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Abstract

In recent decades, interest in placing renewable resources in conventional power systems

has increased because of their ability to reduce fossil fuel consumption, which leads to the

preservation of the environment. The rapid increase in employing these renewable resource-

based DGs drives the system to be more dynamic, and causes many obstacles that need to

be overcome. Power system planners and operators should look at the distribution system

from another angle, taking into consideration the intermittent behavior of most renewable

resources. Furthermore, solid models that are able to handle the uncertainty in generation

levels are required.

This thesis presents a comprehensive probabilistic model for representing renewable

energy resources in long term planning problems. This model utilized large historical data

sets, grouping technique, and statistical analysis in order to handle the fluctuations that

are caused by the variations in wind speed or solar irradiance.

In this research, renewable resources (wind and PV based DGs) ae well as dispatchable

units are optimally allocated and sized using a probabilistic optimization model. This

model incorporates the intermittent nature of wind speed and solar radiation into the

deterministic optimal power flow equations. The variability from the load side and the

uncertainty from the feeding side are considered. Genetic algorithm is used in order to

minimize the annual energy losses of a distribution system.

This thesis proposes a new iterative-based optimization algorithm is proposed in order

to determine the minimum number of states that can precisely describe or represent the

behavior of wind speed and solar irradiance in operational planning problems. This algo-

rithm is evaluated using a power system planning problem. The proposed algorithm takes

into account the annual energy losses and the total DG penetration level and considers

them as an indication of how far the proposed method’s outcomes are from the actual

results. Three different data groupings are applied (hourly, seasonally, and yearly) to in-

vestigate the variety of weather and electricity demands on the proposed method. The

obtained results should be maintained within an acceptable limit of error which is in this

thesis, 2.5%, and any violation of this limit will interrupt the algorithm sequences.
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The importance of this method actually lies in its ability to reduce the complexity in

reliability analysis such that the number of overall system states will be minimized when

the analytical evaluation methods are utilized.
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Chapter 1

Introduction

1.1 General

This chapter presents a short overview of the worldwide electricity demand growth and

keen interest in utilizing renewable resources locally and globally. Section 1.3 presents the

motivation behind the work done in this thesis. Moreover, this chapter will outline all

objectives, and will conclude with the organization of this thesis.

1.2 Preface

Based on statistical studies, the electricity demand is anticipated to increase for the next

few years. This increase reflects the widespread growth of population, infrastructures, in-

dustrial sectors, and commercial sectors. In reference [1], the electricity demand is expected

to grow by 28%, from 2011 until the end of 2040, growing from 3, 839 billion KWh in 2011

to 4, 930 billion KWh in 2040. As a result of this growth, power generation utilities are

responsible to meet the demand, so the expansion in generation capacities is considered as

one of the duties of the planning engineers. Fig 1.1 shows the continuous growth of elec-

tricity sales in the united states which track the continuous growth of generation capacity,
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where the base value of generation capacity at year 1949 is 902.78 GW and the base value

of electricity sales at the same year is 19340.6 GWhrs. Besides the growth in generation

capacity, the carbon dioxide emissions are increased as well, and the additional amount of

greenhouse gas emissions can be inferred by the consuming of fossil fuels in the generation

process. For instance, the CO2 emissions in the US have increased by 10% from 1990 till

2011 [2].

Figure 1.1: The Growth of Electricity Sales and Generation Capacity.

However, in recent decades, the interest in utilizing renewable resources in conventional

power system networks has dramatically increased. The reason behind this is due to the

cleanness and inexhaustibility of these resources, as well as their ability to support the

existing grid. Approximately, 19% of the world’s energy consumption is met by renewable

resources and this was by the end of 2011 [3]. Despite the expensive installation cost of

most renewable sources, the rapid growth of the installation capacity of these technologies

is still ongoing. As an example, the global installed capacity of solar PV grew by 42%

reaching 100 GW; in addition, the global installed capacity of wind has increased by 19%

reaching 284 GW, and that was only for the last five years (2007-2012) [3]. Fig 1.2 shows

the different kinds of renewable resources and their percentage increase for the last five

years globally.

Canada strives to promote and develop these technologies, and it offers many incentives
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Figure 1.2: The Growth Rate of the Installed Capacity of Renewable Resources for the
Past Five Years [3].

Table 1.1: Total Installed Capacity for Each Provence in Canada
Provence ON QC AB BC NS NB
Installed Capacity (MW) 2470.5 2398.3 1120.3 389.7 329.9 294
Provence MB SK PE NL NT YT
Installed Capacity (MW) 258.4 198.4 173.6 54.7 9.2 0.81

to facilitate investment for both companies and individuals in this area. Until the year

of 2013, the capacity of wind farms in Canada is up to 7, 698 MW, enough to feed about

3% of the total electrical energy consumption of Canada, which is equivalent to almost 2

million homes [4]. The breakdown of the total generation capacity is illustrated in table

1.1 by each provence, where the installed capacity reflects to the ratings of the installed

turbines at each provence. These farms are scattered in rural areas, and there are still

many ongoing construction projects throughout the country. This interest is not limited

to wind power only, but extends to the field of solar energy, including solar photovoltaic

systems. The province of Ontario, one of the largest and most important provinces in

Canada, leads the investment in PV power. In 2012, the installed capacity of PV systems

has increased by 267 MW, resulting in a cumulative capacity of 645 MW [5].
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1.3 Motivation

Because of the fluctuation in the output power of wind turbines and photovoltaic modules,

the degree of uncertainty from the generation side is increasing. The variation of wind

speed and solar irradiance could result in technical problems such as frequency deviation

and bus voltage violation, and these concerns could be extended to reach the economic side

such as the unit dispatches, electricity market, and spinning reserve [6]. The stochastic

nature of wind speed and solar irradiance has forced researchers to incorporate statistical

based analysis and some devices such as storage battery in their studies in order to tackle

these issues. The stochastic analysis and the storage devices play key roles in the modern

power system grids in the presence of renewable resources leading the grids to be ”smarter”.

In fact, power system planning of renewable resources can be classified into two paths [7].

The first one is called short term planning which includes as an example unit commitment

problems and storage scheduling. Wind speed forecasting and prediction techniques are

usually preferred for this class. However, for long term planning problems, analyzing large

sets of data to indicate the behavior of these variables (wind speed and solar irradiance)

is mostly desirable. These data are often fitted to suitable distribution functions for the

investigated sites.

Indeed, planning studies are essential in daily power engineers activities, and it should

take into consideration the reliability and restoration costs beside the capital and running

costs. Actually, incorporating reliability analysis in planning and even in operating states

are magnificent in assuring secure and adequate power services to consumers. One of

the challenges that face reliability analysis is the numerous system states which redirect

the calculations to utilize simulation techniques rather than analytical methods. These

obstacles come from the fact that overall system states are represented by an exponential

equation which is a composite of the number of system components and the states of each

component as shown in equation 1.1.

s = (m)n (1.1)
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Where, m is the number of states for each component, n is the number of system

components, and s is the system’s overall states.

So, the motivation behind the work done in this thesis is to find a suitable algorithm that

could minimize the number of wind and PV states that represent the intermittent nature of

wind speed and solar irradiance so that the complexity in reliability and planning analysis

could be handled. This target can not be achieved easily, since it needs more detailed

analysis to prove the concept applied in this work.

1.4 Thesis Objectives

The objectives of this thesis are as follows:

1- Modeling the renewable resources in power distribution planning by analyzing a

large amount of historical data and fitting it to an appropriate distribution density function.

2- Allocating these renewable resources in distribution networks using an optimal

probabilistic power flow to minimize the annual energy losses considering the uncertainty

caused by wind speed and solar irradiance as well as the variation from the load side.

3- Proposing a new algorithm to find the minimum number of wind and PV states

that are able to precisely describe the behavior of wind speed and solar irradiance for the

site under investigation, while reducing the complexity in reliability and planning analysis

as well as minimizing the computational time for the calculations.

1.5 Thesis Organization

The organization of this thesis is as follows:

Chapter 2 provides background information for the distributed generation. In this

chapter, a literature review for handling uncertainties from wind and PV production for

long term planning problems is presented. The state of the art for conventional and

renewable generators representation states is discussed in this chapter. This chapter is

concluded by the previous work in sizing and allocation of distributed generation in power
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networks since the planning problem that has been carried out in this thesis is sizing and

allocation of distributed generation.

Chapter 3 presents wind and PV models applied in this thesis. One of goodness of

fitness techniques is studied and applied in this chapter as well. A K-means algorithm for

data clustering is addressed. In addition, calculating the output power from wind turbines

and PV modules, and the annual capacity factor for wind and PV in the site under study

are investigated in this chapter.

Chapter 4 proposes a new algorithm to find the minimum number of renewable

resources representing states. In this part of the thesis, renewable resources are optimally

allocated and sized using a genetic algorithm to test the proposed technique.

Chapter 5 exhibits the case study followed by the results achieved by the work done

in this thesis and discussion .

In last chapter, Chapter 6, the conclusion of this thesis and the outlines of future

work are presented.
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Chapter 2

Background Information and

Literature Review

2.1 Introduction

In a centralized power system, electrical power essentially flows in one direction from the

central power plants throughout the transmission systems and ends up at the distribu-

tion control centers to reach the end users. However, in a decentralized power grid, the

generating units can be located in the distribution levels and even at the customer sides

to feed their own demand or their neighboring loads, or it can be act as micro-grids. In

the recent emergence of distributed generators, DGs are able to contribute in powering

the grid from distribution or even transmission stages. Remote and high population den-

sity regions are considered an attractive environment for utilities in order to implement

these DGs. This is because of the high cost of grid expansion which is a composite of

the cost of new transformers, overhead conductors, underground cables, and infrastructure

expenses. Distributed generators are providing numerous benefits for both the utilities and

the end point customers. Indeed, these advantages will be constrained by some technical

challenges. These advantages and limitations will be addressed in this chapter.

This chapter first will discuss the definitions of distributed generation, its advantages,
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technologies, and limitations. Secondly, modeling of two kinds of the most widely used

distributed generation technologies in long term planning problem will be investigated

(wind and solar-based PV). Lastly, various ways to represent the states of these renewable

sources-based DGs in reliability and planning problem are discussed.

2.2 Distributed Generation Definitions

Various books, associations, utilities, and papers have given different definitions of the term

”Distribution Generation”. These definitions vary in their consideration, so that some take

into account the size of the DGs, while others concentrate on the location of these DGs or

their technical effects such as voltage level or power quality. Among of these definitions,

this subsection highlights the most commonly used definitions utilized in literature.

According to the Institute of Electrical and Electronics Engineers (IEEE), the dis-

tributed generation is defined as ”generation of electricity by facilities that are sufficiently

smaller than central generating plants so as to allow interconnection at nearly any point

in a power system” [8]. This definition does not specify the size into account. Thus, Elec-

trical Power Research Institute (EPRI) in [9] considers the rating of these DGs, by saying

that they are ”generating from a few kilowatts up to 50 MW ”. CIGRI, The International

Council on Large Electricity Systems, defines these DGs as ”all generation units with a

maximum capacity of 50 MW to 100 MW, that are usually connected to the distribution

network and that are neither centrally planned nor dispatched” [8]. The most general defi-

nition for distributed generation is proposed in [9], and it does not restrict the size limits

of these DGs while this definition does define the locations of these small generators. It

is defined as: ”the installation and operation of electric power generation units connected

directly to the distribution network or connected to the network on the customer site of the

meter”.

Actually, the types of the DGs as well as the owners of these DGs are disregarded in

the aforementioned definitions. Nevertheless, many papers suggest that each utility should

have its own definition which is depend on the conditions of the network. So, table 2.1
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illustrates a suggested classification for different capacities of DGs.

Table 2.1: Various DG Capacities

Class Capacity

Micro DGs 1 W < 5 KW
Small DGs 5 KW < 5 MW

Medium DGs 5 MW < 50 MW
Large DGs 50 MW < 300 MW

2.3 Distributed Generation Benefits

Distributed generation is able to provide the system numerous benefits [10]. Indeed, these

benefits could be clustered into three categories including technical, economic, and envi-

ronmental advantages. The following subsections discuss these benefits.

2.3.1 Technical Benefits

When the distributed generation units are properly located and sized in the distribution

systems considering adequacy and security regulations, these devices are expected to pro-

vide a positive credit to the overall network. These technical advantages involve:

1- Reduction in power losses.

2- Improving system reliability.

3- Improving voltage levels.

4- Enhancing network security.

5- Alleviation of congestion at substations and conductors.

6- Improving system overall efficiency.
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7- Improving system quality.

When the DGs are supporting the grids close to the load points, there will be a reduc-

tion in the power flow in transmission and sub-transmission systems which results in the

reduction of system losses as well as reducing possible congestion with regards to equip-

ment. Moreover, DGs can be used a back-up or main generation source which leads to

enhancement of the system’s reliability.

2.3.2 Economic Benefits

Economic benefits gained from installing DGs play a crucial role in reducing power system

expenses for either long or short planning horizons. Thus, power system utilities are

attempting to provide the electricity for all consumers at low cost. These costs involve

the cost of stationary parts (fixed cost) and the running cost (operation and maintenance

costs). The economic benefits of DGs could be summarized in the following points.

