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Abstract

In this thesis, we have considered two important problems, Boolean satisfiability (SAT) and
derivative free optimization in the context of large scale quantum computers. In the first part, we
survey well known classical techniques for solving satisfiability. We compute the approximate time
it would take to solve SAT instances using quantum techniques and compare it with state-of-the-
art classical heuristics employed annually in SAT competitions. In the second part of the thesis,
we consider a few classically well known algorithms for derivative free optimization which are
ubiquitously employed in engineering problems. We propose a quantum speedup to this classical
algorithm by using techniques of the quantum minimum finding algorithm. In the third part of
the thesis, we consider practical applications in the fields of bio-informatics, petroleum refineries
and civil engineering which involve solving either satisfiability or derivative free optimization. We
investigate if using known quantum techniques to speedup these algorithms directly translate to
the benefit of industries which invest in technology to solve these problems. In the last section,
we propose a few open problems which we feel are immediate hurdles, either from an algorithmic
or architecture perspective to getting a convincing speedup for the practical problems considered.
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PREFACE

Preface

The problems I have worked on throughout the extent of my graduate studies vary from theo-
retically oriented semidefinite programming to complexity theory to practically relevant problems
such as quantum random access memory architecture for practical problems. In [AMR13], we
consider quantum correlations in two-round prover-verifier interactions illustrating how quantum
players could use correlations which exhibit strictly non-classical behavior to their advantage.
These correlations manifested in an ability of the player to make use of a form of hedging, where
the risk of losing the first game was eliminated by offsetting that risk in a subsequent game. The
entire game can be constructed as a semidefinite program to observe the hedging behavior. I con-
tributed to another work in [AGJO+], where we consider the quantum random access architecture
proposed in [GLM08]. We analyze the physical implementation of the original Bucket-Brigade
architecture and propose a circuit model for the same. A realistic error model was constructed
based on the physical implementation in order to understand the need for error-correction to per-
form Grover’s search algorithm faithfully using this architecture. The need for quantum access
to read classical memory is essential for many practical problems highlighted in the last chapter.

In this thesis, I have included my work on Boolean satisfiability and derivative free optimiza-
tion. Extensive research has been done in the areas of practical relevance of quantum cryptog-
raphy and advanced sensing. However, we have considered a few practical applications of these
optimization problems relevant to other industries. We review these important optimization
algorithms and analyze how the quantum speed-ups to these optimization algorithms compare
with state-of-the-art-classical techniques employed by the industries. Often, with algorithmic
improvements proposed in the literature, it is generally assumed, that the speedup should follow
in a straightforward manner for industrially relevant problems relying on these algorithms. We
attempt to study this question and elucidate the hurdles to the realization of such algorithmic
speed-ups when considering important problems. We hope this thesis will serve as a template for
analyzing various algorithms in the future to compare their performance on industrially relevant
parameters. Towards the end, we have highlighted various problems which would be interesting
to consider from the perspective of complexity and practical applications of quantum algorithms.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Quantum computing has been growing for over two decades since the celebrated result of Shor’s
quantum algorithm to factor numbers in polynomial time which is believed to be a computation-
ally hard problem in the classical setting. There have been many quantum algorithms since,
which have demonstrated either a polynomial or exponential separation between the classical
and quantum setting such as searching [Gro97], collision finding [AS04], triangle finding [MSS07],
element distinctness [Amb07], graph theoretic algorithms [DHHM04], computational geometry
[SST02], string matching [RV03] etc. Majority of the speedups in these algorithms involve either
quantization of a random walk or Grover’s search algorithm which provides a quadratic speedup
for searching. Another area where quantum techniques are expected to provide speed-ups to clas-
sical algorithms is in the area of optimization. In this thesis, we consider a few important families
of optimization problems, which are essential for industries in solving practical applications. We
have considered the Boolean satisfiability problem as well as derivative free optimization and
analyzed how quantum algorithmic speedups for these problems compare with state-of-the-art
classical algorithms. We hope the studies carried out in this thesis will spur interest in connect-
ing the bridge between theoretically preferred algorithms and practical employed techniques in
the industry.

The satisfiability problem has been of interest to people in computer science primarily due to
the Cook-Levin theorem ([Coo71], [Lev73]), which states that the Boolean satisfiability problem is
NP-complete (an abbreviation for non-deterministic polynomial). It also holds the honor of being
the first well-defined NP-complete problem. In this regard, any problem which is NP-complete
can be reduced to the Boolean satisfiability problem in polynomial time. Assuming P6=NP, it is
safe to consider that there exists no polynomial time algorithm for SAT, motivating researchers to
devise efficient and scalable algorithms when the size of SAT instances are intractable. Quantum
techniques particularly come into the framework when facing such classically intractable problems,

2



CHAPTER 1. INTRODUCTION

where employing quantum resources and algorithms can solve the problems in realistic time.
There have been many interesting results related to the satisfiability problem in the quantum
setting as well in the areas of complexity theory[GN13], adiabatic algorithms [Hog03], multi-
prover interactive systems [CD10], etc.

Research in this classical NP-complete problem has not stopped just with the theoretical
computer science community, but also extended to areas of engineering sciences where faster al-
gorithms for satisfiability would give solutions to practical problems. A few such areas include
bio-informatics [LMS06], system modelling and software checking [CBRZ01], combinational equiv-
alence checking [Bra03], circuit design and delay computation [MSS00] [SBSV96], crosstalk noise
prediction in integrated circuits [CK99], AI Planning [SKC+93], etc. A faster algorithm for SAT
from the theoretical perspective would consequently result in the speedup of solving these im-
portant computationally hard problems. In this thesis, we have explicitly analyzed the quantum
speedups in the satisfiability problems and compared them to the best known classical heuristics.
Although, we do not have quantum computers to test our quantum algorithms, the algorithms we
consider have been classically rigorously analyzed, and hence predicting the time it would take
for quantum computers to solve similar instances can be approximated well.

Optimization problems arise in various applications when the goal is to find a set of optimum
design parameters that maximize or minimize an objective function which measures the merit
of the design. Typically, accompanying the objective function and design parameters are a set
of constraints which bound the values of these parameters. We have solved minimization or
maximization problems before with the recipe of taking the derivatives of the objective function,
finding the critical points and checking the second derivative to characterize the critical points.
The class of bound-constrained optimization problems we are concerned with in this thesis is
referred to as derivative free optimization. These problems are characterized by objective functions
which are computational expensive to evaluate and problems for which derivatives of the objective
function are neither symbolically nor numerically available and only the function values of f(x)
are available. Majority of the problems motivating the interest in this technique arise from solving
complex engineering problems whose objective functions depend on complex simulations based
on equations which define the underlying physical process.

Derivative free optimization is an area with a long history proposed in the 1960’s with
the Hooke and Jeeves algorithm [HJ61]. Simultaneously along with the developments of algo-
rithms, there have been many software implementations for these algorithms that are used in
software packages for optimization such as LGO, MCS, SID-PSM, SNOBFIT, DFO, HOPSACK
[RS12]. The renewed interest and increase in papers employing these techniques for optimiza-
tion in the last decade is due to the proof of global and local convergence of generalized pattern
search algorithms to the optimal solution in [Tor97], [DLT03] and convergence analysis of mesh
adaptive direct search algorithms by Dennis and Audet in [ADJ06]. The increasing research

3



CHAPTER 1. INTRODUCTION

and popularity in this technique of optimization is also due to its applications in diverse engi-
neering problems such as molecular geometry [ANRV04], aeroacoustic [MWDJM04], oil refinery
optimization [Ise09], ground water community problem [FRK+08], hydrodynamic design [DV04],
helicopter blade design [BDJF+99], installing dampers between adjacent structures [Big12], etc.

Recently, there has been curiosity in the work of D-Wave machine which claims to solve hard
optimization problems by annealing type techniques. It may be worth clarifying the connection
between this work and the application of the D-Wave machine to solving optimization problems.
The D-Wave device does not attempt to perform fault-tolerant quantum computation capable
of implementing the broad range of known quantum algorithms. Rather, it is a special purpose
device that attempts to speed up the solution of a special class of optimization problems by
annealing type methods. There have been many recent articles studying the quantumness of
these D-Wave machines [SS13], [SSSV14] and analyzing if the device does provide any speedup
over classical computation [RWJ+14]. In this thesis, we consider the full power of a fault-tolerant
scalable quantum computer when one is built.

One parameter in which the D-Wave machine seems to differ from the traditional fault-tolerant
quantum computer is in employing heuristics for optimization problems. While heuristics have
many important applications, there are several areas of practical interest in which accuracy of
solutions is of prime importance. For example in cryptanalysis, in any protocol the secret key is
generally obtained by sampling an astronomical number of random keys to find the key which
deciphers the ciphertext. A strong symmetric cipher has the property that, even if a string differs
in only one bit from the original decryption key, the string will essentially produce a random text
when used for decryption. Thus there is no practical notion of obtaining a good approximation
to a decryption key. Another area of importance is in computational biological problems such
as protein sequencing, protein folding, cancer computational biology, etc. where precision of the
solution is integral. Since the solutions to these problems are important in curing diseases and
developing drugs, heuristics and approximation algorithms without guarantees of accuracy of the
final solution are undesired. Another area where accuracy is important is in civil engineering. In
this thesis we have considered the problem of optimization of inserting dampers between buildings
to reduce the effect of pounding during earthquakes. With increasing heights of buildings and
increasing investment in constructing sky scrapers, heuristic solutions could result in an sub-
optimal solution which is not useful in multi-billion dollar projects. Apart from these problems,
there are many more areas of computation, in which heuristics and approximation algorithms are
undesired.

The contributions of this thesis can be summarized as follows, we have analyzed the satis-
fiability problem and compared it with the best known classical heuristics. We observe that in
order for the quantum analogue of SAT to compete with the best known classical heuristics and
scale faster we need a well defined notion of directed quantum walks which has not been defined
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and analyzed in the literature. Although derivative free optimization has been studied well in
the classical setting, the quantum speedup to the algorithm using the quantum minimum finding
algorithm has not been studied before. We present a few results in this direction of improving the
number of queries to the time-consuming black-box evaluations for derivative free optimization
using quantum techniques. We have finally considered a few practical problems which rely on the
techniques of solving the Boolean satisfiability and derivative free optimization and analyzed the
impact of quantum speedup to these problems. For these practical problems, we consider param-
eters of interest in practice to analyze the trade-off between the ideal clock speeds of quantum
computers versus classical computers. We outline challenges and relevant questions that will en-
able us to understand how to employ these quantum algorithms to solve important optimization
problems integral to various industries.

1.1 Organization of Thesis

The thesis is organized as follows. In chapter 2 we provide the necessary preliminaries and
background. In section 2.1, we will cover the query model of computation. In section 2.2 we will
explain a few algorithms which will be essential in understanding the algorithms in the subsequent
chapters. In section 2.2.1 we describe the quantum minimum finding algorithm based on the result
of [DH96] by Høyer-Dürr and quantum amplitude amplification result in [BHMT00]. In section
2.3 we give a brief overview of random walks and the quantization of these random walks.

In chapter 3, we introduce the satisfiability problem and comment on the complexity of
SAT, hardness in SAT instances, and the structure present in instances. In section 3.2, we give
an overview of classical algorithms which form the backbone of the current state-of-the-art SAT
solvers. In section 3.3, we discuss SAT solvers which are used ubiquitously by industries to solve
problems using techniques discussed in section 3.2. In section 3.4, we consider the use of quantum
techniques to speedup the algorithms discussed in section 3.3 and give numerical evidence of a
quadratic speedup. In section 3.5 we consider the algorithms applied practically to industrially
relevant instances and analyze why even with a quantum advantage it wouldn’t necessarily imply
all the instances considered by industries could be sped up.

In chapter 4 we introduce the theory of derivative free optimization. In section 4.1 we begin
by giving a brief overview of optimization techniques which involve the use of gradients before
surveying state-of-the-art derivative free algorithms which are used often in practical problems.
In section 4.2 we discuss the computational cost of classical derivative free optimization and show
how a quantum speedup could improve the algorithm.

In chapter 5 we discuss three practical problems which arise from the idea of satisfiability
and derivative free optimization. In section 5.1 we discuss the problem of haplotype inferencing
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which is an integral problem in bio-informatics and can be mapped to satisfiability. In section
5.2 we discuss the problem of production optimization and well placement for drilling wells in
oil fields, which is generally, solved using derivative free techniques. In section 5.3, we analyze
a problem in civil engineering of inserting dampers between adjacent buildings to reduce the
chances of pounding during earthquakes. In section 5.4, based on the problems analyzed in
the earlier chapters we comment on the ideal clock speeds of quantum computers compared to
classical processors.

Finally in chapter 6, we summarize our work and present open questions which remain
unanswered.
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Chapter 2

Preliminaries

In this chapter, a detailed understanding of the concept of qubits, superposition, measurement
is not necessary, though an interested reader is referred to [NC10], [KLM07] for an introduction
to quantum computing. We describe the power of a few quantum algorithms, quantum walks and
black-box query model which will be employed in the subsequent chapters. These algorithmic
primitives have been discussed without going into the technical details in such a way that the
speed-ups can be understood without completely understanding the details of their working.

2.1 Query model of computation

Quite often in classical algorithms and complexity theory, one is concerned with the space
or time taken by an algorithm to execute and obtain the solution. We generally assume the
worst-case scenarios of these algorithms and formulate the expressions to quantify the time or
space these algorithms require. A feature which unites both these models of computation is, they
both assume the algorithm has entire knowledge of the function governing the problem instance.
The complete knowledge of the problem allows the algorithm to manipulate the behavior of the
function, using the known parameters to eventually obtain the solution of the problem. However,
the setting we are concerned with here is if the knowledge of the function governing the problem
instance is hidden from the algorithm and we want to derive some property about the function.
We assume access to the function in terms of a black-box (or an oracle), a computational model
which allows questioning the function and receiving its corresponding output. This model of
computation is often referred to as black-box model of computation where each question asked is
referred to as a query, which could be a bit string {x ∈ D ⊆ {0, 1}n}. When the domain of the
function D is {0, 1}n, the function is referred to as total function and if the domain is a subset of
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{0, 1}n it is called a partial function. The goal in black-box model is to optimize the number of
queries made to this function in order to characterize some property of the function.

2.2 Quantum query complexity

In quantum computing, since the notion of time is notoriously hard to formulate, there is a
need to understand the number of queries in isolation for computations, in order to analyze the
separation between quantum and classical models of computation. Many important quantum
algorithms have shown a significant improvement to classical algorithms in the exact query com-
plexity model. Another setting in which quantum algorithms has given interesting results is the
bounded-error quantum query complexity model where the algorithm is allowed a small probabil-
ity of error. For partial functions an exponential separation was shown in [DJ92] between exact
quantum query complexity and classical query complexity. This exponential separation also
holds when considering exact quantum query complexity versus classical bounded error query
complexity. However for total functions the best known separation is a quantum algorithm with
a quadratic improvement (through the OR function [Gro97]) over a classical algorithm.

With most quantum algorithms involving speedups in the query model of computation, this
model has captured the power of quantum computers well. The first algorithm to illustrate a
separation using the power of quantum superposition was given by Deutsch in his landmark paper
[Deu85], where he gave a factor of 2 improvement for computing if a function f : {0, 1} → {0, 1}
is balanced (f(0) 6= f(1)) or constant (f(0) = f(1)). The basic idea was to compute f(0)⊕ f(1)
using one query using superposition instead of two classical queries. A generalization of this
algorithm was presented by Deutsch and Jozsa in [DJ92] which presented the first exponential
query separation between the classical and quantum setting. They considered the function f :
{0, 1}n → {0, 1} to determine if the function was balanced (f(x) = 0 for half the inputs and 1 for
the rest of the inputs) or constant (f(x) is equal for all x). Any exact classical algorithm would
require a minimum of 2n−1 + 1 queries to determine either of the two cases, but their algorithm
demonstrated that in the quantum setting deciding if f(x) is balanced or constant could be done
in a single query. Simon’s algorithm [Sim97], [BH97] demonstrated a exponential separation
between the exact quantum query complexity and bounded-error classical query complexity for
the problem: given a function f : {0, 1}n → {0, 1} with the promise there exists a string s such
that for all x, y, f(x) = f(y) if and only if x = y ⊕ s, find the string s. The best known classical
probabilistic algorithm requires exponential queries, but Simon showed a quantum algorithm that
required O(n) queries to find the hidden string.

These algorithms paved way to the seminal Shor’s factoring algorithm [Sho97] to factor
numbers in polynomial time, which had extensive applications in cryptography and Grover’s
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algorithm [Gro97] which quadratically improved the search problem. Although Grover’s search
algorithm provides only a quadratic improvement compared to classical algorithms, its importance
arises from the wide range of applications.

2.2.1 Quantum Minimum finding algorithm

The problem concerned in this section is to find the minimum element given a database
[x1, x2, . . . , xn]. The quantum algorithm for finding the minimum element in a database relies
heavily on the descendant algorithm [BBHT96] which is a generalization of Grover’s quantum
search algorithm. Grover’s algorithm for searching in a database works as follows, given a func-
tion f : {0, 1}n → {0, 1} such that it returns 1 for only one of the N = 2n possibly inputs (such an
input shall be referred to as a marked input). Assuming no knowledge about the function f(x),
any classical algorithm requires the the function to be queried (to be evaluated) for O(N) inputs
to determine the marked input. Grover’s algorithm however requires O(

√
N) evaluations of the

function to find the marked input. Like other quantum algorithms, this algorithm is probabilistic
as well, there is a probability of not reporting the marked input. This probability of failing can
however be reduced by repeating the algorithm. This quadratic improvement was also proven
to be tight in [BBBV97] and through various lower bound techniques in the past years such as
polynomial method, adversary method etc, showing that we cannot find the marked input in
lesser than Ω(

√
N) function evaluations. It was later shown in [BBHT96] even if there were m

multiple marked inputs, the algorithm would output one of the marked elements after O(
√

N
m)

queries to the black-box. It was in fact shown in their paper that the the number of marked
inputs m need not be known ahead of the algorithm to find the marked element.

Theorem 1. [DH96] Given a database of N elements [x1, . . . , xN ], the time taken for the algo-
rithm to find the index of the minimum element in the database is O(

√
N).

Proof. Note that the exponential sized database need not be present ahead of time for this
algorithm to work. The elements [x1, x2, . . . , xN ] could be the output of a black-box for the
corresponding inputs [f−1(x1), f−1(x2), . . . , f−1(xN )]. Classically, in this case the number of
queries to the black-box to find the minimum is O(N) and this quantum algorithm quadratically
improves the number of queries. The quantum algorithm begins by creating a superposition
of elements of the database. It is then followed by randomly picking one of the elements of
the database and marking those elements in the superposition which are lesser than the picked
element. Using the [BBHT96] algorithm, we can search for the marked elements without the
knowledge of the number of marked elements in advance. It is then verified if the measured
element is lesser than the initially picked element. If it is, then the initially picked element can
be replaced by the marked element.
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Input: A database [x1, . . . , xN ]
Output: Index of minimum element in the database.

Step 1: Randomly pick one of the elements xm.
Step 2: Repeat till Run_time ≤ 22.5

√
N +1.4 log2

2 N

Step 3: Prepare a superposition
N∑
i=1

|xi〉 |xm〉

Step 4: Mark those elements for which xi ≤ xm.
Step 5: Using the [BBHT96] algorithm search for one of the marked elements.
Step 6: Measure the first register (let the outcome be xk).
Step 7: If xk ≤ xm, set xm = xk
Step 8: End Loop
Step 9: Return xm

Figure 2.1: Quantum minimum finding algorithm.

Preparation of the superposition takes log2(N) time, one step of the [BBHT96] algorithm
can be assumed to take one time step, and other steps in the algorithm take constant time. It
was shown that the probability of success of this algorithm is at least 1/2 when the algorithm is
repeated for 22.5

√
N + 1.4 log2

2N time steps. The probability of success can however be boosted
by running the algorithm k times, in which case the success probability of the algorithm would
be at least 1 − 1

2k . In the similar spirit there was a canonical algorithm to find the maximum
element in the database called the maximum finding algorithm [AK99] finding the maximum in
an array in O(

√
N) queries.

2.2.2 Amplitude Amplification

Let A be an algorithm for computing the function f : {0, 1}n → {0, 1} which could either be
classical or quantum algorithm with one sided error. In the case f(x) = 0 the algorithm A
never makes a mistake of outputting 1, however in the case f(x) = 1, the algorithm A returns 0
with probability ε > 0. The aim is to firstly construct an algorithm A′ which returns 1 with a
probability greater than 2/3, by recalling A multiple times and secondly minimize the number of
times A is recalled in the process. Classically it is intuitive to see that to construct A′ we would
require O(1

ε ) repetitions of A. However in the quantum setting it was shown that,

Theorem 2. [BHMT00] Let A be a quantum algorithm with one-sided error and success prob-
ability ε > 0. Then, we can construct another quantum algorithm A′ which outputs 1 with a
probability at least 2/3 by O( 1√

ε
) repetitions of algorithm A.
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This idea of quadratically reducing the number of times a one sided classical algorithm is
recalled to boost the success probability of another algorithm is referred to as amplitude ampli-
fication. It is important to notice that in the classical algorithm, if each iteration depends on
the previous one (i.e. adaptive in nature), then the theorem [BHMT00] doesn’t follow directly
and there is no quadratic speedup. Amplitude amplification was shown to be a generalization of
Grover’s quantum search (which effectively computes the n-bit OR function). Considering the
OR function which returns the marked element with non-zero probability ε, amplitude amplifi-
cation outputs the marked element with at least constant probability after querying the function
O( 1√

ε
) = O(

√
N) times which is effectively the quadratic speedup to searching shown by Grover.

2.3 Random Walks

Random walks are powerful computational tools often encountered in algorithms in computer
science and mathematics. The formulation we adopt for random walks are as a succession of
steps following a particular rule which is defined by a stochastic matrix. If the stochastic move
at any step does not depend on the prior steps of the walk those random walks are referred to
as Markovian chains. The evolution of the walk over many moves gives us interesting properties
of the walk which has been shown to be useful for computations. Quantum walks are natural
analogues of random walks where the stochastic matrices describing the probability amplitudes
are replaced by unitary transformations, which results in interesting properties due to interference.
These walks are very different from classical walks, as they been shown to spread further much
faster and not converge to limiting distributions. It is intuitive to see that if after every step of
the quantum walk, a projective measurement is made onto the computational basis, the resultant
walk is effectively a classical Markovian chain.

Before formulating quantum walks, we describe classical random walks. A classical random
walk is characterized by the stochastic matrix M (or commonly referred to as Markov transition
matrix) whose entries for example, Mij define the probabilities of moving from vertex i to vertex
j on a graph. Given a state of the graph ψ, by left multiplying by the stochastic matrix M , the
position of the state ψ after one step of the random walk can be obtained. Often in algorithms
requiring n steps of the walk, we require repeated application of walk operator or multiplication
of the matrix Mn to the initial state to obtain the state after n steps. We present a classical
random walk for solving 2-satisfiability in section 3.2.2 where these ideas become clearer.

Quantum random walks evolved from the similar ideas of a classical random walk. Origi-
nally, considered in both the continuous time and space, discrete versions of quantum walks have
been the prime focus subsequently. They were found to be easily implementable using quantum
circuits and amenable to provide speeds in quantum algorithms. In this section we restrict our-
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selves to discrete time quantum walks and the quadratic speedup compared to classical random
walks. A naive idea to define a quantum walk is by direct translation of classical random walk,
replacing the state ψ by a quantum state |ψ〉 and replacing the stochastic matrix by a completely
positive map. In order to focus on the power of quantum physics, we can restrict our map to be a
unitary walk operation, which maintains the system in a coherent state. However, the translation
of classical states and maps to quantum states and unitaries don’t give us a well-defined quantum
walk. Let us consider a simple classical walk where a state can move to either of its neighbors
with equal probability. The stochastic matrix governing the walk is

M =



. . . . . . . . .
1
2 0 1

2
... 1

2 0 1
2

1
2 0 1

2
... . . .

