
Database High Availability using
SHADOW Systems

by

Xin Pan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Science
in

Computer Science

Waterloo, Ontario, Canada, 2014

c© Xin Pan 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144147262?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Various High Availability DataBase systems (HADB) are used to provide high availability.
Pairing an active database system with a standby system is one commonly used HADB
techniques. The active system serves read/write workloads. One or more standby systems
replicate the active and serve read-only workloads. Though widely used, this technique has
some significant drawbacks: The active system becomes the bottleneck under heavy write
workloads. Replicating changes synchronously from the active to the standbys further
reduces the performance of the active system. Asynchronous replication, however, risk the
loss of updates during failover. The shared-nothing architecture of active-standby systems
is unnecessarily complex and cost inefficient.

In this thesis we present SHADOW systems, a new technique for database high avail-
ability. In a SHADOW system, the responsibility for database replication is pushed from
the database systems into a shared, reliable, storage system. The active and standby sys-
tems share access to a single logical copy of the database, which resides in shared storage.
SHADOW introduces write offloading, which frees the active system from the need to
update the persistent database, placing that responsibility on the underutilized standby
system instead. By exploiting shared storage, SHADOW systems avoid the overhead of
database-managed synchronized replication, while ensuring that no updates will be lost
during a failover. We have implemented a SHADOW system using PostgreSQL, and we
present the results of a performance evaluation that shows that the SHADOW system can
outperform both traditional synchronous replication and standalone PostgreSQL systems.

iii

Acknowledgements

I would like to thank Professor Kenneth Salem for being my supervisor. I admire
his patience, that made the completion of this thesis possible, and I am grateful for his
thorough critical comments, that helped me to make it more consistent.

I am grateful to University of Waterloo for providing funding for my studies and being
an exciting place.

iv

Dedication

This is dedicated to the one I love.

v

Table of Contents

List of Figures ix

1 Introduction 1

1.1 Background . 1

1.2 SHADOW systems . 2

1.3 Thesis Organization . 3

2 SHADOW Overview 5

3 SHADOW Operations 8

3.1 Assumptions . 9

3.2 Stand Alone State . 10

3.3 Protect . 10

3.4 Active + Standby State . 12

3.5 Failover . 13

3.6 Re-protect . 13

3.7 DBMS Recovery . 14

3.8 Correctness of SHADOW . 15

4 Large Databases 17

4.1 Stale Read Detection . 17

vi

4.2 Correcting Stale Reads . 18

4.3 Discussion . 20

4.3.1 Alternative Stale Read Correcting Methods 20

5 Prototype Implementation 21

5.1 DBMS for SHADOW-NFS . 22

5.2 Shared Storage for SHADOW-NFS . 25

5.3 Alternative Shared Reliable Storage . 25

5.3.1 Dynamo . 25

5.3.2 DAX . 26

6 Evaluation 27

6.1 Experiment Methodology . 27

6.2 Large Memory Case . 29

6.3 Small Memory Case . 30

6.4 Large Dataset Case . 32

6.5 Protection and Failure Handling . 34

6.5.1 Protection . 34

6.5.2 Failover . 36

6.5.3 Re-protect . 37

7 Related Works 39

7.1 Overview . 39

7.2 MySQL . 41

7.3 PostgreSQL . 42

7.4 Oracle . 43

7.5 RemusDB . 44

7.6 Spanner . 44

vii

8 Conclusion 46

References 47

viii

List of Figures

2.1 SHADOW System Architecture . 6

3.1 Operational States of a SHADOW System 9

3.2 Protection Operation Timeline . 11

3.3 DBMS Persistent State After Linked Backup 12

4.1 Reading a Page at the Active DBMS . 19

5.1 The SHADOW-NFS Prototype . 22

6.1 Database Writes (KB/s) between Active and NFS server 29

6.2 50th and 99th Percentile NewOrder Transaction Latency (ms) 29

6.3 TPC-C Throughput, Large Memory . 30

6.4 TPC-C Throughput, Small Memory . 31

6.5 TPC-C Throughput, Large Dataset . 33

6.6 TPC-C Throughput, Large Dataset . 35

6.7 Write I/O between the Active and the NFS, Large Dataset 35

6.8 Protection Time in SHADOW-NFS and SR 36

6.9 Failover Time in SHADOW-NFS and SR 37

6.10 TPC-C Throughput During a Standby Failure 38

7.1 Replication design dimensions . 40

ix

Chapter 1

Introduction

1.1 Background

High Availability refers to the ability of a system to remain accessible to users in the pres-
ence of either software or hardware failures. Highly Available DataBase systems (HADB)
are widely used nowadays. Various techniques [2, 4, 19, 1, 16, 6] are used to achieve
database system high availability.

In this thesis, we focus on the active-standby configurations with one active system
and a standby system. In a typical one active and one standby configuration, the active
and standby systems each maintain a private copy of database in their private persistent
storage. The active accepts read/write workloads from users and updates its own copy of
database in persistent storage. It also ships logs to the standby so that the standby can
replay the operations from the active and update its own copy of database. The whole
system is able to remain available during a single-site failure.

Although active-standby systems have been widely used, they have some significant
drawbacks:

complexity: Two logically distinct copies of the database are required, one managed
by the active system and one managed by the standby. Synchronization of these two
databases, which is normally done by log shipping, must be managed by the database sys-
tems, and configured and controlled by database administrators (DBAs). This introduces
extra complexity to the already very complex DBMS.

performance: To minimize the risk that updates will be lost as a result of a failure of

1

the active system, active-standby systems can use synchronous log shipping. This means
that updates performed by a transaction at the active must be shipped to the standby
system, and acknowledged by the standby, before the active transaction commits. Such
synchronization can add considerable latency to transaction commit processing at the
active system, hurting its performance.

lost updates: To avoid the performance penalties associated with synchronous log ship-
ping, the active system can ship logs asynchronously, after the logged transaction has been
committed at the active system and acknowledged to client applications. Although this
hides the latency of log shipping, updates performed by recently committed transactions
may be lost when the active system fails, since those updates may not have been shipped to
the standby system prior to the failure. Many asynchronous replication mechanisms imple-
mented by DBMS cannot guarantee the ACID 1 properties during failover. Log shipping
and transaction commit cannot be done in an atomic manner easily.

cost and cost efficiency: An active-standby system is essentially twice as expensive to
deploy and operate as an unprotected active system alone, since there are two database
systems and two databases to store and update. Despite this extra cost, an active-standby
system sometimes performs worse than an unprotected active system, because of the over-
head of log shipping and the latencies associated with update synchronization. Thus, the
cost per transaction may be more than twice as high in an active-standby system as in a
standalone active. This is a steep price to pay for high availability.

1.2 SHADOW systems

In this thesis we propose SHADOW (SHAred Database with Offloaded Writes) systems,
an alternative active-standby high availability architecture for DBMS that addresses these
weaknesses. SHADOW systems incorporate two key ideas. First, in a SHADOW sys-
tem, the active and standby database systems share access to a single logical copy of the
database and a single copy of the log. The shared database and log reside in a reliable
and highly available storage tier which is accessible to both the active system and the
standby system. The storage tier replicates and distributes data to achieve fault tolerance
and high availability. By pushing replication out of database systems and into the storage
tier, complexity in the database system tier is reduced. Durably committing a transaction
does not require coordination between two database systems. There is no risk that the

1Atomicity, Consistency, Isolation and Durability

2

active and standby databases will diverge, since there is only one (logical) database in a
SHADOW system.

The second idea incorporated by SHADOW systems is called write offloading. In a
SHADOW system, the active DBMS retains responsibility for processing client requests.
However, the active DBMS never updates the persistent database in the underlying storage
tier. It writes only log records to the persistent storage system. The task of updating the
persistent copy of the database falls instead to the standby system. In some scenarios,
such as when the active and standby database systems have large amounts of memory,
write offloading allows a SHADOW system to achieve higher transaction throughput than
a standalone, active DBMS, while ensuring high availability. A SHADOW system is still
more expensive than a standalone DBMS, but this cost buys both high availability and
improved performance.

This thesis makes the following research contributions:

• We propose the SHADOW system architecture, and present algorithms for initiating a
SHADOW standby system and for reading from the persistent database at the active
DBMS.

• We present a prototype implementation of the SHADOW architecture. The prototype
uses a network file system to provide shared persistent storage for the database and
the log.

• We present an evaluation of the prototype, and a comparison of its performance against
several baselines. Our evaluation shows that the SHADOW prototype provides better
performance that existing hot standby approaches, while ensuring that no transactions
are lost as a result of failures. It also demonstrates that, because of write-offloading, a
SHADOW system can outperform a standalone DBMS, although the former provides
high availability while the latter does not.

1.3 Thesis Organization

The remainder of the thesis is structured as follows. Section 2 provides a general overview
of the SHADOW architecture. Section 3 describes the operation of a SHADOW system
under the assumption that there is sufficient local memory at the active and standby
database servers to hold a complete copy of the database. This is the target environment
for the SHADOW design. In Section 4, we describe how this assumption can be relaxed.

3

Section 5 describes our SHADOW prototype implementation, called SHADOW-NFS, and
Section 6 presents the results of a performance evaluation that compares the prototypes to
several different baselines. Section 7 summarizes related work, and Section 8 concludes.

4

Chapter 2

SHADOW Overview

Figure 2.1 illustrates the architecture of a SHADOW system. Clients connect to the active
DBMS, which processes all client transactions. The clients can also send read-only queries
to the hot standby. Both the active and the standby have access to a shared, reliable
persistent storage system, which holds a single (logical) copy of the database and the
transaction log.

We assume that the shared persistent storage system is itself highly available. There
are numerous widely used techniques for implementing highly available shared storage.
For example, Amazon Web Services (AWS) provides the Elastic Block Store (EBS), which
replicates data across multiple servers. EBS provides network-accessible storage volumes
which can be attached to servers running in the AWS cloud. Alternatively, highly available
shared storage could be provided by a cluster file system, such as VMFS [26], with the file
system data mirrored or striped across multiple storage devices using RAID [21] techniques.
Network file systems, such as NFS, can also be made highly available through the use of
server pairs. For the purposes of this section, we are not concerned with the specific
implementation of the shared storage system. In Section 5 we describe the details of an
implementation of the SHADOW architecture, named SHADOW-NFS. It is based on the
PostgreSQL DBMS and an NFS shared file system.

