
Header Parsing Logic in Network
Switches Using Fine and
Coarse-Grained Dynamic

Reconfiguration Strategies

by

Alexander Sonek

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2014

© Alexander Sonek 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144147359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Current ASIC only designs which interface with a general purpose processor are fairly
restricted as far as their ability to be upgraded after fabrication. The primary intent of the
research documented in this thesis is to determine if the inclusion of FPGAs in existing
ASIC designs can be considered as an option for alleviating this constraint by analyzing
the performance of such a framework as a replacement for the parsing logic in a typical
network switch.

This thesis also covers an ancilliary goal of the research which is to compare the various
methods used to reconfigure modern FPGAs, including the use of self initiated dynamic
partial reconfiguration, in regards to the degree in which they interrupt the operation of
the device in which an FPGA is embedded. This portion of the research is also conducted
in the context of a network switch and focuses on the ability of the network switch to
reconfigure itself dynamically when presented with a new type of network traffic.

iii

Acknowledgements

I would like to thank, first and foremost Dr. Agnew for providing me with the guidance
to see this project through. I would also like to recognize Subbarao Arumilli whose contin-
ued assistance in providing both information and hardware resources was also instrumental
in its completion. Finally, I do not want to forget Joshua Tan and Peter Gabrovsky who
filled in all the remaining gaps in my work with their FPGA expertise.

iv

Dedication

I would like to dedicate this to all my friends and family who never waivered in their
patience or support throughout this whole process.

v

Table of Contents

List of Tables x

List of Figures xii

List of Algorithms xiv

1 Introduction 1

1.1 Problem Statement . 2

1.2 Thesis Outline . 2

2 Background 4

2.1 FPGA . 4

2.1.1 Configuration Memory . 5

2.1.2 Logic Elements . 6

2.1.3 Example . 7

2.2 Network Switch . 8

3 Theory of Operation: Fine Grained 10

3.1 BUS and Clock Conversions . 10

3.1.1 BUS Transformations . 11

3.1.2 Signal Transformations . 13

3.2 MainBus Interface . 13

vi

3.2.1 MainBus Write to Parser Chain . 14

3.2.2 MainBus to DDR2 Ram . 14

3.2.3 MainBus System Access . 15

3.3 Memory Interface . 17

3.3.1 DDR2 Controller . 17

3.3.2 On-Chip BRAM . 18

3.4 Dynamic Parser Configuration Arbitration 19

3.4.1 ICAP Controller . 19

3.4.2 Parser Black-Box Wrappers . 21

3.5 Parser Chain . 22

3.5.1 Parser Chain Status . 24

4 Theory of Operation: Coarse Grained 26

4.1 Parser Processor . 26

4.1.1 Parser Core . 27

4.1.2 Small Parser Core Operation . 30

4.1.3 Large Parser Core Operation . 31

4.2 Parser Interconnect Network . 33

4.3 Coarse Parser Programmer . 33

5 Framework 35

5.1 Development Board . 35

5.1.1 USB Driver GUI . 35

5.2 General Project Structure and Coding Scheme 36

5.3 Bitstream Generation Flow . 36

5.4 Optimization . 37

5.5 Testing . 39

5.5.1 Simulation Setup . 40

5.5.2 Hardware Probing . 40

vii

6 Specification Analysis Results 42

6.1 Speed of Configuration . 42

6.1.1 Coarse Grained . 44

6.1.2 Fine Grained . 48

6.2 Size of Implementation . 49

6.2.1 Static . 50

6.2.2 Coarse Grained . 51

6.2.3 Fine Grained . 53

6.3 Worst-Case Data Path Latency . 54

6.3.1 Static . 55

6.3.2 Coarse Grained . 56

6.3.3 Fine Grained . 58

6.4 Packet Loss Based on Configuration Speed 59

7 Related Work 64

7.1 Dynamic Reconfiguration of Network Components 64

7.2 Dynamic Reconfiguration Using Custom ICAP Controller 65

7.3 Improvements in the Dynamic Reconfiguration Process 66

7.4 Other Forms of Reconfiguration . 67

7.5 Coarse Architectures . 68

7.6 Network Processors . 69

8 Conclusion 71

8.1 Discussion . 71

8.2 Future Work and Suggested Improvements 72

8.2.1 Coarse Grained . 72

8.2.2 Fine Grained . 74

APPENDICES 75

viii

A Additional Results 76

A.1 Worst Case Delays By Architecture . 76

A.1.1 Static . 76

A.1.2 Coarse Grained . 77

A.1.3 Fine Grained . 79

B Additional Framework Details 81

Glossary 82

References 87

ix

List of Tables

3.1 Packet Parser BUS Control Flags . 14

3.2 MainBus DDR2 Special Read Addresses 15

3.3 Read Control Functions . 16

3.4 MainBus Interfacing Logic Status Codes 17

4.1 Small Parser Core Parameters . 31

4.2 Large Parser Core Parameters . 32

4.3 Single CLU Operation Truth Table . 33

6.2 Coarse Grained Partial Reconfiguration Environment (Simulated) 44

6.3 Coarse Switch Bit Input Requirements . 44

6.6 Fine Grained Partial Reconfiguration Environment (Simulated) 48

6.10 Protocol Header Sizes by Level . 61

A.1 Static TRILL Parser Delays: Balanced . 76

A.2 Static TRILL Parser Delays: Synth Optimized 76

A.3 Static TRILL Parser Delays: Logic Optimized 77

A.4 Static TRILL Parser Delays: Both Optimized 77

A.5 Static Lvl2 Parser Delays: Logic Optimized 77

A.6 Static Lvl2 Parser Delays: Both Optimized 77

A.7 Worst Delays Through Basic Parser: Balanced 77

A.8 Worst Delays Through Basic Parser: Logic Optimized 78

x

A.9 Worst Delays Through Basic Parser: Synth Optimized 78

A.10 Worst Delays Through Basic Parser: Both Optimized 78

A.11 Worst Delays Through Advanced Parser: Balanced 78

A.12 Worst Delays Through Advanced Parser: Logic Optimized 78

A.13 Worst Delays Through Advanced Parser: Synth Optimized 79

A.14 Worst Delays Through Advanced Parser: Both Optimized 79

A.15 Fine Grained TRILL Parser Delays: Balanced 79

A.16 Fine Grained TRILL Parser Delays: Synth Optimized 79

A.17 Fine Grained TRILL Parser Delays: Logic Optimized 79

A.18 Fine Grained TRILL Parser Delays: Both Optimized 80

A.19 Fine Grained Lvl2 Parser Delays: Logic Optimized 80

A.20 Fine Grained Lvl2 Parser Delays: Both Optimized 80

B.1 Low Delay Synthesis Profile . 81

xi

List of Figures

2.1 FPGA Example Circuit . 7

3.1 Larger to Smaller BUS Conversion . 12

3.2 MainBus Write Control Word . 14

3.3 MainBus DDR2 Read/Write Control Word 14

3.4 MainBus Read Control Word . 15

3.5 ICAP Write FSM . 20

3.6 Basic Parser Chain Layout . 23

3.7 MMU State Machine . 24

4.1 Parser Comparator Logic Unit . 29

4.2 Small Parser Core Memory Map . 30

4.3 Large Parser Core Memory Map . 32

4.4 Utility Config Packet: A) Interconnect Network Configuration, B) Parser
bitstream starting . 34

6.1 Simulated Coarse Grained Programming Speeds 47

6.2 Simulated Fine Grained Programming Speeds 49

6.3 Static Trill Parser Resource Usage . 51

6.4 Advanced Coarse Parser Resource Usage 51

6.5 Base Coarse Parser Resource Usage . 53

6.6 Fine Grained Trill Parser Resource Usage 54

xii

6.7 Static Trill Parser Delay Statistics . 56

6.8 Coarse Adv Parser Delay Statistics . 56

6.9 Coarse Base Parser Delay Statistics . 57

6.10 Fine Grained Trill Parser Delay Statistics 58

6.11 Expected Un-handled Packets During Configuration 62

8.1 Multiple Context Coarse Parser Processor 73

xiii

List of Algorithms

4.1.1 Partial Parsing State Pseudo code . 28
5.4.1 Logic Optimization Example . 39

xiv

Chapter 1

Introduction

As is the case with designing any other hardware with an interface to a general purpose
processor using a strictly ASIC cell-based approach, when developing the hardware for a
typical network switch one must keep in mind that the venues for including future upgrad-
ability are somewhat limited. The logic implemented in hardware cannot of course be
modified after fabrication and any functionality which is implemented in software then
suffers the speed penalty of being restricted to sequential instruction interpretation. Along
these lines, if an upgrade or lateral change is required for any component critical to the core
functionality of the device, such as a parser in a network switch, then the only recourse is
to re-fabricate the whole device. Being that device fabrication requires quite a substantial
investment of time and money, the question then becomes if there is a feasible way to allow
for the future modification of a design’s core components without having to expend such
a significant amount of resources or sacrificing its ability to meet any speed specifications.
The use of Field Programmable Gate Arrays (FPGAs) which offer the parallelization ben-
efits of ASICs combined with the programmability of software and which can run perform
operations at a rate somewhere between the two can be argued as one such solution to this
problem.

The research outlined has been performed with the intent of gaining a better under-
standing of some the considerations that must be made in using FPGAs in this capacity.
The actual reconfiguration process of FPGAs was investigated at two different levels, fine
and coarse-grained, in regards to how well the resulting designs performed under various
hardware engineering constraints. The actual logic tested was the parsing logic from a
network switch which provided a good test-case for determining the extent to which the
configuration process could be automated.

1

1.1 Problem Statement

The intent of the research presented in this thesis is to gauge the feasibility of implementing
the parsing functionality found in the port logic of network switches with the ability to
dynamically adjust to new types of traffic flow. The structure of the switching fabric
within these devices can be seen as being relatively sheltered from changes in the higher
level protocol changes because it is only responsible for handling packets once they have
been classified and partitioned into internal cells. This stability in design allows for a
greater focus on ensuring performance without as much concern for flexibility and as such
the switching fabric is generally implemented as an ASIC. The control plane portion of
the router is responsible for performing functions such as managing and configuring the
overall system. Owing to the infrequent and, in many instances, not easily pre-defined
nature of these tasks, a large portion of control plane is often implemented in software.
While the required operation from this management aspect of the router hardware may be
more susceptible to changes in how network traffic should be handled at higher levels of
protocol encapsulation (changes in how routing tables are managed for example), a change
in its functionality can usually be easily applied by modifying its instruction flow. In terms
of weighing these trade-offs in flexibility and performance, the parsing logic, which must
operate at speeds best suited for ASIC implementation but with the same instability in
specifications reserved for software implementations, poses somewhat of a problem to the
designer.

1.2 Thesis Outline

Chapter two attempts to bring the reader up to speed regarding the major concepts sur-
rounding the research performed in this paper. It specifically covers topics on the operation
of FPGAs and network switches relevant to the understanding of how the latter could be
augmented with the former. The chapter wraps up with an example of how a simple
Boolean statement would be implemented in a hardware look-up table which is pertinent
to both grasping the underlying idea of FPGA operation and to one of the optimization
techniques examined in the analysis section.

Chapters three and four collectively introduce the major components of the two re-
configurable parser architectures proposed in this research. Chapter two covers the com-
ponents specific to the fine-grained re-configurable parser chain along with the supporting
logic which is common to both. Chapter three finishes up by only detailing the theory
of operation of the components related to the coarse-grained reconfigurable parser logic.

2

Reading the material provided in these chapters mainly allows for a basic understanding of
how it is intended that each of the dynamic parser chains fulfill its roles as a replacement
for its ASIC counterpart. In going over this information it should also become clear what
type of supporting logic is recommended for both debugging and programming the core
logic.

Chapter five steps through the specifics of the development environment used to develop
and test the proposed designs in both software simulations and when already transferred
to the FPGA fabric. This chapter can be used as a basic set of guidelines for how to set
up future experiments in the same field of inquest. It specifically goes through properly
structuring the source code for dynamically reconfigurable designs, running the vendor
provided synthesis software properly to achieve bitstreams which the FPGA hardware
supports as reconfigurable, the types of optimizations which were found to achieve positive
results with reconfigurable designs and an assortment of testing strategies which proved
useful for these types of designs. The details of the development board used in the project
are also covered in this area of the thesis but only in brief where needed to illustrate the
methodology.

Chapter six discusses the methods used to analyze both the designs in the context
of some common hardware engineering constraints; the results of these analyses are then
discussed in terms of which of the design may be more suitable in an actual implementation.
The chapter is organized by the specifications examined: speed of configuration, physical
resource usage, worst-case path delay. The analysis in each case also goes over the effects
of applying a number of basic optimization techniques and how they compare to those
from the un-optimized tests. It concludes with a section detailing the impact of the speed
of configuration constraint on the operation of an abstract network switch model created
specifically for the research.

Chapter seven provides a literature review of work performed by other researches in
areas which overlap with this project. Wherever relevant, the methodologies described in
these works are compared to the methodologies used to separately create the two types of
reconfigurable parser chains. The chapter is organized by the areas of research covered: dy-
namic reconfiguration of specifically network components, reconfiguration of various other
circuits using the ICAP port built into the FPGA fabric, attempts at improving the effi-
ciency of the reconfiguration process using partition based designs, other forms of partial
reconfiguration (e.g. differential partial reconfiguration), dynamic reconfiguration of de-
signs built using coarse elements and finally the use of network specific processors.

3

Chapter 2

Background

2.1 FPGA

While envisioned much earlier the first commercially viable Field Programmable Gate
Array (FPGA) was released in 1985 with the founding of Xilinx. Not surprisingly in the
relatively long time it has been around, nearly 30 years now, this technology has seen many
improvements introduced to its original design in both the form of upgraded capacity and
speed as well additional features such as embedded blocks of memory. Throughout its
many iterations, however, the design of the FPGA has changed very little in regards to
its core theory of operation which is to allow for an overall reconfigurable design using an
array of configurable logic blocks interconnected by a network of switchable junctions.

FPGAs can be categorized into two major categories based on whether or not they
can be reconfigured after their initial configuration which in turns relies on how their
configuration is actually stored. In those that can be reconfigured the configuration state
is generally stored in SRAM while in the ones that can only be configured once this data
may be stored in read only flash or across a series of anti-fuses [1].

In both cases the purpose of the configuration is to not only modify the function
performed at various logic sites within the design but to also to dictate how these logic
sites interconnect to create the overall function output of the design. The mechanism by
which the programming of the devices within each of these categories with the configuration
state induces a change in their logic elements is fundamentally different, however. When it
comes to SRAM based devices, the underlying core logic element which is modified during
configuration is the memory of a LUT (Look Up Table), whereas with the devices that only
support a single configuration this element is the switch inputs of a MUX (Multiplexer).

4

The intent of the rest of this section is to promote a better understanding of the
implications of including a reconfigurable FPGA within an existing ASIC design in the
context of the one used within this research. It first covers the basic operation of the
major components within such an FPGA and then attempts to demonstrate how they
function as a whole to output a logic function in an example where a simple gate described
function is translated to its rudimentary FPGA equivalent.

2.1.1 Configuration Memory

In the original series of FPGAs the configuration memory was loaded into the device
serially via a slightly modified dynamic phase shift register [2] which had enough stages
to span all the configurable points of all the logic elements and interconnections present.
The configuration data would be shifted in until the initial bit had reached the final stage
of the shift register at which point additional hold logic connected at each stage would be
set to feedback the stage’s output back into its input. With the hold logic enabled, each
stage would thus retain its value and as such the logic elements and interconnection points
connected to these stages would be considered programmed.

The concept of streaming the bitstream in sequentially would be expounded on in later
models in that the bitstream would be shifted in through series of registers, one for every
row of logic elements. Once the bitstream was completely loaded into these memories it
would then be shifted in parallel from each storage location horizontally to the configuration
memories of the logic elements [3, 4].

To support partial reconfiguration of the devices as well as other features such as CRC
checking of the incoming bitstream, however, the idea of strictly shifting in the bitstream
was abandoned in favour of one that also includes a routing mechanism. Essentially, in the
newest devices such as the one used in this research, bitstreams and other types of data
are sent in broken up into chunks and appended to multiple packets containing command
and addressing information. The command information contained in these header packets
could, for example, let the device know that a stream of data is being sent in to configure
a portion of the device and the address data then would be used to send the chunks of
the stream to an entry point into a certain portion of the configuration memory. Finally,
once the chunks reach this entry point they are then shifted in to make up the actual
configuration memory [5].

