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Abstract

Code comments improve software maintainability, programming productivity, and soft-
ware reliability. To address the comment scarcity issue in many projects and save devel-
opers’ time in writing comments, we propose a new, general automatic comment gener-
ation approach, which mines comments from a large programming Question and Answer
(Q&A) site. Q&A sites allow programmers to post questions and receive solutions, which
contain code segments together with their descriptions, referred to as code-description
mappings. We develop AutoComment to extract such mappings, and leverage them to
generate description comments automatically for similar code segments matched in open
source projects.

We apply AutoComment to analyze 92,140 Java and Android tagged Q&A posts to
extract 132,767 code-description mappings, which help AutoComment generate 102 com-
ments automatically for 23 Java and Android projects. The number of generated comments
is still low, but the user study results show that the majority of the participants consider
the generated comments accurate, adequate, concise, and useful in helping them under-
stand the code. One of the advantages from mining Q&A sites for automatic comment
generation is that human written comments can provide information that is not explicitly
in the code.

In the future, we would like to focus on improving both the yield and quality of the
generated comments. To improve the yield, we can replace the token-based clone detection
tool with one that can detect addition and reordering of lines to increase the number of
code matches. To improve the quality, we can apply advanced natural language processing
techniques such as semantic role labeling to analyze the semantics of the sentences, or
typed dependencies to analyze the grammatical structure of the sentences.
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Chapter 1

Introduction

Code commenting has been an integral part of software development. Comments improve
software maintainability [1] and programming productivity through helping developers
understand code and improve software reliability through assisting in detecting software
defects [2]. Code commenting has been a standard practice in the industry. Despite the
need and importance of commenting code, many code bases are not commented or not
adequately commented [3].

In addition, it is time-consuming for developers to write comments. It would be benefi-
cial to generate comments automatically when possible so that developers can spend their
valuable time on other tasks.

Recently, researchers have proposed techniques to generate comments automatically
from source code. Sridhara et al. automatically generate a summary comment for a Java
method [4]. They leverage the code structure and identifier names to generate one com-
ment sentence for each chosen statement from the method, and concatenate the comment
sentences to form a summary comment for the method. In a followup project, they iden-
tify statements with similar structures and topics, and generate comments for the group
of statements [5]. While these techniques are successful initial steps toward automatic
comment generation, they have two main limitations. First, the techniques can only gen-
erate comments for specific code structures (e.g., one method body [4], groups of method
calls [5], or groups of if-else statements [5]). Second, the performance of the previous
work depends on high quality identifier names and method signatures. For example, when
grouping methods calls, it requires that all method names contain the same verb [5]. If the
identifiers and methods have poor names, then the approach may fail to generate accurate
comments or any comments at all.
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We propose a new approach to generate comments automatically [6] to address the
above limitations. We observe that Question and Answer (Q&A) sites such as Stack-
Overflow [7] naturally contain code descriptions written by developers that can be used
for automatic comment generation. Specifically, StackOverflow [7] is widely used to ask
questions about code development, debugging, etc. Those questions often receive high
quality answers due to the large user base. For example, one asked, “how to open the
find type dialog programmatically in Eclipse”. The question received a Java code snippet
that performs the asked task. We can use the statement form of the question “open the
find type dialog programmatically in Eclipse” as an explanatory description of the code
snippet. We refer to the code snippet and description as a code-description mapping. If
the code segment in a software project is identical or similar to the above code snippet,
then the corresponding description can be an explanatory comment for the code segment
in the software project.

Q&A sites such as StackOverflow [7] contain a wealth of information, which makes it a
feasible and valuable data source for extracting code-description mappings for automated
comment generation. For example, StackOverflow contains a total number of 6,943,267
posts as of March 2014. At least 49% of the Java and Android classes in StackOverflow
have at least one code example in the accepted answer [8]. Android code snippets have a
mean size of 16.4 lines of code (LOC) and a median of 9 LOC [9].

The idea is to generate comments automatically by mining Q&A sites for code-description
mappings. The prototype, AutoComment, has two main components. The first component
extracts a database of code-description mappings from Q&A sites. The second component
searches for similar code segments between the extracted database and given software
projects. Once AutoComment finds an identical or similar code segment it presents the
corresponding description as a comment to explain the matched code segment. One key
benefit of AutoComment is that the description is what a developer uses to describe the code
segment, which is likely to be accurate and useful for developers to understand (compared
to descriptions generated from variable names and method names).

The thesis makes the following contributions:

• We propose a new approach, AutoComment, to generate code comments automati-
cally by analyzing Q&A sites.

• We apply AutoComment on 23 projects (16 Java projects and 7 Android projects) to
generate 102 comments automatically. We conduct a user study, which demonstrates
that the majority of the participants find the generated comments accurate, adequate,
concise, and useful.
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• We adopt natural language processing (NLP) techniques and design heuristics to
improve the code descriptions to generate high-quality comments.

• AutoComment builds databases of code-description mappings that can be leveraged
for purposes other than automated comment generation such as program synthesis.

1.1 Examples and Challenges

In this section, we present three examples illustrating how AutoComment generates com-
ments automatically. We describe the challenges, summarize our solutions, and highlight
the unique benefits of AutoComment.

1.1.1 Example One

Figure 1.1 shows a code segment from the Java project Jajuk.

1 public String getToolTipText(MouseEvent e) {

2 java.awt.Point p = e.getPoint();

3 int rowIndex = rowAtPoint(p);

4 int colIndex = columnAtPoint(p);

5 if (rowIndex < 0 || colIndex < 0) {
6 return null;
7 }
8 ...
9 }

Figure 1.1: Code from Java project Jajuk

AutoComment generates the following comment to explain the code segment highlighted
in grey automatically:

Find on which row and column the mouse is.

Our user study results show that users consider this comment accurate in describing this
piece of code and useful in helping them understand the code. The previous technique [5]
would not generate a comment for this example because the three method names in Line
2–4 share no common verb.

3



StackOverflow Question (Title):

Tool tip in JPanel in JTable not working
StackOverflow Answer:

The problem is that you set tooltips on subcomponents of the component returned by
your CellRenderer. To perform what you want, you should consider override getToolTip-
Text(MouseEvent e) on the JTable. From the event, you can find on which row and
column the mouse is, using:
1 java.awt.Point p = e.getPoint();

2 int rowIndex = rowAtPoint(p);

3 int colIndex = columnAtPoint(p);

Figure 1.2: StackOverflow Post #10854831

Figure 1.2 shows the StackOverflow post that AutoComment leverages to generate the
comment. It shows the title of the post, the code snippet, and one paragraph immediately
before the code snippet in the answer.