1- Deferring the investments due to system upgrades or expansions.

2- Reduction in operating costs that have been drawn by shaving peak demands since DGs

are working during peak load intervals.

3- Minimizing the consumption of fossil fuel that leads to decreasing in energy prices.

4- Reducing the maintenance costs due to the alleviation of congestion for the devices.

5- Minimizing the cost of spinning reserve requirements.

2.3.3 Environmental Benefits

The strong motivation behind employing DGs in power networks lies in their environmen-

tal benefits. According to report illustrated in [10], carbon dioxide emissions have been

dramatically decreased by 30% in only a three year period in the Danish power system.

Furthermore, wind turbines, PV modules, and hydro turbines are non-polluting and have a

high degree of sustainability. The environmental benefits of employing DGs are as follows:

1- Reduced carbon dioxide emissions CO2.
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2- Reduced health care costs.

3- Reduced land use (depends on the location DGs).

Land use varies and is dependent on location, so it is important to minimize the land

use needed to install these DGs. For example, the land use will be minimized when the

PVs are installed on the rooftops of buildings instead of land areas. In the case of wind,

the land use will be minimized when the wind turbines are installed on unused hilly areas

instead of flat areas.

There are some challenges and issues to be overcome, and these obstacles increase when

the penetration level of the installed DGs increases. Bus voltage limits, power quality issues

such as harmonic injections, reverse power flow, protection schemes and coordination, short

circuit currents, reactive power support, and frequency deviations are all examples of these

challenges.

2.4 Distributed Generation Technologies

Depending on the type of the primary fuel source of the distributed generation, reference [7]

classified these technologies into four categories. The first category is called conventional

technologies. Diesel generators are usually located in remote areas, and they are a great

example of conventional technologies. Advanced fossil technologies are the second type of

these technologies. Advanced fossil contains fuel cells which are mainly fueled by hydrogen

in electrochemical power conversion. In addition to fuel cells, micro- turbines which are

fed by natural gas is another form of Advanced fossil technologies that is based on cyclic

gas processing. Renewable technologies play a key role among these technologies since

they are natural, sustainable, and conservative for the environment. These technologies

include wind turbines, hydro turbines, photovoltaic modules, tidal systems, geothermal

technologies, and solar thermal systems. The degree of uncertainty in these forms of energy

is relatively high. There are some technologies that are able to increase the system’s overall
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efficiency, such as energy storage and combined heat and power systems, and these systems

could be considered as efficient technologies.

Based on the location of the different types of distributed generation, these technologies

can be divided into two levels [10]. The end point customer level is the level at which DGs

are placed in the last points in the distribution systems, and most of the technologies in

this level are owned by the customers and have minor effects on the grid. The site specific

level is the second level, in which the DGs need large spaces in which to be employed. They

are mostly owned by the utilities or government, and they tend to be less centralized than

the conventional plants. The following subsections highlight the most attractive renewable

resources in recent years (wind turbines and PV module based-DGs).

2.4.1 Wind Power

Wind is generated by heat differences between different areas of the earth’s surface, and

has been used as a source of energy for many years. The availability and usage of wind

energy differs from location to location throughout the world. Examples of uses of wind

power from early generations include: sailing ships, water pumping, and grain milling.

Recently, the kinetic energy of the wind has grabbed global attention as a natural source

to generate electricity. For this use, wind farms are scattered throughout the world to

convert the wind that drives turbine blades into mechanical energy. The movement in the

blades results in shaft rotation which drives a generator, and this generator converts the

mechanical energy into electrical energy through a electromechanical conversion process.

2.4.2 Wind Turbines

The main function of wind turbine is to convert the wind energy into mechanical power.

There are many classifications for these turbines, and these types clustered from various

perspectives as follows;

A- Rotational speed: (1- Fixed speed turbines, 2- Variable speed turbines).

B- Pitch angle: (1- Fixed pitch angle turbines, 2- Variable pitch angle turbines).
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C- Wind direction: (1- Upwind, 2- Downwind).

D- Axis orientation: (1- Horizontal axis turbines, 2- Vertical axis turbines).

E- Blades number: (1- One, 2- Two, 3- Three, 4-Four).

F- Type of generators: (1- Squirrel-cage generators, 2- Doubly-fed induction genera-

tors, 3- Multi-pole synchronous generators).

G- Connection to the grid: (1- Directly connected, 2- Connected through converters).

It is important to mention that here, horizontal axis wind turbines HAWTs are com-

monly used in the field instead of vertical ones. In addition, the fixed speed turbines

operate somewhat above the synchronous speed of the generator; whereas, the variable

speed turbines are designed to operate above and below the synchronous speed.

2.4.3 Wind Turbines Generators

Based on the construction of the wind energy conversion system, turbines’ generators can

be classified into four classes [11]:

Type A - Squirrel Cage Induction Generator

The rotational speed of this type is constant, so it is classified as a fixed speed wind turbine

equipped with a squirrel cage induction generator. When the generator speed is higher

than the synchronous speed, then the power will be generated. As it is shown in fig.2.1,

the turbine shaft is coupled with the SCIG shaft using the gear box.
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SCIG

Figure 2.1: Type A - Squirrel Cage Induction Generator [11].

This type of generator is directly connected to the grid; therefore, a soft starter circuit

is utilized in order to mitigate the high stating current. Capacitor banks are used to im-

prove the power factor of these machines.

Type B - Wound Rotor Induction Generator

The rotational speed of wound rotor induction generators is variable; therefore, it is used

in variable speed wind turbines. Here, the rotor is connected to variable resistance through

electronic power circuit to control the rotor’s speed, shown in fig.2.2. The function of the

gear box is to couple the blades’ shaft with WRIG shaft. The additional resistance causes

efficiency losses in this type of wind generator.
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Figure 2.2: Type B - Wound Rotor Induction Generator [11].

Type C - Doubly Fed Induction Generator

This type is mostly used in open fields, and is a variable speed type. The turbine is coupled

with a doubly fed induction generator as shown in fig. 2.3. At low and medium wind speed,

the maximum energy output can be achieved; whereas, when the wind speed exceeds the

rated speed, then the pitch control system will operate to limit the rotor speed. So, the

generator will be operating at its rating if the wind speed is higher than the rated speed.

Rotor speed is controlled by using what is called ”back to back converters” which allow

independent control for active and reactive power. For the purpose of shaft coupling, a

gear box is used.
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Figure 2.3: Type C - Doubly Fed Induction Generator [11].

Type D - Synchronous Generator

This type is a variable speed turbine coupled with a multi-pole synchronous generator,

and utilizes a full power electronic conversion system (AC-DC and DC-AC). Similar to

type C, this type achieves the maximum power output when the rotor speed is lower than

the rated speed. When the rotor speed is higher than the rated speed, the control system

(pitch control) will operate to maintain the output power at the rated power. In this type,

active and reactive power is independently controlled as well.

Figure 2.4: Type D - Synchronous Generator [11].
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2.4.4 Photovoltaic Power

The first observation of the photoelectric effect was in 1839 when light was converted to

electricity by using metal electrodes and electrolyte. This observation was later interpreted

by Albert Einstein in 1904 and labeled the ”photoelectric effect theory”. Photovoltaic power

conversion is a process whereby sunlight (solar irradiance) is captured by semiconductor

material and converted into electrical charges (current) via solar cells. PVs were used

in space programs as the first practical applications. Later, PV devices were employed in

limited mundane applications such as water pumping, street illumination, and small remote

area systems, since it was more cost effective for these uses. These devices were costly,

because crystalline semiconductor materials is used in PV cell construction. However, from

1980 until now, the cost of photovoltaic modules has gradually declined, and since the

governments encourages customers with incentive programs, the interest in implementing

these modules has risen. Fig. 2.5 shows the module prices in Canada from 2000 up to

2012 [12]. Generating power from photovoltaic modules has many advantages such as, low

operating and maintenance costs, zero noise due to stationary or static parts, light weights,

high reliability, long lifetime operation, and short lead times for installation.

Figure 2.5: Photovoltaic Modules Prices in Canada
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2.4.5 PV Cell Technologies

More than 80% of photovoltaic cells in the world are made from silicon since it is reliable

and provide service for many years. The production lines are still running to produce an

efficient cells with low cost of production. There are many types of silicon based photo-

voltaic cells, and can be divided into three categories [13]:

1- Mono-Crystalline Silicon

This type is made from very thin wafers, and these wafers are obtained from a large mono-

crystal which is generated from pure melted silicon. The efficiency of this type is high

when it compared to other types. The wafers are smooth and take shapes as hexagonal or

pseudo-square in order to fit in the modules properly. To produce more electrical power,

the crystalline silicon is doped with other elements. Mono-crystalline silicon wafer man-

ufacturing is expensive and needs more attention and a slower production process than

some other methods. The behavior of mono-crystalline silicon is uniform and predictable.

2- Poly-Crystalline Silicon

The manufacturing cost of this type is lower than mono-crystalline, and the process in

production is faster and less complicated than the first one. It follows a casting process

in production, and is obtained from pure melted silicon. It has low efficiency compared to

mono-crystalline since the structure of the crystal is random. It is not as expensive as the

mono-crystalline type.

3- Amorphous Silicon

This is the least expensive type among the different silicon classes. In this technology, very

thin semiconductor materials are deposited onto µm-thick amorphous films on stainless

steel rolls. The efficiency of amorphous silicon is about one-half of the mono-crystalline

silicon; however, its cost of production is significantly lower than the crystalline ones. It is

widely used in calculators and small watches, and it has a short lifespan. Table 2.2 presents

the efficiencies and module surface areas for silicon modules.
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Table 2.2: The Efficiency and Module Surface Areas for Silicon Modules [13].

PV Technology Efficiency % Module surface area required

Mono-Crystalline Silicon 12 ∼ 16 7m2/kW

Poly-Crystalline Silicon 11 ∼ 15 8m2/kW

Amorphous Silicon 6 ∼ 8 16m2/kW

2.4.6 PV Arrays Topologies

PV modules are composite solar cells which are connected in series to increase the voltage,

or in parallel to increase the current and therefore the output power. PV modules are the

basic units of photovoltaic systems. A photovoltaic panel is composed of multiple wired

modules, and it is the basic unit of a photovoltaic array. These arrays then are connected

to power conditioning units to convert the DC output into AC output in order to match

these units with the grid system. Actually, there are different topologies of PV arrays

based on its connection to the power conditioning units. These topologies are [14]:

1- Centralized Topology

In this configuration, all photovoltaic arrays are connected to one inverter, and are utilized

for large PV systems with output power in the megawatts. When the inverter fails, the

output power will be zero, so the reliability of this configuration is low. However, the cost

of this topology is low since it is uses only one inverter.

2- Master-Slave Topology

These arrays are connected to multiple parallel inverters, and the power is shared between

these inverters. So, the operation lifetime will be extended for this topology. When one

inverter fails, the output power finds another path (another inverter) to pass through, so

the reliability of this configuration is higher than the first one. However, this topology

requires a higher cost due to the multiple inverters used.

3- String Topology

Here, one inverter is connected to each row of arrays. In this topology, the reliability is
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improved due to using multiple inverters. Moreover, the efficiency is enhanced since each

string or row is working independently at its maximum power point. This topology also

requires high cost due to the multiple inverters used, and the power can be increased by

adding many modules to each string.

4- Team Concept Topology

In this topology, each string is connected to one inverter, and multiple inverters are con-

nected in parallel so that if one inverter fails, the other inverter will carry the power. So,

the reliability and system cost in this configuration will be increased. Moreover, the effi-

ciency is enhanced since the tracking system of each string or row is working independently

to reach its maximum power point. The operation lifetime will be increased to due to the

power sharing between the inverters.

5- Multi-String Topology

Each row or string will be connected to DC-DC converters, and these converters will be

connected to the AC inverter. The aim of this configuration is that that maximum power

will be obtained since it will be working at its maximum power tracking point, and the

cost will be reduced since only one inverter is used. However, this topology affects and

reduces the reliability.

6- Modular Topology

In this configuration, the inverter is coupled with the photovoltaic modules to enhance the

reliability and efficiency. The cost of this topology is high compared to the other topolo-

gies; however, each module will be operated at its maximum power, so the power loss due

to shading mismatch will be minimized.

2.4.7 Mode of Operation

The PV systems can be classified based on operation mode into two types. The first class

is the off-grid PV system or isolated system, and this type is usually used to power remote

areas, pump water, feed communication systems, or it could be used to supplement the

distribution system when a fault occurs to isolate some part of it. The second class is

the grid-connected system. It is directly connected to the grid through power electronic
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conversion systems. Most of PV farms that are able to produce bulk power to the grid or

large consumers are considered one of the grid-connected forms.

Figure 2.6: Different PV Topologies [14].

Figure 2.7: Photovoltaic Array Consisting of Six Modules [13].
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2.5 Distribution Density Functions in Long Term Plan-

ning

Long term planning actually involves reliability evaluation and economic analysis. One of

the power planning applications applied in decentralized power systems is allocation and

sizing of distributed generation, and this problem is usually evaluated by using technical,

economic, and reliability analysis. Power system planning, including renewable resource

based-DGs, requires a time consuming analyzing process for large sets of historical data.

