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Abstract

Partially Observable Markov Decision Process (POMDP) is widely used to model se-

quential decision making process under uncertainty and incomplete knowledge of the en-

vironment. It requires strong computation capability and is thus usually deployed on

powerful machine. However, as mobile platforms become more advanced and more pop-

ular, the potential has been studied to combine POMDP and mobile in order to provide

a broader range of services. And yet a question comes with this trend: how should we

implement POMDP on mobile platform so that we can take advantages of mobile features

while at the same time avoid being restricted by mobile limitations, such as short battery

life, weak CPU, unstable networking connection, and other limited resources.

In response to the above question, we first point out that the cases vary by problem

nature, accuracy requirements and mobile device models. Rather than pure mathematical

analysis, our approach is to run experiments on a mobile device and concentrate on a more

specific question: which POMDP implementation is the “best” for a particular problem

on a particular kind of device. Second, we propose and justify a POMDP implementation

criterion mainly based on battery consumption that quantifies “goodness” of POMDP

implementations in terms of mobile battery depletion rate. Then, we present a mobile

battery consumption model that translates CPU and WIFI usage into part of the battery

depletion rate in order to greatly accelerate the experiment process. With our mobile

battery consumption model, we combine a set of simple benchmark experiments with CPU

and WIFI usage data from each POMDP implementation candidate to generate estimated

battery depletion rates, as opposed to conducting hours of real battery experiments for each

implementation individually. The final result is a ranking of POMDP implementations

based on their estimated battery depletion rates. It serves as a guidance for on POMDP

implementation selection for mobile developers.

We develop a mobile software toolkit to automate the above process. Given basic
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POMDP problem specifications, a set of POMDP implementation candidates and a simple

press on the “start” button, the toolkit automatically performs benchmark experiments

on the target device on which it is installed, and records CPU and WIFI statistics for

each POMDP implementation candidate. It then feeds the data to its embedded mobile

battery consumption model and produces an estimated battery depletion rate for each

candidate. Finally, the toolkit visualizes the ranking of POMDP implementations for

mobile developers’ reference.

Evaluation is assessed through comparsion between the ranking from estimated battery

depletion rate and that from real experimental battery depletion rate. We observe the same

ranking out of both, which is also our expectation. What’s more, the similarity between

estimated battery depletion rate and experimental battery depletion rate measured by

cosine-similarity is almost 0.999 where 1 indicates they are exactly the same.
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Chapter 1

Introduction

Partially Observable Markov Decision Process (POMDP)[28] is a powerful and widely used

mathematical model for sequential decision making. It is capable of capturing stochasticity

and uncertainty in real world situations, and selects probabilistically optimal actions based

on a history of actions and observations of the external environment.

Generally, the richer the structure we allow POMDP to have, the more competent it will

be when interacting with the real world. Yet the richer its structure grows, the more com-

plicated its computation becomes. That’s why POMDP is normally run on work stations

or PCs. Because they have powerful computation resources to explore the advantages of

structurally enriched and thus computationally intensive POMDP. Though deployment on

large machines solves the computational need, it restricts POMDP’s portability, adaptabil-

ity, and consequently its availability. In some circumstances, we need POMDP to “move

around” handling context-aware signal such as GPS data, accelerometer measurement,

voice input, etc.[18]. POMDP tied to cumbersome machines are not directly available for

these applications.

Fortunately, the development of mobile technology opens another door for us. With
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an emerging generation of mobile platforms capable of resolving some of the heavy com-

putation, the deployment of POMDP on portable devices is not out of reach. If we can

successfully embed POMDP in mobile platform, not only will POMDP utilize the flexi-

bility and ubiquity of mobile devices to largely extend their application scope, but also

applications on mobile platforms can benefit from POMDP to provide more sophisticated

and considerate services.

In order to deploy POMDP on mobile, we need to have basic understanding of how

POMDP works. The general working logic of POMDP is two-phase. A policy needs to be

computed at first and the actual execution is essentially state updating and action querying

according to the policy. Usually, the POMDP policy computation is a much heavier job

that is not suitable for mobile devices. A commonly adopted approach[6] is to compute the

policy on PCs and download it to mobile devices. After all, the mobile features are useful

only during policy execution. In such case, the mobile platform only serves as a carrier

of POMDP’s execution, and acts according to a pre-calculated policy. Though in some

circumstances, we may even want to compute policies using a mobile device, but we don’t

address it in this thesis. A promising future is lying ahead; however, the reality is that

mobile platforms are still far from being as powerful as PCs. Sometimes, POMDP’s execu-

tion itself is already hard even for PCs, let alone their comparably delicate counterparts.

Therefore, further considerations are necessary to optimize POMDP’s execution on mobile

devices. POMDP has variable implementation methods. Since POMDP’s execution has

to happen on mobile devices, one unavoidable question is how to trade off among different

POMDP implementations. And it turns out to matter a lot for POMDP’s performance on

mobile devices, which we will discuss later.

How do we select proper POMDP implementations? For the above question, a lazy

answer is that it depends. Indeed, the selection of POMDP implementations depends on

various factors, such as problem nature, policy complexity, mobile device model, and so on.

We admit that attempts to formalize this question in pure mathematics would mostly fail
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or yield an imprecise result. But there is certain thing we can do to rationalize our selection

from another perspective. That is through benchmarking, which means we conduct ex-

periments for each POMDP implementation candidate and select the one with the “best”

experimental performance. Though pre-test is not as simple as mathematical formulas, it is

definitely the most straightforward and realistic reflection of how POMDP implementation

would perform on mobile devices. Benchmarking is a little time-consuming, but the time

it costs is worthwhile since once a POMDP is embedded in a mobile device, it is expected

to run for a considerable length of time. Thus, it is absolutely intelligent to spend some

time on a benchmarking and choose a better implementation for the future well-being in

the long run.

We select POMDP implementation for the good of mobile user experiences. Users

don’t care how POMDP is implemented. Assuming our implementation candidates can

provide the same level of accuracy in reasonable a response time (those implementation

that can not achieve this should be ruled out at the first place during our implementation

candidates selection), all users care about is how running this POMDP application would

affect their mobile devices. The most visible effect is the battery consumption. According

to smartphone survey[8], battery consumption is one of the top issues that concerns mobile

users. The other top ones (such as signal strength, crashing down, etc.) have nothing to

do with which particular POMDP implementation we choose. And some survey[25] even

reveals that short battery life is the top one gripe in mobile users experience. Therefore, our

POMDP implementation selection is mainly based on the battery consumption on mobile

devices. We also ignore those factors which appear to be related to user mobile experiences

but in fact have no influence on our POMDP implementation selection, such as the usage

of different sensors, user interface. It is because for a particular application, no matter

which POMDP implementation we prefer, we always have to provide the same input set

and visualize the output in the same way. In conclusion, the POMDP implementation is

transparent to mobile users and the most visible impact is the battery draining, which
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is also what we focus on to minimize. It also makes it clear for the research purpose

because we now have more focused problem - selection based on battery consumption.

We use average battery depletion rate to represent the battery consumption performance.

Obviously, the lower the battery depletion rate, the better this POMDP implementation is.

In this case, the “goodness” of POMDP implementation is quantified by a single number.

This self-contained criterion makes it easier for us to rank different implementations.

A naive and inefficient way to obtain mobile battery depletion rate is to run real battery

experiments for each individual POMDP policy execution implementation. We propose a

more intelligent method - a mobile battery consumption model. It translates CPU usage,

WIFI connection into part of the battery depletion rate. According to mobile battery

research[5], CPU and WIFI usages are the main factors that affect mobile battery con-

sumption (other main factors such as signal standby, screen brightness are not related to

POMDP implementation selection and thus ignored). With this mobile battery consump-

tion model, we only need one real battery test for the device condition (we define it as

the benchmark), and for each POMDP implementation candidate, we simply record CPU

and WIFI status, which can be done in seconds and save us from hours of tedious battery

experiments. The benchmark and CPU, WIFI data are combined within the mobile bat-

tery consumption model to produce an estimated battery depletion rate for each POMDP

implementation as their overall battery performance on mobile devices.

We develop a software toolkit that automates the above process and makes a reason-

able and quick decision among multiple POMDP implementations. In order to obtain

some basic information of target platform, the toolkit conducts a set of benchmark experi-

ments, followed by small and quick CPU and WIFI measurement for each implementation

candidate. Then it feeds the results to our mobile battery consumption theory model to

generate the estimated battery depletion rate one for each POMDP implementation. At

last, it produces a ranking as selection suggestion, with auxiliary information, including

memory usage, WIFI necessity. The toolkit provides a comprehensive suggestion about
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POMDP implementation selection on mobile devices. It automatically finishes all required

steps. All users need is to install our toolkit on a target mobile device, provide necessary

POMDP specifications, launch the toolkit, and wait for results.