. . .


If we were to consider the quantum analogue of such a walk with the stochastic matrix re-

placed by a unitary, at any vertex |n〉 the walk would move to a superposition of neighboring states
1√
2 (|n− 1〉+ |n+ 1〉). Similarly at vertex |n− 2〉 the walk would move to 1√

2 (|n− 1〉+ |n− 3〉).
However, due to the presence of |n− 1〉 term, both these superpositions aren’t orthogonal and
hence this transformation cannot be unitary. Incorporating other techniques such as phase infor-
mation, wouldn’t preserve the fact that the walk behaves the same at all vertices. Hence, there
was a need for a different formulation for quantum walks.

In [AAKV01] Aharonov et al. came up with coined quantum walk, where they increased the
dimension of the Hilbert space for the quantum walk to Hs ⊗ Hc , where the first space refers
to the unitary to be applied on the state space conditioned on the second space Hc called the
coin space. Hc can be looked upon as representing the outcome of the classical coin flip or in one
of the spin states up/down {|↑〉 , |↓〉}. This degree of freedom in the coin space Hc was shown
to be required for the physical implementation of quantum walks. Correspondingly they defined
operators C,S acting on the respective spaces Hc,Hs as

C |0〉 → α |0〉+ β |1〉
C |1〉 → γ |0〉+ δ |1〉

S |n, 0〉 → |n− 1, 0〉
S |n, 1〉 → |n+ 1, 1〉 .

(2.1)
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Note the {|↑〉 , |↓〉} can be looked upon as {|0〉 , |1〉}. Finally, one step of the quantum walk can
be represented by the unitary operation U = S(I⊗ C), where C acts first on the coin space with
identity acting on the state space, followed by the S operator on the space Hs ⊗ Hc. If the
coefficients α = β = γ = −δ = 1√

2 , it is called a Hadamard walk since the unitary C resembles
the Hadamard operation. Another choice of coefficients α = δ = 1√

2 , β = γ = i√
2 gives the well

studied balanced quantum walk.

In order to define the quantum walk, let us define the state |i, j〉 on the space CN ⊗ CN ,
where the initial state of the walk is |i〉 and the second register holds the superposition of states
after one step of the quantum walk. For each vertex |i〉 in the graph, we define

|ψi〉 =
N∑
j=1

√
Mij |i, j〉 i = 1, . . . , N. (2.2)

In order to define the unitary defining the quantum walk, let us denote the projection operator
onto the span of {|ψi〉 : i = 1, . . . , N} as

Π :=
N∑
i=1
|ψi〉 〈ψi| . (2.3)

After each step of the quantum walk, the walk needs to continue from the second register con-
taining the superposition of neighboring states that resulted from the first step, hence we define
the swap operator between the registers |i, j〉 after each step of the walk as

S :=
N∑

i,j=1
|i, j〉 〈j, i| . (2.4)

One step of the unitary walk can be finally defined as U := S(2Π − I) and two steps of the
walk on the initial state |ψ〉 would be S(2Π − I) ◦ S(2Π − I) |ψ〉 := (2Π∗ − I)(2Π∗ − I) |ψ〉. In
order to completely understand the power of quantum walks, Szegedy in [Sze04] proved a spectral
theorem to analyze the spectrum of the eigenvalues of the walk operator U . To understand the
result by Szegedy, we define a discriminant matrix Di,j =

√
Mi,jMj,i with eigenvalues between

[0,1]. Szegedy effectively proved that if D had a set of eigenvectors {|λi〉} with eigenvalues {λi},
then the eigenvalues of the discrete-time quantum walk U are ±1 and ei cos−1(λ). Defining the
subspaces A = span{|ψi〉}, B = span{|ψi〉}, the operator

Q =
∑
j∈V
|ψj〉 〈j | (2.5)

where V refers to the vertices adjacent to j and |φj〉 = Q |λj〉, the theorem can be stated,
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Theorem 3. [Sze04] The eigenvalues of the walk operator U acting on the spaces A,B can be
described as follows

1. The eigenvalues of U on the subspace A+B are e±2iλ1 , e±2iλ2 , . . . , e±2iλk , where cos(λ1), cos(λ2),
. . . , cos(λk) are eigenvalues of D in the range (0,1). The corresponding (un-normalized)
eigenvectors of U(M) can be written as

|φt〉 − e±2iλtS |φj〉 t = 1, . . . , k. (2.6)

2. On A∪B and A⊥ ∪B⊥ the quantum walk operator U(M) acts as identity with eigenvalues
+1. The linear subspace A ∪ B is spanned by the left (and right) singular vectors of D(P)
with eigenvalue 1. U(P) has no other eigenvalues on A+B.

3. On A∪B⊥, A⊥ ∪B the operator U(M) acts as the negative of identity with eigenvalues of
-1.

Employing this theorem, a quadratic speedup can be observed for the search problem via a
quantum walk. Given a graph G = (V,E) with contains marked vertices, the classical hitting time
or the time required to reach the marked vertices with a constant probability can be shown to be
O( 1

δε) in the classical setting, where δ is the eigenvalue gap between the largest and second-largest
eigenvalue, ε is the ratio of the number of marked elements to the total number of elements on
the graph. Analyzing the quantum walk, it was shown in [MNRS11] that the quantum algorithm
can decide if there is a marked element in time O( 1√

δε
), which is a quadratic improvement to the

classical random walk. The proof for this quadratic speedup is omitted here, an interested reader
in quantum walks is referred to excelling surveys in [SM10], [RNB11], [Kem03]
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Chapter 3

Satisfiability

The constraint satisfaction problem, referred to as CSP, has been ubiquitous in almost every
aspect of engineering and science. Most of the well known problems we encounter can be phrased
as a CSP such as the n-queens game, the crossword puzzle, Sudoku, Kakuro, graph coloring,
etc. The problem involves a homogeneous collection of finite constraints Ci, each involving a
finite number of variables xi belonging to their respective domains Di. The assignment of values
to these variables are related by constraints imposing restrictions on the subset of the variables
which they involve. A formal definition for CSP is:

Definition 4. A constraint satisfaction problem is defined by the tuple (X ,D, C)

1. A set of n variables {x1, x2, . . . , xn} = X

2. A set of domains {D1, D2, . . . , Dn} = D for the respective variables such that x1 ∈ D1,
x2 ∈ D2, . . . ,xn = Dn

3. A set of constraints {C1, C2, . . . , Cm} = C where each constraint defines an equation involv-
ing any number of variables imposing some relation between them.

The aim is to solve or satisfy every constraint in C with consistent variables assignment. An
assignment of domain-bounded variables satisfying each constraint is called a satisfying assign-
ment. An example of a simple CSP is ({x, y},R2, {x ≥ 0, y ≥ 0}), which corresponds to the
satisfying assignment of the first quadrant on the X − Y plane.

The satisfiability problem, or commonly referred as SAT, is defined as the problem of deter-
mining if a Boolean formula has a solution. Formally the problem can be defined as:
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Definition 5. Boolean satisfiability problem for k-SAT formula F is defined by the tuple (X , k, C)

1. A set of variables {x1, . . . , xm} = X , where xi ∈ {0, 1}.

2. k denotes the maximum number of variables in each clause Ci.

3. A set of clauses {C1, C2, . . . , Cn} = C where Ci are clauses comprising of disjunction (logical
OR(∨) ) of binary literals (or variables) {x1, x2, . . . , xm} or their negations. The clauses
are combined by conjunction (logical AND(∧)) of connectives. These clauses give us the
framework for the SAT formula F .

We often encounter instances where |X | ≤ k |C | with equality (each clause containing distinct
variables) giving us an example of uniform k-SAT instance. The aim of the satisfiability problem
is to determine if there exists a Boolean assignment of values to each one of the variables xi such
that formula F is satisfied or evaluates to 1. Considering F is defined in terms of conjunctions of
clauses which are individually a disjunction of literals, representation of F in this form is called
conjunctive normal form (CNF). In terms of logic, if we assign true or false to each of the literals,
we need a satisfying assignment of the variables such that the overall expression F evaluates to
true. In this thesis, we would frequently encounter instances of 2-SAT (with clauses containing
at most 2 variables), 3-SAT (with clauses containing at most 3 variables), k-SAT (with clauses
containing at most k variables). A simple example of 3-SAT is

F = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4). (3.1)

Since there are 3 variables involved in each clause it is called a 3-SAT formula. An assignment
for F = 1 is (x1, x2, x3, x4) = (1, 1, 0, 0) which can be verified trivially.

From the problem definitions of CSP and SAT, it is intuitive to consider SAT as a par-
ticular form of Boolean CSP, where the domains of the variables are Boolean and the clauses
are connected by logical connectives. An efficient reduction from k-CSP to k-SAT is possible
by considering a k-CSP with every constraint containing at most k variables, with the variables
taking only Boolean values having the structure as required by k-SAT.

3.1 Complexity of SAT

The first non-trivial instance of SAT intuitively is 2-SAT containing n variables for which
Papadimitriou in [Pap91] gave a polynomial time algorithm which solves the problem in O(n2)
steps. The problem becomes intractable considering 3-SAT or for any instance of k-SAT with
k ≥ 3. The Cook-Levin theorem showed that any polynomial-time non-deterministic Turing
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machine could be reduced to a polynomial sized Boolean expression, and consequently proved
the Boolean satisfiability problem is complete for the complexity class NP. A fairly common
technique for proving NP-completeness is by reducing the problem to an instance of SAT through
an efficient polynomial time algorithm. Considering P 6= NP (which is widely assumed), it implies
in the worst case there exists no polynomial time algorithm to find a satisfying assignment for
SAT. Although many instances of SAT for specific applications can be solved incredibly fast
through various techniques by employing SAT solvers, deterministic or probabilistic polynomial-
time algorithms for k-SAT formulas or exponential lower bounds for general k-SAT algorithms
remains elusive.

3.1.1 SAT Instances

Although finding a satisfying assignment k-SAT instance with m clauses and n variables is
known to be NP-complete, experimental evidence employing various heuristics has shown that
the toughness of SAT instances depends intricately on the number of clauses and variables m,n.
Intuitively, it can be seen that a SAT instance with many clauses and few variables would likely be
unsatisfied and similarly an instance with fewer clauses and many variables would likely be easily
satisfiable. From numerical simulation it has been seen that the hardest SAT instances occur near
a phase transition region αc = m/n, for which the given SAT instance is considered to be the
toughest to solve. For example, considering 3-SAT, the critical constant is αc ≈ 4.267 [NLBH+04],
where the performance of the SAT solvers are tremendously worsened. This transition between a
randomly generated SAT instance being easily satisfiable and probably unsatisfiable is considered
as the phase transition occurring at critical ratio αc = m/n for each k-satisfiable formula and is
given by

αc = 1
log2(2k/(2k − 1)) . (3.2)

Unless mentioned, most of the SAT instances considered in this thesis are in the phase transition
region. An interested reader could find many benchmark SAT instances from the SAT repository
[SATb] and hard instances can be generated from [Beb]. The universal format in which almost
all instances for SAT are provided are in .dimacs cnf format with the first 5 lines containing
comments before the SAT instance in which clauses are separated by 0’s and negation of the
literal is denoted by the ’-’ symbol.

3.1.2 Structured Problems

Often, we come across the dichotomy that practical applications involve solving huge SAT in-
stances which are generally thought to be intractable, whereas algorithmic progress and optimized
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implementations have resulted in SAT solvers which have been able to solve these instances in
realistic time. The answer to the dichotomy lies in the fact that, SAT instances for practical
problems are inherently structured in construction. Structured instances of SAT are those in-
stances for which the problem can be divided into well defined sub-problems where the intricate
dependencies between variables can be exploited in solving the problem. The satisfying assign-
ment for the SAT instance could be incrementally extended by constructing partial solutions to
these sub-problems, containing few of the literals and clauses. This is more efficient compared
to the unstructured approach of searching, since in this methodology to construct the satisfying
assignment, the algorithm avoids search spaces where the partial assignment doesn’t satisfy the
literals and clauses.

3.2 Classical Algorithms

3.2.1 Brute Force

A naive brute force search algorithm can be used to obtain the satisfying assignment for SAT
with a time complexity of O(2n) as follows

Step 0: BruteForce (Input: A k-CNF formula F with n variables)

Step 1: Assume an initial assignment σ = {0}n
Step 2: For k = 1 : Imax
Step 3: If F is satisfied by σ
Step 4: Output σ
Step 5: Else Find a new assignment σ′ such that Hamming distance between σ, σ′ is 1.
Step 6: End
Step 7: Output: "No Satisfying Assignment found"

Figure 3.1: Brute force algorithm.

Intuitively, the total number of possibilities for the simple exhaustive search grows with the
number of variables exponentially. In the worse case, an exponential number of steps Imax = 2n
need to be carried out before finding a satisfying assignment. In the example for 3-SAT in the
previous section, the satisfying assignment was obtained by considering every possible Boolean
assignment of {x1, x2, x3, x4} in order to find the solution. Hence the total number of possible
assignments was 24. For a problem with 100 variables there would be a mammoth 1030 possible
assignments.
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3.2.2 Polynomial-time algorithm for 2-SAT

The polynomial time random walk algorithm on the space of strings (assignments) proposed by
Papadimitriou in [Pap91] is described below

Step 0: 2-SAT (Input: A k-CNF formula F with n variables)

Step 1: Guess an initial assignment σ at random
Step 2: For k = 1 : Imax
Step 3: If F is satisfied by σ
Step 4: Output σ
Step 5: Else Choose an unsatisfied clause at random.
Step 6: Flip the value of the variable associated with a random literal in that clause.
Step 7: End
Step 8: Output: "No Satisfying Assignment found"

Figure 3.2: Random walk for 2-SAT.

In each step of the walk, the algorithms moves from one assignment σ1 to σ2 if these strings
have a Hamming distance of 1 and the differing bit belongs to a clause that is unsatisfied for the
assignment σ1. Since the algorithm has equal probability (= 1/2) of moving towards and away
from the satisfying assignment, in the worst case scenario it resembles a random walk on a line.
It is known that an unbiased random walk on a line requires an expected number of Θ(N2) steps
to travel a distance of N . Hence the random walk for 2-SAT finds the satisfying assignment in
Imax = O(n2) steps. If a satisfying assignment is not found before that, it can be concluded there
doesn’t exist a satisfying assignment for the SAT instance. The number of required steps can be
obtained with a recursion relation between two successive iterations of the algorithm to find the
satisfying assignment.

The polynomial nature of this algorithm is a reflection of the fact that in every step of the
random walk, there is a probability 1/2 with which the assignment is moving towards the satisfying
assignment and 1/2 with which its moving away from the assignment. Similarly for k-SAT with
k ≥ 3, upon a bit flip to a random variable in a clause in each iteration, the probability of moving
towards the satisfying assignment is 1/k and this leads the random walk to be biased away from
the assignment under consideration at any step. Theory of random walks states that, a walk
that is biased (with a higher probability) away from the current solution will take exponential
number of steps to reach the satisfying assignment, which consequently results in the exponential
running time random walk algorithms for k-SAT. Proposing faster algorithms involves closely
understanding the structure of the SAT instances to come up with more efficient algorithms.
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3.2.3 DPLL Algorithm

The first non trivial algorithm in literature for solving SAT dates back to 1962, called the Davis-
Putnam-Logemann-Loveland (DPLL) algorithm [DLL62] was based on complete exploration of
the search space to find the satisfying assignment. Complete exploration was what leads to a
marginal slowdown of this algorithm compared to other algorithms mentioned later in this section.
The algorithm divides each formula into clauses and searches in the manner of a tree with the
top of the tree being the SAT instance and the leaves in each level being the clauses. In some
sense, the structure of this algorithm looks similar to the depth-first search of a tree branching
out from the SAT instance. There are various heuristic techniques, which distinguish it from
naive depth first search, that guide the nature of the search and in effect optimize the algorithm.
The fundamental techniques employed are:

1. Non-chronological backtracking: Backtracking is a technique where the satisfying assignment
for the problem is built by incrementally building up solutions from an initially assumed
random assignment. On reaching a level of the tree where the assignment doesn’t satisfy
the instance at that particular level, the algorithm backtracks to that level of the tree
where the solution satisfies all assignments and carries on with an alternative branch. Non-
chronological refers to jumping back up multiple levels instead of going back one level each
time and this has proven to be more effective than chronological backtracking.

2. Unit propagation: Unit clauses are unsatisfied clauses in the formula that have all but one of
the literals assigned. Hence the only possibility for both the clause and formula to evaluate
to true is if the last unassigned literal in the unit clause is assigned 1. Unit propagation
deletes variables within a clause and gets closer to discovering if there is an empty clause in
the instance (a conjunction over null variables which effectively evaluates to false), in which
case the formula is not satisfiable.

3. Clause Learning: The speedup in DPLL and subsequent algorithms such as Conflict Driven
Clause Learning (CDCL) solvers [MSLM09] was based on a powerful technique called clause
learning. During backtrack when the algorithm hits upon a conflict it learns a new clause
which explains the conflict and hence prevents the repetition of the same conflict again.
This new added clause to the database precludes the solver from searching the regions of
space where the solution cannot exist.

4. Pure Literal: The basic idea underlying this heuristic is that if a literal occurs as the same
literal in all the clauses, then it might as well be assigned the value that makes that literal
true. Th assignment of this variable is guaranteed not to conflict with any other assignments
since it does not introduce a false literal in any clause. The pure literal rule deletes clauses
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bringing us closer to the empty formula, in which case the formula is trivially satisfiable
with the current assignment.

5. Resolution Rule: If a formula F contains the clauses (x ∨ a) ∧ (x ∨ b) then it reduces to
solving (a ∨ b). This rule forms the basis of many other techniques for complete solvers,
as the algorithm proceeds in each step and concludes when it is an empty formula or all
clauses are empty.

Step 0: DPLL (Input: A k-CNF formula F , Clause set C, Partial valuation σ)

Step 1: If all clauses in C are true, return satisfiable and the assignment σ.
Step 2: Else, if σ causes few empty clauses, backtrack and carry out DPLL(F , C, σ′).
Step 3: If C contains unit clause Ci with unassigned variable xi
Step 4: DPLL(F , C, σ ∪ {xi = 1}).
Step 5: If C contains pure literal xj
Step 6: DPLL(F , C, σ ∪ {xj = 1}).
Step 7: Choose an undefined literal xl occurring in Ci.
Step 8: Carry out resolution step, DPLL(σ ∧ xl) ∨ DPLL(σ ∧ xl)

Figure 3.3: DPLL function.

The DPLL algorithm begins with the CNF formula and recursively calls the DPLL function.
The first step of the algorithm given a CNF formula, is the decision step, where it chooses an
unassigned variable and assigns it a value. Consequently, using the heuristics and optimization
techniques the solver finds all the unit clauses created from the last variables assignment. This
iterative procedure continues until the current assignment leads to an empty clause (an unsatisfied
clause with all the variables assigned values), in which case the solver backtracks and tries the
other variable assignment in order to find a satisfying assignment. Through the iterations, the
algorithm learns conflicts and avoids these search spaces in subsequent iterations. Avoiding the
search spaces where partial assignments of the variables doesn’t satisfy the algorithm is referred
to as search-space pruning. The algorithm terminates either when all clauses are satisfied and
the instance is true, or in the worst case it declares there is no satisfying assignment if the
literal assignments have been checked for all possible combinations. The ability to declare the
SAT instance as unsatisfiable is the primary advantage of a complete DPLL solver compared to
randomized solvers described in the following sections. The worst case complexity of the problem
is intuitively exponential where it searches every literal assignment, or is O(cn) for some constant
c > 1 employing various heuristics. Over the past years many significant optimization techniques
and improvements have been proposed and the DPLL algorithm has been very successful in
designing classic solvers such as zChaff, Grasp, Minisat, SATO, Stalmarck, etc. winning many
awards in the annual SAT competitions.
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3.2.4 Walksat

In combination with various heuristic modifications, Walksat was considered highly successful
in practical SAT solving and continues to be used for many practical problems. The algorithm,
earlier referred to as GSAT was proposed in 1993 [SKC+93] by Selman, Kautz and Cohen. The
algorithm follows the ideas of local search, starts by picking a random assignment and checking
if the current assignment satisfies the instance. If it does, the algorithm outputs the satisfying
assignment. Otherwise, the algorithm randomly picks an unsatisfied clause Ci, with probability
p it picks a literal xm from that clause and flips the value assigned to xm or with probability
1-p greedily picks the variable from the clause which would have least effect on other clauses
to get unsatisfied by the variable assignment in the CNF. The algorithm checks again if the
new assignment satisfies the clause Ci. This process continues until a preset number of steps
or time-out. The algorithm restarts with a new random assignment if no satisfying assignment
is found after a preset number of steps in the walk. Walksat is a modification of the earlier
algorithm GSAT proposed by the same authors, the fundamental difference being the heuristic
probabilistic flipping of the chosen literal with probability 1 − p. One of the key drawbacks of
Walksat is its incompleteness. After the preset number of iterations of the random walk if the
Walksat algorithm doesn’t find a satisfying assignment, it doesn’t ascertain that there doesn’t
exist a satisfying assignment for the SAT instance.

Step 0: WalkSat (Input: A k-CNF formula F with n variables)

Step 1: For i = 1 : Imax
Step 2: Generate a random assignment σ ∈ {0, 1}n
Step 3: For j = 1 : Fmax
Step 4: If σ satisfies F , STOP and output σ.
Step 5: Else, Choose a random unsatisfied clause
Step 6: Select a variable from the unsatisfied clause and flip it
Step 7: With probability p, choose a random variable.
Step 8: With probability 1− p, greedily choose random variable.
Step 9: End
Step 10: End

Figure 3.4: Walksat Algorithm.

Using this local search technique there have been many algorithms which have been designed
[LWZ07] varying the noise parameter (i.e. probability p) in the protocol. It has been shown
that the Walksat algorithm performs best when the probability p is set as 0.47. One of the key
obstacles in Walksat is that the performance is worsened on structured SAT instances, in which
case the DPLL algorithm is preferred. The performance of Walksat on structured instances is
worse because it requires at least O(N2) flips to propagate dependencies among variables during
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its random walk, which the unit propagation step in DPLL algorithm in 3.2.3 handles in linear
time. It is intuitive to see that the Walksat algorithm does not respect any structural dependence
of the instance and goes about by walking on a hyper-graph till it finds a satisfying assignment
without any search-space pruning.

3.2.5 Schöning’s Algorithm

Schöning’s randomized algorithm [Sch99] was one of the first algorithms which gave a rigorous
analysis of time scaling for finding a satisfying assignment to solve k-SAT. Fundamentally, it
was a multi-start unbiased random walk algorithm similar to Walksat with finitely short num-
ber of steps, which are repeated exponential number of times to find the satisfying assignment.
This random walk algorithm was completely derandomized to give a deterministic algorithm in
[MS11]. Schöning’s algorithm follows a simple search paradigm starting with a randomly chosen
assignment σ.

Step 0: Schöning’s Algorithm (Input: A k-CNF formula F with n variables)

Step 1: For i = 1 : Imax
Step 2: Generate a random assignment σ ∈ {0, 1}n
Step 3: For j = 1 : 3n
Step 4: If σ satisfies F , STOP and output σ.
Step 5: Else, Choose a random unsatisfied clause
Step 6: Choose a random literal from the unsatisfied clause and flip it
Step 7: End
Step 8: End

Figure 3.5: Schöning’s Algorithm.

