
Managing Consistency of Business Process
Models across Abstraction Levels

by

Moisés Almeida Castelo Branco

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2014

c©Moisés Almeida Castelo Branco 2014

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Process models support the transition from business requirements to IT implementations. An
organization that adopts process modeling often maintain several co-existing models of the same
business process. These models target different abstraction levels and stakeholder perspectives.
Maintaining consistency among these models has become a major challenge for such an organi-
zation. For instance, propagating changes requires identifying tacit correspondences among the
models, which may be only in the memories of their original creators or may be lost entirely.

Although different tools target specific needs of different roles, we lack appropriate support
for checking whether related models maintained by different groups of specialists are still consis-
tent after independent editing. As a result, typical consistency management tasks such as tracing,
differencing, comparing, refactoring, merging, conformance checking, change notification, and
versioning are frequently done manually, which is time-consuming and error-prone.

This thesis presents the Shared Model, a framework designed to improve support for consis-
tency management and impact analysis in process modeling. The framework is designed as a
result of a comprehensive industrial study that elicited typical correspondence patterns between
Business and IT process models and the meaning of consistency between them.

The framework encompasses three major techniques and contributions: 1) matching heuris-
tics to automatically discover complex correspondences patterns among the models, and to main-
tain traceability among model parts—elements and fragments; 2) a generator of edit operations
to compute the difference between process models; 3) a process model synchronizer, capable of
consistently propagating changes made to any model to its counterpart.

We evaluated the Shared Model experimentally. The evaluation shows that the framework
can consistently synchronize Business and IT views related by correspondence patterns, after
non-simultaneous independent editing.

iii

Acknowledgements

I would like to thank my supervisor, Prof. Krzysztof Czarnecki, for giving me the opportu-
nity to be member of his research team. I was very fortunate to work both on theoretical and
practical aspects of model consistency and model synchronization. I am grateful for providing
the guidance and direction that has led to the completion of this thesis. I am also thankful for all
the assistance that made my life in Canada a great experience.

I also acknowledge Jochen Küster, from Bielefeld University of Applied Sciences, Hagen
Völzer, from IBM Research Zurich, and Alex Lau and Phil Coulthard, from IBM Canada Lab.
Our collaboration was deeply inspiring and fruitful. Thank you very much!

Thank you to my colleagues in the Generative Software Development Lab and collaborators.
A special thanks to Yingfei Xiong, Zinovy Diskin, Michal Antkiewicz, Kacper Bak, Thiago
Tonelli, Rafael Lotufo, Leonardo Passos, Javier Troya, István Ráth and Arif Wider. You always
found the time to discuss my research and were full of ideas. I admire you folks, because of your
dedication, patience, and structured thinking. Your commitment to detail and work ethics deeply
influenced the way I think and act today.

I would like to thank my external examiner, Prof. Dragan Gašević, for finding time to visit
Waterloo and for his comments on this thesis. I am very grateful to my internal thesis committee,
Prof. Daniel Berry, Prof. Lin Tan, and Prof. Paul Ward, for helping me shape this research.

Thank you to my family in Canada: Marcı́lio Mendonça, Laércio de Oliveira, Nelson Multari,
Toacy Oliveira, Gabriel Caridade, Márcio Juliato and Hermênio Lima. Your continuous support
and all the funny moments we had together were essential to balance my life.

Thank you very much to all my friends in the Bank of Northeast of Brazil. Many thanks to
my great friends: Paulo Jucá, Jesuı́no Freitas, Renato Helônio, Roberto Cysne, Ricardo Menezes,
Alan Bandeira, and Airton Fernandes. Our daily email messages were an invaluable source of
fun and happiness. It would be difficult to finish PhD abroad without you! My special thanks to
Rafael Fonseca, who gave me a great support on my empirical studies. My sincere gratitude to
my former managers, Cláudio Reginaldo and Stélio Gama, who believed in me and gave me all
support that I needed.

My deepest thanks to my wife, Mirela! Your love and dedication were absolutely indispens-
able to this achievement! Love you!

Finally, a big thanks to all my relatives and friends. My brothers, Oswaldo and Zuila, were
always very supportive.

E a todos os amigos brasileiros no Canadá com quem tive o privilégio de conviver nessa
fantástica jornada, meu muito obrigado!

iv

To my parents, Oswaldo and Clara, my best source of inspiration.

v

Table of Contents

List of Tables xi

List of Figures xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Shared Model Overview . 2

1.3 Research Contributions . 3

1.4 Research Method . 6

1.5 Outline of the Thesis . 6

1.6 Publications . 7

2 Business Process Modeling: Background and a Running Example 8

2.1 Overview . 8

2.2 Running Example . 9

3 Related Work 11

3.1 Business-IT Alignment in BPM . 11

3.2 Consistency Management . 12

3.3 Consistency Management of Process Models 14

3.4 Bidirectional Transformation Frameworks . 16

3.5 Empirical Research . 16

vi

4 Empirical Study 18

4.1 Research Methods . 18

4.2 The Organization . 19

4.3 Artifact Analysis . 19

4.4 Interviews . 21

4.5 Survey . 23

4.6 Main Findings . 24

4.6.1 Processes are developed in several levels of abstraction 24

4.6.2 Hierarchical and non-hierarchical refinement patterns 27

4.6.3 Models undergo parallel maintenance 37

4.6.4 Coverage and behavioral differences affect consistency most 41

4.6.5 Inconsistencies can cause severe problems 43

4.6.6 Practitioners prefer a single model for Business and IT 45

4.6.7 Inconsistencies and fixes should be presented as they occur 48

5 General Concept of the Shared Model Approach 50

5.1 Overview . 50

5.2 Edit Operations . 52

5.2.1 Add . 53

5.2.2 Delete . 54

5.2.3 Split . 55

5.2.4 Collapse . 56

5.2.5 Attribute Assign . 57

5.2.6 Change Visibility . 58

5.3 Framework Implementation . 58

vii

6 Matching Process Models Across Abstraction Levels 59

6.1 Overview . 59

6.2 BPMN, SESE, and PST . 59

6.3 Differences between Business and IT process models 61

6.4 Matching Algorithm . 62

6.5 Matching Criteria for Model Elements and Regions 63

6.6 Attribute Matching . 64

6.7 Structure Matching . 65

6.8 Complexity . 67

6.9 Evaluation . 67

6.9.1 Method . 67

6.9.2 Results . 70

6.9.3 Threats to validity . 71

6.10 Comparison . 72

7 Generating Edit Operations from Automatic Correspondence Discovery 74

7.1 Overview . 74

7.2 Motivation . 74

7.3 Running Example . 75

7.4 Edit Operations . 75

7.5 Generating Edit Operations from Correspondences between Process Models . . . 77

7.6 Evaluation . 80

7.6.1 Implementation . 80

7.6.2 Results . 80

7.7 Conclusions . 80

viii

8 The Shared Model Approach 82

8.1 Overview . 82

8.2 Motivation for a Shared Model . 83

8.2.1 Why we want different views . 83

8.2.2 Why different views need to be synchronized 86

8.3 Requirements for a Shared Process Model . 86

8.3.1 The Shared Process Model Concept . 86

8.3.2 Usage Scenarios and Requirements . 87

8.4 A Technical Realization of the Shared Process Model 89

8.4.1 Basic Solution Design . 90

8.4.2 Establishing and Maintaining Correspondences 91

8.4.3 Business-IT Consistency . 92

8.4.4 Computing Changes between Process Model Versions 94

8.4.5 Evolution of the Shared Process Model 95

8.4.6 Implementation . 97

9 Evaluation 99

9.1 Objectives . 99

9.2 Subjects . 100

9.3 Correspondence Patterns versus Edit Patterns 101

9.4 Method . 102

9.5 Results: Single Refinement Patterns . 104

9.6 Results: Compound Refinement Patterns . 104

9.7 Discussion of Results . 107

9.8 Threats to Validity and Lessons Learned . 111

10 Conclusions 114

10.1 Summary . 114

10.2 Limitations and Future Work . 115

ix

APPENDICES 117

A Basic BPMN Notation 118

B Matching Algorithm Pseudocode 119

B.1 Introduction . 119

B.2 Algorithm’s Pseudocode . 119

C Academic and Research Activities 123

C.1 Accomplished Activities . 123

References 126

x

List of Tables

4.1 BPM Projects . 20

4.2 Model Sizes . 20

4.3 Change Requests . 21

4.4 Interviews . 22

4.5 Refinement Occurrences . 28

4.6 Refinement Patterns Needed by Stakeholder . 37

4.7 Percentage of Changes per Project . 38

4.8 How Differences Affect Consistency . 42

4.9 How Differences are Tolerated . 43

4.10 Consistency Aspects Mentioned in the Interviews 43

4.11 How Fixing Actions Should be Presented . 48

6.1 BPM Projects . 68

6.2 Model Sizes . 69

6.3 Correspondences among Models across Different Abstraction Levels 71

6.4 Related BPM Matching Approaches. + : Feature Provided; – : Feature not
Provided; NA : Not Available . 73

7.1 Correspondences . 77

7.2 Evaluation . 80

9.1 Project Size . 100

xi

9.2 Correspondence, Actual Edit and Conceptual Edit Patterns 102

9.3 Evaluation Scenarios: Single Refinement Patterns 105

9.4 Evaluation Results, Single Refinements . 106

9.5 Evaluation Scenarios: Compound Refinement Patterns 108

9.6 Evaluation Results, Compound Refinements . 110

C.1 Timetable of Academic and Research Activities 124

xii

List of Figures

1.1 Process View Synchronization via a Shared Process Model 3

1.2 Framework Overview . 5

2.1 ATM Process Models . 10

4.1 Survey Answers per Professional Role . 24

4.2 Add Script Task . 29

4.3 Add Protocol Task . 30

4.4 Add Boundary Event . 30

4.5 Add Technical Exception Flow . 31

4.6 Change Activity Name . 32

4.7 Change Activity Type . 32

4.8 Suppress Specification Activity . 33

4.9 Split Task into Block . 34

4.10 Split Workflow . 35

4.11 Refactor Gateway . 36

4.12 Distribution of Changes per Type . 38

4.13 P1 Change History . 39

4.14 First Year Change History . 40

4.15 Functionality Inadvertently Removed . 44

4.16 Preferred Approach to Enforce Consistency . 46

xiii

4.17 Preferred Method for Aligning Models . 49

5.1 Framework Overview . 51

5.2 Add . 53

5.3 Delete . 54

5.4 Split . 55

5.5 Collapse . 56

5.6 Attribute Assign . 57

5.7 Change Visibility . 58

6.1 Matching Component . 60

6.2 BPMN Models . 61

6.3 PSTs Representation of the Business Process Models 64

6.4 Attribute Matching Phase Step by Step for R2 and R3 66

6.5 Correspondence Links for the Attribute Matching Phase 66

6.6 Correspondence Links from Both Phases . 67

7.1 Diff Component . 75

7.2 BPMN Models . 76

7.3 PSTs representation of the business process models 77

8.1 Shared Model . 82

8.2 Illustration of some refinements often made going from the business to the IT
model . 84

8.3 Process view synchronization via a Shared Process Model 87

8.4 The Shared Process Model as a combination of two individual models, coupled
by correspondences . 90

8.5 Examples of inconsistencies . 93

8.6 Change operations according to Küster et al. 94

8.7 Example of a change script on the IT level that is propagated to the business level 95

xiv

8.8 Delta computation for propagating changes . 96

9.1 Synchronization of Compound Edits . 109

9.2 Public and Private Synchronization Dependencies 111

9.3 Synchronization of Concurrent Changes . 112

xv

Chapter 1

Introduction

1.1 Motivation

Business Process Modeling (BPM) is increasingly used by enterprises to improve their agility and
operational performance by better aligning their IT infrastructure with their business needs. Typ-
ically, a BPM-driven development process involves the participation and collaboration of many
stakeholders (e.g., business analysts, systems analysts, IT architects and developers). These roles
and responsibilities may be organizationally defined, be the result of the adopted development
process, or simply reflect the different competencies and capabilities of the people involved. The
distribution of responsibilities and roles usually results in the creation of different models of the
same business process. These models vary from business-oriented ones, which are technology-
independent and easily understandable by business people, to IT-oriented ones, which are con-
structed by taking into consideration technicalities of existing systems. Specialized modeling
languages have been developed to represent such models, including Business Process Modeling
Notation (BPMN) [95] for business-level models and Web Services Business Process Execution
Language (BPEL) [101] for IT-level executable models. Since its 2.0 version, BPMN can also
express executable models [102].

The multitude and heterogeneity of models created to describe a business process at differ-
ent levels of abstraction and from different stakeholder perspectives lead often to inconsistencies
among the models. Inconsistencies arise because the models overlap—for example, they contain
elements that refer to common aspects of systems and other enterprise resources, such as organi-
zational structure and flow of communication, and make assertions about these aspects that may
be contradictory or not satisfiable under certain conditions. On the positive side, inconsistencies
highlight different perceptions and goals of the stakeholders involved in the development process

1

and they can be intentionally introduced to indicate aspects of a process which deserve additional
information elicitation and further development. On the negative side, inconsistencies can cause
development delays, increased costs, and operational and audit failures.

To manage consistency of multiple business process models, researchers have proposed dif-
ferent approaches [27, 28, 65, 79, 88, 131], each targeting a sub-problem of consistency manage-
ment. In practice, companies also employ their own processes to manage the consistency among
multiple models. It is not clear to what extent the academic approaches are adopted by indus-
try and what remaining challenges are still faced by practitioners. Conversely, many academic
approaches are based on assumptions of how models are handled in practice, and some assump-
tions are even contradictory. For example, Zerguini [139] and Soffer [112] assume that models
at different levels of abstraction are related in a strict top-down fashion via hierarchical refine-
ments, whereas Weidlich et al. [128] propose that non-hierarchical refinements should also be
considered. It is not clear which of these assumptions are true in practice. Thus, our research
starts by collecting empirical evidence to derive requirements for consistency management of
business process models.

1.2 Shared Model Overview

The Shared Process Model approach has the capability to synchronize process model views that
reside on different abstraction levels. The concept is illustrated by Fig. 1.1. The Shared Pro-
cess Model provides two different views, a business view and an IT view, and maintains the
consistency between them. A current view can be obtained at any time by the corresponding
stakeholder by the get operation. A view may also be changed by the corresponding stakeholder.
With a put operation, the changed view can be checked into the Shared Process Model, which
synchronizes the changed view with the other view.

Each view change can be either designated as a public or a private change. A public change
is a change that needs to be reflected in the other view whereas a private change is one that
does not need to be reflected. For example, if an IT architect realizes, while he is working on
the refinement of the IT model, that the model is missing an important business activity, he
can insert that activity in the IT model. He can then check the change into the Shared Process
Model, designating it as a public change to express that the activity should be inserted in the
business view as well. The Shared Process Model then inserts the new activity in the business
view automatically at the right position, i.e., every new business view henceforth obtained from
the Shared Process Model will contain the new activity. If the IT architect designated the activity
insertion as a private change, then the business view will not be updated and the new activity will
henceforth be treated by the Shared Process Model as an IT-only activity.

2

Figure 1.1 also illustrates the main three status conditions of a Shared Process Model: busi-
ness conformance, IT conformance and business-IT consistency. The business view is business
conformant if it is approved by the business analyst, i.e., if it reflects the business requirements.
This should include that the business view passes basic validity checks of the business modeling
tool. The IT view is IT conformant if it is approved by the IT architect, i.e., if it meets the IT
requirements. This should include that the IT view passes all validity checks of the IT modeling
tool and the execution engine. Business-IT consistency means that the business view faithfully
reflects the IT view, and equivalently, that the IT model faithfully implements the business view.

Business

Analyst

IT Architect/

Developer

IT View

put put

get get Shared

Process

Model

change change

Business

View

 / /
 /

Business conformance IT conformance

Business-IT consistency

Figure 1.1: Process View Synchronization via a Shared Process Model

1.3 Research Contributions

The overarching goal of this work is to improve support for consistency management and impact
analysis in business-process modeling.

This thesis proposes a practical framework for managing consistency of process models,
which encompasses five main contributions:

1. A detailed account of the relationship between models that target different levels of ab-
straction and how to characterize consistency among them. We conduct an in-depth em-
pirical study of a business-driven engineering process deployed at a large company in the
banking sector (see Chapter 4 and [17]). We analyzed more than 70 business process
models developed by the company, including their change history, with over 1000 change
requests. We also interviewed 9 business and IT practitioners and surveyed 23 such prac-
titioners to understand concrete difficulties in consistency management, the rationales for
the specification-to-implementation refinements found in the models, strategies that the

3

practitioners use to detect and fix inconsistencies, and how tools could help with these
tasks. Our contribution is a set of empirical findings that provide empirical evidence of
1) how business process models are created and maintained, including a set of recurrent
patterns used to refine business-level process specifications into IT-level models; 2) what
types of inconsistencies occur; how they are introduced; and what problems they cause;
and 3) what stakeholders expect from tools to support consistency management.

2. A technique to discover correspondences via matching and support traceability among
the models. We present a heuristic method for determining correspondences between pro-
cess models (see Chapter 6 and [14]). A correspondence establishes which activities in
one model correspond to which activities in another model. The heuristic is based on the
aforementioned empirical study, which revealed frequent correspondence patterns between
models spanning multiple abstraction levels. The heuristic has two phases: first, establish-
ing correspondences based on similarity of model element attributes such as types and
names, and then, refining the result based on the structure of the models. Compared to pre-
vious work, our algorithm can recover complex correspondences relating whole process
fragments rather than just individual activities.

3. A technique to generate edit operations based on the matching and support process model
synchronization (see Chapter 7 and [15]). We leverage the matching and present a practical
approach for generating bidirectional model transformations in BPM based on edit opera-
tions. The operations are automatically generated and used by the framework to propagate
changes and synchronize the models.

4. A process model synchronizer (see Chapter 8 and [85]). We present a practical approach—
(The Shared Process Model)—that combines all the aforementioned techniques to au-
tomatically manage traceability links between Business and IT views and synchronize
changes made to any view. A conceptual description of the approach is presented in the
Chapter 5.

5. A comprehensive evaluation of the framework on real-world modeling scenarios (see Chap-
ter 9 and [86]). We perform a comprehensive evaluation of the framework on actual BPM
projects from an industry partner. We present recommended best practices to obtain the
maximum benefit from the framework and also discuss its current limitations.

Figure 1.2 shows an overview of our proposed framework for consistency management in
business process modeling. All the techniques we have developed are combined to follow a
step-by-step process that we briefly describe here:

4

• First, Business and IT process models (BM, IT) are matched using appropriate heuristics
to deal with common correspondence patterns. The matched models are augmented with
structural information, by parsing them into Process Structure Trees (PSTs) [124]. BM+

and IT + are the models enriched with the new information. The hooked arrows, ↪→ and
←↩, in Fig 1.2, represent inclusion mappings; the double arrow, ↔, represents the corre-
spondence mapping between the PSTs.

• Second, the deltas—i.e., changes made to either process model (µBM, µIT , µBM+ , µIT +)—are
represented as a set of edit operations; these operations can be either recorded or computed.
The down arrows, ⇓, represent the deltas.

• Third, users select which edit operations need to be propagated (bPpg, f Ppg) and the
models are synchronized via model transformation (symmetric delta Lens).

• Finally, the new—i.e., consistent—versions of the models are updated (getBM, getIT) on
both sides (BM′, IT ′).

BM BM+ IT+ IT

BM’ BM’+ IT’+ IT’

getBM getIT

+ +Lens
fPpg

bPpg

Figure 1.2: Framework Overview

Our proposed framework targets consistency management of process models that describe
the same business intent in different abstraction levels. The framework comprises two major
parts. The first one is the conceptual architecture, which describes consistency in terms of cor-
respondence patterns and bi-directional model synchronization. The second part is a practical

5

realization of the framework implemented in the Java programming language, which can be
leveraged by developers to extend and improve the techniques. The framework can be gradually
improved as future work.

1.4 Research Method

The research was carried out in an iterative, example-driven, and experimental fashion. Work
towards contribution 1 consisted of a series of empirical studies, including study of real-world
business process models, questionnaires and interviews. By combining the artifact studies, ques-
tionnaires and interviews with the artifact creators and users, we were able to obtain a rich picture
of the requirements and challenges related to creating and using business process models. Work
towards contributions 2, 3, and 4 involved coming up with the theoretical underpinnings of con-
cepts and methods to be created, conceptual design, prototyping, and experimental evaluation of
the prototypes. Towards evaluating the framework (contribution 5), we simulated the evolution
of the models by replaying the real history of model changes using BPM projects from The Bank
of Northeast of Brazil (BNB)—the bank that provided our case study. Additionally, we obtained
expert feedback from BNB engineers.

1.5 Outline of the Thesis

The remainder of the thesis is structured as follows. Chapter 2 provides background on BPM and
describes the running example, the models of an Automated Teller Machine (ATM), which we
use throughout the thesis. Chapter 3 discusses related work on model consistency management
and other important topics for the thesis. Chapter 4 describes the empirical study design, present-
ing details about the organization, the analyzed projects and artifacts, conducted interviews and
survey, and also presents the most relevant findings for this research proposal, including the re-
finement patterns catalog. Chapter 5 shows a conceptual view of the framework and its synchro-
nization operations based on the formal theory of symmetric delta lenses. Chapter 6 presents our
method to match process models at different levels of abstraction. Chapter 7 presents our method
to generate edit lenses for model synchronization based on the automatic matching. Chapter 8
presents the concept of the shared model in detail. Chapter 9 evaluates our framework in practice,
by means of a proof of concept with the shared model prototype. Finally, Chapter 10 summa-
rizes the contributions of the thesis and highlights additional directions we envision to improve
the framework.

6

1.6 Publications

This thesis contains material from the following publications:

• Moisés Castelo Branco, Javier Troya, Krzysztof Czarnecki, Jochen Küster, and Hagen
Völzer. Matching Business Process Workflows Across Abstraction Levels. In Proceedings
of 15th ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems, MODELS 2012. ACM/IEEE, 2012.

• Moisés Castelo Branco and Arif Wider. Generating Preliminary Edit Lenses from Auto-
matic Pattern Discovery in Business Process Modeling. In Proceedings of the CAiSE 2013
Forum at the 25th International Conference on Advanced Information Systems Engineer-
ing (CAiSE), 2013.

• Moisés Castelo Branco, Yingfei Xiong, Krzysztof Czarnecki, Janette Wong, and Alex Lau.
Effective Collaboration and Consistency Management in Business Process Modeling. In
Proceedings of the 2010 Conference of the Center for Advanced Studies on Collaborative
Research, CASCON 2010, Riverton, NJ, USA, 2010. IBM Corp.

• Moisés Castelo Branco, Yingfei Xiong, Krzysztof Czarnecki, Jochen Küster, and Hagen
Völzer. A Case Study on Consistency Management of Business and IT Process Models in
Banking. Software and Systems Modeling (SoSyM), Special Issue on Enterprise Model-
ing, 2013.

• Weidlich, M., E. Sheetrit, M. C. Branco, and A. Gal. Matching Business Process Models
Using Positional Language Models. In Proceedings of 32nd International Conference on
Conceptual Modeling, ER 2013, Hong Kong, 2013.

• Küster, J., F. Cedric, H. Völzer, M. C. Branco, and K. Czarnecki. Supporting Different Pro-
cess Views through a Shared Process Model. In Proceedings of 9th European Conference
on Modelling Foundations and Applications, ECMFA 2013, 2013.

7

Chapter 2

Business Process Modeling: Background
and a Running Example

2.1 Overview

A business process is a collection of related, structured or ad-hoc activities (tasks) that produce
a specific output, such as service or product, for a particular customer or market [22]. Structured
processes, which our study focuses on, are usually modeled as workflows, i.e., flows of activities.
Typical examples of business processes are Purchasing, Manufacturing, Marketing, and Sales.
A business process begins with a mission objective and normally ends with achievement of the
objective. The activities of a process interact with IT assets to capture, transform, or report
business data. As with processes, the data may be structured, such as a new order conforming to
some well-defined schema, or ad-hoc (unstructured) data, such as an e-mail message [108].

In practice, a range of business to IT-oriented stakeholders create and use business process
models for specific purposes, including requirements elicitation, documentation, simulation, and
execution [11]. Each model must be appropriate for its target audience and purpose—having
adequate level of detail, focusing on relevant aspects, and neglecting irrelevant ones [65]. This
goal can be achieved by creating either several separate models—each focused on particular set
of stakeholders and purposes—or a single model with multiple views [12].

8

2.2 Running Example

Figure 2.1 shows three models, each representing the process of using an Automated Teller Ma-
chine (ATM) system at different level of abstraction. We will use these models, which are ver-
sions of real process models from one of the studied projects (project P4, Sect. 4.3), as our
running example. The two specifications are the same as the original models, except that it
has its labels translated from Portuguese to English. The IT model is translated from BPEL to
BPMN. For checking consistency, we focus on the control flow of the process models. BPMN
and BPEL control flow constructs are similar in the sense that each can be mapped into the other,
according to the OMG specification of BPMN 2.0 [102]. The control flow of the original models
was entirely preserved in these examples. Note that the original models, as represented in their
respective modeling tools, also have detailed information as attributes of nodes and flows, such
as the communication protocols and the addresses of the services used.

The first model (Fig. 2.1.a) represents a business-level process specification, which is cre-
ated and maintained by Business Analysts. The second one (Fig. 2.1.b) is a refinement of the
first one, created and maintained by IT Systems Analysts. These stakeholders use such models
to align the modeled process with the existing service infrastructure; specify how the process
interacts with IT assets; and ensure that the process is sound and free of design flaws, such as
incomplete data objects and deadlocks. The third model (Fig. 2.1.c), created by IT Architects
and Developers, refines the second model and represents the executable process implementation
that goes into production. The executable process is implemented on top of an ISO8583 service
infrastructure [73] and the codes that appear in the names of some tasks, such as 0200 and 9010,
are types of messages of this protocol. Note that the final refinement (Fig. 2.1.c) consists of
multiple, modularized executable models. These models orchestrate the actual services provided
by the IT service infrastructure.

The models in Fig. 2.1 are expressed in BPMN. The notation represents activities by rounded
rectangles, events by circles, gateways by diamonds (rhombi), and sequence flows by arrows (see
Appendix A for legend of BPMN symbols used in the example). Each model has a start, usually
modeled by an start event (e.g., Customer insert Card into ATM), and a flow of activities that
is governed by decisions (e.g., Card is Valid?) and exceptions (e.g., 8s Timeout). Each model
also has an end point, which represents the achievement of the process: either a value delivered
to an user or the termination of the process because of an error or a user decision (e.g., Cancel
Transaction).

9

C
u
st

o
m

e
r

In
se

rt
 C

a
rd

in

to
 A

T
M

Id
e
n
tif

y

C
u
st

o
m

e
r

C
a
rd

C
a
rd

 is

V
a
lid

?

C
u
st

o
m

e
r

S
e
le

ct
s

T
ra

n
sa

ct
io

n

Y
e
s

C
u
st

o
m

e
r

P
ro

vi
d
e
s

T
ra

n
sa

ct
io

n

D
e
ta

ils

C
u
st

o
m

e
r

P
ro

vi
d
e
s

P
IN

V
a
lid

a
te

 P
IN

P
IN

 is

V
a
lid

?

P
ro

ce
ss

W
ith

d
ra

w

C
o
n
su

lt
B

a
la

n
ce

C
o
n
su

lt

S
ta

te
m

e
n
t

A
tt
e
m

p
ts

<
=
 3

?

Y
e
s

C
a
n
ce

l

T
ra

n
sa

ct
io

n
N

o

N
o

C
o
n
cl

u
d
e

T
ra

n
sa

ct
io

n

Y
e
s

N
o

(a) Business Specification

Id
e
n
tif

y

C
u
st

o
m

e
r

C
a
rd

C
a
rd

 is

V
a
lid

?

Y
e
s

C
u
st

o
m

e
r

P
ro

vi
d
e
s

T
ra

n
sa

ct
io

n

D
e
ta

ils

C
u
st

o
m

e
r

P
ro

vi
d
e
s

P
IN

D
u
e
 t
o

P
IN

?

N
o

P
ro

ce
ss

W
ith

d
ra

w

C
o
n
su

lt
B

a
la

n
ce

C
o
n
su

lt

S
ta

te
m

e
n
t

A
tt
e
m

p
ts

<
=
 3

?

Y
e
s

C
u
st

o
m

e
r

In
se

rt

C
a
rd

 in
to

 A
T

M

T
ra

n
sa

ct
io

n

C
a
n
ce

le
d
 b

y

N
o

N
o

T
ra

n
sa

ct
io

n

C
a
n
ce

le
d
 b

y

Y
e
s

T
ra

n
sa

ct
io

n

A
u
th

o
ri
ze

d
?

N
o

C
o
n
cl

u
d
e

T
ra

n
sa

ct
io

n

D
e
b
it

A
cc

o
u
n
t

P
ro

ce
ss

P
e
n
d
in

g
 D

e
b
it

P
ro

ce
ss

P
e
n
d
in

g

T
ra

n
sa

ct
io

n
C

a
n
ce

l

T
ra

n
sa

ct
io

n

A
u
th

o
ri
ze

T

ra
n
sa

ct
io

n

C
u

s
to

m
e

r
C

u
s
to

m
e

r

(b) Technical Specification

Id
e
n
tif

y

C
u
st

o
m

e
r

C
a
rd

9
3
0
0

C
a
rd

 is

V
a
lid

?

Y
e
s

C
u
st

o
m

e
r

P
ro

vi
d
e
s

T
ra

n
sa

ct
io

n

D
e
ta

ils

C
u
st

o
m

e
r

P
ro

vi
d
e
s

P
IN

D
u
e
 t
o

P
IN

?

.

N
o

D
is

p
e
n
se

C
a
sh

P
ri
n
t

B
a
la

n
ce

P
ri
n
t

S
ta

te
m

e
n
t

A
tt
e
m

p
ts

<
=
 3

?