Challenges in Comment Selection: Figure 1.2 shows two textual descriptions that can
be leveraged to describe the code segment in the answer. One is the title of the post, which
describes the question. The other is the paragraph immediately before the code segment,
which consists of three sentences. Among the four sentences in the title and the answer
paragraph, only the last sentence in the answer paragraph describes the code snippet.
AutoComment needs to select this relevant sentence from the four sentences to generate
the comment automatically, which is challenging.

AutoComment uses two techniques to address this comment selection challenge. First,
many sentences ask and answer how to troubleshoot their code (e.g., the title and the first
sentence in the answer paragraph in Figure 1.2). These sentences often do not describe the
code segment. Therefore, AutoComment removes sentences that imply troubleshooting
based on keyword filtering. For example, “not” indicates that the title describes a trou-
bleshooting problem rather than the code segment; and “problem” in the first sentence
from the answer suggests the cause of the problem. Therefore, AutoComment filters out
both sentences (Section 2.2). Second, AutoComment leverages the text similarity between
each sentence and the code segment to identify the most relevant sentences (Section 2.5).
In Figure 1.2, the shared words between the text and code are in bold (row and column).
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1.1.2 Example Two

Figure 1.3 shows a code segment from the Java project Megamek.

1 private String getStackTrace(Throwable throwable) {

2 StringWriter swriter = new StringWriter();

3 PrintWriter pwriter = new PrintWriter(swriter);

4 throwable.printStackTrace(pwriter);

5 pwriter.flush();

6 pwriter.close();

7 return swriter.toString();

8 }

Figure 1.3: Code from Java project MegaMek

AutoComment generates the following comment for the code segment highlighted in grey:

Receive a stack trace. Use this method to capture the stacktrace in a String.

Figure 1.4 shows the post in StackOverflow that AutoComment leverages to generate
this comment. AutoComment detects that the two code segments had partially matched,
and generates the comment by combining the two sentences from the title and the answer
as these two sentences have the same text similarity (Section 2.5).

StackOverflow Question:

Is it possible in Java’s MessageFormat to receive a stack trace?
StackOverflow Answer:

You can use this method to capture the stacktrace in a String

1 public String getStackTrace(Throwable t) {

2 StringWriter sw = new StringWriter();

3 PrintWriter pw = new PrintWriter(sw);

4 t.printStackTrace(pw);

5 pw.flush();

6 return sw.toString();

7 }

Figure 1.4: StackOverflow Post #11332280
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Challenges in Comment Refinement: The sentences from question titles and the
answers are often in a question form (e.g., “How to ...?”, “Is it possible to ...?”) or contain
excessive information (e.g., “You can ...”). Directly using these sentences will lead to low
quality comments.

To address this challenge, we deploy natural language processing (NLP) techniques to
extract the core parts of a sentence. In Figure 1.4, AutoComment extracts “Receive a stack
trace” from the title, and “Use this method to capture the stacktrace in a String” from the
answer. AutoComment looks for a subtree that contains a verb phrase (VP) and a noun
phrase (NP) from the parse tree of a sentence (Section 2.2). In addition, it removes clauses
that are connected by a coordinating conjunction (i.e., “but” and “yet”), personal pronouns
(e.g., “you” in the example), and code artifacts (e.g., class/method/field/constant names
and primitive data types) that do not exist in the code segment.

Challenges in Code Matching: Finding similar code segments between StackOverflow
and the input projects requires code clone detection techniques (Section 2.3). However,
since the code segments from StackOverflow are often incomplete and uncompilable, Auto-
Comment uses token-based clone detection instead of Abstract Syntax Tree (AST)-based
clone detection.

The two code segments in Figure 1.3 and 1.4 are slightly different in terms of the variable
names (e.g., swriter vs. sw). On top of that, code in Figure 1.3 has one additional line
(Line 6) compared to that in Figure 1.4. However, such a small difference does not affect
the semantic similarity of the two pieces of code, which should be detected as matched
code. We solve this problem by extending the matching algorithm to enable line skipping.

1.1.3 Example Three

Figure 1.5 shows a code segment from the Android project Barcode Scanner.

1 private static Bitmap toBitmap(LuminanceSource source , int[] pixels) {

2 int width = source.getWidth();

3 int height = source.getHeight();

4 Bitmap bitmap = Bitmap.createBitmap(width, height, Bitmap.Config.ARGB 8888);

5 bitmap.setPixels(pixels , 0, width , 0, 0, width , height);
6 return bitmap;
7 }

Figure 1.5: Code from Android project Barcode Scanner

AutoComment generates the following comment for the lines highlighted in grey:
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Create empty bitmap with dimensions of original image and ARGB 8888 format.

Figure 1.6 shows the post in StackOverflow that AutoComment leverages to generate the
comment.

StackOverflow Question (Title):

Android Pass Bitmap to Native in 2.1 and lower
StackOverflow Answer:

Create empty bitmap with dimensions of original image and ARGB 8888 format:
1 int width = src.getWidth();

2 int height = src.getHeight();

3 Bitmap dest = Bitmap.createBitmap(width, height, Bitmap.Config.ARGB 8888);

Figure 1.6: StackOverflow Post #4665122

Benefits of AutoComment: AutoComment generates a comment to provide important
information that is not explicitly in the code, e.g., the code is to create an “empty” bitmap.
In addition, AutoComment can naturally group the three statements into a semantic unit
for comment generation because developers have already grouped so in the StackOverflow
post. Such grouping is general because it does not rely on the quality of the method names
or the structure of the methods, which is different from previous work [5]. The grouping
is also reliable because most of the code segments are small snippets that are meant for
demonstration purposes.
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Chapter 2

AutoComment Design

The overview of AutoComment is in Figure 2.1. AutoComment takes two inputs: (1) a
StackOverflow database dump containing information of all posts; and (2) source code of
the target projects. The output is a list of code segments and the corresponding comments
generated by AutoComment.

AutoComment consists of two major components. The first component generates
databases of code-description mappings (Section 2.1) and leverages natural language pro-
cessing (NLP) techniques to refine the descriptions (Section 2.2). The second component
generates comments for the target software. It applies code clone detection technique to
identify matched code between the database and the target software (Section 2.3), prunes
out the bad matches (Section 2.4), and selects the best comment for the matched code
(Section 2.5).

