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Abstract

The bitemporal data model associates two time intervals with each record - system time and
application time - denoting the validity of the record from the perspective of the database and
of the real world, respectively. One issue that has not yet been addressed is how to efficiently
answer sliding window queries in this model. In this work, we propose and experimentally eval-
uate a main-memory index called BiSW that supports sliding windows on system time, appli-
cation time, and both time attributes simultaneously. Our experimental results show that BiSW
outperforms existing approaches in terms of space footprint, maintenance overhead and query
performance.
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Chapter 1

Introduction

The bitemporal data model [23] [4 1] [22] denotes a relation with two time intervals from different
perspectives: the system (or transaction) time interval is the time period during which a fact
stored in the database is true, while the application (or business) time interval is the time period
during which a fact is true in the real world. The validity of a fact may not be the same from
different perspectives - for example, the account balance of $1000 for the year 2013 was inserted
at year 2013, and at a later date in 2014 was corrected to $2000. At system time 2013, the
database believed the balance to be $1000, but in fact (at application time year 2013), the balance
should be $2000. Usually, system time and application time do not necessarily have to be the
same. For example, consider a bitemporal database storing data about dinosaurs. The application
time of these facts is millions of years ago, but the system time records when the facts were
inserted into the database (for example, March 1st, 2014).

The bitemporal data model makes it possible to rewind the information to what it actually
was in combination with what was recorded at some point in time, which enables the bitemporal
model to provide both historical and rollback information. Historical information (e.g. “what
was the year-2013 balance?”) is answered by application time, and rollback (e.g. “in 2013, what
was the balance recorded in the database?”) is provided by system time.

The bitemporal data model is fundamentally required by numerous applications. One of
those typical use cases is financial reporting, where information cannot be discarded even if it
is erroneous. It is often desirable to be able to recreate an old report both as it actually looked
at the time of creation and as it should have looked given corrections made to the data after its
creation. Another use case is inventory management. An item’s system-availability (for instance,
70) and application-availability (for instance, 100 on the shelf) can be different, due to 30 ordered
but unshipped items. To generalize, any relation which distinguishes between system time and



application time falls into the category of the bitemporal data model.

The time attributes in the bitemporal data model naturally lead to sliding windows. Sliding
windows provide a mechanism to discard old data over time, which are no longer of interest to
users and/or must be deleted to satisfy data retention requirements. This intuitive approach is
able to constrain analytics to a particular time interval, and is able to slide the focused interval
by time. However, existing work on sliding windows focuses on system time only (e.g. data as it
arrives to the system), without considering the equally important, but more flexible, application
time dimension. In this work, we extend sliding window operations from exclusively on system
time, to application time dimension and as well as both times.

1.1 Motivating Example

To emphasize the motivation behind and the difficulty of sliding windows upon the bitmeporal
data model, let us first consider an intuitive example. For example, every day a network com-
pany receives transactions (e.g., to sign a new plan, to cancel an existing plan, etc.), and each
transaction is associated with an application time interval (e.g. a plan has a start service date and
an end service date). Also each transaction has a system time interval: the system start date is the
date when the plan is signed, and the system end date records when the transaction is terminated,
possibly because of cancellation. So a customer may sign a new 1-year plan contract on March
20th, 2014 (the system start time), which will become activated to provide service starting from
April 1st, 2014 (the application start time), and will expire on April Ist, 2015 (the application
end time). In this case, the system end time is infinity once the contract is signed. Later on, the
customer cancels the plan on May 1st, 2014, and the system end time is set to be the cancellation
date (May Ist, 2014). This story fits the bitemporal data model as system time and application
time model different aspects of a plan contract.

We will formally define the bitemporal and sliding window model in Section 2; however, to
make it simple, we assume that windows are defined by length of time (e.g., all the data that have
arrived in the past 30 days) and a slide interval (e.g., slides every day). The network company is
interested in the following sliding window queries:

e Example 1: as of each day, how many contracts became signed in the past 60 days? (to
slide on the system time)
This sliding window query measures the new signed contracts in past the 60 days, and is
able to provide insights on sales performance. Logically, the contracts can be grouped by
sign-in date, which implies grouping by transaction order. Physically, those logical-daily



buckets have identical order as the data arrival order, and are arranged in a sequence by
arrival date (e.g., all data arrived at day N + 1 are appended after the data at day /V in the
table, but before the position of data that arrived at day /V +2). In fact this ordering reflects
real-world streaming scenarios: data is natively clustered by system time, and system time
has strict ascending order (e.g. later committed transactions are guaranteed to have larger
system time).

As illustrated in Figure 1.1, at day 61, the logical bucket labelled 61 collects transactions
which occurred on that day, leaving older partitions as is. A window spanning from day
1 to day 60 is applied to calculate the aggregation. Next day at 62, the window slides
one bucket, and result for the new window instance is computed by adding the number
of contracts in bucket labelled 61 to the old result computed at day 61, and deleting the
number of contracts in bucket 1 from it.

sockers: [ [N M oo [ o1 i o2 J§ 63

at day 61
Windows: at day 62

at day 63

Figure 1.1: A Sliding Window for Example 1

Example 2: as of each day, how many contracts became activated in the past 60 days? (to
slide on the application time)

At first glance, this query is identical to Example 1, except it slides on application time.
One useful scenario for this query is to help calculate revenue, since new customers who
started to use the service can be charged. The same logical layout pattern in Figure 1.1
can be applied here by labelling buckets using application time, and the windows slide on
application time.

However, Example 2 is quite different and difficult to slide compared with Example 1, in
terms of concept and implementation. On the one hand, there is underlying dependency:
the validity of application time loosely depends on system time, which means they are
not fully orthogonal. For example, if a transaction is cancelled, it must not be considered
in revenue. This implies that the validity of application time depends on the validity of
system time, and system time has to be checked somehow even though the query slides
on application time only. On the other hand, when new data arrive, it is possible that any
logical bucket of the window incurs changes - indicating that the sliding window cannot
be incrementally advanced and the buckets in the window have to be scanned again. Tra-
ditionally, there are two use cases in the area of data analytics. One type of data analytics
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runs on static data, where the data is offline and accepts no more updates. The other type
runs operations on online data, in which the data is able to accept insertion, deletion and
updates. In practice, it is more desirable to be able to maintain application time sliding
windows on the second use case, where tables can be updated and queries always run on
the latest data.

For example in Figure 1.1, if the buckets represent system time (transaction order), then at
each time, all new transactions go to the latest bucket only, and old buckets never get mod-
ified. In comparison, if the buckets denote application time (semantic order), then when
new transactions are completed, their application times can be arbitrary: for instance, cus-
tomers A and B may sign plan contracts on the same date (system time), but can specify
different service start dates (application time). Hence transaction-order updates may result
in modifying all semantic-order buckets in the worst case. Even worse for queries, the ar-
bitrary updates disable the incremental computation of sliding windows, degrading sliding
windows to recompute from scratch every time windows slide. For instance in Figure 1.1,
after day 61 when the window is to slide, buckets 2 to 60 may have been changed at day
61, which makes the previous computed result at day 60 obsolete. Another case is that a
contract valid at application time 30 may not still be application time valid at 31 if it is
invalidated by some system time transactions.

e Example 3: as of each day, how many contracts that were signed in the past 60 days,
became activated in the past 30 days? (to slide on both times)
This query intends to obtain the number of contracts that were both signed in the past 60
days and activated in the past 30 days, and this query is practical for many purposes. In one
example, this query is able to measure installation latency if cable setup is needed before
providing Internet service. Also, this query is able to provide insights to evaluate the effect
of advertisements and promotions (e.g. recent 30-day new signed contracts are eligible
for some discounts if activations are within 30 days). Another example is to help user
behaviour mining, such as analysing customer eagerness to use the services, by combining
other customer features like age, gender, and so on.

This query slides on both system time and application time as intervals, and the query
results can be generated by intersecting the system time window and the application time
window. The system time sliding (contracts were signed in the past 60 days) is entangled
with application time sliding (contracts became activated in the past 30 days), which is a
typical scenario of bitemporal sliding windows. As seen in the previous examples, sliding
on one time intervals has many problems, not to mention the challenges of combining two
dimensions.

Note that an alternative way to answer this specific example is to maintain a view where the



differences (or subtractions) of two time intervals are stored. However, this view is neither
effective nor efficient, not only because the subtraction values lose the information (e.g.,
start and end times) and the view maintenance incurs additional overhead, but also more
importantly, system time and application time may not be directly comparable (recall the
previous dinosaur example).

As inspired by the above examples, each type of query represents a typical sliding window
case, involving temporal properties of two time dimensions. Sliding windows on the bitemporal
data are not only very practical in the real world, but also very important for data analytics. In
general, sliding windows provide a mechanism to constrain analytics to a particular time interval,
and are able to slide the focused interval by time. For OLAP queries and analytic workloads,
it is not uncommon to maintain more than one sliding window on different times and/or both
dimensions within one bitemporal relation. However, existing temporal sliding windows work
only focuses the first type (Example 1) of sliding system time only queries, but less work has
been done to study the remaining equally important, but more challenging scenarios (Examples
2-3) of sliding application time and of sliding both times.

1.2 Challenges and Contributions

The examples point out challenges to implement sliding windows on the bitemporal data: the
overlapping between the window intervals in sliding windows and temporal intervals in the
bitemporal data model adds complexity to the sliding operations; the flexibilities of application
time such as dependence on system time and arbitrary lifespan impose a burden on maintenance;
and data strcutres to support sliding windows could potentially increases space overhead. In
conclusion, the bitemporal sliding window is a challenging problem, and not yet well studied.

