, c) and (a′, b′, c′) are adjacent in X(A) if and only if either
a = a′, b = b′, or c = c′ (but not all three). Note that if a = a′, then equality in
either of the remaining coordinates implies equality in all three. We have that
X(A) has n2 vertices, and degree 3(n− 1).

The Latin square A can be visualized as an orthogonal array. Let OA be a
k×n2 array with entries in Ω for |Ω| = n. The array OA is an orthogonal array
if the columns of the 2 × n2 subarray given by any two rows contain all of the
possible ordered pairs of elements of Ω. So by writing the triples (a, b, c) from
A as the columns of a 3 × n2 array, we have an orthogonal array. Note that if
OA is an orthogonal array, then we can take three rows of OA in any order,
and the triples (a, b, c) corresponding to the columns of the resulting subarray
define a Latin square. In particular we see that permuting the entries of the
triples (a, b, c) of a Latin square result in another Latin square.

Let A be a Latin square and X(A) the graph as defined above. Note that
permuting the entries of A results in a Latin square A′ withX(A) = X(A′). Now
if (a, b, c) is adjacent to (a′, b′, c′) in X(A) we can say without loss of generality
that a = a′. Consider the common neighbours of (a, b, c) and (a, b′, c′). Both
vertices are adjacent to all triples (a, x, y), the vertex (x, b′, c) and the vertex
(x, b, c′). Thus the intersection of the neighbourhoods of (a, b, c) and (a, b′, c′)
has size n. Suppose (a, b, c) and (a′, b′, c′) are non-adjacent vertices of X(A), so
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a 6= a′, b 6= b′ and c 6= c′. Now if (x, y, z) is a common neighbour of (a, b, c) and
(a′, b′, c′) then (x, y, z) shares a coordinate of each vertex, and these coordinates
are distinct. There are 3 ways to choose two coordinates of (x, y, z) and 2
ways to choose which coordinate to match with (a, b, c), therefore there are 6
possibilities. Thus (a, b, c) and (a′, b′, c′) share 6 neighbours. Since we made no
assumptions about the vertices of X(A), we have that these values are constant
for all pairs of vertices in X(A). Therefore X(A) is a strongly regular graph.

Latin square graphs are a well-studied family of strongly regular graphs.
The graph X(A) has parameters

(n2, 3(n− 1);n, 6),

and spectrum

{3(n− 1)1, (n− 3)3(n−1), (−3)(n−1)(n−2)}.

As we have seen the multiplication table of any group G gives a Latin square
graph. For n = 4, the cyclic group Z4, and the Klein 4-group give rise to non-
isomorphic Latin square graphs with the same parameters (see Section 10.4 in
Godsil and Royle [18]).

We can use the spectrum of X(A) to bound the size of a maximum coclique
in the usual ways. The ratio bound gives

α(X(A)) ≤ n2

1− 3(n− 1)/(−3)
= n,

and the inertia bound gives

α(X(A)) ≤ min{3(n− 1), (n− 1)(n− 2)}.

Since

n < min{3(n− 1), (n− 1)(n− 2)},

for n ≥ 4, we see that the inertia bound cannot be tight for most Latin square
graphs.

A coclique in X(A) is a set of triples (a, b, c) so that no two share a common
entry. This corresponds to a set of cells of A none of which are in the same row
or column, and none of which share the same entry. These are called partial
transversals of A (or transversals if they have size n). The graph X(A) is ratio
tight if and only if A has a transversal. So if A has a transversal, then X(A)
has a coclique S of size n and the partition (S, S) is equitable. Since X(A) is
not inertia tight, Theorem 6.2.3 implies that X(A) has no equitable partition
into a coclique and a strongly regular graph.

Latin square graphs give an example of a family of graphs with no convex
partitions.

6.4.1 Lemma. If X(A) is a Latin square graph of order n ≥ 3, then X(A) has
no convex partitions.
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Proof. Let X be a Latin square graph, and suppose that (X1, X2) is an
equitable partition of X. To show that this partition is not convex, we proceed
by contradiction. We begin by assuming that X1 is a clique.