Evaluation is done by comparing our estimated battery depletion rate with real bat-

tery depletion rate measured by running real POMDP applications and recording battery

changes. Our expectation is to see the ranking of POMDP implementations derived from

these two battery depletion rates are similar. It turned out better than we have expected.

Our estimated battery depletion rates well predict the real depletion rates. Not only is

the ranking based on our estimation the same as that from real battery experiments, but

also the difference between these two figure set - estimated battery depletion rate and real

battery depletion rate - is almost 0. They have around 0.999 cosine-similarity where 1

indicates that they are exactly the same.

The primary contributions of this thesis are six-fold:

1. We point out the importance of selecting POMDP implementations for mobile plat-

form and suggest the selection should be based on experiments.

2. We design and justify criteria of selecting POMDP implementations for mobile based

mainly on battery consumption.

3. We propose a method to quickly estimate battery consumption in the long run for

POMDP on mobile as opposed to making time-consuming measurements.

4. We build a framework to conduct battery experiments on mobile devices for POMDP

problems and show that it can be generalized to other similar applications.

5. We implement a toolkit that automates the selection of POMDP implementations.

6. We explore the feasibility of loading computational heavy tasks onto mobile plat-

forms.
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The remainder of the thesis is organized as follows: Chapter 2 refreshes our memory of

POMDP knowledge and indicates advantages using Android platform; Chapter 3 compares

our work with related research, and identifies connections and our distinctiveness; Chapter

4 provides a comprehensive demonstration of our overall design of the toolkit, including

selection criterion, mobile battery consumption model, and system architecture; Chapter 5

presents a clear framework along with implementation of our toolkit; Chapter 6 illustrates

how evaluation is conducted and shows the results are as expected; Chapter 7 concludes

the whole thesis and points out future directions.
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Chapter 2

Background

2.1 MDP Recap

Speaking of the POMDP, we first need to refresh our memory of Markov Decision Process

(MDP)[30]. MDP is a mathematical framework use to capture sequential decision process

under uncertainty. It models how an agent interact with the outside world. The agent’s

status is described through the concept of “state”. At a state, the agent can perform

different actions and go to the potential next state. The uncertainty here is because after

performing an action, the agent is not guaranteed to land on a certain next state. Instead,

there is a distribution of the next state given the current state and performed action. There

is a reward system which quantifies the goodness of the agent’s single decision, based on

the current state and chosen action. The agent’s goal is to maximize the long term rewards

during either a fixed or infinite number of actions to perform. Mathematically, the MDP

consists of the following:

• A finite set of states: S;

• A finite set of actions: A;
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• A state transition distribution: T (st+1, st, at) = Pr(st+1|st, at) (st+1, st ∈ S, at ∈ A),

probability of landing on st+1 given the current state st and chosen action at;

• A reward system: R(st+1, st, at), reward for performing action on current state st and

landing on next state st+1

2.2 POMDP Framework

Partially Observable Markov Decision Process (POMDP)[28] is a more generalized form

of MDP. POMDP extends Markov Decision Process (MDP) to integrate another level

of uncertainty. In MDP, only the transactions between states resulted from performing

actions are probabilistic. The external environment is fully-observable. In POMDP, even

the external environment is not fully observable and thus also uncertain. This is often the

case in real world while an agent is making a decision. The agent doesn’t know for sure

which state it is in, and can only infer from what it observes. For example, in a simple

navigation problem, an agent in a room wants to reach another location in this room. But

its vision is blocked by furniture that it doesn’t know exactly where in the room it currently

stands. However, it can make a guess based on the surrounding environment (e.g. chair,

desk on its left) to come up with a probability distribution over some potential possible

locations. Since that is all it has, it should make decision based on the likelihood of its

current state. By introducing the concept of observation as a belief of external environment,

POMDP provides a more general method to model real world sequential decision making.

Mathematically, the POMDP consists of the following:

• A finite set of states: S;

• A finite set of actions: A;

• A finite set of observation: O
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• A state transition distribution: T (st+1, st, at) = Pr(st+1|st, at) (st+1, st ∈ S, at ∈ A),

probability of landing on st+1 given the current state st and chosen action at;

• A observation distribution: Z(ot, st, at−1) = Pr(ot|st, at−1) (st ∈ S, at−1 ∈ A, ot ∈ O),

probability of obtaining observation ot given current state st and previous action

at−1;

• A reward system: R(st+1, st, at), reward for performing action on current state st and

landing on next state st+1

2.3 Policy Representation

An agent’s goal in sequential decision, either MDP or POMDP, is to select actions that

maximize long term rewards (including the immediate reward of executing an action and

the potential future reward because of the direction this action points to). The long term

means during the next t steps (finite horizon) or all of the future steps (infinite horizon).

During this long term period, we would need a strategy that help we choose action. This

is called policy, and denoted by π. In MDP, because of the Markov property, namely

the current situation only depends on the previous stage, the policy usually is a simple

mapping from states to actions: π : s → a. The long term reward can be expressed in a

value function that associates with state and policy. Starting from state st and with policy

π, the long term reward is:

V (st, π(st)) = R(st, π(st)) + γ
∑
s

(T (st+1, st, π(st)) ∗ V (st+1)) (2.1)

The optimal policy is the one achieve maximum V . γ here is a discount factor that

characterizes the preference between earlier reward and future reward (0 ≤ γ ≤ 1). It also

mathematically converges the value function.
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Such straightforward mechanism is directly applicable to MDP but not for POMDP.

In POMDP, the agent doesn’t have complete knowledge of the current state. Instead,

it can only observe what’s going on “around” it. One time observation is too vague to

determine the real world situation. Therefore, in order to make good decision, the agent

has to consider what observations it has obtained and actions it has performed previously,

that is the history of observations and actions. It is intuitively straightforward but not

mathematically easy to solve because the Markov property no longer holds. The policy for

POMDP has to map from history to actions. It is conceptually a tree structure as shown

in Figure 2.1.

Figure 2.1: POMDP Policy Tree

Each node is labeled with the action to perform. The agent starts from an initial state

or initial action, goes along with the obtained observation and performs the actions on the

visited nodes. If the agent is only looking for the next t step, the depth of the tree is t,

if it is infinite horizon, the policy tree is infinite large. But even with finite t steps, the
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tree is also exponential to observations. And there are |A| potential actions to choose at

each node, which further complicates the structure of the policy tree. Therefore, we need

a smarter way to represent POMDP policy.

2.3.1 α-vector

A straightforward way is to transform the state to a form that the Markov property still

holds. It turns out that we can apply a belief state which is a distribution over all states.

Its dimension is the size of state set. On each dimension b(s) indicates the probability the

agent is in state s. Of course
∑
b(s) = 1. The belief state update rule is:

bt+1(s′) =

Pr(o|s′, a)
∑
s

Pr(s′|s, a)bt(s)

Pr(o|bt, a)

=

Z(o, s′, a)
∑
s

T (s′, s, a)bt(s)

Pr(o|bt, a)

(2.2)

Pr(o|bt, a) =
∑
s

Pr(o|s′, a)
∑
s

Pr(s′|s, a)bt(s)

=
∑
s

Z(o, s′, a)
∑
s

T (s′, s, a)bt(s)
(2.3)

Belief state is equivalent to maintaining a whole history of observations and actions[35].

Now, we have transformed a partially observable MDP to a completely observable MDP

where the Markov property holds. Thus, our value function is:

V (bt) =
∑
s

bt(s)R(s, a) + γ
∑
s

Pr(o|bt, a)V (bt+1) (2.4)

Apparently, the policy achieves maximum value is our optimal policy. The next thing is

to find a mapping from belief state to action. Now that the state is continuous, the simple

mapping table we use for MDP no longer works. However, the value function over belief
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states is piece-wise linear (finite horizon) or close to piece-wise linear (infinite horizon)[35].

That means we can use a set of vectors, called α-vectors[10], to express the value function:

V (b) =
∑
i

αiV (bi) (2.5)

Each vector is associated with a policy tree (finite horizon) or an action( infinite

horizon[35]). For finite horizon, the agent starts from b0, and finds the optimal policy

tree, then executes action contingent on observations it receives. For infinite horizon, the

agent updates the belief state based on previous belief state, action performed and obser-

vation received. Then it chooses the next action that yields the best value. In either case,

the essential step is the same and simple: find the vector that yields the maximum value

based on current belief state. The entire α-vector set is our policy representation.

