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Abstract

To assess the similarities and the differences among protein structures, a variety of

structure alignment algorithms and programs have been designed and implemented. We

introduce a low-resolution approach and a high-resolution approach to evaluate the simi-

larities among protein structures. Our results show that both the low-resolution approach

and the high-resolution approach outperform state-of-the-art methods.

For the low-resolution approach, we eliminate false positives through the comparison of

both local similarity and remote similarity with little compromise in speed. Two kinds of

contact libraries (ContactLib) are introduced to fingerprint protein structures effectively

and efficiently. Each contact group from the contact library consists of one local or two

remote fragments and is represented by a concise vector. These vectors are then indexed

and used to calculate a new combined hit-rate score to identify similar protein structures

effectively and efficiently.

We tested our ContactLibs on the high-quality protein structure subset of SCOP30,

which contains 3, 297 protein structures. For each protein structure of the subset, we

retrieved its neighbor protein structures from the rest of the subset. The best area under the

ROC curve, archived by a ContactLib, is as high as 0.960. This is a significant improvement

over 0.747, the best result achieved by the state-of-the-art method, FragBag.

For the high-resolution approach, our PROtein STructure Alignment method (PROSTA)

relies on and verifies the fact that the optimal protein structure alignment always contains

a small subset of aligned residue pairs, called a seed, such that the rotation and translation

(ROTRAN), which minimizes the RMSD of the seed, yields both the optimal ROTRAN

and the optimal alignment score. Thus, ROTRANs minimizing the RMSDs of small sub-

sets of residues are sampled, and global alignments are calculated directly from the sampled

ROTRANs. Moreover, our method incorporates remote information and filters similar RO-

TRANs (or alignments) by clustering, rather than by an exhaustive method, to overcome

the computational inefficiency.

Our high-resolution protein structure alignment method, when applied to optimizing

the TM-score and the GDT-TS score, produces a significantly better result than state-of-

the-art protein structure alignment methods. Specifically, if the highest TM-score found by
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TM-align is lower than 0.6 and the highest TM-score found by one of the tested methods is

higher than 0.5, our alignment method tends to discover better protein structure alignments

with (up to 0.21) higher TM-scores. In such cases, TM-align fails to find TM-scores higher

than 0.5 with a probability of 42%; however, our alignment method fails the same task

with a probability of only 2%.

In addition, existing protein structure alignment scoring functions focus on atom co-

ordinate similarity alone and simply ignore other important similarities, such as sequence

similarity. Our scoring function has the capacity for incorporating multiple similarities

into the scoring function. Our result shows that sequence similarity aids in finding high

quality protein structure alignments that are more consistent with HOMSTRAD align-

ments, which are protein structure alignments examined by human experts. When atom

coordinate similarity itself fails to find alignments with any consistency to HOMSTRAD

alignments, our scoring function remains capable of finding alignments highly similar to,

or even identical to, HOMSTRAD alignments.
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Chapter 1

Introduction

Proteins function in living organisms as enzymes, antibodies, sensors, and transporters,

among myriad other roles. The understanding of protein function has great implications

for the study of biological and medical sciences. It has been widely accepted that pro-

tein function is largely determined by protein structure. Moreover, protein structures are

more conserved than protein sequences. Therefore, protein structures are often aligned for

their common substructures, for the purpose of discovering functionally or evolutionarily

meaningful structure units.

To assess the similarities and the differences among protein structures, a variety of

structure alignment algorithms and programs have been designed and implemented [40,

64, 29, 66]. We introduce a low-resolution approach and a high-resolution approach to

evaluate the similarities among protein structures. These two approaches can be used

either individually or together in protein studies, and our results show that both the low-

resolution approach and the high-resolution approach outperform state-of-the-art methods.

The fundamentals of protein structure alignment are further described in Chapter 2.

The low-resolution approach is useful to many protein studies. For example, when a

new protein structure is experimentally determined, one interesting question is to annotate

the protein function based on previously annotated proteins that are structurally similar

to the newly determined protein. In this case, the low-resolution approach can be adopted

to quickly scan all known protein structures and identify potential candidates of interest.
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Because of the large number of annotated proteins, the speed is our primary concern for

the low-resolution approach.

For some protein studies, a high-resolution approach is preferred over a low-resolution

approach. For example, when we have a pair of proteins that potentially share common

evolution history or functions, one interesting question is to identify the highly conserved

regions and to access the similarities of the highly conserved regions. In this case, the

high-resolution approach can be adopted to accurately align two protein structures and

evaluate the similarities between them. The input protein structures are also optimally su-

perimposed by the high-resolution approach so that one can visually check the similarities.

Here, the accuracy is our primary concern for the high-resolution approach.

Previous protein structure studies, on high resolution protein structure data, show that

the same type of bond lengths and bond angles fit Gaussian distributions well, with small

standard deviations [21, 22]. The mean values of these Gaussian distributions have been

widely used as ideal bond lengths and ideal bond angles in bioinformatics [28, 69, 50, 8].

However, we are not aware of any research done to evaluate how accurately one can model

protein structures with ideal bond lengths, ideal bond angles and bond dihedral angles.

In Chapter 3, we introduce our protein structure idealization method that focuses on

protein backbone structure idealization. We describe a fast O(nm/ǫ) dynamic program-

ming algorithm to find an idealized protein backbone structure, which is approximately

optimal according to our scoring function. Our scoring function evaluates not only the

statistical energy, but also the similarity with the target structure. Thus, the idealized

protein structures found by our method are guaranteed to be protein-like and close to the

target protein structure.

We have implemented our protein structure idealization method and successfully ide-

alized the 1, 898 high resolution protein structures with low sequence identities of the

CULLPDB PC30 RES1.6 R0.25 data set [72]. We demonstrated that idealized backbone

structures always exist with small refinements and significantly better statistical energy.

Thus, protein structures can be modeled accurately with ideal bond lengths, ideal bond

angles and bond dihedral angles. We also applied our idealization method to refine protein

pseudo-structures determined in NMR experiments.
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A very large amount of data is currently available for protein structure studies, and

the number of known protein structures in the Protein Data Bank has exceeded 90,000 [5].

A major drawback with current structure alignment programs is that they require a large

amount of computational time, rendering them infeasible for pairwise alignments on large

collections of protein structures. To overcome this drawback, a fragment alphabet learned

from known structures has been introduced [7]. The method, however, considers local

fragment similarity only, and therefore occasionally assigns high scores to structures that

are similar only in local fragments.

In Chapter 4, we propose a novel approach for retrieving protein structures that are

similar to a given protein structure in a large protein structure database. Our method

eliminates false positives, through the comparison of both local similarity and remote sim-

ilarity, with little compromise in speed. Two kinds of contact libraries (ContactLib) are

introduced to fingerprint protein structures. Here, each contact group from the contact

library consists of one local or two remote fragments. In current protein structure align-

ment methods [40, 29], a protein structure is usually represented by either 3-dimensional

coordinates, which are difficult to index [46, 75], or a pairwise distance matrix, which has a

significantly higher number of dimensions [32]. However, the result of our protein structure

idealization experiment suggests to use a distance vector with a number of dimensions sim-

ilar to that of the 3-dimensional coordinates. These vectors can be easily indexed and used

to calculate a new combined hit-rate score to identify similar protein structures effectively

and efficiently.

We tested our ContactLib method on the high-quality protein structure subset of

SCOP30 [59], which contains 3, 297 protein structures. For each protein structure of the

SCOP30 subset, we retrieved similar protein structures from the remaining SCOP30 sub-

set. The performance was evaluated by the area under the receiver operating characteristic

(ROC) curve. As a result, the best area under the ROC curve, archived by our ContactLib,

is 0.960. This is a significant improvement, compared to 0.747, which is the best result

achieved by FragBag [7].

Our ContactLib method can be seen as a fast low-resolution approach for the selection

of potentially similar protein structures and for the elimination of dissimilar protein struc-

tures from a large collection of protein structures. Given a pair of protein structures that
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are potentially similar, an accurate high-resolution approach to locate the similar regions

and to evaluate the similarity between the protein structure pair is also desired. Before

introducing our high-resolution approach, we studied a simplified version of the protein

structure alignment problem, which provided the fundamental observation for our protein

structure alignment method.

In Chapter 5, we introduce a simple and reliable method to optimally superimpose two

protein structures, given the aligned residue pairs and the scoring function. State-of-the-

art superimposition programs, TMscore [85] and LGA [83], begin looking for the optimal

superimposition by calculating the rotation and translation (ROTRAN) that minimizes the

RMSD of a highly conserved small subset (seed) of aligned residue pairs. Unlike TMscore

and LGA, our superimposition method employs not only consecutive seeds containing

contiguous aligned residue pairs, but also gapped seeds which do not require the aligned

residue pairs to be contiguous. Moreover, a weighted RMSD is used with gapped seeds as

refinement.

Our superimposition experiment on the HOMSTRAD database [57] and the CASP10

dataset [43] shows that the optimal protein structure alignment always contains a seed

(highly conserved small subset) such that the rotation and translation, which minimizes

the RMSD of the seed, yields both the optimal superimposition and the optimal alignment

score. Moreover, when calculating the TM-scores [85] and the GDT-TS scores [83] between

the predicted and the native structures of CASP10, our superimposition method is capable

of finding TM-scores and GDT-TS scores that are similar to, or (possibly significantly)

higher than, those found by TMscore [85] and LGA [83], respectively.

A variety of methods have been proposed for protein structure alignment. One ma-

jor shortcoming in current structure alignment methods is in their inherent design, which

begins with primary and secondary structure alignments and fragment similarity. Unlike

current methods, our PROtein STructure Alignment (PROSTA) method is based on our

observation that the optimal protein structure alignment always contains a seed such that

the ROTRAN, which minimizes the RMSD of the seed, yields both the optimal ROTRAN

and the optimal alignment score. Thus, ROTRANs are sampled by minimizing the RMSDs

of seeds, and global alignments are calculated directly from the sampled ROTRANs. More-

over, our method incorporates remote information and filters similar ROTRANs (or align-
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ments) by clustering, rather than by an exhaustive method, to overcome the computational

inefficiency. The details of our PROSTA method are described in Chapter 6.

Our PROSTA method, when applied to optimizing the TM-score [85] and the GDT-TS

score [83], produces significantly better protein structure alignments than current methods.

Specifically, if the highest TM-score found by TM-align [87] is lower than 0.6 and the highest

TM-score found by one of the tested methods is higher than 0.5, our alignment method

tends to discover better protein structure alignments, with (up to 0.21) higher TM-scores.

In such cases, TM-align fails to find TM-scores higher than 0.5 with a probability of 42%,

while our alignment method fails the same task with a probability of only 2%. Comparing

the GDT-TS scores found by our alignment method and those found by LGA [83], we

find that our alignment method improves the GDT-TS scores by up to 0.44, and it also

finds 156% more alignments with GDT-TS scores higher than 0.5. This could significantly

improve the fold detection accuracy if the cut-off score of 0.5 is used as the threshold of

fold detection.

Another major shortcoming in current protein structure alignment methods is in their

scoring functions. These scoring functions tend to focus on atom structure similarity alone,

and simply ignore other protein similarities, such as sequence similarity. Although atom

structure similarity may be efficient in many cases, incorporating multiple protein similari-

ties helps to improve alignment quality. In Chapter 7, we introduce a new protein structure

alignment scoring function incorporating a variety of of protein similarities. In this initial

study, we focus on incorporating atom coordinate similarity and sequence similarity into a

more reliable alignment score.

Our results show that incorporating atom structure similarity and sequence similar-

ity assists in finding better protein structure alignments that are (possibly significantly)

more consistent with HOMSTRAD alignments [57], which are protein structure align-

ments examined by human experts. When atom structure similarity itself fails to find any

alignments with any consistency to the HOMSTRAD alignments, our scoring function is

nevertheless able to find alignments that are highly consistent with, or even identical to,

the HOMSTRAD alignments. Thus, our result suggests the advantage of incorporating

multiple protein similarities, instead of focusing on atom structure similarity, for the best

alignment.
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Some of the research described in this thesis has been published, while the remaining has

been submitted to highly regarded journals. Specifically, the protein structure idealization

method has been published in [13, 11]; the fast low-resolution similar protein structure

retrieval method has been published in [14]; part of the protein structure alignment and the

alignment scoring function has been published in [12]; the protein structure superimposition

method has been submitted as an application note; and the protein structure alignment

method has been submitted as an original paper.
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Chapter 2

Fundamentals

Before introducing our low-resolution approach and our high-resolution approach to eval-

uate the similarities among protein structures, the fundamentals are described in this

chapter. Specifically, the protein structure idealization problem is introduced in Section

2.2, the neighbor protein structure retrieval problem is introduced in Section 2.3, the pro-

tein structure superimposition problem is introduced in Section 2.4, the protein structure

alignment problem is introduced in Section 2.5, and the protein structure alignment scoring

function is introduced in Section 2.6.

2.1 Terminologies

Proteins are biological molecules performing different functions within living organisms.

A protein complex contains one or multiple chains of amino acids connected by peptide

bonds. The 3-dimensional structure of a single chain of the protein complex is called a

protein tertiary structure, and the amino acid sequence of a single chain is called a protein

primary structure. Unless specifically specified, a protein tertiary structure is referred to

as a protein structure, and a protein primary structure is referred to as a protein sequence

in this manuscript.

Protein structures were determined experimentally and stored in the protein data bank
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(PDB) [5]. Recently, the number of known protein structures stored in PDB had exceeded

90,000. In PDB, each protein structure is represented by the coordinates of the atoms of

the protein. Since different amino acids contain different numbers and types of atoms, it is

not convenient to perform an all-atom similarity evaluation between two protein structures.

Thus, researchers tend to focus on the backbone atoms. In this manuscript, the coordinates

of the Cα atoms on the protein backbone are used as the representatives for amino acids

when comparing protein structures.

In case that the aligned residue pairs of two protein structures are given, the similarity

between the two protein structures can be evaluated by the the root-mean-square deviation

(RMSD) defined as follows:

RMSD =
n

∑

i=1

√

d2i
n
, (2.1)

where di is the Euclidean distance between the representative Cα atoms of the i-th aligned

residue pair, and n is the number of aligned residue pairs. In practice, the optimal RMSD

can be calculated by Kabsch’s method [38] or a quaternion-based characteristic polynomial

method [71].

When the superimposition of two protein structures is given, the similarity between the

two protein structures can be evaluated by the TM-score [85] defined as follows:

TM-score =
1

N

n
∑

i=1

1

1 + d2i /d
2
0

, (2.2)

where di is the Euclidean distance between the representative Cα atoms of the i-th aligned

residue pair, d0 is the normalization distance defined as d0 = 1.24(N − 15)1/3 − 1.8, n is

the number of aligned residue pairs, and N is the normalization number defined on the

number of residues of the protein structures. In practice, the optimal TM-score can be

calculated by the Needleman-Wunsch dynamic programming algorithm [60].

Other than TM-score [85], GDT-TS score [83] can also be used to evaluate the similarity

between two protein structures when the superimposition is given. Formally, the GDT-TS

score is defined as follows:

GDT-TS =
n1 + n2 + n4 + n8

4N
, (2.3)
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where nd is the number of aligned residue pairs such that the Euclidean distance between

the representative Cα atoms of the aligned residue pair is less than d, and N is the nor-

malization number defined on the number of residues of the protein structures. Similar

to TM-score, the optimal GDT-TS score can be calculated by the Needleman-Wunsch

dynamic programming algorithm [60].

2.2 Protein Structure Idealization

When studying the functions of a protein, it is crucial to know the three-dimensional struc-

ture consisting of the Cartesian coordinates of all the atoms of the protein. These atoms

are bonded together by inter-atomic forces called chemical bonds. It has been observed

that the bond lengths and angles of the same type assume a Gaussian distribution with

a small standard deviation (STDEV) in high resolution protein structure data. Typically,

the bond lengths on protein backbones have STDEVs between 0.019Å and 0.033Å while

the bond angles on protein backbones have STDEVs between 1.5◦ and 2.7◦ [21, 22]. These

results suggest the possibility for modeling protein structures with the mean values of bond

lengths and angles, which are often referred to as ideal values.

Ideal bond lengths and angles have been widely used in nuclear magnetic resonance

(NMR) protein structure determination [28] and in protein structure prediction [69, 50, 8].

Moreover, stereochemical restraints are also used in X-ray protein structure determina-

tion [44, 45]. In protein structure prediction, the main advantage for using ideal bond

lengths and angles is a reduction in the search space for the target protein structure.

Specifically, if the target protein has n amino acids, the number of N , Cα and C atoms on

the backbone is 3n; thus, the Cartesian search space for the idealized backbone structure

has a degree of freedom of 9n [70]. However, if all bond lengths and angles have ideal val-

ues, the protein backbone structure can be represented by a series of bond torsion angles

in the feasible bond torsion angle space. In this case, the degree of freedom is reduced to

approximately one tenth of that in the Cartesian space [70].