5

2.1.2 Logic Elements

If the FPGA as a whole is looked at in its most basic terms as a means to output the results
from one or more logical functions, the logic elements can be seen as the individual stages
of the functions as chained together by the interconnects. Physically, they are placed on
the device in a two dimensional array and are generally partitioned into small groups to
form larger logic blocks.

While certain aspects of the circuitry in the logic elements themselves may be tweaked to
allow for specializations in performing a certain subset of operations, it will always contain
a set amount of LUTs and, in later devices, memory elements per device family. The
individuals LUTS can be programmed to perform a number of different logical functions
with an input count ranging up to the physical pin count of the component and can be
combined together via one or more levels of MUXes to output functions of even greater
complexity. The outputs of the function or functions performed can then be multiplexed
directly to the output of the logic element to form combinatorial logic, to the memory
elements to form sequential logic or to, in certain cases, components dedicated to speeding
up arithmetic operations.

6

2.1.3 Example

Figure 2.1: FPGA Example Circuit

The intent of this section is to demonstrate how all the pieces of an FPGA work together
to produce the output of a logical function. The architecture used in the example as
shown in Figure 2.1 is very basic, with LBs (Logic Blocks) composed of a single LUT and
two memory elements. The interconnect network is not displayed, however, in the actual
implementation it would be responsible for routing in signals to all the inputs and outputs
of the two LBs.

The LUT itself is similar in structure to the ones used in the architecture of the FPGA
device used in this research. It has three inputs, two outputs and, internally, is comprised
of two two input, one output LUTs. The first two inputs to the component are connected
in the same order to both sets of inputs of its internal LUTs while the third is connected to
a MUX. The MUX allows the component to either output two separate two input functions
from each of its outputs or one three input function from just its first output.

7

The actual function output in this demonstration is shown in Equation 2.1.1 where A,
B, C, D and E are direct inputs to the two LBs of Figure 2.1 and F (Equation 2.1.2) is
the logical output of the LB on the left as switched into the input of the LB on the right.
The bars within each LUT represent the internal memories of the two constituent LUTs
and how they are filled up with the truth tables required to perform each portion of the
example function.

X = D · E · F (2.1.1)

F = A + B + C (2.1.2)

2.2 Network Switch

A network switch can be loosely described as a device which is used to transparently join
together multiple network segments or groups of networked systems [6].

Traffic passing into the most basic example of a network switch is routed to its proper
destination using the protocol described in the data link layer of the OSI communication
model, meaning that a path is created between the sender and receiver based on their
hardware addresses as sent with the data itself. In this sense the switch can associate one
or more end-point hardware addresses with each of its ports and then use this mapping to
determine which of these ports an incoming frame of data should be sent to. Generally,
address learning, an operation defined as part of the transparent bridging method, is used
to create this association whereby the port an address should be bound to is learned by
extracting the source address of an inbound frame of data and then stored in a one to one
mapping.

More complex switches support routing based on protocols described in higher layers
of the OSI model and as such have to extract additional information from the data frame
other than from the outermost header. In switch architectures like the one from which this
research is derived from, the parsing of multiple levels of encapsulated data is supported
by a chain of pipe-lined packet parsers each responsible for pulling out routing information
from a single level. As a copy of the frame passes through the chain, each packet parser
determines if it is able to interpret the data passing through it by checking for certain
values within a set offset from where it started receiving the stream. If these values are
found then additional fields within this offset are stored and then remaining data outside

8

this portion is passed to the next parser to allow it to work on the next level in the same
way. Essentially this parsing mechanism is the same as the one exploited in pipe-lined
network processors [7] except hard coded in ASIC hardware.

Switches can also be broadly classified as belonging to one of two categories based on the
point at which they attempt to start forwarding a packet after receiving it. Switches in the
first group, or store-and-forward switches, generally will first buffer in an incoming packet
in its entirety and run it through a CRC check before starting the forwarding process.
Cut-through switches, on the other hand, will hold off on the forwarding only long enough
to receive the pertinent portions of the encapsulated headers before they start doing the
same. Switches in the latter group may still perform an error check on the packet once all
of its contents arrive, but strictly for record keeping purposes as by this time it would be
too late to drop it if a malformation were to be found. This additional level of distinction
in switch functionality is integral in modelling the expected delay through the device [8],
an abstraction of which is used to quantify the impact of applying the ideas proposed in
this research.

9

Chapter 3

Theory of Operation: Fine Grained

In the most general terms the designs created for the fine grained test-case can be described
as consisting of two consecutive levels of parsing logic extracted from a network switch and
inserted into a framework which provides the functionality to simulate sending a packet
through the parser chain, initiate a reconfiguration of the second parser stage upon the
arrival of a specific packet type and finally monitor the parser stages by taking snapshots
of their status outputs. This section provides an overview of the key operational units of
the fine grained design.

3.1 BUS and Clock Conversions

The design as it stands spans across four different clock domains as required by the logic for
the MainBus, the parser chain, the interface to the DDR2 RAM, the PLL synchronization
clock for the DDR2 controller and the internal FPGA reconfiguration port. The clock
frequencies required by these logic areas are the 48 MHz,200 MHz,100MHz,200MHz and
100 MHz respectively. The logic in the design has to at one point interface with one or
more of the following buses: the 32-bit MainBus, the 64-bit parser chain, the 256-bit DDR2
RAM controller input and the 32-bit internal FPGA reconfiguration port input. As such
various strategies were employed within the design to ensure that when data is transferred
between these various domains that it is kept at the correct level for the appropriate interval
and/or aggregated or segmented to achieve the correct width.

10

3.1.1 BUS Transformations

Dual-clock FIFOs are used as the basis for all the multi-bit or BUS transformation schemes
used in the design.

In situations where a transfer of data is required between two buses which are of the
same width but originate from different clock domains, such as when packet data is trans-
ferred from the slower MainBus to the faster packet parser chain bus, the mediating logic
is based solely on a subset of status outputs from the interceding FIFO. As long as the
FULL output pin of the FIFO stays low, the sending component in one clock domain is
presented with an endpoint which is ready to receive and, as long as the EMPTY output
is low, the receiving component in another is likewise presented with an endpoint which
is ready to send. Since the FULL and EMPTY outputs are synchronized to the clock
domains containing the sending and receiving components respectively but also dependent
on conditions from the opposite sides, the FIFO then effectively becomes not only a means
to transfer data between these two domains but also a point of unified protocol translation
between the contained devices. In other words, even though the sending component may
be sending in control bits in parallel with the data, the only way it knows if the receiving
component is no longer ready to receive is if the FIFO shows its full.

In situations where a smaller bus has to be expanded to a larger bus the speed conversion
scheme described above is used but in an expanded form. One or more modulus operations
are also included in the conversion process based on how many times the bus needs to be
up-converted. For example, in converting a 32 bit bus to a 128 bit bus, the arriving 32
bit data is first stored in either the top or bottom word slot of a 64 bit register based on
a modulus two operation. After two writes in this manner, the register is full and so its
contents are transferred to a 64-bit FIFO (the largest single size included in the vendor
provided libraries), causing the FIFO’s EMPTY output to go low at the next clock cycle
of the receiving component’s clock domain. At the receiving side, as soon as EMPTY is
seen as low, the same modulus two operation is used to then write two sequential 64-bit
values to the upper and lower double-word slots of a 128-bit register and as soon as this
register is full its contents are then transferred to the receiving component.

11

Figure 3.1: Larger to Smaller BUS Conversion

If a larger to smaller bus conversion is required then, again, the same speed conversion
is used but in a slightly modified form. In this case, multiple FIFOs of the width of the
smaller receiving bus are placed so that their combined input width is equal to the size of
the larger bus. At every write cycle from the larger bus, all the FIFOs are written to in
parallel with set segments of this value which causes their EMPTY outputs to all go low at
the same time. As soon as logic in the receiving side detects that the FIFOs are no longer
empty it then starts reading from each FIFO output individually in a cyclic fashion until
they are seen as empty again. At each read then the data is transferred to the component
on the receiving end and in this regard the data is being transferred from the larger bus
to the smaller bus in a round-robin manner.

12

3.1.2 Signal Transformations

For the most part the components in each clock domain speak to those in other domains
exclusively through intermediary FIFOs (discussed in the BUS Transformation section),
however, when conditional logic absolutely has to be translated on its own, individual
memory elements are employed. If a signal from a slower clock region needs to be sent to a
logic operating in a faster one then the signal is passed through a series of memory elements
and its value is read by the faster logic only as long as it has only propagated through the
first memory element only. If on the other hand a signal from a faster operating region
has to be sent to a slower one then it is run through two series of memory elements, one
on the fast side and one on the slow side. The sequence on the fast side is long enough to
where at least one will show high at the rising edge of the slower clock no matter where
the original signal fell within the slower period and the sequence in the slower side is used
as in the slower to faster conversion to ensure that only one of the faster memory element
outputs is detected by the slower logic per pulse.

3.2 MainBus Interface

The development board was provided with, among other example sources, two Verilog
modules which together can be used without modification to allow a design implemented
in any of the FPGAs to communicate over the MainBus. The transaction demonstrated by
these sources involves having a master endpoint, in the case of this project a PC connected
to the board via USB, first write an address to the bus while raising a read or write flag
and an FPGA endpoint then either writing data back to the bus or writing data provided
by the master endpoint to an internal register. For purposes of this design, this interfacing
logic is used in a significantly expanded form to accommodate a protocol which allows for
read/write access to status registers from various sections of the design logic, the parser
status BRAMs and the DDR2 RAM. Furthermore, while the specification for this bus
allows for more than one of the FPGAs to be active and responding to requests from the
master endpoint, this feature is unused in this project as only one FPGA chip is currently
required in the overall design.

The intent of this section is to provide an overview of the MainBus protocol developed
for this project. For its duration any references made to interactions with the MainBus
should be taken as meaning that the master endpoint involved is a PC communicating
with the board over its USB interface and that accordingly any data written to the bus by
the FPGA is intended for this destination.

13

3.2.1 MainBus Write to Parser Chain

Figure 3.2: MainBus Write Control Word

The current design treats all write requests from the MainBus in which the PS flag in the
address word is set low as requests to write packet frame data to the parser chain. The
fields in the green coloured area of Figure 3.2 correlate to the signals of the parser bus
protocol discussed in the Parser Chain section of the current chapter. Each 32 bit segment
of the packet frame is transmitted to the packet parser bus in parallel with a copy of all
these signals using the same clock domain conversion scheme used throughout the design.
A controller module at the point of entry into the parser chain translates the control flag
frame into the individual signals recognized on the parser chain bus. The controller then
transmits the packet and the control signals as if it was a parser itself as long as the bus
conversion FIFOs containing the packet segments and signal frames are not empty.

Name Operation
SR Sender is ready to transmit data
DR Receiver is ready to receive data
SP Start of the packet is being sent
EP End of the Packet is being sent
SZ Size in bytes of last transmission

Table 3.1: Packet Parser BUS Control Flags

3.2.2 MainBus to DDR2 Ram

Figure 3.3: MainBus DDR2 Read/Write Control Word

Figure 3.3 shows the format of the address word which is expected by the design during a
transaction between the MainBus and the DDR2 RAM memory. This event is triggered

14

by setting the PS (Path Select) flag within the address word high during either a read or
write operation through the bus. As also shown in the illustration, the remainder of the
address word is then checked for the physical address in the DDR2 RAM upon which the
transfer should be based.

If a write operation is initiated by the MainBus, such as when the partial bitstreams
for the parsers are being uploaded to the development board, then the data provided is
written to the DDR2 RAM using the process described in the DDR2 Controller portion
of the Memory Interface section in this chapter. Four such write operations have to be
made to sequential addresses in the DDR2 memory before any data is actually written to
the RAM module and then an additional four have to be made before the amount of data
written to the memory is the same as one burst write.

If a DDR2 RAM read operation is performed then the data pulled from the egress
FIFOs of the DDR2 controller is automatically stored in a series of four FIFOs for later
consumption by the smaller bus using the round robin bus transformation scheme described
in the BUS and Clock Conversion section also found in this chapter. The data now residing
within these FIFOs can then be read onto the actual MainBus by reading from specific
addresses which are reserved specifically for this purpose and which cannot be read from
directly. To read back all the data returned by one read request these addresses have to be
read in the correct order twice for a total of eight reads or 256 bits of data. These special
addresses as well as the returned portion of data they represent are listed in table 3.2.

Address (0x) Data Portion (bit offset)
EFFFFFFFF 127:96
EFFFFFFFE 95:64
EFFFFFFFD 63:32
EFFFFFFFC 31:0

Table 3.2: MainBus DDR2 Special Read Addresses

3.2.3 MainBus System Access

Figure 3.4: MainBus Read Control Word

15

When the system sees the PS flag low during a read then the address word format shown
in Figure 3.4 can be used to dump information regarding the current state of operation of
the design to the MainBus. Table 3.3 can be referred to for an overview of what type of
information would be returned based on the code provided in the Function field.

The PR (Parser Request) flag and BRAM Address fields are used in conjunction with
the NSPI operations to access the info dumps made by the parsers as described in the
Parser Chain section of this chapter. The NSPI REQRES command can be issued with
the PR flag set to high to trigger a read request from the BRAM associated with the
second parser stage or to low to trigger the same request from the BRAM storing info
from the first parser stage. In either case then the BRAM Address field is used with this
same command provide the direct offset within the BRAM selected from where to retrieve
the info data from. After the NSPI REQRES command is issued the info data is not yet
presented to the MainBus as the BRAM interface is 64 bits wide. To actually place the
data on the bus the NSPI READRES commands must be used to access both the upper
and lower words of the info data from temporary 64-bit register.

Name Code (0x) Description
FIFO STATUS 00 Get State of operation of the MainBus interfacing logic
FIFO LASTDATA 01 Get Last packet written to the parser chain
FIFO VERSION 02 Get Current version of the design
NSPI REQRES 03 Start a parser info dump read request
NSPI READRES HI 04 Get upper word of parser info dump
NSPI READRES LO 05 Get lower word of parser info dump
ICAP LAST 06 Get last word written to the ICAP

Table 3.3: Read Control Functions

The FIFO STATUS function is used to query the state of the protocol logic itself and
return its value to the MainBus in the form of a 32 bit hex value. Table 3.4 lists all of
FIFO STATUS state codes and their meanings.

16

State Code (0x) Description
DA7A2EC1 Last packet portion successfully passed to the parser chain
DA7AFA2F Last packet portion dropped owing to block in parser chain
DA7AB10C Last packet portion dropped for any other reason
9E7AD2E5 Last parser info dump request successfully made
ABADC0DE Unrecognized operation requested from logic

Table 3.4: MainBus Interfacing Logic Status Codes

3.3 Memory Interface

While the large sizes of the generated partial bitstreams already necessitated the use of
external memory, it was decided that the on-device BRAM memory would still be used for
capturing the info output of the parsers to allow for the overall simplification of the design
DDR2 memory was chosen as the external memory type as a module was already available
on hand of sufficient size.

This section describes the interfaces created to access both these memory resources.

3.3.1 DDR2 Controller

In its most basic mode of operation, the DDR2 controller core requires that the data being
written to it is provided in 256 bit chunks per write cycle as it itself writes 128 bits of
data to the actual physical RAM at both the rising and falling edges of the clock signal.
Masking, however, is allowed which means that one or more 8 bit wide subsections of the
256 bit wide write data can be set to be ignored per write. Any sequential logic directly
interacting with the controller core must operate at a clock frequency as generated by a
PLL (Phase Lock Loop) within the core itself, meaning that it resides within its own clock
domain.

The protocol to write or read to the controller core is fairly straightforward even though
quite a few inputs are required. A write is initiated by first setting both the data write
enable and address write enable inputs high and then keeping the data write enable high
for another clock cycle while bringing the address write enable low. During the first clock
cycle mentioned the first 128 bits of the input data should be provided along with the
associated masking bits and starting address while on the second clock cycle the second
128 bits should be given along with any needed masking bits but without any address. A

17

read request is signalled by first setting the address enable and control type (to signify this
is a read transaction) high and then on the same clock cycle providing an address.

The logic handling the MainBus to DDR2 memory data transaction consists of es-
sentially the bus up-conversion scheme covered in the BUS Transformation section, the
protocol for the DDR2 controller just discussed and an additional FIFO for passing ad-
dresses and control information. The address and control bits FIFO is both written to
and then read from at the same time as the 64 bit FIFO storing the data which essen-
tially allows the data, address and control bits to be en-queued while still enforcing their
association. As in any other logic handling a bus transformation in this design, the logic
between the core controller and the FIFOs starts reading from these components as soon as
their EMPTY outputs both show low, at which point it checks for the type of transaction
required by what it pulls off of the address and control FIFO.