The SHADOW architecture targets transaction processing (OLTP) workloads, for which
fast efficient transaction processing is critical. In particular, the SHADOW architecture
targets applications in which most or all of the database can fit in memory at the active and
standby servers. This is a common configuration for OLTP applications. Thus, Figure 2.1
shows local database caches at both the active and standby systems. In a SHADOW
system, all storage local to the active and standby systems is treated as ephemeral, and

5

Log

DB

Clients

DB Cache DB Cache

Active Standby

Persistent
Storage System

Figure 2.1: SHADOW System Architecture

data stored locally (including the contents of the local database cache) are not expected
to persist across a failure of the local system. Thus, for a transaction to be considered
durably committed, its updates and commit record must be present in the persistent stor-
age system.

In a SHADOW system, the active DBMS performs updates in its local, cached copy
of the database. The active DBMS also performs write-ahead logging to push records of
database updates and transaction commits to the persistent log. These log writes are the
only writes the active DBMS performs on the persistent storage system. It never updates
the persistent copy of the database.

The standby reads log records generated by the active and replays those logged updates
against its local cached copy of the database. In addition, the standby gradually propagates
database changes from its local database copy to the persistent copy. Thus, only the
standby system updates the persistent copy of the database. This offloading of database
updates from the active DBMS to the standby distinguishes SHADOW systems from other
active-standby techniques.

In a SHADOW system, a transaction is committed once its commit record is present in
the persistent log. There is no need for coordination between the active and standby sys-
tems during transaction commit. SHADOW is designed to handle varioius failure senarios.
In case of a failure of the active DBMS, the standby finishes replaying any remaining log
records, and then takes over as the new active system. This failover procedure is very

6

similar to failover procedures in other hot standby database systems. The standby DBMS
is able to survive repeated failures, as long as the shared persistent storage is always avail-
able. When both the active and the standby systems are down, the standby is recovered
first. The standby first replays all the logs left over by the active. Then a failover opera-
tion is performed to promote the standby to the new active. More details are described in
Section 3.

7

Chapter 3

SHADOW Operations

Figure 3.1 shows the possible operational states of a SHADOW system, and the transitions
among those states. Transitions shown in dashed lines are failure transitions, which occur
when either the active or the standby fails. Transitions shown in solid lines are SHADOW
system operations, which move the system from one operational state to another. Other
active-standby database systems would have a state diagram similar to the one shown
in Figure 3.1. However, because a SHADOW system divides responsibility for managing
a single persistent database between the active and standby systems, the behavior of a
SHADOW system in the various states may differ from that of other systems. Similarly,
SHADOW system operations, such as protect, will differ from those in other active-
standby systems.

As described in Section 5, we have implemented SHADOW prototypes using the Post-
greSQL DBMS. However, the SHADOW architecture should also be implementable using
other database systems. Thus, in this section we describe the SHADOW operations in
terms of a more generic DBMS, and we defer discussion of PostgreSQL specifics until
Section 5.

8

STANDALONE ACTIVE DOWNACTIVE+STANDBY

DETACHED STANDBY

DETACHED ACTIVE

 active

 failure

 standby

 failure failure

failure

 failover

protect

DBMS recovery

re-protect

 failure

Figure 3.1: Operational States of a SHADOW System

3.1 Assumptions

We designed and implemented SHADOW based on some techniques, such as ARIES [20],
that are widely used in modern relational database systems. We assume that these tech-
niques are already implemented. In this section we describe these assumptions.

We assume the database systems use physiological [12] or physical write-ahead logging
(WAL). Each physiological log and physical log record describes the changes to a single
page. Replaying a log record will, as a result, changes only the single page that is described
by the log record. WAL ensures that whenever a change in database page happens, the
log record is written to the persistent storage first.

We assume that replaying a log record will result in changes to a database page that are
equivalent to the changes that resulted from the original update. In the case of physiological
logging, the physical page state resulting from log replay may differ from the physical page
state resulting from the original update. However, the two states are logically equivalent
from the perspective of the DBMS. Hence, the database pages written by the standby can

9

be recognized by the active. Oracle 12c [1] takes advantage of this property to fix block
corruption at the active by using a block from standby, and vice versa.

We assume that when an update is applied on a page, a Log Sequence Number (LSN) is
generated. The LSN is stored in both the updated page and the log record that describes
the update. LSNs are mononitically increasing. Therefore, LSNs can be used to determine
the freshness of a page.

Finally, we assume that the database systems can perform periodic checkpoint opera-
tions, and that as part of a checkpoint operation, the DBMS will identify a new log recovery
point, which is the LSN from which log replay should start in the event of a DBMS failure
after the checkpoint. As part of its checkpoint operation, the DBMS is assumed to record
the new log recovery point in a recovery file in persistent storage. We assume that the
DBMS is free to discard, at any time, log records with LSNs earlier than the current log
recovery point, since such log records would not be needed to recover the database in the
event of a failure. We refer to this process as log truncation.

In the following, we describe the states and operations shown in Figure 3.1 in more
detail. For the purposes of the discussion in this section, we will assume that both the
active and standby systems can hold a complete copy of the database in their local cache.
We describe how to relax this assumption in Section 4.

3.2 Stand Alone State

At the beginning, only one active DBMS is running. We call it the standalone active
state. This is not a high availability state. The system loses availability when the active is
down or recovering. The recovery time can be reduced by checkpointing more frequently.
However, checkpointing has a significant overhead for the database system. The protect
operation, which is discussed in next section, can bring the standalone system into a high
availability state.

3.3 Protect

The protect operation is used to create a standby DBMS, moving the system into the
active+standby state. The active+standby state is the normal high availability
operational state of the system.

10

disable log truncation

linked backup

launch standby

disable DB writes

and checkpointing

 enable DB read,write

write disable request

ack

active DBMS standby DBMS

 enable checkpointing

Figure 3.2: Protection Operation Timeline

A typical approach to creating a standby DBMS is to create a backup copy of the
active database and then deploy the standby. The backup database copy serves as the
initial state of the database managed by the standby. As part of the process of creating
the backup, the active DBMS identifies a replay start LSN, from which the standby will
begin replaying the log. The replay start LSN is chosen to ensure that any updates that
may not be present in the backup will be replayable from the log. The active also needs
to ensure that enough logs are reserved so that all log records with LSN larger than the
replay start LSN are available when the standby starts up.

As an optimization, the active will perform a checkpoint operation before creating the
backup copy. In this way, the backup copy represents a more recent state and the standby
can catch up with the active system much faster. In addition, a checkpoint allows the
active DBMS to truncate the logs.

Figure 3.2 illustrates how the protect operation is performed in a SHADOW system.
It differs in several ways from this typical procedure. First, because of the shared storage
assumption, there is no need to create a new copy of the database for use by the standby.
We assume that the persistent state of each DBMS includes the log, the database, and
additional instance-specific metadata, such as configuration files and the recovery file, as
shown in Figure 3.3. To deploy the standby system, the active DBMS copies only the data
shown in the dashed line in Figure 3.3, not the database and the log. We refer to this

11

log

DB

instance

meta-data
DB

link

log

link

active DBMS state

instance

meta-data
DB

link

log

link

standby DBMS state

Figure 3.3: DBMS Persistent State After Linked Backup

process as linked backup. As a result, the active and standby systems will have private
copies of the instance specific meta-data, but will share a single copy of the log and a
single copy of the database. Linked backup is much faster than the normal backup process
because there is no need to copy the database.

Second, protect transfers responsibility for updating the shared persistent copy of
the database from the active DBMS to the standby. As shown in Figure 3.2, the standby
DBMS requests that the active DBMS disable its database updates before the standby
commences log replay. This ensures that, at any time, at most one of the two systems is
updating the shared database.

Third, protect transfers responsibility for checkpointing and log truncation from the
active system to the standby. By disabling log truncation before performing the linked
backup, active DBMS ensures that the shared persistent log will contain all of the log
records identified by the backup operation as necessary for replay at the standby.

3.4 Active + Standby State

In the active+standby state, the standby DBMS operates in log replay mode, as is the
case in other log shipping hot standby systems. This means that the standby continu-
ously reads log entries written by the active system, and re-executes the logged updates.
The standby system also pushes changed database pages from its local database cache to
the shared, persistent copy of the database. The standby DBMS also performs periodic
checkpoint operations and truncates the shared, persistent database log.

12

Since we assume in this section that database cache at the active DBMS is large enough
to hold the whole database, the active can always get up-to-date pages from its database
cache as long as the page has been read once. We will discuss potential problems when the
database cache cannot hold the whole database, and how to solve to problem, in Section 4.

3.5 Failover

In case of a failure of the active system in the active+standby state, the system switches
to detached standby state, in which only the standy system is running. The duration
of this state is minimized by performing a failover operation immediately. During failover,
the standby is promoted and becomes a standalone active system.

SHADOW shares most failover procedures with traditional HADBs. The standby fin-
ishes processing all log records generated by the active system before it failed, and then
switches from log replay mode to normal execution mode, in which it can accept new
transaction requests from clients.

There is one subtle difference between failover in SHADOW and traditional failover.
In the traditional active+standby state, the standby stores the logs shipped from the
active in its private storage. Hence, during traditional failover, the standby only replays all
the logs that it has fetched and stored in its private storage. Getting the logs that have not
been shipped by the failed active requires some special effort. In contrast, the SHADOW
logs are shared and available to both the active and standby. Hence, the standby can
fetch the latest logs generated by the active from the shared persistent storage, even if the
active has failed. When the standby becomes active and starts generating logs, the logs
are written to the shared storage.

3.6 Re-protect

In case of a failure of the standby system in the active+standby state, the system
switches to detached active state.

In the detached active state, the active DBMS keeps processing transactions using
its local cached copy of the database. Thus, the SHADOW system is still available, and
transactions are still durably committed because the active DBMS writes its log records
to shared persistent storage. However, since there is no standby DBMS to replay the
log, the amount of un-replayed log will grow and the persistent copy of the database will

13

become staler. This will not affect the performance of the active DBMS, provided that it
has enough local storage to hold the entire database. However, it may affect the active’s
performance if the active has less memory. We discuss this situation further in Section 4.