2.3.2 Finite State Controller

Sometimes the policy tree in Figure 2.1 doesn’t have to keep growing[20]. If the finite

horizon value function V t = V t+1, we can redraw the policy tree so that from one level,

nodes can point to itself or previous nodes. Then we can convert non-stationary policy tress

into stationary cyclic policy graphs, which enables an agent to execute policies simply by

doing actions prescribed at the nodes, and following observation links to successor nodes

[2]. Therefore, there is no need for that updating belief state and computation burden

of selecting optimal vectors. We can maintain an internal state set which is completely

observable. Things all go back to nice completely observable MDP as shown in Figure 2.2.
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Figure 2.2: Example of Redrawing Policy Tree From Figure 2.1 to A Completely Observable

Policy Graph

2.4 POMDP Specification Grammar

We need a practical way to specify POMDP so that it can be understood by machine.

The nature of POMDP can be expressed in a hierarchy structure as shown in Figure 2.3.

We have four tree structures, each of them to represent states S, actions A, observations

O, and reward R. Then the tree structure can be serialized into parentheses statements,

using parentheses to recursively indicate hierarchy, e.g. treeRoot(subTree1, subTree2, ...).

What’s more, there is a technique called Stochastic Planning using Decision Diagrams

(SPUDD) that can calculate policies based on the hierarchy structure[16].

1. The state tree consists a possible states. The root of the state tree has n branches,

each of which represent the variable in one dimension of the state. The variable in
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each dimension may have several discrete values to choose from. Therefore, the state

set can be represented in plain text such as

State(V ariable1(V alue1, V alue2, ..., ), ..., V ariablen(...)).

2. The action tree not only contains all the actions, but also encodes the state transition

probability. By going from one action in the second level to one particular leaf node,

we will obtain the transition probability of performing that action in a current state

and arriving at the a next state. The whole action tree is essentially tree-structural

coding of the transition probability. The action set is represented in plain text as

Action(a1(s1(s2(T ), ...)), ...).

3. The observation tree is similar to the action tree. Observation distribution is encoded

along the branches to leaves. The observation set is represented in plain text as

Observation(o1(s1(s2(Z)...)), ...).

4. The reward tree is also similar to the action tree. And it can be represented in plain

text as Reward(a1(s1(s2(R)...)), ...).
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Figure 2.3: POMDP specifications

2.5 Android Platform

We choose Android platform[4] as our primary interested target for implementation and

experiments for the following reasons:

• Android is widely popular for mobile device. Not just mobile phone and tablet, but

also includes televisions, games consoles, digital cameras and other electronics. Based

on it, we can easily extend our service to a broad range of devices.

• Android has 80% of market share and it’s still growing very fast. A large community
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is studying and developing apps on Android. And we would like to have our toolkit

known by more people including potential users and developers.

• Android is an open-source project suitable for research purposes.

• The primary developing languages on Android is Java, which allows us to plug in

plenty available POMDP packages, e.g., libpomdp1, Symbolic Perseus2, RL-POMDP3,

etc..

1Diego Maniloff, libpomdp, 2010, https://github.com/dmaniloff/libpomdp
2Pascal Poupart, Symbolic Perseus, 2009, https://cs.uwaterloo.ca/ ppoupart/software.html
3Qiming He, RL-POMDP, Version 1.0, 2013, https://sourceforge.net/projects/rl-pomdp/
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Chapter 3

Literature Review

Partially Observable Markov Decision Process (POMDP) has been used in many real life

applications. For example, White[39] applied POMDP to questionnaire design. The appli-

cation decides the sequence of questions to ask based on how the participants respond in

hope of getting more genuine answers. Crites[9] deployed POMDP onto elevator control

system. Given the up and down buttons pressed or not, it makes decision about which

elevator to send and where it stops by trying to model passengers’ desired destinations.

Bandera[1] employed POMDP to understand images with some low-resolution areas so

that resource demand can be alleviated because in this case, images don’t have to be

recorded with uniform high-resolution. Hauskrecht[15] used it to assist medical diagnosis.

It tries to minimize the cost incurred by performing diagnosing actions through studying

observed symptoms. Williams[40] applied POMDP to spoken dialogue system to unify

and extend the existing framework, which yielded significant quantitative gains in empir-

ical results. The COACH (Cognitive Orthosis for Assisting with aCtivites in the Home)

project[38] built a prototype of an intelligent assistant for people with dementia at home

with POMDP model running as its core. This assistant will track their behaviors, plan

for a better solution and prompt when necessary. One concrete example of the COACH
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project is Hoey’s handwashing system[17]. It installed a camera to track users’ handwash-

ing progress. When unexpected patterns detected, the system would analyze this exception

and using voice prompts to remind users what might be the right things to do.

The above applications are implemented designated for computationally powerful ma-

chines. With the recently boost of mobile technology, researchers start to realize the possi-

bility as well as advantages of combining PODMP with mobile devices. Hoey’s LaCasa[18]

is good example of such attempt. LaCasa is designed to help patients with a cognitive

disability to find their way home. It gathers users’ location, proximity to the caregivers,

surrounding noise, etc. to figure out a considerate way to help users. POMDP is the core

of the application. It is deployed on mobile devices carried by users to analyze real-time

information, perform opportune modeling of users’ status and provide timely assistance.

Another example of POMDP on mobile is Pollack’s Pearl[26]. They developed a nurse-

bot on mobile to remind people about routine activities such as eating, drinking, taking

medicine, and use the bathroom. The modeling tool is also POMDP. And it also need to

be “around” users all the time so that it can monitor users’ status.

Mobile platform offers a portable way to carry POMDP and extend its availability to

a broader range of potentials. However, such potentials come with limitations. Compared

to large machines, mobile devices are unstable, of less powerful CPU and limited memory,

and known for short battery life, among which the short battery life concerns us the most.

According to smartphone usage experiences[8], short battery life ranks in the top class of

most disturbing issues during mobile usage experiences. And it is the problem we focus on

in this thesis because other top ones such as lengthy loading times, no access, crashing and

slowing down are often very rare but short battery life is too appreciable to be ignored. It

is especially for application like POMDP which consumes lots of computational resources.

Researchers have long realized the battery life problem. In fact, it doesn’t just apply

to POMDP. Any mobile application demanding large resources would suffer from the same
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dilemma - trying to utilize mobile features while trying to avoid the consequent battery

life restriction. Some researches have been conducted to study and model mobile battery

behaviors. Raghunathan[31] addressed the modeling of mobile battery from the perspective

of hardware. They analyzed from the circuit level to derive methods that can simulate

voltage change. Carroll’s work[5] consisted of real battery experiments. It performed a

comprehensive set of battery tests on multiple mobile component, including CPU, WIFI,

signal standby, and screen to reveal proportion of battery consumption on each component.

It is very useful information for understanding where the mobile energy is consumed.

Flinn[11] completed mobile battery modeling by not just observing it, but also presenting

a well-designed and implemented profiling method to map energy consumption to program

structure.

Given these studies, some solutions are found to ease the battery issue. Three typical

types of solutions are popular:

1. One brute force approach is to transfer all computation to the cloud. CloneCloud[7]

presented a method to dynamically identify computing-intensive blocks from the Java

Virtual Machine level and shift these blocks to the cloud. In this case, the mobile

device serves more like a virtual screen for visualizing what’s happening remotely in

the cloud. It is quite an efficient solution regarding alleviating mobile computation

burden but not necessarily the optimal choice for saving battery. Because the network

communication is also energy-consuming, especially when transmitting large amount

of data for a long time. A improved method which we examined in previous work is

taking network communication cost as considerations and decide when to shift what

to the cloud (AppendixB). It abstracted program’s execution as sequence of blocks.

Each block takes input, does computation, and produces output. Blocks are originally

on mobile but can be transferred to the cloud. By considering computation and

network transferring energy consumption, it assigns and tags blocks as “for mobile”
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or “for the cloud” before programs’ executions and executes it accordingly.

2. Some concentrate on mobile platform level to improve battery life. Prabhu[29] did

that in pure theoretical way. In their work, the mobile battery is treated as a server

with finite service capacity. They proposed a queuing theory along with complicated

formula to exploit a recharge phenomenon[21, 24]. They discovered that allowing

intentional vacations during busy periods helps increase battery life. Rulnick[33]

introduced a system level power management idea. They derived and tested an algo-

rithm addressing how mobile devices can adjust their transmitter power in wireless

network to lower battery consumption. Their result indicated the possibility of sub-

stantially reducing energy consumption without sacrificing quality of service, and

possibly enhancing network stability and capacity along the way.