The vertices of X are triples (a, b, c). Suppose that the vertices of X1 do not
all share a common coordinate. Then |X1| ≤ 3, and the partition (X1, X2) is not
equitable. So, without loss of generality, we can assume that the vertices of X1

are all of the form (a, x, y). Let (a, b, c) ∈ X1, and consider the vertices (a′, b, c′)
and (a′′, b′, c) where a, a′, a′′ distinct. Since a′, a′′ 6= a, these are vertices in X2.
We can take b 6= b′ and c 6= c′, so we have that (a′, b, c′) is adjacent to (a, b, c)
and (a, b, c) is adjacent to (a′′, b′, c). But (a′, b, c′) is not adjacent to (a′′, b′, c).
This contradicts the assumption that X2 is convex.

Finally we assume that X1 and X2 are both convex subgraphs with diameter
2. Suppose that X1 and X2 induce a partition of the rows of the Latin square
(i.e., there is a partition (S, T ) of [n] so that (a, b, c) ∈ X1 if and only if a ∈ S
and (a, b, c) ∈ X2 if and only if a ∈ T ). Since neither of X1 and X2 is a clique,
we have |S|, |T | ≥ 2. Let (a, b, c), (a′, b′, c′) ∈ X1 be vertices at distance 2, so
a 6= a′, b 6= b′ and c 6= c′. Consider the vertices in X2 of the form (x, b, y). If
(x, b, c′) ∈ X2, then X1 is not convex. Thus none of the elements of X2 have the
form (x, b, c′) (note that this implies |S|, |T | ≥ 3). Following the same reasoning
we have that there are no vertices in X2 with the form (x, b′, c). Now consider
a vertex (x, y, c) ∈ X2. So (a, b, c) is adjacent to (x, y, c). Since |S| ≥ 3 we
have some (x′, y, c′) ∈ X1 with x′ 6= a, and again we conclude that X1 is not
convex. Therefore the partition (X1, X2) also induces a partition of the third
coordinates of the vertices. But this contradicts the existence of S, T .

Thus for some 1 ≤ a ≤ n, the set of vertices of the form (a, x, y) contains
elements in bothX1 andX2. Consider (a, b, c) ∈ X1 and (a, b′, c′) ∈ X2. Now for
x 6= a, the vertex (x, b′, c) is either in X1 or X2. Suppose (x, b′, c) ∈ X2. Then if
(x′, b′, y) ∈ X1 for any other triple with 2nd component b′, we have that (a, b, c)
is adjacent to (x, b′, c) which is adjacent to (x′, b′, y). But x′ 6= a and y 6= c, so
X1 is not convex. Thus either every element of the form (x′, b′, y) is in X2, or
(x, b′, c) ∈ X1. First suppose that every element of the form (x′, b′, y) is in X2.
Then X2 contains all of the elements with 2nd component b′. This implies that
X1 is not convex. So we must have that (x, b′, c) ∈ X1. Therefore X1 contains
all of the vertices of the form (x, y, c) where (a, y, z) ∈ X2. Thus the partition
(X1, X2) induces a partition of the triples by their 3rd component. The first
part our argument shows (by the fact that we can permute the coordinates of the
triples without altering X) that this leads to a contradiction. This completes
the proof.

6.5 Computations on Strongly Regular Graphs

The problem of looking for equitable partitions of graphs computationally is
difficult as the number of possible partitions of the vertices is large. We saw
in Section 6.2 that Higman and Haemers [21] were able to find conditions of
the spectra of a strongly regular graph that determine whether or not they have
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strongly regular partitions. We saw that the Kneser graphs Kn:2 are both inertia
tight and ratio tight, and so they have equitable partitions into a maximum
coclique and a strongly regular graph. In [21] the authors give a table, excluding
the graphs Kn:2, of feasible parameter sets of strongly regular graphs up to 300
vertices that have strongly regular partitions. Interestingly there are only two
feasible parameters sets that admit a partition into a strongly regular graph
and a coclique. These are (126, 60; 33, 24) and (261, 84; 39, 21), and there are
no strongly regular graphs with those parameters. So we see that there are no
strongly regular graphs on at most 300 vertices that are both ratio and inertia
tight.