In [Sch99], Schöning showed that if random walk in steps [3-7] carries on for a finite number
of steps Fmax = 3n then the probability that the walk finds a satisfying assignment for k-SAT
after 3n steps is O(2 − 2/k)−n. Iterating the random walk for Imax = O(2 − 2/k)n times up
to polynomial factors gives a constant success probability of finding a satisfying assignment for
the instance. Considering 3-SAT for example, this algorithm scales as O(4/3)n time, which was
improved later by Rolf [Rol03] by combining Schöning’s algorithm with a randomized solver to
give a slightly better upper bound of O(1.32793n). Schöning’s algorithm can also be extended
naturally to the k-CSP problem, by considering the scenario where there are n variables which
can take at most d values and the maximum constraint size is of the order l. In the same paper
it was proven that the similar algorithm to solve any CSP has a complexity of O(d − d/l + ε)n
where ε is a predefined permissible error bound.
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3.2.5.1 Optimization of Algorithm

Drawing inspiration from practical realizations of Walksat and experimental evidence, we hy-
pothesize that although the original random walk algorithm restarts after 3n steps, we could
propose a new random walk, which could perform better by restarting after a larger number of
steps instead of 3n. This compromises the concise proof provided by Schöning where he proves
that an exponential number of restarts guides the random walk to a solution with a high proba-
bility. Experimentally verifying the algorithm, we indeed see that by setting an arbitrarily large
number of steps as a restart parameter, the algorithm does find a satisfying assignment much
faster. The following table elaborates the exact time it takes for small instances of SAT to find
a satisfying assignment altering the number of steps in the random walk. This technique of not
restarting after 3n steps does not have any performance guarantee, however assuming the instance
definitely has a satisfying assignment this new algorithm performs better.

Imax Fmax Time Taken/ Total
Iteration Time

Sat Instance (3 SAT)
Instance 1: n=20, m=91 1715 60 0.026 s 45.4 s
Instance 2: n=20, m=91 59 220 0.46 s 27.1 s
Instance 3: n=20, m=91 26 500 0.24 s 6.3 s
Instance 4: n=20, m=91 11 1000 0.12 s 1.3 s
Instance 5: n=50, m=218 - 150 t/o t/o
Instance 6: n=50, m=218 533 1000 0.36 s 192 s
Instance 7: n=50, m=218 6 30000 3.2 s s 18.7 s
Instance 8: n=50, m=218 1 800000 13.2 s 13.2 s
Instance 9: n=75, m=325 - 225 t/o t/o
Instance 10: n=75, m=325 337 5000 0.92 s 309.2 s
Instance 11: n=75, m=325 12 30000 3.77 45.3 s
Instance 12: n=75, m=325 1 900000 35.5 s 35.5 s

Table 3.1: Table illustrating the effect of increasing walk steps in section 3.5 where n denotes the number of
variables and m denotes the number of clauses.

The number of iterations Imax and time taken have been averaged over 100 independent runs
of the algorithm to compile this final table. The algorithm was manually stopped after 1000
seconds of running and if a satisfying assignment wasn’t found by then, we have labeled that as
time-out (t/o). It should be noted that the time taken is significantly less in the scenario where
there is a higher number of allowed walk steps Fmax. For instances where n ≥ 50, with Fmax = 3n
it was difficult to find a satisfying assignment, hence we had to assume larger values of Fmax to
compile the table. This difference in the total time taken would become even more significant
when we consider larger instances. This table was compiled by simply implementing Schöning’s
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algorithm in Matlab without any heuristics.

3.2.6 PPSZ Algorithm

In 1998, Paturi, Pudlák, Saks, and Zane came up with an improved PPSZ algorithm [PPSZ98]
for k-SAT which was also called ResolveSAT. It was a randomized variant of the DPLL algorithm.
Before describing the algorithm, we introduce few notations to understand the algorithm better.
Let the given CNF formula be denoted by F and the partial assignment of the variables be σ.
The restriction imposed on the set of variables in the assignment not constrained by σ is denoted
by F ′ = F |σ (formula obtained by making σ true in F). This can be obtained by treating
each clause in such a way that, if the clause is set to 1 by σ then delete the clause. Otherwise
replace the clause with another clause by deleting any literals of the clause that are set to 1 by
σ. Another definition which should be noted is the concept of bounded resolution similar to the
resolution defined in section 3.2.3. Two clauses C,C ′ are said to conflict on a particular variable
x if C contains x and C ′ contains x or vice-versa, and they are called resolvable pair. If they
conflict on only one exact variable they are denoted as 1-bounded. For such a pair, the resolvent,
denoted by R(C,C ′) is defined as Cx ∨ C ′x where Cx, C ′x are defined by removing the respective
conflict variables. Consequently if F is satisfiable containing the resolvent pair (C,C ′) then the
new formula F ∧R(C,C ′) has the same satisfying assignment as the original F . A pair of clauses
are called s-bounded, when their resolvent pair R(C,C ′) has less than s conflicts. The algorithm
can be described as follows:

Step 0: PPSZ (Input: A k-CNF formula F , integer d, assignment σ)

Step 1: F:=do kd- bounded resolution on F.
Step 2: Random permutation π of variables(F)
Step 3: For each x ∈ variables(F) ordered by π
Step 4: If F contains a unit clause x or x respectively
Step 5: Set the assignment of σ in order to satisfy the unit clause
Step 6: Choose F:=F |x or F:=Fx depending on σ(x) = 1 or σ(x) = 0
Step 7: End
Step 8: Return σ

Figure 3.6: PPSZ Algorithm.

The running time of this algorithm is O(2n−nπ2/6k) for k-SAT which was later de-randomized
by Rolf in [Rol05] with a running time of O(2(1− µk

k−1 )n+ε). In comparison to Schöning’s algorithm,
the PPSZ algorithm is better in terms of running time for k-SAT for k ≥ 4. The PPSZ solves
3-SAT in O(1.3071n) steps. The caveats for PPSZ algorithm are however its inefficiency when
there are multiple solutions for the SAT instance, and consequently it is considered one of the
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faster algorithms for Unique k-SAT which as the name suggests involves solving a SAT instance
with a unique satisfying assignment.

3.2.7 An improvement to Schöning+PPSZ

Iwama and Tawaki in [IT04] proposed an algorithm which was a combination of Schöning’s
algorithm and PPSZ with a better time bound of O(1.324n) for 3-SAT. The basic idea was the
observation that PPSZ algorithm gets worse when the number of solutions increases in which case
Scöning’s algorithm is more efficient. Their algorithm involved coupling the ResolveSat which
was a randomized DPLL with bounded resolution with the local search algorithm by Schöning
in parallel. Since both algorithms cannot achieve their worst-case complexities simultaneously,
the resultant parallel algorithm was expected to perform better than the constituent algorithms.
However, the time scaling of their algorithm was better for 3-SAT, 4-SAT and for k ≥ 5 it didn’t
outperform other algorithms. The caveat in PPSZ of not being able to find multiple satisfying
assignments was overcome in this algorithm.

Step 0: IT Algorithm (Input: A formula F which is a k-CNF with n variables)

Step 1: Repeat k times
Step 2: General a random assignment σ
Step 3: Carry out steps [3-7] of Schöning’s algorithm
Step 4: If a satisfying assignment is found, return σ
Step 5: Carry out steps [3-7] of PPSZ algorithm.
Step 6: If a satisfying assignment is found, return σ
Step 7: Output No Solution found

Figure 3.7: Iwama-Tawaki Algorithm.

The probability with which the above algorithm finds a satisfying assignment in steps [2-6]
for 3-SAT was O(1.324−n) which was obtained by combined analysis of the respective algorithms.
Hence the polynomial algorithm is repeated exponential number of times Imax ≈ O(1.324n) in
order to find the satisfying assignment with constant success probability.

3.3 SAT solvers

The annual SAT solving competitions [sata] is a platform where people globally compete to
solve benchmark hard problems using their designed SAT solvers. Considering SAT is one of
the most ubiquitously known NP-complete problem to which most of the problems can be poly-
nomially reduced to, an efficient algorithm to solve this problem is a competitive challenge and
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would be a significant milestone for researchers. Most of these participating solvers are designed
for various purposes and differ fundamentally in how they are designed, how they work, their
efficiency and their guarantees. Some of these are designed to work best on problem instances
drawn randomly from a particular distributions, while some are designed to cater to particular
industrial problems, some on hard problems near critical regions, and some algorithms are based
on heuristics and hence do not prove non-existence of a satisfying assignment. Due to all these
factors, any particular SAT solver wouldn’t necessarily be efficient on all SAT instances. Some
famous solvers winning awards in SAT competitions chronologically are GRASP [SS97], CHAFF
[MMZ+01] in 2002, Minisat [ES04] in 2005, SATzilla2009R [XHHLB09] in 2007, Glucose [AS09] in
2011, and Lingeling aqw [Bie13] in 2013. It should be noted that these solvers are not exhaustive,
even as we read, there are computer scientists improving existing algorithms to build a more
efficient solver.

A natural question that arises is, which solver is the best? And which solvers do the indus-
tries use? The first question doesn’t have a single answer for the reason that each SAT solver
is built for either a particular application with their respective pros and cons. As for the second
question, it is generally unknown since industries do not disclose the solvers they use to solve
a problem, but we believe they would use the state-of-the-art solvers which employ Walksat or
DPLL for solving SAT depending on the problem instances. The incomplete stochastic local
search nature of Walksat, has proven to be highly effective compared to deterministic solvers,
on problems which involve solving random k-SAT instances. There have been many compara-
tive studies with DPLL-solvers in [GS03],[FF04] where they show that for randomly generated
instances of SAT with no structure, occurring in the planning problem, bounded model check-
ing, hardware and software verification, graph colouring and circuit synthesis problems, the best
DPLL based solver minisat didn’t perform as well as Walksat. Minisat was one of the better
solvers used by people since it was an open source code. It was considered a norm to beat this
code to show a particular optimization technique was promising. Fundamentally, Mini(imal)sat
is a complete solver, an implementation of DPLL algorithm based on backtracking and conflict
driven learning and hence performs better on special structured instances. In general, as men-
tioned in section 3.1.2 the hardness of SAT instances lies in the structures hidden in them rather
than the size of the instances, in which case DPLL-based solver minisat has an advantage over the
random walk Walksat. Consequently industrial SAT instances which heavily depend on struc-
ture are efficiently solved by DPLL-type algorithms and thus would be the preferred solver by
industries.

An interesting idea which was investigated in [FF04], was to couple the advantages of both
the DPLL algorithm and the local search algorithm to concoct a hybrid algorithm which performs
better than either. Ferris and Froehlich however showed that there was no improvement. They
considered if the incomplete but fast nature of Walksat could be used as a heuristic for the com-
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plete but wasteful (in the context of searching the entire space) DPLL algorithm. They highlight
that for smaller clause/variable ratio their hybrid algorithm performs in par with Walksat but at
the critical phase transition region performs very much slower than either of DPLL or Walksat.
In [WS06], Wei and Selman consider improving the random walk in Walksat by introducing con-
straints to capture long range dependencies (which as mentioned in section 3.2.4 causes Walksat
to perform worse on structured instances). By introducing a "negative" bias in their random
walk (away from the marked element), they show that their new algorithm performs better on
structured instances than the original Walksat algorithm in [SKC+93]. However, this speedup
to Walksat only holds for instances with relatively few long range dependencies which is not the
case for many industrial instances in software and hardware checking, in which case their new
Walksat algorithm didn’t compare well to DPLL algorithm. In fact for 2-SAT instances their
proposed Walksat algorithm found the satisfying assignment in Θ(N2) steps which was solved by
DPLL algorithm in linear time.

3.4 Quantum improvements

3.4.1 General Overview

It is interesting to note that many algorithms for satisfiability in sections 3.2.4, 3.2.5, 3.2.6,
3.2.7 can be expressed as exponential number of iterations (Imax) of a polynomial time algorithm
to find the satisfying assignment. An expression of Imax was explicitly calculated in [Sch99],
where it was shown that the exponential number of iterations of the random walk boosts the
algorithm to achieve a constant probability of success. As highlighted in section 2.2.2, by ampli-
tude amplification the exponential number of iterations to achieve constant success probability
in the classical algorithm can be quadratically improved. In all the considered algorithms, the
random walk is non-adaptive or no iteration depends on previous iterations of the walk which
allows for a quadratic speedup. Amplitude amplification algorithm converts any classical al-
gorithm with running time t, with success probability p having overall running time O( tp) to
a quantum algorithm which achieves the same constant probability by iterating the algorithm
quadratically fewer times with running time O( t√

p). The observation to employ amplitude am-
plification to the random walk algorithm for k-SAT was first noticed by Ambainis in [Amb04]
and subsequently in [DW05] they highlighted quantum improvements to various random walk
algorithms. The following table summarizes the theoretical quadratic speedup of algorithms for
various SAT algorithms.
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Classical Complexity Quantum Complexity
Algorithm
Schöning’s Algorithm [Sch99] O(2− 2/k)n O(2− 2/k)n/2

3-SAT [Her11],[Rol05] O(1.30704n) O(1.1433n)

k-SAT with no condition on clause length [DW05] O
(

2
n

(
1− 1

ln m
n

+O(ln ln m)

))
O
(

2
n/2

(
1− 1

ln m
n

+O(ln ln m)

))
PPSZ Algorithm [PPZ97] O(2n−nπ2/6k) O(2n/2−nπ2/12k)

Table 3.2: Classical vs. Quantum query complexity for SAT algorithms.

To illustrate the computational algorithmic speedup, we have compiled the table 3.3 where we
have implemented Schöning’s algorithm in [Sch99] using Matlab without the use of any heuristic
to present few results of the classical time taken to find the satisfying assignment. Using this data,
we have calculated the effect of amplitude amplification on the algorithm. Theoretically if there
were Imax iterations with Fmax flips respectively, the overall time taken classically is dependent
on ImaxFmax.

Number of Time Taken/ Overall
iterations iteration time

(2GHz) (2GHz)
Solving 3-SAT
n=20 m=91 1.6283×103 0.0113 s 18.35 s
n=30 m=134 3.7976×104 0.0157 s 10 m
n=45 m=200* 2.4275×103 3.665 s 2.5 h
n=53 m=237* 4.7233×105 0.024 s 3.2 h
n=65 m=297* 1.2234×106 0.0121 s 4.1 h
n=75 m=325* 9.1197×108 2.4080×10−5 s 6.1h

Table 3.3: Summary of classical time (with clock speed=2GHz) required for solving the 3-SAT instances. Starred
instances imply the number of random walk steps Fmax ≥ 3n.

By amplitude amplification the overall time taken quantumly would depend on α
√
ImaxFmax,

where α is the ratio between the classical versus quantum clock speed or effectively the slowdown
in quantum hardware compared to classical architecture. We have considered the possibilities
of a quantum computer being slower than a classical computer by a factor of α = 103 and the
case where the quantum computer would have the same clock speed as a classical computer.
Essentially, since we are computing the quantum time versus the classical time with the same
number of iterations Imax, it is intuitive to see that when Imax ≥ α2, we get a quantum advantage
using amplitude amplification without rebalancing the parameters (Fmax, Imax). In the following
table, we quantify the improvement by quadratically improving the number of iterations in the
random walk algorithm for each instance in table 3.3.
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Number of Time Taken/ Overall Time Taken/ Overall
iterations iteration time iteration time

(2MHz) (2MHz) (2GHz) (2GHz)
Solving 3-SAT
n=20 m=91 32 11.3s 362 s 0.0113 s 0.36 s
n=30 m=134 154 15.7 s 40 m 0.0157 s 2.46 s
n=45 m=200 39 3665 s 40 h 3.665 s 2.3 m
n=53 m=237 542 24 s 3.61 h 0.024 s 13 s
n=65 m=297 0.868×103 12 s 2.9 h 0.0121 s 10.5 s
n=75 m=325 2.3744×104 2.4080×10−2 s 12.4 m 2.4080×10−5 s 0.57 s

Table 3.4: Summary of quantum time (with clock speed=2MHz and 2GHz) for solving the SAT instances.

Experimentally, from the above table we do not gain a significant advantage (with a 103 times
slower quantum computer) for smaller instances of SAT with few variables since the number of
iterations taken to obtain the satisfying assignment is small. This is however immediately offset
once we consider instances of SAT where it requires a very high number of iterations to obtain
a satisfying assignment. Due to time compromises we couldn’t run higher instances of SAT but
it is natural to see that for k-SAT with possibly n = 500, m = 2200 we could obtain speedups
comparing days to minutes (even with a 103 times slower quantum computer) demonstrating the
power of using amplitude amplification to classical algorithms.

3.4.2 Quantum analogues of SAT solvers

In the previous section, we looked at the algorithmic speedup of few algorithms along with
few numerical implementations which seemed to complement our intuition. In this section we
consider the most popular heuristic techniques employed by industry, i.e. Walksat and DPLL
and consider if we could get a quantum improvement. In Walksat, due to the heuristic variable
selection technique in the random walk step, there doesn’t exist a rigorous analysis in terms of the
time scaling of the algorithm. However, it is intuitive to see from the pseudo codes of Schöning’s
algorithm and Walksat that fundamentally Walksat, similar to Schöning’s algorithm, is a random
walk algorithm for finite (Fmax) steps and this random walk is run an exponential Imax number
of times to achieve constant success probability. Moreover, regardless of the heuristic step in
the random walk, none of the iterations of Walksat are dependent on the previous iterations
and hence is non-adaptive. Similar to Schöning’s algorithm, by employing the techniques of
amplitude amplification we could achieve the same results as Imax iterations of Walksat using√
Imax iterations of a simple quantum-Walksat.

Unlike other random walk algorithms DPLL is deterministic in nature where the steps made
by the algorithm proceed in a deterministic manner and are dependent on the steps taken in prior
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iterations. Consequently, as mentioned in section 2.2.2 it can be seen that amplitude amplification
technique does not directly apply to DPLL algorithm. However, instead of amplitude amplifica-
tion there do exist techniques from [CGW00] where they consider a tree-like structured search
algorithm and propose utilizing the structure of such search problems to speedup the searching
quantumly in each step. This could be looked at as a quantum analogue of DPLL algorithm. We
have gone through this idea in detail in section 3.5.3.

We have shown that irrespective of the technique employed by industries to solve satisfiabil-
ity, there exist techniques such as amplitude amplification or nested Grover’s search that bring
about a quantum improvement to incomplete random walk solvers or complete depth-first search
algorithms. Quantum SAT solving heuristics (apart from those designed for annealing type algo-
rithms with special purpose devices) have not been extensively developed, since we do not have
a quantum computer to test the solver. However, any quantum improvement to algorithms used
for SAT should ideally be compared with famously used classical SAT solvers employing DPLL
or Walksat algorithms.

3.4.3 Quantum Heuristics

A potential question that could posed here is could we use quantum adiabatic algorithms
to speedup classical heuristics like simulated annealing and do any better? This scenario was
considered initially by Farhi et al. [FGG+01] where they conceptualized a quantum adiabatic
algorithm, which was fundamentally the quantum analogue of simulated annealing in the classical
framework. The concept involved in quantum adiabatic algorithm is that a Hamiltonian, Hg is
initially prepared for which the ground state is known and can be easily prepared. It is allowed
to slowly transition to another final Hamiltonian Hf which would encode solutions to the desired
problem. Considering the SAT instance, the final Hamiltonian Hf would encode the solution to
an instance of SAT. The quantum adiabatic theorem states that if a quantum computer starts in
a ground state with high probability, it will remain in the ground state at the end of the evolution,
hence would describe the solution to the problem.

In particular the inefficiency in this problem arises in the time scaling of the algorithm. It is
not known clearly how slowly the slow evolution of the Hamiltonian should be and consequently
how the running time of the algorithm scales with the complexity of the problem size. There have
been many results of annealing run on asymptotically large problems analyzing the running time
of such algorithms. In [VDMV01], they argue that the adiabatic approach to solving problems
is similar to local search techniques and proved exponential lower bounds for few minimization
problems. In [Hog03], [HY11] adiabatic approach to solving k-SAT was considered where they
showed that employing heuristic techniques like adiabatic algorithm improves over unstructured
search but doesn’t give a better running time when compared to the classic Walksat algorithm.
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The running time of these adiabatic algorithm still remains exponential and in fact runs slower
for particular instances.

3.5 Practical Flipside

3.5.1 Amplitude Amplification

In section 3.4 we highlighted amplitude amplification could be instrumental in speeding up clas-
sical algorithms and solvers which are considered state-of-the-art by industries. In this section
though, we highlight some obstacles for quantum techniques to provide an actual advantage on
industrial SAT instances. Considering the Walksat algorithm used in [CSL13] SAT competition
2012, the algorithmic parameters (Imax,Fmax, p) were set as (2, 2× 109, 0.48). In any eventuality,
the solver was manually aborted after 5000 seconds of running time. The number of iterations,
Imax which was expected to be an exponential number of iterations to find a satisfying assignment
is set to 2 and in practice the random walk is bounded above by a large number of steps.

Naturally, by amplitude amplification of the number of iterations, the time scaling is not
going to improve due to the chosen parameters for this problem. This choice of parameters for
Walksat is not an exclusive case though, in majority of the problems where Walksat is imple-
mented, the maximum number of restarts (or Imax) for practical problems that are considered
are 100 ([ZRL03], [SKC+93], [ZY13], [Coh11], [Men09],[WLZ08], [BH99], [Ach07], [Fuk04]) with
an arbitrarily high number of random walk steps. Note the similarity between this aspect and
section 3.2.5.1 where we optimized the number of random walk steps for Schöning’s algorithm and
realized that the time scaling of the entire algorithm is better with a larger number of random
walk steps with fewer number of restarts.

From the perspective of theoretical guarantees, setting Fmax (or the number of flips) as
exponential would not guarantee finding a solution, however from the perspective of time com-
plexity it appears to perform better in practice which is a prime focus in SAT competitions or
industries. In [KSS10], they analyze the tradeoff between the probability of success of Walksat
with varying noise parameters. Without consideration of the number of iterations, their results
show that with noise parameter p = 0.56, setting Fmax ≈ 1010 reduces the probability of error
of Walksat to approximately 10−4. Industries are primarily concerned with finding a solution
rather than any success guarantees and over the time people have realized that by incrementing
Fmax and reducing random restarts Imax, the SAT solver finds a satisfying assignment faster.
This notion was demonstrated to be faster in [CSL13], where they demonstrated that rather than
randomly restarting with a new assignment after a small number of steps of the walk, carrying
on with the random walk for a large number of steps proved to be better. The following table
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compiles few results from previous papers where the number of iterations Imax is non trivial to
get a picture of how amplitude amplification doesn’t give us a significant advantage. Note that
in all the instances mentioned below the solutions were always found.

Literals Clauses Imax Fmax Overall Overall Overall
classical quantum quantum
time(2GHz) time (200MHz) time(2GHz)

SAT solver
Walksat [SKC+93] 600 2550 100 241651 35 s 28 s 2.8 s
Walksat[SKC+93] 2000 8480 100 23×106 3225 s 2530 s 253 s
BGWalksat[ZRL03] 32109 150027 100 2.2×107 358.5 s 290 s 29 s
BGWalksat[ZRL03] 39598 19477 100 23×107 334 s 262 s 26.2 s
Beijing Competition [Coh11] 2100 113729 100 15×105 1449 s 1140 s 114 s
Beijing Competition [Coh11] 2250 123329 100 15×105 3137 s 2470 s 247 s
Walksat43 [Fuk04] 459 4598 100 3×105 7.62 s 6 s 0.6 s
Walksat43 [Fuk04] 19500 103887 100 3×105 1456 s 1140 s 100 s

Table 3.5: Numerical evidence of Amplitude amplification in sample instances.

We also present results from [Spe93], where Spears analyzes the GSAT algorithm (Walksat
algorithm described 3.4 with p = 0) proposed in [SKC+93] and provides exact running time
analysis for various hard SAT instances. 1

Flips Fmax Imax Classical Quantum time / Overall Quantum time/ Overall
time iterations time iteration time

(2GHz) (200MHz) (200MHz) (2GHz) (2GHz)
Solving 3-SAT
n=100, m=425 21250 500 425 0.1 m 2.8235×10−3s 23 s 2.8235×10−4 s 2.3 s
n=200, m=825 497000 2000 2485 2.8 m 3.3803×10−3 s 4.4 m 3.3803×10−4 s 0.44 m
n=300, m=1275 1390800 6000 2318 12 m 5.1769×10−3 s 19.3 m 5.1769×10−4 s 1.9 m
n=400, m=1700 3527200 8000 4409 34 m 5.7836×10−3 s 39.2 m 5.7836×10−4 s 3.9 m
n=500, m=2125 9958000 10000 9958 96m 5.7843×10−3 s 78.4 m 5.7843×10−4 s 7.8 m

Table 3.6: Summary of quantum time (with clock speed=200MHz and 2GHz) to solve hard SAT instances.