There exists a large amount of work on general temporal indexing structures, and extensive
research on sliding windows has been conducted as well. Unfortunately, significantly less work
has tried to combine both domains: using sliding windows on the (bi-)temporal table. A brute-
force sequential scan of a bitemporal table whenever the window slides is feasible to answer
queries; however, it is not acceptable due to latency. A better but still ineffective approach
towards this problem is to support one domain natively, and to implement the other domain
naively. For example, an alternative could build a general B-tree index on temporal attributes,
and scan the B-tree to confine the window boundaries. However, as experiments show in Section
5, neither of these solves the problem of bitemporal sliding windows efficiently.

Therefore, the goal of this work is how to support bitemporal sliding windows efficiently,



with a focus on main memory data analytics and of real time business intelligence, such as in
SAP HANA [15]. The contributions are as follows:

e This work extends the knowledge of the sliding window operations on the bitemporal data
and studies the challenges of bitemporal sliding window queries.

e We propose an index structure called BiSW and two optimizations for particular use cases
to effectively index bitemporal relations.

e Based on BiSW, query evaluation algorithms are designed to efficiently support three cat-
egories of sliding window operations on bitemporal relations.

e This work also experimentally analyses the performance and trade-off of different alterna-
tives to support bitemporal sliding window queries, and results show that the BiSW out-
performs the state-of-the-art Bitemporal Timeline Index and trees for most cases several
times, in terms of space utilization, maintenance overhead, and query performance.

1.3 Organization

This thesis is structured as follows. Chapter 2 defines the bitemporal data model and the sliding
window model, gives an expressive query syntax for sliding windows on the bitemporal relation,
then defines the problem scope of this work, and summarizes the challenges. Chapter 3 overviews
related work, which can be used to answer bitemporal sliding window operations. Chapter 4
proposes the structure of BiSW, explains the algorithms of three categories of query execution,
and raises optimizations for two types of use cases. Chapter 5 compares the performance of
different data structures that can be modified to support bitemporal sliding windows, and Chapter
6 concludes this thesis and provides insights for future work.



Chapter 2

Preliminaries

In this section, we give formal definitions of the bitemporal data model (Section 2.1) and the
sliding window model (Section 2.2), and then discuss the problems (Section 2.3) associated with
the bitemporal sliding windows, and finally summarize the challenges (Section 2.4).

2.1 Bitemporal Data Model

The bitemporal data model was originally introduced about twenty years ago [23] [4 1], but it had
not attracted too much attention until it was included in the SQL:2011 Standard [3 1], after which
major database vendors recently started to (partly) support (bi-)temporal relations. Unfortunately
recent studies [24] [26] show that neither the research community nor the industry has made
enough progress towards a native and full bitemporal operators support.

In this work, we model a bitemporal relation as a normal non-temporal relation with four
additional time points, which constitute two time intervals: the application time interval repre-
sents the valid period of a tuple in the real world, and system time reflects the valid period in the
database. The schema of a bitemporal relation can be interpreted as:

(key, attributes, ..., Start App, EndApp, StartSys, EndSys)

with the constrains that:

StartApp < EndApp
StartSys < EndSys



The primary key of the bitemporal table is composed of the non-temporal primary key (the
key) and the two time intervals. Each interval determines the validity of the key in one dimension,
and both intervals together are able to uniquely determine a row. For the last four temporal
attributes, they are time points/stamps that define the left-close right-open boundaries of the
system and application time interval.

Visibility. A row is said to be system visible at system time ¢, when the following condition
is met:
visible at tg,s < tgys € [StartSys, EndSys)

System time visibility is related to the rollback view (system snapshot) of the bitemporal
table. Within a rollback view at system time {,,,, a row which is to be said application visible at
Lapp 18 defined as:

visible at toy, < tapy € [StartApp, EndApp) N system time visible

The application time visibility is related to the historical view (application history) of the
bitemporal table at a particular system-based snapshot. It does not make sense to measure ap-
plication times alone without specifying the system time because different snapshots result in
different historical views.

In general, system time and application time do not necessarily have the same scale, nor have
any syntax correlations. Figure 2.1 shows a concrete bitemporal table (after system time 109 and
application time 17) of a running example which will be used in the remaining sections.

In terms of the bitemporal table operations, system time is managed by the DBMS, and appli-
cation time is treated as a user defined attribute and managed by the application itself. Insertion
of a row is achieved by appending a new row into the table, setting StartSys to be equal to the
system time point when insertion occurred, and EndSys to infinity. For example in Figure 2.1,
row 8 is inserted at system time 107. Deletion of a row is fulfilled by setting the EndSys of that
row to be the system time when deletion happened. For instance, row 7 is inserted at system
time 107 and deleted at system time 109. Updating of non-temporal attributes or application
time points never occurs in place; instead it is decomposed to a deletion of the old row and an
insertion of a new one. For example at system time 102, the EndApp attribute of row 1 is to
be updated, so row 1 is deleted, and row 2 is inserted with an updated EndApp attribute, and of
course with a new pair of StartSys and EndSys.

Recalling the definition of visibility above, a straightforward way to interpret a bitemporal
relation is to disintegrate the two time dimensions and to view it as a series of time slices for
one dimension, with the other dimension changing over time. Figure 2.2 shows the example



1 John | Smallville | 50 10 0 100 102
2 John | Smallville | 50 10 11 102 o0
3 John | Largevill |40 11 c0 102 105
4 John | Largevill |30 11 13 105 108
5 |John | Costtown | 100 13 14 105 108
6 |John |Largevill |30 14 o 105 106
7 | John |Largevill |30 14 16 106 108
8 Max Newtown | 80 14 0 107 0
9 John | Largevill |30 11 12 108 0
10 [John | Newtown |120 12 15 108 0
11 |{John | Largevill |30 15 16 108 0
12 | John |Largevill |50 16 17 109 0

Figure 2.1: A Bitemporal Table

in Figure 2.1 by slicing the system time. At each system time point, the bitemporal table has
a corresponding state, which exactly represents the physical evolution with system time. For
example at system time 102, the bitemporal table contains 3 rows, but only the last 2 are visible.
So at the second vertical application time dimension, the bitemporal table is projected to a single
dimension temporal table including application time, and considers the row 2 and 3 only at the
system time point. Projection at system time 105 and 108 are also exemplified in the figure. In
this case, the layout grows by adding more sliced system times. On the other hand, a bitemporal
relation can also be broken down into application time slices, as illustrated in Figure 2.3. Each
application time has a projection (or view) of table: for example at application time 11, the
bucket views the table as a list of transactions which make rows visible for application time 11.
The application view grows longer over the system time.

2.2 Sliding Window Model

In this work, we refer to the window [17] as time-based span which is defined in terms of a time
interval:
Window: [StartWin, EndWin|

The interval points StartWin and EndWin represent the two inclusive time boundaries for
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a window instance at a particular system time. Moving StartWin and EndWin (either forward
or backward, or with different paces) creates a sliding window. In the following context for
simplicity, we assume a fixed-length window, where the boundaries move at the same direction
with the same speed.

Logically, tuples representing events at the same time (e.g., tuples arrive at same time, or
tuples are visible at the same time) are grouped together into a bucket. Figure 2.4 shows an
example of this concept. Each bucket is associated with a timestamp ts, where all tuples in that
partition share this ¢s.

Sliding Window
i
PAST CURRENT FUTURE

time

Figure 2.4: A Sliding Window Example

The temporal sliding window is a sliding window that slides on the temporal attributes of a
(bi-)temporal relation. In this case, the data is logically partitioned by its temporal attributes,
e.g., each partition holds tuples that become system visible at its timestamp. To clarify, if the
underlying timestamp denotes application time, then we refer to this window as an application
time sliding window, and similarly for the system time dimension.

Based on the temporal attributes involved in the query, we classify temporal sliding window
queries into three classes: 1) sliding on the system time with the application time window fixed;
2) sliding on the application time with the system time window fixed; and 3) sliding on both
times. Because there is no SQL standard to define such types of bitemporal sliding window
queries, in this work we use the following pseudo-SQL template to express the classified three
types of sliding window queries:

select expression|()

from table
[SYS, START sys_t, RANGE sys_len, SLIDE sys_pace]
[APP, START app_t, RANGE app_len, SLIDE app_pace]
[RATIO 1:N]

where predicates ()

In the query statement, expression() can be one or more attribute names in the queried table
table, or a function on attributes (e.g. count(x), sum(balance)). table is the target bitemporal

11



table. The following two expressions define the sliding time dimension (SYS and APP), window
start time point (sys_t as start system time point, app_t as the start application time point), fixed
window range length as an interval (sys_len and app_len), and window sliding pace (sys_pace and
app-pace). A pace of zero implies that there is no sliding on that time dimension. The keyword
RATIO defines the frequency of sliding the system time window versus sliding the application
time window, indicating a sliding loop pattern, in which first it slides the system time window
once, and then it slides the application time N times. predicates() in the where statement can
filter either temporal attributes (e.g. application starts before March 1st, 2014) or non-temporal
attributes (e.g. customer has balance over 100). We will give concrete examples in Chapter 4.

2.3 Problem Statement

Following the above two sections, this work aims to index the bitemporal table effectively and
to answer the bitemporal sliding window queries efficiently, with a focus on the following mea-
surements:

e Maintenance Overhead. When the bitemporal table receives updates, the index structures
should reflect the changes accordingly. Index maintenance overhead is measured as the
time to update the index structure, and a shorter maintenance time is always desirable.

e Query Performance, which is measured as the total execution time. To be more specific,
the query syntax in Section 2.2 contains two execution parts: the first part is to construct
the initial windows, and the second part is to slide the windows. We measure these two
steps separately. Faster execution time is better.

e Memory Footprint. It is obvious that smaller size is always desirable.

