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Abstract

Aggregate signature schemes combine the digital signatures of multiple users on different
messages into one single signature. The Boneh-Gentry-Lynn-Shacham (BGLS) aggregate
signature scheme is one such scheme, based on pairings, where anyone can aggregate the
signatures in any order. We suggest improvements to its current chosen-key security model.
In particular, we argue that the scheme should be resistant to attackers that can adaptively
choose their target users, and either replace other users’ public keys or expose other users’
private keys. We compare these new types of forgers to the original targeted-user forger,
building up to the stronger replacement-and-exposure forger. Finally, we present a security
reduction for a variant of the BGLS aggregate signature scheme with respect to this new
notion of forgery. Recent attacks by Joux and others on the discrete logarithm problem in
small-characteristic finite fields dramatically reduced the security of many type I pairings.
Therefore, we explore security reductions for BGLS with type III rather than type I pairings.
Although our reductions are specific to BGLS, we believe that other aggregate signature
schemes could benefit from similar changes to their security models.
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Chapter 1

Introduction

Reductions give us confidence in the security of cryptographic schemes, but they are not
simple to interpret. The tightness of a reduction from solving a primitive to breaking a
protocol indicates how much of the primitive’s hardness is inherited by the protocol. If the
reduction is not tight, then its security guarantee is weak: breaking the protocol takes only
some fraction of the work required to solve the primitive. This thesis examines two aspects
of security reductions: tightness of the reduction and what it means for an adversary to
break the scheme. We examine not only reductions from solving primitives to breaking
protocols, but also reductions among different ways of breaking protocols.

Good security definitions are important—they specify what capabilities attackers have and
what they must accomplish to break a protocol. The best security definitions typically as-
sume that adversaries have strong capabilities and weak goals. For instance, a secure digital
signature scheme must be existentially unforgeable under adaptive chosen-message attack,
a secure message authentication code (MAC) scheme must be existentially unforgeable un-
der adaptive chosen-message attack, and a secure public-key encryption scheme must be
indistinguishable under adaptive chosen-ciphertext attack. These definitions are all in the
single-user setting: we assume that only one user is signing messages, only one pair of users
is tagging messages, and only one user is receiving encrypted messages. In the multi-user
setting, security definitions become more complex.

In this thesis, we explore types of attackers for a scheme that is naturally in the multi-user
setting—the Boneh-Gentry-Lynn-Shacham (BGLS) aggregate signature scheme. Its secu-
rity is based on solving the modified computational co-Diffie-Hellman (co-CDH*) problem
in the domain groups of a pairing. In the original security model, an attacker receives one
public key to target and can choose the public keys of any other users in its forged sig-
nature. Most signature schemes have security models where attackers do not choose their
target users. We believe these security models are not as strong as they could be.

The thesis is organized as follows. In Chapter 2, we review digital signature schemes, elliptic
curves, and pairings, which act on groups of points on elliptic curves. We justify our deci-
sion to consider only type III pairings and define some Diffie-Hellman problems, including
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the co-CDH* problem that is the primitive for the BGLS aggregate signature scheme. The
chapter ends with observations about why the tightness of a reduction is important.

Chapter 3 reviews the BLS signature scheme and BGLS aggregate signature scheme. We
discuss the authors’ requirement for distinct messages in an aggregate signature and then
present the original BGLS security reduction.

In Chapter 4, we examine existing security definitions for other aggregate signature schemes
and related schemes, such as multi-signatures. Then, we begin exploring other types of
BGLS forgers. First, we examine aggregate forgers that can choose their target users and
expose other users’ private keys. Next, we examine aggregate forgers that can choose their
target users and replace the public keys of any other users. The chapter concludes with a
section comparing these two types of attackers.

In Chapter 5, we present our new security definition, based on resistance to a forger with the
combined capabilities of the exposure and replacement forgers from the previous chapter.
We present a security reduction for BGLS aggregate signatures with respect to this type of
forgery.

1.1 Notation and useful mathematical results

In this section, we state two useful results and summarize our notation.

First,

arg max
x
{x(1− x)n−1} =

1

n
. (1.1)

We use this optimal value of x to maximize success probabilities in reductions. The deriva-
tive

d

dx

(
x(1− x)n−1

)
= (1− x)n−2(1− x− (n− 1)x)

equals 0 when x = 1 or 1 = nx.

Second,

ex = lim
n→∞

(
1 +

x

n

)n
. (1.2)

In particular, e−1 = limn→∞
(
1− 1

n

)n
, and this limit converges rapidly. We use this ap-

proximation of powers of e when analyzing the success probability of reductions.

Finally, we briefly list some of our notation.

[n] is the set of positive integers {1, . . . , n}.
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a ∈R B means that the element a is chosen uniformly and randomly from the set B.

h(·) is a hash function.

H is a hashing oracle.

Si is a signing oracle for user i.

e(·, ·) is a pairing.

e is Euler’s number, the base of the natural logarithm.

P and Q are probabilities.

p and q are primes.

1G is the identity of the group G.

〈g〉 is the group generated by g.

Tm and Te are the times required to perform multiplication and exponentiation in a given
group or groups.

(x,y) = (g1
z,g2

z) is a public key in the BLS or BGLS signature schemes with type III
pairings. The corresponding private key is z.

(u,v) = (g1
w,g2

w) is a public key that was chosen by a forger in the BLS scheme with
type III pairings, or replaced by a forger in the BGLS scheme with type III pairings.
The corresponding private key is w.

(x′,y′) = (g1
z′ ,g2

z′) is a public key that may have been modified in some way. For instance,
it could represent a public key after interacting with a forger that can replace keys.
It could also represent a key created by one forger, possibly as a function of a key it
received, to give to another forger. The corresponding private key is z′.
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Chapter 2

Background

Digital signatures are ubiquitous online. Every time an SSL connection is established be-
tween a client and a server, the client verifies the server’s identity by verifying its certificate—
it checks the validity of a signature by a certificate authority on the server’s identity and
public key.

2.1 Digital signatures

In this section, we introduce digital signature schemes and what it means for them to be
secure, using RSA-FDH signatures as an example. The security reduction for RSA-FDH
signatures is very similar to the security reduction for BLS signatures, which form the basis
of the BGLS aggregate signature scheme.

A digital signature, like its written equivalent, verifies the origin of a message or indicates
approval of a document. Anyone can verify the authenticity of a signature on paper, but
only one person can create it. Diffie and Hellman proposed the first digital replacement,
based on an abstract public-key cryptosystem constructed from a trapdoor function [15]. A
trapdoor function is one that is easy to compute but hard to invert without knowledge of the
trapdoor information. A trapdoor function can be the encryption function of a public-key
encryption scheme, while the trapdoor information is the private key, which allows a user
to decrypt messages. A signature scheme naturally arises from such an encryption scheme.
To sign a message, a user decrypts it with its private key. To verify a signature, the receiver
encrypts it with the sender’s public key. This scheme was the first to provide a “purely
digital, unforgeable, message dependent signature” [15].

Diffie and Hellman’s description of digital signatures, or “one-way authentication,” was only
a concept, but concrete schemes soon followed. Rivest, Shamir, and Adleman proposed RSA
signatures at the same time as the RSA cryptosystem, in 1978 [29]. In the RSA cryptosys-
tem and signature scheme, the modulus n is the product of two primes and the integers e
and d are inverses of each other modulo φ(n), where φ(·) denotes the Euler phi function.
Messages are integers modulo n. The trapdoor function is the RSA function, exponenti-
ation by e modulo n. The trapdoor information that allows inverting this function is d,
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the private key. To encrypt a message, the sender raises it to the power of the receiver’s
public key e. To decrypt a message, the receiver raises it to the power of its own private
key d. Since med ≡ m (mod n), the receiver obtains the message. To sign a message, the
signer raises it to the power of its private key d. To verify the signature on a message, any
user can raise it to the power of the purported signer’s public key e. Again, since med ≡ m
(mod n), the user will obtain the message if the signature is valid.

The inventors of RSA stated that the security of the RSA cryptosystem and digital signa-
ture scheme “rests in part on the difficulty of factoring the published divisor, n.” They felt
“reasonably confident that [computing e-th roots modulo n without factoring n] is com-
putationally intractable.” Today, we call this problem the “RSA problem” or the eth-root
problem, and solving it corresponds to forging a signature on a message or decrypting a
message.

Ten years after the proposal of RSA signatures, Goldwasser, Micali, and Rivest formalized
the notions of a digital signature scheme and what it means to break such a scheme [19].
We present a simplified version of their definition.

Definition 2.1. A digital signature scheme has the following components:

• A message space, key space, and signature space.

• A public, randomized key generation algorithm that receives a security parameter
and returns a public-private key pair in the key space for that security parameter.

• A signing algorithm that receives a message and a user’s private key, and returns a
signature by that user on that message.

• A public verification algorithm that receives a signature, a message, and a user’s
public key, and outputs TRUE if the signature is valid for the message by that user,
or FALSE otherwise.

A digital signature scheme is correct if the verification algorithm returns TRUE for any
signature obtained from the signing algorithm. In a digital signature scheme, each user
that wants to sign messages must have a public-private key pair.

Goldwasser, Micali, and Rivest also identified what it means to break a digital signature
scheme [19].

Definition 2.2. A digital signature scheme is secure if it is resistant to existential forgery
under adaptive chosen-message attack. A signature scheme is (t, ε,qh,qs)-secure against
existential forgery under adaptive chosen message attack if there is no adversary that breaks
the scheme in time at most t with probability at least ε and makes at most qh hashing queries
and qs signing queries.

That is, no attacker that is given a public key can forge a single signature on any new mes-
sage given access to an oracle that signs messages of its choice. The attacker may choose
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which messages to give to the signing oracle based on its previous responses.

This definition of security is strong because the adversary is powerful and it has a weak
goal: it can mount a chosen-message attack and all it must do is forge a signature on any
message of its choice. An attacker could have a stronger goal, such as selective forgery,
universal forgery, or recovery of the private key. It could have fewer capabilities, such as
receiving only some message-signature pairs, or having to choose which messages it will ask
to be signed before seeing the user’s public key. However, the strongest notion of security
is against an attacker with the weakest goal and greatest capabilities.

The RSA signature scheme, as we described it earlier, is not resistant to existential forgery
under chosen-message attack. An attacker can select an arbitrary signature σ modulo n
and compute its corresponding message m = σe mod n. Then, σ is a valid forged signature
on m. Efficiency is another problem: a bigger modulus is required to sign longer messages.
One solution to these problems is to sign the hash of a message.

In 1996, Bellare and Rogaway proved that any signature scheme based on a trapdoor per-
mutation, such as the RSA function, is secure when message hashes are signed, provided
the hash function is random and uniformly maps messages onto the domain of the signing
function [7]. A trapdoor permutation is a bijective trapdoor function whose range is a
permutation of its domain. In particular, the RSA signature scheme with a full-domain
uniform hash function (RSA-FDH) is secure in the random oracle model.

The use of digital signatures in practice provokes many questions, such as how to combine
multiple digital signatures to reduce their size or the verification time. How can we efficiently
combine the signatures of many users on the same message or on many messages? Multi-
signature schemes solve the first problem. Aggregate signature schemes such as BGLS,
which we focus on, solve the second problem. Before introducing BLS signatures and BGLS
aggregate signatures, we review the basics of elliptic curves and pairings.

2.2 Elliptic curves and pairings

An elliptic curve is a mathematical object often used in cryptography because its points
form a group. In general, a curve is the set of points with coordinates in a certain field
that satisfy an equation with coefficients in the same field. In this section, we first define
elliptic curves as types of plane curves. Then, we transform projective coordinates to affine
coordinates and present the reduced Weierstrass form for elliptic curves.

Definition 2.3. For any field K, the projective plane over K, P 2(K), is the set of
equivalence classes of the relation ∼ on non-zero points in K3, where (a1, a2, a3) ∼ (b1, b2, b3)
if there exists an element x in K such that ai = xbi for i = 1, 2, and 3.

We denote the equivalence class containing (a, b, c) by (a : b : c) and call it a projective
point. Let K denote the algebraic closure of K and let L be any extension field of K—
any field such that K ⊆ L ⊆ K. Next, we define a type of curve whose points are in the
projective plane P 2(K).
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Definition 2.4.1. A non-singular plane curve C of degree d over K is a curve defined
by a homogeneous degree-d polynomial f in three variables, say x, y, and z, with coefficients
in K, such that no point in P 2(K) on the curve is a solution to ∂

∂xf = ∂
∂yf = ∂

∂zf = 0. The

set of points on C are all of the points (x0 : y0 : z0) in P 2(K) such that f(x0, y0, z0) = 0.

Definition 2.4.2. The set of L-rational points C(L) on C comprises all points (x0 :
y0 : z0) in P 2(L) such that f(x0, y0, z0) = 0.

The points where the partial derivatives in Definition 2.4.1 simultaneously vanish are singu-
lar points. We avoid them because they do not have well-defined tangent lines. Therefore,
a non-singular curve is also called a smooth curve.

Definition 2.5. An elliptic curve over K is a cubic, non-singular plane curve over K,
with a K-rational point on that curve.

Every elliptic curve over K is isomorphic to a curve in (projective) general Weierstrass form:

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

where a1, a2, a3, a4, and a6 are elements of K and the point O, called the point at infinity,
corresponds to (0 : 1 : 0).

Although this thesis does not consider the problem of representing points on elliptic curves,
we present the simplified general Weierstrass form by converting projective coordinates to
affine coordinates. The projective point (a : b : c) is the set of all points (aλ, bλ, cλ), where
λ is any non-zero element in the field K. If we set λ = c−1, we can associate any projective
point (a : b : c) with an affine point (a′, b′) = (ac−1, bc−1). We simply denote the point at
infinity, (0 : 1 : 0), by O. Hence, we obtain the following alternate definition of an elliptic
curve.

Definition 2.6.1. An elliptic curve E over K is the set of all non-zero points in K2

satisfying the non-singular equation Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6, where

a1, a2, a3, a4, and a6 are elements of K, together with the point at infinity. Non-singularity

requires that the partial derivatives do not simultaneously vanish at any point in K2
that

is on the curve.

Definition 2.6.2. The set of L-rational points E(L) on E comprises the point at infinity
and all points (x0, y0) in L2 that satisfy the curve’s affine general Weierstrauss equation.

For any extension field L of K, the set of L-rational points on an elliptic curve form an
abelian group with point addition as the group operation. The point at infinity is the group
identity—adding any point to it results in that point. We present only a brief description of
how to geometrically construct the sum of two affine points. First, construct a line through
the two points, or a tangent line if doubling a point. This line intersects the curve at exactly
one other point. Reflect this third point about the x-axis, i.e., negate its y-coordinate, to
get the “sum” of the first two points. If the line through two points is vertical, then the
third intersection point—their sum—is the point at infinity whose inverse is itself.
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The group of points on an elliptic curve is always isomorphic to the product of two cyclic
groups. Suppose now that K and L are finite fields. The group of L-rational points on an
elliptic curve over K is isomorphic to Zn1 ⊕Zn2 where n2 divides n1 and n2 divides #L− 1.

There is a special case of the discrete logarithm problem in groups of points on elliptic
curves:

Definition 2.7. The elliptic curve discrete logarithm problem (ECDLP) in the
subgroup 〈P1〉 generated by a point P1 of order n is to find the integer ` in [0, n− 1] such
that `P1 = P2, given the base point P1, its order n, and a point P2 in 〈P1〉.

