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Abstract

In this thesis, we study the problem of evaluating set expressions over sorted sets in
the comparison model. The problem arises in the context of evaluating search queries in
text database systems; most text search engines maintain an inverted list, which consists
of a set of documents that contain each possible word. Thus, answering a query is reduced
to computing the union, the intersection, or a more complex set expression over sets of
documents containing the words in the query.

At the first step, for a given expression on a number of sets and the sizes of the sets, we
investigate the worst-case complexity of evaluating the expression in terms of the sizes of
the sets. We prove lower bounds and provide algorithms with the matching running time
up to a constant factor. We then refine the problem further and design an algorithm that
computes such expressions according to the degree by which the input sets are interleaved
rather than only considering sets sizes. We prove the optimality of our algorithm by way
of presenting a matching lower bound sensitive to the interleaving measure.

The algorithms we present are different in the set of set operators they allow in input
expressions. We provide algorithms that are worst-case optimal for inputs with union,
intersection, and symmetric difference operators. One of the algorithms we provide also
supports minus and complement operators and is conjectured to be optimal when an input
is allowed to contain these operators as well. We also provide a worst-case optimal algo-
rithm for the form of problem where the input may contain “threshold” operators, which
generalize union and intersection operators: for a number t, a t-threshold operator selects
elements that appear in at least in t of the operand sets. Finally, the adaptive algorithm
we provide supports union and intersection operators.
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Chapter 1

Introduction

1.1 Background

In this thesis we study the problem of computing the result of a given set expression. The
problem arises in the context of evaluating search queries in text database systems; most
text search engines maintain an inverted list, which consists of a set S(w), for each word
w, of documents that contain w [15, 35, 43]. Thus, answering a query, such as “Database
OR Search AND Engine”, requires evaluation of the expression S(Database)∪ (S(Search)∩
S(Engine)). Note that the queries and their corresponding expressions can become rather
complicated if the queries are automatically generated [32].

Another application is column oriented stores for databases. In these databases, for
each prediction in the query, one columns is scanned to collect list of rows satisfying the
prediction. Then, the intersection of lists collected for different predictions is computed to
obtain the list of matching rows. C-store [40] is an example of such database systems.

Initially, some search engines used inverted lists sorted by frequency of the word in the
document [2]. A drawback was that the score of a page could be artificially boosted through
the repetition of a word within the document arbitrarily many times. So search engines
like Google started using a global ranking of pages based on links [15] and renumbering
documents according to this rank. For that reason sets are usually assumed to be sorted
beforehand in the preprocessing stage in the study of this problem.

We will also assume that even if two sets appearing in the expression are equal, the
algorithm can only infer such equality by examining sets members, and cannot conclude
that by just looking at the shape of the expression. For example, an input like A∩ (B∪C),
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where A and C happen to be equal, is not given to the algorithm as A∩ (B∪A), otherwise
the algorithm would know the result is A before looking at actual members of any set. If
we would not have this restriction, the problem would become intractable, as one could
easily create instances of the problem that were equivalent to arbitrary instances of some
NP-hard problems (see Section 8.1.1). The worst-case complexity in terms of the collective
size of the entire input is straightforward. So we measure the running time of algorithms
depending on the individual sizes of the input sets; we are interested in a worst-case optimal
algorithm.

Different variations of the problem have been studied before. The simplest case is
finding the intersection or union of two sets, which is equivalent to the problem of merging
two ordered sets of sizes m and n. This version of the problem is also called “multiple
search problem” as it can be seen as searching for occurrences of members of one set (the
“queries” set) in the other set [1]. This problem for values of m = 2 and n, and later
general values of m and n was studied by Hwang and Lin [30, 31]. They presented an
algorithm that matched the information theoretic lower bound of

⌈
log
(
m+n

n

)⌉
. Note that

this bound does not allow for the exhaustive listing of the entire output. They chose sorted
arrays as the format of the input and a list of cross pointers between arrays as the output
format. Later Brown and Tarjan [16, 17] and Pugh [38] showed how data structures such as
AVL-trees, B-trees, or skip-lists can be used as the format of the input and the output. The
problem of computing the union of two sets was also studied for parallel algorithms [1, 42].
A variant of the problem where one of the input sets (the set of queries) is not sorted was
also considered in a parallel model of computation [12].

Fernandez de la Vega, Frieze, and Santha analyzed the running time of Hwang and
Ling algorithm in average case when the ratio of sizes of the two sets is any constant [27].
Later, Baeza-Yates proposed another worst-case optimal algorithm for intersection of two
sets, which works better in average case [2]. Baeza-Yates and Salinger did an experimental
analysis of this algorithm as well [4].

Demaine, López-Ortiz, and Munro [23] studied a more general case where the expression
could involve more than two sets. The expressions they considered were limited to union
or intersection of a number of sets, or one set minus the intersection of some other sets.
Their algorithm is adaptive; they do not focus on the worst-case complexity of the problem.
They define the difficulty of every possible input I as an integer D(I), which measures how
complicated a proof for the input I is; they focus on minimizing the maximum value of
T (I)
D(I)

among all inputs I of size n, where T (I) is the running time of the algorithm on I.

Long and Suel claimed that the adaptive approach does not work well with disk-resident
structures [34] but, as Li et al. showed, it is beneficial for in-memory and peer-to-peer envi-
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ronments [33]. Demaine et al. pursued their study by comparing their adaptive algorithm
with other methods proposed before [24]. This study was followed by Barbay et al. who
included more variants of the adaptive algorithm in the experiments [10] In a more re-
cent study, Barbay et al [9] considered several published deterministic and randomized
algorithms, and investigated how they compare and how they can be improved.

Barbay and Kenyon studied computing the union or intersection of an arbitrary num-
ber of sets in a randomized fashion. They then derived a deterministic version of their
randomized redundancy-based version of the original problem [8]. They also considered
the t-threshold version of the problem which asks to report values appearing in at least t
input sets [7].

In this thesis we focus on the comparison model, that is, we study algorithms that only
have access to the relative values of members of the input sets. This is also the case for
all references we mentioned above. Examples of works violating this restriction are the
ones that use hash functions to perform operations on sets [13, 41]. Bille et al. [13] showed
that we can improve worst-case running time by almost a factor of w

log2 w
for the case of

intersection of a number of sets, where w is the size of the machine word. They also studies
the problem for the case of general union-intersection trees, but their results for the general
case are not as good. Tsirogiannis et al. [41] explored both sorted and unsorted (with
hash techniques) multi-way intersection for modern computers (cache-aware algorithms).
Barbay, Golynski, and Munro designed a succinct representation of inverted lists [5] and
used that to improved previous adaptive algorithm of Barbay and Kenyon [8] slightly. This
was done in a non-comparison-based model.

1.2 The Thesis Structure

In Chapter 3, we use a novel technique to develop a tight lower bound on the worst-case
running time of any comparison-based algorithm for the problem when union, intersection,
and delta (symmetric difference1) operators are used in expressions. The running time in
the lower bound is based on input set sizes and the input expression. Our conjecture is
that the lower bound holds even when minus and complement operators are also used in
expressions.

In Chapter 4 we develop a worst-case optimal algorithm for expressions with union
and intersection operators when the input sets are given in sorted array format. Then, in

1The symmetric difference of two sets A and B, denoted by A∆B, is defined as the sets of the values
appearing in exactly one of A and B.
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Chapter 5 we present an algorithm for a more general form of expressions when all binary
and unary set operators (union, intersection, delta, minus, and complement) are allowed.
The representation of input and output sets of this algorithm is a generalization of sorted
arrays and binary search trees.

In Chapter 6, we design an algorithm that computes expressions according to the de-
gree by which the input sets are interleaved. We prove the optimality of our algorithm by
presenting a matching lower bound sensitive to the interleaving measure. More specifically,
we group input instances into finely-sized classes possessing the same amount of interleav-
ing. The upper and lower bounds are asymptotically tight in each such class up to an
additive term that depends only on the number of sets and is independent of the set sizes.
In contrast, our worst-case optimal algorithms pessimistically assume that the input sets
are adversarially interleaved.

Finally, in Chapter 7, we generalize the expressions to include t-threshold operators
and develop a tight lower bound and a worst-case optimal algorithm for expressions that
consist of an arbitrary number of threshold operators.

1.3 Key Contributions

The most innovative technical contribution in the thesis is the lower bound we present in
Chapter 3. When the algorithm starts running the algorithm, it repeatedly probes different
parts of the input and get some information in response. Consider an external observer
who has no access to the value of sets members in the input, but observes the information
revealed to the algorithm. Roughly speaking, the idea is to show that the observer can
infer the way the members of the result set are distributed among input sets using this
information, and this way we obtain the lower bound using combinatorial approaches. But
the challenge is that this amount of information is not sufficient for the observer to infer
what it needs. So we change the model such that the external observer gets an extra bit
of information on the top of every bit revealed to the algorithm. This distinction between
the information revealed to the algorithm, and the information revealed to the external
observer is the key technique we used to develop the lower bound.

The algorithms we propose in Chapters 4 and 5 have similar structures. The target
running times in both depend only on set expression and sets sizes. As such, at the first
step they both analyzes the input expression and sets sizes, and independent of actual
values in sets, they decide on what order different parts of the input expression should
to be evaluated. So, in this approach, the expression is broken into a number of basic
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sub-expressions, which are evaluated in a static order. The algorithm in Chapters 4 is the
simpler one in the sense that these basic sub-expressions are pretty simple, like computing
the union or the intersection of a number of sets. In Chapter 5 where more operators are
allowed, however, each of the resulting basic sub-expressions can be much more complex
and may contain any number of operators. We design data structures and techniques to
evaluate these complex non-breakable sub-expressions.

In Chapter 6, we develop a novel frame work for adaptive algorithms. In previous
attempts for developing adaptive algorithms for various problems (as examples, please
refer to attempts for sorting problem [25] or sets expressions [36]), the difficulty of the
problem was defined as a single number, which then appears as an extra parameter in
lower bound analysis. In the approach we develop here, the inputs are divided into classes
based on how values are distributed in input sets, and then the goal for the algorithm is
to be worst-case optimal within each class. For the particular problem we study in this
thesis, we have basically two challenges in this framework. The first one is how to define
the input classes such that the easy and hard instances are distinguished, and the easiness
of the inputs are reflected in tights lower bounds we prove for classes. The second challenge
is that, unlike algorithm in previous chapters, the target running time depends on actual
sets members and is not clear from the beginning, so the previous framework where we
break the input expression to a number of basic sub-expressions and then compute the
sub-expression one by one do not work. Here we need to process all inputs sets in parallel,
and design efficient data structures to keep track of partial results as we proceed in inputs
sets.

In Chapter 7, for the first time we support a non-constant number of different operators
by allowing t-threshold operators for any value of t. This adds to the complexity of problem,
as it is no longer obvious even how to compute the maximum possible size of the final
result, given the expression and sets sizes. We show how we can compute the maximum
possible result size and other relevant metrics, and then successfully adapt the techniques
we developed in Chapter 3 to prove a lower bound. Then we use the ideas and data
structures we developed in Chapter 6 to design our algorithm for the problem.

Many of the results discussed in this thesis are based on collaborations with Alejandro
López-Ortiz, Arash Farzan, and Ehsan Chiniforooshan [20, 21, 22].
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Chapter 2

Preliminaries

2.1 The Problem

We study the problem of evaluating a set expression when the inputs are ordered sets and
the output is required to be an ordered set as well.

We use set expression trees to represent an input to the problem: every internal node v
of the tree corresponds to an operator in the input expression, which we denote by opr(v),
and each leaf corresponds to an input set in the expression (an atom). When we talk
about the expression tree (rather than the input), we are talking about the expression tree
without considering actual sets associated with leaves. The signature of an input is the
expression tree where leaves are assigned only the specific set size as opposed to actual
elements forming the set. See input I and its signature in Figure 2.1 for an example.
Note that many different inputs can have exactly the same signature. Given an input or
signature, we use size(v) to denote the size of the set corresponding to a leaf v.

The set operators that internal nodes may be assigned include union, intersection,
symmetric difference, difference (minus), depending on the variant of the problem we are
considering. If v is a minus node and the corresponding expression is A−B, the root of the
subtree corresponding to A is the left child of v and the subtree corresponding to B is the
right child of v. Also, each node is either a complement or a normal node. For example,
in the input I in Figure 2.1, aside from the third leaf from left, all other nodes are normal
nodes. When we are considering a variant of the problem where the input set expression
may not include complement operator, all nodes are normal nodes. When all nodes are
normal nodes and the set of internal nodes only consist of union and intersection nodes,
the expression tree (or the signature or input) is called a union-intersection one.

6



∩

∪

{1} {2,3}

∪

{1,2} {1,3}

∩

∪

{×} {×,×}

∪

{×,×} {×,×}

−

∪

{1} {2,3}

−

{1,2} {1,3}

The input I The signature of the input I The input J

Figure 2.1: The input I representing the expression ({1} ∪ {2, 3}) ∩ ({1, 2} ∪ {1, 3}) and
its signature. The input J is the least complement form of input I.

Given an input, it is easy to see that one can change the tree by propagating the
complements up to the root such that we end with an equivalent tree: i.e. the result of
the input remains unaffected (e.g. trees corresponding to expressions A ∩ B, A − B, and

A ∪ B are equivalent). We define two canonical forms for expression trees. A tree is in
minus-free form if none of it internal nodes is a complement node nor is assigned a minus
operator. Also, a tree is in least complement form if aside from its root, every node is a
normal node. For example, the input I Figure 2.1 is in minus-free form, and input J in
the figure is its equivalent in least complement form. If there is no complement node in
the tree, it is complement-free (like input J in the figure).

Lemma 1 Every tree has an equivalent in minus-free form.

Proof First we can see that any tree can be easily transformed to an equivalent tree
with no minus node: we just need to replace each subtree of form A−B with A∩B. Next,
given a tree with no minus node, we can start from top nodes, and propagate complement
operators to lower nodes: A ∩ B, A ∪ B, and A∆B are replaced with A ∪B, A ∩ B, and
A∆B, respectively. By repeating this, we can obtain a tree with no complement in internal
nodes. �

Lemma 2 Every tree has an equivalent in least complement form.

Proof Without loss of generality we assume each internal node of the tree has exactly
two children. The lemma can be proved using induction on the height of the tree. The
correctness of the lemma for just a leaf is clear. Suppose the lemma is correct for trees with
height less than that of tree T . Each of the two subtrees of T can be written in complement-
free form or as the complement of a complement-free expression. So T represents one of
the expressions in Table 2.1, where A and B are complement-free. Note that the obvious
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Expression Least-complement equivalent

A ∪ B B − A
A ∪ B A ∩B
A ∩ B A−B
A ∩ B A ∪B
A∆B A∆B
A∆B A∆B
A−B A ∩B
A−B A ∪B
A−B B − A

Table 2.1: How a tree can be converted to least complement form

cases of A∩B, A∪B, A−B, and A∆B where T is already complement-free are not listed.
As the table shows, in each case T can be converted to a least complement form. �

By Lemma 2, for every tree T we can obtain a complement-free tree which is either equiv-
alent to T or the complement of T .

For any input I, we can propagate the leaf sets to the internal nodes of I in a natural
bottom-up way. We define the result set of a node v in I, denoted by resI(v), or simply
res(v) when I is fixed, as follows: For a leaf v, depending on v being normal or complement,
res(v) is the set corresponding to v or its complement. For a normal internal node v, res(v)
is the result of the application of the operator opr(v) to the results of the children of v.
Similarly, when v is a complement internal node, res(v) is defined as the complement of
the result of applying opr(v) to the results of the children of v. By the result of an input I
we mean the result set of the root in I. Figure 2.2 shows an example.

∩ res={1,3}

res={1,2,3} ∪

{1} {2,3}

∪ res={2}

{1,2} {1,3}

Figure 2.2: An example of how the result set is computed.
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∩

∪

{1,2} ∩

{2,3,6} {3,4,5,6}

{2,3,4}

∩

∪

{1,2} ∩

{2,3,6} {3,4,5,6}

{2,3,4}

A sub-intersection tree (marked by dashes) show-
ing 3 is in the result set as it appears in all leaves
of the sub-intersection tree.

A sub-union tree (marked by dashes) showing 4
is not in the result set as it appears in no leaf of
the sub-union tree.

Figure 2.3: An example of sub-intersection tree and sub-union tree.

2.1.1 The Expression Tree

As explained, the trees are used to represent the input set expressions. A set expression
consisting of union and intersection operators can be rewritten as the union of a number
of intersection terms or the intersection of a number of union terms (where the same set
may appear in more than one term). The next two definitions translate this observation
to the tree space.

Definition 1 Given a complement-free expression tree T , a sub-union tree (a sub-intersection
tree) is a subtree U of T with the following properties:

1. It contains the root of T .

2. If it contains a union or delta (an intersection) node, it contains all of its children.

3. If it contains an intersection (a union or delta) node, it contains at least one of its
children.

4. If it contains a minus node, it contains its left child.

U is minimal if it contains at most one child of every intersection (union or delta) node.

Figure 2.3 shows examples of sub-intersection and sub-union trees.

When only union and intersection operators are allowed, a tree is equivalent to the
union of all of its sub-union trees, or the intersection of all of its sub-union trees. We can
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∩

∪

{1,3} {1,2}

∪

{1,2} {1,2,3}

Figure 2.4: The input is redundant on 1, but is tight on 2 and 3.

think of sub-union trees as providing evidence that any given value is not in the result set,
while a sub-intersection tree may provide evidence that it is in the result set. Figure 2.3
illustrates an example.

Observation 3 Given a union-intersection input I and a value a, the following state-
ments are equivalent:

1. a is in the result set of the root in I.

2. There is a sub-intersection tree of I in which every leaf has an element of value a.

3. There is no sub-union tree of I in which no leaf has an element of value a.

A set of sub-intersection trees U1, . . . , Uk is a partitioning of a sub-intersection tree T if
each leaf of T appears in exactly one of the Ui’s. It is easy to see that every sub-intersection
tree can be partitioned into a number of “non-partitionable” sub-intersection trees (we just
need to repeatedly partition partition-able sub-intersection trees into smaller ones until no
further partitioning is possible).

Given a union-intersection input I and a value a in the result set of I, as mentioned,
there is a sub-intersection tree of I where the set corresponding to every leaf of it contains a.
If I has two such sub-intersection trees that have no leaf in common, we say I is redundant
at a, otherwise I is tight at a. An input is tight if it is tight at every value in its result set.
Figure 2.4 shows an example.

There are some leaves in tree with the property that given any member of the set
associated with them, if an algorithm wants to prove that member is in the result of the
expression, it has to make at least one comparison on that member. As an example, a
leaf that is the child of an intersection node has this property: the algorithm has to make
sure the member also appears in other siblings of that leaf. On the opposite side, in the
expression tree A− B, A does not have this property, because if by chance the algorithm
finds all members of A are less than all members of B (say by comparing the biggest
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member of A to the smallest member of B), then the algorithm knows all members of A
are in the final result without looking at all of them. Roughly speaking, leaves in the tree
that do not have this property are called “shallow leaves”.

Definition 2 A leaf v of an expression tree T in least-complement form is a shallow leaf
if v has no intersection ancestor and has no minus ancestor u such that v is in the right
subtree of u.

Throughout the thesis, for an expression tree T , we denote the set of leaves of T by
leaves(T ). We use T [v] to denote the subtree rooted at a node v.

2.1.2 Elements

For a signature S and a leaf l, we introduce size(l) “symbolic elements” denoted by el1, . . . ,
el
size(l) where eli represents the ith biggest member of l. For simplicity of presentation we

add two sentinel elements el0 and el
size(l)+1. Then, for an input I with signature S, by the

I-value (or just value) of an element eli, where 1 ≤ i ≤ size(l), we mean the ith biggest
value in the set corresponding to l. We also define the I-value of el0 and el

size(l)+1 as −∞

and ∞, respectively. For e = eli, for some l and i, we use the expression valI(e
l
i), or just

valI(e), to denote the I-value of the element e. Furthermore, we may write val(e) when the
input we are talking about is clear from the context. For every i, we use next(eli) to denote
eli+1. For a leaf l, we use elements(l) to denote the sequence el1, . . . , e

l
size(l). For an input I,

an element e1 is I-smaller (I-bigger, respectively) than an element e2 if the I-value of e1
is smaller (bigger, respectively) than that of e2.

2.2 Restrictions on the Problem

2.2.1 Computation Model

In this thesis, we focus on comparison-based algorithms which are those that, for any input
I, use only comparisons on the input sets to compute the result. In this model, the
algorithm has oracle access to the value of the elements, which means that the algorithm
reads the signature of the input and can then submit queries of the form (x, y) to the
oracle, where x and y are two elements. Then, the oracle answers the algorithm with the
comparative values of x and y, that is, the algorithm is told whether the value of x is less
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than, equal to, or greater than that of y. In such situations we say x and y are touched by
the algorithm. In other words, an element is touched if it is compared to another element
by the algorithm.

Note that in this computation model, the algorithm does not notice any differences
between two inputs where elements have the same relative values.

Definition 3 Two inputs I and J of the same signature are equivalent if for every two
elements e1 and e2, e1 is I-smaller than e2 if and only if e1 is J-smaller than e2.

Observation 4 For any comparison based algorithm A and equivalent inputs I and J ,
A will make the same sequence of comparisons when run on I and J .

In the previous works for this problem in the comparison model, it is required that
each input set is given in sorted order. Then data structures, such as sorted arrays, are
used to represent the input sets in which the order of members within each set is implicitly
defined and the program does not need to do any further comparisons to extract them.
This assumption makes complete sense as pre-sorting input sets is not expensive when
multiple queries are going to be executed on the same sets.

2.2.2 Distinct Sets

In this thesis we consider only inputs where each set appears at most once in the corre-
sponding set expression. Note that this does not mean that, for example, {1, 2} ∪ {1, 2} is
not a valid input to the problem. We still can define the set expression A ∪ B and have
A = {1, 2} and B = {1, 2}. However, we do not consider expressions like A ∪ A. In other
words, there is no way for the algorithm to know two sets are equal before comparing their
members.

2.3 Input/Output format

2.3.1 Sorted Array

A sorted array is the simplest data structure we can think of as an input and output format
for this problem, considering the conditions explained in previous sections. Then, the sets
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associated with leaves will be given to the algorithm in the form of sorted arrays. However,
this degrades the performance of the optimal algorithm if we require it to return the output
in sorted array format. That is because in some situations the minimum effort required
to decide which elements should appear in the output and in what order is asymptotically
less than the number of such elements. As an example consider the case of A ∪ B where
|A| = 1 and |B| = n. Then, an algorithm can use binary search to figure out the order
in which elements appear in the output in O(log n) time. To resolve this, we will expect
the algorithm to specify subintervals of input sets that appear in the result, rather than
to write all elements of the result. This allows the algorithm to generate the output in
sub-linear time if possible. More precisely, we define the output format below. We use S[i]
to denote the ith element of a sequence S.

Definition 4 Consider an input I and a set S. A cross reference representation of S is
a sequence of items (v1, b1, b

′
1), . . . , (vn, bn, b

′
n) where, for every 1 ≤ i ≤ n, vi is a leaf in I

and 1 ≤ bi ≤ b′i ≤ size(vi), and for every 1 ≤ j < n, the b′jth element of vj is I-smaller

than bj+1th element of vj+1, and S = ∪n
i=1 ∪

b′i
j=bi
{valI(e

vi
j )}.

2.3.2 Balanced Search Trees

A drawback to selecting sorted arrays and cross reference arrays for input/output formats
is that with this choice, the input will have a different format from the output and thus the
output cannot be used directly in subsequent queries. Balanced search trees are considered
as an alternative to sorted arrays as they implicitly represent the total order between
elements as efficiently as in sorted arrays and they inherently support representation of
‘subranges’ (by selecting a number of subtrees) as in the cross-reference format.

2.3.3 Partially Expanded B-Tree

In this work, we use a slightly modified version of B-trees, which we define as follows.

Definition 5 A partially expanded B-tree T is a B-tree in which for some internal nodes
u, the subtree rooted at u is replaced with the sorted list of elements that are in that subtree.
The size of T is the total number of elements in T .

B-trees and sorted arrays are special cases of partially expanded B-trees. This choice
for our algorithms’ input/output format enables us to support the cases where the input
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sets are either sorted arrays, or B-trees. As we will discuss in Section 5.1.1, partially
expanded B-trees are as efficient as regular B-trees in the basic operations we need for our
algorithms.
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Chapter 3

Lower Bounds

In this chapter we discuss the minimum number of comparisons an algorithm must perform
in the worst case to solve the problem for an input. The worst-case analysis is done over
all inputs with a given signature. The techniques we develop in this chapter will be used
in analyzing adaptive running time in Chapter 6 as well.

3.1 The Expression Tree

In this section we introduce a number of functions and concepts needed to analyze different
parts of a given expression tree. Given an expression tree, a leaf function is a function
assigning integers to leaves of the tree. Recall that a signature is in fact an expression tree
together with a leaf function that specifies set sizes (which we denote by size).

3.1.1 Contribution of Nodes

Given an expression tree T and a leaf function f , we use capf (v) to denote the maximum
size of the result set of v in an input with expression tree T where the size of the set
associated with each leaf l is f(l) (in other words, the inputs for which f is the same as
the function size).

Definition 6 Given an expression tree T in least complement form and a leaf function
f , for a node v of T , capf (v) is defined as follows:
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∩ cap=4

cap=5 ∪

size=2 size=3

− cap=4

size=4 size=2

Figure 3.1: Maximum sizes of result sets based on the leaf function size.

• For a leaf l, capf (v) = f(v).

• For a union or a delta node v with children u1, . . . , uk, capf (v) =
∑k

i=1 capf (ui).

• For an intersection node v with children u1, . . . , uk, capf (v) = mink
i=1 capf (ui).

• For a minus node v with left child u1 and right child u2, capf (v) = capf (u1).

When talking about a specific signature S, we may use cap(v) to denote capsize(v), for
nodes v of the expression tree. In other words, for a given signature S and node v, cap(v)
is the maximum size of the result set of v among all inputs with signature S. Figure 3.1
shows an example.