From the above tables, it can be inferred that, in the quantum paradigm, irrespective of the
number of flips, optimistically by quadratically improving the number of iterations, we get an
improvement of maximum 10 times compared to the classical setting. This speedup would be
offset if we considered a quantum computer to be slower than 10 times than a classical computer,
which is highly likely.

An interesting idea which could warrant some quantum improvement lies in rebalancing the
parameters for the Walksat algorithm. In the above instance, we have simply considered the

1 Since the number of iterations for the hard instances considered is not mentioned in [SKC+93], Imax is set as
10*(flips/Fmax) iterations.

33



CHAPTER 3. SATISFIABILITY

Walksat algorithm considered in SAT competitions or practical applications and applied ampli-
tude amplification to Imax keeping Fmax a constant. From various successful implementations it
is well known that having an exponential number of flips and finite number of iterations outper-
forms the original Walksat algorithm which has exponential number of iterations of finite number
of walk steps to attain constant success probability. The relationship between Imax and Fmax
seems intricate in reality and there has not been much study in understanding how the parameters
would play a role in the overall success probability of the algorithm. Although it seems unlikely
that increasing the number of iterations would interest the industries, employing quantum ampli-
tude amplification to an increased number of iterations with a fewer walk steps, might compare
better than the classical Walksat algorithm considered in reality. Due to limited code access and
time constrains, we have considered this idea for Schöning’s algorithm implemented on Matlab.

Instance Imax Fmax Total classical Time required for Total quantum
time (10 GHz) Random walk time (10 GHz)

20/91

1739 60 22 s 0.0127 s 0.42 s
463 100 6.91 s 0.0147 s 0.25 s
253 140 5.36 s 0.0212 s 0.27 s
164 180 4.63 s 0.0282 s 0.28 s
58 300 2.72 s 0.0469 s 0.24 s
24 500 1.854 s 0.0771 s 0.29 s
12 720 1.154 s 0.09 s 0.24 s
10 1000 1.22 s 0.12 s 0.29 s

50/218

414 2000 131 s 0.3164 s 5.0 s
122 3500 85 s 0.69 s 5.9 s
75 5000 62 s 0.8267 s 5.57 s
19 10000 23.6 s 1.296 s 4.3 s
3 50000 15.69 s 5.23 s 7.14 s
2 100000 14.3 s 7.15 s 7.61 s
1 800000 13.2 s 13.2 s 10.36 s

75/326

600 4000 447 s 0.745 s 14.3 s
102 8000 187 s 1.833 s 14.5 s
22 15000 60 s 2.73 s 9.89 s
8 50000 38 s 7.6 s 16.8 s
2 100000 39 s 19.5 s 21.6 s
1 500000 36 s 36 s 28.2 s

Table 3.7: Rebalancing parameters in the implementation of Schöning’s algorithm

In the table above, the quantum time for each instance was computed after applying amplitude
amplification to the number of iterations as discussed in section 3.4. It can be seen that there
is a trade-off between the number of iterations and the number of flips while analyzing the
quantum time required for all the instances. In each instance, there exists a set of parameters
(Imax, Fmax) which improves upon the best classical time and amplitude amplification applied
directly to Schöning’s algorithm without increasing the number of walk steps. For example,
for the instance n=50, m=218, classically one would choose Imax=1 and Fmax=800000, and
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clearly there is no quantum speed-up in this case. However, the rebalanced parameter choice
of Imax=18 and Fmax=10000, gives the optimal quantum time (assuming the same clockspeeds)
as well as improves upon the best classical time. In the same spirit, it would be interesting to
consider rebalancing such parameters on actual SAT-solvers which are employed by industries for
instances of practical relevance. We have listed this as one of the interesting directions for future
research.

3.5.2 Quantum random walk

Another perspective that could be considered here is, could we quantumly improve the random
walk itself? Could we use the result of [Sze04] for random walks in SAT to improve the number of
flips and consequently time to find a satisfying assignment? The first question was considered by
Hoyer in [Hoy08] where he analyzes the effect of quantum version of Walksat on SAT instances.
It was seen earlier in section 3.2.4 that the random walk doesn’t respect the structure in the
instance, since it walks randomly on a hypergraph searching for a marked element. This was
explicitly demonstrated for 2-SAT instances where the quantum walk did not respect the structure
of the 2-SAT problem to yield any algorithmic advantage. The scenario does not improve when
considering arbitrary k-SAT, where the quantum version of Walksat is not expected to outperform
the classical random walk. Walksat algorithm is considered powerful only when the SAT instances
are unstructured, which is often not the case in industrial applications involving instances with
intricate internal structure. Hence a quantum speedup to the random walk will necessarily not
have considerable impact when considering industrial problems with structured instances.

However, even in the unstructured instances, the quantum speedup to the random walk
isn’t a straightforward generalization of the result of Szegedy’s spectral theorem [Sze04]. The
complication primarily arises because the random walks in Walksat are on directed graphs because
of the presence of sinks in the hypergraph, which represents the unknown satisfying assignment
of the SAT instance. For directed graphs, quantizing a random walk is non-trivial since not all
SAT instances need to be represented by a Eulerian graph 2. The quantum walk operator for a
Eulerian graph can be represented by a unitary map, which is a square matrix to reassign the n
incoming amplitudes to n outgoing amplitudes. In undirected discrete-time walks, depending on
the stochastic matrix there is an obvious option (to return back to the edge in the previous step)
to not break the symmetry in the walk, however this option doesn’t exist in directed quantum
walks. In the eventuality of the graphs not being Eulerian (which is common in the hypergraphs
of a general k-SAT instance) alternatives were proposed such as linear isometries or non unitary
operators for the walk operator and interspersing the walk with measurements to define a "partial
quantum walk" in [Mon05].

2A graph is Eulerian if the number of edges incident and reflected for every vertex on a graph is the same.
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Linear non-unitary walk operators were employed in [Hoy08] for algorithms to solve SAT
and it was seen to not result in any significant improvement. Considering 2-SAT explicitly, it was
shown that the average probability of any directed quantum walk converging to a solution was
equivalent to the probability of a classical random walk with a Markov chain being simulated.
Montanaro in [Mon05] analyzed directed quantum walks, where it was shown that discrete-time
quantum walk on a directed graph can be defined if and only if the graph is reversible 3. The
proof of this reversibility criterion relies on using the cycles through the graph instead of the
coin space in undirected walks. This is however not useful in the hypergraph for k-SAT where
the objective is to understand the nature of the graph globally. Interspersing the walk with
measurements didn’t lead to a full quantum speedup because measurements maintain coherence
among the nodes in a cycle and not amongst the cycles themselves, hence resembling a partial
quantum walk in the reversible regions of the graph.

Employing non-linear isometries and interspersing measurements in random walks are unfor-
tunately not applicable and do not lead to any speedup for the random walk algorithms of k-SAT.
The primary reason is the irreversibility in the directed hypergraph for k-SAT instances. By re-
moving the directedness property from the graphs, it results in an undirected quantum walk for
which a quadratic speedup in hitting time compared to classical walk has been discussed in section
2.3. The above arguments lead us to the following conjectures, for unstructured SAT instances
solved using Walksat by industries, amplitude amplification does not propose any significant ad-
vantage as discussed in section 3.5.1. Improving the random walk can immensely improve the
running time of SAT instances, however since the instances are represented by directed graphs,
until we have a well defined notion of a quantum speedup for directed walks that we are able to
exploit, we cannot improve the running time for satisfiability.

3.5.3 Complete SAT solver

Most of the work in literature involved with SAT is on randomized/probabilistic procedures
to solve SAT. In this section we shall highlight an algorithm which can be used to solve SAT
completely. This algorithm was first highlighted by Cerf et al. [CGW00] where they considered
the problem of structured quantum search and provide a quantum speedup which performs better
than quantum unstructured search and classical structured search. It is intuitive to believe that
classical structured algorithm is faster in searching for a marked element than an unstructured al-
gorithm since it avoids searching in the spaces where the partial assignments aren’t satisfied. The
first mention of a quantum speedup to classical structured searching was provided in [CGW00],
which was called the nested quantum search algorithm since it involved a quantum speedup to
the levels of the tree in the structured search algorithm.

3A graph is reversible if given any two vertices in the graph (i, j), there is path from i to j and vice versa.
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Consider a search tree similar to depth first search, which contains the SAT instance at
the top and slowly branches out to every literal at the base of the tree. The idea in [CGW00] is
to prepare a superposition of partial solutions at level i, where the assigned variables are called
primary variables. With the knowledge of the partial assignments (of primary variables) at level i,
search exhaustively for the secondary variables that satisfy the remaining literals below the level
i. Using the structure in the problem and partial assignments of primary variables, searching
the entire space can be avoided. The choice of i is important because if i is near the base of the
tree it would imply creating a superposition of partial solutions (constituting primary variables)
of almost the entire space. Although creating such a huge superposition is undesirable, such a
superposition of primary variable assignments is a better predictor for searching the secondary
variables. Choosing i near the root of the tree wouldn’t be useful as well since a majority of
the partial assignments near the root would satisfy their respective instances not allowing the
algorithm to discriminate between solutions and non-solutions.

Considering the problem of assigning b values to n variables, naively there are bn possible
assignments through which we would need to sample to obtain the correct assignment. Using
quantum search this complexity can be improved by sampling O(bn/2) possibilities to find the
required assignment. It was shown in [CGW00], by considering structured problems (represented
by depth-first search) the same problem could be solved in O(bαn) queries where α is a constant
dependent on the level of nesting i in the algorithm.

Skeleton Algorithm ([CGW00])
• Construct a superposition of primary solutions at level i with equal amplitude similar to unstructured search.
• Perform a quantum search on each of the descendants of the partial solutions constructed in the previous

step. The outcome of this step involves a superposition of assignments where few assignments have their
amplitudes amplified.

• Using the above two steps as a oracle, repeat this oracle a finite number of times until the amplitude of the
satisfying assignment is maximum before measurement.

Figure 3.8: Structured Grover search algorithm.

It is also interesting to note that the above algorithm improves only the search steps in the
classical structured searching algorithm and does not consider other factors involving the clauses
and the literals of the SAT instance. It was shown that optimal nesting level for 3-SAT is 0.682
and hence the complexity of 3-SAT with n variables was O(1.2668n) which was faster than the
O(1.33n) complexity of random-walk algorithm by Schöning [Sch99]. However, it is worse than
amplitude amplification applied to Schöning’s algorithm which has the complexity of O(1.155n).
A probable reason for this slower algorithm is because CNF expressions are sensitive to the values
of all the variables they contain and the assignments they are assigned. An important advantage
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employing this nested Grover search is its completeness, since if an instance is unsatisfiable then
the algorithm would return that the instance doesn’t have a satisfying assignment with high
probability.

In order to fairly compare this quantum nested search algorithm for SAT with DPLL-based
SAT solvers we need to employ heuristics that are applied in standard DPLL algorithms as men-
tioned in section 3.2.3. In the first step and second step, while preparing a superposition for the
primary variables and searching exhaustively for secondary variables, we could employ techniques
such as backtracking, clause learning, pure literals, unit propagation, to make the algorithm more
efficient and faster. Note that there is no need to quantize each of the heuristic techniques in
order for them to be incorporated into the algorithm since effectively we are considering a clas-
sical algorithm and only the search steps are quantumly improved. Hence, using the power of
quantum speedup coupled with the classical heuristic techniques employed in DPLL solvers, we
could design a faster quantum SAT solver.

The drawback however is the complexity of DPLL algorithms are very complex to analyze
and there doesn’t exist any rigorous bounds on the running time of the algorithm, which could
be attributed to various heuristics employed in the algorithm. From an algorithmic perspective
in [ABM04], [AHI05] they showed lower bounds for recursion tree-like resolution searches proving
exponential lower bounds for special cases of DPLL algorithm. Proving a general exponential
lower bound for DPLL algorithm would be equivalent to the claim P 6= NP. Participants of SAT
competitions, design heuristic improvements to existing algorithms and verify their algorithm on
the hard instances to check if the running time is indeed faster. However, we do not have large
scale quantum computers, and thus are not able to experimentally quantify the time scaling of the
quantum version of the algorithm with heuristic improvements. The algorithm in theory should
perform faster than the classical DPLL solver but we cannot provide exact complexities or run
times to prove it.

3.6 Summary

In this chapter we gave an introduction to hardness of SAT in section 4.2 by going over the
complexity of SAT and defining structure in instances which is integral for solving hard SAT
instances. We went through few classical algorithms in section 3.2 which are often implemented in
famous SAT solvers discussed in section 3.3. We showed in section 3.5.1 that quantum amplitude
amplification doesn’t necessarily guarantee speedups in many problems which are considered
often in practical problems or SAT competitions. Speeding up the quantum walk in random
walk algorithms would have been interesting since majority of the incomplete classical algorithms
depend on random walks, however a well defined notion of quantum speedup in directed walk seems
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a hard problem. Finally in section 3.4 we commented on nested Grover’s search algorithm which
could be thought of as a quantum analogue of DPLL algorithm. Although this algorithm was
faster than classical random walk algorithms, it didn’t compete well with amplitude amplification
applied to these random walk algorithms and hence we proposed applying heuristic techniques
in order to fairly compare this quantum analogue with actual DPLL algorithm. Since this is a
complete solver without any algorithmic analysis, implementing the algorithm is the only way to
compute the time scaling of this algorithm. This quantification seems a hard problem without
access to a large scale quantum computer.
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Chapter 4

Derivative Free Optimization

This chapter deals with optimization of deterministic functions with the assumptions that the
derivatives of the functions are not available and the output of functional values are provided by
a "black-box" whose inner working is completely unknown. The framework of the optimization
problem considered is a constrained minimization or maximization with the following structure:

min f(x)
subject to x ∈ ∆

(4.1)

where f : Rn → R is the objective function to be optimized with the vector x defining the n
design parameters bounded by ∆ = {x ∈ Rn|Lb ≤ x ≤ Ub} where Lb, Ub are the lower and upper
bounds for the design parameters. The assumptions made about the derivatives and the complex
function evaluations are what makes this optimization interesting, since otherwise to find the
optimum of the optimization problem, the gradients are computed which characterizes the critical
points of the function. However, in most of these engineering problems, the objective function
depends on the output of a numerical simulation of a physical process. These simulations are
expensive to evaluate because they involve numerically solving large systems of partial differential
equations governing the physical system. Hence, there is a need to define gradient-free methods
which do not require the explicit calculations of gradients of the objective function f(x) and
instead optimize using only the values obtained by evaluating the objective function. Since the
algorithm proceeds by computations involving function evaluations, the overall running time of
such algorithms is dominated by the time taken per function evaluation by simulation. In this
chapter, we are primarily concerned with optimizing the number of function calls made to the
black-box/simulator using quantum techniques in order to reduce the overall running time of the
algorithm.
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4.1 Optimization techniques

The algorithms often employed to solve the optimization problem can be classified broadly into
either gradient based techniques which require the use of derivatives of the objective function and
derivative free optimization which do not require the use of derivatives. The preferred method
for optimizing the problem depends on the engineering application. In section 4.1.1 we have
mentioned a few gradient based techniques and in section 4.1.2 we present few prominent deriva-
tive free algorithms and finally state the limitations and advantages of derivative free methods
compared to gradient based algorithms in section 4.1.9.

4.1.1 Gradient based techniques

Gradient based techniques are algorithms that use the derivatives of the objective function
to solve the optimization problem. If the gradients of the objective function with respect to all
the variables are known, these techniques are known to be more efficient and converge faster
compared to gradient-free techniques. Few well known gradient based optimization techniques
often applied to problems include gradient descent, conjugate gradient, quasi-Newton method and
sequential quadratic programming (SQP) [BT95] which is used to handle non-linear constraints
in these problems. Often in engineering problems which employ these techniques, alternatives
are used to compute the gradients, such as adjoint-based methods or numerical finite differences
techniques, to reduce the computational effort for computing gradients. The central idea behind
numerical finite differences is the following equation

∂f

∂xi
= lim

δi→0

f(xi + δxi)− f(xi − δxi)
2δxi

, i = 1, . . . , n (4.2)

used to compute the partial derivative of a function with respect to all variables, where n is the
number of variables and δxi is the perturbation size. The drawback of the numerical finite differ-
ences technique is that it requires more (approximately twice) function evaluations to compute
the gradients of the objective function with respective to all variables. Since, function evalua-
tion is considered expensive, even if derivatives are available in many engineering problems, this
technique is generally not employed when the number of variables in the optimization problem
are high. An efficient alternative is the adjoint-based technique, which involves computing the
Jacobian matrix and Lagrange multipliers for the objective function. Details of this technique
have been omitted here; an interested reader is referred to [Ise09], [Sar06] for this method of
computing gradients. The drawback in computing gradients is that it requires information about
the black-box, such as the gradients of the objective function with respect to other constraint
variables. Hence this technique of computing gradients with respect to control variables for opti-
mization is useful with complete knowledge of the objective function. This is often not the case
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in engineering problems where simulations (or black-boxes) often rely on legacy or proprietary
codes which are not easily accessible.

4.1.2 Derivative free techniques

Derivative free techniques, unlike the gradient-based techniques, do not require the explicit
computations of gradients and use just the function evaluations from the black-box. There have
been many algorithms which have been described in the literature for derivative free techniques
since its conceptualization in 1960. These algorithms can be sub-categorized into determinis-
tic techniques such as the Nelder-Mead method, the generalized pattern searching method and
heuristic algorithms such as genetic algorithms, tabu search, particle swarm optimization, etc.
In this section, we give a brief introduction to a few of the prominent techniques. There have
been several papers [RS12],[MW09] comparing derivative-free algorithms for optimization prob-
lems that arise in engineering applications, the most prominent one being [FRK+08] where six
derivative free algorithms have been compared for the groundwater community problem. An
interested reader is also referred to the first book [CSV09] dedicated to the subject of derivative
free optimization by Conn, Scheinberg and Vicente.

4.1.3 Hooke-Jeeves Algorithm

The Hooke-Jeeves direct search algorithm [HJ61] was the first direct search algorithm proposed
in 1961 for optimization problems by employing a simple search strategy to find the optimum.
The algorithm initially chooses an initial point and evaluates the objective function. The search
phase is based on a two moves, exploratory moves and pattern moves. The algorithm begins with
the exploratory moves, searching in all directions with a predefined step length to check if the
objective function takes a lower value. If such a lower evaluation occurs, the algorithm moves
to that point. If no decrease is found, then the step size is reduced and the exploratory moves
step is repeated. Pattern moves occur if a decrease occurred during the exploratory moves step,
in which case the algorithm goes in the same direction as the previous decrease step with the
same step size to check if the new point has a functional value lesser than the current iterate. If
not, then the algorithm reverts back to the exploratory moves step. The algorithm stops after a
predefined number of steps or if the predefined tolerance level for the step size is achieved.

The Hooke-Jeeves algorithm is inherently sequential in nature where the current search
direction and step size depends entirely on the previous iterate. If the exploratory move succeeds,
the pattern moves step is performed and if pattern move fails the exploratory moves step is
carried out and correspondingly the step size changes. It can also be noticed that the algorithm
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doesn’t involve gradient computations and depends only on function evaluations from the black-
box to converge to the optimum point. This technique of robust searching for the optimum is
advantageous and has proven to be significantly fast. However, the disadvantage of this algorithm
is that it doesn’t parallelize easily and hence this algorithm is preferred if the entire optimization
algorithm is performed on a single core and a cluster of systems is not at our disposal.

4.1.4 Nelder-Mead Algorithm

The Nelder-Mead algorithm [NM65] was proposed in 1965 and is still widely used in various
libraries of functions for software. The algorithm begins by defining a set of initial points which
form a simplex (a polytope covering all the chosen points). In each successive iteration the
algorithm evaluates the function at all the points in the simplex and determines the worst corner
point. Once this point is discovered, the algorithm replaces this worst point by another vertex
creating a new simplex through a set of predefined operations in such a way that the new simplex
would optimistically give optimized functional values. The operations that are employed to find
this new point are reflection about the centroid, expansion, inside contraction, outside contraction
or the shrink step (wherein all the points of the simplex are replaced by a new polytope). All these
steps are shown in figure 4.1. To prevent stagnation in the algorithm, Kelley in [Kel99] proposed
to enforce a sufficient decrease condition determined by an approximation of the gradient. If the
algorithm stagnates, it restarts from a completely different simplex. A drawback of the Nelder-
Mead algorithm is the intractability as search dimension n increases. In fact it was shown [SS99]
that for moderate search spaces with dimensions n ≥ 10 the algorithm becomes inefficient and
hence is not preferred when the search space is big.

Figure 4.1: [CSV09] Illustration of a simplex drawn around the points y0, y1, y2 with yic, yoc, yr, ye representing
the inside contraction, outside contraction, reflection and expansion points of the simplex about the centroid yc.

The above diagram represents the possible set of operations which could be repeated in every
step of the Nelder-Mead algorithm to determine the new point of the simplex once the worst
point is found. Keeping the figure in mind, we describe the Nelder-Mead algorithm below.
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1. Initialization:
Define: Simplex of n+ 1 vertices X0 = {x0

0, x
1
0, x

2
0, . . . x

n
0 }.

Define: 0 < γs < 1, −1 < δic < 0 < δoc < δr < δe

where δr is reflection parameter, δe is expansion parameter, δoc is outside contraction parameter, δic is inside
contraction parameter.

For k=0,1, . . . ,n
2. Evaluation Step: Evaluate f on all the points in X and arrange the points in X such that

f(x0) ≤ f(x1) ≤ f(x2) ≤ . . . ≤ f(xn)

3. Reflection Step: Reflect xn about the centroid(xc) of the remaining n points in X. Evaluate the f at xref

xref = xc + δr(xc − xn)

If f(x0) ≤ f(xref ) ≤ f(xn−1) replace xn by xref and generate the new simplex Xk+1

4. Expansion Step:

• If f(xref ) < f(x0) evaluate f(xexp)

xexp = xc + δe(xc − xn)

If f(xexp) ≤ f(xref ) replace xn by xexp and generate the new simplex Xk+1.
• Else Replace xn by xref and generate Xk+1.

5. Contraction Step:
If f(xref ) ≥ f(xn−1), perform either of the following contractions:

(a) Outside Contraction: If f(xref ) < f(xn), evaluate f(xoc)

xoc = xc + δoc(xc − xn)

If f(xoc) ≤ f(xref ), replace xn by xoc and generate Xk+1. Else Perform Shrink Step
(b) Inside Contraction: If f(xref ) ≥ f(xn), evaluate f(xic)

xic = xc + δic(xc − xn)

If f(xic) < f(xn), replace xn by xic and generate Xk+1. Else Perform Shrink Step

6. Shrink Step Evaluate f at the points xnew

xnewi = x0 + γs(xi − x0), i = 1, . . . n

and replace the points in the original simplex Xk by these new points xnewi to generate Xk+1

End Loop
Output: Evaluate the points on simplex Xn and output the point, where the function is minimized.

Figure 4.2: Nelder-Mead algorithm
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4.1.5 Generalized Pattern Searching algorithm

Torczan, in 1997, defined and analyzed the Generalized pattern search [Tor97] algorithm for
derivative free optimization problems. This pattern search was the first algorithm to be proposed
with a rigorous proof of convergence to the optimal solution. The global convergence of these
pattern search algorithms for constrained as well as unconstrained optimization was established
in [Tor97], and the local convergence properties of these pattern search algorithms was shown in
[DLT03]. The convergence analysis of these proofs are heavily reliant on the theory of positive
bases and has been omitted in this thesis, an interested reader is referred to the respective papers.

