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Abstract

Quantum Field Theory (QFT) provides the essential background for formulating the stan-

dard model of elementary particles and, moreover, practically all other theories attempting

to explore the physical laws of nature at the sub-atomic level. One of the main observables

in QFT are the scattering amplitudes, physical quantities which encode the information

of the scattering process of particles. Accordingly, having authentic, well-defined and fea-

sible prescriptions for the calculations of amplitudes is of huge importance to theoretical

physicists. Actual calculations show that the text-book prescription, the Feynman method,

besides in general being very cumbersome also hides some of the beautiful mathematical

features of amplitudes. The last decade has seen tremendous efforts and achievements to

improve such calculations, particularly in supersymmetric gauge theories, which have also

led to better understanding of QFT itself. Among the known physically and mathemat-

ically interesting quantum field theories is perturbative gravity and its supersymmetric

version, N = 8 supergravity– much less understood than gauge theory. Following the

developments in gauge theory, this dissertation mainly aims at exploring scattering ampli-

tudes in gravity as a quantum field theory, using the modern approaches to QFT. The goal

is not only to improve our understanding of gravity amplitudes by applying part of the

known modern methods of calculations to it but also to introduce and develop new ones.
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Chapter 1

Introduction

The main concepts needed to introduce the objectives and to establish the methods used

in this thesis are overviewed in this section. We will mainly discuss what is now widely

known as the modern methods in calculating scattering amplitudes for which also some

preliminaries are briefly reviewed. Our focus will be on only the materials which are

essential to know for the rest of this dissertation; hence, our literature review has tried to

be concisely directed.

1.1 S-Matrix and Scattering Amplitudes

To “observe” the sub-atomic world and explore its underlying physics, scattering exper-

iments are carried out. Transition rates and cross-sections are the main observables in

a scattering process both of which can be calculated from the evolution operator, the

Scattering matrix S, introduced to particle physicists by Heisenberg in the 1940s. When

sandwiched between in and out states – experimentally prepared at −∞ and +∞ – the

S-matrix gives its elements, the scattering amplitudes, which encode the information to

calculate the probability amplitude for the transition from an initial i to a final f state,

Sfi = 〈out|in〉. 1

1Equivalently, S-matrix elements can be written in terms of free particle states Φ as Sfi = 〈Φf |S|Φi〉.
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Now let us look at this procedure from a calculative point of view. Quantum field

theory describes field interactions by a Lagrangian from which physical observables can be

derived. The traditional mathematical toolkit for calculations in quantum field theories

is the Feynman method. Once we have a Lagrangian for the quantum field theory under

study, we can extract the Feynman rules from it to calculate the scattering amplitudes

A of different processes allowed in our quantum field theory to occur. The amplitude

is a gauge invariant and on-shell object which as Feynman method establishes, is the

sum of possible Feynman diagrams at each level of perturbation. Given the scattering

amplitudes, one can calculate the differential cross-section dσ
dΩ

. Usually we are interested

in an unpolarized differential cross-section because it is difficult to prepare external states

with definite spins. Therefore, we sum over spin of final states and average over spin

of initial states before comparing dσ
dΩ

with experimental measurements. By integrating

over angles and considering suitable symmetry factors for identical final states, the total

cross-section σ can be found. Both σ and dσ
dΩ

are physical quantities which are of interest

to experimentalists, however, for theorists, the most interesting physical quantity is the

scattering amplitude itself. Feynman’s rules have come to be the main and standard

method in calculations of scattering amplitudes. Although clear and simple to utilize in

principle, in several situations they are unfit in practice. The practical and also main

issue with Feynman’s method is the huge complexity of calculations when the number of

external scattered particles increases.

The number of Feynman diagrams contributing to a scattering process of n particles,

say 2 incoming and n− 2 outgoing, increases factorially [1, 2]. As an example, for a pure

gluon scattering process, table 1.1 shows how many diagrams are needed:

n 4 5 6 7 8
number of Feynman diagrams 4 25 220 2485 34300

Table 1.1: Number of Feynman diagrams in n-gluon scattering, [1].

Although implementing Feynman’s method on a computer can partially solve the prob-

lem of the large number of diagrams, still it is not efficient for higher point amplitudes.
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Moreover, on the analytic side, one has to suffer from dealing with all contributing Feyn-

man diagrams, even though at the end of the calculation, many would cancel and the result

becomes simple and compact.

Let us talk about the origin of this complexity. The Lagrangian is a local function in

space-time. The Feynman rules, derived from the Lagrangian, hence make locality mani-

fest. Also, as a physical quantum theory, QFT is unitary. In the Feynman method, both

space-time locality and quantum unitarity are made manifest at the expense of introducing

gauge redundancies. Consequently, S-matrix calculations with Feynman’s method contain

many unnecessary intermediate steps while the final result is unexpectedly simple. It turns

out that the underlying simplicity of scattering amplitudes cannot be seen when computed

by a method which makes both locality and unitarity manifest. This observation was a

key to many of the last few years’ advancements in the quest for a new (non-local) formu-

lation of QFT where other physical principles are more manifest than locality. However,

there have been attempts other than Feynman’s approach to calculate the S-matrix of

elementary particles since the ’60s.

1.1.1 Unitarity and Analyticity

As a unitary operator, S-matrix satisfies S†S = 1. Also, it can be decomposed into a

no-scattering part plus transition (interaction) matrix T : S = 1 + iT . Combining the two

relations, unitarity requires that

− i(T − T †) = 2ImT = TT †, (1.1.1)

also known as the optical theorem. This statement can be examined order by order in a

perturbative quantum field theory. When a complete set of states (containing summation

over all possible internal states and integration over the on-shell momenta of the internal

states) is inserted between T and T † on the right hand side, (1.1.1) describes the imaginary

part of the T -matrix as a sum of terms each representing two amplitudes connected by

3



different possible on-shell internal states. This sum resembles the usual Feynman’s pertur-

bative expansion but is in fact different from it because the internal states of this expansion

are all on-shell. The on-shellness and momentum conservation require that in the integral

of the right hand side, there exists δ(P 2 −m2), where P is the sum of incoming momenta

and m is the mass of the internal particle. For this to happen, the external momenta

cannot be real and have to be extended to the complex plane.

Moreover, since the amplitude has a pole as 1
P 2−m2 , the usual Feynman propagator, the

left hand side of (1.1.1), happens to be the discontinuity of T which also satisfies

Disc(
1

P 2 −m2
) = lim

ε→0

(
1

(P 2 −m2) + iε
− 1

(P 2 −m2)− iε

)
= δ(P 2 −m2). (1.1.2)

This is in fact what is called the particle-pole correspondence. Every particle which is

allowed to be produced by analytic continuation corresponds to a pole of the amplitude.

An analytic function can be made by knowing all its singularities. As an analytic func-

tion of the kinematical variables, S-matrix has different types of singularities at different

orders of perturbation. The information about the singularities was hoped to be enough

to reconstruct amplitudes in the ’60s under the S-matrix program. The claim was that all

singularities of the S-matrix correspond to physical processes.2 The aim of the S-matrix

program was to develop a theory to describe the strong interaction for massive particles

like pions, using unitarity and analyticity properties of the S-matrix.

As Quantum Chromo Dynamics (QCD), a quantum field theory based on a Lagrangian,

was established in the ’70s correctly describing the strong interaction, the S-matrix view-

point became less attractive. However, later on in the ’90s, it was realized that the natural

home to the approach is in fact massless theories. In particular, certain one-loop ampli-

tudes were built from their branch-cut discontinuities using the optical theorem (1.1.1)

[4, 5, 6]. This approach, called the unitarity cut method in which only on-shell tree am-

plitudes are used as input, revived the hope of bootstrapping higher order amplitudes in a

2For a review of the S-matrix program see [3].
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perturbative expansion.

1.2 Preliminaries

In this thesis, the two theories that we will study are (massless) pure Yang-Mills and pure

gravity and, in some cases, the supersymmetric versions of them, all at the first order of

perturbation (tree level). This section introduces the concepts and conventions which we

will use to study our favourite theories, thus we skip reviewing other interesting mate-

rial. As was touched on, since the goal is to avoid complicated approaches in calculating

scattering amplitudes, our formalism is built towards this goal.

A big step to simplify calculations of gauge theory tree amplitudes is to first exclude the

group theory (color) factors from the amplitude and calculate the color-stripped amplitude

which depends only on kinematical variables. This manipulation is called color-ordering

or color-decomposition since in the color-stripped amplitude, also called partial amplitude,

only a fixed order of gluons appear. Each gluon carries a colour label a which also labels

the generators of U(N). The gauge group of QCD is SU(3) whose generators, T a, are

related to Gell-Mann matrices by T a = 1
2
λa for a = 1 · · · 8. The full amplitude is of course

obtained from summing over all the non-cyclic permutations of partial amplitudes each

multiplied by its corresponding trace factor,

An =
∑

Tr(T aσ(1)T aσ(2) · · ·T aσ(n))An(σ(1), σ(2), · · · , σ(n)). (1.2.1)

An is the full tree-level amplitude of n gluons preserving momentum conservation (extract-

ing δ4 (
∑n

i=1 p
i)) and An(σ(1), σ(2), · · · , σ(n)) is a partial amplitude with a specific order

of the n gluons. To show why (1.2.1) works and the full amplitude can be written in terms
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of single-trace terms, recall that the group generators obey

Tr(T aT b) = δab, (1.2.2)

[T a, T b] = ifabcT c, (1.2.3)

from which the structure constant can be written as

fabc = −i(Tr(T aT bT c)− Tr(T aT cT b)). (1.2.4)

Further manipulation writes the contractions of two or more structure constants, which

appear in the expressions for amplitudes, as the sum of single traces of T a’s with different

orderings, and hence proves the color-decomposition of gauge theory amplitudes (1.2.1).

1.2.1 Spinor Helicity Formalism

In their most general form, scattering amplitudes are functions of momenta, spin and po-

larization vectors (for particles with spin), and also colour. We saw that it is possible to

colour-strip Yang-Mills amplitudes and hence we do so from now on and only consider par-

tial amplitudes unless specified. For massless particles, the information of spin is encoded

in the helicity in 4-dimensional space-time. So, momenta, helicities and polarization vec-

tors are the ingredients of amplitudes of massless particles in four dimensions. Moreover,

in four dimensions, a null momentum vector can be written in terms of two Weyl spinors.

These spinors together with the helicity can fix the state’s polarization vector up to gauge

redundancies. Let us see these all in detail.

To every four-momentum pµ, one can associate a Hermitian matrix Pαα̇ by contraction

with Pauli matrices,

Pαα̇ ≡ pµσ
µ
αα̇, (1.2.5)

where each index α and α̇ runs over 1 and 2. This relation directly shows that det(Pαα̇) =

pµp
µ = −m2 (on-shell), and hence, massless particles have associated matrices with van-
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ishing determinants. Any rank one matrix (with zero determinant) can be represented as

the product of two spinors,

Pαα̇ = λαλ̃α̇. (1.2.6)

Spinors λα (holomorphic) and λ̃α̇ (anti-holomorphic) are in the (1/2, 0) and (0, 1/2) repre-

sentations of the Lorentz group respectively.3 Moreover, direct computation shows that for

real momenta in Lorentz signature, the two spinors are complex conjugate of each other,

λ̃α̇ = ±λα where the sign is determined by the sign of the energy of the particle. How-

ever, when the momenta are complex-valued, the corresponding spinors are considered as

independent variables.4

For given λ and λ̃, one can build a unique momentum p, while the reverse is not true.

Notice that simultaneous rescaling,

λ→ tλ and λ̃→ t−1λ̃, (1.2.7)

for a non-zero complex parameter t, leaves the momentum invariant. For real momenta,

t is unit modulus whereas when momenta are complex it can be any complex number.

This is in fact the little group (U(1) = SO(2)) scaling of the spinors. As we will see, this

redundancy plays an important role in constructing functions which transform similar to

scattering amplitudes under the Lorentz group.

As is known, inner products of momenta are Lorentz invariant objects used in quantum

field theories to construct amplitudes. It is obvious that the next step in the spinor helicity

formalism is to find SL(2,C)-invariants. Contracting with the anti-symmetric Levi-Civitas

3In the literature, alternatives of the notations used here are |λ〉 and |λ̃] for the holomorphic and
anti-holomorphic spinors respectively.

4Our convention for complex conjugation is to use bar instead of asterisk, keeping asterisk for the
purpose of showing a specific value of a quantity.
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tensor ε, one can define the following products for light-like spinors labeled by a and b,

〈λaλb〉 ≡ det(λaλb) = εαβλaαλ
b
β = λa1λ

b
2 − λa2λb1, (1.2.8)

[λ̃aλ̃b] ≡ det(λ̃aλ̃b) = εα̇β̇λ̃aα̇λ̃
b
β̇

= λ̃a
1̇
λ̃b

2̇
− λ̃a

2̇
λ̃b

1̇
, (1.2.9)

and moreover, using (1.2.5) and (1.2.6), the brackets can be related to the inner product

of the corresponding momenta,

2pa · pb = 〈λaλb〉[λ̃aλ̃b]. (1.2.10)

For simplicity, the angular and square brackets defined above are usually written as 〈ab〉

and [ab]. We will see how calculations by means of the new variables are much simpler and

more compact than with the usual momentum space variables. Another Lorentz invariant

quantity which will be repeatedly used in calculations is [a|P |b〉 ≡ [aλ̃P ]〈λP b〉 when P is

light-like.

It is also useful to mention that the momentum conservation condition for scattering

of n massless particles in terms of spinors is

n∑
i=1

pi = 0 =⇒
n∑
i=1

λiλ̃i = 0. (1.2.11)

The other useful relation for the calculations is the Schouten identity between any four

holomorphic and also anti-holomorphic spinors,

〈ij〉〈kl〉+ 〈ik〉〈lj〉+ 〈il〉〈jk〉 = 0, (1.2.12)

[ij][kl] + [ik][lj] + [il][jk] = 0 (1.2.13)

which is in fact the consequence of the dependence of any three vectors on a plane (here,

2-component vectors j, k and l).

Having introduced λ and λ̃, and picking a helicity for a massless particle with spin 1,
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the polarization vectors can be determined as follows5:

ε−αα̇ =
λαµ̃α̇

[λ̃µ̃]
for negative-helicity particle, (1.2.14)

ε̃+αα̇ =
µαλ̃α̇
〈µλ〉

for positive-helicity particle. (1.2.15)

These definitions guarantee εi · pi = 0 as well as the correct scaling of the polarization

vector for every particle i when the spinors µ and µ̃ are arbitrary.

It now becomes clear that the scattering amplitude of massless gauge bosons only

depends on λ, λ̃ and the helicity of external states, hence A({λi, λ̃i, hi}). Furthermore, in

an amplitude, vertices and propagators do not scale under the little group transformation

(1.2.7) but the external states do. From (1.2.14), one can see that ε±(λ, λ̃) rescales with

t−2h when (1.2.7) is applied. These observations directly determine the scaling of the

amplitude under little group transformation of each of the external states with helicity hi,

An({λ1, λ̃1, h1}, . . . , {tiλi, t−1λ̃i, hi}, . . . , {λn, λ̃n, hn}) = t−2hiAn(. . . , {λi, λ̃i, hi}, . . . ).

(1.2.16)

1.2.2 Constructing 3-Particle Amplitudes

3-particle amplitudes are very special objects in massless theories. For three massless

particles, momentum conservation implies that

0 = (p3)2 = (−p1 − p2)2 = 〈12〉[12], (1.2.17)

so either 〈12〉 = 0 or [12] = 0. Suppose that the square brackets vanish; then one can write

that 〈1|p1 +p3|3] = −〈12〉[23] = 0 which indicates that [23] = 0. Similarly, one can find the

other square brackets [13] vanish too. We conclude that the on-shell 3-particle amplitude is

5We hope that the context makes it clear when we refer to polarization vectors εαα̇, or the Levi-Civita
tensor εαβ and εα̇β̇ .
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a function of either angular or square brackets of external massless particles. An immediate

consequence is that when momenta are all real, since λ̄i = λ̃i for each particle i, on-shell

3-particle amplitude is identically zero because all its kinematical variables vanish. We will

later on see that non-vanishing complex 3-particle amplitudes play an important role in

constructing amplitudes with higher points.

To compute a non-vanishing 3-particle amplitude, suppose that it depends on holomor-

phic spinors,

A3({λ1, h1}, {λ2, h2}, {λ3, h3}) = cH〈12〉m1〈23〉m2〈31〉m3 . (1.2.18)

(1.2.16) easily fixes the exponents of brackets in terms of the helicities; hence, up to a

constant factor, the 3-particle amplitude of massless external states is given by

AH3 ({λ1, h1}, {λ2, h2}, {λ3, h3}) = cH〈12〉h3−h1−h2〈23〉h1−h2−h3〈31〉h2−h3−h1 . (1.2.19)

Similar arguments when we assume that the amplitude only depends on anti-holomorphic

spinors yield

AA3 ({λ̃1, h1}, {λ̃2, h2}, {λ̃3, h3}) = cA[12]−h3+h1+h2 [23]−h1+h2+h3 [31]−h2+h1+h3 . (1.2.20)

We now need another condition to choose between (1.2.19) and (1.2.20) which is given

by the real momenta limit. As we discussed earlier, all brackets vanish for three on-shell

momenta. Therefore, it is clear from the relations above that h1 + h2 + h3 determines

whether the amplitude is holomorphic or anti-holomorphic. For a finite cA, if the sum

of helicities is negative, the anti-holomorphic amplitude AA3 blows up while AH3 vanishes.

One can then conclude that cA must be zero to avoid an unphysical result. Similarly, when

h1 + h2 + h3 > 0, only AA3 vanishes and cH must be set to zero.

For pure Yang-Mills, h = ±1, (1.2.19) and (1.2.20) together with the real momentum
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condition can completely fix 3-particle amplitudes with different helicities as follows

A3(1−, 2−, 3+) = gYM
〈12〉3

〈23〉〈31〉
, (1.2.21)

A3(1+, 2+, 3−) = gYM
[12]3

[23][31]
. (1.2.22)

Also note that the coupling constant of Yang-Mills is dimensionless and the mass di-

mension of an n-particle amplitude in d = 4 is 4 − n followed from dimensional analysis

(the cross-section has mass dimension −2 or dimension of area). Our results above are also

compatible with the dimensional constraints since both square and angular brackets have

mass dimension 1 (recall that 〈pq〉[pq] = 2p.q). Moreover, one can easily check that if all

three helicities are either plus or minus, the corresponding A3’s cannot have the correct

mass dimension 1 and hence are ruled out. Therefore, A3(+,+,+) = A3(−,−,−) = 0.

Similar calculations can be done for 3-particle amplitudes of other massless theories

including gravity. We will comment on that after introducing gravity as a quantum field

theory in 1.2.4.

1.2.3 MHV Amplitudes in Yang-Mills

In the 1980s, some very important properties of n-gluon scattering amplitudes were dis-

covered. Conjectured by Parke and Taylor [7] and proven by Berends and Giele [8],

A(1+, . . . , n+) = 0, (1.2.23)

A(1+, . . . , i−, . . . , n+) = 0, (1.2.24)

A(1+, . . . , i−, . . . , j−, . . . , n+) =
〈ij〉4

〈12〉〈23〉 · · · 〈n1〉
. (1.2.25)

The first two results hold the same when + and − helicity signs are exchanged and for

the last expression, under the same sign flip, one just needs to replace square brackets

with angular brackets, 〈 〉 → [ ]. This amplitude with two negative helicities among other
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positive ones is called the Maximally Helicity Violating amplitude (MHV) and its conjugate

amplitude is called MHV:

A(1−, . . . , i+, . . . , j+, . . . , n−) =
[ij]4

[12][23] · · · [n1]
. (1.2.26)

The simple and compact form of the Parke-Taylor formula, especially when written in

spinor helicity notation, brings a lot of simplicity to computations. The next-to-simplest

amplitudes, with three negative helicities, are called Next-to-MHV or NMHV and similarly

an amplitude with k+2 negative helicities is called NkMHV amplitude. It is easy to see

that five (and less) gluon amplitudes at tree level can be completely determined by the

formulas above, MHV or MHV.

In super Yang-Mills theory, the full tree amplitude can be decomposed as a sum over

different sectors:

An = AMHV
n + ANMHV

n + AN2MHV
n + · · ·+ AMHV

n , (1.2.27)

where the NkMHV sector is defined as all amplitudes which are connected to NkMHV gluon

amplitude by supersymmetry. The amplitude in the MHV sector has in fact the very form

of its non-supersymmetric partner, using Grassmann variables η̄ which are the eigenstates

of supercharge Q̄,

AMHV
n =

δ2N (
∑

i λiη̄i)

〈12〉〈23〉 · · · 〈n1〉
. (1.2.28)

1.2.4 Einstein’s Gravity as a Quantum Field Theory

The main focus of this thesis will be on gravity at the first order of perturbation. To

establish what we mean by perturbative gravity and also appreciate the modern methods

for calculating gravity amplitudes, we return to the Lagrangian formulation of the theory

for the moment6. Like other quantum field theories, in the next step one can read off the

6In this thesis we only study gravity at its weak coupling limit; meaning that those classical solutions of
Einstein’s equation like black holes or Friedmann-Robertson-Walker metric are not our areas of concern.
In other words, we have a perturbative point of view whereas non-perturbative solutions (e.g. black holes
in gravity and monopoles in Yang-Mills) go beyond the scope of this thesis.
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Feynman rules from the Lagrangian and then calculate scattering amplitudes of particles

associated with quantum fields.

General relativity describes gravity at the classical level through Einstein-Hilbert ac-

tion,

SEH =
1

2κ2

∫
d4x
√
−gR, (1.2.29)

where R is the Ricci scalar and 2κ2 = 16πGN . Working with pure gravity, we can exclude

Smatter from the Einstein-Hilbert action. When expanded perturbatively around a flat

metric, gµν = ηµν + κhµν , the action contains vertices to all orders. This in fact happens

because both
√
−g (not the determinant itself) and the inverse metric, gµν which appears

in the Christoffel symbols in R, get infinite number of terms in the series expansion. Each

term in the expanded action contains two derivatives since the Ricci scalar does so. Hence,

each vertex carries two powers of momentum.

Keeping the terms to the second order in κhµν , one obtains the Fierz-Pauli Lagrangian

in terms of the graviton field:

L =
1

4
∂µhνρ∂µhνρ −

1

2
∂µhνρ∂νhµρ +

1

2
∂µh∂λhλµ −

1

4
∂µh∂µh, (1.2.30)

where h is the trace of hµν . This action has gauge redundancy hµν → hµν + ∂µην + ∂νηµ,

and in order to extract any physical quantity, one must first fix the gauge. Our choice

is the de Donder gauge, ∂µhµν = 1
2
∂νh. A bit of calculation yields the final form of the

Lagrangian from which to extract the propagator:

L = −1

2
∂µhνρV

νραβ∂µhαβ, V νραβ =
1

2
ηναηρβ − 1

4
ηνρηαβ. (1.2.31)

With k being the momentum of the graviton, one can now write the propagator which is

inversely quadratic in momentum,

P νραβ =
ηναηρβ + ηαρηβν − ηνρηαβ

k2 − iε
. (1.2.32)
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As is known, gravitons – associated with quantization of hµν– are massless spin-2 par-

ticles with two (±2) helicity states. Similar to massless gluons, along with helicities,

gravitons can be labeled by holomorphic, λ, and anti-holomorphic, λ̃, spinors. Polariza-

tion tensors associated with each state can be written as products of spin-1 polarization

vectors,

ε±µν(ki) = ε±µ (ki)ε
±
ν (ki). (1.2.33)

Moreover, different reference momenta can be used in the definitions for ε±µ and ε±ν .