For a union-intersection signature S and a given node v, the result set of a node v can
be as big as cap(v), but all these members do not necessarily contribute to the at most
cap(root) members of the result set of the whole tree. For better intuition, consider the
input in Figure 3.2. Here, although the union node has a maximum result set size of 12, at

∩

size=10

∪

size=5 size=7

Figure 3.2: Maximum contribution
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∩
R={2,3,4}

C={2,3,4}

R={1,2,3,4,6}

C={2,3,4}
∪

R={1,2,3}

C={2,3}
1,2,3 ∩

R={3,4,6}

C={3,4}

R={2,3,4,6}

C={3,4}
2,3,4,6 3,4,5,6

R={3,4,5,6}

C={3,4}

2,3,4
R={2,3,4}

C={2,3,4}

Figure 3.3: Result sets (denoted by R) and contribution sets (denoted by C) of nodes.

most 10 members out of these 12 members can appear in the result of the whole tree; the
rest will be filtered out by the intersection node in the upper part of the tree. Thus, the
contribution of this union node to the result of the whole tree will not be more than 10.

Definition 7 Given a union-intersection input, the contribution set of a node is the
intersection of the result sets of all of its ancestors including itself.

This way, we track the provenance of a value in the output set by following its promotion
through the expression tree. Figure 3.3 is an example. In an input an element e of a leaf
l is promoted if the value of e is in the contribution set of l. Moreover, two elements are
promoted together if they have the same value and they are both promoted. Next we define
the maximum possible size of the contribution set of a node as the “contribution limit” of
that node.

Definition 8 Given an expression tree T and a leaf function f , the contribution limit of
a node v, denoted by sharef (v), is defined as sharef (v) = minu capf (u), where the minimum
is taken over all ancestors u of v, including v itself.

Again, when talking about a signature S, for a node v, we may use share(v) instead of
sharesize(v).

Observation 5 In a union-intersection input I, the maximum size of the contribution
set of a node is the contribution limit of that node.
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Note that Observation 5 would not hold if we extended it to the trees containing minus
nodes. Intuitively, in a subtree A−B, the contribution limit of B is the maximum number
of members of result set of A that could concurrently appear in the result-set of B and so
be removed from result set of A−B. In other words, the contribution limit of B measures
how big the set of values that B causes to be removed from the contribution set of its
parent can be.

We observe that the values of capf and sharef for all nodes of an expression tree T can
be evaluated in time O(n), where n is the number of nodes in the tree.

3.1.2 Proof Labelings

Consider a scenario in which a set OT is the result set of the root of the tree. The elements
of OT stem from the leaves of the tree and move up the tree level by level according to
the operation nodes. We define the notion of proof labeling, which captures the trace-back
of nodes that had an impact on the presence of an element in the final result. A proof
labeling is formally defined as follows:

Definition 9 Consider a signature S with a complement-free expression tree. A function
Λ is a proof labeling for S if for any internal node v with children u1, u2, . . . , uk (from
left to right):

• if v is a union or delta node, then
⋃k

i=1 Λ(ui) = Λ(v),

• if v is an intersection node, then Λ(ui) = Λ(v), for 1 ≤ i ≤ k, and

• if v is a difference node, in which case i = 2, then Λ(u1) = Λ(v) and Λ(u2) ⊆ Λ(v).

A proof labeling is maximal if for every node v, |Λ(v)| = share(v).

It is easy to see that, if I is a union-intersection input, then the function assigning to each
v the set of values in the contribution set of v is a proof labeling. We call such function
the proof labeling corresponding to the input I. When we have minus nodes, the intuition
is a little different: for the right child of a minus node, a proof labeling captures trace-back
of values that could be in the result-set of the right child of the minus node, and if so,
prevent the minus node from having them in its contribution set.

Observation 6 For any proof labeling Λ for a union-intersection signature S and value
o in Λ(root), the set of nodes v with o ∈ Λ(v) is a sub-intersection tree.
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Recall the definition of an input being tight at a value from Section 2.1.1 and note that
if a proof labeling Λ corresponds to inputs I and J and I is tight, J is also tight. As such,
we define a proof labeling to be tight if it corresponds to tight inputs.

Lemma 7 Given a union-intersection signature S, any maximal proof labeling for S is
tight.

Proof Assume to the contrary that P is the maximal proof labeling corresponding to
an input I that is not tight on a value a. So, there are two sub-intersection trees T1 and
T2 of the tree, whose set of leaves are disjoint, and a appears in the result sets of all nodes
of T1 and T2 in I. Consider a value b bigger than a, but smaller than any other value
appearing in the input. We replace all occurrences of a in leaves of T2 with b. Then, b will
be in result sets (and so in contribution sets) of all nodes of T2, while a continues to be in
result sets of all noes of T1. So, we could find an input with the same signature but with
a bigger contribution set for the root. So the size of the contribution set of the root in I
was less than share(root), which contradicts P being maximal. �

The reader can observe that some proof labelings can be obtained from some other ones
by just applying a one-to-one monotonic function to set members; so among such a group
of proof labelings we choose one as the “canonical” one: we define a proof labeling P to
be canonical if P (root) = {1, . . . , k}, for some integer k. Also P is non-empty if P (v) 6= ∅
for every node v.

As comparison-based algorithms only work based on relative values of elements, rather
than their actual values, we can define the output as a sequence of elements rather than
the sequence of values in the result of the root. A solution is a sequence of elements, all
of which are promoted and the sequence of values of these elements is the same as the
sequence of the values in the result of the root in sorted order.

3.2 Overview

3.2.1 Lower Bound Outline

In this section we provide some intuition for the lower bound. A proof labeling can be
seen as a proof showing that certain members are in the result set of the input. In fact, a
maximal proof labeling at the same time can be a proof of the fact that no member other
than the ones in the proof labeling can be in the result set of the input (as the values in
the sets defined by the proof labeling leave no space for promoting any other elements).
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Informally speaking, we show that for any algorithm and any maximal proof labeling
P , there is an input I for which the algorithm follows the proof labeling P to figure out
which members are in the result set: for any leaf l and any value v in P (v), the algorithm
is shown to have searched for v in l, verifying if l has an element of value v.

The lower bound we propose for the problem has the following form:

∑

v∈deep

log

(
size(v)

share(v)

)

+ share(v)

︸ ︷︷ ︸

the first part

+
∑

v 6=root

log

(
share(p(v))

share(v)

)

︸ ︷︷ ︸

the second part

. (3.1)

Here p(v) is the parent of v and deep is the set of non-shallow leaves of the tree. As we
prove in this section, the second part in Equation 3.1 is the logarithm of the number of
canonical proof labelings, and the first part is the logarithm of the number of ways to select
elements represented in the proof labeling from actual members in leaves.

The correctness of this lower bound for general expression trees remains an open con-
jecture, but we prove it for complement-free trees with union, intersection, and delta
operators, and a possible minus at the root. In the next chapters, we provide algorithms
solving the problem in a time asymptotically matching this lower bound for all trees.

Conjecture 1 Given any signature S and any algorithm A, there is an input I with
signature S such that A needs the result of Equation 3.1 comparisons to evaluate the ex-
pression given by I.

To count the number of canonical proof labelings, we define the notation of
(

s

s1,...,sn

)
,

where s ≤
∑n

i=1 si, as the number of ways to select sets X1, . . . , Xn of sizes s1, . . . ,
sn, respectively, such that ∪n

i=1Xi = {1, 2, . . . , s}. Note that this definition matches the
traditional notation

(
s

s1,...,sn

)
when s =

∑n

i=1 si. The next lemma counts the number of
proof labelings.

Lemma 8 Given a signature S, the logarithm of the number of maximal canonical poof
labelings is

∑

opr(v)=−

log
(
share(v)
share(u)

)
u is the right child v

+
∑

opr(v)∈{∪,∆}

log
(

share(v)
share(u1),...,share(uk)

)
u1,. . . ,uk are children of v.

20



Proof The number of canonical proof labelings for S is the number of ways to define
Λ(v), for nodes v, by distributing values in Λ(root) = {1 . . . n} in the tree, all the way down
to the leaves, such that for each node v conditions of Definition 9 hold and |Λ(v)| = share(v),
for every node v.

Let us start from root and count the number of choices we got at each node. At an
intersection node v, there is only one choice: every element appearing in Λ(v) has to appear
in Λ(u) for all children u of v. At a union or delta node, the distribution should be such
that in addition to satisfying |Λ(u)| = share(u), for children u of v, Λ(v) is the union of
Λ(u), for children u of v. So the number of choices is

(
share(v)

share(u1),...,share(uk)

)
where the ui’s are

the children of v. Finally when v is a minus node, there is only one choice for the left child
of v (it has to inherit all elements in Λ(v)), but the right child u of v can be assigned any
subset of size share(u) of Λ(v). Hence, in total, the logarithm of number of choices is what
mentioned in the lemma. �

The next lemma helps to rewrite the newly defined notation
(

s

s1,...,sn

)
, which appears

also in our lower bound, using the traditional notation
(
a

b

)
.

Lemma 9 For values s and s1, . . . , sn where s ≤
∑n

i=1 si, we have

log

(
s

s1, s2, . . . , sn

)

≥
1

2

n∑

i=1

log

(
s

si

)

.

Proof Defining ti = min
{

s,
∑i

j=1 sj

}

and t′i = min
{

s,
∑n

j=i sj

}

, for 1 ≤ i ≤ n,

and t0 = t′n+1 = 0, we prove the lemma in two steps. First we show that log
(

s

s1,...,sn

)
≥

∑n

i=1 log
(
t′i
si

)
and log

(
s

s1,...,sn

)
≥
∑n

i=1 log
(
ti
si

)
. Therefore, 2 log

(
s

s1,...,sn

)
≥
∑n

i=1

(

log
(
ti
si

)
+ log

(
t′i
si

))

.

Then we prove
(
ti
si

)(
t′i
si

)
≥
(
s

si

)
, which implies log

(
ti
si

)
+ log

(
t′i
si

)
≥ log

(
s

si

)
. These two facts

together show that 1
2

∑n

i=1 log
(
s

si

)
≤ log

(
s

s1,...,sn

)
which concludes the lemma.

Claim 1. log
(

s

s1,...,sn

)
≥
∑n

i=1 log
(
t′i
si

)
and log

(
s

s1,...,sn

)
≥
∑n

i=1 log
(
ti
si

)
.

We prove the first inequality; the second one can be proved similarly. Consider an
arbitrary set X = {x1, . . . , xs} of size s. First, we prove by induction on i that the number
of ways to select subsets X1, . . . , Xi of sizes s1, . . . , si of X such that |X −∪i

j=1Xj| ≤ t′i+1

is greater than or equal to
∏i

j=1

(
t′j
sj

)
. Then, the induction hypothesis for i = n proves the

claim.

The base case where i = 0 is trivial. We show that if sets X1, . . . , Xi−1 have been
selected such that |Xj| = sj for every j, 1 ≤ j ≤ i − 1, and |X − ∪i−1

j=1Xj| ≤ t′i, there are
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at least
(
t′i
si

)
ways to choose the set Xi of size si such that |X − ∪i

j=1Xj| ≤ t′i+1. Define

Y = X−∪i−1
j=1Xj. Since |Y | ≤ t′i, there exists a set Y ′ of size t′i such that Y ⊆ Y ′ ⊆ X. For

every subset Xi of size si of Y
′, we have |Xi∩Y | ≥ si−|Y

′−Y | = si−(t′i−|Y |). Therefore,
|Y −Xi| ≤ t′i − si ≤ t′i+1 while Y −Xi = X − ∪i

j=1Xi. However, Xi is an arbitrary subset

of size si of Y
′ with size t′i. Hence, there are

(
t′i
si

)
choices for Xi.

Claim 2. For every i, 1 ≤ i ≤ n,
(
ti
si

)(
t′i
si

)
≥
(
s

si

)
.

We consider the set X = {x1, . . . , xs}, and define

Y = {x1, . . . , xti} and
Y ′ = {x1, . . . , xsi , xti+1, . . . , xs}.

Hence, |Y | = ti and |Y
′| ≤ t′i. We define a subset pair as a pair (A,B) such that |A| =

|B| = si, A ⊆ Y , and B ⊆ Y ′. Clearly the number of subset pairs is at most
(
ti
si

)(
t′i
si

)
.

We now prove that the number of subset pairs is greater than or equal to the number of
subsets of X of size si, which is

(
s

si

)
. We define the result of a subset pair (A,B) as the

set (A− Y ′) ∪ (B − Y ) ∪ (A ∩ B). For every subset S ⊆ X of size si, we can construct a
subset pair T = (A,B) such that the result of T is S. Since S ⊆ Y ∪Y ′ and |Y ∩Y ′| = |S|,
|(Y ∩ Y ′) − S| = |S − Y ′| + |S − Y |. Therefore, there are disjoint subsets X ′ and X ′′ of
Y ∩ Y ′ of sizes |X ′| = |S − Y ′| and |X ′′| = |S − Y |, such that X ′ ∪X ′′ = (Y ∩ Y ′)− S. If
we define A = ((Y ∩ Y ′)−X ′) ∪ (S − Y ′) and B = ((Y ∩ Y ′)−X ′′) ∪ (S − Y ), it is easy
to verify that (A,B) is a subset pair and its result is S. �

3.2.2 Overview of the Proof

In this section, we propose two lower bounds which, if proved, together show the correct-
ness of Conjecture 1. We prove the first lower bound for the most general type of trees.
Although proving the second lower bound seems difficult in the general case, we show its
correctness on various types of expression trees. These trees consist of union, intersection
and symmetric difference operator nodes with a possible difference operator as the root
node, but no complement node at all. We conjecture that the second lower bound applies
even for arbitrary trees.

We introduce an adversary B which arbitrarily chooses a maximal proof labeling Λ
among all possible maximal proof labelings and answers queries according to it so that
Λ(root) becomes the result of the root node. The adversary fixes the input gradually such
that it is always consistent with the history of the queries it has answered.
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As the algorithm has access to only the relative values of elements, we can consider
whatever value set we like for the input being constructed by the adversary (see Obser-
vation 4). For convenience in this chapter, members of Λ(root) and the sets associated
with leaves in the input being fixed will be triples of integers which are compared in a
lexicographical manner. In particular, members of Λ(root) are of the form (i, 0, 0), where
1 ≤ i ≤ |Λ(root)| is an integer.

The adversary B divides the sequence of members of every leaf v of T into |Λ(v)|

consecutive regions of size
⌊
size(v)
|Λ(v)|

⌋

or
⌈
size(v)
|Λ(v)|

⌉

. Each of the |Λ(v)| regions in a leaf is named

after the corresponding element in the maximal proof labeling Λ(v): if the ith smallest
member of Λ(v) is (a, 0, 0), then the ith region of v is called an a-region.

In any a-region R, there is exactly one element with a value ‘close’ to the value (a, 0, 0),
more precisely, with a value (a, 0, x), for some x. This element is called the crucial member
of R. The only role of non-crucial members of a region is to “hide” the position of the
crucial element and prevent the algorithm to find it fast. The reason why the value of the
crucial member of an a-region is ‘close’ to (a, 0, 0), but not exactly equal to it, is to enable
the adversary to force the algorithm to make enough comparisons between crucial members
of different a-regions before making sure that if any value ‘close’ to (a, 0, 0) is in the result
set of the root. For better intuition, consider the tree in Figure 3.4. and suppose all leaves

∩

A ∪

B C

Figure 3.4: Example tree of leaves with a-regions

A, B, and C have a-regions, for some a. If the algorithm first finds the crucial members
of a-regions of A and B and compares them, the adversary says they are not equal, so the
algorithm needs to also find crucial member of the a-region of C and compare it to those
of A and B before knowing whether any value of the form (a, 0, x), for some x, is in the
result set of the whole tree.

We now explain the role of each of the three coordinates in the values of elements.

First coordinate: The first coordinate of each member of an a-region is equal to a. These
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values, which are fixed from the beginning, are used to force every element of an a-
region to be smaller than every element of a b-region when a < b.

Second coordinate: The second coordinate of the crucial member of an a-region is ‘0’
and that of non-crucial members is non-zero. This way, as promised, only crucial
members of a-regions have values ‘close’ to (a, 0, 0). The adversary does not fix
second coordinates from the beginning. So it is not clear from the beginning which
member is crucial. The adversary fixes the second coordinate of each member of
an a region when the algorithm touches it for the first time in such a way that the
algorithm does not reach the crucial member of a region before touching sufficiently
many non-crucial members of that region.

Third coordinate: The third coordinate is irrelevant for non-crucial members. It deter-
mines the relative values of crucial members of a-regions, for each value of a, and
is the adversary’s means to prevent crucial members of a-regions to be promoted in
the tree before all of them are touched by the algorithm and enough comparisons are
made between them.

Our first and second lower bounds are obtained by choosing appropriate strategies for
determining the second and the third coordinates respectively.

3.3 The First Lower Bound

With our first lower bound, we show that given any signature, the number of comparisons
needed by any algorithm for inputs with that signature exceeds the first part of Equation 3.1
in the worst case.

The strategy is to determine the second coordinates of triples of any a-region R, for
any a, in such a way that A does not touch the crucial member of R before touching
log |R| members of R, where |R| denotes the length of R. Also, we will show that the
algorithm will be forced to touch all crucial members. These two facts together prove that
the algorithm needs to touch the desired number of elements (as specified by the first part
of Equation 3.1) overall.

3.3.1 The Binary Search Strategy

We first explain the strategy of determining second coordinates of the triples.
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The idea is essentially similar to binary searching. For every region R we consider a
variable S pointing to a subsequence in R, showing the subsequence in which the crucial
member hides. At the beginning the part pointed to by S is the whole of R. After touching
each element e in S, the adversary decides to hide the crucial member in the half of S that
does not include e, thus cutting the size of S to no less than half.

Now we explain the details. At any point, the second coordinate of every member in
R \ S is already fixed: the second coordinate of every member of R \ S placed before
members of S is at most −|S|, and the second coordinate of every member of R \ S
placed after members of S is at least |S|. Now whenever a member s of S is touched,
if s is the only member of S, the algorithm has found the crucial member of R, so the
adversary sets the second coordinate of s to zero, marking s as the crucial member of R.
Otherwise, depending on whether s is in the first half or in the second half of S, B considers
s and members of S placed after or before s, fixes second coordinates of these members as
explained in Algorithm 1, and deletes them from S. Figure 3.5 shows an example.

Algorithm 1: How to determine the second coordinates of members.

if |S| = 1 then
– set the second coordinate of s equal to zero;
– set S equal to the empty sequence;

else
suppose s is the ith member of R;
if i < |S| − i+ 1 then

– assign values −(|S| − 1), −(|S| − 2), . . . , −(|S| − i) to the second
coordinates of the first i members of S;
– Remove the first i members of S from it;

else
– assign values i− 1, i, . . . , |S| − 1 to the second coordinates of the last
|S| − i+ 1 members of S;
– Remove the last |S| − i+ 1 members of S from it;

end

end

If n is the length of S for a region R, by touching a member of R the length of S is
reduced to at least ⌊n

2
⌋. Since the value of 0 is not assigned to the second coordinate of any

member unless |S| = 1, log |R| members of R must be touched before the crucial member
of R is touched.
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Figure 3.5: An example of how second coordinates of a region for a leaf are determined.
Each row shows the second coordinates of elements after touching the element indicated
by an arrow.

Whenever a member is touched for which the second coordinate has not been deter-
mined before, before attempting to answer the query, B determines the second coordinate
according to the method we described here. A leaf l has |Λ(l)| crucial members, each in a

region of size at least
⌊
size(l)
|Λ(l)|

⌋

. Therefore, we have the following lemma.

Lemma 10 If all crucial members of L ⊆ leaves(T ) are touched by an algorithm A in
interaction with the adversary we described, then A has submitted at least

∑

l∈L

|Λ(l)|

(

1 + log

⌊
size(l)

|Λ(l)|

⌋)

queries.

3.3.2 Touching all Crucial Elements

In this section, we prove that the adversary can force the algorithm to touch all crucial-
members of leaves by its queries. The proof we present in this section is similar to but less
sophisticated than that of the second lower bound presented in Section 3.4.

As queries (x, y) arrive, in most cases the adversary can decide whether x < y, x = y,
or x > y only by looking at the first two coordinates of x and y (and if necessary following
the aforementioned approach to determine these coordinates). The exception is when x
and y both are crucial members of a-regions for some (a, 0, 0) ∈ Λ(root). In these cases,
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the first two coordinates of x and y are the same. The third coordinate of elements are
set by the adversary at the first time they are touched and determine the relative values
of crucial members of a-regions.

Let us fix an element (a, 0, 0) ∈ Λ(root) and focus on the strategy of the adversary
in determining the third coordinate of crucial members of a-regions. The goal of the
adversary we describe in this section is to make the algorithm touch all crucial members.
The adversary will work for the most general type of trees. In the next section we will
redesign the strategy of the adversary for determining third coordinates in such a way that
the algorithm needs not only to touch all crucial members, but also to make sufficiently
many comparisons between them. This will allow us to obtain a better lower bound (which
matches the worst-case running time of our algorithm presented in Chapter 5). However,
that adversary works only for a more limited type of trees.

For simplicity, we assume the tree is in minus-free form (see Lemma 1). We create a
subtree of the original tree, denoted by T (a), that consists of nodes v for which Λ(v) contain
(a, 0, 0). By the result of result of T (a) we mean the result of the input if only members of
a-regions are considered.

From now on in this section and also in Section 3.4, we may use a leaf ℓ of T (a) and the
crucial member of the a-region of ℓ (if it exists) interchangeably. For example, when talking
about query (ℓ1, ℓ2), for leaves ℓ1 and ℓ2 of T (a), we mean the query made between crucial
members of a-regions of ℓ1 and ℓ2, or similarly we may talk about the third coordinate of
a leaf, or a leaf being touched.

As mentioned before, the goal of the adversary is to ensure the result of T (a) cannot
be computed unless all the leaves of T (a) are touched. Here is the approach the adversary
takes to set the third coordinate of a leaf ℓ when it is touched.

1. Let v be the lowest ancestor of ℓ that has at least another descendant leaf other than
ℓ in T (a), that is not touched. If there is no such ancestor, then ℓ is the only leaf of
T (a) that is not touched. In this case,

(a) If ℓ is a normal node, the adversary sets the third coordinate of ℓ to zero.

(b) Otherwise, if ℓ is a complement node, the third coordinate is set to a unique
positive integer.

2. If the ancestor v exists and one of the following holds:

(a) v is an intersection node and ℓ is a normal node, or

(b) v is a union or delta node and ℓ is a complement node,
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then the adversary sets the third coordinate of ℓ to zero.

3. Otherwise (i.e. in cases not covered above), the adversary sets the third coordinate
of ℓ to a unique positive integer.

Suppose queries are answered in this manner, and v is an internal node with at least
one untouched node, and u is a child of v whose all leaves are touched. We can see that if
v is an intersection node, (a, 0, 0) is in the result set of u; otherwise (a, 0, 0) is not in the
result set of u. Therefore, for each internal node v with at least one untouched node, it
is not determined yet if (a, 0, 0) is in the result set of v or not. Thus, assuming that T (a)

has at least two leaves, the adversary guarantees at any point that the algorithm does not
have enough knowledge to ensure (a, 0, 0) is in the root result, unless all the leaves of T (a)

are touched.

Lemma 11 There is an adversary that can force A to touch all crucial members of all
regions of non-shallow leaves of T .

Lemmas 10 and 11 prove our first lower bound, as expressed in the next theorem.

Theorem 12 (First Lower Bound) There is an adversary that forces A to submit at

least L1 =
∑

l∈deep |Λ(l)|
(

1 + log
⌊
size(l)
|Λ(l)|

⌋)

queries, where deep is the set of non-shallow

leaves of the tree.

3.4 The Second Lower Bound

Given a signature S, our goal in this section is to show that the adversary can select any
maximal proof labeling of S at the beginning, and act in such a way that the algorithm is
forced to collect enough information to be able to discover S. We then will use this result
to obtain information theoretic lower bounds on the number of queries submitted by the
algorithm.

In order to achieve this goal we need to make our computational model a little bit more
generous to the algorithm and, for each query the algorithm submits, let the algorithm get
some more information than just the regular answer to its query. We should note that for
each query submitted by the algorithm, we will give only one extra bit of information, in
addition to the regular answer to the query, and so it will affect the resulting lower bound
only by a constant factor. We will discuss this in a formal way later on.
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Here is the explanation of the extra information given to the algorithm. We define two
crucial members to be similar if they both belong to a-regions for some 1 ≤ a ≤ |Λ(root)|.
Whenever a query (a, b) is submitted, in addition to the regular answer to the query, the
algorithm is given one extra bit of information which is 1 only if a and b are two similar
crucial elements.

Next we show how the algorithm will be able to infer the maximal proof labeling from
information revealed to it. We create a graph G on all elements where there is an edge
between two elements if they are compared by the algorithm. The next definition specifies
how the adversary will make the proof labeling computable for the algorithm.

Definition 10 At the end of the interaction, we say the adversary is in a winning state
if the next two conditions hold.

1. The algorithm has submitted enough queries such that for any a, 1 ≤ a ≤ |Λ(root)|,
the subgraph induced by crucial members belonging to all a-regions is connected.

2. All members of Λ(root) are in the result set of the root.

The next lemma shows why the definition satisfies our goal.

Lemma 13 At the end of the interaction between an adversary and algorithm, if the
adversary is in a winning state, one can determine the maximal proof labeling using the
information revealed to the algorithm.

Proof By definition of the winning state, for every crucial element e, the algorithm
knows the set of all crucial elements similar to e. Also, at the end, the algorithm has
computed a solution for the instance, which means the algorithm knows a sequence of
promoted elements whose sequence of values is Λ(root) in increasing order. So, for each
a where (a, 0, 0) ∈ Λ(root), the algorithm knows all leaves l where (a, 0, 0) ∈ Λ(l), that
is, the algorithm knows Λ(l) for all leaves l. Therefore, the algorithm can compute the
function Λ for any node. �

Similar to Section 3.3, the adversary B knows how to answer queries (x, y) if either of x
or y is not a crucial member or if x and y are not similar, based on the first two coordinates
of x and y. Our adversary in this section differs from the adversary in Section 3.3 in the
way it sets the third coordinate of crucial members. We again focus on a particular value
a, 1 ≤ a ≤ |Λ(root)|, and discuss queries (x, y) where x and y are crucial members of
a-regions. Also, as mentioned we use a leaf l of T (a) and the crucial member of the a-region
of l interchangeably.
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Each condition in Definition 10 can be broken down into |Λ(root)| independent condi-
tions, one for each member of Λ(root). For each value a, 1 ≤ a ≤ |Λ(root)|, we monitor
the interaction between the algorithm and the adversary on crucial members of a-regions
independently, and try to ensure that the adversary satisfies conditions 1 and 2 for that
particular value of a. So let us fix a value a, 1 ≤ a ≤ |Λ(root)|, consider the tree T (a), and
focus on the queries made between crucial members of a-regions of leaves of T (a). We also
only consider the subgraph of G induced by crucial members of a-regions of leaves of T (a),
and denote it by Ga. Moreover, the label of the edge between members a and b is ‘<’, ‘=’,
or ‘>’, if B’s answer to the query (a, b) is <, =, or >, respectively.