The primary components of the algorithm can be divided into an optional search step and
a required poll step. The search step, involves evaluating finite number of points on a mesh Mk

and searching for a point at which the function f(x) obtains its minimum. The search step could
be thought of as a step to guide the algorithm in a direction where the optimum could be found,
effectively increasing the efficiency of the algorithm. Since, the convergence of the algorithm is
completely independent of this step, the user has the freedom in speeding up this step to improve
the time taken for function evaluations. The poll step is invoked in the case that the search
step doesn’t find a point in the mesh Mk with functional value lesser than the present iterate.
Before explaining the poll step of pattern search algorithm, we need an understanding of positive
spanning basis.

4.1.5.1 Positive Spanning Basis

The notion of a positive spanning set, introduced in [Dav54] by C.Davis, is an integral part
of derivative free optimization. The motivation behind using this basis set is, given a non-zero
vector ~v ∈ Rn, there is at least one vector ~d in the positive spanning basis which forms an acute
angle with ~v. In optimization this translates to the following, if ~v is the negative gradient of
a continuously differentiable function i.e., ~v = −Of(x), any vector ~d that forms an acute angle
with −Of(x) is a direction of descent. This is interesting since by evaluating a finite number
of directions it can be determined if a point is a local mesh optimum, instead of considering all
possible directions.

Definition 6. A positive spanning set [CSV09] is a set of vectors whose linear combination spans
Rn with non-negative integer coefficients. Positive span of a set of vectors [v1, . . . , vr] in Rn is
the convex cone formed by all the positive linear combinations of [v1, . . . , vr]. Hence the span of
such a positive basis could be written as

{v ∈ Rn : v = α1v1 + α2v2 + . . .+ αrvr|αi ≥ 0}. (4.3)
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Definition 7. [CSV09] A descent direction of a continuously differentiable function f at a given
point x ∈ dom(f) is a direction ~d where there exists α such that f(x+ε~d) < f(x) for all ε ∈ [0, α).

Considering the case of 2 variables that is, R2 the following figure shows the possible combi-
nations for a positive spanning bases.

Figure 4.3: [CSV09] Illustration of positive bases for R2: The leftmost figure (i) represents the maximal positive
basis constructed from the basis vectors (bi) and their negative counterparts (−bi). The middle figure (ii) represents
the minimal positive basis which can be constructed by the basis vectors and their sum. The rightmost figure (iii)
could be obtained by adding another vector to the positive basis resulting in a positive spanning set which is not
a basis.

We will come back to this figure and show how this is useful in optimization later. A few
simple properties of positive spanning basis are established in the following theorem, which will
be important in the poll step of the GPS algorithm.

Theorem 8. Given that [v1, ..vr] spans Rn positively, with vi 6= 0 for all i ∈ {1, 2, . . . r}, it follows
that

1. [v2, ..vr] spans Rn (or it contains a subset of r − 1 vectors spanning Rn).

2. There exists scalar quantities α1, α2, . . . αr with αi > 0, i ∈ {1, 2, . . . , r} such that
∑
i αivi =

0 .

3. Given a non zero vector x ∈ Rn, there always exists an index i ∈ {1, 2, . . . , r} such that
xT v > 0 .

Proof. 1. Since it is given [v1, . . . , vr] spans Rn positively, it follows that a vector −v1 can be
written in terms of the positive basis with positive coefficients as−v1 =

∑
i βivi. Subtracting

β1v1 from both, −(1 + β1)v1 =
∑
i 6=1 βivi. Since β1 ≥ 0, dividing the entire expression by

−(1 + β1), we obtain

v1 = −
∑
i 6=1

βivi
1 + β1

. (4.4)
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This shows that v1 is in the span of all the other vectors [v2, . . . , vr] and hence this subset
spans Rn. It also follows that for every i ∈ {1, 2, . . . r}, the vector −vi can be written in
terms of the remaining r − 1 vectors in the positive basis and hence there always exists a
subset of r − 1 vectors spanning Rn.

2. In order to prove this statement, we employ the result 1, or given [v1, ..vr] spans Rn posi-
tively, for all i we can construct −vi as a span of the other r − 1 vectors. It follows that

vk +
∑
i 6=k

βivi
1 + βk

= 0, k = 1, . . . , r. (4.5)

By adding all these equations,1 +
∑
i 6=1

βi
1 + βi

 v1 +

1 +
∑
i 6=2

βi
1 + βi

 v2 + . . .+

1 +
∑
i 6=r

βi
1 + βi

 vr = 0. (4.6)

Since βi ≥ 0, setting αj = 1 +
∑
i 6=j

βi
1+βi , statement 2 follows.

3. Let us consider a non-zero vector x ∈ Rn, since [v1, . . . , vr] spans Rn positively,

x = α1v1 + α2v2 + . . . αnvn

x⊥x = (α1v1 + α2v2 + . . . αnvn)⊥x
= α1v

⊥
1 x+ α2v

⊥
2 x+ . . . αnv

⊥
n x

(4.7)

where αi ≥ 0 for all i. Since x⊥x > 0, it implies that there exists i such that αiv⊥i x > 0.
Hence at least one of the scalars x⊥v has to be positive.

Property (iii) from Theorem 8 is at the heart of convergence of direct search methods in
derivative free optimization. Given a continuous smooth function which is differential at a point
x (Of(x) 6= 0), there always exists a vector ~d which is part of a positive spanning set such that

−Of(x)⊥~d > 0. (4.8)

Put simply, a positive spanning set contains at least one direction of descent. Any vector is
guaranteed to have a positive projection (at a non-stationary point in the domain of the function)
along at least one of the vectors in the set of positive bases. As long as the current iterate is
not a local optimum point, one of the directions of future polling from the set of points Dk will
be a direction of descent for the objective function. Figure 4.4 explicitly shows how there always
exists a direction of descent for any vector ~v, given a positive basis in R2 as shown in figure 4.3.

47



CHAPTER 4. DERIVATIVE FREE OPTIMIZATION

Figure 4.4: [CSV09] Given a positive spanning set in figure 4.3 for R2 and a vector ~v = −Of(x), there always
exists at least one element in the set ~d such that 〈~v, ~d〉 > 0.

In [Dav54], it was proven that if the linearly independent vectors [v1, . . . , vr] span Rn positively,
then the number of elements in a positive basis cannot be more than 2n and the minimal number of
elements for a positive basis must be n+1. The maximal positive basis is obtained by determining
the basis for Rn along with the negative counterparts of these respective basis vectors and the
minimal positive basis can be constructed by the basis vectors of Rn along with the vector formed
by the negative sum of all the basis vectors. Quantifying the number of elements in the positive
bases is important since it places a bound on the finite number of directions that need to checked
before deciding if a point is a local mesh optimizer.

Returning to the algorithm, we recall that if the search step fails to find a descent among
the points in the mesh Mk, the poll step is evoked. In the poll step, the algorithm first creates a
positive spanning basis at the present iterate. It evaluates the function on the set of directions
defined by the positive spanning basis in order to evaluate if there exists a point with lower
functional value on the poll set. If no such point exists, the present iterate under consideration
is the local mesh optimizer. If the tolerance criterion is however not met, then the step size is
decreased and the search and poll step repeat. We shall now present the basic framework of the
generalized pattern searching algorithm,

1. Initialization:
Define x0 ∈ Rn (such that f(x0) is finite), tolerance value ε, parameters τ ≥ 1 and 0 ≤ γ < 1
Define M0 to be the mesh on Rn and let the step size be α0 > 0.
Define D to be a matrix whose columns are the positive bases or spanning set in Rn, in general we could
define the mesh

Mk = {xk + αkDz|z ∈ Znd}

where nd is the number of columns in the matrix D and αk is the mesh size parameter.
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For k=0, 1, 2, . . . , kmax
2. Search Step:

Search on a trial set of points on the mesh Mk and if an improved point is found i.e. f(xi) < f(xk), then
the SEARCH is successful. Goto Update Parameters. If the Search fails, goto Poll Step.

3. Poll Step:
If the Search step fails, choose a set of positive spanning directions and form the poll set Mpoll as the

set of points adjacent to xk in the corresponding directions. This can be formalized by defining a positive
spanning matrix Dk whose columns consist of basis vectors of the positive spanning set. The mesh can be
written as

Mpoll = {xk + αkd|d ∈ Dk} ⊂Mk.

Evaluating f(xj) on Mpoll if an improved point xpoll ∈Mpoll is found, i.e. f(xpoll) < f(xk), then Poll Step
is successful, goto Update Parameters. If for all points on the mesh xpoll ∈ Mpoll, we cannot find a point
which evaluates lesser than the present iterate, f(xpoll) > f(xk), then the Poll Step is unsuccessful and goto
Update Parameters .

4. Update Parameters:

• If the search step is successful, then increment k, update xk+1 ← xi, αk+1 = ταk and Perform Search
Step again.

• If the search step is unsuccessful and poll step performed is successful, then increment k, αk+1 = ταk,
and perform Search Step again.

• If the Poll Step is not successful then xk is the local mesh optimizer. If the tolerance condition is
satisfied, STOP and output xk, if not increment k refine the mesh, αk+1 = γαk, and restart Search
Step from this point.

End Loop

Figure 4.5: Generalized pattern searching algorithm.

In figure 4.6, the polling step in the GPS algorithm is demonstrated, giving us a picture of
how the algorithm progresses with each iteration. The algorithm begins by searching on a mesh
until it reaches a point where the objective value cannot be lowered further. The polling step
begins thereafter by evaluating the objective function at points in the poll directions in each
iteration. Initially the step size for polling is large, but as the algorithm proceeds the step size
contracts in order to reach the local optima and the algorithm stops when the step size is below
the pre-defined tolerance level.

The poll step in the GPS algorithm 4.5 is an example of complete polling. Complete polling
refers to evaluating all the points on the poll bases before deciding the point to which the present
iterate should move to, whereas the other variant is opportunistic polling where the present
iterate moves to the first point on bases where the function takes a value lesser than the present
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Figure 4.6: [Ise13] Blue lines represent the contours of the objective function and the red star denotes the local
optima, with the crosses representing how the algorithm moves in each step. The poll points representing the
positive basis are the corners of the cross centered by the red circle which is the poll center.

iterate. Complete polling has been shown to be more reliable and robust, and is often preferred
in algorithms which have an access to a cluster of processors since the points can be individually
evaluated on parallel machines.

4.1.6 Mesh Adaptive Direct Search

Mesh adaptive direct search (MADS) proposed in [ADJ06] is a modified version of the gener-
alized pattern searching algorithm. In GPS, the algorithm begins with an initial point, evaluates
the function on finite number of points on the mesh around the chosen point, to check if the
value of the function decreases. If the search step fails, the algorithm evaluates in the direction
of the positive spanning basis. If a lower evaluation is encountered the algorithm moves to the
new point, evaluates the poll basis at this point and carries on. If a point with lower functional
value is not found, then the search radius is reduced and algorithm begins with the search step.
If the tolerance level is satisfied then the algorithm stops. However in MADS, there are two pa-
rameters, the poll size parameter which restricts the points from which the poll basis is selected
and the mesh size parameter which defines the grid within the region defined by the poll size
parameter. Both these parameters are equal for the GPS algorithm and represented by the mesh
size parameter αk. Hence the number of positive spanning sets that can be formed by subsets of
the positive spanning matrix D is constant in all iterations of GPS. MADS incorporates dynamic
reordering in the poll step to consider a variable set of poll directions where the poll points of
successive iterations are dependent on the poll directions of the previous successful iterations.
The advantage is that the union of all poll directions over all iterations is dense in Rn, meaning
that potentially every direction is explored eventually at the end of the algorithm. This dynamic
reordering provides a more robust convergence to this pattern searching algorithm compared to
GPS algorithm.
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Figure 4.7: [Ise13] The poll points representing the positive basis are the edges of the cross around the red circle
which is the poll center. Fig (i) is the MADS at iteration k with poll stencil size ∆p

k=8 and mesh size ∆m
k =4,

successively as the iterations carry on the mesh size is halved and poll stencil size is reduced by
√

2 in figure (ii)
at iteration k + 2 has poll stencil size ∆p

k=5.67 and mesh size ∆m
k =2, and in figure (iii) at iteration k + 2 the poll

stencil size is ∆p
k=4 and mesh size ∆m

k =1.

In figure 4.6, since the orientation of the stencil is fixed it is called the generalized pattern
searching algorithm. However the variation in MADS as shown in figure 4.7 is that the orientation
of the successive poll step depends on the previous iteration and hence can adaptively vary from
step to step. Hence the polling is effectively done in a dense set of directions as shown in figure
4.8 and consequently the iterates have access to more possible polling directions.

Figure 4.8: [Ise13] Union of poll directions in iteration k, k + 1, k + 2.

In [ADJ02], Audet and Dennis showed that the convergence of this algorithm requires only
the assumption that f is continuously differentiable with a Lipschitz 1 derivative 2 near the limit
point. They also showed that with an additional assumption of f being twice strictly differentiable
near the limit point, MADS converges to a local minimizer with probability 1.

The choice between GPS and MADS for employing derivative free optimization is dependent
on the engineering problem considered. In production optimization for oil refineries considered in
[Ise09] the GPS and MADS had similar performance, and hence GPS was considered. However in

1 Lipschitz function is defined as a function f(x) with |f(x)− f(y)| ≤ C |x− y | for all x, y and a constant C.
2If the function f is defined on domain D ∈ R and f ′ is continuous on D, there exists a neighbourhood

V = [α− ε, α+ ε] of the limit point α such that f ′ is Lipschitz on V.
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another problem of generalized field development optimization in [Ise13] MADS was considered
for the pattern searching algorithm. We have also considered a problem in civil engineering of
installing dampers between adjacent buildings [Big12] where the MADS algorithm is preferred
compared to the GPS. In [ADJ06], Dennis and Audet consider a number of problems wherein
generalized pattern search algorithm stagnates and MADS converges to an optimal solution. Also
in [AA06], they give examples of problems where it was shown that the GPS algorithm stalls at
saddle points whereas MADS escapes and converges to the local minima, which can be primarily
attributed to having a dense set of polling directions as illustrated in figure 4.8.

4.1.7 Surrogate Management Frame

Engineering problems in general consider the derivatives of the function to be computation-
ally expensive to calculate. In many practical applications, evaluating the function depends on
the output of a numerical simulation and is expensive since it is dependent on many optimiza-
tion variables that must be evaluated before evaluating the function. Employing surrogates is
a computational enhancing technique wherein this expensive objective formula is replaced by
surrogates. Typically surrogates have lower accuracy or have lesser quality than the objective
function but are cheaper to evaluate or consume fewer computing resources. These surrogates
are evaluated instead of the original objective function and in effect the most time consuming
step in the algorithm, i.e. the formula evaluation, is simplified. Often the surrogate management
framework can be divided into two categories, one wherein the entire physical model itself is
simplified to evaluate f or secondly, approximating f which can be obtained by evaluating f at
a finite number of points and interpolating or smoothing the function values obtained. Often the
second technique is employed in computational expensive problems. The surrogate management
framework in other aspects is similar to the GPS algorithm except that the function evaluation
black-box is replaced by surrogates for cheaper evaluation.

4.1.8 Heuristics

Heuristics such as genetic algorithms do not require the explicit computations of gradients and
are good candidates for stochastic derivative free algorithms for optimization. In genetic algo-
rithms, the algorithm generates a set of possible candidates called a population and evaluates the
objective function on these individuals. Based on the evaluations, the algorithm ranks the ele-
ments and performs operations such as selection, mutation, crossover to the population. Selection
is process of discarding the worst possible solutions and choosing the best for the next iteration,
thereby allowing the next iteration to contain candidate solutions which are more likely to be the
optimum of the optimization problem. Mutation is the process of randomly choosing one bit of
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the candidate and probabilistically flipping that bit, giving the algorithm an exploratory nature
where it evaluates elements randomly to check if a better solution can be obtained. Crossover
is the process of combining two solutions that were ranked high in the selection step, allowing
subsequent iterations to contain candidates which are more likely to be optimal solutions than
previous iterations.

It should be noted that GA performs well in finding approximate solutions to all types of
engineering problems since the algorithm doesn’t make any assumption about any characteristics
of the underlying objective function. The algorithm also does not require the evaluation of
the gradients for the optimization problem, since it proceeds by simply evaluating the function
through the black-box. The stopping criterion of genetic algorithms is generally predefined by
the user as the number of generations in the algorithm in which the objective function doesn’t
have any improvement. The drawback of genetic algorithms is however, given a limited number
of predefined generations there is no guarantee the solution to the problem can be found. There
is also no absolute assurance that heuristics will find the global minimum when the number of
variables is high and the function is complex.

4.1.9 Advantages and Limitations

The common advantage in all derivative free techniques is the fact that the gradients of the
objective function are not required for the optimization of the problem, which is essential for
problems where the derivatives of the objective function are expensive to calculate. Another
characteristic of GPS is the fact that the algorithm parallelizes naturally since the function
evaluations on the set of search and poll points on the mesh Mk can be evaluated on parallel
processors in a cluster. Hence the number of black-box evaluations in each processor would
naturally reduce to O(n/k) with k processors. In fact in the production optimization and well
optimization problem discussed in section 5.2, the MADS algorithm is completely parallelized with
the number of processors allocated for each iteration equaling twice the number of variables in the
problem or the maximum number of poll points to be evaluated in each step. Another interesting
advantage of derivative free techniques is that they can escape local minima since they consider
a large step size in the start and reduce as the algorithm progresses whereas gradient based
methods would get trapped in such local minima. Employing larger step size in the algorithm
allows pattern search algorithms to move to search spaces which are more conducive for refined
searching. Thereafter, we could search in the poll directions to find the minima in a restricted
region by reducing the step size and evaluating the function on the poll points.

However, on the flipside when considering these algorithms applied to bound constrained
optimization, derivative free techniques require an order of magnitude more function evaluations
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than gradient based techniques, which is the most time consuming step in the algorithm. An-
other drawback with derivative free techniques is the cost of implementing these algorithms scale
with the number of variables involved in the optimization problem. Derivative free algorithms
for problems which involve over 150 variables are practically impossible to implement without
any computational enhancing techniques. This inefficiency was significantly improved however
through multi-core computing and surrogate management framework as discussed in section 4.1.7
which are often used to reduce the computational cost.

4.2 Quantum Speedup in computational cost

4.2.1 General Overview

The running time analysis of derivative free optimization algorithms is hard to formulate,
because it is a tool which can be adapted to different applications. Effectively the overall running
time of the algorithm is dominated by the time taken for each function evaluation which is
dependent on the problem considered. In most of the applications, evaluation of the function
is considered as a black-box to which queries are made for each functional evaluation in the
algorithm. Hence, we formulate the number of the queries made to the black-box instead of the
time complexity of the algorithm. Considering a problem with n variables in the grid Rn, typically
in each iteration, the first search step involves global minimization by evaluating approximately
O(n) points on the mesh Mk. The second poll step evaluates the function in the poll directions,
which in the worst case involves evaluations at 2n points (there are at most 2n basis vectors in
the positive spanning set as discussed in section 4.1.5.1) of the mesh Mpoll.

The number of iterations kmax in algorithm 4.5 depends on the application considered. In
areas of refinery optimization it is parametrized by the time the algorithm is run and tolerance
is predefined during the instantiation of the algorithm, whereas in areas of molecular geometry
the stopping criteria is determined by the energy tolerance of the final structure of the molecule
and there are few problems which run the algorithm till the step size in the algorithm is below
the tolerance. Overall with kmax iterations, the total number of black-box queries for the pattern
searching algorithm is O(nkmax).

4.2.2 Quantum Speedup

In MADS/GPS algorithms, each iteration of the algorithm requires O(n) black-box queries
to find the poll direction where the function is minimized. Considering that each black-box
evaluation takes an hour, as the problem gets complicated with more number of variables n, the
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number of queries increases. If either the time taken per black-box evaluation or the number of
black-box evaluations can be reduced, it would improve the overall running time of the entire
algorithm. Reducing the time taken per evaluation requires knowledge of the objective function,
but since the objective function is considered a black-box we consider the optimization of the
number of black-box evaluations. The algorithm in each search step and poll step evaluates a
finite number of points on the mesh to find the point at which the function is locally minimized.
We employ the quantum minimum finding algorithm described in section 2.2.1 in both these
steps to improve the number of queries made to the black-box. In the search step, we create
a superposition of search points and obtain the minima on the mesh Mk in O(

√
n) black-box

evaluations. In the complete polling step, the poll directions are computed and superposition
of poll points is created. The black-box is queried O(

√
n) times to find the point at which the

functional value is minimum on the mesh Mpoll.

For iteration k

1. Search Step:

• Prepare superposition of n search points from mesh Mk as
∑

i,k
|xsi 〉

• One query of the black-box would result in
∑

i,k

∣∣xsi,k〉 ∣∣f(xsi,k)
〉
, using quantum minimum finding

subroutine evaluate the black-box O(
√
n) times.

• Measure the first register to obtain the search point where the minimum can be found.
• If yes goto Update Parameters.
• If the Search fails, goto Poll Step.

2. Poll Step:
If the Search step fails, choose a set of positive spanning directions and form the poll set Mpoll.

• Prepare superposition of poll points (note the number of poll points can be between n+ 1 to 2n) from
positive spanning directions as

∑
i,k
|xmi 〉.

• One query of the black-box would result in
∑

i,k

∣∣xmi,k〉 ∣∣f(xmi,k)
〉
, using quantum minimum finding

subroutine evaluate the black-box O(
√
n) times.

• Measure the first register to obtain the poll point
∣∣ymi,k〉 where the minimum can be found.

• If f(ymi,k) < f(xk), ∀xk ∈Mpoll goto Update Parameters.
• If Poll Step is unsuccessful, goto Update Parameters.

Figure 4.9: Quantum speedup in Search and Poll step in GPS.

In algorithm 4.9, the black-box is queried quadratically fewer number of times compared to
the classical GPS algorithm by employing quantum subroutines in the search and poll step. It is
important to note that this speedup only reduces the number of queries made to the black-box
and doesn’t have any influence on the iterate xk after each iteration. This is integral since the
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convergence analysis of all pattern search algorithms depend primarily on the poll step of the
algorithms. The probability of error during the measurement of the final superposition in the
search and poll step in the above algorithm can be reduced by parallel repetition of the algorithm
as mentioned in section 2.2.1. Effectively, without affecting the convergence of the pattern search
algorithm, using quantum techniques the number of queries to the black-box can be quadratically
reduced, which is integral for engineering applications where evaluating the black-box is expensive
and could take hours per evaluation.

4.3 Practical Flipside

Effectively using quantum search pattern search algorithms for derivative free optimization can
be performed in O(kmax

√
n) black-box evaluations. Although, this is not a quadratic speedup to

the entire protocol, this is significant considering the complexity of the derivative free algorithm
depends on the time taken in the search and poll step, since the computational cost of the
algorithm is dominated by the cost of evaluating the function. Hence evaluating the black-
box quadratically lesser number of times would vastly improve the time scaling of the overall
optimization problem.

On the flipside, this improvement of the time scaling wouldn’t generalize to all problems
which employ pattern search algorithm for DFO due to complete parallelization. Effectively, as
it will be seen in section 5.2.5, for problems such as generalized field development optimization,
for a grid size of R60 (with 60 variables) there are approximately 120 processors in the cluster
dedicated to the search and poll step for each iteration. Hence by quadratically improving the
number of queries to the black-box, neither the number of processors that could have solved
the optimization problem can be reduced nor the overall time required by the algorithm to find
the optimum. This scenario has been explicitly considered and analyzed in section 5.2.5 for the
generalized field development problem. In this optimization problem, parallel quantum searching
results in a marginal speedup when the grid size is huge (≈ R125) where the number of processors
dedicated for the problem is limited. This flipside however doesn’t apply to all algorithms, for
example considering the problem of installing dampers in between adjacent buildings, it can be
seen that the entire optimization is carried out on a relatively small cluster in which case a
quadratic speedup to the number of queries, improves the time required for the overall running
time. Hence in such problems the quadratic reduction in the number of queries provides a
speedup. The exact numeric showing this improvement has been presented in section 5.3.4.1.
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4.4 Summary

In this chapter, we have gone through various important classical derivative free algorithms which
are employed in problems where the function evaluation as well as the derivative information is not
available or computational hard to compute. In section 4.2 we proposed a quadratic speedup to the
search step and the poll step in the algorithms, which reduced the number of queries made to the
black-box in both steps. In section 4.3 we argued why the quadratic improvement to the number
of queries doesn’t directly translate to the reduction in time for problems which are solved using
clusters and parallel processors. In the following chapter, we consider two practical applications
of generalized field development optimization in section 5.2 and placement of dampers in between
adjacent buildings in section 5.3. In the first problem the quadratic advantage is not observed
primarily due to costly function evaluations and parallelization of the algorithm, whereas in the
second problem a quadratic speedup can be significantly observed since the black-box evaluations
are relatively cheaper requiring higher number of evaluations.
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Chapter 5

Applications

5.1 Haplotype Inferencing

Genomics, the study of genes of organisms, has been an area of interest for many decades,
motivated by the quest to understand the influence of genetic imperfections on diseases. The
current research in this field is in developing the International HapMap project [GBH+03] which
involves collection of as many human genes as possible, in order to help scientists get access to
this database and analyze genes associated with any disease. With faster and robust architecture
in the past few years, there is renewed interest and rapid development in the field of genomics.
Before describing haplotype inferencing problem we shall go over few terms which will be used.