3. Others focus on the application design side. Edward[3] proposed an innovative ap-

proach to understand and quantify average current battery drain. Their battery

drain analysis can provide insight to optimize data transmitting and processing, as

well as operating time for application design. Sharkey[34] listed rules mobile devel-

opers should follow on the coding level based on statistics and experiences. Rules

suggest checking network connection before using, avoiding wakelock, creating less

garbage during Java developing, shortening background service life time, and many

others. They can all greatly save mobile energy consumption. Narayanan[23] pro-

vided a history-based mechanism to predict CPU usage. The prediction can be used

to improve mobile applications’ adaptation to mobile resources, including battery.

Flinn[11] studied smartphone user behaviors and concluded some user pattern that

developers can take advantages of during mobile application design and implemen-

tation to save more battery consumption.

The above researches are interesting and helpful. But to the best of our knowledge,

our work has some advantages that others don’t have. We start from a different angle -
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instead of making general assessment of mobile battery, we specifically address POMDP

battery issue and gradually build a framework that can be generalized to apply to other

computationally intensive applications. We point out that even different implementations

can cause significant battery life differences and it is worthwhile to spend time making

a proper selection. We don’t mind measuring from the application layer which is often

considered imprecise. We think it is in fact the most realistic reflection of mobile bat-

tery performance. We implement a software toolkit to automate POMDP implementation

selection process and make the best choice in terms of saving mobile energy.
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Chapter 4

Design

4.1 POMDP on Mobile

The most obvious approach to combine POMDP and mobile devices would be client/server

mode, in which mobile devices just act like clients serving the purpose of collecting en-

vironmental situation and communicating with POMDP servers. The POMDP servers

handle most of the computation, including calculating the policy, reacting to action query

and updating states. This is because even though the development of mobile technology is

inspiring, it is not yet powerful enough to bear the whole POMDP computation. With the

client/server mode, we can have a virtual POMDP on mobile devices to utilize those mobile

features, such as portability and rich environmental sensors. However, this solution only

works when network connection is guaranteed, which is not always true because exceptions

happen a lot on mobile devices and sometimes, there is even no network connection at all.

The above situation leads to another way of deploying POMDP on mobile devices.

Since it is difficult and of no need to compute POMDP policies on mobile devices, we can

compute POMDP policy elsewhere and download the policy onto mobile devices. Rather
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than totally relying on mobile devices for both policy computation and execution, we will

use mobile devices only as carriers for the POMDP policy execution. This approach does

have some shortcomings, such as extra efforts of downloading POMDP policy specification

files and lack of flexibility when we want to modify the POMDP model and consequently

needs modification of the downloaded POMDP policy. Nevertheless, it relaxes the network

requirement and creates a stand-alone and self-contained POMDP entity on mobile devices,

which can be generalized to other devices such as embedded chips.

Now, there has already been choices between client/server mode and mobile-only mode.

We are more ambitious than that. Since even for the mobile-only mode, there are plenty

of different implementation methods worth studying. We intend to examine various im-

plementations and identify the best one according to different scenarios. To simplify the

problem, we assume that in client/server mode, every POMDP implementation method

has the same effect on mobile client. That is to say, from the perspective of mobile devices,

the POMDP implementation on server is transparent to them, and thus no need to take

it into consideration.

4.2 Abstraction of POMDP Execution

After policy computation is performed somewhere else, the essential part is the execution.

POMDP execution seems to be complex. But in fact, in a high level, it can be abstracted

into a concise step by step model, as shown in Figure 4.1.
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Figure 4.1: POMDP Execution Abstraction

Generally, POMDP execution has to: first, obtain observation of current situation;

second, update current belief state based on previous action and current observation; third,

obtain action that maximizes overall rewards given the belief state. Since POMDP is a

sequential decision model, after certain time period, the execution repeats the above simple

three-step process. It will run in a infinite loop or to some pre-defined horizon. During

each round, different implementations vary in the POMDP module in the above figure.

POMDP module may locally or remotely, provide udpateBeliefState(bt−1, Obs, at−1) and

queryAction(bt) interface through different policy representations.
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4.3 Why Battery Matters

Our goal is to select the “best” implementation. It is critical to come up with a rational

as well as practical set of criteria to describe the “best”. In order to solve this problem,

we first need to answer a question: what do users care about most? We choose POMDP

implementations in hope of improving mobile user experience. From the perspective of

selecting a POMDP implementation, battery life is the top concerning issue. Assuming

that we carefully select POMDP implementation candidates so that all potential choices

provide the same level of service (i.e. all respond within a reasonable length of time with the

same level of accuracy), the selection of POMDP implementations won’t affect how users

feel about the applications in short run. Because users don’t care about how much CPU is

utilized, neither do they care about how much memory is occupied (those implementations

which use so much CPU or memory that affect the overall mobile experience are ruled

out at the beginning and thus not considered during our selection). And no matter which

POMDP implementation we choose, we always have to feed it with the same set of senor

input and visualize the output in the same way. Therefore, the selection of POMDP

implementations is transparent to mobile users in a short term. But in long run, users

can feel the difference because all these CPU, WIFI, memory usage will drain the mobile

battery. The mobile battery life is too noticeable to be ignored. In conclusion, as long as

applications can provide similar level of service, e.g. respond with one or two seconds, can

be loaded into memory without overwhelming other applications, WIFI or 3G works fine

when needed, all that matters is battery consumption. From another point of view, the

focus is also on battery consumption. According to smartphone user experience survey[8],

battery life is among the top concerning issues of mobile experiences. The other top ones

(such as signal strength, etc.) have nothing to do with whichever particular POMDP

implementation we choose. And some survey even reveals that short battery life is the

top one gripe from mobile users experience[25]. A POMDP application is supposed to
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run for quite a long time, so the battery consumption is greater concern and even the

most important factor when we consider backend POMDP implementations. Users will be

extremely upset if our POMDP application kills their mobile battery within one or two

hours.

4.4 Selection Criterion and Mobile Battery Consump-

tion Model

Based on the above discussion, we decide to use battery consumption as our selection

criterion. To be concrete, we use battery depletion rate as a POMDP implementations’

battery performance indicator. The lower this depletion rate, the better its battery per-

formance is. An intuitive way to measure this depletion rate is through real experiments.

For each individual POMDP implementation, we run it for a while, and record the battery

consumption. The battery depletion rate is calculated by battery consumption divided by

time spent. However, this is a very inefficient way. This is because small amount of battery

depletion won’t provide statistically enough samples, and it takes hours for mobile devices

to show noticeable battery depletion. This results in hours or even days of experiments. To

avoid it, we will have to minimize the number of real battery experiments. As it turns out,

mobile battery consumption consists of several bulk parts. We can estimate the battery

depletion rate based on this knowledge.

According to a mobile battery study[5] conducted by researchers from University of

New South Wales, the top four battery consuming components are: screen, signal standby,

CPU usage and network (here we only consider WIFI) communication. Screen and signal

standby are beyond our control. And also they don’t matter for specific context because no

matter what the internal POMDP implementation is, user experience (screen display) is

the way it’s supposed to be and signal standby is always there. Thus, in our design, CPU
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usage and WIFI communication are the main factors we consider for battery consumption

estimation.

We want to build a mobile battery consumption model that takes CPU usage and WIFI

communication as arguments and outputs estimated battery depletion rate. Suppose the

POMDP policy executes on discrete time interval T . In the implementation, it’s essentially

the policy executes in a infinite loop, during which the time length of each round is T .

Obviously, executing one round every one second consumes differently from every ten

seconds. Suppose the actual running time of each round is t within time interval T , and

the rest T −t is in idle. The estimated battery depletion rate can be estimated by following

formula (4.1 is for using mobile only, 4.2 is for using client/server mode):

r = rCPU · t/T + rBase(T ) (4.1)

r = rWIFICom · t/T + rWIFIIdle · (T − t)/T + rBase(T ) (4.2)

We define benchmark as (rCPU, rWIFICom, rWIFIIdle, rBase). It can be obtained through

real battery experiments on target device. One assumption is that, benchmark on similar

device is the same, at least it won’t affect final ranking of POMDP implementations that

is based on estimated battery depletion rate.

After obtaining our benchmark result, for every new POMDP on similar devices, all we

need to do is to measure the average execution time t during a given interval T . Then we

can calculate the battery depletion rate based on above formula. The calculated battery

depletion rate is our final criterion to rank implementations. In the final result sheet, we

will rank the implementations and also list their memory usage and WIFI necessity as

reference for users’ ultimate decision. Even if an implementation ranks the top of saving

battery, people may still decide to rule it out for the practical situation is not permitted

with its memory usage or WIFI connection requirement.
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Symbol Explanation How to obtain

rBase(T )

Battery depleting rate that has the

whole structure working but during

each T , no querying action or updat-

ing belief state.