From the detached active state, a re-protect operation can be used to move the
system back into active+standby state. Traditionally, there are normally two ways to
re-protect. The first method is to launch a new standby using the database and logs
left over by the failed standby. The first method has two requirements. First, the database
and logs of the failed standby must still be available. This requirement can be met by
storing database and logs in shared persistent storage. Second, the standby must be able
to find the correct log restart point. The SHADOW standby uses the ARIES recovery
algorithm, which can handle repeated failures correctly. When the standby restarts, it will
restart log replay from the latest checkpoint using the logs in shared storage. Since the
active delegates the log truncation responsiblity to the standby, the standby can always
obtain all log records necessary for re-protect.

The second option is to create a new database copy and launch the standby using the
new database copy. This option is available to most HADB since the procedure is exactly
the same as protect. However, this option is normally more expensive than the first
option since another copy of database needs to be created.

SHADOW only uses the first way to implement re-protect. The second way is
not available to SHADOW since the active has surrendered its write ability during the
protect operation. The active is unable to create a new copy of database.

3.7 DBMS Recovery

The SHADOW system can reach the down state in two ways: First, the Standalone node
may fail when it is running in the standalone active state. It has never entered the
active+standby state before. Second, both the active and standby are down. Before
that the systems could probably run in detached active or detached standby or
active+standby state. DBMS recovery for the first case is easy. We can simply restart
the standalone node. However, recovering the DBMS in the second case is more complex.

To recover the system in the second condition, SHADOW reuses the oprations of re-
protect and failover. First, the re-protect recovers the failed standby. The standby
will replays all the logs left over by the failed active in shared persistent storage. After that,
the system is in the detached standby state. Then a failover operation is performed

14

to promote the standby as the new active. At this point the system is in the standalone
active state and is able to process user workloads.

Another possible solution is to directly restart the active. However, this requires that
the active system to find out the last checkpoint performed by the standby. To understand
the reason, we need to briely describe about the checkpoint mechanism in SHADOW here.
More details are covered in Section 5. In SHADOW active+standby state, the active
system does not perform database writes and checkpoints. It delegates the checkpoint
responsibility to the standby. The active only writes the checkpoint record to the logs.
The standby then replays the checkpoint record and performs the checkpoint. Hence, the
last checkpoint generated by the active might not be replayed. In order to correctly restart
the system, the active needs to find out which checkpoint was replayed by the standby
using the standby’s checkpoint meta data.

3.8 Correctness of SHADOW

In this section we present a set of invariant properties that are preserved during the op-
eration of a SHADOW system. For each property, we present an informal argument to
explain why the property is preserved.

Property 1 All committed updates are present in persistent storage, either in the database,
in the log, or in both. If both active and standby fail, normal database recovery using the
persistent database and log will correctly restore the database, with no loss of committed
transactions.

In a SHADOW system, write-ahead logging by the active DBMS ensures that the
updates of committed transactions are in the persistent log before a transaction commits.
The only threat to Property 1 is the possibility that log truncation will remove persistent
logged updates before they have been applied to the persistent copy of the database. In
the standalone active state, the normal checkpointing and log truncation mechanism
of the active DBMS ensures that log records will not be truncated prematurely. During
protect, disabling log truncation at the active prior to the linked backup operation
ensures that all logged updates that may not have been applied to the database are available
to the standby for replay. In the active+standby and detached standby states, the
standby’s normal checkpointing and log truncation mechanism prevents log records from
being truncated too soon.

15

Property 2 At most one DBMS at a time is responsible for updating the database, for
checkpointing, and for truncating the log.

Property 2 follows immediately from the protect operation, which disables updates,
log truncation and checkpointing at the active before enabling them at the standby.

Property 3 Suppose that the standby system has replayed log records up through LSN L.
All database pages in the standby’s local database cache are current up through L, i.e., they
include all updates with log sequence numbers less than or equal to L. Furthermore, all
database pages that are not in the standby’s local database cache are current up through L
in the persistent copy of the database.

Property 3 holds when the standby system is first deployed because the active sys-
tem’s linked backup operation (Figure 3.2) ensures that all updates prior the replay start
LSN are already in the persistent database. During operation of the standby in the ac-
tive+standby and detached standby states, the property is maintained as it replays
each log entry onto a page in its local database cache. Since the standby is assumed to have
enough local storage to hold the database, it will not evict pages from its local database
cache. However, even if it were to do so, Property 3 would be maintained by the usual
procedure of pushing dirty pages to persistent storage before evicting them. If the standby
fails and is restarted, the property is maintained because the standby’s current LSN will
revert back to the replay LSN recorded in the standby’s most recent checkpoint.

Property 4 When the active system reads page P from persistent storage, it reads the
current version of P .

Property 4 holds when active first starts due to normal log-based recovery process. In
a SHADOW system, the threat to Property 4 is that the active DBMS will update a page
locally, evict it, and then attempt to re-read that page from the persistent storage system.
Since active does not write to the persistent database when the page is evicted, the page
may be stale when re-read. However, since the active DBMS is assumed to have sufficient
memory to cache the entire database locally, this scenario cannot occur. Each database
page will be read at most once from persistent storage by the active DBMS. Property 4
also holds initially when the standby DBMS becomes the active as a result of a failover
operation. As part of the failover operation, the standby replays all outstanding log
records before becoming the active. Thus, because of Property 3, all pages, whether
initially cached in the new active system or not, will be current as of the point of failover.

16

Chapter 4

Large Databases

So far, we have assumed that each DBMS has enough local cache to cache a complete copy
of the database. In this section, we relax this assumption. When the local cache is large,
the active DBMS will read a page from persistent storage at most once, since the page can
remain indefinitely in the local cache once it is read. If the active DBMS has less local
cache, it may have to read a page more than once from persistent storage. In particular,
the active may read a page P , later evict P from its local cache, and later still read P
again from persistent storage. At this point, the active DBMS faces a race condition. If
the active reloads P after the standby has applied the logged updates to P and flushed
P to persistent storage, then the active will read the current version of P . Otherwise,
the version of P in persistent storage will be stale, and the active DBMS will read a stale
version of P . This is a violation of Property 4 (Section 3.8).

To address this problem, we introduce a new mechanism in the active DBMS to allow
it to detect stale reads if they occur. We also introduce mechanisms in the active and
standby database systems to allow the active system to obtain a current version of the
page if it detects a stale read. In Section 4.1 we describe how stale reads are detected, and
in Section 4.2 we describe how they are corrected when they occur.

4.1 Stale Read Detection

When the active DBMS evicts a dirty page from its local database cache, it records the
page ID and page LSN of the evicted page into an in-memory hash table called the page
version table, keyed by page ID. An entry for page P in the page version table indicates
that subsequent reads of P should return the version with the recorded page LSN.

17

When the active DBMS reads a page from the persistent storage system, it compares
the LSN of the returned page with page’s LSN from the page version table. There are
three possible cases:

1. The read page may have a smaller LSN than is recorded in the page version table. In
this case, the active has read a stale page from the persistent storage system, which
is handled as described in Section 4.2.

2. The read page’s LSN may match the one found in the page version table. In this
case, the active has read the latest version of the page. The active uses the page,
and removes the page’s entry from the page version table.

3. There may not be an entry for this page in the page version table. In this case, the
page read from the persistent storage system must be fresh.

This behavior ensures that the page version table includes entries for all pages for which
there is a risk of a stale read from persistent storage. The period of risk begins when the
active DBMS evicts a dirty page, and continues until the active system confirms (during a
subsequent read) that the persistent copy of the page is up to date. Thus, in case 3 above,
the lack of an entry in the page version table indicates that the persistent copy of the page
is current.

4.2 Correcting Stale Reads

When the active DBMS reads a stale page from persistent storage, one option it has is to
retry the read from persistent storage until it obtains the latest version. As the standby
DBMS processes log records and pushes updated database pages to persistent storage, the
persistent copy of the database grows fresher. In general, however, the active DBMS may
have to wait a long time, depending on how quickly the standby DBMS flushes updated
pages to persistent storage.

Instead, SHADOW implements Page Fetching to address the problem of stale reads.
Our SHADOW prototypes take advantage of the fact that the local database copy cached
at the standby will be fresher than the persistent copy. If the active DBMS reads a stale
page from the persistent storage system, it next tries to obtain the current version of the
page directly from the standby DBMS. To support this, we modified the standby system
so that it can act as a database page server. To read a page from the standby, the active

18

1: function Read(p)
2: // get required page LSN from page version table
3: LSNreq ← PageVersionTableLookup(p)
4: // fetch p from persistent DB, returning page LSN
5: LSNread ← PersistentStoreFetch(p)
6: if LSNreq = NULL then
7: // version from persistent DB is current
8: return OK
9: else if LSNreq = LSNread then

10: // version from persistent DB is current
11: PageVersionTableRemove(p)
12: return OK
13: else
14: // stale read from persistent DB
15: // try to get page from the standby
16: if StandbyFetch(p, LSNreq) = OK then
17: // standby had the current version
18: return OK
19: else
20: // standby did not have the current version
21: return error
22: end if
23: end if
24: end function

Figure 4.1: Reading a Page at the Active DBMS

DBMS sends a request specifying the ID of the required page and the expected page LSN
for that page, which the active obtains from its page version table.

In response to such a request, the standby first searches for the page in its local cache.
If the page is not in cache, the standby tries to read it from persistent storage. If the
standby cannot find the page in cache and persistent storage (the log records have not
been replayed yet), it returns a negative response. After finding the page, the standby
compares the page LSN from the page it just found with the page LSN specified in the
request. If the two LSNs are the same, the standby returns the page. Otherwise, the
standby returns a negative response.

If the active receives a negative response, the active DBMS could potentially get the

19

fresh page by retrying its request one or more times until the standby’s copy is no longer
stale. However, in our current prototype implementation, the active treats a negative
response from the standby as a failed read attempt, and immediately aborts the transaction
that required the stale page. In general, we expect the standby’s local copy of the database
to be almost current, so we expect such aborts to be rare. Figure 4.1 summarizes the read
procedure used by the active DBMS.