Although ideal bond lengths and angles have been widely used and accepted, we are

not aware of any research done to evaluate how accurately it is possible to model protein
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structures with dihedral angles. This motivates us to solve what we call the protein struc-

ture idealization problem: given the coordinates of the target protein structure, find the

coordinates of the optimal idealized protein structure. Here, an idealized protein structure

is a protein structure with bond lengths and angles that are ideal with respect to a given

scoring function; the function depends on the resultant structure’s statistical energy, as

well as its similarity with the target structure. Thus, the idealized protein structure is

taken to be a protein-like structure that is close to the target protein structure.

We solve the protein structure idealization problem by idealizing the backbone structure

first and then idealizing the side-chain structure. This approach is widely accepted because

previous research suggests that the backbone conformation is archived before the side-chain

conformations are archived [18]. In our work, Ω dihedral angles are rounded to be either 0◦

or 180◦. Some discussions on the properness of idealizing Ω dihedral angles can be found

in [23, 34].

We introduce a novel dynamic programming algorithm with a run-time complexity

of O(n/ǫ8), where ǫ is a small constant, to find the optimal idealized protein backbone

structure according to our scoring function. In practice, we observed that it is unnecessary

to remember the entire dynamic programming table. Thus, with a filtering technique, the

run-time complexity is further reduced to O(nm/ǫ), where m is a constant integer.

Given the idealized protein backbone structure, idealized side-chain structures are de-

termined using an exhaustive search which assumes that side-chain structures for different

residues are independent from each other. The scoring function is similar to the one we

used for backbone structure idealization. In practice, we observe that it is efficient to

regenerate idealized structures that are similar to a given idealized structure. We also

refine the idealized backbone and side-chain structures according to our scoring functions

iteratively.

We use our algorithm to evaluate how accurately it is possible to model protein struc-

tures with dihedral angles. We idealize all the X-ray protein structures from PDB [5],

which satisfy the high resolution and the low sequence identity constraints downloaded on

June 6, 2008 [72, 73]. The results show that such idealized structures always exist and that

they are very similar to the target structures, in terms of the root-mean-square deviation
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(RMSD) of Cα or all atoms. Moreover, the idealized backbone structures tend to have

dDFIRE statistical energy scores [88], which are significantly better than the target struc-

tures. The results support our conclusion that it is possible to model protein structures

accurately with dihedral angles on all high resolution protein backbone structures.

One application of the protein structure idealization algorithm is for refining protein

pseudo-structures, either determined in experiments or predicted by computers. We have

demonstrated one such case for improving poor (Φ,Ψ) dihedral angles of protein structures

determined by NMR. The result is also consistent with the previous experiment showing

that the idealized structure has a small RMSD and better backbone statistical energy. In

the conclusion, we discuss several potential applications for our protein structure idealiza-

tion algorithm.

2.3 Neighbor Protein Structure Retrieval

While assessing the similarities and differences between protein structures is a common

practice in structural biology, efficiently performing this comparison is critical in some

applications. For example, once a new protein structure is determined, researchers often

need to infer its function or evolution by studying proteins with similar structures. A few

databases, such as SCOP [59, 9] and CATH [61], maintain hierarchical classifications of

known protein structures. The need to obtain structures similar to the new protein from

these databases motivates the neighbor protein structure retrieval problem: given a query

protein structure and a database of protein structures, retrieve all the structures in the

database that are similar to the query structure.

One intuitive solution to the neighbor protein structure retrieval problem is to align the

query protein structure with every protein structure of the database using a pairwise protein

structure alignment tool. One successful approach for pairwise protein structure alignment

is to represent protein structures as 3D coordinates and to find the optimal residue map-

ping and orientation (rotation and translation) together, as stralign [1], CE [68], LGA [83],

SSM [41], TM-align [87], and SPalign [81] proposed. An orientation-free approach is pos-

sible by encoding each structure as a 2D matrix of residue-residue interaction distances;
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comparison between two structures can be performed by an “alignment” of their respec-

tive matrices, as proposed in DALI [32]. One drawback of adopting these approaches is

inefficiency, especially when the protein structure database is large. Whether or not 3D

coordinates or distance matrices are used, solving the pairwise protein structure alignment

problem is time consuming. Thus, all of these pairwise protein structure alignment tools

adopt heuristic approaches without a global optimality guarantee. Unfortunately, such

heuristic approaches are still time-consuming [40, 2].

The concern for efficiency has prompted the use of 1D protein structure profiles, which

often perform very well. In particular, the state-of-the-art method, FragBag [7], has been

shown experimentally to be fast and accurate, on average. Specifically, FragBag represents

a protein structure as a profile that contains counts of structure fragments in a fragment al-

phabet learned from known structures. Then, neighbor protein structures can be retrieved

by comparing the profiles efficiently. One drawback, however, is that although FragBag is

capable of delivering high average accuracy, its accuracy is sometimes significantly worse

than average. This accuracy drop occurs when two structures are similar in many local

fragments but differ significantly in their overall structure; since FragBag compares only

local contacts, it fails to identify the large non-local discrepancy in these structures.

We present ContactLib, a contact group library that contains all known contact groups

which are to be used as fingerprints of protein structures. FragBag [7] and local feature

frequency profile (LFFP) [10] are two promising tools that are closely related. Our Con-

tactLib is different from FragBag and LFFP in the following ways: (1) FragBag and LFFP

are developed on general structure fragments, while ContactLib introduces both local and

remote contact groups eliminating potentially weak contact groups; (2) FragBag and LFFP

use 3D coordinates or 2D distance matrices, while ContactLib introduces 1D distance vec-

tors that can be efficiently indexed; (3) FragBag and LFFP require a predefined word

alphabet, while ContactLib avoids using a word alphabet and introduces some freedom

of specifying similarity thresholds at runtime; (4) FragBag and LFFP use word frequency

profiles and distance functions from the text information retrieval problem, while Con-

tactLib introduces a combined hit-rate scoring function for the neighbor protein structure

retrieval problem. Since the word alphabet of LFFP is not publicly available, we focus on

comparing ContactLib and FragBag in our experiments.
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We built two ContactLibs: ContactLib-9L, that models local contacts, and ContactLib-

3R, that models remote contacts. Using one or both ContactLibs, we tested our method

on the high-quality protein structure subset of SCOP30 [59, 9] containing 3, 297 protein

structures. For each protein structure, we retrieved its neighbor protein structures from

those remaining.

According to the receiver-operating characteristic (ROC) curve analysis [24], the best

area under the ROC curve (AUROC), archived by ContactLib, is as high as 0.960. This

is a significant improvement when compared to 0.747, which is the best result achieved by

FragBag [7]. Specifically, when ContactLib-3R is used, 75% of the AUROC’s are higher

than 0.936, and the lowest AUROC is 0.504. When ContactLib-9L is used, 75% of the AU-

ROC’s are higher than 0.823, and 3% of the AUROC’s are lower than 0.5. However, when

FragBag is used, 75% of the AUROC’s are higher than 0.657, and 10% of the AUROC’s

are lower than 0.5. Therefore, the worst-case AUROC is significantly improved by using

ContactLib, and ContactLib-3R is furthermore able to guarantee an AUROC higher than

that achieved with a random method, which has an AUROC equal to 0.5.

2.4 Protein Structure Superimposition

Given the aligned residue pairs of two aligned protein structures and the scoring function,

the optimal protein structure superimposition problem is defined as finding the optimal su-

perimposition that maximizes the alignment score. The problem has many applications in

computational structural biology. For example, to evaluate the quality of protein structure

prediction methods, a TM-score [85] and a GDT-TS score [83] are calculated between each

pair of the predicted and the native structures during the ninth Critical Assessment of pro-

tein Structure Prediction (CASP) [39]. To calculate these alignment scores, the optimal

superimposition problem must first be solved [85, 83].

The optimal protein structure superimposition problem is challenging. However, if the

root-mean-square deviation (RMSD) is used as the scoring function, the problem of find-

ing the maximum set of aligned residue pairs within a RMSD threshold may be solved in

O(l11) time [52], where l is the number of aligned residue pairs. Although the problem
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can be solved in polynomial time, implementation is computationally expensive. Thus,

heuristic approaches have been adopted in state-of-the-art methods, TMscore [85] and

LGA [83]. Specifically, initial rotation and translation (ROTRAN) is sampled by minimiz-

ing the RMSD of contiguous aligned residue pairs, and is refined iteratively by extending

the number of aligned residue pairs, which are geometrically close after the superimposi-

tion, until convergence.

We introduce PROSTA-super, a simple and reliable method to solve the optimal protein

structure superimposition problem. Our superimposition method relies on and verifies

the fact that the optimal protein structure alignment always contains a small subset of

aligned residue pairs, called a seed, such that the ROTRAN, which minimizes the RMSD

of the seed, yields both the optimal ROTRAN and the optimal alignment score. Unlike

current superimposition methods [85, 83], our superimposition method employs not only

consecutive seeds that contain contiguous aligned residue pairs, but also employs gapped

seeds that do not require the aligned residue pairs to be contiguous. Then, alignment scores

are calculated directly from sampled ROTRANs. Thus, our superimposition method does

not require seed assembly or seed extension. Moreover, weighted RMSDs of gapped seeds

are used in the refinement step in our superimposition method.

Our protein structure superimposition method, PROSTA-super, has been implemented

in C++ with OpenMP. Our result shows that our superimposition method is capable of

finding TM-scores [85] and GDT-TS scores [83] that are similar to or (possibly significantly)

higher than those found by TMscore [85] and LGA [83], respectively. Moreover, our method

is significantly faster than LGA, and it has the added benefit of concurrent programming.

One can also trade accuracy for speed by using fewer types of seeds in the first step or by

reducing the number of refinement iterations in the second step.

2.5 Protein Structure Alignment

Protein structures are usually modeled as 3-dimensional coordinates of atoms. Thus, the

alignment of two protein structures can be modeled as an optimization problem to mini-

mize the distance between two protein structures after a specific rigid transformation (i.e.,

14



A B

(a) Aligned local fragments

A B

(b) Aligned remote frag-

ment pairs

Figure 2.1: Aligned local fragments and remote fragment pairs between protein structures

A and B: each vertex represents a residue (the number of residues can be different); each

solid edge represents a pseudo-bond between adjacent residues along the chain; and each

dashed edge represents an arbitrary number of residues (possibly from different chains).

a rotation and a translation, referred to as ROTRAN ). Given the ROTRAN, the align-

ment can be calculated by the Needleman-Wunsch dynamic programming algorithm [60];

and given the aligned residue pairs, the ROTRAN minimizing the root-mean-square devi-

ation (RMSD) can be found by Kabsch’s method [38] or a quaternion-based characteristic

polynomial method [71].

Most existing methods for protein structure alignment are heuristic in nature due to

the intensive computation in search of optimal aligned residues [1, 49, 68, 62, 41, 74]. For

example, TM-align [87] creates an initial alignment through primary and secondary struc-

ture alignments and extracts an initial ROTRAN (or alignment) accordingly. Then, the

ROTRAN is improved iteratively until convergence. This approach suffers from possibly

unsatisfactory initial alignments and from a lack of optimality guarantees in the final re-

sult. TM-align was improved by the fragment-based approach in fr-TM-align [63], in which

local structure alignments are computed and represented by the fragment alignments. A

dynamic programming algorithm is then employed to assemble the fragment alignments

and to generate a set of initial ROTRANs. Finally, ROTRANs are refined iteratively.

However, this method only guarantees the quality of the local alignment rather than of the

global alignment.

Our PROtein STructure Alignment (PROSTA, meaning simple in Polish) method is
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based on the simple observation that similar protein structures share many small subsets of

residues (or Cα atoms) such that the ROTRAN minimizing the RMSD of the small subset

of residues is similar to the ROTRAN yielding the optimal protein structure alignment.

Unlike fr-TM-align [63] that focuses on the small sets containing local fragments, we also

consider the situation in which the small sets contain remote fragment pairs (or contacts).

Here, a remote fragment pair is a pair of fragments that are distant within the same

protein (as shown in Figure 2.1). The remote fragment pairs implicitly model the global

topology, which is critical to the success of the protein structure alignment. Especially

for structure alignments consist of mainly α-helices, the global topology becomes more

important because local structures tend to be similar between α-helices.

Using remote fragment pairs is actually one of the reasons why DALI [32] becomes a

successful protein structure alignment method. Instead of modeling protein structures with

3-dimensional coordinates of atoms, DALI models protein structures as Cα − Cα distance

matrices. First, highly similar 6-by-6 sub-matrices (between remote fragment pairs) are

selected and assembled as initial alignments. Then, a Monte Carlo optimization is used as

refinement. One advantage of using distance matrices is that it avoids superimposing. As

a side effect, DALI does not yield a ROTRAN as our method and most existing alignment

methods [?, ?].

One critical computational challenge for DALI [32] is the large number of similar remote

fragment pairs. If there are n residues in the query protein structure, the number of similar

remote fragment pairs is O(n4). This is the main reason why existing alignment methods

tend to avoid using remote fragment pairs. Moreover, the contact map overlap problem

is NP-hard [26, 53]. To overcome the computational inefficiency, we choose to filter the

ROTRANs by a fast star-like k-median clustering algorithm [3], rather than by using an

exhaustive method. Since similar protein structures tend to have many local fragments

or remote fragment pairs that have similar rotation matrices minimizing RMSDs, these

rotation matrices tend to form a large cluster, as shown in Figure 2.2.

Clustering significantly improves the efficiency of our protein structure alignment method.

Since the area of the rotation matrix space is a constant, and we assume that the maximum

distance between two rotation matrices within a cluster is also a constant, the maximum

number of clusters within the rotation matrix space is limited. This implies that the num-
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(a) ROTRANs initially sampled
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(b) ROTRANs of the four largest clusters

Figure 2.2: ROTRANs, before and after clustering, when aligning SCOP domains d3k2aa

and d2cufa1: each ROTRAN is represented by a coordinate that is calculated by applying

the rotation matrix of the ROTRAN on coordinate (1, 0, 0); the four largest clusters include

19% of the initially sampled ROTRANs; and the optimal ROTRAN that maximizes the

alignment score is located in the largest cluster, which includes 13% of those ROTRANs

initially sampled.
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ber of ROTRANs required to accurately identify large clusters is also limited. Therefore,

only a limited number of ROTRANs are sufficient to identify the large cluster contain-

ing near optimal ROTRANs. Moreover, clustering also helps to eliminate refinements on

similar protein structures because it is unnecessary to refine multiple alignments from the

same cluster.

Some common techniques for generating initial alignments, which are shared by current

protein structure alignment methods, are primary and secondary structure alignments and

fragment alignment assembly or extension [40, 29]. However, our method does not rely

on any of these techniques. Instead, ROTRANs minimizing the RMSDs of the small

subset of residues are sampled, and global alignments are calculated directly from the

sampled ROTRANs. Here, we introduce an initial alignment generation by a ROTRAN

sampling from local fragments and remote fragment pairs, and an alignment refinement by

a random ROTRAN sampling from six (possibly non-successive) aligned random residues.

Our method relies on and verifies the assumption that similar protein structures tend

to have small subsets of residues, such that the ROTRAN minimizing the RMSD of the

small subset of residues is similar to the ROTRAN yielding the optimal protein structure

alignment.

Experimental results suggest that both local fragments and remote fragment pairs show

a significant contribution to finding higher TM-scores [85]. Specifically, if the highest TM-

score found by TM-align [87] is lower than 0.6 and the highest TM-score found by one

of the tested methods is higher than 0.5, our alignment method tends to discover better

protein structure alignments, with (up to 0.21) higher TM-scores. In such cases, TM-align

fails to find TM-scores higher than 0.5 with a probability of 42%, while our alignment

method fails the same task with a probability of only 2%. This could significantly improve

the accuracy of fold detection if the cutoff TM-score of 0.5 is used as the threshold of fold

detection.

Comparing the GDT-TS scores [83] found by our alignment method to those found by

LGA [83], we find that our alignment method consistently finds similar or higher GDT-TS

scores than LGA does. Specifically, our alignment method improves GDT-TS scores by

0.06, on average, and by 0.44, in the best case. As a result, our alignment method finds

156% more alignments with GDT-TS scores higher than 0.5. Similar results are observed
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comparing the GDT-TS scores found by our method and those found by SPalign [81].

Again, our protein structure alignment method is shown to be more reliable for finding

high quality protein structure alignments.

2.6 Protein Structure Alignment Scoring Function

Proteins perform a diverse set of functions within living organisms, and it is widely accepted

that protein function is largely determined by protein structure. Thus, protein structures

are often aligned for their common substructures, to discover functionally or evolutionarily

meaningful structure units. Current superimposition-based protein structure alignment

methods share two common components: the superimposition method, which defines how

the superimposition space is searched, and the scoring function, which evaluates the quality

of protein structure alignments. Given the superimposed atom coordinates, the aligned

residue pairs and the alignment score can be calculated by the Needleman-Wunsch dynamic

programming algorithm [60]. Thus, the quality of the scoring function is critical to the

success of the alignment method.