5.1.1 Biological definitions

DNA(Deoxyribonucleic acids) makes up the cellular structure of large complex molecules, con-
sisting of two long double strands of nucleotides connected by weak bonds. Nucleotides are sub-
units of DNA sequences consisting of four different types of nucleobases Adenine(A), Cytosine(C),
Guanine(G) and Thymine(T), where bonds in DNA are formed by base pairs of nucleotides (A
and T or G and C). Single nucleotide polymorphism (SNP) is a DNA sequence variation occurring
due to one of the nucleotides (A,T,G,C) being altered between different organisms. Variants in the
DNA sequence caused by SNP determine how humans react to diseases and treatment. A gene is
a locatable region of genomic sequence which accounts for the inheritance of characteristics from
one’s parents. The variations in the genes are called alleles, giving rise to different characteristics
in individuals. At a genomic level, in diploid organisms, there are two copies of each chromosome
which are received from each parent. The genetic constitution of each of the chromosomes is

58



CHAPTER 5. APPLICATIONS

called a haplotype and the conflated(mixed) data present in both the chromosomes is called the
genotype.

5.1.2 Problem and complexity

Researchers are interested in haplotype data since it has been shown to be a better predictor
of diseases as they have more information about gene alleles compared to genotype data. Un-
derstanding this sequence would help in identifying and curing diseases which could have arisen
from any one of the parents. However, determining this haplotype data experimentally is time-
consuming and expensive while genotype data is much easier to get, hence genotypes rather than
haplotypes are usually obtained. The haplotype inferencing problem is: For a set of genotypes,
find a smallest set of haplotypes, conditioned on each genotype being explained by a pair of hap-
lotypes. Given the heterozygous sites in a set of genotypes the objective is to determine which
copy of a pair of chromosomes each gene allele belongs to. Answering the haplotype inferencing
problem for required sizes of genotypes would have significant impact on the biomedical groups
in USA, Canada, Africa, Europe [GBH+03] as well as organizations which are looking for drug
cures for common diseases such as diabetes, cancer, cardiovascular disease, inflammatory diseases
etc.

The computational version of this problem has been proven to be APX-hard (or considered
hard to approximate) [LPR04] and consequently NP-hard as well. For a range of parameters of
preliminary interest such as 50 genotypes with 50 sites, a solution can be computed efficiently with
the help of integer programming. The computational intractability is noticed for larger parameters
such as 50 genotypes with 100 sites where a near-parsimony solution becomes inefficient, but can
be computed given a long time. However, Gusfield in [Gus04] showed that for 100 genotypes
with 150 sites, the integer program approach is not feasible and Clark’s algorithm which is
often employed these days in the haplotype inference problem is inaccurate and requires many
repetitions to find the satisfying set of haplotypes. Since the information of the haplotyes is
critical in drug testing and are indicators of the diseases, it is integral to employ techniques
which give high accuracy results. There were other polynomial size (in the size of the input)
integer program formulations for haplotype inferencing problem using pure parsimony in [BH04]
which improved on the results of Gusfield.

5.1.3 Reduction to SAT

In this section, the mathematical model in [LMS06] for haplotype inferencing is constructed
before reducing it to an instance of SAT. The notation required for this model is presented first
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before providing the clauses and variables in the SAT model, that need to be satisfied in order
to solve the haplotype inferencing model.

5.1.3.1 Notation

Assuming we are given a set of n genotypes, G, each of length m (the length corresponds to the
number of single nucleotide polymorphism(SNP) sites). For convenience, each genotype could be
referenced by gi ∈ G, with i ∈ [1, . . . , n] and the jth site of the ith genotype can be addressed as
gij . Each genotype will be assigned one of the ternary variables {0, 1, 2} for reasons mentioned
later. The set of r haplotypes, H, can be defined each of length m. As before the haplotype could
be referenced by hi ∈ H with i ∈ [1, . . . , r] and the sites in haplotype hi can be referenced as hij
with j ∈ [1, . . . ,m]. Each haplotype is assigned one of the binary variables {0, 1}. When referring
to the haplotype or genotype as hi, gi, it refers to a string of m characters each representing the
state of the respective sites in the haplotypes or genotypes.

From the previous section, it is known that two haplotypes from the parents combine to give
a genotype present in the offspring. Since every individual has two copies of each chromosome,
the haplotypes are assigned {0, 1}m. Considering these combine to form a genotypes, the values
assigned to genotype variables are {0, 1, 2}m. Furthermore, when both the combining haplotypes
have the assigned variables 0, the genotype has the resultant assignment 0, when both the com-
bining haplotypes have been assigned 1, the genotype has resultant assignment 1. The ambiguity
arises when the genotype has been assigned 2, which could arise from either of the haplotypes
being assigned 1 and the other haplotype being assigned 0. With this terminology, we could state
the Haplotype Inference by Pure Parsimony (HIPP) problem: to minimize the overall number
r of haplotypes to solve the haplotype inferencing problem (i.e. each of the n genotypes being
explained by a pair of haplotypes).

5.1.4 SAT Model

For a specific value of i specifying the genotype gi ∈ G, the aim is to minimize r (the number
of candidate haplotypes) such that each gi is explained by a pair of haplotypes. The model uses
selector variables sa1 , sa2 which are strings of length r, each bit of the individual string assigned
to each haplotype in H. For example, if the genotype gi is explained by two haplotypes h1i, h2j ,
then the corresponding selector variables sa1

h1i
, sa2
h2j

are assigned the value 1 respectively and if
they do not satisfy genotype gi they evaluate to 0. Given a genotype, it should be noted that,
only one bit from the selector variable strings sa1 , sa2 should be assigned to 1, which implies that
only one haplotype each from sets a1, a2 satisfies the given genotype. The corresponding clause
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for this condition can be framed as( r∑
k=1

sa1
ki = 1

)
∧
( r∑
k=1

sa2
ki = 1

)
i = 1, . . . , n. (5.1)

In order to specify each condition for gi ∈ {0, 1, 2}, three cases have been considered and the
corresponding SAT conditions have been sketched.

1. When gi is assigned to 0: For any pair of haplotype to justify any particular genotypes
their respective selector variables have to be assigned 1. It follows that if gi = 0 and h1i, h2i
justifies gi, then the corresponding haplotype variables must definitely be 0 according to
our definition. Thus, if a site gij = 0, it implies

(hkj ∨ sa1
hki

) ∧ (hkj ∨ sa2
hki

), k = 1, . . . , r. (5.2)

2. When gi is assigned 1: Following definition, the haplotype variables must definitely be as-
signed 1 and the corresponding selector variables have to be selected to satisfy the genotype.
Hence, if a site gij = 1 it implies

(hkj ∨ sa1
h1i

) ∧ (hkj ∨ sa2
h1i

), k = 1, . . . , r. (5.3)

3. When gi is assigned 2: In this scenario there are two possibilities, either of the haplotypes
can evaluate to 1, with the added constraint that both the haplotypes justifying a particular
genotype must have different values. The corresponding selector variables have to be set
to 1 as well in order to specify the haplotype selected. For this case, another two variables
gaij , g

b
ij ∈ {0, 1} are introduced such that gaij 6= gbij . In terms of a clause it can be written as

(gaij ∨ gbij) ∧ (gaij ∨ gbij) (5.4)

and the corresponding satisfiability equation representing this condition is

(hkj ∨ gaij ∨ saki) ∧ (hkj ∨ gaij ∨ saki) ∧ (hkj ∨ gbij ∨ sbki) ∧ (hkj ∨ gbij ∨ sbki) k = 1, . . . , r.
(5.5)

The equations 5.1,5.2,5.3,5.5 concludes the SAT model to solve the haplotype inferencing
problem. Given n genotypes, r haplotypes and m sites in each genotype and haplotype, assuming
ropt haplotypes are required to justify n genotypes, the number of clauses in the SAT model is
O(roptnm) and the number of variables are O(roptm + roptn + nm). The worst case scenario
corresponds to each genotype being explained by 2 distinct haplotypes or |H| = 2n, when the
number of clauses and variables in the SAT model reduces to O(n2m) and O(nm + n2) similar
to the integer programming model of [Gus04].
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5.1.5 Quantum speedup of classical techniques

In this section, we present results from [LMS06] where they consider problem instances gener-
ated using Hudson’s program. The DPLL-based solver minisat is used to solve the SAT instance.
An interested reader can also generate instances using the HapMap project or [SATb]. The ap-
proach is to generate the SAT instance using section 5.1.4 for a given set of genotypes and present
it to the SAT solver to solve the instance to obtain the satisfying assignment (i.e. the minimum
set of haplotypes which satisfy the genotypes). In [LMS06], the proposed SHIP (Sat-based Hap-
lotype Inference by Pure Parsimony) is compared to the best known solvers and it was shown
that the SHIP solvers were the fastest compared to all other techniques as well as solved almost
all instances within 1000 seconds.

Sites Genotypes Hybrid [BH06] Harper[WX03] SHIPs[LMS06]
Benchmarks
Uniform 30 50 3/15 15/15 15/15
Uniform 75 30 2/10 8/10 10/10
Non-Uniform 50 30 1/15 12/15 15/15
Non-Uniform 100 30 0/15 4/15 15/15
Hapmap 30:75 7:68 12/24 13/24 23/24
Total 30:75 7:68 18/79 52/79 78/79

Table 5.1: Comparison of the performance of SHIP, Harper, Hybrid solvers for HIPP problem on 79 SAT instances.

The above table clearly shows that SHIPs is the most accurate and robust solver to solve the
haplotype inferencing problem. We would have ideally liked to compare our quantum complete
SAT solver described in section 3.5.3 with minisat which is a DPLL solver, however as mentioned
earlier the complexity of quantum DPLL-based algorithms are hard to formulate. Unless a
quantum computer exists to test the efficiency of the complete solver, it is not clear how to
quantify the quantum improvement to the algorithm in obtaining the solutions for the SAT
instances. Intuitively, the proposed quantum complete SAT solver should solve the exact same
instances the classical minisat solver solves for haplotype inferencing, since we are effectively only
speeding up the process of searching in the depth first search.

In [LMS06], apart from the above instances, they also consider instances containing more
genotypes and prove that for even the toughest instances of SAT, their satisfiability methodology
of solving the haplotype inferencing problem is efficient. However, on the flipside, the SAT solvers
ran for over 10,000 seconds. The instances considered in the paper are not the most complex
instances, since genotypes can have up to 500 sites or more, for which the SAT instances can be
intractable even for the most efficient SAT solvers. One of the challenges mentioned in the paper
is to come up with efficient techniques to improve existing SAT solvers for these intractable
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instances and to understand the symmetry involved in the haplotype inferencing problem to
design better algorithms for this problem. In this thesis, although we are not able to quantify
the speedup provided using quantum techniques, we consider a possible answer to their first open
question as our quantum version of complete DPLL solver in section 3.5.3 which should in theory
perform better than the existing DPLL based minisat solver.

5.2 Generalized Field development optimization

Optimization methodologies applied to the field of reservoir engineering have been studied for
many years. The global demand for petroleum and oil has led to increasing explorations and
constructions which have led to greater enthusiasm for research in this subject. Optimization
techniques have been developed for several types of oil field development problems such as de-
termining optimal location of new wells (well placement optimization), the optimal operations of
the existing wells (well control optimization), total number of wells to be drilled, the type of wells
to be drilled (injector or producer), the drilling sequence of these wells, etc. In this section, we
give an introduction to production optimization, well location and control optimization involved
in reservoir management. We finally analyze two cases from [IDEC13] involving the well control
and well location optimization and present results on how quantum analogues of derivative free
techniques can be applied to this problem.

5.2.1 Production optimization

Production optimization involves the maximization of the undiscounted net present value(NPV)
or cumulative oil produced from a well on a day-to-day basis or over a period of time by finding
the optimal allocation of well connections, values for the variables such as well rates, bottom
hole pressure(BHP)1. The objective function of the optimization problem J(u) is calculated by
computing the cost of oil and water injection and subtracting it from the cost of manufactured
oil from the wells. Often with the increased time of simulation of the reservoir, the number
of operating variables increases and hence the objective value becomes complex. Added to the
number of variables, the dynamics of this reservoir simulation is non-linear with respect to the
control variables, and hence the objective function is expensive to evaluate. In reality, the objec-
tive function is computed from a black-box (often referred to as reservoir simulator), which we
discuss in section 5.2.3. The constrained production optimization problem can be framed as the
following maximization program:

1Bottom-hole pressure (BHP) is the pressure at the bottom of a well.
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maximize:
J(u) = roQo(u)− cwpQwp(u)− cwiQwi(u)

subject to:
ci(u) ≤ 0 i = 1, . . . ,m
LB ≤ Au ≤ UB

(5.6)

where ro is the price of oil ($/STB 2), cwp and cwi are the cost of handling produced water and the
cost of water injection 3 ($/STB), and Qo, Qwp and Qwi are the cumulative oil production, water
production and water injection (STB) obtained from the reservoir simulator. In this constrained
optimization problem, J(u) is the net present value to be maximized over the control variables u
with the non-linear constraints ci (such as injection and production constraints) subjected to the
constraints LB ≤ Au ≤ UB. One possibility to solve the production optimization problem, is to
compute the derivative of the objective function with respect to the variables using techniques such
as numerical finite differences and adjoint-based techniques as discussed in section 4.1.1. Adjoint-
based techniques, although more efficient than numerical finite differences, require extraction of
information from the reservoir simulator during the course of the computations, and therefore is
computable with detailed knowledge of the simulator source code. The computations associated
in developing the adjoint code, even with the knowledge of the simulator code is significantly
high, and hence derivative free techniques are preferred. Production optimization was considered
in [Ise09], [ECID11] where they compare various gradient based and derivative free techniques
for the production optimization problem.

5.2.2 Well placement and Well control optimization

In order to maximize the net present value of the production optimization, we are often re-
quired to determine the optimal values of parameters such as well rates and BHP’s. However
since these are continuous varying parameters, the optimization problem is non-linear and deriva-
tive free techniques are required to calculate the optimal values for the optimization problem.
Optimizing over these continuous varying parameters such as BHP’s and well rates is referred
to as well control optimization. Well placement optimization refers to determining the optimal
location for the wells to be drilled in the field and the type of well that should be drilled at that
location. Since the reservoir considered could exhibit rough discontinuous optimization surfaces

2 Stock tank barrel (STB) is the volume of treated oil stored in stock tanks.
3Water injection or water flooding refers to the method in the oil industry where water is injected into the

reservoir to increase the pressure and thereby stimulate production.
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with multiple local minima, derivative free techniques have the natural advantage of escaping such
local minima compared to gradient based techniques and hence are preferred. Often in literature
the well placement optimization and well control optimization, have been addressed separately
making assumptions about the unconsidered factors, however in [IDEC13] they consider both
these problems simultaneously called the joint well placement and well control optimization. The
motivation for this joint study is that it has been observed lately that the optimal parameters of
these wells are dependent on the location and type of the well.

5.2.3 Reservoir simulation

Reservoir simulation is a field devoted to the study of the complex behavior of the natu-
ral porous geological formations. This is carried out using computer programs called reservoir
simulators to solve equations governing the heat and mass flow in porous media which are char-
acterized by near-elliptic pressure equations and hyperbolic saturation equations. The reservoir
simulator, referred to as the black-box, takes the geometry and properties of the reservoir as
input to evaluate the function by solving the non-linear partial differential equations in order
to evaluate the objective function. The non-linear equations in the simulator are solved by the
Newton-Raphson method with each iteration involving the calculation of a Jacobian matrix in
the simulator. These Jacobians are linearized and result in a system of linear equations which are
sparse in nature, and can be solved relatively easily through the linear solver. Due to the sparsity
of the system, the performance of the linear solver is heavily dependent on the robustness of
pre-conditioners that are used to speedup the convergence. The commonly used pre-conditioners
are, diagonal scaling, block diagonal scaling, incomplete LU decomposition, algebraic multi-grid,
constrained pressure residual, etc. The simulator that is considered in this section is Stanford’s
general purpose research simulator (GPRS) [Jia07].

5.2.4 Numerical Experiments

In this section we present two cases of field development optimization problem presented in
[IDEC13] to illustrate the quantum speedup in derivative free optimization as discussed in section
4.2. The geological models in figure 5.1 correspond to a fluvial deposition system, where the first
model contains 40 × 40 grid blocks and displays two times the variation in permeability. The
second model is relatively larger, contains 100 × 100 grid blocks and displays four times the
variation in permeability. In both the models considered below, the reservoir simulation time
considered is 3000 days. The simulation time has to be long enough to ensure that the water
breaks through at the production well, or the water front must reach the production well to make
the optimization problem worth considering. Hence the simulation time i.e. 3000 days implies
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Figure 5.1: [IDEC13] Geological model for Model 1(i) and Model 2(ii) with injection (blue) and production (red)
wells.

the fluid flow is simulated for about 9 years, whose data is the input to the reservoir model.
Running the model actually takes a few seconds to a few minutes depending on the size of the
model (the number of grid blocks) and the complexity of the model (oil-gas-water flow in highly
heterogeneous models takes longer to evaluate than oil-water flow in a near homogeneous model).

Parameters Reservoir Model 1 (40 × 40) Reservoir Model 2 (100 × 100 )
Grid Cell Dimension 50× 50× 15 ft3 50× 50× 15 ft3

Initial pressure pi 5080 psi at 8500ft 5080 psi at 8100ft
Rock compressibility cR 0.5× 10−5 l/psi 0.5× 10−5 l/psi

Well drilling cost $ 4 million per well $ 5 million per well
Injector BHP 6000-9000 psi 6000-9000 psi
Producer BHP 2500-4500 psi 1500-4500 psi

cwp $18/STB $10/STB
cwi $36/STB $5/STB

Max. field water injection rate 270 STB/day 1200 STB/day
Min. field oil production rate 200 STB/day 500 STB/day

Max. field liquid production rate 320 STB/day 1200 STB/day
Max. water cut in any production well 0.5 0.8

Figure 5.2: Simulation and Optimization parameters for both reservoir models [IDEC13] .

In the development of simple channelized reservoir (figure 5.1(i)), the optimization problem
considered is, given eight wells (represented by the dots) on the geological surface, determine
the wells that are meant to be drilled and how to control the wells that are drilled. In this
model, the BHP remains constant through the simulation (effectively with one control period).
The optimization problem has 16 variables, the first 8 variables are binary variables to decide if
a well should be drilled or not and the next 8 variables are to decide the optimal well BHP’s.
Effectively, the variables in the mixed integer non-linear program involve computing 8 well BHP’s
for the corresponding configuration (well placement) of the 8 binary variables. In [IDEC13], the
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technique adopted to decide the optimal well placement is by a brute force technique. Since there
are 28 possible combinations of well placement, they evaluated the MINLP for all the combinations
before deciding which configuration satisfied all constraints. The ranges of the BHP in the table
(6000-9000 psi and 2500-4500 psi for injection and producer BHP’s) define the bound constraints
for the optimization problem and the max./min. field parameters and water cut parameter
define the non-linear optimization constraints in the problem 5.6. The technique of brute-force
enumeration is tractable in this problem, but generally not viable when the system gets more
complex with over 15 or 20 variables, in which case derivative free techniques are required to find
the optimum to the optimization problem. Employing MADS for the same optimization problem
instead of brute-force would require at most 32 polling points in the algorithm since there are 16
optimization variables.

The complex heterogeneous channelized reservoir (figure 5.1(ii)) involves the maximum
placement of five injectors and five producers. The objective remains the same to optimize the
number of wells, their locations and the control parameters. Since there are at most 10 wells,
there are 10 binary variables, and 20 well locations variables (since there are two variables (x, y)
in the coordinate of each well). In this model, the BHP’s are updated every 1000 days and there
are 3 control periods, and hence 30 (3×10) control variables. Overall, there are 60 variables in the
optimization problem which is relatively high when compared to the first model. Using MADS to
solve this optimization variable there will be at most 120 polling points (refer to section 4.1.5.1).
The results for this problem have been omitted here, however we have analyzed the explicit
implementation of the derivative free MADS algorithm for both the simple and complex models.
The following table summarizes the time taken for the MADS algorithm on a single processor for
two instances of the small grid (5.1 (i)) and one instance of the large grid 5.1 (ii). 4 In the last
row, we speculate the parameters required for optimization of a problem with 125 variables.

Grid No. of No. of Black Time taken/ Overall
size Iterations Box evaluations iteration time

(MADS) /iteration (2GHz) (2GHz)
Problem instance

Small Grid,Problem 1 (R16) 103 53 29 29 s 12.5 h
Small Grid,Problem 2 (R16) 103 55 27 18 s 7.6 h

Large Grid (R60) 104 162 113 490 s 103 days
Huge Grid(Speculated Results) (R125) 105 600 250 1 h 18 years

Table 5.2: Summary of Classical time for running MADS on single machine.

4The data-set consisting of the number of iterations, number of black-box evaluations, time taken etc. for MADS
in [IDEC13] was provided by Obiajulu.
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5.2.4.1 Quantum improvement

In each iteration of MADS, in the poll step, the algorithm evaluates the function at all poll
points (in complete polling) to find if a point exists with a lower functional value. We showed in
section 4.2.2, by employing the quantum minimum finding algorithm in this step, the number of
queries made to the black-box can be quadratically reduced. In all the cases that we have analyzed
here, the exact number of black-box evaluations required per iteration as well as the approximate
time taken per function evaluation is known. This allows us to approximately compute the time
it would take a quantum computer to perform the same optimization on a single core. The
following table also accounts for both cases of a quantum computer having the same clock speed
as a classical computer and being 10 times slower.

Grid No. of No. of Time taken/ Overall Time taken/ Overall
size Iterations evaluations/ iteration time Iteration time

(MADS) iteration (200 MHz) (200 MHz) (2 GHz) (2 GHz)
Problem instance

Small Grid,Problem 1 (R16) 103 53 5 290 s 20 h 29 s 2 h
Small Grid,Problem 2 (R16) 103 55 5 180 s 13.7 h 18 s 1.37 h

Large Grid (R60) 104 162 9 4900 s 83 days 490 s 8.3 h
Huge Grid(Speculated Results) (R125) 105 600 13 72000 s 17 years 7200 s 1.7 years

Table 5.3: Summary of quantum time for DFO on a single machine.