These data are fitted to the suitable statistical probability density functions to represent the

behavior of wind speed or solar irradiance in the investigated site. This method is efficient

for long term planning problems to handle the uncertainties associated with fluctuations

in wind speed or solar irradiance.

2.5.1 Popular Distribution Functions

In the following subsections, most of distribution functions used in the literature to model

the intermittent nature of wind and solar will be described [15].

1- Normal Distribution

This is one of most popular continuous distributions to model the randomness of events.

It utilizes two parameters which are the mean µ of sample data and the variance σ2 to

generate the probability density function. Normal distribution proves its effectiveness to

model such continuous random variables, such as solar irradiance, growth rate, time, and

others. Normal density function is defined by:

F (X) =
1

σ
√

2π
e−(X−µ

2σ2 ),Where−∞ 6 X ≤ ∞ (2.1)

Where, µ is the mean of the data, and σ2 is the variance.

2- Weibull Distribution

Weibull distribution is considered as one of the distributions able to model the complicated

continues random variables. It is commonly and extensively used to model many events,
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such as wind speed, reliability problems, states of failure, survival analysis, delivery estima-

tion in industrial analysis, and extreme deviation analysis. It is driven by two parameters

which are shape index k and scale index c. Its probability density function is defined by:

F (X) =

(k
c
) ∗ (X

c
)k−1 exp[−(X

c
)k] X > 0

0 , Otherwise
(2.2)

3- Exponential Distribution

The general expression of exponential distribution is shown below.

F (X) =

θe−θX X > 0

0 , Otherwise
(2.3)

The parameter θ must be greater than 0, and it is called rate parameter. θ represents the

average of the sample data. Exponential distribution is commonly used to model waiting

times between recurring independent rare events, and lifetimes of devices.

4- Gamma Distribution

Gamma distribution is useful in power system reliability, especially to calculate failure time

of power equipment. It is also used in queuing theory analysis as well as waiting times of

providing such services. Gamma density function is described as below.

F (X) =

 1
βαΓ(α)

Xα−1e
−X
β X > 0

0 , Otherwise
(2.4)

Where, α and β are greater than 1. Exponential distribution is a special case of gamma

distribution when α equals 1. So, because of the relationship between gamma and expo-

nential distributions, gamma can be used for several applications.

5- Beta Distribution

Beta distribution is utilized in a wide range of applications. It has been used early on

to model the randomness of solar irradiance. It only occurs when the random variable is
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between zero and one.

f(X ) =


Γ(α+β)

Γ(α)Γ(β)
Xα−1

(1−X)β−1 0 ≤ X ≤ 1, αandβ ≥ 0

0 Otherwise

(2.5)

α, β are the parameters of beta distribution function. µ, σ are the mean and standard

deviation of the random variable, respectively.

6- Lognormal Distribution

This distribution is used for various applications. Lognormal distribution is employed for

random variables that are normally distributed when the log transformation is applied

to them. It is also driven by two parameters which are µ and σ. Its density function

represented as below.

F (X) =

 1√
2πσX

e
(µ−ln(X))2

2σ2 X > 0

0 , Otherwise
(2.6)

2.5.2 Goodness of Fitness Tests

Goodness of fitness tests are statistical based methods which indicate how well the mea-

surements or observations fit the claimed probability distributions. These tests are a type

of mathematical analysis that measures the errors and differences between the candidate

distributions and the random samples. In fact, there are several ways to examine whether

the proposed distribution fits or not. Here, three fitting tests applied in the literature are

illustrated [16].

1- Chi-Squared Test

The Chi-Squared test is the oldest test, and it can be commonly used for any univariate

distribution for which a cumulative distribution function can be defined. Data are firstly

clustered into groups, and the observed frequency will be compared with the expected

(claimed) frequency. The error of the Chi-Squared test can be minimized when sufficient
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data are used. It is defined as below:

χ2 =
N∑
i=1

[O(i)− E(i)]2

E(i)
(2.7)

Where, O(i) is the observed frequency for bin i, and E(i) is the expected frequency.

E(i) is obtained from the difference between the cumulative distribution function of bin i

in the lower and upper limits. Then, depending on the degree of freedom and significance

level, the result of this test is determined.

2- Kolmogorov-Smirnov Test

This method basically computes the difference between the cumulative distribution for the

sample data and for the suggested distribution. It is simple and suitable for limited and

unlimited data availability. The expression of K − S test is described below:

Dn = Max {| Fn(x)− F (x) |} (2.8)

The data should be arranged from small numbers to the large numbers, e.g. T1, T2,..,

Ti. F (x) is the cumulative distribution for the expected distribution, and Fn(x) is the

cumulative distribution for the data which is equal Y (i)/N , where Y (i) is the number of

data that are smaller than Ti, N is the total number of data. The calculated Dn will be

compared to the critical value obtained from tables, and if Dn is greater than the critical

value, the hypothesis will be rejected.

3- Anderson- Darling Test

This test appears after applying some modifications on the k − s test. In fact, the K − S
test does not give that much weight to the tail; however, the Anderson- Darling test does.

The advantage of the A − D test over the K − S test is that the candidate distribution

is entered in critical values calculations in contrast to the K − S test. This will give a

positive credit for the A−D test since it makes more sense that the critical values will be

calculated for each tested distribution. This test is defined by;

A2 = −N − S (2.9)
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And

S =
N∑
i=1

2i− 1

N
[lnF (Yi) + ln(1− F (YN+1+i))] (2.10)

2.5.3 Distribution Parameters Estimation

Most distribution systems are usually driven by two or three parameters. These parameters

are estimated using different methodologies in order to obtain the maximum advantages

of PDF fittings for the random data. In the literature, distribution parameters are cal-

culated using various methods ,such as graphic method, maximum likelihood method,

moment method, energy pattern factor method, empirical method, and modified maxi-

mum likelihood method. Parameter estimation methods that are commonly used in cases

of estimating Weibull distribution parameters (scale c and shape k factors) are described

in this section [17].

1- Graphical Method

In this method, a linear equation should be obtained from the cumulative distribution

function of Weibull as shown in 2.11.

ln[−ln[1− F (v)]] = k ln v − k ln c (2.11)

Then, when the right hand side of the above equation is drawn versus ln v, the shape factor

will represent the slope of the straight line, and the scale factor will be obtained from the

intersection with ln v axis.

2- Maximum Likelihood Method

The maximum likelihood method is an iterative-based method. It involves trying to fit

weibull to time series data. Large numerical iterations are required, so the difficultly

increases.

k =

[∑n
i=1 v

k
i ln(vi)∑n

i=1 v
k
i

−
∑n

i=1 ln(vi)

n

]−1

(2.12)

c =

(
1

n

n∑
i=1

vki

) 1
k

(2.13)
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Where, n is the number of non-zero observations, and vi is the wind speed at period i.

3- Moment Method

The moment method is another way to find the parameters, and it is also a numerical-

based analysis. It requires pre-computing for the mean speed v̄ and standard deviation for

the wind speed.

v̄ = cΓ(1 +
1

k
) (2.14)

σ = c[Γ(1 +
2

k
)− Γ2(1 +

1

k
)]

1
k (2.15)

4- Energy Pattern Factor Method

This is also called ”power density method”. This method is simple, easy to implement,

with less execution time required. Energy pattern factor is the average of wind speed cubes

over the cubes of wind speed average.Epf are usually between 1.45 and 4.4 for most Weibull

distributions.

Epf =
v̄3

(v̄)3
(2.16)

k = 1 +
3.69

E2
pf

(2.17)

v̄ = cΓ(1 +
1

k
) (2.18)

5- Empirical Method

This method is a special type of moment method. It depends on calculating the mean and

standard deviation in advance. This method provides good estimations if and only if the

shape factor is between 1 and 10 (1 ≤k≤ 10).

k = (
σ

v̄
)−1.086 (2.19)

c =
v̄

Γ(1 + 1
k
)

(2.20)
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2.6 State Representation of Wind and PV Powers

Conventional power generators are mostly represented by two states (up and down). Up

state is the state at which the generator is working at its rated capacity, and down state is

the state at which the power generator is out of the service and its power is zero. Later, a

derated state is added to the conventional representation, and describes a case when there

are some partial fails in some of the auxiliary equipments and the generators are continue

to generate but with reduced power.

 

λ,μ 

UP Down 

Derated 

Figure 2.8: Convectional Generator States.

However, multi-state wind and PV unit models are usually incorporated in distribution

system planning or operation problems. These problems are mainly reliability analysis,

where the selection of derated states of wind and PV units are very sensitive and handling

fluctuations in operation analysis, where the derated states play an important role for the

control systems. The selection of these states is very crucial since it is a tradeoff between

the accuracy of the results and the complexity in the analysis. The complexity comes from

the fact that the states of any system is the number of component states powered by the

number of system’s components (m)n. In the literature, there are three main techniques

to select the derated states that represent the behavior of wind speed and solar irradiance,

and these techniques are described in the following subsections [6, 18–21].
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2.6.1 Equivalent States Method

In reference [18], depending on the maximum wind speed and how many intervals are

required, wind speed is divided into multiple equal intervals. The power density function

in the equivalent states method is divided into multiple equal bands. The size of each band

depends on the number of required intervals and the standard deviation (10σ
Nb

). The value

of each state is represented by the midpoint of each interval (MBi) which is demonstrated

in the equation below.

MBi =

µ+ (10σ
Nb

)(i− 0.5Nb) for evenNb

µ+ (10σ
Nb

)(i− 0.5(Nb + 1)) for oddNb

(2.21)

Pi =
NSi
Ny

(2.22)

Where, Pi is the probability of interval i, µ is the mean value of wind speed or solar

irradiance, NSi is the number of simulated wind speed or solar irradiance at interval i, and

Ny is the total of wind speed or solar irradiance data. The disadvantage of this method is

that it requires large numbers of intervals to acquire accurate results.

2.6.2 Apportioning Method

This method is extensively used in reliability analysis, when the capacity outage rate for

the components is needed to be generated [21]. The apportioning method tries to reduce

the number of derated states. This method is based on dividing the residence times of

the actual derated states between the up or down states and pre-assigned states. The

probability of the pre-assigned states will be contributed by the probabilities of absorbed

states. This method does not give more details in how to find the pre-assigned states, and

it does not mention any information regarding the stopping criterion for the apportioning

process.
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2.6.3 Clustering-Based Method

Clustering is basically applied to a large number of observations for the purpose of placing

these observations that have common attributes or are relatively homogenous in groups.

There are two types of clustering techniques; the first one is supervised clustering, and

the other type is unsupervised clustering. The difference between them is that in case

of supervised clustering, the number of the centroids are considered as an input for the

algorithm; however, in case of unsupervised clustering which is the most useful in the

previous works, the algorithm will determine the number of the centroids. The state value

is represented by the cluster centroid. In reference [19], the K-means algorithm is utilized

to cluster the wind speed observation into many clusters in order to address the wind in

system operation. The K-means algorithm will be described intensively in the next chapter.

There is another way of clustering which has been used in [20]. This cluster-based method

is depending on the output power curve of wind speed. When the wind speed is below the

cut in speed, this state is considered to be the first state with a value of zero. If the wind

speed is on or above the rated speed, this state is considered to be the last state, with a

value of 100% of turbine’s capacity. The derated states are determined by time step 1 m/s

from a cut in speed up to rated speed, and the value of each state is the average of wind

speed between each time increment.

2.7 Previous Work in DG Allocation and Sizing

Much work has been done in the literature for allocating distributed generation in the net-

work. Depending on the development of the system, losses could reach up to 20% from the

total power generation for some utilities [10]. Therefore, one of the significant objectives

for placing DGs in a distribution system is to reduce overall system losses. The authors

in [22] and [23] employed analytical techniques in order to minimize the feeder losses, and

this method was based on the 2/3 rule. Besides, the study that has been done in [24]

used what is called loss factor for the same purpose while in [25] the exact power losses

expression has been taken into account. In the same context, Tabu search has been applied
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in reference [26] to figure out the magnificence of DGs in losses reduction.

By conceding multiple DGs and load levels, the multi-objective function has been mathe-

matically modeled and solved in [27] using mixed integer non-linear programming, and the

cost of the losses was presented among the cost functions. In addition, genetic algorithm

proved its accuracy and effectiveness in solving optimization problems. A study performed

in [28] employed GA in different load models for optimally DG allocation. Furthermore,

the authors in [29] used a particle swarm optimization model to reduce the energy losses

while reactive power losses and feeder loading are considerable. It is important to mention

here that most of the optimization models considered some practical constraints, and these

constraints vary form one application to another. To illustrate, these restrictions include

the thermal limit of the feeders, the voltage at each bus, the maximum reverse power, short

circuit level, and others.

In [20], the authors optimally allocate a mixture of renewable resources in distribution

system to minimize the annual energy losses. Handling the uncertainty produced from

the intermittent nature of wind speed and solar irradiance is presented. A heuristic opti-

mization model solved using decision theory is proposed as well in [30]. Moreover, hourly

online reconfiguration taking into consideration the time varying nature of load is pre-

sented in [31], and interestingly, reconfiguration reveals the effectiveness of this method

on loss reduction. In [32], multi-period AC power flow method has been illustrated with

adjustment of the power factor of DGs to find the optimal mix of renewables. The work

in [33] performs a method which is able to compute and analyze the fluctuation in annual

energy losses, comparing various DG technologies and penetrations.