4.3 Discussion

In order to correct stale reads, the active relies on the standby system. If the standby is
down, the active is unable to fetch pages from the standby, and therefore some transactions
are aborted. We discuss some potential alternative solutions to adress this problem.

4.3.1 Alternative Stale Read Correcting Methods

We propose two solutions to reduce the active’s dependence on the standby. The first
solution tries to avoid the condition that the active reads back a page immediately after
evicting it. The second solution eliminates the dependency. Hence, the active is able to
keep processing transactions when the standby is down.

• Change buffering. The idea comes from InnoDB. By buffering the change logs of
recent updates, the active is able to reconstruct a fresh page. The change logs could
be discarded in the FIFO manner. When the active reads a stale page from persistent
storage, it first tries to find change logs for the page. If the change logs for the page
have been discarded, which means the change was done some time ago, the standby
is likely to have the fresh page.

• Re-scan redo logs. If the standby has not made a fresh page persistent in shared
storage, the logs describing the changes of the page must be available in the persistent
storage. Hence, the active is able to get the redo logs for the stale page and bring
the page up-to-date by replaying those redo logs. The position of the latest redo logs
relevant the stale page can be calculated using the LSN cached in the page version
table. A backtrace is performed from the log record with the latest LSN until the
oldest log record that has not been applied to the stale page is found. This re-scan
method might cost more time than simply retrying page fetching since the standby
is normally very close to the active. However, it can avoid aborting transaction when
the standby is down.

20

Chapter 5

Prototype Implementation

We have implemented a SHADOW prototype called SHADOW-NFS. Figure 5.1 illustrates
the SHADOW-NFS prototype, which we have deployed for evaluation purposes in Ama-
zon’s EC2 cloud computing environment. It consists of two major components, described
below.

The first major component is the DBMS. We implemented the DBMS of SHADOW-
NFS based on PostgreSQL (version 9.2). PostgreSQL is an open source relational database
system widely used in both academia and industry. It provides built-in DBMS-level repli-
cation. Since SHADOW-NFS uses storage-level replication for high availability, some mod-
ifications to the PostgreSQL source code were necessary. We describe the modifications
in Section 5.1. More details about the PostgreSQL built-in DBSM-level replication are
described in the Related Work chapter (Chapter 7).

The second major component is the shared storage. We uses a shared file system [8],
NFS (version 4), as our shared storage. Shared file systems are a widely used type of shared
storage. Shared filesystems are often referred to as Network Attached Storage, or network
file services such as NFS or CIFS. Shared file systems can be accessed simultaneously
by multiple servers. Database systems are deployed using shared file systems because
they provides flexibility and manageability for persistent storage. Shared file systems also
provide a simple way to implement failover to a cold standby system in case of a failure
of the active DBMS, since persistent storage is network-accessible, rather than locally
attached to the active DBMS. Shared file systems can be made reliable, fault tolerant
and highly available through the use of redundant storage of file data (e.g., mirroring or
other RAID configurations) and redundant servers [21]. The implemenatation details of
the shared storage (i.e. NFS) for SHADOW-NFS are described in Section 5.2.

21

EBS
Volumes

DB
Meta Meta

NFS

Clients

DB Cache DB Cache

Active Standby

Log

Log

Page

Figure 5.1: The SHADOW-NFS Prototype

5.1 DBMS for SHADOW-NFS

As mentioned previously, the DBMS component for SHADOW-NFS is implemented based
on PostgreSQL (version 9.2). We describe the major modifications in PostgreSQL in this
section.

New Pages and Database File Sizes. When PostgreSQL is changing the size of a
database file, e.g., to add additional pages to the database, it relies on the file system
to determine the current size of the file. In a SHADOW system, since the active DBMS
does not actually update the database files, it may see temporarily incorrect file sizes until
updates are replayed by the standby. To avoid this problem, we added an in-memory last
block table to PostgreSQL to record database file lengths. PostgreSQL uses this table,
instead of the file system, to determine file sizes.

To create new database pages, PostgreSQL will extend a database file to create room
for the new pages and then load the (uninitialized) page into memory. In a SHADOW
system, this page load operation may fail since the file may not yet have been extended.
We added a small refinement to the active DBMS page reading procedure (Figure 4.1) to
handle this situation. When the active DBMS creates new pages, it adds entries to the
page version table for those pages. These entries associate the new page IDs with a special
LSN that indicates that the page is new. When PostgreSQL tries to read these pages, the

22

page version table lookup performed by the page reading algorithm indicates that the page
is new, and the active simply creates the uninitialized page in its buffer without attempting
to read it from persistent storage (or the standby’s page server). If the page is eventually
updated and evicted from the active’s local storage, the page’s special LSN will be replaced
in the page version table with the page’s pageLSN, as usual.

Checkpointing. A peculiarity of checkpointing in PostgreSQL hot standby configurations
is that the standby DBMS cannot checkpoint more frequently than the active DBMS
checkpoints. This is because checkpointing requires creation of a checkpoint record in the
log. Since a PostgreSQL standby system replays log records but does not generate log
records of its own, the standby system essentially re-uses the active’s checkpoint records
to implement its own checkpoints.

In a SHADOW system, it is not necessary for the active to checkpoint at all. However,
our SHADOW-NFS prototype needs the active’s checkpoint records to enable the standby
system to checkpoint. To do this, in the active+standby state we replace checkpointing
at the active DBMS with pseudo-checkpointing. With pseudo-checkpointing, the active goes
through its normal checkpointing procedure, including creation of a checkpoint record in
the log, but without writing any database pages from local cache to the persistent database.
Thus, a pseudo-checkpoint is much faster, and results in much less overhead, than a normal
checkpoint. The standby DBMS can then use the active’s logged checkpoint records to
implement its own checkpoints. In our prototypes, the active DBMS must be configured
to pseudo-checkpoint at least as frequently as the standby will checkpoint, so that the
standby has a sufficient number of logged checkpoint records.

Disabling Database Writes In active+standby state, a SHADOW active system
does not write to the DBMS. We implemented this by disabling writes at a low-level
PostgreSQL internal I/O interface. On each write attempt, PostgreSQL checks for the
existence of a special control file that indicates that writes should be blocked. If the file
exists, PostgreSQL simply skips the file system write operation that it would otherwise
have performed. This is a simple way to eliminate page writing without making major
changes to the PostgreSQL implementation. However, a disadvantage of this approach is
that PostgreSQL still experiences the internal overhead associated with page writes, e.g., it
still tracks which pages are clean and dirty, and it still maintains the internal state necessary
to flush dirty pages to the persistent database. Further improvements in SHADOW system
performance could potentially be obtained by eliminating these overheads from the active
DBMS.

Log Streaming PostgreSQL implements a mechanism for streaming log pages directly

23

from the active system to the standby in high-availability configurations. As described in
Sections 5.2, we have taken advantage of this mechanism in our SHADOW prototype. We
were able to use this mechanism as is, without making any changes.

Page Fetching Page Fetching is used to fetch fresh pages from standby system in case
of a stale read at the active DBMS. Page Fetching in SHADOW has gone through several
versions. In the first version, the active appended page requests to a shared file, which was
polled by the standby. When the standby read a page request, it flushed the requested
page to the shared storage. The active kept reading from the shared storage until a fresh
page was read. Then the active cleared the entry in page version table. The advantage
of writing page requests to a file is easier debugging. However, it is too slow when page
requests happen very frequently. The advantage of flushing the page to shared storage is
that the active may be able to read the fresh page from shared storage next time.

The second implementation of page fetching used a client/server model based on a TCP
connection. The active established a TCP connection with the standby and sent the page
requests via the connection. The standby returned the page via the connection if the fresh
page was available. The active retried page fetches when the fresh page was not available.
There are two problems with this second approach. Establishing a TCP connection for
each page fetch is a potential overhead. TCP is based on byte streams. Hence, extra effort
is needed to ensure that a complete page is fetched. Another problem is that the retry
mechanism is not very effective. Retrying a few times might not eliminate failed page
fetching. However, retrying too many times reduces performance.

The final implementation of page fetching uses UDP without retry. Each page fits in a
UDP packet easily. SHADOW can check the page validity with a checksum. No connection
needs to be established with the UDP protocol. As shown in Section 6, the page fetching
failure ratio is very low even if the database cache is relatively small.

Page Service Another implmentation problem is when to start the page service at the
standby. At the beginning, the page service was started after the standby started log
streaming. However, the PostgreSQL standby does not start log streaming until it has
replayed all locally stored logs. The locally stored logs could be huge if the standby has
not checkpointed for a long time and then fails. When the standby restarts, it needs to
replay all logs since the last checkpoint. However, we want standby to start page service
as soon as possible since the active relies on it. Thus, standby starts page service as soon
as it starts log replaying.

24

5.2 Shared Storage for SHADOW-NFS

The shared storage service used by SHADOW-NFS is NFS (version 4). We describe the
NFS configuration used by our SHADOW-NFS prototype in this section.

Since the SHADOW-NFS is tested in the Amazon EC2 environment, the NFS shared
file system mounts Elastic Block Service (EBS) volumes as its block volumes. SHADOW-
NFS uses two EBS volumes, one for the database and one for the log. Both volumes
are mounted by an NFS server, which provides database and log access to the active and
standby database system through a pair of NFS mount points. In our prototype, the NFS
server is a threat to system availability, since it represents a single point of failure. However,
in practice this problem is easily avoided through the use of a standby NFS server.

In SHADOW-NFS, the standby DBMS can read log records directly from the NFS-
mounted log volume, as described in Section 2. However, as an optimization, we also use
PostgreSQL’s existing asynchronous log streaming mechanism (Section 5.1) to stream log
records directly from active DBMS to the standby, as illustrated in Figure 5.1. In practice,
this reduces the log replay delay at the standby. However, this is only an optimization;
It is still the case that transactions are durably committed in a SHADOW system if and
only if the transaction’s commit record is present in the log volume. During a failover
operation in SHADOW-NFS, the standby DBMS checks the shared log for any remaining
log records that may not have been streamed before the failure and replays them.