A and B play the following game on T (a): the algorithm submits queries comparing two
leaves and B responds in a non-contradictory manner. The game finishes when A has a
proof that the result of T (a) is empty or not empty. B aims to avoid ending of game before
Ga becomes connected, and also to make sure the result of T (a) is non empty at the end.

We use the following general schema for setting the third coordinates of leaves (i.e. of
the crucial members of a-regions of leaves). We never set the third coordinate of a leaf to
a negative value, and we may set it to zero only at the very end of the game. Moreover,
there is a global variable called eliminator, which is initialized to the number of leaves of
the tree. This variable is used whenever the adversary wants to set the third coordinate of
a leaf ℓ to a positive value: it sets that coordinate to the current value of eliminator, and
eliminator is decreased by one. From that point, we say ℓ is eliminated.

Observation 14 If a leaf ℓ1 is eliminated before a leaf ℓ2, the third coordinate of ℓ1 is
greater than that of ℓ2.

Since Ga is connected for n = 1, we can assume that n > 1, and hence, for every leaf ℓ
of T (a), ℓ is a non-shallow leaf.

Let (ℓ
(i)
1 , ℓ

(i)
2 ) be the ith query between crucial members of a-regions of leaves of the

tree submitted by A. In order to respond to this query, B looks at the third coordinates of
ℓ
(i)
1 and ℓ

(i)
2 . If both ℓ

(i)
1 and ℓ

(i)
2 are eliminated, then B can answer the query without doing

anything further. If only one of them, say ℓ
(i)
1 , is eliminated, then B answers ℓ

(i)
1 > ℓ

(i)
2 ,

without setting the third coordinate of ℓ
(i)
2 . Due to Observation 14, this is consistent with

future queries. The final case, which is more involved, is the case in which none of ℓ
(i)
1 and

ℓ
(i)
2 are eliminated. In the rest of this section we explain the strategy for dealing with this
case.

We introduce a number of invariants that, due to the way the adversary responds to
the query, as we will prove, hold during the game. The first invariant comes from the fact
that a leaf eliminated from the tree will not be equal to every non-eliminated leaf.
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Figure 3.6: (a): Example of how eliminated leaves (indicated by ’×’) make parts of tree
“unimportant” (marked by dashes). (b): Example of the graph G=a where Invariant 2 holds.
The connections between leaves of the tree are edges of G=a .

Invariant 1 The crucial member of the a-region of an eliminated leaf is not promoted.

Inspired by this fact, we say a node v of T (a) is unimportant if any of the following conditions
holds:

1. v is an eliminated leaf.

2. opr(v) ∈ {∪,∆} and all the children of v are unimportant.

3. opr(v) = ∩ and at least one of its children is unimportant.

4. v is a descendant of an unimportant node.

All other nodes are called important nodes. Figure 3.6(a) is an example. Due to Invariant 1,
it is easy to see that the crucial member of the a-region of an unimportant leaf cannot be
promoted.

We say two leaves are united if they are proven to have equal third coordinates. More
formally, they are united if they are in the same connected component of G=a , where G

=
a is

the result of removing all edges from Ga excepts those with label ‘=’. An important leaf
that is united with a leaf ℓ is called a backup for ℓ. Note that every leaf is united with
itself, and so every important leaf is a backup for itself.
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Invariant 2 At any point, every non-eliminated leaf has a backup.

Invariant 2 guarantees that any unimportant leaf, which can be ignored by the algorithm
as it has no influence on the result of the tree, is connected to an important one, which
prevents the tree from being disconnected when something is promoted. See Figure 3.6 for
an example.

Given a node v and a leaf ℓ of T (a)[v]1, ℓ is v-restricted if v is not united with any
important leaf outside T (a)[v]. As an example, in Figure 3.6(b), for v the right child of the
root, the leaf G is v-restricted. A node v with a v-restricted important leaf in its subtree
is incomplete. For example, in the tree of Figure 3.6(b), the right child of the root is an
incomplete node while the left child of the root is complete. The next invariant guarantees
that if v is an incomplete node, by eliminating its v-restricted nodes, we can make the
result of v empty, which intuitively means the result set of v cannot be determined to be
empty without looking at values of v-restricted leaves.

Invariant 3 For any incomplete node v, any sub-intersection tree of v has a v-restricted
leaf.

For a union node v, we do not want a situation where v has a complete important
child u1, and at the same time, an incomplete important child u2 To see why, note that
leaves of u1 are unified with other leaves and we may not be able to eliminated them in the
future. Hence, this situation may enable the algorithm to finish the game before making
u2 complete. So we will ensure that the next invariant also holds.

Invariant 4 For every incomplete union node v, every important child of v is incomplete.

Furthermore, once an important union node v gets complete, we want that only one
child of v remains important. This will ensure that at the end at most one child of a union
node has a non-empty contribution set, which means a union node will behave the same
as a delta node. So we can treat delta nodes the exact same way we treat union nodes,
which simplifies the problem.

Invariant 5 An important complete union node v has exactly one important child.

Lemma 15 If Invariants 4, and 5 hold, Invariant 3 also holds.

1For a tree T and a node v, T [v] is the subtree of T that includes v and all of its descendants in T .
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Figure 3.7: The ancestors number 1 and 2 of C are complete with C. But the ancestor
number 3 of C is not complete with C and so it is the effective ancestor of C.

Proof We use induction on the height of a node v to show the correctness of Invariant 3
for v and any sub-intersection tree U of v. The invariant clearly is true for leaves v. If
v is an incomplete union node and u is a child of v in U , by Invariant 4, u is incomplete
and so by induction U has a u-restricted leaf, which is also v-restricted. Next suppose v is
an incomplete intersection node, that is, there is an important v-restricted leaf l in T [v].
Consider the lowest ancestor u of l in U . Clearly u is a union node. By induction u is not
incomplete. The node u has at least two important children: an ancestor of l and a node
in U . This is a contradiction with Invariant 5. �

When all important v-restricted leaves of a node v are united with a leaf ℓ of T [v], we
say v is complete with ℓ. We define the effective ancestor of a leaf ℓ to be the first (lowest)
ancestor v of ℓ that is not complete with ℓ. The example in Figure 3.7 illustrates the
concept. If v is the effective ancestor of ℓ, the result of any node on the path connecting
v to ℓ, excluding v, depends on ℓ: if ℓ is eliminated, nothing from their subtree may be
promoted, but if ℓ is not eliminated, this might be the case.

A leaf ℓ with effective ancestor v is eliminable if v is a ∪ or ∆ node, or v is a minus
node and l is in its right subtree. When an eliminable node l is compared to another node,
the strategy is roughly to eliminate l so that we can keep Invariant 4 true. In order to do
that, we need to avoid situations where leaves l1 and l2 are united and are descendants of
two different children of a union node v and the effective ancestor of l1 is v, because then
by eliminating l1, the l2 also gets eliminated, and this way, a subtree containing l2 may get
unimportant before it gets complete. See Figure 3.8 for an example. So, we make sure the
following invariant holds during the game.
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Figure 3.8: In this example, the effective ancestor of the leaf A is a union node (the root,
in this example), and so A is eliminable. A is united with C which is a descendant of a
different child of the union node, Now if A gets eliminated, C and D both get unimportant,
while D has no backup.

Invariant 6 For an eliminable leaf l with an effective ancestor v, there is no important
leaf l′ united with l unless l and l′ are descendants of the same child of v.

Lemma 16 Suppose all invariants 1 to 6 hold at some point during the game, the algo-
rithm submits a query(ℓ1, ℓ2), and the adversary responds according to Algorithm 2. Then,
after the adversary response, invariants 1 to 6 still hold.

Proof We consider two cases based on any of ℓ1 and ℓ2 having an eliminable backup.
First suppose one of them, say ℓ1, has an eliminable backup and the adversary eliminates
ℓ1 by his response. Suppose v is the effective ancestor of ℓ1 and u is the child of v such
that ℓ1 is in T [u]. By Invariant 6, every backup of ℓ1 is in T [u], all being eliminated by this
response. So, by eliminating ℓ1, only elements in T [u] may become unimportant. Also,
there is no node not united with ℓ1 that is u-restricted. So every u-restricted node finds
a new backup ℓ2. Thus after the operation Invariant 2 remains true. Invariants 4 and 5
also remain true because the whole subtree T [u] becomes incomplete and importance and
completeness of any other node does not change. So by Lemma 15, Invariant 3 will also
hold. Invariant 6 also will be true because no new node becomes eliminable.

Next suppose both ℓ1 and ℓ2 are non-eliminable and hence the response will be equality
of ℓ1 and ℓ2. Suppose v1 and v2 are effective ancestors of ℓ1 and ℓ2, respectively, and u1

and u2 are children of v1 and v2, respectively, such that ℓ1 is in T [u1] and ℓ2 is in T [u2]. It
is easy to see that after the response v1 and v2 remain incomplete and so no node outside
T [u1] and T [u2] becomes complete, while after the response u1 and u2, which are children
of an intersection node, will be complete. So Invariants 4 and 5 remain true. Moreover, if

34



Algorithm 2: How to determine the third coordinates of members.

if ℓ(i)1 is united with ℓ(i)2 then
answer ‘=’;

else
if ℓ(i)1 has an eliminable backup l then

eliminate l and return ℓ(i)1 > ℓ(i)2.
else

if ℓ(i)2 has an eliminable backup l then
eliminate l and return ℓ(i)2 > ℓ(i)1.

else
answer ‘=’;

end

end

end

any leaf l becomes an eliminable node by this response, it is in T [v1] and is v1-restricted,
or it is in T [v2] and is v2-restricted. So Invariant 6 will also hold. �

Now we can see why the strategy we designed for the adversary works. All we need to
show is that at the end all non-eliminated nodes are connected. If the root of the tree is a
minus node, the right child of the root should be eliminated, otherwise its result set could
be non-empty which would mean the result of the whole tree is empty. When the game
finishes the algorithm knows a sub-intersection tree all of whose leaves are important and
unified. But from Invariant 5 we know a complete node has only one-intersection tree in
which all leaves are important. So this means at the end all important leaves are unified
and thus by Definition 10 the adversary is in a winning state. Therefore, by Lemma 13,
using the information revealed to the algorithm, one can compute the proof labeling.

We showed that for each canonical proof labelings, there is an input where one can
find the proof labeling by looking at the input signature and the interaction between the
algorithm and the adversary. Suppose there are N canonical proof labelings for a signature
S, and an algorithm A performs at most c comparisons on inputs with signature S. Since
on each comparisons made by the algorithm, there are six possibilities for the response
we get from the adversary (the result of the comparison, and the extra bit the adversary
reveals), there are totally at most 6c distinct sequence of responses we may see from the
adversary, and hence, the number of distinct canonical proof labelings for the signature
may not exceed 6c. Thus, c is at least a constant factor of logN which by Lemma 8 is a
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constant factor of the second part in Equation 3.1. This proves the following theorem.

Theorem 17 For a signature S, given that there is no complement node in the tree and
aside from root, every node is a union or intersection node, Conjecture 1 holds.
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Chapter 4

The Worst-Case Optimal Algorithm

In this chapter we present our first algorithm which:

• works on sorted arrays as input format and the output is in cross reference format,

• the input is a union-intersection input, and

• the algorithm is worst-case optimal.

Throughout this chapter we assume the parent of every intersection node is a union node
and vice versa. Obviously this does not reduce the generality of the problem as one can
always merge an internal node with its parent if they have the same operator.

To present the algorithm, we need to first explain two special cases of the problem in
Section 4.1; these two sub-problems will be used in the algorithm for the general prob-
lem, which is presented in Section 4.2. Then in Sections 4.3 and 4.4 we investigate the
correctness and analyze the running time of the algorithm and show it matches the lower
bound.

4.1 Special Cases

First we study two special cases separately; these special problems will be used in solving
the general problem.
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4.1.1 Special Case: Union of Sets

The first special case involves evaluating the union of a series of sets: X1 ∪X2 ∪ . . . ∪Xk.
Hwang and Lin [31] studied this problem for k = 2. They showed how to compute A ∪ B

with tight lower and upper bounds of Θ
(

log
(
|A|+|B|

|A|

))

.

Algorithm 3 is a solution we suggest for the more general case where k can have values
greater than two.1 It has some similarities with the Huffman algorithm [29]: each time it
selects two of the smallest sets and replaces them with their union. We use this similarity
in analysis of the algorithm.

Algorithm 3: SimpleUnion(X )

Data: X : collection of input sets
Result: The union of the sets inside X

while there is more than 1 set in X do
Select the two smallest sets in X , call them Xa and Xb;
Compute Xa ∪Xb, using the trivial merge algorithm in O(|Xa|+ |Xb|);
Replace Xa and Xb in X with Xa ∪Xb;

end

Report the only set in X as the result;

Fixing the number n of the sets in X and their sizes, we first show that the worst-case
scenario of Algorithm 3 happens when all sets in X are disjoint. To show this intuitive
fact, we use the following notation. For a given sequence A = a1, . . . , an of integers, we use
sorted(A) to denote the sequence of elements of A in sorted order (which is of the same
length n). Also, for two sequences A = a1, . . . , an and B = b1, . . . , bn of the same length,
we say A ≤ B if ai ≤ bi for all 1 ≤ i ≤ n.

Lemma 18 For sequences A and B of the same length, if A ≤ B then sorted(A) ≤
sorted(B).

Proof We use induction on the length n of A and B to prove the lemma. For n = 1 the
lemma is obvious. Suppose n > 1 and A = a1 . . . , an, and B = b1 . . . , bn. Also suppose ai
and bj are the smallest elements of A and B, respectively. Due to the choices of i and j

1After submitting this algorithm as a paper, we noticed this technique (for this special case) was
published before by Burge [18].
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and the fact that A ≤ B, we have ai ≤ aj ≤ bj ≤ bi. Thus, for the sequence A
′ obtained by

swapping ai and aj in A, we have A′ ≤ B, while in each of A′ and B the smallest member
is at index j. Since A′ ≤ B, if we remove the elements at index j from both of them, we
obtain sequences A∗ and B∗ with A∗ ≤ B∗ and so, by induction, sorted(A∗) ≤ sorted(B∗).
Now it is easy to see that sorted(A) and sorted(B) can be obtained by attaching ai and bj
to the beginning sorted(A∗) and sorted(B∗). Thus, as ai ≤ bj, sorted(A) ≤ sorted(B). �

Now considering two inputs X and X ∗ where the sets in both inputs have the same
sequence of sizes (s1, . . . , sn), and in X ∗ all sets are disjoint, we show that the time the
algorithms spends for X is no more than the time it spends for X ∗. Define S0 = S∗

0 =
(s1, . . . , sn), and for i ≥ 1, define Si (S

∗
i , respectively) to be the sequence of sizes of sets

after the ith round of the algorithm on input X (on input X∗, respectively) in sorted order.
We use induction on i to show that Si ≤ S∗

i . For i = 0, this is true as Si = S∗
i .

To prove the induction hypothesis for i > 0, consider the set Y created in round i of
the algorithm when run on X , and similarly the set Y ∗ created in round i of the algorithm
when run on X ∗. We define S ′

i to be the sequence obtained from Si−1 by replacing the
two smallest members of Si−1 with the size of Y , and similarly S∗′

i to be the sequence
obtained by replacing the two smallest members of S∗

i−1 with the size of Y ∗. Now it is easy
to see that Si = sorted(S ′

i), S
∗
i = sorted(S∗′

i ), and because Si−1 ≤ S∗
i−1, S

′
i ≤ S∗′

i . So, by
Lemma 18, Si = sorted(S ′

i) ≤ sorted(S∗′

i ) = S∗
i . Thus, in all rounds, the sizes of the sets

chosen by the algorithm when run on X are smaller than or equal to the sizes of the sets
chosen when run on X ∗. Therefore the claim is true.

We proved the worst-case number of comparisons happens for cases when all sets in
X are disjoint. In such cases, the aforementioned algorithm works similarly to Huffman
coding; consider each set Xi as a symbol appearing |Xi| times in a text to be encoded
and construct the Huffman tree for encoding such a text. In each step of Algorithm 3,
we select the two smallest elements and replace them with a new element aggregating
them, so following exactly the Huffman algorithm. Therefore, the depth of a set Xi in
the corresponding Huffman tree shows the number of times that Xi or a superset of Xi is
selected in step 1 of our algorithm.

The overall number of comparisons is
∑n

i=1 |Xi|h(Xi), where h(Xi) is the depth of Xi in
the corresponding Huffman tree. On the other hand, we know

∑n

i=1 |Xi|h(Xi) is the total
length of the bits needed to encode the aforementioned text using Huffman tree, which due
to the optimality of Huffman trees for such purposes is at most

n∑

j=1

|Xj|

(

log(
n∑

i=1

|Xi|/|Xj|) + 1

)

=
n∑

i=1

si (log(s/si) + 1) .
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Defining Smax = maxni=0 Si, we can write:

n∑

i=1

si

(

1 + log
s

si

)

= s+
n∑

i=1

si log
s

si

≤ 2
n∑

i=1

si log
s+ si
si

≤ 2
n∑

i=1

si log
s+ smax

si

≤ 2
n∑

i=1

log

(
s+ smax

si

)

.

This proves the following lemma.

Lemma 19 Suppose X is a collection of n sets X1, X2, . . . , Xn of sizes s1, s2, . . . , sn re-
spectively, s =

∑n

i=1 si, and smax = maxni=1 si. Then,
⋃n

i=1 Xi can be computed in time

O
(
∑n

i=1 log
(
s+smax

si

))

. �

The running time obtained from Lemma 19 is not optimal if one set is much bigger
than the rest. In such cases an optimal algorithm may need to generate the cross reference
output in time sublinear to the size of the biggest set, and so it may need to avoid walking
though every single element of the biggest set. So, we separate out the largest set (say X1),

and use Algorithm 3 to compute X2,n = X2 ∪ . . . ∪ Xn in O
(
∑n

i=2 log
(
s′+s′max

si

))

, where

s′, s′max are the sum and the maximum of the sizes of sets X2, . . . , Xn. Since s
′ + s′max ≤ s,

the time is O
(
∑n

i=2 log
(
s

si

))

. We use the algorithm of Hwang and Lin [31] to compute the

union of the largest set and the remaining sets (X1 ∪X2,k) in O(log
(
s

s1

)
) time. Therefore,

the overall time is O(
∑n

i=1 log
(
s

si

)
).

Lemma 20 Suppose X is a collection of n sets X1, X2, . . . , Xn of sizes s1, s2, . . . , sn re-

spectively and s =
∑n

i=1 si. Then
⋃n

i=1 Xi can be computed in time O
(
∑k

i=1 log
(
s

si

))

in

cross reference format. �

Lemma 20 and Lemma 9 together imply the following corollary:

Corollary 21 A cross reference representation of the union of sets X1, X2, . . . , Xk can

be computed in time O
(

log
(

s

s1,...,sk

))

, where si = |Xi| and s =
∑k

i=1 si. �
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This shows that the algorithm takes optimal time matching the lower bound we proved in
the previous chapter (see Theorem 17).

To obtain the sorted array representation rather than a cross reference representation,
one can expand the ranges of the output to have the union in the sorted list format again.
The time this takes is proportional to the size of the output, which is at most O(

∑k

i=1 |Xk|):

Corollary 22 A sorted array representation of the union of sets X1, X2, . . . , Xn can be

computed in time O
(

s+ log
(

s

s1,...,sk

))

, where si = |Xi| and s =
∑k

i=1 |Xi|. �

4.1.2 Special Case: Intersection with Union of Small Sets

The second special case has the form Y ∩ (X1 ∪ X2 ∪ . . . ∪ Xk), where |Y | ≥ |Xi| for all
i. For the case where k = 1 (i.e. computing Y ∩X), This problem has been studied and

tight lower and upper bounds of Θ(|X| log |X|+|Y |
|X|

) already exist [31].

To solve the problem for k > 1, we first create a boolean array B of size |Y |, so that
each element y in Y has an associated element in the array, namely B[y], which will become
true if y appears in one of the Xi’s. We then follow these steps:

1. We initialize all the elements in array B to false.

2. We compute the intersection of each Xi with Y separately (Yi = Y ∩Xi) in

O

(
k∑

i=1

|Xi| log
|Xi|+ |Y |

|Xi|

)

time using Hwang and Lin’s algorithm [31].

3. For each Yi, 1 ≤ i ≤ k, and every y ∈ Yi, we set B[y] = true. Note that, in order for
the algorithm to be able to set B[y] to true in constant time, it needs to know the
index of y in Y . This is possible if we keep track of that index for each element of Y
during the execution of Hwang and Lin’s algorithm in step 2.

4. Finally, we scan array B and return as output each element b such that B[b] is true.

It is clear that going through all Yi’s will take
∑k

i=1 |Y ∩ Xi| which is less than the time
consumed for computing the Yi’s. Also creating B in the beginning and scanning it in the
end takes time O(|Y |); therefore:
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Figure 4.1: An example where passing the universal set helps. The intersection node root
in this figure has two children, with maximum result sizes of 5 and 17. The maximum result
set of the right child is 17, but its contribution limit is only 5 because its contribution set
is a subset of the result set of the left child of the root. So, there is no reason to compute
all 17 members of its result set, we can pass the result set of left child (which is of size
at most 5) to the function computing result set of right child, and only focus on this 5
members.

Lemma 23 The result set of Y ∩ (X1 ∪X2 ∪ . . . ∪Xk) can be computed in

O

(

|Y |+
k∑

i=1

|Xi| log
|Xi|+ |Y |

|Xi|

)

time. �

4.2 The Algorithm

We now turn to the general case and describe the algorithm. We generalize the problem
and define two types of problems: In the first type of the problem we are simply asked to
compute res(v) for a node v. In the second type, the universe set is restricted and we are
given a set U as the restricted universe set. In this type we are asked to compute res(v)∩U .
In these cases, U is a superset of the contribution set of v and so we somehow know no
element with a value outside U may be promoted from leaves of the subtree rooted at v.
The procedures Compute(v) and Compute (v, U) in Algorithms 4 and 5 are designed
to solve these two types of problems.

The intuition behind the universe set U in Compute (v, U) is the following: consider
an intersection node v with its children u1, . . . , uk. Suppose we have processed the subtree
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rooted at ui for some i, and have obtained res(ui). It makes perfect sense to pass res(ui)
as a universe set to the subtrees rooted at children of v other than ui so that they only
report back elements that are also in the universe set and ignore those that do not appear
in the universe set. Figure 4.1 is an example.

As for Compute(v), it turns out that, for some nodes v, the size of the possible result
of a node is smaller than any universe set we can possibly provide in advance. In these
cases, we do not provide any universe set, as it will not save any computation time. These
are nodes for which we compute the results first. We use their result sets as universe sets
passed to other nodes.

Algorithm 4: Compute(v)

// precondition: cap(v) = share(v).

begin
switch type of node v do

1 case Leaf: return res(v) ;
case Union:

foreach child ui of v do
2 Xi ←− Compute(ui)

end
3 return X1 ∪X2 ∪ · · · ∪Xk

endsw
case Intersection:

j ←− minindex(cap(ui))
4 X ←− Compute(uj)

foreach child ui of v do
if i 6= j then

5 X ←− Compute(ui, X)

end

end
return X

endsw

end
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Algorithm 5: Compute(v, U)

// precondition: |U | ≤ share(v).

begin
switch type of node v do

1 case Leaf: return res(v) ∩ U ;
case Union:

foreach child ui of v do
if cap(ui) < |U | then

2 Xi ←− Compute(ui)

else
3 Xi ←− Compute(ui, U)

end

end
4 return U ∩ (X1 ∪X2 ∪ · · · ∪Xk)

endsw
case Intersection:

X ←− U
foreach child ui of v do

5 X ←− Compute(ui, X)

end
return X

endsw

end
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4.3 The Correctness of The Algorithm

In this section, we investigate the correctness of the algorithm and preconditions mentioned
for the two procedures. We show that:

• The precondition mentioned for Algorithms 5 and 4 always hold whenever they are
called.

• The procedures correctly compute the results they are supposed to compute when
they are called.

The fact that the procedures produce the right output is trivial to show by using induction
on the height of the tree. So let us validate the preconditions.

In Algorithm 5, we have three recursive calls. The first one is in line 2: since cap(ui) <
|U | and, by the algorithm’s precondition, |U | ≤ share(v), we have cap(ui) < share(v). By
the definition of share(ui), the latter inequality implies that share(ui) = cap(ui), which
means the precondition of Algorithm 4 holds in the recursive call. The second recursive
call occurs in Line 3; we know that cap(ui) ≥ |U | and since share(v) ≥ |U |, we can
deduce share(ui) ≥ |U |. Thus the precondition of Algorithm 5 holds in the recursive
call. The last recursive call occurs in line 5; since v is an intersection node, cap(ui) ≥
cap(v) for each i. By definition, cap(v) ≥ share(v); hence cap(ui) ≥ share(v). Since
share(ui) = min{cap(ui), share(v)}, this implies share(ui) = share(v). By the precondition
of Algorithm 5, share(v) ≥ |U |, so share(ui) ≥ |U |. As |U | ≥ |X|, the precondition of
Algorithm 5 holds in the recursive call.

Similarly in Algorithm 4, there are three recursive calls. The first one is in line 2; since
v is a union node, cap(ui) ≤ cap(v), and by precondition of Algorithm 4, cap(v) = share(v).
Thus, cap(ui) = share(ui), which implies the precondition of Algorithm 4 holds. The sec-
ond recursive call occurs in line 4; since v is an intersection node, cap(v) = cap(uj) for j =
minindex(cap(ui)), where the ui’s are the children of v. By the precondition of Algorithm 4,
cap(v) = share(v). So share(uj) = min{cap(uj), share(v)} = min{cap(uj), cap(v)} =
cap(uj), and hence the precondition of Algorithm 4 holds. The third and last recursive call
occurs in line 5. we know that

share(ui) = min{cap(ui), share(v)}
= min{cap(ui), cap(v)}
= cap(uj),

and |X| ≤ cap(uj), so |X| ≤ share(ui).
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4.4 Running Time

We analyze the running times of the procedures by evaluating the time we spend at each
node v of the tree, not taking into account the time we spend in recursive calls. The total
running time of the algorithm is the sum of the running times for the individual nodes.

