
Effective and Efficient Optimization
Methods for Kernel Based Classification

Problems
by

Aditya Tayal

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2014

©Aditya Tayal 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144147298?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Aditya Tayal
2014

ii

Abstract

Kernel methods are a popular choice in solving a number of problems in statistical machine
learning. In this thesis, we propose new methods for two important kernel based classifica-
tion problems: 1) learning from highly unbalanced large-scale datasets and 2) selecting a
relevant subset of input features for a given kernel specification.

The first problem is known as the rare class problem, which is characterized by a highly
skewed or unbalanced class distribution. Unbalanced datasets can introduce significant bias
in standard classification methods. In addition, due to the increase of data in recent years,
large datasets with millions of observations have become commonplace. We propose an
approach to address both the problem of bias and computational complexity in rare class
problems by optimizing area under the receiver operating characteristic curve and by using
a rare class only kernel representation, respectively. We justify the proposed approach theo-
retically and computationally. Theoretically, we establish an upper bound on the difference
between selecting a hypothesis from a reproducing kernel Hilbert space and a hypothesis
space which can be represented using a subset of kernel functions. This bound shows that
for a fixed number of kernel functions, it is optimal to first include functions corresponding
to rare class samples. We also discuss the connection of a subset kernel representation with
the Nyström method for a general class of regularized loss minimization methods. Com-
putationally, we illustrate that the rare class representation produces statistically equivalent
test error results on highly unbalanced datasets compared to using the full kernel repre-
sentation, but with significantly better time and space complexity. Finally, we extend the
method to rare class ordinal ranking, and apply it to a recent public competition problem in
health informatics.

The second problem studied in the thesis is known as the feature selection problem
in literature. Embedding feature selection in kernel classification leads to a non-convex
optimization problem. We specify a primal formulation and solve the problem using a
second-order trust region algorithm. To improve efficiency, we use the two-block Gauss-

iii

Seidel method, breaking the problem into a convex support vector machine subproblem
and a non-convex feature selection subproblem. We reduce possibility of saddle point
convergence and improve solution quality by sharing an explicit functional margin variable
between block iterates. We illustrate how our algorithm improves upon state-of-the-art
methods.

iv

Acknowlegements

I would like to thank my supervisors Professor Yuying Li and Professor Thomas Coleman
for allowing me explore the field of machine learning and optimization. I have benefitted
tremendously in both research and life skills during the course of my PhD years.

I thank my committee members, Stephen Wright (external), Mu Zhu, Peter Forsyth and
Justin Wan, for taking the time to review the thesis and give me valuable comments.

I would also like to thank fellow mates in the Scientific Computing lab, Kai Ma, Ken Chan,
Eddie Cheung, Nick Nian, Haofan Zhang, Parsiad Azimzadeh and Swathi Amarala, for
engaging and memorable discussions.

v

Contents

Contents vi

List of Figures ix

List of Tables x

1 Introduction 1
1.1 Contributions . 3
1.2 Outline . 5

2 Background 7
2.1 Support Vector Classification . 7

2.1.1 Linearly Separable Data . 7
2.1.2 Inseparable Data . 9
2.1.3 Dual Formulation . 10

2.2 Kernel Induced Feature Spaces . 11
2.2.1 Characterization . 14
2.2.2 Reproducing Kernel Hilbert Space (RKHS) 15

2.3 Representer Theorem and Training in the Primal 16

3 RankRC: Large-scale Nonlinear Rare Class Ranking 19
3.1 Introduction . 19
3.2 ROC Curve . 21
3.3 RankSVM . 24
3.4 RankRC: Ranking with Rare Class Representation 26
3.5 Optimization Algorithm and Complexity 29

3.5.1 Linearization . 30

vi

Contents

3.5.2 Unconstrained Optimization . 30
3.6 Summary . 34

4 Theoretical Properties of RankRC 35
4.1 Comparison of RankRC with RankSVM 36

4.1.1 Projected Mapping Equivalence 36
4.1.2 Projected Mapping Bound . 41

4.2 Relation to Nyström Approximation . 46
4.2.1 Nyström Method Equivalence . 46
4.2.2 Nyström Approximation Bound for SVM 48
4.2.3 Comparison to Kernel Perturbation Bounds 50

4.3 Summary . 53

5 RankRC: Computational Results 55
5.1 Methods and Experiment Setup . 55
5.2 Simulated Data . 57
5.3 Real Datasets . 58
5.4 Intrusion Detection . 61
5.5 Summary . 67

6 Multi-Level Rare Class Kernel Ranking 68
6.1 Predicting Days in Hospital . 68
6.2 Ordinal Regression with Multi-Level RankRC 69
6.3 Comparison of Results . 71
6.4 Summary . 73

7 Feature Selection 74
7.1 Introduction . 74
7.2 Feature Selection in Nonlinear SVMs . 77

7.2.1 Relation to GMKL . 79
7.3 Solving the Full-Space Feature Selection Problem 80

7.3.1 Trust Region Algorithm . 81
7.4 Explicit Margin Sharing . 82

7.4.1 Simple AO . 82
7.4.2 Shared Margin AO-I . 84

vii

Contents

7.4.3 Explicit (Functional) Margin AO-II 89
7.5 Experiments . 91

7.5.1 Comparison to GMKL . 91
7.5.2 Feature Ranking Comparison . 97

7.6 Summary . 101

8 Conclusion 102
8.1 Future Work . 103

References 105

viii

List of Figures

2.1 Example of linear discriminants separating two classes in R2 8
2.2 Convex loss functions and the smoothed hinge loss 17

3.1 ROC analysis . 23
3.2 Example class conditional distributions for a rare class dataset 28

4.1 Comparison of bounds for RankRC . 52

5.1 Example of simulated unbalanced dataset 57
5.2 Comparison of ranking loss objective function 60
5.3 Comparison of results for intrusion detection problem 66

6.1 Output distribution for Heritage health provider problem 69
6.2 Comparison of results for Heritage health provider problem 72

7.1 2D example of NDCC simulated data . 92
7.2 Samples from FEI faces dataset . 94
7.3 Relevant features identifies for the FEI faces dataset 95
7.4 Feature ranking results for NDCC . 98
7.5 Feature ranking results for FEI faces . 98
7.6 Feature ranking results for Sonar . 99
7.7 Feature ranking results for Ion . 99
7.8 Feature ranking results for S.A. Heart . 99
7.9 Feature ranking results for Musk . 99
7.10 Feature ranking results for Wdbc . 100
7.11 Feature ranking results for Aust. credit . 100
7.12 Feature ranking results for German credit 100
7.13 Feature ranking results for Madelon . 100

ix

List of Tables

2.1 Examples of kernels . 13

3.1 Binary classification confusion matrix. 22

4.1 List of datasets used in bound comparison 51

5.1 Comparison of test AUC results for simulated datasets 59
5.2 List of real unbalanced datasets . 62
5.3 Comparison of test AUC results for real datasets 63
5.4 Comparison of number of support vectors for real datasets 64
5.5 Intrusion detection output types . 65

7.1 Comparison of AO solution for feature selection 84
7.2 NDCC dataset feature selection results . 93
7.3 Test results for FEI faces dataset . 94
7.4 Feature selection results on UCI datasets 96

x

Chapter 1

Introduction

Kernel methods are a popular choice in solving a number of problems in statistical ma-
chine learning. The key benefit of kernel methods is separation of the training algorithm
from data representation, encoded via a positive semi-definite kernel. Kernels allow us to
estimate complex or nonlinear functions in a hypothesis space by implicitly estimating a
linear model in a (usually high-dimensional) mapped space, known as the feature space. A
kernel computes the dot product of two points in this feature space. Therefore, we can esti-
mate linear models in the feature space without explicitly working in the high-dimensional
space, as long as we can formulate the estimation process entirely in terms of dot products
or kernel evaluations.

The model estimation process or learning algorithm can be decoupled from the specifics
of the application area [35]. Domain knowledge or data structure for a particular application
can be incorporated by choosing an appropriate kernel specification. For example, state-of-
the-art vision classification systems often employ vocabulary-based representations, which
can be effectively expressed via histogram kernels [5], or syntax based kernels can be
defined over abstract structures, such as strings, trees or graphs [e.g. see 47, and references
therein]. Thus a kernel can be used to capture salient features to represent the data space of
a learning problem.

The learning algorithm is usually formulated as an optimization problem. Since the
kernel is positive semi-definite, this often leads to a convex optimization problem—which
has a unique minimum if it exists, and where any local minimum is also a global minimum.
Thus the learning algorithm does not involve heuristic choices, such as learning rates or ini-
tial points. Moreover, the same optimization algorithm can be used to solve problems with
different kernel specifications. In this respect, kernel methods can be considered modular.

1

The theory of kernels is quite old, dating back to 1909 with Mercer [68]. The interpre-
tation of kernels as dot products in a feature space was introduced into machine learning in
1964 by Aizerman et al. [7] on the method of potential functions. However, its possibilities
were not fully understood until relatively recently by the introduction of the support vector
machine by Boser et al. [15] in 1992.

By working implicitly in a high-dimensional feature space, kernels increase the risk of
overfitting and ill-posedness of learning problems. That is, since the number of parameters
is large compared to the number of training samples, a solution is likely to fit the training
samples well, but have poor generalization performance on new unseen data. The statistical
learning theory proposed by Vapnik and Chervonenkis [97] addresses this issue. In the
context of a binary classification problem, they show that generalization error depends
on the capacity of the hypothesis space, rather than the dimension of the problem, and
that the capacity of linear discriminants can be controlled by maximizing the margin of
the hyperplane with respect to training samples. Therefore kernels can safely be used to
learn complex patterns with good generalization performance. The support vector machine
(SVM) method employs this insight to learn a linear discriminant that maximizes margin
while minimizing empirical error. Indeed, the success of SVMs in practical problems,
backed by theoretical foundation, quickly led to its wide-spread popularity and revitalized
interest in kernel methods.1

SVM model learning is formulated as a convex quadratic optimization problem with
linear constraints. Traditionally, in the primal formulation, the problem is stated in terms of
the parameters or weights of a linear discriminant function. The Lagrange dual formulation
leads to a problem (and solution) that can be expressed entirely in terms of dot products,
which can be replaced by kernel evaluations. This traditional perspective has led to the
common misconception that in order to solve kernel SVMs one must resort to solving the
dual optimization problem. However, recently Chapelle [25] shows that kernel SVMs can
be solved using a primal formulation just as effectively.

In this thesis, we investigate two challenges associated with kernel based classification
and illustrate how a primal approach can lead to effective and efficient solutions. The two
problems are briefly described below. Background and relevant literature for each problem
is reviewed in detail in Chapters 3 and 7, respectively, where they are introduced.

1Since Vapnik and Chervonenkis’ result, other generalization results based on Bayesian statistics, com-
pression schemes and stability analysis have also been posited to explain the performance of support vector
machines and other kernel methods.

2

1.1 Contributions

1. Large-Scale Rare Class Learning: Rare class problems are characterized by highly
unbalanced class distributions. Unbalanced datasets introduce significant bias in
standard classification methods. Also, due to the increase of data in recent years,
large datasets with millions of observations have become commonplace. We propose
a primal solution to address both the problem of bias and computational complexity
in rare class problems by optimizing area under the receiver operating characteristic
curve and by using a rare class only kernel representation, respectively. We justify
the approach theoretically and experimentally.

2. Feature Selection: Feature selection refers to the process of selecting an optimal
subset of input features to improve generalization error and model interpretability,
by discarding irrelevant or redundant inputs. We develop an embedded feature selec-
tion method for kernel support vector machines based on a primal formulation. We
propose an effective and efficient solution to solve the resulting non-convex prob-
lem using second-order optimization techniques and illustrate how our approach im-
proves upon state-of-the-art methods.

1.1 Contributions

The contributions with respect to large-scale rare class learning are summarized below.

1. We propose to maximize area under curve (AUC) of the receiver operator character-
istic instead of minimizing empirical error in the support vector machine formulation
for unbalanced problems. We argue that the AUC is a more appropriate empirical
loss function for rare class problem than classification error. This results in a regular-
ized biclass ranking problem, which is a special case of RankSVM [54]. RankSVM
has generally been used in the context of ranking (e.g web page ranking) with linear
models. Its application to nonlinear rare class learning has not been highlighted in
previous literature.

2. To solve the dual optimization problem for kernel RankSVM requires O(m6) time
and O(m4) space, where m is the number of data samples. Chapelle and Keerthi
[26] show a primal approach can be used to solve RankSVM in O(m3) time and
O(m2) space. We propose a modification to kernel RankSVM, that takes specific
advantage of the unbalanced class distirbution, to achieve O(mm+) time and O(mm+)

3

1.1 Contributions

space, where m+ is the number of rare class examples. The idea is inspired by Zhu
et al. [114], in which the posterior probability density is estimated with an adaptive
bandwidth kernel density estimator over rare class samples and locally adjusted by
the density of the background class. Using similar assumptions, we show the optimal
solution can be approximately expressed as a linear combination of rare class kernel
functions. In contrast to Zhu et al. [114], we use a regularized loss minimization
approach to minimize a ranking loss objective while restricting the solution to a linear
combination of rare class kernel evaluations. Additionally, in our method, the kernel
does not need to be kernel density estimator, but can represent an arbitrary Mercer
kernel. We call this method RankRC, since it enforces a Rare Class solution.

3. We view kernel RankRC as an approximation to kernel RankSVM, and mathemat-
ically investigate the quality of approximation. Specifically, we establish an upper
bound on the difference between the optimal hypotheses of RankSVM and RankRC.
This bound is established by observing that any L2-regularized loss minimization
problem, with a hypothesis restricted to an arbitrary subset of points, is equivalent to
the L2-regularized loss minimization problem with a hypothesis instantiated by the
full data set but using the orthogonal projection of the original feature mapping.

4. We show that the upper bound suggests that, under the assumption that a hypothesis
is instantiated by any subset of data points of a fixed cardinality, it is optimal to
choose data points from the rare class first. Hence, this bound provides additional
theoretical justification for RankRC.

5. We demonstrate that the Nyström kernel approximation method is equivalent to solv-
ing a kernel regularized loss problem instantiated by a subset of data points corre-
sponding to the selected columns. Consequently, theoretical bounds for Nyström
kernel approximation methods can be established based on perturbation analysis of
the orthogonal projection in the feature mapping. We demonstrate that this approach
provides tighter bounds in comparison to established bounds based on the pertur-
bation of the kernel matrix [32], which can be arbitrarily large depending on the
condition number of the kernel approximation matrix.

6. We empirically compare RankRC to other methods on several datasets and illustrate
predictive and computational advantages.

4

1.2 Outline

7. We extend the biclass RankRC formulation to multi-level ranking and apply it to a
recent competition problem sponsored by the Heritage Health Provider Competition.
The problem illustrates how RankRC can be used for ordinal regression where one
ordinal level contains the vast majority of examples. We compare performance of
RankRC with other methods and demonstrate computational and predictive advan-
tages.

The contributions listed above also appear in Tayal et al. [90] and Tayal et al. [91].

The contributions with respect to feature selection are summarized below:

1. We invoke the Representer Theorem to formulate a primal embedded feature selec-
tion SVM problem and use a smoothed hinge loss function to obtain a simpler bound
constrained problem. We solve the resulting non-convex problem using a generalized
trust-region algorithm for bound constrained minimization.

2. To improve efficiency we propose a two-block alternating optimization scheme, in
which we iteratively solve (a) the standard SVM problem and (b) a smaller non-
convex feature selection problem. Importantly, we propose a novel alternate opti-
mization method by sharing a single perspective variable. We establish mathe-
matical conditions under which this perspective variable sharing AO method avoids
saddle points. For SVM feature selection, the perspective variable explicitly rep-
resents the margin. We provide computational evidence to illustrate that this helps
avoid suboptimal local solutions. Moreover, by focussing on maximizing margin in
the feature selection problem—a critical quantity for generalization error—we are
able to further improve solution quality.

3. We compare our methods to generalized multiple kernel learning and other leading
nonlinear feature selectors, and show that our approach improves results.

The contributions to the feature selection problem also appear in Tayal et al. [92].

1.2 Outline

The remainder of the thesis is organized as follows. Chapter 2 reviews support vector
machines and kernels. Chapters 3 to 6 develop RankRC for large-scale rare class learning:

5

1.2 Outline

Chapter 3 introduces the RankRC model, Chapter 4 presents analytical results for RankRC,
Chapter 5 shows the empirical results, and Chapter 6 extends the RankRC to multi-class
ranking. Chapter 7 develops the primal feature selection method for kernel support vector
machines. We conclude in Chapter 8 with summary remarks and potential extensions.

6

Chapter 2

Background

In this chapter, we briefly review support vector machines (SVMs), kernel induced feature
spaces, and the primal optimization method for kernel SVM based on the Representer theo-
rem. The chapter largely draws from material in Cristianini and Shawe-Taylor [35], Hastie
et al. [52], Schölkopf et al. [82], Schölkopf and Smola [83], Vapnik [97].

2.1 Support Vector Classification

Support vector machines learn a linear discriminant rule (hyperplane) that separates two
classes of data instances. This is known as the binary classification problem. Consider a
set of m training examples, D = {(x1,y1), (x2,y2), ..., (xm,ym)}, where xi ∈X ⊆Rd are data
instances and yi ∈ {+1,−1} are corresponding class labels (without loss of generality). We
seek a linear discriminant rule, f (x) = wT x + b, such that the class label of an observation
x is given by ŷi = sign(f (x)). In other words, we find a hyperplane in d-dimensional space,
wT x + b = 0, that separates the space into two half spaces, each corresponding to one of the
class labels.

2.1.1 Linearly Separable Data

If the data is linearly separable, then there are an infinite number of linear discriminants that
can separate the two classes (e.g see Figure 2.1a-c). According to the statistical learning
theory of Vapnik [97], the optimal linear discriminant is the one that maximizes geometric
margin between the two classes (Figure 2.1d), since it minimizes a bound on generalization
error irrespective of the dimensionality of the space. Mathematically, this can be stated as a

7

2.1 Support Vector Classification

x
1

x
2

(a)

x
1

x
2

(b)

x
1

x
2

(c)

γ

γ

x
1

x
2

(d)

ξ
2

ξ
7

x
1

x
2

(e)

Figure 2.1: Example dataset in (x1,x2) ∈ R2 space consisting of two classes with (red)
squares representing one class and (blue) circles representing the other class. (a)-(c) In the
separable case, there are many (infinite) linear discriminants which can separate the two
classes perfectly. Three such discriminants are shown. (d) According to generalization
bounds, the optimal linear discriminant is the one that maximizes the geometric margin, γ,
between the two classes. (e) For inseparable or noisy datasets, we allow points to cross the
margin, e.g. x2 and x7, and penalize the violations, ξ2 and ξ7. In (d) and (e), support vectors
are shown as filled in circles.

convex optimization problem. Note, the hyperplane associated with (w,b) does not change
upon rescaling to (λw,λb), for λ ∈ R+. The scaling affects the margin as measured by
the function output as opposed to the geometric margin. The absolute value of function
output at the closest point is called the functional margin. We can optimize the geometric
margin by fixing the functional margin to 1 and minimizing the norm of the weight vector.

8

2.1 Support Vector Classification

Specifically, setting functional margin to 1 implies,

wT x+ + b = 1

wT x− + b = −1

where x+ and x− are the closest points on the positive and negative sides of the hyperplane
defined by (w,b). The geometric margin, γ, is then given by

γ =
1
2

(
wT x+ + b
∥w∥2

−
wT x− + b
∥w∥2

)
=

1
2∥w∥2

(
(wT x+ + b) − (wT x− + b)

)
=

1
∥w∥2

Thus maximizing margin is equivalent to minimizing the norm of the weight vector. The
convex optimization problem that solves for the maximum margin discriminant is,

min
w,b

1
2
∥w∥2

2

subject to yi
(
wT xi + b

)
≥ 1, i = 1, ...,m ,

where the constraint enforces a functional margin of 1 on both sides of the hyperplane.

2.1.2 Inseparable Data

Real data is often noisy and there may in general be no linear discriminant that can separate
the data (see Figure 2.1e). To handle this case SVM uses penalized slack variables, ξi, i =
1, ...,m, which allow margin constraints to be violated:

min
w,b,ξ

1
2
∥w∥2

2 +C
m∑

i=1

ξi

subject to yi
(
wT xi + b

)
≥ 1 − ξi, i = 1, ...,m

ξi ≥ 0, i = 1, ...,m .

(2.1)

Here, C is a penalty parameter which balances the tradeoff between margin and violations.
In practice, it is usually determined by cross-validation.

9

2.1 Support Vector Classification

2.1.3 Dual Formulation

We can transform Problem (2.1) into its corresponding Lagrange dual problem. Since the
optimization problem is a convex quadratic programming problem, there is no duality gap.
Therefore, an optimal solution of the primal problem is given by the dual problem. The
dual formulations provides additional insight into the SVM problem. Also, it leads directly
to a kernel approach to solve the problem in an implied feature space.

The Lagrangian for Problem (2.1) is

L(w,b,ξ,α,r) =
1
2

wT w +C
m∑

i=1

ξi −

m∑
i=1

αi
(
yi(wT xi + b) − 1 + xi

)
−

m∑
i=1

riξi ,

with αi ≥ 0 and ri ≥ 0 for dual feasibility. Stationarity implies,

∂L
∂w

= w −

m∑
i=1

yiαixi = 0 ,
∂L
∂ξi

= C −αi − r − i = 0 ,
∂L
∂b

=
m∑

i=1

yiαi = 0 .

Substituting these relations into the Lagrangian, we obtain the following dual objective
function:

L(w,b,ξ,α,r) =
m∑

i=1

αi −
1
2

m∑
i, j=1

yiy jαiα jxT
i x j .

The constraint C − αi − ri = 0 together with ri ≥ 0 implies αi ≤ C. Therefore, the dual
optimization problem, which maximizes L or equivalently minimizes −L, is given by,

min
α

1
2

m∑
i, j=1

yiy jαiα jxT
i x j −

m∑
i=1

αi

subject to
m∑

i=1

yiαi = 0

0≤ αi ≤C, i = 1, ...,m ,

(2.2)

where the constraints enforce stationarity conditions and dual feasibility. The Karush-
Kuhn-Tucker (KKT) complementarity conditions provide useful information about the

10

2.2 Kernel Induced Feature Spaces

structure of the solution. These conditions state that a solution, (w∗,b∗,ξ∗,α∗) must satisfy,

α∗
i

(
yi(w∗T xi + b∗) − 1 + ξ∗i

)
= 0, i = 1, ...,m

ξ∗i
(
α∗

i −C
)

= 0, i = 1, ...,m .

This implies a non-zero slack variable, ξ∗i ̸= 0, can only occur when α∗
i = C. These points

are the margin violations, as their functional margin is less than 1, and their geometric
margin is less than 1/∥w∥2. Points where 0 < α∗

i <C imply, ξ∗i = 0, and yi(w∗T xi +b∗) = 1.
These points lie at the margin, with a geometric distance of 1/∥w∥2 from the hyperplane.
Points corresponding to α∗

i = 0 lie beyond the margin in the correct half-space.
From the first stationary condition, we have w =

∑m
i=1 yiαixi. Thus, the optimal hypoth-

esis can be expressed in the dual representation as,

f (x) = w∗T x + b =
m∑

i=1

yiα
∗
i xT

i x + b∗ . (2.3)

The value of b∗ can be determined by solving yi f (xi) = 1 for any i with 0 < α∗
i <C, due to

the complementarity conditions. Points corresponding to non-zero values of α∗
i are called

support vectors, since in the expression (2.3) only these points are involved. Note, slight
perturbations of points that are not support vectors will not affect the solution.

2.2 Kernel Induced Feature Spaces

So far we have considered linear hypothesis functions only. Real-world applications often
require more expressive hypothesis spaces. That is, the target hypothesis function cannot
be expressed as a simple linear combination of the input variables, but may require abstract
features of the data to be exploited. For example, consider Newton’s law of gravitation as
the target function, f (m1,m2,r) = Gm1m2/r2, in terms of masses m1, m2 and distance, r. A
linear hypothesis in terms of m1,m2,r cannot represent f , but a change of space obtained by
mapping input features, (m1,m2,r) 7→ (x,y,z) = (lnm1, lnm2, lnr), gives the representation
g(x,y,z) = ln f (m1,m2,r) = lnC + lnm1,+ lnm2 − 2lnr = c + x + y − 2z, which can be learned
using a linear function.

Kernels allow us to implicitly work in a high-dimensional derived feature space. The
larger the set of mapped features, the more likely, the function to be learned can be repre-

11

2.2 Kernel Induced Feature Spaces

sented. Traditionally, a large number of derived features is known to degrade generalization
performance, an effect popularly known as the curse of dimensionality. However, SVMs
can avoid such degradation since generalization performance depends on the geometric
margin of separation, and not the dimensionality of the feature space per se. Moreover,
a large number of derived features would pose computational challenges, but since ker-
nels bypass the need to compute the explicit feature map, high dimensional feature spaces
(with even infinite dimensions) can be used, which otherwise would be computationally
intractable.

Definition 1. A feature map is a vector function, φ : X ⊆ Rd →F ⊆ Rd′
, which maps the

input space X to a derived feature space, F , i.e.

x = (x1, ...,xd) 7→ φ(x) = (φ1(x), ...,φd′(x)) ,

where F = {φ(x)|x ∈ X}.

A feature map is used to transform the data to a new space, in which a linear function
is learned. The hypothesis space is f (x) = wTφ(x) + b, which can be a non-linear function
of the input features x.

Definition 2. A kernel is a function, k : X ×X → R, such that for all u,v ∈ X ,

k(u,v) = φ(u)Tφ(v) ,

where φ : X →F is a feature map.

A kernel corresponds to the dot product in a derived feature space. In many cases,
the dot product can be computed more efficiently using a simple function than by directly
computing the dot product after explicitly forming the feature vectors. A few examples of
common kernels are shown in Table 2.1.

Note, in the dual SVM problem (2.2) and the solution (2.3) all occurrences of data
instances occur in a dot product. Therefore, we can replace these dot products with the
kernel to implicitly compute the dot product in a derived feature space. This is known as

12

2.2 Kernel Induced Feature Spaces

Kernel k(u,v)

Linear uT v

Degree-p polynomial (uT v + b)p

Gaussian exp
(

−
∥u−v∥2

2
2σ2

)
Histogram intersection

∑d
i=1 min

(
|ui|α, |vi|β

)
Spline

∏d
i=1 1 + uivi + uivi min(ui,vi) −

ui+vi
2 min(ui,vi)2 +

min(ui,vi)3

3

Wave θ
∥u−v∥2

sin ∥u−v∥2
θ

Table 2.1: Examples of kernels, k : Rd×Rd → R. The Gaussian kernel is a popular non-
linear kernel, often used as a default in absence of expert knowledge about the data. It
corresponds to an infinite dimensional feature space and is in the class of universal kernels,
i.e. it can approximate an arbitrary continuous target function uniformly, thereby minimiz-
ing both estimation and approximation errors [70].

the “kernel trick”. The resulting problem is,

min
α

1
2

m∑
i, j=1

yiy jαiα jk(xi,x j) −

m∑
i=1

αi

subject to
m∑

i=1

yiαi = 0

0≤ αi ≤C, i = 1, ...,m ,

(2.4)

with the solution,

f (x) =
m∑

i=1

yiα
∗
i k(xi,x) + b∗ . (2.5)

The benefit of a kernel is that we do not need to know the underlying feature map in
order to compute the dot product. A kernel is usually defined directly as a function, hence
implicitly defining the feature space. This way we avoid the feature space not only in
the computation of the dot product, but also in the design of the learning machine. The
kernel can be viewed as a similarity measure between two points in the input space, X .

13

2.2 Kernel Induced Feature Spaces

Consequently, defining a kernel for an input space can be more natural than designing a
complex feature space.