Y
e
s

G
e
t
C

a
rd

Id
e
n
tif

ic
a
tio

n
9
3
1
0

In
iti

a
liz

e

T
ra

n
sa

ct
io

n

P
a
ra

m
e
te

rs

C
u
st

o
m

e
r

In
se

rt

C
a
rd

 in
to

 A
T

M

T
ra

n
sa

ct
io

n

C
a
n
ce

le
d
 b

y

C
a
n
ce

l T
ra

n
sa

ct
io

n

N
o

D
is

p
la

y

C
a
n
ce

lin
g

M
e
ss

a
g
e

C
a
n
ce

l T
ra

n
sa

ct
io

n

C
h
e
ck

T
ra

n
sa

ct
io

n

T
a
b
le

S
u
sp

e
ct

 o
f
F

ra
u
d?

S
e
n
d
 S

e
cu

ri
ty

N
o
tif

ic
a
tio

n

Y
e
s

U
p
d
a
te

T
ra

n
sa

ct
io

n

T
a
b
le

N
o

T
ra

n
sa

ct
io

n

C
a
n
ce

le
d
 b

y

A
u
th

o
ri
ze

W
ith

d
ra

w
0
2
0
0

R
e
q
u
e
st

B
a
la

n
ce

9
0
0
0

R
e
q
u
e
st

S
ta

te
m

e
n
t

9
0
0
0

C
a
n
ce

l

C
a
n
ce

l

G
e
t

A
u
th

o
ri
za

tio
n

0
2
1
0

G
e
t

B
a
la

n
ce

9
0
1
0

G
e
t

S
ta

te
m

e
n
t

9
0
1
0 C

a
n
ce

l

Y
e
s

T
ra

n
sa

ct
io

n

A
u
th

o
ri
ze

d
?

P
ro

ce
ss

T
ra

n
sa

ct
io

n

8
s

T
im

e
o
u
t

8
s

T
im

e
o
u
t

N
o

C
o
n
cl

u
d
e

T
ra

n
sa

ct
io

n

S
e
n
d

C
o
m

p
le

tio
n

C
o
n
fir

m
a
tio

n

0
2
0
2

Y
e
s

D
e
b
it

A
cc

o
u
n
t

A
d
d
 P

e
n
d
in

g

D
e
b
it

R
e
b
a
te

 F
e
e

C
h
a
rg

e
N

o

C
u

s
to

m
e

r
C

u
s
to

m
e

r

(c) Executable Process

Figure 2.1: ATM Process Models

10

Chapter 3

Related Work

We discuss related work in five groups. First, we discuss the general problem of Business-
IT alignment in BPM. Second, we introduce the general area of consistency management and
discuss related work addressing specific consistency management tasks. Third, we turn to work
on consistency management of business process models. Then, we discuss related work on
bidirectional transformation frameworks. Finally, we review empirical work related to our thesis.

3.1 Business-IT Alignment in BPM

Bridging the gap between business and IT abstraction levels is a standard topic in enterprise
systems engineering [20, 135]. Bieberstein et al. define business-IT alignment as “a dynamic
state in which a business organization is able to use information technology (IT) effectively to
achieve business objectives—typically improved financial performance or marketplace competi-
tiveness.” [11]

A key aspect of the business-IT alignment is establishing a correlation between business
specifications and IT implementations. We discuss some of the existing approaches below. All
approaches are based on assumptions on how specifications and implementations are created and
how traceability between them is established and managed. Some approaches deal with issues
of transforming business processes into executable models.

Buchwald et al. [19] present an approach which allows for a transfer of business require-
ments into executable processes. Their approach provides a three-level modeling method that
automatically maintains an intermediate model called Business-IT-Mapping Model (BIMM) to

11

describe how activities from the business process are transferred into activities of the system pro-
cess. A BIMM manages correspondences between model activities by means of transformation
operations such as rename, insert, remove, merge, and split. A limitation of the approach is that
it only considers consistency in terms of coverage, i.e., whether or not corresponding business-
relevant activities are correctly mapped between the models. In practice, consistency involves
other aspects, such as control flow (see Sect. 4.6.4).

Tran et at. [120] present a modeling framework realized as a view-based reverse engineering
tool-chain. The framework maps process descriptions onto appropriate high-level or low-level
views. The framework can be extended with support for different modeling languages, including
BPMN and BPEL. Although the approach supports representing process structures at different
levels of abstraction, it does not support consistency management among these views when they
are independently edited (see Sect. 4.6.3).

Delgado et al. [26] provide a methodology for incremental development of business pro-
cesses, based on the joint application of Model Driven Development and Service Oriented Com-
puting paradigms. Their proposed methodology recognizes the need of integrating business and
IT people into the development life-cycle and conveying the right level of detail as output of
each development stage. Our work confirms such a need, by providing evidence on how busi-
ness and IT people collaborate to create process models throughout the development process (see
Sect 4.6.1).

Decker [24] proposes patterns for introducing a process support layer that solves incompati-
bilities between business- and IT-level process models. The work assumes that a single process
model for business and IT is inherently undesirable and that both perspectives are hierarchically
related to each other.

3.2 Consistency Management

Consistency management is a set of methods and tools for establishing and maintaining consis-
tency among software artifacts, such as models, code, documentation, and test cases, which are
usually created and used by multiple stakeholders [80, 113]. Existing works divide consistency
management into a set of tasks [45, 80, 100]. The remainder of this subsection introduces these
tasks and the corresponding related work in general; the next subsection discusses the related
work specific to BPM.

• Defining consistency properties: Assuming a set of software models and a set of corre-
spondence relations among their elements, consistency is a property of these models and

12

their correspondences [34, 42]. Such a property is typically defined as a consistency rule,
expressed in some logic and interpreted in a knowledge domain. Knowledge domains
range from well-formedness of language constructs to industry- and organization-specific
policies, such as legal regulations and organization-specific IT standards [42]. For exam-
ple, a reasonable policy is to require that every business-relevant task in an executable
model (e.g., Identify Customer Card 9300 in Fig. 2.1.c) is reflected in its business-level
specification (Identify Customer Card in Fig. 2.1.a); conversely, a purely technical task
(Initialize Transaction Parameters in Fig. 2.1.c) should not be reflected in the specifica-
tion.

• Matching the models: This task deals with finding correspondence relations among el-
ements of different models. For example, Identify Customer Card in Fig. 2.1.a corre-
sponds to Identify Customer Card in Fig. 2.1.b, and to both Identify Customer Card 9300
and Get Card Identification 9310 in Fig 2.1.c. As we discuss in Sect. 4.6.3, process
model matching is often challenging because identifying correspondences may require
uncovering tacit knowledge, which may be only in the memories of the original creators
of the models or may be lost entirely. Unless the correspondences have been recorded
(e.g. via unique IDs), model alignment requires matching the models using domain- or
organization-specific heuristics (e.g., by name and model structure). Examples of ap-
proaches that match different types of artifacts include document to code traceability re-
covery [90] and generic, graph-based matching [136]. A related area is schema integration,
and in particular, schema matching, which deals with establishing correspondences among
database schemas (see surveys on this topic [43, 107]). It is not clear how the existing
techniques can be tailored to the problem of aligning process models. Our work presents
evidence on how business and IT process models are related and how the maintenance
process is done. This evidence will help developing appropriate alignment techniques.

• Checking consistency: Once the models are aligned, consistency is checked by evaluating
the consistency rules. Spanoudakis and Zisman distinguish four types of approaches to
consistency checking: logic-based approaches, model checking, specialized model analy-
ses, and human-centered collaborative exploration [113]. The adopted consistency man-
agement policy is subjective and specifies the circumstances that will trigger the checks.

• Diagnosing causes of inconsistencies: This task identifies the source, the cause, and the
impact of an inconsistency [113]. The source of an inconsistency is the set of elements
of software models that violate a consistency rule [100]. The cause of an inconsistency
could be conflicting stakeholder goals or just a mistake in one or more of the conflicting
models. The impact of an inconsistency are the consequences that the inconsistency has on

13

the modeled system. Spanoudakis and Zisman include a survey of diagnosis approaches in
their paper [113].

• Fixing inconsistencies: The final task is to fix inconsistencies. Ideally one or more fixes
should be automatically proposed to the user. For example, Nentwich et al. [98] give
approach that generates abstract fixes from first-order logic rules. An abstract fix specifies
only the locations to be changed and the user needs to complete the edits. Egyed et al. [38]
present an approach that generates concrete fixes for UML models, based on predefined
inconsistency rules. Ameluxen et al. [3] propose an approach in which models are checked
and corrected using graph transformation rules. Pinna et al. propose using an automated
planning system, which does not require defining operations manually [105].

3.3 Consistency Management of Process Models

We summarize work on consistency management in the context of BPM.

• Defining consistency properties: Weidlich et al. categorize differences among related
process models that can cause inconsistencies into the following types [128]:

- Model coverage differences are differences of what the related models describe in
terms of functionality. For example, a particular task can exist in one model, but may
be missing in the other.

- Behavioral differences are differences in how a particular functionality is imple-
mented in each of the models. For instance, the execution sequence of corresponding
tasks might differ.

- Information density differences are differences in the level of detail. For example,
one model might have two or more tasks that decompose a single corresponding task
from another model.

We used and confirmed the above categories to investigate how they affect consistency (see
Sect. 4.6.3). Behavioral consistency typically involves some notion of behavioral equiv-
alence, such as trace equivalence or bisimulation. For example, Küster [82] provides a
behavioral consistency notion for object-oriented behavioral models. In contrast, Weidlich
et al. view the consistency of two process models as a degree of consistency rather than a
strict binary criterion [128,129]. An example of such notion are behavioral profiles [132];

14

they replace strict criteria such as trace equivalence with less strict degree of trace sim-
ilarity. They build on properties of free-choice Petri nets and give a numeric degree of
consistency ranging from 0 (inconsistent models) to 1.0 (consistent models).

• Matching the models: Effective matching techniques applied to business process mod-
els require heuristics that are notation and application specific [29, 122, 130]. Discovery
of effective heuristics usually requires studying the differences among such models. In
this context, for example, Dijkman [27] presents another classification of frequently oc-
curring differences between similar business processes in general, such changing names
and types of activities and modifying the flow structure. Zerguini [139], Soffer [112] and
Dijkman [30] present solutions for matching hierarchically related process models. Our
study provides an in-depth analysis of differences between process models targeting dif-
ferent levels of abstraction and shows that non-hierarchical correspondences need to be
taken into account (see Sect. 4.6.2). Based on our findings, we have recently presented an
algorithm to automatically detect correspondences between BMPN process models across
levels of abstraction [14]. The algorithm combines lexical and structural correspondences
over the Process Structure Trees (PSTs) [124] of the input models in two phases. The first
phase matches the PST nodes using region and model element matching criteria adapted
from previous work on matching ASTs [46]. The second phase establishes additional cor-
respondences based on the position of the nodes in the PSTs.

• Checking consistency: Checking consistency of business process models may involve
checking simple structural rules, such as that each business relevant task in the executable
models is reflected in the business level specification, or analyzing behavioral properties
using model checking or specialized algorithms (e.g., [132]). Two special representations
of process models are used in model comparison: process structure trees [123] and process
model terms [48]. The first representation represents the essential structure of processes as
trees, allowing their easy matching and structural comparison. The second representation
gives a canonical representation of process models and allows efficiently checking for a
particular relaxed form of behavioural equivalence. Weidlich et al. [128,129,132] propose
generic frameworks for checking consistency of process models, based on task ordering.
Our findings reveal that consistency checking should actually take into account subjective
project- and domain-specific differences among the models.

• Diagnosing causes of inconsistencies: The process model differences classified by Wei-
dlich et al. [128] represent potential causes of inconsistencies. Establishing the actual root
causes of the inconsistencies, such as the conflicting goals of stakeholders, usually requires
additional knowledge that is not present in the models. We are not aware of of any work
investigating how diagnosis of inconsistencies among process models is done in practice.

15

• Fixing inconsistencies: Weidlich et al. [132] propose the concept of behavioural profile
and present a method for computing them in cubic time, when the process models are
translated to sound free-choice Petri nets w.r.t. their number of places and transitions.
They propose a numeric measure of consistency, which can be used by the users to spot
and assess potential inconsistencies. Our findings show that stakeholders prefer immediate
notification and editing quick-fixes, integrated to the modeling tools, instead of an offline
approach. Hegedüs et al. recently proposed an approach to fix model inconsistencies
based on state-space exploration and evaluated it on BPMN models [58]. Küster et al. also
discuss the change management and inconsistency resolution in BPM [83, 84].

3.4 Bidirectional Transformation Frameworks

Bidirectional transformation frameworks originate from the lens framework proposed by Foster
et al. [47]. Lenses consider the asymmetric synchronization: one model is a view of the other, and
define a state-based framework for asymmetric synchronization. “State-based” means that the
synchronizer takes the states of models before and after update as input, and produces new states
of models as output. Inspired by the lens framework, several researchers propose state-based
framework for symmetric synchronization [69, 114]. As a more general case, symmetric syn-
chronization allows neither of the model to be a view of the other. However, as Diskin et al. [33]
point out, state-based bidirectional transformations actually mix two different operations—delta
(correspondence relations between models or between different versions of a model) discovery
and delta propagation, leading to several semantic problems. To fix these problems, several re-
searchers [31, 33, 36, 70] propose delta-based frameworks, where deltas are taken as input and
output. Typical delta-based frameworks include delta lens [33,35] for the asymmetric cases, and
symmetric delta lens [36] and edit lens [70] for the symmetric cases.

3.5 Empirical Research

We are not aware of any empirical research on consistency management in BPM, yet empirical
studies exist in related areas.

Hutchinson et al. [72] address the relative absence of empirical studies of industrial model
driven engineering (MDE) practices by describing lessons learned from three case studies. They
applied a combination of research methods, such as interviews and questionnaire surveys for
collecting data and deriving lessons learned from MDE practices adopted by three companies.

16

Compared to their work which focuses on MDE in general, our work focuses on BPM and
consistency management.

Zapf and Heinzl [138] present an empirical study of process refinement patterns in the call
center domain. They compare different process partitioning strategies as typical design patterns
in call centers. The analysis provides insight to the question under which circumstances a specific
pattern is used. Our study provides empirical evidence of how process refinement patterns are
applied in the domain of banking applications.

17

Chapter 4

Empirical Study

4.1 Research Methods

The study was designed to answer the following, broadly-scoped research question:

How do people manage consistency of related business- and IT-level process models in prac-
tice?

We initially left our problem statement open so that we could discover which facts about this
subject really matter to the practice of BPM. We also decided to first focus on understanding
the emergent consistency management process used at BNB, both in terms of the prescribed
procedures and how the participants actually perform the tasks, in the context of the overall
development process.

To answer this question, we adopted a structured combination of three research methods: 1)
artifact study, 2) semi-structured interviews and 3) electronic survey. The combination allowed us
to gradually refine our understanding of how consistency is managed and to triangulate multiple
sources to improve confidence in our findings. We now briefly summarize each of the methods.

First, we analyzed business-level and IT-level models to understand the correspondences
between them. We were interested in discovering the degree to which these models differ, the
refinement patterns applied, and the type of information represented in each model.

Second, we interviewed relevant stakeholders at the studied organization to understand details
about the development process, collaboration patterns among the professionals involved, reasons
for applying the refinements we found, when and how the consistency among the models is
maintained, and the challenges faced during consistency maintenance.

18

Third, based on the artifact analysis and the interviews, we created an electronic survey
with questions to disambiguate unclear points and to solidify our initial findings. We collected
responses to this survey from a larger set of stakeholder than those interviewed.

The following sections give more details about the studied organization and the applied meth-
ods.

4.2 The Organization

The Bank of Northeast of Brazil (BNB) is a major financial institution in Brazil. It is controlled
by the federal government and oriented towards regional development. The IT area of BNB con-
tains over 300 professionals, responsible for maintaining more than 200 information systems in
operation. Joining these numbers are five external software development companies, adding up
to a virtual workforce of 1500 professionals responsible for the development and maintenance of
these systems. The systems are developed using a broad range of technologies, including con-
ventional mainframe transactions and Web-based services. Since 2007, BNB has used Business
Process Management based on the WebSphere family of products from IBM, including Busi-
ness Modeler, Integration Developer, Business Monitor, and Process Server. The development
process is based on the Rational Unified Process (RUP), extended to include business process
modeling. The first version of the development process was customized by BNB with consulting
provided by IBM.

4.3 Artifact Analysis

We analyzed five BPM projects, containing more than 70 models in total (see Table 4.1). The
development process at BNB entails iterative and multi-staged model refinement, resulting in
three types of models: business specifications, technical specifications, and executable imple-
mentations (cf. Fig. 2.1). Table 4.1 lists the number of models of each type. It is important
to mention that the project P1 was the first one developed at BNB (pilot project), and its initial
development was conducted with IBM consultancy. BNB took advantage of the pilot project
to create 23 generic and reusable IT level service processes, e.g., for logging and auditing. As
they belong to P1, they count as implementation models in this project. That explains the large
number, 29, of implementation models as part of this project. Table 4.2 gives the model sizes in
number of elements of different types.

We analyzed the models by manually inspecting and identifying corresponding elements and
model fragments—typically single-entry and single-exit regions [124]—based on names and

19

Table 4.1: BPM Projects

Number of Models

Project Domain Business Technical Implementation

P1 Customer Registration 2 2 29
P2 Credit Backoffice 6 6 6
P3 Credit Risk Assessment 2 2 4
P4 ATM 1 1 3
P5 Procurement 3 3 4

structural similarity. The analysis relied on the domain knowledge of the author; we clarified any
unclear cases with the creators of the models. As a last step, we classified the correspondences
into recurring refinement patterns presented in Sect. 4.6.2.

Table 4.2: Model Sizes

Number of Model Elements
Pools Tasks Gateways Events Flows

P1
Business Spec. 11 59 38 25 149
Technical Spec. 11 78 46 36 164
Implementation 11 123 56 43 186

P2
Business Spec. 6 47 46 18 128
Technical Spec. 6 95 48 23 142
Implementation 6 107 52 31 154

P3
Business Spec. 4 17 8 6 19
Technical Spec. 4 19 10 8 21
Implementation 4 22 6 9 23

P4
Business Spec. 1 10 5 3 21
Technical Spec. 1 11 6 8 27
Implementation 1 18 9 14 51

P5
Business Spec. 8 13 10 11 31
Technical Spec. 8 18 12 15 43
Implementation 8 25 14 17 57

BNB manages the change of software artifacts using two IBM products – ClearQuest (work-
flow of change requests) and ClearCase (artifact repository). Business employees open change
requests to the IT department using ClearQuest. Every request has an unique ID, a textual de-
scription and several parameters, such as priority and nature of the change (e.g. legal, evolution).
Requests follow a sequence of steps, for example to group them into projects (when applicable)
before they arrive to IT. IT Managers assign IT professionals (Project Managers, Architects, De-

20

velopers) to every request. IT technicians only can change artifacts in ClearCase by having an
assigned change request. When artifacts are changed, ClearCase stores the change request ID in
the change log.

We recovered from the ClearQuest database the change log of all projects and also the tex-
tual descriptions associated with every change request. Our objective was to find the reasons for
changing the artifacts in each project we analyzed. Our first step was matching the textual de-
scription of each change request with the actual artifacts changed. The aim of this process was to
discover how inconsistencies were introduced by regular maintenance. For example, by finding a
particular change in August 2009 that had affected only the business model of the project P1, we
realized from the description of the request that this change had re-established the consistency
between the business specification and the production process (implementation). A new project
was being started on the business side requiring an updated specification to build on. Then, we
recorded any such cases to clarify with the people involved. In total, we manually inspected more
than 1000 change requests, as shown in Table 4.3.

Table 4.3: Change Requests

Project Change Requests Analyzed

P1 388
P2 234
P3 176
P4 78
P5 207

Total 1083

4.4 Interviews

We used semi-structured in-depth interviews. The durations ranged from one to three hours, and
the interviews were informal: although organized around a number of themes, we allowed each
respondent to follow her own interest. The themes ranged from respondent’s background, current
role and experience, to practical working scenarios with BPM and personal feelings on how the
tools should be improved.

The interviewees’ roles were selected from those having personal responsibility in editing
BPM models. An IT Manager was also interviewed because of his experience in several projects.
These roles served as a representative sample of a larger population of professionals who later

21

answered the survey. Statistics showing the roles involved, their experiences with BPM, and
the interview durations are shown in Table 4.4. Section 4.6.1 provides more details about the
responsibilities of each role and the artifacts they produce.

We created transcripts of each interview and submitted them for approval of the respondents.
Subsequently, we classified and categorized recurrent facts mentioned in the interviews, such as
what consistency aspects are relevant; when and how inconsistencies are detected and fixed; and
which tool support would help to perform these tasks. Sample questions asked are the following:

What is your current role? What types of tasks do you perform? How much experience do
you have with BPM?

What are the roles involved in creating and maintaining business- and IT-level models?

What tools and architecture- and company-specific guidelines and methodologies impact
the content and form of these models?

What collaborations exist between the different roles?

How do different roles coordinate and communicate when they make changes?

Are there examples where inconsistencies were detected?

Are there examples where inconsistencies had undesirable consequences?

Table 4.4: Interviews

Interview Role Num. Projects Duration (h)

1 IT Systems Analyst 2 1:45
2 IT Systems Analyst 2 1:32
3 IT Systems Analyst 3 1:40
4 IT Manager 6 1:10
5 IT Architect 4 3:01
6 IT Developer 2 2:34
7 Business Analyst 4 1:25
8 IT Architect 12 2:10
9 IT Architect 8 1:52

Total 17:09

22

4.5 Survey

We created a questionnaire to identify and then resolve conflicting and overlapping facts from the
interviews. For example, during the interviews some respondents mentioned that task ordering
affects consistency, whereas others mentioned that it may not be important. Then we included
the following question in the survey: Corresponding tasks must obey exactly the same relative
order, and the respondents could chose between four answers: Necessary all the times; Impor-
tant, but not always; May be important sometimes; and Irrelevant. We also added open fields, so
that the respondents could provide comments and examples supporting their answers. The ques-
tionnaire was divided into six groups of questions: Alignment of Business and IT Models, Tool
Customization, Refinement, Change Management, Consistency Checking, and Fixing Actions. In
total, 23 professionals answered it as a web survey. Figure 4.1 shows the distribution of answers
per professional role.

It is important to mention that BPM is a relatively recently adopted technology in BNB. At
the time of this study, there were few BPM projects in production—they include the ones we
used in this study—plus 5 new projects in early phases of development (i.e., the business models
were under discussion). Around 30 professionals — including business and IT oriented ones —
had been conducting these projects. Our survey collected 23 answers from this population, i.e.,
76% of participation. The other professionals in the bank work with several other technologies
and programming languages, ranging from traditional mainframe to web-based platforms.

The complete report of the survey and the comments made by the respondents are available
online at our web site1.

From the survey and the data we collected in the previous two phases, we found that our main
research question can be divided in the following sub-questions:

1. What development process is used for creating business- and IT-level process models?

2. How business- and IT-level process models are related and how do they differ?

3. How do business- and IT-level process models evolve over time?

4. How do differences between business- and IT-level process models affect consistency?

5. Can inconsistencies cause problems in practice?

6. How do BPM stakeholders define consistency between business- and IT-level process mod-
els?

1http://gsd.uwaterloo.ca/empiricalstudybpm

23

http://gsd.uwaterloo.ca/empiricalstudybpm

Business Analyst

IT Manager

IT Systems Analyst

IT Architect

IT Developer 2

7

4

3

7

Figure 4.1: Survey Answers per Professional Role

7. Are the BPM stakeholders satisfied with the development process they currently employ?

8. How are inconsistencies dealt with?

Guided by this sub-questions, we distill the most relevant findings for this research proposal
in the next section. The full list of findings is given in [16].

4.6 Main Findings

4.6.1 Processes are developed and maintained in several levels of abstrac-
tion

Summary The state of the art recognizes the need for specialized models (or specialized views)
in business process modeling (e.g., [26, 79]), such that specific needs of the stakeholders are
respected in terms of concepts, modeling notation, and level of detail. Our work confirms such
a need in the analyzed case study, by providing evidence on how process models are created,
ranging from business- to IT-oriented ones.

The development process adopted by BNB starts by Business Analysts producing a Business
Specification (Fig. 2.1.a) which focuses on the concepts and rules relevant to the business level.

24

The business specification is refined by IT Systems Analysts to create a Technical Specification
(Fig. 2.1.b). The technical specification has two objectives: a) to ensure that the process is sound
and free of design flaws, such as incomplete data objects, deadlocks, and lack of synchronization;
and b) to adapt the specification to the existing service infrastructure, making it clear and under-
standable to developers and outsourcers. The business and technical specifications are written in
BPMN. The technical specification is subsequently refined by IT Architects and IT Developers
to implement the executable process (Fig. 2.1.c). Executable processes are written in BPEL.
Naturally, several other artifacts are part of the development process, for instance, glossaries,
requirement documents, use cases, architecture documents, business rules descriptions, and test
cases. IT Managers are also involved in negotiating deadlines, assigning IT professionals, and
contracting external services and manhours. Below are descriptions of the main roles involved
in developing a BPM project in BNB:

• Business Analyst: Define and simulate the business process in terms of organizational
structure (lanes, pools), business items (information to flow), resources (e.g., people who
interact with the process), tasks (human and automated), business rules and Key Perfor-
mance Indicators (time, costs, etc.). The business process is created in BPMN.

• IT Manager: Produce contracts for meeting the business requests. Assign IT personnel to
projects and contract outsourcers.

• IT Systems Analyst: Provide technical support for Business Analysts; correct and adjust
the BPMN model; clarify business items and rules; detail tasks and flows; specify Use
Cases for each task, gateway, conditional flow, and event.

• IT Architect: Create a BPEL model out of the BPMN. Refine the BPEL. Describe service
interfaces, integration methods (queue manager, message broker, service bus), design hu-
man tasks, produce an Architecture Document, Technical Use Cases, Design Models, and
Deployment Plan.

• IT Developer: Produce code (BPEL, Java, other languages). Create testable builds.

The consequence of this development process is that three different process models for each
project are created and maintained. This is considered suitable by BNB to effectively separate
concerns and to convey the right information to diverse stakeholders. The common use cases for
consistency management throughout the development process are the following:

• Change propagation: By applying a development process based on RUP, requirements
are created or updated by carrying out the business modeling discipline. Business-level

25

process specifications are updated and the changes should be propagated across related
IT-level models. Similarly, due to incident resolution or time constraints it is possible that
a process running into production is modified before updating its specification. Later the
specification needs to be updated.

• Validation: Audits often require checking production processes against high-level specifi-
cations and control points of legal reference models, such as Basel II and Sarbanes-Oxley.

It is important to note that the actual workflow is defined by the business-level model together
with business rules. In particular, detailed cases, such as when withdrawals are authorized, are
specified in the business rules document, and might not be visible in the workflow of the process
model. These points are more effectively captured as rules, and adding them to the diagram
would result in visual clutter. The business-level model is intended to give an overall, high-level
flow, and the stakeholders know that they also need to review the business rules document in
addition to the process models, in order to cover all the business-relevant details.

The stakeholders complain about the poor tool support for managing traceability and cor-
respondence links among this multiplicity of models. This is particularly critical when speci-
fications are updated and given to outsourcers. From time to time, the correspondences need
to be reestablished and described using textual artifacts and model annotations, which is time-
consuming when maintained manually. Another important aspect of correspondence links among
process models is that they are domain- and project-specific. For example, we found correspon-
dences that can be understood only by having knowledge on the existing systems used in BNB.
Then, automatic techniques for deriving correspondences should have means to include specific
human domain knowledge as part of the matching methods.

We thus confirm the challenges of establishing correspondences among process models pre-
sented in [128]. Since establishing correspondences may require uncovering tacit knowledge—
present only in the original model creators’ memories or lost entirely—a fully automatic ap-
proach with high recall does not seem realistic. More research is necessary to understand the
trade-offs between automatic and manual efforts to establish and manage correspondence links,
integrated into the development process.

The following quote provides a summary of the development process obtained in an interview
from an IT Systems Analyst:

The development is done in several iterations for accomplishing the project milestones. This
is managed by the project manager following the same methodology used for any other software
project. The objective of the inception phase is to clarify what should be done, then all the re-
quirements should be clear at the end of this phase. Most of the collaboration is performed by

26

business analysts and system analysts, although the architect is also involved in some meetings to
anticipate possible integration issues, such as data replications and unavailable services or ap-
plication components. The artifacts discussed in the inception phase are mainly BPMN models,
use cases for tasks, and business rules. In the elaboration phase the objective is to eliminate all
the architectural risks and know how the project should be implemented. The main artifacts are
the integration model (BPEL), the architecture document and the technical use cases. Most of
the collaboration is done by the architect and the developers. Systems analysts still collaborate
with architects and developers in the elaboration and construction phases when a business rule
or a use case is not well understood. The main problem with our BPM development is maintain-
ing traceability among such models and artifacts. This often requires considerable rework and
is specially critical when outsourcers are involved. I say that we could have much better tool
support for managing this.

4.6.2 Business and IT process models are related by hierarchical and non-
hierarchical refinement patterns

Summary Existing works argue the need for non-hierarchical refinements when deriving IT
process models from their business specifications (e.g., [128]), while other works propose the
transition from business to IT process models in a strictly hierarchical fashion (e.g., [30, 112,
139]). Our study provides evidence of the need for both types of refinements (hierarchical and
non-hierarchical).

Using the ATM running-example case study, P4 in Chapter 2, we now present the refinement
patterns we identified. We chose P4 as the illustration because it is the smallest one and it also
contains concrete instances of all the patterns we found in the other projects. Although the exe-
cutable model is implemented in BPEL, for simplicity, we remodeled here a simpler version in
BPMN 2.0 [102] that preserves the salient refinements patterns applied in the real project. Natu-
rally, mismatches that stem from using different languages pose further complications; however,
the problem of managing consistency of related process models is generic and independent of
any specific language [128].

Table 4.5 shows statistics of the pattern occurrences across the models.

4.6.2.1 Add properties

Description Parameters for grounding the executable model on top of the underlying IT infras-
tructure are added during the implementation.