One limitation of state-of-the-art protein structure alignment scoring functions, specif-

ically, the TM-score [85] and the LG-score [49], is that only atom coordinate similarity is

taken into consideration, while other important protein similarities, such as sequence sim-

ilarity, are ignored. It has been observed that many protein structure alignments, based

only on atom coordinate similarity, are highly sensitive to conformational changes [64].

Thus, sequence similarity has recently been incorporated into protein structure alignment

scoring functions [15, 74]. Here, we introduce a new scoring function that is capable of in-

corporating a variety of protein similarities, and focus on the impact of sequence similarity

in this initial study.

Our results demonstrate that protein sequence similarity enables discovery of high

quality protein structure alignments that are more consistent with HOMSTRAD align-

ments [57], which are curated by human experts. When atom coordinate similarity itself

fails to find any alignments with any consistency to the HOMSTRAD alignments, our

scoring function is nevertheless able to find alignments that are highly consistent with,
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or even identical to, the HOMSTRAD alignments curated by human experts. Moreover,

when the aligned protein structures contain mostly helices, TM-score [85], which involves

only atom coordinate similarity, sometimes introduces residue shifting in the alignments.

However, residue shifting tends to be avoided by using our scoring function, which involves

both atom coordinate similarity and sequence similarity.
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Chapter 3

How accurately one can model

protein structures with dihedral

angles?

In this chapter, we solve the protein structure idealization problem in two steps: (1) the

backbone structure is idealized first using a novel dynamic programming algorithm op-

timizing our scoring function as described in Section 3.1; (2) the side-chain structure is

idealized using an exhaustive search which assumes that side-chain structures of different

residues are independent from each other as described in Section 3.2. We use our algo-

rithm to evaluate how accurately one can model protein structures with dihedral angles

in Section 3.3.1. The results demonstrate that it is possible to model protein structures

accurately with dihedral angles on all high resolution protein backbone structures. We

also demonstrate one application of the protein structure idealization algorithm to refine

protein pseudo-structures either determined in experiments or predicted by computational

methods in Section 3.3.2.
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3.1 Protein Backbone Structure Idealization

Given the target protein backbone structure, we would like to find the optimal idealized

backbone structure. For an idealized protein backbone structure, the coordinates of O, H

and Cβ backbone atoms can be calculated from the coordinates of N , Cα and C backbone

atoms. Thus, we specifically describe how to generate coordinates of N , Cα and C atoms

in this section. For simplicity, a protein backbone structure is always referred to as a

structure unless strictly specified.

3.1.1 Idealized Backbone Structure Generation

Given the target structure, we would like to generate idealized structures fulfilling two

generation goals. First, the idealized structures should be similar to the target structure.

Second, each pair of idealized structures should be some distance away to avoid redundant

computation. Furthermore, we are interested in generating as many of these idealized

structures as possible.

Before describing how we fulfill the generation goals, we describe a simple distance

metric to measure the distance between two sets of coordinates representing the target

protein. Let Pi be a set of coordinates representing the target protein, and P j
i ∈ Pi be the

coordinate of the j-th atom of the target protein. Thus, there is Pi = {P 1
i , P

2
i , ..., P

3n
i },

where n is the number of amino acids of the target protein. For simplicity, let P0 always

represent the target structure, and Pi represent a generated idealized structure for i > 0.

Let D(P k
i , P

k
j ) be the Euclidean distance between P k

i and P k
j . We describe the distance

between Pi and Pj as the bottleneck distance:

D(Pi, Pj) = max
k
D(P k

i , P
k
j ). (3.1)

Using this distance metric, we fulfill both generation goals by satisfying the following

generation constraints:
{

D(P0, Pi) ≤ r ∀i > 0

D(Pi, Pj) ≥ ǫ ∀i, j > 0
. (3.2)
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The first generation constraint assumes that the accuracy of the coordinates of the target

structure is reasonably good, and no-worse than error threshold r. If this constraint is

satisfied, the distance between the target coordinate and any generated coordinates rep-

resenting the same atom is upper bounded by r. Thus, it is reasonable for any generated

idealized structure Pi to be considered similar to target structure P0. If the second gener-

ation constraint is satisfied, for each pair of generated idealized structures, there exists a

pair of coordinates, one from each structure representing the same atom, such that they

are at least ǫ distance away from each other. Therefore, both generation goals are achieved.

These generation constraints suggest limiting the search space inside a sphere with

radius r, and discretizing the search space with grids of size ǫ. When ǫ = 0.001Å, the

accuracy of X-ray crystallography [48] and PDB (protein database) format [65] is reached.

Thus, this method is capable of generating all possible idealized structures at the accuracy

of X-ray crystallography and PDB format.

Given the limited and discretized search space of each atom, one can generate idealized

structure coordinates from the first atom to the last atom. For the first atom, an idealized

coordinate lies within a sphere. Thus, the number of generated coordinates is bounded by

O(1/ǫ3). For each generated coordinate P 1
i of the first atom, an idealized coordinate of the

second atom lies on a ball surface with a constant distance to P 1
i . Thus, the number of

generated coordinates is bounded by O(1/ǫ2). For each generated coordinate pair (P 1
i , P

2
i )

of the first two atoms, an idealized coordinate of the third atom lies on a circle with a

constant distances to P 1
i and P 2

i . Thus, the number of generated coordinates is bounded

by O(1/ǫ). Similarly, the number of generated coordinates for any of the following atoms

is also bounded by O(1/ǫ). Moreover, since we round Ω dihedral angles to either 0◦ or

180◦, the coordinate of any Cα atom is unique and can be calculated from the coordinates

of the previous three atoms.

Therefore, the total number of coordinates generated for all atoms is bounded by

O(1/ǫ2n+4) by induction. Here, it is acceptable to assume that r is a constant because

it is only related to the first atom. For subsequent atoms, we did not limit the search space

to be inside the sphere with radius r as described above, and thus the actual number of

generated coordinates should be much smaller in practice.
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3.1.2 Idealized Backbone Structure Scoring Function

Given the generated idealized structures {Pi}, we need a scoring function SBB(Pi) to find

the optimal idealized structure. The scoring function should evaluate not only the similarity

between generated idealized structure Pi and target structure P0, but should also evaluate

the statistical energy of Pi, to ensure that Pi is protein-like. Thus, we define our scoring

function as follows:

SBB(Pi) = Sf (Pi)−Dα(Pi, P0)−Dβ(Pi, P0)−DH(Pi, P0)−DΦ,Ψ(Pi, P0), (3.3)

where Sf (Pi) is the statistical energy score, Dα(Pi, P0) is the root mean square deviation

(RMSD) of Cα atoms, Dβ(Pi, P0) is the RMSD of Cβ atoms, DH(Pi, P0) is the RMSD of

the hydrogen and oxygen atoms participating in hydrogen bonds, and DΦ,Ψ(Pi, P0) is the

angular RMSD of (Φ,Ψ) dihedral angles.

In our scoring function, the statistical energy is evaluated by a (Φ,Ψ) dihedral angle

log-odd score as the statistical energy score Sf (Pi). Specifically, we discretize the Ra-

machandran plot into grids of 360 by 360, and draw one plot for each type of amino acid.

Then, we calculate the log-odd score Sf (P
1,t
i ) of idealized structure P 1,t

i of the first t atoms:

Sf (P
1,t
i ) =

∑

5≤i≤t,Ai=Cα

log
PAAi−3

(Φi−3,Ψi−3)

Pnull(Φi−3,Ψi−3)
, (3.4)

where one log-odd score is calculated at each Cα atom (by checking that atom type

Ai is Cα) for the previous amino acid (represented by the previous Cα atom at i − 3),

PAAi−3
(Φi−3,Ψi−3) is the probability of the grid containing (Φi−3,Ψi−3) on the Ramachan-

dran plot of amino acid type AAi−3, and Pnull(Φi−3,Ψi−3) is the probability of the null

model with a uniform distribution such that Pnull(Φi−3,Ψi−3) =
1

360
1

360
.

Structure similarity is evaluated by other distance matrices in our scoring function. We

use Dα(Pi, P0) and DΦ,Ψ(Pi, P0) to Dβ(Pi, P0) to serve as a distance metric to conserve the

side-chain structure compatibilities. Here, DΦ,Ψ(Pi, P0) is defined as follow:

DΦ,Ψ(Pi, P0) =

√

√

√

√

∑

i∈{Cα atoms}

D(Φi,Φ0)
2 +D(Ψi,Ψ0)

2

n
, (3.5)
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where Φi and Ψi are the Φ and Ψ dihedral angles of the residue containing the i-th atom,

D(Φi,Φ0) = min(|Φi−Φ0|, 2π−|Φi−Φ0|), and D(Ψi,Ψ0) = min(|Ψi−Ψ0|, 2π−|Ψi−Ψ0|).

Moreover, we use DH(Pi, P0) to serve as a distance metric to conserve the hydrogen bonds.

Thus, some global dependencies are addressed implicitly by distance matricesDβ(P
1,t
i , P 1,t

0 )

and DH(Pi, P0).

3.1.3 Dynamic Programming Algorithm

Theoretically, one can calculate scores for all generated idealized structures as similar

structures always have similar scores. More formally, the method requires the assumption

that D(Pi, Pj) ≤ ǫ =⇒ |SBB(Pi) − SBB(Pj)| ≤ ǫs, which is reasonable for small ǫ. Note

that, since the total number of generated idealized structures is bounded by O(1/ǫ2n+4),

this method is computationally expensive. Thus, we introduce a dynamic programming

algorithm with a filtering technique to find the optimal idealized structure efficiently. For

simplicity, let P a,b
i = {P a

i , P
a+1
i , P a+2

i , . . . , P b
i }.

The dynamic programming algorithm has two assumptions. One assumption is that

given two generated idealized structures P 1,t−1
i and P 1,t−1

j , such thatD(P t−k,t−1
i , P t−k,t−1

j ) ≤

ǫ, there always exists a generated coordinate P t
j for any generated coordinate P t

i , such that

D(P t
i , P

t
j ) ≤ ǫ. We observed that counter examples when k ≥ 5 are rare, though they do

exist theoretically.

The other assumption of the dynamic programming algorithm is that the scoring func-

tion satisfies the additive property, such that SBB(P
1,t
i ) = SBB(P

1,t−k
i ) ⊕ SBB(P

t−k+1,t
i ),

under some addition operators ⊕. First, the statistical energy score Sf (P
1,t
i ) satisfies the

additive property while the addition operators ⊕ is defined as follows:

Sf (P
1,t
i ) = Sf (P

1,t−k
i )⊕ Sf (P

t−k+1,t
i )

= Sf (P
1,t−k
i ) + Sf (P

t−k+1,t
i ).

(3.6)

Second, distance matrices Dα(P
1,t
i , P 1,t

0 ), Dβ(P
1,t
i , P 1,t

0 ), DH(P
1,t
i , P 1,t

0 ) and DΦ,Ψ(P
1,t
i , P 1,t

0 )

satisfy the additive property because RMSDDRMS(P
1,t
i , P 1,t

0 ) satisfies the additive property
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while the addition operators ⊕ is defined as follows:

DRMS(P
1,t
i , P 1,t

0 )

= DRMS(P
1,t−k
i , P 1,t−k

0 )⊕DRMS(P
t−k+1,t
i , P t−k+1,t

0 )

=

√

D2
RMS(P

1,t−k
i , P 1,t−k

0 )(t− k) +D2
RMS(P

t−k+1,t
i , P t−k+1,t

0 )k

t
.

(3.7)

These two assumptions are fundamental to our dynamic programming algorithm. By

induction, the first assumption implies that if D(P t−k,t−1
i , P t−k,t−1

j ) ≤ ǫ, for any generated

idealized structure P t,n
i , there always exists a generated idealized structure P t,n

j such that

D(P t,n
i , P t,n

j ) ≤ ǫ. Recall that the scoring function assumes that D(P t,n
i , P t,n

j ) ≤ ǫ =⇒

|SBB(P
t,n
i ) − SBB(P

t,n
j )| ≤ ǫs, and thus there is SBB(P

t,n
i ) ≈ SBB(P

t,n
j ). If SBB(P

1,t−1
i ) ≥

SBB(P
1,t−1
j ), there is approximately SBB(Pi) = SBB(P

1,t−1
i )⊕ SBB(P

t,n
i ) ≥ SBB(P

1,t−1
j )⊕

SBB(P
t,n
j ) = SBB(Pj). Therefore, ifD(P t−k,t−1

i , P t−k,t−1
j ) ≤ ǫ and SBB(P

1,t−1
i ) ≥ SBB(P

1,t−1
j ),

there is no need to generate P t,n
j to find an approximately optimal solution.

Based on this observation, we developed a novel dynamic programming algorithm.

Idealized structures are still generated as previously described, but the generation process

is stopped for some idealized structures if we know it cannot lead us to the optimal one.

First, the search space for each atom of the target protein is discretized to grids of size

ǫ. When generating coordinates for atom t, if P t−k+1,t
i and P t−k+1,t

j are located in the

same grids Gt−k+1,t = {Gt−k+1, Gt−k+2, Gt−k+3, . . . , Gt}, we know that there is no need to

continue the generation process on the lower scoring one of P 1,t
i and P 1,t

j . Thus, we define

the dynamic programming table TBB(t, G
t−k+1,t) to be the optimal idealized structure for

each observed grids Gt−k+1,t as follows:






TBB(t, G
t−k+1,t) = max

i,Gt−k
TBB(t− 1, Gt−k ∪Gt−k+1,t−1)⊕ SBB(P

t
i ) ∀t > k

TBB(k,G
1,k) = max

i
SBB(P

1,k
i )

, (3.8)

where P t−k,t
j ∈ Gt−k,t and SBB(P

1,t−1
j ) ⊕ SBB(P

t
j ) = SBB(P

1,t
j ). Thus, the dynamic pro-

gramming table can be calculated from the first atom to the last atom. Finally, the optimal

idealized structure is the one with the highest score maxg G
3n−k+1,3n.

The run-time complexity of our dynamic programming algorithm depends on the value

of k. To keep all possible (Φ,Ψ) dihedral angles of the previous residue when generating
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Cα atoms, we have to choose k ≥ 5. For speed, we choose k = 5 in our implementation. In

this case, the number of score calculations required to calculate TBB(t, G
t−4,t) is no more

than the maximum number of coordinates sampled for six consecutive backbone atoms.

Recall that there are exactly two Cα atoms in six consecutive backbone atoms, and the Ω

dihedral angle is rounded. Thus, the coordinate of one Cα atom can be calculated from the

coordinates of the other Cα atom and the two atoms between them. For this reason, the

maximum number of sampled coordinates is bounded by O(1/ǫ8). Moreover, the number of

score calculations required to calculate TBB(k,G
1,k) is no more than the maximum number

of possible coordinates sampled for five consecutive backbone atoms, which is also O(1/ǫ8).

Therefore, the run-time complexity of our dynamic programming algorithm is O(n/ǫ8).

To increase the speed for the dynamic programming algorithm, we applied an additional

filtering technique to remember only the highly scored idealized structures. Specifically,

the algorithm only remembers the optimal idealized structure for the top m scored tail

configurations instead of all possible conformations. Thus, the run-time complexity is

reduced to O(nm/ǫ). This approach works well in practice because an optimal idealized

structure with a long poorly scored fragment is rare. Thus, we assumed that the local

quality of the idealized structure should be reasonably high (in the top m entries of the

score list).

3.2 Protein Side-chain Structure Idealization

After the backbone structure of the target protein has been idealized, we begin to idealize

the side-chain structures. When doing this, the idealized backbone structure is considered

to be rigid. This approach is widely accepted because previous research suggests that

the backbone conformation is formed before the side-chain conformations are formed [18].

After the side-chain idealization, we should have a complete idealized protein structure

with all of the backbone and the side-chain structures idealized.

Protein side-chains suffer from low quality when determining protein structures. This

is mainly because side-chains are not as stable as backbones, and they are more likely to

have disorder problems than are backbones in crystals [48]. Thus, the target side-chain
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structure might be a poor reference for defining the search space and for evaluating the

structure similarity score for generated idealized side-chain structures. To address this,

we perform an exhaustive search on the entire feasible torsion angle space, instead of the

limited torsion angle space, around the target side-chain structure.

Our side-chain idealization method assumes that the side-chain conformations of dif-

ferent residues are independent of each other. Otherwise, all residues with dependencies

have to be generated together and the run-time complexity increases exponentially in the

number of atoms involved. Moreover, the Nη1 −Cζ −Nǫ −Cδ and the Nη2 −Cζ −Nǫ −Cδ

torsion angles of arginine residues are rounded to be either 0◦ or 180◦. Then, the degree

of freedom of the search space for each residue is at most four and it is now practical to

perform an exhaustive search for each residue independently.