For each T , log timestamp of battery

change, calculate average; eventually

represented through regression or map-

ping table

rCPU

Extra battery depleting rate cost by

running full cycle computation, com-

pared to mobile doing nothing.

rZero = battery depleting rate of device

doing nothing; rWithCPU = battery de-

pleting rate of doing full CPU job; rCPU

= rWithCPU − rZero

rWIFICom

Extra battery depleting rate cost by

intensive WIFI communication, com-

pared to mobile doing nothing.

Similar as above

rWIFIIdle

Extra battery depleting rate turning

WIFI on but let it idle, compared to

mobile doing nothing.

Similar as above

Table 4.1: Important Symbol Explanation

4.5 Real Experimental Battery Depletion Rate and

Estimated Battery Depletion Rate

Now we have two ways to obtain battery depletion rate for each POMDP implementation

candidate. One is to run real battery experiment for every POMDP implementation and

log battery changes for several hours. At the end of each experiment, we use the total

battery changes divided by experiment duration to get a average battery depletion rate.

This battery depletion rate comes from real battery experiment and is therefore called real

experimental battery depletion rate. Another way is to apply the mobile battery consump-
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tion model described in Chapter 4.4. We first conduct a series of benchmark experiments,

obtaining the results of (rCPU, rWIFICom, rWIFIIdle, rBase). This might take several hours.

After that, we simply run each POMDP implementation for a couple minutes and record

the average execution time for one round of POMDP execution. Then we feed the bench-

mark combined with average execution time into the mobile battery consumption model

to generate an estimated battery depletion rate for every POMDP implementation. If

our assumption in Chapter 4.4 holds, which means benchmark can be used across similar

devices, we only need several minutes for each POMDP implementation to produce the

estimated battery depletion rates as opposed to several hours for each POMDP implemen-

tation to obtain real experimental battery depletion rates. Even if the assumption does

not hold and we have to obtain benchmark figures for every target device, we will still

save a lot of time given sufficient amount of POMDP implementation candidates because

the estimation method reduce experiment time from hours to minutes for every POMDP

implementation candidate.

4.6 System Architecture

We design a software toolkit that automates POMDP implementation selection based on

the battery depletion rate. As shown in Figure 4.2, our toolkit architecture contains three

main components: input preparation, experiments and result analysis, invoked one after

another.
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Figure 4.2: System Overall Architecture

4.6.1 Input Preparation

After installing our toolkit on a target mobile device, user can load input files down to

target device. Input files consist of three parts:

1. Benchmark file. Since we make assumption in section 4.4 that same benchmark can

be shared across similar devices, benchmark is an optional input. If not provided, new

benchmark experiment has to be conducted on target device. Details of benchmark

file are in Chapter 5.3.
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2. POMDP problem description. The POMDP problem is expressed using the paren-

theses structure stated in Chapter 2.4. It contains all states, actions, observations,

rewards information and their corresponding probabilistic data if any.

3. Policy files. Different implementations may execute on different policy files. The

format of policy files are discussed in Chapter 2.3 and further addressed in Chapter

6.2.2.

4.6.2 Experiment

During the experiment part, our toolkit will first check whether the benchmark data are

provided and acknowledged by users. If not provided or the user wants to update the

benchmark data, a benchmark experiment is performed to gather basic battery depletion

rate information of the target device, illustrate in Pseudo code 2. After we assure ourselves

that benchmark data are usable, we can do experiment for each implementation or a

selected set of candidates. Each implementation of interest will be brought up and executed

continuously for certain amount of time. Through dividing execution time by number of

rounds executed, we can calculate average execution time for one single round for one

specific POMDP implementation. That is our execution time t in section 4.4. Now we

have all we need to compute our estimated battery depletion rate, illustrated in Pseudo

code 3. Finally, a sorted list based on estimated battery depletion rate is returned.

4.6.3 Result Analysis

The experiment component will return a sorted list of pairs of implementation and es-

timated battery depletion rate. Our final result is presented in the same order as the

estimated battery depletion rate increases. The top one has the lowest estimated battery

depletion rate, which means it is the most battery saving implementation. However, as
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Pseudocode 1: Main Entry of Experiments

Input: time intervals = {T1, T2, ..., Tn}
Output: Ranking list for all implementation candadiates: ranking[ ]

1 if needRetestBenchmark( ) == True then

2 benchmark = testBenchmark(time intervals)

3 else

4 benchmark = readBenchmarkFromInput( )

5 end

6 for implm in POMDP implementation library do

7 t = averageExecutionT imeForOneRound(implm)

8 ranking[implm] =

estimatedBatteryDepletionRate(implm, t, time intervals, benchmark)

9 end

10 sortOnRanking(ranking)

Pseudocode 2: Test Benchmark Function
Input: time intervals = {T1, T2, ..., Tn}
Output: benchmark information written to file

1 rZero = testBatteryDepletionRateForDoingNothing()

2 rBase(T ) = testBatterDepletionRateForIdlePOMDP (time intervals)

3 rCPU = testBatteryDepletionRateForFullCPU()− rZero
4 rWIFICom = testBatteryDepletionRateForFullWIFICom()− rZero
5 rWIFIIdle = testBatteryDepletionRateForWIFIIdle()− rZero
6 benchmark = (rCPU, rWIFICom, rWIFIIdle, rBase(T ))

7 writeToF ile(benchmark)
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Pseudocode 3: Estimated Battery Depletion Rate

Input: Implementation: implm, Execution Time: t,

time intervals = {T1, T2, ..., Tn}, benchmark
Output: Estimated average battery depletion rate: r

1 (rCPU, rWIFICom, rWIFIIdle, rBase(T )) = benchmark

2 result[ ]

3 for T ∈ time intervals do

4 if isUsingWIFI(implm) then

5 results[T ] = rWIFICom ∗ t/T + rWIFIIdle ∗ (T − t)/T + rBase(T )

6 else

7 results[T ] = rCPU ∗ t/T + rBase(T )

8 end

9 end

10 r = average(result[ ])
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pointed out at the end of section 4.4, we also need other auxiliary information to better

assist users’ decision making. We provide statistics about peak memory usage and WIFI

necessity of implementations. Therefore, the displayed final result is a list of 4-tuples:

(Implm, Ranking, Mm Use, WIFI Req), ordered by ranking.
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Chapter 5

Implementation

We choose to implement our toolkit on Android platform. There are three main compo-

nents in our design: (1) a framework that controls and organizes all experiments; (2) an

experiment component dedicated to test individual POMDP implementation, which may

be invoked by the framework; and (3) a result analyzing component which takes all the

experimental results and displays them in a user understandable format.

On Android platform, the concept of activity is used to organize independent functional

logic. An application has one or more activities depending on how a developer wants to

organize its structural unit. We implement each of the three components as one single

activity. This is not only because we want to decouple the system and maintain a clear

structure, but also because we want to give users more control over each part of the

experiment process. For example, if a user wants to examine one particular POMDP

implementation and check its battery performance, he has the option to manually launch

the experiment activity and specify parameters for that particular POMDP, and then open

the result analyzing activity after the experiment finishes.

The following Figure 5.1 identifies two different paths of using the toolkit.
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1. Launch framework activity and let it handle everything. It will first decide whether

we need to re-launch benchmark activity. If needed, launch it and get the benchmark

results. Then for a POMDP implementation candidate set, launch experiment ac-

tivity one for each candidate. In the end, launch result analyzing activity and show

final result.

2. No need of management from framework activity. User can control whether they

want to do benchmark test again. And user can also decide which POMDP imple-

mentation they are interested in and launch an experiment activity specifically for

it. In addition, user can choose when to open the result analyzing activity to display

result of those interested implementations.

Figure 5.1: Android Activities Organization

36



5.1 Activity Communications

Since we want to logically separate activities and allow them to work independently, the

information that needed to be passed among activities should be stored in files. The

following table illustrates dependencies among activities.

Activity Input Output

Framework Activity Configuration

Graphical display of

output from Result

Analyzing activity

Benchmark Activity None
rBase(T ), rCPU,

rWIFICom, rWIFIIdle

Experiment Activity
Implementation

choice

Execution time per

round t for the cho-

sen implementation

and corresponding

memory usage, WIFI

necessity.

Result Analyzing Activity

Output of benchmark

activity, all the output

of experiment activity

Final ranking of im-

plementations

Table 5.1: Activities Dependency

According to the table above, information that needs to be logged to provide inter-

activity communication is: output of benchmark activity; output of each experiment ac-

tivity instance; output of result analyzing activity. They are all simple information which

can be stored in plain text files, as shown in Figure 5.2.
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Figure 5.2: Information Representation

Each time when one activity needs input, it just needs to read the corresponding files.

Configuration file is a global setting file that every activity can access, specified in next

section.