The algorithms are carefully tailored such that when node v is an intersection node, no
processing time (other than iterating over children) is spent. So the processing time in an
intersection node v is O(k), where k is the number of children of v, which is negligible. In
the next sections we discuss the running times for union nodes and leaves.

4.4.1 Processing Time in Union Nodes

The only lines we spend time for union nodes are line 4 in Algorithm 5 and line 3 in
Algorithm 4. These two are exactly the special cases we studied in the beginning of this
section. We prove the following lemma.

Lemma 24 Processing a union node v takes time

O

(
k∑

i=1

share(ui) + log

(
share(v)

share(u1), . . . , share(uk)

))

,

where u1, . . . , uk are children of v.

Proof In Algorithm 5, the only line that we spend some computing time is line 4. Since
|Xi| ≤ |U |, the computation can be done in time

O

(

|U |+
k∑

i=1

|Xi| log
|Xi|+ |U |

|Xi|

)

,

by Lemma 23. As |U | < share(ui), by the precondition, and |Xi| ≤ |U |, |Xi| < share(ui).
Given that |U | < share(v) and |Xi| ≤ share(ui), the time we spend in Algorithm 5 is in

O

(

share(v) +
k∑

i=1

share(ui) log
share(ui) + share(v)

share(ui)

)

.
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Finally, since share(v) ≤
∑k

i=1 share(ui) and the term log share(ui)+share(v)
share(ui)

is not less than

one, we can eliminate the term share(v). Thus, the processing time of line 4 in Algorithm
5 is

O

(
k∑

i=1

share(ui) log
share(ui) + share(v)

share(ui)

)

= O

(
k∑

i=1

share(ui) +
k∑

i=1

log

(
share(v)

share(ui)

))

which is, by Lemma 9,

O

(
k∑

i=1

share(ui) + log

(
share(v)

share(u1), . . . , share(uk)

))

.

In Algorithm 4, only line 3 is important. Due to Corollary 22, the result can be com-
puted in O(s + log

(
s

|X1|+...+|Xk|

)
), where s =

∑k

i=1 |Xi|. By the precondition of this pro-

cedure, share(v) = cap(v), and for each child ui of v, share(ui) = min{cap(ui), share(v)} =
min{cap(ui), cap(v)} = cap(ui). Therefore,

share(v) = cap(v) =
k∑

i=1

cap(ui) =
k∑

i=1

share(ui).

Also, |Xi| ≤ cap(ui) = share(ui) for every i. Thus,

( ∑k

i=1 |Xi|

|X1|, . . . , |Xk|

)

≤

( ∑k

i=1 share(ui)

share(u1), . . . , share(uk)

)

=

(
share(v)

share(u1), . . . , share(uk)

)

.

Hence, since s ≤
∑k

i=1 share(ui), the running time is in

O

(
k∑

i=1

share(ui) + log

(
share(v)

share(u1), . . . , share(uk)

))

.

�
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We make a slight change in the algorithm to save time: in the case when the root of
the whole tree is a union node, we take union using the algorithm in Corollary 21 instead
of that in Corollary 22 in the root. That is, we do not expand the ranges in the result and
we keep it in the cross reference format; then, in the case when v is the root and is a union
node, we can get a better result than Lemma 24.

Lemma 25 If the root is a union node, the processing time in the root is

O

(

log

(
share(root)

share(u1), . . . , share(uk)

))

,

where u1, . . . , uk are children of the root. �

Here we claim that the term
∑k

i=1 share(ui) in Lemma 24 is negligible when it is summed
over all union nodes. In the sum, share of all the children of union nodes are added together,
which means the sum is over all the intersection nodes and leaves.

Now we argue that if S is the set of all intersection nodes of T , we have
∑

v∈S share(v) ≤∑

v∈L share(v) where L is the set of non-shallow leaves. To verify this claim, one can see
that for every intersection node v with children u1, . . . , uk, share(v) ≤

1
k

∑

i share(ui) ≤
1
2

∑

i share(ui), and for every union node with children u1, . . . , uk, share(v) ≤
∑

i share(ui).
Therefore, for every intersection node with leaves l1, . . . , lk in its subtree, where there
are ni intersection nodes in the path connecting u to li, share(v) ≤

∑

i
1

2ni
share(li). So

∑

v∈S ≤
∑

l∈L(
1
2
+ 1

4
+ . . .)share(l) ≤

∑

l∈L share(l).

Now consider the term
∑

v∈leaves(T ) share(v); by making the modification, the sum of
share over all leaves and intersection nodes in Lemma 24 is less than twice the sum over
non-shallow leaves:

Lemma 26 Processing in union nodes and leaves takes time

O

(

t+
∑

v∈L share(v) +
∑

union node v

log
(

share(v)
share(u1),share(u2),...,share(uk)

)
)

,

where L is the set of non-shallow leaves and t is the time we spend in non-shallow leaves.�

4.4.2 Processing Time in Leaf Nodes

In this part we compute the time consumed for a leaf v in line 1 of Algorithm 4, or line 1
in Algorithm 5.
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In line 1 in Algorithm 5, we compute the intersection of res(v), which is the set as-
sociated with v, and U . By the precondition of the procedure, |U | < share(v). Also by
definition, share(v) ≤ cap(v) = size(v). Thus, |U | < size(v). In the second special case,

Lemma 23, it is shown how to compute the intersection in time O(|U | log |U |+size(v)
|U |

). Since

|U | < share(v) ≤ size(v), the processing time is in O
(

share(v) log share(v)+size(v)
share(v)

)

.

In line 1 of Algorithm 4, we simply return res(v) which, by the algorithm’s precondition,
has size share(v). In case v is a shallow leaf by the argument mentioned in Lemma 26, we
use a slightly different method to take the union at the root, and therefore we do not spend
any time in the shallow leaves (we do spend, however, some time in the root for computing
the union, which has been accounted for in Lemma 26).

We conclude the time we spent in a non-shallow leaf is

O

(

share(v) log(
size(v)

share(v)
+ 1)

)

= O

(

log

(
size(v)

share(v)

)

+ share(v)

)

and we spend no time in shallow leaves. So the next lemma is proved.

Lemma 27 The total time spent on leaves is
∑

v∈deep log
(

size(v)
share(v)

)
+ share(v) where deep

is the set of non-shallow leaves of the tree. �

Lemmas 26 and 27 show that the total running time matches Equation 3.1. Thus, due to
Theorem 17, our algorithm is optimal.
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Chapter 5

Algorithm Supporting More
Operators

In this chapter, we present a more sophisticated algorithm that accepts trees with more
varieties of operators: union, delta, intersection, minus, and complement. We use partially
expanded trees as the format for input and output data, which is a generalization of both
sorted arrays and B-trees. Without loss of generality, we allow a node in the tree to have
the same operator as its parent and we assume that all the internal nodes of T have exactly
two children.

5.1 Tools

5.1.1 Basic Operations on Partially Expanded B-trees

We first explain how we can apply the basic operations union, intersection, delta, and minus
to two partially expanded B-trees in optimal time. Note that, as long as the algorithm
uses edges of a partially expanded B-tree to reach other nodes of the tree for the first time
rather than trying to “jump” to new nodes, a partially expanded B-tree essentially behaves
analogously to a B-tree and operations can be performed in the same asymptotic cost. The
reason is that once the algorithm reaches any non-expanded node for the first time, it can
expand the node by creating its children (but not expanding them) in constant time. So,
we explain the base algorithms for B-trees.
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Lemma 28 ([23]) Evaluating union or intersection of two B-trees with n and m leaves,
respectively, can be performed in time O(m log n+m

m
). �

To apply the minus operation on B-trees, one can find the common members between two
subtrees using the intersection operation and then use the following lemma.

Lemma 29 Given a B-tree T with n nodes and a set of m leaves on it, the cost of deleting
those nodes is O

(
m log n+m

m

)
.

Proof We first observe that the time needed to delete these m leaves is proportional to
the number of nodes in the tree that are ancestors of the designated m nodes. This is clear
once we consider the deletion algorithm from the B-tree as deleting a child (or a set of
children) is done by rearranging the children of the node and its siblings, and if necessary
recursively doing the operation on the parent node.

Considering a set M of m leaves of T such that the size of the set A(M) of all ancestors
of leaves in M is maximized, we show that |A(M)| ≤ n log (n+m)/m. For any subtree U
of T , define f(U) to be the number of leaves of U that are in M . It can be seen that for
any two subtrees T1 and T2, if f(T1) = 0 and f(T2) > 1, then the height of T2 is greater
than the height of T1; otherwise we could increase |A(M)| by replacing one leaf of T2 in
M with the deepest leaf of T1. Therefore, for each subtree Tv rooted at a node v of depth
d = ⌈logm⌉, f(Tv) ≤ 1; otherwise since there are at least m nodes at depth d, there is
another node u at the same depth such that for the subtree Tu rooted at u, f(Tu) = 0,
contradicting what we proved. Hence, for each node v at depth d, at most log n − logm
descendants of v are in A(M), so A(M) has at most m log n

m
members of depth at least d.

Moreover, there are less than 2d ≤ 2m nodes of depth less than d in total. Thus, M has
no more than O(m+m log n

m
) = O(m log n+m

m
) members. �

5.1.2 Processing Appearance Lists

In this part we discuss a special case of the problem when for one member e of the sets,
we are interested in knowing if e appears in the result set of the whole tree. As the input,
in addition to the tree, we are given the list of all leaves of the tree, from left to right in
order, that have e in their corresponding sets, which is called the appearance list of e in T .

In order to decide on an element based on its appearance list in a tree T , we need
to preprocess the tree in advance and prepare some data structures first. The first data
structure is used to find the lowest common ancestor of any given two nodes n1 and n2 of
the tree, denoted by lca(n1, n2).
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Lemma 30 (Harel and Tarjan [28]) After preprocessing a tree T in linear time, it is
possible to find the lowest common ancestor of any two nodes n1 and n2 of T in constant
time.

The second data structure can be used to find the ancestors of a node u that may filter
out members of the result set of u. More precisely, consider an ancestor v of u with two
children w1 and w2, where u is a descendant of say w1. Then, we look for the situation
where in order for a member of the result set of u to be in the result set of v, it needs to
be in the result set of w2. Next definition formulates this situation.

Definition 11 An ancestor v of a node u is a dominant ancestor of u if u 6= v and

• v is an intersection node, or

• v is a minus node and u is in the right subtree of v.

For an ancestor w of a node u, we say u is hidden to w, if there is a dominant ancestor
v of u where w is an ancestor of v and w 6= v.

Our second data structure can be used to determine, for a node n and an ancestor a of n,
whether n is hidden to a.

Lemma 31 By a linear-time preprocessing of the tree one can build a data structure HT

that, for a given node v and an ancestor w of v determines if v is hidden to w in constant
time.

Proof It is sufficient, for any node v, to precompute the depth lv of its lowest dominant
ancestor, if there is any, and also the depth dv of v. Then, given node v and an ancestor
w of v, v is hidden to w if and only if lv < dv. �

Recall the definition of the contribution set of a node u as the set of values appearing
in results sets of u and all of its ancestors all the way to the root. We extend this definition
here.

Definition 12 Given a node u and an ancestor v of u, the contribution of u to v is the
set of values appearing in result sets of all the nodes in the path connecting u to v, including
u and v.
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Algorithm 6: How to decide if e is in result set of lca(n1, n2) when n1 and n2 are its
exclusive contributors.
cnt=number of nodes in {n2, n3} not hidden to lca(n1, n2);
switch opr(lca(n1, n2)) do

case ∩: return true iff cnt=2;
case ∪: return true iff cnt 6= 0;
case ∆: return true iff cnt=1;
case −:

Suppose n1 is in the right subtree and n2 is in the left subtree of lca(n1, n2);
return true iff n1 is hidden to lca(n1, n2), but n2 is not;

end

endsw

Clearly the contribution of a node to the root is the contribution set of that node.

Before explaining how we can determine a value e is in the result, we explain a special
case of the problem, where for two nodes n1 and n2, we want to find out if e is in the result
set of lca(n1, n2) given that:

• e is in the result sets of both n1 and n2.

• e is not in the contribution of any node u to lca(n1, n2) unless u is a descendant or
an ancestor of n1 or n2.

In other words, e is not in the contribution of any leaf to lca(n1, n2) that is not a descendant
of n1 or n2. In this situation we say n1 and n2 are exclusive contributors of e. Algorithm 6
shows how we can find if e is in the result set of lca(n1, n2) in this situation in constant
time using the data structures we created.

Algorithm 7 shows the whole procedure for deciding if an element e is in the result. In
this algorithm, we create an empty stack S and push leaves of L in S, in order from left
to right. Before pushing each leaf l, we repeat the following procedure until less than two
nodes remain in the stack or no more changes are made. Suppose n1, n2 are the top two
nodes in S in order (n1 is the top one), and lca(n1, n2) = v. If lca(l, n1) 6= v, we know
there will be no more descendant of v to be processed; so we pop n1 and n2 from S, and
push v into S if and only if e will be in the result of v, which can be determined using
Algorithm 6. We then push l into S. The running-time is linear in L.
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Algorithm 7: How to decide if a value is in the result

for i=1 . . . n+ 1 do
NotDoneWithPreviousSubTree = true;
while |S| > 2 AND NotDoneWithPreviousSubTree do

n2=pop(S);
n3=pop(S);
NotDoneWithPreviousSubTree = i > n OR lca(li, n3) 6= lca(n2, n3);
if NotDoneWithPreviousSubTree then

Use Algorithm 6 to decide if the value is in result set of lca(n1, n2);
if Algorithm 6 returns true then

push(S, lca(n1, n2))
end

else
push(S, n2);
push(S, n1);

end

end
if i ≤ n then

push(S, li);
end

end
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Lemma 32 After a linear-time one-time preprocessing on a set expression tree T , there
is an algorithm that given as input an element e and node v and the list L of all leaves of
Tv containing e in their results in order from left to right, it can determine if e is in the
result of Tv in time linear to the size of L. �

5.2 The Algorithm

5.2.1 Overview of the Algorithm

The algorithm in this section is based on the same idea as the algorithm in the previous
chapter. In that algorithm, as the precondition in Algorithm 4 states, we call Compute(v)
only if cap(v) = share(v), otherwise, we need a universe set, computed from other parts
of the tree. In other words, the result of the subtree rooted at a node v is calculated
independently of the rest of the tree only if cap(v) = share(v).

The algorithm we describe here generalizes the same idea: it first specifies some nodes,
called “independent nodes” in the tree. A node v is defined to be independent if cap(v) =
share(v); otherwise, v is dependent. The result of an independent node is evaluated entirely
within the subtree rooted at it, and without using anything outside this subtree.

For an independent node v, the maximal subtree of T [v] that includes v but has no
other independent node as an internal node is called the dependent tree of v, and is denoted
by Tv. Thus, each leaf of Tv is either a leaf of T or an independent node. This way the
tree is broken into a number of dependent trees. See Figure 5.1 for an example.

We consider independent nodes and compute their results in a bottom-up fashion.
Thus, when computing the result of an independent node v, the results of all leaves of the
dependent tree of v have been previously computed and the algorithm has access to the
corresponding partially expanded B-trees.

In the following sections we discuss how the result of such a node v can be computed.

5.2.2 Union and Delta Independent Nodes

As the next lemma shows, the dependent tree of an independent union or delta node v
consists of only v and two children of v, and so is easy to process.

Lemma 33 Given a union or delta independent node v, both children u1 and u2 of v are
independent.
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Figure 5.1: Independent nodes and their dependent trees. The blue and red labels are sizes
of result sets and contribution sets, respectively

Proof It suffices to show that u1 and u2 are independent. If v is a union or delta node,
then cap(v) = cap(u1) + cap(u2) and so as v is independent, share(v) = cap(v) ≥ cap(u1).
Thus, share(u1) = min{cap(u1), share(v)} = cap(u1), which means u1 is independent. In-
dependency of u2 is proved similarly. �

So, the problem for such a node v reduces to computing the union or delta of two
partially expanded B-trees, which was discussed in Section 5.1.1.

5.2.3 Intersection and Minus Independent Nodes

The basic idea for finding the result set of an intersection or minus independent node v
is that we first select a child of v as the key leaf with the following properties: it is an
independent node and so a leaf in Tv, and the result set of v is a subset of the result set of
its key leaf. Then for each member a of that set, we find what leaves of Tv have a in their
result sets and we collect all this information to decide if a is in the result set of v using
Algorithm 7.

Definition 13 For an intersection or minus independent node v we define the key leaf of
Tv as

• the child u of v with the minimum value of share(u) if u is an intersection node,
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• the left child of v if u is a minus node.

We denote the key leaf of Tv by kv.

It is easy to see that “the key leaf” of a dependent tree is independent:

share(u) = min(cap(u), share(v)) by definition
= min(cap(u), cap(v)) as v is independent
= min(cap(u), cap(u)) due to the choice of u
= cap(u).

Also due to the choice of u, the result set of v is a subset of the result set of kv and
share(v) = share(kv).

Lemma 34 For an intersection or minus independent node v, kv is a leaf in Tv such that
the result set of v is a subset of the result set of kv and share(v) = share(kv). �

Denoting the result set of kv by Kv, if we define K ′
v to be the set of elements in Kv

that also appear in the result of at least another leaf of Tv, the result of v is a subset of
K ′

v if opr(v) = ∩ and is Kv minus a subset of K ′
v if opr(v) = −.

For every element e in K ′
v, the algorithm makes a list of all leaves of Tv having e in

their results in the following way: considering leaves of Tv, except kv, from left to right, it
computes the intersection of the result of each leaf ℓ of Tv withKv and for every element e in
the intersection, the algorithm adds ℓ to the corresponding list of e. Then, for any element
e of Kv, the algorithm decides whether e is in the result of v or not, using Algorithm 7.

Then, if opr(v) = ∩, the algorithm builds a fully-expanded B-tree on the elements of
K ′

v that are in the result of v and returns it. If opr(v) = −, the algorithm removes the
elements of K ′

v that are not in the result of v from K and returns the resulting partially
expanded B-tree.

5.3 Running Time

The following lemma shows the running time of the algorithm.
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Lemma 35 The total processing time to evaluate an expression tree is

∑

v∈leaves

share(v) log

(
cap(v)

share(v)
+ 1

)

+
∑

v∈independents

share(v) log

(
share(p(v))

share(v)
+ 1

)

, (5.1)

where leaves is the set of all leaves but the leftmost leaf of T , independents is the set of
independent nodes.

Proof Considering any independent node v, we prove that the time consumed to evaluate
the result of Tv can be written as the sum of the contribution of the leaves of Tv to
Equation 5.1. Since every leaf and independent node of the main tree is a leaf of the
dependent tree of exactly one independent node, this suffices for the proof.

First suppose v is a union or delta node with children u1 and u2, which are by Lemma 33
leaves in Tv. As v is independent, share(v) = cap(v) = share(u1) + share(u2) and for each
i = 1, 2, cap(ui) = share(ui). As u1 and u2 are independent nodes, the cost of computation

for all such nodes u is bounded by
∑

u∈independent share(u) log
⌈
share(p(u))
share(u)

+ 1
⌉

.

Now consider the case when v is a minus or an intersection node. By Lemma 34,
share(v) = share(uk) for uk the key leaf of Tv. Thus, since every internal node of Tv other
than v is dependent, for every leaf u of Tv we have share(p(u)) = share(v). Therefore, the
cost for every non-key independent leaf of Tv is the cost of taking an intersection between
the result u, which is of size at most cap(u) = share(u) and a B-tree of size at most
share(uk) = share(v) = share(p(u)). For non-key non-independent leaves of Tv also, the
cost will be the cost of an intersection between a B-tree of size cap(u) and another one of
size share(uk) = share(p(u)) = share(u). So in all cases the time we spend for Tv equals the
sum of the contribution of the leaves of Tv to Equation 5.1. Hence, the lemma is true. �

We proved our running time matches Equation 3.1 and so for signatures where Conjec-
ture 1 holds, the running time of the algorithm is worst-case optimal.
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Chapter 6

An Adaptive Approach

In Chapters 3 and 4, we showed matching worst-case lower and upper bounds for the
worst-case. In this chapter, we consider a more refined framework in which the instances
of the problem are grouped into “small” difficulty classes. We present a comparison-based
algorithm for the problem, and for every difficulty class, we give a matching lower bound to
demonstrate the algorithm is optimal within every class. The running time of the algorithm
for any instance is never (asymptotically) more than that of the previous worst-case optimal
algorithm.

6.1 Preliminaries

6.1.1 Background

As explained in Chapter 1, Demaine et al. [23] presented adaptive algorithms for computing
the union, intersection, and difference of an arbitrary number of sets. As the number of
sets in the expression exceeds two, specially in the case of intersections, the definition of
“difficulty” goes beyond a simple number of alternations between sets, as one does not
really need to obtain a full ordering of all members in order to compute the solution.
For example, consider the example in Figure 6.1). As shown in the example, a small
amount of interleaved-ness in any of two sets results in an easy input, no matter how
other sets are interleaved. To define the measure of difficulty of an input instance, they
used the number of bits required to encode a proof structure of a given input instance and
developed an algorithm sensitive to this measure. Here, a proof structure is essentially a set
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∩

A 1 2 3 4 10 11 12 13 14

B 4 5 6 7 8 9 20

C · · · 3 6 · · ·

D · · ·

Figure 6.1: As A and B are not too interleaved, with just three comparisons we can show
that the only member of A ∩B is 4. So we only need two more comparisons to show that
4 does not belong to the set C and we may then ignore all other members of C and D.

of comparisons that an algorithm may make to derive (or just verify the correctness of) the
result. An obvious lower bound for the number of comparisons required is the information-
theoretic bound for encoding a proof structure. They show that for the evaluation of the
union of a number of sets, the lower bound obtained in this fashion is indeed tight by
giving an algorithm matching the bound. However, for the evaluation of the intersection
of a number of sets, they give a stronger lower bound using an adversary argument. They
also give an algorithm matching this bound.

In earlier parts of the thesis, we proposed an optimal algorithm for evaluating general
set expressions that can have both union and intersection operations in any combination.
The complexity was analyzed as a function of only the expression and sizes of the input
sets, and as a result, the worst-case complexity is assumed, where input sets are maximally
interleaved. Our contribution in this chapter is to give an adaptive algorithm to calculate
such expressions. As discussed by Mirzazadeh [36], there is no unique way of defining
difficulty of an instance for the general form of the union-intersection problem: we are given
a non-symmetric expression tree and depending upon the weights assigned to comparisons
at different parts of the tree, we may end up with an infinite number of different definitions
for difficulty of an instance. As such, we think for such complex set of inputs, using a single
number as difficulty of an input is not expressive enough; we need a finer expression.

In this chapter, we develop a novel framework for adaptive algorithms. Instead of rep-
resenting the hardness of an instance by a single number, we partition the input space
into classes of “similar structure” where inputs within each class are considered as a conse-
quence to be of the same level of difficulty. Then, we look for algorithms that are worst-case
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Figure 6.2: The perturbation defining critical members (which are indicated by circles). A
“small change” in the member 4 in set B will exclude it from being in the result set, while
a “small change” in member 7 or 9 will include them in the result set.

optimal for inputs within each class. For the case of our problem, structural similarity be-
tween inputs means a shared expression tree, same set sizes and at the same time, same
level of “interleaved-ness” between input sets in the tree.

6.1.2 Our Results

In order to give a high-level overview of the results of this chapter, we first need to define
what we mean by difficulty of an instance. Our goal is to define a function φ which assigns
a number to each leaf measuring the “difficulty” of processing said leaf based on how it
is interleaved with other sets in the tree. If the input sets are fully interleaved, then the
function size (defining the size of each set) alone is indeed a good measure of difficulty. On
the other hand, there are instances where the difficulty is strictly less than size for some
of the leaves. The difficulty measure we define aims to capture the number of “critical”
members in each of the input sets.

The intuition behind the definition of critical is as follows. Suppose we increase the
value of an element in a set slightly1. If this change results in a new inclusion or exclusion
in the result set, we call this element critical. A collective set of such changes is called a
“perturbation”. The difficulty is the size of the perturbation that results in the maximum
number of critical elements being in the result set (see Figure 6.2).

Let us compare the complexity of the adaptive algorithm we propose here with that of
the worst-case optimal algorithm. Consider a leaf function f and suppose for each leaf l,
only f(l) members of leaf l are marked as “important” and the rest can be ignored. Then,
for each node v, sharef (v) represents the maximum number of members in the subtree

1 To be more precise, as we will explain later, here by “slight increasing the value of an element” we
mean increasing the value of the element such that the new value does not reach or exceed the value of
the next biggest element in that set.
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rooted at v that may advance all the way to the result of the whole expression if we ignore
all “non-important” members. We define Af and Bf as follows:

Af =
∑

ℓ∈leaves

log

(
size(ℓ)

sharef (ℓ)

)

, and Bf =
∑

u∈union

∑

v∈children(u)

log

(
sharef (u)

sharef (v)

)

.

For our worst-case optimal algorithms, the analysis is performed under the pessimistic
assumption that the input is fully interleaved and gives an optimal algorithm using (the
maximal) size as the function to analyze the complexity. Namely, the optimal algorithm has
asymptotic complexity Θ(Asize+Bsize). In this part, we define a finer adaptive measure φ as
a parameter to both the complexity of the algorithm and the definition of the complexity
class containing the input. We then present an algorithm with running time of roughly
Θ(Aφ+Bφ) (which means the function f above is φ) and establish a matching lower bound
in each class as defined by φ. This is in contrast to previous adaptive algorithms [19, 23, 6,
7, 8], which use a single value as the measure of difficulty of a given instance (in addition
to set sizes).

6.1.3 Difficulty Classes

As mentioned, in this chapter, we give an algorithm that is worst-case optimal within
individual difficulty classes that partition the set of instances according to their level of
interleaving difficulty. Roughly speaking, instances in each difficulty class differ from each
other by small “perturbations” of the elements.

Definition 14 An input J is a perturbation of an input I if they have the same signature
and for every element e, valI(e) ≤ valJ(e) < valI(next(e)). J is a promotion-preserving
perturbation of I if for every element e promoted in I, valI(e) = valJ(e).

Figure 6.3 shows an example. The intuition is that the existence of an input perturbation
causing many new elements to be promoted is evidence of a higher level of interleaving of
the input, and thus it requires more time to solve. Loosely speaking, we will look for a
“maximal” perturbation for the given input to capture its difficulty:

Definition 15 An input I is aligned if there is no promotion-preserving perturbation J
of I and element e such that e is promoted in J but not in I.
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∩

1,5, 8 ,11 7, 8 ,15

Input I: Elements that are promoted are specified with circles

∩

1,7,8,11 7,11,15

∩

1,7,8,11 7,8,20

Input J : It is a perturbation of I
because 5 ≤ 7 < 8 and 8 ≤ 11 <

15.