2.2.1 Characterization

Mercer’s condition [68] characterizes what constitutes a valid kernel according to Defini-
tion 2. That is, Mercer’s theorem gives necessary and sufficient conditions for a continuous
symmetric function k to admit an inner product representation in some feature space. We
will not go into details of the analysis but simply quote the theorem below. In this thesis,
we use the term kernel to refer to functions satisfying Mercer’s condition, though in the
literature these are sometimes qualified as Mercer kernels.

Theorem 1. (Mercer) If k is a continuous kernel of a positive definite integral operator on

L2(X), where X is some compact space and L2(X) denotes the space of square-integrable

functions, that is, ∫
X×X

k(u,v) f (x) f (v)dxdv≥ 0 ,

for all f ∈ L2(X), then it can be expanded as

k(u,v) =
∞∑
i=1

λiφi(u)φi(v) ,

using eigenfunctions φi ∈ L2(X) and eigenvalues λi ≥ 0.

In the dual SVM problem (2.4) we see the only information used is kernel evaluations
on pairwise data in the training set. This can be stored in a m×m matrix, referred to as the
kernel matrix.

Definition 3. Given a kernel k and inputs X = {x1, ...,xm} ∈ Xm, the m×m matrix

K = [k(xi,x j)]m
i, j=1 ,

is called the kernel matrix (or Gram matrix) of the kernel k for the finite set X.

The conditions for Mercer’s theorem are equivalent to requiring that for any finite subset
of X , the corresponding kernel matrix is positive semi-definite [e.g. see 35] . This provides
an alternative characterization of a kernel that is often more useful in practice.

14

2.2 Kernel Induced Feature Spaces

Proposition 2. Let X be a non-empty set with k : X ×X → R a symmetric function on

X . Then k is a Mercer kernel if and only if the kernel matrix K = [k(xi,x j)]m
i, j=1 is positive

semi-definite (has non-negative eigenvalues) for all m ∈ N, xi ∈ X , i = 1, ...,m.

2.2.2 Reproducing Kernel Hilbert Space (RKHS)

The feature map, φ, can also be defined as a map from X into the space of functions
mapping X into R, denoted as RX ,

φ : X → RX , x φ7→ k(·,x).

Here φ(x)(·) = k(·,x) represents the function that assigns the value k(x′,x) for any given
point x′ ∈ X .1 Following [83], we constructively build the Hilbert space of functions. This
is done by defining a vector space of functions by taking linear combinations of the form

f (·) =
m∑

i=1

aik(·,xi) , g(·) =
m′∑
j=1

b jk(·,x′j) , (2.6)

where m,m′ ∈N,a1, ...,am,b1, ...,bm′ ∈R and x1, ...,xm,x′1, ...,x
′
m′ ∈X are arbitrary. A dot

product between f and g can be defined as

⟨ f ,g⟩ =
m∑

i=1

m′∑
j=1

aib jk(xi,x′j) , (2.7)

which can be verified as a well-defined dot product on the vector space of functions given
by (2.6). It can be verified that the dot product of f with the function k(·,x) recovers f (x),
i.e. ⟨ f ,k(·,x)⟩ = f (x), which is known as the reproducing property of the kernel k. The
space of functions (2.6) can be completed in the norm corresponding to the dot product
(2.7) to obtain a Hilbert spaceH, called a reproducing kernel Hilbert space (RKHS). Thus,

1Note, viewing φ(x) as a function is compatible with the feature map perspective given in Definition
1, since a vector can represent coefficients of a function in a given feature space. For example, con-
sider the feature map φ : R2 7→ R3 defined by x = [x1,x2]T 7→ φ(x) = [x1,x2,x1x2]T , with kernel k(u,v) =
[u1,u2,u1u2][v1,v1,v1,v2]T . We can define a function of the features as f (x) = ax1 + bx2 + cx1x2, where
f : X = R2 → R, and define an equivalent representation for f (·) = [a,b,c]T with f (x) = f (·)Tφ(x). The
notation f (·) or simply f refers to the function itself, in the abstract, which may have multiple equivalent
representations. Thus, while φ(x) can be defined as a mapping from R2 to R3, it can also be seen to define
the parameters of a function that maps R2 to R.

15

2.3 Representer Theorem and Training in the Primal

one can define a RKHS as a Hilbert spaceH of functions on a set X with the property that,
for all x ∈ X and f ∈ H, the point evaluations f 7→ f (x) are continuous linear functionals
and all points f (x) are well defined. The Moore-Aronszajn theorem [8] states that for every
Mercer kernel, k, there exists a unique RKHS and vice versa.

2.3 Representer Theorem and Training in the Primal

It is often presumed that to solve SVM with a kernel, we must solve the dual optimization
problem (2.4). However, the primal SVM problem also admits the use of a kernel represen-
tation. More generally, a large class of kernel problems can be written in the primal form
using the Representer Theorem [82], without resorting to the dual optimization problem.

Theorem 3. (Representer Theorem) The solution to the following regularized loss mini-

mization problem,

min
f̃∈H

h∈span{ψp}

L(f (x1), ..., f (xm)) +Ω(∥ f̃∥H) , (2.8)

where f := f̃ + h,H is a RKHS associated with kernel k, i.e.

H =

{
f̃ ∈ RX | f̃ (·) =

∞∑
i=1

βik(·,zi),βi ∈ R,zi ∈ X ,∥ f̃∥H <∞

}
,

{ψp}M
p=1 is a set of M real-valued functions on X , with the property that the m×M matrix

[ψp(xi)]ip has rank M, L : Rm→ R∪{∞} is an arbitrary cost function, and Ω is a strictly

monotonically increasing function on [0,∞], with ∥ f̃∥2
H = ⟨ f̃ , f̃ ⟩ defined by (2.7), admits a

representation of the form

f (·) =
m∑

i=1

βik(·,xi) +

M∑
p=1

bpψp(·) ,

with unique coefficients bp ∈ R, for all p = 1, ...,M.

Note the hypothesis space in (2.8) also allows M parametric basis functions on the input
space, i.e. {ψp}M

p=1. This is useful, for example to include an offset term, as seen in SVM
solution (2.5), i.e. setting M = 1 and ψ1(x) = 1 for all x, implies h ∈ R, which represents a
scalar offset to f̃ .

16

2.3 Representer Theorem and Training in the Primal

The SVM problem (2.4) is a special case of (2.8), since it can be expressed in a primal
exact-penalty form as:

min
f̃∈H
b∈R

C
m∑

i=1

ℓh (yi f (xi)) +
1
2
∥ f̃∥2

H , (2.9)

where f (x) = f̃ (x) + b and ℓh(z) = max(0,1 − z) measures margin violations and is known
as the hinge loss function.2 From the Representer theorem we know the solution of (2.9)
has the form f (x) =

∑m
i=1βik(x,xi) + b, which also matches form (2.5) obtained using a

dual optimization argument. Finally, we can substitute this form in (2.9) to obtain a primal
optimization problem in terms of the unknown model variables (β,b) ∈ Rm×R.

Apart from the hinge loss, other loss functions can also be used for classification pur-
poses, for example see Figure 2.2a. According to the Representer Theorem, regardless of
the loss function, the solution can be expressed in the form f (x) =

∑m
i=1βik(x,xi)+b. Note,

the loss functions are all convex approximations of the 0-1 loss function. The hinge-loss
is robust to outliers and does not penalize correctly classified points, resulting in a sparse
solution. Since the hinge-loss is non-differentiable, it can pose computational difficulties

2Consider replacing f (x)≡ wT x + b in (2.1), and eliminating ξi’s by incorporating the constraint directly
into the objective as a loss function.

−2 −1 0 1 2

0

1

2

3

z

ℓ
(z
)

1(z<0)

max(0,1−z)

exp(−z)

log(1+exp(−z))

(a)

−5 0 5

0

1

2

3

4

5

6

z

ℓ
(z
)

Hinge Loss

Smoothed Hinge

(b)

Figure 2.2: (a) Shows different loss functions that are a convex approximation of 0-1 loss
for classification problems. (b) The smoothed hinge is a differentiable approximation of
the hinge loss. Here the smoothed hinge is shown with ϵ = 0.5

17

2.3 Representer Theorem and Training in the Primal

in solving (2.9) using standard unconstrained optimization algorithms. Chapelle [25] pro-
poses to use a differentiable approximation to the hinge loss (see Figure 2.2b),

ℓϵ(z) =


(1 − ϵ) − z if z < 1 − 2ϵ
1
4ϵ (1 − z)2 if 1 − 2ϵ≤ z < 1

0 if z≥ 1 ,

in place of ℓh, in (2.9) and uses Newton’s method to solve the resulting optimization prob-
lem. Note, we can opt to use a twice-differentiable smoothed function as well, however
in practice, this is not necessary since the overall objective is sufficiently smooth. From a
classification perspective, the smoothed hinge loss function is margin-maximizing [79] and
Bayes-risk consistent [72], and offers similar benefits as the hinge loss.

18

Chapter 3

RankRC: Large-scale Nonlinear Rare
Class Ranking

In this chapter, we introduce a new kernel based learning method for rare class problems
called RankRC. Rare class problems are characterized by a highly unbalanced class distri-
bution. In these situations, standard classification algorithms lead to biased models, since
they focus on overall classification accuracy. In addition, many real-world rare class appli-
cations involve large datasets, which are prohibitive for kernel methods.

RankRC addresses both the problem of bias and computational complexity for rare
class problems by optimizing area under the receiver operating characteristic curve and
by using a rare class only kernel representation, respectively. This chapter motivates and
develops the problem formulation and optimization algorithm for RankRC.

3.1 Introduction

In many classification problems samples from one class are extremely rare (the minority
class), while the number of samples belonging to the other class are plenty (the majority
class). This situation is known as the rare class problem. It is also referred to as an unbal-
anced or skewed class distribution problem. Rare class problems naturally arise in several
application domains, for example, fraud detection, customer churn, intrusion detection,
fault detection, credit default, insurance risk and medical diagnosis.

Standard classification methods perform poorly when dealing with unbalanced data,
e.g. support vector machines (SVM) [55, 78, 107], decision trees [11, 29, 55, 102], neural

19

3.1 Introduction

networks [55], Bayesian networks [39], and nearest neighbor methods [11, 109]. Most
classification algorithms are driven by accuracy (i.e. minimizing error). Since minority
examples constitute a small proportion of the data, they have little impact on accuracy or
total error. Thus majority examples overshadow the minority class, resulting in models that
are heavily biased in recognizing the majority class. Implicitly, errors from different classes
are assumed to have the same costs, which is usually not true. In most problems, incorrect
classification of the rare class is more expensive, for instance, diagnosing a malignant tumor
as benign has more severe consequences than the contrary case.

Solutions to the class imbalance problem have been proposed at both the data and algo-
rithm level. At the data level, various resampling techniques are used to balance class dis-
tribution, including random under-sampling of majority class instances [62], over-sampling
minority class instances with new synthetic data generation [28], and focused resampling,
in which samples are chosen based on additional criteria [109]. Although sampling ap-
proaches have achieved success in some applications, they are known to have drawbacks,
for instance under-sampling can eliminate useful information, while over-sampling can re-
sult in overfitting. At the algorithm level, solutions are proposed by adjusting the algorithm
itself. This usually involves adjusting the costs of the classes to counter the class imbalance
[24, 65, 96] or adjusting the decision threshold [58]. However, true error costs are often
unknown and using an inaccurate cost model can lead to additional bias.

We focus on nonlinear kernel based classification methods expressed as a regularized
loss minimization problem. In recent years, we have also seen a rapid increase of data,
resulting in many large scale rare class problems. For example, detecting unauthorized use
of a credit card from millions of transactions. Processing large datasets can be prohibitive
for many nonlinear kernel algorithms, which scale quadratically to cubically in the number
of examples and may require quadratic space as well.

To address the challenges associated with rare class problems and large scale learning
we propose the following:

1. Instead of maximizing accuracy (minimizing error), we optimize area under curve
(AUC) of the receiver operator characteristic. The AUC overcomes inadequacies
of accuracy for unbalanced problems and provides a skew independent measure. It
is often used as the evaluation metric for unbalanced problems and therefore it is
appropriate to directly optimize it in the training process. This results in a regularized
biclass ranking problem, which is a special case of RankSVM with two ordinal levels
[54].

20

3.2 ROC Curve

2. To solve a kernel RankSVM problem in the dual, as originally proposed in [54],
requires O(m6) time and O(m4) space, where m is the number of data samples. Re-
cently, Chapelle and Keerthi [26] proposed a primal approach to solve RankSVM,
which results in O(m3) time and O(m2) space for nonlinear kernels. We propose a
modification to kernel RankSVM, that takes specific advantage of the unbalanced
nature of the problem, to achieve O(mm+) time and O(mm+) space, where m+ is the
number of rare class examples. The idea is inspired by Zhu et al. [114], in which the
posterior probability density is estimated with an adaptive bandwidth kernel density
estimator over rare class samples and locally adjusted by the density of the back-
ground class. Using similar assumptions, we show the solution can be approximately
expressed as a linear combination of rare class kernel functions. In contrast to Zhu
et al. [114], we use a regularized loss minimization approach to minimize a ranking
loss objective, but restrict the solution to a linear combination of rare class kernel
evaluations. In our method, the kernel does not need to be kernel density estimator,
but can represent an arbitrary Mercer kernel. We call this method RankRC, since it
enforces a Rare Class solution.

In this chapter, we motivate RankRC assuming certain properties of the class distribu-
tion and kernel choice. In Chapter 4 we analyze RankRC under general settings, and show
that RankRC is optimal with respect to RankSVM for unbalanced datasets with a fixed
cardinality of kernel functions.

The rest of the chapter is organized as follows. Sections 3.2 and 3.3 review the AUC
measure and RankSVM. Section 3.4 develops the RankRC problem and presents justifica-
tion for the rare class representation. Section 3.5 outlines the optimization algorithm used
to solve RankRC.

3.2 ROC Curve

Evaluation metrics play an important role in learning algorithms. They provide ways to
assess performance as well as guide modeling. For classification problems, error rate is
the most commonly used metric. Consider the binary classification problem. Let D =
{(x1,y1), (x2,y2), ..., (xm,ym)} be a set of m training examples, where xi ∈ X ⊆ Rd , yi ∈
{+1,−1}. Denote f (x) as the inductive hypothesis obtained by training on example set D.

21

3.2 ROC Curve

The empirical error rate is defined as,

ErrorRate =
1
m

m∑
i=1

I[f (xi) ̸= yi] , (3.1)

where I[p] denotes the indicator function and is equal to 1 if p is true, 0 if p is false.
However, for highly unbalanced datasets, error rate is not appropriate since it can be biased
toward the majority class [53, 66, 77, 86]. In this paper, we follow convention and set the
minority class as positive and the majority class as negative. Consider a dataset that has 1
percent positive cases and 99 percent negative ones. A naive solution which assigns every
example to be positive will obtain only 1 percent error rate. Indeed, classifiers that always
predict the majority class can obtain lower error rates than those that predict both classes
equally well. But clearly these are not useful hypotheses.

Classification performance can be represented by a confusion matrix as in Table 3.1,
with m+ denoting the number of minority examples and m− the number of majority ones.
The proportion of the two rows reflects class distribution and any performance measure
that uses values from both rows will be sensitive to class skew.

The Receiver Operating Characteristic (ROC) can be used to obtain a skew independent
measure [19, 69, 77]. Most classifiers intrinsically output a numerical score and a predicted
label is obtained by thresholding the score. For example, a threshold of zero leads to taking
the sign of the numerical output as the label. Each threshold value generates a confusion
matrix with different quantities of false positives and negatives (see Figure 3.1a). The ROC
graph is obtained by plotting the true positive rate (number of true positives divided by m+)
against the false positive rate (number of false positives divided by m−) as the threshold
level is varied (see Figure 3.1b). It depicts the trade-off between benefits (true positive)
and costs (false positives) for different choices of the threshold. Thus it does not depend
on a priori knowledge of the costs associated with misclassification. A ROC curve that

Predicted
f (x) = +1 f (x) = −1 Total

Actual
y = +1 True Positives (TP) False Negatives (FN) m+

y = −1 False Positives (FP) True Negatives (TN) m−

Table 3.1: Confusion matrix representing the results of a model for a binary classification
problem.

22

3.2 ROC Curve

TN

FN

TP

FP

← Threshold

P(y=−1|f)

P(y=1|f)

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
b
e
n
e
fi
ts

)

False Positive Rate (costs)

Better
model

Random
guess

Changing
threshold

(b)

Figure 3.1: ROC analysis. (a) Different quantities of True Positives (TP), False Positives
(FP), False Negatives (FN) and True Negatives (TN) are obtained as the threshold value of
a model is adjusted. (b) The ROC curve plots true positive rate against false positive rate
for different threshold values. The dashed (blue) ROC curve dominates the solid (black)
ROC curve. The dotted (gray) ROC curve has an AUC of 0.5, indicating a model with no
discriminative value.

dominates another provides a better solution at any cost point.
To facilitate comparison, it is convenient to characterize ROC curves using a single

measure. The area under a ROC curve (AUC) can be used for this purpose. It is the average
performance of the model across all threshold levels and corresponds to the Wilcoxon rank
statistic [51]. AUC represents the probability that the score generated by a classifier places
a positive class sample above a negative class sample when the positive sample is randomly
drawn from the positive class and the negative sample is randomly drawn from the negative
class [37]. The AUC can be computed by forming the ROC curve and using the trapezoid
rule to calculate the area under the curve. Also, given the intrinsic output of a hypothesis,
f (x), we can directly compute the AUC by counting pairwise correct rankings [37]:

AUC =
1

m+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

I
[

f (xi)≥ f (x j)
]
. (3.2)

Incorporating the AUC in the modeling process leads to a biclass ranking problem, as
discussed in the following section.

23

3.3 RankSVM

3.3 RankSVM

The modeling process can usually be expressed as an optimization problem involving a
loss function and a penalty on complexity (e.g. regularization term). For most classification
problems, since the performance measure is error rate, it is natural to consider minimizing
the empirical error rate (3.1) as the loss function. In practice, I[·] is often replaced with a
convex approximation such as the hinge loss, logistic loss or exponential loss [10]. Specif-
ically, using the hinge loss, ℓh(z) = max(0,1 − z), with ℓ2-regularization leads to the well
known support vector machine (SVM) formulation [15, 97],

min
w∈Rd

1
m

m∑
i=1

ℓh
(
yiwT xi

)
+
λ

2
∥w∥2

2 , (3.3)

where λ ∈R+ is a penalty parameter that controls model complexity. Here, the hypothesis,
f (x) = wT x, is assumed linear in the input space X . Since SVMs try to minimize error rate,
they can lead to ineffective class boundaries when dealing with highly skewed datasets,
with resulting solutions biased toward the majority concept [107]. The literature contains
several approaches to remedy this problem. Most prevalent are sampling methods and
cost-sensitive learning. However, these approaches implicitly or explicitly fix the relative
costs of misclassification. When the true costs are unknown, this can lead to suboptimal
solutions.

Instead of minimizing error rate, we consider optimizing AUC as a natural way to deal
with imbalance. Indeed, if we measure performance using AUC, it is preferable to optimize
this quantity directly during the training process. In the AUC formula given in (3.2), we
replace I[·] with the hinge loss to obtain a convex ranking loss function. Thus we solve the
following regularized loss minimization problem:

min
w∈Rd

1
m+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

ℓh
(
wT xi − wT x j

)
+
λ

2
∥w∥2

2 . (3.4)

Problem (3.4) is a special case of RankSVM proposed by Herbrich et al. [54] with two
ordinal levels. Like SVM, RankSVM leads to a dual problem which can be expressed in
terms of dot-products between input vectors. This allows us to obtain a non-linear function
through the kernel trick [15], which consists of using a kernel function, k :X ×X →R, that
corresponds to a feature map, φ : X →F ⊆ Rd′

, such that ∀u,v ∈ X , k(u,v) = φ(u)Tφ(v).
Here, k directly computes the inner product of two vectors in a potentially high-dimensional

24

3.3 RankSVM

feature space F , without the need to explicitly form the mapping. Consequently, we can
replace all occurrences of the dot-product with k in the dual and work implicitly in space
F .

However, since there is a Lagrange multiplier for each constraint associated with the
hinge loss, the dual formulation leads to a problem in m+m− = O(m2) variables. Assuming
the optimization procedure has cubic complexity in the number of variables and quadratic
space requirements, the complexity of the dual method becomes O(m6) time and O(m4)
space, which is unreasonably large for even medium sized datasets.

As noted by Chapelle [25], Chapelle and Keerthi [26], we can also solve the primal
problem in the implicit feature space due to the Representer Theorem [59, 82]. This the-
orem states that the solution of any regularized loss minimization problem in F can be
expressed as a linear combination of kernel functions evaluated at the training samples,
k(xi, ·), i = 1, ...,m. In the feature space F , problem (3.4) corresponds to solving

min
w∈Rd′

1
m+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

ℓh
(
wTφ(xi) − wTφ(x j)

)
+
λ

2
∥w∥2

2 , (3.5)

where we have replaced x with φ(x) and the hypothesis f (x) = wTφ(x), is a nonlinear func-
tion of the input space X . Problem (3.5) cannot be solved directly, since the dimensional-
ity, d′, of the feature space is usually very high (potentially infinite). Using the Representer
Theorem, the solution of (3.5) in space F can be written as:

f (x) =
m∑

i=1

βik(xi,x) =
m∑

i=1

βiφ(xi)Tφ(x) , or w =
m∑

i=1

βiφ(xi) . (3.6)

By substituting (3.6) in (3.5) we can express the primal problem in terms of β:

min
β∈Rm

1
m+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

ℓh

(
m∑

r=1

βrk(xr,xi) −

m∑
r=1

βrk(xr,x j)

)

+
λ

2

m∑
i, j=1

βiβ jk(xi,x j) ,

25

3.4 RankRC: Ranking with Rare Class Representation

or more simply,

min
β∈Rm

1
m+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

ℓh
(
Ki·β − K j·β)+

λ

2
βT Kβ , (3.7)

where K ∈Rm×m is the kernel matrix, Ki j = k(xi,x j), and Ki·denotes the ith row of K. To be
able to solve (3.7) using unconstrained optimization methods such as gradient descent, we
require the objective to be differentiable. We replace the hinge loss, ℓh, with an ϵ-smoothed
differentiable approximation, ℓϵ, defined as,

ℓϵ(z) =


(1 − ϵ) − z if z < 1 − 2ϵ
1
4ϵ (1 − z)2 if 1 − 2ϵ≤ z < 1

0 if z≥ 1 ,

which transitions from linear cost to zero cost using a quadratic segment (see Figure 2.2b)
and provides similar benefits as the hinge loss. Thus we can solve (3.7) using standard un-
constrained optimization techniques. Since there are m variables, Newton’s method would,
for example, take O(m3) operations to converge.

RankSVM is popular in the information retrieval community, where linear models are
the norm [e.g. see 56]. For a linear model, with d-dimension input vectors, the complexity
of RankSVM can be reduced to O(md + m logm) [26]. However, many rare class problems
require a nonlinear function to achieve optimal results. Solving a nonlinear RankSVM
requires O(m3) time and O(m2) space [26], which is not practical for mid- to large-sized
datasets. We believe this complexity is, in part, the reason why nonlinear RankSVMs are
not commonly used to solve rare class problems.

In the next section we propose a modification to nonlinear RankSVMs that takes spe-
cific advantage of unbalanced datasets to achieve O(mm+) time and O(mm+) space, while
not sacrificing predictive performance.

3.4 RankRC: Ranking with Rare Class Representation

To make RankSVM computationally feasible for large scale unbalanced problems, we pro-
pose to enforce a rare class representation for the decision surface. Specifically, we propose

26

3.4 RankRC: Ranking with Rare Class Representation

to restrict the solution to the form

f (x) =
∑

{i:yi=+1}
βik(xi,x) , (3.8)

so it consists only of kernel function realizations of the minority class. We call this RankRC
to indicate a Rare Class representation, instead of a support vector representation.

We present motivation for RankRC by assuming specific properties of the class condi-
tional distributions and kernel function. Zhu et al. [114] make use of similar assumptions,
however, in their method they attempt to directly estimate the likelihood ratio. In contrast,
we are using a regularized loss minimization approach.

Recall that the optimal ranking function for a classification problem is the posterior
probability, P(y = 1|x), since it minimizes the Bayes risk for arbitrary costs. From Bayes’
Theorem, we have

P(y = 1|x) =
P(y = 1)P(x|y = 1)

P(y = 1)P(x|y = 1) + P(y = −1)P(x|y = −1)
. (3.9)

In addition, any monotonic transformation of (3.9) also yields equivalent ranking capability.
Dividing the numerator and denominator of (3.9) by P(y = −1)P(x|y = −1), we note that
P(y = 1|x) is a monotonic transformation of the likelihood ratio, denoted as

f (x) =
P(x|y = 1)

P(x|y = −1)
, (3.10)

which is the ranking function we are interested in obtaining.
Using kernel density estimation (also called the Parzen window estimate), the condi-

tional density P(x|y = 1) can be approximated using

P(x|y = 1) =
1

m+

∑
{i:yi=+1}

aik (x,xi;σ) , (3.11)

where k(x,xi;σ) represents a kernel density function—typically a continuous unimodal
function of x with a peak at xi and a width localization parameter σ > 0.1 The constants

1The kernel density function is not the same as a Mercer kernel described in Chapter 2. The kernel
density function used in the Parzen window estimate is a symmetric but not necessarily positive function
that integrates to one. Mercer’s kernel described in Chapter 2 is associated with a unique Hilbert space of
functions called its reproducing kernel Hilbert space (RKHS). It is more general in the sense that it can be
defined over abstract syntax, for example strings, trees or graphs. However, to be a valid Mercer kernel, it

27

3.4 RankRC: Ranking with Rare Class Representation

x

P(x|y=−1)

P(x|y=1)

Figure 3.2: Example class conditional distributions for a rare class dataset showing that
P(x|y = 1) is concentrated with bounded support, while P(x|y = −1) is relatively constant in
the local regions around the positive class.

ai are used to normalize the density function and allow for a more general mixture model.
For example, if we define

k(x,xi;σ) = exp
{
||xi − x||2

σ2

}
as the Gaussian kernel, then (3.11) is equivalent to a mixture of m+ identical spherical
normals centered at the rare class examples. This mixture model encompasses a large
range of possible distributions to represent the m+ rare examples provided.

In rare class problems, most examples are from the majority class (y = −1) and only
a small number are from the rare class (y = 1). It is reasonable to assume the minority
class examples are concentrated in local regions with bounded support, while the majority
class acts as background noise. Therefore, in a neighborhood around the minority class
examples, the conditional density function P(x|y = −1) can be assumed to be relatively flat
in comparison to P(x|y = 1), see Figure 3.2 for instance. Assume P(x|y = −1)≈ ci for each
minority example i in the neighborhood of xi.2 Together with (3.11), the likelihood ratio
(3.10) can be written as

must be positive semi-definite (PSD). Ignoring normalization constants, well known examples of kernels that
are both kernel density functions and Mercer kernels are the Gaussian kernel, multivariate Student kernel and
the Laplacian kernel.

2We do not make this more precise since we are mainly interested in motivating an approximate form.

28

3.5 Optimization Algorithm and Complexity

f (x)≈
∑

{i:yi=+1}

aik(xi,x)
ci

, (3.12)

which only uses kernel functions at rare class points. The form (3.12) is equivalent to the
rare class representation (3.8). In contrast to (3.6), this form takes specific advantage of the
conditional density structure often found in rare class problems.