StackOverflow
Database Dump

Code-
Description

Mapping
Extraction

Description
Refinement

Code
Clone

Detection

Source Code

Code
Clone

Pruning

Comment
Refinement

and
Selection

Comments

Database Generation Comment Generation

Mapping
Databases

Figure 2.1: Overview of AutoComment
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Figure 2.2: Frequency vs. Vote Count for Java Answers

2.1 Code-Description Mapping Extraction

We choose a programming Q&A site called StackOverflow [7] as the data source to build
databases of code-description mappings. StackOverflow contains questions from diverse
software domains (e.g., Java, Android, C++, etc.), each associated with its respective tag.
Questions and answers from one software domain are unlikely to benefit software projects
from a different domain. For example, an answer about how to use Android APIs is unlikely
to help AutoComment generate comments for a Java desktop application. Therefore, we
build and apply code-description mappings extracted from Java questions (tagged with
java) to Java projects; and Android-related questions (tagged with android) to Android
projects.

StackOverflow contains invalid and low-quality questions and answers. To ensure the
quality of extracted code-description mappings, AutoComment selects questions and an-
swers based on the number of votes it received from the voting system that StackOverflow
deploys. Figure 2.2 shows the frequency distribution of the score count for all 621,017 Java
tagged answers, which has a mean of 1.89, medium of 1 and mode of 0. AutoComment only
keeps questions with a non-negative number of votes. For each kept question, it selects the
answer(s) with the highest positive number of votes.

The title of a post is not the only description for the code segment (Figure 1.4). Since it
is common for people to write a code description immediately before the code segment, we
also extract the paragraph immediately before the code segment as a comment candidate.

Based on the ideas elaborated above, for each post in StackOverflow, AutoComment
uses the following steps to build the initial databases of code-description mappings:

1. discard a post if its question receives a negative number of votes,
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2. check the tags of the post and discard posts that are not relevant to the target domain
(e.g., Java and Android),

3. select the answer(s) that has the highest positive number of votes (select multiple
answers if they have the same highest positive number of votes), and

4. for each code segment in the answer (based on the HTML tag <code>), map it against
the title of post and one paragraph before the code segment (based on the HTML
tag <p>) as candidate descriptions.

We had also attempted to extract description sentences from other parts of a post.
For example, instead of only extracting from the paragraph immediately before the code
segment, we tried to include description sentences from 1) two paragraphs before the code
segment, and 2) one paragraph after the code segment (only if there are no code segments
following this paragraph). We experimented with extracting these description sentences,
but the majority of them are not describing the code segment.

2.2 Description Refinement

The description sentences extracted from StackOverflow are often in a question form or
contain unnecessary information. To improve the quality of descriptions, AutoComment
leverages NLP techniques to perform refinements. This includes filtering of invalid descrip-
tions and extracting core parts of the descriptions. AutoComment refines the descriptions
using techniques in the following order.

Description Segmentation: Since we extracted textual paragraphs for the code seg-
ments, AutoComment needs to split the paragraphs into sentences based on the period
character. To avoid incorrect split due to the dot operator (commonly used in program-
ming languages), AutoComment only treats a period character as the end of a sentence if
there is a space immediately afterwards (similar to iComment [2]).

Description Filtering: As discussed in Section 1.1.1, sentences that ask and answer how
to troubleshoot code often do not describe the code segment. For example, “Why this code
does not work?” and “Android: problem retrieving bitmap from database”. AutoComment
filters out such sentences based on the manually collected terms shown in Table 2.1. We
use the same list of filtering terms for both Java and Android databases.

Main Sub-Tree Extraction: Sentences that are in a question form or contain personal
pronouns (e.g., “you”) are not suitable as comments. Therefore, we adapt NLP techniques

10



no, not, error, bug, difficult, difficulty, problem, problems, fix, shouldn’t, doesn’t,
can’t, couldn’t, don’t, isn’t, aren’t, wouldn’t, fail, why, what, null, bad, wrong, miss-
ing, lack, probably, likely, perhaps, think, may, maybe, unfortunately, unluckily

Table 2.1: List of Terms for Sentence Filtering

with two objectives: 1) to convert the sentences in a question form to a statement form,
and 2) to extract the core parts of the sentences. We achieve them by identifying and
extracting the main sub-tree of a sentence.

There are three steps to extract the main sub-tree of a sentence:

1. to generate a parse tree from the input sentence,

2. to obtain all the sub-trees that match the specified patterns, and

3. to merge all the matched sub-trees together to form a refined sentence.

Step one generates a parse tree using Stanford CoreNLP1 (v1.3.4). AutoComment first
uses CoreNLP’s part-of-speech (POS) tagger [10] to label the part of speech of each word
of a sentence, then uses the statistical parser [11] to generate the parse tree. Figure 2.3
shows the parse tree for the sentence in Figure 1.4. The leaf nodes are the words, and the
parent node of a leaf node shows its POS tag.

CoreNLP does fall short on interpreting certain technical terms because it was trained
on well written text such as the Wall Street Journal. For example, it would sometimes
tag the word, “file”, incorrectly as a verb instead of a noun depending on the sentence
structure. However, it is robust at parsing sentences and works well for our experiments.

Step two extracts the main sub-trees from the parse tree. The idea is to obtain sub-
tree(s) that contains at least one verb phrase (VP) and one noun phrase (NP), which
ensures each extracted phrase has a verb associated with a subject or an object.

We define two patterns, Equation 2.1 and Equation 2.2, in Stanford’s Tregex2 format
to extract the main sub-tree(s) of a parse tree. Table 2.2 and Table 2.3 explain these two
patterns respectively.

VP-NP: V P << (NP < /NN.?/) < /V B.?/ (2.1)

1http://nlp.stanford.edu/software/corenlp.shtml
2http://nlp.stanford.edu/software/tregex.shtml
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Figure 2.3: Parse Tree for the sentence “You can use this method to capture the stacktrace
in a String”. The matched Tregex patterns are labelled in bold.

NP-VP: NP ! < PRP [<< V P | $ V P ] (2.2)

The two patterns would exclude personal pronoun (PRP) words. Personal pronouns
typically contribute no value in a code comment, so it is safe to remove them. Penn
Treebank tag guideline [12] defines personal pronouns to include personal pronouns proper
(“I”, “me”, “you”, “he”, “him”, etc.), reflexive pronouns ending in -self or -selves, and
nominal possessive pronouns “mine”, “yours”, “his”, “ours” and “theirs”.

We show how to remove “You can” from the sentence in Figure 2.3 using the two
patterns. AutoComment finds three sub-trees that are matched by the patterns, and then
merges them (step three), which produces a sentence without “You can”. We label the
matched VP-NP and NP-VP patterns on the right hand side of the figure. The conditions

12



Regular Expres-
sion

Explanation Rationale

VP << (NP <
/NN.?/)

Verb phrase (VP) that is an
ancestor of a noun phrase (NP)

Ensures the sentence starts
with a VP that includes an NP.