27

Table 4.5: Refinement Occurrences

Occurrences

Refinement Pattern P1 P2 P3 P4 P5

Add properties 27 32 12 8 6
Add script task 21 13 4 1 4
Add protocol task 31 16 2 5 4
Add boundary event 34 9 9 6 6
Add technical exception flow 15 14 3 2 4
Change activity name 14 5 2 3 2
Change activity type 12 3 11 4 2
Refactor gateway 6 8 - 1 3
Split task into block 28 24 4 1 2
Split workflow 25 3 4 5 4
Suppress specification activity 11 7 5 1 6

Motivation Several properties of tasks, gateways, flows, events, etc., are added to the implementation-
level model, such as application or service URLs, protocol types (e.g., http or https), transactional
behavior (e.g., commit before, commit after, participates, etc.). Such properties do not change
the workflow and may be tool or platform-specific.

Example Each ISO8583 sending or receiving task shown in Fig. 2.1 (e.g., Identify Customer
Card 9300 and Get Card Identification 9310) has parameters that include the message queue,
authentication method, security protocol, and message encoding.

4.6.2.2 Add manual task

Description Some tasks on the business side are not subject to automation.

Motivation Manual tasks are used for non-automated (typically human-performed) actions of a
process, such as transporting assets via postal service, stowing retrieval, visual inspection, etc.
Manual tasks are commonly used solely on the business view, since they have no counterpart on
the company’s IT infrastructure.

Example A credit process can contain a task to send a hard copy of a contract to the customer,
via postal service.

28

4.6.2.3 Add script task

Description Script tasks are used to initialize variables and implement business rules and non-
functional requirements that access or transform business objects data, e.g., logging steps of the
workflow.

Motivation This type of task is frequently used because it has significantly better performance
than calling external services.

Example Figure 4.2 shows a task created in the ATM application for initializing several param-
eters of a transaction object, which controls user actions across the workflow. Such kind of task
in the IT model does not have any correspondence in the business model.

Initialize

Transaction

Parameters

(a) Executable

Figure 4.2: Add Script Task

4.6.2.4 Add protocol task

Description An asynchronous service can be implemented by a connection-less request or reply
protocol.

Motivation It is common to implement a business task by using an asynchronous connection-
less service. In such cases, the protocol needs to compose and send a message and, after that,
wait for a response.

Example Figure 4.3 shows an example where the business task Identify Customer Card is im-
plemented on top of the ISO8583 protocol by sending a identification request message (9300)
and waiting for a validation message (9310).

4.6.2.5 Add boundary event

Description Boundary events are used to divert the normal flow under special conditions, for
example, because of a particular action performed by the operator on a human task.

29

Identify

Customer Card

(a) Business and Technical Specifications

Identify

Customer Card
9300

Get Card

Identification
9310

(b) Executable

Figure 4.3: Add Protocol Task

Motivation The reason to divert the flow can be merely technical or too low-level to be repre-
sented in the business model. Such conditions can be implemented as result of requirements and
use cases that describe a human task in detail.

Example Figure 4.4 depicts an example of boundary event added to human tasks to capture
the customer’s decision to cancel the transaction at any time. Another example can be seen in
Fig. 2.1, where boundary events were added to asynchronous receiving tasks (e.g. Get Statement
9010) to cancel the transaction in the case of a timeout of 8s.

Customer

Provides

Transaction

Details

(a) Business Specification

Customer

Provides

Transaction

Details

Transaction

Canceled by

Customer

(b) Technical and Executable

Figure 4.4: Add Boundary Event

30

4.6.2.6 Add technical exception flow

Description Technical exception flows are included to divert the flow in case of technical excep-
tions, such as an unavailable service or a permission denied.

Motivation Technical exceptions are not expected to be represented in the business model, be-
cause they implement non-functional requirements elicited during the elaboration phase of the
development process.

Example Figure 4.5 shows examples of technical exceptions flows added for dealing with service
errors, in which the transaction parameters are saved and the system administrator is notified to
complete the transaction later.

Consult

Balance

(a) Business Specification

Consult

Balance

Print

Balance

(b) Technical and Executable

Figure 4.5: Add Technical Exception Flow

4.6.2.7 Change activity name

Description The name of a business activity can be changed to facilitate the identification of an
IT service that has a similar but different name.

Motivation IT specialists can decide to use technical names in model elements for facilitating
maintenance.

Example Figure 4.6 shows an example.

31

Consult

Statement

(a) Business and Technical Specifications

Print

Statement

(b) Executable

Figure 4.6: Change Activity Name

4.6.2.8 Change activity type

Description The type of a model element can be changed because of an implementation decision.

Motivation It is easier for business people to stick with basic modeling constructs (such as plain
tasks and gateways), while other types of model elements are more suitable to implement the
business intent.

Example Figure 4.7 shows an example were a human task represented in the business model was
implemented by an event.

Customer

Insert Card

into ATM

(a) Business Specification

Customer Insert

Card into ATM

(b) Technical and Executable

Figure 4.7: Change Activity Type

32

4.6.2.9 Suppress specification activity

Description Business elements can be suppressed during the implementation.

Motivation Some elements of the business specification may be considered redundant, not sub-
ject to automation, or subsumed by a particular task at the implementation level. Typical exam-
ples for applying this refinement pattern are:

• Combine several business tasks into a single service call (the service provided is coarser
than the business steps described),

• Combine human tasks into a single human task, with the separate steps of the human task
being described elsewhere as a screenflow, for example.

• Ignore manual business tasks, for example, “Send contract to the post office”.

Example Figure 4.8 shows a case where the two human tasks described in the business model
were collapsed into a single human task in the technical and implementation levels.

Customer

Selects

Transaction

Customer

Provides

Transaction

Details

(a) Business Specification

Customer

Provides

Transaction

Details

(b) Technical and Executable

Figure 4.8: Suppress Specification Activity

4.6.2.10 Split task into block

Description A single business task can be implemented by a combination of services.

Motivation To implement a specification task, it may be necessary to combine several existing
services, including additional control flow logic to organize the way the services should be called
to achieve the specified functionality.

33

Example Figure 4.9 illustrates such scenario, where a technical specification task, Authorize
Transaction, is split into a block of ISO8583 service calls, organized as an exclusive gateway
that controls the type of authorization required for each transaction type.

Authorize

Transaction

(a) Technical Specification

Authorize

Withdraw
0200

Request

Balance

9000

Request

Statement
9000

Get

Authorization
0210

Get

Balance

9010

Get

Statement
9010

(b) Executable

Figure 4.9: Split Task into Block

4.6.2.11 Split workflow

Description The specification workflow can be split into smaller workflows that should be or-
chestrated by a main flow.

Motivation The typical reason for this pattern is the creation specialized and reusable workflows,
such as for logging and auditing purposes.

Example In Fig. 4.10 the task Cancel Transaction was implemented by a specialized subflow
that includes fraud control and is reused by other projects. It is common to use web service
interfaces or event triggering for calling the subflows.

34

Cancel

Transaction

(a) Business and Technical Specifications

Cancel Transaction

Check

Transaction
Table

Suspect of Fraud?

Send Security

Notification

Yes

Update

Transaction
Table

No

(b) Executable

Figure 4.10: Split Workflow

4.6.2.12 Refactor gateway

Description A business level gateway may need to be refined to take into account the technical
behavior of the services involved.

Motivation IT services may impose constraints on the control flow. For example, the business
model may specify tasks executing in parallel; however, in the implementation the corresponding
IT services are called in sequence to avoid deadlocks.

Example Figure 4.11 shows an example where the business specification has a rule for checking
the maximum number of times that a customer can enter a wrong PIN. In the actual implemen-
tation, checking the validity of the PIN is a particular result of the transaction authorization. In
this particular project, some of the other cases where the transaction is not authorized are also
relevant to the business (e.g., insufficient funding). However, since the business analysts did not
know how the systems were implemented, they specified such cases as part of business rules of
three business tasks: Process Withdraw, Consult Balance and Consult Statement. Business rules
documents are produced together with business process models (see Sect. 4.6.1). The business
analysts did not consider necessary to change the business model to approximate it to the actual
system, at which point the workflows became different.

35

PIN is

Valid?

Yes

No

(a) Business Specification

Due to

PIN?

Yes

Transaction

Authorized?

No

Yes

No

(b) Technical and Executable

Figure 4.11: Refactor Gateway

4.6.2.13 Hierarchical and non-hierarchical refinements

A refinement pattern is hierarchical if it is possible to fit the refined model elements into a col-
lapsed subprocess that preserves the original number of incoming and outgoing sequence flows,
otherwise it is non-hierarchical. The pattern Split task into block (see Fig. 4.9) is an exam-
ple of hierarchical refinement whereas Refactor gateway (see Fig. 4.11) is an example of non-
hierarchical one. Other examples of non-hierarchical refinements can be seen in Fig. 2.1, where
flows were added to divert the main workflow in case of timeouts.

Interestingly, several approaches for aligning business and IT perspectives are based on the
assumption that hierarchical refinements are sufficient in practice [30, 112, 139]. Our case study
clearly shows that non-hierarchical refinements occur and are relevant in practice. One could ar-
gue that non-hierarchical refinements are present in the case study since the tools used there have
not enforced hierarchical refinements, as in, for example, the approach by Dijkman et al. [30].
However, the majority of surveyed stakeholders express the need to support both hierarchical and
non-hierarchical refinements in practice, as shown in Table 4.6.

We believe though that settling the question of whether hierarchical transformation can be

36

Table 4.6: Refinement Patterns Needed by Stakeholder

Strictly hi-
erarchical

Any type of
refinement

Role does not
need to apply
refinements

Business Analyst 13% 87% 0%
IT Systems Analyst 13% 87% 0%
IT Architect 9% 91% 0%
IT Developer 9% 78% 13%

expressive enough to create models for different perspectives requires further research.

4.6.3 Models undergo parallel maintenance

Summary Existing works recognize that process modeling needs support for parallel mainte-
nance of models or views that target different levels of abstraction and stakeholder perspectives
(e.g., [19]). Our study provides evidence on such a need, by analyzing the change history of
five real-world projects. The histories cover both the development prior production and also
changes after the projects went into production. Their analysis shows that, while the majority
of changes affect only artifacts other than the related business- and IT-level models (i.e., use
case descriptions, databases, services, and application components), about 10% of changes af-
fect both models simultaneously, about 20% affect only IT-level models, and about 5% affect
only business-level models. The number of changes varies according to the projects’ life-cycles,
with the majority of business-model-only changes occurring at the project’s start. The analysis
also revealed (i) cases where the business models were changed in response to earlier IT model
changes, in order to eliminate inconsistencies considered as undesired by the stakeholders; and
(ii) cases where changes first specified in the business models where later implemented in the IT
models; these cases were viewed as acceptable, controlled inconsistencies, by the stakeholders.

As announced in Sect. 4.3, we report on a substantial dataset featuring in total 5 BPM
projects, 74 models (business and IT ones) and more than 1000 changes made on these mod-
els throughout their life-cycles. A project at BNB contains the versions and baselines of all
the artifacts of a system, including models, textual documents—such as use cases and business
rules—and source code. We inspected the change history of each project to identify when incon-
sistencies were introduced by day-to-day maintenance and when they were found and fixed.

We classified each change request with respect to the model types being affected. For exam-
ple, Only Business means that a request has changed solely the business model but not the IT

37

model, whereas None means that the request has changed neither the business model nor the IT
model, but other resources such as databases, web services, and application components. The
changes to the artifacts ranged from adding or modifying a single model element (e.g., a task or
flow) to applying multiple patterns in multiple places.

Figure 4.12 shows the distribution of the changes per type in each project and Table 4.7 shows
the corresponding percentage numbers.

0

100

200

300

P1 P2 P3 P4 P5

N
um

be
r

of
 C

ha
ng

es

Only Business Only IT Both None

Figure 4.12: Distribution of Changes per Type

Table 4.7: Percentage of Changes per Project

Change Type

Project Only Business Only IT Both None

P1 2% 24% 10% 64%
P2 3% 22% 11% 64%
P3 4% 23% 9% 64%
P4 9% 24% 13% 54%
P5 3% 13% 3% 81%

Figure 4.13 shows the temporal distribution of 388 changes made on project P1 throughout

38

its three first years. Figure 4.14 shows the first-year stacked distribution of changes for the other
projects.

The analysis of the change history revealed that inconsistencies were introduced mainly due
to parallel maintenance. The following two cases summarize situations where the inconsistencies
were detected and fixed:

Ja
n/2

008

Feb/2
008

M
ar/

2008

Apr/
2008

M
ay/2

008

Ju
n/2

008

Ju
l/2

008

Aug/2
008

Sep/2
008

O
ct

/2
008

Nov/2
008

D
ec/

2008

Ja
n/2

009

Feb/2
009

M
ar/

2009

Apr/
2009

M
ay/2

009

Ju
n/2

009

Ju
l/2

009

Aug/2
009

Sep/2
009

O
ct

/2
009

Nov/2
009

D
ec/

2009

Ja
n/2

010

Feb/2
010

M
ar/

2010

Apr/
2010

M
ay/2

010

Ju
n/2

010

Ju
l/2

010

Aug/2
010

Sep/2
010

O
ct

/2
010

Nov/2
010

D
ec/

2010

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

N
u

m
b

e
r

o
f

C
h

a
n

g
e

s

Only Business
Only IT
Both
None

Figure 4.13: P1 Change History

• Case 1: Update only the business model because at least one previous maintenance request
that should have affected both the business and the IT model has been made only in the IT
model. This is considered an undesirable inconsistency by the stakeholders, and the busi-
ness model is being updated to address it. Audits often motivate this type of maintenance.
Another reason is when a new project requires an accurate business-level model for AS-IS
analysis.

• Case 2: Update only the IT model to reflect, e.g., a planned process optimization that
has previously been made only in the business model. This is considered a controlled
inconsistency by the stakeholders.

For project P1 we identified changes made only in the business model because of Case 1
in January 2009 and August 2009. Also, we identified requests because of Case 1 in projects
P2 and P5 in March 2010 and July 2010, respectively. In project P3, we identified a process
optimization made initially in the business model because of Case 2 in May 2009.

Some stakeholders complain that the current tool support to plan and manage future changes–
i.e., controlled inconsistencies–is deficient, although they mitigate the issue by using resources

39

N
um

be
r

of
 C

ha
ng

es

0

5

10

15

20

M
ay

/2
00

9

Ju
n/

20
09

Ju
l/2

00
9

Aug
/2

00
9

Sep
/2

00
9

Oct/
20

09

Nov
/2

00
9

Dec
/2

00
9

Ja
n/

20
10

Fe
b/

20
10

M
ar

/2
01

0

Apr
/2

01
0

Only Business Only IT Both None

(a) P2
N

um
be

r
of

 C
ha

ng
es

0

5

10

15

Oct/
20

08

Nov
/2

00
8

Dec
/2

00
8

Ja
n/

20
09

Fe
b/

20
09

M
ar

/2
00

9

Apr
/2

00
9

M
ay

/2
00

9

Ju
n/

20
09

Ju
l/2

00
9

Aug
/2

00
9

Sep
/2

00
9

Only Business Only IT Both None

(b) P3

N
um

be
r

of
 C

ha
ng

es

0

5

10

15

Apr
/2

00
9

M
ay

/2
00

9

Ju
n/

20
09

Ju
l/2

00
9

Aug
/2

00
9

Sep
/2

00
9

Oct/
20

09

Nov
/2

00
9

Dec
/2

00
9

Ja
n/

20
10

Fe
b/

20
10

M
ar

/2
01

0

Only Business Only IT Both None

(c) P4

N
um

be
r

of
 C

ha
ng

es

0

5

10

15

Nov
/2

00
9

Dec
/2

00
9

Ja
n/

20
10

Fe
b/

20
10

M
ar

/2
01

0

Apr
/2

01
0

M
ay

/2
01

0

Ju
n/

20
10

Ju
l/2

01
0

Aug
/2

01
0

Sep
/2

01
0

Oct/
20

10

Only Business Only IT Both None

(d) P5

Figure 4.14: First Year Change History

of the artifact repository. The main complaint is the lack of tool features for easily comparing,
differencing, and merging process models, as they are widely available for textual source code.

The stakeholders also complain about the tool support for managing traceability and cor-
respondence links among this multiplicity of models. This is particularly critical when speci-
fications are updated and given to outsourcers. From time to time, the correspondences need

40

to be reestablished and described using textual artifacts and model annotations, which is time-
consuming when maintained manually. Another important aspect of correspondence links among
process models is that they are domain- and project-specific. For example, we found correspon-
dences that can be understood only by having knowledge of existing systems used in BNB. Then,
automatic techniques for deriving correspondences should have means to include specific domain
knowledge as part of the matching methods.

Our analysis confirms the challenges of establishing correspondences among process models
identified in [128]. Since establishing correspondences may require uncovering tacit knowledge—
present only in the original model creators’ memories or lost entirely—a fully automatic ap-
proach with high recall does not seem realistic. More research is necessary to understand the
trade-offs between automatic and manual efforts to establish and manage correspondence links,
integrated into the development process.

The following quote was made by an IT Systems Analyst:

“The main problem with our BPM development is maintaining traceability among such mod-
els and artifacts over time - this often requires considerable rework and is specially critical when
outsourcers are involved. I say that we could have much better tool support for managing this.”

4.6.4 Coverage and behavioral differences affect consistency most

Summary The state-of-the art discusses types of differences among process models that may
affect the consistency among them [128]. Our work provides results of a survey where practi-
tioners were asked to evaluate to what extent such types of differences impact their notion of
consistency.

From the artifact analysis, we prepared examples of the three types of model differences de-
fined in [128] (briefly explained in Chapter 3) and asked the respondents to answer two questions:

Please indicate to what extent the following types of differences affect the notion of consis-
tency between Business and IT models and

Please indicate to what extent the following types of differences may be tolerated or ignored
when checking consistency between Business and IT models

The answers to these two questions are shown in Table 4.8 and Table 4.9, respectively. We
also asked the respondents to rank a set of consistency aspects that were frequently mentioned
in the interviews. The results are shown in Table 4.10. 86% of the respondents support that
a difference in coverage always affects consistency, 68% support that a difference in behaviour
sometimes affects consistency, and 68% support that a difference in density does not affect con-
sistency. 74% support that corresponding tasks between the models must obey the same relative

41

order. We also collected open answers from the respondents explaining their understanding on
these types of differences.

Our analysis leads us to propose the notion of Business Relevance, which seems to be crucial
whenever stakeholders check consistency. If a mismatch is considered relevant to the business
it should be fixed, otherwise it is ignored. Although this definition is subjective, we noticed
that typically differences that are considered technical details of implementation are ignored.
For example, Fig. 4.2 shows a case of Coverage mismatch that is not business relevant: the
added script task is essentially a detail of implementation and does not have any correspondence
in the business-level model. Similarly, Fig. 4.5 and Fig. 4.9 show respectively examples of
Behaviour and Density differences that are also not considered business relevant: both are details
of implementation.

Our analysis confirms the postulates presented by Weidlich et al. [128] on how differences
affect consistency. We extend the postulates by adding the concept of business relevance, which
can be summarized as follows:

• Difference in Coverage is what most affects consistency, as long as it is business relevant.

• Difference in Behavior is relevant when it affects task ordering.

• Difference in Density does not seem to affect consistency. It is generally considered an
implementation detail and thus not relevant to business.

Table 4.8: How Differences Affect Consistency

Type of Mismatch Always Affects Sometimes Affects Does not Affect

Coverage (There is a difference be-
tween WHAT is modeled)

86% 14% 0%

Behavior (There is a difference in
HOW a certain scenario is imple-
mented)

14% 68% 18%

Density (There is a difference in the
LEVEL OF DETAIL a certain scenario
is implemented)

0% 32% 68%

We believe that more investigation is necessary to understand how one can allow the stake-
holders to define and manage these types of differences individually in each project. The same
type of mismatch can be considered to affect or not to affect consistency, depending on its busi-
ness relevance. This is why the answers to these previous two questions were subjective, consis-
tently with results from the interviews.

42

Table 4.9: How Differences are Tolerated

Type of Mismatch Never Tolerated Sometimes Tolerated Always Tolerated

Coverage (There is a difference be-
tween WHAT is modeled)

50% 50% 0%

Behaviour (There is a difference in
HOW a certain scenario is imple-
mented)

14% 77% 9%

Density (There is a difference in the
LEVEL OF DETAIL a certain scenario
is implemented)

0% 59% 41%

Table 4.10: Consistency Aspects Mentioned in the Interviews

Consistency Aspect Necessary
at all times

Important,
not always

Sometimes
irrelevant

Irrelevant

Corresponding model elements
have the same names

30% 70% 0% 0%

Corresponding tasks must obey the
same relative order

74% 26% 0% 0%

Corresponding tasks have the same
types (service, human etc.)

22% 61% 13% 4%

Corresponding gateways have the
same number of incoming and out-
going flows

9% 52% 30% 9%

Corresponding business objects
must have exactly the same fields

13% 52% 30% 4%

Every task in the business model
has at least one corresponding task
in the IT model

9% 70% 22% 0%

Every gateway in the business
model has at least one correspond-
ing gateway in the IT model

13% 70% 17% 0%

Every event in the business model
has at least one corresponding event
in the IT model

9% 70% 22% 0%

4.6.5 Inconsistencies can cause severe problems

Summary It is natural to expect that undesired inconsistencies in software artifacts may cause
problems, for example, by delaying a new version of a system (e.g., Spanoudakis et al. [113]

43

and Nuseibeh et al. [100]). We provide examples of unnoticed inconsistencies that: (i) delayed
business and impacted customers (production process instances needed to be canceled and recre-
ated) and (ii) affected compliance regulations, subjecting the company to fines. Such problems
can cause serious financial and corporate image losses. Our motivation to present such cases is
reinforcing the need for better support in process modeling for dealing with multiple abstraction
levels.

We identified two particular cases in which inconsistencies caused troubles. The first case
was caused by an incomplete technical-level process specification—a problem of business-relevant
coverage mismatch, see Sect. 4.6.4. An inconsistent technical-level process specification, the
corresponding IT model and several other artifacts, such as use cases, architecture document
etc., were sent to an outsourcer as part of a maintenance project. When updating the IT model, a
developer inadvertently removed the functionality shown in Fig. 4.15. The developer was new to
the team and thought that this functionality should be deleted from the IT model: the developer
did not see any reasonable correspondence in the specification, and also there was no reference
to it in the architecture document. As a result, the problem passed unnoticed during the tests and
the phase of user approval, and was discovered very late when the project went into production.

Is proposal rural

credit?

Get PRONAF

loans

Yes

No

Figure 4.15: Functionality Inadvertently Removed∗

∗PRONAF is a business acronym in BNB that means a credit line for family agriculture.

This was considered a severe problem, because some running instances of the process had to
be canceled and recreated, delaying business. In outsourcing, the communication throughout a
project usually observes a rigid schedule and the external developers do not have direct access
to talk to business or systems analysts: double-checking the understanding of a specification is
not as simple as in an internal development. Although the test cases were improved after the
incident, similar incidents can still happen if the business and IT-level models are incomplete, as
there are no specified tests to capture every possible issue.

The second case was similar, but this time it was discovered by a regular audit procedure,
where projects and their artifacts are inspected for consistency. Unclear points are marked to

44

be explained. It turned out that the specification was outdated, and a notification was issued to
correct the problem. This is also a severe problem, because business specifications are used for
satisfying regulation purposes. Whenever a compliance issue is reported by an audit procedure
the company is subject to fines and the managers are subject to legal responsibility.

One of the Business Analysts made the following comment about such incidents:

“It is somehow frustrating that BPM has not solved our problem of reliably communicating
with outsourcers by using process models as specifications. In practice the technology is prefer-
able for internal development, where the communication between business and IT is straight-
forward. There is always a risk of something is missing in one or another model, or some
correspondence not being completely understood. We have to maintain heavy textual documents
describing the correspondences between specifications and implementations, which is cumber-
some and time-consuming. Today the quality team is spending a huge effort to guarantee that
such problems of misunderstanding the models do not require to cancel production process in-
stances. This may affect customers and negatively impact the image of the company.”

4.6.6 The majority of the surveyed practitioners would prefer a single
model for Business and IT

Summary It is generally accepted that a single model for business and IT is undesirable [24].
Mixing business and IT concepts may produce cluttered models that are hard to understand and
maintain, specially on the business side. Curiously, most of the specialists from BNB would
prefer a single model for both business and IT. We actually do not interpret this finding as strictly
contradicting the state-of-the-art. We rather interpret this result as a twofold message: (i) people
want a single model, i.e., a single source of truth, for the overlapping part of related business and
IT models, and (ii) they are dissatisfied with the current tool support for managing consistency
of multiple, independently edited, process models.

We asked the practitioners to answer which development method they consider more effective
for keeping Business and IT perspectives consistent. We ultimately wanted to find out how satis-
fied they are with the current development process and tool support for consistency management.
The results are shown in Fig. 4.16.

We examined the answers with respect to the roles of the respondents—the first question
of the survey asked respondents to provide their roles. Curiously, we noticed that all the re-
spondents who answered Create wrappers on top of existing IT systems in order to enact a pure
Business Model were Business Analysts. They manifest that pure business models are the ones

45

Maintain only one model by mixing business
 and IT information to serve as the Business

 Model as well as the IT Model

Create separate models for Business and IT
 and maintain their alignment when

 necessary

Change the IT systems whenever needed
 in order to enact a pure Business Model

Create wrappers on top of existing IT systems
 in order to enact a pure Business Model

0 %

31 %

31 %

38 %

Figure 4.16: Preferred Approach to Enforce Consistency

really needed by the company and that the IT department should do anything necessary to enact
them directly. Dealing with some pollution of information in a single model is even considered
preferable by business people over the burden and the risk of losing consistency between differ-
ent models. None of the IT specialists chose that answer. Regarding the remaining answers, most
of the IT stakeholders (38% of the answers) are skeptical whether it would be actually possible
to enforce consistency by maintaining different models for Business and IT.

Surprisingly, having a single model for Business and IT is generally considered undesirable
by existing works [24]. When maintaining a single model, the company might run into the
problem that business analysts and managers could no longer understand the resulting model.
They might not recognize how their business is reflected in the resulting model. Another problem
of this approach occurs when the business model is used to satisfy compliance check points.
Mixing Business and IT concepts can force changing the terminology or the level of granularity
of business concepts, making the model less clear and less useful for fulfilling the regulations.

Collating the answers and comments from the practitioners, given in both the interviews and
the survey, we interpret this result as a twofold message:

• People want a single model for their common (overlapping) aspects, i.e., a single source

46

of truth—that is the same as consistency. Nevertheless, there may be disjoint parts for
business- and IT-specific concepts, which could live in separate models. For example, all
the IT aspects that are not business relevant (see Sect. 4.6.4) could be maintained in a
different place, other than the ’single’ model. The same applies for business concepts that
are not system-supported, such as manual tasks. This does not completely contradicts the
literature, which mainly refers to the specific parts.

• There is a dissatisfaction of the users with the current tool support for managing consis-
tency of multiple process models. More research is necessary to understand whether a
single model for the common part would be feasible as solution in practice. An open prob-
lem is that the existing process metamodels do not reflect the situation of two overlapping
models for business and IT. That is, alternatively to synchronizing two separate models, a
new metamodel could be developed to reflect the multiple views use case better. A possible
direction is to allow custom views on a shared model [81].

In addition, the use of a single (i.e., unique) model for both common and specific parts may
not be technically possible, as some respondents pointed out:

IT Systems Analyst 1: I sympathise with the idea of having a single process model, as it would
eliminate this burden of synchronizing business and IT processes. However, I still have some
unclear points in my mind on how this would work: 1) If the language is the same, most probably
the mechanism of having modeling perspectives is critical, since the business roles should stick
with their basic building blocks, while on the IT side we have full modeling capability. How
would this work in practice? By hiding or showing things, like model elements? Is it really
possible to do this? What if by adding transaction scopes and controls we need to split the
original process and thus drastically change the business view? It is not clear for me whether
you can just hide or show things. 2) It seems that you expect improving the collaboration between
business and IT, but what exactly do you expect that tools would do for improving collaboration?
For me the collaboration today is already good with the current tools, although there is a lack
of automated support for change propagation and synchronization. However, I do think that the
tools also lack a better integration with the development process, such as iteration planning and
fine-grained change traceability.

IT Systems Analyst 2: I believe in a single model only if we can still have specialized views
for business and IT—I do not know how this would differ from having different models, since in
practice we may implement the business model only partially, or split it into several pieces. On
the other hand, if the tool enforces a unique model for both business and IT and does not give
any freedom of changing it in parallel for particular users, I am afraid that people would create
two different models anyway.

47

IT Architect:For me a single model is viable and ideal when you have a highly mature IT ser-
vice infrastructure, with several business services already available and aligned with the business
objectives. In case you need to implement many things from scratch, it is almost inevitable hav-
ing the business model only as a reference and the executable model more similar to the reality
of existing systems.

Business Analyst: The ideal solution is having only the business model, because it is in the
end the consumable asset of the company. With a single model, the alignment will be enforced
by the technology, which is good. In the case of technical issues preventing the enactment of a
pure business model, it should be possible to solve that by other means instead of changing the
model itself.

4.6.7 Inconsistencies and fixes should be presented as they occur

Summary Existing approaches propose quick fixes, generated during the editing of the mod-
els [58], other works propose off-line reports where the practitioners can assess the degree of
consistency of related process models [132]. The surveyed practitioners prefer instantaneous
fixing actions, integrated to the modeling tools.

We asked the respondents about their preferences on how to check whether the models are
consistent and how potential inconsistencies should be automatically presented by the tools.
Figure 4.17 shows that the respondents seem to prefer looking at concrete model differences,
which may be grouped into high-level model changes, rather than metric measures associated
with a degree of consistency as proposed in [132].

With respect to fixing actions, most of the respondents would prefer having quick fixes,
automatically generated by the tools during the modeling task, as shown in Table 4.11.