Elliptic curves are useful in cryptography because this problem is hard: the best-known
generic attack on the ECDLP in a group of order n, Pollard’s parallelized ρ method, takes
time O(

√
n) [30]. When the factorization of n is known, the time is proportional to the

square root of n’s largest prime factor.

Elliptic curves over finite fields are classified into two types—supersingular and ordinary—
depending on whether the characteristic of the field divides a certain quantity relating the
order of the field and the number of points on the curve.

Definition 2.8. The trace of Frobenius of the elliptic curve E(K) is t = #K+1−#E(K)
where #K is the order of the field and #E(K) is the number of K-rational points on the
elliptic curve E .
If the field’s characteristic does divide the trace of Frobenius, then the elliptic curve is
supersingular. Otherwise, it is ordinary.

We examine one final property of elliptic curves over finite fields.

Definition 2.9. Let E(K) be an elliptic curve and let p be a prime integer that divides
#E(K) and is co-prime with #K. The embedding degree k of E(K) with respect to p is
the smallest positive integer k such that p divides (#K)k − 1.

Now that we have briefly examined how groups arise from elliptic curves, we look at pair-
ings. We consider pairings based on the Weil or Tate pairings on elliptic curves over finite
fields. We denote the finite field of order q by Fq.

Let G1, G2, and GT be groups of prime order p. The groups G1 and G2 can be written
multiplicatively or additively since there is only one group of order p up to isomorphism.
Although groups of points on elliptic curves have an additive operation, we choose to write
all groups multiplicatively. We use the following cryptographic definition of pairings; we do
not consider exactly how pairings are constructed over elliptic curves.

Definition 2.10. A pairing is a map e(·, ·) from G1 × G2 to GT satisfying the following
three properties:

(i) bilinearity. For all x1 and x2 in G1, and y in G2, e(x1x2, y) = e(x1, y) · e(x2, y).
Similarly, for all x in G1, and y1 and y2 in G2, e(x, y1y2) = e(x, y1) · e(x, y2).
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(ii) non-degeneracy. If e(x0, y) = 1GT for all y in G2, then x0 = 1G1 .
Similarly, if e(x, y0) = 1GT for all x in G1, then y0 = 1G2 .
Synonymously, if x and y are generators of G1 and G2, then e(x, y) 6= 1GT .

(iii) efficiency. The pairing e(·, ·) can be computed in polynomial time in log p, where p
is the order of the groups.

By repeatedly applying bilinearity, powers of the operands change into powers of the pairing
values and vice versa. For any integers a and b and all group elements x ∈ G1 and y ∈ G2,

e(xa, yb) = e(xa, y)b = e(x, yb)a = e(x, y)ab = e(xab, y) = e(x, yab) = e(xb, ya).

Galbraith, Paterson, and Smart classified pairings into three types [17]:

Type I: symmetric pairings, where the groups G1 and G2 are identical.

Type II: asymmetric pairings, where G1 6= G2 and there is a known, efficiently computable
isomorphism ψ from G2 to G1.

Type III: asymmetric pairings that have no known efficiently computable isomorphism
from G2 to G1, or from G1 to G2.

For most common pairings, G1 is an order-p subgroup of E(Fq), G2 is an order-p subgroup
of E(Fqk) where k is the embedding degree with respect to a prime divisor p of #E(Fq),
and GT is the order-p subgroup of F∗

qk
[16]. For pairing-based schemes to be secure, the

ECDLP in the groups G1 and G2 and the DLP in the target group GT must be hard.
A pairing-friendly curve is one that has a large prime-order subgroup and an embedding
degree that is big enough so that solving the DLP in GT is not easy, but small enough so
that computing pairing values is not infeasible. Freeman, Scott, and Teske formalized the
definition of pairing-friendly curves [16]:

Definition 2.11. An elliptic curve E over Fq is pairing-friendly if there exists a prime
integer p ≥ √q dividing #E(Fq) and the embedding degree k of E with respect to p is less
than (log2 p)/8.

Type I pairings are implemented with supersingular curves over prime fields or fields of
characteristic 2 or 3 [17]. Recent work by Joux and others on solving the discrete logarithm
problem in fields of small characteristic render these curves, and thus many type I pairings,
insecure [3, 20, 21]. Since computations in small-characteristic fields are much more efficient
than in prime fields, we choose to ignore type I pairings.

In the paper introducing BLS short signatures, the authors use type II pairings, stating that
the isomorphism ψ seems to be necessary for the security reductions [9]. However, Chatter-
jee, Hankerson, Knapp, and Menezes describe variants of BLS and BGLS signature schemes
that use type III pairings, eliminating the need for a known, efficiently computable map ψ
[10]. They further argue that type II pairings have no advantage in either performance or
security over type III pairings when implementing BLS and BGLS with Barreto-Naehrig
pairings. Therefore, in this thesis, we consider only type III pairings.
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2.3 Diffie-Hellman problems

Diffie-Hellman problems are the primitives of many cryptographic protocols that involve
groups. First, we examine Diffie-Hellman problems that involve elements of either a single
group or two groups.

Let g be a generator (any element except the identity) of a multiplicative group G of prime
order p. The group G, its order p, and the chosen generator g are public. Let a, b, and c be
any three non-zero integers modulo p.

Definition 2.12.1. The computational Diffie-Hellman problem (CDH) is to compute
gab when given ga and gb.

Definition 2.12.2. The decisional Diffie-Hellman problem (DDH) is to determine
whether gab = gc when given ga, gb, and gc.

A group where solving the CDH problem is hard, but solving the DDH problem is easy is
a gap group. We can solve the DDH problem given a type I pairing e : G × G → GT by
checking whether e(ga, gb) equals e(gc, g).

Next, we examine two co-Diffie-Hellman problems that involve two groups, such as the
components of the domain of an asymmetric pairing. Again, one of these problems is
decisional and one is computational. Let g1 and g2 be generators of the multiplicative
groups G1 and G2, both of prime order p. The groups G1 and G2, their order p, and their
generators g1 and g2 are public. Let a, b, and c be any non-zero integers modulo p.

Definition 2.13.1. The computational co-Diffie-Hellman problem (co-CDH) is to
compute ha ∈ G1 when given g2

a ∈ G2 and h ∈ G1.

Definition 2.13.2. The decisional co-Diffie-Hellman problem (co-DDH) is to deter-
mine whether ha = hc when given g2

a ∈ G2, h ∈ G1 and hc ∈ G1.

The groups used with type II or III pairings are groups where solving the co-CDH prob-
lem is hard, but solving the co-DDH problem is easy. Given a type II or III pairing
e : G1 × G2 → GT , we can solve the co-DDH problem by checking whether e(h, g2

a)
equals e(hc, g2).

At the end of Section 2.2, we noted that it is possible to modify the BLS and BGLS signature
schemes to work with type III pairings [10]. The security reductions for the modified schemes
described by Chatterjee et al. require a different computational co-Diffie-Hellman problem,
which we denote by co-CDH*.

Definition 2.14. The modified computational co-Diffie-Hellman problem (co-CDH*)
is to compute ha ∈ G1 when given g2

a ∈ G2, g1
a ∈ G1, and h ∈ G1.

This co-CDH* problem is similar to the co-CDH problem, but with one extra piece of
information—knowledge of g1

a. The co-CDH* problem, therefore, cannot be harder than
the co-CDH problem. If an adversary can solve the co-CDH problem, then it can clearly
solve the co-CDH* problem.

10
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Figure 2.1: We represent reductions with diagrams where dotted lines indicate algorithms
or oracles to construct and solid lines represent given algorithms or oracles.

2.4 The importance of tightness

The reduction from solving a primitive to breaking a protocol gives us confidence in a
protocol’s security. This reduction is an algorithm that can solve the primitive by using
a hypothetical subroutine that breaks the protocol and by doing little additional work.
“Algorithm” and “solver” refer to deterministic algorithms that have access to a source of
random bits.

In this thesis, we augment written descriptions of reductions with diagrams. See Figure 2.1
for a sample reduction from solving problem A to solving problem B. The problems may each
access certain oracles. The oracles for problem A are included with the problem instance,
whereas the oracles for problem B must be simulated by the solver for problem A. Such a
reduction proves, by contraposition, that if solving problem A is hard, then solving problem
B is hard. We quantify this hardness by considering the time an algorithm requires and its
success probability.

Definition 2.15. An algorithm (t, ε)-solves problem A if, given a random instance of
problem A, it solves it with probability at least ε in time at most t. The probability of
success is computed over all possible instances of problem A and all of the solver’s coin
tosses.
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Definition 2.16. Suppose that a reduction uses an algorithm for (t, ε)-breaking a protocol
to (t′, ε′)-solve a primitive. The tightness gap of the reduction is the ratio (t′/ε′)/(t/ε). A
reduction is tight if this ratio is close to 1: when (t/ε) ≈ (t′/ε′), the protocol inherits the
strength of the primitive.

The RSA problem—the problem of computing eth roots modulo n—is the primitive in
some security reductions for RSA-FDH. Suppose that the best attack on the RSA problem
is factoring the modulus n with the number field sieve. For a 1024-bit modulus n, this at-
tack takes time roughly 280 and succeeds with probability nearly 1. Suppose that the RSA
problem is (270, 2−31)-hard and that adversaries can compute up to qh = 260 hashes. The
standard reduction from solving the RSA problem to forging an RSA-FDH signature has
a tightness gap of qh. Therefore, this reduction tells us only that RSA-FDH is (240, 1/2)-
secure, which is not very assuring. To counter this lack of tightness, we must increase the
bitlength of n.

Chatterjee, Menezes, and Sarkar illustrate what a non-tight reduction could mean in the
worst case with message authentication code (MAC) schemes, the symmetric-key equiva-
lents of signatures [11]. The best possible attack on an ideal MAC scheme with key length r
in the single-user setting is exhaustive key search, which takes time 2r. The authors present
a reduction from breaking a MAC scheme in the single-user setting to breaking it in the
multi-user setting. Its tightness gap is n, the number of users. Next, they describe an attack
in the multi-user setting that succeeds in time 2r/n. The existence of this attack proves
that no reduction from single-user MAC to multi-user MAC can be any tighter. Suppose a
tighter reduction did exist: given a (t, ε)-multi-user MAC forger, it is possible to construct
a (t′, ε′)-single-user MAC forger, where (t′/ε′) / (t/ε) = m < n. Then, breaking single-user
MAC takes m times more work than breaking multi-user MAC. However, as noted above,
there exists an attack on multi-user MAC that takes time 2r/n. Hence, there exists an
attack on single-user MAC that takes time (2rm)/n < 2r, contradicting the fact that the
best attack on an ideal MAC scheme takes time 2r. Therefore, no tighter reduction can
exist from breaking single-user MAC to breaking multi-user MAC.

This general approach could apply to other reductions. Consider two problems, A and B.
Suppose that the best possible attack on problem A succeeds in time tA; no attack on prob-
lem A can succeed in time faster than tA. Next, suppose one finds an attack on problem
B that succeeds in time tB. Finally, suppose that there exists a reduction from solving
problem A to solving problem B that has a tightness gap of m. Given this attack and the
reduction, it is possible to construct an attack on problem A that succeeds in time m · tB.
Hence, it must be the case that m · tB ≥ tA, i.e., m ≥ tA/tB. No reduction from solving
problem A to solving problem B can have a tightness gap smaller than tA/tB.

As the Chatterjee-Menezes-Sarkar example illustrates, a non-tight reduction could indicate
the existence of an attack. How should we address non-tight reductions? We could try to
find a better reduction with the same primitive. We could weaken the security definition or
modify the primitive in a natural way so that the reduction is tighter. We could increase
the security parameter size to make up for the tightness gap. In this thesis, we carefully
analyze the tightness of all reductions, even those among different types of forgery.
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Chapter 3

BLS and BGLS signatures

In this chapter, we review the BLS signature scheme and the BGLS aggregate signature
scheme. We restate a proof of the optimality of the BLS security reduction, and explore
some constraints on BGLS aggregate signatures.

Our work uses the following assumptions:

• Hash functions are indistinguishable from random functions, so we model them as
random oracles.

• When a forger requests a signature on a message from a signing oracle, it has already
obtained the hash of this message from the hashing oracle.

• A forger never requests the hash of a message twice, nor a signature from a certain
user on the same message twice. (This assumption is without loss of generality for
deterministic signature schemes such as BLS and BGLS.)

• When a forger outputs a signature (or aggregate signature) on a message (or mes-
sages), every message was previously hashed.

• Signing oracles never output invalid signatures.

• The maximum number of users n in an aggregate signature scheme, or an upper bound
on it, is public.

3.1 BLS short signature scheme

The BLS signature scheme has the same security level as the ECDSA signature scheme,
but BLS signatures have half the bitlength [9]. The scheme was introduced for type II
pairings—those for which an efficiently computable isomorphism from G2 to G1 is known.
However, we present the modified scheme, due to Chatterjee et al., that also works for type
III pairings [10].

13



Signature Scheme 3.1 (BLS with type III pairing [9, 10]).

• Set-up: The groups G1, G2, and GT have prime order p. The groups G1 and G2 have
generators g1 and g2. The function h(·) is a full-domain hash function from {0, 1}∗ to
G1. The map e(·, ·) is a type III pairing from G1 ×G2 to GT .

• Key generation: Let z be a randomly chosen non-zero integer modulo p. The public
key is the pair of elements (x, y) = (g1

z, g2
z) in G1×G2. The private key is the integer

z.

• Signing: To sign a message m ∈ {0, 1}∗ with the secret key z in Z∗p, compute the
signature σ(m) = h(m)z in G1.

• Verification: To verify the signature σ on a message m by a user with public key
(x, y), verify that e(h(m), y) = e(σ, g2).

Given the scheme’s parameters and some user’s public key, a forger’s goal is to compute a
valid signature by this user on some message. This problem resembles the co-CDH* prob-
lem: given g2

z in G2, g1
z in G1 and h ∈ G1, compute hz ∈ G1. This informal reasoning

suggests that the security of the BLS signature scheme depends on the hardness of solving
the co-CDH* problem in (G1, G2).

It is not obvious from the definition of this scheme why the public key must contain both
g1
z and g2

z, since only the latter is used for verification. The first part of the public key
is necessary in the reduction from BLS forgery to solving the modified computational co-
Diffie-Hellman problem. The reduction in the opposite direction supports security of the
BLS signature scheme with a type III pairing. This reduction, in the following theorem’s
proof, is depicted in Figure 3.1 on page 15.

Theorem 3.2 (Security of BLS signature scheme with type III pairing [9, 10]). If
solving the co-CDH* problem in (G1, G2) is (t′, ε′)-hard, then the BLS signature scheme with
a type III pairing is (t, ε, qh, qs)-secure against existential forgery under adaptive chosen-
message attack, for

t = t′ − (qh + qs) · Te − qh · Tm, and

ε = ε′ · e · (qs + 1).

Proof. We prove the contrapositive of this statement: we build a co-CDH* solver given a
forger for BLS. The co-CDH* solver is given h ∈ G1, g2

a ∈ G2, and g1
a ∈ G1. It must

somehow use the BLS forger to compute ha ∈ G1. The solver must give the forger a public
key and simulate hashing and signing oracles for its queries.

First, the solver gives the forger the public key (x, y) = (g1
a, g2

a) in G1 × G2. When the
forger requests the hash of a message, the solver chooses a random integer r ∈ Zp and
returns one of the following elements of G1:

h(m) =

{
h · g1r with probability P,

g1
r otherwise.
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Figure 3.1: The reduction from solving the co-CDH* problem to BLS forgery has a tightness
gap of qs.