InputK: It is a perturbation of I
because 5 ≤ 7 < 8 and 15 ≤ 20.

Figure 6.3: Perturbation examples. Elements of perturbations whose value has changed are
underlined. Consider the element of the right leaf whose value is 8 in I. This element was
already promoted in I, but it has changed its value to 11 in J . So, J is not a promotion-
preserving perturbation of I. But, K is a promotion-preserving perturbation of I because
all elements promoted in I retain their value in K.

As an example, the input I in Figure 6.3 is a non-aligned input, as it has a promotion-
preserving perturbation (the input K on the right) in which more elements are promoted.
The input J in the figure is aligned because no promotion-preserving perturbation of J
causes any additional element to be promoted. The intuition behind aligned inputs is that,
if an input I is aligned, knowing the values of elements promoted in I is enough to conclude
that no other element is promoted in I. That’s roughly because by definition of aligned
inputs, there is no way to perturb values of other elements and make any of them being
promoted.

The idea is that, given an input I, we consider a perturbation of I that converts I
to an aligned input. The number of elements promoted from each leaf l in this input is
φ(l) and so defines the cluster of inputs containing I. We will then design an algorithm
that is worst-case optimal within each and every difficulty class. One problem here is that
there could be several perturbations of I that result in aligned inputs. As an example, in
Figure 6.4, both J and K are aligned perturbations of I. So which one to use?

We identify a unique perturbation of the input as the “representative perturbation”.
The representative perturbation will be an aligned input, and as it takes into account
all corner cases, its precise definition is quite technical and is presented separately in
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Perturbation J of I Perturbation K of I

Figure 6.4: The set next to each leaf is the contribution set of that leaf. Contribution sets
show that diff(I, J) = diff(I,K) = 3, diff(J,K) = 5, and K ≺ J ≺ I.

Section 6.1.4.

Roughly speaking, the representative perturbation is the “lexicographically first” per-
turbation of the input that satisfies certain conditions including being an aligned input.
More formally we choose the first “qualified” perturbation according to � which is defined
as follows:

Definition 16 We define the partial order � between instances I1 and I2 with the same
signature as follows. Consider the smallest value a, denoted by diff(I1, I2), such that the
sets S1 and S2 of nodes from which a is promoted in instances I1 and I2, respectively,
are not the same. If such a value does not exist, we define diff(I1, I2) = ∞ and we write
I1 ≡ I2; otherwise, if S2 ⊂ S1, we define I1 ≺ I2. We write I1 � I2 if I1 ≡ I2 or I1 ≺ I2.

Figure 6.4 shows an example of the concepts defined in Definition 16.

Definition 17 A perturbation J of an instance I is maximal at a point b if for any
perturbation K of I with diff(J,K) = b, J � K.
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As an example, for perturbations J and K of instance I in Figure 6.4, J is clearly maximal
at 3 (because 3 is already in contribution sets of all leaves in J), but it is not maximal at
5 because for K we have diff(J,K) = 5 and K ≺ J .

The following observations will be useful throughout the rest of the chapter.

Observation 36 Consider inputs I, J1, and J2 of the same signature where diff(I, J1) <
diff(J1, J2). Then:

• diff(I, J1) = diff(I, J2),

• I ≺ J1 if and only if I ≺ J2, and

• J1 ≺ I if and only if J2 ≺ I.

Observation 37 Consider perturbations J and K of an input I where J is maximal at
a point b. Then one of the following is true:

• Every element promoted with value b in K is also promoted with value b in J .

• There is an element promoted with value b in K that is promoted with a value less
than b in J .

For a given input I and a node v, we use φ(v) to denote the size of the contribution
set of v in the representative perturbation of I. We use the function φ to define input
difficulty classes.

Definition 18 For a signature S and a function f , the input class of f contains all inputs
with signature S in which φ(ℓ) = f(ℓ) for all leaves ℓ.

As mentioned, we prove a tight bound of roughly Θ(Aφ + Bφ) for the worst-case com-
plexity of any algorithm within each difficulty class. We now present the precise definition
sharef used in the formulation of Af and Bf .
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6.1.4 Representative Perturbation2

As explained, an input may have several perturbations making it an aligned input, thus
we need to uniquely identify one as the representative perturbation for defining the input
class. We choose the lexicographically first aligned perturbation satisfying certain extra
conditions.

Let us give some intuition why we may need these “extra conditions”. Suppose we select
a first-rank perturbation according to the order of Definition 16 among aligned promotion-
preserving perturbations (with no extra conditions) as the representative perturbation.
The problem is that this way we end up with a non-robust definition for the concept of
representative perturbation in the sense that, given an aligned input, a small change in the
value of an input element may result in an input with a completely different representative
perturbation, and so belonging to a completely different difficulty class.3 Figure 6.5 shows
an example.

∩

1,2 ∪

2 2

slight change
−−−−−−−−−→

∩

1,2 ∪

2 2−ǫ

�-smallest
−−−−−−−→

∩

2−ǫ,2 ∪

2 2−ǫ

Figure 6.5: Effect of small change in the value of an element on �-smallest aligned
promotion-preserving perturbation: In the left tree (which is already aligned and thus
the only, and so the �-smallest, promotion-preserving perturbation of itself), if we make a
small change in the value of an element (and obtain the input in the middle), its �-smallest
promotion-preserving perturbation will change to the input on the right, which belongs to
a completely different class (as different numbers of elements are promoted from its leaves).

To address this issue, we introduce the following additional condition for selecting the
“representative perturbation”: when adjusting values of elements of input I to obtain the
representative perturbation of I, if for an element e which is not promoted in I, values can
be adjusted so that e is promoted with a value v already in the result set of the root in

2The reader may skip Sections 6.1.4 and 6.3.3 if only interested in an overview of the algorithm.
3 The reader may still wonder why non-robustness, in the way explained here, is a problem. Recall

the way we obtained our lower bound in Section 3.4. In order to obtain an input in the class realizing
the lower bound we want to prove, the adversary needs to make ‘small adjustments” to values of elements
during its interaction with the algorithm, and still resulting input should remain in the class.
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I, we should not make adjustments so that e is promoted with a value u “slightly smaller
than v”. In the next definition, conditions 2, 3, and 4 formulate such situations; specifically
conditions 2 and 3 specify precisely when a value u is “slightly smaller than v”.

Definition 19 Consider a perturbation J of an input I. For a perturbation K of I, we
say K compresses J if for u = diff(J,K) and some value v, v > u, the following conditions
hold.

1. u is in the result set of J and v is in the result set of I.

2. neither the result set of I nor the result set of K has a value in the range [u, v).

3. For any element e promoted with a value in the range [u, v) in J , valI(next(next(e))) >
v.

4. Every leaf containing an element promoted with a value in the range [u, v] in J
contains an element that is promoted with value v in K.

5. K is tight at v (recall the definition from Section 2.1.1).

So when J is compressed by a perturbation K, it means some elements are being promoted
in J with value u = diff(J,K) (which is not in the result set of I), while they could be
promoted with a value “slightly bigger than u”, namely v in Definition 19, which is already
in the result set of I. Figure 6.5 shows an example of Definition 19: it suffices to label
inputs as K, I, and J in order and set v = 2 and u = 2− ǫ.

Observation 38 Consider perturbations P1, P2, and Q of an input I and suppose there
is a value a in the result set of I such that diff(Q,P1) < a < diff(P1, P2). Then:

• P1 compresses Q if and only if P2 compresses Q.

• Q compresses P1 if and only if Q compresses P2.

The main restriction that we will add to the definition of representative perturbation is
not to be compressed by any aligned input.

Definition 20 A perturbation J of an instance I is compact if there is no aligned per-
turbation of I that compresses J .
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A perturbation J of an input I is minimal if every element has the same value in I and
in J unless it is promoted in J (in other words, no element has changed value without
side effects). We define a “representative perturbation” to be aligned, minimal (to keep
it unique), maximal at any point (see Definition 16), compact, and prior to any other
perturbation (according to the order �) except when compressing a perturbation:

Definition 21 A representative perturbation of an instance I is a minimal aligned com-
pact perturbation P satisfying the following conditions.

• For every value a in the result set of I, P is maximal at a.

• For all perturbations P ′ of I, either P � P ′, or there is another perturbation P ′′ with
P ′′ � P ′ such that P compresses P ′′ but P ′ does not compress P ′′.

The existence of a representative perturbation follows from Lemma 49 that we will prove
on page 92. The next lemma proves its uniqueness.

Lemma 39 The representative perturbation of an input is unique.

Proof We assume to the contrary that there are two representative perturbations P1

and P2 of an input I. As P1 and P2 are minimal and distinct, P1 ≡ P2 cannot be true,
so diff(P1, P2) 6= ∞ . Let a be the biggest value in the result set of I that is smaller than
diff(P1, P2) (−∞ if no such value exists) and let b be the smallest value in the result set
of I that is not smaller than diff(P1, P2) (∞ if no such value exists). By Definition 21, if
b 6= ∞, then P1 and P2 are maximal at b. Therefore, if diff(P1, P2) = b, by Definition 17,
P1 � P2 and P2 � P1, which implies P1 ≡ P2, a contradiction. So diff(P1, P2) 6= b.

Consider the set P of perturbations P such that P1 6� P , P2 6� P , a < diff(P, P1) ≤ b,
a < diff(P, P2) ≤ b, and at least one of P1 or P2 compresses P . We first show that
P is not empty. Since P1 6≡ P2, at least one of P1 6� P2 or P2 6� P1 is true; suppose
the former is true. Then, according to Definition 21 there is a perturbation P , P � P2,
where P1 compresses P while P2 does not. We prove that P ∈ P . If P1 � P , as P �
P2, then P1 � P2 which is a contradiction; thus P1 6� P . Also the condition P2 6� P
is true because otherwise, P ≡ P2 (because P � P2), which means P1 compresses P2

and so P2 is not compact, contradicting the choice of P2. Since only one of P1 and P2

compresses P , by Observation 38 a ≤ diff(P1, P ). As P1 compresses P , diff(P1, P ) is
not in the result set of I and thus, diff(P1, P ) 6= a; so, a < diff(P1, P ). As a result,
a < diff(P2, P ) because otherwise diff(P2, P ) ≤ a < diff(P1, P ) and so by Observation 36
diff(P2, P ) = diff(P1, P2) ≤ a which contradicts the choice of a. Moreover, diff(P1, P2) < b;
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so if diff(P, P1) > b, then, since P � P2, by Observation 36 P1 � P2, which contradicts
our assumption; therefore, diff(P, P1) ≤ b. Also diff(P, P2) ≤ b because otherwise as
diff(P1, P ) ≤ b and P1 compresses P , by Observation 38 P1 also compresses P2 which
means P2 is not compact and so contradicts Definition 21. Hence P ∈ P .

Considering a first-rank member P of P (according to the order �), we prove that
both P1 and P2 compress P . As P ∈ P , one of P1 or P2, say P1, compresses P . Because
P2 6� P , by Definition 21 there is a perturbation Q where Q � P and P2 compresses Q
while P does not; thus by Observation 38 a < diff(Q,P2) and so, a < diff(Q,P1) (because
otherwise by Observation 36 diff(Q,P1) = diff(P1, P2) ≤ a which is not true). We show
that Q ∈ P . The condition P1 6� Q holds because otherwise P1 � Q � P while we know
P1 6� P (since P ∈ P). Similarly, P2 6� Q. In addition, diff(P, P1) ≤ b; so if diff(Q,P1) > b,
then by Observation 36 since Q � P , P1 � P , which is false; therefore, diff(Q,P1) ≤ b and
similarly diff(Q,P2) ≤ b. Hence, Q ∈ P and so, as Q � P , due to the choice of P , Q ≡ P .
This means P2 compresses P .

We showed that P1 and P2 compress P while diff(P, P1) and diff(P, P2) both are in the
range (a, b]. First suppose diff(P, P1) = diff(P, P2). Then, diff(P1, P2) ≥ diff(P, P1) because
otherwise by Observation 36 diff(P1, P2) = diff(P, P2) = diff(P, P1). On the other hand, as
P1 and P2 compress P , neither have any value in their result set in the range [diff(P, P1), b);
so diff(P1, P2) ≥ b. Therefore diff(P1, P2) = b, which as we proved is impossible.

Now consider the case where diff(P, P1) < diff(P, P2) (the case diff(P, P2) < diff(P, P1)
will be similar). By Observation 36, diff(P2, P1) = diff(P, P1). P1 compresses P which
means all four conditions of Definition 19 hold for K = P1, J = P , u = diff(P, P1), and
v = b. We use this fact to prove these four conditions still hold if we change J to P2, which
means P1 compresses P2. By Observation 37, all elements promoted with value b in P2 are
also promoted with value b in P1 because none of them could have been promoted in P1 with
a value less than diff(P2, P1) (by the Definition of diff(P1, P2)), nor with a value in the range
[diff(P2, P1), b) (as P1 compresses P ), and by definition, P1 is maximal at b. Also, every
element promoted with a value in the range [diff(P1, P2), diff(P, P2)) in P2 is promoted with
the same value in P and no element is promoted with a value in the range [diff(P, P2), b] in
P2. Thus, all four conditions of Definition 19 still hold, so P1 compresses P2. This means
P2 is not compact: a contradiction with P2 being a representative perturbation. � �

The next lemma proves an intuitive property about values of elements in the represen-
tative perturbation that are different from values of those elements in the original input,
which will be handy.

Lemma 40 Suppose J is a representative perturbation for an input I, and e is an element
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promoted in J . Let S be the set of elements promoted in J with the same J-value as e,
then valJ(e) = maxf∈S valI(f).

Proof Let us assume by way of contradiction that the claim is not true and e is the
I-biggest element for which the lemma does not hold. Then every element in the set S
has an I-value less than its J-value. We define c to be the biggest value in the range
(valI(e), valJ(e)) in the value set of the root in I if such a value exists; otherwise we define
c = valI(e). In either case, valI(e) ≤ c < valJ(e) and there is no value in the range
(c, valJ(e)) in the result set of the root in I.

We obtain4 a perturbation K of I from J by changing the value of any element in S
to c. Then, clearly K ≺ J and diff(K, J) = c. So, by Definition 21, c is not in the value
set of the root in I. Moreover, by Definition 21, there is a perturbation L of I where
L � K and J compresses L while K does not. As L � K ≺ J , by Observation 36,
diff(L, J) ≤ diff(K, J) = c. For b the biggest value in the result set of I smaller than c
(−∞ if no such value exists), by Observation 38, b < diff(L, J) because only one of J and
K compresses L. This means there is no value in the value set of the root in I in the range
[diff(L, J), valJ(e)). So, as e is promoted in J and J compresses L, valJ(e) is in the value
set of the root in I, which means an element f of I-value valJ(e) is promoted in I. Since J
is a promotion-preserving perturbations of I, f is promoted with value valJ(f) = valI(f)
in J and so f ∈ S, contradicting the fact that the I-value of every element in S is less than
its J-value. �

6.2 Lower Bound

Recall the definition of φ and that we partition input instances into classes according
to the value of φ at the leaves. Let C be an arbitrary class. Our goal is to prove that
for every comparison-based algorithm A, there are input instances I1, I2 ∈ C such that
A needs roughly Aφ comparisons to find a solution for I2 (the first lower bound) and
Bφ comparisons to find a solution for I1 (the second lower bound); this implies that our
algorithm is worst-case optimal in every class C of inputs.

Proofs in this section are mostly adapted from Chapter 3. In our arguments here, we
manipulate inputs to obtain inputs within the same class for which the algorithm needs

4In this work, when we say we obtain a perturbation K of I from J , it means that K and J are both
perturbations of I, and each element, except from those mentioned explicitly, has the same J-value and
K-value.
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a certain number of comparisons. The next definition describes one situation where two
inputs are in the same class.

Definition 22 For inputs I and J with the same signature, J is a reduction of I if there
is a sequence S of elements that is a solution for both I and J , and for any two elements
e1 and e2:

• If e1 is I-smaller than e2, e1 is also J-smaller than e2.

• If e1 is in S and e2 is I-equal to e1, e1 is not J-smaller than e2.

Lemma 41 For any reduction J of a tight aligned input I, I and J are in the same class.

Proof Consider a solution s1, . . . , sk satisfying the conditions in Definition 22, and
define s0 and sk+1 to be some elements with values −∞ and ∞ respectively (as defined in
Section 2.1.2). For any element e promoted with si,

5 for some i, in I, valI(e) = valI(si) <
valI(next(e)) and so, by Definition 22 valJ(e) ≤ valJ(si) < valJ(next(e)). Thus, we can
define the perturbation M of J as one in which the value of every element promoted in I
with si, for some i, has changed to valJ(si). Then, s1, . . . , sk is also a solution for M and,
moreover, for every element e and value i, 1 ≤ i ≤ k, e is promoted in I with si if and only
if it is promoted in M with si Thus, M and I are in the same class. We show that M is
the representative perturbation of J and so the lemma is proved. In order to that, we first
show that M is aligned, and then assuming it is not the representative perturbation of J ,
we show there is a contradiction.

Claim 1 The perturbation M is aligned.

Proof If not, consider the representative perturbation N of M . Then M 6� N because
otherwise M ≡ N and so as N is aligned, M is also aligned. We define a = diff(N,M) and
S as the set of elements promoted with value a in N . Consider the M -biggest member f
of S; if there are multiple choices for f , then we choose the J-biggest one among them; in
case there still are ties, if si is one of choices, for some i, we select si; otherwise we make
an arbitrary choice. Then by Lemma 40 valN(f) = valM(f) = a.

We show now that f is also a J-biggest element of S and its J-value is a. First suppose
a is not in the result set of J and so is not in the result set of M either. Then, for every
element e of S, the J-value of e equals its M -value because otherwise e is promoted in M

5Recall the definition of two elements being promoted together from Page 17.
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and so has not changed its value in N , that is, it is promoted in M with the value a, which
is a contradiction. Therefore, the claim is true. Next suppose a is in the result set of J
and hence an element si ∈ S, for some i, is promoted in J with value a. As no element in
S may have an M -value or J-value of more than a = valJ(si) = valM(si) and si ∈ S, f has
to be si. Thus, again the claim is true.

Now, we define i as an integer, 1 ≤ i ≤ k + 1, such that valI(si−1) < valI(f) ≤ valI(si),
and we consider two cases. The first case is when i ≤ k and there is at least one leaf
not containing any element promoted with value si in I, but containing an element in
S; let L be the set of all such leaves. As valI(f) ≤ valI(si), for every element e in S,
valJ(e) ≤ valJ(f) ≤ valJ(si) and so valI(e) ≤ valI(si). Also, for any such element e, neither
e nor any element after e in the same leaf as e is promoted with sj in I, for j < i, because
otherwise that element would be promoted with sj in M and in N and so e could not
be promoted with value a (which is bigger than valJ(sj) = valN(sj)) in N . So, for any
e ∈ S, neither e nor any element after e in the same leaf as e is promoted with a value
less than si in I. Let’s use ge to denote the I-biggest element of the leaf containing e that
has an I-value smaller than or equal to the I-value of si, for e ∈ S (note that we proved
valI(e) ≤ valI(si) for e ∈ S). As mentioned, ge is not promoted in I with a value less than
si. Thus, if we create a new perturbation I ′ of I from I by changing the value of ge to
valI(si), for all e ∈ S, we get a promotion-preserving perturbation of I in which every leaf
in L will have an element promoted with si, a contradiction with I being aligned.

Next, we consider the other case where either i = k + 1, or every leaf containing
an element in S contains an element promoted with si in I and so in M . In case i <
k + 1, valM(f) 6= valM(si) because we assumed there is a leaf containing an element in
S but not containing any element promoted with f in M . Also, since valI(f) ≤ valI(si),
valM(f) = a = valJ(f) ≤ valJ(si) = valM(si). Therefore, in any case valM(f) < valJ(si)
and thus, f is not promoted in M nor in I. For every element e in S, valM(e) ≤ a =
valJ(f) < valM(next(e)). If valM(next(e)) 6= valJ(next(e)), next(e) is promoted in M and in
I with sj, for some j ≥ i, and so valI(next(e)) ≥ valI(si) ≥ valI(f). Otherwise, i.e. when
valJ(next(e)) = valM(next(e)) = valN(next(e)) = a > valJ(f), valI(f) ≤ valI(next(e)); so
in any case valI(f) ≤ valI(next(e)). Also, valJ(e) ≤ valM(e) ≤ valM(f) = valJ(f) and so
valI(e) ≤ valI(f) ≤ valI(next(e)). Furthermore, if e is promoted in I with some sj, it is
promoted in M and in N with sj and hence si = f and j = i (because valN(f) = valJ(f) >
valJ(si−1) = valN(si−1)). Therefore, we can create a promotion-preserving perturbation I ′

of I from I by changing the value of every element e in S where valI(next(e)) 6= valI(f) to
valI(f), and have all leaves with some element in S having an element promoted with f .
As I is aligned, all such elements are promoted in I with f as well which means they are
promoted in M with f , contradicting the choice of S. �
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Let K be the representative perturbation of J , assume M 6= K, and define a = diff(M,K).
We select i, 1 ≤ i ≤ k + 1, such that valJ(si−1) < a ≤ valJ(si), and define S as the
set of all elements e promoted in K with a value in the range (valJ(si−1), valJ(si)] where
valK(e) = valJ(e). Then, as valJ(si−1) < valJ(e) ≤ valJ(si), valI(si−1) < valI(e) ≤ valI(si),
for all e ∈ S.

We prove that i ≤ k and every member of S is promoted in K and in I with si. For
this purpose, for every e ∈ S, we define Te as the set of elements promoted with e in K.
For any f ∈ Te, we define Ae(f) to be next(f) if next(f) has the same I-value as e and to
be f otherwise. Then, clearly Ae(e) = e.

We show that for every f ∈ Te,

valI(Ae(f)) ≤ valI(e) < valI(next(Ae(f))). (6.1)

Since K is a perturbation of J , valJ(f) ≤ valK(f) < valJ(next(f)) and hence as valK(f) =
valK(e) = valJ(e),

valJ(f) ≤ valJ(e) < valJ(next(f)). (6.2)

Now we consider two cases based on the element Ae(f). When Ae(f) = f , valI(next(f)) 6=
valI(e) and thus due to Equations 6.2 and Definition 22, valI(f) ≤ valI(e) < valI(next(f));
so the claim is true. In caseAe(f) = next(f), valI(next(Ae(f))) > valI(Ae(f)) = valI(next(f)) =
valI(e) and thus again the claim is true.

Now we show that i ≤ k, and for every e ∈ S and any element f of Te, Ae(f) is
promoted with si in I. As diff(K,M) = a, for no member f of Te and value i, Ae(f) may
be promoted in M , and so nor in I, with sj where j < i. So Equation 6.1 shows that
the perturbation I ′ of I that changes the value of Ae(f) to valI(e), for all f ∈ Te is a
promotion-preserving perturbation of I causing members Ae(f), for f ∈ Te be promoted.
Therefore, as I is an aligned input, by Definition 15 valI(Ae(f)) = valI(e), for all f ∈ Te,
and valI(e) is in the result set of I. As we showed, valI(si−1) < valI(e) ≤ valI(si). So
valI(e) = valI(si) = valI(Ae(f)) < valI(next(Ae(f)), for all f ∈ Te. Hence, for all f ∈ Te,
valK(si) = valJ(si) < valJ(next(Ae(f)) ≤ valK(next(Ae(f)).

We next show that M is maximal at valJ(si). For every element e satisfying valJ(e) ≤
valJ(si) < valJ(next(e)), we have valI(e) ≤ valI(si) < valI(next(e)). So, for every perturba-
tionM ′ of J with diff(M ′,M) = valJ(si), we can build a promotion-preserving perturbation
I ′ of I from I in which every leaf containing an element promoted in M ′ with value valJ(si)
contains an element promoted in I ′ with value valI(si): for every leaf l containing an ele-
ment e promoted in M ′ with value valJ(si), we change the value of e to valI(si). Then, as
I is aligned, the same set of elements are promoted in I and in I ′. Therefore, every leaf
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containing an element promoted in M ′ with si, already contains an element promoted in
I and so in M with si. Thus, M is maximal at valJ(si).

We next show that a = valJ(si). Assuming to the contrary that a < valJ(si), we prove
that M compresses K. As we showed, valK(si) < valJ(next(Ae(f)) ≤ valJ(next(next(f)) for
every f ∈ Te and e ∈ S. Also, for every element g promoted in K with a value in the range
[a, valJ(si)], by Lemma 40 there is an element e in S promoted with g in K and thus, Ae(g)
is promoted with si in M . The last condition of Definition 19 is satisfied as well because
M is tight (since I is tight). Therefore, K is compressed by M which contradicts the fact
that K is the representative perturbation of J . Hence, diff(M,K) = a = valJ(si) and so as
M is maximal at a, M � K. On the other hand, since K is the representative perturbation
of J , K is also maximal at a, and as a result, K � M . Hence M ≡ K, contradicting the
assumption a = diff(M,K). � �

6.2.1 First Lower Bound

Let us first explain the precise form of the first lower bound. For an input I, a maximal
sequence of consecutive elements of any leaf that are promoted in I is a promoted group.
A promoted group is a floating one if it does not include the last nor the first element in
the leaf. Suppose we use g(l) as the number of floating promoted groups of a leaf l in the
representative perturbation of I. Then A(I) is defined as

∑

l: leaf node φ(l) + log
(
size(l)
g(l)

)
. In

this section, we prove that for any input I and algorithm A there exists an input J in the
same class as I with A(J) = A(I) and such that A needs Ω(A(J)) comparisons to solve
the problem for J . This amount of time is in fact needed to find the elements of each
leaf l promoted in the representative perturbation among size(l) elements of l. For the
representative perturbation I ′ of I (which by definition is aligned), we have A(I) = A(I ′).
Therefore, we only need to verify the claim for aligned inputs. Also, as the next lemma
shows, for any aligned input I, there is a tight aligned input J in the same class such that
the same set of elements is promoted in I and in J , and hence A(I) = A(J). Therefore,
we can focus only on tight aligned inputs.

Lemma 42 For any aligned input I, there is a tight aligned input J in the same class as
I such that the same set of elements is promoted in J and in I.

Proof Without loss of generality, we assume that the values of elements are real numbers
and the difference between the values of any two elements with different values is at least
1. Suppose E is the sequence of elements of I ordered by their I-values. For any input K
and value v in the result set of K, the set of nodes in K that have v in their contribution
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set makes a sub-intersection tree, which we call the v-tree of K. The idea here is to obtain
J from I such that the v-tree of J , for any v in the result set of J , is non-partitionable.
As such, the values of elements in J is defined as follows.