2.4 Challenges of The Bitemporal Sliding Windows

As mentioned earlier, there do exist naive alternatives to answer the bitemporal sliding window
queries, such as materializing the conceptual views in Figure 2.2 and 2.3; however, the dis-
advantages are also obvious: large space overhead, heavy maintenance, and also no apparent
algorithms for answering queries. The difficulties to evaluate the bitemporal sliding window
queries fundamentally arise from three aspects: 1) semantic overlapping between the window
interval(s) and the time intervals; 2) the unpredictability of application time; and 3) no efficient
algorithms to evaluate queries. To be more specific, the challenges are discussed below.

12



e life span versus life point. Tuples in a non-temporal relation do not hold a time interval, and
from the temporal view they have only a system time life point (e.g., arrival time, expire
time). However, in the temporal relations, tuples are associated with life spans (either
system, application, or both), which are time intervals and can overlap with the sliding
window interval. For example, consider a sliding window in Figure 2.4. If the data is
non-temporal and the time represents arrival time, when the window moves, the old bucket
(labelled 10) can be expired. However if the data is temporal, a tuple whose life ends at 20
cannot simply be expired even if its bucket is beyond the window. This overlapping adds
complexity to sliding.

e unpredictable expiration. Take the same example as above and assume partition labelled
10 holds tuples whose life span starts at 10. The end time of their life can be indepen-
dently different. That implies the traditional block evolution [16] pattern does not work as
individual tuples may have different life spans. In addition, when the application window
slides, a tuple that is valid at application time app_t may not be still application time valid
at app_t+ 1 even if its expiration time is much larger than app_t + 1, due to the invalidation
by some system time transactions.

e arbitrary application time. Take the same example as in Figure 2.4, and suppose it main-
tains a sliding window on application time. Application time is user defined, and has no
ordering. New arrived data may result in insertion and/or deletion at any partition, make
any previous computed results obsoleted, and disables the incremental computation (re-
call the mobile phone operator example in Section 1). However, for system time window,
updates always occur at latest partition only.

o system and application time are inter-dependent. System time and application time are not
fully independent. On the one hand, updating an application time requires a new system
version, but the opposite is not necessarily true. In Figure 2.1, the updating application
time in row 1 incurs cascading updates on system time: EndSys in row 1 has to be updated
in order to fulfill this operation. On the other hand, sliding on system time may validate
and invalidate items in application time. For instance, row 1 was visible for application
time 20 at system time 101, but after system time slides to 102, at application time 20,
this row becomes invisible due to this cascading invalidation. Furthermore, system time
has strictly ascending order which is guaranteed by the DBMS (e.g. later arrived data is
guaranteed a larger system timestamp), but for application time, there is no constraint of
ordering.

In conclusion, sliding windows on temporal data is a different but more challenging topic
compared with traditional non-temporal windows.
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Chapter 3

Related Work

There are not many related works directly addressing the context of temporal sliding windows,
but there exist several possible approaches which can be adapted to the bitemporal sliding win-
dow problem. In this chapter, we first overview several structures that can be used to index
(bi-)temporal relations in Section 3.1, then we introduce the latest research work that is designed
to support general temporal queries in Sections 3.2 and 3.3. Section 3.4 reviews related work
on sliding windows, and Section 3.5 also surveys techniques deployed in current commercial
database systems.

3.1 General Indexing on (Bi-)Temporal Attributes

The B-tree [6] and its variants (e.g. B+-tree [12], B*-tree [28]) implementations for temporal
attributes differ on not only the native design trade-offs between internal and leaf nodes among
various B-tree structures, but also on the representation of keys at each leaf node. For the key in
the tree nodes, it can be either the non-temporal key without considering temporal attributes, or a
time point (e.g. boundary of intervals [ 3]), or a composited value (e.g. MAP21 [33]) to encode
a time interval.

The Time Index [14] uses a B+-tree to index valid time points, and stores all the visible rows
identifiers at the beginning of each leaf node, followed by all changes. The disadvantage of
the Time Index is the identifiers are copied to each version as long as a tuple is valid, and they
consume considerable space. The Interval B-tree (IBT) [4] indexes tuples based on the boundary
time point which is stored in the node as the key, and tuples with same time point are chained
together. The nested tree-list imposes considerable maintenance overhead (updating and deleting
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data to and from IBT) and searching overhead for non-temporal attributes. MAP21 [33] provides
an efficient way to index ranges by mapping a time range to an unique value and indexing the
unique value as keys in a B+-tree. But this mapping incurs additional computation complexity.

The R-tree [19] was originally designed to index spatial data, which usually contains two
or more dimensions. In contrast to the B-tree, the (multi-dimensional) R-tree and its derivatives
(R+-tree [38], R*-tree [8]) provide one more dimension to index keys such that both key and time
can be indexed together. In the R-tree, objects are modelled by means of minimum bounding
rectangle (MBR), which are stored as entries in a leaf-level node, together with pointers to the
data tuples containing those MBR. All variants of the R-tree try to minimize the MBR and
unoccupied space in MBR in order to reduce 10 and search branching complexity, by trading
off other factors. For example, the R+-tree [38] duplicates objects to avoid node overlapping; the
R*-tree [8] allows deletion and reinsertion of the same entries to find them better places (smaller
MBR and unoccupied space), considering the fact that R-tree structures are highly susceptible
to the order in which their entries are inserted. Th Revised R*-tree (RR*-tree) [?] optimizes the
insertion imbalance in the R*-tree.

In particular, some R-tree variants are designed to meet specific temporal indexing require-
ments. For example, the Historical R-tree [43] maintains a R-Tree for each timestamp to effi-
ciently answer time point queries, but it requires large space overhead. The 2R-tree [32] uses two
R-trees, in which one tree stores current system time valid tuples to answer now-valid queries,
and system time invalid tuples are moved in the second R-tree, which costs additional overhead.

There exists intensive research on general uni-temporal indexing which indexes one time
dimension (either application or system time); however, significantly less research has been done
on indexing bitemporal data. For bitemporal indexing, one straightforward way is to use a spatial
index structure to index both dimensions at the same time, due to the similarity between spatial
and bitemporal data: a bitemporal tuple can be represented as a rectangle, which is bounded by its
application and system time intervals. A two-dimensional R-tree can be used to index bitemporal
times such as proposed by the GR-tree [10] and the 4R-tree [ | 1], while a multi-dimensional R-
tree can add more dimensions to facilitate non-temporal attribute access. This intuitive approach
is able to reuse the existing R-tree operations, but at the same time also inherits the overhead of
it.

On the other hand, these two dimensions can be fully-independently indexed. In theory,
any two uni-temporal index structures discussed above can be combined to support bitemporal
indexing. But the disadvantages are obvious: the two independent structures not only consume
more space, but also penalize query performance. As a baseline, we will describe the query
evaluation and experiment results using two B-trees to index two times separately.

In addition to trees, non-tree structures are also able to provide support for bitemporal data.
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Differential files [21] storing changes occurred incrementally in a log resemble one intuitive
approach to index tuples by system time. Furthermore, multi-version techniques can be applied
to trees to enable restoring trees at different version in time, such as multi-version B-tree (MVBT)
[7] and multi-version 3D R-tree (MV3R) [44]. But this technique requires large space as the
version increases.

In conclusion, all the structures mentioned above are designed to index general temporal
tables, with consideration on reducing disk IO. However, none of them is specifically designed
to support temporal sliding windows, and as experiments show later, they are not sufficient to
answer the queries.

3.2 Timeline Index

One of the recent works is the Timeline Index [27], and as it is used as a building block in the
Bitemporal Timelime Index (Section 3.3) and in our proposed BiSW structure as well. The idea
of the Timeline Index is to keep track of all visible rows from the temporal table at every point
of time. This is achieved by recording the RowIDs of invalidation (e.g. deletions) and validation
(i.e. insertions) for each version, in version order. By scanning this information, operators can
determine changes between versions and/or establish the set of active tuples for a specific version.

Figure 3.1 gives an example of a system time temporal table, and its corresponding system
timeline index is illustrated in Figure 3.2. As shown in Figure 3.2, the Event List keeps track of
each validation and invalidation event. Validation events are marked with a “1” and invalidation
events are marked with a “0”. The events in Event List are sorted by system time as the event
occurred; i.e. row 1 is validated before row 2. The order of events created at the same system
time is undefined.

! John | Smallville | 50 100 102
2 John | Largevill |30 102 105
3 John | Largevill |30 105 o0
4 Max | Newtown | 80 109 o0

Figure 3.1: An Simplified System Table
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Version Map Event List

visible rows
1 || 100 1 1 1
2 || 102 3 1 0
3 || 105 5 2 1
2,4 || 109 7 2 0
3 1
4 1

Figure 3.2: System Timeline Index (Physical Implementation)

visible rows
1 | 100 +1
2 |102 -1+2
3 |105 -2, +3
2,4 |109 +4

Figure 3.3: System Timeline Index (Logical View)

The Version Map keeps track of the list of events that are seen by each system time. This is
achieved by storing the end offset for each system time in the Event ID column. By concurrently
scanning and merging the Version Map and Event List, it is possible to reconstruct all the visible
rows of the temporal table. Figure 3.2 shows the visible rows for each system time in red, but this
information is implicit and not materialized. In Figure 3.2 at system time 100, row 1 becomes
visible, so its ID is toggled to be visible (the first row in the event list). This validation event is
stored in the Version Map by adding the offset of this event to indicate the end of events which
occur at system time 100. Corresponding to its logical view shown in Figure 3.3, the activation
of RowlID 1 is represented as +1 at the first row. At system time 102, row 1 becomes invisible,
and row 2 starts to be visible, so these two events are recorded in the event list, and the version
map is updated for the event ID. In Figure 3.3, these two events are represented as —1 + 2 at the
second row. Figure 3.3 is equivalent to Figure 3.2 and more human-friendly to read. In the rest
of this work, we will describe the Timeline Index using its logical view.