The rare class form (3.8) implies that

w =
∑

{i:yi=+1}
βiφ(xi) . (3.13)

By substituting (3.13) in the regularized ranking loss problem (3.4), we obtain the following
RankRC problem in m+ variables,

min
β∈Rm+

1
m+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

ℓh
(
Ki+β − K j+β

)
+
λ

2
βT K++β . (3.14)

Here, Ki+ denotes ith row of K with column entries corresponding to the positive class, and
K++ ∈ Rm+×m+ is the square submatrix of K corresponding to positive class entries.

Although we motivated the rare class kernel formulation assuming certain properties of
the class conditional distribution and kernel functions, we may still expect the rare class
representation to perform adequately under more general settings. In Chapter 4 we shall
analyze RankRC in a general setting, and show that for an unbalanced dataset, the rare
class representation is optimal with respect to RankSVM when a fixed number of kernel
functions are used. In the next section, we discuss the optimization method and algorithm
complexity.

3.5 Optimization Algorithm and Complexity

As discussed earlier, we can replace the hinge loss, ℓh, with the ϵ-smoothed differentiable
approximation, ℓϵ to obtain a differentiable objective function:

29

3.5 Optimization Algorithm and Complexity

min
β∈Rm+

1
m+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

ℓϵ
(
Ki+β − K j+β

)
+
λ

2
βT K++β . (3.15)

To solve (3.15) we can use several approaches, which are discussed below.

3.5.1 Linearization

Since K++ is a positive semi-definite matrix, it has an eigen-decomposition which can be
expressed in the form, K++ = UΛUT , with U being an orthogonal matrix (i.e. UTU = I) and
Λ a diagonal matrix containing non-negative eigenvalues of K++. Let w = Λ

1
2UTβ, then

β = UΛ† 1
2 w , (3.16)

where Λ† denotes the pseudoinverse of Λ. We can substitute (3.16) in (3.15) to obtain the
following linear (hypothesis) space problem,

min
w∈Rm+

1
m+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

ℓϵ

(
Ki+UΛ† 1

2 w − K j+UΛ† 1
2 w
)

+
λ

2
∥w∥2

2 . (3.17)

That is, Problem (3.17) is equivalent to Problem (3.4) with data points given by xi =
(Ki+UΛ† 1

2)T = Λ† 1
2UT KT

i+ ∈Rm+ , i = 1, ...,m. Therefore we can use the algorithm described
in Chapelle and Keerthi [26] to solve the linear ranking problem in O(mm+ + m logm) =
O(mm+) time. The cost of computing xi = Ki+UΛ† 1

2 , i = 1, ...,m, is O(mm2
+). The cost of

factoring K++ is O(m3
+). Therefore the total time is O(mm2

+ + m3
+). Once we solve for opti-

mal w we can use (3.16) to obtain β for subsequent testing purposes. Also, since we only
need kernel entries {Ki j : yi = 1, j = 1, ...,m}, the method uses O(mm+) space.

3.5.2 Unconstrained Optimization

We can also directly solve (3.15) using standard unconstrained optimization methods. Gra-
dient only methods, such as steepest descent and nonlinear conjugate gradient do not re-
quire estimation of the Hessian. Although this makes each iteration much cheaper, conver-
gence can be slow, especially near the solution. In contrast Hessian based algorithms, such
as Newton’s method can obtain quadratic convergence near the solution, but each iteration

30

3.5 Optimization Algorithm and Complexity

can be expensive. In Newton’s method, the pth iterate is updated according to

β(p+1) = β(p)
+ s ,

where the step, s, is obtained by minimizing the quadratic Taylor approximation around the
current iterate β(p):

min
s

sT g(p)
+

1
2

sT H(p)s , (3.18)

where H(p) and g(p) are the Hessian and gradient of the objective at β(p), respectively.
Problem (3.18) has a closed form solution given by

s = −

(
H(p)

)−1
g(p) .

Since H(p) is a m+×m+ matrix, this involves O(m3
+) cost in each iteration. To avoid this,

we can use the truncated Newton method in which H(p)s = −g(p) is solved using linear
conjugate gradient. Here, the Hessian is not computed explicitly and the method iteratively
approximates the solution using Hessian-vector products. Since each iteration in the linear
conjugate gradient algorithm leads to a descent direction, we can terminate early while still
improving convergence.

A drawback of (truncated) Newton’s method is that convergence can be guaranteed
only from a certain neighbourhood of the solution. If the initial point is not chosen close
enough to the solution, the method can be slow to converge, or fail altogether. Therefore
we consider a subspace-trust-region method, which combines the benefit of a truncated
Newton step with steepest descent. In our tests, we found that the subspace-trust-region
method converges with significantly fewer iterations than the truncated Newton method.

The idea behind the trust-region method is to solve (3.18) while constraining the step,
s, to a neighborhood around the current iterate, in which the approximation is trusted:

min
s

1
2

sT H(p)s + sT g(p)

s.t. ||s||2 ≤∆(p) .

(3.19)

The trust region radius, ∆(p), is adjusted at each iterate according to standard rules, for
example it is decreased if the solution obtained is worse than the current iterate. Problem

31

3.5 Optimization Algorithm and Complexity

(3.19) can be solved accurately [e.g see 18], however, the solution uses the full eigen-
decomposition of H(p). To avoid this computation, in the subspace-trust-region method,
Problem (3.19) is restricted to a two-dimensional subspace spanned by the gradient, g(p),
and an approximate Newton direction, s2, which can be obtained by solving H(p)s2 = −g(p)

using linear conjugate gradient [21]. The idea behind this choice is to ensure global con-
vergence, while maintaining fast local convergence. Once the subspace has been com-
puted, solving (3.19) costs O(1) time, since in the subspace the problem is only two-
dimensional. The implementation we use is provided in Matlab’s optimization toolbox,
fminunc/fmincon.

Computing Gradient and Hessian-Vector Product

We describe how we can compute the gradient and Hessian-vector product for Problem
(3.15) efficiently. Let K·+ = [Ki j]i=1,...,m,y j=1 ∈ Rm×m+ denote the rectangular submatrix of
K with columns indexed by the positive class. Consider the expanded matrix

A = [Ki+ − K j+]i:yi=1, j:y j=−1 ∈ Rm+m−×m+ ,

consisting of the differences of rows in K·+ corresponding to all pairwise preferences. In
our computation we do not explicitly form matrix A, rather we note that A can be expressed
as a sparse matrix product:

A = PK·+,
where P∈Rm+m−×m is a sparse matrix that encodes a pairwise preference. That is, if yi > y j,
then there exists a row r in P such that Pri = 1,Pr j = −1 and the rest of the row is zero. Let
Ar denote the rth row of A. Then the ranking loss expression in (3.15) can be written as,∑

{i:yi=+1}

∑
{ j:y j=−1}

ℓϵ
(
Ki+β − K j+β

)
=

m+m−∑
r=1

ℓϵ (Arβ)

=
m+m−∑
r=1

I[r ∈ L] (1 − ϵ− Arβ) +

m+m−∑
r=1

I[r ∈Q]
1
4ϵ

(1 − Arβ)2 , (3.20)

whereL = {r : Arβ< 1−2ϵ} is the set of pairwise differences which are in the linear portion
of ℓϵ, and Q = {r : 1 − 2ϵ ≤ Arβ < 1} is the set which fall in the quadratic part. Denote

32

3.5 Optimization Algorithm and Complexity

e ∈ Rm+m− as a vector of ones. Define eL ∈ Rm+m− as a binary vector where eLr = 1 if r ∈ L
and eLr = 0 if r ̸∈ L. Also define IQ ∈ Rm+m−×m+m− as a diagonal matrix, where IQrr = 1, if
r ∈Q, and IQrr = 0, if r ̸∈ Q. Then (3.20) is equivalent to(

eL
)T

((1 − ϵ)e − Aβ) +
1
4ϵ

(e − Aβ)T IQ (e − Aβ)

=
(

eL
)T

((1 − ϵ)e − PK·+β) +
1
4ϵ

(e − PK·+β)T IQ (e − PK·+β) .

Therefore the objective function in (3.15) can be expressed as

F(β) ,
1

m+m−

[(
eL
)T

((1 − ϵ)e − PK·+β) +
1
4ϵ

(e − PK·+β)T IQ (e − PK·+β)
]

+
λ

2
βT K++β .

(3.21)

We obtain the gradient by taking the derivative of (3.21) with respect to β:

g ,
∂F
∂β

=
1

m+m−

[
−

(
eL
)T

PK·+ +
1
2ϵ

PK·+IQ (PK·+β − e)
]

+λK++β

=
1

m+m−

[
−

((
eL
)T

P
)

K·+ +
1
2ϵ

(
P
(

K·+
(

IQP
)

(K·+β)
)

− P
(

K·+
(

IQe
)))]

+λK++β .

(3.22)

In the last expression we have used brackets to emphasize the order of operations that leads
to an efficient implementation by avoiding the computation of A = PK·+. It can be verified
that the time required is O(mm+).

We obtain the Hessian by taking the derivative of (3.22) with respect to β:

H ,
∂2F

∂β∂βT =
1

2ϵm+m−

(
PK·+IQPK·+

)
+λK++ .

Note the Hessian requires computing A. However, for the linear conjugate gradient method
we only require computing Hs for some vector s. In this case, we can avoid computing A

by using the following order of operations:

Hs =
1

2ϵm+m−

(
P
(

K·+
(

IQP
)

(K·+s)
))

+λK++s .

The time required to compute Hs is also O(mm+).
In the subspace-trust-region method we use a maximum of 25 conjugate gradient it-

33

3.6 Summary

erations.3 We found the solution usually converges in a constant number of trust region
iterations. Since each iteration requires O(mm+) time, the total time required by the algo-
rithm is O(mm+). Total space is also O(mm+).

Finally, we note that we can slightly improve the time required to compute the gradient
and Hessian-vector product by first sorting the values of K·+β or K·+s. Though this does
not improve the big-O efficiency, it does reduce the constant factor. We refer the interested
reader to [26] for details on a method which can be adapted for the nonlinear RankRC
objective (3.15).

3.6 Summary

We use a ranking loss function to tackle the problem of learning from unbalanced datasets.
Minimizing biclass ranking loss is equivalent to maximizing the AUC measure, which
overcomes the inadequacies of accuracy, used by conventional classification algorithms.
The resulting regularized loss minimization problem corresponds to a biclass RankSVM
problem. We propose a modification to RankSVM, called RankRC, that takes advantage
of the rare class situation by restricting the solution to a linear combination of rare class
kernel functions. This allows us to solve the nonlinear ranking problem in O(mm+) time and
O(mm+) space, thus enabling us to solve problems which are too large for kernel RankSVM.
We motivate this formulation by assuming certain properties of the class distribution often
found in rare class problems and kernel choice. In the next chapter we provide further
theoretical justification for the RankRC model.

3We use diagonal preconditioning and warm-starts as λ is varied from high to low.

34

Chapter 4

Theoretical Properties of RankRC

In this chapter we analyze properties of RankRC and obtain the following results.

• We mathematically establish an upper bound on the difference between the optimal
hypotheses of RankSVM and RankRC. This bound is established by observing that a
regularized loss minimization problem with a hypothesis instantiated with points in
a subset is equivalent to a regularized loss minimization problem with a hypothesis
instantiated by the full data set but using the orthogonal projection of the original
feature mapping.

• We show that the upper bound suggests that, under the assumption that a hypothesis
is instantiated by a subset of data points of a fixed cardinality, it is optimal to choose
data points from the rare class first. Hence, this bound provides additional theoretical
justification for RankRC.

• We demonstrate that the Nyström kernel approximation method is equivalent to solv-
ing a kernel regularized loss problem instantiated by a subset of data points corre-
sponding to the selected columns. Consequently, theoretical bounds for Nyström
kernel approximation methods can be established based on the perturbation analy-
sis of the orthogonal projection in the feature mapping. We demonstrate that this
approach provides tighter bounds in comparison to perturbation analysis based on a
kernel matrix approximation, which can be arbitrarily large depending on the condi-
tion number of the approximation matrix.

We note that some of our results in this chapter are general and apply to any regularized
loss minimization problem. Therefore, these results can be useful to analyze and devise

35

4.1 Comparison of RankRC with RankSVM

algorithms for other approximate kernel problems as well.

4.1 Comparison of RankRC with RankSVM

In this section we analytically compare the solution of RankRC with RankSVM. In par-
ticular, we establish a bound for the difference between the solution of RankSVM and a
solution in which the hypothesis is restricted to an arbitrary subset of kernel functions.
This bound shows that it is optimal to first include kernel functions that correspond to
points from the rare class when the dataset is unbalanced.

4.1.1 Projected Mapping Equivalence

We first establish equivalence between instantiating a hypothesis using a subset of training
points and instantiating a hypothesis using the full training set but with the feature mapping
equal to the orthogonal projection of the original mapping. We show this is true for an
arbitrary loss function. Subsequently, we use this result to bound the difference between
the RankSVM classifier and a classifier that is restricted to a subset of kernel functions, by
conducting a stability analysis for the RankSVM optimization problem under a projected
feature map perturbation.

For the purpose of analysis, we shall work explicitly in the high-dimensional feature
space. Let φ :X →F ⊆Rd′

, denote a feature map corresponding to the kernel k :X ×X →
R, such that ∀u,v ∈ X , k(u,v) = φ(u)Tφ(v). For an arbitrary loss function, L : Rm → R,
and regularization parameter, λ∈R+, consider the following regularized loss minimization
problem in space F ,

min
w∈Rd′

L
(
wTφ(x1), ...,wTφ(xm)

)
+
λ

2
∥w∥2

2 . (4.1)

Here, the hypothesis, fφ(x) = wTφ(x), can be nonlinear in the input space, X , but is linear in
the high-dimensional feature space, F . We use the subscript φ in fφ to indicate the feature
map used in the hypothesis. Note, RankSVM is a special case of (4.1) using a ranking loss
for L. From the Representer Theorem, the solution of (4.1) is of the form

fφ(x) =
m∑

i=1

βik(xi,x) =
m∑

i=1

βiφ(xi)Tφ(x) , or w =
m∑

i=1

βiφ(xi) . (4.2)

36

4.1 Comparison of RankRC with RankSVM

This implies that the optimal hypothesis can always be represented using the full training
set and the solution vector w ∈ S = span{φ(xi) : i = 1, ...,m} is a linear combination of all
the points in feature space.

Now consider restricting the hypothesis to an arbitrary subset of kernel functions, in-
dexed byR⊆ {1, ...,m}:

f̄φ(x) =
∑
i∈R

βik(xi,x) =
∑
i∈R

βiφ(xi)Tφ(x) , or w =
∑
i∈R

βiφ(xi) , (4.3)

with f̄φ(x) = wTφ(x). We use the overline in f̄φ to indicate a restricted hypothesis. Sub-
sequently, we shall refer to (4.3) as the R-subset representation or classifier. In this case,
the solution vector, w ∈ SR = span{φ(xi) : i ∈ R}, is a linear combination of the subset of
points in feature space indexed by R. Since the set SR defines all feasible values of w, re-
stricting the hypothesis to theR-subset representation corresponds to solving the following
constrained regularized loss minimization problem in feature space:

min
w∈Rd′

L
(
wTφ(x1), ...,wTφ(xm)

)
+
λ

2
∥w∥2

2 ,

subject to w ∈ SR = span{φ(xi) : i ∈R} , R⊆ {1, ...,m} .
(4.4)

Note, RankRC is a special case of (4.4) using a ranking loss for L and settingR= {i : yi = 1}.
In Theorem 5 we will establish that problem (4.4) is equivalent to problem (4.1) under a

projected feature map. That is, problem (4.4) is equivalent to the following unconstrained

loss minimization problem,

min
w∈Rd′

L
(
wTφR(x1), ...,wTφR(xm)

)
+
λ

2
∥w∥2

2 , (4.5)

with hypothesis, fφR(x) = wTφR(x) and a feature map, φR :X →FR ⊆Rd′
, defined as the

orthogonal projection of φ onto SR, i.e.,

φR(x) = ProjSR (φ(x)) . (4.6)

The feature map, φR, maps the input space to a feature space, FR, which contains vectors
of the same dimensionality, d′, as the original feature space, F . Before establishing the
equivalence of (4.4) and (4.5), we first prove a technical lemma.

Lemma 4. Consider a feature map, φ : X → F ⊆ Rd′
, and its projected map, φR : X →

37

4.1 Comparison of RankRC with RankSVM

FR ⊆ Rd′
, defined by (4.6) for some index subset R ⊆ {1, ...,m} and SR = span{φ(xi) :

i ∈ R}. Assume that w ∈ Rd′
is feasible for the constrained regularized loss minimization

problem problem (4.4). Let f̄φ(x) = wTφ(x) and fφR(x) = wTφR(x) be hypotheses associ-

ated with feature mapping φ and φR, respectively. Then

f̄φ(x) = fφR(x), ∀x ∈ X . (4.7)

Proof. Given any φ(x), there exists a unique orthogonal decomposition

φ(x) = φR(x) +φ⊥R(x) , (4.8)

where φR(x)∈SR⊆Rd′
is a component in SR and φ⊥R(x)∈Rd′

is a component orthogonal
to SR. By definition, φ(xi) ∈ SR,∀i ∈R. Hence

φ(xi)Tφ⊥R(x) = 0, ∀i ∈R, ∀x ∈ X . (4.9)

Since w is a feasible point for (4.4), we can write w =
∑

i∈Rβiφ(xi) for some β ∈ R|R|.
Then using (4.9) we have

f̄φ(x) = wTφ(x)

=

(∑
i∈R

βiφ(xi)

)T (
φR(x) +φ⊥R(x)

)

=

(∑
i∈R

βiφ(xi)

)T

φR(x)

= wTφR(x)

= fφR(x).

This completes the proof.

Lemma 4 shows that, for any feasible w of (4.4), the hypothesis f̄φ(x) corresponding to
the map φ, is equivalent to the hypothesis fφR(x), corresponding to the projected map φR.

Theorem 5. Consider a feature map, φ : X →F ⊆ Rd′
, and its projected map, φR : X →

FR ⊆ Rd′
, defined by (4.6) for some index subset R ⊆ {1, ...,m} and SR = span{φ(xi) :

i ∈ R}. Then the constrained regularized loss minimization problem (4.4), using map

38

4.1 Comparison of RankRC with RankSVM

φ, is equivalent to the unconstrained regularized loss minimization problem (4.5), using

the projected map φR, i.e., w∗ solves (4.4) if and only if w∗ solves (4.5). In addition,

assuming w∗ solves either (4.4) or (4.5), then the hypothesis f̄ ∗φ(x) = (w∗)Tφ(x), with map

φ, is equivalent to the hypothesis f ∗φR(x) = (w∗)TφR(x), with the projected map φR, i.e.,

f̄ ∗φ(x) = f ∗φR(x), ∀x ∈ X . (4.10)

Proof. Using the Representer Theorem, there exists a solution w∗
R to problem (4.5), which

can be expressed as

w∗
R =

m∑
i=1

β∗i φR(xi). (4.11)

Hence, for any w ∈ Rd′
,

L
(
(w∗

R)TφR(x1), ..., (w∗
R)TφR(xm)

)
+
λ

2
∥w∗

R∥2
2 ≤ L

(
wTφR(x1), ...,wTφR(xm)

)
+
λ

2
∥w∥2

2

(4.12)
Since φR(x) ∈ SR, from (4.11), w∗

R ∈ SR. Hence w∗
R satisfies the constraint in (4.4).

Following Lemma 4,

(w∗
R)TφR(x) = (w∗

R)Tφ(x), ∀x ∈ X . (4.13)

Now consider any feasible point w for (4.4). Following Lemma 4, we have

wTφ(x) = wTφR(x), ∀x ∈ X . (4.14)

From (4.12) and (4.14),

L
(
(w∗

R)Tφ(x1), ..., (w∗
R)Tφ(xm)

)
+
λ

2
∥w∗

R∥2
2 ≤ L

(
wTφ(x1), ...,wTφ(xm)

)
+
λ

2
∥w∥2

2 (4.15)

Hence w∗
R is a solution to (4.4).

Conversely let us assume that w∗ is a solution to (4.4). Since w∗
R is feasible for (4.4),

39

4.1 Comparison of RankRC with RankSVM

L
(
(w∗)Tφ(x1), ..., (w∗)Tφ(xm)

)
+
λ

2
∥w∗∥2

2 ≤ L
(
(w∗

R)Tφ(x1), ..., (w∗
R)Tφ(xm)

)
+
λ

2
∥w∗

R∥2
2

= L
(
(w∗

R)TφR(x1), ..., (w∗
R)TφR(xm)

)
+
λ

2
∥w∗

R∥2
2.

where the equality follows from (4.13).
From Lemma 4,

(w∗)Tφ(x) = (w∗)TφR(x), ∀x ∈ X .

Hence

L
(
(w∗)TφR(x1), ..., (w∗)TφR(xm)

)
+
λ

2
∥w∗∥2

2≤L
(
(w∗

R)TφR(x1), ..., (w∗
R)TφR(xm)

)
+
λ

2
∥w∗

R∥2
2.

Following (4.12) , for any w ∈ Rd′
,

L
(
(w∗)TφR(x1), ..., (w∗)TφR(xm)

)
+λ∥w∗∥2

2 ≤ L
(
wTφR(x1), ...,wTφR(xm)

)
+
λ

2
∥w∥2

2

Hence the solution w∗ is also a solution to (4.5). The result (4.10) immediately follows
from Lemma 4 and the equivalence of (4.4) and (4.5). The proof is complete.

If we assume the loss function is convex, we can also obtain the results of Lemma 4 and
Theorem 5 directly from optimality conditions instead of using the Representer Theorem.
The solution form (4.2) for the regularized loss minimization problem (4.1) can be obtained
using the first order optimality conditions. Denote the subdifferential of L with respect to
its ith argument by ∂iL(·), then the optimality condition for (4.1) is

m∑
i=1

φ(xi)(∂iL) +λw = 0,

giving the required form. This method can be extended to the constrained regularized loss
minimization (4.4) as well. If we use R to denote the matrix whose columns span SR,
and N to be the matrix such that NT spans the orthogonal complement of SR, then by the
fundamental theorem of linear algebra, the constraint in (4.4) can be written as Nw = 0.

40

4.1 Comparison of RankRC with RankSVM

The optimality conditions of (4.4) are then

m∑
i=1

φ(xi)(∂iL) +λw − NTµ = 0, Nw = 0.

We deduce from Nw = 0 that w = RwR for some vector wR, so from the first optimality
condition, we have by multiplying through by RT and solving that

wR = −
1
λ

M∑
i=1

(∂iL)(RT R)−1RTφ(xi).

Since R(RT R)−1RT is the projection matrix onto the subspace SR, we obtain

w = −
1
λ

M∑
i=1

(∂iL) ProjSR (φ(xi)) = −
1
λ

M∑
i=1

(∂iL)φR(xi).

The conclusions of Lemma 4 and Theorem 5 follow from this.

4.1.2 Projected Mapping Bound

Now consider the ranking loss problem. Define

Rφ(w) =
1

m+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

ℓh
(
wTφ(xi) − wTφ(x j)

)
, (4.16)

where ℓh(z) = max(0,1 − z) is the hinge loss. Setting

L
(
wTφ(x1), ...,wTφ(xm)

)
= Rφ(w) (4.17)

in (4.1) gives:

min
w∈Rd′

Fφ(w) = Rφ(w) +
λ

2
∥w∥2

2 . (4.18)

Problem (4.18) corresponds to the RankSVM problem in feature space F , defined by the
feature map φ (or implicitly, by the kernel function, k). Similarly, setting (4.17) in problem
(4.4) corresponds to a RankSVM problem in which the hypothesis is restricted to a R-

41

4.1 Comparison of RankRC with RankSVM

subset representation:

min
w∈Rd′

Fφ(w) = Rφ(w) +
λ

2
∥w∥2

2 ,

subject to w ∈ SR = span{φ(xi) : i ∈R} , R⊆ {1, ...,m} .
(4.19)

Setting L
(
wTφR(x1), ...,wTφR(xm)

)
= RφR(w) in problem (4.5), corresponds to the RankSVM

problem with feature map φR:

min
w∈Rd′

FφR(w) = RφR(w) +
λ

2
∥w∥2

2 . (4.20)

Let f ∗φ , f̄ ∗φ and f ∗φR denote the optimal hypotheses obtained by solving (4.18), (4.19) and
(4.20), respectively. From Theorem 5, f̄ ∗φ(x) = f ∗φR(x), and therefore | f ∗φ(x) − f̄ ∗φ(x)| =
| f ∗φ(x) − f ∗φR(x)|. In other words, we can bound the difference between a RankSVM clas-
sifier and aR-subset classifier, by a stability analysis of the optimal RankSVM hypothesis
under a perturbed (projected) feature map.

Stability analyses for a regular SVM have been conducted previously. In particular,
Bousquet and Elisseeff [17] obtain a bound for a regular SVM under the effect of changing
one training point. Cortes et al. [32] analyze stability of a regular SVM under the effect
of changing the kernel matrix. Our stability analysis here differs from existing analyses in
two aspects. Firstly, we obtain a bound under the effect of changing the feature mapping φ
to φR. Secondly, we consider here the RankSVM problem instead of a regular SVM.

Theorem 6. Consider a feature map, φ : X →F ⊆ Rd′
, and its projected map, φR : X →

FR ⊆ Rd′
, defined by (4.6) for some index subset R ⊆ {1, ...,m} and SR = span{φ(xi) :

i ∈ R}. Assume that f ∗φ(x) = (w∗)Tφ(x) is the optimal RankSVM hypothesis obtained by

solving (4.18) with feature map φ, and f ∗φR(x) = (w∗
R)TφR(x) is the optimal RankSVM

hypothesis obtained by solving (4.20) with feature map φR. Assume there exists κ > 0
such that k(x,x)≤ κ, where k : X ×X → R is the kernel map associated with φ. Then the

following inequality holds,

| f ∗φR(x) − f ∗φ(x)| ≤ 2κ
λ

 ∑
{i:yi=+1}

I[i ̸∈ R]
m+

+

∑
{ j:y j=−1}

I[j ̸∈ R]
m−


1
2

, ∀x ∈ X , (4.21)

where I[p] denotes the indicator function and is equal to 1 if p is true, 0 if p is false.

42

4.1 Comparison of RankRC with RankSVM

Proof. Assume that w∗ and w∗
R are minimizers of (4.18) and (4.20), respectively. Let

∆w = w∗
R − w∗.

Recall that a convex function g satisfies

g(u + t(v − u)) − g(u)≤ t(g(v) − g(u))

for all u,v, t ∈ [0,1]. Since ℓh is convex, Rφ and RφR are convex. Then

Rφ(w∗
+ t∆w) − Rφ(w∗)≤ t(Rφ(w∗

R) − Rφ(w∗)) (4.22)

and RφR(w∗
R − t∆w) − RφR(w∗

R)≤ t(RφR(w∗) − RφR(w∗
R)) , (4.23)

for all t ∈ [0,1].
Since w∗ and w∗

R are minimizers of Fφ and FφR , for any t ∈ [0,1], we have

Fφ(w∗)≤ Fφ(w∗
+ t∆w) (4.24)

and FφR(w∗
R)≤ FφR(w∗

R − t∆w) . (4.25)

Summing (4.24) and (4.25), using Fφ(w) = Rφ(w) +
λ
2∥w∥

2
2 and the identity(

∥w∗∥2
−∥w∗

+ t∆w∥2
)

+

(
∥w∗

R∥2
−∥w∗

R − t∆w∥2
)

= 2t(1 − t)∥∆w∥2,

we obtain

λt(1 − t)∥∆w∥2 ≤
(
Rφ(w∗

+ t∆w) − Rφ(w∗)
)

+
(
RφR(w∗

R − t∆w) − RφR(w∗
R)
)

(4.26)

Substituting (4.22) and (4.23) into (4.26), dividing by λt, and taking the limit t → 0
gives

∥∆w∥2 ≤ 1
λ

(
Rφ(w∗

R) − RφR(w∗
R) + RφR(w∗) − Rφ(w∗)

)
=

1
λm+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

[
ℓh
(
(w∗

R)Tφ(xi) − (w∗
R)Tφ(x j)

)
− ℓh

(
(w∗

R)TφR(xi) − (w∗
R)TφR(x j)

)
+ ℓh

(
(w∗)TφR(xi) − (w∗)TφR(x j)

)
− ℓh

(
(w∗)Tφ(xi) − (w∗)Tφ(x j)

)]
,

where the last inequality uses the definitions of Rφ and RφR respectively. Since ℓh(·) is

43

4.1 Comparison of RankRC with RankSVM

1-Lipschitz, we obtain

∥∆w∥2 ≤ 1
λm+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

(∥w∗∥+∥w∗
R∥)
(
∥φ(xi) −φR(xi)∥+∥φ(x j) −φR(x j)∥

)

=
∥w∗∥+∥w∗

R∥
λ

 ∑
{i:yi=+1}

∥φ(xi) −φR(xi)∥
m+

+

∑
{ j:y j=−1}

∥φ(x j) −φR(x j)∥
m−

 .