NP < /NN.?/ Noun phrase (NP) that is the
parent of the basic category of
a noun (NN)

Ensures the NP have at least
one noun that is not a personal
pronoun (PRP), but the NP
will be allowed to contain per-
sonal pronouns.

VP < /VB.?/ Verb phrase (VP) that is the
parent of the basic category of
a verb (VB)

Ensures the VP have at least
one verb that is not a modal
verb (e.g., can, must, should,
will).

Table 2.2: Explanation for Equation 2.1 - VP-NP

that each matched sub-tree had satisfied are as follow:
VP-NP #1: “use this method to capture the stacktrace in a String”

1. The VP (highlighted as [VP]) is an ancestor of the NP, “this method to capture the
stacktrace in a String”.

2. The NP is the parent of a noun, “method”.

3. The VP is the parent of a verb, “use”.

NP-VP #1: “this method to capture the stacktrace in a String”

1. The NP (highlighted as [NP]) is not the parent of a personal pronoun.

2. The NP is an ancestor of the VP, “to capture the stacktrace in a String”.

VP-NP #2: “capture the stacktrace in a String”

1. The VP (highlighted as [VP]) is an ancestor of the NP, “the stacktrace in a String”.

2. The NP is the parent of a noun, “stacktrace”.

3. The VP is the parent of a verb, “capture”.

13



Regular Expres-
sion

Explanation Rationale

NP !<PRP Noun phrase (NP) that is not
the parent of a personal pro-
noun (PRP)

NP that is a personal pronoun
offers no value to the comment,
thus excluded.

NP [<< VP | $ VP] Noun phrase (NP) that is ei-
ther the ancestor or sister of a
verb phrase (VP)

Ensures the sentence starts
with an NP followed by a VP.
VP that are followed after an
NP often appear on the same
level in a parse tree.

Table 2.3: Explanation on Equation 2.2 - NP-VP

For the other sentence in the motivating example, “Is it possible in Java’s MessageFor-
mat to receive a stack trace?”, AutoComment extracts the main sub-tree as “Receive a
stack trace” because it matched with Equation 2.1.

Step three performs merging on the extracted sub-trees in the case where there are
more than one sub-tree, and outputs a single sentence. For example, the parse tree in
Figure 2.3 contains three matched sub-trees (VP-NP #1, NP-VP #2, and VP-NP #2).
To generate a single sentence from the multiple matched sub-trees, AutoComment calls
the method “join node” on all the sub-trees: Given two sub-trees, locate node j such that
j dominates both sub-trees, and return a tree with node j as the root of the tree. In this
example, since the first sub-tree dominates the second and third sub-trees, the “join node”
operation returns the first sub-tree as the generated comment.

Clause Removal: A sentence may contain more than one clause connected by a coor-
dinating conjunction (CC). The following sentence contains two clauses linked by the CC
word “but”:

How do I read in a file with buffer reader but skip comments with java

The seven coordinating conjunctions are “for”, “and”, “nor”, “but”, “or”, “yet”, and
“so” [13]. The CC words “but” and “yet” imply a contrasting meaning. Therefore, Auto-
Comment removes the clause after the CC word “but” and “yet”.

However, this technique can potentially remove important information from a sentence.
In the future, we would like to analyze the content of the clause prior to the removal.
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Number Removal: AutoComment removes numerical numbers from a sentence to make
it general by detecting the POS tag—Cardinal numbers (CD), which represents numeric
words such as “three” and “3”. For example, in the sentence “Display three non-negative
integers in increasing order”, we remove the word ‘three’ from the sentence.

2.3 Code Clone Detection

We extend an existing token-based clone detection tool SIM [14] to detect matched code
segments between StackOverflow and input projects. SIM tokenizes the two input code
and uses the longest common substring algorithm to detect code clones. It requires exact
matching on method names and programming language keywords. We extended SIM with
stricter matching requirements. Specifically, the value of strings and characters, class names
and static/non-static fields require exact matching. In addition, we modified the matching
alogrithm to allow lines from the code segment in the target software to be skipped while
requiring all the lines from the StackOverflow code segment to be matched as illustrated
in the example shown in Figure 1.3 and Figure 1.4. We configured the maximum number
of lines that can skip to 4.

SIM utilizes the initial token run length value to build up a forward reference table
for locating common substrings. We configured the initial token run length to be 20. It
means that a match must contain 20 or more consecutive tokens that are the same, which
equates to roughly two source code statements. A smaller token run length increases the
number of detected code clones, but it also 1) increases the number false positives because
less content is matched, and 2) increases the runtime because SIM hashes the tokens based
on the initial run length value to avoid string comparisons.

We considered using AST-based clone detection tools. However, the partial code seg-
ments from StackOverflow are often uncompilable. A more recent work [15] resolved the
issue at compiling StackOverflow code segments. It adds wrappers to the code segment to
allow parsing and identifies the fully qualified names of all the code elements in the code
segment, which can enable the use of more advanced clone detection tools.

2.4 Code Clone Pruning

The output of the code clone detection tool consists of pairs of code segments that have a
similar syntactical structure. To generate accurate and useful comments, it is important
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add, remove, put, post, get, set, read, write, delete, close, exit, hashCode

Table 2.4: Generic Method List

to ensure a high level of semantic matching. For example, matching the two generic code
segments x++; y++; and i++; j++; is unlikely to help AutoComment generate useful
comments for program comprehension.

Support Set Pruning: The more number of times that a StackOverflow code segment
gets matched, the higher the probability that it is a generic match. This heuristic is capable
of eliminating generic code. Specifically, if a StackOverflow code segment is matched five
or more times with the source code within the same project, AutoComment prunes out
such pairs of code segments.

Line Percentage Matching: In general, the higher proportion of matched lines in the
StackOverflow code segment, the higher probability that the description sentence is ap-
plicable to the matched code segment in the target software. Therefore, AutoComment
calculates the percentage matching score as a filtering metric.

Specifically, for each StackOverflow code segment, we exclude all source code lines
that are a Java annotation, comment, method signature or return statement prior to the
percentage calculation. We call the remaining lines effective lines. We define a non-generic
line as a line that does not contain a generic method call in Table 2.4, because we find
that a line of code that contains a generic method call contributes little to the semantic
matching. AutoComment calculates the percentage matching score using the following
formula with a 70% threshold, meaning that at least 70% of the effective lines has to be
matched.