Table 4.11: How Fixing Actions Should be Presented

Instantly, during the
modeling task

As an offline report,
when required

For Business Stakeholders 86% 14%
For IT Stakeholders 95% 5%

An IT Architect has made this comment in the survey:

I think that one of the main reasons for the lack of alignment between business and IT is not
related to how we create business and IT models or related to what contents they should have

48

Look at groups of model differences
 ranked by the degree they affect

 the alignment

Look at metric values associated with
 model elements and fragments

 representing how much they are aligned

Other (please specify) 4 %

13 %

83 %

Figure 4.17: Preferred Method for Aligning Models

or not. I believe that the development process plays an important role in this: today we try to
minimize the lack of alignment by enforcing a close relationship between the technical modeller
and the business analyst. This is good for new projects, but it often fails in day-to-day for several
reasons: in practice many changes are minor, which leads to accumulating some inconsistencies
considered not critical until a big change is necessary. Usually most of the change requests made
by a business role are described only textually and the business model is not even touched—the
problem here is that the business analyst believes that only the production process should be
updated and its documentation does not need updating. It is hard to enforce a policy requiring
the business analyst to always update the business model, because the one who knows when
the documentation should be updated is the business analyst anyway. There are long periods
of maintenance that affect primarily the executable model, so during the life cycles of small
projects you accumulate several small waterfalls of textual requirements in the sense that the
business model, as it should also be part of the requirements, is forgotten. I think that the best
way to address this is by showing potential inconsistencies immediately, whenever the models
are changed. This would make people aware to keep the models always consistent to a sufficient
level. We can also manage the inconsistencies by planning when they should be resolved in future
projects.

49

Chapter 5

General Concept of the Shared Model
Approach

5.1 Overview

Figure 5.1 shows a conceptual view of our proposed framework for consistency management
in business process modeling. The framework assumes the existence of two independent views
(i.e., models) for Business and IT—respectively, BM and IT—that can be obtained anytime from
a single Shared Model (SM)—highlighted by the dashed box. In a nutshell, the Shared Model
works as described below:

1. Business and IT process domain models (BM, IT) are matched using appropriate heuristics
to deal with common correspondence patterns (Chapter 6).

2. Domain models to be matched are augmented with structural information (BM+, IT +)—
e.g., implicit regions, transitive flow edges—by parsing them into Process Structure Trees
[124]. The hooked arrows, ↪→ and←↩, in Fig 1.2, represent inclusion mappings.

3. Each augmented domain model is aligned via correspondences to the shared model. The
double arrow,↔, represents the correspondence mapping between the PSTs.

4. The shared model contains all public and private information. Private information is private
to a given role; for example, the IT model contains private tasks that are not mapped to
the Business model, and vice versa. Public information is reflected to other roles; that
is, public tasks in the IT model are mapped to public tasks in the Business model and

50

vice versa. Visibility is controlled by annotations, public or private, associated with every
model element, i.e., activities such as tasks, events, gateways etc., and sequence edges;

5. The shared model transforms changes via diff into edit operations, µBM, µIT , µBM+ , µIT + ,
and propagates them as graph transformation rules: bPpg, f Ppg. This pair of operations
constitutes a single symmetric delta lens [36]. The down arrows, ⇓, represent the deltas.

6. Public changes made to any domain model are propagated to the shared model as well as
to the other domain model;

7. Private changes made to any domain model are propagated only to the shared model;

8. Public or Private changes are defined by the user. Each edit operation can be public or
private (see Sect. 5.2).

9. Finally, the new—i.e., consistent—versions of the models are obtained from the shared
model, getBM, getIT , and both views get updated: BM′, IT ′.

BM BM+ IT+ IT

BM’ BM’+ IT’+ IT’

getBM getIT

+ +Lens
fPpg

bPpg

SM

Figure 5.1: Framework Overview

51

5.2 Edit Operations

The shared model allows the users to perform changes to any view using predefined edit oper-
ations. Each edit operation is defined by the user as being Public—both views and the shared
model are to be updated— or Private—a single view and the shared model are to be updated.

As we presented in our earlier study [17], the following basic operations are sufficient to
perform any types of changes, according to the common correspondence patterns used to derive
IT processes out of their business specifications. In Chapter 9 we discuss the relations between
the correspondence patterns elicited in the study and the conceptual edit operations.

Double arrow dashed lines show the correspondence (traceability) links maintained by the
shared model. Single arrow dashed lines show the result of a get over the shared model onto a
particular view. The attributes Vis, Hid, Pub and Prv mean, respectively, that a model element is
Visible, Hidden, Public or Private. Only public elements are mapped across the Business and IT
views. Hidden elements are parts of the enhanced models that are not in the original view, such
as regions. They are there just to allow expressing correspondence and update mappings. Only
the visible model elements are shown in a particular view.

52

Be
fo
re

Af
te
r

BM ITBM+ IT+

A

A

X

Private

A
Vis, Pub

B
Vis, Pub

B

A

X

Vis, Pub

Vis, Prv

B
Vis, Pub

B

Be
fo
re

Af
te
r

A

A

X

Public

A
Vis, Pub

B
Vis, Pub

B

A

X

Vis, Pub

Vis, Pub

B

X

Vis, Pub

Vis, Pub

B

X

Figure 5.2: Add

5.2.1 Add

This operation is used to add model elements to a view. Figure 5.2 shows public and private Add
operations. Although it is natural that an add operation can be performed in an initially empty
model, we depicted some context to show that it needs to be taken into account. In the example, a
new task (X) is being added as successor of an existing one (A). Attributes and links are updated
accordingly.

53

A

X

A

X

Vis, Pub

Vis, Pub

B

X

Vis, Pub

Vis, Pub

B

X

BM ITBM+ IT+

Private

A A
Vis, Pub

A

X

Vis, Pub

Vis, Pub

A

X

A

X

A

X

Vis, Pub

Vis, Pub

B

X

Vis, Pub

Vis, Pub

B

X

A A B B

Be
fo
re

Af
te
r

Be
fo
re

Af
te
r

Public

Vis, Pub Vis, Pub

Figure 5.3: Delete

5.2.2 Delete

This operation is used to delete model elements from a view. Figure 5.3 shows public and private
Delete operations. In the example, an existing task (X) is being removed as successor of another
one (A). Attributes and correspondence links are updated accordingly.

54

Be
fo
re

Af
te
r

BM ITBM+ IT+

A1

A

A2

Private

A
Vis, Pub

B
Vis, Pub

B

A1

A2

A1,2

Vis, Prv

Vis, Prv

Hid, Pub

B
Vis, Pub

B

Be
fo
re

Af
te
r

A1

A

A2

Public

A
Vis, Pub

B
Vis, Pub

B

A1

A2

A1,2

Vis, Pub

Vis, Pub
Hid, Prv

A1

A2

A1,2

Vis, Pub

Vis, Pub
Hid, Prv

A1

A2

Figure 5.4: Split

5.2.3 Split

This operation is used to split a particular task into a fragment of other tasks. Figure 5.4 shows
public and private Split operations. In the example, an existing task (A) is being split into a
sequence of two other tasks (A1 and A2). A1,2 is a region automatically created by the shared
model as a container of the fragment, such that it can keep track of the correct correspondences.
Attributes and links are updated accordingly.

55

BM ITBM+ IT+

A

Private

A
Vis, Pub

A1

A

A2

Public

A
Vis, Pub

A
Vis, Pub

A

A1

A2

A1,2

Vis, Pub

Vis, Pub
Hid, Prv

B1

B2

B1,2

Vis, Pub

Vis, Pub
Hid, Prv

B1

B2

Be
fo
re

Af
te
r

Be
fo
re

Af
te
r

A1

A2

A1

A2

A1,2

Vis, Pub

Vis, Pub
Hid, Prv

B1

B2

B1,2

Vis, Pub

Vis, Pub
Hid, Prv

B1

B2

B1

B2

B1,2

Vis, Pub

Vis, Pub
Hid, Prv

B1

B2

Figure 5.5: Collapse

5.2.4 Collapse

This operation is the inverse of split and it is used to subsume a a fragment of tasks into a single
task. Figure 5.5 shows public and private Split operations. In the example, a sequence of tasks
(A1 and A2) is being collapsed into a single one (A). A1,2 and B1,2 are regions automatically
created by the shared model as containers of the fragments, such that it can keep track of the
correct correspondences. Attributes and links are updated accordingly.

56

Be
fo
re

Af
te
r

BM ITBM+ IT+

A

Private

A
Vis, Pub

B
Vis, Pub

B

B
Vis, Pub

B

Be
fo
re

Af
te
r

X X
Vis, Pub

A

Public

A
Vis, Pub

B
Vis, Pub

B

X
Vis, Pub

XX X
Vis, Pub

Figure 5.6: Attribute Assign

5.2.5 Attribute Assign

This operation is used to change model elements properties. Figure 5.6 shows public and private
Attribute Assign operations. In the example, the name of a task (A) is being changed to (X).
Attributes and links are updated accordingly.

57

Be
fo
re

Af
te
r

BM ITBM+ IT+

A

Private

A
Vis, Pub

B
Vis, Pub

B

Be
fo
re

Af
te
r

A A
Vis, Prv

A

Public

A
Vis, Prv

A A
Vis, Pub

A
Vis, Pub

A

Figure 5.7: Change Visibility

5.2.6 Change Visibility

This operation is used to change the visibility of a model element. Figure 5.7 shows public and
private Change Visibility operations. In the example, the visibility of a task (A) is being changed
(from Public to Private and vice versa). Attributes and links are updated accordingly.

5.3 Framework Implementation

In the following chapters, implementation designs and individual evaluations for each one of
the major framework components are discussed. Chapter 6 discusses the matching component.
Chapter 7 discusses the diff generator component. Chapter 8 discusses the process model syn-
chronizer and the combination of all components together, i.e., the Shared Model Approach.
Finally, chapter 9 evaluates the Shared Model in action, against real process modeling scenar-
ios.

58

Chapter 6

Matching Process Models Across
Abstraction Levels

6.1 Overview

This chapter presents a technique for matching business process models. Figure 6.1 highlights
the matching component inside the framework.

6.2 BPMN, SESE, and PST

This work assumes that the models to be matched are expressed in BPMN 2.0 [102]. BPMN
2.0 allows businesses to represent their internal business procedures in a graphical notation and
communicate them in a standard way for both documentation and execution. Models expressed
in other languages, such as BPMN 1.0 and BPEL, can be translated into BPMN 2.0 without
adversely impacting the information used by our algorithm (cf. Sect. 6.9.1). BPMN inherits
and combines elements from a number of previously proposed notations, including the Activity
Diagrams component of the Unified Modeling Notation (UML).

Figure 6.2 shows two simplified BPMN process models. We added shorter names in paren-
theses (e.g., (AC)) only to later facilitate concisely representing correspondences between the
models—the method uses the original names. The notation displays activities by rounded rect-
angles, events by circles, gateways by diamonds, and sequence flows by arrows. Each model
has a start, usually modeled by a start event (e.g., Customer inserts Card into ATM), a flow of

59

BM BM+ IT+ IT

BM’ BM’+ IT’+ IT’

getBM getIT

+ +Lens
fPpg

bPpg

MATCHING

Figure 6.1: Matching Component

activities governed by decisions (e.g., X1), and an end point. A larger, realistic example is given
in Fig. 2.1.

Any workflow graph (a BPMN process model in our case) can be uniquely decomposed into
single-entry single-exit (SESE) regions [124]. Let G = (N, E) be a workflow graph, where N is
the set of nodes and E the set of edges. A SESE region R = (N′, E′) is a nonempty subgraph of G,
i.e., N′ ⊆ N and E′ = E∩(N′×N′) such that there exist edges e, e′ ∈ E with E∩((N\N′)×N′) = {e}
and E ∩ (N′ × (N\N′)) = {e′}; e and e′ are called the entry and the exit edge of R, respectively.
According to the formal definition, a SESE region is any region in the workflow graph that has a
single entry at the beginning and a single exit at the end. In this way, an activity itself is a SESE
region, and so is the whole workflow graph.

The Process Structure Tree (PST) for a BPMN process model is a tree representing the de-
composition of the model into SESE regions [124], similar to the much older notion of a pro-
gram structure tree [76]. Figure 6.3 shows the PSTs corresponding to the BPMN process models.
There is a unique PST for each BPMN model. The root represents the whole process model since
a process model is a SESE itself. Leaves represent model elements, i.e., activities, gateways and
events. Inner nodes represent SESE regions. In particular, the parent of a region R is the smallest
region R′ that contains R.

60

Start

Approve Card

(AC)

 X1

Get Balance

(GB)

Consolidate

Receipt

(CR)

Debit Account

(DA)

 X2

Emit Receipt

(ER)

End

 X3 X4

(a) Business Specification

Customer Inserts

Card into ATM

(Trigger)

Approve & Get

Transaction

(AGT)

 X1

Get Balance

(GB)

Get Statement

(GS)

Debit

Checkings

(DC)

 X2

Consolidate

Receipt

(CR)
End

Debit Savings

(DS)

 X5 X6

 X3 X4

(b) Technical Specification

Figure 6.2: BPMN Models

6.3 Differences between Business and IT process models

Our target scenario involves matching business-level models specified by business analysts and
the corresponding IT-level models implemented by IT specialists. IT specialists usually refine
the original specification to meet technical requirements of the underlying IT infrastructure, such
as invoking existing and new services, adding exception treatment, and changing the control flow
to satisfy application protocols and optimize the execution. In Chapter 4 we describe a catalog
of 11 recurrent patterns used to refine business-level models into IT-level models. These patterns
include (i) adding or modifying properties of model elements, such as changing the name or

61

type of an activity or adding service call details, and (ii) changing the flow structure. The latter
category includes behavioral refinement and refactoring and adding additional behavior, such
as technical exception flow. An example from category (i) is the renaming and retyping of the
empty start event Start (Fig. 6.2.a) into the message-driven event Customer inserts card into ATM
(Fig. 6.2.b). An example from category (ii) is the refinement of the task Debit Account (Fig. 6.2.a)
into the block consisting of the gateways X5 and X6 and two other tasks Debit Checkings and
Debit Savings (Fig. 6.2.b). Examples of other patterns are given in Chapter 4.

6.4 Matching Algorithm

We assume that the models to be matched represent the same process, but at different levels of
abstraction, as described in Sect. 6.3. We also assume that, although the models are intended to
be consistent, inconsistencies can occur during their evolution. Thus, the models may include
inconsistencies, such as order of activities switched during refinement or business-relevant activ-
ities added to the IT-level model but not reflected in the business-level model (see [16] for other
examples).

The algorithm identifies a correspondence between two models residing at different abstrac-
tion levels. The algorithm operates on the PST representations of the models. As stated in
Sect. 6.2, leaves in a PST represent model elements; inner nodes represent SESE regions, or
regions, for short. The algorithm computes a (model) correspondence, which is a set of cor-
respondence links among PST nodes; each link connects a single node in the PST of the first
model with a single node of the PST of the other model. Thus, our algorithm is able to identify
correspondence links of different cardinality with respect to model elements:

• 1:1 link among two model elements or two regions with only one model element each;

• 1:n link between a region with one model element in the first PST and a region with more
than one model elements in the second PST;

• m:n link between regions with more than one model element each.

Our algorithm has two phases: attribute matching and structure matching. The first phase
deals with the search of correspondence links based on the attributes of model elements such
as names and types; the second phase tries to find correspondence links based purely on the
structures of the PSTs and the links established in the first phase. Note that the first phase also
considers the structure of the PSTs since it matches both model elements and regions. The next

62

section presents the similarity measures for model elements and regions. The following two
sections explain the two matching phases using the running example from Fig. 6.2. The pseudo-
code of the algorithm is discussed in the Appendix B.

6.5 Matching Criteria for Model Elements and Regions

Our algorithm uses two attribute matching criteria for PSTs: one for matching individual model
elements and another for matching regions. We adapted them from previous work on matching
source code represented as abstract syntax trees (ASTs) [46]. The original criteria use bigram
string similarity to match the values of AST leaves and inner nodes. Fluri et al. [46] achieved
better results for source code matching using Dice Coefficient with bigrams as string similarity
compared to other measures such as the Levenshtein Distance [87]. In particular, the bigram-
based similarity tolerates word re-orderings, which also occur in process refinement (e.g., Ap-
proveCard vs. CardApproval).

We have adapted the original matching criteria by Fluri et al. to the process matching con-
text, by using the information available in PSTs and refining the criteria based on experiments
with sample models. In particular, we require exact matches for model elements and use bigram
similarity only for inner nodes (regions). The reason is that process model elements have often
relatively short names, and the names can be very similar, although representing completely dif-
ferent functions (e.g., ApproveCredit, ApproveContract, CreditAccount). The resulting criteria
are as follows:

Matching criterion for model elements

matche(n,m) , (type(n) = type(m)) ∧ (name(n) = name(m))

Matching criterion for regions

matchr(r, s) , (
common(r, s)

max(r, s)
≥ l) ∧ (sim2g(value(r), value(s)) ≥ f)

where

type returns the type of the model element as a numeric code, such as 0 for start event, 1
for task, 2 for exclusive gateway, etc.

63

name returns the name of the model element, for example: Get Balance, Debit Savings, etc.

sim2g calculates the bigram-based similarity of two strings [46]; it returns a numeric value
between 0 and 1, where 1 means that the strings are equal.

value returns the string formed by the concatenation of the names and types of all model
elements of a region. Thus, similarity of names is emphasized, since types are short nu-
meric codes and names are typically complete words.

common returns the number of pairs of model elements of the two regions that match
exactly (i.e. matche is true).

max returns the maximum number of distinct pairs that could be matched (i.e., the number
of all model elements in the smaller region).

f and l are thresholds controlling the algorithm. We obtained the best results in our evalu-
ation with 0.6 and 0.4, respectively.

6.6 Attribute Matching

Let us explain the first phase by applying it to the PSTs in Fig. 6.3 obtained from the models in
Fig. 6.2.

Figure 6.3: PSTs Representation of the Business Process Models

64

First, the algorithm assumes that the roots of both PSTs correspond to each other. Then, the
algorithm performs a depth-first traversal in one of the PSTs in order to establish correspondence
links with the second PST. Starting with region R1 in PS Ta, it tries to find a corresponding region
in PS Tb. According to the matching criterion for regions (cf. Sect. 6.5), a necessary condition
for a match is to satisfy the formula common(R1,X)

max(R1,X) ≥ l with any region X in PS Tb. Since R1 has only
one child (a model element), satisfying the formula requires finding a region in PS Tb containing
a model element with exactly the same name and type (matching criterion for model elements)
as the activity Approve Card. Since there is none, the algorithm proceeds to region R2.

For R2, the algorithm finds R2′ in PS Tb to satisfy the above formula (5
6 ≥ 0.4). The algo-

rithm also checks that sim2g(value(R2), value(R2′)) ≥ f is satisfied. Assuming abbreviations,
value(R2) returns X12X32GB1CR1X42DA1X22; value(R2′) returns X12X32GB1GS1X42X52DC
1DS1X62X22. Both strings have a similarity of around 0.65 (assuming full names). The algo-
rithm then keeps on searching more matches for R2 in PS Tb. The formula common(R2,R3′)

max(R2,R3′) ≥ l is also
satisfied, returning 3

4 ; however, the value obtained from the string comparison, 0.51, is smaller
that f , so R3 is discarded as a match (see left figure in Fig. 6.4, where the top link is selected
and the bottom one is discarded). No other region in PS Tb satisfies the matching criterion with
R2; however, if there were several matching regions in PS Tb, the correspondence link would
be established with the region with the highest string similarity to R2. If there are more than
one region with the same highest string similarity to R2 (unlikely though, because copies are
uncommon in process modeling), one of them is chosen arbitrarily.

The algorithm keeps traversing PS Ta and establishes a correspondence link between R3 and
R3′, since the string similarity value is 0.79 (right figure in Fig. 6.4). R5′ in PS Tb corresponds
to R5, since the string similarity is 1. The same applies to R6 and R9′. There are no correspon-
dence links for R4 and R7. Finally, the algorithm establishes correspondence links among model
elements. In our example, correspondence links from X1, X2, X3, X4,GB,CR and End in PS Ta

to the model elements with the same name in PS Tb are created.

Figure 6.5 shows the complete set of correspondence links based on attribute matching, also
indicating their model element cardinality. To avoid clutter, the links among model elements
with the same name are not shown.

6.7 Structure Matching

The second phase of the algorithm aims to match nodes that have not been matched in the first
phase due to their different content. It does so by considering the location of the unmatched nodes
in the PSTs and the correspondence links established so far. For example, consider regions R4

65

Figure 6.4: Attribute Matching Phase Step by Step for R2 and R3

Figure 6.5: Correspondence Links for the Attribute Matching Phase

and R4′ in Fig. 6.5. Although they are dissimilar, it is likely, given the correspondence links so
far, that they should be linked. The task of this procedure is to find such pairs of nodes and link
them. The rule for finding node pairs to link is as follows. Let na and nb be a pair of unmatched
nodes. If the parents of na and nb are linked, and if at least one sibling (the left or right one) of
na and nb are linked, na and nb should be linked, too. If none of the siblings are linked (possibly
because they do not exist), we will also link the nodes if both na and nb are the last or first
node in the child list. According to these rules, the aforementioned regions R4 and R4′ should
be matched, as their parents (R2 and R2′) and their left and right siblings (R3 with R3′ and X2
with X2) match. The same happens with R1 and R1′ since R0 matches with R0′ and R2 with
R2′. This newly created correspondence link allows us to link the S tart and Trigger events, too.
All correspondence links established by both phases of the algorithm are shown in Fig. 6.6. As
previously, correspondence links between model elements with the same name are not shown.

66

Figure 6.6: Correspondence Links from Both Phases

6.8 Complexity

Assume n = max(|PS Ta|, |PS Tb|), where |PS T | is the number of regions. The cost of comparing
the attributes of two regions is denoted by c and the cost of checking their structure similarity
is s. The matching of all regions is in O(n2(c + s)), that is, O(n2), since the algorithm compares
each possible region pair.

6.9 Evaluation

We are interested in knowing the precision and recall of the presented algorithm when establish-
ing correspondences among pairs of real-world process models across different levels of abstrac-
tion. Precision tells us whether the recovered correspondence links are correct and recall tells
how large of a portion of the links the algorithm can recover. The following subsections present
the method we have followed and the results.

6.9.1 Method

We want to evaluate the precision and recall of our algorithm. We define these measures for
model correspondences (sets of correspondence links) between the PSTs. We refer to a model
correspondence established by the domain experts as a reference correspondence (RC) and to a

67

model correspondence established by our algorithm as a computed correspondence (CC). Given
these sets, precision (P) and recall (R) are defined, respectively, as P =

|RC
⋂

CC|
|CC| and R =

|RC
⋂

CC|
|RC| .

High recall means few false negatives, whereas high precision means few false positives [10].
False positives are those correspondence links that our algorithm finds but do not belong to the
set of reference correspondence links. False negatives are those correspondence links included
in the reference correspondence that our algorithm is unable to detect. For most process model
matching tools, it is hard to achieve each of high recall and high precision, and it is even harder
to achieve both high recall and high precision. As Berry et al. point out [10], a model matching
tool should favour recall over precision because errors of commission are generally much easier
to correct than errors of omission. Compared to existing approaches for process model matching,
our method achieves both high precision and high recall (see Sect. 6.10).

6.9.1.1 Subject data

We used business process models taken from the Bank of Northeast of Brazil (BNB), a major
financial institution in Brazil that is controlled by the federal government and oriented towards
regional development. BNB has been using Business Process Modeling since 2007 in a develop-
ment process based on the Rational Unified Process. The development process entails iterative
and multi-staged model refinement, resulting in three types of process models (from higher to
lower level of abstraction): business specifications, technical specifications, and executable pro-
cesses. We had access to several projects developed as a result of this process and used them for
evaluating the algorithm.

Table 6.1: BPM Projects

Number of Models

Project Domain Business Technical Implementation

P1 Customer Registration 2 2 2
P2 Credit Backoffice 6 6 6
P3 Credit Risk Assessment 2 2 2
P4 Procurement 3 3 3

We obtained four real BPM projects, containing 39 models in total. Table 6.1 shows, for each
project, the number of models defined in each stage. Our target is to determine the correspon-
dences between each corresponding pair of business and technical specifications and between

68

the latter and executable implementations. Table 6.2 gives the total number of model elements
for each level of abstraction.

Table 6.2: Model Sizes

Total Numbers
Tasks Gateways Events

P1
Business Spec. 59 38 25
Technical Spec. 78 46 36
Implementation 123 56 43

P2
Business Spec. 47 46 18
Technical Spec. 95 48 23
Implementation 107 52 31

P3
Business Spec. 17 8 6
Technical Spec. 19 10 8
Implementation 22 6 9

P4
Business Spec. 13 10 11
Technical Spec. 18 12 15
Implementation 25 14 17

6.9.1.2 Reference correspondences

As reference correspondences, we use the correspondence links established manually by the
domain experts (the bank’s employees) who created and maintain the models. The reference
correspondences in one of the projects was already established for auditing and regulatory com-
pliance purposes, and reused here. The correspondences for the other projects were established
as part of this research.

6.9.1.3 Algorithm implementation

We have implemented the algorithm in Java as an Eclipse feature, on top of the SOA Tools
Platform BPMN Modeler [111]. Since the original models from BNB were created using IBM’s
WebSphere Process Modeler, we needed to recreate them to run our tool.

69

6.9.2 Results

Table 6.3 shows the results of our evaluation. We matched pairs of models at different levels of
abstraction from each project. Concretely, we compared business and technical models, and the
latter and IT implementation models. Column “Pair Type” indicates the type of models compared
in each row. Column “Corresp - RC” gives the total number of correspondence links identified
by the domain experts. Column “Corresp Type” shows the numbers obtained in each phase of
the algorithm.“Total” represents the net result of the two phases. Notice that the correspondence
links do not overlap between the phases. Column “Correct” specifies the number and the car-
dinality of correspondence links that our algorithm was able to identify, in each phase, from
those in the reference correspondence, including their cardinalities. Columns “FP” and “FN”
give the number of false positives and negatives, respectively. In each phase, “FP” and “FN” are
computed with respect to the complete reference. Finally, “Prec” gives precision, followed by
column “Recall”.

If we consider the correspondence links all together—as if they had been extracted from only
one pair of models—we have 622 reference links found manually by the domain experts. Out of
these 622, our algorithm was able to correctly identify 438, with 32 false positives and 184 false
negatives, yielding overall recall of 70% and precision of 93% Among the reference links, 117
had cardinality type 1:n and 89 had the cardinality type m:n. From these, the algorithm identified
correctly 14 (12%) and 24 (27%), respectively.

The overall precision ranges between 87%-96%. None of the false positives is obtained
in the attribute matching phase. This is very positive since a large portion of the reference
correspondence links is recovered in this phase. The number of false positives in the structure
matching phase is quite large compared to the number of reference correspondence links of
purely structural nature. This would be a serious problem in a situation where models have
many such purely structural correspondences. We identified two causes for having so many
false positives. The principal cause is the presence of non-hierarchical refinement patterns [16].
For example, in one B-T pair of the Project 2, there is an activity in the business specification
that corresponds to 3 activities in the technical specification. Each of the 3 activities belongs
to a different region in the technical specification. The algorithm cannot identify such kind
of correspondence; the second phase matched the region containing the business activity to an
incorrect region in the technical specification. Another cause is matching nodes that are the
last or first node in the child list. Although this is reasonable in many cases, it also leads to
incorrect matches. For example, this rule produced a false positive in one T-IT pair of the Project
3. Unfortunately, without extra information (e.g., IDs or annotations) it is likely not possible to
decide whether or not to match the regions in many of such cases.

The relatively high number of false negatives —20%-40%—is caused mainly also by the

70

Table 6.3: Correspondences among Models across Different Abstraction Levels. B: Business;
T: Technical; IT: Information Technology; Corresp - RC: Reference Correspondence; FP: False
Positives; FN: False Negatives; Prec: Precision

Project Pair Type Corresp - RC Corresp Type Correct (1:1; 1:n; m:n) FP FN Prec Recall

1
Attribute 16 (15;0;1) 0 14 100% 53%

B–T 30 Structure 4 (1;2;1) 2 26 67% 13%
Total 20 (16;2;2) 2 10 91% 67%

1
Attribute 28 (26;0;2) 0 14 100% 67%

T–IT 42 Structure 3 (2;1;0) 2 39 60% 7%
Total 31 (28;1;2) 2 11 94% 74%

2
Attribute 95 (90;0;5) 0 43 100% 69%

B–T 138 Structure 8 (6;2;0) 4 130 67% 6%
Total 103 (96;2;5) 4 35 96% 75%

2
Attribute 136 (127;0;9) 0 104 100% 57%

T–IT 240 Structure 18 (10;5;3) 12 222 60% 8%
Total 154 (137;5;12) 12 86 93% 64%

3
Attribute 22 (21;0;1) 0 10 100% 69%

B–T 32 Structure 4 (4;0;0) 2 28 67% 13%
Total 26 (25;0;1) 2 6 93% 81%

3
Attribute 32 (32;0;0) 0 12 100% 72%

T–IT 44 Structure 2 (2;0;0) 5 42 29% 5%
Total 34 (34;0;0) 5 10 87% 77%

4
Attribute 24 (23;0;1) 0 18 100% 57%

B–T 42 Structure 6 (3;3;0) 3 36 67% 14%
Total 30 (26;3;1) 3 12 91% 71%

4
Attribute 36 (36;0;0) 0 18 100% 67%

T–IT 54 Structure 4 (2;1;1) 2 50 67% 7%
Total 40 (38;1;1) 2 14 95% 74%

presence of non-hierarchical refinements, which occurred in all the projects. We believe that
these numbers can be reduced by applying a pattern matching technique for describing and
finding instances of well-known or organization-specific non-hierarchical refinements patterns,
which we leave for future work.

6.9.3 Threats to validity

This section summarizes the potential threats that may impact the internal and external valid-
ity [37] of the empirical results.

71

6.9.3.1 Threats to external validity

A potential threat to external validity is that the models used in the evaluation may not be rep-
resentative of those occurring in other realistic settings. While the models used here come from
real-world projects, the algorithm should be tested additionally on models from other organiza-
tions and domains.