5.2 Framework Activity

Framework activity’s job is critical but also simple. It launches benchmark activity; and

then, several experiment activities; in the end, the result analyzing activity to show the

recommended ranking. The whole process is based on the following configuration, as shown

in Table 5.2.

relaunching benchmark needed configuration controls whether we need to launch the

benchmark activity. If we already launched benchmark activity not long ago, or we get

benchmark result from somewhere else that we are comfortable with, we don’t need to re-

launch it every time we want to examine some implementations, as it is time-consuming,

discussed in section 5.3.
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Configuration Value

relaunching benchmark needed True/False

implementation candidates {implm1, implm2, , implmn}

time intervals {T1, T2, , Tn}

Table 5.2: Configuration Content

implementation candidates specifies which POMDP implementations we want to exam-

ine. We can eliminate unwanted implementation to save time and provide a more focused

ranking.

time intervals specifies what time interval we use to test benchmark and also to calcu-

late the average ranking for each POMDP implementation.

5.3 Benchmark Activity

Benchmark activity is expected to run quite a while for it has to perform real battery test.

And since short term running (within an hour) won’t yield a noticeable battery change, the

experiment time for one single of rCPU, rWIFICom, rWIFIIdle, rBase(T ) might take hours. The

way we measure battery depletion rate is by first recording timestamp and battery level

logs: (ts1, bl1), (ts2, bl2), ..., (tsn, bln); then calculate individual rate of each time period

ri = (bli− bli+1)/(tsi+1− tsi); in the end, average all rate to output a final rate for battery

depletion.

Aside from how to measure battery depletion rate, another equally important question

is that on what settings we obtain the battery depletion rates of rCPU, rWIFICom, rWIFIIdle,

rBase(T ).

rCPU, rWIFICom and rWIFIIdle are straightforward. First of all, we need to test rZero,

which is the battery depletion rate with fixed screen brightness, WIFI off, as few other
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applications running as possible. For rCPU, we measure rWithCPU from logging one simple

application doing computation in a infinite loop (calculating the first 100 Fibonacci num-

bers) to simulate full cycle CPU usage, and then calculate rCPU by rCPU = rWithCPU−rZero.
Similarly, rWithWIFICom is a simple application doing communication with a remote server

through WIFI in a infinite loop (sending a random integer and receiving a random inte-

ger to and from the server in each round to simulate full WIFI usage), and rWIFICom =

rWithWIFICom − rZero. And the settings of rWithWIFIIdle is the same as rZero but with WIFI

turned on, rWIFIIdle = rWithWIFIIdle − rZero.

For rBase(T ), it is a little complicated. In order to be close to real performance, all

rBase measurement should be done as if on real POMDP execution. So, we introduce our

POMDP execution simulation framework, as shown in Figure 5.3.

Figure 5.3: Program Details

40



1 Basic setup for the experiment; includes reading configuration files, registering UI

handlers and battery listener.

2 Display user-interface to allow further configuration input.

3 UI Thread creates a function thread that handles all POMDP related operations and

records battery changes. After the creation, UI thread enters idle stage unless it is

resumed by function thread for updating UI.

4 First step of function thread is to read in all the necessary files for executing POMDP,

e.g. POMDP specification files: SPUDD file and policy file if any (benchmark ex-

periment doesn’t need POMDP specification, but the program structure is meant to

serve general POMDP execution purpose).

5 Observations should come from sensors on mobile reflecting real environment changes.

However, in order to simplify the process and avoid instability from unpredictable

environment, we have our observations come from a random generator simulated

in mobile application level. This is acceptable because as we discussed before, no

matter which implementation we choose, we always have to feed it with the same

sensor input. Thus, the sensors set can be simulated by software.

6 Update belief state with regards to different POMDP implementation.

7 Query action with regards to different implementations.

8 A Battery listener is registered in step 1 and exists throughout the whole experi-

ment. Every time when the battery level changes, Android OS will issue a broadcast

which can be caught by battery listener to extract battery level information. The

battery listener is independent from function thread. It will write battery log (time

stamp and current battery level) to disk once notified. Battery changing notification

is raised with granularity of 1%.
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9 WIFI exception, IO exception and useful information such as average query execution

time, peak memory usage will be displayed on UI.

10 Sleep for the rest of time interval and go back to start another round after the current

time interval finished.

For 4 , 6 , 7 , function thread probes into POMDP module to invoke corresponding

methods respected to different implementation. POMDP module is a controller of POMDP

implementation instance, providing interfaces of belief state maintenance and optimal ac-

tion calculation. If runs in mobile-only mode, POMDP module instantiates POMDP exe-

cution locally on mobile. Otherwise (client/server mode), POMDP module will establish

WIFI connection to update belief state and query actions on a remote server. The above

structure not only serves for benchmark experiment, but also illustrates a framework for

real POMDP execution.

For rBase(T ) in benchmark, we can simply replace 6 , 7 with a simple function just

returning a void value rather than really trying to query action and update belief state.

We can have a set of base line battery depletion rate (rBase1, T1), (rBase2, T2) In the

end, we can either represent rBase(T ) as a value lookup table or use some regression.

5.4 Experiment Activity

The experiment activity utilizes the same POMDP execution framework as above. In each

round, querying action and updating belief state act on corresponding entities. Currently,

we have four POMDP implementations in library, as shown in Table 5.3.

All of the above implementations except Client/Server run totally on mobile phone. For

the Client/Server, the whole POMDP executes on Server. Mobile first obtains observations
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Implementation Explanation

FSC
Take observations from generator and return ac-

tions based on a finite state controller.

Client/Server

Take observations from generator and send to

a server through WIFI; Server runs Symbolic

Perseus and responses to action query.

Symbolic Perseus

Take observations from observation generator and

return actions based on Symbolic Perseus[27]

method.

Flat Policy

Take observations from generator and return ac-

tions based on α-vector policy calculated by enu-

meration algorithm[22].

Table 5.3: Implementation Candidates Illustration

from its own sensors and then acts like a client to update belief states in server, followed

by querying actions. The purpose of the experiment activity is to record the real execution

time during each round, namely the time of updating belief state and querying action.

These can be easy done with android API. After certain rounds, the average execution time

is logged into file: implmX.txt. Also the memory usage and whether this implementation

needs WIFI are also logged together.

5.5 Result Analyzing Activity

The result analyzing activity is the simplest one. It only needs to do some simple calculation

given the data from files. For each POMDP implementation candidate, it calculates its

final battery depletion rate average on its performances on all the time intervals, and use
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it as the rank of this implementation. After computing all the ranks, result analyzing

activity ranks all candidates based on their ranks, the smallest ranks the first. In the end,

it displays an ordered result list that contains tuples (implm, ranking, mm use, WIFI req).

5.6 User Interface

There are three types of activities: Framework Activity, Benchmark/Experiment Activity

and Result Analyzing Activity. We give them each a main user interface. For Framework

Activity, we provide choices of what experiments the user wants to launch, including the

benchmark test. A list of potential implementations are displayed for multi-selecting. Af-

ter selecting their interested implementation, and pressing the Start experiments button,

user interface switches to benchmark/experiment activity. During this activity, all the

experiments are happening one by one in the background. The user can monitor run-

time information from the two panels displayed (one for normal information, another for

exception information). The user can also choose to temporarily stop the experiment ac-

tivity whenever they want by pressing the Pause button. After each single experiment, if

battery level is detected to be lower than 50%, a message box will pop up to prompt for

re-charging in order to achieve comparable results. During this situation, the user only

needs to connect device with its charger, and wait for it to be back to above 90%, then

press Resume button to continue from what it left off before. After all selected experiments

are performed; user interface will again switch to another display, showing the analysis of

what it just ran. The whole process is visible and controllable by the user.
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Figure 5.4: Graphical User Interface Examples
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Chapter 6

Evaluations

We evaluate our work through comparisons between estimated battery depletion rates and

those from real battery experiments. We first obtain the benchmark data (rCPU, rWIFICom,

rWIFIIdel, rBase) by running benchmark experiment, as illustrated in Chapter 5.3. Then

for each POMDP implementation candidate, we record the average execution time of one

round, and apply them to Equation 4.1 and 4.2. Now, we have estimated battery depletion

rates for all POMDP implementation candidates. Next, we gather battery depletion rates

for all implementation candidates in real battery experiment. We use the program structure

in Chapter 5.3 to log battery changes, and calculate an average battery depletion rate for

each POMDP implementation candidate.

The expected outcome is that the ranking derived from estimated battery depletion

rates is the same with one derived from real battery depletion rates. Better, if estimated

battery depletion rates are close to real ones.
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6.1 Evaluation Settings

6.1.1 Mobile Setting

All the experiments run on the same mobile device (Nexus 4, Android 4.2) to eliminate

discrepancy caused by different devices. Each experiment starts with battery level above

95% and keeps running for about 3 hours, during which battery changes are recorded as

files on mobile storage.