J-values of elements promoted in I: For every value v in the result set of the root in
I, we partition the v-tree of I into a number of non-partitionable sub-intersection
trees J1, . . .Jk. Then for any i, 1 ≤ i ≤ k, each leaf of Ji has an element promoted
in I with value v; we define the J-value of these elements as v − i−1

k
. Then each

element promoted with value v in I will be promoted in J with value v− i
k
, for some

i, 0 ≤ i < k. Also, assuming no new element is promoted in J , for each v in the
result set of J , the v-tree in J will be non-partitionable.

J-values of elements not promoted in I: The goal here is to determine J-values of el-
ements not promoted in I such that they are not promoted in J nor in any promotion-
preserving perturbation of J . Let vmax denote a value bigger than the I-value of any
element in I. For any element e of any leaf l, we define ve as follows: suppose f is
the smallest element of l that is promoted in I and is not smaller than e; if such an
element f exists, we define ve to be J-value of f ; otherwise, we define ve = vmax. The
value of every non-promoted element e in a leaf l is defined as ve −

i
n2 . where i is

the number of elements after e in the sequence E. This way J-values of every two
elements that are not promoted in I will be different.

One can observe that the same set of elements is promoted in J and in I: every element
not promoted in I has a J-value different than the J-value of any other element (because
of the − i

n2 term), and every element promoted in I is still promoted in J . Now, it suffices
to show that J is an aligned input. Suppose to the contrary that J is not aligned and so
by Definition 15 there is a promotion-preserving perturbation J ′ of J and an element e
such that e is promoted in J ′ but not in J . We can assume J ′ is minimal. Suppose f is
the J-biggest element promoted in J ′ with e.

First we show that for every element g promoted in J ′ with f , vg = vf . If that’s not the
case, |vf−vg| ≥

1
n
. Moreover, no matter whether f is promoted in I or not, valJ(f) = vf−

i
n2

for 0 ≤ i < n, and similarly valJ(g) = vg −
j

n2 , for 0 ≤ j < n, and also valJ(f) ≥ valJ(g).
Therefore, valJ(f) > vg ≥ valJ(g). The equality vg = valJ(g) cannot hold because otherwise
g is promoted in J and so as J ′ is a promotion-preserving perturbation, valJ ′(f) = valJ ′(g) =
valJ(g) < valJ(f) which contradicts J ′ being a perturbation. So, valJ(f) > vg > valJ(g)
where vg is the value of an element in the same leaf as g, which means the J ′-value of g
cannot be more than vg and again g may not be promoted in J ′ with f . So the claim is
true.
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Next we can see that for every element g promoted in J ′ with f , g is not promoted in
J . Otherwise g is promoted in J and so vg = valJ(g). Therefore, ve = vf = vg = valJ(g) =
valJ ′(g) = valJ ′(e). Also, since J ′ is a permutation of J , valJ(e) ≤ valJ ′(e) < valJ(next(e))
and so valJ(e) ≤ ve < valJ(next(e)). Moreover, as ve = valJ(g) 6= vmax, by definition ve
is the J-value of an element in the same leaf as e. Thus, v(e) = valJ(e) and hence, e is
promoted in J , which contradicts our assumption.

Defining L as the set of leaves containing elements promoted with e in J ′, for each
leaf l in L, we specify an element hl not promoted in I, such that these new elements
can be promoted together in a promotion-preserving perturbation of I, which will be a
contradiction proving the lemma. We consider two cases based on whether vf = vmax or
not. If vf = vmax, for each leaf l ∈ L and the element g of l promoted in J ′ with e, then
neither e nor any element after g in l is promoted in J . In this situation, for each leaf l ∈ L,
we define hl to be the last element of l. Now consider the case vf < vmax. In this case, for
every element g of any leaf l ∈ L that is promoted with e in J ′, g is not promoted in J ,
but an element g′ after g in l is promoted in J with value vg = vf , and no element between
g and g′ is promoted in J . So in this case we define hl to be the element right before g′.
In either of these two cases, we see that elements hl, for l ∈ L, are not promoted in I
and the elements right after them (if any) are promoted in I and have the same J-value
(which is vf ) and so also have the same I-value. So we may create a promotion-preserving
perturbation I ′ of I in which every element has the same value as in I except from elements
hl, for l ∈ L, whose value is changed to maxl∈L valI(hl). Clearly elements hl are promoted
in I ′, which contradicts I being promotion-preserving. � �

In the next definition, we define a “gap change” variant of an input I as an input J that
is similar to I, but the number of elements in “gaps” between floating promoted groups
of each leaf in J can be different from that in I. Here the key idea is that an algorithm
should distinguish between certain gap changes of an input.

Definition 23 Consider an input I. A gap change of I is an input J with the same
signature such that the same number of elements are promoted in I and in J , and there is
a function t mapping every element of every leaf in J to an element in the same leaf in I
such that

• For every element e, e is promoted in J if and only if t(e) is promoted in I.

• For elements e1 and e2 promoted in J , e1 is J-smaller than e2 if and only if t(e1) is
I-smaller than t(e2).
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• For elements e1 and e2 where exactly one of e1 and e2 is promoted in J and t(e1)
and t(e2) are not of the same I-value, e1 is J-smaller than e2 if and only if t(e1) is
I-smaller than t(e2).

Note that t may map two elements to one element and need not to be onto, but it can
be observed that, for each leaf l, t defines an order-preserving and one-to-one mapping
between elements of l that are promoted in J and elements of l that are promoted in I.
Intuitively, a gap change of an input changes the size of non-empty gaps between promoted
elements and keeps empty gaps empty. Using the lower bound technique of Chapter 3, we
prove that the number of gap changes of an aligned input in a class is a combinatorial
lower bound on the worst case running time of any algorithm for inputs in the class.

Lemma 43 For any tight aligned input I and algorithm A, there is a reduction J of a
gap change of I, where A needs Ω(A(I)) comparisons when run on J .

Proof We build the input J by running the algorithm A against an adversary that
assigns actual values to elements and reveals them to the algorithm at the time the al-
gorithm “touches” (inspects) them. In this input, each leaf l will have the same number
of promoted groups as in I and each promoted group of I has a corresponding promoted
group in J in the same leaf and with the same size. This will be such that for a leaf l with g
floating promoted groups in I and a floating promoted group G of l in I, the algorithm does
not have a chance to touch any element of the promoted group G′ of J that corresponds
to G before touching at least log size(l)−φ(l)

g+1
elements in the “region” containing G′, where

φ(l) is computed for input I.

Here is a more precise definition of “regions” we just mentioned. For a a leaf l with g
floating promoted groups and index r where 1 ≤ r ≤ g, we use Sl

r to denote the sequence
of elements in the rth floating promoted group of l in I. Also, if the first (the last,
respectively) element of l is promoted, Sl

0 (Sl
g+1, respectively) denotes the first (the last,

respectively) promoted group of l; otherwise Sl
0 (Sl

g+1, respectively) is empty. Note that
for r, 1 ≤ r ≤ g, Sl

r is non-empty by definition. We use T l
r to denote the promoted group

of J that corresponds to Sl
r. For a leaf l, the sequence of elements of l is divided as follows:

The first |Sl
0| and the last |Sl

g+1| elements, called regions Rl
0 and Rl

g+1, respectively, will
contain the elements of T l

0 and T l
g+1. The rest of the elements are divided into g regions

Rl
1, . . . , R

l
g, the rth of which being of size |Sl

r| +
⌊
size(l)−φ(l)

g+1

⌋

or |Sl
r| +

⌈
size(l)−φ(l)

g+1

⌉

where,

as mentioned, φ(l) is the number of elements of l promoted in I.

The adversary uses triplets of integers as values of elements in the instance J it builds.
Consider any promoted group Sl

r of a leaf l in I. We define alr as the smallest member of
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the result set of I that is bigger than the I-value of the element right before Sl
r in l, and

blr as the value of the biggest member of the result set of I that is smaller than the I-value
of the element right after Sl

r in l. If v1, . . . , vk is the sequence of I-values of elements of Sl
r,

the ith element of T l
r, for each i, will have a value of the form (vi, 0, x), for some x ≤ 0.

Each element of Rl
r that is before T

l
r will have a value of the form (alr, x, 0), for some x < 0,

and each element of Rl
r that is after T l

r will have a value of the form (blr, x, 0), for some
x > 0.

Algorithm 8 shows how the adversary follows the schema we have just explained to
delay touching elements of promoted groups until the aforementioned number of elements
are touched. In this algorithm, the variable Cr stores a subsequence of Rl

r and at each
step it is truncated to a smaller sequence. At the beginning, Cr is initialized to Rl

r and at
the end it will be the sequence Tr. Note that this algorithm does not specify how the third
coordinates of elements in Tr are set. We discuss that in the rest of the proof.

Algorithm 8: How to determine the first and the second coordinates of members of
Rl

r when an element s of Rl
r is touched.

if |Cr| ≤ 2|Sl
r| then

– set the first coordinates of first |Sl
r| members of Cr equal to v1, . . . , v|Sl

r |
, and

the second coordinate of them equal to zero;
– set the first coordinates of the rest of members of Cr equal to br, and the
second coordinate of them equal to |Sl

r|, . . . , |Cr| − 1;
– Remove the last |Cr| − |S

l
r| elements of Cr from it;

else
suppose s is the ith member of Rl

r;
if i < |Cr| − i+ 1 then

– assign values −(|Cr| − 1), −(|Cr| − 2), . . . , −(|Cr| − i) to the second
coordinates of the first i members of Cr, and ar to the first coordinate of
them;
– Remove the first i members of Cr from it;

else
– assign values i− 1, i, . . . , |Cr| − 1 to the second coordinates of the last
|Cr| − i+ 1 members of Cr, and br to the first coordinate of them;
– Remove the last |Cr| − i+ 1 members of Cr from it;

end

end
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Let J be the input generated by the adversary; we claim that if the adversary can force
the algorithm to touch elements of all promoted groups, and we obtain the input J ′ from
J by setting the third coordinates of all elements to zero, J ′ is a gap change of I. To
show the correctness of this claim, we define the mapping t required by Definition 23 as
follows. Elements of non-floating promoted groups (i.e., Rl

0 and Rl
g+1) are mapped to the

corresponding elements in T l
0 and T l

g+1. Now consider any region Rl
r, where 1 ≤ r ≤ g. For

any member e of Rl
r with second coordinate set to zero, the first coordinate of e equals the

I-value of an element e′ in the same leaf as e promoted in I; so we define t(e) = e′. For
every member e of Rl

r with a negative second coordinate, t(e) is defined as the element right
before Sl

r, and for every member e of Rl
r with a positive second coordinate, t(e) is defined

as the element right after Sl
r. Then it is easy to see that the conditions in Definition 23

hold.

Now we show that the adversary can set the third coordinates of elements in T l
r, for

leaves l and indices r, 0 ≤ r ≤ g + 1, in such a way that all such elements are touched by
the algorithm and J is a reduction of J ′. For a value v in the result set of I, we use Uv to
denote the sub-intersection tree consisting of all nodes with value v in their contribution
set in I. Suppose an element e of Rl

r, for some l and r is touched, and the adversary decides
it should make the element a part of T l

r and, so it assigns to e a value of the form (v, 0, x),
for a value v in the result set of I and a value x which we describe shortly. We then mark
l as touched for v. A node u of Uv is touched for v if every leaf of Uv in the subtree rooted
at u of Uv, is marked as touched for v. Algorithm 9 shows how we determine the third
coordinate of e. It is easy to see that following invariants remain true throughout lifetime

Algorithm 9: How to determine the third coordinates of members of Rl
r.

Mark l as “touched for v”;
Look for the lowest ancestor u of v that is not touched for v;
if u does not exist or is an intersection node then

Set the value of e to (v, 0, 0);
else

Suppose e is the ith element of I (according to some fixed arbitrary order);
Set the value of e to (v, 0,−i);

end

of the algorithm:

• No value other than (v, 0, 0), for members v of result set of I, becomes a member of
the result set of an intersection node.
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• For every member v of the result set of I and every node u of Uv that is not touched
for v yet:

– if u is a union node, (v, 0, 0) is not in the result set of any of the children of u
that are touched for v.

– if u is an intersection node, (v, 0, 0) is in the result set of every child of u that
is touched for v.

As a result, for every member v of the result set of I and every union node u of Uv,
membership of (v, 0, 0) in the result set of u is not determined until u gets touched for v,
which means all leaves of Uv have to be touched for v before the algorithm can determine if
(v, 0, 0) is in the result set of J . So the total number of elements touched by the algorithm

in leaf l with g floating promoted groups will be φ(l)+g log size(l)−φ(l)
g+1

. That is because each
time an element of a region corresponding to a promoted group is touched, we discard at
most half of its “redundant elements” and so it takes at least log size(l)−φ(l)

g+1
“touches” to get

rid of all of redundant elements of one floating promoted group. So the total number of
elements touched in leaf l is in Ω(φ(l) + 2φ(l) + g log size(l)−φ(l)

g+1
). As 2φ(l) = φ(l) + g φ(l)

g
≥

g+g log φ(l)
g+1

, the number of elements touched is Ω
(

φ(l) + g(1 + log φ(l)
g+1

+ log size(l)−φ(l)
g+1

)
)

=

Ω
(

φ(l) + g(1 + log size(l)
g+1

)
)

= Ω
(

φ(l) + g log size(l)
g

)

. Therefore, the total number of ele-

ments touched by the algorithm is Ω
(
∑

l φ(l) + g log size(l)
g

)

= Ω(A(I)). � �

Finally the next lemma shows that any gap change of an aligned input I is an aligned
input itself and therefore is in the same input class as I. Also the function t described
in Definition 23 preserves the number of floating promoted groups in each leaf. As a
result, due to Lemma 41 for any reduction J of any gap change of an aligned tight input
I, A(J) = A(I). This proves the lower bound for tight aligned inputs and therefore, as
discussed previously, holds for any input.

Lemma 44 Any gap change of an aligned input I is an aligned input.

Proof If this is not true for a gap change J of I, there is a promotion-preserving
perturbation J ′ of J and an element that is promoted in J ′, but not in J ; suppose a is
the J ′-value of that element. Also let t be the mapping mentioned in Definition 23 for I
and J . We create a promotion-preserving perturbation of I ′ of I such that an element is
promoted in I ′ but not in I, which contradicts the fact that I is aligned. We define S as
the set of elements promoted in J ′ with value a, and b as the smallest value in the result
set of J such that valJ(e) ≤ b, for all e ∈ S (if such a value b does not exist we define
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b = ∞). When b < ∞, we define bt as the I-value of t(e), for elements e promoted in J
with value b (by Definition 23 this value is the same for all such elements e); otherwise we
define bt = ∞. For any f ∈ S, if f is promoted in J , then valJ(f) = valJ ′(f) = a is an
upper bound on the J-value of all elements in S and thus a = b = valJ(f). We consider
two cases.

The first case is when b < ∞ and there is an element e ∈ S such that the leaf l
containing e does not have any element promoted in J with value b. Then, l does not have
any elements promoted in I with value bt. We build a promotion-preserving perturbation
I ′ of I such that any leaf with an element in S, has an element with I ′-value bt.

For this purpose, consider any leaf l with an element f ∈ S that does not have any
element of I-value bt. If f is promoted in J , then b = a = valJ(f). The element t(f) already
is promoted in I and so by Definition 23 its I-value is bt, which is a contradiction. Now
suppose f is not promoted in J and hence t(f) is not promoted in I. If t(f) has a different
I-value than bt, as valJ(f) ≤ b, by Definition 23 valI(t(f)) < bt. For any element g of l that
is promoted in J and valJ(f) < valJ(g), we have a = valJ ′(f) < valJ(next(f)) ≤ valJ(g), and
so, by definition of b, b ≤ valJ(g) (because for all h ∈ S, valJ(h) ≤ a < valJ(g)). Therefore,
the leaf l does not have any element g promoted in J where valJ(f) < valJ(g) < b and so,
l also does not have any element g promoted in I such that valI(t(f)) < valI(g) < bt. As a
result, the I-biggest element of I of I-value less than bt is not promoted in I and we can
define its I ′-value to be bt. This way we build a promotion-preserving perturbation I ′ of I
satisfying our goal.

Next suppose b =∞ or e does not exist. First we prove that a < b. The equation a = b
may not hold, because then b 6= ∞ and so e does not exist, which is a contradiction with
the choice of a. Now suppose b < a and consider a leaf l with an element f ∈ S. As e does
not exist, l has an element g promoted with value b in J . We have valJ(f) ≤ b = valJ(g) <
a = valJ ′(f) < valJ(next(f)) and hence valJ(f) ≤ valJ(g) < valJ(next(f)) which means g
and f are the same elements. As a result, since J ′ is a promotion-preserving perturbation
of J , a = b, which is a contradiction. Therefore a < b.

For any element f ∈ S, f is not promoted in J because otherwise as we proved, b
should equal a. So, for any f ∈ S, since valJ(f) ≤ a < b, t(f) has an I-value less than bt
and is not promoted in I. Furthermore, for any element g in the leaf l containing f that
is promoted in J and is J-bigger than f , we have valJ ′(f) < valJ(next(f)) ≤ valJ(g) and
thus by choice of b, valJ(g) ≥ b. So, l does not have an element g promoted in I where
valI(t(f)) < valI(g) < bt. Hence, if we consider the I-biggest element e of the leaf l I-less
than bt, e is not promoted in I. So we take the maximum I-value v of such elements e
and we set the I ′-values of all such elements e to v. Then we have a promotion-preserving
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perturbation of I in which all such elements are promoted while none of them are promoted
in I. This contradicts the alignedness of I. � �

6.2.2 Second Lower Bound

The key idea behind the second lower bound is that, roughly speaking, any algorithm
should be able to distinguish any canonical proof labeling P of a signature S from other
canonical proof labelings of S. More specifically, we show that there is an input J , where
P corresponds to the representative perturbation I of J , and A has enough information to
compute P after running on J . In order to prove this fact, we first need to show there is
an aligned input for each proof labeling.

Lemma 45 Every non-empty proof labeling P of a signature S corresponds to an aligned
input I with signature S.

Proof We consider a sub-union tree U in S and create the input I with signature S
as follows. For any leaf ℓ of U , the last |P (ℓ)| elements of ℓ, called middle elements, will
have values equal to members of P (ℓ) and all other elements of ℓ, called prior elements
will have values less than the value of the minimum value v in P (ℓ) but bigger than any
other value less than v that appears in P (root). For leaves ℓ that are not a part of U ,
the first |P (ℓ)| elements, called middle elements, of ℓ will have values equal to members of
P (ℓ) and all other elements, called post elements, will have values greater than the value
of the maximum value in P (root). As U is a sub-union tree, it is easy to see that in any
input J with the same signature as I and for any value v in the result set of the root in
J , there is an element of a leaf in U , and an element of a leaf outside U that is promoted
with value v in J .

Now we show that for any promotion-preserving perturbation J of I, middle elements
are promoted with their I-values, and no other element is promoted. Let’s investigate
correctness of this claim for each of the three groups of elements separately. The correctness
of the claim for middle elements comes from the fact that they are already promoted in I
(as their values come from a proof labeling) and J is a promotion-preserving perturbation.

Now consider any prior element e of a leaf l and consider the smallest middle element f
of l. The J-value of e will be in the range [valI(e), valI(f)) and, due to the way we assigned
I-values of prior elements, there is no middle element with an I-value in this range. Also all
post elements have I-values, and thus J-values, bigger than valI(f). Thus, the J-value of
no non-prior element equals the J-value of a prior element, which means no prior element
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can be promoted in C (because prior elements only appear in leaves of U). Moreover,
this means no non-post element will have a J-value equal to that of a post-element, which
means no element of leaves of U has a J-value equal to that of a post-element. As a result,
post elements may not be promoted in J either. Therefore the same set of elements is
promoted in J and in I, which proves I is aligned. � �

In Chapter 3, for any algorithm A and signature S, we showed that the responses the
algorithm gets from the adversary for comparisons it makes is actually an encoding scheme
for the proof labeling corresponding to the input. More precisely, we designed an encoding
scheme for canonical tight proof labelings P of S with the following property: there is a
set SP of inputs with signature S such that if A needs at most k comparisons to solve each
of the instances in SP , the schema can encode P with O(k) bits. It can be observed that
all inputs in SP are reductions of aligned inputs I where P is the proof labeling of I. Also,
as we showed, such an input I and its reductions are in the same class. So the minimum
number of bits required to encode canonical tight proof labelings corresponding to aligned
inputs in a class is a lower bound on the worst-case running time of any algorithm on
inputs in that class.

Given any function f , one can find
∏(sharef (v)

sharef (u)

)
= 2Bf canonical tight proof labelings P

such that |P (l)| = sharef (l) for all leaves, where the product is over all union nodes v and
children u of v. So for at least one of these proof labelings, the aforementioned encoding
schema needs at least Bf bits to encode it. This means there is an input in the class
requiring at least Bf comparisons to be solved by A. This proves the second lower bound.

6.3 The Algorithm

Our algorithm works by scanning all sets in a synchronized fashion and at each iteration
a new member of the result set of the tree is discovered. Hence, the members of the result
set are discovered one at a time in increasing order. At each iteration of the algorithm, for
each node v, we store the best lower bound we have for the next member of the result set
of the subtree rooted at node v, in an array denoted by min[v]. Values in the min array
guide the algorithm to decide what parts of the tree to explore at each step in search of
the next member of the result set of the root.
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Algorithm 10: update(v, k): boolean

if v is a leaf then
/* using gallop search: */

e := the first element of v with value more than k;
min[v] = val(e);
return true iff val(prev(e)) equals k;

end
if operation(v)= ∩ then

forall the u child of v do update(u, k);
min[v] = maximum of min[u] over all children u of v;
return true iff all calls to update(u,k) returned true;

end
if operation(v)= ∪ then

/* use the FindSmalls operation of the "min-update" structure to

implement the next line */

forall the children u of v s.t. min[u] ≤ k do update(u, k);
/* use the UpdateSmall operation of the "min-update" structure to

implement the next line */

update the values in the ”min-update” structure;
/* use the FindMin operation of the "min-update" structure to

implement the next line */

min[v] = minimum of min[u] of all children u of v;
return true iff at least one call to update(u, k) returned true;

end

6.3.1 The Sketch of the Algorithm

Each iteration of the algorithm is an invocation of a recursive function update(v, k) which
is called on a node v with a suggested lower bound k on the next element to be promoted.
After the execution of the function on v, min[v] will be updated to a lower bound on the
smallest member of the result set of v that is larger than k. The function also returns a
boolean value to indicate if k is a member of the result set of v.

The update function is given in Algorithm 10 and works based on the type of node v.
When v is a leaf, a variation of binary search called gallop search [11] is used to look for
the first element e of value greater than k in elements(v), and min[v] is set to e.6

6 For the leaves v, we need to remember the element of value min[v] as well and so, in addition to the
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Here is a short explanation of gallop search, for our use-case. Suppose f is the element
of v pointed to by min[v] just before running an update on v, and as mentioned we look
for the element e, and assume e is the m’th element after f in the leaf. We first find an
element g with a value not smaller than k after f , and this way we limit the candidates to
g and the elements between f and g. We do this using at most ⌈logm⌉+1 comparisons in
a way that there are at most 2m elements between f and g. Here is what we do to find g:
for i = 0, 1, 2, . . ., we compare the value of the 2ith element after f with k, until we reach
one not smaller than k (which is the element g we mentioned). Then if the value of g is
bigger than k, we know the element e we look for is between f and g, so using a binary
search in O(logm) we can find e.

When searching for element e, we run two gallop searches in parallel: one starting
from f going forward, and one starting from the end of the sequence elements(v) going
backward. In this way, if there is a large gap between f and e, and e is closer to the end
of elements(v), we find e faster.

When calling update recursively, at an intersection node, update is called recursively
for all children and then the min value is set to the maximum of those of children. In
contrast, at a union node, only those children u with a value min[u] not exceeding k are
recursively updated. To find and update this proper set of children at a union node, we
design an efficient data structure “min-update” described in Section 6.3.2.

Algorithm 11: The main function that computes the answer.

update(root, −∞);
while min[root] 6=∞ do

if update(root, min[root]) then
output min[root];

end

end

The main function of the algorithm is given in Algorithm 11. It consists simply of
iterative invocations of function Update() on the root of the expression tree. Each of
these calls is a round. In case the function evaluates to true, the current min[root] value
belongs to the result set, and therefore it is reported in the output. Also as explained, the
min[root] is updated to a larger value on which the function is called in the next iteration.

value of the element, we also store a reference to the actual element. As such in the rest of the chapter,
when v is a leaf, min[v] may refer to the value or to the element, depending on the context.
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We define the target value of a round as the value k for which update(root, k) is invoked
in that round.

6.3.2 The “min-update” Structure

In the update function of Algorithm 10, on a union node v, we find children u of v with
min[u] ≤ k and invoke update on these children recursively. We cannot afford to perform
a linear scan of all children of v in every update iteration on a union node v. Furthermore,
over the course of many invocations of update on v, some children of v are updated more
frequently than others. The overall time spent to update node v must be adaptive to the
update frequencies on different children of v.

We introduce a data structure which we name Huffman heap to perform operations on
the min array efficiently. It stores a set of entries (the values of min array for children of
v), and performs the following operations efficiently:

FindMin: retrieves the smallest value.

FindLessThan(key): report all the entries with value at most key.

UpdateHeap: updates the entries according to the new values in min array.

The operation UpdateHeap is used after operation FindLessThan and before any other
operations is performed on the array. We run this operation once we finish running update
recursively on selected children of the union node.

To be more precise, for a union node v with children u1, . . . , ur, we define a v-round
as a round in which update is called on v and we assume there are m v-rounds. For
0 ≤ t ≤ m and 1 ≤ i ≤ r, we denote the number of times update is invoked on child ui

in the first t v-rounds by b
(t)
i , and define b(t) =

∑

i b
(t)
i . The data structure is a binary

tree over r leaves, where each leaf of the binary tree corresponds to a child u of v. We
store min[u] in the leaf node corresponding to the child u of v; also, in every internal
node x, we store the minimum value stored in the subtree rooted at x. Consequently,
the cost of FindLessThan(k) is asymptotically the number of leaves with value at most
k together with their ancestors. For a set S of leaves in this tree, we use Ancestors(S)
to denote the set containing members of S and their ancestors. The running time of
UpdateHeap is also asymptotically |Ancestors(S)|, for S the set of leaves found in the
previous FindLessThan. The operation FindMin is clearly done in constant time.
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The tree structure is updated in such a way that just before running the t-th v-round,

the height of each child u of v is at most − log p
(t)
i +2 where p

(t)
i =

b
(t)
i

b(t)
. In order to achieve

this goal we rebuild the tree after v-round numbers τ1, τ2, . . . (values to be set shortly).
Rebuilding the tree after v-round t = τj, for some j, is done using the Shannon-Fano
algorithm [26]:

1. Let ux1 , . . . , uxk
be children of v such that (p

(t)
xi ) is a non-decreasing sequence. Find

a value d minimizing the difference between
∑d

i=1 p
(t)
xi and

∑k

i=d+1 p
(t)
xi .