We used Sage [30] to compute the ratio bound and inertia bound values
for a large set of graphs, along with the size of their maximum cocliques. Our
data set included some interesting strongly regular graphs on a large number
of vertices (such as the Higman-Sims graph), but was composed mostly of the
4391 strongly regular graphs compiled by Ted Spence [33]. These graphs are
strongly regular graphs on at most 64 vertices (but the list does not contain all
strongly regular graphs on at most 64 vertices). Of these graphs only 578 did
not meet the ratio bound, and so do not have equitable partitions of the form
(S, S) where S is a maximum coclique.

More interestingly, there were a very small number of inertia tight graphs.
The Kneser graphs Kn:2 are inertia tight, as we have already seen. Apart from
these graphs we have the Clebsch graph, the Schläfli graph, the Higman-Sims
graph, the McLaughlin graph, and the graph induced by the vertices of the
McLaughlin graph at distance two from a given vertex. We will return to the
Schläfli graph and the McLaughlin graph in Section 6.7.

The Clebsch graph has parameters (16, 5; 0, 2). We have already defined this
graph as the folded 5-cube, and seen that it is inertia tight. The Clebsch graph
is an example of a triangle-free strongly regular graph (i.e., a strongly regular
graph with a = 0). The triangle-free strongly regular graphs that meet the
inertia bound with their unweighted adjacency matrices are C5, the Petersen
graph (K5:2), the Clebsch graph and the Higman-Sims graph. The Higman-
Sims graph is the unique strongly regular graph with parameters (100, 22; 0, 6).
For C5, the Clebsch graph and the Higman-Sims graph, the maximum cocliques
are exactly the vertex neighbourhoods. The remaining triangle-free strongly
regular graphs are: the Hoffman-Singleton graph, the Gewirtz graph and the
M22 graph [5]. None of these meet the inertia bound with their unweighted
adjacency matrix.

We were able to do some computations on the eigenpolytopes of these graphs.
However our results are very limited by the computing power available. We were
able to work with polytopes with at most 28 vertices, and of dimension at most
10. This limited us to eigenpolytopes of graphs on at most 28 vertices, and for
eigenvalues with multiplicity at most 10. We give some interesting findings on
these polytopes in the final two sections of this chapter.
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6.6 Strongly Regular Graphs on 16 Vertices

There are 2 feasible parameter sets for strongly regular graphs on 16 vertices.
These are (16, 5; 0, 2) and (16, 6; 2, 2). Both are realized by strongly regular
graphs. The first parameter set is the, now familiar, Clebsch graph. The other
parameter set is the parameter set for the complement of a Latin square graph
on 16 vertices. There are two non-isomorphic graphs that realize the second pa-
rameter set, the Shrikhande graph (the complement of the Latin square graph
obtained from the multiplication table of the group Z4), and the line graph of
K4,4 (the complement of the Latin square graph obtained from the multiplica-
tion table of the group Z2 × Z2).

Ignoring the valency, we look at the θ and τ eigenpolytopes for both of these
graphs. For the Shrikhande graph, the f -vectors of the τ and θ eigenpolytopes
are

f(Pτ ) = (1, 16, 120, 528, 1440, 2464, 2608, 1622, 524, 64, 1),

f(Pθ) = (1, 16, 96, 236, 272, 144, 28, 1).

For L(K4,4) the f -vectors of the τ and θ eigenpolytopes are

f(Pτ ) = (1, 16, 120, 528, 1392, 2176, 1968, 978, 240, 24, 1),

f(Pθ) = (1, 16, 48, 68, 56, 28, 8, 1).