To find the optimal idealized side-chain structure, we design a new scoring function

involving the similarity among the generated idealized side-chain structures and the target

side-chain structures, and the statistical energy of the generated idealized side-chain struc-

tures. Let P0 be the target side-chain structure of some residue, and Pi for all i > 0 be

a generated idealized side-chain structure of the same residue. Then, the scoring function

SSC(Pi) is defined:

SSC(Pi) = Sf (Pi)−DH′(Pi, P0)−Dχ(Pi, P0),

where Sf (Pi) is the statistical energy score, DH′(Pi, P0) is the root mean square divergence

(RMSD) of all non-hydrogen atoms, and Dχ(Pi, P0) is the RMSD of χ torsion angles.

In our scoring function, the statistical energy score Sf (Pi) is defined as a simple χ

torsion angle log-odd score, which is similar to the statistical energy score of our backbone

scoring function. Moreover, the log-odd score is based on the popular backbone dependent

rotamer library downloaded from Dunbrack’s lab [67]. Certainly, other local statistical

energy scores can be adopted here. Similar to the backbone scoring function, DH′(Pi, P0)

and Dχ(Pi, P0) serve as distance metrics to conserve the side-chain structure.
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3.3 Results

To study the protein structure idealization problem and its applications, we implemente

our protein structure idealization algorithm. In our implementation, we use the mean

bond lengths and angles that had been reported in [22] as the ideal bond lengths and

angles, respectively. When idealizing the protein backbone structure, we set the search

space radius of an atom as r = 1.6Å and the discrete grid size as ǫ = r/5. We find that

m = 50, 000 had a reasonable balance between speed and accuracy. When idealizing the

protein side-chain structure, we set the search space of a rotamer dihedral angle to be

within 3σ distance from the mean value, where σ is the STDEV of the rotamer dihedral

angle, and we set the discrete grid size to be 10◦. We also refine the idealized structure by

iteratively reducing the search space and the discrete grid size by a constant factor of 0.5.

3.3.1 PDB Protein Structure Idealization

In this experiment, we addressed how accurately it is possible to model protein struc-

tures with dihedral angles. We idealized high resolution protein structures with low se-

quence identities of the CULLPDB PC30 RES1.6 R0.25 data set [72, 73]. In fact, the

CULLPDB PC30 RES1.6 R0.25 data set is the complete set of X-ray protein structures in

PDB [5] with a sequence identity cutoff of 30%, a resolution cutoff of 1.6Å, and an R factor

cutoff of 0.25. In summary, the data set contains 1898 proteins with an average length of

227 residues, as downloaded on June 6, 2008.

To show that the idealized and the target backbone structures are very similar, we

calculated the Cα-RMSD as shown in Figure 3.1(a). The Cα-RMSD is a popular distance

metric to evaluate the backbone distance between two protein backbone structures. The

result shows that most distances between the idealized and the target backbone struc-

tures are small with mean 0.53Å and STDEV 0.08Å. Specifically, the smallest Cα-RMSD

reaches 0.16Å, and 90% of the Cα-RMSDs are smaller than 0.63Å. Moreover, the Cα-

RMSD is upper bounded by 1.00Å, although the search space radius for each atom is set

to be 1.6Å. This result is consistent with the result of checking (Φ,Ψ) dihedral angles,

where the average difference between the idealized and the target (Φ,Ψ) dihedral angles
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Figure 3.1: RMSD between the idealized and the native backbone structures: (a) the Cα-

RMSD has a mean of 0.53Å and a STDEV of 0.08Å; 90% of the Cα-RMSDs are smaller

than 0.63Å; (b) the all-atom RMSD has a mean of 0.79Å and a STDEV of 0.13Å; and 90%

of the all-atom RMSDs are smaller than 0.94Å.

is as small as 0.08◦. Therefore, it is possible to model protein backbone structures in

CULLPDB PC30 RES1.6 R0.25 accurately using only Φ and Ψ dihedral angles.

We studied the Cα-RMSD further in different regions of the target protein structures.

In Figures 3.2(a) and 3.2(b), we see that the Cα-RMSD of the α-helix and the β-sheet

regions are smaller than that of the complete protein by 0.28Å and 0.12Å, respectively.

Indeed, these regions are more restricted because of using DH(Pi, P0) to conserve hydrogen

bonds of α-helices and β-sheets in our scoring function. We also observe that the Cα-

RMSD of residues that are closer to the geometric center of a target protein structure

is 0.13Å smaller on average than the Cα-RMSD of the other residues that are farther,

as shown in Figure 3.2(c). Thus, the inner residues tend to be closer to the idealization

state than are the outer residues. We did not observe any significant differences on the

Cα-RMSD between the buried and the exposed regions.

We also calculated the all-atom RMSD to show that the idealized and the target struc-

tures are very similar. In Figure 3.1(b), we see that most distances between the idealized

and the target structures are small, with mean 0.79Å and STDEV 0.13Å. Moreover, the

smallest all-atom RMSD reaches 0.45Å, and 90% of the all-atom RMSDs are smaller than
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Figure 3.2: Cα-RMSD in different regions of the target protein structure: (a,b) the Cα-

RMSD of the α-helix and the β-sheet regions are smaller than that of the complete protein

by 0.28Å and 0.12Åon average, respectively; (c) the Cα-RMSD of the residues that are

closer to the geometric center of a target protein structure is 0.13Å smaller on average

than that of the other residues; and (d) there is no significant difference on the Cα-RMSD

between the buried and the exposed regions.
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Figure 3.3: Difference on dDFIRE statistical energy values between the idealized and

the native protein structures: (a) the dDFIRE statistical energy values of most idealized

backbone structures are significantly better than those of the native backbone structures;

(b) the dDFIRE statistical energy value is improved for 4.74% of the idealized protein

structures by up to 1585, and is worsened slightly by 44 on average.

0.94Å. Note that both the Cα-RMSD and the all-atom RMSD between the idealized and

the target structures tend to be stable when the target protein is long. Therefore, it is

possible to model protein structures accurately with only Φ, Ψ, and χ dihedral angles.

The idealized backbone structures are also favored in terms of statistical energy. This

is shown by checking the statistical energy differences between the idealized and the target

protein backbone structures in Figure 3.3(a). Here, we calculate the statistical energy using

dDFIRE [88], and observe that the dDFIRE statistical energy of most idealized backbone

structures are significantly better than are those of the target backbone structures. For

the rest without significant improvements, the difference is close to zero. This may be the

result of some tight stereochemical restraints used in existing X-ray structure refinement

programs [23, 34]. It is also interesting that the observed statistical energy improvements

are clearly not independent from the protein length. The figure suggests that the statistical

energy difference has a square dependence on the protein length.

After idealizing the side-chain structures, the statistical energy is either improved by
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a relatively biger amount or worsened by a relatively smaller amount as shown in Figure

3.3(b). Unfortunately, in most cases, the statistical energy is worsened slightly but is still

in a stable state with negative values. Again, here we used dDFIRE [88] to calculate

the statistical energy. We observed that the dDFIRE statistical energy is improved for

90 or 4.74% of the idealized protein structures and is worsened slightly by 44 on average.

Moreover, the dDFIRE statistical energy is improved by 1585 in the best case, and worsened

by 293 in the worst case. The figure also suggests that the statistical energy difference has

a linear dependence on the protein length.

Several side-chain prediction tools have been proven to predict accurate side-chain

structures from native backbone structures [8, 42, 78, 79]. However, these tools do not

perform well when predicting side-chain structures from predicted backbone structures.

To address this, we compared the predicted side-chain structures given the native back-

bone structures and the predicted side-chain structures given the predicted backbone struc-

tures in terms of statistical energy. Here, we treat the idealized backbone structures of

the CULLPDB PC30 RES1.6 R0.25 data set as those which are best possibly predicted.

Moreover, we used SCWRL4 [42] to predict side-chain structures and dDFIRE [88] to cal-

culate statistical energies. The result shows that the statistical energy is worsened slightly

by 43 if the predicted backbone structures are used. We do not think this difference is

significant to side-chain prediction, and more experiments may show if this is conclusive.

Finally, we study the effects of idealization on hydrogen bonds. As shown in Table

3.1, we compare the number of hydrogen bonds detected by the DSSP program [37, 36].

Here, only differences of the most popular types of hydrogen bonds are included. We

note that the total number of hydrogen bonds is increased by 1.59% or 0.012 per residue

after idealization. Specifically, the effects of idealization on hydrogen bonds of β-bridges

is minor, and the loss of the hydrogen bonds on α-helices is reasonably controlled under

1.48%. Interestingly, the idealized backbone structures have significantly more 27 ribbons.

The reason behind this observation remains open.

In summary, we demonstrate that using dihedral angles with ideal bond lengths and

angles is capable of modeling protein structures that are highly similar to the ones in

CULLPDB PC30 RES1.6 R0.25 [72, 73]. Since CULLPDB PC30 RES1.6 R0.25 is the

complete set of PDB protein structures satisfying the high resolution and the low sequence
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Type Count Difference Percent Difference

Parallel Bridge 9 0.04%

Antiparallel Bridge -211 -0.37%

27 Helix 7080 26.46%

310 Helix -1018 -2.35%

α Helix -1644 -1.48%

π Helix -82 -1.27%

All 5183 1.85%

Table 3.1: Difference on DSSP hydrogen bond before and after idealization: the effects of

idealization on hydrogen bonds of β-bridges is minor, and the loss of the hydrogen bonds

on α-helices is reasonably controlled.

identity constraints, it is reasonable to extend the conclusion to all protein backbone struc-

tures. A positive side effect is that idealization improves backbone statistical energy, while

most hydrogen bonds are conserved.

3.3.2 NMR Protein Structure Refinement

In this experiment, we demonstrate an application of the protein structure idealization

problem in NMR by idealizing 32 NMR protein structures. The NMR protein structures

were randomly chosen from PDB [5] with a sequence identity cutoff of 30% and a gapless

fragment length cutoff of 80 residues. In cases of multiple chains or models of some NMR

protein structures, only the first chain from the first model is used in this experiment.

This addition to the conclusion of the previous experiment shows that poor (Φ,Ψ) dihedral

angles of the NMR protein structures are improved by idealizing them.

To demonstrate this, we compared the percentage of favored (Φ,Ψ) dihedral angles

calculated by PROCHECK [47] in Table 3.2. After idealization, we see that 19 out of 32

NMR protein structures have more favored (Φ,Ψ) dihedral angles. Overall, the percentage

is increased by 4.34% on average and 27.30% in the best case, which is closer to the

minimum percentage of 90% expected in a good quality model [47].
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PDB Native Ideal Diff PDB Native Ideal Diff

1SSK 44.6% 71.9% 27.3% 2LBN 59.7% 77.6% 17.9%

2KQP 62.9% 80.0% 17.1% 1WPI 64.4% 81.4% 17.0%

1EXE 60.5% 76.7% 16.2% 2LNV 58.6% 72.4% 13.8%

1X6F 64.1% 73.1% 9.0% 2L6B 72.2% 81.1% 8.9%

2GFU 72.3% 80.4% 8.1% 1PC2 79.3% 87.4% 8.1%

2LMR 79.7% 87.0% 7.3% 2KA0 72.6% 78.3% 5.7%

2L3O 71.3% 76.9% 5.6% 1O1W 67.2% 72.1% 4.9%

2CQ9 78.3% 82.6% 4.3% 2RQA 72.0% 75.4% 3.4%

2D86 89.0% 92.1% 3.1% 1NTC 80.5% 83.1% 2.6%

2JZT 76.6% 79.0% 2.4% 2CZN 76.5% 76.5% 0.0%

1RCH 75.4% 74.6% -0.8% 2JU1 77.1% 75.9% -1.2%

2KV7 85.5% 84.2% -1.3% 2JT2 83.6% 81.5% -2.1%

2KYW 83.8% 81.1% -2.7% 2OSR 82.7% 80.0% -2.7%

2L6M 81.7% 78.5% -3.2% 2CU1 81.1% 77.8% -3.3%

1AJ3 93.3% 88.8% -4.5% 1WI5 84.0% 78.0% -6.0%

1NMW 85.0% 78.0% -7.0% 2LBV 83.9% 74.8% -9.1%

Table 3.2: Percentage of the favored (Φ,Ψ) dihedral angles of 32 NMR protein structures

before and after idealization: 19 NMR protein structures have up to 27.30% more favored

(Φ,Ψ) dihedral angles.
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Figure 3.4: Ramachandran plots of the native structure (left) and the idealized structure

(right) of NMR protein structure 1WPI: the native structure contains only 64.4% of (Φ,Ψ)

dihedral angles in favored regions, while the idealized structure contains a significantly

improved percentage of 81.4% of (Φ,Ψ) dihedral angles in favored regions.

Note that for those NMR protein structures that already have more than approximately

75% of favored (Φ,Ψ) dihedral angles, idealization harms the percentage by −0.85% on

average. There are at least two reasons for this. First, our statistical energy score Sf (Pi) is

calculated from a data set that is different from the one used by PROCHECK. In fact, we

used 1898 protein structures of the CULLPDB PC30 RES1.6 R0.25 data set [72, 73], while

PROCHECK used 118 protein structures, with a resolution cutoff of 2.0Å and an R factor

cutoff of 0.20 [47]. Although the percentages of favored (Φ,Ψ) dihedral angles are decreased

in Table 2, our statistical energy scores of proteins 1WI5, 1NMW, and 2LBV are increased

by 0.22, 1.35, and 0.31, respectively, after idealization. Second, our implementation is

trying to optimize our scoring function SBB(Pi), instead of optimizing only the statistical

energy score. Thus, it is possible to see decreased statistical energy scores after idealization,

especially when the target protein structure has a high percentage of favored (Φ,Ψ) dihedral

angles.
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Our conclusion is further supported by the case study of the NMR structure with PDB

ID 1WPI. From the Ramachandran plots drawn by PROCHECK [47] in Figure 3.4, we

find that (Φ,Ψ) dihedral angles tend to move towards favored regions. Specifically, the

native structure contains only 64.4% of (Φ,Ψ) dihedral angles in favored regions, while the

idealized structure contains a significantly improved percentage of 81.4% of (Φ,Ψ) dihedral

angles in favored regions. Moreover, the native structure contains three (Φ,Ψ) dihedral

angles that are not in any feasible areas of the Ramachandran plot. However, there is only

one such case found in the idealized structure. Thus, two infeasible (Φ,Ψ) dihedral angles

are fixed by the (Φ,Ψ) dihedral angle log-odd score. Here, we did not, but certainly can,

implement a hard constraint to disallow any infeasible (Φ,Ψ) dihedral angles.

In summary, we have demonstrated that protein structure idealization can be used to

improve poor (Φ,Ψ) dihedral angles of protein pseudo-structures. These protein pseudo-

structures can either be predicted or be experimentally determined. More applications of

the protein structure idealization problem will be studied.

3.4 Discussion

We have introduced the protein structure idealization problem and performed our first

attempt to solve it. The experiment results show that idealized structures always exist with

small changes on the coordinates. Furthermore, the idealized backbone structures have

significantly better statistical energy and (Φ,Ψ) dihedral angle distributions. Therefore,

protein structures can be modeled accurately with dihedral angles and ideal bond lengths

and angles, and it is feasible to predict protein backbone and side-chain structures by

searching the dihedral angle space.

Our protein structure idealization algorithm can also correct modelling errors of protein

structures in PDB [5]. In fact, previous research indicates that many bond conformations

and side-chain rotamers are likely incorrect in PDB, and it is useful to have an automated

mechanism to fix these problems [33, 35]. Thus, we can address these problems by idealizing

all protein structures in PDB with our protein structure idealization algorithm and using

our specially tuned scoring functions.
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The idealized version of the PDB [5] provides new protein structure references to study

protein structures and functions. For example, we can rebuild fragment and rotamer

libraries based on the idealized PDB. It would then be more intuitive to use the idealized

fragment or rotamer libraries in the protein backbone or side-chain structure prediction

algorithms searching the dihedral angle space. Thus, we expect to see some improvements

of the accuracy of these algorithms with the idealized fragment and rotamer libraries.

Therefore, we also provide a new approach for discovering unusual atoms and bonds by

comparing the idealized and the original PDB structures. Although most of these unusual

atoms and bonds are due to errors, we expect to discover some biochemical insights that

assist in understanding protein functions.
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Chapter 4

Fingerprinting Protein Structures

Efficiently and Effectively

In this chapter, we present ContactLib, a complete contact group library defined in Section

4.1, which is to be used as fingerprints of protein structures. Specifically, we present two

ContactLibs: ContactLib-9L, that models local contacts, and ContactLib-3R, that models

remote contacts. According to the receiver-operating characteristic (ROC) curve analy-

sis [24] in Section 4.2.1, the worst-case AUROC is significantly improved by using Con-

tactLib, and ContactLib-3R is even able to guarantee an AUROC higher than a random

method, which has an AUROC of 0.5. We also study the influence of secondary structure

to the neighbor protein structure retrieval problem in Section 4.2.2 and the correlations

among RMSD, the Euclidean distance between distance matrices and the Euclidean dis-

tance between distance vectors in Section 4.2.3.