The solver records the message m and the exponent r. We will determine the optimal
probability of P when we compute the solver’s success probability.

When the forger requests a signature, the solver’s reply depends on the message’s hash type.
If the message hash is h-dependent, then the solver must abort since it cannot provide a
signature. However, if the hash is a random power of g1, then the solver looks up the
appropriate exponent r and returns σ(m) = (g1

a)r:

σ(m) =

{
FAIL if h(m) is h-dependent,

(g1
a)r otherwise.

The signature in the latter case is correct:

e (σ(m), g2) = e (g1
ar, g2) = e (g1

r, g2
a) = e (h (m) , y) .

The co-CDH* solver succeeds if and only if the following events occur:

(E1) The forger does not request a signature on any message with an h-dependent hash.
Since the forger makes at most qs signing queries, this event occurs with probability
at least (1− P )qs .
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(E2) The forger successfully outputs a forgery in time at most t. If it does not request
signatures on messages with h-dependent hashes, then the hashing and signing oracles
simulated by the co-CDH* solver are indistinguishable from real hashing and signing
oracles. Hence, given the first event, this event happens with probability at least ε.

(E3) The forged signature is on a message with an h-dependent hash. The probability of
this event given the first two events is at least P .

When these three events occur, the forger outputs a forged signature σ on a message m
with hash h(m) = h ·g1r. It satisfies e(σ, g2) = e(h ·g1r, y), so the co-CDH* solver computes
ha = σ · (g1a)−r. Hence, the probability ε′ that the co-CDH* solver succeeds is

Pr (E1 ∧ E2 ∧ E3) = Pr (E3 | E2 ∧ E1) · Pr (E2 | E1) · Pr (E1) ≥ P · ε · (1− P )qs .

By Equation (1.1), the value of P that maximizes this lower bound is P = 1/(qs + 1). Then,
applying the approximation for e−1 in Equation (1.2) gives the lower bound ε/(e · (qs + 1)).

The time required by the co-CDH* solver is at most t + (qh + qs + 1) · Te + (qh + 1) · Tm.
Hence, given a (t, ε, qh, qs)-forger for BLS, it is possible to build a (t′, ε′)-co-CDH* solver,
for

t′ = t+ (qh + qs + 1) · Te + (qh + 1) · Tm, and

ε′ =
ε

e · (qs + 1)
.

The reduction from solving the RSA problem to forging an RSA-FDH signature is very
similar to the reduction from solving the co-CDH* problem to forging a BLS signature.
Like the BLS security reduction, it also has a tightness gap of qs, the number of signature
queries the forger can make [13]. In 2002, Coron proved that the RSA-FDH reduction is
optimal when the RSA solver uses the forger only once [14]. Kakvi and Kiltz later pointed
out that the proof relies on the fact that signatures must be unique, which is not necessarily
the case in RSA-FDH if public keys are not certifiable [22]. If the RSA solver gives the
RSA-FDH forger a public key (n, e) for which e and φ(n) are not relatively prime, then
signatures are not unique. Determining whether e and φ(n) are relatively prime is believed
to be hard when e is less than n1/4. For the BLS scheme, however, signatures are unique for
any public key and Coron’s result holds, as Knapp noted in 2008 [24]. We state the result
here, but omit the proof.

Theorem 3.3 (Optimality of BLS security reduction [24]). Suppose that a reduction
(tR, εR)-solves the co-CDH* problem by invoking a (tF , εF , qh, qs)-forger for BLS only once.
Then, it is possible to build a (2 (tR − tF ) , εR − (εF/qs))-co-CDH* solver by calling the
reduction twice and simulating the forger each time, so no real forger is required at any
point.

The proof describes how to build a co-CDH* solver given only a reduction from solving the
co-CDH* problem to BLS forgery, but no real forger. Coron’s theorem has the following
implication. Suppose there exists a new reduction, which uses a forger only once, and proves
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that if solving the co-CDH* problem is (t′, ε′)-hard, then BLS forgery is (t, ε)-hard for some
t′ ≥ t and ε′ = ε

qs
+ δ. Then, with the construction given in the theorem, we can build an

algorithm that solves the co-CDH* problem in time at most 2(t′ − t) with probability at
least

ε′ − ε

qs
=

(
ε

qs
+ δ

)
− ε

qs
= δ.

If δ is non-negligible, then the existence of this better reduction means that we can solve
the co-CDH* problem, which is believed to be hard. Therefore, the existence of better
reductions that call the forger only once is unlikely. We emphasize that Coron’s theorem
does not prove that no tighter reduction exists; it proves only the non-existence of tighter
reductions that invoke the BLS forger just once.

3.2 BGLS aggregate signatures

Some applications of digital signatures require many users’ valid signatures. Batch verifi-
cation schemes may verify signatures more efficiently, but they require each signature to
be transmitted. For efficiency, we would like to combine these signatures. Multi-signature
schemes combine signatures by many users on the same message. Aggregate signature
schemes combine many users’ signatures on different messages. An aggregate signature
scheme is either sequential or general, depending on whether the order of aggregation mat-
ters.

In this section, we present the first aggregate signature scheme, BGLS, which is based on
BLS signatures [8]. In the following two subsections, we explain why messages in a BGLS
aggregate signature must be pairwise distinct, and we present the original security defini-
tion. Again, we modify the scheme in the manner of Chatterjee et al. to use type III pairings.

Signature Scheme 3.4 (BGLS with type III pairing [8, 10]).

• Set-up: The groups G1, G2, and GT have prime order p. The groups G1 and G2 have
generators g1 and g2. The function h(·) is a full-domain hash function from {0, 1}∗ to
G1. The map e(·, ·) is a type III pairing from G1 ×G2 to GT .

• Key generation: Let zi be a randomly chosen non-zero integer modulo p. User i’s
public key is the pair of elements (xi, yi) = (g1

zi , g2
zi) in G1×G2. The corresponding

private key is the integer zi.

• Signing: To sign the k distinct messages m1, . . . ,mk ∈ {0, 1}∗ with secret keys
z1, . . . , zk ∈ Zp, compute the aggregate signature σA =

∏k
i=1 h(mi)

zi in G1.

• Verification: To verify the aggregate signature σA on messages m1, . . . ,mk by users
with public keys (x1, y1), . . . , (xk, yk), verify that the messages are pairwise distinct
and

∏k
i=1 e(h(mi), yi) = e(σA, g2).
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Aggregation can be performed by anyone and the resulting signature has the same size as
a single BLS signature. Verification succeeds when each individual signature is valid:

k∏
i=1

e (h(mi), yi) =

k∏
i=1

e (h(mi), g2
zi) = e

(
k∏
i=1

h(mi)
zi , g2

)
= e (σA, g2) .

3.2.1 Why should messages be distinct?

The BGLS aggregate signature scheme requires that all messages be distinct, otherwise
BGLS is vulnerable to the following rogue key attack. Suppose honest user 1 has public
key (x1, y1). A malicious user picks a random integer z modulo p and publishes (x2, y2) =
(x1
−1g1

z, y1
−1g2

z) as its public key. Then, the attacker can compute a signature on any
message m and claim that it was signed by both itself and the first user—it simply computes
σA = h(m)z. This signature is valid since

e (h(m), y1) · e (h(m), y2) = e
(
h(m), y1(y1

−1g2
z)
)

= e (h(m), g2
z) = e (σA, g2) .

The creators of BGLS were aware of this attack and suggested the following three counter-
measures [8]:

1. Require users to prove knowledge of their private keys.

• Users could disclose their private keys to a trusted party.

• Users could prove knowledge of their private keys with zero-knowledge proofs.

2. Require users to prove possession of their private keys.

• Users could sign their certificate request message.

• Users could sign random messages that will never be used in practice.

3. Require all of the messages in one aggregate signature to be distinct.

The authors suggest that the third option might be the simplest: a user could prepend
its public key to a message, creating an “enhanced message,” before hashing it. Bellare,
Namprempre, and Neven argue that hashing enhanced messages reduces the problem but
does not eliminate it [4]. They point out that in some settings, aggregate signatures could
genuinely include multiple signatures by the same user on the same message. For example,
this situation could occur when aggregation is used to store many digital signatures. They
provide a security reduction for the case of enhanced messages. They also present a tight
security reduction for a modification of BGLS where each signer prepends a random bit to
the enhanced message before signing it. We use a similar technique in Section 5.1 to give a
security reduction for BGLS with respect to stronger adversaries.

In this thesis, we simply require that all messages in an aggregate signature be distinct.
Our reductions are in the plain public-key model: any valid public key can be certified. In
this model, suggested by Bellare and Neven, there is no requirement for proof of knowledge
or possession of the private key [5]. In the BGLS scheme, a valid public key is one that
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Figure 3.2: Capabilities and goals of a targeted-user forger.

has the form (x, y) where the discrete logarithm of x with respect to g1 equals the discrete
logarithm of y with respect to g2. Validity of a public key can be verified by checking that
e(g1, y) = e(x, g2). When a user registers with a certificate authority, it does not have to
provide evidence of knowing its own private key.

3.2.2 Original security definition

The first security definition for a general aggregate signature scheme was introduced with
BGLS [8]. In this section, we restate this definition of what it means for an attacker to
break an aggregate signature scheme. Instead of calling this attack “existential forgery in
the aggregate chosen-key model,” we call it “targeted-user forgery” to emphasize that the
goal is existential forgery under chosen-message attack for a particular user.

Let e(·, ·) be a type III pairing from G1×G2 to GT . Consider an instance of BGLS with at
most n users, where user i has public key (xi, yi) and private key zi.

Definition 3.1.1. A targeted-user forger has the following capabilities and goals. It is
given a randomly chosen public key (x1, y1) in G1 × G2. It adaptively queries a hashing
oracle and a signing oracle with messages of its choice.
For some positive integer k that is at most n, the forger must output k−1 public keys of its
choice (x2, y2), . . . , (xk, yk), k distinct messages m1, . . . ,mk, and a valid aggregate signature
σA comprising user i’s signature on message mi, for each i from 1 to k. The forger succeeds
if it never requested the first user’s signature on m1.

Definition 3.1.2. A (t, ε,qh,qs)-targeted-user forger makes at most qh hashing queries,
at most qs signing queries, runs in time at most t, and succeeds with probability at least ε.
The success probability is computed over all possible inputs (x1, y1) in G1 ×G2 and all of
the forger’s coin tosses.

Definition 3.1.3. An aggregate signature scheme is (t, ε,qh,qs)-secure against targeted-
user forgery if no (t, ε, qh, qs)-targeted-user forger exists.
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Figure 3.3: The reduction from solving the co-CDH* problem to targeted-user forgery has a
tightness gap of n+ qs.

The original security reduction for BGLS with respect to this type of forgery has a tightness
gap of qs + n. We represent the reduction in the proof of Theorem 3.5 in Figure 3.3 on
page 20.

Theorem 3.5 (Security of BGLS aggregate signature scheme with type III pair-
ing [8]). If solving the co-CDH* problem in (G1, G2) is (t′, ε′)-hard, then the BGLS aggre-
gate signature scheme with a type III pairing e : G1×G2 → GT is (t, ε, qh, qs)-secure against
targeted-user forgery, for

t = t′ − (qh + qs + n+ 3) · Te − (qh + n+ 2) · Tm, and

ε = ε′ · e · (n+ qs).

Proof. We prove the contrapositive of this statement: we show how to build a co-CDH*
solver given a targeted-user forger for BGLS. The solver receives an instance of the co-CDH*
problem, say h and x = g1

z in G1, and y = g2
z in G2. It must eventually output hz in G1.

First, it gives the targeted-user forger the public key (x′, y′) = (x · g1r, y · g2r) where r is
a randomly chosen integer modulo p. When the targeted-user forger requests the hash of
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a message, the solver computes a random power of g1 and multiplies it with h with some
probability:

h(m) =

{
h · g1s with probability P,

g1
s otherwise.

The solver records (m, s), where s is a randomly chosen integer modulo p, and whether the
hash depends on h. We will determine the optimal value of P when computing the solver’s
success probability.

If the targeted-user forger requests a signature on a message whose hash is h-dependent,
then the solver fails. Otherwise, say h(m) = g1

s, the solver gives the targeted-user forger
σ(m) = (x · g1r)s. This signature is valid since

e(σ(m), g2) = e(xs, g2) · e(g1rs, g2) = e(g1
s, y) · e(g1s, g2r) = e(h(m), y′).

If the targeted-user forger did not request a signature on a message whose hash is h-
dependent, then it eventually fails or outputs an aggregate signature σA, k distinct messages
m1, . . . ,mk, and k − 1 public keys (u2, v2), . . . , (uk, vk), for some positive integer k that is
at most n. The co-CDH* solver succeeds if and only if the following events occur:

(E1) The targeted-user forger does not request a signature on any message whose hash is
h-dependent. Since the targeted-user forger makes at most qs signature queries, this
event occurs with probability at least (1− P )qs .

(E2) The targeted-user forger succeeds after time at most t. Given the first event, the
hashing and signing oracles simulated by the solver are indistinguishable from “real”
hashing and signing oracles, so Pr (E2 | E1) ≥ ε.

(E3) The hash of m1 is h-dependent, while the hash of messages m2 through mk are not
h-dependent. (If the forged aggregate signature were not on distinct messages, like in
the rogue key attack described in Subsection 3.2.1, then this event would not occur
and the reduction would fail.) Since the messages are pairwise distinct and k is at
most n, this event happens with probability at least P · (1− P )n−1.

The solver’s success probability ε′ is therefore

Pr (E1 ∧ E2 ∧ E3) ≥ (1− P )qs · ε · P · (1− P )n−1 = ε · P · (1− P )qs+n−1.

By Equation (1.1), the value P = 1/(n+ qs) maximizes this lower bound. Then, applying
the approximation for e−1 in Equation (1.2) gives the lower bound ε′ ≥ ε/(e · (n+ qs)). If
all three events occur, then the valid aggregate signature σA satisfies the following equation
since it is unique:

σA = h(m1)
z+r ·

k∏
i=2

h(mi)
wi = (h · g1s1)z+r ·

k∏
i=2

g1
si·wi = hz · hr · (x · g1r)s1 ·

k∏
i=2

ui
si .
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The solver then computes hz = σA ·
(
hr · (x · g1r)s1 ·

∏k
i=2 ui

si
)−1

.

In total, the co-CDH* solver performs at most qh+qs+n+3 exponentiations and qh+n+2
multiplications in G1 or G2. Hence, given a (t, ε, qh, qs)-targeted-user forger, we can create
a (t′, ε′, qh, qs,me)-co-CDH* solver, where

t′ = t+ (qh + qs + n+ 3) · Te + (qh + n+ 2) · Tm, and

ε′ =
ε

e · (n+ qs)
.

That is, if the co-CDH* problem is (t′, ε′)-hard, then BGLS is resistant to (t, ε, qh, qs)-
targeted-user forgery, for

t = t′ − (qh + qs + n+ 3) · Te − (qh + n+ 2) · Tm, and

ε = ε′ · e · (n+ qs).

We believe the type of forgery in the original BGLS security reduction does not reflect the
multi-user environments where aggregate signature schemes are deployed—the adversary
should not be given a target user to attack. In the following chapter, we examine two new
types of adversaries and their effects on tightness of the reduction.
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Chapter 4

Improving aggregate signature
security definitions

As its name implies, the targeted-user forger is told which user to attack. In a multi-user
setting, such an assumption needlessly restricts the adversary. In this chapter, we give two
new capabilities to aggregate signature forgers and examine how tightly they correspond to
the original forger.