We already said that there exist infinite interaction terms (quadratic in momentum)

in the Lagrangian. It is therefore obvious how complicated calculations are with Feynman

method. However, one lesson from new on-shell methods in Yang-Mills was that the gauge

redundancies in a theory are responsible for complications in calculations. In fact, gravity

has more redundancies: diffeomorphism invariance. The role of the infinite vertices in

Einstein-Hilbert action is to maintain the diffeomorphism invariance of the action. While

little group properties fix the 3-graviton amplitude, one’s dream would be to build higher-

point amplitudes recursively, and in fact there exists a recursion relation, Britto-Cachazo-

Feng-Witten (BCFW) [9, 10], to do the job. As a summary, only a certain set of interaction

terms is needed to construct graviton amplitudes using methods which we will review in

the rest of this chapter.

To complete the discussion, let us calculate 3-particle amplitudes in gravity, another

example of a massless theory. Similar to pure Yang-Mills, 3-graviton amplitudes can be

fixed by little group properties and dimensional analysis. With h = ±2, (1.2.19) and

(1.2.20) yield

M3(1−, 2−, 3+) =

(
〈12〉3

〈23〉〈31〉

)2

, (1.2.34)

M3(1+, 2+, 3−) =

(
[12]3

[23][31]

)2

. (1.2.35)

Notice “A2
3 = M3” in these relations (apart from the coupling constants).
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Through this thesis, Mn is used to denote n-particle tree-level amplitudes in gravity.

1.2.5 MHV Amplitudes in Gravity

Like generic amplitudes in gravity, MHV amplitudes are much more complicated than

their Yang-Mills counterparts. In fact, there have been different versions of graviton’s

MHV formula; and just very recently, a formula similar to and still more complicated than

Parke-Taylor’s was found.

The first version is Berends-Giele-Kuijf (BGK) formula [11]. Almost 20 years later,

two other versions were found. One was the Mason-Skinner’s [12] derived by background

field calculations and integration in twistor space. Later on in chapter 3 we will use this

version to study 12-graviton NMHV amplitudes. A year after, another MHV formula was

introduced by Nguyen et al [13] with a different perspective on summing over the terms.

For the MHV amplitude Mn (1−, 2+, . . . , (n− 1)+, n−) Mason-Skinner formula is

MMHV
n = κn−2δ4

(
n∑
i=1

pi

)
〈1 n〉8

〈1 n− 1〉〈n− 1 n〉〈n 1〉

(
1

〈1 2〉〈2 3〉 · · · 〈n− 1 n〉〈n 1〉

×
n−2∏
k=2

〈n|pn−1 + . . .+ pk+1|k]

〈k n〉
+ (permutations of labels {2, . . . , n− 2})

)

=
〈1 n〉6

〈1 n− 1〉〈n− 1 n〉

(
1

〈1 2〉〈2 3〉 · · · 〈n− 1 n〉

×
n−2∏
k=2

〈n| − p1 − . . .− pk−1|k]

〈k n〉
+ (permutations of labels {2, . . . , n− 2})

)
(1.2.36)

which is completely symmetric in the external states, except for the factor 〈1 n〉 repre-

senting the two negative helicities. Notice that this formula represents the full amplitude.

It is seen from (1.2.36) that gravity’s MHV amplitude is not holomorphic, opposed to

Yang-Mills.

The simplest and most compact form for MHV amplitudes in gravity was introduced

by Hodges in 2012 [14]. The formula enjoys special determinants, closely related to soft
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factors, and has also appeared in different works since introduced, e.g. [15, 16]. Stripping

momentum conserving δ-function and Grassmannian δ-function, Hodges’s tree-level MHV

amplitude in N = 8 supergravity is given by

MMHV
n = (−1)n+1σ(ijk, rst)

|ΦH |rstijk
〈ij〉〈jk〉〈ki〉〈rs〉〈st〉〈tr〉

, (1.2.37)

where

σ(ijk, rst) = sgn((ijk12 . . . /i/j/k . . . n)→ (rst12 . . . /r/s/t . . . n),

and |ΦH |rstijk is the (n− 3)× (n− 3) minor of the matrix

(ΦH)ij =
[ij]

〈ij〉
, i 6= j, (ΦH)ii = −

∑
j 6=i

[ij]〈jx〉〈jy〉
〈ij〉〈ix〉〈iy〉

, (1.2.38)

obtained by deleting the columns r, s, t and rows i, j, k. Here x and y are two arbitrary

spinors.

We will again see Hodges’s formula in chapter 4 where the tree-level n-particle ampli-

tudes in N = 8 supergravity, a new formulation introduced by Cachazo and Geyer [15], is

studied to prove correct soft limit and parity symmetry.

1.3 Modern Methods in Calculations of Scattering

Amplitudes

Introducing alternatives to the Feynman method goes back to the ’80s. Based on Feynman’s

rules, Berends and Giele developed a recursive method to calculate QCD amplitudes [8].

Their method uses colour-ordering, gauge invariance and some other conditions to simplify

intermediate steps of calculations but also makes one of the states in the Feynman diagram

off-shell (gauge-dependent). To do so, they replace one of the polarization vectors by an

off-shell propagator. The off-shell n-point “amplitude” whose n − 1 legs are on-shell is
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called the n-point gluon current Jµn for which they write a recursion relation. In the end,

the off-shell momentum is set on-shell and the leg is multiplied by its polarization vector.

Although this method is faster and numerically more efficient than Feynman’s, it still

produces long expressions and also needs off-shell information.

In this thesis, we are interested in the recent alternatives to the Feynman method, the

modern on-shell methods of calculation which have proven enormously simpler than their

ancestors. In on-shell methods, the lower-point amplitudes used in calculating higher ones

are themselves gauge invariant and on-shell. These modern methods also elucidate many

underlying mathematical structures of amplitudes which are obscured in the Lagrangian

formulation of quantum field theories. Complex analysis plays a crucial role in formulating

these methods. We will see, for instance, in the case of BCFW recursion relations 1.3.1

[9, 10], using complex analysis makes the calculations of amplitudes on-shell.

In our review in the rest of this section, two main developments in calculating tree-level

amplitudes in gauge and gravity theories will be studied, however not in the historical

order: BCFW recursion relations and Cachazo-Svrcek-Witten (CSW) expansion [17].

Since the introduction of the CSW expansion and BCFW recursion relations, the meth-

ods have been extensively used in calculations of tree and loop-level amplitudes in QCD,

N = 4 super Yang-Mills theory, general relativity and N = 8 supergravity. For a review

of on-shell methods, see for instance [18, 19] and the references listed there.

Although we will not review other new advancements in the amplitude area, it is worth-

while to briefly mention some of them here: generalized unitarity and maximal cuts for

computing loop-level amplitudes in N = 4 super Yang-Mills and QCD [5, 6, 4]; Kawai-

Lewellen-Tye (KLT) relations [20] which at tree level write the amplitudes in gravity as

the product of two gauge theory amplitudes times some kinematical factors; and Bern-

Carrasco-Johansson (BCJ) relations [21, 22] for Yang-Mills and its supersymmetric ex-

tension which propose a duality between the kinematic and colour factors of tree-level

amplitudes if written only in terms of cubic vertices; and much more.

One of the main roots of the increasing interest and developments in modern approaches
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to quantum field theory is Witten’s twistor string theory, which appeared in 2003 [23]. In

this work, Yang-Mills amplitudes are transformed from momentum space to Penrose’s

twistor space [24] and shown to live on certain holomorphic curves in twistor space. CSW

expansion and BCFW recursion relations were found soon after the appearance of this work

and later on extended in [25, 26] where the supersymmetric version of BCFW deformation

was also introduced. Further works studied the amplitudes and in particular BCFW in

twistor space [27, 28]. Inspired by the twistor space formulation of BCFW, a dual formu-

lation for the S-matrix of N = 4 super Yang-Mills was proposed in 2009 [29]. The duality

connects the leading singularities of planar NkMHV amplitudes to simple contour integrals

over the Grassmannian manifold of k-planes in n-dimensions. This work has garnered huge

interest among quantum field theorists and has already led to several advances. 7

Another breakthrough was finding the all-loop integrand for the scattering amplitudes

in the planar limit of N = 4 super Yang-Mills [38]. In this work, we see two important

generalizations: BCFW recursion relations from tree-level amplitudes to all loop orders and

the Grassmannian duality from leading singularities to the full amplitude. Very recently,

with a more abstract mathematical viewpoint, scattering amplitudes in planar theories were

connected to the positive Grassmannian, a mathematical structure [39]. The significance

of on-shell diagrams is clearly seen in this approach. Among the very recent developments

in amplitude area are polytopes [40, 41] and scattering equations [42, 43, 44].

This quick review does not cover all of what many quantum field theorists have done to

explore an important part of the fundamental physics, scattering amplitudes. The last ten

years have seen many fundamental discoveries in planar gauge theories, and in particular

N = 4 super Yang-Mills. Much has been done, yet much remains to do, especially for

gravity!

We first review the BCFW recursion relations and then the CSW expansion for gauge

theory amplitudes and, closely related to it, Risager’s method [45]. Extension to gravity

is also discussed and is part of the focus of this thesis too, later on in chapter 5.

7The reader is referred to [30, 31, 32, 33, 34, 35, 36, 37] for a sample of more recent progress.
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1.3.1 BCFW Recursion Relations

In 2004-2005, Britto, Cachazo, Feng and Witten introduced and proved recursion relations,

BCFW [9, 10], for obtaining Yang-Mills tree-level amplitudes from on-shell lower point

amplitudes. The process elegantly uses complex analysis to derive a physical on-shell

amplitude from a complexified one by using the Cauchy’s theorem. In the first step,

BCFW shifts the (on-shell) momenta of two external particles to the complex plane in

such a way that the total momenta sum to zero, as they did before the shift was applied.

For particles labeled by i and j, the BCFW deformation is

pi → pi(z) = pi + zq, pj → pj(z) = pj − zq, (1.3.1)

for an arbitrary vector q and the complex variable z. It is obvious from the shift that the

momentum conservation is preserved. Moreover, demanding q2 = 0 and pi · q = pj · q = 0,

one can see that the deformed momenta stay on-shell. Equivalently, this deformation can

be made on the holomorphic and anti-holomorphic spinors of the two particles i and j:

λi → λi(z) = λi + zλj, λ̃j → λ̃j(z) = λ̃j − zλ̃i, (1.3.2)

keeping λ̃i and λj undeformed.

The amplitude, two of whose external momenta are deformed as above, is now an

analytic function of z through some of its propagators (and vertices): A(z). However, the

question is to derive the non-deformed amplitude, A(z = 0), as it is our physical quantity.

Notice that at tree level, A(z) can only have simple poles. In fact, this observation is

the key to making BCFW so simple. No other type of singularity, e.g. branch-cuts, exists

in tree amplitudes. Simple poles in A(z) belong to the shifted propagators 1/P 2(z). In

the next step, assuming that A(z) vanishes as z approaches infinity, BCFW applies the

Cauchy’s theorem to A(z), with contour C enclosing all the poles of the integrand, in the
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following way:
1

2πi

∮
C
dz
A(z)

z
= 0, (1.3.3)

which by residue theorem implies that

A(0) = −
∑

poles of
A(z)

Res(
A(z)

z
). (1.3.4)

Close to a simple pole of the amplitude, where a propagator blows up, one can write the

following factorization (to left (L) and right (R)) for the amplitude:

lim
P 2
k,l(z)→0

(P 2
k,l(z)An(z)) =

∑
h

AL(k, · · · , l,−P−hk,l (z))AR(P h
k,l(z), l + 1, · · · , k − 1). (1.3.5)

On the right hand side, the sum is over different helicities of the internal particle connecting

the two sub-amplitudes AL and AR. To be more precise, this helicity is of the two emergent

on-shell particles which come to exist after the corresponding propagator 1
P 2
k,l(z)

blows

up. The physical meaning of (1.3.5) is that when a propagator blows up, the dominant

contribution to the amplitude is from the Feynman diagrams which are split into two parts

by that propagator. This relation also gives the residue of the amplitude for the pole

zk,l = −
P 2
k,l

[j|Pk,l|i〉
(1.3.6)

when particles i and j (1.3.2) do not belong to the same side, AL or AR. A few more steps

shows that

An(0) =
∑

poles zk,l
h

AL(k, · · · , l,−P−hk,l (zk,l))
1

P 2
k,l

AR(P h
k,l(zk,l), l + 1, · · · , k − 1), (1.3.7)

which states the full physical amplitude is written in terms of lower-point on-shell ampli-

tudes and is called the BCFW recursion relations. The process above can be repeated for

each lower-point amplitude down to 4-particle. The 3-particle amplitudes, as was seen,
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can be fixed by group theory information and play the role of the bricks of our amplitude

construction.

As was said, the assumption we made here before using the Cauchy’s theorem (1.3.3)

is that the complex amplitude vanishes as z →∞. This needs to be proved separately for

different quantum field theories under study. Our two favourite theories are Yang-Mills

gauge theory and gravity.

For tree-level amplitude in Yang-Mills, the z dependence comes from vertices, polar-

ization vectors and propagators. The two types of vertices are cubic, which is linear in

momentum, and quadratic, which is momentum-independent. A BCFW-deformed propa-

gator depends on the complex variable as 1/z. The helicities of the polarization vectors

for particles i and j can be chosen so that each polarization vector depends on z as 1/z.

Hence, if say m number of vertices, and therefore m − 1 propagators, are affected by the

shift, the amplitude at large z behaves as

lim
z→∞

A(z) ∼ zm
1

zm−1

1

z2
=

1

z
, (1.3.8)

which guarantees (1.3.3). This in fact happens when particles i and j have helicities (+,+),

(−,−) and (+,−), while if the helicities were chosen as (−,+) the amplitude would blow

as z3. It is obvious that one can always choose two particles to deform so that the BCFW

recursion relations work for Yang-Mills.

For BCFW to work for tree-level graviton amplitudes, a proof based on the background

field method is presented in [46]. This gives us great power to calculate tree graviton

amplitudes using recursion relations and based on 3-graviton amplitudes as the building

blocks. As already mentioned, all other infinitely many interaction terms are irrelevant to

the on-shell tree amplitudes in gravity.
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1.3.2 CSW Expansion

In their seminal work [17], Cachazo, Svrcek and Witten (CSW) proposed a recursive ex-

pansion for Yang-Mills which writes tree-level amplitudes in terms of only MHV ones. It

is also called MHV-vertex expansion. This work directly followed Witten’s twistor string

theory [23] and later on was extended to one-loop calculations [47]. The rules of the expan-

sion are similar to Feynman rules except for the vertices which are off-shell continuations

of MHV amplitudes. The off-shellness is provided by introducing an auxiliary spinor into

the calculations; for an internal propagator with momentum P , we pick up an auxiliary

spinor η̃ and set λP as

λP = P |η̃]. (1.3.9)

It was also shown that, similar to Feynman rules, CSW rules can be derived from the

Yang-Mills Lagrangian in a particular form of light-cone gauge [48, 49]. Possible interaction

vertices are cubic (+ +−) and (+−−) and quadratic (+ +−−). These works show that

using a field redefinition, it is possible to remove all MHV vertices (+ +−) and reproduce

the amplitudes from only on-shell MHV ones.

In a closely related work, the equivalence of MHV diagrams and Feynman diagrams

of certain twistor actions for gauge theories was shown in [50]. The usual Yang-Mill La-

grangian, which is manifestly Lorentz invariant, is derived from a particular gauge-fixing

of twistor action while the MHV Lagrangian is obtained from choosing a different gauge,

the light-cone gauge.

In twistor space, an MHV amplitude is represented by a line (degree 1 holomorphic

curve). The terms in the CSW expansion are each product of MHV amplitudes, hence,

some lines in twistor space. For the Nk−2MHV amplitude in momentum space, there

will be k − 1 lines in twistor space, each representing an MHV sub-diagram. Two lines in

twistor space intersect at a point which in momentum space corresponds to the internal line

between the sub-amplitudes. Hence, one can show a generic term in the CSW expansion

of NMHV tree amplitudes, also localized in twistor space, as in figure 1.1, where negative
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Figure 1.1: A CSW term in momentum space and twistor space.

helicities are a, b and c.

1.3.3 Risager’s Method

In 2005, Risager [45] presented a BCFW-like proof of the CSW rules to compute gluon

amplitudes. In his approach, an auxiliary spinor similar to CSW’s is used to apply a certain

complex deformation on external momenta. As in the BCFW method, the residue theorem

is used to recover the non-deformed Yang-Mills amplitude.8

The simplicity of the CSW expressions in gauge theory motivated similar computations

for gravity. However, when applied to gravity, Risager’s method only produces graviton

amplitudes up to eleven particles in the Next-to-MHV sector. The failure of Risager’s

method to yield an MHV-expansion for NMHV gravity was first discovered by Bianchi

et al. [53] using numerical techniques and later analytically confirmed by Benincasa et

al. [54]. Also, recently the difference of the pure 12-graviton NMHV amplitude with its

Risager’s expansion was analytically calculated by Conde and the author of this thesis

[55]. The main problem with gravity is that no off-shell definition of MHV amplitudes has

been found which could provide a CSW expansion for gravity, whereas in Yang-Mills the

holomorphic nature of MHV amplitudes allows a simple off-shell extension.

Here we briefly review Risager’s method. Throughout this section, we only concentrate

on pure gluon and graviton amplitudes in the NMHV sector which contain three negative

helicity and n − 3 positive helicity particles. For the moment we denote both Yang-Mills

and gravity tree amplitudes by An.

8Similar analysis for super Yang-Mills theory is presented in [51, 52]
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Using the spinor-helicity notation for the on-shell momentum of particle i, pi = λiλ̃i,

Risager’s expansion is obtained from a complex deformation on the anti-holomorphic

spinors, λ̃i, of the external negative helicity particles. Since we restricted ourselves to the

NMHV amplitudes, Risager’s deformation with a complex variable z is on three spinors,
λ̃a(z) = λ̃a + z 〈b c〉η̃

λ̃b(z) = λ̃b + z 〈c a〉η̃

λ̃c(z) = λ̃c + z 〈a b〉η̃

(1.3.10)

where the negative helicities are labeled by a, b and c, and η̃ is an arbitrary spinor 9. The

coefficients 〈ab〉, 〈bc〉 and 〈ca〉 have been chosen to maintain momentum conservation after

the deformation.

Through this deformation, the amplitude becomes a rational function of z, An(z). One

can apply the residue theorem to construct the amplitude An from the poles of An(z).

Risager’s expansion, ARis
n , is obtained by summing the residues of An(z):

ARis
n =

∑
a,L+

AL

(
â−, L+,

(
−P̂
)−) 1

(pa + PL+)2
AR

(
P̂+, b̂−, ĉ−, R+

)
, (1.3.11)

where P̂ = p̂a + PL+ is Risager’s deformed momentum flowing in the internal propagator,

and L+ (R+) denotes the subset of external positive-helicity particles in the left (right)

sub-amplitude in (1.3.11). The hatted momenta are evaluated at the position of the poles

which makes the corresponding propagator on-shell. Also, note that each term in the

expansion is the product of two MHV amplitudes and a propagator.

As a requirement of the residue theorem, An(z) must vanish at infinity for the expansion

to be valid, which is the case for Yang-Mills [45]. Using this deformation repeatedly, Ris-

ager reproduced CSW rules for Yang-Mills amplitudes [45]. On the other hand, for gravity,

it was shown numerically [53] and analytically [54] that the behaviour of the amplitude

under Risager’s shift is Mn(z) ∼ zn−12 when z →∞. Risager’s MHV-vertex expansion for

9Not to be confused with the Grassmann parameter η̃ in the supersymmetric BCFW deformation.
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gravity, hence, is not valid when applied to amplitudes of more than eleven gravitons. We

will see in chapter 3 how to modify Risager’s expansion for gravity.

1.4 About This Thesis

In this thesis, we move towards the goal of probing scattering amplitudes from different

angles and most of our focus is on tree-level graviton amplitudes. In the amplitudes

community, gravity has shown to require much more intricate calculations and therefore

has been much less developed compared to its cousin Yang-Mills theory. For gravity, there

is no simplification similar to color-ordering in Yang-Mills and one needs to compute many

more individual sub-amplitudes to write the full graviton amplitude even at tree-level.

Not only is gravity the closest theory to Yang-Mills and, hence, the next natural path to

take after gauge theory, but also it has more hidden and dark sides to examine, making

it more alluring to us. That being said, we have more than enough motivation to explore

gravity with our approach, the new on-shell techniques in scattering amplitudes. Along

the road, the hope is that the newly developed techniques guide us to better understand

the longest-known force in nature at short distances.

We will treat gravity perturbatively and focus on the first level, tree amplitudes. Ris-

ager’s method is used in most parts of our calculations and in different problems. It is thus

worth first better examining the method itself which we will do using Yang-Mills. The

second chapter is then devoted to Yang-Mills and the rest are centred around gravity.

In chapter 2, we discuss how Risager’s method is allowed to contain more than one

complex variable in the shift and is then used to compute Yang-Mills tree amplitudes.

This generalization to several complex variables generally creates more terms in the CSW

expansion than the usual one-variable shift. This may sound unnecessary but the novelty

of the method is that new types of terms appear in the expansion which do not show up in

the usual Risager’s method. We study next-to-MHV 5- and 6-gluon amplitudes and find
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that the new terms are exactly of the form of soft terms in which the momentum of one of

the external gluons approaches zero and the amplitude factorizes to a soft factor times a

lower-point amplitude. The interpretation is that now soft terms do contribute to building

an amplitude. Indeed, subsequent works have shown that certain types of amplitudes can

be made solely from soft terms.

Chapter 3 discusses the failure of Risager’s method (tree-level) in computing 12- and

higher graviton amplitudes at the NMHV sector. As was said in the last section, numeric

and analytic computations show that Risager’s method cannot produce correct amplitudes

when the number of external gravitons exceeds eleven. We show where this number comes

from and compute the missing piece for Risager’s expansion to match the full physical

amplitude. We call this term the residue at infinity since the failure of Risager’s method

happens at large values of the complex variable z. In summary, the result of this chapter

is the first analytic expression for 12-graviton NMHV amplitude.