If the command pulled off of the address and control FIFO is a write request then the
logic, as expected, up-converts the incoming data to 128 bits but then must process it
through two additional steps before it is ready to be sent to the core controller. As the
controller core is expecting 256 bits of data and only half of that is available at this point,
the same 128 bit data is provided twice to the controller in one write and another modulus
two operation is then used to mask either first 128 bits or the second. This allows the logic
to spread out a write request across four clock cycles instead of the regular two when it is
coupled with a modulus 8 operation to restrict the address where the data is being written
to.

If, on the other hand, the command pulled off the address and control FIFO is a read
request then addresses are pulled from the the same FIFO and used in the core controller
read protocol until the EMPTY flag is raised. The width of the data per address returned
is also 256 bits and it is stored layered in two 64 bit egress FIFOs as soon as the core
controller raises its data ready flag. Any component requesting data from the RAM then
is notified that the data is ready by when these output FIFOs no longer show that they
are empty.

3.3.2 On-Chip BRAM

Interfacing with the BRAM on the FPGA chip can be handled at varying levels of abstrac-
tion depending on the amount of control needed over the functionality and resource usage
of the resulting component on fabric. For the purpose of this design, the highest level
was used as the on-chip RAM is only used to store debugging information and does not
figure into the resource requirements of the parser chain. As such, the MMU logic which

18

is responsible for passing the output from the parsers to this memory only has to raise the
write-ready signal on the rising clock edge to pass the parser info output to these RAMS.

3.4 Dynamic Parser Configuration Arbitration

To explore the use of self-initiated partial reconfiguration as a configuration option in the
design a logic framework was created which both autonomously handles the reconfiguration
transaction and reroutes traffic based on the configuration status of each of the parsing
stages. This area of the design also contains constructs required for the partially reconfig-
urable design flow as well as those which allow the static portions to continue to function
as intended no matter the configuration status of the parsers.

3.4.1 ICAP Controller

Initiating a transaction with the ICAP (Internal Configuration Access Port) requires fol-
lowing a fairly basic protocol which is simplified even further if only write functionality or
partial reconfiguration is required as is the case with this design. Effectively, the process
involves tying down a control input to indicate that the functionality required from the
port will always be a write and then driving the clock enable input to active low whenever
data is to be written to the FPGA, driving it high if there is an interruption in the data
streaming in and then finally driving the clock enable high whenever the input data has
finished streaming in. The data itself may be either input at a width of 8,16 or 32 bits
depending on a parameter passed to ICAP module and finally care must be take to make
sure it is byte-swapped [9].

The whole transaction for configuring the FPGA through the ICAP should technically
be treated as a one sided affair, however, during configuration the output port normally
used for reads will also automatically output the configuration status of the FPGA. This
feature is used for debugging purposes in the project to monitor when the FPGA has
reported that the configuration process has started and if it has detected that the config-
uration process has ended successfully or otherwise.

19

Idlestart DataWait Write1

Write2

Write3Write4

cm′

cm

tout′ · dfin′ · fe

tout + dfin

tout′ · dfin′ · fe′

fe

fe′

Figure 3.5: ICAP Write FSM

The first major complication which arises in regards to the configuration process with
this design is ensuring that it is only triggered at the right time. The decision as to whether
to program a parser stage occurs during the processing of a packet in the stage directly
preceding it. This earlier stage will notify the controller of the types of packets passing
through it by providing it with their EtherType fields. The controller will then in turn
first check whether the next stage has already been configured to handle this type and
if not will then run the field through an internal CAM memory to see if the new parser
type is supported. If the CAM does not return a match then the packet is not supported
and the configuration of the next stage will not take place; if there is a match then the
configuration process will start and the address returned by the CAM will be translated
to an offset within the RAM from where to start pulling the configuration data from.

The second significant complication which presents itself within this process is making
sure that the incoming data is converted to a format acceptable by the ICAP port. As
is the case with any other read request it is presented with, the DDR2 controller returns
the configuration data in chunks of 256 bits at a clock rate dictated by its internal PLL.

20

The ICAP, however, requires that this data is handed off to it at its maximum supported
clock rate and in segments of 32 bits. To accommodate this discrepancy in both width
and speed, when passing the configuration data between these two components the Round-
Robin FIFO approach is used as discussed in the Bus Transformation section with a depth
of four.

3.4.2 Parser Black-Box Wrappers

One of the key requirements of successfully implementing a partially reconfigurable design is
ensuring that all modules which are to reside within the same reconfigurable region expose
a uniform and buffered IO to the rest of the logic in the design. This is accomplished by
first routing the static portion of the design with black-box modules instantiated in the
place of any reconfigurable logic and then separately routing the modules which are to
reside in these areas, making sure that every one has the exact same buffered input and
output ports. The black-box modules are simply modules which have been emptied of all
logic except for the input and output ports and in this sense can be seen as place holders
for any of the reconfigurable logic which may be placed inside of them.

For this design an additional wrapper level module was created to surround the re-
quired black-box modules and act as a multiplexer for the data passing through, an on/off
indicator to let the rest of the logic know whether the region is configured or not and
finally as a trigger to configure the next parser stage. Essentially if the inner black-box
region, a black-box placeholder for a parser, is not configured or in the process of being
configured then any packets arriving at the boundaries of the outer wrapper are rerouted
to bypass the parser completely and the rest of the static logic is told to ignore any of its
info status outputs. The trigger functionality within the outer wrapper can be seen as a
packet pre-parser which notifies the ICAP controller of the packet types that pass through
it so the controller can make the decision as to whether the following parser stage should
be configured.

The trigger functionality of the outer wrapper is essentially a packet parser stripped
of everything but its EtherType detection functionality and augmented with the ability
to both suggest a configuration for the next parser stage and to store the configuration
type for its parser. At the correct offsets within the packet the pre-parser will take a
snapshot of the packet’s EtherType within a register and then drive a wire shared with
the ICAP Controller high to indicate that this configuration type is ready to be considered
as a candidate for configuring the next stage. As covered in the ICAP Controller section,
the ICAP Controller will then check with the EtherType stored by the trigger of the next

21

stage to see whether the configuration process should be started. The configuration type
of a stage is stored in the form of a registered EtherType and is empty (all signals in the
bus are low) if the parser contained within the wrapper is un-configured.

3.5 Parser Chain

To allow for the possibility of eventually testing the design within the actual data plane
architecture of the network switch it was pulled from, the outer wrapper for both the
parsers was designed to present the same bus and protocol as was expected by the original
interfaced components. As such the outer wrapper includes a variable length info status
bus with a wire to indicate that the info is ready, two 64 bit buses for transmitting packets
to and from the parser, a send/receive ready input/output for the previous stage and
a send/receive ready output/input for the next stage. The protocol used between the
component which are connected with this setup is fairly basic and involves really only
checking whether both the sender is ready to send and the receiver is ready to receive
before sending the data at each clock cycle. Additionally, a start and end of packet signal
are also interchanged to simplify the calculations the receiving parser has to do to calculate
the offset of the data within the packet which it is currently receiving. The protocol does
support a supplementary extension in the form of an error in transmission signal but, as it
is unused in the switch architecture from which this project is derived, the associated pins
on wrapper are currently always left open.

22

Figure 3.6: Basic Parser Chain Layout

The intent of the multiple parser stage setup used both in the data plane of the source
switch as well as in this design is to provide a compartmentalized parsing engine where in
each stage handles just one level of packet encapsulation before stripping it off and passing
the remainder of the packet to the next stage. Whether a parser stage supports extracting
meaningful data from the level of encapsulation it receives is based on whether key fields
within the header such as the EtherType match the type it is configured for. These field
also determine whether the layer of encapsulation should be stripped off before passing
the packet to the next stage and in this sense the packets can be just forwarded along
unaltered if they are not supported.

In the original switch architecture, the level 2 parser is used in conjunction with several
others to handle the extraction of all the pertinent data link layer fields from the Ethernet
frame. It is mainly responsible for extracting the source and destination MAC addresses
for forwarding purposes. Once it extracts these values, it passes the remainder of the
Ethernet frame header along with the payload to the other data link layer parsers down
the chain which in turn determine if the header is embedded with any additional fields
related to VLAN and SNAP functionality. In the research presented, none of these extra
features were tested and as such only this initial level 2 parser was required to represent
the processing the packet would go through at its level.

23

3.5.1 Parser Chain Status

Idlestart Write

Read

irdy′ · rrdy′

irdy

irdy′ · rrdy
wfin

wfin′

Figure 3.7: MMU State Machine

Each parser effectively outputs its status through a series of info buses shortly after it
receives a packet and has had time to process it. To take advantage of this feature, a basic
MMU (Memory Management Unit) was created which sequentially dumps the output of
the info bus for each packet received to the next free location on one of two dedicated
BRAM (Block RAM) memories on the FPGA. After a series of unique packets have been
sent through the parser chain, the same MMU can be used to access each of the BRAMs
at varying offsets. In this sense, the point at which the switch was able to start processing
a new packet type in a packet stream is determined by comparing the data sent in to the
data registered at each offset by the parser being reconfigured as well as any other in the
chain.

While the width of the info bus on the outer parser wrapper must always be the same
as necessitated by it being a reconfigurable module, the actual widths of the info buses of
the parsers contained within the wrapper may vary and so the MMU was designed to be
flexible in the actual amount of data it writes to allow for more efficient use of the on chip
memory and to speed up the process when possible. Referring to the FSM in Figure 3.7,
when a parser indicates to the MMU that info is ready with the irdy signal it also passes
a width value during the transition between the Idle and Write states. During this same
transition the MMU divides the value by the bus width of the BRAM instances used in the
design, 64, and then compares the new value against an up counter in the Write state to
determine whether to continue writing or not as represented in the FSM by the wfin signal.

24

During the write state the info value is right shifted by 64 and its lowest double word is
stored at the memory address shown in the up counter. Finally, during the transition from
the the Write state back to the Idle state the last value of the up-counter is stored as the
new address offset from which to start writing the next packet dump. The MMU can run
two such processes concurrently for each of the parsers in the chain.

The read back of these values which is initiated by the NSPI REQRES MainBus ini-
tiated operation discussed in Section 3.2.3 can only occur if the MMU is currently not
in a Write state and has lower priority if the MMU gets both requests at the same time.
Only one clock cycle is required to return the value requested after which the MMU flags
the data is ready and the MainBus interfacing logic stores it for later access by additional
commands.

25

Chapter 4

Theory of Operation: Coarse Grained

The coarse grained test-case is built using the same framework as used in the fine grained
one and differs only in the implementation of the parsers and the interceding buses. This
chapter covers only the abstracted functionality of the operational units which have been
changed between the designs.

4.1 Parser Processor

While both the fine grained and coarse grained architectures are built on top of FPGA
technology and are therefore configured at the LUT level, in regards to the reconfiguration
process of the parser chain itself, the parser processors are considered the base unit of
configuration in the latter implementation. Throughout most of the parsing process the
actual operation being performed on the packet data can be generalized as being either
a conditional or unconditional extraction of data from varying offsets within the stream.
As such the coarse grained processor has been designed as a general purpose compare and
extract engine which can be programmed to perform this operation against multiple values
both stored and found.

Beyond the parsing state, a parsing element only has two other modes of operation,
idle and passing the extracted payload to the next stage, both of which entail standard
processes largely independent from the parsing one. This fact was exploited in the processor
to decrease the size of the programming memory required by hard coding these states and
extracting the one responsible for parsing as a module which is referred to as the core
of the parser from this point on. In this sense the processor logic consists of a dynamic

26

state machine, the parsing state of which can be extended to include additional sub-states
depending on the amount of parsing cores inserted.

4.1.1 Parser Core

Currently, two different sized parsing core elements have been designed for this research, a
smaller one which can be programmed to have the equivalent parsing capability of both a
level 2 and TRILL parser in the original architecture of the switch and a larger one which
can be configured to function as half of a level 3 parser as well as the two parsing levels
already mentioned. As soon as it receives notification to enter the parsing state, each parser
core can be seen as running through a process which always starts with a check for the
type of packet passing in, then continues through a variable amount of comparisons and
finally finishes after passing on info extracted at certain offsets. The actual determination
of details such as at what overall offset each of these steps should take place and if the
packet parsing should continue if a comparison fails a constraint is handled by a set of flags
stored in 128 bits of internal configuration memory. The only major differences between
the two core sizes, in terms of this flow, lie in the amount and flexibility of the comparisons
which can be performed (the initial data type check is also considered a comparison in this
sense) and the formatting of the flags within the memory.

The pseudo code in 4.1.1 outlines the general flow of a core’s parsing process and
how it is shaped by the flags stored in the parsing element’s configuration memory. The IF
statement starting on line 4.1.1.10 specifically shows an abstraction of one possible setup of
the comparisons step discussed earlier. When the counter initialized on line 4.1.1.3 reaches
the first compare count stored in the configuration memory, the configured comparison
type is triggered between two fields. If the comparison fails then the error flag is set, the
parsing procedure is stopped and the core notifies the rest of the parser logic to pass the
remainder of the un-extracted packet to the next parser in the chain. The results of the
comparison can be masked to show as always passing if the extraction of the info from the
packet is desired unconditionally.

27

Algorithm 4.1.1 Partial Parsing State Pseudo code

1: err ← false . error encountered
2: fr ← false . finished returning info
3: pctr ← 0 . parser counter
4: c1r ← 1 . flags that the parser should care about the outcome of this comparison
5: while ¬packet end ∧ ¬fr ∧ ¬err do
6: if ¬sender ready then
7: continue
8: end if
9: pctr ← pctr + 1
10: if compare 1 count ∧ compare 1 failed ∧ c1r then
11: err ← true
12: end if
13: if end of info count then

PassInfo(Info)
14: fr ← true
15: end if
16: end while

In the case of the smaller parser core the comparison type can only be an equality during
the initial type check and the first and second fields can only be of type extracted and stored
respectively. With the larger parser the comparison type can be set to an equality or either
of the strict inequalities (less than or greater than) and can involve multiple fields both
stored in the configuration memory and those extracted. Furthermore, whereas the smaller
parser can only perform one comparison at a time the larger parser can perform a range of
between one to three comparisons simultaneously via an embedded chain of programmable
(configuration memory space shared with the core) hardware comparators illustrated in 4.1.

Beyond the on state in which the parsing states are embedded the parser core has
two other states of operation, off and being programmed. Both of these states can be
triggered at any time by supervisor input pins and both are, by design, preemptive of
any parsing functionality. When the core is in the off state, it cannot be triggered into
starting the parsing process by the ready input flag from another core sending data to it
and as such will prevent the core from consuming any of the packet until it has been fully
configured. When the core is in the programming state it treats the data coming in as
configuration packets (see 4.3), meaning that it will store all data coming in at this time in
its configuration memory. After all the configuration data has been received, the core will
then go through a basic initialization sequence, entailing of mainly the expansion of certain

28

received variables, and then transition to the off or on state depending on the status of the
supervisor pins..

Figure 4.1: Parser Comparator Logic Unit

The on state of the core is also transitioned to by way of the input supervisor pins
and consists of both an active and idle parsing sub-state. The active sub-state consists of
the process described in pseudo code covered earlier and is, as mentioned earlier, triggered
by an external core. Stored state variables in the configuration memory determine what

29

mode of operation the parser logic external to the core should go to in both the case where
parsing process exits with packet data remaining and the case when it exits because the
packet ended early. Currently in the former type of exit the external logic is always set to
move to passing the data on to the next parser and in the latter it is set to go idle, but this
extensibility is included in the design to allow for future research into mapping efficiency
versus granularity.

4.1.2 Small Parser Core Operation

Figure 4.2: Small Parser Core Memory Map

The primary function of the small parser core is to simply pull out one or two consecutive
groups of fields from a packet, apply basic formatting to the extracted data and then send
it up for consideration by higher functionality in the network switch. The core can either
be configured to pull out this data unconditionally or based on whether it detects that a
field extracted at a certain offset matches a stored value. This check is mainly intended to
serve as the EtherType check during the level two or TRILL (can be considered level 2.5)
parsing of data sent over Ethernet. If the core is set to extract info unconditionally then it
will always return the checked value on a separate bus from its info bus at the same time
it returns the info, but if the core is set to extract conditionally then it will only return
the checked value and the info on their respective buses if the checked value matches the
stored value. The level two parser uses the unconditional setup while the TRILL parser
uses the conditional setup of this parser class.