PercMatched =
number of matched effective non-generic lines

number of effective lines in the StackOverflow code segment

Removal of Repetitive Method Calls: If a matched code segment in the target soft-
ware only contains repetitive method calls (three or more times), it is performing a similar
operation repetitively with different parameters. Since the value of the parameters may
largely impact the functionality of the code segment in the target software, and AutoCom-
ment does not require the value of the parameters be exactly matched (Section 2.3), such
matches are removed to guarantee the accuracy.

16



Removal of Template Code: Some StackOverflow answers simply provide a template
with placeholders to be filled. The semantics of the filled template and the empty template
can be quite different. Figure 2.4 shows a code segment that performs a generic file read
operation, but the comment is too specific because the content within the curly bracket
between line 3 and 5 is missing. We consider a StackOverflow code segment that contains
a pair of curly braces with no statements in it as a template. AutoComment removes such
StackOverflow code segments by requiring at least one statement within a pair of curly
braces.

StackOverflow Question:

Fastest way to read a file line by line with 2 sets of Strings on each line?
StackOverflow Answer:
1 BufferedReader br = new BufferedReader(new FileReader(file));
2 String line;
3 while((line = br.readLine ()) != null) {
4 // do something with line.
5 }

Figure 2.4: Example of a piece of template code. StackOverflow post #5035894.

Other Filters: To ensure high semantic matching, AutoComment requires the matching of
at least one line that contains a method call. In addition, AutoComment filters out matches
that contain the term “Exception” because exception code is inherently different from the
main flow code. To explain exception code, we may combine AutoComment with the
previous technique [16]. Furthermore, AutoComment prunes out long code matches (over
fifteen lines of code) because they often contain multiple semantic units, and StackOverflow
is unlikely to contain detailed enough descriptions.

2.5 Comment Refinement and Selection

For each remaining match, there can be one or more description sentences available as a
comment candidate. If the code from the given projects matches with multiple StackOver-
flow code segments, AutoComment includes all of the available description sentences of
each StackOverflow code segment as a candidate. AutoComment refines and selects the
comment candidate(s) that best describes the matched code segment in the target software
using techniques in the following order.

Variable Name Replacement: Description sentences from StackOverflow often con-
tain variable names that appear in the code segment. In the sentence in Figure 2.5,
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spinnerArray refers to the variable name in the StackOverflow code segment, but the
code segment in the target software uses a different name called settings. This renders
the sentence invalid for the code segment in the target software. To solve this, AutoCom-
ment replaces spinnerArray with settings in the sentence. It does this by performing
tokenization on both code segments to obtain two lists of tokens. Since the code clone
detection tool guarantees the syntactical structure of the matched part of two segments to
be the same, spinnerArray and settings can be mapped against each other.

Description Sentence(s):

Let’s say your array is called spinnerArray , you can use a ArrayAdapter to talk to the
spinner:
StackOverflow Code Segment:
1 ArrayAdapter <String > spinnerArrayAdapter = new ArrayAdapter <String >
2 (this ,android.R.layout.simple_spinner_dropdown_item ,

3 spinnerArray );

4 spinner.setAdapter(spinnerArrayAdapter);

Input Code Segment:
1 ArrayAdapter <String > adapterSettings1 = new ArrayAdapter <String >(
2 this , android.R.layout.simple_spinner_dropdown_item ,

3 settings );

4 spinnerSettings1.setAdapter(adapterSettings1);

Figure 2.5: An example to show the replacement of the variable name spinnerArray with
settings in the description sentence. StackOverflow post #7173323.

Code Artifact Matching: Code artifact matching detects code artifacts (e.g., class/method-
/field/constant names and primitive data types) which exist in a description sentence, but
do not exist in the method that contains the matched code in the target software. In such
cases, AutoComment removes the sentence. AutoComment detects code artifacts using
regular expressions combined with camel cases.

Figure 2.6 shows a code artifact mismatch example. We show the description sentence
from StackOverflow and the code segment from Android OsmAnd. Since the code uses
ACTION VIEW instead of SENDTO when initializing the Intent object, the sentence is not an
accurate description of the code segment. AutoComment detects constant SENDTO in the
description sentence, but it cannot find this constant in the matched code segment in the
target software or the surrounding code within the method. Therefore, it filters out this
sentence.

Text Similarity: To select the best description sentences from the remaining sentences,
AutoComment measures the text similarity between each remaining description sentence
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Description Sentence(s):

Android.intent.action.SENDTO : Displays activity com.android.mms/.ui.ConversationList
in Galaxy tab.
Input Source Code [Android OsmAnd]:
1 private void sendSms(String sms) {
2 Intent sendIntent = new Intent(Intent.ACTION VIEW);

3 sendIntent.putExtra("sms body", sms);

4 sendIntent.setType("vnd.android-dir/mms-sms");

5 mapActivity.startActivity(sendIntent);

6 }

Figure 2.6: An example to show the discarding of a sentence because the code arti-
fact SENDTO does not exist in the code segment in the target software. The code uses
ACTION VIEW as the intent value in line 2. StackOverflow post #5802974.

and the code segment in the target software. After that, it selects the sentences that achieve
the highest text similarity score as the comment. AutoComment follows the following steps
to measure text similarity:

Step One AutoComment extracts tokens from the code and the description sentence. A
token is a consecutive sequence of at least three word characters (alphabets and num-
bers). It also considers the dot operator as a word character. For example, it extracts
obj.function() as obj.function instead of two tokens obj and function. This is
because obj.function() is an atomic function name and should only contribute to
the text similarity once.

We experimented with camel case detection for extracting tokens. For example, the
technique will extract PrintWriter as two tokens, print and writer. However, the
technique creates a bias towards selecting description sentences that contain code
artifacts, because it will extract more tokens and increase the text similarity score
for such sentences. Therefore, we did not deploy camel case detection.

Step Two It lemmatizes [17] the tokens from their inflected forms to the base form,
e.g., converting ‘takes’ to ‘take’. Then it removes duplicate tokens and stop words
(including “new”, “the”, “and”, “but”, “for”, and “you”).

We also experimented with stemming instead of lemmatization, including the Porter
Stemmer and the Snowball Stemmer. Stemming removes inflectional endings from a
word to achieve a base form, as opposed to lemmatization, which uses a vocabulary
to return the base form. They all perform equally well with negligible differences.
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Step Three It calculates the text similarity as the number of overlapping token pairs
between the description sentence and the code using common substring matching.
For example, BufferedImage and Image are one overlapping pair. It also discards
sentences that only contain a single text similarly term that is a primitive data type
such as int, because the similarity content is insufficient.