First, we review existing security definitions for multi-signature schemes, where each user
signs the same message, and sequential aggregate signature schemes, where the order of
aggregation is important. Next, we examine two new types of BGLS forgery: in Section 4.2,
we examine forgers that can expose users’ private keys, and in Section 4.3, forgers that can
replace users’ public keys. In each section, we describe reductions between the new type
of forgery and the original targeted-user forgery. Our goal is to argue that targeted-user
forgery is harder than our proposed types of forgery. Figure 4.1 on page 24 provides an
overview of the tightness gaps of reductions among different types of aggregate signature
forgery.

4.1 Comparison to other signature schemes’ security models

In this section, we examine assumptions about adversaries in multi-signature schemes and
sequential aggregate signature schemes. In identity-based schemes, adversaries often have
the power to expose legitimate users’ private keys.

Cha and Cheon introduced an attack model for identity-based signatures in 2003 [12].
They require their scheme to be secure against existential forgery under adaptively-chosen
message and ID attacks. In this model, the attacker has access to a signing oracle and
an extraction oracle that returns the private key corresponding to an ID. In Gentry and
Ramzan’s identity-based aggregate signature scheme, the adversary can adaptively make
key extraction queries—it submits an ID and receives the corresponding signing key [18].
In Bellare and Neven’s identity-based multi-signature scheme based on RSA, the adver-
sary has access to a key derivation oracle [6]. Attackers can adaptively corrupt users by
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Figure 4.1: Overview of tightness gaps in reductions between types of aggregate signature
forgery for BGLS with type III pairings. The original security reduction for BGLS considers
only targeted-user forgers.

submitting their IDs to the key derivation oracle and receiving the corresponding private
keys. Although Bellare and Neven admit that some identities may be weaker than others in
identity-based schemes, they state that in non-identity-based multi-signature schemes, any
honestly-generated public key is as good as any other one. “No adversary is expected to
perform significantly better in a model with multiple honest signers, as it could easily have
simulated these other signers itself.” Bagherzandi and Jarecki’s identity-based aggregate
and multi-signature schemes based on RSA also allow the attacker to make key derivation
queries [2].

In signature schemes that are not identity-based, however, we did not find an example
of a security model that allows attackers to learn other users’ secret keys. Lysyanskaya,
Micali, Reyzin, and Shacham’s sequential aggregate signature scheme, based on trapdoor
permutations, is secure in the sequential aggregate chosen-key security model, where the
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adversary receives a single public key [27]. In Lu, Ostrovsky, Sahai, Shacham, and Waters’
sequential aggregate signature scheme, the adversary is also given a challenge key [26]. The
authors assume that the attacker provides the private key corresponding to the public keys
it chooses. Recall from Subsection 3.2.1 that requiring users to prove knowledge of their
private keys is one way to prevent the rogue key attack. Bellare, Namprempre, and Neven’s
unrestricted aggregate signature scheme is not in the chosen-key model either [4]. They
highlight the practical advantage of assuming that attackers do not need to know the secret
key corresponding to the public keys they choose. The security notion of Neven’s sequen-
tial aggregate signed data scheme, a generalization of sequential aggregate signatures, also
begins with the forger receiving one public key [28].

We argue that attackers could learn other users’ private keys not only in identity-based
schemes. In any public-key cryptosystem, public keys are exactly that—public. An attacker
should not be given one public key to target; it should have its choice from all the public
keys it can collect. The next section examines an aggregate forger that can choose which
public key to target and, like the forger in an identity-based scheme, can expose other users’
private keys.

4.2 Forgers that can expose other users’ private keys

In this section, we examine a forger that can choose which users to target and which users to
corrupt by exposing their private keys. We denote by me the maximum number of private
keys the forger can expose. The maximum value of me is n − 1, since a forger automati-
cally fails if it exposes the private keys of all users in the aggregate signature scheme. We
introduce this parameter to study its effect on tightness of the reductions.

Definition 4.1.1. An exposure forger is an adversary with the following capabilities and
goals. It receives n randomly generated public keys (x1, y1), . . . , (xn, yn), corresponding to
users 1 to n. It adaptively queries a hashing oracle and n individual signing oracles with
messages. At any point, the forger can choose to corrupt user j by exposing its private key
zj .
The forger’s goal is to output k user indices α1, . . . , αk, k distinct messages m1, . . . ,mk,
and a valid aggregate signature σA comprising user αi’s signature on message mi, for each
integer i from 1 to k, where k is a positive integer at most n. The forger succeeds if all k
user indices correspond to users whose private keys were not exposed, and user α1 did not
provide the forger with a signature on m1.

Definition 4.1.2. A (t, ε,qh,qs,me)-exposure forger runs in time at most t, succeeds
with probability at least ε, makes at most qh hashing queries and qs signing queries, and
exposes at most me private keys. The success probability is computed over all possible
inputs and all of the forger’s coin tosses.

Definition 4.1.3. An aggregate signature scheme is resistant to (t, ε,qh,qs,me)-expo-
sure forgery if no (t, ε, qh, qs,me)-exposure forger exists.
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Figure 4.2: Capabilities and goals of an exposure forger.

According to this definition, the exposure forger’s aggregate signature must exclude all users
whose private keys were exposed. This requirement is without loss of generality for BGLS.
The exposure forger can remove the part of the aggregate signature corresponding to user
α and message mα by multiplying the signature with h(mα)−zα , where zα is user α’s ex-
posed private key. In other aggregate signature schemes—such as those where aggregation
is sequential—this assumption may not hold.

Informally, the exposure forger’s task seems easier than the targeted-user forger’s task be-
cause it can choose which user to target. However, it can only determine other users’ private
keys, not choose them. Which problem is easier? If we relax the forger’s goal and prove
that the signature scheme is resistant to these forgers, then we are, in theory, making it
more secure.

First, we attempt to prove that targeted-user forgery is at least as hard as exposure forgery.
Although a reduction does exist, it is not tight. The reduction in the proof of Theorem 4.1
is represented in Figure 4.3 on page 27.

Theorem 4.1 (exposure forgery ≤ targeted-user forgery). If the BGLS signature
scheme in an n-user setting is resistant to (t′, ε′, qh, qs,me)-exposure forgery, then it is also
resistant to (t, ε, qh, qs)-targeted-user forgery, for

t = t′ − (qh + qs + n− 1) · Te + (n− 1) · Tm, and

ε = ε′ · e · n.

Proof. We prove the contrapositive of this statement: we show how to build an exposure
forger given a targeted-user forger. The exposure forger receives n challenge public keys
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Figure 4.3: The reduction from exposure forgery to targeted-user forgery has a tightness gap
of n, the number of users.

(x1, y1), . . . , (xn, yn) and has access to a hashing oracle H and n individual signing oracles
Si. It can expose at most me of the users’ private keys.

First, the exposure forger must give the targeted-user forger some challenge public key.
It randomly chooses one of the public keys it receives, say (xα, yα), and passes it to the
targeted-user forger. When the targeted-user forger requests the hash of a message, the
exposure forger either forwards the query to the hashing oracle, or computes a random
power of g1:

h′(m) =

{
h(m) with probability P,

g1
r otherwise.

In the second case, the exposure forger records (m, r), where r is a randomly chosen integer
modulo p. We will determine the optimal value of P when computing the exposure forger’s
success probability.

When the targeted-user forger requests a signature on a message, the exposure forger either
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forwards the query to user α’s signing oracle or computes the appropriate power of xα:

σ′(m) =

{
σα(m) if h′(m) = h(m),

xα
r if h′(m) = g1

r.

The signature in the first case is clearly valid. When the hash is a random power of g1,

e
(
σ′(m), g2

)
= e (xα

r, g2) = e (g1
zα·r, g2) = e (g1

r, yα) = e
(
h′(m), yα

)
,

so the signature is also valid in the second case.

Eventually, the targeted-user forger fails or outputs an aggregate signature σA, k distinct
messages m1, . . . ,mk, and k − 1 public keys (u2, v2), . . . , (uk, vk), for some positive integer
k that is at most n.

The exposure forger succeeds if and only if the following events occur:

(E1) The targeted-user forger succeeds after time at most t. From its point of view, the
hashing and signing oracles simulated by the exposure forger are indistinguishable
from “real” hashing and signing oracles, so Pr (E1) ≥ ε.

(E2) In the targeted-user forger’s output σA, the hash of the message signed by the user
with the challenge public key is not a random power of g1, and the hashes of all other
messages are random powers of g1. That is, h′(m1) = h(m1) and h′(mi) = g1

ri for
each integer i from 2 to k. Given the targeted-user forger’s success, the probability of
this event is Pr (E2 | E1) = P · (1− P )k−1.

The exposure forger’s success probability ε′ is therefore

Pr (E1 ∧ E2) = Pr (E1) · Pr (E2 | E1) ≥ ε · P · (1− P )k−1 ≥ ε · P · (1− P )n−1.

By Equation (1.1), the value P = 1/n maximizes this lower bound on the exposure forger’s
success probability. Then, applying the approximation for e−1 in Equation (1.2) gives the
lower bound ε′ ≥ ε/(e · n).

If both events occur, then the exposure forger computes σ′A = σA ·
∏k
i=2 ui

−ri in G1. It
outputs σ′A, the user index α, and the message m1. This aggregate signature is valid since

e
(
σ′A, g2

)
= e (σA, g2) ·

k∏
i=2

e
(
ui
−ri , g2

)
=

(
e (h(m1), yα) ·

k∏
i=2

e (g1
ri , vi)

)
·
k∏
i=2

e
(
ui
−ri , g2

)
= e (h(m1), yα) ·

k∏
i=2

e (g1
ri , g2

wi) ·
k∏
i=2

e
(
g1
−ri·wi , g2

)
= e (h(m1), yα) ·

k∏
i=2

e (g1
ri , g2

wi) ·
k∏
i=2

e
(
g1
−ri , g2

wi
)

= e (h(m1), yα) .
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The exposure forger does not expose any private keys. Since the targeted-user forger did
not request a signature on m1, the exposure forger did not request a signature on m1 from
user α. It makes at most as many hashing and signing queries as the targeted-user forger,
which makes at most qh and qs queries. It computes at most qh+ qs+n−1 exponentiations
and n− 1 multiplications in G1 or G2. Hence, given a (t, ε, qh, qs)-targeted-user forger, we
can create a (t′, ε′, qh, qs,me)-exposure forger, where

t′ = t+ (qh + qs + n− 1) · Te + (n− 1) · Tm, and

ε′ =
ε

e · n
.

That is, if BGLS is resistant to (t′, ε′, qh, qs,me)-exposure forgery, then it is also resistant
to (t, ε, qh, qs)-targeted-user forgery, for

t = t′ − (qh + qs + n− 1) · Te − (n− 1) · Tm, and

ε = ε′ · e · n.

In the previous reduction, the exposure forger does not expose any private keys, and we are
not aware of a tighter reduction where it does.

Next, we examine the reduction from targeted-user forgery to exposure forgery. Figure 4.4
on page 30 depicts the reduction in the proof of Theorem 4.2.

Theorem 4.2 (targeted-user forgery ≤ exposure forgery). If the BGLS signature
scheme in an n-user setting is resistant to (t′, ε′, qh, qs)-targeted-user forgery, then it is
resistant to (t, ε, qh, qs,me)-exposure forgery, for

t = t′ − (2n+ qs + 1)(Te + Tm), and

ε = ε′ · e · (n+me).

Proof. We prove the contrapositive of this statement: we show how to build a targeted-user
forger given an exposure forger. The targeted-user forger receives one public key (x, y) and
has access to a hashing oracle H and signing oracle S.

First, it must give n public keys to the exposure forger. It picks n random integers ri
modulo p and gives it the following n public keys:

(xi, yi) =

{
(x · g1ri , y · g2ri) with probability P,

(g1
ri , g2

ri) otherwise.

The targeted-user forger records each integer i and random integer ri modulo p. We will de-
termine the optimal value of P when analyzing the targeted-user forger’s success probability.

When the exposure forger requests the hash of a message m, the targeted-user forger simply
forwards the message to the hashing oracle and returns the unchanged result h(m).
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Figure 4.4: The reduction from targeted-user forgery to exposure forgery has a tightness gap
of n+me.

When the exposure forger requests a signature on a message m by user i, the targeted-
user forger first looks up the integer ri. If user i’s public key is (x, y)-dependent, then the
targeted-user forger forwards m to the real signing oracle to get σ(m), a signature on m by
the user with public key (x, y). It then multiplies σ(m) by h(m)ri and returns this product
to the exposure forger. If user i’s public key is not (x, y)-dependent, then the targeted-user
forger simply computes h(m)ri and returns this value to the exposure forger as the user i’s
signature on m:

σ′i(m) =

{
σ(m) · h(m)ri if user i’s public key is (x, y)-dependent,

h(m)ri otherwise.

These signatures are both valid. First, when user i’s public key is (x, y)-dependent,

e
(
σ′i(m), g2

)
= e (σ(m), g2) · e (h(m)ri , g2) = e (h(m), y) · e (h(m), g2

ri) = e (h(m), yi) .
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Second, when user i’s public key is not (x, y)-dependent,

e
(
σ′i(m), g2

)
= e (h(m)ri , g2) = e (h(m), yi) .

At any point, the exposure forger may request user j’s private key. If user j’s public key is
(x, y)-dependent, then the targeted-user forger fails since it cannot answer. However, if user
j’s public key is not (x, y)-dependent, then the targeted-user forger looks up the integer rj
and returns this value to the exposure forger.

If the targeted-user forger can answer each of the exposure forger’s exposure queries, then
eventually the exposure forger fails or outputs a valid aggregate signature σA, k distinct
messages m1, . . . ,mk, and k user indices α1, . . . , αk, for some positive integer k that is at
most n. The forged aggregate signature satisfies e (σA, g2) =

∏k
i=1 e (h(mi), yαi) and the

exposure forger did not expose the private key of any user αi, nor did it request a signature
on m1 from user α1.

The targeted-user forger can construct a forgery if and only if the four following events
occur:

(E1) The targeted-user forger can answer each of the exposure forger’s queries to obtain
users’ private keys. That is, each user whose private key is requested has an (x, y)-
independent public key. Since the exposure forger can expose at most me private keys,
this event happens with probability at least (1− P )me .

(E2) The exposure forger succeeds after time at most t. Given the first event, this event
happens with probability at least ε, since the hashing oracle and signing oracle sim-
ulated by the targeted-user forger are indistinguishable from a random oracle and a
real signing oracle.

(E3) User α1 has an (x, y)-dependent public key. Given the first two events, this event
happens with probability at least P .

(E4) The exposure forger does not request signatures on message m1 by any user whose
public key is (x, y)-dependent. That is, every time the exposure forger requests a
signature on m1, it is from a user whose public key is not (x, y)-dependent. This event
is independent from the others and happens with probability at least (1− P )n−1.

When all four of these events occur, the targeted-user forger computes the signature σ′A =
σA · h(m1)

−rα1 . It outputs σ′A, the messages m1, . . . ,mk, and the k − 1 public keys
(x2, y2), . . . , (xk, yk).
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This signature is valid since

e
(
σ′A, g2

)
= e (σA, g2) · e

(
h(m1)

−rα1 , g2
)

=

k∏
i=1

e (h(mi), yαi) · e
(
h(m1)

−rα1 , g2
)

= e (h(m1), y) · e (h(m1), g2
rα1 ) · e

(
h(m1), g2

−rα1
)
·
k∏
i=2

e (h(mi), yαi)

= e (h(m1), y) ·
k∏
i=2

e (h(mi), yαi) .