Figure 4.2 illustrates how the small parser core interprets its configuration memory.
The fields prepended with Eth are responsible for determining where to look for the the
data type check and the EtherType field itself is the value against which this check should
be performed. As the data actually returned may be greater than a 64 bits, start and end

30

locations have to be provided to take in account for these larger return types for both the
first and second info groups designated as R1 and R2. The significance of the rest of the
parameters responsible for driving this core are explained in table 4.1.

Name Use
EtherType Initial data field value to run check against
Width Amount of bits to extract for a given field in a specified data chunk
Shift Offset of data to be extracted from the end of a specified data chunk
Count The data chunk to check for a given field
TotalCount Total amount of chunks to parse before passing the packet
IG Whether to conditionally or unconditionally extract info
PID Parser ID to match against during programming
ENState State enumeration to visit if packet is not finished after parsing
EPState State enumeration to visit if packet is finished before parsing is complete

Table 4.1: Small Parser Core Parameters

4.1.3 Large Parser Core Operation

In the larger core the ability to pull out more than one group of fields has been sacrificed,
along with the ability to dynamically set the end states and finally the resolution of some
of the other fields, for the ability to perform additional checks against the incoming packet.
This core can programmed to pull out two additional fields beyond the initial value check
field and to store two more fields in memory all for the purpose of performing one additional
more complex check. The second check is driven by the comparator logic unit shown in
figure 4.1 which can be programmed to perform one to three checks against the first of
these values pulled with the other three. This additional check is included for the ability
to ensure that the Header Length field in IP packets is between two values and that it is
less than the Packet Length field. As in the original parser architecture if any of these
checks fails then the parsing core releases the packet to the remainder of the logic for
forwarding to the next parser. The first check is used in context of IP packets to check
for the correct version so for example to ensure that an IPv4 level 3 parser can handle a
packet, the EtherType field is set to 0x4. After these two check the parser can only perform
an extraction of info and as such cannot act as a full level three parser as additional fields
related to packets fragmentation still need to be handled.

31

Figure 4.3: Large Parser Core Memory Map

Figure 4.3 illustrates how the large parser core interprets its configuration memory.
The fields prefixed with Eth and R are responsible for finding the first check and the
return values respectively and serve the same function as in the small parser core. The
fields starting with V1 are required to find the first value in the packet against which all
the remaining values will be checked, both found (V2) and stored (SetValue1,SetValue2).
The purpose of the rest of the parameters responsible for driving this core are outlined in
table 4.2.

Name Use
EtherType Initial data field value to run check against
Width Amount of bits to extract for a given field in a specified data chunk
Shift Offset of data to be extracted from the end of a specified data chunk
Count The data chunk to check for a given field
IG First check mask
PID Parser ID to match against during programming
CLUOp Configuration Memory of CLU

Table 4.2: Large Parser Core Parameters

Each two bits within the CLUOp are wired to the inputs of one of the MUXes in the
Comparator Logic Unit (CLU) of the large parser. As can be seen in table 4.3 which
displays the truth table used in all of the comparison levels within the CLU, these bits can
be used to either select one of the outputs of a typical hardware comparator or logic high.
The purpose of the logic high selection is to allow that particular level of the CLU to be
masked off and effectively then ignored.

32

S1 S2 Result
0 0 1
0 1 lt
1 0 eq
1 1 gt

Table 4.3: Single CLU Operation Truth Table

4.2 Parser Interconnect Network

In the same vein as the actual underlying hardware of the FPGA, the ports of the base
logic elements in the coarse grained parser implementation can be routed to each other
in a flexible manner using a programmable interconnect network. Owing to the relatively
large granularity of the design, the interconnect network needs only a small amount of
configuration memory, 12 bits, to manage the routing between the elements. Each four
bits of the configuration memory is responsible for setting the input mapping of either of
the two parsers or of the whole network itself.

4.3 Coarse Parser Programmer

The coarse parser programmer is responsible for managing the the transaction of data from
external memory to the configuration memory of the base logic units of the coarse archi-
tecture and as such can be seen as an analogue of the ICAP port in the fine grained design.
As with the ICAP port it listens for a data ready signal from the external configuration
memory source and then interprets the following stream of data from this source as a series
of configuration packets. Unlike the ICAP port, though, it can carry out the programming
operation at the system clock rate and therefore interfaces directly with the DDR2 RAM
controller via one additional controller with no additional FIFOs. Moreover it can operate
on data chunks of up to 64 bits per clock cycle, double the maximum supported by the
native hardware configuration port.

The configuration of a parser in the coarse grained architecture is triggered in exactly
the same way as in the fine grained one, via matches of EtherTypes extracted from the
packet stream against stored addresses in a CAM memory (3.4.1). The configuration
packets sent to the parser programmer must have a specific formatting and be sent in
the correct order for the configuration of a parser to take place, otherwise the process

33

is cancelled and the remainder of the configuration data is ignored. Two basic types of
configuration flows are currently supported by the programmer, one that involves the set
up of one or more parsers and the interconnection network and another which involves
just setting up one or more parsers. In either case, the packets sent are expected to be
ones designated as utility packets which always start off with the hex sequence 0xFFF and
contain instructions for the programmer or ones carrying the operational image of a parser
but only if prepended by a properly formatted utility packet.

Figure 4.4: Utility Config Packet: A) Interconnect Network Configuration, B) Parser
bitstream starting

34

Chapter 5

Framework

5.1 Development Board

The development board used is a DiniGroup DN9000K10PCIE4GL which, at its core,
houses six interconnected Virtex-5 xc5vlx330 FPGAs. While the board provides numerous
methods of interfacing with the FPGAs both for programming and for general use IO [10]
, the resources utilized in this project included only one FPGA designated as FPGA A,
the USB programming/IO interface, the exclusive 32-bit interconnecting bus designated
as the MainBus, a SODIMM DDR2 module exclusive to FPGA A, the on-board Compact
Flash reader and the JTAG port.

5.1.1 USB Driver GUI

The development board is provided with cross-platform open source drivers for its general
purpose USB interface that, while mainly intended as a convenient channel for program-
ming any of the on-board FPGAs, were also coded to facilitate a number of other communi-
cation options between the board and a development PC. The USB programming interface
was only used at the onset of the project to test the functionality of the static portion
of the logic as it does not support sending partial bitstreams, however the driver feature
which allowed for transmission of data to and from the FPGAs was used extensively to
not only simulate the sending of packets through the parser chain but to also read status
information from design and to send partial bitstreams to the DDR2 RAM.

35

5.2 General Project Structure and Coding Scheme

The design is constructed in a hierarchical scheme with the top level consisting of a module
which houses the modules for all the major logic areas of the design, their interconnecting
buses and any constant values. Each of the major sub-modules themselves in turn contain
a mixture of procedural blocks, structural interconnects and modules as needed to define
their functionality. The mapping of the outermost ports of the top-level module to their
actual physical counterparts on the FPGA as well as any specifications in regards to actual
physical characteristics such as signal strength and SLEW rate are defined in a constraints
file.

During pre-bitstream-generation testing or simulation the top level module is instan-
tiated in a special Test Bench module which is also populated with simulation specific
constructs used as analogues for hardware components the design will interact with once
loaded on the board.

The project is completely coded using the Verilog-2001 HDL dialect save for a script
generated CAM (Content Addressable Memory) as provided by Xilinx which is written in
VHDL.

5.3 Bitstream Generation Flow

After its header has been stripped and the rest of its data byte-swapped, the bitstream
file is a direct representation of the bits which will be passed to the configuration port of
an FPGA. In general to take a Verilog or VHDL source file and build it into a bitstream
the software in the generation flow first creates a netlist in which the HDL constructs
have been converted to references to their hardware primitive constituents, from which it
creates another one in which the hardware primitive references have been mapped to the
type of hardware resources which they will consist of (Flip-Flops, LUTS, etc) and finally
one in which the hardware resources are placed and routed so they now represent specific
components on the device as interconnected to others [11].

Before a Partial Reconfiguration (PR) flow can be initiated, first multiple standard
design flows must be used to generate the netlists for each of the reconfigurable regions
separately from the one for the rest of the design in which their logic has been replaced
with black-box place holders. The software related to the PR flow then can be used to
create a project in which all the different configurations for each reconfigurable region can
be bound to the black-box place holders which match their IO ports. The actual slice

36

usage of each of the partitions has to then manually be determined by either writing out
the physical constraints in the UCF constraints file or by using a software GUI to mask
out the slices on a rendition of the FPGA chip. Once the partitions have been successfully
instantiated using the steps discussed, they can then be associated with any number of
pre-generated netlists which are expected to be run these areas. Finally the software can
be used to to build multiple profiles based on the permutations of all the various modes
of operation for the partitions, run a timing analysis on each of these incarnations and
output the associated bitstreams.

The software binaries associated with the bitstream generation flow can be run individ-
ually in turn from a command line interface or can be triggered to automatically run from
start to finish via a GUI interface. For the sake of convenience the GUI interface was used
in building all portions of the design used in this research except for the initial generation
of the netlists describing the reconfigurable region which require a stricter level of control
better provided by the command line interface.

5.4 Optimization

The following strategies were used in an attempt to optimize the designs in terms of speed
and size to a level beyond what would be achievable with those used by the synthesis
software by default:

• Primitives instead of higher constructs such as comparators, etc.

• Case statement instead of nested IFs

• Advance synthesis optimization directives, e.g. register balancing

• Timing constraints and analysis

• Location constraints and floor-planning

The use of primitives and case statements are collectively referred to as logic optimiza-
tions in the remainder of this thesis and were profiled by writing them into separate copies
of the relevant source files and then switching them in as needed to test their effectiveness.
The advanced synthesis optimizations were applied by enabling a slightly modified version
of a built in speed profile for the synthesis software which tuned the options passed to the
algorithms used in each stage of building the bitstream to seek a faster final design (the
build options modified are listed in table B.1 in the Appendix). The timing constraints
were applied to both test then the effectiveness of applying one or both of the optimization

37

strategies just discussed and to constrain certain delay sensitive paths in the actual fabric.
Finally, the location constraints were used primarily to optimize the partially reconfig-
urable design in that they were used to direct the synthesis software to place the partitions
in a fabric location favourable to minimizing the delay between each other and the rest of
the logic.

The process that was used to apply the logic optimizations is demonstrated in algo-
rithm 5.4.1 which is a pseudo code translation of one of the optimizations actually tested
on the design. In the optimized version of the code, the prepention of the ”LUT” marker
to an input signal name indicates that the logic the signal was involved in before entering
the condition has been replaced with one or more LUT primitive instantiations whose final
output now serves as the new input. The process by which the logic is mapped into a LUT
is the same, in concept, as the one used by the synthesis software to translate an HDL
statement into native resources on the FPGA fabric. In fact, unless the synthesis software
optimizes the primitive to reside in a different number of resources then the LUT memory
entered along with the primitive into the HDL will be directly written to a native LUT of
the same size in the final netlist. The manual conversion of a Boolean statement into LUT
memory in this fashion is covered in more detail in section 2.1.3 of the introduction.

38

Algorithm 5.4.1 Logic Optimization Example

1: . Unoptimized
2: if prdy then
3: if ¬cexit then
4: if ∧cetype ∧ cop = OPSWITCH then
5: ns← SCSWITCH
6: else
7: ns← SCPROC
8: end if
9: else
10: ns← SCIDLE
11: end if
12: else
13: ns← SCSTART2
14: end if
15: . Optimized
16: sigbus[3 : 0]← prdy,¬cexit, cetype.LUT, cop.LUT
17: case sigbus of
18: 0b1111 :
19: ns← SCSWITCH
20: 0b1100 ∨ 0b1110 :
21: ns← SCPROC
22: 0b1000 ∨ 0b1001 ∨ 0b1010 ∨ 0b1011 :
23: ns← SCIDLE
24: default :
25: ns← SCSTART2
26:

27: end case

The motivations and implementations of the remainder of the optimizations are dis-
cussed further in the final analysis chapter as they are used to interpret the results obtained.

5.5 Testing

Testing of the design took place in two stages, the first in software through a simulator
included in the bitstream generation flow and the second through hardware via a JTAG

39

debugging interface, the USB communication framework discussed in section 5.1.1 and the
basic LED output facilities of the board.

5.5.1 Simulation Setup

To get the best possible idea of how a design will actually interact with the peripheral
hardware connected to the IOs of the FPGA before it is loaded on the board, vendors pro-
vide simulation models which make extensive use of signal delay constructs in an attempt
to recreate the actual propagation delays expected on the physical device. These can be
combined in a module with simulation exclusive time triggered changes in signal values
and memory values pre-loaded from external files to create what is commonly referred to
as a testbench for the design.

For this particular design a testbench was created with simulation models for both
the specific make of DDR2 memory used on the development board as well as for the
MainBus interface. At the onset of each simulation run the CAM memory was pre-loaded
with the EtherTypes required to trigger the configuration of various parser types. Once
the simulation was under way, the contents of another memory file was shifted in through
the MainBus interface to recreate the action of sending packets through the parser chain
so that the triggering of the reconfiguration process could be observed. The waveforms
produced from these simulation runs were used to debug and ensure that the design was
logically sound as well as to acquire the initial programming speed estimates discussed in
the analysis chapter.

5.5.2 Hardware Probing

The JTAG debugging interface was used exclusively to tap into the data transaction be-
tween the ICAP port and the DDR2 memory; as such, the final partially configurable
design contains JTAG probes only on the write enable and data input ports of the ICAP
primitive as well as on its status output bus. The probe on the write enable port along
with the one on the data port are used to show whether the bitstream data arriving to the
ICAP primitive is properly synced to the ICAP configuration controller logic or not. The
probe on the data port itself is also used to determine whether the data coming in is in the
correct format (proper endiness, correct offset, etc.) and that it has not been corrupted
in either the read or write process to or from the DDR2 memory. Lastly, the use of the
probe on the status output port during programming is fairly self explanatory and involves
simply checking that the fabric configuration port has detected the bitstream start, not

40

exited early because of a perceived error in the bitstream and has properly detected that
the bitstream is finished.

The USB communication framework and the shifting in of the binary packet file covered
in the simulation setup section both represents the same debugging operation as seen in
hardware and in software respectively. Essentially the testing process involved in this
interaction with the parser architectures consists of, initially, sending in two packets via
write requests to the MainBus, the first to trigger the reconfiguration process and the
second to allow the newly configured parser a chance to parse a packet. Once the two
packets have been sent, a series of read requests are sent to the MainBus which trigger
a read-back of the contents of what each parser level extracted from the second packet
from the on-chip BRAM. If the expected data is not returned then several other types of
read requests are sent to determine the current operational status of both the MainBus
to parser interface and the DDR2 memory controller. In the hardware case all these steps
are initiated by inserting the data into the correct fields of the USB Driver GUI and then
having it send the information in context of either a read or write via a USB connection
to the actual physical MainBus controller on the board.

The LED lights of the board are used in the designs as a last line of defence to debug
intrinsic failures which would prevent even the other two mentioned hardware testing
methods from displaying useful results. In this sense the lights are tied mainly to the status
outputs of the inter-clock domain FIFOs and to key status bits of the major controllers.
The FIFO LEDs allow for mainly the checking for stuck or residual data as it is passes
between clock domains in that they are tied to the FULL and EMPTY lines of the FIFO
primitives. The controller LEDS are primarily used to check whether a particular portion
of logic is stuck in a particular state. One of the controller LEDs for the DDR2 Memory
controller is, for example, useful for showing whether the PLL in this particular controller
was able to sync up with the clock of the on-board DDR2 RAM, without which the whole
design is rendered useless as the DDR2 controller is unable to communicate with the
external memory.

41

Chapter 6

Specification Analysis Results

The metric of suitability of any proposed hardware design in a particular application is
usually constrained by the design’s ability to meet base specifications related to, among
others, worst-case latency and size on chip. If, however, the design is expected to be able
to have its functionality dynamically changed, then additional considerations have to be
taken into account such as the amount of memory needed to store its configurations and
the amount of time required to switch between these modes of operation. The intent of
this chapter is to compare the performance of the fine grained parser chain versus that
of the coarse grained parser in these areas, using a design which does not support partial
reconfiguration as a baseline.