2.8 Summary

In this chapter, the concept of distributed generators in modern power system is demon-

strated as well as the technical, economic, and environmental benefits of these devices.

The different technologies of wind turbines and PV modules are widely explained in order

to give an idea about the selected wind turbines and PV modules in this thesis. Since the

problem in this thesis is considered as long term planning problem, the appropriate way to
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model the intermittent nature of wind speed and solar irradiance is by analyzing a large

historical data and fitting these data into suitable probability density functions. So, the

different types of density functions that have been commonly used in the literature and

their parameters estimation are defined in the chapter. The different techniques that have

been used to define the number of wind and solar states are presented. These states will

be incorporated in the deterministic planning problem as a multi-state model that will

combine the probabilistic nature of the wind and solar variation into the deterministic DG

allocation and sizing problems.
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Chapter 3

Modeling of Renewable Resources

and Load

3.1 Introduction

As discussed before, the employment of renewable resources in the power grid has been

a keen interest for the utilities, governments, and consumers. This awareness comes from

the fact that these renewable resources are able to provide enormous benefits to the grid,

the environment, utilities, and customers. However, dealing properly with these renewable

resources is crucial due to major fluctuations in their strength and availability. Therefore,

robust models and representation equations are essential in order to indicate the random-

ness that is caused by variations in wind speed or solar irradiance. Modeling of these

resources primarily depends on the application of these technologies. Chronological time

series models are efficient for short term planning such as generation scheduling and market

bidding. In contrast, probabilistic models using probability density functions prove their

effectiveness in long term planning such as reliability assessments and resources allocation.

This chapter is designated to model the behavior of wind speed and solar irradiance using

the proper probability density functions. The selected distributions are tested using the

K-S test. Moreover, in this chapter, the models that are utilized to calculate the output
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power from wind turbines and photovoltaic modules are demonstrated. Unsupervised clus-

tering technique (K-means) is described in this chapter in order to define the states of wind

or PV power, and these states will be used in the proposed method in chapter 4.

3.2 Data Preparation

The study period of the system is one year, so it has been divided into 12 months, and a

group of three months represents one season. In order to model the intermittent behavior

of wind speed and solar irradiance, a typical day is created to represent each within a

particular season. Moreover, this season is divided into 24 hours, and each hour represents

the solar irradiance and wind speed within that particular hour for the whole season. Table

3.1 presents an example of how the wind speed is prepared in order to be included in the

analysis. In theis table, the historical data of wind speed is assigned to their suitable time

of occurrence.

This model allows making hourly correlations between the generation of intermittent

resources and the load for the entire year. Five years of historical data is used for wind

speed and solar irradiance, and each season is assumed to be ninety days. As result, the

data of each hour for a particular season is 450.

Table 3.1: Example for Data Preparation of Wind Speed

Winter Spring Summer Fall

H\D 1 2 90 1 2 90 1 2 90 1 2 90

Hour 1 1,2,2,0,1,2,m/s 4,4,4,5,3,6,5,2,m/s 1,2,0,1,2,4,m/s 6,5,8,9,10,12,m/s

Hour 2 4,2,2,2,1,3,m/s 4,2,4,5,6,3,5,2,m/s . 8,7,8,5,10,12,m/s

. . .. 4,4,4,5,3,6,5,2,m/s ..

Hour 24 1,2,0,1,2,4,m/s 4,4,3,5,6,6,2,2,m/s 6,5,8,9,10,12,m/s 8,7,8,9,5,12,m/s
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3.3 Wind Speed Model

From the historical data analysis above, it is obvious that the data would be divided into

96 groups (24 hours X 4 seasons). For each group, the parameters of any distribution

are different. Therefore, based on the ”Kolmogorov Smirnoff ” (K-S) algorithm illustrated

in [34], five distribution systems that are commonly used in the literature to model the

behavior of wind speed are tested to select the most fitted one to the historical data among

them. These distributions are Weibull, Normal, Rayleigh, Gamma, and Lognormal.

Firstly, the mean (µ) and standard deviation (σ) for each group of data are obtained.

Secondly, the parameters of each distribution for each group are calculated using prede-

fined formulas; equations 3.2, 3.3, 3.5, and 3.6 are examples of these formulas (they are

obtained from empirical methods that are discussed in chapter 2). Thirdly, the cumulative

distribution function (CDF) is performed for the distribution function in the particular

group and discrete events in the same group. Then, the absolute aggregated error which

is equal to the summation of the differences between the actual cumulative distribution

function for discrete events and the cumulative distribution function that acquired through

step 3 is computed. Eventually, the PDF that has minimum aggregated error is chosen

to represent wind behavior in this specific site. After performing the above mentioned

procedures, the Weibull distribution function is selected since it was the one of best fit for

most of the hours.

The Weibull distribution function is driven by two parameters which are shape index

k and scale index c. The equations of the Weibull function and their parameters are

illustrated below as [20].

f(v) = (
k

c
) ∗ (

v

c
)k−1 ∗ exp[−(

v

c
)k] (3.1)

k = (
σ

vm
)−1.086 (3.2)
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Figure 3.1: Wiebull PDF for One Sample Data

c =
vm

Γ(1 + 1
k
)

(3.3)

Where f(v) is the Weibull distribution function of v, v is wind speed m/s, and (k , c)

are the shape factor and scale factor, respectively. Average wind speed is vm m/s ,and σ

is the standard deviation. Weibull pdf mimics the behavior of wind speed. Fig.?? shows

the fitting of Weibull distribution to a group of historical data.

3.4 Solar Irradiance Model

In the same way as wind speed modeling, solar irradiance is represented in 96 groups and

for each group of data, the Kolmogorov Smirnoff (K-S) algorithm is performed to find the

best fitting PDF. In contrast, in some hours when the solar radiation is equal to zero, there

are no PDFs obtained and the output power from PV modules is considered to be zero. A

Beta distribution function is selected since it was the most fitted one for most of the hours.

The Beta distribution equation that has been used in this research is presented below,

and the equations for calculating its parameters are shown as well [20].

36



f(s) =


Γ(α+β)

Γ(α)Γ(β)
∗ sα−1∗

(1− s)β−1 0 ≤ s ≤ 1, αandβ ≥ 0

0 Otherwise

(3.4)

β = (1− µ) ∗ (
µ ∗ (1 + µ)

σ2
− 1) (3.5)

α =
µ ∗ β
1− µ

(3.6)

Where f(s) is the Beta distribution function of s, s represents solar irradiance kW/m2,and

α, β are parameters of the Beta distribution function. µ, σ are the mean and standard de-

viation of irradiance, respectively.

Figure 3.2: Beta PDF for One Sample Data

Fig.3.2 shows the fitting of Beta distribution to a group of historical data. It can

be seen from fig.3.3 the difference between the CDF of discrete samples and the selected

distribution function.
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Figure 3.3: Cumulative Distribution Function

3.5 Dispatchable Units Modeling

The dispatchable and controllable units are considered to feed the system by a constant

power input which represents its rated capacity at any time.

3.6 Load Modeling

To accommodate the fluctuation in the load, IEEE RTS in [35] is applied, and since the

season is represented by 24 hours, 96 demand points will shape the fluctuation in the load.

Every demand point is equal to the averaged value of 90 demand readings for a particular

hour in a particular season.

3.7 Unsupervised Clustering Technique and Proba-

bility Calculations

When the probability distribution functions for all time segments are defined, these PDFs

have to be divided into states to be incorporated in calculating the wind and PV output
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power as well as power flow equations. Data clustering is mainly used here to provide the

initial states that could represents the output power from renewables.

Indeed, clustering is basically applied to a large number of observations for the purpose

of placing those observations that have common attributes or are relatively homogenous

into groups [36]. One of the biggest advantages of clustering is that by analyzing limited

numbers of observations instead of dealing with entire observations, this method is actually

preferred. To quantify this partitioning in the data, the proximity of the observations

is measured as a distance. Intuitively, the data that have the same pattern would be

distinguished from their closeness to each other. Even though there are many clustering

techniques which are based on distance or correlation measurements, K-means algorithm

is mostly preferred due to its simplicity and popularity [19]. Hence, in this paper K-means

is carried out to initially cluster the observations. In the following, k-means algorithm and

its application are discussed.

3.7.1 K-means Algorithm

Fundamentally, this algorithm is attempting to minimize the average squared Euclidean

distance calculated from one or more group members. For each cluster, there are two

important elements. The first one is the center of the cluster which is called centroid or

seed, and this centroid represents the core of the cluster. The second element is called the

members or agents of the cluster. It is important to mention that a clustering algorithm

is based on the sorting approach and the results could vary, yet these results could be

enhanced using one of the global optimal techniques [19].

In the following, K-means procedures for assigning 1 by M observations into C clusters

are demonstrated [37].

1- Select the initial seeds (centroids) of the clusters randomly.

2- Based on the proximity to the centroids, all the data would be assigned to the nearest

seed.

3- Compute the distance between the clusters members and clusters centroid. The cen-

troids of any cluster are calculated as 3.7 in Euclidean Space.
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mi =
1

|Cj|
∑
xi∈cj

Xi (3.7)

Where, |C(j)| is the number of data points (observations) in cluster C(j). The distance

from one data point Xi to a mean (centroid) mj is calculated as follow;

dist(Xi,mj) = ‖Xi −mj‖ =
√

(Xi1 −mj1)2 + (Xi2 −mj2)2 + .....+ (Xir −mjr)2 (3.8)

4- Calculate the sum of squared error (SSE),

SSE =
k∑
j=1

∑
X∈Cj

dist(X,mj)
2 (3.9)

Ci is the jth cluster, mj is the centroid of cluster Cj (the mean vector of all the data points

in Cj), and dist(X,mj) is the distance between data point X and centroid mj.

5- If there is no reallocating of the data or the agents into a new cluster or it is minimum

as well as the sum of squared error is minimum, this means the results are converged and

processing stops.

6- If the results did not converge, then recalculate the seeds and reassign the agents,

and go to step 2.

Figures 3.4 and 3.5 show a piece of an actual wind and PV output power with 44 mea-

surements and the curve obtained after clustering into nine clusters (states) for wind and

eight clusters for PV output.

3.7.2 Probability Calculation

When a probability distribution function is created for wind and solar, then wind and solar

output power have been initially divided into x and y states, respectively. This division
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Figure 3.4: Wind Actual and Clustered Power

Figure 3.5: PV Actual and Clustered Power

is based on one of the unsupervised clustering techniques which is called K-means. As

soon as the observations from wind and solar output are clustered, the boundaries of each

cluster (state) are obtained. So, representing the states by the intervals which describe the

speed limits and solar irradiance for each state are applied. The probability for each state

can be obtained using the integral equations below.
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P (va ≤ V ≤ vb) =

∫ vb

va

f(v).dv (3.10)

P (sa ≤ S ≤ sb) =

∫ sb

sa

f(s).ds (3.11)

It is important to mention here that in case of combining Wind and PV based DGs,

the total number of states is equal to the multiplication of wind and solar states, and

the probability of each state will be equal to the product of wind probability and solar

probability at that corresponding state. This is because wind speed and solar irradiance

are independent events.

3.8 Calculating Wind Turbine and PV Module

The output power from Wind turbines can be obtained directly from what is called wind

power curves, and these curves are provided to the customers in the form of figures or

equations. Likewise, PV modules have specific characteristics and these data are also

provided.

3.8.1 Wind Output Power

The main function of a wind turbine is to convert the wind’s kinetic energy into mechanical

energy. Typically, wind turbine output power is a function of wind average speed v̄3, air

density ρ, and the rotor swept area A. So, the aerodynamic power obtained from the wind

is given by the following equation.

Pwind =
1

2
ρAv̄3 (3.12)

A wind power curve can be classified into 3 regions; no wind power region, de-rated region,

and rated power region. No wind power region is defined as the region at which the wind
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Figure 3.6: Wind Turbine Power Curve

speed is below the cut in speed of the turbine. Before the cut in speed, the turbine’s blades

are not able to overcome the produced friction since there is insufficient torque. When

the wind speed goes above the cut in speed, turbine’s output power increases dramatically

to reach the rated power of the turbine. As a protective action to protect the rotor from

the high forces in the turbine’s structure, the wind turbine will shut down when the wind

speed goes beyond the cut out speed of the turbine.

Since the wind speed is divided into states, the wind output power for each state will

be acquired from the equation below [20].

Pw(vax) =



0 0 ≤ vax ≤ vci

Prated ∗ vax−vcivr−vci vci ≤ vax ≤ vr

Prated vr ≤ vax ≤ vco

0 vax ≥ vco

(3.13)

Where vci, vr, vco : cut-in speed, rated speed, and cut-off speed of the wind turbine,

respectively; Pw(vax):output power during state x, and vax : average speed of state x.
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Figure 3.7: I-V Characteristics for a PV Module [7].

3.8.2 PV Modules Output Power

PV cells have the sole responsibility to convert the solar radiation into electric DC current

throughout the photoelectric effect. Rating of these modules is computed under standard

tests. The connection of PV modules whether in series or parallel, play an important role

to scale up the voltage or the current which leads to a rise in ratings of these modules. The

main parameters to determine PV power are PV module characteristics which are provided

from the manufacturer, solar irradiance in the site, and the ambient temperature in the site.