The targeted-user forger’s success probability ε′ has the following lower bound:

ε′ ≥ Pr (E4) · Pr (E3 | E2 ∧ E1) · Pr (E2 | E1) · Pr (E1) ≥ ε · P · (1− P )n+me−1.

By Equation (1.1), the value P = 1/(n+me) maximizes this lower bound. Then, using the
approximation for e−1 (Equation (1.2)), we conclude that the targeted-user forger’s success
probability ε′ is at least ε/(e · (n+me)).

The targeted-user forger computes at most 2n + qs + 1 exponentiations and 2n + qs + 1
multiplications in G1 or G2. It makes the same number of hashing queries and at most the
same number of signing queries as the exposure forger. Hence, we can build a (t′, ε′, qh, qs)-
targeted-user forger from a (t, ε, qh, qs,me)-exposure forger, where

t′ = t+ (2n+ qs + 1)(Te + Tm), and

ε′ =
ε

e · (n+me)
.

The reductions between targeted-user forgery and exposure forgery lose tightness by the
number of users, n, in both directions. It is unclear which problem is harder. In the next
section, we examine a forger that can replace users’ public keys instead of just exposing
their private keys.

4.3 Forgers that can replace other users’ public keys

The replacement forger can replace a user’s public key with any public key it chooses. The
parameter mr is an upper bound on the number public keys it can replace. The strongest
replacement forger could replace n−1 public keys, but we introduce this parameter to study
its effect on tightness. Since our reductions are in the plain public-key model, we cannot
assume that the replacement forger knows the private key corresponding to the public key
it chooses. Hence, we allow replacement forgers to include messages signed by users whose
public keys it replaced.
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Figure 4.5: Capabilities and goals of a replacement forger.

Definition 4.2.1. A replacement forger is an adversary with the following capabilities
and goals. It receives n randomly generated public keys (x1, y1), . . . , (xn, yn), corresponding
to users 1 to n. It adaptively queries a hashing oracle and n individual signing oracles with
messages. At any point, the forger can choose to corrupt a user by replacing its public
key with any (u, v) of its choice in G1 × G2. (Of course, the forger cannot then request
signatures from that user.)
The forger’s goal is to output k user indices α1, . . . , αk, k distinct messages m1, . . . ,mk,
and a valid aggregate signature σA comprising user αi’s signature on message mi for each
i from 1 to k, where k is a positive integer at most n. The aggregate signature will satisfy
e (σA, g2) =

∏k
i=1 e

(
h(mi), y

′
αi

)
where

y′αi =

{
vαi if the forger replaced user αi’s public key (xαi , yαi) with (uαi , vαi),

yαi otherwise.

The forger succeeds if it did not replace user α1’s public key, if user α1 did not give the
forger a signature on m1, and if the replacement forger made no more than mr public key
replacements.

Definition 4.2.2. A (t, ε,qh,qs,mr)-replacement forger makes at most qh hashing
queries and qs signing queries, replaces at most mr public keys, runs in time at most t,
and succeeds with probability at least ε. The success probability is computed over all
possible inputs (x1, y1), . . . , (xn, yn) and all of the forger’s coin tosses.

Definition 4.2.3. An aggregate signature scheme is resistant to (t, ε,qh,qs,mr)-re-
placement forgery if no (t, ε, qh, qs,mr)-replacement forger exists.

How does this type of forgery compare to the problem of targeted-user forgery? If replace-
ment forgery is easier, then we obtain a stronger security definition for aggregate signature
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schemes. In Theorem 4.3, we examine a reduction from the problem of replacement forgery
to the problem of targeted-user forgery. When we assume that replacement forgers can
replace all but one public key, this reduction is tight: the problem of replacement forgery
is no harder than the problem of targeted-user forgery. The reduction in the proof of this
theorem is depicted in Figure 4.6 on page 35.

Theorem 4.3 (replacement forgery ≤ targeted-user forgery). If the BGLS aggregate
signature scheme in an n-user setting is resistant to (t′, ε′, qh, qs,mr)-replacement forgery,
then it is also resistant to (t, ε, qh, qs)-targeted-user forgery, for

t = t′ − (n− 1) · Tm − (qh + qs + n− 1) · Te, and

ε = ε′ · e · (n−mr).

Proof. We prove the contrapositive of this statement: we show how to build a replace-
ment forger given a targeted-user forger. The replacement forger receives n public keys
(x1, y1), . . . , (xn, yn), can query a hashing oracle H, and can query a signing oracle Si for
each user i. It randomly picks an integer α1 between 1 and n and gives the targeted-user
forger the public key (xα1 , yα1).

When the targeted-user forger requests the hash of a message, the replacement forger either
forwards the request to the hashing oracle H or computes a random power of g1:

h′(m) =

{
h(m) with probability P,

g1
r otherwise.

The replacement forger records the message m and the random integer r modulo p. We
will determine the optimal value of the probability P when we compute the replacement
forger’s success probability.

When the targeted-user forger requests a signature, the replacement forger must either
request a signature on the same message from the signing oracle Sα1 or compute the ap-
propriate power of xα1 :

σ′(m) =

{
σα1(m) if h′(m) = h(m),

xα1
r if h′(m) = g1

r.

After time at most t and with some probability, the targeted-user forger outputs a valid
forged aggregate signature σA, k distinct messages m1, . . . ,mk, and k − 1 public keys
(u2, v2), . . . , (uk, vk) of its choice, for some positive integer k that is at most n. Partition
the integers from 1 to k into the following two sets:

S1 = {i ∈ [k] | h′(mi) = h(mi)} and

S2 = {i ∈ [k] | h′(mi) = g1
ri}.
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choose α1 ∈R [n]
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Sα1 S

Sαj
2 ≤ j ≤ S1

choose α2, . . . , α|S1| ∈R
[n]\{α1}
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σA ·

∏
i∈S2

ui
−ri
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replace-
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(x1, y1), . . . , (xn, yn)

σ′A, {mi}i∈S1 ,
and {αi}i∈S1

(xα1 , yα1)

m

h(m)
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{
h(m) pr. 1

n−mr
g1
r else

m

σα1(m)

m

σ′(m) =

{
σα1(m)
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r

σA,
m1, . . . ,mk, and

(u2, v2), . . . , (uk, vk)

replace (xαj , yαj )
with (uj , vj)

Figure 4.6: The reduction from replacement forgery to targeted-user forgery has a tightness
gap of n−mr, so it is tight when mr = n− 1.
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The replacement forger succeeds if and only if the following events occur:

(E1) The targeted-user forger succeeds after time at most t. Since the hashing and signing
oracles simulated by the replacement forger are indistinguishable from “real” oracles,
this event happens with probability at least ε.

(E2) The index 1 is in S1; m1 has a real hash. The probability of this event given the
targeted-user forger’s success is P .

(E3) At most mr indices other than 1 are in S1; at least k−1−mr indices are in S2. Given
the first two events, this event happens with probability

k−1∑
i=k−1−mr

Pr (exactly i indices are in S2) =

k−1∑
i=k−1−mr

(
k − 1

i

)
(1− P )iP k−1−i,

but the probability that any k−1−mr (or more) indices are in S2 is at least the proba-
bility that some particular k−1−mr indices are in S2. Therefore, Pr (E3 | E1 ∧ E2) ≥
(1− P )k−1−mr .

When these three required events occur, the replacement forger computes σ′A = σA ·∏
i∈S2

ui
−ri . Suppose, without loss of generality, that the indices in S1 are 1, . . . , |S1|.

The solver chooses |S1| − 1 random, distinct indices α2, . . . , α|S1| between 1 and n that are
different from α1. For each index j in S1 \ {1} = {2, . . . , |S1|}, it replaces the public key
of user αj with (u′αj , v

′
αj ) = (uj , vj). Finally, the replacement forger outputs the aggregate

signature σ′A, the messages mi for each i ∈ S1, and the user indices αi for i ∈ S1. This
signature is valid since

e(σ′A, g2) = e(σA, g2) ·
∏
i∈S2

e(ui
−ri , g2)

= e(h(m1), yα1) ·
∏

i∈S1\{1}

e(h(mi), vi) ·
∏
i∈S2

e(g1
ri , vi) ·

∏
i∈S2

e(g1
−ri , vi)

= e(h(m1), yα1) ·
∏

i∈S1\{1}

e(h(mi), v
′
αi).

The three events are necessary and sufficient for the replacement forger to succeed. Since
the positive integer k is at most n, the replacement forger’s success probability ε′ is at least
ε · P · (1 − P )n−1−mr . By Equation (1.1), the value P = 1/(n−mr) maximizes the lower
bound. We apply Equation (1.2) to obtain the following lower bound on the targeted-user
forger’s success probability ε′:

ε′ ≥ ε

e · (n−mr)
.

The replacement forger computes at most |S2| multiplications and qh + qs + |S2| exponenti-
ations. It makes at most as many hashing queries and signing queries as the targeted-user
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forger, and it replaces at most mr public keys. Hence, given a (t, ε, qh, qs)-targeted-user
forger, it is possible to build a (t′, ε′, qh, qs,mr)-replacement forger, for

t′ = t+ (n− 1) · Tm + (qh + qs + n− 1) · Te, and

ε′ =
ε

e · (n−mr)
.

When mr = n − 1, the reduction is tight: for the most powerful replacement forgers, the
problem of replacement forgery is no harder than targeted-user forgery.

Next, we devise a reduction from targeted-user forgery to replacement forgery. We describe
the proof in Theorem 4.4 and depict the reduction in Figure 4.7 on page 38.

Theorem 4.4 (targeted-user forgery ≤ replacement forgery). If the BGLS signature
scheme in an n-user setting is resistant to (t′, ε′, qh, qs)-targeted-user forgery, then it is
resistant to (t, ε, qh, qs,mr)-replacement forgery, for

t = t′ − (2n+ qs + 1)(Tm + Te), and

ε = ε′ · e · n.

Proof. We prove the contrapositive of this statement: we show how to build a targeted-user
forger given a replacement forger. The targeted-user forger receives a public key (x, y) and
has access to a hashing oracle H and a signing oracle S. For each integer i from 1 to n, the
targeted-user forger picks a random integer ri modulo p and gives the following public key
to the replacement forger:

(xi, yi) =

{
(x · gri , y · gri) with probability P,

(g1
ri , g2

ri) otherwise.

For each of the n public keys, the targeted-user forger records (i, ri) and whether the key is
(x, y)-dependent. We will determine the optimal value of the probability P when analyzing
the targeted-user forger’s success probability.

Whenever the replacement forger requests the hash of a message m, the targeted-user
forger simply passes on the request to the hashing oracle H and directly returns the result,
h(m). Whenever the replacement forger requests a signature by user i on a message m,
the targeted-user forger computes h(m)ri . If user i’s public key is not (x, y)-dependent,
then the targeted-user forger gives this signature to the replacement forger. However, if its
public key is (x, y)-dependent, then it forwards the signature request to the signing oracle
S. It multiplies the result, σ(m), with h(m)ri :

σ′i(m) =

{
h(m)ri if user i’s public key is not (x, y)-dependent,

σi(m) · h(m)ri if user i’s public key is (x, y)-dependent.

The replacement forger can, at any time, replace user j’s public key with any (uj , vj) in
G1 ×G2. The targeted-user forger then records j and (uj , vj).
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σ(m) · h(m)ri

h(m)ri

replace (xj , yj) with (uj , vj)

σA, m1, . . . ,mk, and
α1, . . . , αk

Figure 4.7: The reduction from targeted-user forgery to replacement forgery has a tightness
gap of n.
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After time at most t, the replacement forger either fails or outputs a valid forged aggregate
signature σA, k distinct messages m1, . . . ,mk, and k user indices α1, . . . , αk for some positive
integer k that is at most n. Let (x′1, y

′
1), . . . , (x

′
n, y
′
n) denote the public keys after the re-

placement forger terminates:

(x′i, y
′
i) =

{
(ui, vi) if the replacement forger replaced (xi, yi),

(xi, yi) otherwise.

The valid forged signature satisfies e(σA, g) =
∏k
i=1 e(h(mi), y

′
αi) and the replacement forger

did not replace user α1’s public key, nor did it request a signature from this user on m1.
The targeted-user forger succeeds if and only if the following three events happen:

(E1) The replacement forger succeeds after time at most t. Since the hashing and signing
oracle simulated by the targeted-user forger are indistinguishable from a random oracle
and a “real” signing oracle, Pr (E1) ≥ ε.

(E2) User α1’s public key is (x, y)-dependent. Given the replacement forger’s success, this
event happens with probability Pr (E2 | E1) = P .

(E3) The replacement forger did not request a signature on message m1 from any user
whose public key is (x, y)-dependent. Given the first two events, this event happens
with probability at least (1 − P )n−1 since there are at most n − 1 users from whom
the replacement forger could request signatures on m1.

The probability of these three events occurring is at least ε · P · (1 − P )n−1. By Equation
(1.1), the value P = 1/n maximizes this lower bound. We apply Equation (1.2) to obtain
the following lower bound on the targeted-user forger’s success probability ε′:

ε′ ≥ ε

e · n
.

When all three events occur, the targeted-user forger computes σ′A = σA · h(m1)
−rα1 . It

outputs the aggregate signature σ′A, the k distinct messages m1, . . . ,mk, and the k − 1
public keys (x′α2

, y′α2
), . . . , (x′αk , y

′
αk

). The targeted-user forger’s aggregate signature σ′A is
valid since

e(σ′A, g) = e(σA, g2) · e
(
h(m1)

−rα1 , g2
)

=

k∏
i=1

e
(
h(mi), y

′
αi

)
· e
(
h(m1), g2

−rα1
)

= e (h(m1), y · g2rα1 ) · e
(
h(m2), y

′
α2

)
· · · e

(
h(mk), y

′
αk

)
· e
(
h(m1), g2

−rα1
)

= e (h(m1), y) · e
(
h(m2), y

′
α2

)
· · · e

(
h(mk), y

′
αk

)
.

The time t′ required for the targeted-user forger to output a forgery is at most t+(2n+qs+
1)(Tm+Te). Hence, given a (t, ε, qh, qs,mr)-replacement forger, we can build a (t′, ε′, qh, qs)-
targeted-user forger, for

t′ = t+ (2n+ qs + 1)(Tm + Te), and

ε′ =
ε

e · n
.
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If the number of signing queries qs the replacement forger can make is less than the number
of users n, then this reduction loses tightness by qs instead of n. When computing the
probability of E3’s occurrence, the number of signature queries the replacement forger can
make on m1 is bounded above by qs. The optimal value of P is 1/qs in this case. Regardless
of the relation between n and qs or the value of mr, we do not know of a tight reduction
from targeted-user forgery to replacement forgery. However, the problem of replacement
forgery does tightly reduce to the problem of targeted-user forgery when the replacement
forger can replace all but one public key. In this case, the problem of replacement forger is
no harder than the problem of targeted-user forger.

4.4 Is exposure forgery or replacement forgery easier?

In Section 4.3, we proved that replacement forgery is no harder than targeted-user forgery.
The implications of our reductions between exposure forgery and targeted-user forgery in
Section 4.2 were unclear since non-tight reductions exist in both directions. How does the
problem of exposure forgery compare to the problem of replacement forgery? Theorem 4.5
and Figure 4.8 on page 41 examine a reduction from exposure forgery to replacement forgery.