The efficacy of applying the optimizations discussed in section 5.4 is also examined in
this chapter in terms of its impact on meeting the design goals mentioned. To this end, a
duplicate profile was created of the parsers with the optimizations included and was run
through the same tests.

6.1 Speed of Configuration

The amount of time required to transition a reconfigurable design between its configurations
is mainly determined by the following factors:

• Size of the configuration file

• Throughput of the external memory storing the configuration file

42

• Granularity of minimum programming area

• Throughput of the internal configuration memory controller

The two design types researched in this project were first run through simulations to
determine the ideal speeds with which partial configuration could take place. In both cases,
the simulation was run through a testbench which is responsible for programming a vendor
provided simulated core of the DDR2 memory with a segment of a bitstream and sending
packets through the parser chain to trigger reconfiguration. The delta time measurement
utility included in the waveform output aspect of the simulation software was used to
measure one transaction, or an initialization and transfer of 256 bits of the bitstream from
the DDR2 memory to either the input of the ICAP port or the coarse programmer. The
programming speed then was calculated by dividing the bitstream sizes by 256 and then
multiplying the clock cycles used for the transfer.

The initialization delay has to be included in the calculation of the amount of time
required for each transfer cycle as the RAM to configuration memory transfer protocol
built into both designs involves syncing both the write to the configuration memory and
the request for the next chunk of bitstream from the RAM to the data ready signal from
the RAM controller. While this protocol precludes the use of the burst read capability of
the DDR2 memory used, its use is required so that the controller in either design scenario
can reliably end the configuration process when it detects that the bitstream has ended.
As discussed in the theory of operation chapters, the controllers must check for values
within the data pulled from the DDR2 memory at any given read before it can make the
determination that another one should be made.

R =
BW

D ∗ 8
(6.1.1)

Where,

BW : Total Bits written per transfer between RAM and configuration controller
D : The delay in seconds of the transfer

43

6.1.1 Coarse Grained

Clock (MHz) Bus Width (bits)
Coarse Programmer 210 64
Config Controller 210 127
DDR2 Controller 250 127
Config Transfer Delay 19.568ns
DDR2 RAM Read Delay 85.274ns
Programmer Write Delay 23.705ns
Total Write Delay 128.547ns
Effective Config Throughput 248.93619 MB/s

Table 6.2: Coarse Grained Partial Reconfiguration Environment (Simulated)

Figure 6.1 shows the configuration delay in clock cycles for a single coarse parser core to be
programmed both by itself and along with the interconnect network when the simulated
environment is set up with the parameters listed in table 6.2. The delay for programming
just the core is the same as total time required for one read transaction from the DDR2
RAM plus the that required to transfer the bitstream data from the configuration controller
to a core. This is the expected result as the memory controller accesses data from the RAM
chip in 256 bit quad-words when bursting is not used which is enough to encompass the
size of both the configuration memory of the parser core and the initialization header of the
bitstream. If the interconnect network is to be programmed as well, then one additional
read request is required and the time required jumps to a value a little over double the
initial value. The extra cycles present in this next read are representative simply of the
configuration controller having to complete the last read before moving on to the new one.

parsers internal io
1 1
2 2 ∗ (1) 2
3 2 ∗ (2) 2
4 2 ∗ (4) 3
5 5 ∗ (3) 3
6 6 ∗ (3) 3
7 7 ∗ (3) 3
8 8 ∗ (3) 4

Table 6.3: Coarse Switch Bit Input Requirements

44

Table 6.3 shows how the required configuration memory size of the current switching
network in the coarse design is impacted by adding additional parsers to the chain. The
second column represents the total bits required by all the internal switches leading to
each of the parsers while the last column reflects the bits required for the final output
switch from the parser chain. The actual total required bit size per parser count can be
calculated then by adding the internal switch column to the output switch column or by
using Equation 6.1.2. Accordingly, it can be observed that the portion of the coarse parser
bitstream dedicated to programming the switching logic of the chain would grow to a size
of 28 bits if eight parsers were to be added. Even with the addition of this many cores,
the configuration controller in the coarse architecture would only still need to make one
read request to pull in the data required to program this area of logic as this still leaves
its configuration memory load under 128 bits.

Bio = dlog2 (P + 1)e (6.1.2)

Bint = dlog2 (P)e
Bts = Bio + P ∗Bint

Where,

Bio : config bits required for the output switch
Bint : config bits required for a parser input switch
Bts : total config bits required for all switches
P : parser count

In regards to the reads required for pulling in the actual core configurations, these
would grow by one for every two cores added in addition to the first core implemented
because the same request needed to read in just one additional core configuration would
also pull in the configuration memory for the switching network. The previous example
can be extended to illustrate the progression in size of this portion of the bitstream in that
the seven additional parsers added would necessitate adding three reads more to program
the total collective core configuration memory.

The total amount of reads required per additional parser programmed is found then by
aggregating all of the loads on the bitstream discussed so far and can be modelled with
equation 6.1.3. The amount of clock cycles needed to read in a coarse parser configuration
bitstream based on the number of cores to be programmed could then be modelled by
multiplying the result of this equation by the cycles needed for one read.

45

Ri =

⌈
Bsu + Bp

Br

⌉
(6.1.3)

Rp =

⌈
P

2

⌉
Rts =

⌈
2 ∗ (Bts + Bh)

Br

⌉

Rt = Ri +


Rts − 1 if one core with switches

Rp if multiple cores without switches

Rp + Rts − 1 if multiple cores with switches

Where,

Ri,p,ts : Memory read counts related to the initialization, parser configuration and
switch configuration packet sizes respectively

Rt : Total amount of reads required to configure the coarse architecture
Br : config bits pulled in by one read (256 with DDR2 memory)
Bp : config bits needed to configure one parser core (128 with current architecture)
Bsu,h : config bit sizes of the initialization packet and the header portion of the

utility packet respectively (Bsu is a utility packet itself)

Equation 6.1.3 however only works under the assumption that the total amount of
parsers being configured is the total amount of parsers in the whole chain so it can not
be used to predict the aggregate cycles required for multiple configurations of individual
parsers in a much larger chain. If modelling the read cycles necessitated by the latter
scenario, then one of two slightly different approaches must be taken based on what sub-
division of the total coarse configuration memory space a particular bitstream targets and
the span of time over which the programming is taking place. In the event that the new
parser is being inserted into the parser chain as a substitute for another then the previous
equation can be used but if it is being inserted to a parser chain as an additional parser
then it has to be inserted along with details regarding how it changes the switch mem-
ory space in the context of all the other parsers. Equation 6.1.4 has to be used then to
model this additional complication which can be seen, in fact, as the coarse configuration
equivalent of the minimum configuration frame size in fine-grained partial-reconfiguration.

46

Subset Pss of parsers being configured out of total parsers P together:

Rt = Ri +
Pss∑
i=1

(
Rp(i)

)
+ Rts(P) (6.1.4)

Subset Pss of parsers being configured out of total parsers P separately:

Rt =
Pss∑
i=1

(
Ri + Rp(1) + Rts(P)

)
(6.1.5)

 25

 30

 35

 40

 45

 50

 55

 60

C
lo

ck
 C

y
cl

e
s

Core
Core with Con

27

56

Figure 6.1: Simulated Coarse Grained Programming Speeds

47

6.1.2 Fine Grained

Clock (MHz) Bus Width (bits)
ICAP Port 157 32
Config Controller 315 127
DDR2 Controller 250 127
Config Transfer Delay 64.878ns
DDR2 RAM Read Delay 92.858ns
ICAP Write Delay 50.784ns
Total Write Delay 126.960ns
Effective Config Throughput 252.04789 MB/s

Table 6.6: Fine Grained Partial Reconfiguration Environment (Simulated)

Figure 6.2 shows the configuration delay in clock cycles expected when using partial recon-
figuration to program the smallest frame sized allowed, the parser partition and the whole
device in the simulated environment in the simulation environment shown in table 6.6.
Unlike with examination of the configuration speeds of the coarse architecture which were
observed directly through the simulation environment, the results here are presented as
estimations found with equation 6.1.6. The bitstream sizes for both the parser partition
and the device wide logic were found simply by having the development environment OS
report the actual bitstream file sizes as generated by the synthesis software for the designs
used in this research. As the feasibility of breaking up the design into reconfiguration frame
sized (40 SLICEs or SLICEMs) partitions was never investigated directly, the size of the
reconfiguration frame was found instead by using the physical placement functionality of
the synthesis software to create a frame sized partition in an otherwise empty design.

Tt =
Bt ∗ Tr

Br

(6.1.6)

Where,

Bt : total size of the bitstream
Tr : delay in clock cycles for the transfer of data from external memory to the ICAP

primitive
Br : config bits pulled in by one read

48

Even just from the sizes of the bitstreams of the fine grained architecture themselves,
it already becomes apparent that the delay imposed by having to use this form of recon-
figuration would be in the order of magnitudes larger than that of the method used in the
coarse architecture.

 1000

 10000

 100000

 1e+06

 1e+07

C
lo

ck
 C

y
cl

e
s

Frame
Partial

Full

3.69E3

55e3

6e6

Figure 6.2: Simulated Fine Grained Programming Speeds

6.2 Size of Implementation

As part of the base optimization process, the synthesis software will often absorb or outright
delete wires and other elements if it determines there is a more efficient way of routing
the logic while retaining the same end functionality. This behaviour poses a problem in
terms of calculating the area used of individual logic modules as it essentially may blur the
line of where one module stops and the other starts. A synthesis directive may be used
to preserve the borders of a module, however, this same directive has to be used to create
the partitions in a partially reconfigurable design and as such, if used in all cases for size
estimation, would at worst always provide results consistent with a reconfigurable design
or at best under-report the size. This limitation was partially overcome to garner estimates
of the changes in size by measuring how much resources were used by the logic as a whole
with each iteration. These results should provide an accurate enough preliminary idea of

49

the parser chain size trend between designs because the rest of the logic always remains
unchanged in the hardware description.

6.2.1 Static

Figure 6.3 demonstrates the varying effects each optimization method used in this research
had on the overall LUT and FD/LD usage of the static design. As the graph shows,
applying only the logic based optimizations to the Trill parser results in the lowest overall
usage of LUTS among all the other optimization strategies and the base line. Applying this
same optimization does not change, however, the memory element count from the base line,
which is to be expected owing to the fact that it only targets the combinatorial elements of
a design. Running the design through the low delay profile of the synthesis software also
decreases its overall LUT usage but not to the same extent as the logic only optimization.
The synthesis only strategy does however increase the memory element count moderately.
The moderate increase in this sort of resource with this strategy could possibly be as a
result of the employment of register duplication along a number of the data paths in an
attempt to decrease fan-out. When both strategies are used on the design then the resource
usage in both cases mirrors that of the synthesis only optimization but with a very slight
shift down the y-axis.

The large decrease in area achieved in the static design by applying the logic only
optimization is possibly explained by the nature of how IF-ELSE-IF and CASE statements
in Verilog are inferred differently by synthesis software even if coded to be semantically the
same. According to older literature released by the vendor of the FPGA chip used in this
research [12], when IF-ELSE-IF statements are used the logic which is ultimately placed in
hardware is a multi-level priority-encoder whereas when an equivalent CASE statement is
used then the logic may be able to be placed in as little as a single, wide multiplexer. While
this resource is a bit dated, its recommendation to then use CASE statements in place of
IF-ELSE to improve the timing of the design for the afore mentioned reasons is still brought
up in newer timing closure guidelines by the same vendor albeit with no explanation as to
why [13]. Even though these guides focus on the timing benefits of decreasing the levels of
logic with one type of statement versus the other, the obvious implications regarding the
area savings of using one over the other is what should be seen as relevant to the results
in this section.

50

 2800

 2850

 2900

 2950

 3000

Bal Logic Synth Both
 3600

 3650

 3700

 3750

 3800
LU

T
S

M
e
m

o
ry

 E
le

m
e
n
ts

Optimization Type

LUT
FD and LD

Figure 6.3: Static Trill Parser Resource Usage

6.2.2 Coarse Grained

 5200

 5250

 5300

 5350

 5400

Bal Logic Synth Both
 4500

 4520

 4540

 4560

 4580

 4600

LU
T
S

M
e
m

o
ry

 E
le

m
e
n
ts

Optimization Type

LUT
FD and LD

Figure 6.4: Advanced Coarse Parser Resource Usage

51

Figure 6.4 and 6.5 present the varying effects each optimization method used in this research
had on the overall LUT and FD/LD usage in the advanced and basic forms of coarse parser
processor based designs. In regards to the effect of applying logic only based optimizations
the resource count of both coarse based designs respond in the same way as in the static
design but in a much less pronounced manner. In this case it appears that the designs
respond much better to the application of the low delay profile in regards to the actual
LUT count, lowering this resource usage to the lowest out of all the other strategies. The
use of the synthesis only strategy on the coarse designs does nonetheless still increase their
memory element count to a moderately higher level than with the base line. Interestingly
in also deviating from the overall optimization trend, when both the optimization schemes
are applied to the coarse designs then their LUT count rise sharply from their synthesis
only to a point approximately mid-way between the base line and the logic optimized
counts.

The relatively small benefit gained from performing logic optimizations on the coarse
grained architecture may be explained by the fact that this design relies heavily on shift
operations to allow the programability of the offsets at which it checks for values within
the packet (refer to section 4.1.1 for details on how this is programmed). The analysis of
these shift operations by the hardware ultimately dictates then what portion of the packet
gets passed along to the next processor which in turn is handled by an additional level
of shifts. When synthesized with the balanced or default profile of the synthesis software
used, these multiple levels of shift operations on the packet data are translated into an
expanding series of LUT columns which can each modify the offset of a portion of a packet
by feeding its value to the next column of LUTs at varying offsets based on control values.
As explained in the framework chapter, the optimizations only target the switching of bus
data and as such do not effect the expression of these LUT based logical shifters.

52

 4700

 4750

 4800

 4850

 4900

Bal Logic Synth Both
 4400

 4450

 4500

 4550

 4600
LU

T
S

M
e
m

o
ry

 E
le

m
e
n
ts

Optimization Type

LUT
FD and LD

Figure 6.5: Base Coarse Parser Resource Usage

6.2.3 Fine Grained

Figure 6.6 demonstrates the varying effects each optimization method used in this research
had on the overall LUT and FD/LD usage of the fine grained design. In this case the
results seem to show that partially reconfigurable designs seem to respond poorly in terms
of area to any attempts at logic optimization. This issue also appears to be compounded
further when both optimization techniques are used on these types of designs as the LUT
count rises to its highest level among all the other results. The only optimization technique
which appears to have a positive effect on diminishing the area usage of the fine grained
design is the one involving only the application of the low delay profile in the synthesis
software.

In first analyzing the area usage results from the application of various optimization
schemes to the synthesis of the fine grained design, the expectation was that the area
usage would follow the same pattern as in the static design results but modestly shifted
on the y axis to slightly larger values. Upon closer examination of the log file from the
synthesis run, it was determined that at least in part this extra resource usage in the logic
optimized design is as a result of the software keeping the manually placed primitives even
when their outputs lead to open ports. In the base design without the logic optimizations,
these primitives do not exist and the synthesis software is free to remove these ports and

53

their associated logic. While the same problem exists in the static design, it appears that
without the partition constraint placed on these areas of logic as found in the fine grained
design, the synthesis software is able to compensate for this deficiency.

A more accurate comparison of the area usage between the static and reconfigurable
designs could be derived in future work by either forcing the synthesis software to keep
these signals in all these ports on both runs or by removing the manually placed primitives
in the logic optimized designs associated with the ports automatically removed in the base
line ones.

 3000

 3050

 3100

 3150

 3200

Bal Logic Synth Both
 3700

 3750

 3800

 3850

 3900

LU
T
S

M
e
m

o
ry

 E
le

m
e
n
ts

Optimization Type

LUT
FD and LD

Figure 6.6: Fine Grained Trill Parser Resource Usage

6.3 Worst-Case Data Path Latency

The worst-case latency through the parsers or conversely the fastest frequency that the
parser logic could run on its own was measured by placing a timing path constraint on the
path taken by the data bus as it travels from the input of the first parser to the output of
the second parser. This constraint is normally used to modify the mapping and placing flow
of the synthesis software to place emphasis on attempting to make the delay between the
sequential end points (such as D-Flops) of a path smaller than a specified value. Regardless
of whether this constraint was able to be met during synthesis, the positive and/or negative

54

skew from the delay required is reported at the end of the process as it relates to the setup
time requirements of the end point sequential element. This feature was exploited to simply
report the delay of the parser data path with as little impact on the optimization process
as possible by using it to constrain the signal with the same value as required to meet the
period constraint of the overall system clock.