2. Recursively, create the tree T1 with nodes ux1 , . . . , uxd
and the tree T2 with the rest

of the nodes. T1 and T2 are the left and the right subtrees of the root, respectively.

The depth of each node ui will be − log p
(τj)
i + 1 [26]. The values of τj are chosen as

follows: Defining τ0 = 0, τj is the smallest value bigger than τj−1 where for some child

ui of v, b
(τj)
i > 2b

(τj−1)
i . Then in any round t, the height of each node ui will be at most

− log p
(t)
i + 2.

Lemma 46 The total time spent on min-update operations at a union node v with r

children is O(r2 log2 r +
r∑

i=1

bi log
m+bi
bi

), where the bi’s and m are defined as above.

Proof The running time of heap operations can be divided into two parts: performing
individual FindMin, FindLessThan, and UpdateHeap operators, and rebuilding the
Huffman heap in rounds τ1, τ2, . . . .

Part 1. The running time of this part is m + |
∑m

t=1Ancestors(St)|, where St is the
set of leaves updated in v-round t. Using induction on the height of the tree, it is
easy to show that in a binary tree, for any set S of leaves,

∑

l∈S |Ancestors(l)| −
|Ancestors(S)| ≥ |S| log |S| − 2|S|. Thus, defining st = |St|, b = b(m), and, for each i,
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bi = b
(m)
i (and so, b =

∑m

t=1 st),

m∑

t=1

|Ancestors(St)|

≤
m∑

t=1

(
∑

l∈St

|Ancestors(l)| − st log st + 2st

)

≤

(

2b+
m∑

t=1

∑

ui∈St

(

− log p
(t)
i + 2

)
)

−
m∑

t=1

(st log st − 2st)

=

(

4b+
m∑

t=1

∑

ui∈St

log
b(t)

b
(t)
i

)

−
m∑

t=1

(st log st) + 2b

which due to convexity of x log x is at most

6b+

(
r∑

i=1

∑

St,ui∈St

log
b

b
(t)
i

)

−
m∑

t=1

(
b

m
log

b

m

)

= 6b+ b logm−
r∑

i=1

bi∑

j=1

log j.

By Stirling’s bounds, this is asymptotically equal to
(
∑r

i=1 bi log
m+bi
bi

)

.

Part 2. The algorithm spends O (r log r) time each time it rebuilds the Huffman heap. So,
in total, the algorithm spends at most O (r log r

∑r

i=1 log bi) time to keep the Huffman
heap approximately updated. Let us consider each term of the sum individually: if
bi ≤ r log r log bi, then log bi ∈ O(log r) and so r log r log bi ∈ O

(
r log2 r

)
. Therefore,

in any case r log r log bi ∈ O(r log2 r + bi) and hence the total rebuilding time is in
O
(
r2 log2 r +

∑r

i=1 bi
)
.

�

6.3.3 Generating Representative Perturbation

In Section 6.1, we defined φ(v) as the size of the contribution set of v in the representative
perturbation. Here, we bound the number of update calls on each node of the tree by this
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value. For this, we show that the algorithm “generates” an aligned input, which is indeed
the representative perturbation of the input.

After each round in the execution of the algorithm on an input I, we define the per-
turbation J “generated” by the algorithm as follows. For a round r and leaf l updated
in round r, the stop element of l in round r is defined as the biggest element of l with a
value no more than the target-value of r. In other words, this is the element prev(min[ℓ])
at the end of round r. For every round r so far and leaf ℓ updated in round r, we define
the J-value of the stop element of ℓ in r to be k, where k is the target value of round r;
we define the J-value of every other element to be the I-value of that element. By the
“perturbation generated by the algorithm” we mean the perturbation generated after all
rounds.

Compactness

A perturbation J of an instance I is said to be compressible at a value u if there is an
aligned perturbation K of I with diff(J,K) = u which compresses J . Clearly a compact
perturbation is one that is not compressible at any point. In order to preserve the com-
pactness constraint of Definition 21, after detecting a value b in the result set of the root
of the original input, the algorithm analyzes the previous round r1 and the current round
r2 (the one with target value b) to decide if the algorithm has generated a perturbation
that is compressible at u, for u the target value of r1. If the perturbation generated is
compressible at u, then rounds r1 and r2 should be “replaced” with a single round of tar-
get value b. So we undo them and we call update(root, b) to have a single round r3 of
target value b instead, and we say the rounds r1 and r2 are rolled-back by r3 and remove
the rolled-back rounds from consideration. Next we will show that there cannot be more
than one roll-back for the same value in the result set of I thus bounding the roll-back
time to within a constant factor of the non-rolled-back rounds.

We also alter the definition of the perturbation J generated by the algorithm after a
round r as follows: we only consider r and its previous rounds that are not rolled-back
until the end of round r, and for every such round r′ and leaf ℓ updated in round r′, we
set the J-value of prev(minr′ [ℓ]) to k, where k is the target value r′. We set the J-value of
every other element to its I-value.

An important issue here is how to detect the compactness of the perturbation. To be
more precise consider the situation after rounds r1 and r2 described above. The problem is
to decide if the perturbation P1 generated after round r2 is compressed by the perturbation
P2 generated after rolling back r1 and r2 by the round r3, and if such a perturbation P2
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Figure 6.6: An example of min and minnext values. Next element to be processed in each
leaf is underlined.

is aligned. The conditions in Definition 19 for P2 compressing P1 can be easily checked by
examining the set of leaves visited in the previous round. The challenging part is how to
determine if P2 is aligned. We discuss that in the rest of this section, but assuming we can
do that properly, we can make the following claim.

Observation 47 The final perturbation generated by the algorithm compresses the per-
turbation generated by the algorithm immediately after any rolled-back round r.

In order for the algorithm to predict the alignedness of the perturbation that will be
generated after rolling back (note that we need to determine it before doing the actual
roll-back), we create an array called minnext on the nodes of the tree, similar to the min

array, but instead of being computed on the first non-processed element of each leaf, it is
computed on the second non-processed element of each leaf. Figure 6.6 shows an example.
At the end of each call Update(v, k), we update minnext as follows:

• if v is a leaf, minnext[l] will be next(e) for e the smallest element of l with value bigger
than k, or an element of value ∞ if all elements of l have values at most k.

• if v is an intersection (union, respectively) node, minnext[v] is set to the maximum
(minimum, respectively) of minnext[u], for the children u of v.

Lemma 48 The perturbation generated after rolling back rounds r1 and r2 with a round
r3 of target value b is aligned only if minnext[root] > b right before round r1.

7

Proof For any node v, minnext[v] is the minimum number a for which v has a sub-
intersection tree U such that the second non-processed element of each leaf has a value of
at most a. Now suppose despite the fact that minnext[v] ≤ b, we rollback the round. For
all nodes v of U , we have min[v] ≤ minnext[v] ≤ b and so Update(v, b) is run on nodes of U

7 Although in this lemma we prove the “only if” part, the “if” part also holds and is proved in Lemma 49.
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recursively. As the second non-processed element before round r1 has a value of at most b,
in the perturbation J generated after the roll-back, for every leaf l of U , an element el of l
is promoted with value b in J and prev(el) has a value less than b and is not promoted in
J . Then, defining a = maxl∈{leaves of U} val(prev(el)), one can create a perturbations K of J
by changing values of elements prev(el), for leaves l of U , to a, obtaining a perturbation in
which elements prev(el) are promoted. So J is not aligned. � �

min : 2
minnext : 4

∩

∪
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1,4

3,4

3,4

2,3,4

2,3,4
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target value 3

After rolling back
rounds 1 and 2 with a
round of target value
3

Figure 6.7: An example of a situation where we roll-back rounds. The next element to
be processed in each leaf is underlined. Also, the sequences in “dotted” boxes show the
perturbation generated by the algorithm at each stage.

So we use the condition minnext[root] > b to decide if we should do the actual roll-back.
Figure 6.7 shows an example.

Now the question is how we keep the minnext values up-to-date in an affordable time.
Anytime the function update is called on an intersection node, it is also called on all its
children, so the cost of updating minnext is within a constant factor of the calls. For union
nodes, we use a similar technique as for min to prevent it from incurring an additional cost:
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in the Huffman heap constructed for the node, at each vertex of the heap, in addition to
the minimum value among the min-values in the subtree at that vertex, we also store the
minimum minnext-value of those nodes. This way, minnext is updated as fast as min and the
overhead is just a change in the constant factor.

Lemma 49 The algorithm generates the representative perturbation of the input.

Proof Considering the perturbation J generated by the algorithm for the input I, we
show that J satisfies the conditions mentioned in Definition 21 one by one.

Claim 2 J is maximal at any point b that is in the result set of the input.

Proof This is because for any perturbation J ′ of I with diff(J, J ′) = b and for any leaf l
containing an element e promoted with value b in J ′, min[l] just before the non-rolled-back
round r of target value b is at most b because otherwise, e is promoted with a value less
than b in J , which contradicts diff(J, J ′) = b. As such leaves make a sub-intersection tree,
just before round r, min[l] ≤ b, for all ancestors u of such leaves l. Therefore, in round r,
update(l, b) is called, for all such leaves l, and hence an element of value b is promoted in
J from each of those leaves. Thus, J � J ′, which means J is maximal at b. �

Claim 3 For any promotion-preserving perturbation K of I where J 6� K, there is a
perturbation K ′ with K ′ � K such that J compresses K ′ but K does not.

Proof For a = diff(J,K), by definition J is not maximal at a and thus by Claim 2 a is
not in the result set of I. We define b1 as the biggest value in the result of I smaller than
a (−∞ if no such value exists) and b2 as the smallest value in the result of I bigger than
a (∞ if no such value exists). Consider the last round r1 with target value c1 less than a
(if such a round exists), and the last round r2 with target value c2 less than or equal to a
(if such a round exists). First assume any of r1 or r2, say ri for i ∈ {1, 2}, is a rolled-back
round, and define K ′ as the perturbation generated after ri. Then it can be seen that ci
is greater than b1 and less than or equal to a. As a result, a is not in the result set of J
and hence it is in the result set of K. Also, by Observation 47, J compresses K ′ and so
K ′ � J . Therefore, if ci < a, by Observation 36, K ′ � K; otherwise K ′ is maximal at
a (due to a very similar argument to Claim 2) and so again K ′ � K. Also, K does not
compress K ′ because it has a in its result set. So the claim is true.

Next, suppose neither r1 nor r2 is rolled-back. Consider the time t right after round
r1 if r1 exists, or just at the beginning of the algorithm otherwise. Then, for every leaf l,
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min[l] is the first element, or prev(min[l]) is an element promoted in J and so in K (because
diff(J,K) = a > c1) with a value at most c1. So, for every leaf l containing an element
promoted with a value of a in K, min[l] is not bigger than a and hence min[root] ≤ a which
means the first round r′ after time t has a target value at most a. Also, due to the choice
of r1, the target value of r′ is no less than a. So, the target value of r′ is a, that is, r′ and
r2 are the same rounds. As for all leaves l containing an element promoted with a value of
a in K, min[l] has an I-value of at most a, for all ancestors v of such leaves l, min[v] ≤ a
and thus, all such leaves are visited in round r2. Therefore, because r2 is not rolled-back,
J � K, which contradicts the assumption of the claim. �

Claim 4 The perturbation J is compact.

Proof Suppose J is not compact and so it is compressed by an aligned perturbation K.
Define a = diff(J,K) and b as the smallest value in the result set of I bigger than a. Then
by Definition 19, K is tight at b. Consider the last round r of target-value less than b
and define a′ as the target value of r. Then, a ≤ a′ < b and hence, the perturbation J ′

generated after r is compressed by K and so r is rolled-back. On the other hand, because
a is in the result set of J , the algorithm has not rolled-back the round of target value a.
Thus, a < a′ < b.

Because K is tight at b, there is an element e of K-value b with the property that if
we changed its K-value, b would not be in the result set of K anymore. Note that by
Definition 19, the set of leaves containing an element promoted with value a, a′, or b in J ′

is a subset of leaves containing elements promoted with value b in K. Hence, the the leaf l
containing e has elements f and f ′ promoted with values a and a′ in J ′, respectively, while
e is promoted with value b in J ′ (because a, a′, and b all are in the result set of J ′). The
element f is promoted with value a in J as well. So, by Definition 19 next(next(f)) > b.
This is a contradiction because two elements after f (not necessarily right after f) are
promoted with values at most a′ and b in J ′. �

Claim 5 The perturbation J is aligned.

Proof Suppose J is not aligned and so there is a minimal promotion-preserving pertur-
bation K of J for which there is an element promoted in K but not in J . We define
a = diff(J,K) and S as the set of elements promoted with value a in K.

Consider the time t right after the last non-rolled-back round with a target value a′ less
than a (or the beginning of the algorithm if no such round exists in which case we define
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a′ = −∞), and define b as the smallest value greater than or equal to a in the result set of
I (if such a value exists). Observe that at time t, min[l] is e or an element smaller than e,
for every leaf l with a member e in S, because neither e nor any element after e is promoted
with a values less than a in J . Therefore, at time t, min[root] ≤ a. So due to the choice of
t, min[root] at time t is a, which means a round r of target value a is executed at time t
and visits all leaves with an element in S. So round r should be rolled-back with a round
of target value b which visits all leaves visited in round r. Thus, every leaf with an element
in S has an element promoted with value b in J , which is different from the element of l
promoted with value a in K (because K is a promotion-preserving perturbation of J). So,
because we just showed that at time t min[l] is e or an element smaller than e, for every
leaf l with a member e in S, we have minnext[l] ≤ b at time t and so the round r could not
be rolled-back. �

We proved J satisfies the conditions mentioned in Definition 21 and so the lemma is true.
� �

Now we can see that for every leaf l, every time we call function Update on l in a non-
rolled-back round, the gallop search stops right after an element that is promoted in the
representative perturbation. Also, rolled-back rounds are replaced by a non-rolled-back
round in which the same set of leaves (and possibly some additional leaves) are updated
(condition 4 in Definition 19). Moreover, as is clear from the algorithm, at most two rounds
are rolled-back by a single round. This results in the following corollary.

Corollary 50 The number of update calls on each node v is no more than 3φ(v).

6.3.4 Analysis

We analyze the running time as the sum of running times on individual nodes.

Theorem 51 For an input I, if t is the number of nodes in the expression tree, the
running time of Algorithm 11 is O

(
t2 log2 t+ A(I) + Bφ

)
.

Proof We analyze the running time of all invocations of Algorithm 10 as the sum of
running times on individual nodes of the tree. The processing in Algorithm 10 on a node
v varies depending on the type of the node.

First suppose v is a leaf and consider non-rolled back rounds, which are φ(v) calls, each
of which is a progressive gallop search, stopping right after an element e of v, which is
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promoted in the representative perturbation generated by the algorithm. In cases where
prev(e) is also promoted in the representative perturbation (and so is in the same promoted
group as e), the gallop search takes constant time. Also when e is not part of a floating
promoted group, the gallop search will have a constant amortized running time. That’s
because if there are k elements in the promoted group at the end of the list of elements
of v, for the first of these k elements, the gallop search takes O(log k) (because we run a
gallop search from the end in parallel to the forward gallop search), and for k − 1 other
ones it takes O(1). The remaining g(v) gallop searches (where g(v) was defined as the

number of floating promoted groups of v) take O
(

g(v) + log
(
size(v)−g(v)

g(v)

))

time. Also for

rolled-back rounds r, if r stops at a leaf l at an element e, then e or next(e) is promoted in
the representative perturbation, so the gallop searches in those rounds do not change the
running time by more than a constant factor.

When v is an intersection node, the computation is only O(r) where r is the num-
ber of children of v (and the cost of recursion which we account for in the descending
nodes). Finally, if v is a union node, the computation uses the “min-update” structure

of section 6.3.2. Due to Lemma 46, the running time is O

(

r2 log2 r +
r∑

i=1

bi log
m+bi
bi

)

.

As Corollary 50 states, the bi’s are within a constant factor of the shareφ values for the
children of v and m is at most 3shareφ(v). Hence, the running time on a union node v

is O

(

r2 log2 r +
r∑

i=1

shareφ(ui) + log
(
shareφ(v)

shareφ(ui)

)
)

. So, as
∑

shareφ(ui) for the children ui of

union nodes is in O

(
∑

leaves l

φ(l)

)

, the theorem is correct. �
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Chapter 7

The t-Threshold Problem

The algorithm we presented in Chapter 5 covered trees with any possible unary or binary
operator1 on sets. But how about operators defined on a higher number of operands? In
this section we consider one possible such operator called “t-threshold”. Given k sets and
an integer t, the t-threshold operator selects all members appearing in at least t of the k
sets. By a threshold operator, we mean the t-threshold operator, for some value t.

The t-threshold problem was introduced by Barbay and Kenyon [6]. They investigated
the problem of evaluating an expression tree of height one consisting of a single t-threshold
operator, and presented a lower bound and optimal algorithms for cases where t is at least
half of the number of operands.

In this chapter we consider trees of arbitrary heights, containing only threshold oper-
ators, which we call threshold trees. Note that union and intersection are also threshold
operators. We look for an algorithm that is worst-case optimal for inputs with each possible
signature.

7.1 Preliminaries

A generalization of the concepts we defined in Chapter 3 for inputs with threshold operators
will be useful throughout this chapter. We extend the definitions for the functions cap and
share, and the concept of proof labelings for inputs with threshold operator.

1Here we only consider operators in which membership of a value a in the result depends only on
membership of a (and not any other value) in the operand sets.
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The first question we try to answer is the maximum result set of a threshold input with
a given signature. We first address this question for a tree of height one, and then we
consider trees with arbitrary heights.

Lemma 52 Consider a tree of height one with k leaves l1, . . . , lk, where size(l1) ≤
size(l2) ≤ · · · ≤ size(lk), and a t-threshold operator, for some t. The maximum size of
the result set of the tree is

min
1≤p≤t

⌊

1

p

k−t+p
∑

i=1

size(li)

⌋

.

We will prove this lemma in Section 7.2.2, but to intuitively see why this is true, consider
any p between 1 and t, define m = k − t+ p, and consider the m leaves with the smallest
set sizes. Each member of the result set should appear in at least t sets, and so it should
appear in at least t− (k −m) = p of these m sets. Thus, the size of the result set cannot
exceed 1

p
of total sizes of these m sets.

Inspired by Lemma 52, we define functions cap and share for nodes of threshold trees
as follows. Similar to before, as we will show, cap captures the maximum sizes of result
sets of nodes and share will define the maximum sizes of contribution sets of nodes.

Definition 24 We define the function cap over nodes of a threshold tree recursively as
follows.

• Given a leaf l, we define cap(l) = size(l).

• For an internal t-threshold node v with k children u1 . . . , uk, where size(u1) ≤

size(u2) ≤ · · · ≤ size(uk), we define cap(v) = min
1≤p≤t

⌊

1

p

k−t+p
∑

i=1

cap(ui)

⌋

.

Moreover, for a node v, we define share(v) = minu cap(u), where the minimum is taken
over all ancestors u of v, including v.

Given a t-threshold node v, for some value t, we define t as the threshold of v. Moreover,

if u1, . . . , uk are the children of v, we define themaximized-threshold of v as

⌊∑

i share(ui)

share(v)

⌋

.

The intuition behind maximized-threshold is that for a t-threshold node v with maximized-
threshold value of t′, we can determine members of sets such that each member of the
contribution set of v appears in contribution sets of at least t′ of its children. In other
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words, we increase the threshold-value of each node up to its maximized-threshold value
such that the share and cap values for nodes do not change.

We next extend the definition of a proof labeling (Definition 9) to threshold trees.

Definition 25 A function Λ is a proof labeling for a threshold signature if for any thresh-
old node v with children u1, . . . , uk,

⋃k

i=1 Λ(ui) = Λ(v) and each element in Λ(v) appears
in at least t of Λ(u1), . . . , Λ(uk), where t is the threshold of v.

A proof labeling Λ is maximal if for any node v, |Λ(v)| = share(v). Also, Λ is canonical if
Λ(root) = {1, 2, . . . , |Λ(root)|}. For a proof labeling Λ and a node v, we may use the term
Λ-set of v to refer to Λ(v).

In this chapter, without loss of generality, we assume no union node (i.e. a node with
threshold 1) is a parent of any other union node; otherwise we can just merge those two
nodes. Also we assume every internal node has at least two children.

7.2 Lower Bound

7.2.1 Overview

The lower bound has a form similar to the one we proved for the union-intersection problem.
We will prove the following two lower bounds:

• The first lower bound is the logarithm of the number of ways to select share(l) el-
ements for each non-shallow leaf l out of its size(l) elements as the set of elements

promoted from l. This means at least Ω
(
∑

l log
(

size(l)
share(l)

)
+ share(l)

)

comparisons.

Note that the term Ω (
∑

l share(l)) reflects that at least one comparison is needed on
each of the share(l) elements promoted from l.

• The second lower bound is the logarithm of the number of proof labelings, that is the
number of ways to set values of elements promoted from each leaf so that the result
set of the root is {1, . . . , share(root)}.
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7.2.2 The Number of Proof Labelings

The number of proof labelings is the number of ways we can start from root, and at each
node v we determine Λ-sets of the children of v so that the result of applying the operator
associated with v on Λ-sets of children of v is Λ(v). Of course, in order for this measure
to be finite, we need to confine Λ(root) to a fixed set.

Let us focus on a single node v and count the number of choices we have at v. Suppose
v is a t-threshold node, for some t, with children u1, . . . , uk, and maximized-threshold tmax.
Without loss of generality we assume Λ(v) = {1, . . . , share(v)} and share(u1) ≤ share(u2) ≤
· · · ≤ share(uk). We propose a schema for determining the Λ-sets of the children of v and
then we count the number of ways that this schema can work. The schema determines
Λ-sets of the children of v such that:

• They are all subsets of {1, . . . , share(v)}.

• For each 1 ≤ j ≤ share(v), j appears in the Λ-sets of at least tmax children of v.

• For each child ui, Λ(ui) has share(ui) members.

Then clearly Λ is a proof labeling.

To setup the schema, we create tmax + 1 baskets out of the
∑

i share(ui) members of Λ-
sets (whose values are yet to be determined).2 Each of the baskets will be of size share(v),
except the last one whose size is at most share(v) (and can be zero). The members in each
basket will have different values, so, for the case of the first tmax baskets, the members of
each basket will cover the whole set {1, . . . , share(v)}. Here is the intuition behind baskets:
We have share(v) values in Λ(v), each to be appear in at least tmax sets. So we can roughly
say that we have tmax copies of Λ(v) to be distributed among Λ-sets of children of v, and
one possible extra partial copy containing elements appearing in more than tmax sets. Each
basket will represent one of these “copies”.

Algorithm 12 specifies how the members of the Λ-sets are divided between different
baskets. Note that in this algorithm we specify how many members of each Λ-set are
going to be in each basket, but the algorithm does not specify the actual values of these
members; that’s the non-deterministic part of the schema. The baskets partition each

2Note that members of different Λ-sets hare are considered distinct “objects” even if they have the
same value. So we can talk about

∑

i
share(ui) members of Λ-sets even though some of them may have

same values.
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Algorithm 12: Determining sizes of Λ-subsets.

for 1 ≤ b ≤ tmax do
the entire Λ-set of the bth biggest child (the bth biggest according to sets sizes,
which is uk−b+1) is allocated to the bth basket.

end
Initialize b = 1 and i = 1;
while b ≤ tmax + 1 and i ≤ k do

if the bth basket already has share(v) members then
increment b

else
Assuming there are p unallocated members remaining in Λ(ui) and the bth
basket already has q members, allocate min{p, share(v)− q} members of
Λ(ui) to the bth basket;
if all members of Λ(ui) are allocated then

Increment i
end

end

end

Λ-set into a number of subsets which we call Λ-subsets (in other words, all members of a
Λ-set that belong to the same basket create one Λ-subset).

Next we show how the schema determines actual values in Λ-sets non-deterministically.
A Λ-subset is partial if it is not equal to its Λ-set, that is, if its Λ-set is partitioned into
multiple Λ-subsets. We define the following order on Λ-subsets: the Λ-subsets are ordered
by basket number, and within the same basket, partial Λ-subsets come before non-partial
ones, and partial Λ-subsets of a basket are ordered by their child index. A Λ-subset S is
restricted by a Λ-subset T (intuitively meaning that the choices we make for members of
T restrict our choices for members of S) if T comes before S in the order we mentioned,
and S and T are in the same basket, or belong to the same child of v. We start from the
first Λ-subset in this order, and for each Λ-subset S, we choose the actual values in S so
that they are distinct from values assigned previously to Λ-subsets of the same basket or
the same child as S (i.e. the Λ-subsets that restrict S).

Next we present a lower bound on the number of choices we have for determining
elements of Λ-subsets. We define the cost of a Λ-subset S as log

(
share(v)

|S|

)
(please note that

|S| is fixed even when the actual members of S are yet to be determined). We show that
the logarithm of the total number of choices is within a constant factor of the total cost
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of Λ-subsets. Note that due to the order in which we constructed the Λ-subsets, partial
Λ-subsets are only restricted by prior partial Λ-subsets, not by any non-partial Λ-subset.
So we first estimate the number of choices we have when we determine members of these
sets.

Lemma 53 The logarithm of the number of ways we may choose members of partial Λ-
subsets is at least 1

4
of their total costs.

Proof Consider the sequence ul1 , . . . , ulp of children of v whose Λ-subsets are partial,
in order, and define Pi as the sequence of Λ-subsets of uli ordered by basket number. We
also define P0 as the empty sequence. It suffices to show that for any i, 1 ≤ i ≤ p, the
logarithm of the number of choices we have for determining Λ-subsets in Pi and Pi−1 is at
least half of their total costs.