5.2.5 Practical flipside

In reality, these functional evaluations in each iteration are generally carried out on clusters
where each processor in the cluster is given a particular point in the poll set to evaluate the
objective function. The maximum number of processors required for each iteration is at most
twice the number of variables in the problem (since there are at most 2n polling points for an
optimization problem with n variables). Consequently, the overall time taken to carry out the
optimization problem is much faster. To give an idea of the numerical difference between serial and
multi-core computations, assuming a particular function (black-box) takes 30 seconds to evaluate,
without access to a cluster, it would have taken 20 hours to find the optimal solution, however
using 30 parallel processors it would take less than half an hour. The following table illustrates the
separation in the time taken for implementing the algorithm on a classical distributed architecture
versus a single processor in 5.2. Since the number of variables in the optimization problems for
field development is relatively low, it is possible to allocate the necessary number of processors
for each iteration of the algorithm.
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Grid No. of No. of No. of Time taken/ Overall
size Iterations Parallel evaluations/ iteration time

(MADS) processors iteration (2GHz) (2GHz)
Problem instance

Small Grid,Problem 1 (R16) 103 53 29 30 29 s 26 m
Small Grid,Problem 2 (R16) 103 55 27 27 18 s 17 m

Large Grid (R60) 104 162 112 112 490 s 22 h
Huge Grid(Speculated Results) (R125) 105 600 150 250 2 h 84 days

Table 5.4: Summary of classical time for DFO on parallel architecture.

Ideally in the quantum setting, we might hope that Grover’s search uses O(
√
N
M ) queries to

find the marked element when there are M machines running in parallel. However, Zalka showed
in [Zal99] that Grover’s search algorithm requires Ω(

√
N
M ) queries when there are M processors

in parallel and this was shown to be optimal. Effectively, Zalka showed that O(
√
N) queries

cannot be divided between theM parallel processors but instead the best one can do with having
parallel quantum processors is to divide the search space between M processors and have each
processor perform quantum searches individually of their subspaces.

In section 4.2.2, when we showed that quadratically fewer number of evaluations is required
in each iteration of MADS, we would have ideally expected the same optimal solution to MADS
with fewer number of parallel machines. However, the result of Zalka shows that in the quantum
setting, a quadratic speedup to the number of function evaluations in the poll step does not
improve upon the scenario in the classical setting for the problem cases considered.

Grid No. of No. of No. of Time taken/ Overall Overall
size Iterations Parallel evaluations/ Iteration time time

(MADS) Processors iteration (200MHz) (200MHz) (2GHz)
Problem instance

Small Grid,Problem 1 (R16) 103 53 30 5 290 s 4.2 h 25.2 m
Small Grid,Problem 2 (R16) 103 55 27 5 180 s 2.75 h 17 m

Large Grid (R60) 104 162 112 9 4900 s 9.2 d 22 h
Huge Grid(Speculated Results) (R125) 105 600 150 13 72000 s 1.06 y 64.5 d

Table 5.5: Summary of Quantum time for DFO on parallel architecture

The only speedup that can salvaged is if the optimization is performed on a grid where the
number of MADS iterations (or the number of variables) is very much higher than the number of
affordable processors in the cluster. This scenario however is unlikely in a realistic setting, since
one of the most complicated grids the industries currently handle are grids with 106 grid cells
for which the speculated data was presented in table 5.4. Even though the numbers of parallel
processors are fewer than the number of poll points, the advantage of quadratically improving
the number of queries is negligible with these values. In fact with these parameters, the time
taken in both the classical and quantum setting seems infeasible.
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5.3 Inserting Dampers in between adjacent buildings

The progress of technology, growth in population, limited land availability and a growing de-
mand for business and residential complexes, has led to buildings being constructed in close
proximity these days. However promising this sounds for the economy and industrial organiza-
tions, during an earthquake, the effect of pounding between these closely constructed buildings
could be destructive. Pounding is the impact of adjacent buildings on one another when the
separation gap in between them is less than the required amount for them to vibrate individually
without affecting the other building. This effect of pounding has been witnessed [Ber87],[CDT12]
repeatedly in many catastrophic earthquakes such as the 1985 Mexico earthquake, 1988 Seque-
nay earthquake in Canada, 1989 Loma Prieta earthquake, 1992 Cairo earthquake, 1994 Kobe
earthquake, 2001 Bhuj earthquake and the recent 2011 New Zealand earthquake.

The simplest way to reduce the damage of pounding is to provide enough separation between
buildings, however due to the high cost of land and increasing demand, this is not viable and
other alternatives need to be considered. Buildings which are older are more probable to get
damaged during an earthquake due to older designs. A possible solution is to destroy these old
buildings and build newer buildings based on better design codes, however this would not be
economical. Another feasible option would be to improve the stability of these older buildings
to make them withstand a seismic event, which would be more economical. In 1972 [KCS73],
engineers considered a possible solution of using mechanical devices used to join adjacent buildings
called viscous dampers. Dampers (could be thought of as giant shock absorbers) are effective and
economical devices used to connect adjoining structures to absorb the vibrational energy of the
buildings during an earthquake. The absorbers are attached to the base of each floor in the
building to keep both the buildings at a reasonably fixed distance apart and not pound into each
other during an earthquake, thereby reducing the damage enormously. In this section we have
analyzed the concept of introducing dampers in between adjacent buildings, the optimization of
number of dampers to be connected, the characteristics of the dampers and impact of introducing
dampers. In section 5.3.1 we provide motivation for the need of optimization in the problems.
In section 5.3.2 we give the mathematical model and simulation to represent the physics of the
buildings and the dampers. In section 5.3.3 we introduce the damper location problem, present
the well-known classical algorithms from [BHT12] and present quantum techniques which can
be employed to improve these algorithms. In section 5.3.4 we consider the damper coefficient
optimization problem solved using derivative free techniques implemented in [BHT12] and employ
quantum techniques to speed up derivative free optimization for this problem.
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5.3.1 Motivation

The major hurdle in installing dampers in between adjacent buildings is the cost factor. We
need to install dampers from the second floor up to the highest floor of the smaller building
and the cost of each damper [Pal04] is between $ 50,000 and $ 100,000 excluding costs such as
installation, labor, material, value of the currency etc., which could overall become exorbitant.
Ideally we would like to minimize the cost of installing dampers and get the maximum benefit
out of the budget. There is a need to optimize the number of dampers and the coefficients of
the dampers to be installed in between adjacent structures without reducing the efficiency of the
construction. There have been many experimental studies such as [YXL03], [BJ06], [PJ10] which
showed that the number of dampers could be reduced without affecting the safety of the structures,
and there are practical implementations of dampers in buildings in California and Japan, which
have validated the efficiency of using dampers as a connectives in between structures to mitigate
the effect of pounding.

There are several papers in the literature which have considered the mechanical behavior
of dampers to improve the seismic stability of coupled buildings, however very few of them have
considered optimization tools for the design of such buildings. Many papers which focused on
the damper location problem, assume that all the dampers have the same damper coefficients
and the papers which focused on optimizing damper coefficients assume the dampers need to be
placed on all floors. We present the bi-level optimization presented in [Big12] which considers
the joint damper placement and damper coefficient optimization. The first step of this bi-level
optimization problem is to find the optimal arrangement of the dampers and second step to
optimize the mechanical properties of the dampers in between structures. Our main contribution
in this thesis has been to implement quantum techniques to improve both steps of the bi-level
optimization problem and present results that improve the best known classical algorithms. This
quantum improvement is integral since with the average height of structures increasing these
days, even the classical heuristics are taking time in the order of days to solve these optimization
problems.

5.3.2 Model and Optimization

The methods of modelling the dampers to be placed in between adjacent buildings can be
sub-categorized into single degree of freedom (SDOF) and multiple degree of freedom (MDOF).
Note that there are other techniques such as the finite element method and experimental method
of analyzing the model, but SDOF and MDOF have been considered and studied extensively
in the literature. SDOF is the basic representation of these adjacent structures as a lump of
mass connected by dampers with no consideration of the number of floors and dampers with
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variable coefficients. Due to its simplicity, it can be solved analytically easily but in reality the
solutions are inaccurate and far from being implementable. The MDOF is a more accurate model
[XHK99] to predict the response of such structures during earthquakes. In this model, each
floor is considered as separate lump of mass, connected together by dampers which vary in their
coefficients. Although the MDOF model is accurate, this model is complicated and hard to solve
analytically.

5.3.2.1 Mathematical model of MDOF

In the previous sections, we gave an overview for the need of optimizing the cost of installing
dampers between adjacent structures. However, in structural control optimization, there are many
factors which could be considered to optimize such as maximum drift, maximum acceleration,
cumulative drift, energy absorbed by the structure, damping ratio, cost of the retrofitting system,
risk of damage, etc. The objective function considered in the latest papers ([BHT12], [Big12],
[BHNT13]) are the inter-storey drift and the same has been adopted here.

Consider two buildings with n and n + m floors and nd dampers to be placed as shown in
figure 5.3 There are 2n+m degrees of freedom, and a vector x(t) ∈ R2n+m associated to represent
the displacement of the floor at any time instant t. From [BHT12], the governing equation of this
mechanical system in order to simulate the actual system is,

Mx′′(t) + (C + Cd)x′(t) +Kx(t) = MEg(t) (5.7)

where M,C,K are R(2n+m)×(2n+m) matrices generated by the mass, damping and stiffness co-
efficient of each of the buildings respectively, E is a vector with all ones, g(t) is the ground
acceleration during an earthquake, Cd represents the damping matrix constructed using the nd
damper coefficients and cd is the vector of damping coefficients for each floor where floors (repre-
sented by the second index) without dampers are assigned cd,i = 0. The respective matrices have
been elaborately outlined in [BHT12] and omitted here. Equation 5.7 in the frequency domain
can be written as

MEeiωt
√
Sg(ω) = −

(
−Mω2X(ω) + (C + Cd)iωX(ω) +KX(ω)

)
eiωt (5.8)

where Sg is spectral density function of ground acceleration and the response of the building is

X(ω) = −

(
ME

√
Sg(ω)

)
(−Mω2 + (C + Cd)iω +K) .

(5.9)

72



CHAPTER 5. APPLICATIONS

Figure 5.3: Model of adjacent buildings [BHT12] with 5 and 7 floors respectively, connected by 3 dampers.

For a given damping coefficient cd, the standard deviation of the displacement response for
the ith floor of building b can be numerically approximated as

σib =
(∫ ∞
−∞
‖xib(ω)‖2 dω

)1/2
(5.10)

where xib(ω) is the component of X(ω) corresponding to the ith floor of building b. Using σib the
inter-storey drift can be computed as,

fib = (σib − σ(i−1)b)2 (5.11)

and adopting the above formula for all floors, the maximum inter-storey drift between the two
structures can be computed as,

F = max{max{(σi1 − σ(i−1)1)2 : i = 1, . . . , n+m},max{(σi2 − σ(i−1)2)2 : i = 1, . . . , n}}.
(5.12)
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The first term in the above expression is the contribution of the inter-storey drift in the first
structure and the second term in the second structure. Ideally nd dampers need to be placed in
between the structures to minimize the maximum inter-storey drift F between both structures
as computed from equation 5.12. The numbers of variables involved in this optimization problem
are 2n + m − 2 (dampers do not need to be placed on the ground floor since they are already
connected by the base). In short, the optimization problem addressed is to place nd dampers
between two structures with n and n+m floors by solving

min
cd∈Rn

max{fib(cd) : i = 1, . . . , n+m, b = 1; i = 1, . . . , n, b = 2}

subject to : cd,j1 = 0, cd,j2 = 0, . . . , cd,jn−nd = 0
(5.13)

Effectively, subjecting the damper coefficients of the floors without dampers as zero, we are
minimizing the maximum inter-storey drift between both the buildings by varying the damper
coefficients. In order to compute the objective function or fib(cd), knowledge of the integral σib
is required and solving this integral is extremely difficult. If derivatives of the objective function
with respect to all variables were present, the optimization problem could have been solved,
but due to the complexity of the objective function that is not an option. Hence, to evaluate
the objective function, simulation is used to obtain a numerical approximation. A sequence
of earthquake models are simulated which is an input for the simulation software. Based on
different damper coefficients, the response of the buildings is then evaluated by the software.
Initially, engineers used genetic algorithms to optimize this problem before algorithms such as
MADS (Mesh Adaptive direct search), RAGS (robust approximate gradient sampling), proved to
solve this problem better. There has been a study analyzing various gradient-free techniques in
[BHNT13], concluding that RAGS achieves the best tradeoff between solution time and quality.

The technique employed to solve the bi-level optimization problem is to break the optimiza-
tion problem into an outer discrete combinatorial problem of determining the j for which cd,j = 0
and an inner continuous optimization problem of determining the specific values of cd,j 6= 0. Ef-
fectively, the outer loop finds the optimal configuration of the dampers to be installed (or floors
where dampers are not present and cd,j = 0) and the inner loop finds the optimal set of damping
coefficients (floors with non-zero coefficients cd,j) for this arrangement of dampers. Both these
problems have been separately addressed in the following sections.

5.3.3 Damper Location Optimization

The discrete optimization problem of deciding where to place the dampers between adjacent
buildings has been specifically considered in [BHT12]. Disregarding the cost of dampers, it is
intuitive to believe that placing the dampers on all floors would provide maximum safety, however
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it was shown this is necessarily not the case and in fact placing lesser number of dampers can
cause the structures to pound with a lower probability. In this section we shall go over the
techniques mentioned in their paper and analyze the most effective algorithms. The assumption
made in this work is that the damping coefficients of all dampers are equal, which will however
be generalized in section 5.3.4.

5.3.3.1 Classical Algorithms

1. Exhaustive Search: The technique of exhaustive search is the most naive technique to
find optimum floors at which the dampers need to be placed.

Input: 2 unconnected structures with n and n+m floors, nd dampers
Output: Arrangement of nd dampers between the 2 structures.
(a) For k=1:

(
n

nd

)
(b) Choose nd floors from the smaller structure to place dampers.
(c) minkF(x)
(d) End Loop

Figure 5.4: Exhaustive enumeration algorithm.

where F (x) refers to the inter-storey drift from 5.12. The total number of simulations are(
n

nd

)
= n!

(n− nd)!nd!
. (5.14)

This brute force search naturally results in the best possible configuration but the drawback
is the intractability as the number of floors and dampers increase. For example if there were
two buildings with 50 and 40 floors, with 10 dampers, it would take approximately 8.5×108

simulations to be solved. Assuming each simulation requires 200 black-box queries with each
black-box evaluation requiring 5 seconds, the total time would be 27 centuries.

2. Inserting Dampers: Instead of considering all possible combinations of nd dampers in the
exhaustive search algorithm, in this heuristic technique, the dampers are sequentially in-
serted in between the structures. The two buildings are initially considered as unconnected
structures and the algorithm starts by sequentially inserting dampers. The algorithm ini-
tially finds the best location to place the first damper by evaluating the objective function
for each floor to find the best allocation. It then proceeds to find the optimal location of
the second damper and this is carried on till nd dampers have been placed in between the
two structures.
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Input: 2 unconnected structures with n and n+m floors, nd dampers
Output: Arrangement of nd dampers between the 2 structures.

(a) For t=1:nd
(b) For k=1:n
(c) T ← mink F(x)
(d) End Loop
(e) Fix the damper location T.
(f) Goto step (b), reducing n to n− 1.
(g) End Loop

Figure 5.5: Inserting dampers algorithm.

The total number of required simulations is

N = n+ (n− 1) + . . .+ (n− (nd − 1))

= nnd + nd −
(
n2
d + nd

2

)
.

(5.15)

In this heuristic unlike exhaustive enumeration, the number of simulations does not grow
exponentially with the number of floors.

3. Inserting Floors: In contrast to the previous method of inserting nd dampers sequentially
at appropriate floors, in this heuristic technique a random arrangement of dampers for both
the structures is assumed and sequentially adjacent floors are inserted to both the structures
till the maximum number of floors for the smaller structure is reached.

Input: 2 structures with nd and nd +m floors, nd dampers
Output: Arrangement of nd dampers between the 2 structures with n and n+m floors.

(a) For t=1:n− nd
(b) For t=1:nd + 1
(c) T ← mink F(x) ( compute best location to insert adjacent floors )
(d) End Loop
(e) Insert pair of floors at T, resulting in 2 buildings with nd + 1 and nd + 1 +m floors.
(f) End Loop

Figure 5.6: Inserting Floors algorithm.

The total number of simulations in the above algorithm is (nd+1)(n−nd), since for each of
the (n−nd) floors to be placed, nd+1 simulations have to be carried out to find the optimum
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location to insert the floors without dampers. Note that the input to this algorithm are
2 structures with nd and nd + m floors instead of the conventional n, n + m floors. In
this technique, since it is known that nd floors have to be connected between both the
structures, initially when inserting a pair of adjacent floors the simulation is carried out on
smaller structures and towards the end of the algorithm the simulations are carried out on
full-scale structures.

4. Maximum Velocity: This naive technique relies on the mechanical fact that the force
generated and energy dissipated by a linear viscous damper are linear functions of the
relative velocity across the damper. Since it would be ideal if the stress caused in the
buildings during earthquakes is dissipated through the dampers, the dampers should be
placed in adjacent floors with the highest relative velocity. Hence with one simulation on
the unconnected buildings, floors with highest relative velocities can be found to place the
nd dampers. Compared to all prior techniques, this method requires only one simulation
but the drawback is the optimal arrangement is completely independent of the objective
function to be minimized in equation 5.12.

5. Genetic Algorithm: These are heuristic approaches to solving optimization problems
where initially a large number of possible assignments are tried to see which ones seem
better and then manipulate those that are not working by trying other combinations. This
process is repeated until a satisfactory optimum to the objective function is achieved. The
following genetic algorithm is often employed to solve the damper location problem

Input: 2 structures with n and n+m floors, nd dampers
Output: Arrangement of nd dampers between the 2 structures.

(a) Till stopping criterion is satisfied
(b) Select random combinations of dampers (as initial population).
(c) Evaluate the objective function at all points of the current population.
(d) Selection : Carry forward the best few evaluations to the next generation.
(e) Crossover : Perform crossover on the points from the previous generations.
(f) Mutation : A mutation step randomly alters some points in successive generations.
(g) Evaluate the objective function at all points of the new generation.
(h) End Loop

Figure 5.7: Genetic algorithm.
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5.3.3.2 Summary

It was shown in [BHT12] that exhaustive searching described in figure 5.4 is theoretically the
most robust method but with the increase in the number of levels of the structures, the problem
becomes intractable. Intuitively, with a single simulation the maximum velocity method in figure
4 is the fastest method to optimize the damper location but it was shown that this method did
not lead to an optimal damper placement. By simulation, it was shown that the inserting floors
technique in figure 5.6 method is faster but less accurate than the inserting dampers method in
figure 5.5. Although the genetic algorithm in figure 5.7 behaves similar to the inserting floor
method, since it isn’t reliable and there are no guarantees on the solution obtained, it is generally
not preferred. In order to compare or benchmark the robustness and applicability of each of
these classical methods, the respective performance profiles [DM02] were computed. To plot
the performance profile, the performances of all algorithms are compared with the performance
of the best algorithm on particular problem instances, varying the parameters of the respective
algorithms. Consequently, it was shown that the inserting dampersmethod was the most practical
method in terms of speed and robustness to find the best configuration to place the dampers.

Figure 5.8: Model of adjacent buildings connected with dampers [BHT12].

5.3.3.3 Quantum Techniques

In this section, we are primarily concerned with the heuristic inserting dampers technique
which was proven to be the fastest as well as effective for the damper location problem and
the exhaustive search algorithm which intuitively is the most effective deterministic technique to
generate the ideal damper combination. The choice of the first algorithm is primarily because it
was demonstrated to achieve the best trade-off between solution time and quality and the reason
for consideration of exhaustive search is to demonstrate that problems which would have taken
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centuries to solve by classical algorithms could be done in less than few days using quantum
techniques. This is essential for multi-billion dollar projects of skyscrapers in which accuracy of
implementation is absolutely necessary and exhaustive search is the only technique that provides
it. The essential theorem that is required for the quantum speedups is the quantum minimum
finding algorithm shown earlier in section 2.2.1

1. In exhaustive searching, instead of querying the objective function for each of the nd damper
combinations, a superposition of all possible damper configurations can be created. Al-
though, this step could take exponential time by preparing each configuration, it is also
possible to do the following. The classical Fischer-Yates(FYk)5 shuffle algorithm takes
some seed s and generates a string of length n of Hamming weight k by computing FYk(s)
in O(n) time. We can therefore prepare a superposition and employ the classical algorithm,∑

s

|s〉 |0〉 →
∑
s

|s〉 |FYk(s)〉 →
∑
s

|0〉 |FYk(s)〉 (5.16)

to obtain a superposition of strings with Hamming weight k. This algorithm takes Õ(n) (up
to poly-log factors) time to compute the symmetric state. Another technique is to employ
the efficient quantum algorithm presented in [KM04], to prepare an arbitrary symmetric
state with a predefined Hamming weight. They provide a near-optimal circuit that per-
forms the same. Given this symmetric superposition state, using theorem 1 the minimum
functional value can be obtained with high probability in

√( n
nd

)
queries.

• Create a superposition

1√(
n
nd

) ∑
x∈{0,1}n

|x|=nd

|x〉

• One query of the objective function would result in

1√(
n
nd

) ∑
x∈{0,1}n

|x|=nd

|x〉 |f(x)〉

Using quantum minimum finding algorithm query the objective function O(
√
n) times.

• Measure the first register to obtain the string which minimizes the objective function.

Figure 5.9: Quantum speedup in exhaustive searching.

5 This is also referred to as Knuth Shuffle, refer to Knuth Volume 4, Section 7.2.1.3.
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This is also optimal up to constant factors, as any quantum algorithm needs at least Ω(
√
N)

evaluations of f(x) [BBBV97]. This speedup quadratically improves the number of queries
made to the objective function and not the simulation involved in evaluating the function.

Considering the example analyzed earlier with two structures of 40 storeys and 50 storeys
connected by 20 dampers, classically it would take 27 centuries to find the minimum of the
objective function and assuming same clock speed for quantum gates it would take 18 days
on a quantum computer. Although, both computations seem time consuming and infeasible,
it can be clearly seen there is a considerable improvement using quantum searching instead
of classical exhaustive enumeration. For smaller buildings with fewer dampers, the technique
of quantum searching could probably produce results faster. The following plots compare
the quantum and classical queries made to the black-box where the number of floors of the
smaller building is predefined, and the number of dampers to be installed is a variable.
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Figure 5.10: Quantum algorithm versus classical
algorithm for brute force algorithm 5.4 for struc-
tures with 10 floors.
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Figure 5.11: Quantum algorithm versus classical
algorithm for brute force algorithm 5.4 for struc-
tures with 50 floors.

2. In the inserting dampers algorithm, to place the first damper in algorithm 5.5, in subroutine
(c) instead of running n simulation to find the configuration which minimizes the objective
function, using quantum minimum finding 1, the number of simulations required could be
quadratically improved. This speedup also follows for every subsequent damper placement.
The preparation of the initial symmetric state with pre-defined Hamming weight for each
iteration, can be done through the similar techniques mentioned in [KM04]. Hence, the
reduction in the number of queries in each iteration improves the running time of the
overall algorithm,
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Input: 2 unconnected structures with n and n+m floors, nd dampers
Output: Arrangement of nd dampers between the 2 structures.

(a) Find the optimal location for the first damper.
• Prepare the superposition

1√
n

∑
x∈{0,1}n

|x|=1

|x〉

• Query the black-box O(
√
n) times to obtain

∑
|x|=1 |x〉 |f(x)〉

• Measure the first register to obtain the optimal location (tth1 storey) of 1st damper
(b) For k=2:nd
(c) Fix the position of (k − 1)th damper

• Prepare the superposition

1√
n− k + 1

∑
x∈{0,1}n,

xt1 =...=xtk−1 =1,
|x|=k

|x〉

• Query the black-box O(
√
n) times to obtain

∑
|x|=k |x〉 |f(x)〉

• Measure the first register to obtain the optimal location (tthk storey) of kth damper
(d) End Loop

Figure 5.12: Quantum speedup in Inserting dampers algorithm.

The overall cost of the quantum analogue of inserting dampers algorithm can be calculated
up to a small constant factor,6

N =
√
n+
√
n− 1 + . . .+

√
n− (nd − 1)

= i

(
ζ(−1

2 ,−n)− ζ(−1
2 , nd − n)

)
.

(5.17)

Where ζ(s, a) is the Hurwitz zeta function defined as ζ(s, a) =
∑∞
k=0

1
(k+a)s . In the following

plots, the number of queries made to the black-box is analyzed in the quantum and classical
setting with a predefined number of floors, allowing the number of dampers to be installed
as a variable.