In order to utilize compression and to facilitate scans, both the version map and event list
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are physically implemented as arrays. For maintenance, when new data arrives at system time
t, the new information can be appended to the end of Version Map and Event List, because ¢ is
guaranteed to be larger than the largest existing system time. In practice, the timeline index is
useful only to index system time, because system time has strict ascending ordering, therefore
later arriving data can appended to the end of event list and version map.

3.3 Bitemporal Timeline Index

In order to enhance the Timeline Index to support application time, the Bitemporal Timeline
Index (abbr. BiTL) [26] was proposed recently. The methodology of BiTL focuses on two
aspects. The first one is lazy materialization. When data arrives, BiTL only maintains a timeline
index on the system time dimension, which is exactly as it is in the Timeline Index above. Later
when an application time related query is issued, it will construct a timeline index for application
time. Thus BiTL postpones the materialization to query runtime, which enables fast maintenance
when data arrives. A system timeline index is maintained over time, but the application timeline
index (if any) is not maintained when data arrives.

The other feature of BiTL is to adopt the idea of conceptual view by system time (in Figure
2.2), where conceptually at the first level a bitemporal relation is clustered by system time only,
and for each system time ¢, at the second level only those tuples which are visible for system
time ¢ are considered in the application timeline index. Compared with naive structures which
independently index the two times, the BiTL makes use of the coupling property. For example in
Figure 2.1, at the end of system time 101, row 1 is visible from the perspective of system time,
therefore the application timeline index at system time 101 should cover row 1; however, at the
end of system time 103, row 1 is invisible from the view of system time, hence the application
timeline index at system time 103 should not include row 1 in its Version Map or Event List.
In comparison, under the methodology of independently indexing two times, after system time
100 (row 1 insertion time), row 1 always exists in the indexing structure on application time,
indicating that it starts at application time 10 (without considering its invalidation at system
time 102). This is one of the major reasons why tree indices are not efficient. In BiTL, the
late-materialized application timeline index is associated with a system time, and only contains
visible tuples at that system time.

Take the running example in Figure 2.1. Between system time 101 and 106, data arrives,
and only the system timeline index is updated. Assume that at the end of system time 106, an
application timeline index is created due to some query requests. Figure 3.4 shows the application
timeline index, and the bitemporal table at system time 106. The timeline index on application
time looks similar to the timeline index on the system time in Figure 3.2, except it indexes on
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10 ) 1 John Smallville | 50 10 L) 100 102
2 John Smallville | 50 10 11 102 0
11 -2,+4 -
John Largevill 40 11 L3 102 105
13 -4, +5 4 John Largevill | 30 11 13 105 L
14 -5, +7 5 John Costtown | 100 13 14 105 o
6 John Largevill 30 14 L) 105 106
16 -7 7 John Largevill 30 14 16 106 o

Figure 3.4: Application Timeline Index (at system time 106)

the application time. Between system time 107 to 109, data continues arriving and only the
system timeline index is maintained, and at the end of system time 109, the bitemproal table and
system timeline index is illustrated in Figure 3.5. Now supposing some queries have predicates
on system time 109 and application time (for example, 15), a delta application timeline index,
which holds changes since last application timeline, is triggered to be created as shown in Figure
3.6, taking the bitemporal table and system timeline between 107 to 109 (Figure 3.5) as input.
Depending on the query types (described in Section 4), the delta can be consumed directly, or
merged with previous application timeline index at system time 106 to a new application timeline
index at system time 109 (as shown in Figure 3.7).

Regarding the BiTL methodologies above, the application timeline index at system time 109
is not created until needed. Furthermore, row 1 for instance, is not indexed because it is invisible
at system time 109. Compared with independently indexed application timeline where all rows
should be indexed, this loose-coupled application timeline index in Figure 3.7 is much smaller.

Another major reason that trees are not as efficient as BiTL is that the Timeline Index and
BiTL are used in memory, while trees were designed for disk. Experiments show that BiTL out-
performs tree-based structures which were designed to optimize 10, by several orders of mag-
nitude for ad-hoc bitemporal time travel (restoring the table to a previous version), aggregation
and join queries.

However, BiTL is not suitable for bitemporal sliding window queries. Whenever system time
slides, BiTL requires the runtime creation of the application timeline index, which increases the
query response time. As experiments demonstrate, those creations take considerable time. Fur-
thermore, BiTL maintains one system timeline index and probably more than one application
timeline index, where a RowID may be duplicated in the system timeline index and in the appli-
cation time index; thus BiTL results in inefficient space utilization. It is often desirable to achieve
an efficient space usage and a fast query response time.
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4 John Largevill 30 11 13 105 108
5 John Costtown | 100 13 14 105 108
7 John Largevill 30 14 16 106 108
8 Max Newtown | 80 14 0 107 L
9 John Largevill 30 11 12 108 00
10 | John Newtown | 120 12 15 108 L]
11 | John Largevill 30 15 16 108 Ld
12 | John Largevill 50 16 17 109 ©

107 +8

108 -4,-5,-7,+9, +10, +11

109 +12

Figure 3.5: Partial System Timeline Index (sys € [107,109])

3.4 System Time Sliding Widow Processing

The data structures in previous sections support general temporal indexing; however, it is not
clear how bitemporal sliding window operators can be answered using these structures.

Most existing work on temporal sliding windows focuses on the logical query operator and
adds SQL syntax to facilitate query expression, such as described in [16] [29] [37] [45] [5]. How-
ever, there are less related works on how to physically implement a temporal sliding window, not
to mention how to implement a bitemporal sliding window. The Wave Index [40] proposes sev-
eral algorithms to facilitate index update on the system time sliding window, with an emphasis
on minimizing disk IO. The Doubly Partitioned Index [ 18] categorizes each temporal tuple into
a partition, determined by insertion time range and expiration time rage, but it considers only
one time dimension with pre-defined ranges; and due to potentially large combinations of in-
sert/expire ranges, the Doubly Partitioned Index may incur large space overhead.

Data Stream Management System (DSMS) [17] is the type of system that ingests unbounded
streaming as input and answers continuous queries. DSMS supports sliding window operations
natively, but usually it relies on a global system clock in order to ensure a convenient and well-
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11 -4, +9 10 +2

12 -9, +10 11 -2,+9

13 +4, -5 12 -9, +10

14 +8, +5, -7 14 +8

15 -10, +11 15 -10, +11

16 +7,-11, +12 16 -11, +12

17 -12 17 -12
Figure 3.6: Application Figure 3.7:  Application
Timeline Index Delta Timeline Index (at system
(sys € [107,109]) time 109)

behaved notion of time. In practical DSMS scenarios such as the distributed sensor network, the
incoming stream does not strictly follow system time order (e.g., because of network latency).
Therefore some techniques such as the overflow chain [30] and slack buffer [47] are designed to
tolerate the out-of-order data and to correct query results. But these techniques consider system
time only and regard those challenges such as out-of-ordering as exceptions, not an common
cases, which is not true for application time. Some works have tried to extend the DSMS to
represent application time, such as heuristic heartbeat [42], punctuation [46] and revision [35],
but they didn’t treat application time equally as first class citizen.

3.5 Bitemporal Support in Commercial DBMS

IBM DB2 [36] extends SQL to include uni-temporal and bitemporal functionality, but we are
not aware of how this feature is implemented. Oracle introduces Flashback Data Archive [34] to
store data changes using background processes, which in turn can be treated as an unitemporal
system time index. PostgreSQL GiST [20] supports the R-tree index, which depends on users to
implement the indexing for (bi-)temporal data.

Teradata publishes its temporal query processing in [3], but its implementation is through
functional query rewrites to convert a temporal query to a semantically-equivalent non-temporal
counterpart, by adding time-based constraints. This SQL-level query rewriting incurs burden on
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the query optimizer, and also performance degrades when compared with kernel-level temporal
structure implementation.

Current release of the SAP HANA [15] can support temporal operators on system time, and
it does not support the application time as efficiently as the system time.

Again, these commercial systems supports general temporal queries, but they do not support
sliding window queries.

22



Chapter 4

The Bitemporal Sliding Window

In this section, we will first propose the BiSW structure (Section 4.1), and then describe how to
evaluate queries using BiSW (Sections 4.2 to 4.4). To further improve performance, we propose
an improved version of BiSW in Section 4.5, and checkpointing in Section 4.6.

4.1 The BiSW Index

Given the challenges of bitemporal sliding windows and the performance advantages of the time-
line index, we aim to provide a good tradeoff between 1) update cost, 2) query cost, and 3) space
cost. As described below, the BiSW index overcomes the overlapping between sliding windows
and temporal intervals, and efficiently indexes two time dimensions to enable fast and flexible
window sliding.

In order to better understand the philosophy behind the BiSW, Figure 4.1 revisits the two
closely related works at a high level: Timeline Index and the BiTL. The Timeline Index does not
index application time, and therefore does not directly support sliding windows on application
time or both times. BiTL maintains a system timeline index over time, and lazily materializes the
application timeline index at particular system time points. As outlined earlier, BiTL does not
efficiently support sliding windows involving application time: for bitemporal sliding windows,
whenever system time window slides, BiTL has to construct a new application timeline index;
and even for queries sliding application time only, the application timeline index materialization
upfront cost can be prohibitive.