As we can see simply from the f -vectors, while the parameters of the schemes
corresponding to these graphs are the same (and thus the angles between the
vertices of the corresponding eigenpolytopes are the same), the combinatorial
structure of the polytopes is different. Both of these graphs are ratio-tight, but
fail to meet the inertia bound with their ordinary adjacency matrix.

6.7 The Schläfli Graph

The Schläfli graph gives an example of a graph that is inertia tight, but has
no equitable partitions into two parts. It is the unique strongly regular graph
X with parameters (27, 10; 1, 5) and spectrum {10(1), 1(20),−5(6)} (note that
as with some named strongly regular graphs, some authors refer to X as the
complement of the Schläfli graph). The maximum cocliques of X have size 6, so
it is inertia tight, however it is not ratio tight. There are 72 distinct maximum
cocliques in X.

As we mentioned in Section 6.5, we were only able to work with eigenpoly-
topes of dimension at most 10. So we were only able to look at the faces of the
τ -eigenpolytope of X. The τ -eigenpolytope has f -vector

f(Pτ ) = (1, 27, 216, 720, 1080, 648, 99, 1).

The 99 facets consist of the 72 maximum cocliques, together with the 27 vertex
neighbourhoods. Recall that in Section 5.10 we mentioned that we computed
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the Veronesian rank of the matrices whose columns form orthonormal bases of
the eigenspaces of X. If U is a matrix whose columns are an orthonormal basis
for the τ -eigenspace of X, then the dimension of the null space of Uver is 1.
This implies that the τ -eigenpolytope of X is not a prismoid.

The maximum cocliques of X are the cells of equitable partitions, just not
equitable partitions with two cells. The facets of the τ -eigenpolytope corre-
sponding to the maximum cocliques of X form 36 pairs of parallel facets. Each
of these pairs gives two parts of an equitable partition (A,B,C) where A and C
are maximum cocliques and B is a set of 15 vertices. The graph X[B] induced
by the non-coclique part is isomorphic to K6:2 which is strongly regular. So we
are close to a strongly regular partition of X.

The Schläfli graph shares some properties with the McLaughlin graph. The
McLaughlin graph is the unique (275, 112; 30, 56) strongly regular graph and has
spectrum {1121, 2252, (−28)22}. As we mentioned in Section 6.5, the McLaughlin
graph meets the inertia bound with its unweighted adjacency matrix. It is also
not ratio tight. If we let U be a matrix whose columns form an orthonormal
basis for the τ -eigenspace of the McLaughlin graph, then the null space of Uver
has dimension 1. Thus the τ -eigenpolytope of the McLaughlin graph is not a
prismoid.

The existence of these graphs argues against the possibility of connecting
inertia tightness of distance-regular graphs to prismoid directions in their eigen-
polytopes.
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Abelian group, 14
affine hull, 78
affinely independent set, 78
α-critical, 26
Andrásfai graph, 17, 18
assignment

3-sum respecting, 33, 34, 36
k-sum respecting, 32, 33

association scheme, 74
absolute bound, 108
dual eigenvalues, 75, 88
eigenvalue multiplicity, 75
eigenvalues, 75, 105
intersection numbers, 74
Krein conditions, 103
Krein parameters, 76
matrix idempotents, 75
metric, 76
P-Polynomial, 76
Schur idempotents, 75

automorphism, 14
automorphism group, 14

bipartite, 10
Birkhoff’s Theorem, 95
Bose-Mesner algebra, 74

Cayley graph, 14, 33
decomposition, 22

chromatic number, 60
circulant, 14, 17–19
Clebsch graph, 124, 125
clique, 12
clique number, 12, 34, 36, 39–41, 43,