(4.27)

From φ(x) = φR(x) +φ⊥R(x), with φR(x) ∈ SR and φ⊥R(x) is in the space orthogonal to SR,
we have, for i = 1, ...,m,

∥φ(xi) −φR(xi)∥ = ∥φ⊥R(xi)∥ ≤

∥φ(xi)∥ =
√

k(xi,xi)≤
√
κ, if i ̸∈ R

0, if i ∈R .
(4.28)

In addition, recall that RankSVM is equivalent to a 1-class SVM on an enlarged dataset with
the set of points P = {φ(xi) −φ(x j) : yi > y j, i, j = 1...,m}. Therefore w can be expressed in
terms of the dual variables 0≤ α∗

i j ≤C of an SVM problem trained on P with C = 1
λm+m−

,
as follows,

w∗ =
∑

{i, j:yi>y j}
α∗

i j(φ(xi) −φ(x j)) =
∑

{i:yi=+1}

∑
{ j:y j=−1}

α∗
i j(φ(xi) −φ(x j))

=
∑

{i:yi=+1}
φ(xi)

 ∑
{ j:y j=−1}

α∗
i j

−

∑
{ j:y j=−1}

φ(x j)

 ∑
{i:yi=+1}

α∗
i j

 .

Since ∥φ(x)∥ ≤
√
κ and C = 1

λm+m−
, we get ∥w∗∥ ≤

√
κCm−m+ +

√
κCm+m− = 2

√
κ

λ . Simi-

larly, ∥φR(x)∥ ≤ ∥φ(x)∥ ≤
√
κ and ∥w∗

R∥ ≤
2
√
κ

λ . Together with (4.28), we can then bound
(4.27) by

∥∆w∥2 ≤ 4κ
λ2

 ∑
{i:yi=+1}

I[i ̸∈ R]
m+

+

∑
{ j:y j=−1}

I[j ̸∈ R]
m−

 .

44

4.1 Comparison of RankRC with RankSVM

Therefore, we obtain

| fφR(x) − fφ(x)| = |wT
RφR(x) − wTφ(x)|

= |wT
R

(
φ(x) −φ⊥R(x)

)
− wTφ(x)|

= |∆wTφ(x) − wT
Rφ

⊥
R(x)|

= |∆wTφ(x)|

≤ ∥∆w∥∥φ(x)∥

≤ 2κ
λ

 ∑
{i:yi=+1}

I[i ̸∈ R]
m+

+

∑
{ j:y j=−1}

I[j ̸∈ R]
m−


1
2

,

where we have used wT
Rφ

⊥
R(x) = 0 in the third equality since wR ∈ SR. This completes the

proof.

The following result is a direct consequence of Theorem 5 and Theorem 6.

Corollary 7. For a feature map, φ : X →F ⊆ Rd′
associated with kernel k : X ×X → R,

let f ∗φ(x) be the optimal RankSVM hypothesis obtained by solving (4.18), and f̄ ∗φ(x) be the

optimal hypothesis obtained by solving (4.19), in which the hypothesis is restricted to an

arbitrary subset of kernel functions indexed by R⊆ {1, ...,m}. Assume there exists κ > 0
such that k(x,x)≤ κ. Then the following inequality holds,

| f̄ ∗φ(x) − f ∗φ(x)| ≤ 2κ
λ

 ∑
{i:yi=+1}

I[i ̸∈ R]
m+

+

∑
{ j:y j=−1}

I[j ̸∈ R]
m−


1
2

, ∀x ∈ X . (4.29)

Therefore, for the ranking loss, the bound (4.29) decreases asymmetrically depending
on whether we include a point from the positive or negative class. In particular, if the dataset
is unbalanced with m− ≫ m+, or 1

m+
≫ 1

m−
, then the reduction obtained from including a

positive class kernel function is much greater than including one from the negative class.
Hence, for a fixed number of kernel functions, the bound is minimized by first including
kernel functions corresponding to the positive or rare class.

45

4.2 Relation to Nyström Approximation

4.2 Relation to Nyström Approximation

The Nyström method approximates a symmetric positive semi-definite matrix Q ∈ Rm×m

by a sample submatrix D of n≪ m columns from Q [e.g. see 9, 105]. Without loss of
generality, assume that the first n columns are the randomly chosen samples. Then D and
Q can be written as

D =

[
A

B

]
and Q =

[
A BT

B C

]
,

with A ∈ Rn×n, B ∈ R(m−n)×n, and C ∈ R(m−n)×(m−n). The Nyström method computes a
rank-n approximation of Q as

Q̂ = DA†DT =

[
A BT

B BA†BT

]
,

where A† is the Moore-Penrose pseudoinverse of A. Thus, the Nyström method approx-
imates Q with Q̂ (or more specifically, C with BA†BT) and can be seen as a method to
complete matrix Q using information from only n columns.

Approximating a kernel matrix with a low-rank structured matrix to improve computa-
tional efficiency has been explored in the context of other kernel algorithms before. For
instance, low-rank approximations have been used to speed up kernel PCA [6], multi-
dimensional scaling [76], spectral clustering [43], manifold learning [87], Gaussian pro-
cesses [105], and support vector machines [42, 85, 110].

4.2.1 Nyström Method Equivalence

In this section, we show that solving a regularized loss minimization with theR-subset rep-
resentation, is equivalent to solving the full unrestricted problem using a low-rank Nyström
approximation of the kernel matrix. We show this is true for an arbitrary loss function.

Consider the regularized loss minimization problem (4.1) with a general loss function,
L : Rm→R. By substituting the solution (4.2) in (4.1), we can express the general regular-
ized loss minimization problem (4.1) in terms of the kernel matrix, K ∈ Rm×m, and model

46

4.2 Relation to Nyström Approximation

variables, β ∈ Rm,

min
β∈Rm

L (Kβ) +
λ

2
βT Kβ . (4.30)

Here, Kβ = [fφ(x1), ..., fφ(xm)]T ∈ Rm, where fφ(x) =
∑m

i=1βik(xi,x).
Similarly, substituting the R-subset hypothesis (4.3) in (4.1), results in the following

problem with model variables, β ∈ R|R|,

min
β∈R|R|

L (K·Rβ) +
λ

2
βT KRRβ . (4.31)

Here K·R = [ki j]i=1...m, j∈R ∈ Rm×|R|, ki j = k(xi,x j), is a subset of columns from K, and
KRR = [ki j]i, j∈R ∈ R|R|×|R| is the square submatrix of K indexed by R along columns
and rows. We have K·Rβ = [f̄φ(x1), ..., f̄φ(xm)]T ∈ Rm, where the hypothesis, f̄φ(x) =∑

i∈Rβik(xi,x), is restricted to use a subset of kernel functions indexed byR⊆ {1, ...,m}.
In the following proposition, we show that problem (4.31) is equivalent to problem

(4.30), where the kernel matrix K is replaced by a Nyström approximation, K′ ∈ Rm×m.

Proposition 8. For any loss function L : Rm → R and kernel matrix K ∈ Rm×m, the reg-

ularized loss minimization problem (4.31), in which the hypothesis is restricted to a sub-

set of kernel functions indexed by R ⊆ {1, ...,m}, is equivalent to the unrestricted prob-

lem (4.30) under a perturbed kernel matrix corresponding to the Nyström approximation,

K′ = K·RK†
RR KT·R ∈ Rm×m, where K·R ∈ Rm×|R| are columns of K indexed by R, and

KRR ∈ R|R|×|R| are rows of K·R indexed byR.

Proof. Since KRR is positive semi-definite, using eigen-decomposition,

KRR = UΛUT ,

where U is an orthonormal matrix and Λ is a diagonal matrix of non-negative eigenvalues
of KRR.

Define w = Λ
1
2UTβ. Then β = UΛ† 1

2 w, and we can express (4.31) in terms of w as,

min
w∈R|R|

L
(

K·RUΛ† 1
2 w
)

+
λ

2
∥w∥2

2 . (4.32)

We recognize (4.32) as a problem in linear space with data points given by the rows of
K·RUΛ∗ 1

2 ∈ Rm×|R|.

47

4.2 Relation to Nyström Approximation

Denote [φN (x1), ...,φN (xm)]T = K·RUΛ† 1
2 . Applying the Representer Theorem, the

solution fφN (x) = wTφN (x) can be expressed in the form,

fφN (x) =

(
m∑

i=1

βiφN (xi)

)T

φN (x), or w =
m∑

i=1

βiφN (xi) , (4.33)

Substituting (4.33) in problem (4.32) yields an equivalent problem,

min
β∈Rm

L
(
K′β

)
+
λ

2
βT K′β ,

where K′ =
(

K·RUΛ† 1
2

)(
K·RUΛ† 1

2

)T
= K·RK†

RRKT·R ∈ Rm×m, which we recognize as the
Nyström approximation of K using the columns indexed by R as samples. The proof is
completed.

Proposition 8 formalizes the connection between selecting a set of points for the hypoth-
esis representation, and using a low-rank Nyström approximation kernel for any regularized
loss minimization problem which can be written in form (4.30). Conversely, it also shows
that using a low-rank Nyström approximation kernel matrix can be viewed as selecting a
R-subset representable optimal hypothesis for problem (4.30). Thus, for problems which
use a Nyström approximation kernel, Proposition 8 provides an efficient optimization for-
mulation in the form (4.31), or in the linear space form (4.32), reducing problem dimension
from m variables to |R| and space from O(m2) to O(m|R|).

4.2.2 Nyström Approximation Bound for SVM

Theoretically, Theorem 5 and Proposition 8 together imply that using a Nyström kernel
approximation is equivalent to projecting the feature map φ onto the subspace spanned by
the subset of samples in feature space. This relationship can potentially be used to analyze
Nyström approximation algorithms based on a feature map projection, as in Theorem 5 &
6. For instance, Theorem 9 illustrates a stability bound that can be obtained for a regular
SVM trained with a Nyström kernel approximation.

Theorem 9. Let f ∗K denote the optimal hypothesis obtained by solving the SVM problem

48

4.2 Relation to Nyström Approximation

with a kernel matrix, K = [k(xi,x j)]m
i, j=1 ∈ Rm×m,

min
β∈Rm

1
m

m∑
i=1

ℓh(yiKi·β) +
λ

2
βT Kβ , (4.34)

where Ki·∈ R1×m is the ith row of K. Define a perturbed kernel matrix, K′ ∈ Rm×m, as

the Nyström approximation of K using the columns of K indexed by R ⊆ {1, ...,m}. Let

f ∗K′ denote the optimal hypothesis obtained by solving the SVM problem (4.34) with the

Nyström approximation K′. Then the following inequality holds,

| f ∗K′(x) − f ∗K(x)| ≤
√

2κ
λ

√
1 −
|R|
m

, ∀x ∈ X .

Proof. Following Proposition 8, using the Nyström approximation, K′, in the SVM prob-
lem (4.34), is equivalent to

min
β∈RR

1
m

m∑
i=1

ℓh (yiKiRβ) +
λ

2
βT KRRβ , (4.35)

where KiR is the ith row of K·R. Problem (4.35) solves SVM with a hypothesis restricted
to a subset of kernel functions. Let φ denote the feature map corresponding to k. Then
from Theorem 5, the optimal hypothesis f ∗K′(x) equals the optimal SVM hypothesis un-
der the projected mapping φR = ProjSR (φ). Consequently, the difference between the
optimal hypotheses, f ∗K and f ∗K′ , can be bounded following the proof of Theorem 6; the
only difference is that, instead of the ranking loss function, Rφ, we have the SVM loss,
1
m
∑m

i=1 ℓh
(
yiwTφ(xi)

)
. This means that, instead of (4.27), we have

∥∆w∥2 ≤
∥w∗∥+∥w∗

R∥
λ

m∑
i=1

∥φ(xi) −φR(xi)∥
m

.

Similarly, it can be shown that ∥w∗∥ ≤
√
κ
λ , ∥w∗

R∥ ≤
√
κ
λ and consequently

| f ∗K′(x) − f ∗K(x)| ≤
√

2κ
λ

(∑m
i=1 I[i ̸∈ R]

m

) 1
2

, ∀x ∈ X .

49

4.2 Relation to Nyström Approximation

4.2.3 Comparison to Kernel Perturbation Bounds

Cortes et al. [32] obtain a stability bound for SVM assuming an arbitrary kernel matrix
perturbation. They use the bound to analyze Nyström kernel approximations. The bound
obtained in Cortes et al. [32] is a function of the spectral norm of the difference between
the two kernel matrices, ie. ||K′ − K||2. In comparison, the bound obtained in Theorem 9,
based on the feature map projection for a Nyström approximation, is much simpler: it is
proportional to the square root of the percentage of the points not in the hypothesis repre-
sentation. In addition, since the Nyström approximation, K′, is computed using the pseudo
inverse of kernel submatrix, KRR, it can become arbitrarily far away from K, depending
on the condition number of KRR. In contrast, the projected map approach offers a more
stable, and often tighter, bound.

To demonstrate this, we compare bounds for the ranking loss problem obtained using
the feature map projection and kernel matrix perturbation approaches. Below we state the
stability bound for RankSVM under an arbitrary kernel perturbation following the approach
in Cortes et al. [32].

Theorem 10. Let f ∗K and f ∗K′ denote the optimal hypothesis obtained by RankSVM when

using the kernel matrix K ∈ Rm×m and K′ ∈ Rm×m, respectively. Then the following in-

equality holds for all x ∈ X :

| f ∗K′(x) − f ∗K(x)| ≤ 2
√

2κ
3
4

λ
∥K′

− K∥
1
2
2

[
1 +

(
∥K′ − K∥2

4κ

) 1
4
]
. (4.36)

The proof is very similar to that in Cortes et al. [32]. The idea is to use an explicit
(m + 1)-dimension feature map φ and φ′ associated with K and K′ defined according to

φ(xi) = K
1
2
m+1ei and φ′(xi) = K

′ 1
2

m+1ei ,

where Km+1 and K′
m+1 are augmented versions of K and K′ with the (m + 1)th point rep-

resenting an arbitrary test point, and ei ∈ Rm+1 is a unit vector, with the ith component
equal to 1, and 0 everywhere else. Then using the fact the solution is at a minimizer
and the objective is convex (as done in Theorem 6), ∥∆w∥2 can be bounded in terms of

∥φ(xi)−φ′(xi)∥2 ≤ ∥K
1
2
m+1 −K

′ 1
2

m+1∥2 ≤ ∥Km+1 −K′
m+1∥

1
2
2 = ∥K −K′∥

1
2
2 , which can then be used

to obtain the final result. The bound obtained for RankSVM under a perturbed kernel ma-
trix is simply twice that obtained in Cortes et al. [32] for a regular SVM. The factor of two

50

4.2 Relation to Nyström Approximation

Name Source Subject d m m+ ρ

Page0 Keel Computer 10 5472 559 10.2%

Satellite UCI Nature 36 6435 626 9.7%

Coil KDD Business 85 9822 586 6.0%

Mammograph [106] Life 6 11183 260 2.3%

Table 4.1: List of datasets and their characteristics used in Figure 4.1. d is the number of
features, m is the total number of observations, m+ is the number of rare class observations,
and ρ = m+

m is the percentage of rare class examples.

emerges due to the double summation in the ranking loss function.
From Proposition 8, we can bound the difference between the RankSVM classifier and

a R-subset RankSVM classifier by comparing the effect of perturbing the kernel matrix to
its Nyström approximation. Thus, bound (4.36) also applies to the difference between the
RankSVM classifier and aR-subset RankSVM classifier by setting K′ = K·RK†

RR KT·R.
Figure 4.1 compares bound (4.36) with the projected map bound (4.21) obtained in

Theorem 6 as |R| is increased on four unbalanced datasets described in Table 4.1. For the
setup, we assume a Gaussian kernel, with width σ2 = 1

m2

∑m
i, j=1 ||xi − x j||22. Since we are

using a Gaussian kernel, κ = 1. We choose λ = 1, it does not affect the comparison. For
bound (4.21), we assume kernel functions corresponding to rare class points are included in
the representation first. This leads to a deterministic trajectory as |R| is increased for each
dataset. For bound (4.36), we randomly sample |R| columns 40 times. For each sample we
compute K′ to be used in (4.36). We show the mean and standard deviation of the bound
for each value of |R|. From Figure 4.1 it is clear that the projected map based bound can
be significantly lower than the kernel perturbation bound, particularly when |R| ≪ m.

Note, the kernel perturbation bound (4.36) does not depend on class label information.
To minimize (4.36), we need to minimize ||K′−K||2, where K′ is a Nyström approximation.
We can approach this using any one of the various strategies available in the literature for
landmark selection in the Nyström method [e.g see 41, 85, 111]. However, better landmark
selection is generally achieved at the expense of higher space and time costs. As a result
uniform random sampling without replacement remains the method most commonly used
in practice [63].

In contrast, the projected map bound (4.21) uses class label information and captures

51

4.2 Relation to Nyström Approximation

Projected Map Bound Kernel Perturbation Bound

0 1000 2000 3000 4000 5000

0

5

10

15

20

25

30

35

|R|

M
a
x
im

u
m

|∆
f
(x
)|

(a) Page0

0 2000 4000 6000

0

5

10

15

20

|R|
M

a
x
im

u
m

|∆
f
(x
)|

(b) Satellite

0 2000 4000 6000 8000

0

10

20

30

40

50

|R|

M
a
x
im

u
m

|∆
f
(x
)|

(c) Coil

0 2000 4000 6000 8000 10000

0

10

20

30

40

50

60

70

|R|

M
a
x
im

u
m

|∆
f
(x
)|

(d) Mammograph

Figure 4.1: Comparison of the projected map bound (4.21) (Theorem 6) and the kernel
perturbation bound (4.36) (Theorem 10) for RankRC as |R| is increased. The projected
map bound is computed assuming rare class points are used in the hypothesis first. The
kernel perturbation bound is obtained by randomly sampling a set of basis functions 40
times. The mean value of the bound is plotted and standard deviation is shown as error
bars. The blue ’*’ on the x-axis indicates the number of rare (positive) examples in the
dataset.

52

4.3 Summary

the asymmetry associated with an unbalanced RankSVM problem. The result leads to a
simple selection strategy: to include kernel functions corresponding to the rare class points
first. This is compatible with the motivation presented in Section 3.4 for RankRC. Com-
putational results for RankRC, presented in Chapter 5, confirm that the rare class represen-
tation performs better than an equal number of randomly selected points for unbalanced
ranking problems.

Finally, one could consider selection methods that combine both insights. For exam-
ple, for big datasets, we can select |R| < m+ points from the positive class using a more
sophisticated landmark selection strategy than random sampling. In this case, the extra
selection expense may be more acceptable, since we are restricting ourselves to a smaller
set of columns, m+ ≪ m. On the other hand, if we are interested in selecting |R| > m+

kernel functions for the hypothesis representation, we can first select the rare class points,
and then randomly sample the remaining |R|− m+ points from the majority class.

4.3 Summary

In this chapter, we analyze the solution of RankRC and compare it to the solution of
RankSVM. More generally, we consider an arbitrary loss minimization problem, and ex-
amine the effect of restricting the hypothesis to any subset of kernel functions (R-subset
representation). We show that restricting the hypothesis to a R-subset representation is
equivalent to using a projected feature map while solving the unrestricted problem. We use
this result to conduct a stability analysis of the R-subset hypothesis for RankSVM. The
resulting bound is proportional to

√
p+ + p− where, p+ is the percentage of points in the

positive (rare) class and not inR and p− is the percentage of the points in the negative (ma-
jority) class but not inR. Therefore, for a fixed cardinality |R|, this bound is minimized by
including as many rare class points in the R-subset representation as possible. This result
provides further theoretical justification for the RankRC algorithm proposed in Chapter 3.

In addition, we show that using a R-subset representation is equivalent to solving the
original regularized loss minimization problem with a Nyström approximation of the ker-
nel matrix. The Nyström approximation is formed using columns indexed by the set R.
This implies that RankRC can be considered as a special Nyström approximation method
for RankSVM, with columns selected from the rare class only. Another implication is that
we can obtain stability bounds for the R-subset representation using a kernel perturbation
approach. However, bounds obtained using the kernel perturbation approach for a Nyström

53

4.3 Summary

approximation can be arbitrary large. In contrast, the analysis using the projected feature
map approach leads to more stable and tighter bounds. We illustrate this behavior compu-
tationally, by comparing bounds obtained for the RankSVM R-subset classifier using the
two different approaches.

Although our motivation has been to analyze RankRC, we note that the results we
obtain on the equivalency of using a R-subset classifier, a projected feature map, and a
Nyström kernel approximation are quite general. These relationships can be used to analyze
and devise algorithms for other approximate kernel problems as well.

54

Chapter 5

RankRC: Computational Results

In this chapter we empirically compare RankRC to other methods on several simulated and
real unbalanced problems.

5.1 Methods and Experiment Setup

The following methods are compared:

1. KNN: k-Nearest-Neighbors algorithm. The posterior probability is used as the rank-
ing function:

P(y|x) =
1
k

∑
i∈K

I[yi = 1] ,

where K is the set of k nearest neighbors in the training dataset.

2. SVM: This is the standard nonlinear SVM [97], in which the primal problem,

min
w∈Rd

1
m

m∑
i=1

max
(
0,1 − yi(wTφ(xi) + b)

)
+
λ

2
∥w∥2

2 ,

is solved (in the dual) to obtain the decision function, f (x) = wTφ(x)+b =
∑m

i=1βik(xi,x)+

b, with k(xi,x) = φ(xi)Tφ(x).

55

5.1 Methods and Experiment Setup

3. SVM-W: Weighted SVM [74, 97] in which

min
w∈Rd

1
m

m∑
i=1

ωi max
(
0,1 − yi(wTφ(xi) + b)

)
+
λ

2
∥w∥2

2 ,

is solved, with different weights associated with each class:

ωi =

 m
2m+

if yi = +1
m

2m−
if yi = −1 .

The idea is to penalize misclassification error of minority examples more heavily in
order to reduce the bias towards majority examples.

4. SVM-RUS: Randomly Under Sample the majority class examples (y = −1) to match
the number of minority examples [62]. The resulting dataset, with 2m+ points, is
used to train a standard SVM.

5. SVM-SMT: Uses a Synthetic Minority Oversampling TEchnique (SMOTE) [28] in
which the rare class is over-sampled by creating new synthetic rare class samples
according to each rare class sample and its k nearest neighbors. Each new sample is
generated in the direction of some or all of the nearest neighbors. We oversample to
match the number of majority examples. The resulting dataset, with 2m− points, is
used to train a standard SVM.

6. RANK-SVM: Nonlinear RankSVM problem (3.7).

7. RANK-RND: We solve the regularized ranking problem constrained to m+ randomly
selected set of basis function, i.e. Problem (??) with |R| = m+ and a randomly chosen
index setR.

8. RANK-RC: We solve the regularized ranking problem with a Rare Class representa-
tion, i.e. Problem (3.15).

We use LIBSVM [24] to solve the SVM problems (2-5). LIBSVM is a popular and
efficient implementation of the sequential minimal optimization algorithm [75]. We set
cache size to 10GB to minimize cache misses; termination criteria and shrinking heuristics
are used in their default settings. The ranking methods (6-8) are solved using the subspace-
trust-region method as outlined in Section 3.5. Termination tolerance is set at 1e-6. For

56

5.2 Simulated Data

ranking methods, the memory available to store the kernel matrix is limited to 10GB. Ex-
periments are performed on a Xeon E5620@2.4Ghz running Linux.

All datasets are standardized to zero mean and unit variance before training. Since our
focus is on nonlinear kernels, for all SVM and ranking methods (2-8), we use a Gaussian
kernel, k(u,v) = exp(−∥u − v∥2

2/σ
2) with σ2 = 1

m2

∑m
i, j=1 ∥xi − x j∥2

2. The penalty parameter
λ is determined by cross-validation over values log2λ = [−20,−18, ...,8,10]. For KNN we
cross-validate over k = [1,2, ...,⌈min(100,

√
m)⌉].

5.2 Simulated Data

Simulated unbalanced datasets are generated in the following manner. Rare class instances
are sampled from six multivariate normal distributions with equal probability. Their cen-
ters, µi, i = 1, ...,6, are randomly chosen within a unit cube. The majority class is sampled
from

(6
2

)
= 15 multivariate normal distributions with equal probability. Their centers are

chosen along lines connecting all combinations of two rare class centers, i.e. tµi + (1− t)µ j,
i > j. The parameter t ∈ [0,1] is used to roughly control the degree of class overlap. All

Figure 5.1: Example configuration of simulated dataset in 2-dimensions with σ = 0.1 and
t = 0.75. The red, filled in circles show the locations of the six normal components for
the rare class distribution. The black, empty circles show the location of the 15 normal
components for the majority class distribution, whose centers lie along the dotted lines
connecting all two rare class normal components.

57

5.3 Real Datasets

covariances are chosen to be spherical, σ2I. Finally, the imbalance ratio, ρ = m+

m , is used to
determine the number of samples drawn from each of the class conditional distributions.
An example configuration in 2-dimensional space is shown in Figure 5.1. The resulting
dataset contains multiple rare-class subconcepts that vary in discriminative structure.

For our experiment we generate data in 5-dimensional space with σ = 0.5. We set t =
0.9, 0.75, and 0.6 to produce datasets with high, medium and low overlap, respectively.
The imbalance ratio, ρ, is varied from 10% to 40% in 10% increments for each t value.
Thus we have a total of 12 datasets. For each dataset we generate 1000 training points,
1000 validation points and 10000 testing points. Results are averaged over 10 trials.

Table 5.1 shows test AUC results using different methods. KNN does not perform as
well as SVM and ranking methods. In general, ranking methods perform better than SVM
based methods when there is greater overlap and higher imbalance (lower ρ). RANK-RND

under performs in medium and low overlap datasets. In comparison, RANK-RC yields
statistically similar performance as RANK-SVM across all datasets. Overall, both RANK-
RC and RANK-SVM provide the best models.

Figure 5.2 compares the empirical ranking loss function,

R̂h =
1

m+m−

∑
{i:yi=+1}

∑
{ j:y j=−1}

ℓh
(

f (xi) − f (x j)
)
,

obtained by the ranking methods on four of the training and testing sets as λ is varied. We
observe that the difference between RANK-SVM and the restricted basis models (RANK-
RND and RANK-RC) decreases as λ is increased. Since restricting basis functions also
limits the complexity of the model, the test loss of RANK-RND and RANK-RC is lower than
that of RANK-SVM for small values of λ. However, RANK-RND is unable to achieve the
optimal test loss levels at moderate values of λ (more noticeably in Figures 5.2c and 5.2d).
In contrast, RANK-RC does not forfeit any test performance compared to RANK-SVM, while
providing additional robustness as λ is reduced.