As a comparison, Figure 4.2 illustrates the high level organization of BiSW. The main differ-
ences are highlighted as the following:
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Application Timeline Index

System Timeline Index
System Timeline Index

a) b)

Figure 4.1: Overview of a) Timeline Index and b) BiTL

e Application time partitioned system timeline index. Rather than ignoring the application
time in the Timeline Index or materializing application timeline indices per system time as
in BiTL, BiSW maintains a system timeline index per application time point (or interval
range). In this case, BiSW represents information for both the system time and application
time.

e Non-materialized application timeline index. Since BiSW differentiates the application
time from the system time, it does not have to compute the application timeline index for
a particular system time. The horizontal dashed rectangles represent the corresponding
application timeline index at particular system times. The application timeline index for a
particular system time resides at the same position in different system timeline indices.

e Incremental computation for window sliding. BiSW is always evaluating sliding window
queries in an incremental way. Compared with BiTL where a new application timeline
index has to be recomputed and rescanned whenever system time slides, an incremental
computation for sliding windows benefits query performance.

Conceptually, we describe the BiSW in a 2-dimensional space as depicted in Figure 4.3. The
horizontal axis represents the application time, and vertical axis shows the system time. The key
idea of BiSW is an application time partitioned system timeline index. Each application time is
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Application Time

---------- Non-Materialized
...... Application Timeline
------------ Index

System Timeline Index

System Timeline Index

Figure 4.2: Overview of BiSW

associated with a bucket, which is implemented as a system timeline index described in Section
3.2. A bucket timestamped with application time app_t is created to hold all events that occur
at application time app_t. A cell with coordinates (z,y) holds those events which occurred at
application time = and at system time y. Note that Figure 4.3 has empty cells conceptually;
however, the system timeline indexes are implemented as arrays without empty cells, as shown
in Figure 3.2.

For index maintenance under this organization, BiSW utilizes the same append-only property
of ascending system time. When new data arrives following the system time order, the data is
partitioned on-the-fly by their application time, and appended to the end of the buckets according
to their application times. For the updates happening at system time sys_t, visually only those
horizontal cells which share the same system time coordinate sys_t will be touched. Figure 4.3
shows an example of updating at system time 105, at which the bitemporal table looked like in
Figure 4.4 (only showing relevant rows at system time 105). For instance, the row whose ID is
4 and application time interval starts at 11 and ends at 13, becomes valid at system time 105,
therefore this validation event is reflected in the cell with coordinates (11, 105) (+4), and in the
cell with coordinates (13, 105) (-4). Note that all events occurring at system time 105 will only be
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Application Time

10 11 12 13 14 15
+1
100
= -1 -2
c 102 +2 +3
3
2 -3 -4 5
105 +4 +5 +6
106
Figure 4.3: BiSW Updating (at system time 105)
3 |John |Largevill |40 11 0 102 105
4 |John | Largevill |30 11 13 105 0
5 |John | Costtown | 100 13 14 105 ©
6 |[John |Largevill |30 14 © 105 ©

Figure 4.4: Bitemporal Table (at system time 105)

reflected in the cells with system time coordinates (*, 105), which means at system time 105, the
events are appended at the end of the buckets. In general, for maintenance from the point of each
bucket, if standing at each application time point, update operations append information to the
bucket end only. In terms of the conceptual views in Section 2.1, BiSW matches the conceptual
view by application time (Figure 2.3).

We use the term delta to refer to a fraction of cells in BiISW throughout this paper. Delta is the
logical unit not only for maintenance, but also for queries explained later. For the maintenance at
certain system time sys_t, BiISW only touches a horizontal delta at sys_t. In addition, a vertical
delta at application time app_t covers events that occurred at app_t. Therefore, sliding window
queries are able to get benefits from this delta concept. For point lookup at a particular time,
there can be an additional index to facilitate position locating, or basic binary search will suffice.

Compared with state-of-the-art BiTL, which clusters the tuples by system time and postpones
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any construction of application index to runtime, the BiSW structure partitions the table by ap-
plication times on-the-fly when new data arrives, and organizes indices to cluster by application
time. Under this structure, one of the major benefits is that BiSW decouples the application
times with system times: it is able to support queries which can fetch at any system time, or at
any application time, or at both times.

Another major advantage of BiSW over BiTL is about half of the total space is saved. BiTL
materializes one system timeline index plus one or more application timeline indices (Figure 4.1
materializes two application timeline indices), which indicates that the same row ID may appear
in the system timeline index, as well as in one or more application timeline index as long as they
are still application time visible. In comparison, BiSW does not double-materialize, therefore
BiSW significantly outperforms BiTL in terms of space footprint.

4.2 Query Type 1: Slide System Time

As classified in Section 2.2, the first type of sliding window query is to slide on system time,
with the application time window fixed. One instance of the sliding system time queries on the
bitemporal table in Figure 2.1 is:

select =

from table
[SYS, START 100, RANGE 4, SLIDE 1]
[APP, START 10, RANGE 4, SLIDE 0]
[RATIO 1:0]

In the query, the statement specifies that the initial system time window starts at system time
100 with a range of 4, indicating that the initial system time window covers [100, 104]. Similarly,
the initial application time window spans application time [10, 14]. The SLIDE keyword defines
a pace that each sliding takes (e.g., the system time window advances 1 time per sliding, and
the application time window does no sliding). Taking Figure 2.1 as a running example, the
corresponding BiSW is shown in Figure 4.5, and the execution sequence for the above query is
listed in Table 4.1. Algorithm 1 describes the query evaluation process.

The first step is to construct the initial windows. After getting all row identifiers which are
valid in the rectangle, the user defined function expression() (here it is x) can be called back to
proceed. Retrieving other columns using row identifiers is out of the problem scope of the BiSW.
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Figure 4.5: Slide System Time

After the initial windows have been initialized, the second step is to incrementally compute
deltas for the system time sliding window (line 6). In Figure 4.5, this delta is represented as a
horizontal rectangle (dark part), with the fixed application window as its length, and one sys-
tem time as its width because of sliding 1 pace. Depending on the select expression(), the
expression() can utilize the delta directly (e.g. select sum can be incrementally computed by
adding/subtracting values from deltas), or consume the updated visible rows after merging with
existing visible IDs (e.g., selecting top K has to be filtered from the whole ID set).

Then repeatedly constructing the deltas until SLIDE loop (here it is 4) is achieved. Note that
the BiSW returns row IDs for every window instance, and it relies on the DBMS how to fetch
real data (e.g. random access, batch scan and etc.), which is independent and out of our problem
scope.

4.3 Query Type 2: Slide Application Time

The second type of the sliding window query is to slide on the application time and to fix the
system time interval. An instance of this type of query can be the following:
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Algorithm 1 Query Evaluation for Sliding System Time

Require:
sys_start_all: overall start system time
app_start_all: overall start application time

1: procedure GET START CONDITION
2 valid_IDs < empty > empty set for all IDs
3: valid_1Ds < get EventFromRECT(
sys_start_all, sys_end, app_start_all, app_end)
> rectangle starts from origin till sys_end and app_end

4: expression(valid_IDs) > run user defined function
5: end procedure
6: procedure INCREMENTAL SLIDE SYSTEM
7: delta_I Ds < empty > empty set for delta IDs
8: 141
9: while : <= slide_count do
10: crnt_sys < sys_end + 1
11: delta_IDs « getEventFromRECT(
crnt_sys, crnt_sys, app_start_all, app_end)
> get delta IDs at crnt_sys
12: merge delta_I Ds into valid_I Ds
> update all IDs if expression() needs
13: call expression|) > run user defined function
14 14—1+1
15: end while

16: end procedure
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Table 4.1: Execution Sequence for Sliding System Time

Seq#

AlgLn#

Event

DeltaRows

ValidRows

0

3

initial windows
sys: [100,104]
app: [10,14]

+3

3

11

slide sys at 105
sys: [105,105)
app: [10,14]

-3+6

11

slide sys at 106
sys: [106,106)
app: [10,14]

-6+7

11

slide sys at 107
sys: [107,107)
app: [10,14]

+8

7,8

11

slide sys at 108
sys: [108,108)
app: [10,14]

+10

7,8,10

select =
from table

[SYS, START 100,
[APP, START 10,

[RATIO 0:1]

Similarly using the same running example, Figure 4.6 shows the BiSW structure, and Table
4.2 illustrates the execution sequence. Algorithm 2 describes the query answer process.

The main syntax difference with previous query is in the sliding window part. This query
intends to have a non-sliding system time window starting from system time 100 and ending at
105, and to have an initial application time window spanning [10, 12] and to slide application
time 1 pace. For the algorithm, the difference is reflected in line 8, which constructs the delta as

RANGE 5,
RANGE 2,

a vertical rectangle (dark part in Figure 4.6).
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Algorithm 2 Query Evaluation for Sliding Application Time

Require:
sys_start_all: overall start system time
app_start_all: overall start application time

1: procedure GET START CONDITION
same as in Algorithm 1.
2: end procedure

3: procedure INCREMENTAL SLIDE APPLICATION
4: delta_IDs < empty > empty set for delta IDs
5 141
6: while ¢ <= slide_count do
7: crnt_app < app_end + i
8: delta_IDs < get EventFromRECT(
sys_start_all, sys_end, crnt_app, crnt_app)
> get delta IDs at crnt_app
9: merge delta_I Ds into visible_I Ds
> update all IDs if exzpression() needs
10: call expression() > run user defined function
11: 14—1+1
12: end while

13: end procedure
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Figure 4.6: Slide Application Time

Table 4.2: Execution Sequence for Sliding Application Time

Seq# | AlgLn# | Event DeltaRows | ValidRows
0 1 initial windows | +4 4
sys: [100, 105]

app: [10, 12]

1 8 slide app at 13 | -445 5
sys: [100, 105]
app: [13, 13)

2 8 slide app at 14 | -5+6 6
sys: [100, 105]
app: [14, 14)

3 8 slide app at 15 | () 6
sys: [100, 105]
app: [15, 15)

4 — — — —
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4.4 Query Type 3: Slide Both Times

The third type of sliding window query is to slide the system time and the application time. The
following example is used to explain the idea:

select =

from table
[SYS, START 100, RANGE 4, SLIDE 1]
[APP, START 10, RANGE 2, SLIDE 1]
[RATIO 1:2]

In this type of query where both the system and application time windows slide, the example
query has an initial system time window of [100, 104] and an initial application time window of
[10, 12]. The keyword RATIO is used to control the percentage of sliding system versus sliding
application time. The ratio 1 : 2 defines an execution sequence, which is constituted by loops of
sliding system time window once and sliding application time window twice afterwards. Figure
4.7 shows an instance of BiSW on the same bitemporal table.