6.3.1 Static

Figure 6.7 demonstrates the varying effects each optimization method used in this research
had on the expected delay of the data path through the TRILL parser when embedded
in the static embodiment of the design researched. As can be seen, only applying the low
delay profile to the synthesis software flow decreased the levels of combinatorial logic the
data had to pass through but increased the overall delay as compared to the base line of
no optimizations. Applying only the logic based optimizations to the circuit of the parser
appears to have little effect on the maximum logic level count of the parser but does, on the
other hand, decrease the actual propagation delay significantly. Finally, the application of
both optimization schemes to the static configured parser seems to produce a parser with
a propagation delay which is close to the average between the un-optimized design and the
logic optimized design but with a drastically reduced logic level count.

The ability of the logic only optimizations to decrease the propagation delays in the
static design may be most likely explained by a decrease in logic levels at switching points
and the reasoning is explained further in section 6.2.1. The maximum logic level did not
decrease along with the delay as may be expected from the trends in the graphs alone
but why this occurs can be easily understood by referencing the additional results in the
appendix. After the optimizations have been applied the logic paths that they effect are
no longer reported as the highest delays and so the paths then with the next highest delays
which they did not or only marginally effected are shown. These new highest delay paths
then may or may not have the same logic depth as those that benefited more from this
optimization and are able to do so while having a lower delay than the latter by virtue of
having a lower fanout delay, a lower intrinsic logical effort delay or both per stage.

The synthesis software can be forced to show the details of the lower ranking delay-wise
paths which allows the examination of how exactly any given path has changed before and
after optimization. This extra data was not extracted as it would mainly be relevant to
showing how exactly the routing algorithm responds to these optimizations, the analysis
of which is beyond the scope of this research.

55

 5

 5.5

 6

 6.5

 7

Bal Logic Synth Both
 0

 2

 4

 6

 8

 10
D

e
la

y
 (

n
s)

Le
v
e
ls

 (
LU

T
S

)

Optimization Type

Delay
Levels

Figure 6.7: Static Trill Parser Delay Statistics

6.3.2 Coarse Grained

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

Bal Logic Synth Both
 0

 2

 4

 6

 8

 10

D
e
la

y
 (

n
s)

Le
v
e
ls

 (
LU

T
S

)

Optimization Type

Delay
Levels

Figure 6.8: Coarse Adv Parser Delay Statistics

56

The propagation delays through both the advanced and basic coarse reconfigurable parsers
are discussed in this subsection; their delay trends across optimization schemes are shown
in figures 6.8 and 6.9 respectively. Unlike in the other two designs, the parsers designed
for this reconfiguration method do not respond well to only logic optimizations, showing
only a very slight decrease in propagation delay and logic level count that is at best the
same as in the un-optimized design and at worst increased. Even more notable is the
fact that both these parsers responded to synthesis optimization to a much higher degree
than in either of the other designs and to the point where the propagation delay fell to
almost half of the lowest in the static design. Beyond this, however, the coarse parsers
responded to the application of both optimization schemes in the same way as in the other
two designs. Furthermore, as would be expected, the advanced parser displays a higher
overall propagation delay and logic level count than with the base parser.

As discussed in the results section for area usage owing to the focus of the logic op-
timizations on conditionally routing signals and buses, very little could be expected in
regards to delay reduction in applying them to the coarse grained design. Additional delay
optimization venues are discussed in the future work chapter of this thesis.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

Bal Logic Synth Both
 0

 2

 4

 6

 8

 10

D
e
la

y
 (

n
s)

Le
v
e
ls

 (
LU

T
S

)

Optimization Type

Delay
Levels

Figure 6.9: Coarse Base Parser Delay Statistics

57

6.3.3 Fine Grained

Figure 6.10 shows the trend of the propagation delays through the TRILL parser embedded
in the fine grained reconfigurable design in response to the application of the different
optimization schemes examined in this research. Both the delay and logic level count
through the base-line un-optimized design is slightly higher than that in the static design
but like in the latter the parser responds well to logic optimization, showing a significant
decrease in both logic levels and total combination logic delay. Also as in the statically
configurable design, the application of both optimization schemes decreased the logic levels
even lower while slightly increasing the delay from the logic optimization scheme to a value
close to the average between the logic scheme and the base-line. While applying only the
low latency profile to the synthesis software does produce a lower logic level count in the
parser, the cross design trend in delay progression is adhered to in that the delay actually
rises to a point where it does not even meet the clock period requirement for the overall
design.

 5

 5.5

 6

 6.5

 7

Bal Logic Synth Both
 0

 2

 4

 6

 8

 10

 12

D
e
la

y
 (

n
s)

Le
v
e
ls

 (
LU

T
S

)

Optimization Type

Delay
Levels

Figure 6.10: Fine Grained Trill Parser Delay Statistics

58

6.4 Packet Loss Based on Configuration Speed

Approximations of how quickly both a cut-through and a store-and-forward switch would
be able to respond to a currently unrecognized packet type using the various forms of
reconfiguration examined were obtained by comparing the time required to configure one
parsing element to a simplified model of each type of switch’s total forwarding delay. The
models are both based off of a 1Gb switch architecture which processes packets on a 64
bit wide data bus and then forwards them at full-duplex over a shared-memory switching
fabric. Moreover, It is assumed that the switching fabric has a total of eight buffered
ports and supports routing up to the network layer (IP). Finally, this general model is also
assumed to support both cut-through and store-and-forward forwarding schemes based on
explicit user interaction.

To allow the switch model to operate at line rate, its core clock rate is set to 200MHz so
that it can generate the 125MHz clock necessary to interface its MAC to the PHY layer [14]
with some overhead to possibly run some basic control plane supervisory software routines.
The 200MHz core clock also allows for ample speed to sample the incoming data at the
rate required to serialize/de-serialize enough bits to fill the 64 bit bus on each ingress or
egress port, 1Gbs

64b
= 15.625MHz.

The generally accepted switch latency formula (e.g. [15]) shown in equation 6.4.1 is
used to characterize the delay for both of the switch model’s modes of operation. The
parsing delay parameter represents the delay required by each mode of operation before
the forwarding process can be started. When a switch is in cut-through mode, this delay
becomes equivalent to the amount of time required to serialize just the portion of the packet
relevant to forwarding whereas when it is in store-and-forward mode this delay consists of
the period of time required to serialize the whole packet. The look-up delay parameter
represents the delay involved in performing the destination port look-up and is the same
for both modes of operations. As a shared memory switch fabric architecture is used in
the switch model, the fabric delay parameter represents the amount of time required to
transfer the packet across the shared memory or, in other words, the time needed to make
one write and one read request to this memory back to back [16].

59

DT = DP + DL + DF (6.4.1)

Where,

DP : Parsing delay
DL : Look-up delay
DF : Switch fabric delay

Equation 6.4.2 is used to find the parsing delay of a switch operating in both forwarding
modes. The BL parameter required for the calculation of this delay in cut-through mode
is determined by how high up the OSI model the switch supports routing at and the size
of the header at each level. In the case of the switch model used in this research, the
supported levels are four so the value for BL is 38B as found from adding up the values
in table 6.10. The BP parameter or the size of the incoming packet can of course vary
based on the type of traffic flow; however, in the analysis presented here the size of the
packet is always the minimum supported size in a 1Gb network environment, 84B. Using
only the smallest supported packet size in this manner constrains the results presented to
only those related to the fastest expected rate at which a store-and-forward switch would
be expected to start the forwarding process.

DP =
1

FT

∗

{
BL if in cut-through mode

BP if in store-and-forward mode
(6.4.2)

Where,

BL : Portion of packet required for forwarding
FT : Line rate
BP : Size of packet

Using the process just discussed the parsing delay for the cut-through forwarding mode
of the switch model is found to be 38∗8

1E9
= 304ns and 84∗8

1E9
= 672ns for the store-and-forward

mode.

60

Level Size (Bytes)
2 14
3 20
4 4
Total 38

Table 6.10: Protocol Header Sizes by Level

Equation 6.4.3 is used to find the fabric delay of the switch operating in both forwarding
modes. The denominator consists of the memory bandwidth required to pass a packet
across the switching fabric of a shared memory based switch at line rate and without
blocking others. The parameter BM in the numerator represents the width of the shared
memory, the value of which is reliant on the underlying design and count of the memory
modules used. In the context of the switch model used, the memory width is set to 64B
(the memory can write and access one minimum sized packet at a time), the port count is
eight and the line rate is 1Gb so the fabric delay comes out to 125ps in both modes.

DF =
1

2 ∗ FT ∗ P
∗

{
1 if in cut-through mode
BP

BM
if in store-and-forward mode

(6.4.3)

Where,

BM : Shared memory width
P : Total number of ingress and egress ports

The calculation of the minimum total delay in both modes is shown in equation 6.4.4
where the forwarding delay was found as a maximum delay constraint on this stage by
dividing the minimum packet size by the line rate. As can be expected the forwarding
delay at line rate in store-and-forward mode is larger than the one in cut-through mode
even when handling the smallest supported packet sizes. This model could be used to
demonstrate the the scaling up of the store-and-forward delay against the static delay
of the cut-through architecture with increasing packet sizes, however only packet flows
exhibiting the lowest forwarding delay as modelled by the results found are of interest
to this research because they demonstrate the worst case scenario of loss of data during
reconfiguration.

61

cut-through mode:

DT = 304E−9 + 672E−9 + 125E−12 = 976.125E−9 s (6.4.4)

store-and-forward mode:

DT = 672E−9 + 672E−9 + 125E−12 = 1.344 125E−6 s (6.4.5)

Finally the total expected packet loss based on forwarding mode of operation and re-
configuration method used was estimated by creating a scenario in which a homogeneous
stream of packets of a type currently unsupported by the switch model triggers a recon-
figuration event and continues until the switch is able to parse it. Using this setup, the
amount of packets un-handled in each case was then determined by dividing the config-
uration delay values found by the ideal switch latencies from equation 6.4.4 and finally
rounding the answer up to the nearest forwarding period.

 1

 10

 100

 1000

 10000

 100000

Coarse: One
 Core

Coarse: One
 Core (SN)

Coarse: Eight
 Cores (SN)

Fine: Frame Fine: Partial Fine: Full

U
n
-h

a
n
d
le

d
 P

a
ck

e
ts

Reconfiguration Type

Cut-Through
Store-and-Forward

Figure 6.11: Expected Un-handled Packets During Configuration

62

The results from the un-handled packet calculations, plotted in Figure 6.11, appear
to predict that a switch built with a coarse-grained reconfigurable parser chain would be
able to dynamically adjust itself to a new type of sustained traffic flow with a much lower
penalty in regards to potential data loss than one which is designed with fine-grained
reconfigurable parsing logic. In fact at the 1Gb line rate it is assumed that the switch
model is operating at, the results indicate that a switch using coarse reconfiguration could
adapt after receiving just one minimum sized frame even if it were in cut-through mode and
had to configure eight of its parser cores. The best that could be expected from one using
fine-grained configuration would be adaption to a new stream after eighteen un-handled
frames, but only if it were in store-and-forward mode and its parser logic could be updated
with the adjustment of just 40 LUTS.

63

Chapter 7

Related Work

This section provides a brief survey of additional research performed in the field of dynamic
FPGA reconfiguration and how it relates to the work outlined in this thesis. Other than
in section 7.4, in all cases where dynamic reconfiguration is discussed it should be taken
as referring to modular or partition based dynamic reconfiguration.

7.1 Dynamic Reconfiguration of Network Components

Since modern high end switches already include the infrastructure required to manage
software based elements collective referred to as the control plane and complete software
based data plane replacement options such as the open source Open vSwitch project [17]
are currently available, the groundwork already exists for replacing additional hardware
elements with software counterparts to allow for additional flexibility of the device. The
major hurdle in taking this approach, however, lies in the ability of a device utilizing
this sort of configuration to maintain a packet throughput or line rate comparable to one
which retains these elements in hardware. This deficiency has been demonstrated in several
studies on the performance of pure virtual networks versus those with aspects of the switch
data path implemented using FPGAs [18, 19]. This is essentially why the use of software
replacements for the parsing logic in the switch architecture examined was not pursued as
part of this research.

The research is motivated in part by the need to characterize what the impact real-time
self reconfiguration of a network switch would have on the integrity of the data flowing
through it and as such the delivery mechanism for the partial bitstreams to the FPGA was

64

modelled more on the idea of context based direct memory access of multiple pre-stored
values. The context is determined, as already discussed, by the EtherType field of the
incoming data packet’s header. Goller et. all also propose a reconfigurable network device
in a paper in which this field potentially prompts a change in functionality, however, the
actual reconfiguration process this are of data potentially triggers in their implementation
is significantly different [20]. In the architecture they present, the bitstream needs to be
sent in band along with a special EtherType indicating that it is encapsulated within the
packet. If a special parser then detects that this field is present it prompts additional logic
to strip the segment of bitstream contained out of the packet and to store it in on-board
DDR2 memory. Once the complete bitstream is downloaded in this fashion, the actual
reconfiguration process begins.

While the reconfiguration process envisioned by Goller and his colleagues does provide
a and convenient method by which to disseminate new modes of operation to networking
devices, its focus is definitely not on speed. The direct transfer of the bitstream over
the network is definitely going to be initially faster than having to obtain and store a
set of bitstreams for various parser setups by other means. However, once these multiple
configurations are stored then the device will be able to respond to changes in network
traffic type much quicker as long as the proper set were obtained before hand.

7.2 Dynamic Reconfiguration Using Custom ICAP Con-

troller

In FPGA designs where partial reconfiguration is not initiated by an external entity, the
on-device logic handling the process usually takes on the form of either a FSM machine
specifically tailored to respond to events in the rest of the design or software running on a
soft processor programmed into the FPGA. The design created for the fine-grained design
researched here relies on the former method where the ICAP controller FSM listens for
particular fields within an Ethernet based packet stream. The use of this technique can
be found in other research projects such as one in which the feasibility of using a custom
ICAP controller to trigger the reconfiguration of portions of a DC to DC converter is
explored. In this particular case, the goal of adding the reconfigurability functionality was
to demonstrate how these particular circuits could be designed to handle dynamic changes
in input voltage [21]. Another project in which the use of this method can be found is one
in which the controller is integrated into error checking logic that sequential checks all the
frames of logic on the device for SEU (Single Event Upsets) [22]. In this second example, if

65

a frame is found to incorrectly configured then it is reconfigured with a backup bitstream
stored on an ECC checked block of ram.

Creating a partial reconfiguration project based around a soft processor involves first
generating the cores for the processor and its peripherals, mainly the ICAP controller
interface, and then compiling software routines which are responsible for directing the
CPU through the memory to ICAP transfer. The rest of the steps from this point on are
basically the same as for a custom ICAP controller project (described in the Framework
chapter) except that the compiled software has to be integrated into the initial bitstream
[23]. Reorda et. all propose a self-repairing design similar in structure to the error checking
example already mentioned but which uses this soft processor reconfiguration scheme [24].
The use of the soft processor as the controller for self configuration has also been examined
in research pertaining to the application of FPGAs within Avionics systems to allow the
bus protocol used between its hardware components to change dynamically [25].

Even though the latter reconfiguration setup would have been easier to implement
owing to vendor provided resources just discussed, the former method was chosen and im-
plemented in this research for two reasons. First of all, the hardware only method has been
shown to be much faster than the software one [26, 27], which makes it a better candidate
for the demanding requirements of switching configurations while ensuring minimal traffic
loss in a network switch environment. Secondly, the use of the custom logic of a dedicated
controller provides for an easier starting point for future research into the optimization of
the configuration process as at its core its just a basic FSM.

7.3 Improvements in the Dynamic Reconfiguration

Process

The maximum configuration speeds achievable on FPGA devices are not currently limited
by any as of yet unresolved inefficiencies with the transfer of the bitstream to the device
but rather by the underlying technology of the configuration port itself. In even the newest
devices these ports are designed to operate at a maximum frequency of 100 MHz and with
a maximum bus width of 32 bits [28, 29] which caps the configuration performance at 400
KB/ms. While no facilities exist for the end user to increase the width of the data accepted
by the port beyond 32 bits, at least in the Xilinx produced chips the user does have the
ability to adjust the operational parameters of the PLL (Phase Lock Loops) responsible
for these device’s configuration clocks [30]. This feature has been taken advantage of in
several research projects where they have found that, depending on the family and speed

66

grade of the Xilinx board used, the configuration port could be overclocked to run at a
range of frequencies between 2 to 3 times faster than the original specification [31, 27]. Of
these projects, in the one headed up by Claus et. all the correct operation of the port was
demonstrated at the highest clock frequency in this range, meaning that the board was
being successfully configured at a rate of 1.2 MB/ms.