4.1 ContactLib Neighbor Protein Structure Retrieval

In this section, we first define a contact group. Then, we build a comprehensive library of

contact groups as fingerprints of all existing protein structures and we call such a contact

group library ContactLib. We also propose an indexing technique for ContactLib, which
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may be applied to neighbor contact group retrieval. Finally, we introduce a combined

hit-rate score to retrieve neighbor protein structures.

A contact group refers to a small collection of residues that may have a high density of

contacts among the residues. As two residues in contact should not be far apart, we require

all residues are within a sphere. The position of each residue here is represented by its Cα

atom. A local contact group models contacts within a protein structure fragment and a

remote contact group could involve two or more structure fragments. Due to chemical and

physical constraints within limited sphere space, it is rare for a contact group to contain a

large number of fragments. For conciseness, we require a remote contact group to involve

exactly two fragments. Hence, we define a contact group as a set of residues, represented by

the respective Cα atoms, of either a single fragment with l1 residues, called a local contact

group, or a pair of fragments with l2 residues, called a remote contact group, such that all

the Cα atoms are located within a sphere of radius r.

Here, we set l1 = 9 and l2 = 3 as we find that they are sufficient to accurately model a

local and a remote contact group, respectively. The fragment length of nine has also been

used and shown to be the optimal fragment length to model protein structure fragments [69,

54]. Moreover, the radius of the sphere is set to be r = 16Å, so that it is large enough to

capture most contacts. Then, we define a ContactLib as a contact group library containing

local and/or remote contact groups in all protein structures of the search protein structure

database.

We use the contact groups to fingerprint protein structures. To create an efficient and

effective index of the ContactLib, we devise a strategy to represent a contact group by a

low-dimensional vector. Before defining such a representation, we examine the number of

dimensions or the degree of freedom of a contact group; that is, we want to know how

many values are necessary to reconstruct a contact group.

We determine the dimension of a contact group as follows. As discussed in the previous

chapter, a protein structure can be represented by ideal bond lengths, ideal bond angles

and dihedral angles. The peptide dihedral angles (i.e. the Ω angles) are also rounded to

either 0 or π. Since less than 2% of the Ω dihedral angles have a value closer to 0, it is

treated as a rare case [22]. Hence, it is acceptable to use Ω = π as a good approximation,
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(a) Local contact group (b) Remote contact group

Figure 4.1: Captured distances of local and remote contact groups: each circle represents

a Cα atom, each solid line represents a pseudo bond between two adjacent Cα atoms

(captured implicitly in our distance vector), and each dashed line represents a distance

captured by our distance vector.

which results in the distance between two adjacent Cα atoms to be 3.8Å. If we connect

any two adjacent Cα atoms by such a pseudo bond, the number of dihedral angles in this

pseudo molecule of a local contact group is l1 − 3, and the number of bond angles in it is

l1−2. Thereafter, the dimension required to represent a local contact group is 2l1−5 = 13.

Similarly, the number of dihedral angles in the pseudo molecule of a remote contact group

is 2l2 − 3, and the number of bond angles in it is 2l2 − 2, and the number of bond lengths

between non-adjacent Cα atoms in it is 1. Thereafter, the dimension required to represent

a remote contact group is (2l2 − 3) + (2l2 − 2) + 1 = 4l2 − 4 = 8. Note that the number of

dimensions is proportional to the number of residues in the contact group.

Given the desired number of dimensions, we create distance vectors to represent contact

groups. Denote D(a, b) as the distance between two points a and b. Given a local contact

group of a single protein structure fragment {P1, P2, ..., Pl1}, the distance vector is defined

as

V1 = {D(Pi, Pi+g) | 1 ≤ i, i+ g ≤ l1, g = 2k, k ≥ 1}.

For a remote contact group of a protein structure fragment pair {P 1
1 , P

1
2 , ..., P

1
l2
, P 2

1 , P
2
2 , ..., P

2
l2
},
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we define the distance vector as:

V2 =
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Here, V1 and V2 have 13 dimensions and 8 dimensions, respectively. In addition, our

definition of V1 and V2 covers different types of distances (as shown in Figures 4.1(a)

and 4.1(b)). One critical feature of V1 and V2 is that if two contact groups have similar

structures with low RMSD, they should have similar pairwise distances [32] and hence

similar V1 or V2, as described in Section 4.2.3.

The number of similar contact groups shared by two proteins can be used as an indicator

of their structure similarity. Here, we introduce an index to efficiently find all contact

groups that are similar to a query contact group in ContactLib by using a 13-by-256 table

of bit vectors for a local ContactLib and an 8-by-256 table of bit vectors for a remote

ContactLib. Here, each row of the table represents a dimension of the distance vector. For

each dimension of the distance vector, the value space is discretized into 256 bins, and each

column represents a bin. Each element associated bin on the associated dimension for all

contact groups of the ContactLib. Then, these tables can be effectively used to retrieve

the set of contact groups in a particular bin along a given dimension. Contact groups in m

consecutive bins along a particular dimension (or column) can be calculated by bitwise OR

operations, and then contact groups in m consecutive bins along all dimensions (or rows)

can be calculated by bitwise AND operations. Here, we carefully choose a parameter m,

such that contact groups similar to the query contact group are within m bins from the

query bins along each dimension.

To compare two structures, we introduce a combined hit-rate score to rank and select

protein structures in the search database. We observed that, for a pair of similar protein

structures, most of the contact groups for one structure tend to have similar contact groups

from the other structure. Conversely, for a pair of dissimilar protein structures, the opposite
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scenario was observed. These observations suggest a combined hit-rate score for a pair of

protein structures, as the geometric mean of the similar contact group hit-rates of the two

protein structures:

S =

√

h1
n1

h2
n2

,

where h1 is the number of hit contact groups for the first protein structure that have similar

contact groups from the second protein structure, h2 is the number of hit contact groups

for the second protein structure that have similar contact groups from the first protein

structure, n1 is the number of contact groups for the first protein structure, and n2 is the

number of contact groups for the second protein structure.

In summary, we find all pairs of neighbor contact groups between the query protein

structure and the search database using our indexes of ContactLib, and then we calculate

the combined hit-rate score to rank and select protein structures in the search database.

Let p be the number of contact groups in a query, q be the number of contact groups in

the database, and N be the number of structures in the database. Recall that m is the

number of consecutive bins that defines similarity on a dimension of the distance vector,

and l is the dimension of the distance vector. For each query contact group, O(m) bitwise

OR operations and O(l) bitwise AND operations are performed, and each bitwise OR or

AND operation takes O(q) time. Thus, the runtime complexity to find all similar contact

group pairs between the query protein structure and the search database is O(pq(lm+ l)),

and the combined hit-rate scores can be calculated simultaneously. Moreover, the runtime

complexity to rank structures according to the combined hit-rate scores is O(N logN).

Therefore, the running time for our neighbor protein structure retrieval method is O(pqm+

N logN). Here, the indexes can be pre-built, and the runtime complexity is not included.

4.2 Results

For performance analysis of our neighbor protein structure retrieval program, we used

the high-quality protein structure subset of SCOP30 1.75B [59, 9] that has a minimum

Summary PDB ASTRAL Check Index (SPACI) of 0.5. Here, we simply refer to this

dataset as SCOP30. Then, we built the local contact group library, ContactLib-9L, and
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the remote contact group library, ContactLib-3R, of SCOP30. For each protein structure

of SCOP30, we retrieved its neighbor protein structures from the rest of SCOP30. For

reference, there are 3, 297 protein structures in SCOP30, 375, 299 local contact groups in

ContactLib-9L, and 6, 309, 469 remote contact groups in ContactLib-3R.

To find neighbor protein structures of each query protein structure, we used SCOP [59]

and the best alignment found by six popular protein structure alignment tools: DALI [32],

CE [68], LGA [83], SSM [41], TM-align [87] and SPalign [81]. Specifically, we considered

two protein structures as neighbors if and only if both protein structures are from the same

SCOP super-family and the best pairwise structure alignment has a structure alignment

score (SAS) [40] below 2.0Å. Such neighbor protein structures tend to have globally similar

structures and functional features, but do not necessarily have similar sequences. Since

different SCOP levels and SAS thresholds produce similar conclusions, we focus on the

above neighbor protein structure definition in this experiment. For the best alignments

with SAS below 2.0Å, 50% are contributed by SPalign, 31% are contributed by LGA, and

16% are contributed by SSM.

The accuracy of neighbor protein structure retrieval is evaluated by the area under the

receiver operating characteristic (ROC) curve (AUROC), which has been used in many

research areas [24], including the protein structure alignment area [40, 7]. For instance,

an AUROC of 0.9 means that a neighbor protein structure should be scored higher than a

non-neighbor protein structure with a probability of 0.9, and a random method will have

an AUROC equal to 0.5. When the query protein structure does not have any neighbor

protein structures in SCOP30, the AUROC is not defined. Thus, such cases are eliminated

in our analysis.

4.2.1 General ROC Curve Analysis

In this experiment, we demonstrate that ContactLib significantly outperforms FragBag for

the neighbor protein structure retrieval problem in terms of AUROC. For ContactLib-9L

and ContactLib-3R, we tested m ∈ {2, 4, 8, 16, 32, 64} (recall that m is the number of

neighboring bins we should use around the query bin along each dimension). For FragBag,
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Figure 4.2: ROC curve analysis: (a) the highest average AUROC is 0.876 when the

ContactLib-9L with m = 32 is used; the highest average AUROC is 0.956 when the

ContactLib-3R with m = 8 is used; (b) the highest average AUROC is 0.747 when the

FragBag with a Euclidean distance function, a fragment length of 10 and a bag size of 100

is used.

we tested the bag-of-words datasets of lengths between 9 and 12 and of all sizes from the

FragBag website [7].

The AUROC of our combined hit-rate score, using ContactLib-9L and ContactLib-3R,

are shown in Figure 4.2(a). We see that the best accuracy of ContactLib-9L is achieved

when m = 32, where the average AUROC is 0.876. Moreover, the best accuracy of

ContactLib-3R is achieved when m = 8, where the average AUROC is 0.956. Thus, the

best result for ContactLib-3R is 9% more accurate on average than that for ContactLib-9L.

This indicates that remote contacts carry critical information that is not carried by local

contacts, and are capable of identifying neighbor protein structures more accurately.

The AUROC of the neighbor protein structure retrieval defined on different SAS thresh-

olds are also shown in Figure 4.2(a). Specifically, when the SAS threshold of 3.5Å is used,

the best average AUROC’s of ContactLib-3R and ContactLib-9L are 0.918 and 0.819,

respectively; when the SAS threshold of 5.0Å is used, the best average AUROC’s of

ContactLib-3R and ContactLib-9L are 0.906 and 0.804. Moreover, the AUROCs of the

neighbor protein structure retrieval defined on different SCOP levels are used in our exper-
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iment but not shown here. Although the results are slightly different, our neighbor protein

structure retrieval method, with either a local or a remote contact group library, is always

capable of delivering high accuracies with high AUROC’s.

We also combined ContactLib-9L and ContactLib-3R to retrieve neighbor protein struc-

tures from SCOP30 [59, 9]. This is done by linearly combining the score for ContactLib-9L

with m = 32 and the score for ContactLib-3R with m = 8. When a weight of 1 : 16 is used

between ContactLib-9L and ContactLib-3R, the average AUROC is improved slightly to

the highest value of 0.960. Thus, ContactLib-3R contributes more than ContactLib-9L to

deliver more accurate results.

For comparison, we tested bag-of-words for FragBag [7] with different fragment lengths

and bag sizes as shown in Figure 4.2(b). Different experiment settings, such as eliminating

the query protein structures that do not have any neighbor protein structures in SCOP30,

lead to a few new observations. First, the Euclidean distance function performs significantly

more accurately than the cosine distance function. Moreover, the choice of FragBag, with

different fragment lengths or different sizes, has no significant impact on the accuracy

obtained. According to our results, the optimal FragBag is the one with a Euclidean

distance function, a fragment length of 10 and a bag size of 100, that has an average

AUROC of 0.747.

By comparing Figures 4.2(a) and 4.2(b), we find that our ContactLib outperforms

FragBag [7] in terms of AUROC. This is further supported by looking at the AUROC

distributions of ContactLib and FragBag in Figure 4.3. Specifically, when ContactLib-3R

is used, 75% of the AUROC’s are higher than 0.936, and the lowest AUROC is 0.504.

When ContactLib-9L is used, 75% of the AUROC’s are higher than 0.823, and 3% of the

AUROC’s are lower than 0.5. However, when FragBag is used, 75% of the AUROC’s are

higher than 0.657, and 10% of the AUROC’s are lower than 0.5. Recall that a random

method has an AUROC of 0.5. Although FragBag is capable of delivering good average

accuracy, the worst case may not be acceptable for many accuracy sensitive applications.

In our experiment, the worst-case AUROC is significantly improved by using ContactLib,

and ContactLib-3R is even able to guarantee an AUROC, which is higher than a random

method.
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Figure 4.3: AUROC distributions (the AUROC of a random method equals to 0.5): (a)

when ContactLib-3R is used, 75% of the AUROC’s are higher than 0.936, and the lowest

AUROC is 0.504; (b) when ContactLib-9L is used, 75% of the AUROC’s are higher than

0.823, and 3% of the AUROC’s are lower than 0.5; (c) when FragBag is used, 75% of the

AUROC’s are higher than 0.657, and 10% of the AUROC’s are lower than 0.5.

In summary, the best accuracy is archived when ContactLib-3R with m = 8 is used.

If only the top three ranked protein structures according to our combined hit-rate score

are considered, there is a probability of 58% that we found at least one neighbor protein

structure. The probability is increased to 73% when only the top 10 are considered. The

excellent result suggests that ContactLib-3R can be used as a highly accurate and efficient

filter to remove most unrelated protein structures while keeping many neighbor protein

structures.

4.2.2 ROC Curve Analysis of all-α and all-β proteins

To understand the influence of secondary structure to the neighbor protein structure re-

trieval problem, we studied the AUROC of those all-α and all-β query protein structures

in the previous section. From the 1574 query protein structures in the previous section,

there are 157 all-α protein structures and 313 all-β protein structures.

The AUROC’s of our neighbor protein structure retrieval with ContactLib-3R and

ContactLib-9L for m ∈ {2, 4, 8, 16, 32, 64} are shown in Figure 4.4. Comparing the AU-

ROC’s of all-α and those of all-β query protein structures, the AUROC’s of all-α query
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Figure 4.4: ROC curve analysis of all-α and all-β query protein structures: the AUROC’s of

all-α query protein structures tend to be higher than those of all-β query protein structures;

the impact on the type of query protein structures is significantly smaller when ContactLib-

3R is used than when ContactLib-9L is used.

protein structures tend to be higher. Comparing the AUROC’s of ContactLib-9L and

ContactLib-3R, the impact on the type of query protein structures is significantly smaller

when ContactLib-3R is used. This is because our remote contact groups are also capable

of modeling hydrogen bonds in α-helices. However, local contact groups are incapable of

modeling hydrogen bonds in β-strands.

In summary, the neighbor protein structure retrieval problem for all-β query protein

structures is more challenging than that for all-α query protein structures, and incorporat-

ing remote contact information is critical to produce accurate results consistently for all-α

and all-β query protein structures.

4.2.3 Correlation Analysis of Distance Functions

In this experiment, we demonstrated that if two contact groups have similar distance

vectors (defined in Section 4.1), they tend to have similar structures with low RMSDs.

This was done by studying the correlations among RMSD, the Euclidean distance between
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Figure 4.5: Correlation analysis among root mean square deviation (RMSD), D(M) and

D(V ) of local contact groups, where RMSD is less than 2.0Å, D is the Euclidean distance

function, M is the distance matrix used by DALI and V is our distance vector: (a) the

correlation coefficient is 0.98 between D(V ) and D(M); (b) the correlation coefficient is

0.92 between D(V ) and RMSD.

distance matrices D(M), and the Euclidean distance between distance vectors D(V ). The

data shown in Figure 4.5 was collected from similar local contact groups, with RMSD less

than 2.0Å, from 100 random pairs of proteins, such that each pair of proteins belonged to

the same SCOP domain.

From Figure 4.5(a), we find a strong correlation between D(V ) and D(M) for local

contact groups with RMSD less than 2.0Å. This is also true for remote contact groups.

Specifically, the correlation coefficients are 0.98 and 0.96, between D(V ) and D(M) of local

and remote contact groups, respectively. Therefore, our distance vector is as good as the

distance matrix, which is used by the popular and successful pairwise protein structure

alignment tool, DALI [32], to capture similar contact groups.