Our study of gravity amplitudes continues to investigate two important properties of

a recently proposed formula for tree-level n-particle amplitude of N = 8 supergravity by

Cachazo and Geyer [15]. The formula was derived from the supersymmetric version of

the Kawai-Lewellen-Tye (KLT) relations [20] which relates the amplitudes of N = 4 super

Yang-Mills and N = 8 supergravity. Parity symmetry and soft limit of the formula, two

important consistency checks, are proved in chapter 4 and strongly validate the proposal to

be the complete tree-level amplitude of supergravity in all R-charge sectors. In our proof,

we follow the steps used for checking the same properties in N = 4 super Yang-Mills by

Witten [23] and Roiban-Spradlin-Volovich [56]. Finally, we use the Cachazo-Geyer formula

to explicitly compute MHV and MHV amplitudes.

As an attempt to find analytic expressions for gravity amplitudes, in chapter 5 we show

that there exists an expansion for gravity amplitudes whose terms are exactly CSW-like.

Explicit calculations are done for pure 6- and 7-graviton NMHV amplitudes and we find

that the terms of our expansion agree with the Risager terms. The novel fact is that the

method can be applied to any graviton amplitude with n ≥ 12 where Risager’s method does
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not work. In summary, the ingredients of our calculations are the global residue theorem

and δ-function relaxation (originally introduced for Yang-Mills [33]) applied to a particular

form of the tree amplitudes in N = 8 supergravity, called the link representation, [57] and

[58]. This work is in principle a candidate for expressing tree-level gravity amplitudes in

analytic form.

In the end, we close with some concluding remarks and future directions in chapter 6.

This dissertation consists of four distinct research projects and publications, all directed

by my supervisor whose contribution to the works is invaluable. I have very much employed

the fruitful collaborations with Eduardo Conde, Brenda Penante and Grigory Sizov and

greatly appreciate the insightful comments of Bo Feng, Song He, the journal referees of my

papers and especially David Skinner.

Chapter 2 is based on the paper [59] by the author of this thesis:

S. Rajabi, “Higher Codimension Singularities Constructing Yang-Mills Tree

Amplitudes,” JHEP 1308, 037 (2013) [arXiv:1101.5208 [hep-th]].

The material of chapter 3 presents the work of E. Conde and the author in [55]:

E. Conde and S. Rajabi, “The Twelve-Graviton Next-to-MHV Amplitude from

Risager’s Construction ,” JHEP 1209, 120 (2012) [arXiv:1205.3500 [hep-th]].

Two other collaborative research and co-authored publications are captured in chapter

4 [60]:

B. Penante, S. Rajabi and G. Sizov, “Parity Symmetry and Soft Limit for the

Cachazo-Geyer Gravity Amplitude ,” JHEP 1211, 143 (2012) [arXiv:1207.4289 [hep-

th]].

and chapter 5 [61]:

B. Penante, S. Rajabi and G. Sizov, “CSW-like Expansion for Einstein Grav-

ity ,” JHEP 1305, 004 (2013) [arXiv:1212.6257 [hep-th]].
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Chapter 2

Higher Codimension Singularities

Constructing Yang-Mills Tree

Amplitudes

Yang-Mills tree-level amplitudes contain singularities of codimension one like collinear and

multi-particle factorizations, codimension two such as soft limits, as well as higher codi-

mension singularities. Traditionally, BCFW-like deformations with one complex variable

were used to explore collinear and multi-particle channels. Higher codimension singulari-

ties need more complex variables to be reached. In this chapter, along with a discussion on

higher singularities and the role of the global residue theorem in this analysis, we specif-

ically consider soft singularities. This is done by extending Risager’s deformation to a

C2-plane, i.e., two complex variables. The two-complex-dimensional deformation is then

used to recursively construct Yang-Mills tree amplitudes.
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2.1 Introduction

As was mentioned in section 1.3.3, BCFW-like deformations were used to give a direct proof

of the CSW-expansion of amplitudes in pure Yang-Mills by Risager [45], and in super Yang-

Mills [51] and [52]. Risager’s deformation, applied only to λ̃ of negative helicity particles,

contains an auxiliary anti-holomorphic spinor, η̃, similar to CSW’s reference spinor,

λ̃i −→ λ̃i + zαiη̃, (2.1.1)

where αi are constant. For an amplitude with k negative helicities, we can fix two of αi’s

using momentum conservation, ∑
i

αiλi = 0. (2.1.2)

For NMHV amplitudes, we saw that αi’s can be chosen as in (1.3.10).

On a C2-plane where λ̃i lives, Risager’s deformation constrains the shifted spinor to a

strip made by the original λ̃i and the shift, zαiη̃. The full C2-plane hence cannot be reached

by the shift. This observation suggests the idea of generalization of Risager’s deformation

in order for λ̃i’s to have access to entire space. In fact it is more natural to deform spinors

in a two-complex-dimensional plane, C2, for which we need two complex variables. It is

then natural to ask how Risager’s method with two complex variables would provide the

CSW expansion for Yang-Mills amplitudes. This is the question we address in this chapter.

We follow the steps to reconstruct the physical non-deformed amplitude. The novelty

is that now the amplitude generically receives contributions from channels that were not

accessible before. In our examples, these new contributions are soft limits (in each of

which one of the external deformed momenta vanishes), and double-factorization channels.

Therefore, the full amplitude can be reconstructed using two codimension one and a single

codimension two singularities.

Using generalized deformations, we will have access to channels of interaction which

are out of reach by one-variable BCFW or Risager’s shifts. Although multi-variable de-
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formations may make the calculations heavier, we found it interesting that amplitudes

could have representations in terms of other types of physical singularity, especially soft

singularities. This was our main motivation for using complex multi-variable analysis in

calculations of scattering amplitudes. When the amplitude depends on several complex

variables, the generalization of the residue theorem to several variables, the global residue

theorem (reviewed in section 2.3), can be applied. In multi-variable analysis where all the

shifts are linear, the Cauchy’s theorem can be applied several times to build non-deformed

amplitudes. However, with generic deformations (e.g. non-linear shifts), the only possible

way to solve the multi-variable problem is applying the global residue theorem.

Here we restrict ourselves to color-ordered Yang-Mills tree-level amplitudes. We discuss

general BCFW-like deformations and the necessity of applying the global residue theorem

in section 2.2. Risager’s two-variable deformation is introduced in particular. In section

2.3, residues in multi-dimensional complex analysis and the global residue theorem, our

mathematical tool, are briefly reviewed. Calculations of NMHV 5- and 6-particle ampli-

tudes with two complex variables and appearance of soft terms, as new contributions, are

given in sections 2.4 and 2.6 respectively. Section 2.5 generalizes the argument to the n-

particle Nk−2MHV amplitudes. We discuss that with the introduced deformation, there is

no more singular term in the corresponding residue theorem, except the known collinear,

multi-particle and soft singularities. We finally make some concluding remarks in section

2.7.

2.2 General Deformations and the Global Residue The-

orem

Through general deformations on holomorphic and anti-holomorphic spinors, scattering

amplitudes are generic functions of several complex variables. The simplest linear defor-

mation with one variable is BCFW by which the Cauchy’s theorem generates non-deformed

amplitudes. In BCFW and also Risager’s one-variable methods, not all but some of the
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singularities of amplitudes can be reached. These singularities are collinear, where two

external momenta are orthogonal (pi.pj = 0), and multi-particle ((
∑

i p
i)2 = 0 for a subset

of external particles) 1. We call them codimension one singularities where each of them

can be determined by one condition on external momenta. It is clear that one complex

variable in the deformation is enough for solving the condition and finding the pole.

Applying a linear two-variable Risager’s deformation, amplitudes exhibit codimension

two singularities: (codimension one)×(codimension one), and soft singularities. The former

corresponds to a two-factorization channel of interaction where each singularity can be of

collinear or multi-particle type with codimension one. Therefore each diagram of this

type has two different poles which can be completely determined by two variables. A soft

singularity arises where an external momentum vanishes, and as a result the contribution

of this process to the amplitude contains a singular factor. For a soft momentum of a

massless particle, there are again two equations to determine the pole, since each index α

or α̇ in Pαα̇ runs over 1 and 2, hence we need exactly two variables to solve the equations.

Having linear deformations, one can apply Cauchy’s theorem to the complexified am-

plitude which has now two linear polynomials in the denominator,

∮ ∮
dz1dz2

1

(az1 + bz2 + c)(a′z1 + b′z2 + c′)
. (2.2.1)

These polynomials are denominators of propagators, which become on-shell, or of the soft

factors. We first carry out, e.g., z2-integral in which the corresponding pole is considered

as a function of the other variable, z∗2 = z∗2(z1). We will finally find 1/(ab′ − a′b) after

the second integration. The same result can be obtained from the global residue theorem

which will be discussed in the next section.

With generic deformations, propagators will have higher degree polynomials in denom-

1One can think of a particular auxiliary spinor in Risager’s deformation by which some external mo-
menta can be soft, but generically soft singularities are not visible in this way. Consider the deformation
λ̃i → λ̃i + zαiλ̃1 on negative helicity particles which include particle 1. It can be immediately seen that
λ̃1(z) vanishes at z∗ = −1/α1. This is in fact the pole of all the diagrams in which particle 1 is collinear
with any other particle.
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inators corresponding to different types of singularities. In case these polynomials are

irreducible, Cauchy’s theorem does not work and the global residue theorem has to be

applied. This theorem, the generalization of Cauchy’s one variable residue theorem, is the

only tool in calculations with more complex variables and higher degrees.

Toward having the goal of presenting amplitudes which makes different singularities

manifest, in this chapter we extend Risager’s deformation to C2 and will see amplitudes

expose codimension two singularities. As was discussed in the introduction, Risager’s

shift naturally needs to be defined in a two-complex-dimensional plane. Therefore, our

generalized deformation on negative helicities will be,

λ̃i −→ λ̃i + αi(z1ζ̃1 + z2ζ̃2), (2.2.2)

with ζ̃1 and ζ̃2 being two reference spinors, and αi are determined in such a way that

momentum conservation is preserved. Although with this linear deformation it is possible

to recover the non-deformed amplitude using Cauchy’s theorem, we will apply the global

residue theorem in our calculations.

2.3 Review of Residues in Multi-dimensional Com-

plex Analysis

Starting by a linear deformation in two complex variables, z1 and z2, on λ̃i’s of negative

helicity particles, generalization of Risager’s deformation, the amplitude will be a rational

function of both variables. In analogy with one-variable analysis, we study the following

contour integral from which the physical amplitude, A(0, 0), can be obtained

∮
dz1dz2

A(z1, z2)

z1z2

, (2.3.1)
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where the denominator of A(z1, z2) factorizes into pieces coming from deformed propaga-

tors. Therefore, the full integrand of (2.3.1) can be written as
g(z1, z2)

f1(z1, z2)f2(z1, z2)
, where

z1, z2 and the factors of the denominator of A could arbitrarily belong to f1 or f2. The

functions f1, f2 and g are polynomials, and g is regular at zeros of the denominator.

Now, let Γ be the set of all the zeros of f1 and f2,

Γ = {P = (z∗1 , z
∗
2)|f1(z∗1 , z

∗
2) = f2(z∗1 , z

∗
2) = 0}. (2.3.2)

The Global Residue Theorem for any f1 and f2, states that

∑
P∈Γ

Res

(
A(z1, z2)

z1z2

)
P

= 0, (2.3.3)

when the degree condition

deg(g) < deg(f1) + deg(f2)− 2 (2.3.4)

is satisfied.2

Since there are different ways to group factors of the denominator into f1 and f2, there

exist different residue theorems for a given function A(z1, z2). Each term in (2.3.3) is a

contour integral for small ε as follows,

Res

(
g(z1, z2)

f1(z1, z2)f2(z1, z2)

)
P

=
1

(2πi)2

∮
|f1|=ε,|f2|=ε

dz1dz2
g(z1, z2)

f1(z1, z2)f2(z1, z2)

=
g(z∗1 , z

∗
2)

(2πi)2

∮
|u|=|v|=ε

du

u

dv

v
det

(
∂(f1, f2)

∂(z1, z2)

)−1

(2.3.5)

where in the last line we performed a change of variables, u = f1 and v = f2, so the

corresponding Jacobian, evaluated at P = (z∗1 , z
∗
2), appears inside the integral.

2With n complex variables and therefore n maps, (f1, · · · , fn) : Cn → Cn, the degree condition gener-
alizes to deg(g) < deg(f1) + · · ·+ deg(fn)− n. This condition is analogous to having no pole at infinity in
the usual BCFW or Risager’s deformation with one complex variable.
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As can be seen above, the integration factorizes into two pieces, each on a C1-plane

similar to one variable analysis. The full contour is therefore S1×S1 ⊂ C2 which unlike the

one variable case does not fully enclose the pole. This is in fact one important difference

between one and several complex integrals. Each of these integrals around the defined

contour equals 1, therefore the residue is given by

Res

(
g(z1, z2)

f1(z1, z2)f2(z1, z2)

)
P

= g(z∗1 , z
∗
2) det

(
∂(f1, f2)

∂(z1, z2)

)−1

(z∗1 , z
∗
2). (2.3.6)

While having a determinant, the ordering of arguments is important. We fix the orien-

tation of contours in such a way that f1 always comes before f2 in the Jacobian. With the

order reversed there will be a minus sign for the residue.

Now in case f1 contains z1 and f2 contains z2, one possible solution for f1 = f2 = 0

would be z∗1 = z∗2 = 0. It is obvious that A(z1, z2) is not singular at (0, 0) since this

corresponds to no deformation on the amplitude. Therefore, (2.3.6) gives the physical

non-deformed amplitude,

Res

(
A(z1, z2)

z1z2

)
(0, 0) = A(0, 0). (2.3.7)

This simply fixes our convention for the definition of f1 and f2. In order for (2.3.3) to

contain A(0, 0) as one of the terms, z1 and z2 have to belong to different functions. Applying

this convention, we will use (2.3.3) and (2.3.6) for calculations in the following sections

provided the degree condition is satisfied.

In the same way that Risager [45] proved the z−(k−1) behavior of Nk−2MHV Yang-Mills

amplitudes under k-line shift, k being the number of negative helicities, we show that the

degree condition (2.3.4) is satisfied with our 2-variable deformation. The most dangerous

Feynman diagrams are those with only cubic vertices. Performing this deformation on λ̃ of

all negative helicity particles, one finds that deg(g) = m when there are m cubic vertices.

The reason is that each cubic vertex depending on a deformed momentum is linear in z1

and z2.
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In the denominator of amplitudes we have contributions from m− 1 propagators and k

polarization vectors. Each propagator linearly depends on complex variables. On the other

hand, the z1,2-dependence of polarization vectors depends on their helicities. For negative

helicities we have

εµ(−)(p) =
λα(p)σµλ̃α̇(q)√

2[pq]
, (2.3.8)

where q is an auxiliary spinor. The deformation is on λ̃(p), so each polarization vector with

negative helicity contributes a +1 to the degree of denominator. Since we are working with

A(z1, z2)/z1z2, the total degree of denominator will be deg(f1) + deg(f2) = (m−1) +k+ 2.

The degree condition then says m < m+ k + 1− 2 or 1 < k which is true. Therefore, the

validity condition of the global residue theorem is satisfied for our 2-variable deformation

on n-particle Nk−2MHV Yang-Mills tree amplitudes.

2.4 5-Particle NMHV Tree Amplitude with 2-variable

Shifts

The aim is to calculate Yang-Mills tree amplitudes using the global residue theorem. As

a case in point, we consider the split-helicity NMHV 5-particle amplitude, A(−−−+ +),

under the deformation

ˆ̃λi(z1, z2) = λ̃i + αiη̃, (2.4.1)

where i = 1, 2, 3 and we choose η̃ = z1λ̃
4+z2λ̃

5. Using momentum conservation, a nontrivial

solution for αi is αi = 〈jk〉 where i, j and k cyclically take values of 1, 2 and 3.

Since we are working with color-ordered amplitudes, the z-dependent propagators are

those with P̂ 2
12, P̂

2
23, P̂

2
34, and P̂ 2

51 which together with z1 and z2 are the factors in f1 and f2.

The diagram with particles 4 and 5 being on one sub-diagram does not contribute, since

P 2
4,5 has no z1,2-dependence.
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P̂ 2
1,2 = 0 P̂ 2

2,3 = 0

P̂ 2
3,4 = 0 P̂ 2

5,1 = 0

Figure 2.1: BCFW diagrams of 5-particle NMHV amplitude.

The simplest choice

f1 = z1, f2 = z2P̂
2
1,2P̂

2
2,3P̂

2
3,4P̂

2
5,1, (2.4.2)

results in the 1-variable Risager’s deformation since one of the complex variables, z1, is

zero throughout calculations.

Apart from (0, 0), f1 = f2 = 0 has 4 solutions. Hence, there are four terms, all with

collinear/multi-particle singularities, in the sum of the residues,

A(0, 0) = −
∑

poles6=(0,0)

Res(
A(z1, z2)

z1z2

), (2.4.3)

corresponding to the four diagrams in Fig. 2.1 3.

In the next example we consider

f1 = z1P̂
2
1,2, f2 = z2P̂

2
2,3P̂

2
3,4P̂

2
5,1. (2.4.4)

3With this choice for η̃, P 2
1,5 is independent of both complex variables when f1 = z1 = 0. Therefore,

the residue corresponding to this channel vanishes.
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1−

2− 3−

4+
5+

+ – + –
p q

Figure 2.2: Double factorization channel in 5-particle NMHV amplitude.

This time, solutions to f1 = f2 = 0 are coming from

z1 = 0,


P̂ 2

2,3 = 0

P̂ 2
3,4 = 0

P̂ 2
5,1 = 0

or P̂ 2
1,2 = 0,



z2 = 0

P̂ 2
2,3 = 0

P̂ 2
3,4 = 0

P̂ 2
5,1 = 0

, (2.4.5)

in addition to z1 = z2 = 0 which corresponds to the non-deformed amplitude.

Having z1 = 0 or z2 = 0 in any system of equations, the problem reduces to 1-variable

Risager’s deformation with a collinear singularity. The corresponding diagrams are exactly

those in Fig. 2.1.

Let’s now consider P̂ 2
1,2 = P̂ 2

3,4 = 0, Fig. 2.2, with solutions

z∗1 =
s12 − s34

〈12〉[54]〈35〉
, z∗2 =

[34]

〈12〉[45]
. (2.4.6)

In this double factorization channel we have three sub-amplitudes multiplying and

forming the diagram,

〈12〉3

〈2p〉〈p1〉
1

〈12〉[1̂2̂]

[q5]3

[5p][pq]

1

〈34〉[3̂4]

〈q3〉3

〈34〉〈4q〉
=

[45]3

[1∗5][3∗2∗][1̂2̂][3̂4]
, (2.4.7)

where the starred spinors are evaluated at (2.4.6) and the hatted ones depend on z1 and

z2. Using (2.3.6), the residue for this process can be obtained,

〈12〉3〈35〉2[45]

〈34〉〈25〉〈15〉〈45〉[34](s12 − s34)
. (2.4.8)
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The next system of equations is P̂ 2
1,2 = P̂ 2

2,3 = 0 with a shared deformed momentum p̂2.

Similarly, in P̂ 2
1,2 = P̂ 2

5,1 = 0, the last equations, p̂1 is shared. One can easily see that there

is no way to draw a diagram with correct factorizations for any of the cases at hand. For

a detailed examination of these processes we write the former as
[
1̂2̂
]

= 0[
2̂3̂
]

= 0
, (2.4.9)

with some solutions z∗1 and z∗2 . Simple calculations show that λ̃2(z∗1 , z
∗
2) = 0. In fact from

(2.4.9) one can see that evaluated at (z∗1 , z
∗
2), λ̃1‖λ̃2 and λ̃2‖λ̃3 but λ̃1 and λ̃3 are not

parallel. Therefore we can conclude that λ̃2(z∗1 , z
∗
2) = 0.

The shifted momentum of particle 2 is being soft. This means that the contribution of

this channel comes from the soft limit ˆ̃λ2 → 0 of the full amplitude.

In general, Yang-Mills tree amplitudes in the soft limit of one of the momenta factorize

into two parts, an amplitude without the soft particle and a singular factor,

An(. . . , i− 1, i, i+ 1, . . .)
pi→0−−−→ Soft(i− 1, i, i+ 1)An−1(. . . , i− 1, i+ 1, . . .), (2.4.10)

where clearly An−1 has no singularity at the limit pi → 0.

The soft factor, first computed by Weinberg [62], in spinor-helicity notation is

Soft(i− 1, i, i+ 1) =


〈i−1 i+1〉
〈i−1 i〉〈i i+1〉

, if λi → 0

[i−1 i+1]

[i−1 i][i i+1]
, if λ̃i → 0

. (2.4.11)

Having this behavior, one can find the residue of
A(z1, z2)

z1z2

in this limit.

For the case where λ̃2(z∗1 , z
∗
2) is soft we plug

[1̂3̂]

[1̂2̂][2̂3̂]
A(1̂−, 3̂−, 4+, 5+) into (2.3.6), and

the residue will be
〈13〉3[45]

〈34〉〈45〉〈51〉[42][52]
. (2.4.12)
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Similarly, the solutions of the system of equations [51̂] = 0 and [1̂2̂] = 0 satisfy λ̃1(z∗1 , z
∗
2) =

0, and the contribution of this channel to the amplitude comes from

A(1̂−, 2̂−, 3̂−, 4+, 5+)
ˆ̃
λ1→0−−−→ [52̂]

[51̂][1̂2̂]
A(2̂−, 3̂−, 4+, 5+), (2.4.13)

with the residue being

− 〈23〉3[45]

〈34〉〈45〉〈52〉[41][51]
. (2.4.14)

Finally, we add up all the relevant terms and the known result of NMHV 5-particle

amplitude can be obtained,

A(1−, 2−, 3−, 4+, 5+) =
[45]3

[12][23][34][51]
. (2.4.15)

One can consider other combinations in f1 and f2 and apply the residue theorem. In

5-particle amplitude for any choice of these functions there are always collinear (via single

or double factorizations) and soft singularities.

In amplitudes with more particles we will have multi-particle singularities as well (in

the 5-particle example collinear and multi-particle singularities are the same). This may

result in some difficulties in finding the residues, as there will be more shared particles

between simultaneous equations. We will see that these cases often result in vanishing

residues, and soft singularities are the only ones in addition to previously known collinear

and multi-particle singularities. The double factorization channels, which also appear in

the expansion, are in fact made out of collinear and/or multi-particle singularities.

2.5 Nk−2MHV Amplitudes

For a general discussion on the singularities of 2-variable deformed amplitudes, we consider

the most general Nk−2MHV amplitude where k negative helicities are randomly distributed,

An(+, · · · , i−1 , · · · , i−2 , · · · , i−k , · · · ,+). As before, the two variable deformations are only
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on negative helicities. Using λ̃’s of two particles, η̃ can be defined, and the deformation

will be

λ̃i −→ λ̃i + αiη̃(z1, z2). (2.5.1)

There are infinite families of αi for k > 3 which can be turned into more complex

variables. For k = 3, as was seen in our 5-particle example, we can fix these coefficients

αa = 〈bc〉 up to an overall factor, where a, b, and c cyclically take the indices of negative

helicities.