5.3 Alternative Shared Reliable Storage

In this section, we look at some other shared reliable storage services. They could poten-
tially be used as the shared persistent storage for SHADOW.

5.3.1 Dynamo

Dynamo [9] is a highly available, scalable key-value store implemented by Amazon. Data
is distributed using consistent hashing [13]. Multiple clients can write and read any value
concurrently. Conflict resolution is implemented to guarantee eventual consistency. Each
value is replicated on N different physical nodes. A write operation writes to all replicas
and succeeds as long as W replicas are updated. A read operation reads from all replicas
and succeeds as long as R replicas return. W + R > N is used to guarantee the read of
latest vesion. W > N/2 is used to guarantee global write orders.

25

Dynamo could potentially be used to store SHADOW logs. LSN is used as key and the
log record is used as value. Since the active only appends new logs to the shared storage
and each log record is written at most once, no conflict resolution is required. W should be
configured large enough to achieve the expected reliability. The standby reads logs from
the shared storage. R can be set to one since each log record is written only once. The
read log record must be the up-to-date one. There is no need to guarantee W + R > N
and W > N/2.

Some effort is required to store database pages in Dynamo, since the standby updates
and reads the shared database. Strongly consistent write (e.g. write to all replicas) can be
adopted by standby since the standby performance does not directly influence the active
performance. Since each update is written to all replicas, the active can finish a read as
soon as one replica returns.

We just described the potential solution to run SHADOW on Dynamo when it is in ac-
tive+standby state. However, it is challenging to run SHADOW on Dynamo when it is
in standalone active state. In active+standby state, only the standby reads/writes
the database pages. Hence, the read/write could be slow. However, in standalone ac-
tive state, the standalone needs to read/write the database efficiently. This performance
problem could be solved by DAX [18], another shared storage service.

5.3.2 DAX

DAX [18] is a shared storage service based on Dynamo. It is designed to support multiple
DBMS tenants, each of which is a standalone active system. When a DBMS tenanent
fails, it can be restarted immediately since DAX replicates its database and logs within
and across data centers. Optimistic I/O, a complex data version management protocol, is
implemented to optimize read/write performance of the standalone active system, while
ensuring strong consistency from the DBMS perspective.

In previous subsection, we described the performance problem of SHADOW on Dynamo
when it is running in standalone active state. DAX is able to provide good performance
when DBMS is running in standalone active state and guarantees correctness. A
detailed design of using DAX as the storage service for SHADOW is beyond the scope of
this thesis.

26

Chapter 6

Evaluation

In this section, we present our evaluation of the SHADOW-NFS system. Our objectives
are (i) to measure the performance of SHADOW-NFS system in terms of throughput,
latency, time to enable protection and time to handle failures, (ii) to compare the per-
formance of SHADOW-NFS systems against a standalone (SA) database system, which
does not provide high availability, and (iii) to compare the performance of SHADOW-
NFS system against a system that provides synchronous replication (SR), which provides
high-availability, but without shared storage and write offloading.

6.1 Experiment Methodology

We have implemented the SHADOW-NFS prototype system using PostgreSQL (version
9.2) and NFS (version 4). We use this same version of PostgreSQL and NFS for our
SA and SR baseline systems. For the SA baseline, the frequency with which the DBMS
checkpoints controls a tradeoff between performance during normal operation and recovery
time. Thus, we used several different SA baselines, with different checkpointing frequencies,
to reflect this tradeoff. The configurations of the baseline systems are as follows:

• SA-D: This standalone baseline uses the default PostgreSQL configurations, which
checkpointed every 7 to 29 seconds in our experiments. This configuration represents
an extreme tradeoff of normal performance in favor of fast recovery time.

• SA: This standalone baseline is identical to SA-D except that it is set to checkpoint
minimally, i.e., once every hour. This configuration represents the opposite extreme
on the performance vs. recovery time tradeoff for standalone systems.

27

• SA-10: This standalone baseline identical to SA-D except that the time between
checkpoints is set to 10 minutes. It represents a balance between the extremes of SA
and SA-D.

• SR: This baseline uses PostgreSQL’s native synchronous replication to provide high
availability. It includes two database systems, one active and one standby. Each
server instance manages its own persistent copy of the database and its own log. The
active system streams logged updates to the standby, which replays them against its
copy of the database. Synchronous replication ensures that a transaction commits
only after it is committed at the active system and its log records are persistent at the
standby. Both the active and the standby are configured to checkpoint minimally,
like the SA baseline.

We compared these baselines against the SHADOW-NFS prototype described in Sec-
tion 5. When comparing the baselines to SHADOW-NFS, we used NFS for the baselines as
well. The log and the database were always stored in separate standard EBS volumes. For
the SA, SA-10, and SA-D baselines, the DBMS mounted these volumes through a single
NFS server (like SHADOW-NFS). The SR baseline, which uses two database volumes and
two log volumes, used two NFS servers, one for the active DBMS and one for the standby.

All of our experiments were run in the Amazon’s Elastic Compute Cloud (EC2) en-
vironment1. c1.xlarge instances, which have 8 virtual CPUs and 7GB of memory, were
used for the active, standby, and standalone in most experiments. We also tested a large
dataset configuration using c3.4xlarge instances for active, standby and standalone systems.
c3.4xlarge instances have 16 virtual CPUs and 30 GB of memory. m1.large instances, with
2 virtual CPUs and 7.5GB of memory, were used for the NFS servers. We selected instance
types that were sufficiently powerful that the CPU was not the performance bottlneck in
our experiments.

Our experiments are run using the TPC-C benchmark. It submits transactions only to
the active. No queries are sent to the standby. Each experiment is run with 10 warehouses
(except the large dataset experiment, which is described in 6.4), with an initial database
size of approximately 1.1GB. The database size grows to around 1.5GB after 5 minutes, and
to over 3GB after 30 minutes. We used 30 TPC-C terminals (clients) for all experiments.
Each TPC-C experiment was repeated three times, and we report average of the throughput
obtained on the three runs.

1Resource specifications of these instances are detailed at http://aws.amazon.com/ec2/instance-
types/#instance-details.

28

SA SA-D SA-10 SR SHADOW
Large Memory 477 4,591 1,125 397 5
Small Memory 1,790 4,250 1,753 1,101 10
Large Dataset 3,554 5,731 5,192 2,967 6

Figure 6.1: Database Writes (KB/s) between Active and NFS server

Percentile Latency 50%-tile 99%-tile
SR 24 758
SA-10 21 686
SA 23 634
SHADOW 22 530

Figure 6.2: 50th and 99th Percentile NewOrder Transaction Latency (ms)

6.2 Large Memory Case

Our first set of experiments considers system performance during normal operation, in a
setting in which there is sufficient memory to hold the entire database locally in each DBMS
buffer pool. This is the setting for which SHADOW systems are targeted. Specifically, we
set the PostgreSQL database buffer cache size to 4GB, which is large enough to hold the
whole database, even after it grows.

Figure 6.3 shows the TPC-C throughput for SHADOW-NFS and the baselines. The
SHADOW-NFS prototype provides higher performance than PostgreSQL’s native high
availability technique (SR). This is because the SHADOW-NFS architecture eliminates the
need for commit coordination between the active and standby databases, since it manages
only a single logical copy of the database.

SHADOW-NFS also provides throughput that is comparable to that of the SA baseline,
which is not highly available and which would have a very long recovery time because of
its infrequent checkpointing. The SHADOW-NFS system outperforms SA-10 and substan-
tially outperforms SA-D in both settings, despite the fact that the SHADOW-NFS system
provides high availability while SA-10 and SA-D do not. These performance gains come
from write offloading. The first row of Figure 6.1 shows the database write bandwidth
between the database server and NFS server for SHADOW-NFS and the baseline systems
in the large memory configuration. These shows that SA-10 generates about 1.1 MB/s of
database writes I/O, which is eliminated by the SHADOW-NFS system. The performance
advantage of SHADOW-NFS is not very significant since the write I/O is not very intense.

29

 0

 5000

 10000

 15000

 20000

 25000

SA-D SR SA-10 SA SHADOW

tp
m

C

Figure 6.3: TPC-C Throughput, Large Memory

We will further show the performance advange of SHADOW-NFS in Section 6.4, using a
larger dataset.

Because of the relatively large memory size, neither the baseline system nor the SHADOW-
NFS system generates a significant amount of read traffic to the persistent database. Thus,
the SHADOW-NFS system is able to eliminate almost all I/O to the persistent database,
and is limited in its performance only by the local processing capacity of the active server
and by the write bandwidth that is available to the persistent log.

We also measured the latencies of TPC-C NewOrder transactions. These are shown,
for all configurations except SA-D, in Figure 6.2. All systems show similar 50th-percentile
latencies except for SR, which has slightly higher latencies because of the extra commit
coordination it requires. At the 99th percentile, differences among the systems are more ex-
aggerated. I/O activity triggered by checkpointing can result in temporary latency spikes,
which hurts SA-10 and, to a lesser extent, SA. SR suffers from its additional coordina-
tion latency when transactions commit. The SHADOW-NFS system, which has almost no
database writes and no coordination overhead, avoids these latency spikes.

6.3 Small Memory Case

Our next set of experiments considers system performance in a scenario in which the
DBMS buffer cache is not large enough to hold the entire database. For these experiments,

30

 0

 5000

 10000

 15000

 20000

 25000

SA-D SR SA-10 SA SHADOW

tp
m

C

Figure 6.4: TPC-C Throughput, Small Memory

the DBMS page buffer size is set to 1GB. During the 30 minute TPC-C experiment, the
database size grows from 1GB to around 3GB.

Because of file system caching at the DBMS servers and at the NFS server, we do
not expect to see a significant performance impact from read traffic in these experiments.
However, we do expect to see increases in database write traffic between the database
server and the NFS server. This is because of the smaller DBMS buffer size, and therefore
more intensive dirty page eviction from the DBMS page buffer. In addition, since the
DBMS page buffer cannot hold all of the database pages, SHADOW-NFS may experience
stale reads. As described in Section 4.1, SHADOW-NFS performs page fetches from the
standby DBMS to correct stale reads.