I-V characteristics of PV modules which are provided from the manufacturer differ from

one radiation level to another and from one temperature level to another. The relationship

between the solar irradiance and the short circuit current is proportional; however, the

relationship between the voltage and module temperature is inverse. I-V characteristics

can be graphically presented as shown in 3.7. Because of solar irradiance is divided into

states, the PV output power for each state will be acquired from equations below [20].

Tcy = TA + say(
NOT − 20

0.8
) (3.14)

Iy = say[Isc +Ki(Tc − 25)] (3.15)
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Vy = Voc −Kv ∗ Tcy (3.16)

FF =
VMMP ∗ IMMP

Voc ∗ Isc
(3.17)

Psy(Say) = Nm ∗ FF ∗ Vy ∗ Iy (3.18)

Where Tcy: cell temperature C during state y; TA: ambient temperature C; Kv: voltage

temperature coefficient V/ C; Ki: current temperature coefficient A/C; NOT : nominal

operating temperature of cell in C; FF : fill factor; Nm: number of modules; Isc: short

circuit current in A; Voc: open circuit voltage in V; IMPP : current at maximum power

point in A; VMPP : voltage at maximum power point in V; Ps(say): output power during

state y, and say : average irradiance of state y.

3.9 Selecting Wind Turbine and PV Module

Wind turbines and PV modules that will be used in this paper are selected based on

calculating the average annual capacity factor [38, 39]. The average output power of a

turbine or module divided by its rated power is called the capacity factor. The wind turbine

and PV modules that have a high annual capacity factor are selected among deferent types

of wind turbines and PV modules.

CF =

∑96
t=1

∑n
s=1 Pouts ∗ Probs
Prated

(3.19)

Where t: time segments ; CF : annual capacity factor; s: state; Pouts : Wind or PV output

power in state s; Probs: probability of state s, and Prated: rated power of wind turbine or

PV module.

The average seasonal capacity factors CF for wind power and PV power are shown

respectively in fig.3.8 and fig.3.9.
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Figure 3.8: Seasonal Wind Capacity Factor

Figure 3.9: Seasonal PV Capacity Factor

3.10 Summary

This chapter presented the models of the renewable resources that have been used in this

thesis. It outlined the preparation and analysis of large amounts of historical data to be

suitably utilized in planning problems. The probability density functions that have used to

model the behavior of wind speed and solar irradiance are discussed. The goodness of fitness

technique (K-S) is illustrated and employed to properly fit the data into the proper density
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function. Moreover, an unsupervised clustering technique (k-means) is implemented in this

chapter to find the centroids of clustered data which are then used to find the represented

states of wind and PV power. Turbine power curve and I-V characteristics of PV modules

are explained to calculate the output power from these renewable sources. Lastly, capacity

factor calculations are carried out to select the most suitable turbines or modules in such

a location as to provide more power than others.
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Chapter 4

Renewable Resources Allocation and

Sizing in Distribution System

Networks

4.1 Introduction

Traditionally, the electrical power is produced from the conventional generators and then

transmitted to the ultimate customer throughout the transmission systems in one way

direction. However, this concept is no longer accepted in the presence of distributed gen-

eration since the power may flow in two directions which leads the system to be more

dynamic. Therefore, the improper selection of the location and sizing of these distributed

generators may worsen the network. So, it is crucial to model the stochastic nature of wind

speed and solar radiation in a good manner and then implement a comprehensive proba-

bilistic optimization model to allocate and size these renewable resources. There are many

operation constraints that need to be satisfied in the planning process. These constrains

involve voltage levels at each bus, line capacity, maximum reverse power, and others. In

this chapter, a mathematical problem formulation that takes into account the probabilistic

nature of wind speed and solar irradiance will be presented. This model can be used for
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various objective functions, such as minimizing power losses, reducing system’s expenses,

and maximizing system’s profits.

4.2 Planning Process

The process of the allocating and sizing intermitted-based DGs is quite difficult and requires

much effort in the data analysis stage before incorporating the analyzed data into the

intelligent optimization tools. The procedures will start by analyzing the historical data of

wind speed and solar irradiance and fitting these data to the probability density functions

to model the intermittent behavior. In the same time, the demand of the system will be

analyzed in such away as mentioned in chapter 3 to be in sequence with the variation in the

generation level. After that, the probability density functions will be divided into many

states in order to include these states with the optimal power flow equations (K-means

clustering-based algorithm is used in this research to define the states). An intelligent

optimization tool will be applied to solve this problem. Genetic algorithm is used because

of its powerful ability to solve the complected problems.

4.3 Problem Formulation

One of the essential problem in the distribution system is renewable resources allocation

and sizing due to the randomness of the generating units. To handle the uncertainty in

the generation level of renewables, a probabilistic formulation is applied. This formulation

accommodates the modeling of wind and PV since it performs matching or combining

the load side and generation side. This formulation is incorporated with deterministic

optimal power flow equations; this means that each equation is represented by composed

probabilistic equations equal to the number of determined states. In other words, after

computing power losses for state s, these losses are weighted based on the occurrence

probability of this state in hour h from the entire year. Taking into consideration the

constraints of the planning problem, DGs will be placed in the distribution system to
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minimize the overall annual losses without any violation at any state. In this study, all the

buses are considered to be residential as well as the DGs are working at unity power factor.

Wind and solar profiles are assumed to be same at each bus for the purpose of simplicity.

4.3.1 Objective Function

The objective function is to allocate renewable resources based DGs and controllable DGs

in order to minimize the overall power losses while all operating constraints are met. As

mentioned previously, the planning horizon is one year, and this year is represented by

four seasons. Each season is represented by 24 four hours, and these 24 hours describe the

2160 hours in its corresponding season on the basis of each season having 90 days. So, the

objective function can be expressed as follows:

min
96∑
t=1

T∑
s=1

Plosss ∗ 90 ∗ Probs (4.1)

Where Plossg : Power losses at state s; Props: probability of combined occurrence of wind,

solar, and dispatchable in state s; t:time segment; and T : total number of states.

4.3.2 Constraints

Power Flow Equations

Pslack + CsW ∗ PratedWi + CsPV ∗ PratedPVi + PratedDisi (4.2)

−PDi =
∑N

j=1 Vs,i ∗ Vs,j ∗ Yij ∗ cos(θij + δs,j − δs,i)

Qslack −QDi =
N∑
j=1

Vs,i ∗ Vs,j ∗ Yij ∗ sin(θij + δs,j − δs,i) (4.3)

Where PratedWi : Wind rated power at bus i; PratedPVi : PV rated power at bus i;

PratedDisi : Dispatchable rated power at bus i; CsW : The percentage of wind output
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power from its rated in state s; CsPV : The percentage of PV output power from its rated

in state s; PDi : Power demand at bus i in time segment t; Yij: The magnitude of admit-

tance matrix element (Yij) of the branch between node i and node j; θij: Tha angle of

admittance matrix element (Yij) of the branch between node i and node j; δs,j: voltage

angle of bus j in state s, and δs,i: voltage angle of bus i in state s.

Branch Current Equation

Iij,s = |Yij| ∗ [(Vs,i)
2 + (Vs,j)

2 − 2 ∗ (Vs,i)(Vs,j) ∗ cos(δs,j − δs,i)]0.5 (4.4)

Where Iij,s is the current flows between bus i and j in state s.

Power Loss Equation

Plosss = 0.5 ∗
N∑
i=1

N∑
j=1

Gij ∗ [(Vs,i)
2 + (Vs,j)

2 − 2 ∗ (Vs,i)(Vs,j) ∗ cos(δs,j − δs,i)] (4.5)

Where Gij is the real part of the admittance matrix element Yij of the branch between

node i and node j.

Voltage Limits at Each Bus Except Slack Bus

Vmin ≤ Vs,i ≤ Vmax (4.6)

Slack Bus Voltage and Angle ( at Bus 1)

Vs,1 = 1.0 δs,1 = 0.0 (4.7)

Feeder Capacity Limit

0 ≤ Is,ij ≤ Iijmax (4.8)

Where Iijmax is the maximum permissible current in the feeder between bus i and j.
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Maximum Penetration of DGs in the System

According to technical specifications of Hydro One in [40] the maximum penetration level

for DGs in a distribution system is equal to the summation of 60% of maximum MVA

rating of the single transformer and the minimum station load. This constraint is based

on the maximum power reserve that substation equipment can handle.

N∑
i=1

PratedWi +
N∑
i=1

PratedPVi +
N∑
i=1

PratedDisi ≤ 0.3
N∑
i=1

PDi + 0.6 MVA
singleTransformer

(4.9)

Maximum Penetration on Each Bus [40]

PratedWi + PratedPVi + PratedDisi ≤ 10 MW (4.10)

Discrete Size of DGs

For wind and dispatchable DGs, one more constraint should be added which represents

the discretization in these two types of DGs. Unlike wind and dispatchable-based DGs,

PV output power can be arranged by adding or removing some modules.

PratedWi = a ∗
m∑
a=0

Prated of wind turbine a = 0, 1, 2, ...,m (4.11)

PratedDisi = a ∗
m∑
a=0

Prated of disp unit a = 0, 1, 2, ...,m (4.12)

4.4 Application of Genetic Algorithm in Optimal Al-

location Problems

A genetic algorithm is a meta-heuristic searching algorithm that has positive credit in

solving complicated problems [41]. It actually mimics the natural evolution process. In
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GA population, a large number of chromosomes (initial candidate solutions) are generated.

Each string or each chromosome is composed of a number of genes. The most important

parameters of GA are initial population, fitness function, and genetic operators (i.e. selec-

tion, crossover, and mutation). At any generation, the fitness function will be evaluated

for each string, and then these strings will be ranked based on its evolution to the ob-

jective function. If it is a maximization problem, the chromosomes that have high cost

functions have a great opportunity to be selected as parents for the offspring chromosomes

since they have high probability for copying the best results. This process is called the

selection process for reproduction. To produce a new offspring string from two individ-

uals, a crossover step takes place, and the selected parents exchange some parts of their

corresponding string to set up a new chromosome that carries the parent’s characteristics.

A mutation is performed by changing some binary digits from 1 to 0 and vice versa to

produce a new solution from an individual. These procedures will be repeated until the

fitness function converges; then the chromosomes are decoded to present the final variables

of the objective function.

Before beginning GA processing, the strings should be prepared in such a way as to be

compatible with GA format. Since the chromosome represents a candidate solution and the

problem is locating and sizing for DGs, the chromosome will be composed of multiple genes

and each genes contains a vector from two components. The first component represents

the location in which DGs are allocated, and the second component represents the size

of the connected DG. The number of components in a given chromosome is equal to the

number of candidate locations for allocating DGs multiplied by two. This is can be shown

in table 4.1.

Table 4.1: Representation of Chromosome and its Genes
Gene 1 Gene 2 Gene N

binary
sitting
loc#1

binary
sizing
loc#1

binary
sitting
loc#2

binary
sizing
loc#2

binary
siting
loc#N

binary
sizing
loc#N
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4.5 Case Study

The system that has been used in this study, as shown in fig.4.1, is the well-known 33 bus

radial distribution system presented in [42]. The total peak system demand is 4.37 MVA

and base voltage is 12.66 KV. The main source that feeds the system is the substation

which is connected at bus 1. All loads are assumed to be residential loads. The load

is assumed to follow IEEE RTS system as [35], and some modification in this model is

presented in a load modeling subsection in chapter 3. Selecting candidate buses criteria is

beyond the scope of this work since it requires data based on many technical, governmental,

environmental, and economic issues. In this thesis, candidate locations for connecting DGs

are bus 5, 8, 12, 18, 25, and 29. The maximum current carrying capability for each feeder

is mentioned in [42]. The wind turbine that has the highest capacity factor among the

different turbines is selected, and it has a rating of 100 kW. The specifications of the wind

turbine is illustrated in table 4.2. Moreover, dispatchable DGs have ratings of 100 kW for

each as well. PV module specifications are presented in table 4.3. Four different scenarios

are presented in this work to assess the probabilistic model. These scenarios include wind

based DGs, PV based DGs, wind and PV based DGs; and wind, PV, and dispatchable

based DGs. In evaluating the objective function, one more scenario is added to determine

the base case results.

4.5.1 Optimal Sizing and Allocation Outcomes

Based on the states of wind and PV output power that has been acquired from the clus-

tering method as shown in 4.4 and the probabilistic optimal power flow model, the results

of allocating and sizing renewable based DGs are illustrated in table 4.5. The cluster-

ing technique shows that wind power can be represented by 11 states while 10 states are

enough to model PV behavior. This problem formulation is tested and applied for four

scenarios. Regardless of the type of DG in each scenario, whether it is a single type or a

combined type, the objective function is affected by integrating these DGs in the network.