Similar to previous example, we first determine the z1,2-dependent propagators on which

the factorizations take place. Hence, at least one but not all of the deformed momenta are

included between particles A and B in the set of denominators of propagators, P = {P̂ 2
A,B =

(p
A

+ · · ·+ p
B

)2}. As stated before, f1(z1, z2) and f2(z1, z2) contain z1 and z2 respectively

as well as an arbitrary grouping of elements of P . We will explain what possible channels

do contribute to the full amplitude by different ways of getting f1 = f2 = 0.

In case z1 = 0 or z2 = 0, the one-variable shift, the corresponding residue follows from

a collinear or multi-particle channel depending on how many particles are forming P̂ 2
A,B.

For cases where two members of P simultaneously vanish, P̂ 2
a,b = 0

P̂ 2
c,d = 0

, (2.5.2)

depending on how indices overlap, different events may happen. One can imagine various

orderings and coincidences of particles as follows: 1) a < c < d < b, 2) a < c < b = d,

3) a < c < b < d, 4) a < b = c < d, where any other distribution is equivalent to one of

these cases. For instance, using momentum conservation one can see that the case where

the two sets are completely separated, a < b < c < d, is exactly the first ordering which

results in double factorization.

Therefore, 1 says that the diagram has three sub-amplitudes, one with particles {c, · · · , d, p},

the other in the middle with {a, · · · , c − 1,−p, d + 1, · · · , b, q}, and rest of the particles
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are in the third sub-amplitude as in Fig.2.3(a). The two singularities here can either be

collinear or multi-particle.

Next, we have 2 again with double factorization, {a, · · · , c − 1,−p, q} in the middle,

{c, · · · , d, p} on the left and the rest in the third sub-amplitude, Fig.2.3(b). Again as in 1,

the process can have two collinear or multi-particle singularities.

In 3, the overlap is again non-empty but we cannot find any Feynman diagram associ-

ated with the given propagators. In fact the amplitude cannot factorize in this way. One

can also check that there is no soft singularity at the solutions of (2.5.2), (z∗1 , z
∗
2). There-

fore, (z∗1 , z
∗
2) does not correspond to any pole of the amplitude. We support our argument

by explicit evaluation of the residue of A6(−+−+−+) at (z∗1 , z
∗
2) and find that it vanishes.

In 4, the two sets share only a single particle. This may lead us to conclude that the

shared particle, if deformed, is soft as was seen in the 5-particle example. It is true only

if both singularities are collinear. To see this, assume that λ̃b(z∗1 , z
∗
2) → 0 is a solution to

(2.5.2) when b = c. Hence we will have P̂ 2
a,b−1 = 0 and P̂ 2

b+1,d = 0 which are independent of

λ̃b and therefore are not necessarily valid unless a = b− 1 and b+ 1 = d. Having said that,

(2.5.2) reduces to [ab] = [bd] = 0 which is equivalent to both singularities being collinear.

One may also imagine a case where the two sets of indices coincide, a = c < b =

d. In fact this can never happen to Feynman diagrams since there is no double pole in

propagators.

We conclude that using 2-variable Risager’s deformation in n-point Nk−2MHV ampli-

tudes, collinear, multi-particle and soft singularities of tree amplitudes can be probed.

With a generic one-variable shift, soft channels do not contribute to amplitudes and it is

the second complex variable which is necessary for probing these channels.
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a

bd+1

c−1
c

d

ac−1
c

d

(a) a < c < d < b (b) a < c < b = d

p −p q −q p −p q −q

Figure 2.3: Double factorization channels in Nk−2MHV amplitude.

2.6 6-Particle NMHV Amplitude

In this section we compute the 6-particle amplitude with alternating helicities, A(− +

− + −+). We choose particles 2 and 4 in the definition of the reference spinor. Since

each pair of adjacent momenta in this helicity configuration is deformed, the number of

complex propagators with Risager’s shift is maximum. Together with three multi-particle

propagators, we can arbitrarily define f1 and f2, e.g.,

f1(z1, z2) = z1P̂
2
1,2P̂

2
4,5P̂

2
1,3, f2(z1, z2) = z2P̂

2
2,3P̂

2
3,4P̂

2
5,6P̂

2
6,1P̂

2
2,4P̂

2
3,5. (2.6.1)

As was discussed before, the contributions from z1 = 0 or z2 = 0 are the usual Risager’s

terms. The corresponding residues are, Fig. 2.4,

(a) z1 = P̂ 2
2,3 = 0 :

〈15〉4[24]3

〈45〉〈56〉〈61〉[23][34]〈1|2 + 3|4]〈4|2 + 3|4]
, (2.6.2)

(b) z1 = P̂ 2
5,6 = 0 :

〈13〉4[64]3

〈12〉〈23〉〈34〉[45][56]〈1|2 + 3|4]〈4|5 + 6|4]
, (2.6.3)

(c) z1 = P̂ 2
6,1 = 0 :

〈35〉4[46]3

〈23〉〈34〉〈45〉[61][14]〈5|2 + 3|4]〈2|1 + 6|4]
, (2.6.4)

(d) z1 = P̂ 2
2,4 = 0 :

−〈15〉4〈23〉2[24]4

〈34〉〈56〉〈61〉[34]P 2
2,4〈1|2 + 3|4]〈4|2 + 3|4]〈5|2 + 3|4]

, (2.6.5)
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(e) z1 = P̂ 2
3,5 = 0 :

〈35〉2〈1|3 + 5|4]4

〈12〉〈34〉〈45〉〈61〉[34][45]P 2
3,5〈6|3 + 5|4]〈2|1 + 6|4]

, (2.6.6)

(f) P̂ 2
4,5 = z2 = 0 :

−〈13〉4[24]3

〈61〉〈12〉〈23〉[45][52]〈3|4 + 5|2]〈6|4 + 5|2]
, (2.6.7)

(g) P̂ 2
1,3 = z2 = 0 :

〈13〉2〈5|1 + 3|2]4

〈12〉〈23〉〈45〉〈56〉[12][23]P 2
1,3〈6|4 + 5|2]〈4|1 + 3|2]

. (2.6.8)

There is no contribution from z1 = P̂ 2
3,4 = 0 and z2 = P̂ 2

1,2 = 0 since the particles we

chose in the definition of η̃ make both P 2
3,4 and P 2

1,2 independent of z1 and z2. Therefore

the corresponding residues vanish.

Soft channels appear where P̂ 2
1,2 = P̂ 2

6,1 = 0, and P̂ 2
4,5 = P̂ 2

5,6 = 0 with p̂1 and p̂5 being

zero respectively.

(h) P̂ 2
1,2 = P̂ 2

6,1 = 0 :
〈35〉4[42]

〈23〉〈34〉〈45〉〈56〉〈62〉[12][14]
, (2.6.9)

(i) P̂ 2
4,5 = P̂ 2

5,6 = 0 :
〈13〉4[42]

〈12〉〈23〉〈34〉〈46〉〈61〉[45][52]
. (2.6.10)

There are also double factorization channels,

(j) P̂ 2
1,2 = P̂ 2

3,5 = 0 :
−〈35〉4〈61〉2[24]

〈34〉〈45〉〈56〉〈63〉〈26〉〈12〉[12]〈6|3 + 5|4]
, (2.6.11)

(k) P̂ 2
1,3 = P̂ 2

5,6 = 0 :
〈13〉4〈45〉3[24]

〈12〉〈23〉〈34〉〈41〉〈56〉〈64〉〈4|5 + 6|4]〈4|1 + 3|2]
. (2.6.12)

Considering the diagram of P̂ 2
2,3 = P̂ 2

1,3 = 0, one might naively guess that this channel

vanishes. In fact it does if λ̃p is parallel to ˆ̃λ1, which is not true. More careful observation

shows that λp evaluated at the corresponding poles of the diagram is parallel to λ1, and

therefore the process does contribute to the amplitude. The same happens to the channel

P̂ 2
4,5 = P̂ 2

3,5 = 0 where here λp is proportional to λ3. Hence, we have two more double
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Figure 2.4: BCFW diagrams of 6-particle NMHV amplitude.

44



factorization channels contributing to the amplitude with residues,

(l) P̂ 2
1,3 = P̂ 2

2,3 = 0 :
−〈15〉4〈13〉2[24]

〈12〉〈23〉〈45〉〈56〉〈61〉〈14〉[23]〈1|2 + 3|4]
, (2.6.13)

(m) P̂ 2
4,5 = P̂ 2

3,5 = 0 :
〈13〉4〈35〉2[24]

〈12〉〈23〉〈34〉〈45〉〈36〉〈61〉[45]〈3|4 + 5|2]
. (2.6.14)

Finally the full amplitude is given by (2.4.3) which agrees with the known result of

6-particle NMHV amplitude [9]:

A(1−, 2+, 3−, 4+, 5−, 6+) =
〈13〉4[46]4

〈12〉〈23〉[45][56]P 2
1,3〈3|1 + 2|6]〈1|2 + 3|4]

+
[26]4〈35〉4

[61][12]〈34〉〈45〉P 2
3,5〈3|4 + 5|6]〈5|4 + 3|2]

(2.6.15)

+
〈15〉4[24]4

〈23〉〈34〉[56][61]P 2
2,4〈5|4 + 3|2]〈1|2 + 3|4]

.

2.7 Concluding Remarks

In this chapter, we studied the analytic structure of Yang-Mills tree level scattering am-

plitudes by a new deformation on external momenta. Using the power of multi-variable

complex analysis, especially the global residue theorem, physical amplitudes can be writ-

ten recursively in a way similar to BCFW method. The degree condition, under which the

global residue theorem is valid, was proved for generic n-particle Nk−2MHV amplitudes

where the two-complex-variable deformation is on λ̃ of (−) helicities.

While with a generic one variable Risager’s deformation, collinear and multi-particle

singularities of tree amplitudes can be probed, the generalized 2-variable shift reveals soft

channels as well as the two other types of singularity. This generalization is actually the

natural way of defining all negative helicity deformation since it allows the deformed λ̃’s

to live on the entire C2. We computed Yang-Mills 5- and 6-particle NMHV amplitudes

at tree level with this generalization and discussed that in a general n-particle Nk−2MHV
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P̂ 2 = 0, P̂αα̇ = 0

Figure 2.5: Collinear-soft singularity

amplitude the only singularities that can exist correspond to collinear, multi-particle and

soft channels.

For each collinear or multi-particle singularity, there is one condition on the sum of

external momenta. This means that one complex variable is enough to solve the condition

and find the corresponding pole, as was the case in BCFW and Risager’s deformations.

On the other hand, softness of particles results in two conditions. Having two equations,

we need two complex variables in the deformation as was shown in our work. This simply

indicates the necessity of introducing more variables in the deformations when there are

more types of singularity to be investigated.

As an example of higher codimension singularities, one can consider a BCFW-like shift

by which an internal deformed momentum is not only on-shell (P 2 = 0), but also soft

(Pαα̇ = λαλ̃α̇ = 0). Here we have a codimension 3 singularity. Therefore, there are three

conditions to define the poles for which we need three complex variables. Figure 2.5 shows

a collinear-soft singularity of codimension 3.

There could be other deformations one can consider to investigate more interesting

singularities. Under the experienced deformations, depending on which spinors are de-

formed, either 〈ij〉 or [ij] is the singularity of an on-shell propagator with P 2 = 〈ij〉[ij].

As an example, in (2.6.15) we have both 〈12〉 and [12], but only the latter is singular un-

der our two-dimensional Risager’s deformation. A generalized deformation could present

amplitudes in such a way that both of these brackets vanish.

Probing new singularities can be thought of as part of the motivation for using multi-

dimensional complex analysis. We also saw that the global residue theorem has to be
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used in generic cases while having higher degree singularities with more than one complex

variable.

There have also been other attempts to make use of soft limits in order to construct

amplitudes. We would like to mention the link between our work and a more recent

development for expanding amplitudes. It has been shown that MHV gauge theory and

gravity amplitudes with equal and fewer than seven points and certain NMHV gauge theory

amplitudes with any number of external legs can be built using only soft singularities [63].

The construction uses the inverse soft method introduced in [29] and BCFW recursion

relations: by adding a single particle to the amplitude, a BCFW term whose one sub-

amplitude is a three-particle will be produced. This work [63] shows that all BCFW

terms of the amplitudes, described above, can be built using the inverse soft method. The

difference between gauge theory and gravity constructions is that gravity’s soft factor is a

sum of many terms, hence is more complicated as there is no color-ordering in gravity.

Generalization of this method to all tree-level amplitudes of N = 4 super Yang-Mills is

given in [64] by a systematic inverse soft limit instruction. This method makes the Yangian

symmetry [65] and the soft limit of the amplitudes manifest.
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Chapter 3

The Twelve-Graviton Next-to-MHV

Amplitude from Risager’s

Construction

The MHV or CSW expansion of tree-level Yang-Mills amplitudes provides an elegant

and simple way of obtaining analytic formulas for S-matrix elements. Although Risager’s

method, a systematic approach to obtain the MHV expansion, works for Yang-Mills ampli-

tudes, it fails to provide an MHV expansion already for Next-to-MHV gravity amplitudes

with more than eleven particles, as shown by Bianchi, Elvang and Freedman in 2008 [53].

This fact implies that in this sector there is a contribution at infinity starting at n = 12. In

this chapter, we determine the explicit analytic form of this residue at infinity for n = 12.

Together with the terms of Risager’s expansion, the residue at infinity completes the first

full CSW-like analytic expression of the twelve-graviton NMHV amplitude. Our technique

can also be used to compute the residue at infinity for higher points.
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3.1 Introduction and Summary

Tree-level gravity amplitudes are objects of genuine theoretical interest. Although in prac-

tice they can be constructed with BCFW recursion relations [10, 54, 46], it is of great

interest to have analytic formulas for them (see for instance [11, 66, 67, 12, 68, 69, 13]). In

particular, the simpler these formulas are, the more insight they contain about tree-level

gravity. A great step towards this goal has been recently taken by Hodges, who found

an elegant formula for MHV gravity amplitudes [14]. His work renewed the interest in

developing an MHV-vertex expansion for gravity amplitudes.

Applying Risager’s technique to gravity amplitudes was the next natural goal after

the method was successful in Yang-Mills theory [70]. However, as verified by numerical

calculations in [53] and later by analytic means in [54], graviton amplitudes in the Next-

to-MHV sector depend on the reference spinor of Risager’s deformation, starting at twelve

particles.

In this chapter, we address the question of how Risager’s expansion disagrees with the

physical amplitude in the NMHV sector of gravity, i.e. we study the tree-level amplitude

Mn (1−, 2−, 3−, 4+, . . . , n+) for n ≥ 12, and develop a procedure to determine this discrep-

ancy. As an illustration, we present the explicit result in the case of the twelve-graviton

amplitude.

Let us specify our notation. We denote the NMHV amplitude of our interest simply by

Mn. We use the spinor-helicity formalism and represent the momenta of the gravitons as

pi = λiλ̃i, (i = 1, . . . , 12). The Risager shift deforms the anti-holomorphic spinors of the

three negative-helicity particles as
λ̃1(w) = λ̃1 + w 〈2 3〉η̃

λ̃2(w) = λ̃2 + w 〈3 1〉η̃

λ̃3(w) = λ̃3 + w 〈1 2〉η̃

; Mn →Mn(w) , (3.1.1)

where w is the complex variable that we associate with the Risager shift (we later associate
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z with BCFW shifts). We have then a one-parameter family of amplitudes Mn(w). We

call Mn = Mn(0) the physical amplitude, for obvious reasons, while we denote by Risager’s

expansion, MRis
n , the sum of residues of Mn(w) at its poles on the complex plane. The

Risager expansion can be expressed as the following MHV-vertex decomposition:

MRis
n =

∑
a,L+

MnL

(
â−, L+, (−I)−

) 1

P 2
L

MnR

(
I+, b̂−, ĉ−, R+

)
, (3.1.2)

where by PL we mean PL = pa+PL+ = pa+
∑

li∈L+ pli , and the labels a, b, c denote negative-

helicity gravitons, whereas l, l1, l2, . . . , r1, r2, . . . denote positive-helicity ones. L+ (R+)

denotes the subset of external positive-helicity gravitons in the left (right) sub-amplitudes

in (3.1.2). We use nL (nR) for the number of external legs in the left (right), so that

n+ 2 = nL + nR. The hats on particles a, b, c indicate that, in each of the sub-amplitudes

of (3.1.2), their momenta must be evaluated with (3.1.1) at the appropriate value of w = w∗

(the one that makes (pâ + PL+)2 = 0). The momentum of the graviton I (opposite to the

momentum of graviton −I) is determined by momentum conservation.

It is known [53] (see also appendix B of [54]) that Risager’s deformation fails to give a

valid recursion relation for n ≥ 12, since Mn(w) ∼ wn−12 as w → ∞. In order to fix the

expansion for n ≥ 12, one needs to compute the residue at infinity, that we denote by Rn,

which can be defined as

Rn = Mn −MRis
n . (3.1.3)

Of course, we have that Rn = 0 for n < 12.

Our method for computing Rn is as follows: we perform a BCFW complex deformation

on two external legs, making Rn → Rn(z), that allows us to recover the original object Rn

from the residues at its poles. This can be done since under certain BCFW deformations,

MRis
n (z) → 0 at large z, as we discuss in section 3.2.2. It happens that the z-dependent

poles of Rn(z) can be split into physical and unphysical ones. The physical poles are,

as usual, of the form 1/P 2(z) where P (z) is the sum of external momenta in one sub-

amplitude. The unphysical poles depend on the reference spinor η̃. The result for the
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n-point residue at infinity is then

Rn = −
∑
phys

Res

[
Rn(z)

z

]
−
∑

unphys

Res

[
Rn(z)

z

]
. (3.1.4)

We explicitly calculate R12 (performing the BCFW deformation on particles 1 and 4), and

get

∑
unphys

Res

[
R12

z

]
= − (〈1 2〉〈2 3〉〈3 1〉)6

12∏
k=5

[k η̃]

〈1 k〉〈2 k〉〈3 k〉

×
12∑
l=5

[4 l]6

[4 η̃]2 [l η̃]2
〈4 l〉 [4 l]

〈1|p4 + pl|η̃]〈2|p4 + pl|η̃]〈3|p4 + pl|η̃]

〈1 l〉〈2 l〉〈3 l〉
[l η̃]

,

(3.1.5)

for the sum of residues at the unphysical poles (we have used the standard notation

〈i|
∑

j pj|η̃] =
∑

j〈i j〉 [j η̃]), and at the physical poles we have:

∑
phys

Res

[
R12

z

]
=− 〈3 1〉 [4 η̃] 〈1 2〉2

〈2 4〉〈1 4〉2
Res

[
MA

11(w),∞
]

− 〈1 2〉 [4 η̃] 〈1 3〉2

〈3 4〉〈1 4〉2
Res

[
MB

11(w),∞
]
,

(3.1.6)

where MA
11 and MB

11 are eleven-point NMHV amplitudes that are obtained by “dissolving”

particle 4 into particles (1, 2) and (1, 3) respectively, and one performs the Risager shift

(3.1.1) on them to obtain MA
11(w) and MB

11(w). The precise meaning of “dissolving” is

defined in section 3.2.3.

As usual with formulas obtained from BCFW, (3.1.5) and (3.1.6) are asymmetric in

the set of positive helicity particles (note that the deformed particle 4 is special in the

formulas), but the sum of them is indeed invariant under permutation of the positive

labels.
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3.2 The Residue at Infinity

The behavior of the deformed amplitude Mn(w) at infinity, Mn(w) ∼ 1/w12−n, makes it

clear that starting at n = 12 particles, there is a contribution at infinity, Rn, that must be

added to the Risager expansion in order to recover the physical amplitude. However, it is

useful to have an alternative perspective on the existence of this residue at infinity, namely

a more physical reason why it appears. Notice that it could be that this contribution at

infinity vanished for n > 12. We show that this is not the case.

For BCFW two-particle deformations, the presence of a contribution at infinity is re-

lated to the BCFW amplitude missing some physical factorization channels [71]. For the

Risager three-particle deformation, the situation is different. Risager’s expansion does not

miss any physical pole; rather, it contains extra residues as well as some unphysical poles.

Let us be more specific.

3.2.1 Physical Meaning of the Residue at Infinity

One can ask about the factorization channels of the NMHV scattering amplitude of n gravi-

tons that are correctly reproduced by Risager’s expansion MRis
n . In view of the definition

(3.1.3), one can also search for the poles of Rn.

It turns out that all the poles of the physical amplitude Mn are already present in MRis
n .

Moreover, most of the residues of MRis
n at these poles give the expected factorization of

the physical amplitude Mn. It happens that the physical factorization fails in two classes

of channels: the ones corresponding to the poles 〈l1 l2〉 and 〈a l〉 (recall l, l1, l2 denote

positive-helicity gravitons and a is a negative-helicity graviton).

We first study the limit 〈l1 l2〉 → 0. In this limit, the only singular diagrams in the

expansion (3.1.2) of MRis
n are the ones that have both gravitons l1, l2 either on the left or
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on the right sub-amplitude. It is then easy to see that we have the following factorization:

lim
〈l1 l2〉→0

〈l1 l2〉 [l1 l2]MRis
n = M3

(
l+1 , l

+
2 , p

−
l1l2

)
MRis

n−1 , (3.2.1)

where it is understood that in the (n−1)-point Risager expansion l1 and l2 are substituted

by a positive-helicity graviton with on-shell momentum pl1l2 = pl1 + pl2 . Equation (3.2.1)

implies that the residue at this type of pole is the physical one as long as MRis
n−1 = Mn−1,

which holds for n < 13.

The limit 〈a l〉 → 0 is a little bit more subtle. The singular diagrams of MRis
n are now

those where particles â and l are on the same sub-amplitude, and a three-particle amplitude

M3 (â−, l+,−J+) factorizes out since pJ = pâ + pl becomes on-shell. The subtlety arises

because pâ 6= pa, and such a three-point amplitude is not common to all the diagrams in

the Risager expansion. Taking into account that

M3

(
â−, l+,−J+

)
=

[â l]2

[a l]2
M3

(
a−, l+,−p+

al

)
, (3.2.2)

we can write (schematically)

lim
〈a l〉→0

〈a l〉 [a l] MRis
n = M3

(
a−, l+,−p+

al

)∑ [â l]

[a l]

 term in the Risager

expansion for Mn−1

 , (3.2.3)

where the sum is over the terms of the Risager expansion of an (n−1)-point amplitudeMn−1

with the same external states as Mn, but where a and l combine into a negative-helicity

graviton with momentum pal = pa + pl. Now, computing

[â l]

[a l]
− 1 = ŵ

[η̃ l]

[a l]
〈b c〉 , (3.2.4)

it is straightforward to see that

lim
〈a l〉→0

〈a l〉 [a l] MRis
n = M3

(
a−, l+,−p+

al

)(
MRis

n−1 + 〈b c〉 [η̃ l]
[a l]

Res [Mn−1(w),∞]

)
. (3.2.5)
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For our Risager’s deformation (3.1.1), we recall to the reader that the residue for an n-point

NMHV amplitude can be written as:

Res [Mn(w),∞] =
∑
a,L+

MnL

(
â−, L+, (−I)−

) 1

〈b c〉〈a|PL|η̃]
MnR

(
I+, b̂−, ĉ−, R+

)
, (3.2.6)

where the notation is as in (3.1.2). The implication of equation (3.2.5) is that we have

the proper physical factorization at the poles 〈a l〉 when, besides the previous condition

MRis
n−1 = Mn−1, it also happens that Res [Mn−1(w),∞] = 0. For this last condition to hold,

wMn−1(w) must vanish at infinity, or equivalently Mn−1(w) must vanish faster than 1/w,

which happens only for n < 12.