To prove this claim for Pi, for some i, suppose Pi = S1, . . . , Sr, and, when i > 1,
Pi−1 = T1, . . . , Tq. Note that Sj, for j > 1 is only restricted by S1, . . . , Sj−1 Also S1 is
only restricted by Tq if i > 1 and Tq and S1 are in the same basket; otherwise S1 is not
restricted at all. Thus, when i = 1 or Tq and S1 are not in the same basket, the number of
choices for S1, . . .Sp is the number of ways to select disjoint subsets of sizes |S1|, . . . , |Sp|

from share(v) elements, whose logarithm is at least 1
2

∑

S∈Pi
log
(
share(v)

|S|

)
by Lemma 9.

Now we consider the case where i > 1 and S1 and Tq are in the same basket B. B is
the first basket containing a Λ-subsets of uli and so, as Λ-subsets of uli are partial, B is
not the basket number tmax + 1. Therefore, the first Λ-subset allocated to this basket in
Algorithm 12 is the whole Λ-sets of one of the tmax children w with biggest Λ-sets. Other
than the Λ-set of w, there are only two other Λ-subsets in B: Tq and S1. Hence, Tq is the
first Λ-subset of B whose members are determined and so, the number of choices when
selecting members of Tq was

(
share(v)− share(uli−1

) + |Tq|

|Tq|

)

.

Since uli−1
has partial subsets and so is not among the tmax children with biggest Λ-sets,

share(uli−1
) ≤ share(w) = share(v) − (|Tq| + |S1|). Thus, the number of choices when

selecting Tq was at least
(
|Tq |+|S1|

|Tq |

)
=
(
|Tq |+|S1|

|S1|

)
. Also, the number of choices when selecting

S1 was
(
share(v)−|Tq |

|S1|

)
. So, the number of choice when selecting S1 and Tq in total was at

least
(
|Tq |+|S1|

|S1|

)
×
(
share(v)−|Tq |

|S1|

)
≥
(
share(v)
|S1|

)
. This means that the logarithm of the number

of choices we had for selecting Tq plus the logarithm of the number of choices we had for
selecting S1, . . . Sp is at least the logarithm of the number of ways to select disjoint subsets
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of sizes |S1|, . . . , |Sp| out of share(v) members, which is again at least 1
2

∑

S∈Pi
log
(
share(v)

|S|

)
,

by Lemma 9. �

Next we obtain a lower bound on the number of choices if we also consider non-partial
Λ-subsets.

Lemma 54 For any basket B, the logarithm of the number of choices for members of
Λ-subsets of B is at least half of the total cost of Λ-subsets of B minus the total cost of
partial Λ-subsets of B.

Proof Suppose S1, . . . , Sp are Λ-subsets of B in the order we defined. It is easy to see
that the only Λ-subset of B that can be restricted by Λ-subsets of other baskets is S1 and
that this may happen only when S1 is partial. Thus, if S1 is not partial, then the only
restriction on the choices for the members of the Si’s is that the Si’s should be disjoint
and of pre-defined sizes. Thus, by Lemma 9, the logarithm of the number of choices is at
least half of their total costs.

Now consider the case where S1 is partial. The logarithm of the number of choices
when determining members of Si, for 2 ≤ i ≤ p, is

log

(
share(v)−

∑i−1
j=1 |Sj|

|Si|

)

.

Therefore, the logarithm of the number of these choices plus the cost of S1 is
p
∑

i=1

log

(
share(v)−

∑i−1
j=1 |Sj|

|Si|

)

,

which is the number of ways to choose disjoint sets of sizes |S1|, . . . , |Sp| from a set of size
share(v). Therefore, again by Lemma 9, the logarithm of the number of choices plus the
cost of partial sets is at least half of total costs of Λ-subsets of B. �

We hence conclude from Lemmas 53 and 54 that the logarithm of the number of choices
for Λ-subsets is at least a constant factor of the total cost of Λ-subsets. Moreover, each
setting yields a distinct Λ function, because, given a function Λ constructed by the schema
we described, we can compute values of Λ-subsets in the order Algorithm 12 introduces
them. So, the logarithm of the number of canonical maximal proof labelings is at least a
constant factor of the total cost of Λ-subsets. Also, the cost a Λ-set is not less than the
total cost of its Λ-subsets. This proves the next theorem.

Theorem 55 The logarithm of the number of canonical maximal proof labelings for a
threshold signature is at least

∑

v log
(
share(parent(v))

share(v)

)
.
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7.2.3 Proving the Lower Bounds

The First Lower Bound

To prove the correctness of the first lower bound, we can follow the exact same logic
explained in Section 3.3. Basically, we choose and fix an arbitrary maximal canonical
proof labeling Λ (which due to Theorem 55 exists). For each value a ∈ Λ(root), we create
a subtree of the original tree, denoted by T (a), that consists of nodes v for which Λ(v)
contain a. Also, similar to Section 3.3, we divide the sequence of elements of each leaf l
into share(l) regions of equal sizes (up to one element) each hiding one “crucial element”
having a value (a, 0, x), for some a ∈ Λ(l), and some x. Then, using the technique described
in Algorithm 1, we prevent the algorithm from touching any crucial member before touching
at least 1

share(l)
log
(

size(l)
share(l)

)
other elements of the region containing it.

The only place in Section 3.3 where we used the fact that the operators are simple
set operators (we allowed union, intersection, delta and minus), is when we provided the
strategy for the adversary to force the algorithm to touch all crucial members. In the
following section titled “The Second Lower Bound”, we prove that the game defined in
Section 3.4 has a winning strategy for the adversary in the case of threshold trees. We
note that when the adversary wins in the game, the algorithm had touched all crucial
members. Thus, the first lower bound holds.

The Second Lower Bound

We use the same technique as in Section 3.4 to prove that the logarithm of the number
of canonical tight proof labelings is a lower bound. We only need to show how to extend
the strategy designed for the adversary in the game explained in Section 3.4 to work for
threshold trees.

Given a t-threshold node v with k children, where t = k, the node v is in fact an
intersection node and it is treated the same way it was treated in Section 3.4. In the case
when t < k, we first treat it as a union node. Then the adversary starts “eliminating” its
children. Once k− t children are eliminated (so there are only t children remaining), then
the adversary should treat v as an intersection node. As a result, in the input constructed,
each element in the set assigned to v by the proof labeling will be promoted from exactly
t children of v.
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7.3 The Algorithm

The algorithm skeleton is similar to the algorithm presented in Section 6.3.1: we process
all sets in parallel, each set from the smallest to the biggest member, and we keep an array
min which shows a pointer to the next element to be processed in each leaf. So, elements
before min[l], for a leaf l, are processed elements, and elements from min[l] onwards are
unprocessed. The algorithm is run in a number “rounds”, where we assume at the beginning
of each round that no element among the processed elements can be added to the result,
so all processed elements can be ignored. For each leaf l, we call the element pointed by
min[l] at the beginning of each round the active element of l in that round.

We first present the algorithm for the simpler case of a threshold tree of height one. This
is equivalent to the t-threshold problem investigated before by Barbay and Kenyon [6, 7].
We then generalize the algorithm to general threshold trees.

7.3.1 Trees of Height One

The algorithm is based on the following simple idea, which was also used by Barbay and
Kenyon [6]: if we consider active elements of the leaves, nothing smaller than the tth
smallest of them should be added to the result in the future because it is not possible
to find t elements with the same value of any of them among unprocessed elements (as a
reminder, we do not consider elements before active elements of leaves). As such, at any
point, by the active cut-off, we mean the value of the tth smallest active element of leaves.

We need a data structure that stores the k leaves, and at each stage can provide the
list of all leaves with active elements not bigger than the active cut-off. This is the list
of leaves to inspect to decide if the cut-off value is in the result set, and to determine the
new cut-off value. Please note that such a list may contain more than t leaves if there are
several leaves with active elements of the same value as the active cut-off. Algorithm 13
provides a high level description of the algorithm, given such a data structure.

Now the question is how to design the aforementioned data structure in a way we can
find the cut-off value and leaves with active elements not bigger than the cut-off value
efficiently. Suppose we store the values of the active elements of the leaves in a balanced
binary search tree. Then we have immediate access to the t smallest ones in O(t) time, and
for updating the active element of each leaf, we need to spend O(log k) comparisons. But
the point is that, as Algorithm 13 shows, we need to extract the t smallest active elements,
but we do not care if the data structure reports these t in sorted order or not, while in this
data structure we are extracting them in sorted order. In other words, we are potentially
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Algorithm 13: The algorithm for threshold trees of height 1.

while not finished do
Select the sets with active element not bigger than the cut-off value;
In each leaf, use gallop search, to decide if the cut-off value is in the set, and
jump to the first element bigger than the cut-off value;
If the number of the sets containing the cut-off value is at least t, add the cut-off
value to the result set;

end

wasting O(t log t) comparisons, which is O(log t) per set. The question is that how we can
address this inefficiency?

The idea is to replace the lower part with height at most O(log t) of this binary search
tree with unsorted arrays of sizes O(t). To be more precise, we select a number of internal
nodes as array nodes satisfying these conditions:

• The number of leaves in the subtree rooted at each array node is between t and 2t.

• No array node is a descendant of another array node.

• Each leaf is a descendant of an array node.

Then, we replace the subtree rooted at the array nodes with arrays storing leaf values (not
necessary in sorted order). Note that there are possibly multiple ways to choose array
nodes.

Now let us explain how we can use this data structure. If we look at the leftmost leaf
of the tree, we can find an array containing between t and 2t smallest members. Using a
linear selection algorithm [14] we can find the member rank t in this array. Then we look
into this array and next leaves to find all other occurrences of the member rank t in this
data structure. This is all done in O(t+m) time where m is the number of occurrences of
the member rank t.

Next we explain how we update the tree. We first remove elements that just got updated
from the tree. By doing this one or more leftmost leaves may completely be removed from
the tree, and also one additional leaf may end up with less than t elements, in which
case we merge that leaf with its next leaf. As a result of this process, the tree may need
re-balancing (please refer to the standard insert/delete algorithm for balanced trees), in
which case we do so. Then, for each leaf being updated, we find the position where it
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should be inserted and we insert it. If the destination array exceeds the 2t limit, we split
it into two, and a new node is inserted and the tree is rebalanced if needed. To ensure
that rebalancing of the tree when doing insertions or deletions does not change the running
time asymptotically, we use B+-trees of order 4 or more as the form of the balanced binary
tree; then we can spread the balancing cost at each internal node among nodes added or
removed under that node, and this way each leaf is “charged” a constant amount.

7.3.2 General Trees

The algorithm for general trees at the high level is very similar to the algorithm we pre-
sented in Section 6.3.1. We generalize the min array to all nodes in the tree, where for
each node v the min array stores the next potential member of the contribution set of v.
Then, each round is implemented as a recursive top-down function (called “update”) on
nodes of the tree which tries to skip elements with values less than min[root] and find the
next potential member of the result set. At each round the recursive function visits (i.e. is
called on) only a subset of nodes. For a node v, by a v-round we mean a round in which
v is visited.

Algorithm 14: update(v, k): boolean

if v is a leaf then
/* using gallop search: */

e := the first element of v with value more than k;
min[v] = val(e);
return true iff val(prev(e)) equals k;

else /* Suppose v is a t-threshold node */

Select the children u with min[u] ≤ k;
forall the each selected child u do

Update(u, k);
Update the value of min[u] in the data structure;

end
Set min[v] equal to the tth smallest min[u], for children u of v;
return true if at least t of calls to Update for children of v returned true;

end

The implementation of the “update” function is presented in Algorithm 14. Here, when
“update” is called on an internal threshold node v, the behavior of the algorithm is similar
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to the case of a tree of height 1, when v was the root. For the case of trees of height 1,
we built and maintained the data structure that stores children u of v partially ordered
by values of their active elements, and this data structures allowed us to select the ones
with t smallest active element values. The generalization for any internal node of general
threshold trees, will be the same data structure that stores children u of v partially ordered
by min[u] instead. Then, as explained in Algorithm 14, we use this data structure to select
children that need update, and at the end, we select the tth smallest min-values.

7.4 Analysis

The idea is to bound the number of times we visit each node by the maximum size of the
contribution set of the node in inputs with the same signature. To do this, we define the
perturbation generated by the algorithm, the same way it was defined in Section 6.3.3.
Please note that here we never roll-back the rounds, and so we are referring to the simple
definition provided at the beginning of Section 6.3.3. The perturbation will have the same
signature as the original input, and the number of times a leaf is selected is the number of
elements promoted from it in the perturbation.

Considering a leaf l, the number of times l is selected is the number of elements promoted
from l in the perturbation which is at most share(l), thus the time we spend in gallop

searches in l is at most share(l) log size(l)
share(l)

= O
(

log
(

size(l)
share(l)

))

. Therefore, the total time we

spend in gallop searches is bounded by the first lower bound.

Next we show that the time we spend in updating the tree is bounded by the sum of
the first and the second lower bounds.

Lemma 56 For a t-threshold node v with children u1, . . . , un and a value k, the time
spent at v when update(v, k) is called is within a constant factor of

O

(
∑

i

share(ui) +
∑

i

log

(
share(v)

share(ui)

))

.

Proof The time we spent at node v is in three parts:

1. Finding the nodes with min-values less than or equal to k.

2. Updating the data structure after recursive calls on children of v.
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3. Finding the tth smallest min-value at the end.

We discuss each of these three separately. We define Λ as the function that assigns each
node v the contribution set of v in the perturbation generated by the algorithm.

We first investigate the first item in the list. It can be observed that Update(v, k) is
called only if min[v] ≤ k, which means there are at least t children of v with min-value
at most k. To select these children, we consider array-nodes of the tree from left to right,
and for each one in this order, we go over all children u of v in the array-node and select
ones with min[u] ≤ k. If there is any child in the array-node for which min[u] > k, we do
not proceed to the next array nodes. Since size of each array-node is at most 2t and at
least t nodes are selected, the time consumed in this part is proportional to the number of
children selected.

To estimate the updating cost (second item in the list), we consider the cost of inserting
each child in the data structure separately. We first prove the average position of insertion
of a child ui in the tree is tmax

|Λ(v)|
|Λ(ui)|

and then we come up with the update cost.

To estimate the average position of insertion of a child ui, we suppose ui is inserted at
position x of the tree at round r, and suppose r′ is the first round after r that visits ui. We
define the fan-out of a v-round as the number of children of v visited during that round.
The sum of fan-outs of rounds between r and r′ is at least x. On the other hand, we know
ui is visited in total |Λ(ui)| times out of |Λ(v)| times that v is selected, and the sum of
fan-outs of all rounds is

∑

i |Λ(ui)| ≤
∑

i share(uj) = tmax|share(v)|. Thus, the average of

the positions of insertion of ui is at most tmax
|share(v)|
|Λ(ui)|

.

Now let’s find the cost of an insert at a position x. The leaf where ui should be inserted
will be Θ( x

tmax
) leaves away from the left most leaf of the tree. Therefore, we can find that

leaf in time proportion to log x
tmax

. So the total cost is at most within a constant factor of

|Λ(ui)|
(

1 + log |share(v)|
|Λ(ui)|

)

which is in O
(

share(ui) + log
(
share(v)
share(ui)

))

as |Λ(ui)| ≤ share(ui).

Finally, as explained before, the time we spend for finding the t smallest min-value m
at the end is proportional to the number of children of v with min-values less than m,
which is at least the number of children of v that are visited the next time v is visited.
Therefore, the running time in this part is proportional to

∑

i |share(ui)|. �

Lemma 56 proves a bound on the time we spend in internal nodes. To handle special
case of shallow leaves, we need to make an exception when the root is a union node. In
such cases, we just solve the problem for each child of the root independently, and then we
compute the union of result sets using the technique described in Section 4.1.1. Then, by
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Corollary 21, the running time in the root is O(
∑

u log
(
share(root)
share(u)

)
), where the sum is over

children of the root.

To wrap up the running time analysis, we need to sum up the running time men-
tioned in Lemma 56 for all internal nodes, except the root when it is a union node,
plus the running time we mentioned for the root when it is a union node. The sum-

mation is a constant factor of O
(
∑

u∈V log
(
share(parent(u))

share(u)

)
+
∑

u∈U share(u)
)

, where V is

the set of all nodes except root, and U is the set of all nodes except root and shal-
low leaves. Note that a union node may not be a parent of another union node, and
for non-union internal nodes v, share(v) ≤ 1

2

∑

u share(u), where sum is over children
u of v. Therefore,

∑

u∈U share(u) ≤ 2
∑

l∈L share(l). Thus, the total running time is

O
(
∑

u∈V log
(
share(parent(u))

share(u)

)
+
∑

l∈L share(l)
)

, which is not more than sum of the first and

the second lower bounds.

Theorem 57 The algorithm is worst-case optimal for inputs with each possible signature.
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Chapter 8

Further Thoughts and Conclusion

8.1 Possible Extensions

8.1.1 Repeated Sets in Expressions

The reason we do not allow sets being repeated in the expression is that if we do so, the
problem gets readily intractable. The next theorem illustrates this problem. We defining
the cost of a signature S as the smallest value m such that there is an algorithm that can
solve the problem with at most m comparisons on any input with signature S.

Theorem 58 Given any operator π ∈ {−, !,∆}, unless P = NP, there are no constants
c1 and c2 and polynomial time algorithm A such that for any input I containing only
operators {∩,∪, π}, the number of comparisons A performs on I is at most c1s+ c2, for s
the cost of the signature of I.

Proof We present a reduction of the SAT problem to this problem. Consider a SAT
expression on n variables x1. . . ,xn.We define a set expression E in which all sets are of size
one. There is a main set a, and for each variable xi, there is a set ai. The idea is that xi

is true if and only if ai = a. We create a set expression S from E by replacing operators
∧ and ∨ with ∩ and ∪ respectively, and replacing any term of the form xi, for some i,
with ai, and replacing any term of the form x̄i, for some i, with one of !ai, a− ai, or a∆ai,
depending on whether π =!, π = −, or π = ∆, respectively. The whole expression will
be E = a ∩ E. It is easy to see that given this expression as input to any algorithm, if
the original SAT expression cannot be satisfied, the result of E is empty, regardless of the
values of set a and sets ai. So in such cases, the cost of the signature is just zero.
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Now assume there are constants c1 and c2 and an algorithm A such that A solves any
given input with at most c1s + c2, where s is the cost of the input. Then we obtain an
algorithm for solving SAT for a given expression as follows. We build the expression E as
explained, and run the algorithm on E. For any query the algorithm makes on variables,
we try all three possible answers to the query, so exploring a tree of possibilities on relative
values of members of sets in E. If on any of the paths we explore in this tree algorithm asks
more than c2 questions, we know the cost of the input is more than zero, thus the input
SAT expression is satisfiable and we can output “Yes”. Otherwise, we let the algorithm
finish running on all possibilities we generated (which are not more than 3c2) and if for
any of them the algorithm generated a non-empty solution we output “Yes”; otherwise
we know every input with same signature as E has an empty solution and thus the SAT
expression is not satisfiable; hence we can output “No”. This way we have solved SAT in
polynomial time, which is impossible unless P = NP . �

Note that the proof of Theorem 58 does not prove anything if we restrict the problem
to the inputs with only union and intersection operators. It can be proven that for inputs
with only union and intersection operators, one can obtain a polynomial time algorithm
solving the problem with at most log n times more comparisons than the cost of the input.

It would be also interesting to think of parameterized complexity or approximation
algorithms for the problem when repeated sets are allowed. For example, what can be
achieved if we restrict the number of repetitions to a parameter k? Let’s consider the
union-intersection problem, and see how the problem can be solved by an optimal number
of comparisons using the techniques we developed in the thesis.

We first discuss the lower bound. Consider the game we presented in Section 3.4. We
defined a graph on leaves of the expression tree, showing pairs of leaves that algorithm
knows how they compare. The algorithm starts from an initial state where the graph is
empty, and then by a sequence of comparisons, the algorithm moves to states with some
edges in the graph. However, if we allow some sets to repeat in the expression, it means the
game is not started from a clean state; from the very beginning there are some edges in the
graph showing which leaves are equal. So it might be that some of invariants mentioned
in that section to be violated from very beginning. If that’s not the case and all invariants
hold, as we proved, the adversary has a winning strategy, thus, the second lower bound
still holds. We here focus on this type of inputs. The first lower bound still needs some
treatment. In the bound mentioned in Theorem 12, there is a term for each leaf. When
a set is repeated, different terms that correspond to the same set need to be combined.
As an example if the same set of size s is repeated in leaves with contribution limits of
sizes t1, . . . , tr, the contribution of this set to the formula mentioned for lower bound is
∑

i(ti + log
(
s

ti

)
). We should replace this with a single term of t + log

(
s

t

)
, where t is the
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total number of values appearing in contribution sets of these r leaves in the specific proof
labeling we are considering.

Now lets discuss the algorithm part. We use the algorithm presented in Chapter 6,
which is as explained in the chapter is worst-case optimal. The only change we make to
the algorithm is that when the same set appears more than once in the tree, once we do
gallop search in one leaf, we update the min-values in other leaves corresponding to the
same set as well. As a result, we do not repeat the gallop-search on the same range for
multiple leaves corresponding to the same set. The running time consists of two terms, one
used to match the first lower bound, one used to match the second lower bound. The term
that was supposed the first lower bound still matches it (due to the change we mentioned)
and we are doing optimal there. But for the term matching the second lower bound, we
could be off by a factor of k.

8.1.2 Unsorted Sets

Throughout the thesis we required the input sets to be pre-sorted and represented by a
data structure that shows this sorted order. In this section we argue that with a small
modification to the algorithm in Chapter 4, we may process inputs in which some sets are
sorted and some are not in a worst-case optimal way. Here we define the fact that each
set is pre-sorted or not as a part of the signature of the input and, again we look for an
algorithm that works optimally in the worst case among inputs of the same signature.

The idea is that given an input I with some unsorted input sets, we replace each
unsorted set of size s with a union node with s leaves of size 1, containing the s members
of the set, and this way we obtain an “equivalent” input J . Clearly I and J have the same
solution and so the algorithm works correctly with the same running time for I and J .

The only remaining issue is to show that the same lower bound we proved for the
signature of I holds for the signature of J . To see why it is true, the reader may confirm
that the only difference between the two signatures is that for the signature of the original
input, no member is allowed to be repeated in an unsorted set while in its union version
there is no such restriction enforced by the signature. The signature of the original input
is giving this extra information to the algorithms before they make any comparisons. Now
if we review the way we proved the lower bound, when we construct inputs in which the
worst case happens, the leaf sets that are directly unioned with each other are disjoint. In
other words, all the lower bounds still hold even if we restrict the problem to the inputs
where the sets that are directly unioned with each other are disjoint. So the algorithm
runs in optimal time for these inputs.
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8.1.3 Order-Independent Adaptive Algorithm

In Chapter 6 we developed an algorithm that could take advantage of nice properties of
the order of elements in the sets to solve the problem faster for instances where elements
are not completely shuffled in sets. In “easy instances”, similar elements were next to each
other in input sets and could be “eliminated” together.

One may think of the problem in the case where the ordering of elements in sets does
not have such nice properties and so those kind of adaptive algorithms do not function
much better than worst-case optimal algorithms presented in earlier chapters. An example
is when the key used for sorting elements in sets is a hash function.

Let us formulate the problem in such situations. Given two inputs I and J with the
same signature, I is a permutation of J if there is a one-to-one mapping between the set of
values appearing in I and the set of values in J such that a value is in a set in I if and only
if the corresponding value is in the same set in J . In fact two inputs are permutations of
each other if the only difference between them is the global order used to sort elements of
sets in each input. Then, we look for an algorithm that, given any input I, works optimally
in the average case (or in the worst case) on all permutations of I.

Here we limit the problem to inputs that are the intersection of a number of sets. The
reader may verify that a class of permutations of an input with k sets can be identified by
2k numbers representing the sizes of intersections of any number of input sets. Given an
input I chosen randomly from the class of permutations of an input with k sets, one can
look at a small fraction of elements of each set, and from these elements, estimate the size
of the intersection of any subset of the k sets.

The idea then is to come up with an optimal ordering p1, . . . , pk of input sets and
compute the intersection in that order, that is first to compute Sp1 ∩ Sp2 , then take the
intersection of the result with Sp3 , and so on. Suppose Ri =

⋂

1≤j≤i Spj and we want to
compute Ri ∩ Spi+1

. Evaluating this intersection in the average case can be done in a way
better than the naive intersection algorithms we have seen before: for every member e
of Ri, we already know the position of e in Spj for j < i and thus we have some idea
about the approximate position of e in Spi . Define b such that Spb has the biggest size
among Sp1 , . . .Spi , and let l be the index of e in Spb . Then we can start looking for e in

Spi+1
from position

⌊

l
|Spi+1 |

|Spb
|

⌋

. Since the total order used to sort members of input sets is

chosen uniformly random, we expect the algorithm to find the position of e in Spi+1
in time

log(2 +
|Spb

|

|Spi+1 |
).

The challenge here is how to find the optimum ordering p1, . . . , pn. This does not look
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to be solvable in polynomial time, but we might be able to design a good approximation
algorithm. This remains an open problem, but here we mention a result in a similar
problem. As mentioned, the expected time spent for verifying membership of each element
of
⋂

1≤j≤i Spi in Spi+1
is a logarithmic term based on the ratio of the sizes of the sets. If

instead, the cost of this verification process was O(1), the problem would be equivalent
to the problem of pipelined set cover [37], which has a polynomial-time 4-approximation
algorithm.

8.2 Conclusion

In this thesis we considered the problem of evaluating set expressions when the input sets
are preprocessed and are pre-sorted. We first considered the complexity of evaluating the
expression when it contains complement, union, intersection, difference, and symmetric
difference. These expressions are the most general types of expressions with binary and
unary operations. We gave an algorithm to evaluate such expressions in the comparison
model.

We argued that the algorithm performs the optimal number of comparisons by giving
a matching lower bound in the cases where the expression does not contain complement
and the only difference operation is at the root of the corresponding expression tree. We
conjecture that the algorithm is optimal over all set expressions. We showed that the first
lower bound in section 3.3 applies to all types of set expressions. However, the second
lower bound applies only to special types of expressions as stated. Proving the second
lower bound for all types of expressions remains open.

Then, we proposed an adaptive algorithm to evaluate a given set expression consisting
of unions and intersections over sorted sets. We partitioned the set of instances into finely-
sized difficulty classes according to the level of interleaving of values of the sets. The
algorithm proposed has asymptotically optimal running time in each individual difficulty
class.

The study of this problem in the (word) RAM model remains the subject of future
work. We potentially might be able to improve the running time by a factor of w1−o(1), as
it was possible for the simple case of intersection problem [13]. Extension of the operators
to difference and complement also remains open.
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