Our objective is to see how these changes affect the performance of the SHADOW-NFS
system relative to the baselines.

Figure 6.4 shows the throughput of the SHADOW-NFS system and baselines in the
small memory configuration. As shown in Figure 6.4, SA suffered a significant drop in
throughput relative to the large memory scenario, while the other systems, including
SHADOW-NFS, suffered only minor drops.

As shown in Figure 6.1, the database write rate for the SA system is substantially higher
in the small memory scenario than it was when memory was larger. The more intensive
write traffic of SA is mostly caused by more frequent write system calls from the DBMS.
The DBMS needs to evict dirty pages to make room for newly read pages. This puts more
pressure on the OS to write out the dirty pages to the NFS server. In contrast, SA-10 and

31

SA-D have minor performnace drop since they have no significant increase in write I/O,
as shown in Figure 6.1. They don’t have significant increase in write I/O because their
checkpointing operations have already reduced the ratio of dirty pages in the DBMS cache.
SA-D and SA-10 are more likely to read in pages from persistent storage by dropping the
clean pages in DBMS cache without write system calls. Like SA, SHADOW-NFS does not
perform checkpointing during the experiment and has high dirty page ratio in DBMS cache.
Thanks to write-offloading, SHADOW-NFS is able to drop dirty pages when reading new
pages from the persistent storage. Hence, as shown in Figure 6.1, it has trivial amount of
write I/O, giving it performance advantages.

The active DBMS in the SHADOW-NFS system must sometimes rely on the standby
DBMS to obtain the current version of a page that it needs to read (Section 4). We
found that SHADOW-NFS generated an average of 247 page read requests per second
to the standby’s page server over the course of the experiment, resulting in a network
data transfer rate of about 2 MB per second between the standby DBMS and the active
DBMS. Generally, the active DBMS succeeded in obtaining up-to-date page copies from
the standby’s page server. On average, only 0.037% of NewOrder transactions were aborted
in our SHADOW-NFS experiment due to failure to obtain a current page version from the
standby page server. There was little effect on the SHADOW-NFS transaction throughput
as a result of this activity. Thus, it appears that the SHADOW-NFS standby page server
is an effective way to deliver current versions of database pages to the active DBMS, at
least in the current experiment. As the database size gets larger relative to active DBMS’s
buffer pool size, the request rate to the standby page server is likely to increase. Thus, the
page server may eventually become a bottleneck.

One surprising result of our small memory experiments was that the SHADOW-NFS
system generated substantially more read I/O traffic between the active DBMS and the
NFS server than did any of the baselines: about 3 MB/second, versus about 1 MB/second
for the SA baseline. This is partially due to the higher performance of SHADOW-NFS.
However, we believe that additional traffic results from maintaining consistency between
the NFS client caches at the active and standby systems, for the shared database file
system.

6.4 Large Dataset Case

We also evaluated the performance of SHADOW-NFS and the baselines with a large
dataset. The experiment methodology was changed because of the larger dataset and

32

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

SA-D SR SA-10 SA SHADOW

tp
m

C

Figure 6.5: TPC-C Throughput, Large Dataset

the use of more powerful EC2 instances (c3.4xlarge). Each experiment runs for 90 min-
utes. The first 30 minutes is a warm up period and not taken into account. The dataset size
grows from 10GB to nearly 20GB during the experiments. In order to hold the dataset
in memory, the database server shared buffer size was set to 26GB. The checkpointing
period was set to 30 minutes. Hence, SHADOW-NFS and all other baselines include at
least one checkpoint during the experiments. We also disabled full-page writes in all of the
systems. Full-page writes are an optional feature of PostgreSQL which causes the DBMS
to write all database pages into the logs during each checkpoint. We disabled it because
it saturates the log volume bandwidth and seriously damages the throughput. We also set
the checkpoint completion target to 0.9, which means that the checkpointing length will
be 90% of the checkpointing interval. It helps distribute the checkpointing overhead evenly
during the checkpointing interval. We also write 1 into the drop caches file in the Linux
proc filesystem at 5 second interval. It avoids extensive caching of database pages by the
OS.

The average throughput is shown in Figure 6.5. It does not include the first 30 minutes
warm up period. SHADOW-NFS outperforms the other configurations significantly. Due
to the larger dataset, the benefit of eliminating the write I/O at the active becomes more
obvious. SHADOW-NFS is over twice as fast as SR. It also outperforms SA more signifi-
cantly compared with small dataset case (10 warehouses). In addition, SHADOW-NFS is
about three times as fast as SA-10.

Figure 6.6 shows the throughput of all congurations as a function of time. SA-D is
omitted here. The vertical lines point to the 30 minute and 60 minute time. SR’s warm

33

up period is much faster than the other configurations since we needed to add an extra
reboot to switch it from asynchronous replication mode to synchronous replication mode.
The reboot happens to make the warm up much faster. It wouldn’t influence the overall
result since the experiment length is sufficiently long. SA-10 throughput goes up and
down due to the 10-minute checkpointing interval. SA, SR and SHADOW-NFS experience
a performance drop after 30 minutes due to the checkpointing operation. SHADOW-NFS
has much smaller performance drop compared with SA. This is because SHADOW-NFS
does not need to write any database pages during the checkpoint. The small performance
drop of SHADOW-NFS is because of the internal overhead during each checkpointing
operation. We also observed that SHADOW-NFS’s performance is more stable than the
other configurations.

The performance shown above can be further explained with the help of Figure 6.7. It
shows the write I/O between the active DBMS and the NFS server. The y-axis shows the
write bandwitdh and the x-axis shows the time. SHADOW-NFS has almost no write I/O
during the experiment. SA and SR experienced two write I/O bursts at 30 minute and 60
minute. They correspond to the two checkpointing operations. SA-10 experienced much
higher write I/O overhead due to its higher checkpointing frequency. It needs to flush all
dirty pages to the persistent storage within a shorter period of time compared with SA
and SR.

6.5 Protection and Failure Handling

In this section, we present a series of experiments designed to compare the behavior of
SHADOW-NFS to that of the SR baseline during protect and failover operations.
We first measure the time taken to enable protection. We also present an experiment that
characterizes the behavior of SHADOW-NFS in the detached active state, when the
standby system has failed. We used the small database (10 warehouses) with large memory
(4GB) for all of these experiments.

6.5.1 Protection

Our first experiment compares the time required for a protect operation in SHADOW-
NFS to that of PostgreSQL native synchronous replication (SR). For this experiment,
a single DBMS was started in standalone active mode and run for five minutes, at
which point a protect operation was initiated to launch a standby DBMS. The protect

34

0 1000 2000 3000 4000 5000
Time(second)

0

200

400

600

800

1000

1200

Ne
wO

rde
r/s

ec
on

d

SR
SHADOW
SA
SA-10

Figure 6.6: TPC-C Throughput, Large Dataset

0 1000 2000 3000 4000 5000
Time(second)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

KB
/s

SR
SHADOW
SA
SA-10

Figure 6.7: Write I/O between the Active and the NFS, Large Dataset

35

 0

 20

 40

 60

 80

 100

 120

 140

SR SHADOW

T
im

e
(s

ec
o

n
d

s)
Post-Protection

Data Copy
Pre-Protection

Figure 6.8: Protection Time in SHADOW-NFS and SR

operation can be broken down into three general steps, and we measured the time required
for each of these steps. The first step is Pre-Protection, which includes all preparation
before duplicating data. The most time consuming part of Pre-Protection is a checkpoint
operation, which is performed by PostgreSQL as part of its backup procedure. The second
step is Data Copy. For SR, it is necessary to duplicate the database to create a backup copy.
In contrast, SHADOW-NFS uses linked backup, which copies only instance metadata, as
described in Section 3.3. The third step is Post-Protection, which lasts until the standby
starts and is ready to replay logs from active.

Figure 6.8 shows the results of this experiment. protect is about three times faster
in SHADOW-NFS than in SR in our setting, largely because of the time SR requires to
copy the database. For larger databases, we expect this time difference to increase.

6.5.2 Failover

Our next experiment compared failover times in SHADOW-NFS and SR. For each system,
we first ran the system under load in active+standby state for five minutes before
triggering a failure of the active DBMS and an immediate failover to the standby. The
five minute warmup time was chosen to be large enough to allow the DBMS caches to
warm up in both systems, but short enough that the database sizes of the two systems
did not diverge significantly prior to failover. The result is shown in Figure 6.9. The
failover contains 3 major procedures: 1) Log Replay. The standby replays all the logs
left over by the failed active systems. 2) Other. The standby cleans up some resources

36

 0

 10

 20

 30

 40

 50

SR SHADOW

T
im

e
(s

ec
o

n
d

s)
Checkpoint

Other
Log Replay

Figure 6.9: Failover Time in SHADOW-NFS and SR

and estabilshes some state before becoming the new active. 3) Checkpoint. The standby
performs a consistent checkpoint to flush dirty pages to persistent storage and truncate
logs. Log Replay takes only 2 to 3 seconds. The Other operations are also very fast and
consume around 1 second. The dominating time consumption is Checkpoint 2. The time
depends of the size of the database. This checkpoint operation is the default in PostgreSQL
(version 9.2). The SHADOW-NFS system also performs a this checkpoint. The overall
failover time of SHADOW-NFS and SR are very similar.

6.5.3 Re-protect

Finally, we consider the performance of the SHADOW-NFS system in the detached ac-
tive state, when the standby has failed. We tested SHADOW-NFS in both large memory
(4GB) and small memory (1GB) configurations, which we refer to here as SHADOW 4G
and SHADOW 1G. In each experiment, we run the system under test for 5 minutes in ac-
tive+standby mode, before triggering a failure of the standby DBMS. A re-protect
operation, which restarts the standby, is initiated 10 seconds after the standby’s failure.
During the 5 minute pre-failure warm-up period, the size of the database grows to approx-
imately 1.5GB. We also ran a second version of the small memory experiment in which
we did not restart the standby DBMS after the failure. We refer to that experiment as
SHADOW 1G NoRestart.

2As of PostgreSQL version 9.3, this consistent checkpoint is optional.