6.9.3.2 Threats to internal validity

The main threat is the re-modeling of the BNB’s business process models to be processed by
our tool. BNB applies IBM tools that use an extension of BPMN. Some features of the BNB
models that are not covered in BPMN had to be omitted during the translation. This threat
was minimized by checking with the domain experts that the BMPN models obtained after the
simplification were largely equivalent to the original models.

6.10 Comparison

Matching of models is a standard topic in MDD. For example, UMLDiff is a prominent ap-
proach for matching UML models [137]. However, effective matching requires heuristics that
are usually notation and application specific. Our method focuses on finding such heuristics for
matching business process models across levels of abstraction. Discovery of effective heuris-
tics usually requires studying the differences among such models. In this context, Dijkman [27]
presents a classification of frequently occurring differences between similar business processes
in general.

As in our approach, the work by Dijkman et al. [29] aims to realize business process models
alignment based on lexical matching (similar to our attribute matching) and structural matching.
They report recall of 60% and precision of 89% for their approach. However, their algorithm
only captures 1:1 correspondences between model elements. Our algorithm also identifies cor-
respondences between SESE regions, which is necessary for matching models at different levels
of abstraction.

Weidlich et al. present ICOP in [130], a framework based on matchers to identify corre-
spondences between process models. They represent the models using Refined Process Structure

72

Table 6.4: Related BPM Matching Approaches. + : Feature Provided; – : Feature not Provided;
NA : Not Available

Approach

Feature Weidlich et al. [130] Dijkman et al. [29] Ehrig et al. [41] Our Approach

Match Activity Attributes + + + +

Match Model Structure + + – +

Match Activity-Activity (1:1) + + + +

Match Activity-SESE (1:n) + – – +

Match SESE-SESE (m:n) – – – +

Do not Require Model Element IDs + + + +

Support Activity Inserts and Deletes + + + +

Support Activity Moves + + – +

Support Activity Renaming + + – +

Support Activity Copies + + – –
Overall Precision 80% 89% NA 93%
Overall Recall 60% 60% NA 70%

Trees (RPSTs) [106, 123] rather than PSTs. In RPSTs, regions can have more than one entry
and more than one exit. The approach by Weidlich et al. deals both with 1:1 and 1:n matches.
Our approach additionally relates regions to regions, which are examples of m:n matches. They
report recall of 60% and precision of 80%.

Ehrig et al. [41] propose a set of similarity measures for process models, for example, in
order to discover existing related process models in repositories. However, the approach does
not establish fine grained correspondence links like in our approach. The authors do not discuss
recall and precision of the approach.

Several related works deal with comparing process models (e.g., [49, 50]), checking their
consistency (e.g., [131]), and their synchronization (e.g., [134]). All these works assume that
model correspondences have been previously established.

Table 6.4 summarizes our contribution in the light of the related works.

73

Chapter 7

Generating Edit Operations from
Automatic Correspondence Discovery

7.1 Overview

This chapter presents a technique for generating a diff between two process models. Figure 7.1
highlights the diff generator component inside the framework.

7.2 Motivation

Synchronizing Business and IT process models means propagating changes in both directions,
i.e., from Business to IT and vice versa. Writing such synchronizations usually requires uncov-
ering tacit knowledge, as we discussed on Chapter 4. Without appropriate tool support, this task
is very time-consuming and error-prone.

Aiming at mitigating this problem, there is a multitude of frameworks for bidirectional model
transformations (BXs) [33,35,36,47,69,70]. Although these approaches provide the foundations
of BXs in terms of properties and operations, few concrete implementations of such frameworks
are available. It remains unclear how to generate such transformations in many problem domains.
In particular, there is a lack of practical BX frameworks tailored to deal with consistency of
business process models that target different levels of abstraction.

We leverage the approach presented in the Chapter 6 and present a practical approach for
generating a diff between two process models, by means of edit operations [15].

74

BM BM+ IT+ IT

BM’ BM’+ IT’+ IT’

getBM getIT

+ +Lens
fPpg

bPpg

DIFF

Figure 7.1: Diff Component

7.3 Running Example

Figure 7.2 shows two models in BPMN 2.0, each representing the process of using an Automated
Teller Machine (ATM) system at different level of abstraction. We added shorter names in paren-
theses (e.g., (AC), (GB)) to avoid clutter when referring to the models throughout the chapter.
The first model (Fig. 7.2.a) represents a business-level process specification. The second one
(Fig. 7.2.b) is an IT-level specification.

Figure 7.3 shows the PSTs corresponding to the BPMN process models shown in the Fig-
ure 7.2. There is a unique PST for each BPMN model. The root represents the whole process
model. Leaves represent model elements, i.e., tasks, gateways and events. Inner nodes represent
SESE regions.

7.4 Edit Operations

A lens is a bidirectional transformation between a pair of connected data structures, X and Y,
capable of translating an edit on one structure into an appropriate edit on the other. Each lens is
a pair of functions—to and from—one mapping X updates to Y updates and the other mapping
Y updates to X updates.

75

Start

Approve Card

(AC)

 X1

Get Balance

(GB)

Debit Account

(DA)

 X2

Print Receipt

(PR)

End

(a) Business Specification

Customer Inserts

Card into ATM

(Trigger)

Approve & Get

Transaction

(AGT)

 X1

Get Balance

(GB)

Get Statement

(GS)

Debit

Checkings

(DC)

 X2

Consolidate

Receipt

(CR)
Notify Terminal

(NT)

Debit Savings

(DS)

 X5 X6

 X3 X4

 Timeout

Cancel

Transaction

 (CT)

(b) Technical Specification

Figure 7.2: BPMN Models

Our approach employs edit operations to implement symmetric delta lenses for two reasons.
First, in business process modeling, changes (including refinement patterns [17]) can be distilled
into atomic editing operations, such as adding, deleting or moving an activity or updating its
attributes. Second, edit operations are intuitive. Human users can inspect them easily to review,
add, discard or select specific operations before synchronizing the models.

76

R0

Trigger R1 R2 R3 R10 NT

AGT CT X1 R4 R7 X2

X3 R5 R6 X4

GB GS

X5 R8 R9 X6

DC DS

CR

PSTb

R0

Start R1 R2 R5 End

AC X1 R3 R4 X2

GB DA

PR

PSTa

Figure 7.3: PSTs representation of the business process models

7.5 Generating Edit Operations from Correspondences be-
tween Process Models

In Chapter 6, we present an algorithm to automatically detect non-trivial correspondence patterns
between BMPN process models across levels of abstraction (see Chapter 4). The algorithm iden-
tifies attribute and structural correspondences over the PSTs of the input models. Table 7.1 shows
the correspondences identified by the matching algorithm on the PSTs shown in the Fig. 7.3.

Table 7.1: Correspondences

i PS Ta.R0 , PS Tb.R0 (Root)
ii PS Ta.Start , PS Tb.Trigger (Structure)
iii PS Ta.R1 , PS Tb.R1 (Structure)
iv PS Ta.AC , PS Tb.AGT (Structure)
v PS Ta.R2 , PS Tb.R3 (Attribute)
vi PS Ta.R3 , PS Tb.R5 (Attribute)
vii PS Ta.GB , PS Tb.GB (Attribute)
viii PS Ta.R4 , PS Tb.R7 (Structure)
ix PS Ta.R5 , PS Tb.R10 (Structure)
x PS Ta.PR , PS Tb.CR (Structure)
xi PS Ta.End , PS Tb.NT (Structure)

For each correspondence, the lenses generator produces a pair of functions, to and from,

77

composed of edit operations for bidirectional transformations in both directions: business ↪→ IT
(to) and business ←↩ IT (from). Regions and model elements without correspondences, such
as PS Ta.DA and PS Tb.GS, are treated as individual adds or deletes. The edit operations are
generated according to the following heuristic:

• add(l,y,k); add a new PST node l as the kth child of node y. For example, in Fig. 7.3,
the region PS Tb.R6 is added as the 3rd child of PS Tb.R4: add(PS Tb.R6,PS Tb.R4,3).
Section 5.2.1 describes this operation conceptually.

• delete(x); delete PST node x from its parent. In the example, PS Ta.DA is deleted from
PS Ta.R4: delete(PS Ta.DA). Section 5.2.2 describes this operation conceptually.

• move(x,y,k); node x becomes the kth child of y. In the example, the task PS Ta.GB is
moved from PS Ta.R3 to PS Tb.R5: move(PS Ta.GB,PS Tb.R5,1). Move is a combination
of the aforementioned delete and add operations.

• update(x,v); update value of x with v. For example, the value of the node PS Ta.PR was
updated to PS Tb.CR: update(PS Ta.PR,PS Tb.CR). Section 5.2.5 describes this operation
conceptually.

• refine(r,s); the region r is refined into the region s: the atomic changes are also presented by
adds and deletes. In the example, the region PS Ta.R4 is refined into the region PS Tb.R7.
The corresponding adds and deletes are presented hierarchically, such as delete(PS Ta.DA),
add(PS Tb.R8,PS Tb.R7,2), and so on. Refine can represent both operations: Split (see
Sect. 5.2.3) and Collapse (see Sect. 5.2.4).

Node positions are shown as parameters using absolute paths. A path like “/0/4/3/0” means:
the unique child of the 3rd child of the 4th child of the root node. The output of the lenses
generator for the correspondences vii and viii previously shown are as follows:

vii PS Ta.GB , PS Tb.GB

to (business ↪→ IT)

move PSTNode="GB" destination="/0/4/2/2" origin="/0/3/2"

from (business←↩ IT)

move PSTNode="GB" destination="/0/3/2" origin="/0/4/2/2"

78

viii PS Ta.R4 , PS Tb.R7

to (business ↪→ IT)

refine PSTNode="R4(DA..DA) to R7(X5..X6)" composed of:

delete PSTNode="DA" source="/0/3/3/0"

add PSTNode="X5" destination="/0/4/3/0"

add PSTNode="X6" destination="/0/4/3/1"

add PSTNode="R8(DC..DC)" destination="/0/4/3/2"

add PSTNode="R9(DS..DS)" destination="/0/4/3/3"

add PSTNode="DC" destination="/0/4/3/2/0"

add PSTNode="DS" destination="/0/4/3/3/0"

from (business←↩ IT)

refine PSTNode="R7(X5..X6) to R4(DA..DA)" composed of:

delete PSTNode="X5" source="/0/4/3/0"

delete PSTNode="X6" source="/0/4/3/1"

delete PSTBranch="R8(DC..DC)" source="/0/4/3/2"

delete PSTBranch="R9(DS..DS)" source="/0/4/3/3"

add PSTNode="DA" destination="/0/3/3/0"

Users can review this preliminary set of edit operations to add, remove, group and discard
specific ones. The final lens (revised by the user) is executed when something is changed in either
of the two models to generate a consistent version of the other model. The synchronization is
fully automatic: our implementation provides a module on top of VIATRA2 [44] to synchronize
any number of individual operations selected by the user. Transformations are first performed on
the PSTs, and afterwards they are transformed back into BPMN. Occasional malformed BPMN
models after the transformations (e.g., an added task without incoming or outgoing flows) need
to be fixed manually by the user. To deal with this issue, we can leverage previous work on
generating quick fixes that guide a user in fixing post-synchronized models [58].

79

7.6 Evaluation

7.6.1 Implementation

We have implemented the edit script generator framework in Java as an Eclipse feature, on top
of the SOA Tools Platform BPMN Modeler.

7.6.2 Results

The quality of the generated edit operations directly depends on the quality of the matching
algorithm, whose recall varies between 40-70% [14]. Thus, the users always need to review
the initial lenses to capture the correct refinement patterns and create a baseline of operations
that ensure proper business-IT synchronization. We wanted to know how much manual work is
needed to update baselines of operations over time, in the presence of typical model changes. We
inspected 48 real changes made in three BPM projects over a period of one year, and counted
how many individual operations would need to be manually changed in each baseline to meet
those changes. The results are shown in the Table 7.2.

Table 7.2: Evaluation

Number of

Project Baseline Operations Changes Operations Revised

Customer Registration 273 23 106 (39%)
Credit Backoffice 356 16 163 (46%)
Procurement 161 9 83 (52%)

A large number of operations need to be manually revised to cope with changes. Neverthe-
less, we believe that keeping the baselines of lenses is useful, instead of the burden of period-
ically rebuilding all synchronizations from scratch. Approximately 50% of the work over the
analysed period would be saved by basically maintaining the lenses incrementally, in pace with
the changes.

7.7 Conclusions

We have developed a practical approach that generates edit operations in BPM, tailored to main-
taining consistency of process models at different abstraction levels. A prototype tool is imple-

80

mented on top of Eclipse and SOA Tools Platform. We performed a preliminary evaluation of
the tool based on real-world models. As for future work, we aim to perform a qualitative assess-
ment of the approach, obtaining feedback from BPM practitioners in industry. We also hope that
this work may encourage developers to evolve the approach and provide tool support to more
elaborated BX scenarios in BPM.

81

Chapter 8

The Shared Model Approach

8.1 Overview

This chapter joins all the pieces of the framework together and shows the Shared Model in prac-
tice. The process model synchronizer component—highlighted in the Fig. 8.1—is discussed in
detail.

BM BM+ IT+ IT

BM’ BM’+ IT’+ IT’

getBM getIT

+ +Lens
fPpg

bPpg

SM

SYNCHRONIZER

Figure 8.1: Shared Model

82

8.2 Motivation for a Shared Model

In this section, we motivate our Shared Process Model concept. First we reinforce why we think
that a single process model view is often not adequate for different stakeholders and we discuss
extra examples on how different views differ. We illustrate this issue by example of two promi-
nent stakeholder views of a process: the business analysts view that is used for documentation,
analysis and communicating requirements to IT and the IT view of a process that is used directly
for execution. Then, we briefly argue that, with multiple views, we need a dedicated effort to
keep them consistent.

8.2.1 Why we want different views

Since BPMN 2 can be used for both documentation and execution, why cannot we use a single
BPMN 2 model that is shared between business and IT? To study this question, we analyzed the
range of differences between a process model created by a business analyst and the correspond-
ing process model that was finally used to drive the execution on a BPM execution engine. We
built on our earlier study [17] (see Chapter 4), which analyzed more than 70 model pairs from
the financial domain, and we also investigated additional model pairs from other domains. Ad-
ditionally we talked to BPM architects from companies using process models to collect further
differences. We summarize our findings here.

We identified the following categories of changes that were applied in producing an execu-
tion model from a business model. Fig. 8.2 illustrates some of these changes in a simplified
claim handling process. A larger, more realistic example, is shown in the Appendix, together
with a catalog of common refinement patterns identified in the early study [17]. Note that the
following categorization of changes, based on the additional data, is a new contribution of this
thesis compared to [17].

• Complementary implementation detail. Detail that is needed for execution is merely added to the
business model, i.e., the part of the model that was specified by the business analyst does not
change. Such details include data flow and its transformation, service interfaces and communication
detail. For example, to specify the data input for an activity in BPMN 2, one sets a specific attribute
of the activity that was previously undefined. The activity itself, its containment in a subprocess
hierarchy and its connection with sequence flow do not change.

• Formalization and renaming. Some parts of the model need to be formalized further to be inter-
preted by an execution engine, including routing conditions, specialization of tasks (into service
task, human task, etc.; see Fig. 8.2), typing of subprocesses (transaction, call), and typing of events.
Furthermore, activities are sometimes renamed by IT to better reflect some technical aspects of the

83

Figure 8.2: Illustration of some refinements often made going from the business to the IT model

activity. These are local, non-structural changes to existing model elements, which do not alter the
flow.

• Behavioral refinement and refactoring. The flow of the process is changed in a way that does not
essentially change the behavior. These types of changes include

- Hierarchical refinement/subsumption. A high-level activity is refined into a sequence of low-
level activities or, more generally, into a subprocess with the same input/output behavior.
For example, ‘Settle Claim’ in Fig. 8.2 is refined into ‘Create Response Letter’ and ‘Send
Response’. The refining subprocess may or may not be explicitly enclosed in a separate
scope (subprocess or call activity). If it is not enclosed in a separate scope, it is represented
as a subgraph which has, in most cases, a single entry and a single exit of sequence flow. We
call such a subgraph a fragment in this thesis.
On the other hand, multiple tasks on the business level may be collapsed into a single service
call or into a single human task to map the required business steps to existing services and
sub-engines (human task, business rules). For example, in Fig. 8.2, ‘Get Personal Details’
and ‘Get Insurance Details’ are collapsed by a single call ‘Get Request Details’ to the human
task engine.

- Hierarchical refactoring. Existing process parts are separated into a subprocess or call ac-
tivity or they may be outsourced into a separate process that is called by a message or event.
Besides better readability and reuse, there are several other IT-architectural reasons motivat-
ing such changes. For example, performance, dependability and security requirements may
require executing certain process parts in a separate environment. In particular, long-running
processes are often significantly refactored under performance constraints. A long-running

84

process creates more load on the engine than a short running process because each change
needs to be persisted. Therefore, short-running parts of long-running process are extracted to
make the long-running process leaner.

- Task removal and addition. Sometimes, a business task is not implemented on the BPM
engine. It may be not subject to the automation or it may already be partly automated outside
the BPM system. On the other hand, some tasks that are not considered to be a part of an
implementation of a specific business task are added on the IT level. For example, a script
task retrieving, transforming, or persisting data or a task that is merely used for debugging
purposes (e.g. ‘Log Session Data’ in Fig. 8.2).

• Additional behavior. Business-level process models are often incomplete in the sense that they
do not specify all possible behavior. Apart from exceptions on the business-level that may be
specified in accompanying and more detailed use case documents, there are usually many technical
exceptions that may occur that require error handling or compensation. This error handling creates
additional behavior on the process execution level. In Fig. 8.2, some fault handling has been added
to the IT model to catch failing service calls.

• Correction and revision of the flow. Some business-level process models would not pass syntac-
tical and semantical validation checks on the engine. They may contain modeling errors in the
control- or data flow that need to be corrected before execution. Sometimes activties also need to
be reordered to take previously unconsidered data and service dependencies into account. These
changes generally alter the behavior of the process. A special case is the possible parallelization of
activities through IT, which may or may not be considered a behavioral change.

Different changes that occur in the IT implementation phase relate differently to the shared
process model idea. Complementary detail could be easily handled by a single model through
a progressive disclosure of the process model, i.e., showing one graphical layer to business and
two layers to IT stakeholders.

However, the decision which model elements are business relevant depends on the project
and should not be statically fixed, as in the BPMN 2 conformance classes. Therefore, an im-
plementation of progressive disclosure requires extensions that specify which element belongs
to which layer. Additional behavior can be handled through progressive disclosure in a similar
way as long as there are no dependencies to the business layer. For example, according to the
BPMN 2 metamodel, if we add an error boundary event to a task with a subsequent sequence
flow specifying the error handling, then this creates no syntactical dependencies from this addi-
tion back to the business elements. However, if we merge the error handling back to the normal
flow through a new gateway or if we branch off the additional behavior by a new gateway in the
first place, then the business elements need to be changed, which would substantially complicate
any implementation of progressive disclosure. In this case, it would be easier to maintain two
separate views. Also the changes in the categories behavioral refinement and refactoring as well
as formalization and renaming clearly suggest to maintain two separate views.

85

8.2.2 Why different views need to be synchronized

In fact, many organizations keep multiple versions of a process model to reflect the different
views of the stakeholder (cf., e.g., [17, 120, 128]). However, because today’s tools do not have
any support for synchronizing them, they typically become inconsistent over time. That is, the
views disagree about which business tasks are executed and in which order. This can lead to
costly business disruptions or to audit failures [17].

There are various reasons why business and IT models become inconsistent over time. We
explained above in Section 8.2.1 (see Correction and revision of the flow) that, already in the
initial implementation of a process, the flow may need to be corrected or revised. If these up-
dates are only done on the IT model and not on the business model, then the models become
already inconsistent in the initial implementation phase. Respondents in our earlier survey [17]
have agreed that inconsistency arises already in that phase because the initial business model is
incomplete, contains modeling errors, the business model contradicts some IT requirements and
the business model does not faithfully represent the actual business process.

Furthermore, more inconsistencies arise when business requirements change, which are then
often applied to only the IT model because of time pressure, while neglecting a simultaneous
update of the corresponding business model. Likewise, changing IT requirements, e.g., an IT
infrastructure affect, may change some business-relevant aspects of the IT model, which leads to
further inconsistencies between the business model and the IT model.

Thus, while different views onto a process are needed by different stakeholders, different
views quickly become inconsistent if not synchronized. Inconsistencies in turn can create busi-
ness disruptions, audit failures, maintenance problems, or delays in the implementation of new
requirements. They can also lead to a business analyst misinterpreting process monitoring data.

8.3 Requirements for a Shared Process Model

8.3.1 The Shared Process Model Concept

The Shared Process Model, which we now present, has the capability to synchronize process
model views that reside on different abstraction levels. The concept is illustrated by Fig. 8.3.
The Shared Process Model provides two different views, a business view and an IT view, and
maintains the consistency between them. A current view can be obtained at any time by the
corresponding stakeholder by the get operation. A view may also be changed by the correspond-
ing stakeholder. With a put operation, the changed view can be checked into the Shared Proess
Model, which synchronizes the changed view with the other view.

86

Business

Analyst

IT Architect/

Developer

IT View

put put

get get Shared

Process

Model

change change

Business

View

 / /
 /

Business conformance IT conformance

Business-IT consistency

Figure 8.3: Process view synchronization via a Shared Process Model

Each view change can be either designated as a public or a private change. A public change
is a change that needs to be reflected in the other view whereas a private change is one that
does not need to be reflected. For example, if an IT architect realizes, while he is working on
the refinement of the IT model, that the model is missing an important business activity, he
can insert that activity in the IT model. He can then check the change into the Shared Process
Model, designating it as a public change to express that the activity should be inserted in the
business view as well. The Shared Process Model then inserts the new activity in the business
view automatically at the right position, i.e., every new business view henceforth obtained from
the Shared Process Model will contain the new activity. If the IT architect designated the activity
insertion as a private change, then the business view will not be updated and the new activity will
henceforth be treated by the Shared Process Model as an IT-only activity.

Fig. 8.3 also illustrates the main three status conditions of a Shared Process Model: busi-
ness conformance, IT conformance, and Business-IT consistency. The business view is business
conformant if it is approved by the business analyst, i.e., if it reflects the business requirements.
This should include that the business view passes basic validity checks of the business modeling
tool. The IT view is IT conformant if it is approved by the IT architect, i.e., if it meets the IT
requirements. This should include that the IT view passes all validity checks of the IT modeling
tool and the execution engine. Business-IT consistency means that the business view faithfully
reflects the IT view, or equivalently, that the IT model faithfully implements the business view.

In the remainder of this section, we discuss the requirements and capabilities of the Shared
Process Model in more detail.

8.3.2 Usage Scenarios and Requirements

We distinguish the following usage scenarios for the Shared Process Model. In the presentation
scenario, either the business or IT stakeholder can, at any time, obtain a current state of his view

87

with the get operation. The view must reflect all previous updates, which may have been caused
by either stakeholder.

The Shared Process Model is initialized with a single process model (the initial business
view), i.e., business and IT views are initially identical. Henceforth, both views may evolve
differently through view change scenarios, which are discussed below. For simplicity, we assume
here that changes to different views do not happen concurrently. Concurrent updates can be
handled on top of the Shared Process Model using known concurrency control techniques. That
is, either a pessimistic approach is chosen and a locking mechanism prevents concurrent updates,
which, we believe, is sufficient in most situations. Or an optimistic approach is chosen and
different updates to the Shared Model may occur concurrently—but atomically, i.e., each update
creates a separate new consistent version of the Shared Model. Parallel versions of the Shared
Model must then be reconciled through a horizontal compare and merge technique on the Shared
Model. Such a horizontal technique would be orthogonal to the vertical synchronization we
consider here and it is out of scope of this thesis.

In the view change scenario, one view is changed by a stakeholder and checked into the
Shared Process Model with the put operation to update the other view. A view change may con-
tain many separate individual changes such as insertions, deletions, mutations, or rearrangement
of modeling elements. Each individual change must be designated as either private or public. We
envision that often a new view is checked into the Shared Process Model which contains either
only private or only public individual changes. These special cases simplify the designation of
the changes. For example, during the initial IT implementation phase, most changes are private
IT changes.

A private change only takes effect in one view, while the other remains unchanged. Any pub-
lic change on one view must be propagated to the other view in an automated way. We describe
in more detail in Sect. 8.4, in what way a particular public change in one view is supposed to
affect the other view. An appropriate translation of the change is needed in general. User inter-
vention should only be requested when absolutely necessary for disambiguation in the translation
process. We will present an example of such a case in Sect. 8.4.

The designation of whether a change is private or public is in principle a deliberate choice
of the stakeholder that changes his view. However, we imagine that governance rules are im-
plemented that disallow certain changes to be private. For example, a private change should
not introduce inconsistencies between the views, e.g., IT should not change the order of two
business-relevant tasks and hide that as a private change. Therefore, the business-IT consistency
status need to be checked upon such changes.

The key function of the Shared Process Model is to maintain the consistency between busi-
ness and IT view. Business-IT consistency can be thought of as a Boolean condition (consistent

88

or inconsistent) or a measure representing a degree of inconsistency. According to our earlier
study [17], the most important aspect is coverage, which means that (i) every element (e.g. ac-
tivities and events) in the business view should be implemented by the IT view, and (ii) only the
elements in the business view are implemented by the IT view.

The second important aspect of business-IT consistency is preservation of behavior. The
activities and events should be executed in the order specified by the business view. The concrete
selection of a consistency notion and its enforcement policy should be configurable on a per-
project basis. A concrete notion should be defined in a way that users can easily understand it,
to make it as easy as possible for them to fix consistency violations. Common IT refinements
as discussed in Sect. 8.2.1 should be compatible with the consistency notion, i.e., should not
introduce inconsistencies, wheras changes that cannot be considered refinements should create
consistency violations. Checking consistency should be efficient in order to be able to detect
violations immediately after a change.

On top of the previous scenarios, support for change management is desirable to facilitate
collaboration between different stakeholders through the Shared Process Model. The change
management should support approving or rejecting public changes. In particular, public changes
made by IT should be subject to approval by business. Only a subset of the proposed public
changes may be approved. The tool supporting the approval of individual changes should make
sure that the set of approved changes that is finally applied to the Shared Process Model leads
to a valid model. The Shared Process Model should be updated automatically to reflect only the
approved changes. The change management requires that one party can see all the changes done
by the other party in a consumable way. In particular, it should be possible for an IT stakeholder
to understand the necessary implementation steps that arise from a business view change.

If a process is in production, all three conditions, business conformance, IT conformance and
business-IT consistency, should be met. Upon a public change of the IT view, the business view
changes and hence the Shared Process Model must show that the current business view is not
approved. Conversely, a public change on the business view changes the IT view and the Shared
Process Model must indicate that the current IT view is not approved by IT. Note that a change
of the IT view that was induced by a public change of the business view is likely to affect the
validity of the IT view with respect to executability on a BPM engine.

8.4 A Technical Realization of the Shared Process Model

In this section, we present parts of a technical realization of the concepts and requirements from
Sect. 8.3. We detail how we have designed and implemented them.

89

Figure 8.4: The Shared Process Model as a combination of two individual models, coupled by
correspondences

8.4.1 Basic Solution Design

We represent the Shared Process Model by maintaining two process models, one for each view,
together with correspondences between their model elements, as illustrated by Fig. 8.4. In the
upper part, the process model for business is shown, in the lower part the process model for IT.
A correspondence, shown by red dashed lines, is a bidirectional relation between one or more
elements of one model and one or more elements of the other model.

For example, in Fig. 8.4, task B of the business layer corresponds to task B’ of the IT layer,
which is an example for a one-to-one correspondence. Similarly, task D of the business layer
corresponds to subprocess D’ of the IT layer and tasks A1 and A2 correspond to the (human)
task A of the IT layer, which is an example for a many-to-one correspondence. Many-to-many
correspondences are theoretically possible but we have not found a need for them so far. We only
relate the main flow elements of the model, i.e., activities, events and gateways, but sequence
flow is not linked. Each element is contained in at most one correspondence. An element that is
contained in a correspondence is called a shared element, otherwise it is a private element.

Alternatively, we could have chosen to represent the Shared Process Model differently by
merging the business and IT views into one common model with overlapping parts being rep-
resented only once. This ultimately results in an equivalent representation, but we realized that
keeping both views separate in the shared models would afford us more flexibility during the
development of the prototype.

90

Furthermore, with our realization of the Shared Process Model we can easily support the
following:

• Import/export to/from the Shared Process Model: From the Shared Process Model, a pro-
cess model must be created (e.g. business view) that can be shown by an editor. This is
straight-forward in our representation. We use BPMN 2 internally in the Shared Process
Model, which can be easily consumed outside by existing editors. Likewise, other tools
working on BPMN 2 can be leveraged for the Shared Process Model prototype easily.

• Generalization to a Shared Process Model with more than two process models: Such a
generalization is easier to realize with correspondences rather than with a merged meta-
model. This includes generalization to three or more stakeholder views, but also when one
business model is implemented by a composition of multiple models (see Sect. 8.2.1) or
when a business model should be traced to multiple alternative implementations.

The technical challenges occur in our realization if one of the process models evolves under
changes because then the other process model and the correspondences have to be updated in an
appropriate way.

8.4.2 Establishing and Maintaining Correspondences

A possible initialization of the Shared Process Model is with a single process model, which
can be thought of the initial business view. This model is then internally duplicated to serve as
initially identical business and IT models. This creates one-to-one correspondences between all
main elements of the process models for business and IT. The creation of such correspondences
is completely automatic because in this case a correspondence is created between elements with
the same universal identifier during the duplication process. Another possible initialization is
with a pair of initial business and IT views where the two views are not identical. For example,
they might be taken from an existing project situation where the processes at different abstraction
levels already exist. In such a case, the user would need to specify the correspondences manually
or use process matching techniques to achieve a higher degree of automation [14].