Interestingly, the necessity of the residue at infinity of lower-point amplitudes to vanish

also happens when reconstructing tree-level graviton amplitudes with the BCFW tech-

nique, as noted by Toro and Schuster in [72]. They saw that in order to prove that the

BCFW expansion for an n-graviton amplitude has the correct factorization in this very

same channel 〈a l〉, (n−1)-graviton amplitudes need to vanish faster than 1/z under BCFW

deformations.

In addition to this failure to correctly reproduce physical poles, a careful analysis of the

different terms in the Risager expansion (3.1.2) shows that for n ≥ 12, unphysical poles of

the form 〈a|PL|η̃] appear in MRis
n . More precisely, they appear in the denominator with

the power 〈a|PL|η̃]n−7−nL .

In order to have an intuition of why n = 12 is special, let us look at a given diagram

of the Risager expansion (3.1.2) with L+ = {l1, ..., lnL−2} and R+ = {r2, ..., rnR−2}. The

contribution of this diagram to the expansion is

MnL

(
â−, L+, (−I)−

) 1

P 2
L

MnR

(
I+, b̂−, ĉ−, R+

)
, (3.2.7)

where MnL and MnR are MHV amplitudes. These amplitudes could contain poles of the

form 〈a I〉 = 〈a|PL|η̃], where by convention we use λI = PL|η̃] = [a η̃]λa +
∑

li∈L+ [i η̃]λli .
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To check this possibility we can use any explicit analytic expression of MHV amplitudes.

We do it using the Mason-Skinner formula [12], which reads for the MHV amplitude

Mn (1−, 2+, . . . , (n− 1)+, n−) as

MMHV
n =

〈1 n〉8

〈1 n− 1〉〈n− 1 n〉〈n 1〉

(
1

〈1 2〉〈2 3〉 · · · 〈n− 1 n〉〈n 1〉

×
n−2∏
k=2

〈n|pn−1 + . . .+ pk+1|k]

〈k n〉
+ (permutations of labels {2, . . . , n− 2})

)

=
〈1 n〉6

〈1 n− 1〉〈n− 1 n〉

(
1

〈1 2〉〈2 3〉 · · · 〈n− 1 n〉

×
n−2∏
k=2

〈n|−p1 − . . .− pk−1|k]

〈k n〉
+ (permutations of labels {2, . . . , n− 2})

)
.

(3.2.8)

With our convention, λI = PL|η̃], the Mason-Skinner formula yields for MnL a factor

〈a I〉6 = 〈a|PL|η̃]6 in the numerator, since a and I are the negative-helicity particles on

the left sub-amplitude. One can notice that the power of this factor is the fingerprint of

N = 8 SUSY (it was initially eight, before canceling two powers of the same factor in

the denominator). In the expression for MnR , identifying b̂ ≡ 1, ĉ ≡ n and I ≡ n − 1

when using Mason-Skinner formula (3.2.8), 〈a I〉 appears only through the denominator

of the complexified momentum pb̂, since with Risager deformation (3.1.1) we evaluate the

sub-amplitude at

ŵ = − P 2
L

〈b c〉〈a|PL|η̃]
. (3.2.9)

Therefore, from the product inside Mason-Skinner formula (3.2.8) we get nR− 3 powers of

〈a|PL|η̃] in the denominator of MnR . In total, for the whole Risager diagram we have the

power
〈a I〉6

〈a I〉nR−3
= 〈a|PL|η̃]9−nR . (3.2.10)

So, in order to have a pole of this type, nR needs to be at least ten. Considering that

nL + nR = n + 2 and nL ≥ 3, we simply see that n has to be at least eleven to produce

this unphysical pole. Naively one would expect that MRis
11 would contain the pole1 [l η̃].

1Although in this case 〈a|PL|η̃] = 〈a l〉 [l η̃], notice that these diagrams with three-point amplitudes do
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However, there are three Risager diagrams contributing to this pole (the ones with a =

1, 2, 3 and L+ = {l}) and, only in the case of n = 11, a cancellation happens when summing

over the three diagrams (see appendix 5.A for details). The pole [l η̃] is then spurious for

n = 11, as we knew beforehand since MRis
11 = M11. Hence, the twelve-particle amplitude is

the place for the first appearance of the unphysical poles 〈a|PL|η̃].

Combining all the information spelled out in this subsection, we know what the poles

of Rn are, and we can write the schematic expression2

R12 =
P12∏

a,l,l1,l2

〈a|pl1 + pl2|η̃] [l η̃]2 〈a l〉
, (3.2.11)

Rn =
Pn∏

a,l,l1,l2
nL<n−7

〈a|PL|η̃]n−7−nL〈a l〉〈l1 l2〉
, n > 12 , (3.2.12)

where Pn is some polynomial of the momenta of n scattering gravitons.

3.2.2 A BCFW Computation of the Residue at Infinity

In virtue of (3.2.11)-(3.2.12), we know the poles of the contribution at infinity Rn. More-

over, we also know the residues of Rn at them. At the physical poles 〈a l〉 and 〈l1 l2〉,

the residues are determined by (3.2.1) and (3.2.5). And at the unphysical poles 〈a|PL|η̃],

the residues come from just one diagram in the Risager expansion, namely the one with

particles a, L+ on the left blob (see Figure 3.1), which is the only one that has the factor

1/〈a|PL|η̃]n−7−nL .

This information is enough to implement a one-parameter complex deformation on the

momenta of some gravitons, turn the residue at infinity into a function Rn(z) of a complex

variable z, and recover Rn from the residues at the poles of this function, as long as it

not contribute to the poles 〈a l〉, since this factor cancels in (3.2.9).
2In writing formula (3.2.12), when L+ = {l}, by 〈a|PL|η̃] we understand just [l η̃].
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1
P 2
L

â−

(−I)−
L+

b̂−

ĉ−
I+

R+

Figure 3.1: Contribution to the residue of Rn at the unphysical pole 〈a|PL|η̃].

vanishes at z →∞. We can actually use a BCFW shift:

λ̃(i)(z) = λ̃i − z λ̃j , λj(z) = λj + z λi . (3.2.13)

When the helicities of particles (i,j) are respectively (−,+), (−,−), (+,+), we know that

Mn vanishes as 1/z2. It is easy to check that under the last two shifts, the worst diagrams

in the Risager expansion go as3 1/z. From the definition (3.1.3), it is obvious that Rn(z)

will vanish at infinity. We can then write the usual BCFW integral:

∮
dz
Rn(z)

z
= 0 =⇒ Rn = −

∑
poles z∗

Res

[
Rn(z)

z
; z∗
]
, (3.2.14)

where z∗ are the points at which some factor in the denominator of Rn(z) becomes zero.

Notice that there is a difference with respect to the usual BCFW reconstruction of an

amplitude. Not all the poles of Rn(z) are simple poles, since in the denominator of Rn

some factors come with a higher power than one (see (3.2.12)).

Having given a procedure to compute the residue at infinity Rn for any n, let us

illustrate it explicitly by computing the first non-zero contribution, that happens for n =

12.

3Actually, it seems that the Risager expansion MRis
n vanishes as 1/z2 for the shifts (−,−), (+,+),

exactly as the physical gravity amplitude does. We checked this numerically for n ≤ 16. The shift (−,+)
is not so nicely behaved, as the worst Risager diagrams go as 1/z13−n. Indeed, the Risager expansion
does not vanish under the shift (−,+) for n ≥ 13. For the sake of completeness, we mention that under
the (+,−) shift the worst Risager diagrams behave as zn−5, and Risager’s expansion displays this large-z
behavior for n ≥ 12.

57



3.2.3 Residue at Infinity of the Twelve-Point Amplitude

Following the steps outlined above, we show how to compute R12. Its poles were written

explicitly in (3.2.11). The BCFW shifts (3.2.13) of the type (−,+) (which is valid for

n = 12) involve the fewest number of them. We use for instance the (1,4) shift:

λ̃1(z) = λ̃1 − z λ̃4 , λ4(z) = λ4 + z λ1 . (3.2.15)

Indeed, it is possible to recover R12 from only the residues at the following (simple) poles:

〈2 4〉 , 〈3 4〉 , 〈2|p4 + pl|η̃] , 〈3|p4 + pl|η̃] with l = 5, . . . , 12 , (3.2.16)

which happen, respectively, at the following values of z:

− 〈2 4〉
〈2 1〉

, −〈3 4〉
〈3 1〉

, −〈2|p4 + pl|η̃]

〈2 1〉 [4 η̃]
, −〈3|p4 + pl|η̃]

〈3 1〉 [4 η̃]
. (3.2.17)

On the one hand, the first two poles coincide with physical ones, and the residue can be

computed directly from equation (3.2.5). We get

∑
phys

Res

[
R12(z)

z

]
=− 〈3 1〉 [4 η̃] 〈1 2〉2

〈2 4〉〈1 4〉2
Res

[
MA

11(w),∞
]

− 〈1 2〉 [4 η̃] 〈1 3〉2

〈3 4〉〈1 4〉2
Res

[
MB

11(w),∞
]
,

(3.2.18)

with MA
11 and MB

11 being the following eleven-point amplitudes:

MA
11 = M11

(
(1A)−, (2A)−, 3−, 5+, . . . , 12+

)
, (3.2.19)

MB
11 = M11

(
(1B)−, 2−, (3B)−, 5+, . . . , 12+

)
, (3.2.20)

58



where notice that particle 4 has disappeared, and particles 1 and 2, and 1 and 3 respectively,

have been deformed as

P1A = λ(1)

(
λ̃(1) +

〈2 4〉
〈2 1〉

λ̃(4)

)
, P2A = λ(2)

(
λ̃(2) +

〈1 4〉
〈1 2〉

λ̃(4)

)
, (3.2.21)

P1B = λ(1)

(
λ̃(1) +

〈3 4〉
〈3 1〉

λ̃(4)

)
, P3B = λ(3)

(
λ̃(3) +

〈1 4〉
〈1 3〉

λ̃(4)

)
. (3.2.22)

One can say that particle 4 has been “dissolved” into particles 1 and 2 in MA
11, and into

particles 1 and 3 in MB
11.

On the other hand, the residues at the second two types of (unphysical) poles in (3.2.16)

can be extracted from just the diagrams of MRis
12 where L+ = {4, l} and a = 2, 3, which we

draw in Figure 3.2.

(−I)− I+
1

(p2+p4+pl)2

(−I)−

2̂−
4+

l+ l+

3̂−

4+

R+

1̂−
3̂−

I+

1̂−

R+

1
(p3+p4+pl)2 2̂−

Figure 3.2: The only diagrams contributing to the residues at the unphysical poles 〈2|p4 +
pl|η̃] (left) and 〈3|p4 + pl|η̃] (right).

One just needs to compute the piece proportional to 1/〈a|PL|η̃] of these diagrams. After

some simplifications, the result can be compactly written in formula (3.1.5):

∑
unphys

Res

[
R12

z

]
= − (〈1 2〉〈2 3〉〈3 1〉)6

12∏
k=5

[k η̃]

〈1 k〉〈2 k〉〈3 k〉

×
12∑
l=5

[4 l]6

[4 η̃]2 [l η̃]2
〈4 l〉 [4 l]

〈1|p4 + pl|η̃]〈2|p4 + pl|η̃]〈3|p4 + pl|η̃]

〈1 l〉〈2 l〉〈3 l〉
[l η̃]

.

(3.2.23)

Finally, the sum of the two contributions (3.2.18) and (3.2.23) gives the residue at

infinity of the twelve-point amplitude (3.1.4) we were looking for. It is quite remarkable

that such a complex object admits such a simple expression. Even though (3.2.18) and

(3.2.23) separately are not invariant under permutation of positive labels, their sum is.
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Therefore the result for the residue at infinity is invariant under permutation of positive

(and negative) labels. Both MRis
12 and R12 depend on the reference spinor η̃, but this

dependence disappears when we add both terms4, and we obtain a compact expression for

the physical amplitude M12.

3.3 Discussion on Soft Limits

The method we proposed to determine the residue at infinity of the twelve-point amplitude

from Risager’s construction was based on the knowledge of its poles, or equivalently, on the

failure of Risager’s expansion to provide the correct factorization channels of the physical

amplitude. One could think of other possibilities that could also lead to the determination

of this residue at infinity.

One such possibility is to look at other singular kinematic limits of the physical am-

plitude, e.g., soft limits. In gravity, the soft factors (which we denote by S±), defined

by

lim
pn+1→0

Mn+1 (1, . . . , n, (n+ 1)±)

S±n+1Mn (1, . . . , n)
= 1 , (3.3.1)

are universal5:

S−n+1 =
n∑
i=1

[i µ1] [i µ2]

[n+ 1 µ1] [n+ 1 µ2]

〈n+ 1 i〉
[n+ 1 i]

, (3.3.2)

S+
n+1 =

n∑
i=1

〈i µ1〉〈i µ2〉
〈n+ 1 µ1〉〈n+ 1 µ2〉

[n+ 1 i]

〈n+ 1 i〉
, (3.3.3)

where µ1, µ2 are arbitrary reference spinors, and the sums above are independent of their

choice [62, 11, 13]. We can check if these soft limits (of both negative- and positive-helicity

gravitons) are correctly reproduced by Risager’s expansion MRis
n .

4Although this is not obvious from the corresponding analytic expressions, we checked numerically that
the final result does not depend on the reference spinor η̃, as well as checking that it agrees with the
twelve-graviton amplitude computed via a (more time-consuming) BCFW deformation.

5This means that they depend just on the helicity of the soft graviton, and not on the helicities of the
others, i.e. they are the same in all sectors.
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What we find is that soft limits where the momentum of a negative-helicity graviton

vanishes produce the correct behavior (3.3.2) on Risager’s expansion. However, when the

soft graviton has a positive helicity, we obtain the non-trivial behavior:

lim
pl→0

MRis
n+1 = lim

pl→0

[
S+
n+1M

Ris
n +

〈1 2〉〈2 3〉〈3 1〉
〈l 1〉〈l 2〉〈l 3〉

[η̃ l] Res [Mn(w),∞]

]
, (3.3.4)

where it should be understood that what coincides is the leading order of both sides of the

equality, and the graviton l of Mn+1 is not present in Mn. Formula (3.3.4) tells us that soft

limits are correctly reproduced by MRis
n as long as MRis

n−1 = Mn−1 and Res [Mn−1(w),∞]

vanishes, which happens only for n < 12. The reason for the failure of the twelve-point

Risager’s expansion to have the right soft limits, namely the non-vanishing of the residue

at infinity of the eleven-point amplitude, is exactly the same as the reason why it fails

to account for the right residues at the physical poles. Notice the similarities between

expressions (3.3.4) and (3.2.5).

3.4 Concluding Remarks

The main question addressed in this chapter was to find the discrepancy between what

Risager’s expansion produces for the 12-graviton tree-level amplitude in the NMHV sector

and the physical amplitude which could be found by any guaranteed method e.g. BCFW

recursion relations. Our method for computing this discrepancy, the residue at infinity,

enjoyed a BCFW technique, namely a 2-particle complex deformation and using the residue

theorem to recover the non-deformed R12 from the complexified Rn(z).

We also proposed another way of computing the residue at infinity based on the knowl-

edge of other singular kinematic limits of the physical amplitude, e.g. soft limits. Given

the recent interest in soft factors [63, 64], and the fact that they play a crucial role in

Hodges formula for MHV amplitudes [14], it seems of obvious interest to further explore

the possibility of recovering Rn from soft limits. Trying to use the formalism of [71] for

61



computing contributions at infinity offers another interesting possibility to recover Rn.

The advantage of this direction would be to have the residue at infinity expressed as a sum

of products of MHV amplitudes.

Appendix 3.A Spurious Poles of the Eleven-Point Ris-

ager’s Expansion

In this Appendix we come back to a technical subtlety of our analysis of Section 3.2.1.

There we showed analytically how Risager’s expansion contains unphysical poles for n ≥ 12.

Actually, our analysis naively predicts the presence of an unphysical pole [l η̃] already for

the eleven-point Risager’s expansion, which we know it is not the case as MRis
11 = M11. Let

us see this fact explicitly.

There are three Risager diagrams, that we call M (1,l), M (2,l), M (3,l), contributing with

a 1/ [l η̃] factor to the eleven-point Risager’s expansion MRis
11 . In the expansion (3.1.2) they

are the ones that have a three-particle amplitude with (1, l,−I), (2, l,−I) and (3, l,−I)

respectively on the left sub-amplitude. What we have to see is that

lim
[l η̃]→0

[l η̃]
(
M (1,l) +M (2,l) +M (3,l)

)
= 0 . (3.A.1)

Let us compute the piece proportional to 1/ [l η̃] of these diagrams. The left sub-amplitude

(leaving a = 1, 2, 3 generic) is

MnL = M3

(
â−, l+, (−I)−

)
=
〈a l〉2

[a η̃]2
[l η̃]6 , (3.A.2)

where we are taking into account that

ˆ̃λ(a) =
[a η̃]

[l η̃]
λ̃(l) , λ(I) = (Pa + Pl)|η̃] , λ̃(I) =

λ̃(l)

[l η̃]
. (3.A.3)

The right sub-amplitude is an MHV amplitude, and it looks complicated if we use Mason-
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Skinner formula (3.2.8). But we just need to keep the leading order in 1/ [l η̃]. Identifying

b̂ ≡ 1, ĉ ≡ n, l ≡ n − 1, and using the following result6 (which is just an elaborated

consequence of Schouten identity):

∑
Sn

1

〈α ai1〉〈ai1 ai2〉 · · · 〈ain−1 ain〉〈ain β〉〈β α〉
=

−〈α β〉n−2

〈α a1〉 · · · 〈α an〉〈a1 β〉 · · · 〈an β〉
,

(3.A.4)

where Sn stands for the permutation group of n elements; we get

MnR ∼ −
〈b c〉6〈b|Pa + Pl|η̃]5〈c|Pa + Pl|η̃]5

[l η̃]7

11∏
k=4
k 6=l

[k l]

〈k|Pa + Pl|η̃]〈b k〉〈c k〉
. (3.A.5)

Finally, to leading order in 1/ [l η̃], we obtain

M (a,l) ∼ − 1

[l η̃]

〈a l〉〈b c〉6〈b|Pa + Pl|η̃]5〈c|Pa + Pl|η̃]5

[a η̃]2 [a l]

11∏
k=4
k 6=l

[k l]

〈k|Pa + Pl|η̃]〈b k〉〈c k〉
. (3.A.6)

With this we can check if (3.A.2) is satisfied. In the limit [l η̃] → 0 we can put, up to

unimportant scaling factors, λ̃(l) = η̃. Then we have

lim
[l η̃]→0

[l η̃]
(
M (1,l) +M (2,l) +M (3,l)

)
= (〈1 2〉〈2 3〉〈3 1〉)5

×
11∏
k=4
k 6=l

[k l]

〈1 k〉〈2 k〉〈3 k〉
(〈1 l〉〈2 3〉+ 〈2 l〉〈3 1〉+ 〈3 l〉〈1 2〉) = 0 , (3.A.7)

where we just used Schouten identity in the last line. This shows that the pole [l η̃],

appearing in three of the Risager diagrams, is spurious as it cancels when summing over

them. Notice also that this cancellation is only possible when n = 11, where 〈b|Pa +Pl|η̃]5

and 〈c|Pa + Pl|η̃]5 in (3.A.5) come exactly with the power five.

6Identity (3.A.4) was first presented in the context of QED amplitudes (see Section 8.2 of [1]).
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Chapter 4

Parity Symmetry and Soft Limit for

the Cachazo-Geyer Gravity

Amplitude

In this chapter, we continue our study of gravity amplitudes in the light of a recent proposed

formula for the tree-level n-particle N = 8 supergravity amplitudes by Cachazo and Geyer

[15]. We prove that the formula satisfies parity symmetry and soft limit behavior expected

for graviton scattering amplitudes. After a review of the Cachazo-Geyer formula, we will

move on to the details of the proofs and at the end present a sample calculation, MHV

and MHV amplitudes, using the formula.
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4.1 Introduction

The Lagrangian approach to gravity suggests that even the tree-level gravity is indeed

a much more complex problem than Yang-Mills, in which a naive perturbative approach

becomes computationally unfeasible already for a very small number of particles. Surpris-

ingly, a huge development in gravity amplitudes has been recently made by Hodges [14] to

write tree-level MHV amplitudes in a much simpler way than before.

Amazingly, triggered by Hodges MHV formula, two distinct novel formulas for tree-level

supergravity amplitudes of all R-charge sectors were recently proposed by Cachazo-Geyer

[15] and Cachazo-Skinner [16].

Both proposals, which are analogous to the Witten-Roiban-Spradlin-Volovich’s (Witten-

RSV) twistor string formulation of N = 4 super Yang-Mills [23, 56], can be understood

as huge steps toward finding a twistor-string formulation of gravity. Hodges-like determi-

nants, reviewed in section 1.2.5, are important ingredients in the two formulas, which make

them so simple and elegant.

On the one hand, the Cachazo-Geyer formula is derived from the supersymmetric ver-

sion of the Kawai-Lewellen-Tye (KLT) relations [20] which relate the maximally supersym-

metric amplitudes in Yang-Mills and gravity. The Cachazo-Skinner formula, on the other

hand, emerges from studying the BCFW relations for gravity in super-twistor space.

In this chapter, we consider the Cachazo-Geyer proposal and study two consistency

checks, namely the parity invariance and soft limit behavior of the formula. Our proofs

use the results given by RSV [56] and Witten [73] for the parity and soft limit checks

in N = 4 super Yang-Mills, and present the validity of these properties in the gravity

formula. These two checks are strong evidences that the proposal is the complete tree-level

S-matrix of supergravity. Finally, we explore the possibility of using the known results

in super Yang-Mills to compute amplitudes in gravity from the proposed formula, and we

show the explicit computations for MHV and MHV amplitudes.

This chapter is organized as follows: In section 4.2 we review the Cachazo-Geyer and
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Witten-RSV formulas. The proofs for the parity invariance and soft limit of the formula

are presented in sections 4.3 and 4.4 respectively. Finally, in section 4.5 we calculate the

MHV and MHV amplitudes from the formula.

4.2 The Cachazo-Geyer and Witten-RSV Formulas

Analogous to the Witten-RSV formulation, the Cachazo-Geyer formula for n particle tree-

level supergravity amplitudes in the kth sector is

Mn,k =
1

Vol(GL(2))

∫
d2nσd2kρ

Hn(σ)

Jn(σ, ρ)

k∏
α=1

δ2

(
n∑
a=1

CV
αa(σ)λ̃a

)

× δ0|8

(
n∑
a=1

CV
αa(σ)η̃a

)
n∏
a=1

δ2

(
k∑

α=1

ραC
V
αa(σ)− λa

)
,

(4.2.1)

whose ingredients we explain below:

• CV (σ) is a k×n matrix obtained from the world-sheet variables (σ1a, σ2a), a = 1 . . . n,

via the Veronese map

V : G(2, n)→ G(k, n)

Σ2×n 7→ CV (σ)k×n

. (4.2.2)

Each column of Σ transforms as

σ1a

σ2a

 V7→


(σ1a)

k−1

(σ1a)
k−2σ2a

...