37

0 200 400 600 800 1000 1200
Time(second)

0

50

100

150

200

250

300

350

400

450

Ne
wO

rde
r/s

ec
on

d

SHADOW 1G
SHADOW 1G NoRestart
SHADOW 4G

Figure 6.10: TPC-C Throughput During a Standby Failure

Figure 6.10 shows a timeline of the TPC-C New Order transaction throughput for
each of the three scenarios we tested. For SHADOW 4G, the active DBMS continues
to process transactions unaffected since it can cache the whole database and does not
need to fetch pages from the standby. For SHADOW 1G, the active is unable to hold the
complete database in memory, and attempts to request some pages from the standby. These
requests fail while the standby is down, resulting in transaction aborts. In the SHADOW
1G experiment, the standby required about 400 seconds to fully recover. Although the
standby is able to serve some page requests during recovery, approximately 9100 standby
page requests failed. However, the resulting transaction aborts had only a small impact
on system throughput.

The SHADOW 1G NoRestart scenario shows that the performance of SHADOW-NFS
will eventually suffer if the failed standby remains unavailable for too long before recovering,
and if the active DBMS is not able to store the entire database locally. As the active DBMS
continues to process client transactions while the standby is down, the persistent copy of
the database gradually becomes staler. Eventually, this increases the likelihood that the
active DBMS will have to request pages from the standby, which leads to transaction aborts
if the standby is down. As shown in Figure 6.10, in our setting the active DBMS is able
to maintain its throughput for about five minutes after the standby fails, after which high
abort rates quickly become a problem. Thus, in a SHADOW system, it is important that
the standby be recovered within this “grace period”. The length of the grace period will
depend on how much of the database the active DBMS can cache locally.

38

Chapter 7

Related Works

HADB has been studied in both the academia and industry for several decades. We
first provide an overview of the HADB technques in the research literature. Then some
representative products are reviewed in more detail.

7.1 Overview

Replication is a commonly used technique to achieve database system high availability.
Data is maintained redundantly with several replicas. The system is able to tolerate the
failure of one or more replicas and remains available.

In this thesis, we focus on HADB based on replication. We categorize and discuss the
techniques along the following two dimensions:

• Synchronous/Asynchronous. Depending on when the updates are replicated, repli-
cation can be categorized as synchronous (eager) replication or asynchronous (lazy)
replication [15, 12, 11]. Synchronous replication normally requires that the update
commits at multiple sites atomically and durably. It could be implemented using
by distributed consensus algorithms, such as Two Phase Comit [24] and Paxos [17].
However, these algorithms are known to have high overhead. In contrast, asyn-
chronous replication commits updates locally. The updates are then propagated to
other sites asynchronously. Asynchronous replication normally has lower overhead.
However, the consistency and durability of data are not guaranteed.

39

• Active-Standby/Active-Active. Depending on where the updates take place, replica-
tion can be categorized as Active-Standby (a.k.a. Primary Copy) and Active-Active
(a.k.a. Update Anywhere). Active-Standby configurations allow updates to happen
in a single active replica. The standbys replays the operations that happen at the
active. The standby replicas can be configured to serve read-only queries. Such a
configuration is simple and is able to scale out read-only workloads. However, the
single active system represents a bottleneck of the overall system, especially when
updates happen frequently. Active-Active allows updates to happen anywhere. For
some datasets and workloads, for example, when the dataset and workload can be
partitioned well, update operations can be scaled out. However, when the datasets
and workloads get more complex, Active-Active requires extensive high-overhead co-
ordination among different replicas to guarantee data consistency.

S
y

n
ch

ro
n

o
u

s
A

sy
n

ch
ro

n
o

u
s

Active-Standby Active-Active

Pros:
• Consistency.

• Not need to coordinate

concurrent updates.

Cons:

• Long response time.

Pros:

• Short response time.

• Not need to coordinate

concurrent updates.

Cons:

• Local copy is not up-to-date

Pros:

• Consistency.

• Better update performance in

some circumstances. (e.g.

good partition)

Cons:

• Long response time.

• Update coordination required

Pros:

• Short response time.

• Not need for coordination

Cons:

• Data inconsistency.

Figure 7.1: Replication design dimensions

Different combinations of replication techniques are shown in Figure 7.1. Active-

40

standby systems with asynchronous replication is a relatively simple and widely-used so-
lution [2, 4]. Such systems are also known as 1-safe systems [12, 22]. Transaction results
can be returned to the user once the transaction commits at the active system. Updates
are shipped to the standby asynchronously. Normally, it has low overhead and is easy
to implement. However, it risks data loss and inconsistency under various failure scenar-
ios. Active-standby systems with synchronous replication avoids such drawbacks. However
they normally have high overhead since the transaction commit needs to be coordinated
between the active and the standby. Such systems are also known as 2-safe system. Nor-
mally, active-standby systems are also shared-nothing systems. The active and standby do
not share data and state. Updates are replicated to standby via log shipping [2, 4], VM
replication [19] or other techniques.

SHADOW belongs to the active-standby category. Unlike most other active-standby
systems, SHADOW is a shared-storage system. The database and logs are shared by
the active and the standby systems. Thanks to the shared-storage design, SHADOW is
able to support the write-offloading technique, which eliminates database writes at the
active system. Another significant difference between SHADOW and other active-standby
system is that, typically, the active system does not rely on the standby system. Instead,
SHADOW fetches pages from standby, effectively using the buffer cache at the standby.

Active-active is normally a more complex high availability solution. Updates can hap-
pen at multiple active systems concurrently. Updates are also propagated to each active
system. Various techniques, such as those based on quorum consensus [10, 25] or on the
availability of an underlying atomic broadcast mechanism [14], are used ensure the con-
sistency among the active systems. Oracle RAC [1] and MySQL Cluster with NDB [3]
belongs to this category. Like SHADOW, Oracle RAC is shared-storage system. In con-
trast, MySQL/NDB is shared-nothing system.

7.2 MySQL

We first describe MySQL (version 5.7) with InnoDB [2], which was the latest version when
this thesis was written. By default, MySQL uses asynchronous replication. Each standby
(i.e. slave) has an thread that fetches the logs from active (i.e. master). The standby also
has other threads that replay the logs read from the active. When the active system receives
a log fetch request from the standby, a thread at active will read the logs locally and ship
them to the standby. Transactions could be lost during failover. As of version 5.7, MySQL
also provides semi-synchronous replication to reduce the gap between transaciton commit
and log shipping. Semi-synchronous replication requires that commit logs are shipped to

41

the standby before a transaction’s completion is acknowledged to a client. Two variants of
semi-synchronous replication exist: 1) After Sync (Default). The transaction operations
are first shipped to the standby. Then the transaction log is committed locally. Finally,
the active returns an acknowledgement to the transaction session. 2) After Commit. The
transaction log is first committed locally. Then the transaction operations are shipped
to the standby. Finally, the transaction is acknowledged. There are subtle differences
between these two variants. For the first option, no other client can see a transaction’s
effect until the transaction is persistent at both active and standby. However, some special
caution is required if the active failed to commit the transaction locally (e.g. disk failure)
after the transaction operations have been shipped to slave. For the second option, since
the transaction commits locally before the commit log is shipped, it is possible that logs
shipping fails after the transaction commits locally. In this case, some clients could see the
effect of the transaction at the active and find it missing after a failover.

Another interesting thing worth mentioning is that MySQL uses binary logs for repli-
cation, rather than transactional logs. In old versions of MySQL, the binary log has no
concept of transaction. The standby needs to keep track of the log position that it has
fethced and replayed. Hence, at the time of failover, the standby has no knowledge of
which transaction are fully replayed. MySQL (version 5.7) uses a technique called Global
Transaction ID (GTID) to add the concept of transaction. Binary logs describing the same
transactions are grouped and assigned GTID number, which is unique among transactions.
With GTID, failover can be more automatic since standbys have a globally unique trans-
action ID (log position) to agree upon when one standby is promoted as the new active.
We will discuss transactional log-based replication at PostgreSQL, which seems to be a
simpler and cleaner solution.

MySQL Cluster with NDB (version 7.3) [3] supports in-cluster replication and cluster-
wise replication. Within a cluster, data is partitioned into node groups. Each partion in
a node group contains primary replica and backup replica. The data is replicated using
two phase commit. A MySQL cluster can also replicate its operations to an other MySQL
cluster with aynchronous replication.

7.3 PostgreSQL

We focus on the PostgreSQL (version 9.3) [4], which was the latest version when the thesis
was written. Like MySQL (version 5.7), PostgreSQL also supports asynchronous and
synchronous replication. The thread model between MySQL replication and PostgreSQL
is also very similar. Hence, we don’t describe it in detail.

42

One major difference between PostgreSQL and MySQL replication is that PostgreSQL
uses its transactional log for replication while MySQL uses a binary log. Recall that binary
log is not born to have transaction in mind. Hence, extra effort is required during failover
(e.g. including GTID). In contrast, with transactional logs, PostgreSQL is able to unify
the traditional failure recovery and replication. Traditional failure recovery (not failover)
of both MySQL with InnoDB and PostgreSQL uses transactional logs. Failure recovery
can always find the recovery point under repeated failure and recover correctly. Since both
replication and failure recovery are implemented based on log replay, PostgreSQL reuses
the algorithms of failure recovery for replication. The standby fetches transactional logs
from active and replays the logs in failure recovery mode as if it was a standalone node
that was doing failure recovery. As a result, the standby can always recover correctly under
repeated failure. Failover can be done automatically as long as standby is told that the
active is down.

7.4 Oracle

We focus on Oracle 12c [1], the latest version when the thesis was written. Oracle supports
an optional active (a.k.a. Primary) and standby (a.k.a. Data Guard) configuration. The
standby can be hot standby (Active Data Guard) and support read-only queries. Oracle
supports two types of logs. Based on the description in Oracle’s white paper [1], we infer
that one is similar to physical (and physiological) logs. The other is similar to logical logs.
The database system can switch between these two types of logs. For instance, during
normal replication, physical (or physiolological) log is used. In this way, when the active
finds a corrupted page, it fetches a correct one from the standby. When the standby finds a
corrupted page, it fetches a correct one from the active. However, during system upgrades,
the logical log (based on SQL) is used to achieve compatibility between different versions.