A one-to-many or many-to-one correspondence can be introduced through an editing wizard.
For example, if an IT architect decides that one business activity is implemented by a series of
IT activities, he uses a dedicated wizard to specify this refinement. The wizard forces the user to
specify which activity is replaced with which set of activities, hence the wizard can establish the
one-to-many correspondence.

91

The Shared Model evolves either through such wizards, in which case the wizard takes care
of the correspondences, or through free-hand editing operations, such as deletion and insertion
of tasks. When such changes are checked into the Shared Model as public changes, the corre-
spondences need to be updated accordingly. For example, if an IT architect introduces several
new activities that are business relevant and therefore designated as public changes, the propaga-
tion to the business level must also include the introduction of new one-to-one correspondences.
Similarly, if an IT architect deletes a shared element on the IT level, a correspondence connected
to this shared element must be removed when propagating this change.

8.4.3 Business-IT Consistency

As described in Sect. 8.3.2, we distinguish coverage and preservation of behavior. Coverage can
be easily checked by help of the correspondences. Every private element, i.e., every element that
is not contained in a correspondence must be accounted for. For example, all private business
tasks, if any, could be marked once by the business analyst; similarly, all private IT tasks could
be marked by the IT architect. The Shared Process Model then remembers these designations.
A governance rule may restrict who can do these designations. All private tasks that are not
accounted for violate coverage.

For preservation of behavior, we distinguish strong and weak consistency according to the
IT refinement patterns discussed in Sect. 8.2.1. If business and IT views are strongly consistent,
then they generate the same behavior. If they are weakly consistent, then every behavior of the
IT view is a behavior of the business view, but the IT view may have additional behavior, for
example, to capture additional exceptional behavior. As with coverage, additional behavior in
the IT view should be explicitly reviewed to check that it is indeed considered technical exception
behavior and not considered business relevant.

We use the following concretizations of strong and weak consistency here. In this work, we
only consider behavior generated by the abstract control flow, i.e., we do not take into account
how data influences behavior.

• We define the Shared Process Model to be strongly consistent if the IT view can be de-
rived from the business view by applying only operations from the first three categories
in Sect. 8.2.1: complementary implementation detail, formalization and renaming, and
behavioral refinement and refactoring. Private tasks in either view are compatible with
consistency only if they are connected to shared elements by a path of sequence flow. The
operations from the first three categories all preserve the behavior. The Shared Process
Model in Fig. 8.4 is not strongly consistent because the IT view contains private boundary

92

events. Without the boundary events and without activity Y , the model would be strongly
consistent. Fig. 8.5 shows examples for violating strong consistency.

An initial Shared Process Model with two identical views is strongly consistent. To pre-
serve strong consistency, all flow rearrangements on one view, i.e., moving activities, rear-
ranging sequence flow or gateways must be propagated to the other view as public changes.

• For weak consistency, we currently additionally allow only IT-private error boundary events
leading to IT private exception handling. Technically we could also allow additional IT-
private gateways and additional branches on shared gateways here, but we have not yet
seen a strong need for them. The Shared Process Model in Fig. 8.4 is weakly consistent.
The examples in Fig. 8.5 also violate weak consistency.

We have used the simplest notion(s) of consistency such that all the refinement patterns we
have encountered so far can be dealt with. We have not yet seen, within our usage scenarios, the
need for more complex notions based on behavioral equivalences such as trace equivalence [132]
or bisimulation [9].

Strong and weak consistency can be efficiently checked but the necessary algorithms and
also the formalization of these consistency notions are beyond the scope of this thesis1. The
automatic propagation of public changes, which we will describe in the following sections, rests
on the Shared Process Model being at least weakly consistent.

1For strong consistency, one has to essentially check that the correspondences define a continuous mapping
between the graphs as known in graph theory.

Figure 8.5: Examples of inconsistencies

93

8.4.4 Computing Changes between Process Model Versions

If the Shared Process Model evolves by changes on the business or IT view, then such changes
must be potentially propagated from one view to the other. As a basis for our technical realization
of the Shared Process Model, an approach for compare and merge of process models is used [83].
We use these compound operations because they minimize the number of changes and represent
changes on a higher level of abstraction. This is in contrast to other approaches for comparing
and merging models, which focus on computing changes on each model element.

Figure 8.6 shows the change operations that we use for computing changes. InsertActivity,
DeleteActivity and MoveActivity, respectively, insert, delete and move activities or other ele-
ments such as events and subprocesses. InsertFragment, DeleteFragment and MoveFragment are
used for, respectively, inserting, deleting and moving fragments that represent control structures.
The computation of a change script consisting of such compound operations is based on com-
paring two process models and their Process Structure Trees. For more details of the comparison
algorithm, the reader is referred to Küster et al. [83]

Effects on Process Model VChange Operation op

InsertActivity(x, a, b) Insertion of a new activity x between two succeeding elements a and b in
process model V and reconnection of control flow.

DeleteActivity(x) Deletion of activity x and reconnection of control flow.

MoveActivity(x, a, b) Movement of activity x from its old position into its new position between
two succeeding elements a and b in process model V and reconnection of
control flow.

InsertFragment(f, a, b) Insertion of a new fragment f between two succeeding elements a and b in
process model V and reconnection of control flow.

MoveFragement(f, a, b) Movement of a fragment f from its old position to its new position.

DeleteFragment(f, c, d) Deletion of fragment f between c and d from process model V and
reconnection of control flow.

Figure 8.6: Change operations according to Küster et al. [83]

As an example for an evolution scenario of the Shared Process Model, consider Figure 8.7.
The left hand side shows a part of the initial state of the Shared Process Model in our scenario,
which contains a 2-to-1 correspondence and a private IT task. Thus, some IT refinements have
been done already. Assume now, that during IT refinement, the IT architect realizes that, in a
similar process that he has implemented previously, there was an additional activity that checks
the provided customer details against existing records. He is wondering why this is not done in

94

Figure 8.7: Example of a change script on the IT level that is propagated to the business level

this process and checks that with the business analyst, who in turn confirms that this activity was
just forgotten. Consequently, the IT architect now adds this activity together with a new loop
to the IT view, resulting in a new IT view shown in the lower right quadrant of Fig. 8.7. Upon
checking this into the Shared Process Model as a public change, the business view should be
automatically updated to the model shown in the upper right quadrant of Fig. 8.7.

To propagate the changes, one key step is to compute change operations between process
models in order to obtain a change script as illustrated in Fig. 8.7. In the particular example,
we compute three compound change operations: the insertion of a new empty fragment con-
taining the two XOR gateways and the loop (InsertFragment), the insertion of a new activity
(InsertActivity), and the move of an activity (MoveActivity), illustrated by the change script in
Figure 8.7. In the next section, we explain how we use our approach to realize the evolution of
the Shared Process Model.

8.4.5 Evolution of the Shared Process Model

For private changes, only the model in which they occurred is updated. In the following, we
explain how public changes are propagated from IT to business, the case from business to IT is
analogous.

When a new IT view is checked into the Shared Process Model, we first compute all changes

95

DeltaIT

Process
Model
(IT’)

Process
Model

(B)

Process
Model

(IT)

Process
Model
(B’)

DeltaB

Correspondences

(a)

Process
Model
(IT1)

Process
Model

(B)

Process
Model

(IT)

Process
Model
(B1)

op1

op1
T op2

T

op2

…

…
Process
Model
(IT’)

Process
Model
(B’)

Process
Model
(IT2)

Process
Model
(B2)

(b)

Figure 8.8: Delta computation for propagating changes

between the old model IT and the new model IT’, giving rise to a change script DeltaIT , see
Figure 8.8 (a). The change script is expressed in terms of the change operations introduced above,
i.e., DeltaIT = 〈op1, ..., opn〉 where each opi is a change operation. In order to propagate the
changes to the business level, DeltaIT is translated into a change script DeltaB for the business-
level. This is done by translating each individual change operation opi into an operation opT

i
and then applying it to the business-level. Likewise, we also apply each change operation on the
IT-level to produce intermediate process models for the IT level. Overall, we thereby achieve a
synchronous evolution of the two process models, illustrated in Figure 8.8 (b).

Algorithm 1
Translation of a compound operation op from process model IT to Business model B

Step 1: compute corresponding parameters of the operation op
Step 2: replace parameters of op with corresponding parameters to obtain opT

Step 3: apply opT to B, apply op to IT
Step 4: update correspondences between B and IT

Algorithm 1 describes in pseudo-code the algorithm for translating a compound operation
from IT to business. The algorithm for translation from business to IT can be obtained by swap-
ping business and IT. Overall, one key step is replacing parameters of the operation from the
IT model by parameters of the business model according to the correspondences. For example,
for translating a change InsertActivity(x, a, b), the parameters a and b are replaced according to
their corresponding ones, following the correspondences in the Shared Process Model. In case
that a and b are private elements, this replacement of elements requires forward/backward search
in the IT model until one reaches the nearest shared element (Step 1 of the algorithm). Simi-
larly, for translating an InsertFragment(f , a, b), the parameters a and b are replaced in the same
way. An operation DeleteActivity(x) is translated into DeleteActivity(x′) (assuming here that x
is related to x′ by a one-to-one correspondence). After each translation, in Step 3 the change
operation as well as the translated change operation are applied to produce new models Bi and

96

ITi, as illustrated in Figure 8.8 (b). Afterwards, Step 4 updates the correspondences between the
business and IT model. For example, If x is the source or target of a one-to-many/many-to-one
correspondence, then all elements connected to it must be removed.

For the example in Figure 8.7, the change script DeltaIT is translated iteratively and applied
as follows:

• The operation InsertFragment(f, ‘Get Request Details’, ‘Log Session Data’) is translated into In-
sertFragment(f, ‘Get Insurance Details’, ‘Validate Claim’). The operation as well as the translated
operation are applied to the IT and business model, respectively, to produce the models IT1 and B1,
and also the correspondences are updated. In this particular case, new correspondences are created
e.g. between the control structures of the inserted fragments.

• The operation InsertActivity(‘Check Consistency with Records’, Merge, Decision) is translated into
InsertActivity(‘Check Consistency with Records’, Merge, Decision), where the new parameters now
refer to elements of the business model. These operations are then also applied, in this case to IT1
and B1, and correspondences are updated.

• The operation MoveActivity(‘Get Request Details’, Merge, ‘Check Consistency with Records’) is
translated into MoveActivity(‘Get Request Details’, Merge, ‘Check Consistency with Records’),
where the new parameters now refer to elements of the business model. Again, as in the previous
steps, the operations are applied and produce the new Shared Process Model consisting of B′ and
IT ′.

In general, when propagating a change operation, it can occur that the insertion point in the
other model cannot be uniquely determined. For example, if a business user inserts a new task
between the activity ‘Get Insurance Details’ and ‘Validate Claim’ in Fig. 8.7, then this activity
cannot be propagated to the IT view automatically without user intervention. In this particular
case, the user needs to intervene to determine whether the new activity should be inserted before
or after the activity ‘Log Session Data’.

In addition to computing changes and propagating them automatically, in many scenarios it
is required that before changes are propagated, they are approved from the stakeholders. In order
to support this capability, changes can first be shown to the stakeholders and the stakeholders
can approve/disapprove the changes. Only approved changes will then be applied. Disapproved
changes are handed back to the originating stakeholder. They will then have to be handled on an
individual basis. Such a change management can be realized on top of our change propagation.

8.4.6 Implementation

As a proof of concept, we have implemented a prototype as an extension to the IBM Business
Process Manager and as an extension to an open source BPMN editor. Our current prototype

97

implements initialization of a Shared Process Model from a BPMN process model, check-in of
private and public changes to either view, and change propagation between both views. Fur-
thermore, we have implemented a check for strong consistency, which can be triggered when
checking in private changes. We currently assume that the changes between two subsequent IT
or business views are either all public or all private. With an additional component, this assump-
tion can be removed. Then, the change script computed for the pair of IT views or business views
is presented to the user who can then mark the public changes individually. For this scenario, the
compare-merge component needs to meet the following two requirements: (i) the change script
must be consumable by a human user and (ii) individual change operations presented to the user
must be as independent as possible. Note that the change operations in a change script are in
general interdependent, which restricts the ability to apply only an arbitrary subset of operations
to a model. Therefore, a compare and merge component may not support separating all public
from all private changes.

In fact, we first experimented with a generic compare-merge component from the EMF Com-
pare Framework, which could be used to generate a change script for two process model based
on the process metamodel, i.e., BPMN 2. The change operations were so fine-grained, e.g. ‘a
sequence flow reference was deleted from the list of incoming sequence flows of a task’, such
that the change script was very long and not meaningful to a human user without further post-
processing. Furthermore, the BPMN 2 metamodel generates very strong dependencies across
the different parts of the model, so that separate changes were likely to be dependent in the EMF
Compare change script.

For these reasons, we switched to a different approach with compound changes as described
above. Note that the change approval scenarios described in Sect. 8.3.2 generate the same re-
quirements for the compare/merge component: human consumability of the change script and
separability of approved changes from rejected changes.

98

Chapter 9

Evaluation

9.1 Objectives

We conducted an evaluation of the shared model tool using real-world data. The evaluation was
carried out by means of several process modeling experiments, counting on help and feedback
from industry practitioners. Our overarching goal was to observe the adherence of the tool be-
havior to the design requirements previously elicited in the development process of the same
company. More specifically, the evaluation aimed at answering the following questions:

Q1 How successfully can the tool synchronize typical Business-to-IT process modeling edit
patterns? [17]

We wanted to know how successfully the tool deals with edit patterns—instances of typical
correspondence patterns—used by practitioners to build IT executable models based on
their high-level business specifications. We applied the tool by replaying several concrete
modeling scenarios and obtained feedback from practitioners who created and maintained
the real models. A summary of typical correspondence patterns employed by the company
and their rationales is shown in the Chapter 4.

Q2 How successfully can the tool synchronize scenarios composed of multiple edit patterns?

In practice, an update to a model may lag far behind updates to its counterpart. We wanted
to know how the tool would deal with synchronizing larger chunks of change, composed

99

of multiple and mixed (private and public) edits at once. Insights from such scenarios also
suggest new tool features and future work.

Q3 Are there recommended best practices in using the tool, such that they could ensure con-
sistency between Business and IT views?

We wanted to know the most effective ways of using the tool, such that it ensures consis-
tency between business and IT models.

To answer these questions, we replayed concrete change scenarios in Business and IT views,
from a real project, as described in the following.

9.2 Subjects

To study how the tool works in a concrete setting, we remodeled and replayed change history of
a BPM project—Credit Backoffice—from BNB, our industry partner. Table 9.1 shows the size
of the project, in terms of the number of model elements in each of its Business and IT views,
i.e., each of its types of process models.

Table 9.1: Project Size

Number of Model Elements
Pools Tasks Gateways Events Flows

Credit Backoffice
Business 6 47 46 18 128
IT 6 107 52 31 154

BNB manages the change of software artifacts using two IBM products—ClearQuest (work-
flow of change requests) and ClearCase (artifact repository). Business employees open change
requests to the IT department using ClearQuest. Every request has a unique ID, a textual descrip-
tion, and several parameters, such as priority and nature of the change (e.g. legal, evolution).
Requests follow a sequence of steps, for example, to group them into projects (when applica-
ble) before they arrive to IT. IT Managers assign IT professionals (Project Managers, Architects,
Developers) to every request. IT technicians can change artifacts in ClearCase only by having
an assigned change request. When artifacts are changed, ClearCase stores the change request

100

ID in the change log. With their current tool support, BNB specialists perform synchroniza-
tions between Business and IT models by hand, i.e., by looking at the changes in one model and
propagating them to the other, when applicable.

We recovered the change log of the case study project from the ClearQuest database and also
the textual descriptions associated with every change request. We had the following objectives
in collecting this data:

1. Select a snapshot of the project from the past, containing consistent Business and IT views.
We relied on domain knowledge from BNB specialists to find a consistent pair of those
views. The snapshot selected was from February of 2010, just before a new business
evolution was about to start. As the models from BNB are implemented using commercial
versions of IBM tools (Business in Websphere Business Modeler, and IT in Websphere
Integration Developer), we needed to remodel them using the shared model tool—the
prototype uses an open source BPMN 2.0 modeler, based on Eclipse.

2. Identify a set of concrete changes that were made in Business and IT views, along the
project’s life-cycle. By analyzing 160 change requests, we found 23 of them (instances of
common Business-to-IT correspondence patterns, see Chapter 4) that specifically affected
the process models. Most of the changes do not affect the process models themselves, but
other resources such as databases, documentation and external services.

This dataset includes changes that cover different synchronization scenarios between Busi-
ness and IT views. Based on it, we were able to: (i) replay the changes using the shared model
tool; (ii) apply the synchronization mechanisms available; and (iii) compare the results with the
actual consistent versions of the models, counting on knowledge from BNB domain experts.

9.3 Correspondence Patterns versus Edit Patterns

It is important to distinguish between correspondence and edit patterns. The first represent typi-
cal correspondences to derive an IT-level process out of its business-level specification. Business
and IT models are considered consistent if it is possible to establish correspondence among all
their models elements that is consistent with the patterns.

Edit patterns, on the other hand, are particular ways of implementing correspondence pat-
terns. For example, one can implement the correspondence pattern Split task into block (see
Chapter 4) by splitting a task in the IT model or merging tasks in the business model.

101

Table 9.2: Correspondence, Actual Edit and Conceptual Edit Patterns

Correspondence Pattern Actual Edit Pattern Conceptual Edit Pattern (see Chapter 5)

Add boundary event (Sect. 4.6.2.5) Add boundary event Add
Add script task (Sect. 4.6.2.3) Add business relevant task to Business Add
Add script task (Sect. 4.6.2.3) Add business relevant task to IT Add

Add manual task (Sect. 4.6.2.2) Add manual task Add
Add properties (Sect. 4.6.2.1) Add properties Attribute Assign

Add protocol task (Sect. 4.6.2.4) Add protocol task Add
Add script task (Sect. 4.6.2.3) Add script task Add

Add technical exception flow (Sect. 4.6.2.6) Add technical exception flow Add
Change activity name (Sect. 4.6.2.7) Change activity name Attribute Assign
Change activity type (Sect. 4.6.2.8) Change activity type Attribute Assign
Refactor gateway (Sect. 4.6.2.12) Refactor gateway Add or Delete

Split task into block (Sect. 4.6.2.10) Refine task into fragment Split
Split workflow (Sect. 4.6.2.11) Refine task into subprocess Split

Split task into block (Sect. 4.6.2.10) Simplify selection into task Collapse
Split task into block (Sect. 4.6.2.10) Split task into block Split

Suppress specification activity (Sect. 4.6.2.9) Suppress specification activity Delete

It is also important to clarify the relation between the actual edit patterns collected for the
evaluation and the conceptual edit operations discussed in the Chapter 5. The first ones are
specializations of the second. Table 9.2 shows the relations among correspondence, actual edit
and conceptual edit patterns that occurred in the case study.

9.4 Method

First, we used the shared model tool to recreate the aforementioned version of the project from
BNB (i.e., the Business and IT process models from February 2010). The two new process
models were created identically as the original ones, except that the IT model was translated
from BPEL to BPMN. For checking consistency, we focus on the control flow of the process
models. BPMN and BPEL control flow constructs are similar in the sense that each can be
mapped into the other, according to the OMG specification of BPMN 2.0 [102]. The control flow
of the original models was entirely preserved for the evaluation. Note that the original models,
as represented in their respective modeling tools, also have detailed information as attributes of
nodes and flows, such as the communication protocols and the addresses of the services used.
Some of those properties and parameters were ignored in the remodeling effort, since they were
not relevant for the evaluation.

Second, for each one of the 23 real changes, we compared the two adjacent versions of
the BNB models (i.e., before and after each change), and manually computed the diff between

102

the versions. As a result, for each change we recorded which model elements (such as tasks,
flows, gateways and events) were added, removed or updated (e.g., renamed or other properties
changed).

Third, we replayed (remodeled) the changes, individually and then combined, using the tool.
During the process, we applied one of the synchronization mechanisms available, according to
how they actually happened in the revision history:

• Private (Business Only): Change affects only the Business view and need to be privately
kept on it.

• Private (IT Only): Change affects only the IT view and need to be privately kept on it.

• Public (Business ⇒ IT): Change is initially made on the Business view and needs to be
propagated to the IT view.

• Public (IT ⇒ Business): Change is initially made on the IT view and needs to be propa-
gated to the Business view.

For some changes, when applicable, we also applied built-in model refactoring operations
provided by tool:

• Simplify Selection into Task: Several model elements can be selected and collapsed into a
single task. Section 5.2.4 describes this operation conceptually.

• Turn into Service Task: A generic task can be changed into an IT service task. Section 5.2.5
describes this operation conceptually.

• Refine Task into a Fragment: A single task can be split into a fragment (subflow) of other
model elements—i.e., the inverse of Simplify Selection into Task. Section 5.2.3 describes
this operation conceptually.

• Refine Task into a Subprocess: A special case of splitting a task, where the resulting frag-
ment is a subprocess. Section 5.2.3 describes this operation conceptually.

Finally, we showed and discussed the results of the synchronized views with BNB specialists
who created the original models. This way they could help us to assess whether the tool had
successfully synchronized the views consistently, according to their domain knowledge and the
current consistent versions of the models.

The next two sections describe the results of employing the tool to keep Business and IT
views synchronized, by replaying the model changes in two categories:

103

• Single: synchronize one edit pattern at a time;

• Compound: accumulate several edit patterns, respecting their occurrence over time, and
synchronize them together.

In sequence, we discuss main lessons learned and threats to their validity.

9.5 Results: Single Refinement Patterns

Table 9.3 presents the change scenarios of individual edit patterns, in terms of the number of
model elements that have been added or removed, as seen in the diff between adjacent versions
of BNB models. Some patterns, e.g., Change activity name, do not change the workflow, only
alter model element properties. The synchronization method used to propagate the change is
shown by a checkmark (!). Also, the tool has some predefined refactoring operations, such as
Refine Task into Fragment. The last column informs which tool-provided operation was used.

After applying the synchronization mechanism for each scenario, the resulting (updated)
Business and IT views were captured and later discussed with the BNB specialists who created
and maintained the actual project. Table 9.4 summarizes the assessment made by the specialists.
The tool was capable of correctly synchronizing all the individual edit patterns, with minor layout
issues. We discuss these results in the section 9.7.

9.6 Results: Compound Refinement Patterns

Besides the atomic (simple) change cases, composed of single edit patterns per synchronization,
we also tested the tool on other concrete cases, where one model update, typically on the Business
side, lags behind the other. Such situation requires multiple edits to be synchronized at once.

Thus, we created 7 extra scenarios (as shown in the Table 9.5) by combining multiple edit
patterns together. The edits were combined according to the change history, i.e., respecting their
occurrences over time. We divided the first 49 months of the projects’ change history into seven
periods of evolution, such that each scenario comprises seven months of change on the IT process
model.

The experiments to synchronize each compound scenario were conducted as follows. First,
for each 7-month period, the initial versions of business and IT models were recovered from the
repository and remodeled on the tool. Second, all the actual changes were solely made on the IT

104

Ta
bl

e
9.

3:
E

va
lu

at
io

n
Sc

en
ar

io
s:

Si
ng

le
R

efi
ne

m
en

tP
at

te
rn

s

A
dd

ed
R

em
ov

ed
Sy

nc
hr

on
iz

at
io

n
M

et
ho

d

Sc
en

ar
io

Pa
tte

rn
In

st
an

ce
Ta

sk
s

Fl
ow

s
E

ve
nt

s
G

at
ew

ay
s

Ta
sk

s
Fl

ow
s

E
ve

nt
s

G
at

ew
ay

s
Pr

iv
at

e
(B

us
in

es
s

O
nl

y)
Pr

iv
at

e
(I

T
O

nl
y)

Pu
bl

ic
(B
⇒

IT
)

Pu
bl

ic
(I

T
⇒

B
)

To
ol

R
ef

ac
to

ri
ng

1
A

dd
m

an
ua

lt
as

k
2

4
—

—
—

—
—

—
!

—
2

C
ha

ng
e

ac
tiv

ity
na

m
e

—
—

—
—

—
—

—
—

!
—

3
Si

m
pl

if
y

se
le

ct
io

n
in

to
ta

sk
—

—
—

—
—

—
—

—
!

Si
m

pl
if

y
Se

le
ct

io
n

in
to

Ta
sk

4
A

dd
pr

op
er

tie
s

—
—

—
—

—
—

—
—

!
—

5
A

dd
sc

ri
pt

ta
sk

1
2

—
—

—
—

—
—

!
—

6
A

dd
sc

ri
pt

ta
sk

2
4

—
—

—
—

—
—

!
—

7
A

dd
pr

ot
oc

ol
ta

sk
2

4
—

—
—

—
—

—
!

—
8

A
dd

pr
ot

oc
ol

ta
sk

1
2

—
—

—
—

—
—

!
—

9
A

dd
bo

un
da

ry
ev

en
t

1
1

1
—

—
—

—
—

!
—

10
A

dd
te

ch
ni

ca
le

xc
ep

tio
n

flo
w

1
1

1
—

—
—

—
—

!
—

11
A

dd
te

ch
ni

ca
le

xc
ep

tio
n

flo
w

2
2

2
—

—
—

—
—

!
—

12
C

ha
ng

e
ac

tiv
ity

ty
pe

—
—

—
—

—
—

—
—

!
Tu

rn
in

to
Se

rv
ic

e
Ta

sk
13

R
efi

ne
ta

sk
in

to
fr

ag
m

en
t

2
4

—
2

—
—

—
—

!
R

efi
ne

Ta
sk

in
to

Fr
ag

m
en

t
14

Su
pp

re
ss

sp
ec

ifi
ca

tio
n

ac
tiv

ity
—

—
—

—
1

2
—

—
!

—
15

Sp
lit

ta
sk

in
to

bl
oc

k
6

12
—

2
—

—
—

—
!

—
16

R
efi

ne
ta

sk
in

to
su

bp
ro

ce
ss

—
—

—
—

—
—

—
—

!
R

efi
ne

Ta
sk

in
to

Su
bp

ro
ce

ss
17

R
efi

ne
ta

sk
in

to
su

bp
ro

ce
ss

—
—

—
—

—
—

—
—

!
R

efi
ne

Ta
sk

in
to

Su
bp

ro
ce

ss
18

R
ef

ac
to

rg
at

ew
ay

1
2

—
—

—
—

—
—

!
—

19
A

dd
bu

si
ne

ss
re

le
va

nt
ta

sk
to

B
us

in
es

s
1

2
—

—
—

—
—

—
!

—
20

Su
pp

re
ss

sp
ec

ifi
ca

tio
n

ac
tiv

ity
—

—
—

—
2

4
—

2
!

—
21

A
dd

bu
si

ne
ss

re
le

va
nt

ta
sk

to
IT

1
2

—
—

—
—

—
—

!
—

22
Sp

lit
ta

sk
in

to
bl

oc
k

3
6

—
2

1
2

—
—

!
—

23
R

ef
ac

to
rg

at
ew

ay
1

2
—

—
—

—
—

—
!

—

105

Table 9.4: Evaluation Results, Single Refinements

Scenario Edit Pattern Instance of
(see Chapter 4)

Result Comments Issues

1 Add manual task Sect. 4.6.2.2 Success Manual task and corresponding incoming
and outgoing flows were correctly updated
on the Business view only

—

2 Change activity name Sect. 4.6.2.7 Success New name was correctly updated on the
Business view only

—

3 Simplify selection into task Sect. 4.6.2.10 Success Selection of fine grained changes was cor-
rectly simplified into a single task on the
Business view

—

4 Add properties Sect. 4.6.2.1 Success Specific properties were correctly updated
on the IT view only

—

5 Add script task Sect. 4.6.2.3 Success Script task and corresponding incoming and
outgoing flows were correctly updated on the
IT view only

—

6 Add script task Sect. 4.6.2.3 Success Script task and corresponding incoming and
outgoing flows were correctly updated on the
IT view only

—

7 Add protocol task Sect. 4.6.2.4 Success Protocol tasks and corresponding incoming
and outgoing flows were correctly updated
on the IT view only

—

8 Add protocol task Sect. 4.6.2.4 Success Protocol task and corresponding incoming
and outgoing flows were correctly updated
on the IT view only

—

9 Add boundary event Sect. 4.6.2.5 Success Event, flow and task were correctly updated
on the IT view only

—

10 Add technical exception flow Sect. 4.6.2.6 Success Event, flow and task were correctly updated
on the IT view only

—

11 Add technical exception flow Sect. 4.6.2.6 Success Event, flow and task were correctly updated
on the IT view only

—

12 Change activity type Sect. 4.6.2.8 Success New type was correctly updated on the Busi-
ness view only

—

13 Refine task into fragment Sect. 4.6.2.10 Success Task was correctly refined into a fragment of
other activities, using the refactoring method
provided by the tool

—

14 Suppress specification activity Sect. 4.6.2.9 Success Task and flows were correctly removed from
the IT view only

—

15 Split task into block Sect. 4.6.2.10 Success Selection of activities was correctly simpli-
fied into a single task on the Business view

Layout

16 Refine task into subprocess Sect. 4.6.2.11 Success Task was correctly refined into a subpro-
cess of other activities, using the refactoring
method provided by the tool

—

17 Refine task into subprocess Sect. 4.6.2.11 Success Task was correctly refined into a fragment of
other activities, using the refactoring method
provided by the tool

—

18 Refactor gateway Sect. 4.6.2.12 Success New activities added and modifed flows
were correctly updated on the IT view

—

19 Add business relevant task to Business Sect. 4.6.2.3 Success Business relevant task and its corresponding
incoming and outgoing flows were correctly
updated on the Business view, and propa-
gated to the IT view as well

Layout

20 Suppress specification activity Sect. 4.6.2.9 Success Gateway, tasks and flows were correctly re-
moved on the IT view only

—

21 Add business relevant task to IT Sect. 4.6.2.3 Success Business relevant task and its corresponding
incoming and outgoing flows were correctly
updated on the IT view, and correctly propa-
gated to the Business view as well

Layout

22 Split task into block Sect. 4.6.2.10 Success Deleted task and other activities added were
updated on the IT view and changes were
correctly propagated to the Business view as
well

Layout

23 Refactor gateway Sect. 4.6.2.12 Success New activities added and modifed flows
were correctly updated on the IT view, and
propagated to the Business view as well

Layout

106

side, whilst the business view remained intact. Third, the Shared Model was updated from the IT
view (i.e., public and private parts were synchronized). Finally, the resulting (updated) business
model was compared to the actual corresponding version on the repository, and also discussed
with BNB specialists.