Theorem 4.5 (exposure forgery ≤ replacement forgery). If the BGLS signature
scheme in an n-user setting is resistant to (t′, ε′, qh, qs,me)-exposure forgery, then it is re-
sistant to (t, ε, qh, qs,mr)-replacement forgery, for

t = t′ − (qh + qs + n− 1) · Te − (n− 1) · Tm,
ε = ε′ · e · (mr + 1),

and any positive integer mr that is at most n− 1.

Proof. We prove the contrapositive of this statement: we describe how to build an exposure
forger given a replacement forger. The exposure forger receives n public keys (x1, y1), . . . , (xn, yn)
and has access to a hashing oracle H and n individual signing oracles Si. First, it gives the
same n public keys to the replacement forger.

When the replacement forger requests the hash of a message m, the exposure forger either
forwards the hashing query to H and returns this result, or computes a random power of
g1:

h′(m) =

{
h(m) with probability P,

g1
r otherwise.

The integer r is selected randomly modulo p. The exposure forger records (m, r) for each
hashed message. We determine the optimal value of P when we calculate the exposure
forger’s success probability. When the replacement forger requests a signature by user i on
message m, the exposure forger’s reply depends on the hash type of m. If h′(m) equals
h(m), then it forwards the signing query to user i’s signing oracle. Otherwise, it looks up
the value of r for this message and computes the appropriate power of user i’s public key:

σ′i(m) =

{
σi(m) if h′(m) = h(m),

xi
r if h′(m) = g1

r.
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Figure 4.8: The reduction from exposure forgery to replacement forgery has a tightness gap
of mr.

These signatures are valid. First, when h′(m) = h(m), the signature is valid because it was
obtained from a real signing oracle:

e(σ′i(m), g2) = e(σi(m), g2) = e(h(m), yi) = e(h′(m), yi).

When h′(m) is a random power of g1, the signature is valid due to properties of the pairing:

e(σ′i(m), g2) = e(xi
r, g2) = e(g1

zi·r, g2) = e(g1
r, g2

zi) = e(h′(m), yi).

At any time, the replacement forger can replace user j’s public key with any (uj , vj) in
G1×G2. The exposure forger keeps track of these replaced keys by recording j and (uj , vj).
Let (x′1, y

′
1), . . . , (x

′
n, y
′
n) denote the public keys at the end of the algorithm:

(x′i, y
′
i) =

{
(ui, vi) if the replacement forger replaced user i’s public key,

(xi, yi) otherwise.
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After time t, the replacement forger succeeds with some probability. It outputs a valid
aggregate signature σA, k distinct messages m1, . . . ,mk, and k user indices α1, . . . , αk, for
some positive integer k that is at most n. The forged signature satisfies the equation
e(σA, g2) =

∏k
i=1 e(h

′(mi), y
′
αi) and the replacement forger did not replace user α1’s public

key, nor did it request a signature by this user on m1.

Partition the integers from 1 to k into the following four sets:

S1 = {i ∈ [k] | (x′αi , y
′
αi) = (xαi , yαi) and h′(mi) = h(mi)},

S2 = {i ∈ [k] | (x′αi , y
′
αi) = (xαi , yαi) and h′(mi) = g1

ri},
S3 = {i ∈ [k] | (x′αi , y

′
αi) = (uαi , vαi) and h′(mi) = h(mi)}, and

S4 = {i ∈ [k] | (x′αi , y
′
αi) = (uαi , vαi) and h′(mi) = g1

ri}.

In particular, we know that 1 is in S1 or S2 since user α1’s key was not replaced. The
exposure forger succeeds if and only if the following events occur:

(E1) The replacement forger succeeds after time t. From the replacement forger’s point of
view, the exposure forger is indistinguishable from a real hashing oracle and signing
oracle since the message hashes are random and the signatures are valid. Therefore,
the replacement forger outputs a valid forgery with probability at least ε.

(E2) The hash of m1 is not a random power of g1 and for each integer i from 2 to k, if the
replacement forger replaced user αi’s public key, then the message mi has a hash that
is a random power of g1. That is, the index 1 is in S1 and S3 is empty. Since we know
that 1 is either in S1 or S2 and the replacement forger can replace at most mr public
keys, the probability of this event given the first event is P · (1− P )mr .

The exposure forger’s success probability ε′ is at least Pr (E1 ∧ E2) = ε · P · (1 − P )mr .
By Equation (1.1), the value P = 1/(mr + 1) maximizes this lower bound on the exposure
forger’s success probability. Finally, applying the approximation of e−1 in Equation (1.2)
gives ε′ ≥ ε/(e · (mr + 1)).

If all three events occur, then the exposure forger computes the following forged signature
in G1:

σ′A = σA ·
∏
i∈S2

xαi
−ri ·

∏
i∈S4

uαi
−ri .

It outputs σ′A, the user indices αi for i in S1, and the messages mi for i in S1.

42



This signature is valid since

e(σ′A, g2) = e (σA, g2) ·
∏
i∈S2

e
(
xαi
−ri , g2

)
·
∏
i∈S4

e
(
uαi
−ri , g2

)
=

k∏
i=1

e(h′(mi), y
′
αi) ·

∏
i∈S2

e
(
g1
−ri·zαi , g2

)
·
∏
i∈S4

e
(
g1
−ri·wαi , g2

)
=

k∏
i=1

e(h′(mi), y
′
αi) ·

∏
i∈S2

e
(
h′(mi)

−1
, yαi

)
·
∏
i∈S4

e
(
h′(mi)

−1
, vαi

)
=
∏
i∈S1

e(h(mi), yαi).

The exposure forger’s running time t′ is at most t+ (qh + qs + n− 1) · Te + (n− 1) · Tm. It
makes at most as many hashing queries as the replacement forger, qh, and at most as many
signing queries, qs, as the replacement forger. It does not expose any of the private keys
corresponding to the n challenge public keys. Hence, given a (t, ε, qh, qs,mr)-replacement
forger, we can create a (t′, ε′, qh, qs,me)-exposure forger, where mr and me are any positive
integers at most n− 1,

t′ = t+ (qh + qs + n− 1) · Te + (n− 1) · Tm, and

ε′ =
ε

e · (mr + 1)
.

If the BGLS aggregate signature scheme is resistant to (t′, ε′, qh, qs,me)-exposure forgery,
then it is resistant to (t, ε, qh, qs,mr)-replacement forgery for values of t and ε satisfying the
above inequalities.

The previous reduction is not tight: in the worst case, it loses tightness by the number of
users n. The exposure forger does not use its ability to expose private keys, and we are not
aware of a tighter reduction.

Next, in Theorem 4.6, we devise a reduction from replacement forgery to exposure forgery
that has a tightness gap of me. The reduction is depicted in Figure 4.9 on page 44.

Theorem 4.6 (replacement forgery ≤ exposure forgery). If the BGLS signature
scheme in an n-user setting is resistant to (t′, ε′, qh, qs,mr)-replacement forgery, then it is
resistant to (t, ε, qh, qs,me)-exposure forgery, for

t = t′ − (qs + 2n− 1) · Te − (n− 1) · Tm,
ε = ε′ · e · (me + 1),

and any positive integer me that is at most n− 1.

Proof. We prove the contrapositive of this statement: we show how to build a replace-
ment forger given an exposure forger. The replacement forger receives n public keys
(x1, y1), . . . , (xn, yn) and has access to a hashing oracle H and a signing oracle Si for each
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Figure 4.9: The reduction from replacement forgery to exposure forgery has a tightness gap
of me.
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user i. It must give n public keys to the exposure forger. With probability P , it gives the
exposure forger the ith public key it received; otherwise it gives the exposure forger a pair
of random powers:

(x′i, y
′
i) =

{
(xi, yi) with probability P,

(g1
ri , g2

ri) otherwise.

The replacement forger stores (i, ri) for each public key that is a pair of random powers.
We determine the optimal value of P when computing the replacement forger’s success
probability.

When the exposure forger requests the hash of a message m, the replacement forger simply
forwards the query to H and returns the result, h(m), to the exposure forger. When the
exposure forger requests a signature from user i on message m, the replacement forger either
forwards the query to Si or looks up the integer ri and computes the appropriate power of
h(m):

σ′i(m) =

{
σi(m) if (x′i, y

′
i) =(xi, yi),

h(m)ri otherwise.

At any point, the exposure forger can request the private key z′i of user i. If user i’s public
key is one of the replacement forger’s challenge public keys, then the reduction fails since
the replacement forger cannot answer. However, if user i’s public key is a pair of random
powers, then the replacement forger looks up the integer ri and gives it to the exposure
forger.

If the exposure forger did not make any private key requests that the replacement forger
could not answer, then after time at most t, the exposure forger either fails or outputs a
valid forged aggregate signature σA, k distinct messages m1, . . . ,mk, and k user indices
α1, . . . , αk for some positive integer k that is at most n. It did not replace user α1’s public
key, nor did it give the replacement forger a signature on m1. The replacement forger
succeeds if and only if the following three events occur:

(E1) The exposure forger requests only the private keys of users whose public keys are pairs
of random powers. Since it can expose at most me private keys, this event happens
with probability (1− P )me .

(E2) The exposure forger succeeds after time t. Since the exposure forger received random
challenge public keys and the replacement forger correctly simulated the hashing oracle
and signing oracles, this event happens with probability at least ε, given the first event.

(E3) User α1’s public key is not a pair of random powers. That is, (x′α1
, y′α1

) equals
(xα1 , yα1). This event happens with probability P .

The replacement forger’s probability of success ε′ is therefore

Pr (E1 ∧ E2 ∧ E3) ≥ ε · P · (1− P )me .
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By Equation (1.1), the value P = 1/(me + 1) maximizes this lower bound on the replace-
ment forger’s success probability. By applying the approximation in Equation (1.2), the
replacement forger’s success probability ε′ is at least ε/(e · (me + 1)).

When the three events occur, the replacement forger must isolate the part of the signature
σA that contains messages signed by users with “real” public keys. Partition the integers
from 1 to k into the following two sets, based on whether the corresponding user’s public
key is “real”:

S1 = {i ∈ [k] | (x′αi , y
′
αi) = (xαi , yαi)}, and

S2 = {i ∈ [k] | (x′αi , y
′
αi) = (g1

rαi , g2
rαi )}.

Then, the replacement forger computes the following value:

σ′A = σA ·
∏
i∈S2

h(mi)
−rαi .

The replacement forger outputs the aggregate signature σ′A, the messages mi for each i in
S1, and the user indices αi for each i in S1. The forged signature σ′A is valid since

e
(
σ′A, g2

)
= e (σA, g2) ·

∏
i∈S2

e
(
h(mi)

−rαi , g2
)

=
k∏
i=1

e
(
h(mi), y

′
αi

)
·
∏
i∈S2

e
(
h(mi)

−rαi , g2
)

=

∏
i∈S1

e (h(mi), yαi) ·
∏
i∈S2

e (h(mi), g2
rαi )

 · ∏
i∈S2

e
(
h(mi), g2

−rαi
)

=
∏
i∈S1

e (h(mi), yαi) .

The replacement forger does not replace any public keys. It makes as many hash queries
and at most as many signature queries as the exposure forger. Since the exposure forger
never requests a signature on m1, the replacement forger does not either. The replacement
forger performs at most n + qs + n − 1 exponentiations and n − 1 multiplications. There-
fore, the time t′ required by the replacement forger is at most t+(qs+2n−1)·Te+(n−1)·Tm.

Hence, given a (t, ε, qh, qs,me)-exposure forger, we can construct a (t′, ε′, qh, qs,mr)-replace-
ment forger, for

t′ = t+ (qs + 2n− 1) · Te + (n− 1) · Tm,
ε′ =

ε

e · (me + 1)
,

and any positive integer mr that is at most n− 1.

This reduction does not use the replacement capabilities of the replacement forger. We do
not know of such a reduction that is tighter, even when the pairing is symmetric.
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Chapter 5

A new aggregate forgery problem

The reductions between exposure forgery and replacement forgery are not tight in either
direction unless mr or me is very small. At this point, it is clear only that replacement
forgery is no harder than targeted-user forgery. We combine the capabilities of the replace-
ment forger and exposure forger to create the replacement-and-exposure forger. Again, we
assume that if the replacement-and-exposure forger exposed a user’s private key, then its
forged aggregate signature will not include a signature on any message by that user.

Definition 5.1.1. A replacement-and-exposure forger is an adversary with the follow-
ing capabilities and goals. It receives n randomly chosen public keys (x1, y1), . . . , (xn, yn),
corresponding to users 1 to n. It adaptively queries a hashing oracle and n individual sign-
ing oracles with messages. At any point, the forger can choose to corrupt user j by exposing
its private key zj or replacing its public key with any element in G1 ×G2.
The forger’s goal is to output k user indices α1, . . . , αk, k distinct messages m1, . . . ,mk,
and a valid aggregate signature σA comprising user αi’s signature on message mi, for each
integer i from 1 to k, where k is a positive integer at most n. The forger succeeds if it did
not expose any of these k users’ private keys, it did not replace user α1’s public key, and it
did not request a signature on m1 from user α1’s signing oracle.

Definition 5.1.2. A (t, ε,qh,qs,mr,me)-replacement-and-exposure forger runs in
time at most t, succeeds with probability at least ε, makes at most qh hashing queries and
qs signing queries, replaces at most mr public keys, and exposes at most me private keys.
The success probability is computed over all possible inputs (x1, y1), . . . , (xn, yn) and all of
the forger’s coin tosses.

Definition 5.1.3. An aggregate signature scheme is resistant to (t, ε,qh,qs,mr,me)-
replacement-and-exposure forgery if no (t, ε, qh, qs,mr,me)-replacement-and-exposure
forger exists.

First, we remark that the reductions from replacement-and-exposure forgery to exposure
forgery and replacement forgery are tight since replacement-and-exposure forgers have all
the capabilities of these two types of forgers.
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(x1, y1), . . . , (xn, yn) ∈ G1 × G2

H

Si

Sj

Sl

σA ∈ G1,
m1, . . . ,mk,

and α1, . . . , αk

replacement-

and-exposure

forger

m

h(m) ∈ G1

m

σi(m) ∈ G1

replace (xj , yj) with (uj , vj)

expose private key

zl

Figure 5.1: Capabilities and goals of a replacement-and-exposure forger.

Theorem 5.1 (replacement-and-exposure forgery ≤ exposure forgery). If the BGLS
signature scheme in an n-user setting is resistant to (t, ε, qh, qs,mr,me)-replacement-and-
exposure forgery, then it is also resistant to (t, ε, qh, qs,me)-exposure forgery.

Theorem 5.2 (replacement-and-exposure forgery ≤ replacement forgery). If the
BGLS signature scheme in an n-user setting is resistant to (t, ε, qh, qs,mr,me)-replacement-
and-exposure forgery, then it is also resistant to (t, ε, qh, qs,mr)-replacement forgery.

Next, we examine reductions in the other direction. Will the reduction from exposure
forgery to replacement-and-exposure forgery tell us more about the relative hardness of
replacement forgery and exposure forgery? This reduction, in the proof of Theorem 5.3, is
depicted in Figure 5.2 on page 49.

Theorem 5.3 (exposure forgery ≤ replacement-and-exposure forgery). If the BGLS
signature scheme in an n-user setting is resistant to (t′, ε′, qh, qs,me)-exposure forgery, then
it is also resistant to (t, ε, qh, qs,mr,me)-replacement-and-exposure forgery, for any positive
integer mr at most n− 1,

t = t′ − (qh + qs + n− 1) · Te − (n− 1) · Tm, and

ε = ε′ · e · (mr + 1).