49

coclique, 8
code, 47

block length, 47
distance, 47
dual, 51
generator matrix, 51, 53
parity check matrix, 51, 53
size, 47

colouring, 60, 64
convex hull, 77
convex partition, 121
convex set, 77

extreme point, 77
face, 77
improper face, 77

cover, 37
2-fold, 37, 44
r-fold, 37

covering map, 37
cubelike graph, 14, 28, 62
cyclic interval graph, 19, 20

derangement, 92
derangement graph, 13, 81, 92

independence number, 93
Desargues graph, 110
dimension, 78
direction, 98
distance, 6
distance graph, 73
distance-regular graph, 71

antipodal, 79
association scheme, 76
intersection array, 72
parameters, 71
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eigenpolytope, 78
equitable partition, 45, 62

eigenpolytope faces, 80
prismoid direction, 98

Erdős-Ko-Rado Theorem, 68, 80, 114,
117, 119

for Sn, 92

folded-cube graph, 62, 96
canonical coclique, 68
canonical matching, 82
parameters, 72

generator weighting, 22
Gewirtz graph, 124
Goppa code, 51, 52
Goppa polynomial, 50, 52
graph, 6

adjacency matrix, 7
complement, 12
eigenvalue, 7
eigenvector, 7
spectrum, 7
union, 12
weighted adjacency matrix, 10

Hamming distance, 47
Higman-Sims graph, 124
Hoffman bound, see ratio bound
Hoffman-Singleton graph, 124
hypercube graph, 62, 71
hyperplane, 77

supporting, 77

independence number, 8, 12, 18, 20
independent set, 8
inertia, 9
inertia bound, 9, 64
inertia tight, 10, 13, 17, 26, 64, 67, 114

bipartite graphs, 10
irreducible character, 15
isomorphism, 14

Johnson graph, 117, 119
Johnson scheme, 80, 119

Kneser graph, 63, 68, 80, 117, 119

Latin square, 121
partial transversal, 122
transversal, 122

Latin square graph, 121, 125
line graph, 36
linear character, 15, 56
linear programming, 23
local isomorphism, 37

M22 graph, 124
Maximum Coclique problem, 31
McLaughlin graph, 110, 124, 126

non-intersecting permutations, 13, 81
NP, 31
NP-Hard, 31

odd girth, 63
open halfspace, 77
oracle, 31, 52, 54, 55
orthogonal array, 121

P, 31
Paley graph, 26, 118
perfect matchings polytope, 94
Petersen graph, 10, 114, 117, 120, 124
polyhedral set, 77

facet, 77
vertex, 77

polynomial time algorithm, 31
polytope, 78

combinatorial equivalence, 78
edge, 78
f -vector, 114, 125
face, 78
facet, 78
graph of, 78
vertex, 78

prismatoid, 81, 96
prismatoid direction, 98
prismoid, 95
prismoid direction, 98, 101, 102

equitable partition, 98
pyramid, 96

q-ary linear code, 47
quotient graph, 45, 62
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quotient group, 46

ratio bound, 58, 92
ratio tight, 58, 114
regular graph, 6
representations of graphs, 79

Schläfli graph, 110, 124–126
Schur multiplication, 75
Shrikhande graph, 125
spectrum, 7

of a strongly regular graph, 113
of a bipartite graph, 10
of a Cayley graph, 16, 56
of a circulant, 16
of a complete graph, 12
of a cubelike graph, 64
of a cyclic interval graph, 20
of a folded-cube graph, 65
of a generator weighting, 22
of a hypercube, 64
of a Latin square graph, 122
of a subgraph, 8
of a union of graphs, 12
of an Andrásfai graph, 18
of the Petersen Graph, 10

strongly regular graph, 105, 112
complement, 113
parameters, 112
primitive, 112

strongly regular partition, 115, 124
subgraph, 6

convex, 119
geodetic, 119
induced, 6, 36
t-convex, 119

symmetric group, 13, 81

triangle-free, 17, 20, 121, 124

valency, 6
Veronese map, 102
Veronese matrix, 102
Veronesian rank, 102, 103
vertex-transitive graph, 15

weight, 47
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