(σ2a)
k−1

 , CV
αa(σ) = (σ1a)

k−α(σ2a)
α−1. (4.2.3)
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• In order to write Hn let us first define the Hodges-like n×n matrix Φn with elements

(Φn)ab =
sab

(a b)2
, for a 6= b

(Φn)aa = −
n∑
b=1
b 6=a

sab
(a b)2

(b l)(b r)

(a l)(a r)
.

(4.2.4)

We recall to the reader that (a b) are 2× 2 minors of Σ, defined as

(a b) = σ1aσ2b − σ1bσ2a. (4.2.5)

The matrix Φn has rank n−3. A non-degenerate matrix can be obtained by deleting

three rows and three columns of Φn. This matrix is denoted by Φ
(abc)
n(def). Finally, Hn

is defined as

Hn = (−1)n+1 1

(a b)(b c)(c a)
× 1

(d e)(e f)(f d)
|Φ (abc)

n(def)|. (4.2.6)

• The last ingredient Jn is obtained in a similar fashion as Hn. First define the 2n+2k

vectors grouping the sets of variables V and equations E :

V = {ρ11, ρ12, . . . , ρk1, ρk2, σ11, σ21, . . . , σ1n, σ2n}

E = {E11, E12, . . . , Ek1, Ek2, F11, F21, . . . , F1n, F2n}
(4.2.7)

where

Eαα̇ =
n∑
a=1

CV
αa(σ)λ̃aα̇, Fαa =

k∑
α=1

ρααC
V
αa(σ), (4.2.8)

here α, α̇ = 1, 2 are holomorphic and anti-holomorphic spinor indices, respectively.

We then construct the matrix

(Kn)IJ =
∂EJ
∂VI

, Kn =

(∂E∂ρ )2k×2k

(
∂F
∂ρ

)
2k×2n(

∂E
∂σ

)
2n×2k

(
∂F
∂σ

)
2n×2n

 . (4.2.9)
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Again, we know that since the system of equations contains momentum conservation,

its rank is 2n+2k−4. Therefore, a non-degenerate matrix can be obtained by deleting

four rows and four columns of Kn. Choosing the rows to be the ones corresponding to

{σ1a, σ2a, σ1b, σ2b} and the columns to {F1c, F2c, F1d, F2d}, and denoting the remaining

matrix by K
(ab)
n(cd), Jn is finally given by

Jn =
1

(a b)2[c d]2
|K (ab)

n(cd)|. (4.2.10)

The number of integration variables in (4.2.1) after gauge fixing the GL(2) redundancy

is 2n + 2k − 4, the same number of δ-functions under the integral after pulling out the

momentum conserving δ4 (
∑n

a=1 pa). Hence, the integral is completely localized. The

resulting amplitude is therefore computed from the solutions (σ∗1a, σ
∗
2a, ρ

∗
αα) of the system

of equations

k∑
α=1

ραC
V
αa(σ) = λa,

n∑
a=1

CV
αa(σ)λ̃a = 0, (4.2.11)

by evaluating the integrand with the corresponding Jacobian factor at each solution and

summing over all contributions. The Cachazo-Geyer formula can be finally written as

Mn,k = δ4

(
n∑
a=1

pa

) ∑
Solutions

(ρ∗,σ∗1 ,σ
∗
2)

Hn

J2
n

k∏
α=1

δ0|8

(
n∑
a=1

CV
αa(σ)η̃a

)∣∣∣∣∣
(ρ∗,σ∗1 ,σ

∗
2)

= δ4

(
n∑
a=1

pa

)
Mn,k.

(4.2.12)

For the proofs presented in this work, it turns out to be more convenient to write (4.2.1)

in terms of other set of variables (ρ, σ, ξ) where σ and ξ are related to the world-sheet

variables σ1 and σ2 as

ξa = (σ1a)
k−1, σa =

σ2a

σ1a

. (4.2.13)
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In these variables, (4.2.1) reads

Mn,k =
1

Vol(GL(2))

∫
dnξdnσd2kρ

(k − 1)2n

n∏
a=1

ξ
k−3
k−1
a

Hn(σ, ξ)

J ′n(σ, ξ, ρ)

k∏
α=1

δ2

(
n∑
a=1

CV
αa(ξ, σ)λ̃a

)

× δ0|8

(
n∑
a=1

CV
αa(ξ, σ)η̃a

)
n∏
a=1

δ2

(
k∑

α=1

ραC
V
αa(ξ, σ)− λa

)
,

(4.2.14)

where CV
αa(ξ, σ) = ξaσ

α−1
a and J ′n is the Jacobian obtained by solving the δ-functions with

respect to the variables (ρ, σ, ξ), related to Jn as

J ′n =
Jn

(k − 1)n

n∏
a=1

ξ
3−k
k−1
a . (4.2.15)

In the following, we will use known results in N = 4 super Yang-Mills theory by Witten-

RSV to verify that (4.2.12) indeed obeys parity invariance and reproduces the correct soft

factor [74, 62].

In order to do so, it is instructive to review the Witten-RSV formulation of gauge the-

ory amplitudes in terms of Witten’s twistor string [23]. The super Yang-Mills n-point

partial amplitudes in the kth sector are given by

An,k(1, . . . , n) =
1

Vol(GL(2))

1

(k − 1)n

∫
dnσdnξd2kρ

n∏
a=1

ξa(σa − σa+1)

k∏
α=1

δ2

(
n∑
a=1

CV
αa(ξ, σ)λ̃a

)

× δ0|8

(
n∑
a=1

CV
αa(ξ, σ)η̃a

)
n∏
a=1

δ2

(
k∑

α=1

ραC
V
αa(ξ, σ)− λa

)
.

(4.2.16)
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Once again, this integral is completely localized and the amplitude is given by

An,k(1, . . . , n) =

δ4

(
n∑
a=1

pa

)
(k − 1)n

∑
Solutions
(ρ∗,σ∗,ξ∗)

1
n∏
a=1

ξa(σa − σa+1)

1

J ′n

k∏
α=1

δ0|4

(
n∑
a=1

CV
αa(ξ, σ)η̃a

)∣∣∣∣∣∣∣∣
(ρ∗,σ∗,ξ∗)

= δ4

(
n∑
a=1

pa

)
An,k(1, . . . , n),

(4.2.17)

with J ′ being the Jacobian obtained by solving equations (5.4.8) with respect to the vari-

ables (ρ, σ, ξ).

4.3 Parity Invariance

In this section we check the parity symmetry of the Cachazo-Geyer formula. Given a

scattering amplitude, the parity conjugated one is obtained by swapping k ↔ n−k, λ↔ λ̃

and Fourier transforming the Grassmann supersymmetric parameters η̃ ↔ η. Being more

explicit, this statement for gravity reads

Mn,k(λ, λ̃, η̃) =

∫
d8nη exp

i n∑
a=1

A=1,...,8

η̃Aa η
A
a

M̃k,n−k(λ̃, λ, η). (4.3.1)

We start from the result stated by RSV that for each solution (ρ∗, σ∗, ξ∗) of the (n, k)

system of equations (5.4.8) there corresponds a solution (ρ̃, σ̃, ξ̃) of the (n, n − k) system

of equations of the parity conjugated amplitude

n−k∑
β=1

ρ̃βC̃
V
βa(σ̃) = λ̃a,

n∑
a=1

C̃V
βa(σ̃)λa = 0, (4.3.2)
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where C̃V (σ̃) is an (n − k) × n matrix also obtained via the Veronese map (4.2.3) from

some 2× n matrix Σ̃. The conjugated solutions are obtained by performing the change of

variables

σ̃a = σa, ξ̃a =
1

ξa
n∏
b6=a

(σa − σb)
. (4.3.3)

From now on we denote σab ≡ σa − σb. We want to show that each individual solution is

parity invariant, that is

Hn

J2
n

k∏
α=1

δ0|8

(
n∑
a=1

CV
αa(σ)η̃a

)∣∣∣∣∣
(ρ∗,σ∗1 ,σ

∗
2)

=

∫
d8nηeiηaη̃

a H̃n

J̃2
n

n−k∏
β=1

δ0|8

(
n∑
a=1

C̃V
βaηa(σ̃)

)∣∣∣∣∣
(σ̃∗1 ,σ̃

∗
2 ,ρ̃

∗)

,

(4.3.4)

where (σ̃∗1, σ̃
∗
2, ρ̃
∗) are the solutions of (4.3.2).

In super Yang-Mills, the correspondence between individual solutions leads to the identity

k∏
α=1

δ0|4
(

n∑
a=1

CV
αa(σ)η̃a

)
(k − 1)nJ ′

n∏
a=1

ξaσa+1 a

∣∣∣∣∣∣∣∣
(ρ∗,σ∗,ξ∗)

=

∫
d4nηeiηaη̃

a

n−k∏
β=1

δ0|4
(

n∑
a=1

C̃V
βa(σ̃)ηa

)
(n− k − 1)nJ̃ ′

n∏
a=1

ξ̃aσ̃a+1 a

∣∣∣∣∣∣∣∣∣
(ρ̃∗,σ̃∗,ξ̃∗)

.

(4.3.5)

We see immediately that the factor
∏n

a=1 σa+1 a =
∏n

a=1 σ̃a+1 a cancels in both sides as a

consequence of (4.3.3) and the equality between each solution. This identity when written

in terms of the variables (ρ, σ1, σ2) as in (4.2.1) reads

k∏
α=1

δ0|4

(
n∑
a=1

CV
αa(σ)η̃a

)
n∏
a=1

ξ
− 2
k−1

a J−1

∣∣∣∣∣
(ρ∗,σ∗1 ,σ

∗
2)

=

∫
d4nηeiηaη̃

a
n−k∏
β=1

δ0|4

(
n∑
a=1

C̃V
βa(σ̃)ηa

)
n∏
a=1

ξ̃
− 2
n−k−1

a J̃−1

∣∣∣∣∣
(ρ̃∗,σ̃∗1 ,σ̃

∗
2)

.

(4.3.6)
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The idea is to split the fermionic δ0|8 from (4.3.4) into two copies of δ0|4, and then apply

(4.3.6) twice. Now it is left to work out what Hn is in terms of the coordinates (ξ, σ). Each

2× 2 minor is given by (i j) = (ξiξj)
1

k−1σji, thus we can factorize the ξ dependence of the

matrix Φn(ξ, σ) and write instead Φ′n(σ):

(Φn)ab = (ξaξb)
− 2
k−1

sab
(σab)2

= (ξaξb)
− 2
k−1 (Φ′n)ab(σ), for a 6= b (4.3.7)

(Φn)aa = −ξ−
4

k−1
a

∑
b 6=a

sab
(σab)2

σlbσrb
σlaσra

= ξ
− 4
k−1

a (Φ′n)aa(σ). (4.3.8)

With this, Hn is given by

Hn =(−1)n+1

n∏
i=1

ξ
− 4
k−1

i

(ξaξb . . . ξf )
2

k−1

1

(ξaξb . . . ξf )
− 2
k−1 (σba . . . σdf )

|Φ′n(σ)
(abc)
(def)|

=(−1)n+1

n∏
i=1

ξ
− 4
k−1

i

|Φ′n(σ)
(abc)
(def)|

(σba . . . σdf )
.

(4.3.9)

Splitting η̃A, A = 1, . . . , 8, into two Grassmann parameters η̃AL , η̃
A
R , A = 1, . . . , 4, we can

write

Hn

J2
n

k∏
α=1

δ0|8

(
n∑
a=1

CV
αa(σ)η̃a

)∣∣∣∣∣
(ρ∗,σ∗1 ,σ

∗
2)

= Hn

k∏
α=1

δ
0|4
(

n∑
a=1

CV
αa(σ)η̃aL

)
Jn

×
δ

0|4
(

n∑
a=1

CV
αa(σ)η̃aR

)
Jn


∣∣∣∣∣∣∣∣
(ρ∗,σ∗1 ,σ

∗
2)

.

(4.3.10)
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Then, using (4.3.6) twice and merging the two Grassmann ηAL,R, A = 1, . . . , 4, conjugated

to η̃AL,R, into an 8-component ηA, we get

Hn

J2
n

k∏
α=1

δ0|8

(
n∑
a=1

CV
αa(σ)η̃a

)∣∣∣∣∣
(ρ∗,σ∗1 ,σ

∗
2)

=

∫
d8nηeiηaη̃

a H̃n

J̃2
n

n−k∏
β=1

δ0|8

(
n∑
a=1

C̃V
βa(σ̃)ηa

)∣∣∣∣∣
(ρ̃∗,σ̃∗1 ,σ̃

∗
2)

,

(4.3.11)

with

H̃n = −
n∏
a=1

ξ̃
− 2
n−k−1

a

|Φ′n(σ)
(abc)
(def)|

(σba . . . σdf )
. (4.3.12)

We conclude that each solution is invariant under parity transformation. This implies that

the whole amplitude satisfies (4.3.1).

4.4 Soft Graviton Limit

In this section, we show that the Cachazo-Geyer formula reproduces the correct soft factor

for gravity amplitudes. In order to do so, we first recall to the reader the soft limit for

super Yang-Mills amplitudes: if particle 1 has positive helicity and we take its momentum

to zero, the amplitude factorizes in the following way:

An
p1→0−−−→ 〈2n〉

〈n 1〉〈1 2〉
An−1. (4.4.1)

If particle 1 has negative helicity, we simply conjugate the soft factor.

We start from the RSV formula (4.2.17) in terms of the variables (ρ, σ1, σ2):

An,k =
∑

Solutions
(ρ∗,σ∗1 ,σ

∗
2)

n∏
a=1

ξ
− 2
k−1

a

σa+1 a

1

Jn

k∏
α=1

δ0|4

(
n∑
a=1

CV
αa(σ)η̃a

)∣∣∣∣∣∣
(ρ∗,σ∗1 ,σ

∗
2)

. (4.4.2)
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Under the soft limit (λ1, λ̃1)→ (0, 0) and η̃1 = 0, Jn factorizes into

Jn = Jn−1D, (4.4.3)

with D being a 2× 2 matrix that carries all dependence on the soft particle. To see this,

let us recall from (4.2.10) the definition Jn = 1
(a b)2[c d]2

|K (ab)
n(cd)| and look at the matrix Kn

under such limit. If we arrange the columns and rows in order to put the dependence on

the soft particle on the last two ones, then

Kn =

Kn−1
...

A D

 , (4.4.4)

where A is a 2×2(k+n−1) matrix in which all non-zero entries are of the kind
∂Eαα̇

∂(σ11,σ21)
∝

λ̃α̇1 . Therefore, in the soft limit all its entries become zero and

detKn = detKn−1 detD. (4.4.5)

Choosing the deleted rows and columns {a, b, c, d} 6= 1, the factorization of |K (ab)
n(cd)| trans-

lates into the factorization (4.4.3) of Jn.

We extract the factors depending on the soft particle, and use the soft limit of the RSV

formula (4.2.17)

An,k =
∑

Solutions
(ρ∗,σ∗,ξ∗)

ξ
− 2
k−1

1

σ2n

σ1nσ21

n∏
a=2

1

ξa(σa+1a)

k∏
α=1

δ0|4
(

n∑
a=1

Cαa(σ, ξ)η̃a

)
Jn−1

1

D

∣∣∣∣∣∣∣∣
(ρ∗,σ∗,ξ∗)

, (4.4.6)

where we multiplied and divided by σ2n
1 in order to obtain the correct measure for An−1.

1Not to be confused with the elements of the 2× n matrix Σ of (4.2.2).
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Comparing (4.4.6) with (4.4.1), we can find the factor D at each solution

1

D
=

〈2n〉
〈1 2〉〈n 1〉

× ξ
2

k−1

1 σn1σ12

σn2

∣∣∣∣∣∣
(ρ∗,σ∗,ξ∗)

=
〈2n〉
(2n)

(1 2)

〈1 2〉
(n 1)

〈n 1〉

∣∣∣∣
(ρ∗,σ∗1 ,σ

∗
2)

, (4.4.7)

which will be useful below in the calculation of the soft limit. It is crucial to notice that

D does not know anything about the ordering of the particles, so in (4.4.7) we can replace

2 and n by any other two particles. We will now make use of these facts to calculate the

soft limit in gravity. Recall the Cachazo-Geyer formula (4.2.12)

Mn,k =
∑

Solutions
(ρ∗,σ∗1 ,σ

∗
2)

Hn

J2
n

k∏
α=1

δ0|8

(
n∑
a=1

CV
αa(σ)η̃a

)∣∣∣∣∣
(ρ∗,σ∗1 ,σ

∗
2)

. (4.4.8)

In the soft limit Hn also factorizes as

Hn = Hn−1

n∑
i=2

s1i(i l)(i r)

(a i)2(a l)(a r)
. (4.4.9)

To see this, let us recall from (4.3.9)

Hn = (−1)n+1

n∏
i=1

ξ
− 4
k−1

i

|Φ′n(σ)
(abc)
(def)|

(σba . . . σdf )
.

The determinant |Φ′n(σ)
(abc)
(def)| in the limit (λ1, λ̃1)→ (0, 0) can be approximated as

|Φ′n(σ)
(abc)
(def)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−
n∑
i=2

s1i
(σ1 i)2

σl iσr i
σl 1σr 1

s12
(12)2

· · · s1n
(1n)2

s21
(21)2

Φ′n−1(σ)
(abc)
(def)

...

sn1

(n 1)2

∣∣∣∣∣∣∣∣∣∣∣∣∣
≈ −

n∑
i=2

s1i

(σ1 i)2

σl iσr i
σl 1σr 1

|Φ′n−1(σ)
(abc)
(def)|

(4.4.10)
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by expanding in the first row and keeping only the first order in s1i, which is small in this

limit. Here we assumed that the set of three rows and three columns that are deleted from

Φn do not contain the first row or first column. The σij of (4.4.10) combine with the ξ

dependence of (4.3.9) to give (4.4.9). Thus, in the soft limit, the gravity amplitude takes

the form

Mn,k =
∑

Solutions
(ρ∗,σ∗1 ,σ

∗
2)

n∑
c=2

s1c(c l)(c r)

(1 c)2(1 l)(1 r)

Hn−1

J2
n−1

1

D2

∣∣∣∣∣∣∣∣
(ρ∗,σ∗1 ,σ

∗
2)

, (4.4.11)

where the factor Hn−1/J
2
n−1 gives the lower-point amplitude Mn−1,k.

Now we can use the expression (4.4.7) for D with convenient replacements for the

labels 2 and n. There are two copies of D in the formula, so choosing for the first one

{2, n} → {c, l} and for the second one {2, n} → {c, r}, we obtain

Mn,k =
∑

Solutions
(ρ∗,σ∗1 ,σ

∗
2)

n∑
c=2

s1c(c l)(c r)

(1 c)2(1 l)(1 r)

Hn−1

J2
n−1

(
〈c l〉
(c l)

(1 c)

〈1 c〉
(l 1)

〈l 1〉

)(
〈c r〉
(c r)

(1 c)

〈1 c〉
(r 1)

〈r 1〉

)∣∣∣∣∣
(ρ∗,σ∗1 ,σ

∗
2)

=
∑

Solutions
(ρ∗,σ∗1 ,σ

∗
2)

n∑
c=2

[1c]〈cl〉〈cr〉
〈1c〉〈1l〉〈1r〉

×Mn−1,k(2, . . . , n)

∣∣∣∣
(ρ∗,σ∗1 ,σ

∗
2)

.

(4.4.12)

Since for every solution we obtain a factor that depends only on the external data, the

full amplitude obtains the same factor. In other words, we have obtained the well-known

expression for the gravitational soft limit

lim
p1+→0

Mn,k(1
+, 2, . . . , n) =

n∑
c=2

[1c]〈cl〉〈cr〉
〈1c〉〈1l〉〈1r〉

×Mn−1,k(2, . . . , n). (4.4.13)
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4.5 Calculating Gravity Amplitudes from super Yang-

Mills Results

It can be noticed that in both proofs in the previous sections we avoided calculating the

clumsiest part of the formula (4.2.1) — the Jacobian Jn. This was achieved by making

use of the knowledge of the corresponding super Yang-Mills result. One can ask if it is

possible to use the same trick also for computing amplitudes. It is trivially true for MHV,

because the Jacobian is 1 in this case. In this section, we will show that it also works for

MHV whose Jacobian is not trivial. Obviously, MHV amplitudes can be obtained from

the Hodges’ MHV formula [14] by parity conjugation. However, in order to illustrate using

super Yang-Mills results for calculating gravity amplitudes, we will show explicitly how the

formula (4.2.1) reproduces the MHV amplitudes.

According to Hodges, a reduced2 tree-level MHV amplitude in N = 8 supergravity is

given by

M̄(1, 2, . . . , n) = (−1)n+1σ(ijk, rst)
|ΦH |rstijk

〈ij〉〈jk〉〈ki〉〈rs〉〈st〉〈tr〉
, (4.5.1)

where

σ(ijk, rst) = sgn((ijk12 . . . /i/j/k . . . n)→ (rst12 . . . /r/s/t . . . n),

and |ΦH |rstijk is the (n− 3)× (n− 3) minor of the matrix

(ΦH)ij =
[ij]

〈ij〉
, i 6= j, (ΦH)ii = −

∑
j 6=i

[ij]〈jx〉〈jy〉
〈ij〉〈ix〉〈iy〉

, (4.5.2)

obtained by deleting the columns r, s, t and rows i, j, k. Here x and y are two arbitrary

spinors.

2Following Hodges, we call reduced amplitude an amplitude with stripped momentum conserving δ-
function and Grassmannian δ-functions.

77



First let us recall that each of the integral formulas for super Yang-Mills (4.2.16) and

gravity (4.2.1) can be written as a sum over solutions of the δ-functions in the integrand

(4.2.12,4.2.17). In the MHV case the integral receives contribution only from one solution,

which by using the GL(2) “gauge freedom” can be written as

σ1a . . . σ1n

σ2a . . . σ2n

 =

λa1 . . . λn1

λa2 . . . λn2

 , ρ1 =

1

0

 , ρ2 =

0

1

 , (4.5.3)

or equivalently, in terms of (ρ, σ, ξ) 
ξa = (λa1)k−1

σa = λa2/λ
a
1

ρβα = δβα

. (4.5.4)

Therefore, on this solution the minors (σaσb) become inner products 〈a b〉 and the matrix

Φn of (4.2.4) reduces to the Hodges’ matrix ΦH (4.5.2).