AutoComment selects the sentences which achieve the highest text similarity. If multi-
ple sentences have the same highest text similarity, it combines all of them as the generated
comment.
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Chapter 3

Experimental Methods

To evaluate the quality of the comments generated by AutoComment, we conducted a
user study similar to that of Sridhara et al. [5]. The ethics clearance notification for the
user study had been attached in Appendix A. We examined the following two research
questions:

• RQ1: Are the automatically generated comments accurate, adequate, and concise in
describing the code?

• RQ2: Are the automatically generated comments useful for developers to understand
the code?

RQ1 rates a comment based on its accuracy (i.e., does not contain incorrect informa-
tion), adequacy (i.e., contains a sufficient amount of information), and conciseness (i.e.,
expresses much in a few words).

RQ2 is a new research question that Sridhara et al. [5] did not evaluate. It is an im-
portant question to evaluate because a comment can be accurate, adequate, and concise,
but does not help developers understand the code. For example, if a comment is a simple
rephrase of the statement, e.g., “get the name and age of a student” for the statements
getName(student); getAge(student); or “increment the variable x and y” for the state-
ments x++; y++;, a developer may find the comments useless. Therefore, in our user study,
we explicitly ask if the generated comment help in understanding the code segment.
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Java Project LOC Android Project LOC
Eclipse SDK 4,678,435 Firefox 180,162
FreeCol 205,471 Chrome 75,652
FreeMind 113,929 Barcode Scanner 55,121
GanttProject 164,059 FBReader 69,927
Hibernate 708,258 KeePassDroid 42,073
HSQLDB 115,829 myTracks 54,001
JabRef 153,285 osmAnd 204,253
Jajuk 126,149
JavaHMO 39,481
JBidWatcher 36,228
JFtp 32,347
JHotDraw 56,388
MegaMek 387,739
Planeta 33,815
Sweet Home 3D 104,831
Vuze 852,622

Table 3.1: Evaluated Open Source Projects

3.1 Evaluated Projects and Databases

We apply AutoComment to analyze 92,140 StackOverflow posts to extract two databases.
We extract 87,785 code-description mappings from the java tag and 44,982 code-description
mappings from the android tag. We apply the Java database on 16 Java projects and the
Android database on 7 Android projects for a total number of 23 open source projects.
The 16 Java projects include the 15 Java projects that were evaluated by Sridhara et al. [5],
and one additional Java project, Eclipse. In addition, Sridhara et al. [5] did not evaluate
on Andriod projects. Table 3.1 shows the total number of lines of code for each project.
AutoComment generates a total of 102 comments for the 23 projects.

3.2 User Study

We conducted a user study to answer the two research questions. The study included
15 human participants to rate the comments generated by AutoComment. We recruited
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student participants from University of Waterloo’s Computer Science and Electrical and
Computer Engineering department using their internal mailing list. The evaluator group
includes 1 undergraduate and 14 graduate students, all of whom have industrial experience
in Java programming. The participants have an average of 5.4 years of programming
experience, ranging from 2 years to 10 years.

Questionnaire Generation: We provide each user with a questionnaire of 15 gener-
ated comments (10 from Java projects and 5 from Android projects) to evaluate. For
each questionnaire, we randomly select the comments from all the comments generated
by AutoComment. We continue this random sampling for each questionnaire until all the
comments have been selected, and then reset the sampling basket. A code segment in
the databases can be matched several times at different locations in the target project.
Therefore, we enforce that each user only evaluates the same code segment once to avoid
repetitive evaluations by the same user.

Evaluation Procedure: The user study evaluation has two steps: 1) show the users
the code segment and ask them to write a comment for the code (users may give up on
writing a comment if they find it difficult), and 2) provide users with the AutoComment
generated comment and ask them to rate the comment on accuracy, adequacy, conciseness,
and usefulness.

The first step is to ensure that users had spent time to understand the code segment
before rating the AutoComment generated comment. For each code segment, we also
show the surrounding code to help the users understand the code segment, including the
method which contains the code segment and the existing comments related to the code
segment. To avoid overwhelming the users with excessive information, we show at most
20 surrounding code lines per code segment.

The second step is to rate the comments with the five-point Likert scale [18]. Following
Sridhara et. al’s [5] recent work about rating comments of high level actions within meth-
ods, we use the following five-point Likert scale: (1) Strongly Disagree, (2) Disagree, (3)
Neutral, (4) Agree, (5) Strongly Agree. To reduce bias, we do not present the synthesized
comments to the users until they have completed step one. We do this by placing the
questions of step two in a different page and requesting the participants not to start step
two until they have completed step one.

Availability: The extracted code-description databases and generated comments are
available at http://asset.uwaterloo.ca/AutoComment/. We attached a sample ques-
tion of the user study questionnaire in Appendix B.
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Chapter 4

Results

We show the human judgement results from the user study in Table 4.1. A total number
of 102 comments are generated from the 23 Java and Android projects. Each of the 15
participants evaluated 10 Java comments and 5 Android comments, which results 150 and
75 responses for two project domains respectively.

The results show that AutoComment can generate comments for high level groups of
code statements. Based on the 225 responses, majority of the users find the generated
comments accurate, adequate, concise, and useful in helping them understand the code
segments.

Amongst the 102 comments that AutoComment generates, 78 comments’ correspond-
ing code segments in the target projects do not already have a comment describing the
code segments. For the 24 code segments that already contain comments, seven of the
AutoComment-generated comments complement the existing comments (i.e., provide ad-
ditional useful information), 14 are similar to the existing comments, and three are not
as good (e.g., less useful) as the existing comments. For example, the AutoComment-
generated comment, “Combine integer arrays. System.arraycopy is a method you can use
to perform this copy.” complements the existing comment “just add”. As a future im-
provement, we can compare AutoComment-generated comments with existing comments
using text similarly to filter out those that are less useful.

Below we discuss the breakdown results of Java and Android comments and the detailed
results for the four evaluation metrics.

Accuracy: For both Java and Android, the majority of the participants agree or strongly
agree that the generated comment is accurate, which consists of 106 of the 150 responses
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Java Android
Responses Ac Ad Co Us Ac Ad Co Us
1-Strongly
Disagree

9 12 5 10 5 11 5 9

2-Disagree 8 17 17 17 5 13 8 6
3-Neutral 27 23 29 29 17 14 21 22
4-Agree 27 35 30 30 14 11 17 17
5-Strongly
Agree

79 63 69 64 34 26 24 21

Total 150 150 150 150 75 75 75 75

Table 4.1: Human Judgements on the Generated Comments.
Ac: Accuracy; Ad: Adequacy; Co: Conciseness; Us: Usefulness

and 48 of the 75 responses respectively. Only 17 of the 150 Java responses and 10 of the
75 Android responses disagree or strongly disagree.