Application Time

10 1 12 13 14 17

15 16
100 100 IE P ]
102 |4 T - -
105 by | ? ? ]
06 | | B 2 ]
107 N
108 N
109 RN I . E

Figure 4.7: Sliding Both Times

System Time

The query plan also consists of two parts: the first step is to answer the initial windows, and
the second step is to compute deltas incrementally. Algorithm 3 explains the execution process.
Line 10 is to get the system time delta (which is a horizontal rectangle similar to Query Type
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Algorithm 3 Query Evaluation for Sliding Both Times

Require:

10:

11:
12:
13:
14:
15:
16:

17:
18:
19:
20:
21:
22:
23:

D A A

sys_start_all: overall start system time
app_start_all: overall start application time

: procedure GET START CONDITION

same as in Algorithm 1.
end procedure

procedure INCREMENTAL SLIDE APPLICATION
1D _sys_delta < empty
1D _app_delta < empty
141
while i <= slide_count do
crnt_sys < sys_end + i
crnt_app < app_end
ID _sys_delta + get EventFromRECT (
crnt_sys, crnt_sys, app_start_all, crnt_app)
> get delta at sys time
merge [ D_sys_delta into I D_total
call expression() > callback for sliding sys
Jj+1
while j <= N do
crnt_app < crnt_app + 1
ID_app_delta < get Event FromRECT(
sys_start_all, crnt_sys, crnt_app, crnt_app)
> get delta at app time
merge [ D _app_delta into I D _total

call expression|() > callback for sliding app
J—g7+1
end while > end sliding app
1 1+1
end while > end sliding sys

end procedure
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Table 4.3: Execution Sequence for Sliding Both Times

Seq#

AlgLn#

Event

DeltaRows

ValidRows

0

1

initial windows
sys: [100,104]
app: [10,12]

+3

3

10

slide sys at 105
sys: [105,105)
app:[10,12]

-3+4

16

slide app at 13
sys:[100,105]
app:[13,13)

-4+5

16

slide app at 14
sys:[100,105]
app:[14,14)

-5+6

10

slide sys at 106
sys: [106,106)
app:[10,14]

-6+7

16

slide app at 15
sys:[100,106]
app:[15,15)

16

slide app at 16
sys:[100,106]
app:[16,16)

10

slide sys at 107
sys: [107,107)
app:[10,16]

+8

1) when system time slides, and line 16 frames the application time delta (which is a vertical

rectangle similar to Query Type 2) when the application time window slides.

Table 4.3 shows an execution sequence for the example in Figure 4.7. Seq O constructs the
initial windows which are boxed in the rectangle. Seq 1 slides system time with the application
window unchanged. Seq 2 and 3 slide application time, with the system window unchanged.
Before Seq 4, the ratio 1 : 2 is satisfied and it is time to move the system time window forward.
The difference between Seq 4 and Seq 1 is the delta length was increased by application time
sliding in Seq 2 and 3. Similarly, Seq 5 calculates the delta when the application time window
slides, but the system time window for Seq 5 advances by 1 due to Seq 4, compared with delta
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length in Seq 2 and 3. The deltas are highlighted in Figure 4.7.

4.5 Optimization 1: Non-Retroactive BiSW

In the previous sections, we assume that the sliding window slides forward, and each time it
slides one unit. However, the assumptions do not necessarily have to be held for all cases. For
the sliding directions, it is sometimes useful to slide backward (e.g. decrease StartWin and
EndWin). In addition, increasing and decreasing on StartWin and EndWin do not have
to be at the same pace (e.g. increase StartWin by 1 unit, and increase EndWin by 2 units
when a window slides). Furthermore, the direction and pace of the system time window and
the application time window can be independently different. The BiSW structure described in
previous sections is able to support sliding either direction (forward, or backward) at arbitrary
system and application times, by slightly changing the algorithms. This flexibility comes from
the application time partitioned system timeline index organization in BiSW.

If the workload slides the system time window forward only, and if the system time window
always ends at the latest system time, we can improve the BiSW to a more space-efficient struc-
ture. We name the new structure as non-retroactive BiSW, while we call the comprehensive one
discussed before as retroactive BiSW.

The major improvement of the non-retroactive BiSW is to keep all visible IDs updated and
to expire previously-arrived data at maintenance time when new data arrives, while at the same
time keeping the tuples partitioned by application time. Therefore no history is recorded in the
structure. Figure 4.8 shows the non-retroactive BiSW counterpart to Figure 4.3. When new data
arrives at system time 105, the update operation takes visible IDs at latest previous version (at
system time 102), applies (in-)validations (for example, ID 3 is removed from the cell due to
invalidation), and updates the time stamp to the new one, which is 105 in this example.

The non-retroactive BiSW has several benefits: for sliding system queries, Algorithm 1 line
11 which locates a particular system time and gets delta rows, is able to directly ingest the
buckets as input because the visible IDs were updated at the time of maintenance; for sliding
application time queries, Algorithm 2 line 8 does not need to construct a vertical rectangle which
includes multiple cells, but instead the new status has already been updated into the cells in non-
retroactive BiSW. However, the maintenance would take longer time compared with retroactive
BiSW, becuase non-retroactive BiSW is no longer appended only, and has to remove invalided
IDs from its cells. As a whole, non-retroactive BiSW trades off maintenance and the flexibility
of supported queries, for a better space utilization.
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Figure 4.8: Non-Retroactive BiSW Updating (at system time 105)

4.6 Optimization 2: Checkpointing

In the retroactive BiSW when sliding the application time, the height of the delta rectangle starts
from the overall system start time (recall the vertical rectangles in Figure 4.6), which implies
a long aggregation especially if the system time has accumulated too long. A straightforward
approach to save the aggregation time is to create checkpoints which keeps the all visible IDs at
the checkpoint system time.

Figure 4.9 shows a checkpoint after system time 106. Therefore for a sliding application
time query, the vertical delta does not need to start from system time 100. Instead, it can start
from the nearest checkpoint time (106). Checkpointing saves the aggregation time for rectangles,
especially when it has long system time edge. Checkpointing trades off space for better query
performance.
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Figure 4.9: Checkpointing (at system time 106)
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Chapter 5

Experiments and Results

In this section, we measure the performance of BiSW and compare it with several state-of-the-art
alternatives. Section 5.1 gives details about the experimental environment and input; Section 5.2
describes the different comparisons and measurements. Experimental results are summarized in
Section 5.3. Sections 5.4 to 5.7 explain the details.

5.1 Setup and Data Set

All experiments were carried out on a server with 256GB DDR3 1600MHz RAM and 2 Intel
Xeon E5-2670 processors each with 16 cores, running a Linux operating system (kernel version
3.0.101). The prototypes were implemented entirely in C++. As the BiTL was designed to use
intensively in memory, in order to compare fairly, all the contender data structures and raw table
resided in memory.

The input data set was generated by the TPC-BiH benchmark [25]. The TPC-BiH benchmark
takes the output from the standard TPC-H generator as system time version 1, and extends the
non-temporal schemas to bitemporal schemas by adding four time attributes, as discussed in
Section 2.1. Each tuple is associated with a system time interval as well as an application time
interval. The TPC-BiH benchmark generates the application time with random distributions,
and simulates the evolution of bitemporal tables by executing 9 update scenarios, where each
transaction is associated with a system time. Each update scenario results in one transaction
which generates a new version in the table. The application times are randomly distributed, and
the system times except the initial system time version 1 have similar number of events per time,
controlled by parameters in the TPC-BiH benchmark.
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The experiments run on a bitemporalized TPC-H ORDERS table. The test data has the
scaling factor SFj as 1 (a parameter in the TPC-BiH benchmark to control the size of table at
system time 1), and has the scaling factor SF'y as 25 (a parameter in the TPC-BiH benchmark
to control the size of updates). The raw size of the table is 10GB, which covers a range of 50
million system times and 10 million application times. More details of the data generation can
be found in the TPC-BiH benchmark paper [25].

To simulate streaming scenarios, a data dispatcher was implemented to replay the update
scenarios based on the final bitemporal table. The dispatcher sends a bunch of transactions
(1000, in the following experiments) per time to the prototypes, and the prototypes update their
index structures based on the new arriving data. After each update is finished, the following
queries in Section 5.4 to Section 5.6 are issued to run based on the existing information in the
prototypes. As data continuously arrives, and queries are issued to run again, so it is able to
measure the scalability of different comparisons by the window size and table size.

As explained in Section 2.3, the maintenance cost is measured by the time to update the new
arriving data into the index structures; the space footprints are measured as index size accumu-
lation as time goes by; and the query performance is profiled by the time of constructing initial
windows and the time of sliding windows.