Proof. We prove the contrapositive: we show how to build an exposure forger given a
replacement-and-exposure forger. The exposure forger receives n challenge public keys
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Figure 5.2: The reduction from exposure forgery to replacement-and-exposure forgery has a
tightness gap of mr.
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(x1, y1), . . . , (xn, yn) and has access to a hashing oracle H and n individual signing oracles
Si. It can expose at most me of the users’ private keys.

First, the exposure forger gives the replacement-and-exposure forger the same n public keys.
When the replacement-and-exposure forger requests the hash of a message, the exposure
forger either forwards the query to the hashing oracle, or computes a random power of g1:

h′(m) =

{
h(m) with probability P,

g1
r otherwise.

In the second case, the exposure forger records (m, r), where r is the randomly chosen inte-
ger modulo p. We determine the optimal value of P when analyzing the exposure forger’s
success probability.

When the replacement-and-exposure forger requests a signature from user i on a message,
the exposure forger either forwards the query to user i’s signing oracle, or computes the
appropriate power of xi:

σ′i(m) =

{
σi(m) if h′(m) = h(m),

xi
r if h′(m) = g1

r.

In the first case, the signature is clearly valid. When the hash is a random power of g1,

e
(
σ′i(m), g2

)
= e (xi

r, g2) = e (g1
wi·r, g2) = e

(
h′(m), yi

)
,

so the signature is also valid in the second case.

The replacement-and-exposure forger can, at any time, replace user j’s public key with any
public key (uj , vj) in G1 × G2. The exposure forger keeps track of these replaced keys by
recording j and (uj , vj). At any point, the replacement-and-exposure forger can query user
k’s oracle for its private key, which the exposure forger then obtains by querying the real
user k’s oracle.

After time at most t and with some probability, the replacement-and-exposure forger out-
puts a valid forged aggregate signature σA, k distinct messages m1, . . . ,mk, and k user
indices α1, . . . , αk for some positive integer k that is at most n. The replacement-and-
exposure forger did not expose the private key of any user αi, nor did it replace the public
key of user α1 or request a signature on m1 from it.

The exposure forger succeeds if and only if the following events occur:

(E1) The replacement-and-exposure forger succeeds in time t. Since the replacement-and-
exposure forger receives random challenge public keys, the exposure forger correctly
simulates the hashing oracle and signing oracles, and the exposure forger is always
able to reveal the requested private keys, this event happens with probability at least
ε.
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(E2) The hash of message m1 is not a random power of g1 and for each integer i from 2 to
k, if user αi’s public key was replaced, then the hash of mi is a random power of g1.
That is, h′(m1) = h(m1) and h′(mi) = g1

ri for all i such that (xαi , yαi) was replaced.
Given the first event, this event happens with probability Pr (E2 | E1) ≥ P ·(1−P )mr .

The exposure forger’s probability of success ε′ is therefore

Pr (E1 ∧ E2) ≥ ε · P · (1− P )mr .

By Equation (1.1), the value P = 1/(mr + 1) maximizes this lower bound on the exposure
forger’s success probability. By applying the approximation in Equation (1.2), the exposure
forger’s success probability ε′ is at least ε/(e · (mr + 1)).

Let (x′1, y
′
1), . . . , (x

′
n, y
′
n) denote the public keys at the end of the algorithm:

(x′i, y
′
i) =

{
(ui, vi) if the replacement-and-exposure forger replaced (xi, yi),

(xi, yi) otherwise.

When the required events occur, the exposure forger must isolate the part of the forged
signature that contains messages with “real” hashes signed by users whose keys were not
replaced. Partition the integers from 1 to k into the following three sets:

S1 = {i ∈ [k] | (x′αi , y
′
αi) = (xαi , yαi) and h′(mi) = h(mi)},

S2 = {i ∈ [k] | (x′αi , y
′
αi) = (uαi , vαi) and h′(mi) = g1

ri},
S3 = {i ∈ [k] | (x′αi , y

′
αi) = (xαi , yαi) and h′(mi) = g1

ri}.

Event 3 guarantees that any user whose public key is replaced corresponds to an index in
S2. Also, 1 is in the set S1 since the forger did not replace user α1’s public key and E2

guarantees that m1 has a “real” hash. If all three events happen, then the exposure forger
computes the following value in G1:

σ′A = σA ·
∏
i∈S2

uαi
−ri ·

∏
i∈S3

xαi
−ri .

The exposure forger outputs σ′A, the messages mi for each i in S1, and the user indices αi
for each i in S1. This forged signature is valid since

e
(
σ′A, g2

)
= e (σA, g2) ·

∏
i∈S2

e
(
uαi
−ri , g2

)
·
∏
i∈S3

e
(
xαi
−ri , g2

)
=

k∏
i=1

e
(
h′(mi), y

′
αi

)
·
∏
i∈S2

e
(
g1
−wαi ·ri , g2

)
·
∏
i∈S3

e
(
g1
−zαi ·ri , g2

)
=

k∏
i=1

e
(
h′(mi), y

′
αi

)
·
∏
i∈S2

e
(
h′(mi), vαi

−1) · ∏
i∈S3

e
(
h′(mi), yαi

−1)
=
∏
i∈S1

e
(
h′(mi), y

′
αi

)
=
∏
i∈S1

e (h(mi), yαi) .
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The exposure forger exposes only as many private keys as the replacement-and-exposure
forger. It makes at most as many hash queries and signature queries as the replacement-
and-exposure forger. Since the replacement-and-exposure forger never requests a signature
on m1 from user α1, the exposure forger does not either. The exposure forger performs
at most qh + qs + n − 1 exponentiations and n − 1 multiplications. Therefore, given a
(t, ε, qh, qs,mr,me)-replacement-and-exposure forger, we can construct a (t′, ε′, qh, qs,me)-
exposure forger, for

t′ = t+ (qh + qs + n− 1) · Te + (n− 1) · Tm, and

ε′ =
ε

e · (mr + 1)
.

The reduction from exposure forgery to replacement-and-exposure forgery has a tightness
gap of mr, just like the reduction from exposure forgery to replacement forgery. Next, we
examine the reduction from replacement forgery to replacement-and-exposure forgery in
Theorem 5.4. The reduction in this theorem is depicted in Figure 5.3 on page 53.

Theorem 5.4 (replacement forgery ≤ replacement-and-exposure forgery). If the
BGLS signature scheme in an n-user setting is resistant to (t′, ε′, qh, qs,mr)-replacement
forgery, then it is also resistant to (t, ε, qh, qs,mr,me)-replacement-and-exposure forgery,
for any positive integer me at most n− 1,

t = t′ − (2n+ qs − 1) · Te − n · Tm, and

ε = ε′ · e · (me + 1).

Proof. We prove the contrapositive: we show how to build a replacement forger given a
replacement-and-exposure forger. The replacement forger receives n challenge public keys
(x1, y1), . . . , (xn, yn) and has access to a hashing oracle H and n individual signing oracles
Si. It can replace at most mr of the users’ public keys.

First, the replacement forger must give the replacement-and-exposure forger n public keys.
The replacement forger either gives it one of the public keys it received, or computes a pair
of random powers:

(x′i, y
′
i) =

{
(xi, yi) with probability P,

(g1
ri , g2

ri) otherwise.

In the second case, the replacement forger records (i, ri), where ri is the randomly chosen
integer modulo p. We determine the optimal value of P when analyzing the replacement
forger’s success probability.

When the replacement-and-exposure forger requests the hash of a message, the replacement
forger simply forwards the query to the hashing oracle and returns the result, h(m) to the
replacement-and-exposure forger. When the replacement-and-exposure forger requests user
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i’s signature on a message, the replacement forger either forwards the query to user i’s
signing oracle, or computes the appropriate power of h(m):

σ′i(m) =

{
σi(m) if (x′i, y

′
i) = (xi, yi),

h(m)ri if (x′i, y
′
i) = (g1

ri , g2
ri).

It is clear that these signatures are both valid.

The replacement-and-exposure forger can, at any time, replace user j’s public key (x′j , y
′
j)

with any public key (uj , vj) in G1 ×G2. The replacement forger then also replaces user j’s
public key (xj , yj) with the same (uj , vj). The replacement-and-exposure forger can also
request the private key z′k of user k. If user k’s public key is one of the replacement forger’s
challenge public keys, then the reduction fails. Otherwise, the replacement forger gives it
the private key z′k = rk.

After time at most t and with some probability, the replacement-and-exposure forger out-
puts a valid forged aggregate signature σA, k distinct messages m1, . . . ,mk, and k user
indices α1, . . . , αk for some positive integer k that is at most n. The replacement-and-
exposure forger did not expose any of the private keys of these k users. It did not replace
user α1’s public key, nor did it request a signature on m1 from this user. The replacement
forger succeeds if and only if the following events occur:

(E1) The replacement forger can answer all exposure queries. That is, if the replacement-
and-exposure forger asks for user k’s private key, then (x′k, y

′
k) = (g1

rk , g2
rk). This

event happens with probability at least (1− P )me .

(E2) The replacement-and-exposure forger succeeds after time at most t. Since the keys it
receives are random and the replacement forger correctly simulates the hashing oracle
and signing oracles, the probability that this event happens given the first event is at
least ε.

(E3) User α1’s public key is not a pair of random powers. That is, (x′α1
, y′α1

) = (xα1 , yα1).
Given the first two events, this event happens with probability at least P .

Therefore, the lower bound on the replacement forger’s probability of success ε′ satisfies

Pr (E1 ∧ E2 ∧ E3) ≥ ε · P · (1− P )me .

By Equation (1.1), the value P = 1/(me + 1) maximizes this lower bound. By applying the
approximation in Equation (1.2), the replacement forger’s success probability ε′ is at least
ε/(e · (me + 1)).

When the three events occur, the replacement forger must isolate the part of the forged
signature that contains messages signed by users with “real” public keys. Partition the
integers from 1 to k into the following two sets:

S1 = {i ∈ [k] | v′αi = vαi or v′αi = wαi},
S2 = {i ∈ [k] | v′αi = g2

rαi and v′αi is not replaced}.
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Event 3 guarantees that 1 is in S1 since user α1’s public key is not a pair of random powers.
If all three events happen, the replacement forger computes the following value in G1:

σ′A = σA ·
∏
i∈S2

h(mi)
−rαi .

The replacement forger then outputs σ′A, the messages mi for i in S1, and the user indices αi
for i in S1. It replaces only as many public keys as the replacement-and-exposure forger. It
makes at most as many hash and signature queries as the replacement-and-exposure forger.
Since the replacement-and-exposure forger never requests a signature on m1 from user α1,
the exposure forger does not either. Finally, the forged signature σ′A is valid since

e
(
σ′A, g2

)
= e (σA, g2) ·

∏
i∈S2

e
(
h(m

−rαi
i , g2

)
=

k∏
i=1

e
(
h(mi), v

′
αi

)
·
∏
i∈S2

e
(
h(mi), v

′
αi
−1
)

=
∏
i∈S1

e
(
h(mi), v

′
αi

)
.

The indices in S1 correspond to users whose public keys are challenge public keys that the
replacement forger received, or to users whose public keys were replaced by the replace-
ment-and-exposure forger and thus also the replacement forger. The replacement forger
performs at most n+ qs + n− 1 exponentiations and n multiplications. Therefore, given a
(t, ε, qh, qs,mr,me)-replacement-and-exposure forger, we can construct a (t′, ε′, qh, qs,mr)-
replacement forger, for

t′ = t+ (2n+ qs − 1) · Te + n · Tm, and

ε′ =
ε

e · (me + 1)
.

Like the reduction from replacement forgery to exposure forgery, the previous reduction
from replacement forgery to replacement-and-exposure forgery has a tightness gap of me.
From the reductions, it is still unclear whether exposure forgery or replacement forgery
is easier. However, our goal is to show that BGLS is secure against the easiest problem,
and replacement-and-exposure forgery is definitely easier than both exposure forgery and
replacement forgery.

5.1 New security reduction for BGLS

In this section, our goal is to find a reduction from the co-CDH* problem to replacement-
and-exposure forgery, which is the easiest forgery problem we consider. So far, we have
been analyzing the security of BGLS by comparing types of forgeries. We could compose a
chain of reductions (cf. Figure 4.1) to get the desired reduction, and multiply the tightness
gaps to get its tightness gap:

• The reduction from solving the co-CDH* problem to targeted-user forgery (Figure 3.3)
has a tightness gap of qs + n.
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• The reduction from targeted-user forgery to replacement forgery has a tightness gap
of n.

• The reduction from replacement forgery to replacement-and-exposure forgery has a
tightness gap of me.

Composing these three reductions, we obtain a reduction from the co-CDH* problem to
replacement-and-exposure forgery with a tightness gap of (qs + n) · n · me, which is at
most (qs + n) · n2. Similarly, if we choose exposure forgery as the intermediate step be-
tween targeted-user forgery and replacement-and-exposure forgery, we obtain a reduction
from the co-CDH* problem to replacement-and-exposure forgery that has a tightness gap
of (qs + n)(n+me) ·mr, which is at most (qs + n) · 2n2.

However, it may be possible to find a tighter reduction from solving the co-CDH* problem
to replacement-and-exposure forgery. For instance, before directly comparing replacement
forgery and exposure forgery in Section 4.4, we could deduce the existence of a reduction
from replacement forgery to exposure forgery with a tightness gap of (n − mr)(n + me).
However, we found a direct reduction from replacement forgery to exposure forgery with a
tightness gap of only me. All edges in Figure 4.1 satisfy this property: the tightness gap in
the direct reduction from problem A to problem B is at most the product of the tightness
gaps along any directed path from problem A to problem B.

Our first attempt at a direct reduction from solving the co-CDH* problem to replace-
ment-and-exposure forgery did not finish due to a complex probability analysis. We briefly
outline how to build a co-CDH* solver given a replacement-and-exposure forger. The co-
CDH* solver receives h and x = g1

z in G1, and y = g2
z in G2. It must eventually output

hz in G1.

It gives the forger the following n public keys, where ri is a random integer modulo p:

(xi, yi) =

{
(x · g1ri , y · g2ri) with probability P,

(g1
ri , g2

ri) otherwise.

It answers the forger’s hash queries in the following way, where s is a random integer modulo
p:

h(m) =

{
h · g1s with probability Q,

g1
s otherwise.

When the forger requests a signature from user i on message m, the solver fails if the mes-
sage’s hash is h-dependent and user i’s public key is (x, y)-dependent. If the forger requests
the private key zk of user k and user k’s public key is (x, y)-dependent, then the solver fails.

If neither of these events happen, then eventually the replacement-and-exposure forger out-
puts a valid aggregate signature σA on messages m1, . . . ,mk, by users α1, . . . , αk for some
positive integer k that is at most n. It did not replace user α1’s public key, nor did it receive
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a signature on m1 by this user. Further, none of these k users’ private keys were exposed.
For the co-CDH* solver to succeed, user α1’s public key must be (x, y)-dependent, message
m1’s hash must be h-dependent, and for users α2 to αk, if a public key was replaced, then
the corresponding message’s hash is not h-dependent.

Now, let ne and nr represent the actual number of public keys the forger exposed and
replaced. These necessary events yield the following lower bound on the co-CDH* solver’s
success probability ε′:

ε′ ≥ ε · (1− PQ)qs · (1− P )ne · (1−Q)nr · P ·Q.

We could not determine how to optimize P and Q without making very loose approxima-
tions.