The main cause of the disagreement is that AutoComment fails to identify some sen-
tences that contain an incorrect description of the code segment. AutoComment selects
such sentences due to their high text similarity scores. While in general a sentence with
a high text similarity score is more likely to an accurate description of the code, it is not
always true. Some sentences are highly related to the code segment, but AutoComment
fails to select them because the sentences use synonyms instead of the exact words used in
the code.

In the future, we can improve the accuracy of the comment selection component by
using synonyms [19] to help identify more related words between the code segment and
comment, or using term frequency-inverse document frequency (tf-idf) to determine the
importance of similar terms.

Adequacy: For Java, the majority of the participants agree or strongly agree that the
generated comment contains adequate information, which consists of 98 of the 150 re-
sponses. Only 29 of the 150 Java responses disagree or strongly disagree. For Android,
37 of the 75 responses agree that the comments are adequate, which is one response short
from achieving majority. A total of 24 of the 75 Android responses disagree or strongly
disagree.

The main cause of disagreement on adequacy is user expectation. When we present
a code segment with its surrounding code to help users understand the code, it is natu-
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ral for them to think that the comment should be integrated with information from the
surrounding context. In one user study question, the participant wrote, “Add path of the
action event to the clipboard” and our tool generated “Use the StringSelection with the
string and add it to the Clipboard.”. The participant was able to infer that the string is
the path of an action event from the surrounding code.

Conciseness: For both Java and Android, the majority of the participants agree or
strongly agree that the generated comment is concise and does not contain excessive infor-
mation, which consists of 99 of the 150 responses and 41 of the 75 responses respectively.
Only 22 of the 150 Java responses and 13 of the 75 Android responses disagree or strongly
disagree.

The main cause of disagreement on conciseness is that the generated sentences contain
overlapping content. AutoComment presents multiple sentences if they have the same text
similarity score. Future work can address this issue by leveraging the text summarization
techniques to detect overlapping content in sentences, and use advanced text similarity
metrics described earlier to select the most relevant sentences.

Usefulness: For both Java and Android, the majority of the participants agree or strongly
agree that the generated comment is useful, which consists of 94 of the 150 responses and
38 of the 75 responses respectively. Only 27 of the 150 Java responses and 15 of the 75
Android responses disagree or strongly disagree.

The main cause of disagreement on usefulness is that the code is easy-to-understand (so
that no comment is needed to help comprehension), or the comment is too trivial. A com-
ment is most useful if the code cannot be easily understood. To improve the usefulness of
AutoComment-generated comments, we can design code and comment complexity metrics
to filter out simple comments and comments for simple code segments in the future.

Execution Time: We executed AutoComment on an Intel Core i7-2600 CPU. The
database generation for Java took 261 minutes, and the comment generation for the 16
Java projects took 612 minutes (10–384 minutes per project). The database generation of
the Andriod database took 121 minutes, and the comment generation for the 7 Andriod
projects took 51 minutes (4–22 minutes per project).
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Chapter 5

Limitations and Future Work

Here we discuss the issues of AutoComment and propose solutions that can address the
issues.

5.1 Comment Yield

AutoComment cannot generate a comment for a code segment if a Q&A site does not
discuss it, or if the technique cannot detect the code-description mapping. AutoComment
had generated a low number of comments for the evaluated projects even though we are
able to extract 132,767 code-description mappings. Here are some of the main limitations:

First, the current implementation only accepts post answers that have the highest
vote and only considers the description sentences immediately before the code segment,
which limits the size of the databases. In the future, we can increase the size of the code-
description mapping databases by including StackOverflow answers that do not have the
highest vote count.

Second, the code clone detection (1) is not tolerant of statement reordering, and (2)
cannot find clones that contain line additions in the StackOverflow code segment because
we only allow line skipping on the target software. In the future, we can replace the code
clone detection tool with one that can detect addition and reordering of lines to increase
the number of code matches. For example, we can utilize an AST-based clone detection
tool. Since the partial code segments are not compilable into a fully qualified AST tree, we
can leverage previous work [15] to resolve the fully qualified names for the code elements.
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Third, in order to expand the code-description mapping databases, it is possible to
extract comments from data sources other than StackOverflow, such as the source code or
existing API documentation. Extracting comments from the source code requires analysis
to determine the lines of code that the comment is describing. Extracting comments
from existing API documentation such as JavaDoc requires natural language processing
techniques to combine the extracted sentences for a concise sentence.

Forth, AutoComment extracts databases of code-description mappings based on the
tag of each post. It is possible for the Java database to miss some code-description map-
pings of Java if they are not tagged with java in StackOverflow. However, given the
fact that StackOverflow is well maintained, the Java database should contain most of the
Java code-description mappings from StackOverflow. We can potentially leverage previous
techniques [20, 21, 22] to help classify the posts in StackOverflow to locate more relevant
code-description mappings.

5.2 Comment Quality

Some generated comments are incorrect, contain overlapping information, or are too trivial
at describing the code. It is challenging to analyze natural language sentences because they
are highly unstructured. We can apply advanced NLP techniques such as semantic role
labeling to analyze the semantics of the sentences, or typed dependencies to analyze the
grammatical structure of the sentences. One of the possible directions is to design templates
to extract certain sentence structures based on the grammatical structure. It allows one to
restrict the types of sentences that we extract. For example, “Convert array of strings into
a string”. The sentence has a verb phrase “Convert ...” with a direct object “array”, and
a prepositional phrase “into ...” with an object “string”. One can generalize this grammar
structure to extract sentences that utilize different prepositional phrases. For example, the
template can match against a wide variety of sentences such as “Convert array of strings
towards a string”, or “Convert array of strings to a string”.

We can leverage information such as the author’s post count to determine the quality of
the extracted code-description mappings. It is also feasible to use advanced text similarity
measures by incorporating synonyms and the importance of the similar words (e.g., tf-idf
scores) to identify relevant sentences more accurately to generate more accurate comments.
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5.3 User Study

Our current user study requests the participants to rank the quality of the comments based
on the accuracy, adequacy, conciseness, and usefulness criteria. However, this is subjective
and each participant has a different standard based on their programming background.
In order to create a baseline, we need to show two comments to the participants and ask
them to compare their relative quality. This can be achieved by asking the participants to
compare between 1) a comment that is synthesized using AutoComment, and 2) a comment
that is written by another participant. This way we can understand if the automatically
generated comments are better compared to human written comments.
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Chapter 6

Related Work

Much work for comment generation generates comments from the source code. Our work
takes a different approach and attempts to mine comments from Question and Answer
sites.