This way we ensured that each extra scenario was a potential concrete case for synchroniza-
tion. Table 9.6 summarizes the results we obtained. We discuss them in the next section 9.7.

9.7 Discussion of Results

Single Edit Scenarios

All the single edit patterns, commonly used by BNB specialists to create IT process models
out of their Business specifications, were successfully synchronized by the shared model tool.
The following factors contribute to this result:

• Single edit patterns produce small impact: the number of model elements affected by a
single edit pattern is small (e.g., 1 to 3 tasks). Changes produced by single edit patterns
are well localized and affect few model element dependencies.

• Some edits are private: a private edit does not (initially) affect the other model. However,
it is critical for the synchronization mechanism to keep track of such private parts. This
way the tool can correctly propagate a public change, specially when it has dependencies
(e.g., flow connections) on private model elements.

Some edit synchronizations (15,19,21,22 and 23) caused broken layout of the synchronized
views, such as new model elements overlapping pre-existing ones and entangled flows. Such
cases require manual adjustments on the views to make them visually clean. Although BNB
specialists considered this a minor issue, they pondered that this may become a tedious task in
practice.

Compound Edit Scenarios

To deal with the scenarios combining multiple edit patterns, we needed to divide the syn-
chronization in two parts: one collecting all public changes, and another collecting all the private
ones.

107

Table 9.5: Evaluation Scenarios: Compound Refinement Patterns

Added Removed

Scenario Period Number
of
Changes
(IT)

Private Public Tasks Flows Events Gateways Tasks Flows Events Gateways

24 May/09-Nov/09 27 30% 70% 83 116 19 41 — — — —
25 Dec/09-Jun/10 23 48% 52% 12 22 8 6 — — — —
26 Jul/10-Jan/11 15 67% 33% 10 8 — — 3 16 5 2
27 Feb/11-Aug/11 10 70% 30% 5 14 — — 5 18 4 2
28 Sep/11-Mar/12 19 73% 27% 14 30 — 2 — — 2 —
29 Apr/12-Oct/12 8 60% 40% 7 14 — — — — — —
30 Nov/12-May/13 6 83% 17% 3 6 — — 1 3 1 —

For each change period shown in Table 9.5 we performed the following steps (Fig. 9.1 shows
an overview):

1. Recovered the initial and final versions of both business and IT models;

2. Computed the diff (i.e., an edit script showing all inserted, deleted or updated model
elements) between the two versions of the IT model [15];

3. Manually decided which parts were private IT changes and which were public (IT and
business changes). We counted on help from BNB specialists to recover such information
from the change request log, documentation, and their own expertise regarding the models.

4. Replayed all the public changes on the IT model and pushed the updates to the shared
model;

5. Replayed all the private changes on the IT model and pushed the updated to the shared
model;

6. Obtained an updated view of the business model;

7. Compared the updated view with the current (final) version of the business model on the
repository.

The third step (above) was the most laborious and time-consuming. We needed to count on
domain knowledge from BNB specialists to precisely distinguish which individual edits were
public or private. That distinction was possible only by also inspecting the change request log,
which contains textual descriptions of each change, and also the project’s documentation.

108

Process
Model
(IT1)

Process
Model

(B)

Process
Model

(IT)

Process
Model

(B)

op1

=

op2

…

…
Process
Model
(IT’)

Process
Model

(B’)

Process
Model
(IT2)

Process
Model

(B)

=

Shared
Process
Model

BulkPut Public,
BulkPut Private

Get

Compute the diff (edit script) between IT’ and IT; Individually annotate public
and private changes on IT’

Unchanged model Updated model

Figure 9.1: Synchronization of Compound Edits

All compound scenarios were correctly synchronized, and a consistent business view was
eventually produced, as shown in the Table 9.6. Some issues were occasionally observed in the
generated business view: broken layout (as the aforementioned entangled flows and overlapping
model elements) and missing sequence flows. The later does not represent a problem with the
synchronization mechanism, but rather requires improving the current heuristic implemented by
the prototype to infer graph dependencies (sequence flows) between public and private parts. Fig-
ure 9.2 shows an example of inferred sequence flow between Task X and Task Z on the business
side, after synchronizing all public and private changes on the IT side.

Concurrent Changes

As explained in Sect. 8.3.2, the current prototype does not deal with cases where both views
are changed concurrently. Such cases would need comparing and merging different instances of
the shared model, as shown in the Fig. 9.3. We plan to further study this problem as future work.

We conclude the discussion by answering our initial evaluation questions:

Q1 How successfully can the tool synchronize typical Business-to-IT process modeling edit
patterns?

109

Table 9.6: Evaluation Results, Compound Refinements

Scenario Result Comments Issues

24 Success All changes were correctly syn-
chronized. A consistent busi-
ness view was generated

Layout. Some sequence flows were
broken

25 Success All changes were correctly syn-
chronized. A consistent busi-
ness view was generated

Layout. Some sequence flows were
broken

26 Success All changes were correctly syn-
chronized. A consistent busi-
ness view was generated

Layout. Some sequence flows were
broken

27 Success All changes were correctly syn-
chronized. A consistent busi-
ness view was generated

Layout. Some sequence flows were
broken

28 Success All changes were correctly syn-
chronized. A consistent busi-
ness view was generated

Layout

29 Success All changes were correctly syn-
chronized. A consistent busi-
ness view was generated

Layout. Some sequence flows were
broken

30 Success All changes were correctly syn-
chronized. A consistent busi-
ness view was generated

Layout

The tool was able to deal well with all the evaluated scenarios from BNB, when synchro-
nizing after each edit pattern.

Q2 How successfully can the tool synchronize scenarios composed of multiple edit patterns?

In its current version, the tool can deal with scenarios where multiple edits need to be syn-
chronized at once, as long as it is possible to distinguish between public and private individ-
ual edits. Manually performing such task is, however, a painstaking and time-consuming
effort. More research is necessary to understand how such mechanism for dealing with
intertwined types of changes, during the development process, could be built.

Q3 Are there recommended best practices in using the tool, such that they could ensure con-
sistency between Business and IT views?

Yes. The tool can ensure consistent Business and IT views if the development process
enforces that each occurrence of a refinement pattern performed in either model is syn-
chronized as soon as it occurs. This approach avoids the problem discussed in the previous

110

Task A Task X Task B

Task Z

Conditional

event

Task Y

(Private)

Task A
Task X

(Public)

Task B

Task Z

(Public)

IT

Business

Figure 9.2: Public and Private Synchronization Dependencies

question. However, assessing the feasibility of this approach in industrial practice requires
further research.

9.8 Threats to Validity and Lessons Learned

Many tool evaluations suffer from limitations, such as the number of subjects not being represen-
tative of the entire population, the differences between development methods employed across
different organizations, and so on. This evaluation is subject to three main limitations:

• The limited number of evaluation scenarios: It is difficult to obtain data to drive research in
the domain of process modeling. For example—to the best of our knowledge—there is no
available open-source projects featuring business-level specifications and their IT-level im-
plementations. Also, companies which adopt such technologies usually consider process
artifacts extremely sensitive and confidential. We obtained access to people and artifacts

111

Shared
Process
Model

3
Shared
Process
Model

2
Merge 1 & 2

Shared
Process
Model

1

Process
Model

(IT)Put

Put

Get Get

Process
Model

(B)

Process
Model

(B’)

Process
Model

(IT’)

Figure 9.3: Synchronization of Concurrent Changes

from BNB. However, mining the artifact repository, the change log, and remodeling the
project and change scenarios was a laborious and time-consuming effort. Such tasks were
only possible with the help from several BNB technicians and managers.

• The artifacts come from a single company (domain): Clearly, different development pro-
cesses and organizational cultures will likely lead to different results.

• The evaluation relied on subjective and relatively quick assessments of the BNB specialists:
While the correspondence and edit patterns are grounded in the studied artifacts, assess-
ments of consistency are based on subjective perceptions of the participating specialists.

Although the observed results are very promising, it is important to note that (in practice)
there may exist many other types of organization-, domain- or even project-specific edit patterns.
Clearly, there may also exist many test cases where the context (dependencies) of the model

112

elements affected by an edit may lead to synchronization failures. We do not intend to claim that
the tool (in its current version) can successfully synchronize all types of small changes.

113

Chapter 10

Conclusions

10.1 Summary

We have developed a practical framework for consistency management in business process mod-
eling. The requirements for the framework come from a comprehensive study of an industrial
BPM-driven development process, including the analysis of more than 70 models, 17 hours of
interviews with practitioners, and inspection of around 1000 change requests in 5 BPM projects.
Our study covers several aspects of consistency management, including types of inconsistencies,
causes, impacts, and tool preferences.

The findings detailed in our study highlight some limitations in the way that state-of-the-art
BPM solutions work:

• Development process: Effective consistency management appears to require a progressive
disclosure approach, in which models are created by a smooth progression from high-level
specifications to IT-level models, preserving a chain of manageable correspondences. To-
day, related models are initially created using common refinement patterns, but then main-
tained separately for satisfying the needs of different stakeholders, possibly in different
languages.

• Stakeholders need a way to define consistency properties: Consistency is a subjective no-
tion. The same pair of models may or may not be considered inconsistent. The notion of
business relevance influences strongly the consistency rules.

• There is a lack of support for parallel maintenance: Parallel maintenance requires differ-
encing and merging techniques, something lacking in the major tools.

114

• Detection of inconsistencies: Inconsistencies should be detected and communicated as
soon as they occur and then managed according to a clearly defined process.

Our framework aims to mitigate such limitations, by providing an automated way to manage
correspondences and to propagate changes between business and IT corresponding models.

We have developed the following techniques, as the main components of the framework:

• A heuristic process model matching: Our method discovers which activities in one model
correspond to which activities in another model, by taking into consideration frequent
correspondence patterns between processes spanning multiple abstraction levels.

• A process model diff method: Using the matching as input, we translate the correspon-
dences into human-readable edit operations, such as insert, delete, move and update.

• A process model synchronizer: Combining the aforementioned techniques together, we
present a method for automatically propagate changes between corresponding process
models: the Shared Model approach.

We evaluate the framework on 30 concrete modeling scenarios—23 single edit patterns, plus
7 compound edits—and show that the framework successfully deals with all cases, although there
may be some issues in the layout of the models and, occasionally, some sequence flows missing.

10.2 Limitations and Future Work

Our framework faces the following main limitations:

• Non-hierarchical refinements: the current matching heuristics are not able to identify non-
hierarchical refinements (see Sect. 4.6.2). Because of this limitation, such types of refine-
ments can not be managed by the tool. Solving this limitation needs to extend the matching
component to deal with user-defined, project-specific patterns (beyond the current lexical
and topological correspondences).

• Concurrent changes: the current design of the framework is not able to merge simultaneous
changes. To solve this issue it would be needed to provide a way to deal with edit conflicts
between the views, and merge them back to the Shared Model, along with the updated
traceability links.

115

Regarding future work, we plan to develop improved heuristics to extend the framework,
such as matching based on pattern queries and dependencies between consistency rules, as well
as investigate different solver algorithms. A promising idea is to add the ability to learn user-
selected fixes by storing them in a runtime knowledge base and reusing such knowledge for later
solution generation. This could be investigated in a model versioning and conflict management
case study.

116

APPENDICES

117

Appendix A

Basic BPMN Notation

Sequence

(a) Flow

Service TaskService Task User TaskUser Task Send TaskSend Task Receive TaskReceive Task Sub-ProcessSub-Process

(b) Tasks

StartStart EndEnd ErrorError TimerTimer SignalSignal Terminate

(c) Events

ExclusiveExclusive ParallelParallel JoinJoin

(d) Gateways

118

Appendix B

Matching Algorithm Pseudocode

B.1 Introduction

In this appendix we present the pseudocode of the algorithm described in our MODELS’12 paper
[14], entitled Matching Business Process Workflows Across Abstraction Levels. In our matching
algorithm, we assume that the models to be matched represent the same process, but at different
levels of abstraction. We also assume that, although the models are intended to be consistent,
inconsistencies can occur during their evolution and the models to be matched may include some
inconsistencies. The aim of the algorithm is to automatically identify a correspondence among
the models. A correspondence is defined by a set of correspondence links. To achieve that, the
algorithm actually deals with the PST representations of the models. Leaves in a PST represent
model elements, while inner nodes represent SESE regions. In this document, when referring
to the elements in a PST, we will use the term model element to refer to leaves, region to refer
to SESE regions and node to refer to both of them indistinctly. Thus, a correspondence link
establishes a relation between two nodes in both PSTs.

B.2 Algorithm’s Pseudocode

The algorithm receives as input the two business process models (Modela and Modelb) whose
correspondence we want to establish and the threshold values, f and l, controlling node’s sim-
ilarity. It produces, as result, the PST representations (PTS a and PS Tb) of the corresponding
models as well as the set of correspondence links (corr) established among the PSTs’ nodes.
The objects of type CorrsLink are pairs of nodes.

119

The algorithm is summarized in Listing 1. First, it initializes the output variables: the set
of correspondence links is an empty set at the beginning (line 2) and the variables representing
the PSTs are initialized with the result of the function buildPS T , which takes a process model
as input and returns its PST’s representation (lines 3 and 4). Then, correspondence links estab-
lished by attribute (first phase of our algorithm) are inserted in corr (line 5). It is done by the
procedure matchPS T s Attribute, shown in Listing 2. Then, correspondence links determined by
structure (second phase of the algorithm) are inserted in corr (line 6) by calling the procedure
matchPS T s S tructure, shown in Listing 3. Finally, the algorithm returns the PST’s representa-
tions of the input models and the set of correspondence links among their nodes (line 7).

Listing 2 Process models matching procedure
1: procedure BPMNMatching(in Modela, Modelb : Model; in f , l : Real; out PS Ta, PS Tb :

PST; out corr : CorrsLink[])
2: corr ← \emptyset;
3: PS Ta ← buildPST(Modela);
4: PS Tb ← buildPST(Modelb);
5: corr ← matchPSTs Attribute(PS Ta, PS Tb, f , l, corr);
6: corr ← matchPSTs Structure(PS Ta, PS Tb, corr);
7: return PS Ta, PS Tb, corr;
8: end procedure

The first phase of the algorithm matches the nodes by content similarity, comparing names
and types of nodes. When comparing two model elements, the string resulting from the concate-
nation of their names and types is compared, as explained in the paper. As for regions, the string
produced from the concatenation of names and types of all their model elements is compared.
This phase is called attribute matching and is shown in Listing 2.

This procedure receives as input the PSTs of the models and the threshold values. In adds
correspondence links established in this phase to the corr variable. The declared variables are
link, of type CorrsLink (pair of nodes), and maxS tringS im, leavesComp and stringS im, of type
Real.

In this phase, the roots of the PSTs are matched by default (line 4). Then, the algorithm
performs a depth-first traversal in PS Ta (line 5) in order to establish correspondence links with
PS Tb. If the node in PS Ta is a model element, i.e. a leaf (line 6), it traverses PS Tb (line 7) in
order to find a model element with the same name and type. If it finds it (line 8), a correspondence
link is established among them and included in corr (line 9).

120

Listing 3 PSTs matching by attributes
1: procedure matchPSTs Attribute(in PS Ta, PS Tb : PST; in f , l : Real; in/out corr :

CorrsLink[])
2: CorrsLink link;
3: Real maxS tringS im, leavesComp, stringS im;
4: corr ← addLink(getRoot(PS Ta), getRoot(PS Tb));
5: for each na in getNodes(PS Ta) do
6: if na.isLea f () then
7: for each nb in getLeaves(PS Tb) do
8: if type(na) = type(nb) and name(na) = name(nb) then
9: corr ← addLink(na, nb);

10: end if
11: end for
12: else
13: maxS tringS im← 0;
14: for each nb in getRegions(PS Tb) do
15: leavesComp← common(na,nb)

max(na,nb) ;
16: stringS im← sim2g(value(na), value(nb));
17: if leavesComp ≥ f and stringS im ≥ l then
18: if stringS im > maxS im then
19: maxS tringS im← stringS im;
20: link ← (na, nb);
21: end if
22: end if
23: end for
24: if maxS tringS im > 0 then
25: corr ← addLink(link);
26: end if
27: end if
28: end for
29: return corr;
30: end procedure

If the node in PS Ta is a region (line 12), the algorithm traverses PS Tb (line 14) looking
for a region to which establish a correspondence link. It keeps in maxS tringS im the maximum
string similarity found (0 at the beginning, line 13), in leavesComp the comparison result of
both regions in terms of leaves matching (line 15), as explained in the paper, and in stringS im

121

their string similarity (line 16). As long as leaveComp and stringS im are bigger than their
corresponding threshold values (line 17), the algorithm compares if the string similarity of the
two nodes (stringS im) is bigger than the maximum string similarity (maxS tringS im) kept until
the moment (line 18). If it is, the latter variable is updated with the new string similarity (line
19) and the pair of regions is stored in the variable link (line 20). If the current region in PS Ta,
na, was matched with any region nb in PS Tb, i.e., if the maxS tringS im is bigger than 0 (line 24),
then the correspondence link stored in link is added to the set of corresponding links (line 25).

Eventually, this procedure returns the set of correspondence links (line 29).

The second phase of the algorithm matches the remaining unmatched nodes by structural
similarity, comparing neighborhood matches among their parents and siblings. This phase is
called structure matching and is shown in Listing 3.

Listing 4 PSTs matching by structure
1: procedure matchPSTs Structure(in PS Ta, PS Tb : PST; in/out corr : CorrsLink[])
2: NodesPair[] np;
3: np← getUnmatchedNodes(PS Ta, PS Tb, corr);
4: for all (na, nb) in np do
5: if areMatched(na.parent(PS Ta), nb.parent(PS Tb)) and

areMatched(na.le f tsibling(PS Ta), nb.le f tsibling(PS Tb)) or
areMatched(na.rightsibling(PS Ta), nb.rightsibling(PS Tb)) or
na.isFirstChild(PS Ta) and nb.isFirstChild(PS Tb) or
na.isLastChild(PS Ta) and nb.isLastChild(PS Tb)

then
6: corr ← addLink(na, nb);
7: end if
8: end for
9: return corr;

10: end procedure

This procedure declares a set of node pairs, np, of type NodesPair (line 2), where it keeps
all the pairs of nodes in PS Ta and PS Tb that have not been matched with any node. These pairs
are retrieve by the method getUnmatchedNodes and stored in the variable np (line 3). For every
pair of nodes, na and nb, belonging to np, if their parents are matched, and if at least one sibling
(the left or right one) are matched or if none of the siblings match but both na and nb are the last
or first node in the child list (line 5), then a correspondence link among the nodes is added to
corr (line 6). Finally, this phase returns the updated set of correspondence links (line 9).

122

Appendix C

Academic and Research Activities

Table C.1 displays a list of relevant academic and research activities accomplished in the course
of the Ph.D. program towards its completion. In the following sections we discuss the activities
in more detail.

C.1 Accomplished Activities

We have conducted this work in close collaboration with Alex Lau and Phil Coulthard from the
IBM Toronto Lab, and Hagen Völzer and Jochen Küster from the IBM Research Zurich. We had
weekly calls with the IBM researchers from Zurich from February 2011 to July 2013. We also
had roughly monthly consultations with the IBM personnel from the IBM Toronto Lab in the
course of 2011. Following we comment on the progress we had towards the accomplishment of
the thesis:

Advance our understanding of the relationship between models that target different lev-
els of abstraction and how to characterize consistency among them. Towards achieving this
objective (see contribution 1), we conducted an in-depth empirical study of a business-driven
engineering process deployed at a large company in the banking sector. We analyzed more than
70 business process models developed by the company, including their change history, with over
1000 change requests. We also interviewed 9 business and IT practitioners and also surveyed—
via questionnaires—a total of 23 business and IT practitioners to understand concrete difficulties
in consistency management of business process models, the rationales for the specification-to-
implementation refinements found in the models, strategies that the practitioners use to detect
and fix inconsistencies, and how tools could help with these tasks. Our main accomplishments

123

Table C.1: Timetable of Academic and Research Activities

Year Term Activities

Winter
2� Course on Model-based Software Engineering (CS846)
2� CAS UDays Poster: Maintaining Consistency Between BPMN and BPEL Models
2� Background study on BPMN-BPEL transformation and round-trip engineering

20
10 Spring

2� Course on Requirements Engineering (CS846)
2� Initial collaboration with IBM on the multi-perspective BPM project

Fall
2� Course on Software Bug Detection and Tolerance (ECE750)
2� CASCON 2010 Workshop: Effective Consistency Management in BPM [18]
2� Initial work on matching business process workflows

Winter

2� Started research collaboration with IBM Research Zurich
2� CAS UDays Poster: Friendly Change Extraction for BPMN Workflows
2� IBM TechConnect 2011 Panel: Friendly Change Extraction for BPMN Workflows
2� Empirical study on process model consistency management at BNB
2� Collaboration with István Ráth (Budapest Univ. of Technology and Economics)

20
11

Spring

2� Acceptance of an IBM CAS PhD Fellowship Project
2� Compilation of main findings regarding the empirical study [16]
2� Attendance at the 1st SAT/SMT Summer School at MIT
2� Publication at the IEEE VL/HCC 2011 Conference [58]

Fall
2� Submission of a journal paper (SoSyM), result of the empirical study [17]
2� Presentation at the 3rd ORF-RE Workshop
2� CASCON 2011 Technology Showcase: Quick Consistency Management in BPM

Winter
2� Publication of an IBM Technical Report [81]
2� Evaluation of a heuristic method for process model matching

20
12 Spring

2� Publication at the MODELS 2012 Conference [14]
2� Presentation at the 4th ORF-RE Workshop
2� Writing PhD proposal

Fall
2� Work on generating edit lenses for business process modeling
2� PhD comprehensive examination

Winter
2� Publication of the SoSyM journal paper [17]
2� Publication at the ECMFA 2013 Conference [85]
2� Publication at the CAiSE 2013 Conference [15]

20
13

Spring
2� Working on the comprehensive evaluation of the shared model approach
2� Writing PhD Thesis

Fall 2� PhD Seminar

20
14 Winter

2� Submission of a journal version of the shared model featuring its evaluation [86]
2� PhD Defense

124

were 1) an account of how business process specification and executable models co-evolve and
how their consistency is maintained in a concrete industrial setting; 2) a set of recurrent patterns
used to refine business-level process specifications into IT-level executable models, and 3) a set
of findings that confirm or contradict conventional wisdom on process model consistency man-
agement found in the literature. As a result of this study, we have published a paper in the Journal
of Software and Systems Modeling (SoSyM)—Special Issue on Enterprise Modeling [17].

Develop techniques to discover correspondence via matching and support traceability among
the models. Towards achieving this objective (see contribution 2), we developed an algorithm
for matching and differencing arbitrary BPMN models. The algorithm translates BPMN models
into corresponding process structure trees and uses techniques for matching ordered trees. We
have developed a prototype implementing the algorithm, which we presented at the IBM Tech-
Connect’11. We extended the algorithm to match non-hierarchical refinements (see Sect. 6.9),
common in models residing in different levels of abstraction. The extension exploits the patterns
that we discovered in the empirical study described above. The paper describing the algorithm
has been accepted and presented at the MODELS’12 Conference [14].

Develop a technique to generate edit operations based on the matching and support process
model synchronization. Towards achieving this objective (see contribution 3), we developed
an approach that leverages the matching and produces an edit script based on edit lenses. We
presented the approach at the CAiSE’13 Conference [15].

Develop a technique to automatically generate fixing actions for post-synchronized mal-
formed process models. Towards this objective (see contribution 4), we developed a solution to
generate quick fixes for BPMN models, based on predefined repair templates. The solution uses
graph matching, graph transformation, and constraint satisfaction problem (CSP) solving over
models. This last work was presented at the VL/HCC’11 Conference [58]. We also presented
a technology showcase at the CASCON’11, showing the approaches and prototypes developed.
We also collaborated with IBM to produce a technical report that proposes the use of custom
views on a shared model [81].

125

References

[1] Steve Adolph, Wendy Hall, and Philippe Kruchten. A methodological leg to stand on:
lessons learned using grounded theory to study software development. In Proceedings of
the 2008 conference of the center for advanced studies on collaborative research: meeting
of minds, CASCON ’08, pages 13:166–13:178, New York, NY, USA, 2008. ACM.

[2] Marcos Almeida da Silva, Alix Mougenot, Xavier Blanc, and Reda Bendraou. Towards
automated inconsistency handling in design models. In Barbara Pernici, editor, Advanced
Information Systems Engineering, pages 348–362. Springer, 2010. LNCS 6051.

[3] Carsten Amelunxen, Elodie Legros, Andy Schürr, and Ingo Stürmer. Checking and en-
forcement of modeling guidelines with graph transformations. In Applications of Graph
Transformations with Industrial Relevance, pages 313–328. Springer, 2008. LNCS 5088.

[4] Michal Antkiewicz. Round-trip engineering using framework-specific modeling lan-
guages. In Companion to the 22nd ACM SIGPLAN conference on Object-oriented pro-
gramming systems and applications companion, OOPSLA ’07, pages 927–928, New
York, NY, USA, 2007. ACM.

[5] Michal Antkiewicz and Krzysztof Czarnecki. Design space of heterogeneous synchro-
nization. In Ralf Lämmel, Joost Visser, and João Saraiva, editors, Generative and Trans-
formational Techniques in Software Engineering II, pages 3–46. Springer-Verlag, Berlin,
Heidelberg, 2008.

[6] András Balogh and Dániel Varró. Advanced model transformation language constructs
in the VIATRA2 framework. In ACM Symp. on Applied Computing (SAC 2006), page
1280–1287, Dijon, France, 2006. ACM Press.

[7] Gábor Bergmann, Ákos Horváth, István Ráth, and Dániel Varró. Experimental assessment
of combining pattern matching strategies with VIATRA2. Journal of Software Tools in
Technology Transfer, 2009.

126

[8] Gábor Bergmann, András Ökrös, István Ráth, Dániel Varró, and Gergely Varró. Incre-
mental pattern matching in the viatra model transformation system. In Proceedings of the
Third International Workshop on Graph and model transformations, pages 25–32. ACM,
2008.

[9] J. A. Bergstra. Handbook of Process Algebra. Elsevier Science Inc., New York, NY, USA,
2001.

[10] Daniel Berry, Ricardo Gacitua, Pete Sawyer, and SriFatimah Tjong. The case for dumb
requirements engineering tools. In Björn Regnell and Daniela Damian, editors, Require-
ments Engineering: Foundation for Software Quality, volume 7195 of Lecture Notes in
Computer Science, pages 211–217. Springer Berlin Heidelberg, 2012.

[11] Norbert Bieberstein, Sanjay Bose, Marc Fiammante, Keith Jones, and Rawn Shah.
Service-Oriented Architecture Compass: Business Value, Planning, and Enterprise
Roadmap. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

[12] Ralph Bobrik, Manfred Reichert, and Thomas Bauer. View-based process visualization.
In Business Process Management, volume 4714 of Lecture Notes in Computer Science,
pages 88–95. Springer Berlin Heidelberg, 2007.

[13] E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System Design
and Analysis. Springer-Verlag, 2003.

[14] Moisés Castelo Branco, Javier Troya, Krzysztof Czarnecki, Jochen Küster, and Hagen
Völzer. Matching Business Process Workflows Across Abstraction Levels. In Proceedings
of 15th ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems, MODELS 2012. ACM/IEEE, 2012.

[15] Moisés Castelo Branco and Arif Wider. Generating preliminary edit lenses from auto-
matic pattern discovery in business process modeling. In Proceedings of the CAiSE’13
Forum at the 25th International Conference on Advanced Information Systems Engineer-
ing (CAiSE), pages 65–72, 2013.

[16] Moisés Castelo Branco, Yingfei Xiong, Krzysztof Czarnecki, Jochen Küster, and Hagen
Völzer. An Empirical Study on Consistency Management of Business and IT Process
Models. Technical Report GSDLAB-TR 2012-03-22, Generative Software Development
Laboratory, University of Waterloo, Waterloo, 2012.

127

[17] Moisés Castelo Branco, Yingfei Xiong, Krzysztof Czarnecki, Jochen Küster, and Hagen
Völzer. A Case Study on Consistency Management of Business and IT Process Mod-
els in Banking. Software and Systems Modeling (SoSyM) – Special Issue on Enterprise
Modeling, 2013.

[18] Moisés Castelo Branco, Yingfei Xiong, Krzysztof Czarnecki, Janette Wong, and Alex Lau.
Effective collaboration and consistency management in business process modeling. In
Proceedings of the 2010 Conference of the Center for Advanced Studies on Collaborative
Research, CASCON ’10, pages 349–350, Riverton, NJ, USA, 2010. IBM Corp.

[19] Stephan Buchwald, Thomas Bauer, and Manfred Reichert. Bridging the gap between busi-
ness process models and service composition specifications. In Service Life Cycle Tools
and Technologies: Methods, Trends and Advances, pages 124–153. Idea Group Reference,
November 2011.

[20] Hong-Mei Chen. Towards service engineering: Service orientation and Business-IT align-
ment. In Proceedings of the Proceedings of the 41st Annual Hawaii International Con-
ference on System Sciences, HICSS ’08, pages 114–, Washington, DC, USA, 2008. IEEE
Computer Society.

[21] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel, Andy Schürr, and
James F. Terwilliger. Bidirectional transformations: A cross-discipline perspective. In
Proceedings of the 2nd International Conference on Theory and Practice of Model Trans-
formations, ICMT ’09, pages 260–283, Berlin, Heidelberg, 2009. Springer-Verlag.

[22] Thomas H. Davenport. Process innovation: Reengineering work through information
technology. Harvard Business School Press, Boston, MA, USA, 1993.