In the first scenario, the annual energy losses are reduced by 26.86% from its base case
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Table 4.2: Wind Turbine Specifications [43]

Parameter Discription

Rotor Diameter 20 m

Number of Blades 3

Working Wind Speed 325 m/s

Cut-in Wind Speed 3 m/s

Rated Wind Speed 12 m/s

Rated Output Power 100 kW

Rated Output Voltage DC 460 V

Generator Type 3 Phase Permanent Magnet Generator

Table 4.3: PV Module Specifications [44]

Parameter Discription

nominal power(+/-5%) 75.0 W

Voltage at PMaX 46.9 V

Current at PMaX 1.6 A

Open circuit Voltage 60.1 V

Short circuit current 1.82 A

Temperature Coefficient of Voc (-0.2%/C)

Temperature Coefficient of Isc (+0.04%/C)

Nominal cell operating temperature 43 C
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Figure 4.1: Well-Known 33 Distribution Bus System

when wind turbines with a 3.8 MW total rating (penetration level) are connected to the

grid. In case of PVs only, annual energy losses are reduced by 26.86% when 2.9 MW

rated PV modules are utilized. It is clear from these two scenarios that wind turbines are

higher in loss reduction than PV modules, and this can be interpreted by the fact that
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Table 4.4: Wind and PV States

Wind Output Clusters

Cluster 1 2 3 4 5 6

Centriod 0 5.32 12.734 22.34 35.29 46.64

Cluster 7 8 9 10 11

Centriod 58.83 69.82 80.12 91.77 100

PV Output Clusters

Cluster 1 2 3 4 5 6

Centriod 0 7.32 17.76 29.18 36.93 48.23

Cluster 7 8 9 10

Centriod 56.28 62.44 69.94 75

almost 40%-45% from the annual output power from PVs is zero since there is no radiation

during the night. When wind turbines and PV modules are combined, the results reveal

that the cost function is reduced by almost 31.75%. The share of wind turbines and

PV modules from 3.79 MW DG penetration is 63.5% and 36.5%, respectively. Due to the

high uncertainty in wind and PV output power, dispatchable DGs provide a significant

loss reduction over the wind and PV based DGs. This is because the output power from

dispatchable units is considered to be fixed throughout the planning horizon. Therefore,

case four shows that approximately half of the annual energy losses can be deducted by

incorporating three types of DGs. 40.87% wind form total penetration, 29.15% PV form

total penetration, and 29.97% dispatchable form total penetration are mixed in order to

achieve this significant loss reduction. In comparison with scenario three, dispatchable

units in case four contribute an almost 20% reduction in annual energy losses over using

only wind and PV based DGs.

To assure that the probabilistic optimization solution does not violate any of the op-

eration constraints, voltages at each bus, line loading, and the reverse power are tested

in most effective states. Most effective states include two cases; the first case is when the

57



Figure 4.2: Reduction in Energy Losses in Scenario 1 and 2

Figure 4.3: Reduction in Energy Losses in Scenario 3 and 4
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Table 4.5: Placement and Sizing for Various DG Technologies

Candidate
No DG Wind PV Wind-PV Wind-PV-Disp.

Location

DG1 Bus# 5 0 0.8 0.62 0.1 0.67 0 0 0.6
DG2 Bus# 8 0 0.1 0.1 0.2 0 0 1.011 0
DG3 Bus# 12 0 0.9 0.7 0.9 0 0.1 0 0.1
DG4 Bus# 18 0 0.1 0.09 0 0.13 0 0.05 0
DG5 Bus# 25 0 0.6 0.63 0.4 0.11 0.6 0 0
DG6 Bus# 29 0 1.3 0.76 0.8 0.48 0.8 0.01 0.4

AEL(MWhr) 594.6 434.88 466.1 405.77 290.44

Losses Reduction % 0 26.86 21.6 31.75 51.15

DG Penetration(MW) 0 3.8 2.9 2.4 1.39 1.5 1.07 1.1

DG total installation % 0 100 100 63.5 36.5 40.87 29.15 30

wind and PV outputs are at the rated power, and the load is at the minimum level. The

second case is when there is no power from wind and PV, and the load at the high level.

The results show that the voltage at each bus is improved when the wind and PV at rated

power are connected to the grid with no violation in each voltage at each bus. In addition,

the loading at each line in case 1 is still kept below the rated capacity of each line. In

most feeders, the integration of renewable resources reduce the contingency of these feed-

ers. Power reserve is tested as well, and it is below the maximum reverse power in case 1;

whereas, it is zero in case 2. Figures 4.4, 4.5, and 4.6 show these constraints in both cases.
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Figure 4.4: Reduction in Energy Losses in Scenario 1 and 2

Figure 4.5: Reduction in Energy Losses in Scenario 1 and 2
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Figure 4.6: Reduction in Energy Losses in Scenario 1 and 2

4.6 Conclusion

In this chapter, a comprehensive probabilistic optimization model is presented. This model

is aimed to optimally allocate and size the renewable resources in conventional distribution

system to minimize the annual energy losses. The results showed that renewable resources

are able to contribute magnificently in the energy losses reduction. Genetic Algorithm is

used to solve the optimization problem incorporated with optimal power flow equations,

and technical constraints have been considered, such as the thermal limit of the feeders,

voltage limits at each bus, and the maximum penetration level of these DGs in the dis-

tribution system. All of the constrains are satisfied in each state including the the most

extreme states.

Even though the probabilistic model proves its effectiveness and robustness in the planning

problem, the complexity in analyzing a large number of states is high. In addition, the

computational analysis takes long time to provide the answers. Therefore, finding a method

that can reduce the number of representing states is very magnificent. The next chapter
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proposes a new algorithm to determine the minimum number of representing states. This

method can be used in reliability analysis to reduce the number of overall system states

and in operation analysis to reduce the time of the analysis.
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Chapter 5

Minimum Representing States for

the Renewable Resources

5.1 Introduction

As explained earlier in chapter 2, in order to extract the output power from wind and PV

based DGs, wind and PV output power should be divided into many states as probabilistic

model. These states vary and depend on accuracy and complexity of selected states in

power flow, reliability, and optimization calculations. Large wind or PV states mean

that the overall system states will be so huge that the analytical reliability evaluation is

almost impossible to perform, and the operation analysis that requires a fast processing

(computational) time will take longer. Therefore, the motivation behind this work is

to reduce the overall system states and execution time while the accuracy in results is

maintained.
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5.2 State Reduction Using Rounding Technique

In this thesis, the states are initially selected based on a K-means algorithm. However,

these states can be truncated by rounding the states that have low probability of occurrence

to the states that have high probability of occurrence. The reduction of these states

gives a positive credit since it considerably saves on execution time of the calculations.

A large number of states means more execution time and more complexity in reliability

and planning analysis, so determining the minimum number of states that represent the

output power from renewable resources while maintaining the error in the results (objective

function and DG penetration) within an acceptable range is proposed in this section. The

main valuable contribution of this algorithm is considerable reduction in wind and PV

states as well as computing time while keeping the accuracy of the results high.

A rounding technique has been used in this study due to its flexibility and simplicity.

This technique basically rounds up or rounds down the initial states to the nearest newly

assigned states [45]. The rounding technique follows these general equations:

P (Cj) =
Ck − Ci
Ck − Cj

P (Ci) (5.1)

P (Ck) =
Ci − Cj
Ck − Cj

P (Ci) (5.2)

For state i which falls between the rounded states k and j. Rounding increments have

the main contribution in rounding error. This method basically depends on the linear

sharing of the previous states into the new rounded states. Fig. 5.1 shows a graphical

representation for the rounded method.
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Figure 5.1: Representation for Rounding Method

5.3 The Proposed Algorithm for Finding Minimum

States

Since the previous algorithms for finding the states of wind speed and solar irradiance

consume more time in calculation, the idea of determining minimum states that could

represent these two parameters and reduce the computational time has seen the light.

The advantages of this algorithm are that this method is fast, starts from a solid base

(clustering technique), and provides accurate results. The proposed algorithm is a step

ahead from the clustering technique since any cluster method is dealing with the first level

of statistical analysis (original data), while the proposed method incorporates the second

level of statistical analysis (low probability, high probability, mean, and variance). The

proposed method is used for different clustering topologies (hourly, seasonally, and yearly).

Optimal DG placement is an important problem in power system long term planning, and

this problem is formulated in order to test the robustness of the proposed method. DG

sizing and placement are done also for the different time scales.
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As mentioned before, the main two tested points are the objective function (Annual energy

losses) and the penetration level of DGs, and they should adhere to an acceptable limit of

error while the process of minimizing the states is being applied. The procedures of this

algorithm follow these steps:

1- Read the historical data from wind speed and solar irradiance (it depends here on the

test type; whether it is hourly, seasonally, or on a yearly basis).

2- Extract wind output power and solar output power from the wind power curve and IV

characteristics of PVs, respectively.

3- Divide wind and PV output powers into many clusters by using K-means algorithm.

4- After clustering, and based on the centroid and boundaries of a cluster, wind speed and

solar irradiance is divided into states (No. state = No. cluster).

5- Define the probability of each state for each time segment in the hourly/seasonally/yearly

model using equations 3.10 and 3.11.

6- Build set A which contains all the states and their probabilities.

7- Run the probabilistic optimization model using Genetic Algorithm.

8- Store the objective function and DG penetration (Value X1, for Annual Energy Losses

and Value Y1, for DG penetration).

9- Construct set B (set B = All the rounded staes except in the first iteration, set B = set

A) and let X2=X3, Y2=Y3 except in the first iteration, X2=X1, Y2=Y1.

10- Perform the state reduction technique for the lowest probability state (rounding tech-

nique) using equations 5.1 and 5.2.

11- Construct set C which includes the rounded states and their probabilities.

12- Run the probabilistic optimization model using Genetic Algorithm.

13- Store the objective function and DG penetration (Value X3, for Annual Energy Losses

and Value Y3, for DG penetration).

14- If the error between the values X1 and X3, or the error between the values Y1 and

Y3 are greater than or equal 2.5%, set B is considered to be the minimum states that

represent the behavior of wind speed and solar irradiance and value X2 and Y2 are the

annual energy losses and DG penetration, respectively.

15- If the error between the values X1 and X3, or the error between the values Y1 and Y3
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are smaller than or equal 2.5%, set B is equal set C , X2 is the annual energy losses, and

Y2 is the DG penetration, and go to step 9.

The selection of the threshold is based on that the default margin of the error for the

random data is plus or minus 2.5% for a 95% confidence level [46]. So, this threshold is

selected to keep the confidence level of the annual energy losses and DG penetration high.

These steps are clearly illustrated by the flowchart in fig 5.2. After performing the pro-

posed technique, minimum states that effectively represent wind speed and solar irradiance

with high accuracy and low computational time are obtained.

5.4 Case Study

The outcomes of the proposed method are extensively discussed in this section. Since the

proposed algorithm follows certain steps, the findings from this method will be preceded by

the results of the clustering technique and the probabilistic optimization model. Therefore,

the outcomes will be discussed in subsections based on their priority in processing.

5.4.1 Clustering Technique Outcomes

As mentioned previously, the K-means algorithm is carried out in order to determine the

initial states of wind speed and solar irradiance. Figures 3.4 and 3.5 show a piece of an

actual wind and PV output power with 44 measurements and the curve obtained after the

clustering in nine clusters (states) for wind and eight clusters for PV output.

Hourly Clusters

After performing K-means algorithm for each time step (96 points of data), the results

reveal that there are 68 hours converged at 6 states (clusters); whereas, 28 hours converged

at 7 states. In fact, these states vary from one hour to another, and this makes the accuracy

of the results high since each hour is dealing with its own states obtained from the statistical

history. Some of the selected states for selected hours are presented in table 5.1. State
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Read the historical data from wind speed and solar irradiance 
(hourly/seasonally/yearly)

Extract wind output power and solar output power from wind power curve 
and IV characteristics of PVs, respectively.

Divide wind and PV output powers into many clusters by using K-means 
algorithm.

After clustering and based on the centroid and boundaries of a cluster, 
wind speed and solar irradiance has been divided into states (No. state = No. 

cluster).

Define the probability of each state for each time segment in the hourly/
seasonally/yearly model using equations (3.10) and (3.11).

Build set A which contains all the states and their probabilities.

Run the probabilistic optimization model using Genetic Algorithm.

Store the objective function and DG penetration (Value X1, for Annual 
Energy Losses and Value Y1, for DG penetration).

Construct set B (set B = All the rounded states except in the first 
iteration, set B = set A) and let X2=X3, Y2=Y3 except in the first 

iteration, X2=X1, Y2=Y1.

Perform state reduction technique for the lowest probability state 
(rounding technique) using equations (4.1) and (4.2).

Construct set C which includes the rounded states and their 
probabilities.

Run the probabilistic optimization model using Genetic Algorithm.

Store the objective function and DG penetration (Value X3, for 
Annual Energy Losses and Value Y3, for DG penetration).

 The error 
between X1 and 

X3 or between Y1 
and Y3 <= 2.5%

Yes
set B = set C 

X2 = X3          
Y2 = Y3

No

set B is the minimum states that represent the behavior of wind speed and 
solar irradiance and value X2 and Y2 are the annual energy losses and DG 

penetration, respectively. 

Figure 5.2: Flowchart of the Proposed Algorithm
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limits are also acquired, and they are substituted in the integration limits in equations

3.10 and 3.11 to calculate the probability of each state. Table 5.2 and 5.3 present the

probability of each state and their boundaries.