We try to shut down as many unrelated user applications as possible. No SIM card

is installed on the smartphone for it is unnecessary and also avoid uncontrollable interfer-

ence (usually depends on too many factors) from battery consumption of signal standby.

WIFI is turned on only when necessary (rWithWIFI and rWithWIFIIdle test, and Client/Server

implementation experiment).

The screen is on and set to fixed brightness (50% brightness) throughout every three-

hour experiment for two reasons: 1), Android OS treats screen-off as a signal of low usage,

as it may slow down CPU and disconnect WIFI, which is unquantifiable and consequently

diminishes the meaning of comparison among different implementations; 2), If the screen is

off, the smartphone enters battery saving mode. Hours (more than 10 hours) of experiment

will only consume a very small amount of battery (about 3-10%). Statistically, this is

inaccurate for we don’t have sufficient battery changes to calculate good average battery

consumption rate.

6.1.2 POMDP Setting

Every experiment deals with the same problem setup - Location and Context Aware Safety

Assistant. It has 2880 states, 72 observations, and 6 actions. We run an infinite horizon

POMDP.
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FSC: The finite state controller. The POMDP policy is captured by some internal states

that the execution is essentially updating states given observation and returning prescribed

actions. It has 321 internal nodes. The implementation maintains internal states in two

dimensional array, within which each row represents the connections and actions associated.

The state updating is just table lookup and index updating with minimum computational

complexity.

Symbolic Perseus: The implementation executes based on a α-vector policy. During

each query, it searches for the best α-vector that maximizes future rewards given the

updated belief states. In our experiments, the α-vector policy contains 26 α-vectors.

Client/Server: Client side reads the POMDP description, server side executes on the

same Symbolic Perseus as above. In fact, it doesn’t matter what implementation is the

on server side because we can assume all implementations response immediately for our

relatively small problem. And data transmitted are simple state and action expression.

Thus, neither the WIFI waiting time nor data transmissions differ a lot among different

POMDP methods on the server.

Flat Policy: Similar to Symbolic Perseus implementation, but it’s a simplified version

of flat structure of implementation of α-vector policy execution.

6.1.3 Time Interval Setting

Apparently, different execution frequency should have various impacts on battery decreas-

ing, e.g. executing observing, querying, and updating in every 10 seconds consumes much

less than executing them in every second. Therefore, the time interval is an important

parameter in our experiment. The program runs in a infinite loop. We set up different

benchmarks in terms of time intervals between each individual round of executions: 10

seconds, 2 seconds, and 1 second. During each round, the program obtains observations,
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updates its belief state and queries action, and then sleeps for the rest of the interval.

For example, if it takes 0.1 second to finish the above series of executions, the program

will then sleep 9.9 seconds for the 10 seconds interval experiment, 1.9 seconds in 2 second

interval experiment, and so on.

6.1.4 Battery Logging Method

In Android OS, the method we access battery information is to register a power man-

agement class that will listen to system broadcast. Every percentage of battery change

will trigger a system level notification that is passed to the upper level. The power man-

agement class can catch this information and update on application side. Every time

the battery changes, we log the current battery level associated with a time stamp. The

record has format (batteryLevel, timeStamp), (bl, ts) for short. We record every per-

centage of battery changes and calculate the average battery depletion rate from using

r = (bli − bli+1)/(tsi+1 − tsi)).

6.2 Results

We first examine the results from benchmark experiments, and then we obtain necessary

data to produce the estimated the battery depletion rate. After that, we compare the

battery depletion rates from pure experiments and estimation. We focus on the ranking

and also the actual number of battery depletion rates. In the end, we display the suggestion

of POMDP implementations based on estimated battery depletion rates.
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6.2.1 Benchmark

We conduct the benchmark experiments based on the program structure illustrated in

Chapter 5.3. By setting the updateBeliefState function and queryAction function as void

function (simply and only returning void), we obtains rBase for three different time interval

settings (10 sec, 2 sec, 1 sec), as shown in Table 6.1. To obtain other parameters in the

benchmark, we followed the description in Table 4.1. First, we experiment on rZero, which

is the battery depletion rate of unavoidable energy consumption of keeping the mobile alive

(fixed screen brightness, WIFI turned off, as many as possible other applications closed).

This rZero, as stated in Chapter 4.4, is used to calculate battery consumption of pure CPU

usage and WIFI related usage. Then, we test on rWithCPU. It is the battery depletion rate

of having a Fibonacci number calculation in a infinite loop to simulate full cycle CPU usage

on mobile device. We compute the battery depletion rate of pure CPU usage by rCPU =

rWithCPU − rZero, which is 0.150. Also, we run experiments of the battery depletion rate

of full WIFI communication (mobile continuously sends and receives a random number to

or from a server through WIFI) and WIFI idle (same status as rZero experiments but with

WIFI turned on). Then we compute benchmark rWIFICom = rWithWIFICom − rZero (0.025),

and rWithWIFIIdle = rWithWIFIIdle− rZero (0.001). The average battery depletion rates are all

calculated from 40 samples.
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Benchmark
Results

Time Interval (sec) Battery Depletion Rate (%/min) Standard Error

rBase(T )

10 0.158 0.0087

2 0.157 0.0061

1 0.172 0.0033

rZero N/A1 0.148 0.0039

rWithCPU N/A 0.298 0.0132

rWithWIFICom N/A 0.173 0.0071

rWithWIFIIdle N/A 0.149 0.0035

Table 6.1: Benchmark Results

6.2.2 Real Experiments

By applying the program structure from Chapter 5.3, we obtain results of four typical

POMDP implementation, as shown in Table 6.2. The tested results are the results from

real battery experiments. The estimated results are calculated as illustrated in Chapter

4.4, and therefore doesn’t have standard error data associated with it. Our intention is

to compare the difference between tested results and estimated results, mainly about the

ranking difference derived from these two results. It is also interesting to see how close

these two sets of numbers actually are. The avg exe time stands for the average time

cost in one single round for executing all POMDP necessary operations, which is used in

Chapter 4.4 to calculate the estimated results. For example, in Symbolic Perseus, they

are observation gathering, belief state updating and action querying. For Client/Server,

it is gathering observation and contacting server for the next action, while for FSC, it is

1The idea of time interval is not applicable here because the mobile device is running continuously

without periodical break.
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gathering observation and following the state changes of the internal controller.

Implementation
Tested Results Estimated Results

Avg Exe Time
T2 BDR3 StdE4 T BDR

FSC

10 0.159 0.0047 10 0.158

0.001 sec2 0.154 0.0045 2 0.157

1 0.175 0.0087 1 0.172

Client/Server

10 0.166 0.0064 10 0.161

0.898 sec2 0.172 0.0076 2 0.169

1 0.181 0.0090 1 0.194

Symbolic Perseus

10 0.176 0.0049 10 0.168

0.669 sec2 0.226 0.0058 2 0.207

1 0.256 0.0111 1 0.272

Flat Policy

10 0.166 0.0041 10 0.165

0.472 sec2 0.207 0.0060 2 0.192

1 0.244 0.0085 1 0.243

Table 6.2: Implementation Results

6.2.3 Comparison for Evaluation

We draw the comparison graph below. The estimated results are basically aligned with

real results (Figure 6.1). And ranking derived from tested result is exactly the same with

that from estimated result (Figure 6.2). We also compare tested results and estimated

results by computing cosine similarity:

2Time Interval (sec)
3Battery Depletion Rate (%/min)
4Standard Error
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similarity(A,B) = cos(A,B) =
A ·B
‖A‖ · ‖B‖

=

∑n
i=1Ai ·Bi√∑n

i=1(Ai)2 ·
√∑n

i=1(Bi)2
(6.1)

The cosine similarity ranges from 0 to 1 where 1 indicates they are extremely similarity.

The cosine similarity of our tested battery depletion rate and estimated battery depletion

rate is 0.999, 0.998, 0.997 and 0.999 respectively for FSC, Client/Server, Symbolic Perseus

and Flat Policy, which means our estimation well predicts the real performance.
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Figure 6.1: Each data point in the figure is the battery depletion rate of corresponding

implementation in given frequency of action query. The estimated battery depletion rate

doesn’t have standard error associated with it because it is obtained through estimation

and analysis method mentioned in Chapter 4.4, rather than pure battery experiments.
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Figure 6.2: Each data point in the above figure is the average battery depletion rate of

corresponding implementation on time interval 10 sec, 2 sec, and 1 sec. We use the average

battery depletion rate to derive a ranking of implementations. Obviously, the lower the

average battery depletion rate, the better one implementation ranks. The above figure also

illustrates that the ranking derived from our estimation real battery experiments are the

same, which justifies the correctness of our estimation. Though there are discrepancies in

actual numbers, our ultimate goal is to compose a ranking of implementations.
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6.3 Implementations Selection Suggestion

Figure 6.3: Final Ranking Visualization

The suggestion is displayed on a result reporting sheet above on mobile device (Figure

6.3). FSC made the first place with slowest battery depletion rate, reasonable amount of

memory usage and no requirement of WIFI communication. What follows are client/server,

flat policy and Symbolic Perseus. Our ranking is first based on battery depletion rate. If

the same, we look at whether the implementations need WIFI communication, the one

without such requirement ranks higher since it introduces less restriction. At last, we

compare memory usage. The one with less memory usage is better.