5.3 Real Datasets

In this section the methods are compared on several unbalanced real datasets obtained
from various sources. Table 5.2 lists the datasets along with their characteristics. For each
dataset, three-quarters of the observations are used for training and the remaining one-

58

5.3 Real Datasets

O
ve

rl
ap

ρ
K

N
N

C
la

ss
ifi

ca
tio

n
L

os
s

R
an

ki
ng

L
os

s
Tr

ue
B

ay
es

S
V

M
S

V
M

-W
S

V
M

-R
U

S
S

V
M

-S
M

T
R

A
N

K
-S

V
M

R
A

N
K

-R
N

D
R

A
N

K
-R

C

H
ig

h

10
%

56
.3
±

0.
4

57
.3
±

0.
3

59
.8
±

0.
3

59
.1
±

0.
4

58
.9
±

0.
4

61
.5
±

0.
3

61
.4
±

0.
3

61
.4
±

0.
2

66
.8

20
%

55
.5
±

0.
4

59
.2
±

0.
2

61
.2
±

0.
1

61
.0
±

0.
4

60
.9
±

0.
4

61
.6
±

0.
3

61
.3
±

0.
4

62
.3
±

0.
3

30
%

57
.3
±

1.
0

61
.1
±

0.
2

62
.2
±

0.
4

62
.2
±

0.
1

61
.8
±

0.
3

62
.3
±

0.
4

62
.2
±

0.
3

62
.6
±

0.
4

40
%

59
.0
±

0.
7

62
.8
±

0.
2

63
.2
±

0.
3

63
.3
±

0.
2

62
.8
±

0.
2

62
.7
±

0.
3

62
.5
±

0.
2

62
.7
±

0.
3

M
ed

iu
m

10
%

54
.9
±

0.
6

56
.8
±

0.
5

59
.5
±

0.
5

58
.8
±

0.
3

58
.6
±

0.
9

61
.4
±

0.
5

60
.1
±

0.
5

61
.4
±

0.
4

69
.5

20
%

54
.5
±

0.
3

60
.1
±

0.
4

62
.1
±

0.
2

62
.1
±

0.
3

62
.0
±

0.
5

62
.8
±

0.
4

61
.5
±

0.
4

63
.4
±

0.
2

30
%

57
.6
±

0.
8

63
.4
±

0.
1

64
.0
±

0.
3

63
.3
±

0.
1

63
.4
±

0.
4

64
.1
±

0.
4

62
.4
±

0.
5

64
.6
±

0.
5

40
%

58
.0
±

0.
7

65
.3
±

0.
2

65
.5
±

0.
1

65
.4
±

0.
1

65
.3
±

0.
2

64
.6
±

0.
3

63
.0
±

0.
2

64
.9
±

0.
3

L
ow

10
%

55
.9
±

1.
0

61
.1
±

0.
6

64
.0
±

0.
4

63
.5
±

0.
2

63
.0
±

0.
8

65
.3
±

0.
5

62
.7
±

0.
6

65
.5
±

0.
4

74
.4

20
%

57
.2
±

0.
4

64
.2
±

0.
3

66
.6
±

0.
2

66
.2
±

0.
2

66
.4
±

0.
2

67
.1
±

0.
3

63
.5
±

0.
4

67
.3
±

0.
2

30
%

59
.9
±

0.
9

69
.1
±

0.
4

69
.4
±

0.
2

68
.9
±

0.
1

69
.2
±

0.
2

69
.2
±

0.
4

65
.8
±

0.
4

69
.8
±

0.
4

40
%

61
.6
±

1.
5

71
.1
±

0.
1

70
.7
±

0.
3

70
.5
±

0.
1

71
.1
±

0.
1

69
.8
±

0.
3

65
.8
±

0.
3

69
.9
±

0.
3

Ta
bl

e
5.

1:
C

om
pa

ri
so

n
of

te
st

A
U

C
re

su
lts

fo
rs

im
ul

at
ed

da
ta

se
ts

w
ith

hi
gh

(t
=

0.
9)

,m
ed

iu
m

(t
=

0.
75

)a
nd

lo
w

(t
=

0.
6)

ov
er

la
p,

ea
ch

w
ith

ρ
=1

0%
,2

0%
,3

0%
an

d
40

%
m

in
or

ity
sa

m
pl

es
.M

ea
n

A
U

C
sc

or
e

w
ith

st
an

da
rd

er
ro

ro
ve

r1
0

tr
ia

ls
ar

e
sh

ow
n.

B
ol

de
d

sc
or

es
in

di
ca

te
th

e
re

su
lt

is
st

at
is

tic
al

ly
no

td
iff

er
en

tt
ha

n
th

e
be

st
pe

rf
or

m
in

g
m

od
el

us
in

g
a

tw
o-

ta
ile

d
t-

te
st

w
ith

99
%

co
nfi

de
nc

e.

59

5.3 Real Datasets

RANK−SVM train

RANK−SVM test

RANK−RND train

RANK−RND test

RANK−RC train

RANK−RC test

−20 −10 0 10
0.2

0.4

0.6

0.8

1

1.2

log2(λ)

R
a
n
k
in
g
L
o
ss
,
R̂

h

(a) High Overlap, ρ = 10%

−20 −10 0 10
0.2

0.4

0.6

0.8

1

1.2

log2(λ)

R
a
n
k
in
g
L
o
ss
,
R̂

h

(b) High Overlap, ρ = 40%

−20 −10 0 10
0.2

0.4

0.6

0.8

1

1.2

log2(λ)

R
a
n
k
in
g
L
o
ss
,
R̂

h

(c) Low Overlap, ρ = 10%

−20 −10 0 10
0.2

0.4

0.6

0.8

1

1.2

log2(λ)

R
a
n
k
in
g
L
o
ss
,
R̂

h

(d) Low Overlap, ρ = 40%

Figure 5.2: Comparison of empirical train and test ranking loss obtained by the ranking
methods on four of the simulated datasets as λ is varied.

60

5.4 Intrusion Detection

quarter for out-of-sample testing. Results are averaged over 20 stratified random splits of
the data. The model parameter (λ or k) is tuned by running 10-fold cross-validation on the
training set for each split.

Table 5.3 shows the mean test AUC score with standard error for each model. Over-
all, RANK-SVM and RANK-RC yield the best performing models with statistically similar
results. RANK-RND, on the other hand, under performs on some datasets, indicating that a
random basis set is not as effective as the rare class basis on unbalanced problems. SVM
based methods generally do not perform as well as ranking methods, except when there
appears to be more discriminative patterns in the data.

Table 5.4 compares the number of support vectors used by the SVM and ranking mod-
els. RANK-SVM uses more support vectors than SVM based models. It can use even more
support vectors than SVM-SMT, which is trained on an enlarged dataset almost twice the
size. This suggests that training RANK-SVM using a working-set type algorithm, which
only tracks active support vectors (e.g. as proposed in [25] for standard SVMs), would still
run costly in time and space. In comparison, RANK-RND and RANK-RC use significantly
fewer support vectors. Moreover, with RANK-RC, test performance is also not compro-
mised.

5.4 Intrusion Detection

In this section we use the KDD Cup 1999 dataset [4] to evaluate a large-scale unbalanced
problem. The objective is to detect network intrusion by distinguishing between legiti-
mate (normal) and illegitimate (attack) connections to a computer network. The dataset is
a collection of simulated raw TCP dump data over a period of nine weeks on a local area
network. The first seven weeks of data is used for training and the last two for test, provid-
ing a total of 4 898 431 training observations and 311 029 test cases. We processed the data
to remove duplicate entries (as done in [89]) resulting in 1 074 975 training observations
and 77 286 test cases. Each observation contains 41 features, three of which are categorical
and the rest numerical. The three categorical features are protocol (3 categories), service
(70 categories) and flag (11 categories). We represent protocol using three binary features,
where each feature is an indicator for one of the three categories. Service and flag cate-
gories are replaced by the frequency in the training sample (i.e. probability) corresponding
to the event of observing an attack given the category is present. Thus we obtain a total of
43 features. Finally, as done for all datasets, we standardize each feature to zero mean and

61

5.4 Intrusion Detection

Name Source Subject
Features Samples

Original Derived (d) m m+ ρ

Abalone19 UCI Life 1N,7C 10 4177 32 0.8%

Mammograph [106] Life 6C 6 11183 260 2.3%

Ozone UCI Environment 72C 72 2536 73 2.9%

YeastME2 UCI Life 8C 8 1484 51 3.4%

Wine4 UCI Chemistry 11C 11 4898 183 3.7%

Oil [61] Environment 49C 49 937 41 4.4%

SolarM0 UCI Nature 10N 32 1389 68 4.9%

Coil KDD Business 85C 85 9822 586 6.0%

Thyroid UCI Life 21N,7C 52 3772 231 6.1%

Libras UCI Physics 90C 90 360 24 6.7%

Scene LibSVM Nature 294C 294 2407 177 7.4%

YeastML8 LibSVM Life 103C 103 2417 178 7.4%

Crime UCI Economics 122C 100 1994 150 7.5%

Vowel0 Keel Computer 10C 10 989 90 9.1%

Euthyroid UCI Life 18N,7C 42 3163 293 9.3%

Abalone7 UCI Life 1N,7C 10 4177 391 9.4%

Satellite UCI Nature 36C 36 6435 626 9.7%

Page0 Keel Computer 10C 10 5472 559 10.2%

Ecoli UCI Life 7C 7 336 35 10.4%

Contra2 Keel Life 9C 9 1473 333 22.6%

Table 5.2: List of datasets and their characteristics that we use to evaluate methods. Under
original features, ’N’ is used to denote number of nominal features, ’C’, is used to denote
number of continuous features. We derive d features by converting nominal features to an
indicator representation and use continuous features as is. Under samples, m is the total
number of observations, m+ is the number of rare class observations, and ρ = m+

m is the
percentage of rare class examples.

62

5.4 Intrusion Detection

D
at

as
et

K
N

N
C

la
ss

ifi
ca

tio
n

L
os

s
R

an
ki

ng
L

os
s

S
V

M
S

V
M

-W
S

V
M

-R
U

S
S

V
M

-S
M

T
R

A
N

K
-S

V
M

R
A

N
K

-R
N

D
R

A
N

K
-R

C

A
ba

lo
ne

19
55

.7
±

2.
2

54
.9
±

3.
1

64
.3
±

1.
3

74
.1
±

1.
5

67
.4
±

1.
1

81
.0
±

1.
2

79
.1
±

1.
1

81
.4
±

1.
1

M
am

m
og

ra
ph

80
.7
±

0.
4

88
.4
±

0.
4

90
.1
±

0.
7

92
.8
±

0.
4

91
.3
±

0.
4

93
.7
±

0.
4

93
.9
±

0.
4

94
.4
±

0.
3

O
zo

ne
66

.4
±

2.
2

85
.0
±

1.
1

85
.5
±

0.
7

86
.4
±

0.
9

85
.9
±

0.
8

89
.4
±

0.
9

88
.7
±

0.
8

90
.1
±

0.
9

Y
ea

st
M

E
2

69
.3
±

1.
7

81
.8
±

0.
5

85
.5
±

0.
7

87
.5
±

0.
7

86
.8
±

1.
1

90
.8
±

0.
8

89
.0
±

0.
9

89
.4
±

1.
1

W
in

e4
61

.9
±

0.
5

74
.9
±

0.
7

71
.6
±

0.
9

79
.1
±

0.
8

78
.9
±

0.
8

83
.5
±

0.
6

79
.6
±

0.
6

82
.7
±

0.
7

O
il

71
.6
±

1.
7

91
.1
±

0.
9

88
.0
±

1.
4

90
.6
±

0.
8

90
.6
±

1.
0

92
.5
±

0.
9

89
.2
±

1.
0

91
.7
±

0.
8

So
la

rM
0

58
.9
±

1.
6

55
.4
±

0.
7

63
.1
±

1.
3

71
.5
±

0.
8

73
.1
±

0.
4

78
.5
±

0.
5

77
.2
±

0.
8

77
.5
±

0.
8

C
oi

l
53

.9
±

0.
3

59
.2
±

0.
8

62
.9
±

0.
4

68
.8
±

0.
4

67
.5
±

0.
5

70
.0
±

0.
4

69
.8
±

0.
4

72
.3
±

0.
2

T
hy

ro
id

73
.9
±

0.
6

94
.8
±

0.
4

93
.4
±

0.
5

94
.8
±

0.
3

94
.4
±

0.
4

95
.7
±

0.
4

91
.3
±

0.
5

95
.7
±

0.
3

L
ib

ra
s

87
.4
±

2.
1

96
.8
±

0.
9

96
.7
±

0.
9

96
.4
±

0.
8

96
.8
±

0.
9

97
.6
±

0.
8

95
.4
±

1.
0

94
.8
±

1.
1

Sc
en

e
59

.3
±

0.
8

67
.3
±

0.
8

75
.4
±

0.
9

74
.8
±

0.
6

74
.0
±

0.
9

77
.1
±

0.
7

76
.4
±

0.
8

77
.5
±

0.
6

Y
ea

st
M

L
8

54
.5
±

0.
7

57
.1
±

0.
8

59
.6
±

0.
6

57
.9
±

0.
5

59
.7
±

0.
4

61
.5
±

0.
5

60
.2
±

0.
7

62
.0
±

0.
5

C
ri

m
e

71
.8
±

1.
5

87
.6
±

0.
7

87
.3
±

0.
6

90
.1
±

0.
3

90
.8
±

0.
3

92
.3
±

0.
3

91
.2
±

0.
3

91
.6
±

0.
3

Vo
w

el
0

10
0.

0±
0.

0
10

0.
0±

0.
0

10
0.

0±
0.

0
99

.8
±

0.
0

10
0.

0±
0.

0
10

0.
0±

0.
0

98
.4
±

0.
1

10
0.

0±
0.

0
E

ut
hy

ro
id

75
.8
±

0.
8

95
.0
±

0.
4

95
.0
±

0.
4

94
.6
±

0.
4

95
.0
±

0.
4

95
.2
±

0.
4

90
.7
±

0.
4

94
.1
±

0.
4

A
ba

lo
ne

7
78

.2
±

2.
1

56
.1
±

3.
2

76
.3
±

0.
5

77
.4
±

0.
3

74
.4
±

0.
2

87
.0
±

0.
3

86
.5
±

0.
3

87
.1
±

0.
3

Sa
te

lli
te

83
.8
±

0.
3

94
.8
±

0.
1

94
.6
±

0.
1

94
.3
±

0.
1

95
.1
±

0.
1

95
.3
±

0.
1

94
.3
±

0.
1

95
.1
±

0.
1

Pa
ge

0
90

.4
±

0.
4

98
.4
±

0.
1

98
.1
±

0.
1

98
.1
±

0.
1

98
.2
±

0.
1

98
.6
±

0.
1

95
.6
±

0.
1

98
.4
±

0.
1

E
co

li
75

.6
±

2.
0

94
.6
±

0.
7

93
.7
±

0.
7

94
.1
±

0.
6

93
.2
±

0.
6

94
.1
±

0.
6

93
.4
±

0.
9

94
.5
±

0.
7

C
on

tr
a2

60
.5
±

0.
9

66
.9
±

0.
8

70
.2
±

0.
5

70
.5
±

0.
6

70
.6
±

0.
8

73
.2
±

0.
5

72
.6
±

0.
5

73
.4
±

0.
4

Ta
bl

e
5.

3:
C

om
pa

ri
so

n
of

te
st

A
U

C
re

su
lts

fo
r

re
al

da
ta

se
ts

(l
is

te
d

in
Ta

bl
e

5.
2)

.
M

ea
n

A
U

C
sc

or
e

w
ith

st
an

da
rd

er
ro

r
ov

er
20

tr
ia

ls
ar

e
sh

ow
n.

E
ac

h
tr

ia
lu

se
s

on
e-

qu
ar

te
r

da
ta

fo
r

ou
t-

of
-s

am
pl

e
te

st
in

g.
B

ol
de

d
sc

or
es

in
di

ca
te

th
e

re
su

lt
is

st
at

is
tic

al
ly

no
t

di
ff

er
en

tt
ha

n
th

e
be

st
pe

rf
or

m
in

g
m

od
el

us
in

g
a

tw
o-

ta
ile

d
t-

te
st

w
ith

99
%

co
nfi

de
nc

e.

63

5.4 Intrusion Detection

D
at

as
et

C
la

ss
ifi

ca
tio

n
L

os
s

R
an

ki
ng

L
os

s

S
V

M
S

V
M

-W
S

V
M

-R
U

S
S

V
M

-S
M

T
R

A
N

K
-S

V
M

R
A

N
K

-R
N

D
R

A
N

K
-R

C

A
ba

lo
ne

19
11

7
15

55
32

26
44

29
79

24
24

M
am

m
og

ra
ph

30
6

21
52

11
9

29
87

72
52

19
5

19
3

O
zo

ne
20

6
74

6
61

11
65

99
5

55
55

Y
ea

st
M

E
2

10
5

42
9

41
59

4
10

66
38

38
W

in
e4

45
8

21
09

17
9

31
66

35
50

13
6

13
6

O
il

84
31

1
32

34
0

48
8

31
31

So
la

rM
0

18
3

84
5

90
11

14
10

42
51

51
C

oi
l

17
54

55
60

70
4

81
78

72
84

43
5

43
5

T
hy

ro
id

33
2

72
3

13
7

10
20

27
39

16
8

17
2

L
ib

ra
s

35
93

22
12

4
19

7
18

18
Sc

en
e

60
3

11
71

21
3

15
66

17
48

13
2

13
3

Y
ea

st
M

L
8

83
3

16
69

25
7

15
62

18
04

13
3

13
3

C
ri

m
e

30
8

63
1

11
5

86
7

13
26

11
2

11
2

Vo
w

el
0

35
37

25
45

73
0

68
67

E
ut

hy
ro

id
38

9
67

3
17

7
10

02
23

03
21

6
21

9
A

ba
lo

ne
7

71
3

13
91

27
4

20
76

30
79

29
1

29
2

Sa
te

lli
te

77
3

11
58

30
1

15
26

47
34

46
6

46
9

Pa
ge

0
32

2
57

0
14

5
92

4
40

12
41

5
41

6
E

co
li

47
68

18
11

5
24

8
26

26
C

on
tr

a2
56

0
84

3
39

6
91

2
10

96
24

9
24

9

Ta
bl

e
5.

4:
A

ve
ra

ge
nu

m
be

ro
fs

up
po

rt
ve

ct
or

s
us

ed
by

th
e

SV
M

an
d

ra
nk

in
g

m
od

el
s

ov
er

20
tr

ia
ls

.F
or

ra
nk

in
g

m
od

el
s,

su
pp

or
t

ve
ct

or
s

ar
e

co
un

te
d

as
th

e
nu

m
be

ro
fn

on
-z

er
o

co
ef

fic
ie

nt
s

as
so

ci
at

ed
w

ith
ke

rn
el

fu
nc

tio
ns

.

64

5.4 Intrusion Detection

unit variance.
The attack types are grouped in four categories, DOS (Denial of Service), Probing

(Surveillance, e.g. port scanning), U2R (user to root), R2L (remote to local). Table 5.5
shows the distribution of attack types in the training and test sets. Together, the U2R and
R2L attacks constitute 4.0% of the test dataset, which is a substantial increase compared to
the training set, but still a small fraction. Poor results have been reported in literature for
identifying the U2R and R2L attacks [81]. In this experiment, we focus on identifying these
attack types by forming a binary classification problem with the positive class representing
either a U2R or R2L attack, and the negative class representing all other connection types.
Thus the final training set is highly skewed with only 0.098% positive instances.

Training Test

Normal 812808 75.6% 47913 62.0%
DOS 247266 23.0% 23568 30.5%
Probing 13850 1.3% 2677 3.5%
U2R 52 0.005% 215 0.278%
R2L 999 0.093% 2913 3.769%

Total 1074975 100% 77286 100%

Table 5.5: Distribution of connection types in training and test sets for the intrusion detec-
tion problem.

We train using 5%, 10%, 25%, 50%, and 75% of the training data. The remaining
training data is used for validation. We are unable to train RANK-SVM, even with just
5% of the data (53 749 samples), since the kernel matrix is too large to store in memory
(>10GB). Clearly, this is an example where a large-scale solution is necessary to solve the
ranking problem. We do not train SVM-SMT due to the large number of samples as well.
We are able to train SVM-W using up to 50% of the data. With more samples SVM-W does
not converge, due to the large number of support vectors which do not fit in the cache.

Figure 5.3a shows test AUC results obtained by different methods as training data is
increased. We observe that SVM and SVM-RUS perform poorly. RANK-RC, RANK-RND

and SVM-W produce better results, with RANK-RC performing the best. Figures 5.3b and
5.3c compare training time and number of support vectors, respectively, as training data
is increased. SVM and SVM-RUS train in reasonable time, though they do not produce
good models. On the other hand, SVM-W quickly becomes very expensive. RANK-RC and

65

5.4 Intrusion Detection

5 10 25 50 75
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Percent of data used in training

A
U

C

(a)

SVM

SVM−W

SVM−RUS

RANK−RND

RANK−RC

5 10 25 50 75

 0

 1

 2

 3

 4

 5

 6

 7

Percent of data used in training

T
ra

in
in

g
 T

im
e

 (
s
)

x 10
5

50 75

 0

 1

 2
x 10

4

(b)

5 10 25 50 75

 0

 1

 2

 3

 4

 5

 6

 7

 8

Percent of data used in training

N
o

.
o

f
S

V
s

x 10
3

(c)

Figure 5.3: Comparison of (a) test AUC score, (b) training time in seconds, and (c) number
of support vectors, for the intrusion detection problem as percent of data used for training
is increased from 5% to 75%. In our experiment setup, we were unable to train RANK-
SVM due to the large size of the dataset. Also, for more than 50% of data, SVM-W did not
converge after more than 72 hours of training.

66

5.5 Summary

RANK-RND scale well, while able to produce effective models. RANK-RC and RANK-RND

also use significantly fewer support vectors than SVM-W.

5.5 Summary

In this chapter we empirically evaluated RankRC on several unbalanced datasets and com-
pared it to other methods, including RankSVM. RankRC perform similar to RankSVM,
while outperforming other methods on rare class class problems. Compared to RankSVM,
RankRC is scalable and can be used to efficiently solve much larger problems on regular
machines.

67

Chapter 6

Multi-Level Rare Class Kernel Ranking

In this chapter, we extend the biclass RankRC formulation to multi-level ranking and apply
it to a recent competition problem sponsored by the Heritage Health Provider Competition.
The problem illustrates how RankRC can be used for ordinal regression where one ordinal
level contains the vast majority of examples. We compare performance of RankRC with
other methods and demonstrate computational and predictive advantages.

6.1 Predicting Days in Hospital

In many prediction problems, labels correspond to a set of more than two ordered categories
or levels. This situation is referred to as ordinal regression [e.g. see 54]. If samples from
one of the levels are plenty, while samples from the other levels are rare, then the problem
can be considered a multi-level rare class problem.

The motivating application is based on a recent competition sponsored by the Her-
itage Health Provider Network [3].1 The objective is to predict the number of days, yi ∈
{0,1, ...,14,15+}, member i will be hospitalized (inpatient or emergency room visit) in the
following year using historical claims data. The number of days a member spends in the
hospital is capped at 15 days to help protect the identiy of patients. The data provided con-
sists of three years of historical member claims information. Claims data is anonymized
to protect the identity of members [38]. The raw data contains basic member information,

1The competition ran for over two years ending in April 2013 and was highly publicized due to the
potential impact on US healthcare and a US $3Mil prize. We participated in the competition placing 4th out
of 1600+ teams. Our final submission used additional dataset variants and results from other methods as well,
which were combined using a model stacking approach.

68

6.2 Ordinal Regression with Multi-Level RankRC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15+
0

20

40

60

80

100

Days In Hospital (y
i
)

F
re

q
u
e
n
c
y
 (

%
)

84.7

6.3
3.1 2.0 1.2 0.7 0.4 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.3

Figure 6.1: Distribution of the days in hospital for the Heritage Health Network problem.

claims data, drug counts, lab counts and outcome data in a set of relational tables. The train-
ing data consists of 147 473 patients over a two year period for which outcomes are given,
with on average 12 claims per patient per year (1 764 561 total claims). The third year of
data is used for testing, for which outcome information is not provided. We extracted 441
features from the relational data for each patient.

Figure 6.1 shows the outcome distribution for the two years of training data. We see that
the distribution is highly skewed. In particular, examples corresponding to yi = 0 constitute
the majority of cases (85%), while other outcomes, yi = 1, ...,15, are significantly fewer. As
in most rare class problems, we are more interested in identifying these rare outcomes.

6.2 Ordinal Regression with Multi-Level RankRC

To solve this problem, one may use traditional metric regression or multi-class classifi-
cation approaches. However, neither of these approaches correctly capture the structure
encoded in the labels. Traditional regression models assume the labels form an interval
scale and errors of the same interval are penalized equally. But in the hospitalization pre-
diction problem, errors are not all equal. For example, it is more important to distinguish
between 0 and 1 days of hospitalization than between 14 and 15 days. Moreover, it is un-
clear what transformation would be most appropriate to represent the levels. Consequently,
a regression approach may lead to a biased model with poor generalization ability [refer to
54, for further discussion]. On the other hand, these levels are also different from the labels
of multiple classes in classification problems due to the existence of ordering information.

Therefore, this setting is best handled using an ordinal regression or ranking loss func-

69

6.2 Ordinal Regression with Multi-Level RankRC

tion, which attempts to rank the levels in the correct order, while not depending on the
representation of the ranks [26, 54]. The biclass RankSVM problem (3.7) introduced in
Section 3.3, can be generalized to multiple levels for this purpose, as follows:

min
β∈Rm

1∑
r<s mrms

R∑
r=1

∑
{i:yi=r}

∑
{ j:yi>y j}

ℓh
(

f (xi) − f (x j)
)

+
λ

2

m∑
i, j=1

βiβ jk(xi,x j) , (6.1)

where the hypothesis

f (x) =
m∑

i=1

βik(xi,x) ,

uses kernel instances at all data points following the Representer Theorem. Compared to
(3.7), the loss function in (6.1), includes an additional summation over each rank level,
r > 0, with a maximum rank of R. We assume the rank index starts at 0. For each r value,
the objective in (6.1) reduces to a biclass ranking problem with r as the positive class label
and all examples with label less than r as the negative class. Thus Problem (6.1) can be seen
as combining R separate biclass ranking problems using the same hypothesis. The constant,
mr, denotes the number of observations which have output value r. For the hospitalization
prediction problem, we set R = 15, and r = 0, ...,15 represents the different ordinal levels
(i.e. days in hospital).

We extend the notion of a rare-class representation to multiple levels as follows. In
Figure 6.1 we observe that r = 0 correspond to the majority class, while all other outcomes
represent rare cases. Therefore, we consider a representation which only uses kernel func-
tions from examples corresponding to r = 1, ...,15. If we decomposed the problem into R

separate binary rare-class problems, this set would constitute the union of all the rare class
points used in each of the problems. Thus we obtain the following multi-level RankRC
problem:

min
β∈Rm

1∑
r<s mrms

R∑
r=1

∑
{i:yi=r}

∑
{ j:yi>y j}

ℓh
(

f̄ (xi) − f̄ (x j)
)

+
λ

2

∑
{i:yi ̸=0}
{ j:y j ̸=0}

βiβ jk(xi,x j) , (6.2)

70

6.3 Comparison of Results

where the hypothesis

f̄ (x) =
∑

{i:yi ̸=0}
βik(xi,x) ,

is constrained to the set of rare class kernel functions. Problem (6.2) can be solved using
similar method as described in Section 3.5 for the biclass RankRC, by noting the gradient
and Hessian of the loss function is simply the sum of R biclass ranking loss functions.
Thus, the complexity is O

(∑
r<s mrms

)
in both space and time.