Maple 14 [1] computes the following optimal values of P and Q:

P = − nr(nr ·Q+Q− 1)

Q(ne · nr + nr · qs + ne)− ne
, and

Q is a solution to 0 = nr (qs + nr + 1)Q2 + (−nr + ne · nr + ne)Q− ne.

Evaluating this expression for certain values of qs, ne, and nr suggests that in some cases,
the optimal value of P is less than 1/n. For example, consider an implementation with
n = 220, or about 1 million, users. Suppose that a forger can make a total of qs = 240 sig-
nature queries. Then, if the forger exposes at least 219, or about half, of the users’ private
keys, the optimal value of P is less than 1/n. However, the co-CDH* solver would succeed
with negligible probability if none of the n public keys it gives to the forger involve g1

z and
g2
z.

Therefore, we instead try to find a reduction from solving the co-CDH* problem to replace-
ment-and-exposure forgery for a modified version of the BGLS aggregate signature scheme.
We use Katz and Wang’s idea of prepending a random bit to a message before hashing it
[23]. Now, when a forger interacts with a hashing oracle, it gives it a bit b and a message
m. When the forger requests a signature from user i, it is user i itself that chooses the bit
b and thus chooses which of two hash values to sign.

We must make one small addition to the assumptions listed at the start of Chapter 3. We
assume that a forger never requests a signature on the same message twice. This assumption
is reasonable when messages have unique signatures; a forger gains no additional information
from getting the same signature twice. Now, however, each message has two signatures,
so we must additionally assume that a user always chooses the same bit when it signs
a particular message. We present the modified scheme, which we denote by BGLS-KW,
below.

Signature Scheme 5.5 (BGLS, Katz-Wang variant, with type III pairing).

• Set-up: The order-p groups G1 = 〈g1〉, G2 = 〈g2〉, and GT , the full-domain hash
function h : {0, 1}∗ → G1, and the type III pairing e : G1×G2 → GT are the same as
in BGLS.
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• Key generation: Same as in BGLS.

• Signing: To sign the k distinct messages m1, . . . ,mk ∈ {0, 1}∗ with secret keys
x1, . . . , xk ∈ Zp, compute σA =

∏k
i=1 h(bi || mi)

zi in G1 where each bi is a random bit.
The same bit bi is used each time the message mi is signed by user i. The signature
comprises σA and the bits b1, . . . , bk.

• Verification: To verify the signature σA on messages m1, . . . ,mk by users with public
keys (x1, y1), . . . , (xk, yk) and chosen random bits b1, . . . , bk, verify that

∏k
i=1 e(h(bi ||

mi), yi) = e(σA, g2).

The bits must be transmitted with the signature, which is inefficient, but we examine this
scheme only to say something about the security of the original BGLS scheme against
replacement-and-exposure forgers. Koblitz and Menezes compared the RSA-FDH signature
scheme with its Katz-Wang variant, where a bit is prepended to a message before it is
hashed [25]. They argue that it seems “implausible that the Katz-Wang system could be
appreciably more secure than the original RSA signature with full-domain hash function.”
Similarly, we believe that the reduction from solving co-CDH* to targeted-user forgery with
the original BGLS scheme is not less tight than the reduction with the Katz-Wang variant.
The reduction is depicted in Figure 5.4 on page 59.

Theorem 5.6 (Security of BGLS-KW with type III pairing). If the co-CDH*
problem is (t′, ε′)-hard, then the BGLS-KW aggregate signature scheme is resistant to
(t, ε, qh, qs,mr,me)-replacement-and-exposure forgery, for

t = t′ − (3n+ qh + qs) · Te − (4n+ qh) · Tm, and

ε = ε′ · 2e2 · (me + 1)(mr + 1).

Proof. We prove the contrapositive of this statement: we show how to build a co-CDH*
solver given a replacement-and-exposure forger. The co-CDH* solver receives h and x = g1

z

in G1, and y = g2
z in G2. It must eventually output hz in G1. First, it must give n public

keys to the replacement-and-exposure forger. With probability P , it gives the replacement-
and-exposure forger a public key that depends on (x, y); otherwise it gives the forger a pair
of random powers:

(xi, yi) =

{
(x · g1ri , y · g2ri) with probability P,

(g1
ri , g2

ri) otherwise.

For each public key, the solver records (i, ri), where ri is the randomly chosen integer mod-
ulo p, and whether it depends on (x, y). We will determine the optimal value of P when
computing the co-CDH* solver’s success probability.

When the replacement-and-exposure forger requests the hash of the bit b and message m,
the solver first selects a random bit b′m, if it has not already done so for that message. It
records (m, b′m) and gives the forger one of two hashes:

h(b || m) =

{
hb⊕b

′
m · g1s with probability Q,

g1
s otherwise,
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Si

Sj

Sk

hz =
(
σA ·

(∏
i∈S1

hrαi

·
∏
i∈S1∪S2

(x · g1rαi )si
·
∏
i∈S3

h(bi || mi)
rαi

·
∏
i∈S4

uαi
si
)−1
)|S1|−1

replacement-

and-exposure

forger

co-CDH* solver

h, x = g1
z, y = g2

z

hz

(xi, yi) =

{
(x · g1ri , y · g2ri) pr. 1

me+1

(g1
ri , g2

ri) else

m, b

h(b || m) =

{
hb⊕b

′
m · g1s pr. 1

mr+1

g1
s else

m

σi(m) = xi
s, b

replace (xj , yj) with (uj , vj)

expose private key

FAIL or rk

σA, m1, . . . ,mk,
α1, . . . , αk, and

b1, . . . , bk

Figure 5.4: The reduction from solving the co-CDH* problem to replacement-and-exposure
forgery in the Katz-Wang variant of BGLS has a tightness gap of about n2.
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where s is a random integer modulo p. This construction guarantees that at most one of
a message’s two hashes can include h, and that the bit corresponding to the potentially
h-dependent hash is random. The solver also records (m, b, s) for each hashed message.

When the forger requests a signature from user i on message m, the solver always “chooses”
to sign a hash that does not involve h. First, suppose that m was hashed only once, it was
hashed with b 6= b′m, and its hash is h-dependent. In this case, the solver itself hashes
m with b = b′m. Suppose that it chooses s as the random power of g1. Then, it returns
σi(m) = xi

s and the bit b′m to the forger. Next, suppose that m has at least one h-
independent hash. The solver looks up a value of s that it used to compute this hash, say
with bit b. It returns σi(m) = xi

s and b to the forger. In either case, the signature is valid
since xi

s = (g1
logg1 xi)s = h(m)logg1 xi .

At any time, the replacement-and-exposure forger can replace user j’s public key with any
(uj , vj) in G1×G2. The solver keeps track of these replaced keys by recording j and (uj , vj).
The forger can also request the private key zk of user k. If user k’s public key is (x, y)-
dependent, then the solver fails since it cannot answer. Otherwise, the co-CDH* solver
looks up rk and gives it to the forger.

Suppose the replacement-and-exposure forger did not make any private key requests that
the solver could not answer. Then, after time at most t, the forger either fails or outputs
a valid aggregate signature σA, k distinct messages m1, . . . ,mk, k user indices α1, . . . , αk,
and k bits b1, . . . , bk for some positive integer k that is at most n. User α1’s public key was
not replaced, nor did the forger receive a signature on m1 by this user. Further, none of
these k users’ private keys were exposed.

The co-CDH* solver succeeds if and only if the following events occur:

(E1) The forger requests only the private keys of users whose public keys are pairs of
random powers. This event happens with probability at least (1− P )me .

(E2) The forger succeeds after time t. Since the forger receives random challenge public
keys and the solver correctly simulates the hashing oracle and signing oracles, given
the first event, this event happens with probability at least ε.

(E3) The bit b1 does not equal b′m1
. Since the forger does not know the value of b′ for any

message, this event happens with probability 1/2 given the first two events.

(E4) The hash of b1 || m1 is h-dependent. Given the previous events, this event happens
with probability Q.

(E5) User α1’s public key is (x, y)-dependent. Given the previous events, this event happens
with probability P .

(E6) For users α2 to αk, if a public key was replaced, then the corresponding message’s hash
is not h-dependent. Given the previous events, this event happens with probability
at least (1−Q)mr .
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The solver’s probability of success ε′ is therefore at least

Pr (E1 ∧ · · · ∧ E6) ≥ (1− P )me · ε · 1

2
·Q · P · (1−Q)mr .

By Equation (1.1), the optimal values of P and Q are P = 1/(me + 1) and Q = 1/(mr + 1).
Next, by applying the approximation in Equation (1.2), the solver’s success probability ε′

is at least
ε

2e2 · (me + 1)(mr + 1)
.

When the six required events occur, the solver must extract hz from the signature σA.
Partition the integers from 1 to k into the following sets, based on the type of key and type
of message hash:

S1 = {i ∈ [k] | public key is (x, y)-dependent, not replaced; h(bi || mi) is h-dependent},
S2 = {i ∈ [k] | public key is (x, y)-dependent, not replaced; h(bi || mi) is not h-dependent},
S3 = {i ∈ [k] | public key is random, not replaced},
S4 = {i ∈ [k] | public key was replaced; h(bi || mi) is not h-dependent by E6}.

Then, since there is a unique aggregate signature on these messages by these users with
these bits, it must satisfy the following equation:

σA =
∏
i∈S1

h(bi || mi)
zαi ·

∏
i∈S2

h(bi || mi)
zαi ·

∏
i∈S3

h(bi || mi)
zαi ·

∏
i∈S4

h(bi || mi)
wαi

=
∏
i∈S1

(h · g1si)z+rαi ·
∏
i∈S2

(g1
si)z+rαi ·

∏
i∈S3

h(bi || mi)
rαi ·

∏
i∈S4

(g1
si)wαi

=
∏
i∈S1

hz · hrαi · g1si(z+rαi ) ·
∏
i∈S2

g1
si(z+rαi ) ·

∏
i∈S3

h(bi || mi)
rαi ·

∏
i∈S4

uαi
si

= hz·|S1| ·
∏
i∈S1

hrαi ·
∏

i∈S1∪S2

(x · g1rαi )si ·
∏
i∈S3

h(bi || mi)
rαi ·

∏
i∈S4

uαi
si .

Then, the solver computes the following value, which equals hz:σA ·
∏
i∈S1

hrαi ·
∏

i∈S1∪S2

(x · g1rαi )si ·
∏
i∈S3

h(bi || mi)
rαi ·

∏
i∈S4

uαi
si

−1|S1|−1 mod p

.

The co-CDH* solver performs at most 3n+ qh + qs exponentiations and 4n+ qh multiplica-
tions. Hence, given a (t, ε, qh, qs,mr,me)-replacement-and-exposure forger, we can construct
a (t′, ε′)-co-CDH* solver, for

t′ = t+ (3n+ qh + qs) · Te + (4n+ qh) · Tm, and

ε′ =
ε

2e2 · (me + 1)(mr + 1)
.

When mr and me have their maximum values, n−1, the reduction loses tightness by a factor
of about n2, and we expect the reduction from the co-CDH* problem to BGLS forgery to
have a similar tightness gap. The original security reduction for BGLS, Theorem 3.5 on
page 20, already had a tightness gap of n+ qs. Is this further loss of tightness significant?
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Chapter 6

Conclusion

This thesis addresses a deficiency in the chosen-key security model of BGLS: we believe that
it is not realistic to assume that an attacker is given a public key to target. We suggested
improvements to the security model for general, non-identity based aggregate signature
schemes. We gradually constructed a security model where attackers can choose the target
users and can replace other users’ public keys or expose their private keys. We presented
reductions among the original targeted-user forgery, intermediate notions of forgery, and the
stronger notion of replacement-and-exposure forgery. Finally, we gave a security reduction
for a variant of the BGLS aggregate signature scheme with respect to replacement-and-
exposure forgery and compared its tightness to the original BGLS security reduction. We
considered only type III pairings and we supplemented each reduction with a reduction
diagram.

Our analyses assumed that there is an upper bound on the total number of signature queries
a forger can make. It is not clear whether this assumption is valid. The bound could also
be on the number of signature queries it can make per user. Additionally, there could be a
limit on the number of signatures in each aggregate signature.

In Subsection 3.2.1, we described a rogue key attack and three ways to prevent it: requiring
proof of knowledge of the private key, proof of possession of the private key, or pairwise
distinct messages. We chose the last method, so our reductions assume nothing about how
users register their public keys. We now briefly consider how the reduction from solving
the co-CDH* problem to replacement-and-exposure forgery changes if one of the other two
methods is used. Suppose that when the forger replaces some user’s public key with (u, v),
it must then prove that it knows the corresponding private key w by revealing it to a third
party. In the plain public-key model, if the forged signature includes a message signed by
a user whose public key was replaced, then that message’s hash must be h-independent for
the solver to succeed. In this model, however, the co-CDH* solver controls the third party.
Thus, it can always remove the part of the forged aggregate signature corresponding to a
user whose key was replaced, regardless of the message’s hash type. When this type of proof
of knowledge is used, the reduction is tighter.
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Next, suppose that the forger must prove that it possesses w by signing the hash of (u, v)
with BLS, using the current BGLS parameters. In the reduction, the co-CDH* solver con-
trols the hashing oracle. By responding to the hash query with a value that includes h, say
h multiplied by a random power of g1, the co-CDH* solver can compute hw from the forger’s
proof-of-possession signature. Again, the reduction is tighter: in the forged signature, the
hashes of messages signed by users whose public keys were replaced no longer need to be
h-independent. In these two cases, the replacement-and-exposure forger behaves like an
exposure forger.

We wonder whether tighter reductions exist from exposure forgery to targeted-user forgery
and from replacement forgery to exposure forgery. In the former reduction (Theorem 4.1),
the exposure forger does not use its ability to expose any private keys. In the latter reduc-
tion (Theorem 4.6), the replacement forger does not use its ability to replace any public
keys. In Section 5.1, we presented a security reduction for a variant of BGLS that has
a tightness gap of about n2. The original BGLS security reduction, with a targeted-user
forger, has a tightness gap of n + qs. Could there be an attack on BGLS that requires n
times less work with a replacement-and-exposure forger than with a targeted-user forger?

Our security reductions are specific to BGLS, so we wonder whether the security models
of sequential aggregate signature schemes could also be modified to consider these stronger
adversaries. For example, could our reductions apply to the LOSSW aggregate signature
scheme [26]? This scheme is pairing-based, like BGLS, but aggregation is sequential and
its security reduction does not use random oracles. We wonder whether our reduction tech-
niques would then fail. It would also be interesting to examine whether our reductions could
apply to Neven’s sequential aggregate signature scheme, which is RSA-based [28].

Many questions surround the tightness of reductions and the significance of non-tight re-
ductions, of which we note a few here. Is there a better way to assess the tightness of
a reduction than computing the tightness gap? Why are the storage requirements of re-
ductions not usually analyzed? How much importance should the tightness of a security
reduction have when choosing the security parameters of a scheme in practice? What if the
non-tightness of a security reduction means the protocol is too inefficient to use in prac-
tice? Koblitz and Menezes point out that sometimes, authors “give a non-tight reductionist
argument, and [...] give key-length recommendations that would make sense if their proof
had been tight” [25].

Giving more power to adversaries results in a security reduction that is even less tight than
the original BGLS security reduction. We believe our security model is more comprehen-
sive and realistic, and that in general, it is prudent to honour the careful construction and
analysis of a security reduction by addressing its tightness gap when choosing the security
parameter in implementations of the scheme.
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