As in MySQL and PostgreSQL, replication can be synchronous or asynchronous. Syn-
chronous replication has a performance impact on the active system. According to the
description in Oracle’s white paper [1], the synchronous replication mechanism is very sim-
ilar to those in MySQL and PostgreSQL. Oracle claims that it guarantees zero data loss.
Oracle also supports a feature called Far Sync. It is similar to chain/cascade replication
in MySQL and PostgreSQL. The active first synchronously ships logs to a geographically
nearby proxy. The proxy then asynchronously ships the logs to a geographically different
site. The proxy could optionally do some data compression.

Oracle 12c supports an advanced feature through which all in-flight transactions are
protected and therefore not aborted during failover. This is supported by a middle-tier

43

that replays the transactions aborted by the database system during failover. Hence, from
the users perspective, no transaction is aborted. Only a small number of transactions have
longer response time than normal due to the replay.

Oracle RAC is different from traditional active-standby systems in that the database
is shared, as in SHADOW. However, Oracle RAC is an active-active system. Multiple
read/write transactions can happen at different application servers concurrently. A more
advanced high availability product called GoldenGate is also part of Oracle 12c. It is able
to replace both active and standby. GoldenGate can support relication in an active-active
configuration.

7.5 RemusDB

RemusDB [19] is a novel HADB solution that is based on VM replication. It pushes the
replication task from the DBMS to the virtualization layer. Changes are continuously
copied from active to standby. Several optimizations are implemented to reduce the over-
head of VM-based repliaction. RemusDB achieves synchronous replication by buffering
results until changes at the active have been replicated to the standby. Once the changes
are safely replicated, the results are returned to clients. Since the orginal virtualization
layer is unaware of transactions, the DBMS and virtualization layer are modified to syn-
chronize the transaction commit with result buffering. The transaction result is bufferred
until the transaction-caused changes have been replicated to the standby. During failover,
all in-flight transactions are aborted at the new active.

7.6 Spanner

Spanner [7] is not a traditional relational DBMS. However, it supports OLTP workloads
and guarantees ACID requirements. Besides, it is scalable and highly available. Hence, we
consider it as a related work and describe it here.

Spanner is a scalable, multi-version, globally distributed, and synchronously replicated
database implemented by Google. Each Spanner deployment is a universe, which contains
a set of Zones. Zone is the unit of physical isolation. Each zone, in turn, include hundreds
or thousands of spanservers that store tablets. Hence, data in Spanner is partitioned into
tablets. Each tablet is replicated.

44

Traditional DBMS that provides strong ACID does not scale out well. Distributed
consensus algorithms, such as Paxos and two phase commit have high overhead, especially
when used across wide area network. Besdies, transaction concurrency is very difficult in
distributed environments. Spanner introduces two smart designs that make itself possible
for many types of datasets and workloads. The first is fine-grained data management. With
fine-grained partitions and live migration, many carefully designed applications can reduce
the quantity and geographic span of distributed transacitons. The second is TrueTime.
Thanks to Google’s efficient and customized data center, the clock of different nodes can be
synchronized within a guaranteed bound. With the synchronized time, Spanner implements
transaction concurrency in a distributed environment.

Each tablet and its replicas form a replication group. Unlike the synchronous replication
of MySQL and PostgreSQL, data within each replication group is replicated using Paxos.
Hence, updates are guaranteed to be replicated atomically and durably. The replication
group is available as long as a quorum of replicas are available. Update to a replication
group is coordinated by a group leader. However, update can be proposed (i.e. initiated)
by any replica within the replication group. Hence, Spanner is an Active-Active system.

Since data is partitioned, two phase commit is used to support transactions that span
several replication groups. The group leader of one replication group is selected as the
transaction manager and coordinates the distributed transaction.

45

Chapter 8

Conclusion

We have presented SHADOW, a novel architecture for building highly available database
systems. SHADOW systems incorporate two key ideas. First, the active and standby
database systems share access to a single copy of the database and log. Second, the active
DBMS writes to the log to commit transactions, but does not update the database. Instead,
database updates are the responsibility of the standby DBMS. The SHADOW architecture
targets settings in which the active and standby database systems can cache most or all of
the database.

Our experiments with TPC-C workloads show that SHADOW systems outperform
traditional hot standby systems, largely by eliminating the need to synchronize the active
and standby database systems when committing a transaction. Our experiments also show
that the active DBMS in a SHADOW system can outperform a standalone DBMS, because
database writes are offloaded from the active to the standby in a SHADOW system. The
less tolerant the standalone DBMS is of downtime, and hence the more aggressively it
pushes changes to the database, the greater the performance advantage of the SHADOW
system.

46

References

[1] Maximize Availability with Oracle Database 12c.
http://www.oracle.com/technetwork/database/availability/maximum-availability-
wp-12c-1896116.pdf.

[2] MySQL 5.7: Chapter 16. Replication. http://dev.mysql.com/doc/refman/5.7/en/replication.html.

[3] MySQL Cluster Replication. http://dev.mysql.com/doc/refman/5.6/en/mysql-
cluster-replication.html.

[4] PostgreSQL 9.3: Chapter 25. High Availability, Load Balancing, and Replication.
http://www.postgresql.org/docs/9.3/static/high-availability.html.

[5] Jason Baker, Chris Bond, James Corbett, JJ Furman, Andrey Khorlin, James Larson,
Jean-Michel Léon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh. Megastore: Pro-
viding scalable, highly available storage for interactive services. In CIDR, volume 11,
pages 223–234, 2011.

[6] S. Bartkowski and et al. High Availability and Disaster Recovery Options for DB2 for
Linux, UNIX, and Windows. Technical report, IBM Redbooks, 2012.

[7] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, JJ Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, et al. Spanner: Googles globally-distributed database. In Proceedings of
OSDI, volume 1, 2012.

[8] Stephen Daniel. Running Database Applications On NAS: How and Why?
http://www.snia.org/.

[9] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and

47

Werner Vogels. Dynamo: amazon’s highly available key-value store. In SOSP, vol-
ume 7, pages 205–220, 2007.

[10] David K Gifford. Weighted voting for replicated data. In Proceedings of the seventh
ACM symposium on Operating systems principles, pages 150–162. ACM, 1979.

[11] Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis Shasha. The dangers of repli-
cation and a solution. In Proc. SIGMOD, pages 173–182, 1996.

[12] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1993.

[13] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. Consistent hashing and random trees: Distributed caching protocols for
relieving hot spots on the world wide web. In Proceedings of the twenty-ninth annual
ACM symposium on Theory of computing, pages 654–663. ACM, 1997.

[14] Bettina Kemme and Gustavo Alonso. Don’t be lazy, be consistent: Postgres-r, a new
way to implement database replication. In VLDB, pages 134–143, 2000.

[15] Richard P. King, Nagui Halim, Hector Garcia-Molina, and Christos A. Polyzois. Man-
agement of a remote backup copy for disaster recovery. ACM Trans. Database Syst.,
16(2):338–368, 1991.

[16] D. Komo. Microsoft SQL Server 2008 R2 High Availability Technologies Whitepaper.
Technical report, Microsoft, 2010.

[17] Leslie Lamport. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.

[18] Rui Liu, Ashraf Aboulnaga, and Kenneth Salem. DAX: A widely distributed multi-
tenant storage service for DBMS hosting. Proc. VLDB Endowment, 6, 2013.

[19] Umar Farooq Minhas, Shriram Rajagopalan, Brendan Cully, Ashraf Aboulnaga, Ken-
neth Salem, and Andrew Warfield. RemusDB: Transparent high availability for
database systems. PVLDB, 4(11):738–748, 2011.

[20] C. Mohan, Donald J. Haderle, Bruce G. Lindsay, Hamid Pirahesh, and Peter M.
Schwarz. ARIES: A transaction recovery method supporting fine-granularity locking
and partial rollbacks using write-ahead logging. ACM Trans. Database Syst., 17(1):94–
162, 1992.

48

[21] David A. Patterson, Garth A. Gibson, and Randy H. Katz. A case for redundant
arrays of inexpensive disks (RAID). In SIGMOD, pages 109–116, 1988.

[22] Christos A Polyzois and Hector Garcia-Molina. Evaluation of remote backup algo-
rithms for transaction-processing systems. ACM Transactions on Database Systems
(TODS), 19(3):423–449, 1994.

[23] Krishna P.N. Puttaswamy, Thyaga Nandagopal, and Murali Kodialam. Frugal stor-
age for cloud file systems. In Proceedings of the 7th ACM European Conference on
Computer Systems, EuroSys ’12, pages 71–84, New York, NY, USA, 2012. ACM.

[24] Dale Skeen. Nonblocking commit protocols. In Proceedings of the 1981 ACM SIGMOD
international conference on Management of data, pages 133–142. ACM, 1981.

[25] Robert H Thomas. A majority consensus approach to concurrency control for multiple
copy databases. ACM Transactions on Database Systems (TODS), 4(2):180–209, 1979.

[26] Satyam B. Vaghani. Virtual machine file system. SIGOPS Oper. Syst. Rev., 44(4):57–
70, December 2010.

[27] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art and
research challenges. Journal of Internet Services and Applications, 1(1):7–18, 2010.

49

	List of Figures
	Introduction
	Background
	SHADOW systems
	Thesis Organization

	SHADOW Overview
	SHADOW Operations
	Assumptions
	Stand Alone State
	Protect
	Active + Standby State
	Failover
	Re-protect
	DBMS Recovery
	Correctness of SHADOW

	Large Databases
	Stale Read Detection
	Correcting Stale Reads
	Discussion
	Alternative Stale Read Correcting Methods

	Prototype Implementation
	DBMS for SHADOW-NFS
	Shared Storage for SHADOW-NFS
	Alternative Shared Reliable Storage
	Dynamo
	DAX

	Evaluation
	Experiment Methodology
	Large Memory Case
	Small Memory Case
	Large Dataset Case
	Protection and Failure Handling
	Protection
	Failover
	Re-protect

	Related Works
	Overview
	MySQL
	PostgreSQL
	Oracle
	RemusDB
	Spanner

	Conclusion
	References