Although both of RMSD and pairwise distance matrix have been shown to be capable

of capturing similarities between protein structures, they are not required to have strong

correlations. This is also supported by our results. From Figure 4.5(b), we find that small
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values of D(V ) suggest small values of RMSD among local contact groups. Specifically,

the correlation coefficient is 0.92 between D(V ) and RMSD between local contact groups.

However, neither D(V ) nor D(M) has such strong correlations to RMSD between remote

contact groups, and the correlation coefficients are approximately 0.6.

In summary, if two contact groups have similar distance vectors, they tend to have

similar structures with low RMSDs. Specifically, for local and remote contact groups with

RMSD less than 2.0Å, there is a strong correlation between the Euclidean distance between

distance vectors and the Euclidean distance between distance matrices. Moreover, a small

Euclidean distance between distance vectors suggests a small RMSD for local contact

groups.

4.3 Discussion

In conclusion, we have shown that ContactLib is an effective and efficient neighbor protein

structure retrieval method. Most importantly, ContactLib was able to maintain a con-

sistent level of accuracy in our tests. The key to consistently retrieve accurate neighbor

protein structures for all-β query protein structures is incorporating remote contact infor-

mation in ContactLib. This is unmatched by existing neighbor protein structure retrieval

method, FragBag [7].
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Chapter 5

Superimposing Protein Structures

Optimally

In Section 5.1, we introduce PROSTA-super, a simple and reliable method for optimally

superimposing two protein structures, given the aligned residue pairs and the scoring func-

tion. Our superimposition method relies on and verifies the fact that the optimal protein

structure alignment always contains a small subset of aligned residue pairs, called a seed,

such that the rotation and translation (ROTRAN), which minimizes the RMSD of the seed,

yields both the optimal ROTRAN and the optimal alignment score. This is demonstrated

by finding both the optimal ROTRAN and the optimal alignment score of the pairwise

protein structure alignments from the HOMSTRAD database [57] in Section 5.2.1 and the

CASP10 dataset [43] in Section 5.2.2.

5.1 Method for Protein Structure Superimposition

Given the aligned residue pairs of a protein structure alignment, our protein structure

superimposition method, called PROSTA-super, can be divided into two steps. First, the

ROTRAN minimizing the RMSD is calculated for each seed. For each ROTRAN, the

protein structures are superimposed and the alignment score is calculated. In the second
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step, promising ROTRANs with high alignment scores are iteratively refined by calculating

ROTRANs that minimizes the weighted RMSDs of different seeds. Each residue weight is

set according to the TM-score [85] of the residue from the previous iteration, as proposed

in SPalign [81]. Finally, the ROTRAN yielding the highest alignment score is kept as the

optimal one.

TMscore [85] and LGA [83] samples a ROTRAN by calculating the RMSD of a consec-

utive seed containing contiguous aligned residue pairs. In our protein structure superim-

position method, we take one step further and employ gapped seeds. Unlike a consecutive

seed, a gapped seed does not require the aligned residue pairs to be contiguous. To simplify,

we divide the gapped seeds into four categories. If there is a single gap in the middle of

the gapped seed, it is called a singly gapped seed ; if all the gaps of a gapped seed contain

the same number of spaces, it is called an constantly gapped seed ; if all the gaps except the

one in the middle of a gapped seed contain the same number of spaces, it is called a dual

constantly gapped seed ; otherwise, the gapped seed is called an arbitrarily gapped seed.

In this study, we focus on seeds of size six that consist of small subsets of six aligned

residue pairs. Formally, a size six seed can be defined as S1S2S3S4S5S6, where Si is the

index of an aligned residue pair. To simplify, let Di = Si+1 − Si for i ∈ {1, 2, 3, 4, 5}.

Hence, a consecutive seed has D1 = D2 = D3 = D4 = D5 = 1; a singly gapped seed has

D1 = D2 = D4 = D5 = 1 and D3 > 1; an constantly gapped seed has D1 = D2 = D3 =

D4 = D5 > 1; a dual constantly gapped seed has D1 = D2 = D4 = D5 > 1, D3 > 1 and

D3 6= D1; and an arbitrarily gapped seed does not have any of the above properties.

Currently, in our protein structure superimposition method, all consecutive seeds, singly

gapped seeds, constantly gapped seeds, and dual constantly gapped seeds with all possible

gap sizes are used in the first step. Only a limited number of randomly sampled arbitrarily

gapped seeds are used in the second step. All above mentioned seeds can be used in

either step of our superimposition method. However, we decided to use randomly sampled

arbitrarily gapped seeds only for refinement because the large number of arbitrarily gapped

seeds might be computationally expensive for performing an exhaustive approach. One can

also trade accuracy for speed by using fewer types of seeds in the first step or by reducing

the number of refinement iterations in the second step.
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5.2 Results

Our simple protein structure superimposition method has been implemented in C++ with

OpenMP, and we refer to it simply as PROSTA-super. The RMSD and the weighted

RMSD are calculated using a quaternion-based characteristic polynomial [71]. Currently,

our implementation uses size six seeds that consist of small subsets of six aligned residue

pairs, and optimizes the TM-score [85], the GDT-TS score [83] and the GDT-HA score [83].

There is certainly the potential for other seed sizes and alignment scores in the future. In

this study, we presume that two alignment scores are as good as each other, if the difference

between the two alignment scores is less than 0.01. Our result verifies that there always

exists a seed such that the ROTRAN minimizing the RMSD of the seed yields both the

optimal ROTRAN and the optimal alignment score.

5.2.1 Superimposing Protein Structures Alignments for HOM-

STRAD

To demonstrate the performance of our protein structure superimposition method, we cal-

culate the optimal ROTRANs and the optimal alignment scores given the aligned residue

pairs of the pairwise alignments abstracted from the HOMSTRAD database [57]. HOM-

STRAD is a database of multi-structure alignments examined by human experts, and it

contains 3, 454 homologous protein structures from 1, 032 protein families. After remov-

ing structures with alternative residues and duplicate indexes that might cause ambiguity,

8, 444 pairwise alignments abstracted from HOMSTRAD multi-structure alignments are

included in this experiment.

Before studying the overall performance of our protein structure superimposition method,

the contribution of each seed type is studied by calculating the highest TM-scores [85] be-

fore and after using each seed type. In Figure 5.1(a), the highest TM-scores calculated

from consecutive seeds are compared to those calculated from consecutive seeds and singly

gapped seeds. It can be seen that approximately half of the TM-scores are improved by at

least 0.01 after using singly gapped seeds. This implies that singly gapped seeds contribute
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Figure 5.1: Comparisons of the TM-scores calculated by PROSTA-super with consecutive

seeds (CS), singly gapped seeds (SGS), constantly gapped seeds (CGS), dual constantly

gapped seeds (DCGS) and 100 refinement iterations (R100) on the HOMSTRAD dataset

(only cases yielding TM-scores higher than 0.2 and TM-score differences higher than 0.01

are shown): (a) after adding SGS, there are 275 cases with TM-score improvements > 0.05,

and 4, 017 cases with TM-score improvements > 0.01; (b) after adding CGS, there are 35

cases with TM-score improvements > 0.01; (c) after adding DCGS, there are 25 cases

with TM-score improvements > 0.01; and (d) after adding R100, there are 18 cases with

TM-score improvements > 0.01.
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Figure 5.2: Comparisons of the alignment scores calculated directly from the HOMSTRAD

alignments and those calculated by PROSTA-super with consecutive seeds (CS), singly

gapped seeds (SGS) and 100 refinement iterations (R100) on the HOMSTRAD dataset

(only cases yielding alignment scores higher than 0.2 and alignment score differences higher

than 0.01 are shown): (a) there are 168 cases with TM-score improvements > 0.10, and

2, 019 cases with TM-score improvements > 0.01; (b) there are 725 cases with GDT-TS

score improvements > 0.10, and 8, 008 cases with GDT-TS score improvements > 0.01.

critically to finding the optimal ROTRAN and the optimal alignment score, because the

global topology of the protein structure is implicitly modeled by singly gapped seeds.

Adding constantly gapped seeds, dual constantly gapped seeds, and arbitrarily gapped

seeds to our protein structure superimposition method only improves the TM-score [85]

slightly as shown in Figures 5.1(b), 5.1(c) and 5.1(d). Similar results are observed if the

highest GDT-TS scores [83] are calculated instead. One possible reason for the lack of

significant improvement is that the consecutive seeds and the singly gapped seeds are

sufficient for optimizing TM-scores for the high quality alignments for HOMSTRAD [57].

More significant TM-score improvements are expected for lower quality protein structures

and lower quality protein structure alignments (as shown in Section 5.2.2).

The TM-scores [85] and the GDT-TS scores [83] calculated by our protein structure

superimposition method are also compared to those calculated directly from the HOM-
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STRAD alignments [57] in Figures 5.3(d) and 5.4(d), respectively. Interestingly, there are

168 cases with TM-scores improved by at least 0.10 and 725 cases with GDT-TS scores

improved by at least 0.10. First, this suggests that the HOMSTRAD alignments can still

be improved according to the TM-score and the GDT-TS score. More importantly, if the

HOMSTRAD alignments examined by human experts are presumed to be optimal, this

also demonstrates that there always exists a seed such that the ROTRAN, which minimizes

the RMSD of the seed, yields both the optimal ROTRAN and the optimal alignment score.

In summary, our results show that the optimal protein structure alignment always con-

tains at least one seed such that the ROTRAN minimizing the RMSD of the seed yields

both the optimal ROTRAN and the optimal alignment score. Moreover, remote infor-

mation provides a critical contribution to finding the optimal ROTRAN and the optimal

alignment score, because of its capability for modeling global protein structure topology.

5.2.2 Superimposing Protein Structures Alignments for CASP10

During the tenth community wide experiment on the Critical Assessment of Techniques for

Protein Structure Prediction (CASP10) [43], a variety of types of alignment scores were

calculated to evaluate the performance of each protein structure prediction group. The

success of the performance evaluation process depends mainly on finding the optimal RO-

TRAN and the optimal alignment score. To demonstrate the performance of our protein

structure superimposition method in case of low quality protein structures, the alignment

scores between 26, 156 pairs of the predicted and native structures for CASP10 are calcu-

lated and compared, using our superimposition method, TMscore [85] and LGA [83].

First, the contribution of each type of seed in the case of low quality protein structures

is studied by calculating the highest alignment scores before and after using each type of

seed on the CASP10 dataset [43]. Again, singly gapped seeds make a critical contribution

to finding the optimal ROTRAN and the optimal alignment score. Unlike in previous ob-

servations, constantly gapped seeds, dual constantly gapped seeds, and arbitrarily gapped

seeds are more likely to improve the alignment scores, as shown in Figures 5.3 and 5.4.

The significance of the refinement step is also demonstrated by comparing Figures 5.4(c)

and 5.4(d). Specifically, there are four cases in which the GDT-TS scores [83] are improved
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Figure 5.3: Comparisons of the TM-scores calculated by TMscore and PROSTA-super

with consecutive seeds (CS), singly gapped seeds (SGS), constantly gapped seeds (CGS),

dual constantly gapped seeds (DCGS) and 100 refinement iterations (R100) on the CASP10

dataset (only cases yielding alignment scores higher than 0.2 and alignment score differences

higher than 0.01 are shown): (a,b,c,d) using CGS, DCGS and R100 improves the TM-scores

calculated by PROSTA-super; and either with or without CGS, DCGS and R100, there

are 66 cases with TM-score improvements > 0.10 comparing to the TM-scores calculated

by TMscore.
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Figure 5.4: Comparisons of the GDT-TS scores calculated by LGA and PROSTA-super

with consecutive seeds (CS), singly gapped seeds (SGS), constantly gapped seeds (CGS),

dual constantly gapped seeds (DCGS) and 100 refinement iterations (R100) on the CASP10

dataset (only cases yielding alignment scores higher than 0.2 and alignment score differences

higher than 0.01 are shown): (a,b,c,d) using CGS, DCGS and R100 improves the GDT-TS

scores calculated by PROSTA-super; and either with or without CGS, DCGS and R100,

there are 54 cases with GDT-TS score improvements > 0.10 comparing to the GDT-TS

scores calculated by LGA.
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by at least 0.10, and there are 156 cases in which the GDT-TS scores are improved by at

least 0.03, after 100 refinement iterations. However, it seems that the refinement step has

only minor impact when calculating the highest TM-score [85], as shown in Figures 5.3(c)

and 5.3(d). This demonstrates that the GDT-TS score is more difficult to optimize because

the GDT-TS score is a discrete scoring function, while the TM-score is not.

After 100 refinement iterations, the alignment scores calculated by our protein structure

superimposition method are similar to or (possibly significantly) higher than those found

by TMscore [85] or LGA [83]. As shown in Figures 5.3(d) and 5.4(d), we found a case

in which the TM-score [85] calculated by our superimposition method is 0.5619, while the

TM-score calculated by TMscore is 0.0087. Moreover, we also found a case in which the

GDT-TS score [83] calculated by our superimposition method is 0.5264, while the GDT-

TS score calculated by LGA is 0.0609. The cases when TMscore or LGA does not return

alignment scores because of PDB errors are also shown in the figure.

In summary, our protein structure superimposition method is capable of finding TM-

scores [85] and GDT-TS scores [83] that are similar to or (possibly significantly) higher

than those found by TMscore [85] and LGA [83]. This not only demonstrates that our

superimposition method is reliable, but also demonstrates that it is robust to low quality

protein structures, such as the predicted protein structures of CASP10 [43]. Thus, our

superimposition method provides a reliable performance evaluation platform for CASP.

5.3 Discussion

We have introduced PROSTA-super, a simple and reliable method to optimally super-

impose two protein structures, given the aligned residue pairs and the scoring function.

Our superimposition method employs not only the consecutive seed containing consecutive

residue pairs, but also gapped seeds containing gapped reside pairs. Thus, our superimpo-

sition method relies on and verifies the fact that the optimal protein structure alignment

always contains a seed, such that the ROTRAN, which minimizes the RMSD of the seed,

yields both the optimal ROTRAN and the optimal alignment score. Moreover, a weighted

RMSD is used with gapped seeds as refinement in our superimposition method.
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PROSTA-super has been implemented in C++ with OpenMP. Currently, our imple-

mentation uses size six seeds that consist of small subsets of six aligned residue pairs, and

optimizes the TM-score [85], the GDT-TS score [83], and the GDT-HA score [83]. Our

result shows that our superimposition method is capable of finding TM-scores [85] and

GDT-TS scores [83] that are similar or (possibly significantly) higher than those found by

TMscore [85] and LGA [83], respectively. Moreover, our method is significantly faster than

LGA, and it has the added benefit of concurrent programming.
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Chapter 6

Aligning Protein Structures

Optimally

We introduce a simple PROtein STructure Alignment method, called PROSTA (meaning

“simple” in Polish), for finding the optimal alignment that maximizes a given scoring func-

tion in Section 6.1. Our alignment method relies on and verifies the fact that the optimal

protein structure alignment always contains a small subset of aligned residue pairs such

that the rotation and translation (ROTRAN), which minimizes the RMSD of the subset of

aligned residue pairs, yields both the optimal ROTRAN and the optimal alignment score.

By comparing the TM-scores [85] calculated by our alignment method and state-of-the-art

alignment methods in Section 6.2.1, our alignment method is shown to be more reliable in

finding the optimal protein structure alignment. This is also supported by the experiment

optimizing GDT-TS scores [83] instead of TM-scores in Section 6.2.2.

6.1 Method for Protein Structure Alignment

Given a protein structure alignment scoring function, finding the optimal alignment in-

volves finding the optimal ROTRAN that maximizes the alignment score. Assume that

there exists a near optimal ROTRAN that minimizes the RMSD of two small sets of Cα
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atoms. We find the near optimal protein structure alignment by sampling ROTRANs in

four steps: (1) ROTRANs are initially sampled from local fragment alignments and from

remote fragment pair alignments; (2) noise ROTRANs are filtered out by clustering; (3)

one representative alignment for each ROTRAN cluster is selected based on alignment

scores; (4) the selected alignments are refined by random ROTRAN sampling.

First, an initial set of ROTRANs must be sampled. Here, the primary concern is to have

several good candidates, instead of having a high signal-to-noise ratio, which is addressed in

the next step. Finding good candidates is done by calculating the optimal ROTRAN that

minimizes the RMSD between one or two fragments from each protein structure. When

there is a single fragment from each protein structure, we call it local fragment. When there

are two fragments from each protein structure, we call them a remote fragment pair. Here,

we require the pair of remote fragments to be the same size and to be at least three residues

away from each other to avoid modeling information redundant to the local fragments. In

practice, a significantly large number of ROTRANs with the lowest RMSDs are kept for

the next step, and the actual number of ROTRANs is selected empirically.

Since the initial set of ROTRANs may contain a great deal of noise, we try to filter

out most of the noise with a star-like k-median clustering algorithm in the second step.