5.2 Comparisons

BiSW (both retroactive and non-retroactive) is compared with the following four competitors.
Note that the performance of the following comparison systems does not differ whether the sys-
tem time window ends on largest system time or not. In order to conduct a more comprehensive
comparison, we test the case that the system time window ends on largest system time when
needed, for which case the non-retroactive BiSW can be compared as well.

e The Bitemporal Timeline Index (BiTL) [26] is designed to support general bitemporal
queries such as aggregation and time travel. We implemented the sliding window frame-
work on top of the BiTL.

e A B-tree representative. We adopt an open-sourced B+-tree [2] and have two independent
B+-trees to index a bitemporal relation: one tree to index system time, and the other to
index application time.

e A R-tree representative. As in Section 3, a 2-dimensional RR*-tree [9] is used to index
bitemporal tuples: one dimensional indexes the system interval, and the other dimension
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indexes the application interval. Our sliding window framework is implemented using the
authors’ original libraries [1].

e In addition, we also implement the sliding window queries using the raw table scan.

The query execution process of these competitors is described in detail at the Appendix.
For the measurements, as explained in Section 2.3, we compare different implementations on
maintenance overhead, query performance, and space footprint. All sliding window queries
intentionally select row identifiers in order to query the index only and to avoid performance
deviation of retrieving other columns.

5.3 Summary of Results

The results of experiments are as follows:

e Memory footprint. BiSW is around 50% smaller than the runner-up.

e Maintenance. BiTL is slightly better than BiSW, because of only maintenaning one single
system timeline index,

e Performance of getting initial window. Before the window slides, the initial windows need
to be constructed. This aspect measures how fast to get the initial window before it is able
to slide. BiSW is 10x faster than the runner-up.

e Performance of sliding system window. This aspect measures how fast to slide the system
time window. BiSW is 5x faster than the runner-up.

e Performance of sliding application window. This aspect measures how fast to slide the
application time window. BiSW is approaching BiTL, which has the best performance in
this case.

e Performance of sliding both times. This aspect measures how fast to slide both windows.
We will show the ratio at 1 : 4, and also the average performance at different ratios. BiISW
is the best (with practical ratio from 1 to 100).

To bring all results together, our BiSW index outperforms all alternatives by all three mea-
surements, with only two exceptions, where BiSW is only slightly worse than the best ones.
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5.4 Experiment 1: Slide System Time

The first type of bitemporal sliding query is to slide the system time window with the application
time window fixed. The query tested is the following:

select ROW_ID

from orders
[SYS, START 0, RANGE sys_end/2, SLIDE 1]
[APP, START 0, RANGE app_end/2, SLIDE 0]
[RATIO 1:0]

The symbol sys_end denotes the largest system time in the bitemporal table, and it is growing
as new arriving data is updated into the table. Since the TPC-BiH benchmark generates the
application time in random distributions, hence the app_end is a fixed parameter during the
whole history, representing the entire application time scope. For each sliding window query,
the initial application time window is [0, app_end/2] and remains unchanged during system time
sliding. The initial system time window for each system snapshot is [0, sys_end/2], and it slides
1 system time point per sliding. Every time when new data arrives, the index structures are
updated, and the above query is issued to run, but with an increased sys_end value.

As described in Algorithm 1, the first step is to calculate the visible rows for the initial
system and application time windows. Figure 5.1 shows the average execution time at different
sys-end, and it measures the scalability as a function of system time window size. The x-axis
represents the different sys_end, and the y-axis shows the execution time. The execution time
of table scan grows linearly because the larger system time window size, the more rows it has to
lookup. For the B+-tree, it first sequentially scans the application time tree from the beginning
leaf node till the node representing app_end/2 in order to get all application time visible ID set,
and then it sequentially scans the system time tree until sys_end/2 is reached to get all system
time visible ID set. The final step is to intersect the two sets. For the RR*-tree, it just simply
scans system time from 0 to sys_end/2 and filters the application time interval on-the-fly. For
the BiTL, at different sys_end/2, it has to generate a new application timeline index in order to
get the application visible IDs, which dominates the total execution time. Non-retroactive BiSW
is better than retroactive one, because at each insertion time, it does not need to compute from
system O to sys_end/2 to get those valid rows.

Figure 5.2 zooms into the first 10 million system times, and it shows that both BiSWs out-
perform BiTL by an order of magnitude.
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Figure 5.1: Time to Construct Initial Windows With Increasing sys_end (all)

After constructing the initial windows, the system time window begins to slide by computing
a delta. All visible rows can be updated by merging the delta to the existing visible rows. Figure
5.3 shows the time for different comparisons to get a delta at different system times.

As explained earlier in Section 5.1, the number of events per transaction remains constant,
therefore the incremental computation time remains constant for table scan. When system time
slides, the B+-tree has to filter by its application tree in order to satisfy application time pred-
icates, and because the events at each application time grows as new data comes in, therefore
the B+-tree execution time grows. For the RR*-tree, the incremental computation is interpreted
by matching those rectangles whose system time boundary coincides at a particular system time
point. For BiTL when system time slides, BiTL has to create a delta application timeline, which
degrades its performance compared with BiSW. Non-retroactive BiSW does not need to search
the next system time from a full time timeline index, where the cells were updated before window
slides.
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Figure 5.2: Time to Construct Initial Windows With Increasing sys_end (part)

5.5 Experiment 2: Slide Application Time

The second type of bitemporal sliding query is to slide the application time window with the
system window fixed (at a particular system time snapshot). The query tested in this set is the
following:

select ROW_ID

from orders
[SYS, START 0, RANGE sys_end, SLIDE 0]
[APP, START 0, RANGE app_end/2, SLIDE 1]
[RATIO 0:1]

In this query, the initial system time window is [0, sys_end/2] and remains unchanged during
the application time window sliding. The initial application time window is [0, app_end /2] and
slides 1 application time per sliding.

The time to construct the initial windows with changing the app_end has similar linear prop-
erty as in Experiment 1, so we do not show a separate graph for it. Every time when new data
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Figure 5.3: Time to Compute A Delta At Different System Times

arrives, the index structures are updated, and the above query is issued to run, but with an in-
creased sys_end value. From the view at each application time, a larger sys_end indicates that
on average more events occur at that particular application time, and that the delta size gets
larger. Figure 5.4 shows the time to slide the application time window at different system time
snapshots. The x-axis represents the inserted system snapshots at different system times, and the
y-axis shows the total time to slide application time windows from the initial application time
window to the last application time window instance ([1 + app_end/2, app_end)).

The execution time of retroactive BiSW grows as sys_end increases, because a larger sys_end
means each partitioned system tineline index gets longer, which results in longer scan time.
When the application time window slides, BISW has to compute a delta from system time 0 to
sys_end. The application timeline index in BiTL has the same valid rows as the correspond-
ing non-retroactive BiSW, but it gains a slightly better performance compared with the non-
retroactive BiSW, since the application timeline index in BiTL is not partitioned and has better
cache coherence. In this experiment, we also create checkpoints at each 1 million sys_end for the
retroactive BiSW, which virtually shortens the vertical delta by starting from last check-pointed
system time instead of from the very beginning. It can be seen from Figure 5.4 that the execution
time of retroactive BiSW drops at the check-pointed system times, and then increases as system
time goes until another checkpoint is created.
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Figure 5.4: Time to Slide the Application Time Window At Different Snapshots

5.6 Experiment 3: Slide Both Times

The third type of bitemporal sliding query is to slide both the application time window and the
system time window within one query. The query tested in this set is represented as:

select ROW_ID

from orders
[SYS, START 0, RANGE sys_end/2, SLIDE 1]
[APP, START 0, RANGE app_end/2, SLIDE 1]
[RATIO 1:4]

The initial system time window is [0, sys_end/2], and the initial application time window is
[0, app_end/2]. The ratio of 1 : 4 defines a sliding loop pattern: in each loop the system time
window first slides once, and then the application time window slides 4 times.

Recalling the query evaluation algorithms in Chapter 4, the evaluation process of sliding
window queries on both times is a combination of sliding the system time window and sliding
the application time window, and the performance and algorithm for each sliding step do not
differ from Section 5.4 and Section 5.5, hence we do not repeat the similar figures. Figure 5.5
shows an execution of a specific Experiment 3 query, where it ran on the largest sys_end (final
bitemporal table after constructing the initial windows. In Figure 5.5, the query began to slide
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both windows as specified by the ratio keyword: sliding system time window operations happen
at each 5*N step. As explained in Experiment 1, when the system time slides, it is anticipated
that BiTL consumes more time than BiSW because the application timeline index materialization
dominates BiTL execution time. Figure 5.5 shows peaks when sliding system time windows
occurred, and both the BiSWs outperform the other comparisons, which is consistent with the
findings in Experiment 1. When application time slides, (non-retroactive) BiSW is approaching
BiTL as explained in Experiment 2.

10000
L@%&%&M&ﬁww%o—%w&@—&&wﬂﬂ—o—o—o—o—o—o—l

1000 +

time (ms)

3 6 9 12 15 18 2‘1 24 27 30 33 36 39 42
#sequence (system time slides every 5 #seq)
——— BiSW (non-retro) ——o—— BiSW 2 BiTL
x B+-Tree ——— RR*-Tree ——o—— Table Scan

Figure 5.5: Bitemporal Sliding Sequence For The Final Bitemporal Table

Figure 5.6 shows the average time per sliding at different ratios. At the extreme rare case
where there is no system time window sliding, BiTL is theoretically better than BiSW because
BiTL is not partitioned. But in a practical mixed workload including sliding both times, the
average cost of BiISW is the best.