6.1 Automatic Comment Generation

Automatic comment generation generates comments automatically for certain code struc-
tures, such as failed test cases [23], exceptions [16], APIs [24], code changes [25] and
function parameters [26]. Sridhara et al. proposed an approach to generate comments
automatically from code for Java methods [4], high level actions within methods [5], and
Java classes [27]. Other work generates comments for software concerns [28] and MPI
programs [29]. However, these techniques do not solve the problem of grouping statements
that perform different sub-actions into a high level action. Recently, Wang et al. [30]
proposed a grouping strategy that segments method code into meaningful blocks. The
grouping strategy can potentially improve the previous technique [5]. However, it is still
difficult to generate comments for a group of statements with different sub-actions.

Different from previous work, AutoComment leverages a Q&A site—StackOverflow for
automatic comment generation instead of source code. Our approach is not limited to
the grouping strategy (as discussed in Section 1 and 1.1.1) because AutoComment can
naturally group the statements based on the code segments from StackOverflow written
by developers. Previous work by Sridhara et al. automatically generates high level actions
within methods [5], but their technique works on statement sequences that are conditional
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blocks, perform similar actions, or follow specific templates. Our work can generate a high
level comment for multiple statements that perform different actions.

6.2 Mining Descriptions for Code Artifact

One contribution of AutoComment is the databases of code-description mappings. Many
studies mine descriptions or documentations for code artifacts from developers’ commu-
nications, such as bug reports, forum posts and emails [31, 32, 33]. These studies focus
on project specific descriptions. For example, they extract descriptions for Eclipse code
artifacts from the mailing list and bug tracking system of Eclipse. Thus, such descriptions
are more likely to benefit Eclipse.

Different from previous work, the code-description mappings discovered by AutoCom-
ment are general for each domain, e.g., the Java database should benefit all Java projects.
In addition, these studies focus on method level descriptions, and they aim at documen-
tations instead of more concise comments. Our work is not limited to methods, and we
adapt NLP techniques to improve the comment quality. In addition, previous work lever-
ages heuristics (e.g., text similarity) to link descriptions and code. Our approach combines
clone code detection and heuristics to improve the accuracy. Some work helps improve code
extraction from unstructured data, such as emails and documents [34, 35]. In the future,
AutoComment can leverage these techniques to extract more code-description mappings
from emails and documents, not only from Q&A sites.

6.3 Code Clone Detection

There are three kinds of code clone detection techniques: token-based [14, 36, 37], AST-
based [38, 39], and semantics-based [40]. As most of the code segments from StackOverflow
are uncompilable, AST-based and semantics-based techniques are not suitable for use.
AutoComment leverages a token-based tool, SIM [14], to detect matched code segments
because it is an open source tool and can be extended to support other programming
languages.
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6.4 Automatic Code Generation

Some researchers work on generating code from natural language descriptions [41, 42, 43].
These studies point out a valuable application of our techniques and results. Our code-
description mapping databases can potentially be used to assist in automatically generating
code from natural language descriptions.
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Chapter 7

Conclusions

We proposed a new, general approach to mine Question and Answer site for automatic
comment generation. Our tool generated 102 comments from the 23 evaluated projects.
The number of generated comments is still low, but we had identified several directions to
tackle the issue. We leverage descriptions that developers use to describe code segments in
StackOverflow. The generated comments are accurate and useful in helping developers un-
derstand the code segments as confirmed by the conducted user study. Also, the generated
comments can contain information that is not explicitly in the code segment, which is a
significant advantage of the proposed approach over the previous techniques on automated
comment generation.

In the future, we want to focus on improving both the yield and quality of the generated
comment. To improve the yield, we can expand the size of the code-description mapping
database by including StackOverflow answers that do not have the highest vote count.
Another way is to use a code clone detection tool that can detect addition and reordering
of lines to increase the number of code matches. To improve the quality, we can apply
advanced NLP techniques such as semantic role labeling to analyze the semantics of the
sentences, or typed dependencies to analyze the grammatical structure of the sentences.
In addition, the code-description mapping databases can be leveraged for other purposes
such as program synthesis, which generates code automatically from natural language
descriptions.
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Appendix A

Ethics Clearance Approval

From: ORE Ethics Application System <OHRAC@uwaterloo.ca>
To: lintan@uwaterloo.ca

CC: e32wong@uwaterloo.ca, j223yang@uwaterloo.ca

Date: Mon, Feb 11, 2013 at 3:21 PM

Subject: Ethics Clearance (ORE # 18754)

Dear Researcher:

The recommended revisions/additional information requested in the ethics

review of your ORE application:

Title: AutoComment: Mining Developer Forums for Automatic Comment

Generation

ORE #: 18754

Faculty Supervisor: Lin Tan (lintan@uwaterloo.ca)

Student Investigator: Edmund Wong (e32wong@uwaterloo.ca)

Student Investigator: Jinqiu Yang (j223yang@uwaterloo.ca )

have been reviewed and are considered acceptable. As a result, your

application now has received full ethics clearance.

A signed copy of the Notification of Full Ethics Clearance will be sent

to the Principal Investigator or Faculty Supervisor in the case of student
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Appendix B

Sample User Study Questionnaire

==================================================================
Q1: Please read the marked code that is highlighted between ####
==================================================================

public String getToolTipText(MouseEvent e) {
############### Marked code starts here ###############

java.awt.Point p = e.getPoint ();
int rowIndex = rowAtPoint(p);
int colIndex = columnAtPoint(p);

############### Marked code ends here ###############
if (rowIndex < 0 || colIndex < 0) {

return null;
}
Object o = getModel ().getValueAt(convertRowIndexToModel(rowIndex),

convertColumnIndexToModel(colIndex));
if (o == null) {

return null;
} else if (o instanceof IconLabel) {

return (( IconLabel) o).getTooltip ();
} else if (o instanceof Date) {

return FORMATTER.format ((Date) o);
} else {

return o.toString ();
}

}

Q1.1: Please write your comment that describes the functionality of the marked
code segment:

[ ] I do not have an answer
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Q1.2: Please read this comment:
"Find on which row and column the mouse is."

(a): The comment above is accurate in describing the marked code:

(Strongly Disagree) 1 2 3 4 5 (Strongly Agree)

(b): The comment above is adequate (i.e., is not missing information)
in describing the marked code:

(Strongly Disagree) 1 2 3 4 5 (Strongly Agree)

(c): The comment above is concise in describing the marked code:

(Strongly Disagree) 1 2 3 4 5 (Strongly Agree)

(d): The comment above helps me understand the highlighted code:

(Strongly Disagree) 1 2 3 4 5 (Strongly Agree)
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