[23] Valeria De Castro, Esperanza Marcos, and Roel Wieringa. Towards a service-oriented
MDA-based approach to the alignment of business processes with it systems: From the
business model to a web service composition model. International Journal of Cooperative
Information Systems, 18(2):225–260, 2009.

[24] Gero Decker. Bridging the gap between business processes and existing IT functionality.
In Proceedings of the 1st International Workshop on Design of Service-Oriented Applica-
tions (WDSOA), pages 17–24, Amsterdan, The Netherlands, 2005. ICSOC.

[25] Juliane Dehnert and Wil M. P. van der Aalst. Bridging the gap between business models
and workflow specifications. Int. J. Cooperative Inf. Syst., 13(3):289–332, 2004.

128

[26] Andrea Delgado, Francisco Ruiz, Ignacio Garcia-Rodriguez de Guzman, and Mario Piat-
tini. A model-driven and service-oriented framework for the business process improve-
ment. Journal of Systems Integration, 1(3):45–55, 2010.

[27] Remco Dijkman. A classification of differences between similar business processes. In
Proceedings of the 11th IEEE International Enterprise Distributed Object Computing
Conference, pages 37–, Washington, DC, USA, 2007. IEEE Computer Society.

[28] Remco Dijkman. Diagnosing differences between business process models. In Proceed-
ings of the 6th International Conference on Business Process Management, BPM ’08,
pages 261–277, Berlin, Heidelberg, 2008. Springer-Verlag.

[29] Remco Dijkman, Marlon Dumas, Luciano Garcia-Banuelos, and Reina Kaarik. Align-
ing Business Process Models. In 2009 IEEE International Enterprise Distributed Object
Computing Conference, pages 45–53. IEEE, September 2009.

[30] Remco M. Dijkman, Dick A. C. Quartel, Luis Ferreira Pires, and Marten J. van Sinderen.
A rigorous approach to relate enterprise and computational viewpoints. In Proceedings
of the Enterprise Distributed Object Computing Conference, Eighth IEEE International,
pages 187–200, Washington, DC, USA, 2004. IEEE Computer Society.

[31] Zinovy Diskin. Model synchronization: mappings, tiles, and categories. In Proceedings
of the 3rd international summer school conference on Generative and transformational
techniques in software engineering III, GTTSE’09, pages 92–165, Berlin, Heidelberg,
2011. Springer-Verlag.

[32] Zinovy Diskin, Krzysztof Czarnecki, and Michal Antkiewicz. Model-versioning-in-the-
large: Algebraic foundations and the tile notation. In Proceedings of the 2009 ICSE
Workshop on Comparison and Versioning of Software Models, CVSM ’09, pages 7–12,
Washington, DC, USA, 2009. IEEE Computer Society.

[33] Zinovy Diskin, Yingfei Xiong, and Krzysztof Czarnecki. From state- to delta-based bidi-
rectional model transformations. In Proceedings of the Third international conference on
Theory and practice of model transformations, ICMT’10, pages 61–76, Berlin, Heidel-
berg, 2010. Springer-Verlag.

[34] Zinovy Diskin, Yingfei Xiong, and Krzysztof Czarnecki. Specifying overlaps of hetero-
geneous models for global consistency checking. In Proceedings of the First International
Workshop on Model-Driven Interoperability, MDI ’10, pages 42–51, New York, NY, USA,
2010. ACM.

129

[35] Zinovy Diskin, Yingfei Xiong, and Krzysztof Czarnecki. From State- to Delta-Based Bidi-
rectional Model Transformations: the Asymmetric Case. Journal of Object Technology,
10, 2011.

[36] Zinovy Diskin, Yingfei Xiong, Krzysztof Czarnecki, Hartmut Ehrig, Frank Hermann, and
Fernando Orejas. From State- to Delta-Based Bidirectional Model Transformations: the
Symmetric Case. In Proceedings of the 14th international conference on Model driven
engineering languages and systems, MODELS’11, pages 304–318, Berlin, Heidelberg,
2011. Springer-Verlag.

[37] Steve M. Easterbrook, J. Singer, M. Storey, and D. Damian. Selecting Empirical Methods
for Software Engineering Research. In Guide to Advanced Empirical Software Engineer-
ing, pages 285–311. Springer, 2007.

[38] A. Egyed, E. Letier, and A. Finkelstein. Generating and evaluating choices for fixing
inconsistencies in uml design models. In Automated Software Engineering, 2008. ASE
2008. 23rd IEEE/ACM International Conference on, pages 99 –108, 2008.

[39] H. Ehrig, G. Engels, and H. J. Kreowski. Handbook of Graph Grammars and Computing
by Graph Transformation: Applications, Languages and Tools. World Scientific Publish-
ing Company, 1997.

[40] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors.
Handbook on Graph Grammars and Computing by Graph Transformation, volume 2:
Applications, Languages and Tools. World Scientific, 1999.

[41] Marc Ehrig, Agnes Koschmider, and Andreas Oberweis. Measuring similarity between se-
mantic business process models. In APCCM 2007, pages 71–80, Darlinghurst, Australia,
2007. Australian Computer Society, Inc.

[42] W. Emmerich, A. Finkelstein, C. Montangero, S. Antonelli, S. Armitage, and R. Stevens.
Managing standards compliance. Software Engineering, IEEE Transactions on,
25(6):836–851, 1999.

[43] Jérôme Euzenat and Pavel Shvaiko. Ontology matching. Springer-Verlag, Heidelberg
(DE), 2007.

[44] Fault Tolerant System Research Group, BME. VIATRA2 Model Transformation Frame-
work. http://www.eclipse.org/gmt/VIATRA2/.

130

http://www.eclipse.org/gmt/VIATRA2/

[45] A. Finkelstein and I. Sommerville. The Viewpoints FAQ. Software Engineering Journal,
11(1):2–4, January 1996.

[46] B. Fluri, M. Wursch, M. Pinzger, and H.C. Gall. Change Distilling: Tree Differencing for
Fine-Grained Source Code Change Extraction. Software Engineering, IEEE Transactions
on, 33(11):725 –743, nov. 2007.

[47] J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A. Schmitt. Combinators
for bidirectional tree transformations: A linguistic approach to the view-update problem.
ACM Transactions on Programming Languages and Systems (TOPLAS), 29(3):17, 2007.

[48] Christian Gerth, Jochen M. Küster, Markus Luckey, and Gregor Engels. Precise detection
of conflicting change operations using process model terms. In Proceedings of the 13th
international conference on Model driven engineering languages and systems: Part II,
MODELS’10, pages 93–107, Berlin, Heidelberg, 2010. Springer-Verlag.

[49] Christian Gerth, Markus Luckey, Jochen M. Küster, and Gregor Engels. Detection of
Semantically Equivalent Fragments for Business Process Model Change Management. In
SCC 2010, pages 57–64, Washington, DC, USA, 2010. IEEE Computer Society.

[50] Christian Gerth, Markus Luckey, Jochen M. Küster, and Gregor Engels. Detection of
Semantically Equivalent Fragments for Business Process Model Change Management.
Technical Report IBM Research Report RZ 3767, IBM Research, Zurich, Switzerland,
2010. http://www.cs.uni-paderborn.de/uploads/tx_sibibtex/rz3767.pdf.

[51] Phil Gilbert. The next decade of BPM, 2010. Keynote at the 8th International Conference
on Business Process Management.

[52] László Gönczy, Ábel Hegedüs, and Dániel Varró. Methodologies for Model-Driven De-
velopment and Deployment: an Overview. In M. Wirsing, editor, Rigorous Software
Engineering for Service-Oriented Systems: Results of the SENSORIA project on Software
Engineering for Service-Oriented Computing. Springer-Verlag, 2010.

[53] Esther Guerra and Juan de Lara. Event-driven grammars: Towards the integration of meta-
modelling and graph transformation. In Graph Transformations, pages 215–218. Springer,
2004. LNCS 3256.

[54] Ábel Hegedüs. A framework for the Dependability analysis of UML-based system designs
with maintenance. Master’s thesis, Budapest University of Technology and Economics,
2009.

131

http://www.cs.uni-paderborn.de/uploads/tx_sibibtex/rz3767.pdf

[55] Ábel Hegedüs. A model transformation-based approach for the Dependability analysis of
UML-based system designs with maintenance. Technical Report rcl090601, University of
Florence, Dip. Sistemi Informatica, RCL group, June 2009.

[56] Ábel Hegedüs. BPEL Verification: The Back-annotation Problem. In Proceedings of the
17th PhD Minisymposium, pages 30–31. Budapest University of Technology and Eco-
nomics, Department of Measurement and Information Systems, 2010.

[57] Ábel Hegedüs. Criteria evaluation-driven state space exploration of graph transforma-
tion systems. In Proceedings of the 18th PhD Minisymposium, pages 42–45, Budapest,
02/2011 2011. Budapest University of Technology and Economics, Department of Mea-
surement and Information Systems.

[58] Ábel Hegedüs, Ákos Horváth, István Ráth, Moisés Castelo Branco, and Dániel Varró.
Quick fix generation for DSMLs. In Proceedings of IEEE Symposium on Visual Lan-
guages and Human-Centric Computing VLHCC 2011. IEEE, 2011.

[59] Ábel Hegedüs, Ráth István, and Dániel Varró. From BPEL to SAL and Back: a Tool
Demo on Back-Annotation with VIATRA2. Technical report, Consiglio Nazionale delle
Ricerche (CNR), 2010. Accepted for the SEFM’2010 ”Posters and Tool Demo Session”
Track.

[60] Ábel Hegedüs, Ráth István, and Dániel Varró. Back-annotation framework for Simulation
Traces of Discrete Event-based Languages. Technical report, BME, April 2010. http:
//home.mit.bme.hu/˜hegedusa/publist.html.

[61] Ábel Hegedüs, István Ráth, and Dániel Varró. Back-annotation of Simulation Traces
with Change-Driven Model Transformations. In Proceedings of the Eigth International
Conference on Software Engineering and Formal Methods, 2010.

[62] Ábel Hegedüs, Zoltán Ujhelyi, Gábor Bergmann, and Ákos Horváth. Ecore to Genmodel
case study solution using the Viatra2 framework. In Transformation Tool Contest 2010,
2010.

[63] Ábel Hegedüs, Zoltán Ujhelyi, István Ráth, and Ákos Horváth. Visualization of Traceabil-
ity Models with Domain-specific Layouting. In Proceedings of the Fourth International
Workshop on Graph-Based Tools, 2010. Accepted.

[64] Ábel Hegedüs and Dániel Varró. Guided state space exploration using back-annotation of
occurrence vectors. In Proceedings of the Fourth International Workshop on Petri Nets
and Graph Transformation, 2010.

132

http://home.mit.bme.hu/~hegedusa/publist.html
http://home.mit.bme.hu/~hegedusa/publist.html

[65] Martin Henkel, Jelena Zdravkovic, and Paul Johannesson. Service-based processes: de-
sign for business and technology. In Proceedings of the 2nd international conference on
Service oriented computing, ICSOC ’04, pages 21–29, New York, NY, USA, 2004. ACM.

[66] Frank Hermann, Hartmut Ehrig, Fernando Orejas, Krzysztof Czarnecki, Zinovy Diskin,
and Yingfei Xiong. Correctness of model synchronization based on triple graph grammars.
In Proceedings of the 14th International Conference on Model Driven Engineering Lan-
guages and Systems, MODELS’11, pages 668–682, Berlin, Heidelberg, 2011. Springer-
Verlag.

[67] Anders Hessellund, Krzysztof Czarnecki, and Andrzej Wasowski. Guided development
with multiple domain-specific languages. In In ACM/IEEE 10th International Conference
On Model Driven Engineering Languages and Systems (MODELS 2007, 2007.

[68] Rashina Hoda, Philippe Kruchten, James Noble, and Stuart Marshall. Agility in con-
text. In William R. Cook, Siobhán Clarke, and Martin C. Rinard, editors, Proceedings of
the 25th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2010, pages 74–88, Reno/Tahoe, Nevada, 2010.
ACM.

[69] Martin Hofmann, Benjamin Pierce, and Daniel Wagner. Symmetric lenses. In Proceedings
of the 38th annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’11, pages 371–384, New York, NY, USA, 2011. ACM.

[70] Martin Hofmann, Benjamin C. Pierce, and Daniel Wagner. Edit lenses. In Proceedings
of the 39th annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’12, pages 495–508. ACM, 2012.

[71] Ákos Horváth and Dániel Varró. Dynamic constraint satisfaction problems over models.
Software and Systems Modeling, 11/2010 2010.

[72] John Hutchinson, Mark Rouncefield, and Jon Whittle. Model-driven engineering practices
in industry. In Proceeding of the 33rd international conference on Software engineering,
ICSE ’11, pages 633–642, New York, NY, USA, 2011. ACM.

[73] International Organization for Standardization. Financial transaction card originated
messages – Interchange message specifications – Part 1: Messages, data elements and
code values.

[74] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press,
2006.

133

[75] Mikoláš Janota, Victoria Kuzina, and Andrzej Wasowski. Model construction with exter-
nal constraints: An interactive journey from semantics to syntax. In Proceedings of the
11th Int. Conf. on Model Driven Engineering Languages and Systems, pages 431–445,
2008. LNCS 5301, Springer.

[76] Richard Johnson, David Pearson, and Keshav Pingali. The Program Structure Tree: Com-
puting Control Regions in Linear Time. In SIGPLAN Conference on Programming Lan-
guage Design and Implementation, 1994.

[77] Cem Kaner. Software testing as social science problem, 2006. Canadian Undergraduate
Software Engineering Conference, Montreal, Canada.

[78] Jung-Min Kim, Adam Porter, and Gregg Rothermel. An empirical study of regression test
application frequency. In Proceedings of the 22nd international conference on Software
engineering, ICSE ’00, pages 126–135, New York, NY, USA, 2000. ACM.

[79] Jana Koehler, Rainer Hauser, Jochen Küster, Ksenia Ryndina, Jussi Vanhatalo, and
Michael Wahler. The role of visual modeling and model transformations in business-
driven development. Electron. Notes Theor. Comput. Sci., 211:5–15, April 2008.

[80] Jochen Küster. Consistency Management of Object-oriented Behavioral Models. PhD
thesis, Universität Paderborn, 2004.

[81] Jochen Küster, Hagen Völzer, Cédric Favre, Moisés Castelo Branco, and Krzysztof Czar-
necki. Supporting different process views through a shared process model. Technical
report, IBM Research Zurich, 2012.

[82] Jochen M. Küster. Towards inconsistency handling of object-oriented behavioral models.
Electronic Notes in Theoretical Computer Science, 109:57–69, 2004. Proceedings of the
Workshop on Graph Transformation and Visual Modelling Techniques (GT-VMT 2004).

[83] Jochen M. Küster, Christian Gerth, Alexander Förster, and Gregor Engels. Detecting
and resolving process model differences in the absence of a change log. In Proceedings
of the 6th International Conference on Business Process Management, BPM ’08, pages
244–260, Berlin, Heidelberg, 2008. Springer-Verlag.

[84] Jochen Malte Küster and Ksenia Ryndina. Improving inconsistency resolution with side-
effect evaluation and costs. In MoDELS, pages 136–150, 2007.

[85] Jochen Malte Küster, Hagen Völzer, Cédric Favre, Moisés Castelo Branco, and Krzysztof
Czarnecki. Supporting different process views through a shared process model. In 9th

134

European Conference on Modelling Foundations and Applications, ECMFA, pages 20–
36, 2013.

[86] Jochen Malte Küster, Hagen Völzer, Cédric Favre, Moisés Castelo Branco, and Krzysztof
Czarnecki. Supporting different process views through a shared process model. In Journal
of Software and Systems Modeling, SoSyM, To appear.

[87] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals.
Soviet Physics Doklady., 10(8):707–710, February 1966.

[88] Chen Li, Manfred Reichert, and Andreas Wombacher. On measuring process model sim-
ilarity based on high-level change operations. In Proceedings of the 27th International
Conference on Conceptual Modeling, ER ’08, pages 248–264, Berlin, Heidelberg, 2008.
Springer-Verlag.

[89] Jerry Luftman, Raymond Papp, and Tom Brier. Enablers and inhibitors of business-IT
alignment. Commun. AIS, 1, March 1999.

[90] Andrian Marcus and Jonathan I. Maletic. Recovering documentation-to-source-code
traceability links using latent semantic indexing. In Proceedings of the 25th International
Conference on Software Engineering, ICSE ’03, pages 125–135, Washington, DC, USA,
2003. IEEE Computer Society.

[91] S. Mazanek, S. Maier, and M. Minas. Auto-completion for diagram editors based on
graph grammars. In Visual Languages and Human-Centric Computing, 2008. VL/HCC
2008. IEEE, 2008.

[92] Steffen Mazanek and Mark Minas. Business process models as a showcase for syntax-
based assistance in diagram editors. In Model Driven Engineering Languages and Sys-
tems. Springer, 2009. LNCS 5795.

[93] Steffen Mazanek and Mark Minas. Generating correctness-preserving editing operations
for diagram editors. In Proc. of the 8th Int. Workshop on Graph Transformation and Visual
Modeling Techniques. ECEASST, volume 18, 2009.

[94] Tom Mens, Ragnhild Van Der Straeten, and Maja DH́ondt. Detecting and resolving model
inconsistencies using transformation dependency analysis. In Proc. of Model Driven En-
gineering Languages and Systems, pages 200–214. Springer, 2006. LNCS 4199.

[95] Derek Miers and Stephen A. White. BPMN Modeling and Reference Guide Understanding
and Using BPMN. Future Strategies Inc., Lighthouse, Pt, FL, USA, 2008.

135

[96] Tilak Mitra. Business-driven development, 2005. IBM developerWorks article.

[97] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving executability into
object-oriented meta-languages. In Model Driven Engineering Languages and Systems.
Springer, 2005. LNCS 3713.

[98] C. Nentwich, W. Emmerich, and A. Finkelstein. Consistency management with repair
actions. In Software Engineering, 2003. Proceedings. 25th International Conference on,
pages 455 – 464, 2003.

[99] A. Nöhrer and A. Egyed. Utilizing the Relationships Between Inconsistencies for more
Effective Inconsistency Resolution. In Proceedings of the 3rd Workshop on Living with
Inconsistencies in Software Development, pages 39–43. CEUR Workshop Proceedings,
2010.

[100] Bashar Nuseibeh, Steve Easterbrook, and Alessandra Russo. Leveraging inconsistency in
software development. In 33(4):24-29, IEEE Computer, pages 1–33. Society Press, 2000.

[101] OASIS. Web Services Business Process Execution Language (WSBPEL) TC. http:
//www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel.

[102] Object Management Group. Business Process Model and Notation (BPMN) Version 2.0.
http://www.omg.org/spec/BPMN/2.0/.

[103] Object Management Group. Object Constraint Language (OCL). http://www.omg.
org/spec/OCL/.

[104] Fernando Orejas, Hartmut Ehrig, and Ulrike Prange. A logic of graph constraints. In Fun-
damental Approaches to Software Engineering (FASE), pages 179–198. Springer, 2008.
LNCS 4961.

[105] J. Pinna Puissant, T. Mens, and R. Van Der Straeten. Resolving Model Inconsistencies
with Automated Planning. In Proceedings of the 3rd Workshop on Living with Inconsis-
tencies in Software Development, pages 8–14. CEUR Workshop Proceedings, 2010.

[106] Artem Polyvyanyy, Jussi Vanhatalo, and Hagen Völzer. Simplified computation and gen-
eralization of the refined process structure tree. In Proceedings of the 7th international
conference on Web services and formal methods, WS-FM’10, pages 25–41, Berlin, Hei-
delberg, 2011. Springer-Verlag.

[107] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema match-
ing. The VLDB Journal, 10:334–350, December 2001.

136

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/OCL/

[108] Colette Rolland and Naveen Prakash. Bridging the gap between organisational needs and
ERP functionality. Requirements Engineering, 5:180–193, 2000. 10.1007/PL00010350.

[109] Michael Rosemann. Gartner fellows interview: Dr. Michael Rosemann on BPM in Aus-
tralia, 2011. http://www.gartner.com/DisplayDocument?id=1840717.

[110] Sagar Sen, Benoit Baudry, and Hans Vangheluwe. Towards domain-specific model editors
with automatic model completion. Simulation, pages 109–126, 2010. 86(2).

[111] SOA Tools Platform. Eclipse BPMN Modeler. http://eclipse.org/projects/
project.php?id=soa.bpmnmodeler.

[112] Pnina Soffer. Refinement equivalence in model-based reuse: Overcoming differences in
abstraction level. J. Database Manag., 16(3):21–39, 2005.

[113] George Spanoudakis and Andrea Zisman. Inconsistency management in software engi-
neering: Survey and open research issues. In in Handbook of Software Engineering and
Knowledge Engineering, pages 329–380. World Scientific, 2001.

[114] Perdita Stevens. Bidirectional model transformations in qvt: Semantic issues and open
questions. In In International Conference on Model Driven Engineering Languages and
Systems (MoDELS, pages 1–15. Springer-Verlag, 2007.

[115] Anselm L Strauss and J Corbin. Basics of Qualitative Research: Techniques and Proce-
dures for Developing Grounded Theory, volume 2nd. Sage Publications, Inc., 1998.

[116] The Eclipse Project. Eclipse Modeling Framework Project. http://www.eclipse.org/
emf.

[117] The Eclipse Project. EMF Validation Framework. http://www.eclipse.org/

modeling/emf/?project=validation.

[118] Oliver Thomas, Katrina Leyking, and Florian Dreifus. Using process models for the
design of service-oriented architectures: Methodology and E-Commerce case study. In
Proceedings of the Proceedings of the 41st Annual Hawaii International Conference on
System Sciences, HICSS ’08, page 109, Washington, DC, USA, 2008. IEEE Computer
Society.

[119] Juha-Pekka Tolvanen and Matti Rossi. MetaEdit+: defining and using domain-specific
modeling languages and code generators. In Companion of the 18th annual ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and applications,
OOPSLA ’03, pages 92–93, New York, NY, USA, 2003. ACM.

137

http://eclipse.org/projects/project.php?id=soa.bpmnmodeler
http://eclipse.org/projects/project.php?id=soa.bpmnmodeler
http://www.eclipse.org/emf
http://www.eclipse.org/emf
http://www.eclipse.org/modeling/emf/?project=validation
http://www.eclipse.org/modeling/emf/?project=validation

[120] Huy Tran, Uwe Zdun, and Schahram Dustdar. View-based integration of process-driven
SOA models at various abstraction levels. In Proceedings of First International Workshop
on Model-Based Software and Data Integration MBSDI 2008, pages 55–66. Springer,
2008.

[121] Christoph Treude and Margaret-Anne D. Storey. Effective communication of software
development knowledge through community portals. In SIGSOFT FSE, pages 91–101,
2011.

[122] Boudewijn van Dongen, Remco Dijkman, and Jan Mendling. Measuring Similarity be-
tween Business Process Models. In Zohra Bellahsène and Michel Léonard, editors,
Proceedings of the 20th Int’l Conference on Advanced Information Systems Engineer-
ing (CAiSE 2008), volume 5074 of Lecture Notes in Computer Science, pages 450–464,
Montpellier, France, 2008. Springer Verlag.

[123] Jussi Vanhatalo, Hagen Völzer, and Jana Koehler. The Refined Process Structure Tree. In
Proceedings of the 6th International Conference on Business Process Management, BPM
’08, pages 100–115, Berlin, Heidelberg, 2008. Springer-Verlag.

[124] Jussi Vanhatalo, Hagen Völzer, and Frank Leymann. Faster and More Focused Control-
Flow Analysis for Business Process Models Through SESE Decomposition. In ICSOC
2007, LNCS, pages 43–55, Berlin, Heidelberg, 2007. Springer-Verlag.

[125] Dániel Varró. Model transformation by example. In Model Driven Engineering Languages
and Systems (MODELS’06), pages 410–424, Genova, Italy, 2006. LNCS 4199, Springer.

[126] Dániel Varró and András Pataricza. VPM: A visual, precise and multilevel metamodel-
ing framework for describing mathematical domains and UML. Software and Systems
Modeling, 2(3), 2003.

[127] Alain Wegmann, Anders Kotsalainen, Lionel Matthey, Gil Regev, and Alain Giannattasio.
Augmenting the Zachman Enterprise Architecture Framework with a systemic concep-
tualization. In Proceedings of the 2008 12th International IEEE Enterprise Distributed
Object Computing Conference, pages 3–13, Washington, DC, USA, 2008. IEEE Computer
Society.

[128] Matthias Weidlich, Alistair P. Barros, Jan Mendling, and Mathias Weske. Vertical align-
ment of process models - how can we get there? In CAiSE 2009 Workshop Proceedings:
BPMDS, pages 71–84, 2009.

138

[129] Matthias Weidlich, Gero Decker, Mathias Weske, and Alistair Barros. Towards vertical
alignment of process models - a collection of mismatches. Technical report, Hasso Plattner
Institute, 2008.

[130] Matthias Weidlich, Remco Dijkman, and Jan Mendling. The ICoP framework: iden-
tification of correspondences between process models. In Proceedings of the 22nd in-
ternational conference on Advanced information systems engineering, CAiSE’10, pages
483–498, Berlin, Heidelberg, 2010. Springer-Verlag.

[131] Matthias Weidlich, Remco Dijkman, and Mathias Weske. Deciding behaviour compati-
bility of complex correspondences between process models. In Proceedings of the 8th in-
ternational conference on Business process management, BPM’10, pages 78–94, Berlin,
Heidelberg, 2010. Springer-Verlag.

[132] Matthias Weidlich, Jan Mendling, and Mathias Weske. Efficient consistency measure-
ment based on behavioural profiles of process models. IEEE Transactions on Software
Engineering, 99(PrePrints), 2010.

[133] Matthias Weidlich, Eitam Sheetrit, Moisés Castelo Branco, and Avigdor Gal. Matching
business process models using positional passage-based language models. In Conceptual
Modeling, volume 8217 of Lecture Notes in Computer Science, pages 130–137. Springer
Berlin Heidelberg, 2013.

[134] Monika Weidmann, Modood Alvi, Falko Koetter, Frank Leymann, Thomas Renner, and
David Schumm. Business Process Change Management based on Process Model Synchro-
nization of Multiple Abstraction Levels. In Proceedings of SOCA 2011. IEEE Computer
Society, 2011.

[135] Dirk Werth, Katrina Leyking, Florian Dreifus, Jörg Ziemann, and Andreas Martin. Man-
aging SOA through business services: a business-oriented approach to service-oriented
architectures. In Proceedings of the 4th international conference on Service-oriented com-
puting, ICSOC’06, pages 3–13, Berlin, Heidelberg, 2007. Springer-Verlag.

[136] Zhenchang Xing. Model comparison with GenericDiff. In Proceedings of the IEEE/ACM
international conference on Automated software engineering, ASE ’10, pages 135–138,
New York, NY, USA, 2010. ACM.

[137] Zhenchang Xing and Eleni Stroulia. Umldiff: an algorithm for object-oriented design dif-
ferencing. In Proceedings of the 20th IEEE/ACM international Conference on Automated
software engineering, ASE ’05, pages 54–65, New York, NY, USA, 2005. ACM.

139

[138] Michael Zapf and Armin Heinzl. Evaluation of generic process design patterns: An ex-
perimental study. In Business Process Management, Models, Techniques, and Empirical
Studies, pages 83–98, London, UK, UK, 2000. Springer-Verlag.

[139] Loucif Zerguini. A novel hierarchical method for decomposition and design of workflow
models. J. Integr. Des. Process Sci., 8:65–74, April 2004.

140

	List of Tables
	List of Figures
	Introduction
	Motivation
	Shared Model Overview
	Research Contributions
	Research Method
	Outline of the Thesis
	Publications

	Business Process Modeling: Background and a Running Example
	Overview
	Running Example

	Related Work
	Business-IT Alignment in BPM
	Consistency Management
	Consistency Management of Process Models
	Bidirectional Transformation Frameworks
	Empirical Research

	Empirical Study
	Research Methods
	The Organization
	Artifact Analysis
	Interviews
	Survey
	Main Findings
	Processes are developed in several levels of abstraction
	Hierarchical and non-hierarchical refinement patterns
	Models undergo parallel maintenance
	Coverage and behavioral differences affect consistency most
	Inconsistencies can cause severe problems
	Practitioners prefer a single model for Business and IT
	Inconsistencies and fixes should be presented as they occur

	General Concept of the Shared Model Approach
	Overview
	Edit Operations
	Add
	Delete
	Split
	Collapse
	Attribute Assign
	Change Visibility

	Framework Implementation

	Matching Process Models Across Abstraction Levels
	Overview
	BPMN, SESE, and PST
	Differences between Business and IT process models
	Matching Algorithm
	Matching Criteria for Model Elements and Regions
	Attribute Matching
	Structure Matching
	Complexity
	Evaluation
	Method
	Results
	Threats to validity

	Comparison

	Generating Edit Operations from Automatic Correspondence Discovery
	Overview
	Motivation
	Running Example
	Edit Operations
	Generating Edit Operations from Correspondences between Process Models
	Evaluation
	Implementation
	Results

	Conclusions

	The Shared Model Approach
	Overview
	Motivation for a Shared Model
	Why we want different views
	Why different views need to be synchronized

	Requirements for a Shared Process Model
	The Shared Process Model Concept
	Usage Scenarios and Requirements

	A Technical Realization of the Shared Process Model
	Basic Solution Design
	Establishing and Maintaining Correspondences
	Business-IT Consistency
	Computing Changes between Process Model Versions
	Evolution of the Shared Process Model
	Implementation

	Evaluation
	Objectives
	Subjects
	Correspondence Patterns versus Edit Patterns
	Method
	Results: Single Refinement Patterns
	Results: Compound Refinement Patterns
	Discussion of Results
	Threats to Validity and Lessons Learned

	Conclusions
	Summary
	Limitations and Future Work

	APPENDICES
	Basic BPMN Notation
	Matching Algorithm Pseudocode
	Introduction
	Algorithm's Pseudocode

	Academic and Research Activities
	Accomplished Activities

	References