6 The constant π/4 overhead is not considered for computations.
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Figure 5.13: Quantum algorithm versus classical
algorithm for inserting dampers algorithm 5.5 for
structures with 10 floors.
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Figure 5.14: Quantum algorithm versus classical
algorithm for inserting dampers algorithm 5.5 for
structures with 50 floors.

5.3.3.4 Summary

Classically it was shown that the insertion dampers algorithm achieves the best trade-off be-
tween solution quality and running time. For over 90% of the problems, it resulted in the optimal
configurations. In order to get the optimal arrangement with certainty, exhaustive search algo-
rithm could be employed but the problem gets intractable with an increasing number of dampers
and structure height. In this section, we showed that using quantum search the best known
insertion dampers technique can be sped up, and can quadratically improve the exhaustive search
algorithm as well. Effectively even the subroutine in inserting floors algorithm can be improved
to obtain an algorithm which computes the optimal configuration in O((n − nd)

√
nd) black-box

evaluations. Both classically and in quantum setting the maximum velocity algorithm would re-
quire 1 query to be made to the black-box and hence there no straightforward improvement is
possible. Figure 5.15 compares both exhaustive enumeration as well as the inserting dampers
algorithm in the classical as well as quantum setting.

5.3.4 Damper Coefficient Optimization

In the previous section, we made the assumption that all the dampers have equal coefficients to
find the optimum placement of the dampers. In this section, this assumption will be generalized
to compute the optimal coefficients of the respective dampers for each arrangement. There
have been studies that have examined the effect of the non-uniform distribution of dampers
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Figure 5.15: Quantum speedup compared to classical algorithms for exhaustive search algorithm 5.4, Inserting
Dampers algorithm 5.5 for structures with maximum 50 floors.

in [YXL03],[BJ06], but none of them contain a comparison of the quality of their proposed
solution. Disregarding the coefficients of damping device, in [YXL03],[ZGH11] they argue that
all adjacent floors of adjacent buildings should be connected by identical dampers (with same
damping coefficients cd,1 = cd,2 = . . . = cd,n). This reduces the optimization problem to a
single dimensional problem which can be easily solved using divide and conquer techniques as
performed in these papers. However, this claim was later refuted in [BHT12], by showing that
a uniform distribution of dampers results in a sub-optimal arrangement. Hence, it is integral to
consider dampers with varying damper coefficients to minimize the inter-storey drift to represent
the structures realistically.

In equation 5.12, it was observed that the inter-storey displacement is highly dependent on
parameters such as damping and stiffness matrices, Cd,Kd, whose entries are in turn dependent on
damping and stiffness coefficients cd,i, kd,i as discussed in section 5.3.2.1. Hence the optimal set of
damping and stiffness coefficients is indirectly dependent on the dampers used and the placement
of the dampers in between the structures. The placements of the dampers have been analyzed
in the previous section and it remains to optimize for optimal damping and stiffness coefficients
for each placement. Allowing the dampers to have varying damping and stiffness coefficients, the
optimization problem results in an n-dimensional optimization problem, for which the objective
function is evaluated by simulation. As mentioned earlier, with each configuration of damper
placement and damper coefficients, the simulator evaluates how the buildings respond. With the
derivative information being difficult to obtain, gradient free techniques are employed to compute
the optimal damper coefficients in the second level of the bi-level optimization problem.
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Three algorithms were analyzed in [BHNT13] to solve the optimization problem, genetic
algorithms, mesh adaptive direct search (MADS) and robust approximate gradient sampling
(RAGS). Genetic algorithms and MADS have been discussed in length in the previous chapter.
RAGS is a derivative free technique which is specially designed to exploit the smooth structure
of min-max optimization problems, which is the optimization problem that is being considered
in this optimization problem. The robust stopping criterion of RAGS reduces the number of
function evaluations for the algorithm to converge to the optimum. A detailed description of the
algorithm is omitted here. An interested reader is referred to [HN13], [Nut12] .

5.3.4.1 Quantum techniques applied to the classical algorithms

In the MADS algorithm implemented in [BHNT13] the search step is avoided and only the
poll step is carried out in each iteration. As explained in section 4.1.6, assuming an initial step
size for the algorithm the function is evaluated on the poll set (consisting of points defined in
the direction of the positive basis). If the function is evaluated at a point which is less than the
present iterate the algorithm moves to this new point, creates a poll set at the new point, and
the process carries on till the stopping criterion is attained. In the scenario where none of the
points on the poll set are less than the present iterate, the current point is the local optimizer
and it is checked if the tolerance is achieved, if not the step size is reduced and the poll points
are evaluated again. As discussed earlier, the convergence of this algorithm was proven in [AA06]
primarily relying on the theory of positive bases. It was shown in section 4.2 that the classical
searching in both the search step as well as the poll step in derivative free algorithms could be
quadratically improved. In this section, we articulate the speedup provided to the running time
of MADS using quantum techniques and compare it with RAGS.

5.3.4.2 Test Problems and results

We consider 2 cases with differing building heights and similar mechanical properties from
[BHT12] and analyze the running time as shown in their paper.

Damping coefficients
Building 1 Building 2

Case f1 m1 (kg) k1 (N/m) c1 (Ns/m) f2 m2 (kg) k2 (N/m) c2 (Ns/m)
1 10 1.29×106 4.00×109 1.00×105 20 1.29×106 2.00×109 1.00×105

2 40 1.29×106 4.00×109 1.00×105 10 1.29×106 2.00×109 1.00×105

Figure 5.16: Mechanical properties for Case 1 (f1=10, f2=20) and Case 2 (f1=40, f1=10).
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For both sets of data in [BHT12], the mechanical properties of all floors in each building
are assumed to be the same, and the ground parameter accelerations are considered as S0 =
4.65× 10−4m2/rads3, ωg = 15rad/s, ζg = 0.6, ωk = 1.5rad/s, ζk = 0.6.

Table 5.6 analyzes the number of function calls and the objective value obtained for the two
test cases in figure 5.16 for the placement of 10 dampers. This table takes into consideration both
the queries in the outer loop as well as the inner loop of the optimization problem. For all the
cases, the insertion dampers technique has been employed for the outer loop optimization. For
example, given nd dampers to be placed between two n storey buildings, the insertion dampers
algorithm is used to determine an optimal configuration of dampers using nnd + nd −

(
n2
d+nd

2

)
simulations. In each iteration while the algorithm decides the location to place the dampers
sequentially, it also determines the optimal damper coefficients for the dampers through MADS
algorithm. Hence the data in the Q-MADS column accounts for the quantum speedup in the
discrete optimization step as discussed in section 5.3.3 as well as the quantum speedup in the
poll step in the MADS algorithm. The data presented for GA, MADS and RAGS was obtained
from [BHNT13] where these algorithms were rigorously analyzed.

Number of function calls Objective value
Case nd GA MADS RAGS Q-MADS GA MADS/Q-MADS RAGS

1

1 380 279 170 11 4.36×10−6 4.33×10−6 4.33×10−6

2 1100 873 571 34 1.79×10−6 1.72×10−6 1.72×10−6

3 2000 1883 1661 74 1.90×10−6 1.72×10−6 1.72×10−6

4 2980 3680 2965 146 1.87×10−6 1.72×10−6 1.71×10−6

5 4055 5995 4360 400 1.76×10−6 1.72×10−6 1.73×10−6

6 5105 8999 6376 247 1.77×10−6 1.72×10−6 1.73×10−6

7 6155 13127 9192 573 1.84×10−6 1.71×10−6 1.73×10−6

8 6995 16589 11644 747 1.88×10−6 1.71×10−6 1.74×10−6

9 7625 18710 13511 868 1.89×10−6 1.73×10−6 1.74×10−6

10 350 1511 1208 73 1.96×10−6 1.71×10−6 1.77×10−6

2

1 385 312 153 10 5.96×10−6 5.94×10−6 5.94×10−6

2 1045 1010 756 29 5.86×10−6 5.86×10−6 5.87×10−6

3 1930 2097 1766 63 5.94×10−6 5.86×10−6 5.87×10−6

4 2930 4345 3424 133 5.89×10−6 5.86×10−6 5.87×10−6

5 3980 7131 5166 224 6.17×10−6 5.86×10−6 5.88×10−6

6 5030 11821 7045 382 5.96×10−6 5.86×10−6 5.89×10−6

7 6010 16077 8844 536 6.22×10−6 5.86×10−6 5.89×10−6

8 6850 21024 10533 723 5.97×10−6 5.86×10−6 5.91×10−6

9 7480 25831 11646 915 6.14×10−6 5.86×10−6 5.92×10−6

10 350 3545 820 130 6.40×10−6 5.86×10−6 5.92×10−6

Table 5.6: Comparison of the number of black-box evaluations for GA, MADS, RAGS from [BHT12], the proposed
quantum improved MADS algorithm and the objective value obtained in each algorithm for Case 1, Case 2 in figure
5.16.
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To get an idea of the speedup Q-MADS offers over other techniques of optimization, the
following graphs pictorially represents the quantities in the above table for both cases in figure
5.16
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Figure 5.17: Graph comparing 5 optimization
techniques for Case 1 in table 5.16.
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Figure 5.18: Graph comparing 5 optimization
techniques for Case 2 in table 5.16.

It follows from the figure that, by using quantum techniques to simply improve the discrete
optimization step, the overall algorithm performs better than all the remaining 3 techniques for
Case 2, but is slower than genetic algorithms in Case 1. By employing quantum techniques to
improve the entire algorithm (i.e. the outer loop as well as the inner loop) the overall number of
black-box simulations required to perform the optimization is considerably less than all the other
techniques which are currently used in industries. It should be noted that none of these quantum
improvements, affect the performance profiles of inserting dampers algorithm or the convergence
analysis of MADS. Effectively, without changing the values of the iterates after any iteration in
the algorithm, we have improved the number of queries that need to be made to the black-box
to find the optimum.

5.3.4.3 Conclusion

In this section we have successfully shown that using quantum techniques, we have improved
both levels of the optimization procedure used to design damper connected structures. Classical
algorithms for the outer discrete optimization of finding the optimal damper configuration was
addressed in [BHT12] where they compared 5 techniques to solve the problem and showed that
insertion dampers method had the best performance profile (trade-off between solution time and
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robustness). We have shown that using quantum search we could significantly speedup this
algorithm. A comparison of derivative free techniques for the inner continuous optimization for
finding optimal damper coefficients were presented in [BHNT13], where the MADS algorithm
was shown to produce the most robust results (due to its ability to avoid being trapped in
local minima), while the RAGS algorithm was shown to produce solutions which were better
in significantly less time than MADS. We have successfully shown that integrating the robust
nature of classical MADS algorithm and the quantum speedup, we get a new quantum algorithm
Q-MADS which proves to be more robust than RAGS with a faster running time.

5.4 Clock speed of Quantum computers

Calculating the exact time taken by quantum algorithms without a quantum computer is a
hard problem. In this thesis so far, we analyzed the query costs of derivative free optimization for
a couple of practical problems and algorithmic parameters for SAT solvers to solve practical SAT
instances. Although, we do not know how the clock speed of quantum architecture is going to
compare with classical hardware, in this section, we comment on the ideal ratio of the clock speeds
in order to gain a significant advantage in the quantum paradigm. Majority of the speedups con-
sidered in this thesis have primarily arisen by applying Grover’s search algorithm. Theoretically,
considering we are required to query a black-box O(N) times to ensure the algorithm succeeds
with constant success probability, Grover’s algorithm states that the same problem can be solved
by making O(

√
N) queries. Assuming a slowdown of α (the ratio of the classical versus quantum

clock speed) in quantum gates, the overall tradeoff is between N and α
√
N . It is intuitive to

see that, a naive quantum speedup can be achieved if and only if α2 ≤ N , which is conceivable
if we were required to make exponential queries with a constant factor slowdown. However, we
highlight few hurdles in the optimization of algorithms and why this speedup isn’t straightforward
to the practical problems considered in the sections 3.5.1, 5.2, 5.3.

Decoherence is the decay of the state of a system when a quantum state interacts with the
environment due to its fragile nature. To isolate these systems from environmental effects and
make them useful for quantum computations, a long coherence time is required. Technologies
relying on electrons to maintain quantum states have short coherence times and technologies
which utilize nuclear effects have been shown to be comparatively more stable. However, the
flipside in good isolation of states for quantum computation is the slow operations of two-qubit
gates. It has been noticed in [LMY+05], [MI06] that gate speeds and decoherence times vary over
eight orders of magnitude or more compared to classical gates.

In section 3.5.1, while analyzing satisfiability we considered parameters of Walksat which are
currently being used in SAT competitions and applied amplitude amplification to these algo-
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rithms. We however realized that the number of iterations which was supposed to be exponential
is often not the case in practice where industries consider constant number of iterations with
exponential random walk steps. Hence with the maximum number of iterations in Walksat being
100, with a slowdown of 10 times or α ≥ 10, we lose the quantum advantage. However, as high-
lighted earlier, it would be interesting to consider if classically the parameters can be rebalanced
by considering fewer steps in the random walk and a higher number of iterations. With rebal-
anced parameters, the advantage using quantum amplitude amplification would be significantly
higher even with a slower quantum computer.

In derivative free optimization, for the generalized field development optimization, evaluating
the black-box is very costly (each evaluation could take about few hours for grids of size 105)
and thus the number of iterations of the algorithm is relatively less. From table 5.3, it can be
seen that with fewer number of iterations, even on a single processor the advantage of applying
quantum techniques with a slowdown of α ≥ 10 is insignificant. Since the number of queries
made to the black-box is less, it is possible to dedicate processors to evaluate the function at each
search point, which makes quantum parallel searching insignificant. In section 5.3, we discuss
another practical problem of inserting dampers between adjacent buildings employing derivative
free optimization. We analyzed the overall number of black-box queries made in the combined
outer discrete and inner continuous optimization problem. In this problem, the cost of evaluating
the black-box is relatively low (approximately 1 minute per evaluation) and hence the number
of iterations of the algorithm is comparatively higher than the field development optimization.
From table 5.6, it can be noted that the number of black-box evaluations in Q-MADS in all cases
is at most 15 times lower than classical MADS. The speedup one gains in Q-MADS would be
insignificant with a slowdown of α ≥ 15 in quantum architecture.

Although, we have considered only few practical problems to compare classical and quantum
architecture, we believe that these problems are extremely relevant among engineering optimiza-
tion problems. It should be noted that the parameters considered in the above practical problems
can be optimized further or rebalanced appropriately (as mentioned in the respective sections)
for all cases. It would be interesting to see if either more practical applications of derivative free
optimization can be considered or if the number of iterations in random walk algorithms can
be increased by reducing the number of random walk steps. The goal is to consider practical
problems such that even with a quantum computer being an order of magnitude of 2 (α ≥ 100)
slower than classical architecture, the improvement seen by employing quantum techniques over
state-of-the-art classical algorithms is significant.
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Chapter 6

Conclusions

In this thesis, we have studied two important problems the Boolean satisfiability problem and
derivative free optimization. We have studied and analyzed the quantum speedup applied to both
these algorithms. In the Boolean satisfiability problem, we considered techniques such as quantum
amplitude amplification and quantization of directed random walks applied to the incomplete
Walksat algorithm and proposed a quantum analogue of the complete DPLL algorithm based on
the nested Grover’s search algorithm. Considering parameters of practical interest, we realized
that amplitude amplification does not provide an immediate improvement without rebalancing the
parameters of the random walk algorithms. Assuming the parameters considered in this thesis
perform optimally, we raise another interesting challenge problem of quantization of directed
random walks to improve the random walk algorithms for satisfiability. Finally, considering the
DPLL algorithm, we realized that computing the running time of this algorithm is hard, since it
involves various heuristics. Classically heuristic improvements are tested on machines to quantify
the speedup, however the improvement provided by the quantum analogue of the DPLL solver
proposed in this thesis is hard to articulate without access to a quantum computer.

In derivative free optimization, we employed the quantum minimum finding algorithm to im-
prove the search step and poll step in the generalized pattern search and mesh adaptive direct
search algorithms. However, we realized that often problems which employ derivative free opti-
mization rely on distributed architecture to solve the problem, in which case we showed that a
full quantum speedup was not obtained employing parallel processors. The problems lies in that
derivative free algorithms is often employed in practical problems which involve costly function
evaluations, with fewer number of black-box queries in order to solve the problem in realistic time.
This limits the speedup that could have been obtained by using quantum techniques applied to
these algorithms. A natural candidate for problems with faster black-box evaluation time and
larger number of queries lies in cryptanalysis, where the black-boxes are fast to implement and

89



CHAPTER 6. CONCLUSIONS

designed so that exhaustive search is essentially the best attack. However, in this thesis, we have
tried analyzing problems which might be relevant to other industries apart from cryptography.

We have considered a few practically important industrial problems which involve solving
Boolean satisfiability or derivative free optimization, and analyzed the asymptotic improvement
to these algorithms with a quantum speedup. For these specific problems, with the knowledge
of the parameters of practical interest, we computed the approximate time it would take for a
quantum computer to solve these problems with different clock speeds. We analyzed the threshold
parameters for these problems below which we obtain a significant speedup, and above which
we lose the quantum improvement with the slower quantum architecture. Although, we have
considered only a few problems in this thesis, we hope to highlight the need for optimization
and the challenges in implementing quantum algorithms. It would be interesting in the future
to consider more optimization problems where the quantum speedup could be employed to solve
practically important problems to out-perform state-of-the-art classical techniques. We raise
several open questions from the perspective of optimizing algorithms which would be worthwhile
considering as future work.

6.1 Future work

In this last section, we take the opportunity to highlight a few practical problems which were either
not considered in this thesis, or problems for which a quantum speedup wasn’t straightforward.

1. Protein folding: The protein folding problem can be described as a global minimization
problem, to obtain the native tertiary structure of a linear polypeptide chain. Computa-
tionally, the energy of the native state is the minimum compared to all possible tertiary
structures given a polypeptide chain. Much of the current effort these days is directed at
predicting this native structure, and predicting how this native structure is formed from
the linear chain. Protein mis-folding is the major cause of diseases such as Alzheimer’s,
Parkinson’s, Cancer, Type-2 diabetes, etc. and understanding the process of folding to the
native structure is essential to preparing drugs to cure these diseases. Partly, the reason
for interest in this problem is because it seems that nature has an efficient algorithm which
solves this problem by finding the native structure in seconds, whereas the computational
complexity for computers to simulate it is considered NP-hard 1. There exists only one

1There have been proposed solutions to protein folding by D-Wave [PODDB+12] where they use the technique of
simulated annealing to solve the optimization problem. Considered a polypeptide chain with at most 40 states, after
executing their algorithm, in 10,000 measurements only 13 measurements gave outputs of the native configuration
of the protein. With less than 1% of the measurements providing right outputs, there is no accuracy and precision
guarantees, which is absolutely necessary for a problem which is essential in curing diseases and preparing drugs.
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branch-and-bound deterministic algorithm for this problem in the literature and hence any
quantum algorithm which improves upon this result would be interesting. Companies which
require native structures of proteins often use the genetic algorithm proposed by Unger and
Moult [UM93] for tractable linear chains. It would be interesting if the recent result of a
fully quantum genetic algorithm in [SRN12] could be employed to improve the best known
classical genetic algorithm for protein folding.

2. Directed Quantum Walks: A challenge in quantum algorithms remains a well-defined
notion of quantum speedup to random walks on directed graphs. We have discussed in
section 3.5.2 that a quantum speedup to directed walks would significantly improve the
random walk step in Walksat and have an impact on many industrial problems which rely
on solving unstructured instances of SAT.

3. Rebalancing Walksat: The trade-off between the number of iterations and the overall
number of random walk steps in Walksat algorithm is important for SAT competitions
and industries. Experimentally, it is known that setting an exponential number of walk
steps performs better than a theoretical algorithm containing a finite number of steps. In
table 5.6 we studied this trade-off by employing Schöning’s algorithm on Matlab for small
instances. It would be interesting if other powerful algorithm could be analyzed on various
instances by altering the number of iterations and number of flips to compute the exact
trade-off between number of iterations and flips to obtain a meaningful quantum speedup.

4. Quantum DPLL: It would also be interesting if the quantum version of DPLL algorithm
that has been proposed in section 3.5.3 employing nested Grover search could be imple-
mented by simulation. If a simulator is capable of exponentially adopting the working of
this quantum DPLL SAT solver, we could get an idea about the scaling of the algorithm
with increasing SAT instances and compare them to classical DPLL-based solvers such as
minisat described in section 3.3.

5. Derivative free optimization: A few interesting aspects of derivative free algorithms
that haven’t been considered in this thesis are

• We considered a quadratic speedup to the number of function evaluations in the search
and poll step in derivative free algorithms using the quantum minimum finding algo-
rithm. An improvement to the number of iterations kmax in algorithm 4.5 would
improve the overall scaling of the algorithm significantly. The improvement to the
number of iterations would reduce the overall run time even if the algorithm is per-
formed on parallel processors.

• Quadratically reducing the number of evaluations was shown to be unproductive due
to complete parallelization. However, it is interesting to note that the equations solved
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inside the simulator are a sparse set of linear equations after linearization of the Jaco-
bians, and this is similar to the simulation of inter-storey drift in damper coefficient
optimization. An interesting idea worth investigating is if we could employ quantum
techniques to improve the algorithms implemented inside the black-box and hence im-
prove the overall running time. A quantum algorithm for solving a system of linear
equations was proposed in [HHL09], which scales as logarithm in the dimension of
the sparse input matrix. Applying this quantum improvement to practical problems
involves thorough analysis of the system of equations in the black-box.

6. Other practical applications: There exist many other applications which are worth
analyzing and investigating. Many papers have discussed quantum speedups for various
problems but a study comparing the state-of-the-art classical implementations and quantum
speedup to these problems hasn’t been done.

• Protein sequencing relies heavily on algorithms involving string matching. Classically,
the KMP algorithm solves the string matching in O(n+m) queries and using quantum
techniques and it was shown that the same task could be achieved in O(

√
n +
√
m)

queries in [RV03]. The caveat in this problem however is, given a classical string
it takes linear time to read the string, which offsets the quadratic speedup which is
obtained in processing. To overcome this hurdle, we are studying the problem of using
quantum access to read classical memory with error correction [AGJO+] to faithfully
perform Grover’s search algorithm.

• In computational geometry, quantum computation has shown promise in problems
[SST02] such as forming the convex hull, nearest neighbor problem, furtherest pair
problem, minimum spanning tree, segment intersection detection, etc. It would be
interesting to investigate the exact numerics to analyze the tradeoffs between the
algorithms employed by industries for practical problems such as rooftop designing,
medical imaging, robot motion planning, and nanotechnology.

• In [LMP13], a quantum speedup was proposed to the shortest vector problem by em-
ploying the quantum minimum finding algorithm as well. The shortest vector prob-
lem is widely employed in cryptanalysis and security networks; hence a comparison
between the speedup provided in this paper with state-of-the-art classically employed
techniques would be interesting. Another area worth considering is in integer program-
ming [HKW03] on finite dimensions, which employs this lattice reduction algorithm
as a subroutine.

• There are many more algorithms where a quantum speedup has been observed over
classical algorithms, such as pattern recognition [Sch02] which has applications in as-
tronomy [DDM+06], graph-theoretic problems [DHHM04] which have applications in
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scheduling and network design problems [Dán04], solving linear equations [HHL09]
which has applications in black-boxes in derivative free optimization [Jia07], in cir-
cuit simulations for electrical design [Lit97], maximum [AK99] and minimum [DH96]
finding algorithm can be employed in the Concorde algorithm for traveling salesman
problem [App06] and integer programming [HKW03], collision finding [Amb04] has
applications in lattice problems and cryptography [BJLM13] etc. As we have men-
tioned throughout the thesis, these algorithms work perfectly to give an advantage
when considered from a complexity perspective, it however remains to be seen how
such algorithmic speedups compare with state-of-the-art classical techniques employed
by industries.
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