Critical readers may argue that FSC is internally different from other three. Every
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action query is just table lookup with minimum computation complexity, and it’s therefore

better in energy saving [14]. As there are technologies that enable controller search and

translation from other policies to finite controller policies [12, 13], the FSC policies would

be the default preference, obviating the need for battery experiments.

The argument presented in this thesis goes beyond judging which implementation is

best. It’s more about providing a way such that whenever we want to assess the imple-

mentations, we have a convenient and trustworthy tool that can automate the evaluation

process. The purpose of this work is to enlarge the POMDP application domain and

increase its popularity among a large number of mobile developers, not just POMDP re-

searchers and experts. Think about a scenario where mobile developers are facing an

upcoming deadline of a POMDP project and they have little idea of POMDP’s theoretical

models. They have some available implementation packages and some already-computed

policies. They would appreciate a tool that can help them make quick and right selection

from the available choices. This is the motivation of our work. This is the value of our

work. Besides, we are also targeting the bigger picture. We foresee that our work can be

generalized for other artificial intelligence and machine learning models.
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Chapter 7

Conclusion

7.1 Discussion

In this thesis, we pointed out selecting proper POMDP implementations for mobile devices

is actually much more important than people have thought about. And the key question

is how to design selection criteria to select POMDP implementations so that we can make

ranking of implementation candidates. We construct our selection criteria based on mobile

battery consumption of implementation candidates and rank them based on their battery

depletion rates. We developed a framework dedicated to measure applications’ mobile

battery performance, mainly but not exclusively for POMDP applications. We then ac-

celerated the whole measuring process by introducing our mobile battery consumption

model, which uses the execution time of full cycle CPU and WIFI communication to ap-

proximate battery depletion rate of running a particular applications. At last, we built a

software toolkit that automates the whole process. It is so simple that all users need is to

install the toolkit, provide POMDP specification files, launch the toolkit, and wait for a

comprehensive suggestion of which POMDP implementation candidate to choose.
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This thesis has bigger meaning beyond the selection of a good POMDP implementation.

Through the study of implementation selection, it reveals that the implementation of a

computational heavy model on mobile platform should not solely depend on intuition.

There are actual methods to rationalize the selection. And it does not just apply to

POMDP. Other similar Artificial Intelligence and Machine Learning models may have the

same potential to improve their user experience on mobile platform.

7.2 Future Work

We made an assumption in Section 4 that using same benchmark results among similar

devices would produce the same ranking. Even if it’s different, the difference won’t matter

a lot. This seems like a reasonable assumption, but still needs some experiments to support

it. In the future, we plan to test it on multiple devices to see if that assumption holds.

As for the experiments in our work, currently it is one time experiment for one imple-

mentation, during which we record time stamp for every one-percent battery depletion. We

are interested in examining larger amount of experiments to generate convincing results.

Now the POMDP implementations are library provided by us. We want to upgrade the

toolkit so that it can provide more general interface for third party POMDP libraries, so

that it has more flexibility.

The design is only for POMDP applications. But we think a lot of other Artificial

Intelligence or Machine Learning applications share similar features have space for more

battery saving version. We hope we can generalize our work so that it can be extended to

assist the application development of other fields.

We are dong health informatics related researches. The results shouldn’t be buried in

the lab. We are looking forward to coordinate with other institutions to apply it to realistic

scenarios.
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Appendix A

Symbol Explanation

Symbol Explanation

bl
Battery level with unit of percentage, indicating how many percentage

of battery left

ts
Time stamp indicating the current system time when one battery level

is logged

T Time interval of one round POMDP execution

t Actual running time during each round of time interval T

rZero
Battery depletion rate of fixing screen brightness, turning of WIFI, turn-

ing of as many applications as possible

rWithCPU

Battery depletion rate of calculating Fibonacci number in a infinite loop

(simulating full cycle CPU usage)

rWithWIFICom

Battery depletion rate of continuously sending random integer and re-

ceiving random integer to and from a server through WIFI

rWithWIFIIdle Battery Depletion rate of simply turning on WIFI but not using it at all
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rBase(T )
Battery depletion rate that has the whole structure working but during

each T , no querying action or updating belief state

rCPU

Extra battery depletion rate cost by running full cycle computation, com-

pared to mobile doing nothing, calculated by rWithCPUrZero

rWIFICom

Extra battery depletion rate cost by intensive WIFI communication, com-

pared to mobile doing nothing, calculated by rWithWIFIComrZero

rWIFIIdle

Extra battery depletion rate turning WIFI on but let it idle, compared

to mobile doing nothing, calculated by rWithWIFIIdlerZero

Table A.1: Symbol Explanation
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Appendix B

Smart Tasks Division between Mobile

and Server to Save Mobile Battery

Mobile Cloud Computing (MCC)[19], which intends to combine mobile devices and cloud

computing, is an increasingly hot topic nowadays. Researchers are trying to take advan-

tages of both superiority to explore a better way of providing services. Mobile devices

are portable and cheap while the cloud is powerful and centralized. Traditional cloud

computing suggests that we put everything in the cloud; however, the strong growth of

performance of mobile devices indicates that we may want to consider having some tasks

remained on mobile devices. That posts an interesting question: how should we divide

tasks between mobile and Server? One particular angle to tackle this problem is to make

division based on mobile battery consumption, since it is the most visible and concerning

problem in mobile user experience[8, 25].

We define a program block as three steps: read, calculate and write in order. Every

program can be abstracted as sequence of blocks one after another. To specifically address

the cooperation between mobile devices and the server, we further split the concept of each

step based on where they execute - either “on mobile” or “on server”. The three steps

62



read calculate write
Mobile

CPU Usage

Mobile Net-

work Usage

read on mobile calculate on mobile write on mobile Calculation Nothing

read on server calculate on mobile write on mobile Calculation Receive input

read on mobile calculate on server write on mobile Nothing

Send input

and receive

output

read on mobile calculate on mobile write on server Calculation Send output

read on server calculate on server write on mobile Nothing
Receive out-

put

read on server calculate on mobile write on server Calculation

Receive input

and send out-

put

read on mobile calculate on server write on server Nothing Send input

read on server calculate on server write on server Nothing Nothing

Table B.1: Mobile Behaviors according to Choice of Locations Where read, calculate and

write execute

become read on mobile or read on server, calculate on mobile or calculate on server,

and write on mobile or write on server. The following Table B.1 illustrates how mobile

CPU and network component perform according to different location - either “on mobile”

or “on server” - for each step. We only consider battery cost of CPU and WIFI usage since

they are the main factors that are related to tasks division[5].

We then quantify the battery consumption of CPU calculation, and network communi-

cation based on experimental results of battery tests, which results in a co-relation between

the tasks processed and battery depletion rate of mobile devices. It is done by conducting
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experiments on various test cases (different amount of data, different complexity), and use

regression to approximate the co-relation. Prior to the implementation of the program,

the developers should be able to provide information about the tasks, mainly about the

blueprint of blocks structure as well as amount of data and complexity involved (e.g., 10K

data, O(n2) time complexity for blocki). This information is fed into our co-relation (e.g.,

costCPU = f1(10K,O(n2)), costWIFI = f2(10K), f1 and f2 are functions we obtain in bat-

tery experiments) to come up with an estimation of mobile battery cost of a given block.

If the developer can provide amount of data processed and time complexity associated for

all blocks, we can conclude on a overall cost. Choices can be made for each block between

executing on mobile or executing on server. Difference choices result in different mobile

battery costs. For example, if one block is executed on server, there will be not costCPU

for this particular block on mobile because the cost only captures battery consumption on

mobile since we only care about mobile battery consumption. But it potentially causes

more network communication usage since data that are originally on mobile need to be

sent to server now. Many more trade-offs can be made during the selection of execution

locations. By intelligently identifying the execution location of every block, we compute

an minimized overall cost and an optimal schema of tasks’ execution location associated

with it in terms of saving the most energy. This optimal schema can be used as reference

when actually implementing the program. For details of this project, please refer to [41].
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