Table 5.1: Selected States for Selected Hours

State\Hour 12 15 36 43 61 92

1 0 0 1.800693 0 2.632318 0

2 6.849799 7.680765 8.154222 0.202073 21.1617 4.949407

3 14.8152 24.87701 18.8988 18.63378 30.27426 9.298181

4 36.44715 39.15854 39.88 22.15089 46.7599 18.33106

5 42.64068 47.85357 49.43949 32.66909 69.29094 24.31704

6 65.66151 67.03327 55.61958 49.43949 87.55241 35.4102

Seasonal Clusters

K-means results for seasonal clustering show that in case of wind, all of the various seasons

(Fall, Winter, Spring, Summer) could be historically represented by 9 states to model the

fluctuation in wind output power. However, in the case of PV, 8 states are adequate to

represent the behavior of the output power from PV modules. The centroids of each cluster

for the Fall season are presented in table 5.2 for wind and table 5.3 for PV. In addition,

the probability of each cluster or state is clearly demonstrated in these two tables.

Yearly Clusters

When all historical data are clustered, the wind output power can be divided into 11 states

to precisely represent the intermittent nature of wind speed. However, after clustering all

historical solar irradiance data for the site under investigation, the output power from

PV modules is fair enough to be represented by 10 states. The probability of each state
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Table 5.2: One Sample of Wind States and Their Probabilities

State Rated Power %
Wind Speed Level (m/s)

Probability

Lower Limit Upper limit
1 0 0 3 0.3043
2 7.12 3.01 4.28 0.2261
3 20.64 4.29 5.42 0.1759
4 35.22 5.43 6.91 0.1597
5 52.58 6.92 8.54 0.0872
6 67.42 8.55 9.59 0.0243
7 79.07 9.6 10.62 0.011
8 91.41 10.63 11.9 0.00516
9 100 12 25 0.001734

Table 5.3: One Sample of PV States and Their Probabilities

State Rated Power %
Solar irradiance level (Kw/m2)

Probability

Lower Limit Upper limit
1 0 0 0.11 0.01299
2 11 0.12 0.19 0.02911
3 23.35 0.2 0.301 0.06164
4 34.19 0.302 0.42 0.12033
5 44.36 0.43 0.54 0.20699
6 54.10 0.55 0.67 0.28469
7 65.10 0.68 0.82 0.23741
8 75 0.83 1 0.05

is calculated using the integral equations. These probabilities depend basically on the

boundaries of each state.
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Table 5.4: Wind and PV States for Yearly Representation

Wind Output Clusters

Cluster 1 2 3 4 5 6

Centriod 0 5.32 12.734 22.34 35.29 46.64

Cluster 7 8 9 10 11

Centriod 58.83 69.82 80.12 91.77 100

PV Output Clusters

Cluster 1 2 3 4 5 6

Centriod 0 7.32 17.76 29.18 36.93 48.23

Cluster 7 8 9 10

Centriod 56.28 62.44 69.94 75

5.4.2 Proposed Algorithm Outcomes

The proposed technique for finding minimum states that represent wind and solar behav-

ior in power planning and operation problems is carried out, and interesting results are

obtained. Tables 5.7, 5.6, and 5.5 demonstrate these findings.

Hourly Findings

Firstly, when the wind turbines are connected only to the grid, the algorithm showed that

the wind output power can be represented by 3 states for each hour while the results are

still close to the original states results. The error in annual energy losses is less than 2.5%

as shown in fig 5.3 while the reduction in execution time is 36.16% from the original states

computational time. In addition, the level of penetration did not violate the limit of error

when the states are truncated to five states. When the representing states are reduced by

more than 3 states, a significant mismatch between these states will occur, and the added

values to state probabilities throughout the eliminated states are not enough to compensate
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for this mismatch.

Figure 5.3: Error in Annual Energy Losses for Hourly Clustering

In addition, the results reveal that in the case of PV, the output power from PV modules

can be represented by 3 states as well with a very small difference compared to 6 state

outcomes. Interestingly, almost 34.27% of the execution time is deducted by representing

PV output power by 3 states. As it is shown in fig 5.4, the error in penetration level did

not exceed the impermissible limits and it is kept within the safe area. As expected, this

algorithm will prove its strength in the case of mixed renewable sources, and this is because

in the case of wind and solar, the states that represent the combination between them are

large.

Compared to the results obtained from the initial clustering technique, 9 states are able to

represent the hourly behavior of combined wind and PV power with precision in results.

The previous states were 42 states which are the product of seven states of wind and six
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Figure 5.4: Error in DG Penetration for Hourly Clustering

states of PV. Indeed, the new 9 states are a result of multiplying 3 states of wind and 3

states of PV. The computational time is reduced considerably, by more than two thirds

of the original case (42 states). Furthermore, in the last scenario, the minimum states

that represent the hourly behavior of renewable resources with conventional distributed

generation are 9 states. As well, the penetration level was still kept in the permissible

region. The computational time for performing the optimization problem is reduced by

approximately 81.11% compared to the original execution time. Interestingly, the results

showed that the locations of the distributed generation have not affected by using this

methodology which gives a credit to this method.

Seasonal Findings

In the case of wind turbines only being plugged into the network, the intermittent nature

of wind speed can be modeled throughout 5 states seasonally. Annual energy losses did
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Table 5.5: Proposed Algorithm Results - Hourly Clustering

DG Wind

Case - States 1 - 7 2 - 6 3 - 5 4 - 4 5 - 3 6 - 2

AEL (MWhr) 416.38 417.173 419.189 422.85 426.75 491.594

Penetration(MW) 4 4 4 3.9 3.9 3.7

AEL error(%) 0 0.19 0.67 1.53 2.43 15.3

Penetration error (%) 0 0 0 -2.5 -2.5 -7.5

Execution time reduction(%) 0 9.435 17.77 26.965 36.16 44.88

DG PV

Case - States 1 - 6 2 - 5 3 - 4 4 - 3 5 - 2 6 - 1

AEL (MWhr) 443.25 445.164 450.32 454.476 529.57 N/A

Penetration(MW) 3.3 3.29341 3.26087 3.23213 3.10734 N/A

AEL error(%) 0 0.43 1.57 2.47 16.3 N/A

Penetration error (%) 0 -0.2 -1.2 -2.1 -6.2 N/A

Execution time reduction(%) 0 11.6 21 34.27 48.7 N/A

DG Wind and PV

Case - States 1 - 42 2 - 30 3 - 20 4 - 12 5 - 9 6 - 6

AEL (MWhr) 387.84 389.789 393.108 395.311 397.703 465.315

Penetration(MW) 3.83 3.81778 3.78833 3.7734 3.74389 3.56943

AEL error(%) 0 0.5 1.34 1.89 2.48 16.65

Penetration error (%) 0 -0.32 -1.1 -1.5 -2.3 -7.3

Execution time reduction(%) 0 39.41 64.51 75.09 83.24 94.81

DG Wind, PV, and Disp.

Case - States 1 - 42 2 - 30 3 - 20 4 - 12 5 - 9 6 - 6

AEL (MWhr) 274.84 276.304 278.432 280.02 281.8 332.736

Penetration(MW) 3.76 3.74763 3.71542 3.69715 3.67906 3.49572

AEL error(%) 0 0.53 1.29 1.85 2.47 17.4

Penetration error (%) 0 -0.33 -1.2 -1.7 -2.2 -7.56

Execution time reduction(%) 0 38.41 63.81 72.91 81.11 91.21
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not violate the acceptable error limit when the wind is represented by 5 states as shown in

fig 5.5. Moreover, wind penetration levels were not affected when the states are truncated

to five states. There is a considerable saving in computational time, almost 35%, when the

states are reduced to 5 states.

However, the results reveal that in the case of PV, the output power from PV modules

can be represented by 4 states, while the accuracy obtained is equivalent to an 8 state out-

come. If the representing states go below 4 states, a significant mismatch between these

states will be introduced. The computational time is obviously drops by 47.3%, which is

approximately half of the original states (8 states) execution time. 2.84 MW from PV

modules which is the penetration level of these modules when the states are minimized to

4 states. Fig 5.6 shows the penetration level of PV and wind based DGs is located within

the acceptable zone when the states are reduced.

Figure 5.5: Error in Annual Energy Losses for Seasonal Clustering
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Figure 5.6: Error in DG Penetration for Seasonal Clustering

In the case of that wind and PV are both connected to the system, 72 representing

states can be reduced to 20 states to combine and precisely model the fluctuation of wind

speed and solar irradiance. The previous states were 72 states which are the product

of nine states of wind and eight states of PV. However, the new 20 states are a result

of multiplying 5 states of wind and 4 states of PV. The computational time is reduced

considerably, by 73% from the original case (72 states). Furthermore, in the last scenario,

the minimum states that represent the behavior of renewable resources with dispatchable

units are 20 states. As well, the penetration level was still maintained in the allowable

region. The computational time for performing the optimization problem is reduced by

nearly 72% from the original execution time. The locations of the DGs are kept same, and

there are no changes in these locations after performing the reduction method.
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Table 5.6: Proposed Algorithm Results - Seasonal Clustering

DG Wind

Case - States 1 - 9 2 - 8 3 - 7 4 - 6 5 - 5 6 - 4

AEL (MWhr) 434.88 436.934 440.296 442.761 445.346 462.147

Penetration(MW) 3.8 3.8 3.8 3.8 3.8 3.6

AEL error(%) 0 0.47 1.23 1.78 2.35 5.9

Penetration error (%) 0 0 0 0 0 -5.26316

Execution time reduction(%) 0 8.335 16.67 25.865 35.06 43.78

DG PV

Case - States 1 - 8 2 - 7 3 - 6 4 - 5 5 - 4 6 - 3

AEL (MWhr) 466.14 467.918 471.325 474.829 477.651 499.614

Penetration(MW) 2.9 2.88 2.86 2.85 2.842 2.72

AEL error(%) 0 0.38 1.1 1.83 2.41 6.7

Penetration error (%) 0 -0.67 -1.3 -1.7 -2 -6.2

Execution time reduction(%) 0 10.2 19.6 32.87 47.3 59.43

DG Wind and PV

Case - States 1 - 72 2 - 56 3 - 36 4 - 20 5 - 16 6 - 9

AEL (MWhr) 405.77 408.301 411.657 416.004 425.335 442.497

Penetration(MW) 3.79 3.771 3.75 3.73 3.68 3.58

AEL error(%) 0 0.62 1.43 2.46 4.6 8.3

Penetration error (%) 0 -0.5 -1.05 -1.58 -2.9 -5.8

Execution time reduction(%) 0 38.2 63.3 73.88 82.03 93.6

DG Wind, PV, and Disp.

Case - States 1 - 72 2 - 56 3 - 36 4 - 20 5 - 16 6 - 9

AEL (MWhr) 290.44 292.105 294.534 297.704 304.764 317.421

Penetration(MW) 3.67 3.642 3.62 3.59 3.557 3.512

AEL error(%) 0 0.57 1.39 2.44 4.7 8.5

Penetration error (%) 0 -0.76 -1.36 -2.17 -3.07 -4.3

Execution time reduction(%) 0 37.4 62.8 71.9 80.1 90.2
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Yearly Findings

At the beginning, when the wind turbines are only connected to the grid, the algorithm

showed that the wind output power can be represented yearly by 6 states while the results

are still close to the original states results (11 states). The error in annual energy losses

is less than 2.5% as shown in fig 5.7 while the reduction in execution time is 42% of the

original states computational time. In addition, the level of penetration did not violate the

limit of error as well when the states are truncated to six states.

Figure 5.7: Error in Annual Energy Losses for Yearly Clustering

In addition, the results reveal that in the case of PV, the output power from PV modules

can be represented by 5 states as well, with very slight difference compared to 10 state

outcomes. Interestingly, almost 58.4% of the execution time is deducted by representing

PV output power by 5 states. As it is shown in fig 5.8, the error in penetration level did
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Figure 5.8: Error in DG Penetration for Yearly Clustering

not exceed the impermissible limits and it is kept within the safe area.

Compared to the results obtained from the initial clustering technique, 30 states are able

to represent the yearly behavior of combined wind and PV powers with precision in results.