On the Virtex-5 FPGA used in this research the smallest addressable configuration
unit is one LB wide by 20 LB high which translates to a bitstream size of 5904 Bytes
as reported by the planAhead tool used in the PR flow. If each parser module were to
be segmented into multiple modules of this size then the minimum time the board would
take to configure each section using a 3x over-clock of the configuration port would be
5904/1200E6 ≈ 4.92s. As the fastest that this device could possibly reconfigure itself
is still within in the micro-second range, the over-clocking strategy alone could not be
used in this design to completely address packet loss related to new types of traffic during
reconfiguration.

7.4 Other Forms of Reconfiguration

So far the only type of partial reconfiguration discussed has been the one involving recon-
figuration within set partitioned areas, the method used in this research. An additional
method exists, however, which is referred to as difference or ECO (Engineer Change Order)
based partial reconfiguration depending on the manufacturer of the device. The purpose
of this design flow is to target very small changes within the logic such as adjusting the
equation of one of the LUTs, changing the input level of an individual MUX or modifying
a small portion of the data stored within a BRAM, whereas with module based reconfig-
uration the intent is to make changes to large portions of the logic such as swapping out
an adder with a multiplier. The process involves first establishing one implementation of
the design as the base and then generating a bitstream consisting only of the areas which
have changed for every future rebuild [32].

This reconfiguration scheme has been used in a projects related to both modelling
DSMs (Digital Signal Modulator) in hardware as well as increasing the efficiency of the
placement stage of the bitstream generation flow. In the former, it is shown that the
modulation technique of a DSM implemented on an FPGA can be quickly switched by
only making minor changes to a BRAM based LUT [33] . In the latter, an algorithm is
proposed which attempts to minimize the difference in layout between multiple iterations
of the same design which would in turn then decrease the size of the bitstream generated
by the software in the differential reconfiguration flow.

67

Despite its focus on making only minor changes, the smallest portion of logic which can
be addressed by the difference based flow is still the configuration frame. What this means
is that, in the context of the hardware used within this research, even if only the equation
of one LUT was changed in the overall logic using this method then an area of 20 LB or
40 LUTS would still have to be configured to implement this difference in the hardware.

7.5 Coarse Architectures

As covered in the previous sections, the ability to decrease the reconfiguration time of fine
grained FPGA designs is currently limited by the overhead imposed by having to pass the
bitstream through the configuration logic at a bit granularity. Coarse grained architectures
or systems which support reconfiguration at a higher granularity level have been proposed
as alternatives which are not limited by configuration hardware speed, bus width, etc
and which can boast faster configuration speeds by the virtue of the greater size of the
base configuration unit. Additionally the design process for these devices benefits from
the decreased complexity of resources which have to be routed by the synthesis software
leading to faster build times. The trade-off for these positive aspects of the coarse grained
designs however is increased circuit area used per unit of configuration and a lack of vendor
support in regards to synthesis software, necessitating custom solutions [34].

Paul et al. propose a course grained architecture which is able to reconfigure itself at
any given execution cycle to act as a sequential step in a software application [35]. The
architecture consists of multiple general purpose processors which can only communicate
with their direct neighbours via shared registers and which each represent a portion of
the function to be executed by the overall system at that particular step of the program
counter. While they do also introduce an algorithm which attempts to minimize the amount
of configuration time required between execution cycles by locating a route between the
processors which is as similar to the previous one as possible, their model still uses the
actual configuration memory of the device, meaning that it is still limited by the speed of
the device’s configuration logic.

A modification of the synthesis process for FPGAs referred to as parameterised config-
uration [36] has been introduced by Bruneel et al. as a means to mitigate the area impact
of using coarse grained architectures. In a parameterised design, the traditional input
ports of a component can be made reconfigurable with a meta comment designation in the
HDL or left static by not including the comment. Initially, a template netlist is created
and a copy is transferred to the configuration memory of the device. During runtime, if a
change in configuration is needed then software running on an external processor modifies

68

the template only at the LUT tables representing the configurable ports using a new set
of parameters and then directly transfers the bitstream to device using partial reconfigu-
ration. As with the previous example, however, this design is still limited by the speed of
the device’s configuration logic.

The coarse architecture presented in this research was devised specifically to demon-
strate the trade-offs of a reconfigurable design created with only speed of configuration in
mind; as such the configuration memory of the parser elements exists in the logic space of
the FPGA and is configured without having to rely on the ICAP port of the underlying
hardware. Furthermore, while the interconnection network is also reconfigurable in the
coarse design, there is little justification for use of a custom mapping algorithm owing to
the limited permutations in how the parser elements can interconnect and the fact that
the network also exists in the logic space of the device.

7.6 Network Processors

A network processor can be seen as a general purpose processor (GPP) which has had its
scope of functionality constrained to focus on handling a set of tasks related to networking.
As with modern GPPs, newer network processors often contain multiple cores which can
configured to simultaneously handle multiple segments of a temporally partitioned process.
These network processors also, like their general purpose counterparts, contain embedded
low latency memory caches as well as interfaces to slower but higher density external mem-
ory. Unlike GPPs, however, it is not uncommon to find these processors embedded with
a good number of hardware accelerators in the form of either ASIC or FPGA technology.
Owing to limitations of the RISC architectures they are based on, the cores in a network
processor are unable to interpret some of the more complex instructions required to run
an operating system, meaning that software written for these devices has to be done so at
a very low level of abstraction.

To decrease the complexity of having to access memory resources within network pro-
cessors directly in the code, Wu et al. propose an architecture in which this routine is
partially implemented in hardware [37] . In a typical design flow for these processors,
when particular data structure needs to be accessed in a process, the task of determining
such details as which bank within a memory resource and at what offset all have to be
handled in the code. In their proposed system, the operating contexts as well as packet
data are written to their respective memories at fixed offsets and then accessed during
operation with an address shifter. In the actual code, to access these memory location

69

all that has to be done is to create a static pointer to a fixed memory location and then
increment the pointer for each item to be accessed from that memory.

The DynaCORE architecture is proposed by Albrecht et al. as an extension to the
functionality of the hardware accelerators built into network processors [38] . The core,
which would take on the form of a co-processor external to the network processor, would
consist itself of a number of dynamically reconfigurable hardware accelerators, a dispatcher
and a reconfiguration manager. The reconfiguration manager would be responsible for
determining the optimal configuration of all the hardware accelerators as a set by running
the current measured load type and efficiency through an algorithm. The dispatcher would
interface with the reconfiguration manager to determine then the most efficient forwarding
scheme of the incoming packets to each of the hardware accelerators. The whole system
is envisioned as either running under a pipelined or Network on Chip (NoC) interconnect
scheme.

70

Chapter 8

Conclusion

8.1 Discussion

The research presented in this thesis was conducted with the goal of determining the fea-
sibility of designing a network switch which could dynamically and autonomously adjust
its packet parsing capabilities based solely on its recognition of new types of traffic. Along
these lines, the parsing logic of an existing hardware switch was studied and then re-
implemented, in part, to support dynamic reconfiguration within an FPGA fabric using
two different approaches, coarse and fine-grained. The efficacy of these two designs in
minimizing their impact on typical hardware engineering constraints was compared where
applicable along with their impact on the forwarding performance of an abstract switch
model created for this purpose. Finally, the performance of the overall configuration frame-
work was discussed in the context of work done by other researchers in similar areas.

While the coarse based configuration scheme designed for this research overtly presents
a promising starting point for future commercial applications of flexible parsing logic, it
does suffer from many of the same drawbacks found in other coarse grained architectures,
mainly resource usage and decreased flexibility. The fine grained scheme also, like other
similar implementations researched by others, does not provide an ideal solution owing to
limitations imposed by the serial nature of the underlying FPGA fabric. The coarse based
configuration scheme, however, was found to be able to support basic reconfiguration at
line rate which, added to its vendor agnostic nature, may make it a more suitable choice
of the two for future investigation into this area. Nevertheless, it still should be noted
that the latter configuration scheme was found to use much less resources and the static
reconfiguration method responded much better to optimization attempts.

71

In summation, neither of the proposed reconfiguration frameworks are presently ready
for use in anything beyond theoretical application in an academic setting. With this
in mind, the next section provides a number of suggestions regarding what steps could
be taken in consolidating the ideas surrounding one or both of these frameworks into
something more applicable for practical use.

8.2 Future Work and Suggested Improvements

8.2.1 Coarse Grained

Currently the biggest pitfall of using the coarse grained parser design is the large area
requirements and as such future work on this design should be focused on reducing its size
footprint. The key aspect of the design which contributes most to this problem is its heavy
reliance on internal register memory as both a means to store its configuration memory,
to form the shift registers and to store the temporary results of calculations. To address
the first issue, the configuration memory could be stored in one or more of the device’s
BRAM blocks per parser logic unit and the surrounding logic could be modified to pre-
read the required configuration bits for each step of the parsing process. To address the
second issue, the shift operations could be implemented using the device’s DSP48 blocks
configured as multipliers. The last of these inefficiencies could be resolved much as the
first in that an additional block of BRAMs per device could be used to store the results of
intermediate calculations.

Taking the size optimization of the configuration memory one step further, the packing
of the bitstream into BRAMs could be also be used as a way to even decrease the number
of parser cores needed in the whole parser chain. A single parser core could be made to
handle multiple parsing levels by storing multiple configurations in its BRAM memory,
adding a scheduler to create time slices to the parser core for both the oldest (highest
level) and the youngest (lowest level) portions of the packet and caching the output from
each stage with an association to the level context that this fragment of data should be
parsed with next. The context associated with each output would have to be stored with
the outputs from the previous stage of parsing so that it could be fed into the inputs of the
next stage if needed, for example, for the transfer of the EtherType field from the Level 2
parser to the Level 3 parser.

72

Figure 8.1: Multiple Context Coarse Parser Processor

Both the design were tested with a synthesis mechanism in the vendor provided software
which encourages the mapping algorithm to use the DSP48 blocks where possible and these
results were compared with the those from the synthesis of the designs without the DSP48
blocks. The routing algorithm, however, is not able to replace the shift registers with
an equivalent combination of logic and multipliers, meaning that, if the shifters were to
be replaced, the logic would have to be changed manually. The primary complication in
making this replacement by hand lies in how the shift amount is currently stored in the
configuration memory.

To make a multiplication (or division) operation equivalent to a shift operation, the
shift amount would have to be converted to the value that results from raising two to
the power of the shift count and then that result would have to be multiplied against the
original value. In terms of the current design and hardware implementation in general,
the much larger multiplication operand would then either have to be stored in additional
memory or calculated with the use of additional DSP48 resources. The storage of the larger
operands would involve having to increase the size of the bitstream as well, resulting in both

73

a slightly longer configuration time and an increase in the complexity of the configuration
logic at all levels.

While the combinatorial logic of the parser process does not factor in to the problem
of area usage as much as the sequential logic, it too could be optimized if any of the re-
quired resources were left on the board after the impact of the latter were addressed. The
Comparator Logic Unit and a portion of the start up logic which occurs directly after con-
figuration and involves performing basic addition and subtraction could both be replaced
by a set of DSP48 blocks each. In fact, as these operations occur in mutually exclusive
states of operation, the same set of DSP48 blocks could be used in both. Furthermore the
operational parameters required to do both of these operations could be stored in BRAM
as well and then applied as needed with the onset of each operational state [39].

8.2.2 Fine Grained

As discussed in the literature survey, any future improvements in the efficiency of fine
grained reconfiguration process is capped by the limitations of the underlying configura-
tion hardware of the FPGAs so it is hard to envision any significant venues of improvement.
There is however a relatively undocumented and, with version of the vendor provided soft-
ware used, poorly supported feature within the fabric that may offer a means to overcome
at least in part the bandwidth restrictions of the ICAP port. The CFGLUT5 primitive
which can only be instantiated as such and not inferred offers a means to reserve one of
the native MLUTS in a similar fashion as used in the optimization investigations of this
research but with the added access to a clock and serial input pin [40]. Furthermore, these
primitives have an additional output which can be used to chain it others of the same
type, essentially allowing a user to directly configure a portion of the FPGA in the most
fundamental sense possible while the design is running. The main drawback of using this
approach is that all the logic would have to be manually translated into LUT table mem-
ory, meaning that in other words, the bitstream for that portion of the design would have
to be created by hand. Also, the type of logic which could be implemented in this type
of partition would be limited to one which contains at least in part sequential circuitry.
Nevertheless, the potential benefit of using this approach is, as mentioned, that a designer
could increase the bandwidth of the configuration process by creating multiple chains of
CFGLUT5s to represent the logic in question and then program them in parallel at a clock
speed only limited by the system speed supported by the architecture (several times greater
than the native ICAP clock). With this in mind, it could be investigated whether the logic
within the parsers could be translated into such a partition.

74

APPENDICES

75

Appendix A

Additional Results

A.1 Worst Case Delays By Architecture

A.1.1 Static

Input Output Logic Levels Delay (ns)
parser lvl2/u ip enflop res rdy/q 55 parser trill/data r 32 8 5.690
parser lvl2/u ip enflop res rdy/q 20 parser trill/data r 32 8 5.688
parser lvl2/u ip enflop res rdy/q 52 parser trill/data r 32 8 5.641

Table A.1: Static TRILL Parser Delays: Balanced

Input Output Logic Levels Delay (ns)
parser lvl2/u ip enflop res rdy/q 27 parser trill/data r 20 2 6.369
parser lvl2/u ip enflop res rdy/q 27 parser trill/data r 20 2 6.265
parser lvl2/u ip enflop res rdy/q 23 parser trill/data r 20 2 6.173

Table A.2: Static TRILL Parser Delays: Synth Optimized

76

Input Output Logic Levels Delay (ns)
parser lvl2/u ip enflop res rdy/q 54 parser trill/data r 43 8 5.140
parser lvl2/u ip enflop res rdy/q 54 parser trill/data r 42 8 5.128
parser lvl2/u ip enflop res rdy/q 56 parser trill/data r 43 8 5.097

Table A.3: Static TRILL Parser Delays: Logic Optimized

Input Output Logic Levels Delay (ns)
parser lvl2/u ip enflop res rdy/q 57 parser trill/data r 54 3 5.415
parser lvl2/u ip enflop res rdy/q 57 parser trill/data r 26 3 5.408
parser lvl2/u ip enflop res rdy/q 57 parser trill/data r 53 3 5.402

Table A.4: Static TRILL Parser Delays: Both Optimized

Input Output Logic Levels Delay (ns)
XLXI 32/buf tx data0/q 9 parser lvl2/u ip enflop res rdy/q 9 5 3.821
XLXI 32/buf tx data0/q 1 parser lvl2/u ip enflop res rdy/q 17 5 3.648
XLXI 32/buf tx data0/q 15 parser lvl2/u ip enflop res rdy/q 31 5 3.601

Table A.5: Static Lvl2 Parser Delays: Logic Optimized

Input Output Logic Levels Delay (ns)
XLXI 32/buf tx data0/q 3 parser lvl2/u ip enflop res rdy/q 19 2 4.832
XLXI 32/buf tx data0/q 14 parser lvl2/u ip enflop res rdy/q 30 2 4.543
XLXI 32/buf tx data0/q 12 parser lvl2/u ip enflop res rdy/q 28 2 4.445

Table A.6: Static Lvl2 Parser Delays: Both Optimized

A.1.2 Coarse Grained

Input Output Logic Levels Delay (ns)
parse con/rx2 in data 31 parse con/pld2 out bus 12 6 5.560
parse con/rx2 in data 31 parse con/pld2 out bus 30 6 5.497
parse con/rx2 in data 31 parse con/pld2 out bus 22 6 5.326

Table A.7: Worst Delays Through Basic Parser: Balanced

77

Input Output Logic Levels Delay (ns)
parse con/rx2 in data 41 parse con/pld2 out bus 39 6 5.519
parse con/rx2 in data 9 parse con/pld2 out bus 8 6 5.511
parse con/rx2 in data 39 parse con/pld2 out bus 39 6 5.394