To evaluate models we count the number of pairs that are correctly ranked among all
possible pairs of data objects:

MAUC =
1∑

r<s mrms

R∑
r=1

∑
{i:yi=r}

∑
{ j:yi>y j}

I
(

f (xi) > f (x j)
)
.

We call this measure MAUC to denote Multi-level AUC. An alternative measure is volume
under the ROC surface, which generalizes ROC analysis to ordinal regression. However,
computing volume under surface is prohibitive since it has exponential complexity in the
number of ordinal levels. MAUC is an approximation of the volume under surface, which
can be computed efficiently [101].

6.3 Comparison of Results

For our experiment, we compare the following methods: k-Neareast Neighbor (KNN) re-
gression, Support Vector Regression (SVR) and three multi-level ranking methods, RANK-
SVM (6.1), RANK-RC (6.2), and RANK-RND. RANK-RND is similar to RANK-RC, but with
the hypothesis restricted to a randomly selected set of kernel functions, with the same car-
dinality used in RANK-RC.

We use LIBSVM [24] to solve the SVR problem. LIBSVM is a popular and efficient
implementation of the sequential minimal optimization algorithm [75]. We set cache size
to 10GB to minimize cache misses; termination criteria and shrinking heuristics are used
in their default settings. The ranking methods (RANK-SVM, RANK-RC, RANK-RND) are
solved using the subspace-trust-region method as described in Coleman and Li [30] and
Branch et al. [21]. Termination tolerance is set at 1e-6. For ranking methods, the memory
available to store the kernel matrix is limited to 10GB. Experiments are performed on a

71

6.3 Comparison of Results

5 10 25 50 75
0.55

0.6

0.65

0.7

0.75

0.8

Percent of data used in training

M
A

U
C

(a)

KNN

SVR

RANK−RND

RANK−RC

RANK−SVM

5 10 25 50 75

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

Percent of data used in training

T
ra

in
in

g
 T

im
e
 (

s
)

(b)

5 10 25 50 75

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Percent of data used in training

N
o
.
o
f
S

V
s

(c)

Figure 6.2: Comparison of (a) test MAUC (see text) score, (b) training time in seconds, and
(c) number of support vectors, for the Heritage Health Network problem as percent of data
used for training is increased from 5% to 75%. In our experiment setup, we were unable to
train RANK-SVM with more than 25% of the data, due to the large size of the dataset.

72

6.4 Summary

Xeon E5620@2.4Ghz running Linux.
We train using 5%, 10%, 25%, 50%, and 75% of the training data. Half of the remaining

data is used for validation, the other half for test. Features are standardized to zero mean
and unit variance before training. Since our focus is on nonlinear kernels, for SVR and
the ranking methods, we use the Gaussian kernel, k(u,v) = exp(−∥u − v∥2

2/σ
2) with σ2 =

1
m2

∑m
i, j=1 ∥xi − x j∥2

2. The penalty parameter λ (or 1
C for SVR) is determined by cross-

validation over values log2λ = [−20,−18, ...,8,10]. For KNN we cross-validate over k =
[1,2, ...,100], where k is the number of nearest neighbors.

Figure 6.2a shows test MAUC results as training data is increased. Note, we are unable
to train RANK-SVM with more than 25% of the data as the kernel matrix no longer fits in
memory. The ranking methods outperform KNN and SVR. Among the ranking methods,
RANK-RC performs slightly better than RANK-RND, and produces almost identical results
to RANK-SVM in the cases where RANK-SVM can be computed. Figures 6.2b and 6.2c
compare training time and number of support vectors, respectively, as training data is in-
creased. We observe RANK-RC and RANK-RND scale well and use fewer support vectors
than SVR and RANK-SVM.

6.4 Summary

In this chapter, we extended the biclass RankRC problem to a ranking problem with more
than two levels. Our motivating example is based on a competition problem proposed by the
Heritage Health Provide Network to predict number of days a member will be hospitalized
in the following year. Since the training data contains almost 150 000 samples, the kernel
RankSVM problem is too large to solve on standard machines. However, since the outcome
distribution is highly skewed, we are able to take advantage of the rare class representation
to efficiently solve the problem, with no apparent degradation in performance.

73

Chapter 7

Feature Selection

In this chapter, we develop an embedded feature selection method for kernel support vector
machines (SVMs) based on a primal formulation. Since the resulting problem is non-
convex, second-order methods, such as trust-region method can provide significant advan-
tage in avoiding suboptimal solutions. We devise an alternating optimization approach to
tackle the problem efficiently, breaking it down into a convex subproblem, corresponding
to standard SVM optimization, and a non-convex subproblem for feature selection. Impor-
tantly, we show that a straightforward alternating optimization approach can be susceptible
to saddle point solutions. We propose a novel technique, which shares an explicit margin
variable to overcome saddle point convergence and improve solution quality. Experiment
results show our method outperforms the state-of-the-art embedded SVM feature selection
method, as well as other leading filter and wrapper approaches.

7.1 Introduction

Feature selection has become a significant research focus in statistical machine learning and
data mining communities. As increasingly more data is available, problems with hundreds
and thousands of features have become common. Some examples include text process-
ing of internet documents, gene micro-array analysis, combinatorial chemistry, economic
forecasting and context based collaborative filtering. However, irrelevant and redundant
features reduce the effectiveness of data mining and may detract from the quality and ac-
curacy of the resulting model. The goal of feature selection is to identify the most relevant
subset of input features for the learning task, improving generalization error and model
interpretability.

74

7.1 Introduction

We focus on feature selection for nonlinear Support Vector Machine (SVM) classifica-
tion. SVM is based on the principle of maximum-margin separation, which achieves the
goal of Structural Risk Minimization by minimizing a generalization bound on model com-
plexity and training error concurrently [33, 97]. The model is obtained by solving a convex
quadratic programming problem. Linear SVM models can be extended to nonlinear ones
by transforming the input features using a set of nonlinear basis functions. An important
advantage of the SVM is that the transformation can be done implicitly using the “kernel
trick”, thereby allowing even infinite-dimensional feature expansions [15]. Empirically,
SVMs have performed extremely well in diverse domains [e.g. see 22, 84].

Determining the optimal set of input features is in general NP-hard, requiring an ex-
haustive search of all possible subsets. Practical alternatives can be grouped into filter,
wrapper, and embedded techniques [49]. In addition, there are a class of Bayesian ap-
proaches which tackle the problem by incorporating sparsity inducing priors [13, 14, 64,
71, 73].

Filter methods operate independently of the SVM classifier to score features according
to how useful they are in predicting the output. Relief [60, 100] is a popular multivari-
ate nonlinear filter that has successfully been used as a preprocessing step for SVMs [67].
Wrapper methods, on the other hand, use the SVM classifier to guide the search in the space
of all possible subsets. For instance the most common wrapper, recursive feature elimina-
tion, greedily removes the worst (or adds the best) feature according to the loss (or gain)
of the SVM classifier at each iteration [50]. Finally, embedded approaches incorporate the
feature selection criterion in the SVM objective itself. Embedded methods can offer signif-
icant advantages over filters and wrappers, since they tightly couple feature selection with
SVM learning, simultaneously searching over the feature and model space.

For linear SVMs, several embedded feature selection methods have been proposed.
The general idea is to incorporate sparse regularization of the primal weight vector [20,
23, 46, 88, 104, 113]. However, similar techniques cannot be readily applied to nonlinear
SVM classifiers, since the weight vector is not explicitly formed. Sparse regularization of
the dual variables (support vectors) lead to a reduction in the number of kernel functions
needed to generate the nonlinear surface, but does not result in a reduction of input features
[46].

Embedding feature selection in a nonlinear SVM requires optimizing over additional
parameters in the kernel function. This can be viewed as an instance of Generalized Multi-
ple Kernel Learning (GMKL) [99], which offers the state-of-the-art solution for embedded

75

7.1 Introduction

nonlinear feature selection. In general, the resulting problem is non-convex. The algo-
rithm proposed by Varma and Babu [99] to solve GMKL is based on gradient descent, i.e.
line-search along the negative gradient. Hence, it uses a first-order convex approximation
at each iterate, which can fail to find a minimizer when the problem is non-convex. In
contrast, trust-region algorithms are better suited for non-convex optimization. At each it-
erate they solve non-convex second-order approximations with guaranteed convergence to
a minimizer.

We develop an effective algorithm to solve the non-convex optimization problem that
results from embedding feature selection in nonlinear SVMs. Specifically:

1. We invoke the Representer Theorem to formulate a primal embedded feature selec-
tion SVM problem and use a smoothed hinge loss function to obtain a simpler bound
constrained problem. We solve the resulting non-convex problem using a generalized
trust-region algorithm for bound constrained minimization.

2. To improve efficiency we propose a two-block alternating optimization scheme, in
which we iteratively solve (a) the standard SVM problem and (b) a smaller non-
convex feature selection problem. Importantly, we propose a novel alternate opti-
mization method by sharing a single perspective variable. We establish mathe-
matical conditions under which this perspective variable sharing AO method avoids
saddle points. For SVM feature selection, the perspective variable explicitly rep-
resents the margin. We provide computational evidence to illustrate that this helps
avoid suboptimal local solutions. Moreover, by focussing on maximizing margin in
the feature selection problem—a critical quantity for generalization error—we are
able to further improve solution quality.

3. We compare our methods to GMKL and other leading nonlinear feature selectors,
and show that our approach improves results.

The rest of the chapter is organized as follows. Section 7.2 formulates the embedded
feature selection problem. Section 7.3 describes the bound constrained trust-region ap-
proach to solve the problem in the full feature and model space. Section 7.4 develops the
explicit margin alternating optimization approach. Section 7.5 compares our approach with
other nonlinear feature selection methods on several datasets.

76

7.2 Feature Selection in Nonlinear SVMs

7.2 Feature Selection in Nonlinear SVMs

We start by describing the embedded feature selection problem for nonlinear SVMs. We
motivate and explain the formulation with respect to margin-based generalization bounds.

Consider a set of n training points, xi ∈Rd , and corresponding class labels, yi ∈{+1,−1},
i = 1, ...,n. Each component of xi is an input feature. In classical SVM, proposed by
[33], a linear classifier (w,b) is learned by maximizing the geometric margin, defined as
γ = mini yi(wT xi + b)/∥w∥, where ∥ · ∥ denotes 2-norm. Since the decision hyperplane
associated with (w,b) does not change upon rescaling to (λw,λb), for λ ∈ R+, the func-
tion output at the margin (functional margin) is fixed to 1; geometric margin is given by
γ = 1/∥w∥, and the norm of the weight vector is minimized. Thus in the standard setting,
SVM results in the following convex quadratic programming problem:

min
w,b,ξ

1
2
∥w∥2

+C
n∑

i=1

ξi,

s.t. yi
(
wT xi + b

)
≥ 1 − ξi, i = 1, ...,n, (7.1)

ξi ≥ 0, i = 1, ...,n .

Here, ξi’s are margin violations, and C is a penalty controlling the trade-off between em-
pirical error and (implicitly computed) geometric margin.

To obtain a non-linear decision function, the kernel trick [15] is used by defining a
kernel, k(x,x′)≡ φ(x)Tφ(x′), where k : Rd×Rd → R and φ : Rd →F is a non-linear map
from input features to a (potentially infinite dimensional) derived feature space. A kernel
function, satisfying Mercer’s condition [34, 68], directly computes the inner product of two
vectors in a feature space F , without the need to explicitly determine the feature mapping.
Conventionally, the kernel is used in the dual of problem (7.1), where all occurrences of
data appear inside an inner product. However, we can also formulate the primal problem
in the derived feature space by expressing the weight vector as a linear combination of
mapped data points, w =

∑n
i=1βiφ(xi), due to Representer theorem [83]. Substituting this

77

7.2 Feature Selection in Nonlinear SVMs

form in (7.1) leads to the following primal non-linear SVM problem,

min
β,b,ξ

1
2

n∑
i, j=1

βiβ jk(xi,x j) +C
n∑

i=1

ξi,

s.t. yi

 n∑
j=1

β jk(xi,x j) + b

≥ 1 − ξi, i = 1, ...,n, (7.2)

ξi ≥ 0, i = 1, ...,n .

The geometric margin in the feature space F , is given by

γ =
1√∑n

i, j=1βiβ jk(xi,x j)
.

The maximum margin classifier is motivated by theoretical bounds on the generaliza-
tion error. Specifically, [97] shows that generalization error for n points is bounded by,

err ≤ c
n

[(
R2

γ2 +∥ξ∥2
)

log2 n + log
1
δ

]
, (7.3)

for some constant c with probability 1−δ, where γ is the geometric margin of the classifier.
The key expression, on which generalization depends, is R2/γ2 + ∥ξ∥2, where ξ is the
margin slack vector (normalized by γ), and R is the radius of the ball that encloses the set
of points in the derived feature space, {φ(xi)}n

i=1. For a fixed dataset and kernel choice, R is
constant, and thus maximizing the margin while reducing margin violations minimizes the
upper bound in (7.3). Although the generalization bound suggests using a 2-norm penalty
on margin violations, a 1-norm penalty is preferred for classification tasks, since it is a
better approximation to a step penalty [97].

Now consider learning such a classifier while allowing input features to be weighted
according to their relevance. We introduce a feature weight vector, z ∈ Rd , where zl ≥ 0 is
a weight applied to input feature l. For convenience we define a diagonal matrix, Z ∈Rd×d

with Zll = zl . Hence, weighted points are mapped to φ(Zx) and we can replace k(x,x′) by
k(Zx,Zx′) in problem (7.2) to obtain the following embedded feature selection problem, in
which we simultaneously search for optimal feature weights, z, while solving for model

78

7.2 Feature Selection in Nonlinear SVMs

parameters, (β,b):

min
β,b,ξ,z

1
2

n∑
i, j=1

βiβ jk(Zxi,Zx j) +C
n∑

i=1

ξi +µ∥z∥1,

s.t. yi

 n∑
j=1

β jk(Zxi,Zx j) + b

≥ 1 − ξi, i = 1, ...,n, (7.4)

ξi ≥ 0, i = 1, ...,n,

zl ≥ 0, l = 1, ...,d .

We include 1-norm regularization of feature weights, z, with a penalty parameter µ > 0.
This serves two purposes. Firstly, the 1-norm regularizer has the beneficial effect of sup-
pressing variables to produce a sparse set of non-zero feature weights [95]. This property is
desirable for feature selection where we are interested in identifying the most useful subset
of input features. Secondly, it acts to minimize the radius of the enclosing ball, R, for the
generalization bound in (7.3). Given two feature weight vectors, z and z′, if z′l ≤ zl , for
l = 1, ...,d, then

∑
l z′2l (xil − x jl)2 ≤

∑
l z2

l (xik − x jl)2, implying ∥Z′xi − Z′x j∥ ≤ ∥Zxi − Zx j∥.
Thus suppressing feature weights reduces distances between points in input space, which
in turn results in a smaller enclosing ball in feature space. To minimize the generalization
bound, we solve (7.4) and calibrate margin, errors, and radius via parameters C and µ,
which can be determined by cross-validation.

7.2.1 Relation to GMKL

We note that problem (7.4) can be viewed as an instance of generalized multiple kernel
learning [99]. For example, if we consider a radial basis kernel, then weighting features
is equivalent to considering a product of 1-dimensional radial basis kernels derived from
individual features with different width parameters. To solve this optimization problem
Varma and Babu [99] propose a method based on gradient descent. Their algorithm follows
the approach used Chapelle et al. [27] by reformulating the problem as a nested two step
optimization: in an outer loop, the width parameters (i.e. feature weights) are updated by a
line search step along the negative gradient assuming fixed SVM model parameters, while
in an inner loop, the kernel is held fixed and SVM model parameters are updated. Assuming

79

7.3 Solving the Full-Space Feature Selection Problem

a 1-norm feature weight regularizer, in the outer loop GMKL solves

min
z

F(z) +µ||z||1 subject to zl ≥ 0, l = 1, ...,d (7.5)

where

F(z) = max
α

n∑
i=1

αi −
1
2

n∑
i, j=1

αiα jyiy jk(Zxi,Zx j)

s.t.
n∑

i=1

yiαi = 0, (7.6)

0≤ αi ≤C, i = 1, ...,n ,

is the solution of the dual SVM problem for fixed feature weights, which is solved in an
inner loop. If α∗ solves (7.6) exactly, the gradient, ∇zF , can be determined as a function
of optimal α∗ due to Danskin’s Theorem [36]. At each iteration, a projected Armijo-step
(i.e. line search) is taken in the direction of negative gradient to minimize (7.5). F(z)
is a non-convex function. The gradient descent algorithm uses a local first-order convex
approximation and does not guarantee convergence to a minimizer in the non-convex case.
Moreover, only an approximation to a gradient is available since the gradient requires an
exact solution to the SVM problem, which computationally cannot be achieved. In contrast,
we use a trust region based algorithm to solve the problem, which is better suited for non-
convex optimization (7.4) and guarantees convergence to a minimizer.

7.3 Solving the Full-Space Feature Selection Problem

In this section, we solve the embedded feature selection SVM problem using trust region
algorithm for a bound constrained problem. Problem (7.4) can be written as:

min
β,b,z

Ω(β,b,z) s.t. zl ≥ 0, l = 1, ...,d , (7.7)

where the objective is expressed in exact-penalty form:

Ω(·) =
1
2

n∑
i, j=1

βiβ jk(Zxi,Zx j) +C
n∑

i=1

ℓh
(
yi f (xi)

)
+µ∥z∥1 .

80

7.3 Solving the Full-Space Feature Selection Problem

Here, f (xi) =
∑n

j=1β jk(Zxi,Zx j) + b is the decision function, and ℓh(t) = max(0,1 − t) is a
non-differentiable linear hinge loss function. Alternative differentiable loss functions can
be used instead. We use the following ϵ-smoothed hinge loss function ℓϵ(t):

ℓϵ(t)(t)≡


(1 − t) − ϵ if t < 1 − 2ϵ
1
4ϵ (1 − t)2 if 1 − 2ϵ≤ t < 1
0 if t ≥ 1 .

(7.8)

The loss function transitions from linear cost to zero cost using a quadratic segment and
bears similarity to a (truncated) Huber loss (see Figure 2.2b). Thus problem (7.7) becomes a
smooth minimization problem with simple bound constraints. In our experiments we set ϵ =
0.5. From a classification perspective, the smoothed hinge loss function is asymptotically
margin-maximizing [79] and Bayes-risk consistent [72], and offers similar benefits as a
linear hinge loss.

7.3.1 Trust Region Algorithm

Trust region algorithms are a class of relatively new optimization algorithms compared
to classical line search methods. The main difference can be explained as follows. In
the trust region method, we choose a step size (the size of the trust region) first and then
search for a step direction, while in line search methods, we first choose a descent direction
and then a step size. The trust region is usually a spherical or elliptical neighborhood
centered at the current iterate, in which a local second order Taylor expansion (i.e. quadratic
approximation) of the objective can be trusted. One of the main advantages of trust region
methods is that a global solution to the local quadratic model can be computed, even when
the Hessian is indefinite (non-convex). As a result trust region algorithms are better suited
for non-convex optimization and can guarantee convergence to a minimizer.

For unconstrained minimization, the trust region method solves the following subprob-
lem to obtain the step-size, s, given the current iterate x(p):

min
s∈Rm

sT g(p)
+

1
2

sT H(p)s, (7.9)

s.t. ∥s∥2 ≤∆(p).,

Here g(p) and H(p) are the gradient and Hessian of the objective function at x(p), and ∆(p) is
the current radius of the trust region. For a nonconvex minimization problem, the Hessian

81

7.4 Explicit Margin Sharing

H(p) can be indefinite and (7.9) is a nonconvex quadratic minimization problem with a
ball constraint. A global minimizer of this subproblem can be computed since there is no
duality gap for a trust region subproblem. For example, assuming ∆(p) = 1, the dual of (7.9)
can be solved by first computing a solution to a convex 1-dimensional problem:

max
υ∈R

−

m∑
i=1

(qT
i g(p))2

υi +υ
−υ,

s.t. υ ≥ −υmin(H(p)) ,

where υi and qi are the eigenvalues and corresponding orthonormal eigenvectors of H(p),
respectively, and υmin(H(p)) denotes the minimum eigenvalue of H(p) [18].

For our implementation, we use the trust region method described by Coleman and Li
[31], which generalizes the unconstrained case to bound constraints. Each iteration requires
an eigen-decomposition of the Hessian matrix involving cubic complexity. Consequently,
solving (7.7) requires O

(
(n + d)3) operations at each iteration. In the next section, we pro-

pose an explicit margin alternating optimization approach, which improves computation
efficiency by breaking the problem down into two smaller subproblems, with O(n3) com-
plexity for the SVM subproblem and O(d3) for the feature selection subproblem, while able
to further improve solution quality by avoiding suboptimal local solutions.

7.4 Explicit Margin Sharing

We develop a novel alternating optimization (AO) method with explicit margin. We devise
the formulation in three successive stages. Firstly, we present a simple, but naive approach,
which alternates between solving for SVM model parameters and feature weights. Sec-
ondly, we extend the problem with an explicit margin variable which is shared between AO
subproblems. Finally, we relax the margin term so it is not tied to geometric margin when
solving the feature selection subproblem.

7.4.1 Simple AO

For fixed feature weights, (7.7) reduces to a convex problem that corresponds to regular
SVM optimization. The standard SVM problem can be solved efficiently [e.g. see 40, 75,
112]. To avail of this, we consider a two-block AO approach (also known as nonlinear block

82

7.4 Explicit Margin Sharing

coordinate descent or the Gauss-Seidel method), which iterates between 1) fixing feature
weights and solving SVM for model parameters (β,b), and 2) fixing model parameters and
solving a smaller non-convex problem for feature weights, z. The procedure is outlined in
Algorithm 1.

Algorithm 1 Simple AO

1: z0← initial feature weights
2: k← 0
3: repeat
4: (βk,bk)← argminβ,b Ω(β,b,zk) (SVM)
5: zk+1← argminz≥0 Ω(βk,bk,z) (FS)
6: k← k + 1
7: until ∥zk+1 − zk∥∞ < tol

We can use any convex solver for the SVM subproblem and use the bound-constrained
trust-region algorithm described in Section 7.3.1 to solve the non-convex feature selection
subproblem. The procedure generates a sequence {(βk,bk,zk)}∞k=1, which can be shown to
converge to a stationary point of (7.7) [48]. We stop when successive changes in feature
weights are less than a prespecified tolerance, tol.

Although this simple alternating optimization scheme improves computational effi-
ciency by breaking the problem down into two smaller subproblems, it detracts from an im-
portant advantage of using the trust-region algorithm—convergence to a minimizer. Even
though each subproblem converges to a minimizer when viewed along their restricted sub-
spaces, the solution may not converge to a minimizer in the full variable space [12]. A
simple example can be illustrative. Consider minimizing the three-variable quadratic func-
tion,

f (x1,x2,x3) = (x1 + x2 − 2)2
− 3(x1 + x2 − 2)(x3 − 1) + (x3 − 1)2,

using AO on variable subsets {x1,x2} and {x3}. For fixed x3 = 1, the point (x1,x2) = (1,1)
is a global minimizer of f (x1,x2,1) = (x1 + x2 − 2)2, and for the fixed point (x1,x2) = (1,1),
x3 = 1 is the global minimizer of f (1,1,x3) = (x3 − 1)2. Consequently, AO can converge to
(x1,x2,x3) = (1,1,1), which is a stationary point, but not a minimizer of the full variable
space (i.e. it is a saddle point).

We illustrate that saddle point convergence in Algorithm 1 can be problematic. Ta-
ble 7.1 shows test error on simulated NDCC dataset as the number of irrelevant features

83

7.4 Explicit Margin Sharing

(probes) are increased. Refer to Section 7.5.1 for description of the data. We setup the
problem as described in Section 7.5.1. The Simple AO method is unable to identify the
correct set of features and test error quickly deteriorates as the number of probes increase.
Moreover, the projected Hessian is indefinite at most solutions, indicating the algorithm is
terminating at saddle points.

Simple AO Margin AO-I Margin AO-II

Probes υmin Test error υmin Test error υmin Test error

0 0.0242 8.3 (M) 0.0889 9.4 (M) 0.0288 8.9 (M)
2 -0.9567 8.9 (S) 0.0201 10.7 (M) 0.0307 9.8 (M)
5 -0.4114 19.1 (S) 0.0232 17.5 (M) 0.0463 8.4 (M)

10 -20.1816 44.9 (S) 0.0209 11.2 (M) 0.0254 9.9 (M)
20 -4.5354 52.0 (S) 0.0221 10.4 (M) 0.0256 9.9 (M)
50 -3.0313 50.0 (S) 0.0000 48.0 (M) 0.0199 9.8 (M)

100 -2.3565 47.5 (S) 0.0000 45.9 (M) 0.0194 10.5 (M)

Table 7.1: Comparison of solutions using Simple AO, Margin AO-I and Margin AO-II as
additional probe features are included in the NDCC dataset. Minimum eigenvalue of pro-
jected Hessian (υmin) in (u,b,z) space and test error in percent is shown for each solution.
Label (M) indicates that, at termination, the projected Hessian is positive semi-definite,
while label (S) indicates that the projected Hessian is indefinite. Bolded values indicate the
solution identified the correct set of features.

7.4.2 Shared Margin AO-I

To overcome the issues with naive AO, we propose to share a dummy variable between
AO iterates. We illustrate the proposed technique by returning to the simple three-variable
example. By introducing a perspective transformation, x1 = x̄1/y and x2 = x̄2/y, we obtain,

f̄ (x̄1, x̄2,x3,y) = (x̄1/y + x̄2/y − 2)2
− 3(x̄1/y + x̄2/y − 2)(x3 − 1) + (x3 − 1)2 .

Instead of alternating between two disjoint sets of variables, we share the y variable be-
tween AO iterates (also known as overlapping domain decomposition). Thus we minimize
f̄ (x̄1, x̄2,x3,y) over variable subsets {x̄1, x̄2,y} and {x3,y}. For fixed x3 = 1, we minimize
f̄ (x̄1, x̄2,1,y) = (x̄1/y + x̄2/y − 2)2, to obtain a global minimizer (x̄1, x̄2,y) = (1,1,1) which
corresponds to (x1,y1) = (1,1) as before. However, for fixed (x̄1, x̄2) = (1,1), we now min-
imize f̄ (1,1,x3,y) = 4(1/y − 1)2 − 6(1/y − 1)(x3 − 1) + (x3 − 1)2 to find that the Hessian with

84

7.4 Explicit Margin Sharing

respect to (x3,y) is indefinite at (x3,y) = (1,1). Thus by extending the subspace with an
auxiliary perspective variable, which is shared between AO subproblems, convergence to
saddle points is avoided in this case.

Although sharing a perspective variable in AO optimization does not guarantee a lo-
cal minimum in general, it can reduce the possibility of convergence to saddle points with
negligible additional computational cost. We demonstrate this both analytically and com-
putationally.

To illustrate it analytically, we establish Theorem 11 below, which provides conditions
under which local minima in the overlapping subspaces lead to a local minimum in the
full space. In addition, assuming that one is at a saddle point, we provide a sufficient
condition under which this is detected and a negative curvature direction in the overlapping
subspace can be found to move away from the saddle point. We note that all gradient and
Hessian expressions of f and f̄ in Theorem 11 are assumed to be evaluated at

(
x̄∗1
κ∗ ,x

∗
2

)
and

(x̄∗1,x
∗
2,κ

∗), respectively.

Theorem 11. Let f (x1,x2) :Rn1×Rn2→R be a twice continuously differentiable function.