The previous states were 110 states which are the product of eleven states of wind and ten

states of PV. Indeed, the new 30 states are a result of multiplying 6 states of wind and 5

states of PV. The computational time is reduced considerably, by 92% from the original

case (110 states). Furthermore, in the last scenario, the minimum states that represent

the yearly behavior of renewable resources with conventional distributed generation are

30 states. As well, the penetration level was still kept in the permissible region. The

computational time for performing the optimization problem is reduced by approximately

89% from the original execution time. DGs locations have not affected when the reduction

method is performed.
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Table 5.7: Proposed Algorithm Results - Yearly Clustering

DG Wind

Case-States 1-11 2-10 3-9 4-8 5-7 6-6 7-5

AEL (MWhr) 452.25 453.6 455.8 459.2 461.6 462.8 477.5

Penetration(MW) 3.6 3.6 3.6 3.5 3.6 3.6 3.4

AEL error(%) 0 0.31 0.796 1.53 2.03 2.3 5.3

Penetration error (%) 0 0 0 0 0 0 -5.5

Execution reduction(%) 0 7.285 15.62 24.815 34.01 42.73 50.31

DG PV

Case-States 1-10 2-9 3-8 4 -7 5-6 6-5 7-4

AEL (MWhr) 480.2 481.3 484.3 485.4 488.9 492.1 507.6

Penetration(MW) 2.83 2.82 2.8 2.7 2.7 2.76 2.69

AEL error(%) 0 0.23 0.83 1.07 1.78 2.4 5.4

Penetration error (%) 0 -0.3 -0.9 -1.4 -2.29 -2.49 -5.2

Execution reduction(%) 0 9.17 18.57 31.84 46.27 58.4 62.47

DG Wind and PV

Case-States 1-110 2-72 3-64 4-49 5-36 6-30 7-20

AEL (MWhr) 424.34 426.1 430.2 432.25 433 434.3 449.03

Penetration(MW) 3.63 3.6 3.58 3.57 3.55 3.54 3.45385

AEL error(%) 0 0.41 1.38 1.83 2 2.3 5.5

Penetration error (%) 0 -0.5 -1.2 -1.48 -2 -2.41 -5.1

Execution reduction(%) 0 37.16 62.26 72.84 80.99 92.56 93.32

DG Wind, PV, and Disp.

Case - States 1 - 110 2 - 72 3 - 64 4 - 49 5 - 36 6 - 30 7 - 20

AEL (MWhr) 307.84 309.076 311.012 312.528 313.898 315.281 326.102

Penetration(MW) 3.52 3.49901 3.47792 3.45742 3.45064 3.43549 3.34283

AEL error(%) 0 0.4 1.02 1.5 1.93 2.36 5.6

Penetration error (%) 0 -0.6 -1.21 -1.81 -2.01 -2.46 -5.3

Execution reduction(%) 0 36.37 61.77 70.87 79.07 89.17 92.51
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5.4.3 The Impact of Different Time Representations on Annual

Energy Losses

In order to determine whether the annual energy losses are affected by different time

representations or not, various time scales are examined which are: hourly, seasonally,

and yearly. The results reveal that in the case of wind based DGs, the error between the

yearly and seasonal representation for annual energy losses is 3.84%, and the error is 4.44%

between the seasonal and hourly representation. As a result, the error between hourly and

yearly representation reaches 8.28%. Therefore, the seasonal representation is preferable

to represent the annual behavior of wind speed and solar irradiance due to its ability to

provide an accurate results which are very close to the most accurate representation (hourly

representation), as well as its ability to make the analysis of the problems easier and faster.

Figure 5.9 shows the annual energy losses for various time representations while table 5.8

presents the percentage error between these representations.

Figure 5.9: Different Time Representations for Annual Energy Losses
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Table 5.8: Percentage % of Errors for Different Representations

Wind Wind+PV

Rep. Hour Season Year Rep. Hour Season Year

Hour - 4.44 8.28 Hour - 4.62 9

Season 4.44 - 3.84 Season 4.62 - 4.37

Year 8.28 3.84 - Year 9 4.37 -

PV Wind+PV+Disp.

Rep. Hour Season Year Rep. Hour Season Year

Hour - 5.16 9.1 Hour - 5.67 11.32

Season 5.16 - 2.94 Season 5.67 - 5.65

Year 9.1 2.94 - Year 11.32 5.65 -

5.4.4 Comparing Between the Proposed Method and a Super-

vised Clustering Method

As it is known from the previous chapter, the proposed technique is initiated by using an

unsupervised clustering method where the number of the centroids is unknown. However,

supervised clustering algorithms should take into account the number of required seeds

as an input for the algorithm. Therefore, it is very important to compare the proposed

method with the supervised clustering in order to evaluate the robustness of the proposed

method. The seasonal case is enforced to be represented by 9, 8, 7, 6, and 5 states for the

wind. As well, PV power is enforced also to be represented by 8, 7, 6, 5, and 4 states. After

that, the results are compared to the proposed method outcomes. As shown in figures 5.10

and 5.11, the proposed method has an advantage over the supervised clustering method

since the wind power and PV power can be represented by lower states compared with

the supervised clustering. Supervised clustering violates the limit which is 2.5% from the

base value, when the wind is represented below 7 states and the PV by 7 states, as well.

82



In contrast, the proposed method is able to represent the wind and PV power by 5 and

4 states, respectively. This is due to the fact that the proposed method goes beyond the

clustering itself and it is dealing with the second level of statistical analysis (low probability

and high probability) while the supervised cluster is treating the bulk of the data which is

defined as the first layer of the statistics.

Figure 5.10: Proposed Method vs. Supervised Clustering for Wind Based DGs

5.5 Conclusion

The proposed algorithm which is designed to find the minimum number of states which

represent the intermittent nature of wind speed and solar radiation is presented in this

chapter. These results are divided into many subsections since the proposed method fol-

lows certain steps. It began with the initial states that are obtained from the k-means

clustering method. Then, the results from the allocation and sizing for different types of

DGs are presented. Annual energy losses and total DG penetration is used in the proposed
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Figure 5.11: Proposed Method vs. Supervised Clustering for PV Based DGs

method to evaluate the robustness of the method. The intersecting outcomes from the pro-

posed method are exhibited with different time representations. After that, an assessment

analysis is done to identify the differences between various time representations. Lastly,

the proposed algorithm is compared with a supervised clustering method to evaluate the

strength of the presented technique.
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Chapter 6

Conclusions and Future Work

6.1 Summary of the Thesis

The rapid growth in utilizing renewable resources as an alternative energy source to cope

with increasing demand and to feed remote areas has played a vital role in recent decades.

The reason behind this change in the traditional system is due to the benefits that have

been gained from the transition from the centralized power system to a decentralized struc-

ture. Moreover, the global concern about the emissions from the fossil fuel burning leads

governments to issue considerable regulations to mitigate these emissions through many

incentives to employ renewable resources. Many planning and operation problems should

be investigated carefully to tackle the randomness inherent in the intermittent nature of

wind speed and solar radiations.

This thesis presents a methodology to handle and model the uncertainties produced from

the intermittent behavior of wind speed and solar irradiance in long term planning prob-

lems. In addition, the state of the art in selecting the represent states for a multi-model

is presented. This method requires analyzing a large set of historical data to examine the

nature of the site under investigation. Many planning problems can utilize this model in

many aspects.

A multi-state probabilistic optimization model is presented in this research to optimally
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allocate and size the renewable resources in the distribution system to minimize the annual

energy losses. A genetic algorithm has been used as an intelligent optimization solver. The

results revealed the ability of the DGs in reducing the losses in the grid. The presented

model made a combination between the variability in the load side as well as in the gen-

eration side. However, the large number of representing states raised an issue regarding

the complexity in the analysis stages and it requires large computational time. So, it is

essential to fined a method that can reduce the number of representing states while the

accuracy of the results are still in an acceptable limit.

A new algorithm is presented in this thesis to tackle the issue of the large number of states.

This method aimed to fined the minimum representing states of the wind speed and the

solar irradiance, and it proves its usefulness and effectiveness in the results. Different time

representations are tested in order to define the suitable number of states at each time seg-

ment. Considerable savings in the processing time can be clearly seen from the outcomes of

this method. Many cases are tested to identify the effects of multiple time representations

in the final results.

6.2 Main Contributions of Thesis

The main contributions that have been achieved and presented in this thesis are as follows:

1- Robust models for renewable resources (wind and PV) in planning and operation

problems are presented. In these models, preparation and analyzing of a large set of his-

torical data for the purpose of implementing these data into the planning problems was

well investigated.

2- This thesis proposed an algorithm to determine the minimum number of represent-

ing states that represent the intermittent behavior of wind speed and solar radiation in

power planning problems. This method proves its strength over the traditional methods

that define the number of states. The proposed method mitigates the difficulties in relia-

bility analysis and operation problems that require minimum effective states.

3- A comprehensive probabilistic optimization planning model is presented in this the-

sis. This model allocates and sizes the renewable distributed generation in the distribution
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system to be suitable for many objective functions. Moreover, this thesis describes the way

that genetic algorithm structure can handle the probabilistic optimization model.

4- An evaluation methodology is addressed to test the impact of various time repre-

sentations in planning problems. These time representations are: hourly, seasonally, and

yearly.

6.3 Future Work

The work presented in this thesis can be extended to address some suggestions such as:

1- Apply the proposed method for reliability analysis with renewable resources to re-

duce the number of overall system states.

2- Apply the probabilistic planning model to address the effect of renewable resources

on power planning problems such as network reinforcements.

3- The proposed method and the probabilistic model can be used to allocate different

smart grid devices like DGs, PEV, and storage systems to accommodate multiple objective

functions.

87



Appendix A

33 Bus Distribution System Data
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Table A.1: Well-Known 33 Bus Distributions System Data - A

Bus Feeder Parameters Bus Loads

From To R (p.u.) X(p.u.) P (MW) Q (MVAr)

1 2 0.005753 0.002932 0.06782 0.040692

2 3 0.03076 0.015667 0.061038 0.027128

3 4 0.022836 0.01163 0.081384 0.054256

4 5 0.023778 0.01211 0.040692 0.020346

5 6 0.051099 0.044112 0.040692 0.013564

6 7 0.01168 0.038608 0.135641 0.06782

7 8 0.106779 0.077061 0.135641 0.06782

8 9 0.064264 0.04617 0.040692 0.013564

9 10 0.065138 0.04617 0.040692 0.013564

10 11 0.012266 0.004056 0.030519 0.020346

11 12 0.02336 0.007724 0.040692 0.023737

12 13 0.091592 0.072063 0.040692 0.023737

13 14 0.033792 0.04448 0.081384 0.054256

14 15 0.036874 0.032818 0.040692 0.006782

15 16 0.046564 0.034004 0.040692 0.013564

16 17 0.080424 0.107378 0.040692 0.013564

17 18 0.045671 0.035813 0.061038 0.027128

2 19 0.010232 0.009764 0.061038 0.027128

19 20 0.093851 0.084567 0.061038 0.027128

20 21 0.02555 0.029849 0.061038 0.027128

21 22 0.04423 0.058481 0.061038 0.027128

3 23 0.028152 0.019236 0.061038 0.03391

23 24 0.056028 0.044243 0.284845 0.135641

24 25 0.055904 0.043743 0.284845 0.135641
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Table A.2: Well-Known 33 Bus Distributions System Data - B

Bus Feeder Parameters Bus Loads

From To R (p.u.) X(p.u.) P (MW) Q (MVAr)

6 26 0.012666 0.006451 0.040692 0.016955

26 27 0.017732 0.009028 0.040692 0.016955

27 28 0.066074 0.058256 0.040692 0.013564

28 29 0.050176 0.043712 0.081384 0.047474

29 30 0.031664 0.016128 0.135641 0.406922

30 31 0.060795 0.060084 0.101731 0.047474

31 32 0.019373 0.02258 0.142423 0.06782

32 33 0.021276 0.033081 0.040692 0.027128
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Appendix B

IEEE-RTS System Data

Table B.1: IEEE-RTS System - Daily load in Percent of Weekly Peak

Day Peak Load

Monday 93

Tuesday 100

Wednesday 98

Thursday 96

Friday 94

Saturday 77

Sunday 75
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Table B.2: IEEE-RTS System - Hourly Peak Load in Percent of Daily Peak

Season winter weeks summer weeks spring/fall weeks

Weeks 1 -8 & 44 - 52 18 -30 9-17 & 31 - 43

Hour Wkdy Wknd Wkdy Wknd Wkdy Wknd

12-1 am 67 78 64 74 63 75

2-1 63 72 60 70 62 73

2-3 60 68 58 66 60 69

3-4 59 66 56 65 58 66

4-5 59 64 56 64 59 65

5-6 60 65 58 62 65 65

6-7 74 66 64 62 72 68

7-8 86 70 76 66 85 74

8-9 95 80 87 81 95 83

9-10 96 88 95 86 99 89

10-11 96 90 99 91 100 92

11-12 95 91 100 93 99 94

12-13 95 90 99 93 93 91

13-14 95 88 100 92 92 90

14-15 93 87 100 91 90 90

15-16 94 87 97 91 88 86

16-17 99 91 96 92 90 85

17-18 100 100 96 94 92 88

18-19 100 99 93 95 96 92

19-20 96 97 92 95 98 100

20-21 91 94 92 100 96 97

21-22 83 92 93 93 90 95

22-23 73 87 87 88 80 90

23-24 63 81 72 80 70 85
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Table B.3: IEEE-RTS System - Weekly Peak Load in Percent of Annual Peak

Week Peak Load Week Peak Load

1 86.2 27 75.5

2 90 28 81.6

3 87.8 29 80.1

4 83.4 30 88

5 88 31 72.2

6 84.1 32 77.6

7 83.2 33 80

8 80.6 34 72.9

9 74 35 72.6

10 73.7 36 70.5

11 71.5 37 78

12 72.7 38 69.5

13 70.4 39 72.4

14 75 40 72.4

15 72.1 41 74.3

16 80 42 74.4

17 75.4 43 80

18 83.7 44 88.1

19 87 45 88.5

20 88 46 90.9

21 85.6 47 94

22 81.1 48 89

23 90 49 94.2

24 88.7 50 97

25 89.6 51 100

26 86.1 52 95.2
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