On the MHV solution (4.5.3), Jn = 1. Indeed, Jn appears as a determinant of resolving

the δ-functions in (4.2.1), which in the MHV case takes the form

∫
d2nσd2ρ1d

2ρ2 δ
2

(
n∑
a=1

σ1aλ̃a

)
δ2

(
n∑
a=1

σ2aλ̃a

)
n∏
a=1

δ2 (ρ1σ1a + ρ2σ2a − λa) . (4.5.5)

On the solution, λa = σa, so the first two δ-functions combine to the momentum conserving

δ4

(
n∑
a=1

λaαλ̃
a
α̇

)
. The last 2n δ-functions in (4.5.5) integrated over σ can be written in a

form

(detR)−n
∫
d2nσ

n∏
a=1

δ2(σa −R−1λa) = (detR)−n, R =

ρ1
1 ρ2

1

ρ1
2 ρ2

2

 . (4.5.6)

But on the MHV solution, R is equal to the identity matrix, so no factor is produced in

(4.5.5) and Jn = 1.
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Substituting Jn = 1 into the Cachazo-Geyer formula (4.2.12) and pulling out the mo-

mentum conserving and Grassmannian δ-functions, we see that the reduced amplitude

is equal to Hn. As (4.2.4) reduces to the Hodges’ matrix (4.5.2), we conclude that the

Cachazo-Geyer formula (4.2.1) reproduces the Hodges’ formula (4.5.1) in the MHV case.

Now we consider MHV amplitudes. First let us understand how (4.2.16) reproduces the

well-known Parke-Taylor formula for MHV amplitudes in super Yang-Mills

AMHV =

2∏
α=1

δ0|4
(

n∑
a=1

Cαa(σ)η̃a

)
Jn

n∏
a=1

(σaσa+1)
=

δ0|4
(

n∑
a=1

λ1
aη̃

a

)
δ0|4

(
n∑
a=1

λ2
aη̃

a

)
〈12〉 . . . 〈n1〉

. (4.5.7)

The corresponding formula for MHV can be obtained from MHV by parity conjugation.

The only solution contributing to the amplitude is

AMHV =

n−2∏
β=1

δ0|4
(

n∑
a=1

C̃βa(σ̃)η̃a

)
J̃n

n∏
a=1

(σ̃aσ̃a+1)
=

∫
d4nη eiηaη̃

a

δ0|4
(

n∑
a=1

λ̃1
aη

a

)
δ0|4

(
n∑
a=1

λ̃2
aη

a

)
[12] . . . [n1]

. (4.5.8)

In order to make it clear that this is the conjugate of an MHV amplitude, we wrote the

LHS in terms of the (n − 2) × n matrix C̃βa = ξ̃aσ̃
β−1
a where

σ̃1

σ̃2

 = ξ̃
1

n−3

1

σ̃

 is a

solution of the parity conjugated system (4.3.2).

Through the transformation (4.3.3), σ̃ and ξ̃ are related to ξ and σ, which in turn can

be expressed through the antiholomorphic part of kinematical data

ξa = (λ̃a1)n−3,

σa =
λ̃a2
λ̃a1
.

(4.5.9)

We will use our knowledge of the MHV amplitudes in super Yang-Mills to calculate them in
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gravity. As in the previous sections, we represent the formula (4.2.1) for gravity amplitudes

as a sum over solutions. Similar to the MHV case, there is only one solution

Mn,n−2 =
Hn

J2
n

n−2∏
β=1

δ0|8

(
n∑
a=1

Cβa(σ)η̃a

)∣∣∣∣∣
(ρ∗,σ∗1 ,σ

∗
2)

. (4.5.10)

We split the 8-component fermionic δ-function into two 4-component ones, group each of

them with one copy of 1/Jn and use the super Yang-Mills result (4.5.8). The two fermionic

integrals over d4nη can be merged into one over d8nη

Mn,n−2 = Hn

(
(σ̃1σ̃2) . . . (σ̃nσ̃1)

[12] . . . [n1]

)2 ∫
d8nηeiηaη̃

a
2∏

α̇=1

δ0|8

(
n∑
a=1

λ̃aα̇ηa

)
. (4.5.11)

Under the transformation (4.3.3), σ does not change while ξ does, so it makes sense to

extract the ξ-dependence from Hn, as in (4.3.9):

Hn =
n∏
a=1

ξ̃
− 4
n−k−1

a H ′n, (4.5.12)

where H ′n depends only on σ and thus does not change under the transformation (4.3.3).

We can also extract the ξ-dependent factors from the minors

(σ̃1σ̃2) . . . (σ̃nσ̃1)

[12] . . . [n1]
=

n∏
a=1

ξ̃
2

n−k−1
a σ̃a+1 1

n∏
a=1

ξ
2

k−1
a σi+1 1

=
n∏
a=1

ξ̃
4

n−k−1
a

ξ
4

k−1
a

. (4.5.13)

Here we used the fact that

(ξaξb)
1

k−1 (σa − σb) = [a b]. (4.5.14)
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Substituting (4.5.12) and (4.5.13) into (4.5.11), we see that the ξ̃’s cancel

Mn,n−2 = H ′n

n∏
a=1

ξ
− 4
k−1

a

∫
d8nηeiηaη̃

a
2∏

α̇=1

δ0|8

(
n∑
a=1

λ̃aα̇ηa

)
. (4.5.15)

The ξ factor can be now absorbed into H ′n by defining

Hconj
n = H ′n

n∏
a=1

ξ
− 4
k−1

a .

Then, Hconj
n can be calculated as a determinant of the matrix Φconj

Φconj
ij =

〈i j〉
[i j]

, i 6= j Φconj
ii = −

∑
j

〈i j〉[j l][j r]
[i j][i l][i r]

, (4.5.16)

with three rows and three columns eliminated. Here we used again (4.5.14).

Finally, we obtain the following formula for MHV gravity amplitudes:

Mn,n−2 = Hconj
n

∫
d8nηeiηaη̃

a

δ0|4

(
n∑
a=1

λ̃1
aηa

)
δ0|4

(
n∑
a=1

λ̃2
aηa

)
. (4.5.17)

Taking the fermionic integrations explicitly, we can represent the answer in the final form

Mn,n−2 = Hconj
n δ0|8

(
n∑
a6=b

[a b]
n∏

c 6=a,b

η̃c

)
, (4.5.18)

which one can check that is the parity conjugate of Hodges’ formula for MHV amplitudes

[14].

We can conclude that in the MHV and MHV cases there is no need to explicitly cal-

culate the Jacobian Jn in the Cachazo-Geyer formula (4.2.1), because in the gravity MHV

amplitude, Jn can be extracted from the super Yang-Mills counterpart. This is a surpris-

ing fact, since unlike the MHV case, in which Jn = 1, in the MHV case Jn is nontrivial,

nevertheless this trick allows us to avoid computing it explicitly. This simplification hints
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that there may be a possibility that the calculation of amplitudes with arbitrary k does

not require the computation of Jn explicitly, taking instead advantage of the corresponding

super Yang-Mills result. Therefore, this could be a path for further simplifications of the

formula (4.2.1).

4.6 Conclusion

We have proved in this chapter that the recently proposed Cachazo-Geyer formula (4.2.1)

for all tree-level amplitudes in N = 8 supergravity satisfies parity symmetry and behaves

correctly in a soft-graviton limit. These properties provide evidence for the validity of

the formula (4.2.1) in all k-sectors. Indeed, a k-preserving soft limit produces a lower-

point amplitude with the same k. So, iteratively performing the k-preserving soft limit,

each amplitude can be reduced to MHV, which in turn can be related to MHV by parity

conjugation. Thus, the consistency checks which we performed support the validity of the

Cachazo-Geyer proposal.

82



Chapter 5

CSW-like Expansion for Einstein

Gravity

This chapter continues the discussion of the CSW expansion for gravity amplitudes from

a different perspective. Using the recent formula presented in [57, 58] for the link repre-

sentation of tree-level N = 8 supergravity amplitudes, we derive a CSW-like expansion

for the Next-to-MHV 6- and 7-graviton amplitudes by using the global residue theorem;

a technique introduced originally for Yang-Mills amplitudes [33]. We analytically check

the equivalence of one of the CSW terms and its corresponding Risager’s diagram. For

the remaining 6-graviton and all 7-graviton terms, we numerically checked the agreement

with Risager’s expansion. We show that the conditions for the absence of contributions

at infinity of the global residue theorem are satisfied for any number of particles. This

means that our technique and Risager’s should disagree starting at twelve particles where

Risager’s method is known to fail.
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5.1 Introduction

As was shown in [23], Yang-Mills MHV amplitudes are localized on lines in supertwistor

space. The CSW expansion in Yang-Mills tells us that NMHV amplitudes are localized

on pairs of lines in twistor space. Gravity MHV amplitudes, on the other hand, are not

localized on lines because they have derivative of a δ-function support on lines. However,

in the NMHV sector, one can write amplitudes as integrals over the Grassmannian G(3, n)

which is the space of 3-planes in Cn [58]. A convenient way to represent a point in G(3, n)

is as a 3× n matrix modulo a GL(3) action. This matrix can be thought of as n 3-vectors

which are the columns of the matrix. The columns are denoted by ca ∈ C3, or equivalently

[ca] ∼ CP2 as they are non-zero. We call the space of 3-vectors the C-space and will discuss

localizations in this space throughout this chapter.

In Yang-Mills, NMHV amplitudes are localized on pairs of lines in the C-space. Hence,

localization in twistor space and CP2 are equivalent for Yang-Mills. In general we define

CSW-localization to mean that NMHV amplitudes are localized only on pairs of lines in

the C-space.

The main result of this chapter is to show that gravity has an expansion in which each

term is CSW-like localized. The key ingredient in our technique is the link representation

[57, 58] of the recently found formula for gravity amplitudes [16].

In [16], Cachazo and Skinner proposed a manifestly permutation invariant formula to

compute all tree-level N = 8 supergravity amplitudes in terms of higher degree rational

maps to twistor space. The parity invariance and soft limits of the formula, two strong

evidences for the proposal to be correct, were checked in [75]. This conjecture was later

on proved in [58], showing that the formula admits the BCFW recursion relations and

also produces 3-particle MHV and MHV amplitudes. Moreover, the formula behaves at

large momenta (large BCFW’s complex variable, z) as tree-level gravity amplitudes do,

1/z2 [46]. In [57] and independently in the same work of Cachazo-Mason-Skinner [58] the

formula was presented in the link representation. This formulation was indeed another
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progress to further explore CSW in gravity. The link representation is reviewed in section

5.2.

In this chapter, we are looking for a formula for gravity analogous to the CSW. The

analogy is in the C-space, not directly in twistor space. The procedure of our computations

is explained in section 5.3 where we applied a global residue theorem (GRT)[76] to the link

representation of the Cachazo-Skinner formula. The residue theorem writes the amplitude

as a sum over terms which coincide with different localizations of particles on a pair of

lines in the C-space. These are in fact the CSW terms for NMHV gravity amplitudes.

We computed the CSW terms for the NMHV 6- and 7-graviton scattering amplitudes

in sections 5.4 and 5.5, respectively. The results obtained are compared to the known

corresponding Risager’s diagrams. We show that the two sides are in complete agreement.

Both Yang-Mills and gravity have an expansion in terms of two lines in the C-space.

Throughout this chapter, we graphically represent each term in Risager’s expansion for

gravity

MRis
n =

∑
a,L+

ML

(
â−, L+,

(
−P̂
)−) 1

(pa + PL+)2
MR

(
P̂+, b̂−, ĉ−, R+

)
, (5.1.1)

as two intersecting lines shown in figure 5.1.

Figure 5.1: The CSW-like localization of NMHV amplitudes on lines in C-space.

The notations and conventions are as introduced and used before.

For 6- and 7-graviton amplitudes, there are 21 and 45 Risager diagrams respectively,

which are the same as the localizations of the Cachazo-Skinner formula. This formula

however, does not hold us back from exceeding 12-graviton amplitudes. Indeed, a power

counting in section 5.6 shows that the global residue theorem is valid for any number of
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particles. In section 5.7 we discuss a possible reason for the discrepancy between Risager’s

and our technique.

5.2 Review of the Link Representation of Gravity in

Momentum Space

Recently, a new formula for the tree-level S-matrix of N = 8 supergravity for all R-charge

sectors (labeled by d = k − 1) was proposed by Cachazo and Skinner [16]. The formula is

written as an integral over degree d holomorphic maps from a Riemann sphere to N = 8

supertwistor space CP3|8. The integral, however, is known to be completely localized by its

bosonic δ-functions; it is therefore the analog of the twistor string formulation for N = 4

super Yang-Mills tree amplitudes proposed by Witten [23] and later studied by Roiban,

Spradlin and Volovich [56].

In twistor string formulation, world-sheet and external variables are connected through

high degree polynomials inside δ-functions. To extract the result for the amplitude, one has

to solve these high degree polynomials and sum the contribution of all solutions. We found

that it is more convenient for our purpose to use the so-called link representation of gravity,

written by He [57], Cachazo, Mason and Skinner [58], which is a “gauge fixed” Grassman-

nian G(k, n) formulation. In the link representation, internal and external variables are

linearly coupled in the δ-function constraints which makes our computations simpler to

perform, but instead, the amplitude is now a contour integral in (d − 1)(d̃ − 1) variables,

where d̃ = n− d− 2.

For amplitudes having only gravitons as incoming particles, we choose the gauge such

that the k columns associated with the negative helicity gravitons form an identity matrix.

We label the gauge fixed columns by r and the remaining n − k columns by a. Since the

row index runs from 1 to k, we label them using r as well. The unfixed variables cra are

called link variables.
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In this chapter we concentrate on the NMHV sector, d = 2. We assign the negative

helicity indices r, s and t to take values 1, 2, 3 and the positive ones a and b to run over

4, . . . , n. Therefore, the gauge will be
1 0 0 c14 c15 . . . c1n

0 1 0 c24 c25 . . . c2n

0 0 1 c34 c35 . . . c3n

 . (5.2.1)

Minors of this matrix are linear in each of the link variables. Using this gauge and keeping

track of corresponding signs (cyclicity),

cra = (sta),

(rab) = csactb − csbcta,
(5.2.2)

where s 6= t 6= r. For instance, c14 = (234) and (356) = c15c26 − c16c25.

Our computations are done using the link representation and therefore, instead of

presenting the twistor string formula [16], let us directly write the n-particle Nd−1MHV

link representation in momentum space as introduced in [58]. Using the gauge above and

setting d = 2 and d̃ = n− 4, the link representation for M(1−, 2−, 3−, 4+, · · · , n+) is1

Mn,2 =

∫ ∏
r,a

dcra
cra

(c3n−1c3n)n−6

(
Dn−1n

12

)n−4

(c1n−1c1nc2n−1c2n)2
φ(2)

(
〈r s〉
Hn−1n
rs

)
φ̃(n−4)

(
[a b]

Hab
12

)

×
n−2∏
a=4

1

V123
an−1n

3∏
r=1

δ2(λ̃r + craλ̃a)
n∏
a=4

δ2 (λa − λrcra) ,

(5.2.3)

where we sum over the repeated indices in the δ-functions. The ingredients of this formula

are defined as follows:

• Dab
rs =

∣∣∣∣∣∣cra crb

csa csb

∣∣∣∣∣∣ , Hab
rs =

Dab
rs

cracrbcsacsb
,

1Notice that our matrices φ(d) and φ̃(d̃) are exactly φ(d) and φ(d̃) in [58]. Also notice that the two
matrices, defined in (5.2.4) and (5.2.5), have the same structure.
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• V12r
an−1n = (1 2 r)(r a n− 1)(n− 1n 1)(2 a n)− (2 r a)(a n− 1n)(n 1 2)(r n− 1 1),

We call V12r
an−1n the Veronese polynomials and the reason for the name will be ex-

plained in the next section. The integration contour is defined around the zeroes of

the (d− 1)(d̃− 1) = n− 5 Veronese polynomials.

• φ(d) is the determinant of a d× d matrix with elements

φrs =
〈r s〉
Hn−1n
rs

for r 6= s and r, s 6= 1,

φrr = −
∑
s 6=r

〈r s〉
Hn−1n
rs

,
(5.2.4)

with the convention for r and s as was said, leaving out 1,

• φ̃(d̃) is the determinant of a d̃× d̃ matrix with elements

φ̃ab =
[a b]

Hab
12

for a 6= b and a, b 6= n,

φ̃aa = −
∑
b 6=a

[a b]

Hab
12

,
(5.2.5)

where indices a and b run over the rest of the particles, except for n.

φ(d) and φ̃(d̃) are the pseudo-determinants, det ′, of the matrices Φ and Φ̃ defined in

(17) and (12) of [16] respectively, with the following particular choice of removed rows and

columns: using cyclicity, the labels are chosen such that particle 1 has negative helicity

and particle n has positive helicity. Then,

• from (17) all rows and columns a plus r = 1 are removed,

• from (12), all rows and columns r plus a = n are removed.
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5.3 A CSW-like Expansion for Gravity

In [33], a derivation of the CSW expansion for N = 4 super Yang-Mills NMHV amplitudes

from the Grassmannian is presented using a procedure called “relaxing δ-functions” (section

3 of [33]). Here we apply the same procedure to NMHV gravity amplitudes, using the link

representation formula (5.2.3) written in momentum space.

We repeat formula (5.2.3) for the reader’s convenience:

Mn,2 =

∫ ∏
r,a

dcra
cra

(c3n−1c3n)n−6

(
Dn−1n

12

)n−4

(c1n−1c1nc2n−1c2n)2
φ(2)

(
〈r s〉
Hn−1n
rs

)
φ̃(n−4)

(
[a b]

Hab
12

)

×
n−2∏
a=4

1

V123
an−1n

3∏
r=1

δ2(λ̃r + craλ̃a)
n∏
a=4

δ2 (λa − λrcra) .

(5.3.1)

Now we perform the following steps:

1. Pull out momentum conservation

3∏
r=2

δ2(λ̃r + craλ̃a) = 〈23〉2δ4

(
n∑
i=1

λiλ̃i

)
; (5.3.2)

2. Split the remaining λ̃1 “two component” δ-functions into two “one-component” δ-

functions by projecting it on two arbitrary linearly independent spinors [X| and [Y |:

δ2(λ̃1 + c1aλ̃a) = [XY ]δ([1X] + c1a[aX])δ([1Y ] + c1a[aY ]); (5.3.3)

3. Solve the system with all λ δ-functions together with δ([1Y ] + c1a[aY ]), and relax

δ([1X]+c1a[aX]), that is to replace the δ-function by one over its argument and treat

the integral as a contour integral around the point where this argument is zero:

δ([1X] + c1a[aX]) −→ 1

[1X] + c1a[aX]
; (5.3.4)
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4. Since we relaxed one δ-function, we increase by one the number of integration vari-

ables ti, i = 1, 2, . . . , n− 4. The amplitudeMn,2 is obtained by carrying the integra-

tions on a contour defined around the zeros of the n−5 Veronese polynomials plus the

zero of [1X] + c1a[aX]. However, relaxing the δ-function means treating this point as

a pole, so we can use the global residue theorem to “blow up the residue” and write

the amplitude as minus the sum of residues of the other poles of the integrand. Being

more precise, suppose we perform n−5 integrations to solve all Veronese constraints.

Then, we are left with one integration, say in the variable t1, and the integrand is a

function of t1. To obtain the amplitude, we should compute the residue due to the

only remaining constraint [1X] + c1a(t1)[aX] = 0. However, if the integrand contains

m other poles for t∗1,j, j = 1, . . . ,m, then

Mn,2 = −
m∑
j=1

Res[Integrand]

∣∣∣∣∣
t∗1,j

, (5.3.5)

where these poles correspond to 3× 3 minors in the denominator.

These are the steps for obtaining a CSW expansion for super Yang-Mills amplitudes from

the Grassmannian formulation, and in this work we apply the same procedure for the

gravity formula (5.2.3) to calculate an analogous expansion for 6- and 7-graviton NMHV

amplitudes.

Let us now explain how this expansion (5.3.5) coincides with CSW. We discuss the

localization in the space of 3-vectors, C-space, in which the columns of the 3 × n matrix

(5.2.1) live. The following discussion will be equivalent for both Yang-Mills and gravity

amplitudes in the NMHV sector, as they both localize on pairs of lines in the C-space.

For Yang-Mills, this localization is equivalent to the localization in twistor space, while for

gravity the situation is different, as we know even the MHV amplitudes in gravity are not

represented by lines in twistor space.

The reason V12r
an−1n are called Veronese polynomials is that their simultaneous zeros
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imply that each column of C is obtained from applying a Veronese map from CP1 to

CPk−1. In the computations of residues of (5.2.3), the C-matrix is evaluated on each of

the poles of the integrand. This 3 × n matrix, after a rescaling of one of its rows, can be

depicted on a 2-plane. Since we have n − 5 Veronese polynomials in (5.2.3), not all but

some of the solutions make the points of the rescaled C-matrix lie on a conic. There also

exist some non-conic configurations. The numerator, however, vanishes on the solutions

leading to these configurations, so projects them out. In addition to setting the Veronese

polynomials to zero, at any time there is a minor from the denominator set to zero, hence,

three of the points must be collinear. In general, any five points define a unique conic.

When three of these points are collinear, the conic is reducible and the configuration will

be a degenerate conic (two intersecting lines) which has three points on one line and the

others spreading on any of the two lines.

In summary, on the support of n− 5 Veronese polynomials and the numerator we only

see conic configurations. Each of the minors in the denominator then tells us which three

points must be collinear. The outcomes are the terms in (5.3.5) which we define to be

CSW terms.

Here we refer to our expansion not as a “CSW expansion for gravity”, but as a CSW-

like expansion. The reason is that “the canonical” way of generating the MHV expansion

for gravity amplitudes is through Risager’s procedure. It is not obvious a priori, however,

that the procedure shown here will correspond to Risager’s as happens for super Yang-

Mills. That point being clear, we will refer to the channels as CSW-terms rather than

CSW-like-terms for convenience of the notation.

5.4 6-Graviton Computation

For the 6-graviton NMHV amplitude, we have n = 6, d = d̃ = 2. As already said, we

choose a gauge fixing such that the indices r, a take values r = 1, 2, 3 and a = 4, 5, 6. Then

(5.2.3) is written as
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M(1−, 2−, 3−, 4+, 5+, 6+) =

∫ ∏
r=1,2,3
a=4,5,6

dcra
cra

(H56
12 )2φ(2)

(
〈r s〉
H56
rs

)
φ̃(2)

(
[a b]

Hab
12

)

× 1

V

3∏
r=1

δ2(λ̃r + craλ̃a)
6∏

a=4

δ2(λa − craλr),

(5.4.1)

where

H56
12 =

c15c26 − c16c25

c15c26c16c25

and V ≡ V456
123 . (5.4.2)

The functions φ(2) and φ̃(2) entering the formula (5.4.1) are determinants of arbitrary 2× 2

minors of the following rank-2 matrices:

Φ =


− 〈12〉
H56

12
− 〈13〉

H56
13

〈12〉
H56

12

〈13〉
H56

13

〈12〉
H56

12
− 〈12〉
H56

12
− 〈23〉

H56
23

〈23〉
H56

23

〈13〉
H56

13

〈23〉
H56

23
− 〈13〉
H56

13
− 〈23〉

H56
23

 , (5.4.3)

Φ̃ =


− [45]

H45
12
− [46]

H46
12

[45]

H45
12

[46]

H46
12

[45]

H45
12

− [45]

H45
12
− [56]

H56
12

[56]

H56
12

[46]

H46
12

[56]

H56
12

− [46]

H46
12
− [56]

H56
12

 . (5.4.4)

There are 9 integration variables and 12 bosonic δ-functions, four of which provide momentum-

conservation (5.3.2). After pulling out the momentum conservation the integral (5.4.1)

contains 8 constraints and 9 integration variables, so it should be complemented by the

choice of an integration contour. The amplitude is given by integration along the contour

encircling V = 0.