Assuming that we know the maximum distance ǫ between the median of a cluster and any

member of the same cluster, an approximate clustering is applied using a neighbor graph:

each vertex represents a rotation matrix, and two vertices are connected if and only if the

distance between them is at most ǫ. For each iteration, the vertex with the highest degree

and its neighbors are grouped into a cluster, and are removed from the neighbor graph.

The iteration repeats until either there are no vertices of degree higher than one or until

the maximum number of clusters is reached. The unclustered ROTRANs are treated as

noise. Similar approximate clustering algorithms have been used [86] and studied [3].

To complete the clustering algorithm, we need a distance function between ROTRANs.

The Riemannian distance is a widely used distance metric measuring the length of the

shortest geodesic curve between two rotation matrices [58]. Since the translation vector

can be calculated by the rotation matrix and the weight centers of the aligned residues, we

use Riemannian distances between rotation matrices to avoid using redundant information

when clustering ROTRANs.
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For each cluster, we find the representative alignment defined by the ROTRAN that

yields the highest alignment score within the cluster. Since dynamic programming is

computationally expensive, the number of clusters in the previous step must be carefully

determined to avoid wasting computation on clusters of noise. After all alignment scores

have been calculated, the top scored alignments are selected for the refinement step.

Finally, we refine the selected representative alignments by random ROTRAN sampling.

Specifically, for each alignment to be refined, six aligned residue pairs are randomly selected

from the alignment, the ROTRAN that minimizes RMSD of the aligned residue pairs is

calculated, the alignment score of the alignment defined by the sampled ROTRAN is also

calculated, and the previous steps are repeated until there is little improvement after l1l2

iterations, where l1 and l2 are the number of residues of the two aligned protein structures.

6.2 Results

To demonstrate the reliability of our protein structure alignment method, PROSTA, we

repeated the protein structure alignment experiment for TM-align [87] for the 200 non-

homologous protein structures, which have sizes between 46 and 1, 058, and have a sequence

identity cutoff of 30%. For each protein structure pair, the optimal alignment was calcu-

lated using our alignment method and state-of-the-art alignment methods, and then the

alignment scores were compared. Here, we presume that two alignment scores are as good

as each other, if the difference between the two alignment scores is less than 0.01. The

result demonstrates that our alignment method is more reliable in finding the optimal

protein structure alignment, and thus it is capable of discovering highly scored alignments

missed by current alignment methods.

For the experiment settings, we decided to use local fragments of size 12, and remote

fragment pairs of size 3, empirically. These experiment settings are called PROSTA-L12R3.

For consistency, we selected 1, 536 local fragments of size 12 and 1, 536 remote fragment

pairs of size three in the sampling step, used ǫ = 10◦ in the clustering step, stopped

clustering when 384 clusters were found, and selected 32 clusters in the refinement step in

all experiments for this section.
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6.2.1 Alignment Quality Evaluation Using The TM-score

In this experiment, the optimal protein structure alignments, which maximize the TM-

scores [85], are calculated using our alignment method, TM-align [87] and fr-TM-align [63].

Here, the TM-scores normalized by the smaller protein size are used. Since fr-TM-align

does not support normalization by the smaller protein size, the TM-score normalized by

the smaller protein size is recalculated based on the ROTRAN returned by fr-TM-align. To

simplify, the highest TM-score found by the three methods is designated as the best-of-3

TM-score. Since biologists tend to be more interested in similar protein structures within

the same protein fold, and the TM-score of 0.5 is a good approximate threshold for protein

fold detection [80], only the 351 protein structure alignments with the best-of-3 TM-scores

higher than 0.5 are included in this analysis.

Before evaluating the performance of our protein structure alignment method as a black

box, we would like to evaluate the performance for each step of our alignment method. The

result does not only support the effectiveness of our alignment method, but also supports

the appropriateness of our parameter settings, such as the local fragment size and the

remote fragment pair size. In fact, the local fragment size of 12 has also been used by

fr-TM-align [63].

In the first step of our alignment method, ROTRANs are sampled from both local

fragment alignments and remote fragment pair alignments. As shown in Figure 6.1(a),

92% of the highest TM-scores [85] of the sampled ROTRANs are, at most, 0.05 lower

than the best-of-3 TM-scores, and less than 1% of the highest TM-scores of the sampled

ROTRANs are, at least, 0.1 lower than the best-of-3 TM-scores. This, combined with later

results from this experiment, verifies that the initially sampled ROTRANs contain at least

one ROTRAN that is suitable to be a starting point for finding the optimal ROTRAN.

In the second step, the initially sampled ROTRANs are clustered. Figure 6.1(b) shows

the rank of the first cluster that contains an optimal ROTRAN. Specifically, there exists

at least one optimal ROTRAN in the largest cluster with a probability of 31%, and there

exists at least one optimal ROTRAN in the largest 10 clusters with a probability of 75%.

This demonstrates that an optimal ROTRAN tends to have many similar ROTRANs that

minimize the RMSDs of local fragment alignments or remote fragment pair alignments,
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(b) The rank distribution of the first cluster con-

taining an optimal ROTRAN
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(c) The best-of-3 TM-scores v.s. the PROSTA-
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Figure 6.1: Performance for each step of PROSTA-L12R3: (a) after the initial ROTRAN

sampling step, 92% of the highest TM-scores of the initially sampled ROTRANs are, at

most, 0.05 lower than the best-of-3 TM-scores; (b) after the ROTRAN clustering step,

there exists, at least, one optimal ROTRAN in the largest 10 cluster with a probability of

75%; after the cluster representative selection step (not shown in the figure), there exists at

least one optimal ROTRAN in the clusters represented by the highest scored 10 alignments

with a probability of 99%; (c) after the refinement step, all TM-scores are, at most, 0.03

lower than the optimal TM-score.
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and that these ROTRANs tend to form a large cluster.

The representative alignment with the highest TM-score [85] is selected from each

cluster in the third step. In our experiment, there exists at least one optimal ROTRAN

in the cluster represented by the highest scored alignment with a probability of 85%,

and there exists at least one optimal ROTRAN in the clusters, represented by the 10

highest scored alignments, with a probability of 99%. This demonstrates that the cluster

representatives are capable of identifying an optimal cluster, which contains an optimal

ROTRAN, efficiently and accurately.

Last, the selected alignments are refined by random ROTRAN sampling. Figure 6.1(c)

shows the refined PROSTA-L12R3 TM-scores [85] and the best-of-3 TM-scores. It can be

seen that the TM-scores are mostly similar, and the difference is always less than 0.03. This

demonstrates that once an optimal cluster containing an optimal ROTRAN is identified,

an optimal ROTRAN can be identified by random ROTRAN sampling from the cluster

representative alignment.

To study the contributions made by using local fragments and using remote fragment

pairs, we simplified our method to two variants: PROSTA-L12, that used only local frag-

ments of size 12, and PROSTA-R3, that used only remote fragment pairs of size 3. For

both PROSTA-L12 and PROSTA-R3, only 16 cluster representatives were used in the re-

finement step, and all other experiment settings remained the same as PROSTA-L12R3.

Using PROSTA-R3, PROSTA-L12 and TM-align [87], we performed structure alignment

between each pair of the 200 proteins in our dataset, and evaluated the alignment quality

with TM-score [85]. Although either local fragments or remote fragment pairs are capable

of finding high quality alignments that are comparable to or even better than those found

by TM-align, neither local fragments nor remote fragment pairs are sufficient for finding

optimal protein structure alignments.

Neither PROSTA-L12 nor PROSTA-R3 is sufficient for finding an optimal protein struc-

ture alignment. As shown in Figure 6.2(a), both PROSTA-L12 and PROSTA-R3 find

similar TM-scores [85] when one of the TM-scores found by PROSTA-L12 and PROSTA-

R3 is higher than 0.65. Among the 48 cases in which TM-scores differ by 0.01 or more,

32 TM-scores found by PROSTA-L12 are up to 0.17 higher, and 16 TM-scores found by
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Figure 6.2: Comparisons of the TM-scores of PROSTA-L12 and PROSTA-R3 (only cases

yielding TM-score differences higher than 0.01 are shown): (a) neither PROSTA-L12 nor

PROSTA-R3 is sufficient for finding an optimal protein structure alignment; (b-c) due to its

ability for modeling relationships of remote residues, PROSTA-R3 is capable of discovering

alignments with higher TM-scores that cannot be discovered by PROSTA-L12, which is

especially helpful for protein structure alignments involving multiple α-helices.
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Figure 6.3: Comparisons of the TM-scores of TM-align, fr-TM-align and PROSTA-L12R3

(only cases yielding TM-score differences higher than 0.01 are shown): (a) for the 285

cases in which the TM-score of TM-align is lower than 0.6 and the best-of-3 TM-score is

higher than 0.5, TM-align fails to find TM-scores higher than 0.5 with a probability of 42%,

while PROSTA-L12R3 fails the same task with a probability of only 2%; (b) compared to

fr-TM-align, PROSTA-L12R3 finds 28 more cases in which TM-scores higher than 0.5.

PROSTA-R3 are up to 0.05 higher. Thus, both PROSTA-L12 and PROSTA-R3 contribute

significantly for finding optimal protein structure alignments.

One advantage of PROSTA-R3 over PROSTA-L12 is the ability to model relationships

of remote residues, and this is especially helpful for protein structure alignments involving

multiple α-helices. Figures 6.2(b) and 6.2(c) shows the TM-scores [85] of alignments in-

volving all-α proteins or all-β proteins (from the 351 test cases) respectively. For the cases

that PROSTA-R3 works better than PROSTA-L12, the optimal alignment tends to con-

tain multiple α-helices. This observation is not limited to all-α proteins, but also proteins

containing α-helices and β-strands. This implies that the global topology is critical to the

success of the protein structure alignment, and the global topology can only be modeled by

remote information as we did for PROSTA-R3. Especially for structure alignments consist

of mainly α-helices, the global topology becomes more important because local structures

tend to be similar between α-helices.
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Finally, we would like to demonstrate that PROSTA-L12R3 performs more reliably than

current methods TM-align [87] and fr-TM-align [63] in finding an optimal protein structure

alignment. Again, we aligned each pair of the 200 proteins in our dataset using the three

methods. Then, we evaluated the alignment quality of each method with TM-score [85].

The improvements on TM-scores [85], found by PROSTA-L12R3 over those found by

TM-align [87], are shown in Figure 6.3(a). We see that TM-scores found by PROSTA-

L12R3 are mostly higher than those found by TM-align for the cases in which have TM-

align TM-scores lower than 0.65. Specifically, PROSTA-L12R3 improves TM-scores by 0.03

on average and by 0.21 in the best case. Moreover, 10% of the TM-scores are improved by

at least 0.1, 25% of the TM-scores are improved by at least 0.05, and no TM-scores are

reduced by 0.03 or more.

If the highest TM-score [85] found by TM-align [87] is lower than 0.6 and the best-of-3

TM-score is higher than 0.5, PROSTA-L12R3 tends to discover better protein structure

alignments with (possibly significantly) higher TM-scores. In our experiment, there are 285

such cases that form 81% of the 351 cases included in this analysis. In such cases, TM-align

fails to find TM-scores higher than 0.5 with a probability of 42%, while PROSTA-L12R3

fails the same task with a probability of only 2%. This could significantly improve fold

detection results.

Several interesting case studies are provided in Figures 6.4 and 6.5. Consistent with

previous observations, PROSTA-L12R3 significantly improves TM-scores [85], compared

to TM-align [87]. Consequently, new similar protein structures (or alignments) with TM-

scores higher than 0.5 are discovered.

As shown in Figures 6.4(c) and 6.5(c), the superimposed protein structures of PROSTA-

L12R3 and TM-align [87] share commonly aligned α-helices, but the global alignments are

significantly different. Although the approximate subregion of the optimal alignment is

found, the optimal alignment is still missed. This demonstrates one limitation of using local

fragments to find the optimal alignment: an α-helix can be easily aligned (or overfitted) to

another α-helix, and the overfitting causes the missing of the optimal alignment. In such

cases, remote fragment pairs, which implicitly model the global topology, play a critical

role on finding the optimal alignment.
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As shown in Figures 6.4(f) and 6.5(f), the superimposed protein structures of PROSTA-

L12R3 and TM-align [87] are aligned to completely different regions of the red protein

structures. This demonstrates one limitation of the initial alignment process without clus-

tering: an initial sub-optimal alignment might not be the initial alignment with the highest

alignment score, and thus a false alignment might be selected for the refinement process.

After ROTRAN clustering, multiple ROTRANs (or alignments) from different clusters can

be selected for the refinement process to avoid missing the optimal alignment.

In addition to comparison with TM-align [87], the TM-scores [85] found by PROSTA-

L12R3 are also compared with those found by fr-TM-align [63], as shown in Figure 6.3(b).

Note that TM-scores found by PROSTA-L12R3 are also mostly higher than those found

by fr-TM-align for protein structure pairs that have fr-TM-align TM-scores lower than

0.65. Specifically, PROSTA-L12R3 improves TM-scores by up to 0.13, while it reduces

TM-scores by at most 0.02. Moreover, PROSTA-L12R3 finds 45 more TM-scores that are

higher than 0.5.

In summary, our alignment method performs more reliably in finding an optimal protein

structure alignment with the highest TM-score [85] than do the current alignment methods,

TM-align [87] and fr-TM-align [63]. Our alignment method, PROSTA-L12R3, not only

can consistently find alignments with similar or higher TM-scores, but also can discover

more alignments with TM-scores higher than 0.5. This promises better protein structure

alignment and protein fold detection results. One, but certainly not the only one, reason

for the success of our alignment method is using remote fragment pairs to implicitly model

the global protein structure topology.

6.2.2 Alignment Quality Evaluation Using The GDT-TS Score

The GDT-TS score [83], in addition to the TM-score [85], is one of the most popular protein

structure alignment scoring functions [?]. Thus, we repeated the previous experiment, but

compared the GDT-TS scores found by our protein structure alignment method to those

found by LGA [83] and SPalign [81]. Again, the highest GDT-TS score found by the three

methods is referred to as the best-of-3 GDT-TS score, and only the 356 protein structure

alignments with the best-of-3 GDT-TS scores higher than 0.5 are included in this analysis.
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(a) 1A8H v.s. 1AIL (PROSTA-

L12R3)

(b) 1A8H v.s. 1AIL (TM-align) (c) 1AIL (PROSTA-L12R3) v.s.

1AIL (TM-align)

(d) 1A8P v.s. 1AFP (PROSTA-

L12R3)

(e) 1A8P v.s. 1AFP (TM-align) (f) 1AFP (PROSTA-L12R3) v.s.

1AFP (TM-align)

Figure 6.4: Comparisons of four protein structure alignments found by TM-align and

PROSTA-L12R3: the query protein structure is shown in red; the target protein structure

aligned by PROSTA-L12R3 is shown in green; the target protein structure aligned by TM-

align is shown in blue; (a-c) PROSTA-L12R3: TM-score = 0.666, RMSD = 3.52, Sequence

Identity = 0.11, Alignment Length = 64; TM-align: TM-score = 0.452, RMSD = 3.17,

Sequence Identity = 0.04, Alignment Length = 49; (d-f) PROSTA-L12R3: TM-score =

0.525, RMSD = 2.96, Sequence Identity = 0.02, Alignment Length = 43; TM-align: TM-

score = 0.327, RMSD = 2.80, Sequence Identity = 0.03, Alignment Length = 32.
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(a) 12ASA v.s. 1AW0 (PROSTA-

L12R3)

(b) 12ASA v.s. 1AW0 (TM-align) (c) 1AW0 (PROSTA-L12R3) v.s.

1AW0 (TM-align)

(d) 1AA6 v.s. 1ATZA (PROSTA-

L12R3)

(e) 1AA6 v.s. 1ATZA (TM-align) (f) 1ATZA (PROSTA-L12R3) v.s.

1ATZA (TM-align)

Figure 6.5: Comparisons of four protein structure alignments found by TM-align and

PROSTA-L12R3: the query protein structure is shown in red; the target protein structure

aligned by PROSTA-L12R3 is shown in green; the target protein structure aligned by TM-

align is shown in blue; (a-c) PROSTA-L12R3: TM-score = 0.502, RMSD = 5.42, Sequence

Identity = 0.05, Alignment Length = 60; TM-align: TM-score = 0.365, RMSD = 4.04,

Sequence Identity = 0.06, Alignment Length = 49; (d-f) PROSTA-L12R3: TM-score =

0.526, RMSD = 4.78, Sequence Identity = 0.10, Alignment Length = 142; TM-align: TM-

score = 0.402, RMSD = 5.29, Sequence Identity = 0.10, Alignment Length = 125.
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Figure 6.6: Comparisons of the GDT-TS scores of LGA, SPalign and PROSTA-L12R3

(only cases yielding GDT-TS score differences higher than 0.01 are shown): (a) compared

to LGA, PROSTA-L12R3 finds 217 (or 156%) more alignments with GDT-TS scores up to

0.44 higher than 0.5; (b) compared to SPalign, PROSTA-L12R3 finds 202 (or 131%) more

alignments with GDT-TS scores up to 0.24 higher than 0.5.
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Comparing the GDT-TS scores [83] found by PROSTA-L12R3 and LGA [83] as shown

in Figure 6.6(a), it can be seen that PROSTA-L12R3 consistently finds similar or higher

GDT-TS scores than LGA. Specifically, PROSTA-L12R3 improves GDT-TS scores by 0.06

on average and by 0.44 in the best case. It is seen that 25% of the GDT-TS scores are

improved by at least 0.08 and that 75% of the GDT-TS scores are improved by at least

0.03. As a result, PROSTA-L12R3 finds 217 (or 156%) more alignments with GDT-TS

scores higher than 0.5. Similar results are observed comparing the GDT-TS scores found

by PROSTA-L12R3 and SPalign [81], as shown in Figure 6.6(b). Therefore, our protein

structure alignment method is further shown to be more reliable in finding high quality

protein structure alignments.