Let κ ̸= 0, κ ∈ R, and define f̄ (x̄1,x2,κ) = f
(x̄1
κ ,x2

)
. Assume that f̄ (x̄1,x2,κ) attains local

minima at (x̄∗1,κ
∗) and (x∗2,κ

∗), where κ∗ ̸= 0, in the subspace (x̄1,κ) and (x2,κ) respec-

tively. Then the first order necessary conditions for (x∗1,x
∗
2) to be at a local minimum for

f (x1,x2) are satisfied. In addition, if the second order sufficient condition is satisfied at

(x∗2,κ
∗) in the subspace (x2,κ), then∇2

x2x2
f ≻ 0. Moreover

(a) At
(

x̄∗1
κ∗ ,x

∗
2

)
, the second order necessary (sufficient) condition for minimizing f (x1,x2)

is satisfied if and only if

Hschur ,
(
∇2

x1x1
f
)

−

(
∇2

x1x2
f
)(
∇2

x2x2
f
)−1(

∇2
x1x2

f
)T
≽ (≻)0 . (7.10)

(b) Assume that the minimum eigenvalue of

H =

[
∇2

x1x1
f ∇2

x1x2
f(

∇2
x1x2

f
)T ∇2

x2x2
f

]

is negative. Then the minimum eigenvalue of Hschur defined in (7.10) is negative.

Define the region of negative curvature of Hschur as

N =
{

v : vT Hschurv < 0
}

85

7.4 Explicit Margin Sharing

If x∗1 ∈ N , then the minimum eigenvalue of the Hessian of f̄ (x̄1,x2,κ) at (x∗2,κ
∗) in

the subspace (x2,κ) is negative.

Proof. Assume that f̄ (x̄1,x2,κ) attains local minima at (x̄∗1,κ
∗) and (x∗2,κ

∗), where κ∗ ̸= 0,
in the subspace (x̄1,κ) and (x2,κ) respectively. Then, at (x̄∗1,κ

∗),

∇x̄1 f̄ = 0, ∇κ f̄ = 0

and, at (x∗2,κ
∗),

∇x2 f̄ = 0.

From
∇x̄1 f̄ =

1
κ
∇x1 f and ∇x2 f̄ =∇x2 f

the first order necessary condition for minimizing f (x1,x2) is satisfied at (1
κ∗ x̄∗1,x

∗
2).

We note that the Hessian of f̄ (x̄1,x2,κ) at (x∗2,κ
∗) in the subspace (x2,κ) is

Q(x∗2,κ
∗) ,

[
∇2

x2x2
f̄ ∇2

x2κ
f̄(

∇2
x2κ

f̄
)T ∇2

κκ f̄

]

=

[
∇2

x2x2
f −

1
κ∗2

(
∇2

x1x2
f
)T x̄∗1

−
1
κ∗2 x̄∗

T

1
(
∇2

x1x2
f
) 1

κ∗4 x̄∗
T

1
(
∇2

x1x1
f
)

x̄∗1 +
2
κ∗3

(
∇x1 f

)T x̄∗1

]

=

[
∇2

x2x2
f −

1
κ∗
(
∇2

x1x2
f
)T x∗1

−
1
κ∗ x∗

T

1
(
∇2

x1x2
f
) 1

κ∗2 x∗
T

1
(
∇2

x1x1
f
)

x∗1

]

where we use∇x1 f = 0 and x∗1 = x̄∗1
κ∗ in the last step. If the second order sufficient condition is

satisfied at (x∗2,κ
∗) in the subspace (x2,κ), then we immediately conclude that∇2

x2x2
f ≻ 0.

(a) Since ∇2
x2x2

f ≻ 0, results follow from recognizing Hschur as the Schur Complement
of H.

(b) From (a) we conclude that the minimum eigenvalue of Hschur is negative.

If x∗1 ∈N , then

x∗1
T
((
∇2

x1x1
f
)

−

(
∇2

x1x2
f
)(
∇2

x2x2
f
)−1(

∇2
x1x2

f
)T
)

x∗1 < 0.

86

7.4 Explicit Margin Sharing

Consequently

1
κ∗2 x∗1

T
(
∇2

x1x1
f
)

x∗1 −

(
−

1
κ∗

x∗1
T
(
∇2

x1x2
f
))(

∇2
x2x2

f
)−1
(

−
1
κ∗

(
∇2

x1x2
f
)T

x∗1

)
< 0

(7.11)

Recognizing the LHS of (7.11) as the Schur complement of Q(x∗2,κ
∗), we conclude

that the minimum eigenvalue of Q(x∗2,κ
∗) is negative. This completes the proof.

It is also possible to establish a sufficiency condition, based on the minimum and maxi-
mum eigenvalues of∇2

x1x1
f ,∇2

x2x2
f , and (∇2

x1x2
f)(∇2

x1x2
f)T respectively, under which local

minima in the overlapping subspaces leads to a local minimum in the full space. This is
presented in Theorem 12 below.

Theorem 12. Let υmin(A) and υmax(A) denote the minimum and maximum eigenvalue of

matrix A, respectively. Assume that∇2
x1x1

f ≻ 0. In addition, assume that

υmin

(
∇2

x2x2
f
)
>
υmax

((
∇2

x1x2
f
)(
∇2

x1x2
f
)T
)

υmin
(
∇2

x1x1
f
) , (7.12)

then (
∇2

x1x1
f
)

−

(
∇2

x1x2
f
)(
∇2

x2x2
f
)−1(

∇2
x1x2

f
)T
≻ 0.

Proof. Assume that In2 is the n2-by-n2 identity matrix. We have

∇2
x2x2

f ≽ υmin

(
∇2

x2x2
f
)

In2.

Since∇2
x1x1

f ≻ 0, using assumption (7.12)

∇2
x2x2

f ≻
υmax

((
∇2

x1x2
f
)(
∇2

x1x2
f
)T
)

υmin
(
∇2

x1x1
f
) In2.

For any d ∈ Rn1, d ̸= 0,

υmax

((
∇2

x1x2
f
)(
∇2

x1x2
f
)T
)

υmin
(
∇2

x1x1
f
) In2 ≽

dT
((
∇2

x1x2
f
)(
∇2

x1x2
f
)T
)

d

dT
(
∇2

x1x1
f
)

d
In2 ≽

(
∇2

x1x2
f
)T ddT (∇2

x1x2
f
)

dT
(
∇2

x1x1
f
)

d
.

87

7.4 Explicit Margin Sharing

From the assumption∇2
x1x1

f ≻ 0, by Schur’s complement, we conclude[
∇2

x2x2
f

(
∇2

x1x2
f
)T d

dT (∇2
x1x2

f
)

dT (∇2
x1x1

f
)

d

]
≻ 0 .

Applying Schur’s complement again, using∇2
x1x1

f ≻ 0, we have

dT
((
∇2

x1x1
f
)

−

(
∇2

x1x2
f
)(
∇2

x2x2
f
)−1(

∇2
x1x2

f
)T
)

d > 0.

Thus ((
∇2

x1x1
f
)

−

(
∇2

x1x2
f
)(
∇2

x2x2
f
)−1(

∇2
x1x2

f
)T
)
≻ 0 .

Theorem 11 and 12 suggest that sharing a scalar perspective variable between AO it-
erates can reduce the possibility of saddle point convergence compared to the naive AO
technique.

Therefore, we consider a perspective transformation of the SVM model parameters in
the AO approach for the feature selection problem. We substitute β = β̄/λ and b = b̄/λ in
(7.4) to obtain,

min
β̄,b̄,ξ,z,λ

1
2λ2

n∑
i, j=1

β̄iβ̄ jk(Zxi,Zx j) +C
n∑

i=1

ξi +µ∥z∥1,

s.t. yi

 n∑
j=1

β̄ jk(Zxi,Zx j) + b̄

≥ λ−λξi, i = 1, ...,n,

ξi ≥ 0, i = 1, ...,n, (7.13)

zl ≥ 0, l = 1, ...,d,

λ≥ 0 .

It is important to note that here the auxiliary perspective variable, λ, is the functional mar-
gin (see Section 7.2), which is a component of the generalization bound. By sharing λ
and performing AO with respect to (7.13), maximizing the functional margin becomes part
of the objective in each iteration of the subspace (z,λ) optimization. Consequently mar-
gin sharing AO ensures that the feature z is selected according to generalization bound,

88

7.4 Explicit Margin Sharing

in addition to reducing the possibility of becoming trapped at a saddle point in the AO
optimization.

We perform functional margin sharing AO as follows. For fixed fixture weights, (7.13)
is equivalent to a regular SVM, as before (since we fix the functional margin, λ, to 1 to
make the problem well-posed). However, in the feature selection subproblem, when model
parameters (β̄, b̄) are fixed, λ provides an additional view of the margin component. This
allows us to move along a direction in the SVM model space while solving the feature
selection subproblem. The procedure is shown in Algorithm 2 using the following exact-
penalty expression for the objective:

Ω̄(β̄, b̄,z,λ) =
1

2λ2

n∑
i, j=1

β̄iβ̄ jk(Zxi,Zx j) +C
n∑

i=1

ℓ

(
yi f (xi)
λ

)
+µ∥z∥1. (7.14)

We solve the feature selection subproblem (FS-I) using the bound constrained trust region
algorithm described in Section 7.3.1. We use z = zk and λ = 1 as initial points in step 6.

Algorithm 2 Margin AO-I

1: z0← initial feature weights
2: k← 0
3: repeat
4: λk← 1
5: (β̄k

, b̄k)← argminβ̄,b̄ Ω̄(β̄, b̄,zk,λk) (SVM)

6: (zk+1,λk+1)← argminz≥0,λ≥0 Ω̄(β̄k
, b̄k,z,λ) (FS-I)

7: k← k + 1
8: until ∥zk+1 − zk∥∞ < tol

Table 7.1 shows test error and minimum eigenvalue of full Hessian using Margin AO-
I (Algorithm 2) on the NDCC dataset. We observe that Margin AO-I is able to avoid
saddle point solutions and obtain better test error than Simple AO. In our experiments, we
generally observed that margin sharing AO yields similar test performance to the full-space
solution discussed in Section 7.3—with the added benefit of lower complexity.

7.4.3 Explicit (Functional) Margin AO-II

We can further improve the solution by observing that for fixed support vectors, it is more
relevant to maximize functional margin than geometric margin. Specifically, we propose to

89

7.4 Explicit Margin Sharing

minimize the following objective (over z,λ) in place of the subproblem (FS-I).

Ψ(·) =
1

2λ2 +C
n∑

i=1

ℓ

(
yi f (xi)
λ

)
+µ∥z∥1. (7.15)

The first term in (7.15) represents the (inverse) functional margin. In comparison, the first
term of (7.14) represents the (inverse) geometric margin. Recall, in SVM the norm is
minimized as the functional margin is held constant at 1 to fix the scale of support vector
coefficients. That is, in a standard SVM the following equivalent problem is solved

min
f∈H,ξ,λ

1
2λ2 +C

n∑
i=1

ξi,

s.t. yi f (xi)≥ λ−λξi, ξi ≥ 0, i = 1, ...,n, (7.16)

∥ f∥2
H = 1 ,

where ∥ · ∥H is the norm in the reproducing kernel Hilbert space H. The final constraint
can be seen as fixing the scale of coefficients to make the solution unique, while the func-
tional margin λ is maximized. Since, in the feature selection subproblem support vector
coefficients are assumed fixed, this constraint becomes unnecessary. Minimizing (7.15) is
equivalent to problem (7.16) without the constraint ∥ f∥2

H = 1. Thus we directly optimize
feature weights to maximize (functional) margin in the feature subproblem. Since we are
solving the same problem over a larger feasible set, the optimal objective value of (7.15)
is always less than or equal to (7.16). Consequently, (7.15) allows greater flexibility as we
search for optimal features and can further avoid suboptimal solutions.

The procedure is summarized in Algorithm 3. We use the bound constrained trust-
region algorithm to solve the feature selection subproblem (FS-II). To make the SVM
subproblem solution unique we fix λ in step 5, as in Margin AO-I. Similarly, in step
4, we always reset λ = 1, since the specific value of λ only controls the scale of (β̄, b̄).
Note, AO iterates no longer share a common objective. Therefore, we set z = zk and
λ = 1/

√∑n
i, j=1 β̄

k
i β̄

k
j k(Zkxi,Zkx j) as initial points in step 6 to match the initial objective

value obtained from step 5. Since we are mainly interested in feature selection, we use a
weaker stopping criteria based on the zero norm1 of the weight vector, which in practice
terminates after a few AO iterates.

1In our computation a component is considered zero if its absolute value is less than 0.01×maxk |zk|.

90

7.5 Experiments

Algorithm 3 Explicit (functional) Margin AO-II

1: z0← initial feature weights
2: k← 0
3: repeat
4: λk← 1
5: (β̄k

, b̄k)← argminβ̄,b̄ Ω̄(β̄, b̄,zk,λk) (SVM)

6: (zk+1,λk+1)← argminz≥0,λ≥0 Ψ(β̄k
, b̄k,z,λ) (FS-II)

7: k← k + 1
8: until ∥zk+1 − zk∥0 = 0

Table 7.1 shows results on NDCC dataset using Explicit Margin AO-II (Algorithm 3)
method. Similar to Margin AO-I, the algorithm is able to avoid saddle points. In addition,
Explicit Margin AO-II can effectively identify the correct set of features and recover a
competitive test error even as the number of probes become substantial. Compared to the
full-space approach (Section 7.3), the explicit margin AO-II approach is more efficient,
and in addition, by focussing on improving the margin directly—a critical quantity for
generalization—it further improves solution quality.

7.5 Experiments

In this section we evaluate our Full-Space (FULL-FS, Section 7.3) and Margin AO-II (Sec-
tion 7.4.3) methods on various datasets. We compare results with the state-of-the-art em-
bedded feature selection algorithm, GMKL [99]. On a simulated dataset [94] we show
that GMKL can fail to find the correct subset of features, while FULL-FS recovers a better
solution and AO-II recovers the correct solution. On several other real datasets we show
that our methods perform better than GMKL by 8-14% on average in terms of test error
and with a reduction of 16-28% of features. We also demonstrate that FULL-FS and AO-II
improve upon other leading filter and wrapper approaches in ranking relevant features.

7.5.1 Comparison to GMKL

For FULL-FS, AO-II and GMKL, we use the following radial-basis kernel,

k(Zxi,Zx j) = exp

(
−

d∑
k=1

(zkxik − zkx jk)2

)
. (7.17)

91

7.5 Experiments

and a 1-norm penalty on feature weights, µ||z||1. The implementation for GMKL is pub-
licly available from Varma [98]. All datasets are standardized to zero mean and unit vari-
ance and we always start with an initial feature weight vector of ones. The two parame-
ters, C and µ, are determined by cross-validation over (log2C, log2µ) space at grid points
[−5,−4, ...,14,15] × [−10,−8, ...,8,10]. We also compare results with regular SVM using
the entire set of features. For SVM we use a radial basis kernel with width σ,

k(xi,x j) = exp

(
−

∑d
k=1(xik − x jk)2

σ2

)
,

and cross-validate over (log2C, log2σ) at [−5,−4, ...,14,15] × [−10,−8, ...,8,10].

Normally Distributed Clusters on Cubes

In this example we evaluate feature selection using a simulated dataset. Normally dis-
tributed clusters on cubes (NDCC) generates nonlinearly separable data by sampling from
multivariate normal distributions with centers at the vertices of three concentric 1-norm
cubes [94]. An example with 2-dimensional cubes is shown in Figure 7.1. The distribution

Figure 7.1: NDCC dataset example in 2-dimensions shown with the underlying 1-norm
cubes.

92

7.5 Experiments

at each vertex uses a different (randomly generated) covariance matrix. Some centers gen-
erate a relatively small number of points, while others generate a relatively large number
of points. Points around opposing vertices of each cube are assigned to opposite classes
preventing linear separation.

In our experiment we generate data at vertices of 20-dimensional cubes and add 100
noisy features by sampling from a normal distribution. Thus the data contains a total of
120 features of which 20 are informative. This is a challenging dataset for feature selection
because of the high degree of nonlinear interaction among informative features. Methods
which rely on marginal contributions of features will perform poorly since projection to
any single dimension will not reveal class separation.

We generate 200 training points, 200 validation points and 1000 testing points. Ta-
ble 7.2 shows test error results using SVM, GMKL, FULL-FS and AO-II, along with the
number of correct and incorrect features identified by each method. Note standard SVM is
unable to detect a useful model since noisy features drown out any signal. This is clearly
an example where feature selection is necessary in order to recover a meaningful model.
The best parameter choice for GMKL, determined by cross-validation, yields 15 correct
and 6 incorrect features resulting in a test error of 32.0%. In comparison, FULL-FS is able
to recover 17 correct features with 1 incorrect one and obtains 16.5% test error. Finally,
AO-II is able to identify all 20 features with no incorrect ones and obtains the lowest test
error of 10.5%. We also observe that AO-II achieves a lower objective value and does not
get stuck at suboptimal solutions.

Number of Features

Objective Test Error Correct Incorrect

SVM 106.1 44.3% 20 100
GMKL 86.1 32.0% 15 6
FULL-FS 75.2 16.5% 17 1
AO-II 62.4 10.5% 20 0

Table 7.2: 20-dimensional NDCC dataset feature selection results. The objective value,
test error and the number of correct and incorrect features are shown.

93

7.5 Experiments

Gender Identification

In this example, we try to identify gender from face images in the FEI database [93]. The
database consists of 200 different individuals collected from students and staff at FEI be-
tween the ages of 19 and 40. There are 100 male and 100 female subjects. Each image in
the database has been aligned to a common template so that pixel-wise features correspond
roughly to the same location across all subjects. Images are normalized, equalized, cropped
and have been scaled down to have dimensions 18×15. Thus each image consists of 270
pixels of grey scale intensity. Figure 7.2 shows a few examples from the dataset.

Figure 7.2: Example of a few processed images in the FEI faces dataset.

We follow standard experimental setup and use 167 images for training and 33 for out-
of-sample testing. Results are averaged over 5 random splits of the data to reduce variance.
Parameters are tuned by running 10-fold cross-validation on the training set for each split.
Table 7.3 shows the feature selection results.

Test Error(%) Av. # of Features

SVM 10.8 ± 0.8 270.0
GMKL 12.6 ± 1.4 31.4
FULL-FS 11.9 ± 0.9 19.1
AO-II 11.0 ± 0.6 16.2

Table 7.3: Test error and average number of features obtained on FEI faces dataset.

AO-II achieves an error of 11.0% using on average 16 features. In comparison, FULL-
FS achieves an error of 11.9% using 19 features and GMKL performs comparatively worse
with an error of 12.6% using 31 features. Regular SVM obtains an error of 10.8%. SVM
results are obtained using all 270 features. AO-II can obtain similar generalization error
with approximately 17 times compression factor. Figure 7.3 shows the average male and
female faces superimposed with the features identified by GMKL, FULL-FS and AO-II.

94

7.5 Experiments

SVM GMKL FULL-FS AO-II

Average
Female

Face

Average
Male
Face

Figure 7.3: The average male and female faces in the FEI dataset superimposed with the
features identified by GMKL, FULL-FS and AO-II. Note that SVM uses all 270 features.

Other Datasets

We compare results on several other datasets obtained from UCI repository [44]. Two-
thirds of the observations are used for training and the remaining one-third for out-of-
sample testing. Results are averaged over 5 (stratified) random splits of the data. Param-
eters are tuned by running 10-fold cross-validation on the training set for each split. This
methodology is used for all datasets, except Madelon. Madelon was used in the NIPS 2003
Feature Selection Challenge [1] and comes with separate training, validation and testing
sets.

Table 7.4 summarizes the feature selection results. Average test errors and correspond-
ing average number of features are shown for each dataset. FULL-FS and AO-II improve
test error on average by 8% and 14% compared to GMKL, while using 16% and 28% fewer
features, respectively. AO-II performs slightly better than FULL-FS in terms of test error
and number of features used. A regular SVM using uniform feature weights generally
yields similar performance, though FULL-FS and AO-II use significantly fewer features.
The exception is the Madelon dataset. Madelon is constructed specifically to evaluate mul-
tivariate feature selection and by design contains many noisy features, which lead to poor
SVM performance.

95

7.5 Experiments

Te
st

E
rr

or
A

ve
ra

ge
N

um
be

ro
fF

ea
tu

re
s

n
SV

M
G

M
K

L
FU

L
L

-F
S

A
O

-I
I

SV
M

G
M

K
L

FU
L

L
-F

S
A

O
-I

I

So
na

r
20

8
21

.1
±

1.
0

16
.8
±

1.
1

16
.0
±

1.
1

14
.9
±

0.
8

60
.0

12
.9

13
.9

12
.3

Io
n

35
1

5.
1
±

0.
2

6.
0
±

0.
4

5.
3
±

0.
8

5.
3
±

0.
4

33
.0

10
.6

10
.7

7.
4

S.
A

.H
ea

rt
46

2
27

.8
±

0.
9

30
.6
±

1.
1

29
.9
±

0.
7

28
.7
±

0.
8

9.
0

5.
4

3.
9

3.
8

M
us

k
47

6
7.

6
±

0.
7

9.
3
±

0.
8

9.
7
±

0.
7

7.
0
±

0.
6

16
6.

0
29

.9
32

.4
27

.5
W

db
c

56
9

3.
7
±

0.
5

5.
3
±

0.
4

3.
8
±

0.
4

3.
8
±

0.
3

30
.0

6.
3

6.
6

4.
5

A
us

t.
C

re
di

t
69

0
13

.5
±

0.
7

14
.3
±

0.
5

13
.4
±

0.
4

13
.0
±

0.
3

14
.0

9.
6

5.
7

7.
0

G
er

m
an

C
re

di
t

10
00

23
.2
±

0.
5

23
.6
±

0.
8

23
.1
±

0.
4

23
.4
±

0.
4

24
.0

12
.0

10
.4

9.
8

M
ad

el
on

20
00

40
.7

7.
7

7.
2

7.
0

50
0.

0
14

.0
10

.0
8.

0

A
vg

.i
m

pr
ov

em
en

tr
el

.t
o

G
M

K
L

7.
7%

13
.6

%
15

.8
%

27
.8

%

Ta
bl

e
7.

4:
Fe

at
ur

e
se

le
ct

io
n

re
su

lts
on

U
C

Id
at

as
et

s
co

m
pa

ri
ng

te
st

er
ro

ra
nd

av
er

ag
e

nu
m

be
ro

ff
ea

tu
re

s
us

ed
.N

ot
e,

SV
M

us
es

al
lt

he
fe

at
ur

es
in

th
e

da
ta

se
t.

n
is

th
e

nu
m

be
ro

fe
xa

m
pl

es
in

th
e

da
ta

se
t.

R
ef

er
to

te
xt

fo
re

xp
er

im
en

tm
et

ho
do

lo
gy

.T
he

la
st

ro
w

sh
ow

s
th

e
av

er
ag

e
pe

rc
en

ta
ge

im
pr

ov
em

en
tc

om
pa

re
d

to
G

M
K

L
.

96

7.5 Experiments

7.5.2 Feature Ranking Comparison

In this section we evaluate the ability of FULL-FS and AO-II to rank features. We compare
with GMKL as well as three other popular feature selection methods, described below.
For the following algorithms, we use the implementations provided in the Spider machine
learning toolbox [2].

• Mutual Information (MI): A filter method, which uses the mutual information
score between candidate features and the output class as a basis to rank features
[108]. For discrete random variables, mutual information is given by

I(π) =
∑

i

∑
j

πi j log
πi j

πiπ j
,

where πi j is the probability (frequency) of jointly observing events i and j, and πi =∑
j πi j and π j =

∑
iπi j are the marginal probability of events. Continuous features

are binned to a discrete set corresponding to index i, while j indexes the binary class
output. Higher values of I(π) imply greater feature relevance.

• Relief: A multivariate filter method, which estimates relevance by determining how
well features distinguish classes between nearby points [60]. At each iteration a point
is chosen and the weight for each feature is updated according to the distance of the
point to its nearest neighbor from the same class (hit) and nearest neighbor from
the other class (miss). The final score of a feature is the ratio between the average
distance to the nearest miss and nearest hit over all examples.

• Recursive Feature Elimination (RFE): A wrapper method that uses a greedy ap-
proach to eliminate features, one at a time, that decrease the margin the least [50].
An SVM is trained at each iteration, and the (inverse) margin is computed: W 2(β) =∑

uiu jyiy jk(xi,x j). For each feature l, W 2
(−l)(β) =

∑
uiu jyiy jk(x−l

i ,x−l
j) is computed,

where x−l
i means training point i with feature l removed. The feature with the small-

est value of |W 2(β) −W 2
(−l)(β)| is removed. Repeated application of the procedure

results in a ranking of features.

For embedded feature selection methods (GMKL, FULL-FS, AO-II), instead of varying
parameter µ to select the required number of features, we obtain rankings by taking the top
ranked components of z at a fixed C and µ. C and µ are chosen by cross-validation to
minimize classification error. Similar methodology was used by Varma and Babu [99].

97

7.5 Experiments

We show test error results versus the number of selected features in Figures 7.4 to
7.13. Each figure corresponds to a dataset used in Section 7.5.1. For a given number of
features, we select the top ranked features and relearn an SVM classifier using only the
selected features. We use a radial basis kernel and cross-validate to determine optimal
SVM parameters, C and σ, for the reduced feature set. Apart from the NDCC and Madelon
datasets, each test error point is obtained by averaging results over five trials. In each trial,
two-thirds of the data is used for training and one-third for testing. Parameters C and σ
are tuned by 10-fold cross-validation on the training set. NDCC and Madelon use separate
training, validation and testing sets.

The results show that embedded methods generally perform better than filter and wrap-
per methods. This is more prominent in the NDCC and Madelon datasets, where there is
a complex multivariate relationship among informative features. RELIEF performs well
on Madelon, since it is able to capture multivariate relationships, but is not as effective
on other datasets. MI performs well when single features are independently significant, for
example in German Credit data, but is unable to identify multivariate relationships. Among
the embedded methods, AO-II performs the best, followed closely by FULL-FS, and then
GMKL. In particular, we see GMKL is not as effective on some datasets, namely NDCC,
S.A. Heart, Wdbc, and Aust. Credit, compared to FULL-FS and AO-II.

4 8 12 16 20
5

10

15

20

25

30

35

40

45

50

Number of Features

T
e
s
t
E

rr
o
r

(%
)

ndcc

MI

RELIEF

RFE

GMKL

FULL−FS

AO−II

Figure 7.4: Test error as a function of number
of features selected for NDCC.

2 6 10 14 18 22 26 30
10

12

14

16

18

20

22

24

26

28

30

Number of Features

T
e
s
t
E

rr
o
r

(%
)

faces

MI

RELIEF

RFE

GMKL

FULL−FS

AO−II

Figure 7.5: Test error as a function of number
of features selected for FEI Faces.

98

7.5 Experiments

2 4 6 8 10
15

20

25

30

35

40

Number of Features

T
e
s
t
E

rr
o
r

(%
)

sonar

MI

RELIEF

RFE

GMKL

FULL−FS

AO−II

Figure 7.6: Test error as a function of number
of features selected for Sonar.

2 4 6 8 10
4

6

8

10

12

14

16

18

20

22

24

Number of Features
T

e
s
t
E

rr
o
r

(%
)

ion

MI

RELIEF

RFE

GMKL

FULL−FS

AO−II

Figure 7.7: Test error as a function of number
of features selected for Ion.

1 2 3 4 5 6
28

29

30

31

32

33

34

35

36

37

Number of Features

T
e
s
t
E

rr
o
r

(%
)

heart

MI

RELIEF

RFE

GMKL

FULL−FS

AO−II

Figure 7.8: Test error as a function of number
of features selected for S.A. Heart.

2 6 10 14 18 22 26 30
5

10

15

20

25

30

35

40

Number of Features

T
e
s
t
E

rr
o
r

(%
)

musk

MI

RELIEF

RFE

GMKL

FULL−FS

AO−II

Figure 7.9: Test error as a function of number
of features selected for Musk.