5.7 Experiment 4: Maintenance Overhead

Figure 5.7 shows the bulk loading time as new data arrives. For the BiSW, the new data is par-
titioned into the corresponding timeline indices by its application time, so it takes longer time
than the non-partitioned BiTL. But the difference between BiTL and BiSW is trivial compared
with the apparent big gap to construct the initial windows, shown in Figure 5.2. For the non-
retroactive BiSW, because it keeps no history and always updates to latest results, it takes longer
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Figure 5.6: Average Time of Sliding Both At Different Ratios

time to insert and delete from the buckets. The B+-trees manages to insert validations and invali-
dation to the system time tree and the application time tree independently. The RR*-Tree inserts
rectangles at the leaf nodes, and the minimum bound rectangles (directories) are managed by the
RR*-tree itself. As shown in Figure 5.7, the BiSW maintenance time approaches the BiTL.

5.8 Experiment 5: Space Footprint

Figure 5.8 shows the size of different structures as new data comes in. It is obvious that the total
size of different structures grows linearly as table size grows. BiTL and the B+-tree materialize
the same row information twice: in the system index structure, and the other in the application
index structure; therefore both of them have larger size than BiSW, which stores the same row
only once. The RR*-tree is worse than BiSW because in addition to storing the rectangles of
data, it also needs to store directories (the minimum bounding rectangle) as well.
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49




Chapter 6

Conclusion

This work bridges the gap between two domains - the bitemporal data model and the sliding
window model, and proposes an index structure called BiSW to seamlessly support bitempo-
ral sliding window operations, which are very practical in the real world but on which not too
many works have ever been conducted. Existing work on temporal and bitemporal indexing only
focuses on using general indexes such as trees to index the temporal dimension, without consid-
ering the properties (e.g. incremental computation) of sliding windows, and also lacks efficient
algorithms on how to answer sliding window queries. On the other side, despite a large amount of
work that has been done on sliding windows, most of them assume the simpler system dimension
only. Some of them indeed discuss application time properties, such as out-of-ordering; how-
ever these application time properties are not fully studied. There are few related works directly
addressing the core problem: how to do sliding window operations on a bitemporal relation.

Therefore, this work proposes an index data structure and a series of algorithms to support the
three categories of sliding window queries, both effectively and efficiently. Experiments show
that BiSW outperforms its tree based competitors and state-of-the-art Bitemporal Timeline Index
in most of the cases, usually by several times.

6.1 Future Work

Considering the flexibility and interactions of two time intervals, there is space to contribute to
a more comprehensive understanding of bitemporal queries. A few directions are highlighted
below:
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e Benchmarking. Currently, there is only one bitemporal data benchmark (TPC-BiH [25])
which is able to generate a TPC-H table with bitemporal attributes. However, TPC-BiH
considers general types of bitemporal workload such as time travel (restoring the table to
a previous version), but it does not benchmark sliding window queries. In this paper, we
classified three categories of bitemporal sliding window queries, and provides one classi-
fication of queries to a bitemporal sliding window benchmark.

e Sliding Query Language Support. The SQL:2011 Standard [31] includes the syntax to
differentiate system time and application time; however there is no standard definition of
(bi-)temporal sliding window query syntax. This paper gives an example of such query
syntax, and it is desirable to come to a standard expression.
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Appendix A

Evaluation for Baselines

In this section, we describe how to evaluate bitemporal sliding window queries using the B-tree,
R-tree, BiTL and raw table scan.

At the high level, all alternatives share the same workflow with the BiSW, e.g. a start condi-
tion has to be answered before incremental computation for bitemporal sliding window queries.
They differ at the physical layout, which determines the query plan, maintenance time and space
size.

A.1 B-Tree

In order to index both the system time and application time, two independent B-trees can be
created to index time points, one for each time. In the leaf node, it stores the time point as key,
and organizes RowID as a value chain (multiple rows can cause validation/invalidation at the
same time point). For validations, the RowID is stored as a positive value, and for invalidations
the opposite RowIDs (negative values) are recorded to distinguish from validations. B-tree or-
ganizes its keys in order (in this case to keep time in an ascending order) so that a lookup has a
deterministic path from root to the target leaf node. Each leaf node is linked with neighbours to
facilitate sequential leaf scan.

Figure A.1 shows the B-tree leaves to index system time corresponding to the table in Figure
3.1.

At system time sys_t a bunch of transactions comes in (recall that incoming data follows
system time ordering). For the B-tree indexing system time, all incoming tuples go to the leaf
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Figure A.1: The corresponding system B-tree (with Figure 3.1)

node containing sys_t, once that leaf has been located. Meanwhile the tree indexing application
time also has to be updated, but maintenance on the application tree incurs more lookups: tuples
may contain arbitrary application time intervals, resulting in an insertion of a positive RowID at
its StartApp leaf, and another insertion of the negative RowID at its EndApp leaf, if EndApp is
not oo.

For sliding window queries, the start condition always has to be built from the overall start
system and application time, which turns to be sequential scans on both trees from the left-most
nodes until the right boundary of the initial window at each time dimension is reached. At this
stage, the two sets contain all visible RowIDs from each perspective. Then the row identifier sets
from both trees are intersected to get those row identifiers visible at both time dimensions, where
the start condition completes.

Next for sliding one time (either system or application) dimension queries, the RowID set for
the fixed interval time remains unchanged, and is used to filter out the other dimension. Taking
the sliding system time queries for example, when the system time advances, the key for next
system time in the B-tree leaf node is adjacent to the previous old system time, and locating
the new key for next system time consumes constant time, simply by moving the pointer to the
next key position. The associated value chain at the new system time key contains all RowIDs
representing events at the new system time. The last step is to intersect with the application
time RowlID set, to filter out those RowIDs which are visible for the application time interval. A
similar process applies to sliding application time queries. For sliding both times, none of the
two RowlD set is fixed. However, at each step, only one window changes with the other one
fixed, which is used as the filter.
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A.2 R-Tree

A 2-dimension Cartesian space R-tree can be used to index both temporal intervals at the same
time. A rectangle which is bounded by its system and application time interval represents a row
in the bitemporal relation. Each rectangle is associated with its RowID. For those tuples which
have open-end intervals (e.g. End* is infinity), we reset the end boundary to the largest value
where its time can reach. In addition, the R-tree also maintains the minimum bounding rectangles
at higher levels in order to help searches. Figure A.3 shows an R-tree example with three leaf
rectangle for the bitemoral table example in Figure A.2.

3 John Largevill 40 11 12 102 105
4 John Largevill 30 11 13 103 104
5 John Costtown 100 13 14 105 107

Figure A.2: An Example of Bitemporal Table

application time

4+

5
13
12

11

} } } } } } } system time

101 102 103 104 105 106 107

Figure A.3: An Example of R-tree (with Figure A.2)

For maintenance when new data arrives, a rectangle is inserted for every new validated tuple,
and invalidating a row is implemented by setting the existing rectangle’s system time right bound
to be the time of deletion.

To answer the start condition on system time [0, sys_end] and on application time [0, app_end),
a rectangle is created taking the two intervals from start condition. Those rectangles that cover
the upper-right corner of the start condition (coordinate (sys_end, app-end)) imply their visibil-
ity: from the start condition’s point of view, visible tuples should start their visibility before end
boundaries of start condition, and continue to be valid until end boundaries are reached.
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Incremental time slicing computation is quite straightforward: for example, a line which is
vertical with system time axis at system time point ¢ will intersect those tuples which are visible
at t. In particular, intersecting with a rectangle on its boundary implies that representing row
become valid/invalid at ¢, depending on whether intersecting the start or end boundary.

A.3 Bitemporal Timeline Index

As discussed in Section 3.3, the BiTL adopts lazy materialization for the application timeline
index, and maintains the system timeline index only over system time. Initially there is no
timeline structure to index application time until on-demand, and even if an application timeline
index exists, it is not updated with the pace of system timeline.

So to answer the start condition, the system timeline index is scanned from the beginning if
there is no application timeline index, or from the system time when the application timeline was
created, until the start condition’s system end point is reached. As system timeline scanning goes,
a new application timeline index is generated, and merged if needed. The original paper [26] has
more details on how to create a application timeline index.

After the application timeline index at the start condition’s system end time is generated, the
start condition can be answered using the application timeline index only, because the application
timeline has already filtered out those invisible rows from system time’s perspective (recall the
conceptual view). In this case, a sequential scan from the beginning of the application timeline
index to initial window’s application end point captures all visible rows for the initial window.

For sliding system time queries, whenever the system time window moves, the application
timeline index becomes out of date. In this case, an application timeline delta is created corre-
sponding to those tuples at new system time point, and the delta is merged with the old applica-
tion timeline index to upgrade to a new application time with new system time. Then the fixed
application timeline can be used to scan the application timeline index.

For sliding application time queries, once the target application timeline is created, the BiTL
is able to slide on application time efficiently because the application timeline index is impl-
mented as an array. For queries sliding both times, the query plan combines the previous two pro-
cesses: when the system time window slides, a delta application timeline is created and merged,
and later the updated application timeline index is used to do the sliding on the application time.
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A.4 Raw Table Scan

Table scan is naive and quite straightforward: there is little maintenance overhead, and it re-
quires no additional space for auxiliary structures. However, query performance is significantly
penalized, especially for queries involving application time, where a full table scan has to be
performed.

Answering the start condition requires a full data scan, during which the temporal attributes
are checked on the fly to see if they match the ranges. Sliding system time queries are able to
take the advantages of transaction ordering, which avoids full data scan and restricts to scanning
only a fraction of the table. However, because application time does not follow any ordering in a
bitemporal table, therefore the incrementally sliding application time slice query is degraded to
a full table scan for each time slice. This is tremendously expensive as the size of raw data can
be very large, and growing with system time.
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