Table A.8: Worst Delays Through Basic Parser: Logic Optimized

Input Output Logic Levels Delay (ns)
parse con/rx2 in data 63 parse con/pld2 out bus 0 2 3.385
parse con/rx2 in data 28 parse con/pld2 out bus 28 3 3.197
parse con/rx2 in data 38 parse con/pld2 out bus 38 3 3.115

Table A.9: Worst Delays Through Basic Parser: Synth Optimized

Input Output Logic Levels Delay (ns)
parse con/rx2 in data 6 parse con/pld2 out bus 6 2 5.283
parse con/rx2 in data 27 parse con/pld2 out bus 17 2 5.107
parse con/rx2 in data 30 parse con/pld2 out bus 17 2 5.016

Table A.10: Worst Delays Through Basic Parser: Both Optimized

Input Output Logic Levels Delay (ns)
parse con/rx2 in data 51 parse con/pld2 out bus 12 7 5.714
parse con/rx2 in data 34 parse con/pld2 out bus 3 7 5.708
parse con/rx2 in data 51 parse con/pld2 out bus 26 7 5.706

Table A.11: Worst Delays Through Advanced Parser: Balanced

Input Output Logic Levels Delay (ns)
parse con/rx2 in data 5 parse con/pld2 out bus 3 9 5.705
parse con/rx2 in data 38 parse con/pld2 out bus 24 6 5.639
parse con/rx2 in data 36 parse con/pld2 out bus 24 6 5.583

Table A.12: Worst Delays Through Advanced Parser: Logic Optimized

78

Input Output Logic Levels Delay (ns)
parse con/rx2 in data 18 parse con/pld2 out bus 18 2 2.894
parse con/rx2 in data 42 parse con/pld2 out bus 42 3 2.685
parse con/rx2 in data 24 parse con/pld2 out bus 24 3 2.442

Table A.13: Worst Delays Through Advanced Parser: Synth Optimized

Input Output Logic Levels Delay (ns)
parse con/rx2 in data 38 parse con/pld2 out bus 30 2 5.852
parse con/rx2 in data 47 parse con/pld2 out bus 6 5 5.667
parse con/rx2 in data 47 parse con/pld2 out bus 6 5 5.666

Table A.14: Worst Delays Through Advanced Parser: Both Optimized

A.1.3 Fine Grained

Input Output Logic Levels Delay (ns)
l2a inner/u ip enflop res rdy/q 50 trill inner/data r 46 11 5.874
l2a inner/u ip enflop res rdy/q 50 trill inner/data r 22 11 5.858
l2a inner/u ip enflop res rdy/q 50 trill inner/data r 54 11 5.853

Table A.15: Fine Grained TRILL Parser Delays: Balanced

Input Output Logic Levels Delay (ns)
l2a inner/u ip enflop res rdy/q 56 trill inner/data r 4 6 6.765
l2a inner/u ip enflop res rdy/q 31 trill inner/data r 4 6 6.630
l2a inner/u ip enflop res rdy/q 21 trill inner/data r 4 6 6.625

Table A.16: Fine Grained TRILL Parser Delays: Synth Optimized

Input Output Logic Levels Delay (ns)
l2a inner/u ip enflop res rdy/q 31 trill inner/data r 47 9 5.467
l2a inner/u ip enflop res rdy/q 31 trill inner/data r 48 9 5.466
l2a inner/u ip enflop res rdy/q 16 trill inner/data r 47 9 5.452

Table A.17: Fine Grained TRILL Parser Delays: Logic Optimized

79

Input Output Logic Levels Delay (ns)
l2a inner/u ip enflop res rdy/q 61 trill inner/data r 2 5 5.581
l2a inner/u ip enflop res rdy/q 61 trill inner/data r 30 5 5.563
l2a inner/u ip enflop res rdy/q 61 trill inner/data r 29 5 5.560

Table A.18: Fine Grained TRILL Parser Delays: Both Optimized

Input Output Logic Levels Delay (ns)
XLXI 32/buf tx data0/q 18 l2a inner/u ip enflop res rdy/q 18 5 4.772
XLXI 32/buf tx data0/q 23 l2a inner/u ip enflop res rdy/q 23 5 4.335
XLXI 32/buf tx data0/q 15 l2a inner/u ip enflop res rdy/q 15 5 4.111

Table A.19: Fine Grained Lvl2 Parser Delays: Logic Optimized

Input Output Logic Levels Delay (ns)
XLXI 32/buf tx data0/q 19 l2a inner/u ip enflop res rdy/q 19 2 4.131
XLXI 32/buf tx data0/q 7 l2a inner/u ip enflop res rdy/q 23 2 4.052
XLXI 32/buf tx data0/q 20 l2a inner/u ip enflop res rdy/q 20 2 3.896

Table A.20: Fine Grained Lvl2 Parser Delays: Both Optimized

80

Appendix B

Additional Framework Details

Property Value
Synthesize - XST:Optimization Goal Speed
Synthesize - XST:Optimization Effort High
Synthesize - XST:Register Balancing No
Synthesize - XST:Pack I/O Registers into IOBs Yes
Map:Placer Effort Level High
Map:Placer Extra Effort Normal
Map:Combinatorial Logic Optimization true
Map:Global Optimization Speed
Map:Pack I/O Registers/Latches into IOBs For Inputs and Outputs
Place and Route:Place and Route Mode Route Only
Place and Route:Place and Route Effort Level (Overall) High
Place and Route:Extra Effort (Highest PAR level only) Normal

Table B.1: Low Delay Synthesis Profile

81

Glossary

FPGA

or Field Programmable Gate Array is a technology consisting of an array of pro-
grammable lookup tables which can be configured to perform various logical opera-
tions.

LUT

or Look Up Table is a hardware based index into an array of bit vectors usually
stored in static memory. The bit vectors can be filled in such a fashion as to emulate
the truth table of a logical operation. These devices often act as the fundamental
units of operation of an FPGA.

RAM

or Random Access Memory can be defined as hardware memory which can be written
to or read from in the same amount of time regardless of the internal location or order
of the bits of data accessed. Most types of RAM broadly fall into one of two categories,
static or dynamic, depending on how their data is stored but both are considered
volatile in that they lose their information once their power supply is removed.

SRAM

or Static RAM is a type of RAM in which a bit is stored using multiple transistors.
It can be generally accessed faster than Dynamic RAM but, owing to its internal
structure, is less dense and more expensive to produce than its counterpart.

DRAM
or Dynamic RAM is a type of RAM in which a bit is stored using a single capacitor
and then accessed with a simple transistor switch. While Dynamic RAM is denser
and less expensive to produce, it must be periodically refreshed owing to capacitor
leakage.

82

DDR RAM

or Double Data Rate RAM is a variant of DRAM where values are accessed and
stored, in part, on both the rising and falling edge of a controlling clock signal.
Newer implementations of this type of memory such as DDR2 and DDR3 essentially
just increase the amount of data which can be accessed per request.

FIFO

or First In, First Out in hardware terms refers to usually an SRAM wrapped in
logic which as a whole is meant to take on the role of a data buffer where the oldest
information stored is then the first accessed on a read request.

83

References

[1] Marilyn Wolf. FPGA-Based System Design. Upper Saddle River, NJ: Prentice Hall
PTR, 2004. Chap. FPGA Fabrics.

[2] Ross H. Freeman. “Configurable electrical circuit having configurable logic elements
and configurable interconnects”. Pat. 4870302 (US). Feb. 1988.

[3] R.T. Ong and E.M. Young. “Programmable address decoder for programmable logic
device”. Pat. 5821772 (US). Oct. 1998.

[4] C.R. Erickson et al. “Configurable parallel and bit serial load apparatus”. Pat.
5995988 (US). Nov. 1999.

[5] D.P. Schultz, L.C. Hung, and F.E. Goetting. “Configuration bus interface circuit for
FPGAS”. Pat. 6262596 (US). July 2001.

[6] Dimitrios Serpanos and Tilman Wolf. Architecture of NETWORK SYSTEMS. Burling-
ton, MA: Elsevier, 2011. Chap. Bridges and layer 2 switches.

[7] H. Jonathan Chao and Bin Liu. High performance switches and routers. Hoboken,
N.J.: Wiley-Interscience, 2007. Chap. HIGH-SPEED ROUTER CHIP SET.

[8] Yang Y. Understanding Switch Latency. Tech. rep. Cisco, Jan. 2012.

[9] Virtex-5 FPGA Configuration User Guide. 3.11. UG191. Xilinx. 2012.

[10] DN9000K10PCIE4GL User Manual. 1.0. The Dini Group. 2007.

[11] Synthesis and Simulation Design Guide. 13.1. UG626. Xilinx. 2011.

[12] Synopsys/Xilinx High Density Design Methodology Using FPGA Compiler. 1.0. XAPP107.
Xilinx. 1998.

[13] Timing Closure User Guide. 13.4. UG612. Xilinx. 2012.

[14] “Part 3 : Carrier Sense Multiple Access With Collision Detect on (CSMA/CD) Access
Method and Physical Layer Specifications”. In: IEEE Std 802.3 (2000), pp. i–1515.

84

[15] Paul Congdon, Matthew Farrens, and Prasant Mohapatra. “Packet Prediction for
Speculative Cut-through Switching”. In: Proceedings of the 4th ACM/IEEE Sympo-
sium on Architectures for Networking and Communications Systems. New York, NY,
USA: ACM, 2008, pp. 99–108.

[16] S. Iyer, R.R. Kompella, and N. McKeowa. “Analysis of a memory architecture for fast
packet buffers”. In: High Performance Switching and Routing, 2001 IEEE Workshop
on. 2001, pp. 368–373.

[17] I. Moldovan and P. Varga. “A flexible switch-router with reconfigurable forwarding
and Linux-based Control Element”. In: Electronics and Telecommunications (ISETC),
2012 10th International Symposium on. 2012, pp. 217–220.

[18] D. Unnikrishnan et al. “Reconfigurable Data Planes for Scalable Network Virtual-
ization”. In: Computers, IEEE Transactions on 62.12 (2013), pp. 2476–2488.

[19] Muhammad Bilal Anwer and Nick Feamster. “Building a Fast, Virtualized Data
Plane with Programmable Hardware”. In: Proceedings of the 1st ACM Workshop on
Virtualized Infrastructure Systems and Architectures. Barcelona, Spain: ACM, 2009,
pp. 1–8.

[20] U. Pross et al. “Demonstration of an in-band reconfiguration data distribution and
network node reconfiguration”. In: Design, Automation Test in Europe Conference
Exhibition (DATE), 2010. 2010, pp. 614–617.

[21] K.K. Sajeesh and V. Agarwal. “Digital controller implementation for non-inverting
buck-boost converter using run-time partial reconfiguration of FPGA”. In: Power
Electronics (IICPE), 2012 IEEE 5th India International Conference on. 2012, pp. 1–
6.

[22] U. Legat, A. Biasizzo, and F. Novak. “SEU Recovery Mechanism for SRAM-Based
FPGAs”. In: Nuclear Science, IEEE Transactions on 59.5 (2012), pp. 2562–2571.

[23] Partial Reconfiguration Tutorial, PlanAhead Design Tool. 14.1. UG743. Xilinx. 2012.

[24] M.S. Reorda, L. Sterpone, and A. Ullah. “An error-detection and self-repairing
method for dynamically and partially reconfigurable systems”. In: Test Symposium
(ETS), 2013 18th IEEE European. 2013, pp. 1–7.

[25] V. Viswanathan et al. “Dynamic reconfiguration of modular I/O IP cores for avionic
applications”. In: Reconfigurable Computing and FPGAs (ReConFig), 2012 Interna-
tional Conference on. 2012, pp. 1–6.

85

[26] Ming Liu et al. “Run-time Partial Reconfiguration speed investigation and archi-
tectural design space exploration”. In: Field Programmable Logic and Applications,
2009. FPL 2009. International Conference on. 2009, pp. 498–502.

[27] K. Vipin and S.A. Fahmy. “A high speed open source controller for FPGA Par-
tial Reconfiguration”. In: Field-Programmable Technology (FPT), 2012 International
Conference on. 2012, pp. 61–66.

[28] LogiCORE IP AXI HWICAP v3.0, Product Guide for Vivado Design Suite. PG134.
Xilinx. 2013.

[29] Stratix V Device Datasheet. 2.9. SV53001. Altera. 2013.

[30] Virtex-5 FPGA User Guide. 5.4. UG190. Xilinx. 2012.

[31] Christopher Claus et al. “Towards Rapid Dynamic Partial Reconfiguration in Video-
Based Driver Assistance Systems”. In: Reconfigurable Computing: Architectures, Tools
and Applications. Vol. 5992. Springer Berlin Heidelberg, 2010, pp. 55–67.

[32] Difference-Based Partial Reconfiguration. 2.0. XAPP290. Xilinx. 2007.

[33] S.U. Bhandari, S. Subbaraman, and S. Pujari. “Digital Signal Modulator on FPGA
Using on the Fly Partial Reconfiguration”. In: Advances in Computing, Control,
Telecommunication Technologies, 2009. ACT ’09. International Conference on. 2009,
pp. 711–713.

[34] R. Ferreira et al. “An FPGA-based heterogeneous coarse-grained dynamically re-
configurable architecture”. In: Compilers, Architectures and Synthesis for Embedded
Systems (CASES), 2011 Proceedings of the 14th International Conference on. 2011,
pp. 195–204.

[35] K. Paul, C. Dash, and M.S. Moghaddam. “reMORPH: A Runtime Reconfigurable
Architecture”. In: Digital System Design (DSD), 2012 15th Euromicro Conference
on. 2012, pp. 26–33.

[36] Karel Bruneel, Wim Heirman, and Dirk Stroobandt. “Dynamic Data Folding with Pa-
rameterizable FPGA Configurations”. In: ACM Trans. Des. Autom. Electron. Syst.
16.4 (2011), 43:1–43:29.

[37] Qiang Wu, D. Chasaki, and T. Wolf. “Implementation of a simplified network pro-
cessor”. In: High Performance Switching and Routing (HPSR), 2010 International
Conference on. 2010, pp. 7–13.

86

[38] C. Albrecht et al. “DynaCORE: A Dynamically Reconfigurable Coprocessor Architec-
ture for Network Processors”. In: Parallel, Distributed, and Network-Based Process-
ing, 2006. PDP 2006. 14th Euromicro International Conference on. 2006, pp. 101–
108.

[39] Virtex-5 FPGA XtremeDSP Design Considerations. 3.5. UG193. Xilinx. 2012.

[40] Virtex-5 Libraries Guide for HDL Designs. 11.3. UG621. Xilinx. 2009.

[41] Cyriel Minkenberg et al. “Current Issues in Packet Switch Design”. In: SIGCOMM
Comput. Commun. Rev. 33.1 (Jan. 2003), pp. 119–124.

87

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Problem Statement
	Thesis Outline

	Background
	FPGA
	Configuration Memory
	Logic Elements
	Example

	Network Switch

	Theory of Operation: Fine Grained
	BUS and Clock Conversions
	BUS Transformations
	Signal Transformations

	MainBus Interface
	MainBus Write to Parser Chain
	MainBus to DDR2 Ram
	MainBus System Access

	Memory Interface
	DDR2 Controller
	On-Chip BRAM

	Dynamic Parser Configuration Arbitration
	ICAP Controller
	Parser Black-Box Wrappers

	Parser Chain
	Parser Chain Status

	Theory of Operation: Coarse Grained
	Parser Processor
	Parser Core
	Small Parser Core Operation
	Large Parser Core Operation

	Parser Interconnect Network
	Coarse Parser Programmer

	Framework
	Development Board
	USB Driver GUI

	General Project Structure and Coding Scheme
	Bitstream Generation Flow
	Optimization
	Testing
	Simulation Setup
	Hardware Probing

	Specification Analysis Results
	Speed of Configuration
	Coarse Grained
	Fine Grained

	Size of Implementation
	Static
	Coarse Grained
	Fine Grained

	Worst-Case Data Path Latency
	Static
	Coarse Grained
	Fine Grained

	Packet Loss Based on Configuration Speed

	Related Work
	Dynamic Reconfiguration of Network Components
	Dynamic Reconfiguration Using Custom ICAP Controller
	Improvements in the Dynamic Reconfiguration Process
	Other Forms of Reconfiguration
	Coarse Architectures
	Network Processors

	Conclusion
	Discussion
	Future Work and Suggested Improvements
	Coarse Grained
	Fine Grained

	APPENDICES
	Additional Results
	Worst Case Delays By Architecture
	Static
	Coarse Grained
	Fine Grained

	Additional Framework Details
	Glossary
	References