99

7.5 Experiments

2 3 4 5 6 7 8
3

4

5

6

7

8

9

10

11

12

Number of Features

T
e
s
t
E

rr
o
r

(%
)

wdbc

MI

RELIEF

RFE

GMKL

FULL−FS

AO−II

Figure 7.10: Test error as a function of num-
ber of features selected for Wdbc.

2 3 4 5 6 7
12

14

16

18

20

22

24

26

Number of Features
T

e
s
t
E

rr
o
r

(%
)

aust

MI

RELIEF

RFE

GMKL

FULL−FS

AO−II

Figure 7.11: Test error as a function of num-
ber of features selected for Aust. Credit.

2 4 6 8 10
23

24

25

26

27

28

29

30

31

Number of Features

T
e
s
t
E

rr
o
r

(%
)

german

MI

RELIEF

RFE

GMKL

FULL−FS

AO−II

Figure 7.12: Test error as a function of num-
ber of features selected for German Credit.

2 4 6 8 10
5

10

15

20

25

30

35

40

45

50

55

Number of Features

T
e
s
t
E

rr
o
r

(%
)

mad

MI

RELIEF

RFE

GMKL

FULL−FS

AO−II

Figure 7.13: Test error as a function of num-
ber of features selected for Madelon.

100

7.6 Summary

7.6 Summary

In this chapter, we developed an effective algorithm to solve the non-convex optimiza-
tion problem that results from embedding feature selection in nonlinear SVMs. We solve
the primal embedded SVM problem using a trust region method for a bound constrained
problem, which is more suitable for non-convex optimization than line-search methods.
The trust region algorithm uses local second order approximate models and can guarantee
convergence to a minimizer. For computational efficiency, we apply an alternating opti-
mization (AO) framework. We show a naive application of AO can lead to iterates being
trapped at saddle points. We extend the space in which AO is performed with an auxiliary
variable corresponding to the margin. Sharing the margin variable between AO subprob-
lems reduces saddle point convergence. We further improve solution quality by directly
maximizing the functional margin, instead of the geometric margin, in the feature selection
subproblem. This focusses on maximizing margin, while permitting greater flexibility, as
we optimize over the feature space.

We compare the proposed methods to GMKL, the state-of-the-art embedded SVM fea-
ture selection method. GMKL uses a gradient descent algorithm, which does not guarantee
convergence to a minimizer for a non-convex problem and can be susceptible to suboptimal
solutions. On a simulated dataset we show that GMKL can get stuck at poor solutions and
is unable to recover the correct feature subset. On several other real datasets we show that
our methods improve upon GMKL by 8-14% in test error while further reducing features
by 16-28%. We also show how our methods outperform other leading filter and wrapper
approaches in ranking features.

101

Chapter 8

Conclusion

Kernels are powerful tools to solve statistical machine learning problems. They provide
an elegant framework to learn nonlinear models from algorithms designed to learn linear
models. A key benefit of kernel methods is separation of the training algorithm from data
representation, encoded in the kernel specification. Once the kernel is chosen, the learning
algorithm can usually be formulated as a convex optimization problem.

In this thesis, we focus on the quintessential classification problem, which identifies the
category of a new observation on the basis of a training set. In spite of the significant suc-
cess of kernel based classification, as popularized by the support vector machine, there are
often several challenges faced in practical problems. In this thesis, we developed effective
and efficient solutions to two such challenges associated with kernel based classification:
1) large-scale rare class learning and 2) input feature selection.

Rare class problems are common in many real-world applications. Standard classifi-
cation algorithms are known to perform poorly in these cases, since they minimize overall
classification accuracy, and therefore can lead to biased solutions. Computational scalabil-
ity is also crucial with the ever increasing amounts of data at our fingertips. In the context
of kernel methods, we address these issues by optimizing area under curve (AUC) of the
receiver operator characteristic, while limiting the hypothesis space to a linear combination
of rare class kernel functions. We argue that optimizing the AUC measure is more appro-
priate than classification accuracy for rare class problems, as it can avoid biased models
due to misspecification of class costs. Maximizing AUC results in a kernel biclass ranking
problem. Limiting the hypothesis representation to a linear combination of rare class ker-
nel functions allows us to obtain a computationally efficient algorithm requiring O(mm+)
time and O(mm+) space, while not sacrificing predictive performance. We call this method

102

8.1 Future Work

RankRC. The formulation is motivated by using kernel density estimation and probability
arguments for rare class datasets. We analyze the solution of RankRC by bounding the
difference between RankSVM and a classifier based on a subset of kernel functions. The
result indicates that for unbalanced datasets, it is optimal to include rare class kernel func-
tions in the hypothesis representation first, which further justifies the RankRC formulation.
Moreover, we establish results for a general regularized loss minimization problem, prov-
ing the equivalency of a subset kernel function representation, a projected feature map and
the Nyström method. These relationships can be useful to analyze and devise algorithms for
other approximate kernel problems as well. Finally, we extend the biclass RankRC prob-
lem to multiple levels, and illustrate its benefit on a recent competition problem sponsored
by the Heritage Health Provider network.

Another challenge with kernel classification is identifying the most relevant subset of
inputs for the learning task. This is known as the input feature selection problem. Most
applications contain irrelevant or noisy inputs, which can detract from the quality and ac-
curacy of the resulting model. By identifying the most relevant subset of inputs we can
improve generalization error and model interpretability. We develop a primal embedded ap-
proach for feature selection in kernel support vector machines. In contrast to using the dual
formulation, the primal formulation enables us to use second order methods to solve the
resulting non-convex optimization problem. We improve efficiency by considering an al-
ternating optimization scheme. In particular, we are able to improve both effectiveness and
efficiency, by sharing an explicit margin variable between alternating optimization iterates.
The resulting method is shown to outperform state-of-the-art feature selection methods.

8.1 Future Work

Below we list directions for future work for the rare class representation:

1. Regularization: In problem (3.15) we can use an ℓ1-regularizer, ∥β∥1, instead of
βT K++β. This would lead to sparser solutions [95] and could be solved using coor-
dinate descent methods [45].

2. Loss function: We can replace the loss function with other variants of ranking loss.
The AUC concentrates uniformly across all threshold levels. We can use weighted
AUC [103] or the p-norm push [80] to emphasize specific portions of the AUC curve.
Also, we can use list based ranking methods to optimize other criteria such as F1-

103

8.1 Future Work

score or Precision/Recall breakeven point [57]. The rare-class representation can
enable learning nonlinear models with more complex loss functions in reasonable
time and space when the dataset is unbalanced.

3. Stochastic Learning: For very large datasets, the m×m+ kernel submatrix may be too
large to fit in memory. In this case, we can store K++ ∈Rm+×m+ and cycle (randomly)
through majority class examples updating the β ∈ Rm+ vector via gradient descent
using an adaptive learning rate [16]. Unlike standard stochastic gradient descent, in
each iteration we use the full set of minority examples and a single (or small subset)
of majority samples to perform the update. This may lead to faster convergence while
using only O(m+m+) space.

4. Fixed Cardinality Representation: More generally, we may consider the problem of
finding the optimal subset representation given a cardinality constraint, i.e. ∥β∥0≤ c,
where c is the maximum number of kernel functions to be used. Since this problem
is NP-hard, approximate (e.g. greedy) algorithms could be devised.

Below we list directions for future work for the feature selection problem:

1. Multiple kernel learning: Use second-order optimization methods for more general
non-convex multiple kernel learning.

2. Computation scalability: Solving the feature selection problem is not scalable to
very large datasets due to solving the trust region subproblem using a full eigen-
decomposition. We can explore large-scale approaches by incorporating an iterative
method to find a trust region step, using low rank Hessian approximations and up-
dates, and/or considering stochastic methods.

104

References

[1] (2003). NIPS Workshop on Feature Extraction.

[2] (2013 (Last Accessed)). Spider Machine Learning Toolbox.

[3] (Accessed: 2013-08-31). Heritage Provider Network Health Prize. http://www.
heritagehealthprize.com/c/hhp.

[4] (Accessed: 2013-08-31). KDD Cup 1999. http://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.html.

[5] Ablavsky, V. and Sclaroff, S. (2011). Learning parameterized histogram kernels on the
simplex manifold for image and action classification. In ICCV, pages 1473–1480. IEEE.

[6] Achlioptas, D., McSherry, F., and Schölkopf, B. (2001). Sampling Techniques for
Kernel Methods. In NIPS, volume 14, pages 335–342.

[7] Aizerman, M. A., Braverman, E. A., and Rozonoer, L. (1964). Theoretical foundations
of the potential function method in pattern recognition learning. In Automation and
Remote Control,, number 25 in Automation and Remote Control„ pages 821–837.

[8] Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American
Mathematical Society, 68(3):337–404.

[9] Baker, C. T. H. (1977). The numerical treatment of integral equations. Clarendon
Press.

[10] Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D. (2006). Convexity, Classification,
and Risk Bounds. Journal of the American Statistical Association, 101(473):138–156.

[11] Batista, G. E. A. P. A., Prati, R. C., and Monard, M. C. (2004). A study of the
behavior of several methods for balancing machine learning training data. SIGKDD
Explor. Newsl., 6(1):20–29.

[12] Bezdek, J. C. and Hathaway, R. J. (2002). Some notes on alternating optimization. In
Proceedings of the 2002 AFSS International Conference on Fuzzy Systems (AFSS ’02),
pages 288–300.

[13] Bickel, P., Ritov, Y., and Tsybakov, A. (2008). Hierarchical selection of variables in
sparse high-dimensional regression.

105

http://www.heritagehealthprize.com/c/hhp
http://www.heritagehealthprize.com/c/hhp
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

References

[14] Bishop, C. M. (1998). Bayesian pca. In NIPS, pages 382–388. The MIT Press.

[15] Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm for opti-
mal margin classifiers. In Proceedings of the fifth annual workshop on Computational
learning theory, COLT ’92, pages 144–152. ACM.

[16] Bottou, L. and Bousquet, O. (2008). The tradeoffs of large scale learning. In NIPS,
pages 161–168.

[17] Bousquet, O. and Elisseeff, A. (2002). Stability and generalization. J. Mach. Learn.
Res., 2:499–526.

[18] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University
Press.

[19] Bradley, A. P. (1997). The use of the area under the roc curve in the evaluation of
machine learning algorithms. Pattern Recognition, 30:1145–1159.

[20] Bradley, P. S. and Mangasarian, O. L. (1998). Feature selection via concave minimiza-
tion and support vector machines. In Machine Learning Proceedings of the Fifteenth
International Conference(ICML 98), pages 82–90.

[21] Branch, M. A., Coleman, T. F., and Li, Y. (1999). A subspace, interior, and conjugate
gradient method for large-scale bound-constrained minimization problems. SIAM J.
Scientific Computing, 21(1):1–23.

[22] Byun, H. and Lee, S.-W. (2002). Applications of support vector machines for pattern
recognition: A survey. In Pattern Recognition with Support Vector Machines, pages
213–236.

[23] Chan, A. B., Vasconcelos, N., and Lanckriet, G. R. G. (2007). Direct convex relax-
ations of sparse svm. In Proceedings of the 24th international conference on Machine
learning, ICML ’07, pages 145–153. ACM.

[24] Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27. Software avail-
able at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[25] Chapelle, O. (2007). Training a support vector machine in the primal. Neural Com-
put., 19(5):1155–1178.

[26] Chapelle, O. and Keerthi, S. S. (2010). Efficient algorithms for ranking with svms.
Inf. Retr., 13(3):201–215.

[27] Chapelle, O., Vapnik, V., Bousquet, O., and Mukherjee, S. (2002). Choosing multiple
parameters for support vector machines. Mach. Learn., 46(1-3):131–159.

[28] Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote:
Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research,
16:321–357.

106

http://www.csie.ntu.edu.tw/~cjlin/libsvm

References

[29] Chawla, N. V., Japkowicz, N., and Kotcz, A. (2004). Editorial: special issue on
learning from imbalanced data sets. SIGKDD Explor. Newsl., 6(1):1–6.

[30] Coleman, T. F. and Li, Y. (1994). On the convergence of interior-reflective newton
methods for nonlinear minimization subject to bounds. Mathematical programming,
67(1-3):189–224.

[31] Coleman, T. F. and Li, Y. (1996). An interior trust region approach for nonlinear
minimization subject to bounds. SIAM Journal on Optimization, 6(2):415–425.

[32] Cortes, C., Mohri, M., and Talwalkar, A. (2010). On the impact of kernel approxima-
tion on learning accuracy. In Conference on Artificial Intelligence and Statistics.

[33] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning,
20(3):273–297.

[34] Courant, R. and Hilbert, D. (1953). Methods of Mathematical Physics. Interscience.

[35] Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Ma-
chines and Other Kernel-based Learning Methods. Cambridge University Press.

[36] Danskin, J. (1967). The Theory of Max-Min and its Application to Weapons Allocation
Problems.

[37] DeLong, E. R., DeLong, D. M., and Clarke-Pearson, D. L. (1988). Comparing the
Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Non-
parametric Approach. Biometrics, 44(3):837–845.

[38] El Emam, K., Arbuckle, L., Koru, G., Eze, B., Gaudette, L., Neri, E., Rose, S.,
Howard, J., and Gluck, J. (2012). De-identification methods for open health data: the
case of the heritage health prize claims dataset. J Med Internet Res, 14(1).

[39] Ezawa, K., Singh, M., and Norton, S. W. (1996). Learning goal oriented bayesian
networks for telecommunications risk management. In ICML, pages 139–147.

[40] Fan, R.-E., Chen, P.-H., and Lin, C.-J. (2005). Working set selection using second
order information for training support vector machines. Journal of Machine Learning
Research, 6:1889–1918.

[41] Farahat, A. K., Ghodsi, A., and Kamel, M. S. (2011). A novel greedy algorithm for
Nyström approximation. In AISTATS, pages 269–277.

[42] Fine, S. and Scheinberg, K. (2002). Efficient svm training using low-rank kernel
representations. J. Mach. Learn. Res., 2:243–264.

[43] Fowlkes, C., Belongie, S., Chung, F., and Malik, J. (2004). Spectral grouping using
the Nyström method. IEEE Trans. Pattern Anal. Mach. Intell., 26(2):214–225.

[44] Frank, A. and Asuncion, A. (2010). UCI machine learning repository.

107

References

[45] Friedman, J., Hastie, T., and Tibshirani, R. (2009). Regularization paths for general-
ized linear models via coordinate descent. Journal of Statistical Software.

[46] Fung, G. M. and Mangasarian, O. L. (2004). A feature selection newton method for
support vector machine classification. Computational Optimization and Applications,
28(2):185–202.

[47] Gärtner, T. (2003). A survey of kernels for structured data. SIGKDD Explor. Newsl.,
5(1):49–58.

[48] Grippo, L. and Sciandrone, M. (2000). On the convergence of the block nonlinear
Gauss-Seidel method under convex constraints. Operations Research Letters, 26:127–
136.

[49] Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection.
Journal of Machine Learning Research, 3:1157–1182.

[50] Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer
classification using support vector machines. Machine Learning, 46(1-3):389–422.

[51] Hanley, J. A. and Mcneil, B. J. (1982). The meaning and use of the area under a
receiver operating characteristic (ROC) curve. Radiology, 143(1):29–36.

[52] Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learn-
ing. Springer New York Inc., New York, NY, USA.

[53] He, H. and Garcia, E. A. (2009). Learning from imbalanced data. IEEE Trans. on
Knowl. and Data Eng., 21(9):1263–1284.

[54] Herbrich, R., Graepel, T., and Obermayer, K. (2000). Large Margin Rank Boundaries
for Ordinal Regression. MIT Press.

[55] Japkowicz, N. and Stephen, S. (2002). The class imbalance problem: A systematic
study. Intell. Data Anal., 6(5):429–449.

[56] Joachims, T. (2002). Optimizing search engines using clickthrough data. In KDD,
pages 133–142.

[57] Joachims, T. (2005). A support vector method for multivariate performance measures.
In ICML, pages 377–384.

[58] Karakoulas, G. and Shawe-Taylor, J. (1999). Optimizing classifiers for imbalanced
training sets. In NIPS, pages 253–259.

[59] Kimeldorf, G. and Wahba, G. (1970). A correspondence between Bayesian estimation
of stochastic processes and smoothing by splines. Ann. Math. Statist., 41:495–502.

[60] Kira, K. and Rendell, L. (1992). A practical approach to feature selection. In ML92:
Proceedings of the ninth international workshop on Machine learning, pages 249–256.

108

References

[61] Kubat, M., Holte, R., and Matwin, S. (1998). Machine learning for the detection of
oil spills in satellite radar images. Machine Learning, 30:195–215.

[62] Kubat, M. and Matwin, S. (1997). Addressing the curse of imbalanced training sets:
One-sided selection. In ICML, pages 179–186.

[63] Kumar, S., Mohri, M., and Talwalkar, A. (2009). Sampling techniques for the Nys-
tröm method. In AISTATS, pages 304–311.

[64] Li, J. and Tao, D. (2012). On preserving original variables in bayesian pca with
application to image analysis. IEEE Transactions on Image Processing, 21(12):4830–
4843.

[65] Lin, Y., Lee, Y., and Wahba, G. (2000). Support vector machines for classification in
nonstandard situations. Machine Learning, pages 191–202.

[66] Maloof, M. A. (2003). Learning when data sets are imbalanced and when costs are
unequal and unknown. In ICML.

[67] Marchiori, E. (2005). Feature selection for classification with proteomic data of mixed
quality. In In Proceedings of the 2005 IEEE Symposium on Computational Intelligence
in Bioinformatics and Computational Biology, pages 385–391.

[68] Mercer, J. (1909). Functions of positive and negative type and their connection with
the theory of integral equations. Philos. Trans. Royal Soc. (A), 83(559):69–70.

[69] Metz, C. E. (1978). Basic principles of ROC analysis. Seminars in nuclear medicine,
8(4):283–298.

[70] Micchelli, C. A., Xu, Y., and Zhang, H. (2006). Universal kernels. Journal of Machine
Learning Research, 6:2651–2667.

[71] Nakajima, S., Sugiyama, M., and Babacan, S. D. (2011). On bayesian pca: Automatic
dimensionality selection and analytic solution. In ICML, pages 497–504. Omnipress.

[72] Nguyen, X., Wainwright, M. J., and Jordan, M. I. (2009). On surrogate loss functions
and f-divergences. Annals of Statistics, 37(2):876–904.

[73] O’Hara, R. and Sillanpaa, M. (2009). A review of Bayesian variable selection meth-
ods: What, how, and which. Bayesian Analysis, 4:85–118.

[74] Osuna, E. E., Freund, R., and Girosi, F. (1997). Support vector machines: Training
and applications. Technical report, MIT.

[75] Platt, J. C. (1999). Advances in kernel methods. chapter Fast training of support
vector machines using sequential minimal optimization, pages 185–208. MIT Press.

[76] Platt, J. C. (2005). Fastmap, metricmap, and landmark mds are all Nyström algo-
rithms. In In Proceedings of 10th International Workshop on Artificial Intelligence and
Statistics, pages 261–268.

109

References

[77] Provost, F., Fawcett, T., and Kohavi, R. (1997). The case against accuracy estimation
for comparing induction algorithms. In In Proceedings of the Fifteenth International
Conference on Machine Learning, pages 445–453.

[78] Raskutti, B. and Kowalczyk, A. (2004). Extreme re-balancing for svms: a case study.
SIGKDD Explor. Newsl., 6(1):60–69.

[79] Rosset, S., Zhu, J., and Hastie, T. (2003). Margin maximizing loss functions. In
Advances in Neural Information Processing Systems (NIPS 15). MIT Press.

[80] Rudin, C. (2009). The p-norm push: A simple convex ranking algorithm that concen-
trates at the top of the list. J. Mach. Learn. Res., 10:2233–2271.

[81] Sabhnani, M. (2003). Application of machine learning algorithms to kdd intrusion
detection dataset within misuse detection context. In ICML, pages 209–215.

[82] Schölkopf, B., Herbrich, R., and Smola, A. J. (2001). A generalized representer
theorem. In Proceedings of the 14th Annual Conference on Computational Learning
Theory and and 5th European Conference on Computational Learning Theory, pages
416–426.

[83] Schölkopf, B. and Smola, A. J. (2002). Learning with Kernels. MIT Press, Cam-
bridge, MA, USA.

[84] Schölkopf, B., Tsuda, K., and Vert, J. P., editors (2004). Kernel Methods in Compu-
tational Biology. MIT Press.

[85] Smola, A. J. and Schölkopf, B. (2000). Sparse greedy matrix approximation for ma-
chine learning. In ICML, pages 911–918.

[86] Sun, Y., Kamel, M. S., Wong, A. K. C., and Wang, Y. (2007). Cost-sensitive boosting
for classification of imbalanced data. Pattern Recogn., 40(12):3358–3378.

[87] Talwalkar, A. (2010). Matrix Approximation for Large-scale Learning. PhD thesis,
Courant Institute of Mathematical Sciences, New York University, New York, NY.

[88] Tan, M., Wang, L., and Tsang, I. W. (2010). Learning sparse svm for feature selection
on very high dimensional datasets. In Proceedings of the 27th International Conference
on Machine Learning (ICML-10), pages 1047–1054.

[89] Tavallaee, M., Bagheri, E., Lu, W., and Ghorbani, A. A. (2009). A detailed analysis
of the kdd cup 99 data set. In Proceedings of the Second IEEE international conference
on Computational intelligence for security and defense applications, CISDA’09, pages
53–58.

[90] Tayal, A., Coleman, T. F., and Li, Y. (2013a). Bounding the difference between
RankRC and RankSVM and application to multi-level rare class kernel ranking. Sub-
mitted to Journal of Machine Learning Research.

[91] Tayal, A., Coleman, T. F., and Li, Y. (2013b). RankRC: Large-scale nonlinear rare
class ranking. To Be Submitted.

110

References

[92] Tayal, A., Coleman, T. F., and Li, Y. (2014). Primal explicit max margin feature se-
lection for nonlinear support vector machines. Accepted. To appear in J. Pattern Recog-
nition.

[93] Thomaz, C. E. and Giraldi, G. A. (2010). A new ranking method for principal compo-
nents analysis and its application to face image analysis. Image and Vision Computing,
28(6):902 – 913.

[94] Thompson, M. E. (2006). NDCC: normally distributed clustered datasets on cubes.
www.cs.wisc.edu/dmi/svm/ndcc/.

[95] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist.
Soc. Ser. B, 58(1):267–288.

[96] Turney, P. D. (2000). Types of cost in inductive concept learning. In ICML.

[97] Vapnik, V. N. (1998). Statistical Learning Theory. Wiley, 1st edition.

[98] Varma, M. (2013 (Last Accessed)).

[99] Varma, M. and Babu, B. R. (2009). More generality in efficient multiple kernel learn-
ing. In Proceedings of the 26th International Conference on Machine Learning (ICML
’09), pages 1065–1072.

[100] Šikonja, M. R. and Kononenko, I. (2003). Theoretical and empirical analysis of
ReliefF and RReliefF. Machine Learning, 53(1-2):23–69.

[101] Waegeman, W., Baets, B. D., and Boullart, L. (2006). A comparison of different roc
measures for ordinal regression. In ICML.

[102] Weiss, G. M. (2004). Mining with rarity: a unifying framework. SIGKDD Explor.
Newsl., 6(1):7–19.

[103] Weng, C. G. and Poon, J. (2008). A new evaluation measure for imbalanced datasets.
In Seventh Australasian Data Mining Conference (AusDM 2008), volume 87, pages 27–
32.

[104] Weston, J., Elisseeff, A., Schölkopf, B., and Tipping, M. (2003). Use of the zero
norm with linear models and kernel methods. Journal of Machine Learning Research,
3:1439–1461.

[105] Williams, C. and Seeger, M. (2001). Using the Nyström method to speed up kernel
machines. In Advances in Neural Information Processing Systems 13, pages 682–688.
MIT Press.

[106] Woods, K., Doss, C., Bowyer, K., Solka, J., Preibe, C., and Keglmyer, P. (1993).
Comparative evaluation of pattern recognition techniques for detection of microcalcifi-
cations in mammography. International Journal of Pattern Recognition and Artificial
Intelligence, 7:1417–1436.

111

References

[107] Wu, G. and Chang, E. Y. (2003). Class-boundary alignment for imbalanced dataset
learning. In ICML, pages 49–56.

[108] Zaffalon, M. and Hutter, M. (2002). Robust feature selection by mutual information
distributions. In Proceedings of the Eighteenth conference on Uncertainty in artificial
intelligence, UAI’02, pages 577–584.

[109] Zhang, J. and Mani, I. (2003). KNN Approach to Unbalanced Data Distributions: A
Case Study Involving Information Extraction. In ICML.

[110] Zhang, K., Lan, L., Wang, Z., and Moerchen, F. (2012). Scaling up kernel svm on
limited resources: A low-rank linearization approach. pages 1425–1434.

[111] Zhang, K., Tsang, I. W., and Kwok, J. T. (2008). Improved Nyström low-rank
approximation and error analysis. In Proceedings of the 25th international conference
on Machine learning, ICML ’08, pages 1232–1239.

[112] Zhou, T., Tao, D., and Wu, X. (2010). Nesvm: A fast gradient method for support
vector machines. In ICDM, pages 679–688. IEEE Computer Society.

[113] Zhu, J., Rosset, S., Hastie, T., and Tibshirani, R. (2003). 1-norm support vector
machines. In Neural Information Processing Systems, volume 16.

[114] Zhu, M., Su, W., and Chipman, H. A. (2006). LAGO: A Computationally Efficient
Approach for Statistical Detection. Technometrics, 48.

112

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contributions
	1.2 Outline

	2 Background
	2.1 Support Vector Classification
	2.1.1 Linearly Separable Data
	2.1.2 Inseparable Data
	2.1.3 Dual Formulation

	2.2 Kernel Induced Feature Spaces
	2.2.1 Characterization
	2.2.2 Reproducing Kernel Hilbert Space (RKHS)

	2.3 Representer Theorem and Training in the Primal

	3 RankRC: Large-scale Nonlinear Rare Class Ranking
	3.1 Introduction
	3.2 ROC Curve
	3.3 RankSVM
	3.4 RankRC: Ranking with Rare Class Representation
	3.5 Optimization Algorithm and Complexity
	3.5.1 Linearization
	3.5.2 Unconstrained Optimization

	3.6 Summary

	4 Theoretical Properties of RankRC
	4.1 Comparison of RankRC with RankSVM
	4.1.1 Projected Mapping Equivalence
	4.1.2 Projected Mapping Bound

	4.2 Relation to Nyström Approximation
	4.2.1 Nyström Method Equivalence
	4.2.2 Nyström Approximation Bound for SVM
	4.2.3 Comparison to Kernel Perturbation Bounds

	4.3 Summary

	5 RankRC: Computational Results
	5.1 Methods and Experiment Setup
	5.2 Simulated Data
	5.3 Real Datasets
	5.4 Intrusion Detection
	5.5 Summary

	6 Multi-Level Rare Class Kernel Ranking
	6.1 Predicting Days in Hospital
	6.2 Ordinal Regression with Multi-Level RankRC
	6.3 Comparison of Results
	6.4 Summary

	7 Feature Selection
	7.1 Introduction
	7.2 Feature Selection in Nonlinear SVMs
	7.2.1 Relation to GMKL

	7.3 Solving the Full-Space Feature Selection Problem
	7.3.1 Trust Region Algorithm

	7.4 Explicit Margin Sharing
	7.4.1 Simple AO
	7.4.2 Shared Margin AO-I
	7.4.3 Explicit (Functional) Margin AO-II

	7.5 Experiments
	7.5.1 Comparison to GMKL
	7.5.2 Feature Ranking Comparison

	7.6 Summary

	8 Conclusion
	8.1 Future Work

	References