Unlike previous observations, PROSTA-L12R3 tends to improve GDT scores [83] for

protein structure alignments involving not only all-α proteins, but also all-β proteins. The

improvement is even slightly better, on average, for all-β proteins than for all-α proteins,

although the highest improvement is credited to an all-α protein structure alignment.

Therefore, our alignment method is shown to be more reliable for finding high quality

protein structure alignments, not limited to all-α protein structure alignments.

In summary, our method also performs more reliably in finding an optimal protein struc-

ture alignment with the highest GDT-TS score [83] than does LGA [83] and SPalign [81].

This conclusion holds for protein structure alignments involving not only α-helices but also

β-strands.

6.3 Discussion

We have introduced PROSTA, our protein structure alignment method. Our result verifies

the fact that the optimal protein structure alignment always contains a small subset of

aligned residue pairs such that the ROTRAN, which minimizes the RMSD of the subset of

aligned residue pairs, yields both the optimal ROTRAN and the optimal alignment score.

Thus, our alignment method is not only reliable in finding the optimal alignment with

the highest alignment score, but is also capable of discovering highly scored alignments

missed by state-of-the-art alignment methods. This is the benefit of incorporating both
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(a) 16VPA v.s. 1AKHA

(PROSTA-L12R3)

(b) 16VPA v.s. 1AKHA (LGA) (c) 1AKHA (PROSTA-L12R3)

v.s. 1AKHA (LGA)

(d) 1A12A v.s. 1ATX (PROSTA-

L12R3)

(e) 1A12A v.s. 1ATX (LGA) (f) 1ATX (PROSTA-L12R3) v.s.

1ATX (LGA)

Figure 6.7: Comparisons of four protein structure alignments found by LGA and PROSTA-

L12R3: the query protein structure is shown in red color; the target protein structure

aligned by PROSTA-L12R3 is shown in green color; the target protein structure aligned

by LGA is shown in blue color; (a-c) PROSTA-L12R3: GDT-TS = 0.602, RMSD = 3.32,

Sequence Identity = 0.09, Alignment Length = 45; LGA: GDT-TS = 0.163, RMSD =

3.38, Sequence Identity = 0.00, Alignment Length = 13; (d-f) PROSTA-L12R3: GDT-TS

= 0.516, RMSD = 4.56, Sequence Identity = 0.06, Alignment Length = 34; LGA: GDT =

0.359, RMSD = 3.17, Sequence Identity = 0.00, Alignment Length = 28.
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local fragments and remote fragment pairs in the alignment method.
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Chapter 7

Evaluating Protein Structure

Alignments Reliably

In Section 7.1, we introduce a new protein structure alignment scoring function incorpo-

rating several kinds of protein similarities. In this study, we focus on incorporating atom

coordinate similarity and sequence similarity in a more reliable alignment score. As demon-

strated in Section 7.2, although atom coordinate similarity may be efficient in many cases,

sequence similarity helps to find better protein structure alignments that are (possibly

significantly) more consistent with reference alignments examined by human experts.

7.1 Protein Structure Alignment Scoring Function

TM-score [85], based on LG-score [49], is one of the most successful protein structure align-

ment scoring functions. However, one limitation of both TM-score and LG-score is that

they use only protein atom coordinate similarity while they ignore other protein similarities,

such as sequence similarity. It has been observed that many protein structure alignments,

based only on protein atom coordinate similarity, are highly sensitive to conformational

changes [64]. This suggests the incorporation of other protein similarities, such as sequence

similarity, in the protein structure alignment scoring function. Here, we introduce a new
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scoring function incorporating many kinds of protein similarity as follows:

S =
1

Lr

∑

i≤l

1

1 + fa(D1(i), D2(i), ..., Dn(i))
,

where Lr is the reference protein size; l is the number of aligned residue pairs of the

alignment; fa is the weighted averaging function (e.g. arithmetic, geometric or harmonic

average); Dk(i) is the normalized distance of the i-th aligned residue pair using the k-th

distance function; and n is the number of distance functions incorporated. If there is n = 1

and D1(i) = (di/d0)
2, where di is the distance between the Cα atoms of the i-th aligned

residue pair and d0 is a normalization factor, our scoring function is identical to the LG-

score [49]. If there is also d0 = 1.24(Lr − 15)1/3 − 1.8, our scoring function is identical

to the TM-score [85]. Thus, LG-score and TM-score are two special cases of our scoring

function.

In this study, we focus on the geometric average of the normalized Cα distance D1(i)

and the normalized amino acid distance D2(i) as follows:

S =
1

Lr

∑

i≤l

1

1 + 1+w
√

D1(i)Dw
2 (i)

,

where w is a weighting factor. As with TM-score [85], we define the normalized Cα distance

as

D1(i) = (
di
d0

)2,

where d0 = 1.24(Lr − 15)1/3 − 1.8. Based on the popular BLOSUM62 matrix [30, 20], we

define the normalized amino acid distance as

D2(i) = 2−M(Pi,Qi) = 2
−λ log

P (Pi,Qi)

P (Pi)P (Qi) = (
P (Pi)P (Qi)

P (Pi, Qi)
)λ,

where M is the BLOSUM62 matrix, (Pi, Qi) is the i-th aligned residue pair, λ is a scaling

factor, P (Pi, Qi) is the probability of amino acid Pi aligning to amino acid Qi, and P (Pi)

and P (Qi) are the probabilities of amino acid Pi and amino acid Qi, respectively. Instead

of using the default scaling factor λ, it is treated here as a parameter to control the rate

of mutation.
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An appealing property shared between TM-score [80] and our scoring function is that

the prefered protein structure alignments tend to have scores higher than 0.5. If the

Cα distance between the i-th aligned residue pair is prefered, there is di < d0 and thus

D1(i) < 1. If the amino acid distance between the i-th aligned residue pair is prefered,

there is P (Pi, Qi) > P (Pi)P (Qi) and thus D2(i) < 1. Then, for the i-th aligned residue

pair, there is D1(i)D2(i) < 1 and thus 1/(1 + 1+w
√

D1(i)Dw
2 (i)) > 0.5. Therefore, if many

prefered aligned residue pairs occur in the alignment, our protein structure alignment score

tends to be higher than 0.5.

7.2 Results

In this experiment, we would like to show that our scoring function is capable of finding

protein structure alignments that are significantly more consistent with alignments exam-

ined by human experts. Thus, we used protein structure alignments from the HOMSTRAD

database [57] as a benchmark and compared the alignment quality of our PROSTA-L9R3

alignment optimizing our protein structure alignment scoring function with that of TM-

align [87] optimizing TM-score [85]. Then, the quality of an alignment is evaluated by the

F-score that is defined as the harmonic mean of the recall and the precision of the aligned

residue pairs. Here, recall is the fraction of correctly predicted aligned residue pairs over

the true aligned residue pairs, and precision is the fraction of correctly predicted aligned

residue pairs over the predicted aligned residue pairs. Moreover, we chose the geometric

average function with λ = 0.25 and w = 1.9, empirically.

The F-score differences between PROSTA-L9R3 and TM-align [87] are shown in Figure

7.1(a). Using PROSTA-L9R3, 47% of the F-scores are improved, and the average F-score

is improved from 88% to 90% compared to using TM-align. Moreover, there are 663

PROSTA-L9R3 F-scores that are at least 10% higher and there are 1, 342 PROSTA-L9R3

F-scores that are at least 5% higher than the TM-align F-scores. For comparison, 31% of

the TM-align F-scores are higher, and only 124 TM-align F-scores are at least 10% higher.

Therefore, our scoring function tends to produce similar or higher F-scores compared to

TM-score [85]

79



−100 −50 0 50 100
L9R3align - TMalign

10-1

100

101

102

103

104

Co
un

t

(a) F-score difference between PROSTA-L9R3 and

TM-align

0 20 40 60 80 100
TMalign

0

20

40

60

80

100

L9
R3

al
ig
n

(b) TM-align F-score v.s. PROSTA-L9R3 F-score

Figure 7.1: Comparisons of the F-scores of the alignments found by PROSTA-L9R3 with

our scoring function and TM-align with TM-score: 47% of the PROSTA-L9R3 F-scores are

improved; 663 PROSTA-L9R3 F-scores are improved by at least 10%; and 1, 342 PROSTA-

L9R3 F-scores are improved by at least 5% compared to using TM-align.
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The F-scores of the alignments found by PROSTA-L9R3 and TM-align [87] are com-

pared in Figure 7.1(b). If the F-score of an alignment is higher than 90%, the align-

ment is considered to be highly consistent with HOMSTRAD alignments [57]. In total,

TM-align finds 5, 560 such alignments, while PROSTA-L9R3 finds 6, 114 such alignments.

Therefore, our scoring function finds 10% more alignments that are highly consistent with

HOMSTRAD alignments.

Among the 34 pairs of protein structures that have TM-align [87] F-scores equal to

zero, the PROSTA-L9R3 F-scores reach 36% on average. Specifically, two PROSTA-L9R3

F-scores equal to 100% and 19 PROSTA-L9R3 F-scores are higher than 50%. For the

two cases that PROSTA-L9R3 F-scores are equal to 100%, the aligned protein structures

contain a high percentage of helices, and TM-align shifts the HOMSTRAD alignment [57]

by a few residues, which has also been previously observed [66]. Such shifting is difficult to

avoid by evaluating only atom coordinate similarity. However, the shifting is avoided by our

scoring function, involving both atom coordinate similarity and sequence similarity. There

is also one pair of protein structures such that the PROSTA-L9R3 F-score is zero, while

the TM-align [87] F-score is 74%. We have observed that such cases can be eliminated by

using different weight parameters, and this problem will be addressed in our future work.

In summary, although atom coordinate similarity may be efficient in many cases, se-

quence similarity helps to find better protein structure alignments that are (possibly signif-

icantly) more consistent with HOMSTRAD alignments [57] examined by human experts.

However, the weight parameters of our scoring function need to be carefully selected to

eliminate the dependency between the alignment score and the protein size.

7.3 Discussion

Sequence similarity does aid in finding high quality protein structure alignments that are

highly consistent with HOMSTRAD alignments [57] examined by human experts, even if

atom coordinate similarity itself fails to do so. Our scoring function remains capable of

modeling more types of protein similarities, such as the (φ, ψ) dihedral angle distance and

the secondary structure distance, which might aid in finding higher quality protein struc-
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ture alignments. Unknown protein domain length problems when aligning multi-domain

proteins should also be addressed in the future as proposed by SPalign [81]. Moreover,

the alignment quality can be further studied by checking self-consistency [66], and by

simulating the SCOP fold detection [59].
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Chapter 8

Discussion

We have introduced both a low-resolution approach (ContactLib) and a high-resolution

approach (PROSTA) to assess the similarities and differences among protein structures.

Our results show that both approaches outperform state-of-the-art methods. Unlike cur-

rent methods that tend to focus on local information, remote information is used in both

approaches. This critical difference is one reason for the success of our methods.

Both our low-resolution and high-resolution approaches are motivated from key obser-

vations. The low-resolution approach is based on the observation that ideal bond lengths

and ideal bond angles can be used to accurately model protein structures. Thus, a low-

dimension distance vector can be used to accurately model a contact group. The high-

resolution approach is based on the observation that the optimal protein structure align-

ment always contains a small subset of aligned residue pairs such that the rotation and

translation, which minimizes the RMSD of the subset of aligned residue pairs, yields both

the optimal ROTRAN and the optimal alignment score. Thus, the optimal alignment can

be calculated directly from the sampled subsets of aligned residue pairs.

Clustering is critical to our PROSTA method. First, since only a small number of sam-

pled rotations and translations is sufficient for identifying large clusters, using clustering

avoids alignment score calculation on most of the sampled noise rotations and translations.

Second, since the alignments calculated from the same cluster tend to be highly similar

and thus highly redundant, using clustering avoids alignment refinements on most of the
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rotations and translations in the large clusters. This approach works well because good

candidates tend to appear similar to each other, while noise candidates do not. For the

same reason, clustering has also been used to distinguish good and noise predicted protein

structures [51].

Our low-resolution and high-resolution approaches can also be combined together to

archive high accuracy with high speed. To complete the experiments in Sections 6.2.1 and

6.2.2, the elapsed time required by PROSTA is approximately 4.5 hours on a workstation

with dual Intel Xeon X5660 2.8GHz CPUs and dual Nvidia GeForce GTX 670 GPUs.

Thus, each pairwise alignment took approximately 0.8 seconds on average. Considering

that TM-align [87] requires approximately 45 minutes and LGA [83] requires approximately

10 hours, the runtime of PROSTA is approximately the average of fast and slow methods.

In case that speed is critical, ContactLib can be used as preprocessing to filter the dataset

for each query protein structure, and this preprocessing should be very fast (taking less

than a second). If a keeper rate of 17% is used in the preprocessing, PROSTA would take

approximately 45 minutes to complete the experiment, which is as fast as TM-align. A

lower keeper rate can certainly be used to archive even higher speed.

8.1 Future Work

Our low-resolution approach can be improved in several ways. One possibility is to discover

and study new types of contact groups. We will look for new definitions of distance vectors

representing remote contact groups based on statistical energies [88]. Other than the atom-

atom distances, the sequence similarities and the angles between certain (pseudo) bonds

might also help to identify similar contact groups. Such bond angles have been previously

used to calculate hydrogen bonds [37] and statistical energies [17].

We will also look for new applications for ContactLib. One promising application

for ContactLib is the “structural BLAST” approach of PrePPI [16], whose performance

depends mainly on the accuracy and on the speed of its neighbor protein structure retrieval.

Moreover, ContactLib is also capable of finding neighbor protein structures if the query

protein structure is only partially known in the process of protein structure prediction [84]
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or determination [76]. Then, ContactLib may employ the incomplete Cα − Cα pairwise

distance matrix to find template candidates to enable it to predict or to determine the

query protein structure.

Our PROSTA method has several limitations that will be addressed in the future. First,

it would be interesting to study the impact of different clustering algorithms. For example,

we observed clusters that are more suitable for a single-linkage clustering algorithm. More-

over, only the rotation of a ROTRAN is currently used in the clustering process, and using

both the rotation and the translation might help to eliminate more noise. Second, it would

be interesting to allow multiple ROTRANs from the same cluster for finding flexible pair-

wise structure alignments, as seen in FATCAT [82], and for finding flexible multi-structure

alignments, as seen in Matt [56]. Third, the residue order in the alignment is consistent

with that in the protein structure, and thus protein structure permutation is not allowed.

However, proteins are flexible [77, 4], and protein structure permutation is important for

studying protein folding and evolution [27, 31]. Moreover, the performance for aligning

multi-domain protein structures [81] and multi-chain protein structures [6] remains open.

Our initial scoring functions are shown to be more accurate than current scoring func-

tions, but are still subject to improvement. Recently, local superimposition-free scores have

been used for evaluating the similarity between protein structures [43, 55]. Thus, a more

accurate scoring function for our ContactLib method is promising. Similarly, a residue

environment (including contacted residues) similarity score could be combined with the

global alignment score in our scoring function. It would also be interesting to design a

scoring function that is biased towards the inter-chain contacted residues or other residues

that are specifically of interest to some researchers.

Our PROSTA method and scoring function can also be improved and applied to other

structure studies of computational biology. For example, most structure alignment tools do

not support aligning interaction interfaces between biological complexes involving DNAs

and RNAs. One reason for this to happen is that they were not designed for the task be-

cause of their sequence order assumption. However, the sequence order might not be obeyed

in the interaction interfaces. Especially, in case that multiple chains are involved in the

interaction, the sequence order is not even defined. Thus, the Needleman-Wunsch dynamic

programming algorithm [60] cannot be used safely. Possible solutions are the maximum
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weighted bipartite matching method [25] and the integer programming method [19]. Then,

interaction similarities can be added to our scoring function. This approach should be

promising because remote fragment pairs could potentially model the interaction topology

(or contact group) and become the key to the success of interaction interface alignment.
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