Now let us start the transformations leading from the integral representation (5.4.1)

to the CSW-like expansion of the gravity amplitude. First, according to the procedure

explained in section 5.3, we split
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δ2(λ̃1 + c14λ̃4 + c15λ̃5 + c16λ̃6) = [XY ]δ ([1X] + c14[4X] + c15[5X] + c16[6X])

×δ ([1Y ] + c14[4Y ] + c15[5Y ] + c16[6Y ]) ,
(5.4.5)

and relax δ ([1X] + c1a[aX]). After expanding (H56
12 )2, φ(2) and φ̃(2) in (5.4.1) using the

definition (5.4.2), the denominator of the integrand will contain polynomials of cra as well

as V and [1X]+c1a[aX]. Using (5.2.2), one can simplify the expression and write it in terms

of entries and 3× 3 minors of the C-matrix (5.2.1). All the factors in the denominator can

then be split into two functions:

f1 = c15c16c25c26c34(156)(256)(345)(364) ([1X] + c1a[aX]) ,

f2 = V .
(5.4.6)

The integral is now in two complex variables and the amplitude is then given by a multi-

dimensional residue at the poles where both [1X] + c1a[aX] and V are zero.

According to the global residue theorem, we can also write the amplitude as minus the

sum of all other residues in which V and one of the factors in f1 other than [1X] + c1a[aX]

are set to zero. Explicitly speaking, denoting a residue by the factors set to zero to compute

it, one will have

M6,2 = {V , [1X] + c1a[aX]} = −{V , c15} − {V , c16} − {V , c25} − {V , c26} − {V , c34}

−{V , (156)} − {V , (256)} − {V , (345)} − {V , (364)}.

(5.4.7)

Notice that, since V is a polynomial of degree 4, each term splits yet into 4 terms. No-

tice also that many residues contribute to the same configuration, e.g., {(156), (126)} and

{(256), (126)} shown in figure 5.2. The way to carefully deal with this and take care of all

contributions for a given diagram will be explained in section 5.4.2.
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Figure 5.2: A configuration associated with {(156), (126)} and {(256), (126)}.

Carrying on the computation, the δ-functions which we keep, impose the following set

of seven equations 

[1Y ] + c14[4Y ] + c15[5Y ] + c16[6Y ] = 0,

λ4 = c14λ1 + c24λ2 + c34λ3,

λ5 = c15λ1 + c25λ2 + c35λ3,

λ6 = c16λ1 + c26λ2 + c36λ3,

(5.4.8)

or equivalently 

[1Y ] + c14[4Y ] + c15[5Y ] + c16[6Y ] = 0,

c14〈12〉+ c34〈32〉 − 〈42〉 = 0,

c24〈21〉+ c34〈31〉 − 〈41〉 = 0,

c15〈15〉+ c25〈25〉+ c35〈35〉 = 0,

c25〈21〉+ c35〈31〉 − 〈51〉 = 0,

c16〈16〉+ c26〈26〉+ c36〈36〉 = 0,

c26〈21〉+ c36〈31〉 − 〈61〉 = 0.

(5.4.9)

The last transformation is performed for computational convenience and multiplies the

Jacobian by a factor of 〈21〉〈51〉〈61〉.

Let us denote by S the system of equations formed by (5.4.9) and two additional equa-

tions: V=0 and (abc) = 0, where (abc) is one of the minors in the denominator. Then,

an individual residue is given by the following expression evaluated on the solution of the
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system S:

1

J

([45][56]c15c25(364) + cyclic(4, 5, 6)) (〈12〉〈23〉c25c26(256) + cyclic(1, 2, 3)) (abc)

(135)(136)(235)(236)(124)(156)(256)(345)(364)

[XY ]

([1X] + c1a[aX])
,

(5.4.10)

where J is the Jacobian of solving the system S. The precise way of calculating the residues

will be explained later in section 5.4.2.

5.4.1 Analytical Computation of {(135), (246)}

We calculate the residue of the integrand at the point {(135), (246)}. To see that this is

indeed a simple multi-dimensional pole we represent the Veronese polynomials in the form

V = (123)(345)(561)(246)−(234)(456)(612)(351). Setting (135) to zero makes f1 in (5.4.6)

vanish, since (135) = c25. Also, the second term in V vanishes by this condition. Setting

additionally (246) to zero sets f2 = V to zero and, as one can check, does not add any

zeros among the factors in the denominator.

Using Mathematica to find the solution of the system (5.4.8), substituting it into

(5.4.10) and simplifying the result, we obtain

[46]〈13〉6〈2|4 + 6|5]〈2|4 + 6|Y ]5

〈15〉〈24〉〈26〉〈35〉〈46〉〈1|3 + 5|Y ]〈4|2 + 6|Y ]〈6|2 + 4|Y ]〈5|1 + 3|Y ]〈3|1 + 5|Y ](p1 + p3 + p5)2
.

(5.4.11)

One can see that this result coincides with a Risager’s term which has the form

ML(1̂−, 3̂−, 5+, P̂+)
1

P 2
MR(2̂−, 4+, 6+,−P̂−), (5.4.12)

where P = p2 + p4 + p6 is the momentum flowing through the link which is set on-shell

and P̂ is the Risager-deformed momentum P̂ = p̂2 + p4 + p6 as in (3.1.2).
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5.4.2 Numerical Check of All Residues for 6 Gravitons: Taming

Singular Configurations in Multi-Dimensional Residues

In order to numerically calculate the other channels, an immediate application of the global

residue theorem leads to a computational problem: the part of the integrand besides the

two zero factors in the denominator, which is supposed to be finite, can become ambiguous.

This happens because the numerator and the denominator go to zero simultaneously and

do not cancel with each other.

Consider for example the 2-4 channel shown in figure 5.3 in which particles 1 and 4

belong to ML and particles 2, 3, 5 and 6 belong to MR.

Figure 5.3: An example of a 2-4 channel.

One way to generate this configuration is by setting V and (256) to zero. Looking at

the denominator of (5.4.10), however, we see that (235) and (236) are “accidentally” set

to zero as well. For the residue to be finite, the numerator of (5.4.10) should also go to

zero at the solution. Restricting ourselves to the submanifold of G(3, 6) defined by V = 0

equation, we can write all minors that go to zero as a multiple of say (235). More precisely,

in this example we can use V = (462)(235)(514)(631)− (623)(351)(146)(254) = 02 to write

(236) ∝ (235). Playing this game with all the minors that go to zero in the integrand, we

note that both the numerator and denominator vanish as (235)5, so they cancel and we

can finally obtain a finite residue.

Although this method gives the correct results in this example, it requires an individual

treatment of each residue, making the computations rather laborious. More importantly,

2Keep in mind that the condition V = 0 is permutation invariant, so we can make a choice of ordering
of particles which is the most convenient for our purposes.
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it cannot necessarily be applied to higher-point computations. For this reason, we use a

procedure which can be directly applied in all cases which consists of the use of a regulator.

The singular residues are points in the Grassmannian on which the denominator of the

integrand has a zero of second order or higher. The idea is to add to each minor in the

denominator a small constant ε, the regulator,

1

(abc)
→ 1

(abc) + ε
, (5.4.13)

which separates the higher order zeros in many zeros of first order. Also to make sure

that the regulated minors do not accidentally vanish simultaneously, we may add different

values of ε to different minors. After this, all poles are simple and the global residue

theorem can be applied without restriction. Moreover, there is no need to regulate the

Veronese polynomials, since they do not factorize when minors are regulated (ε 6= 0).

The Veronese polynomials and each of the regulated minors in the denominator make

a system of equations when set to zero. On each solution of each system of equations,

there might be some minors which nearly vanish. We compute all possible minors on each

solution and collect the almost-zero ones. These minors now define the localization of

particles on the two crossing lines which makes a CSW channel. As an example, in figure

5.3, the only minors which are close to zero are (235), (236), (256) and (356). Hence,

particles 2, 3, 5 and 6 lie on a line. And, there is also a line passing through any two

free points; 1 and 4 here. As it is also clear from this example, many solutions may

contribute to a given localization. Here, residues of the integrand on the solutions of the

following systems of equations contribute to this channel: {V = 0 and (235) + ε = 0},

{V = 0 and (236) + ε = 0} and {V = 0 and (256) + ε = 0}. In the end, all contributions

must be summed to give the corresponding CSW term.

This way, we computed the numerical values of the 21 configurations of 6 gravitons,

depicted in figure 5.4.

The numerical values obtained are compared to the known corresponding Risager terms.
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Figure 5.4: 6-graviton channels

As a result of this comparison we found, as happens to Yang-Mills, a complete agreement

between our procedure and Risager’s. Numerical results are given in the appendix for both

6- and 7-graviton cases.
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5.5 7-Graviton Computation

For 7-graviton NMHV amplitudes, n = 7, d = 2 and d̃ = 3, so the link representation

(5.2.3) is

M(1−, 2−, 3−, 4+, 5+, 6+, 7+) =

∫ ∏
r=1,2,3
a=4,..,7

dcra
cra

c36c37
(367)3

(c16c17c26c27)2

×φ(2)

(
〈r s〉
H67
rs

)
φ̃(3)

(
[a b]

Hab
12

)
1

V123
467V123

567

∏
r

δ2(λ̃r + craλ̃a)
∏
a

δ2(λa − craλr).

(5.5.1)

Using the definitions of φ, one can rewrite the integrand as a rational expression whose

denominator is

(136)(137)(236)(237)(124)(125)(167)(267)(345)(346)(347)(356)(357)V123
467V123

567 . (5.5.2)

According to the general procedure of section 5.3, we relax one component of the λ̃1 δ-

functions. After this, we get an additional factor of [1X]+
∑

a c1a[aX] in the denominator.

To apply a global residue theorem these factors should be split into three functions:

f1 = (136)(137)(236)(237)(124)(125)(167)(267)(345)(346)(347)(356)(357)

(
[1X] +

∑
a

c1a[aX]

)
,

f2 = V123
467 ,

f3 = V123
567 .

(5.5.3)

The amplitude is the residue of the integrand at the point where f2, f3 and the last factor

in f1 go to zero. Like in the 6-particle case, we get different CSW terms by computing

residues at points where f2, f3 and one of the minors in f1 go to zero. The GRT then tells

us that all the CSW terms sum to the full amplitude, as it naturally should:
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M7,2 =

{(
[1X] +

∑
a

c1a[aX]

)
, f2, f3

}
= −{(136), f2, f3} − {(137), f2, f3} − . . .− {(357), f2, f3}.

(5.5.4)

Notice that every term in the right-hand side can in principle contain more than one CSW

term, because the system 
minor = 0,

V123
467 = 0,

V123
567 = 0.

(5.5.5)

can have more than one solution.

To compute the residues we perform a procedure similar to the one described in section

5.4.2. First we introduce the regulator to every minor in (5.5.2) and write a system of

linear equations composed of the δ-functions and three equations setting a minor and the

two V ’s to zero. After this, all residues are free from any accidental ambiguity and out of

the 13× 4× 4 solutions, many of them sum to give the 45 possible configurations.

If the configuration is such that these two Veronese polynomials are equal to zero, but

some other Veronese polynomials which can be made of particles 1, . . . , 7 are not zero,

then this configuration does not contribute, since the corresponding residue is zero (such

configurations are called spurious solutions).

5.6 The General n NMHV Case: Power Counting

All the reasoning presented in section 5.3 relies on the assumption that the global residue

theorem is applicable and our aim now is to verify when this is the case for gravity. To do

so, we analyse how the integrand behaves for large values of the integration variables, that
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is, we look for n such that there is no pole at infinity.

In order to perform the power counting, consider formula (5.2.3) which we repeat here

for convenience:

Mn,2 =

∫ ∏
r,a

dcra
cra

n−2∏
a=4

(c3n−1c3n)n−6

(
Dn−1n

12

)n−4

(c1n−1c1nc2n−1c2n)2
φ(2)

(
〈r s〉
Hn−1n
rs

)
φ̃(n−4)

(
[a b]

Hab
12

)

×
n−2∏
a=4

1

V123
an−1n

3∏
r=1

δ2(λ̃r + craλ̃a)
n∏
a=4

δ2 (λa − λrcra) .

We know from section 2.4 of [29], that each minor is at most of degree one. We also know

that in the link representation we can write each link variable and the factors Dn−1n
12 as

minors, so they are also linear in ti, and keep in mind that each Veronese polynomial is of

degree 4 in ti.

Then, let us consider one variable t and look at how each factor in the integrand of (5.2.3)

scales with it:

∏
r,a

1

cra
∼ t9−3n,

(c3n−1c3n)n−6 ∼ t2n−12,(
Dn−1n

12

)n−4

(c1n−1c1nc2n−1c2n)2
∼ tn−4

t8
= tn−12,

φ̃(n−4)

(
[ab]

Hab
12

)
∼ t3(n−4),

φ(2)

(
〈rs〉
Hn−1n
rs

)
∼ t6,∏

a6=n,n−1

δ
(
V123
n−1na

)
∼ t−4(n−5),

Relaxed δ-function ∼ t−1.

Summing up, we get that the integrand scales as t−n−2. The condition for the global residue

theorem to apply is that the integrand should decay faster than t−(n−4) for each integration
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variable, that is −n− 2 6 −n+ 4. This condition is satisfied ∀n, so we conclude that the

CSW-like expansion will be valid for all NMHV graviton amplitudes.

5.7 Conclusion

Building up on the recent results for N = 8 supergravity amplitudes — Hodges’s MHV

formula [14], the Cachazo-Skinner formula and its link representation — we carried on

the application of the δ-function relaxation technique used in [33] for super Yang-Mills

amplitudes to explore the new gravity territory.

From the link representation, we derived a CSW-like expansion for pure 6- and 7-

graviton NMHV amplitudes. It was not obvious, however, that this expansion would

coincide with Risager’s, the known way up to now to produce an MHV-vertex expansion.

We observed a complete agreement between the two expansions in the cases we worked on.

The most exciting feature of the new expansion is that in principle it works for any n

for d = 2, while Risager’s method fails for n ≥ 12. Further studies are necessary to verify

if and when the two expansions stop agreeing. One possible reason for the disagreement

of the two expansions is CSW-like configurations which are not the product of two MHV

amplitudes but are still non-zero residues of the link formula. In other words, we may

have a pair of lines in the C-space with all negative helicity particles on one line. This is

obviously not a Risager’s term. For small n, as was said, the numerator does not allow

such configurations in the expansion; in fact, the residue will be zero. But, for higher n

one can still have a valid expansion of residues, as the power counting shows, but there

exist more terms which are not MHV×MHV. These extra terms must be the residues at

infinity of the Risager method. It would be fascinating to explore these extra terms and

find their physical meaning in momentum space.
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Appendix 5.A Numerical Values for the 6- and 7-Graviton

Residues and Risager Terms

Here we present the numerical values for different channels given by the Risager diagrams

and our CSW-like terms for a given set of external data for the 6- and 7-graviton cases.

As described in section 5.4.2, the residue computations are based on the use of a regulator

ε for the minors of the integrand. We chose ε to take the value 0.0000001. Also, note that

the amplitude is the sum of Risager terms but is minus the sum of residues as is known

from the residue theorem. So, here, signs of the values of the two columns are opposite.

The biggest errors in the 6- and 7-graviton computations are 1.6× 10−3% and 1.4× 10−2%

respectively.

Our randomly generated data for the 6-graviton computation are as follows:

λ1 =

1

0

 , λ2 =

0

1

 , λ3 =

8

5

 , λ4 =

10

7

 , λ5 =

−7

9

 , λ6 =

9

5

 ,

λ̃1 =

−50

35

 , λ̃2 =

 71

−25

 , λ̃3 =

−5

8

 , λ̃4 =

−4

−8

 , λ̃5 =

−7

4

 , λ̃6 =

9

1

 ,

and for the 7-graviton case we used:

λ1 =

1

0

 , λ2 =

0

1

 , λ3 =

−9

−5

 , λ4 =

−3

−3

 , λ5 =

 9

−6

 , λ6 =

−9

−4

 , λ7 =

−10

−8

 ,

λ̃1 =

127

67

 , λ̃2 =

56

57

 , λ̃3 =

−2

5

 , λ̃4 =

−2

−2

 , λ̃5 =

−2

−1

 , λ̃6 =

 7

−9

 , λ̃7 =

 7

10

 .
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Channel Risager’s Term Residue Error
{1,2}{3,4,5,6} −3.8035 3.8048 3.4× 10−4%
{1,3}{2,4,5,6} 0.027552142 −0.027552138 1.5× 10−7%
{1,4}{2,3,5,6} −0.00024281392 0.00024281389 1.2× 10−7%
{1,5}{2,3,4,6} −12.778 12.757 1.6× 10−3%
{1,6}{2,3,4,5} 0.0099509309 −0.0099509312 3.0× 10−8%
{2,3}{1,4,5,6} −0.0014393998 0.0014393997 6.9× 10−8%
{2,4}{1,3,5,6} 0.0001347570 −0.0001347586 1.2× 10−5%
{2,5}{1,3,4,6} 0.2376382 −0.2376353 1.2× 10−5%
{2,6}{1,3,4,5} −0.0000115706946 0.0000115706940 5.2× 10−8%
{3,4}{1,2,5,6} −0.000011926600 0.000011926618 1.5× 10−6%
{3,5}{1,2,4,6} −0.0135260863 0.0135260869 4.4× 10−8%
{3,6}{1,2,4,5} −0.0010910475 0.0010910470 4.6× 10−7%
{1,2,4}{3,5,6} −0.00160980 0.00160979 6.2× 10−6%
{1,2,5}{3,4,6} 15.50 −15.48 1.3× 10−3%
{1,2,6}{3,4,5} −0.0011519435 0.0011519433 1.7× 10−7%
{1,3,4}{2,5,6} −0.023460139 0.023460140 4.3× 10−8%
{1,3,5}{2,4,6} 8.31380501× 10−7 −8.31380545× 10−7 5.3× 10−8%
{1,3,6}{2,4,5} −0.0000245346 0.0000245368 9.0× 10−5%
{1,4,5}{2,3,6} −0.0005562082 0.0005562084 3.6× 10−7%
{1,4,6}{2,3,5} 0.0069317909 −0.0069317930 3.0× 10−7%
{1,5,6}{2,3,4} 6.4118974× 10−7 −6.4118965× 10−7 1.4× 10−7%

Table 5.1: Numerical Values for 6-Graviton Computation
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Channel Risager’s Term Residue Error
{1,2}{3,4,5,6,7} −1.4302× 10−7 1.4327× 10−7 1.7× 10−3%
{1,3}{2,4,5,6,7} −0.0012650646 0.0012650621 2.0× 10−6%
{1,4}{2,3,5,6,7} 4.075× 10−8 −4.099× 10−8 6.1× 10−3%
{1,5}{2,3,4,6,7} 0.000054264493 −0.000054264483 1.8× 10−7%
{1,6}{2,3,4,5,7} −0.0003451595 0.0003451593 5.8× 10−7%
{1,7}{2,3,4,5,6} −0.0011835542 0.0011835558 1.4× 10−6%
{2,3}{1,4,5,6,7} −0.0024191261 0.0024191232 1.2× 10−6%
{2,4}{1,3,5,6,7} 2.869570× 10−7 −2.869555× 10−7 5.2× 10−6%
{2,5}{1,3,4,6,7} 2.553× 10−7 −2.589× 10−7 1.4× 10−2%
{2,6}{1,3,4,5,7} −0.0001381087 0.0001381085 1.4× 10−6%
{2,7}{1,3,4,5,6} 0.021812 −0.021809 1.3× 10−4%
{3,4}{1,2,5,6,7} −0.0000389804 0.0000389807 7.7× 10−6%
{3,5}{1,2,4,6,7} 0.000045447 −0.000045450 6.6× 10−5%
{3,6}{1,2,4,5,7} −0.002108237 0.002108243 2.8× 10−6%
{3,7}{1,2,4,5,6} −0.00326858 0.00326854 1.2× 10−5%
{1,2,4}{3,5,6,7} −9.51196× 10−8 9.51141× 10−8 5.8× 10−5%
{1,2,5}{3,4,6,7} −3.365311× 10−8 3.365362× 10−8 1.5× 10−5%
{1,2,6}{3,4,5,7} 5.972950× 10−8 −5.972944× 10−8 1.0× 10−6%
{1,2,7}{3,4,5,6} −0.0204886 0.0204857 1.4× 10−4%
{1,3,4}{2,5,6,7} −0.00033009914133 0.00033009914132 3.0× 10−11%
{1,3,5}{2,4,6,7} −0.0010859253 0.0010859242 1.0× 10−6%
{1,3,6}{2,4,5,7} −0.0058003020 0.0058003065 7.8× 10−7%
{1,3,7}{2,4,5,6} 0.000767141 −0.000767139 2.6× 10−6%
{1,4,5}{2,3,6,7} 5.82339379× 10−6 −5.82339358× 10−6 3.6× 10−8%
{1,4,6}{2,3,5,7} −0.000048608115 0.000048608121 1.2× 10−7%
{1,4,7}{2,3,5,6} −0.0016051200 0.0016051227 1.7× 10−6%
{1,5,6}{2,3,4,7} 0.0001486804 −0.0001486801 2.0× 10−6%
{1,5,7}{2,3,4,6} 0.0023658846 −0.0023658860 5.9× 10−7%
{1,6,7}{2,3,4,5} 0.0001890601 −0.0001890600 5.3× 10−7%
{2,3,4}{1,5,6,7} 0.0045052257 −0.0045052235 4.9× 10−7%
{2,3,5}{1,4,6,7} −0.0000926669 0.0000926696 2.9× 10−5%
{2,3,6}{1,4,5,7} 0.002235755 −0.002235760 2.2× 10−6%
{2,3,7}{1,4,5,6} 4.24184246× 10−6 −4.24184210× 10−6 8.5× 10−8%
{2,4,5}{1,3,6,7} −4.0081097× 10−9 4.0081081× 10−9 4.0× 10−7%
{2,4,6}{1,3,5,7} −0.0007386578 0.0007386558 2.7× 10−6%
{2,4,7}{1,3,5,6} 0.008541409 −0.008541422 1.5× 10−6%
{2,5,6}{1,3,4,7} 0.0001888818 −0.0001888815 1.6× 10−6%
{2,5,7}{1,3,4,6} −0.0031819569 0.0031819561 2.5× 10−7%
{2,6,7}{1,3,4,5} −0.0005354038 0.0005354037 1.9× 10−7%
{3,4,5}{1,2,6,7} 0.000044443578 −0.000044443556 5.0× 10−7%
{3,4,6}{1,2,5,7} 0.002633 −0.002671 1.4× 10−2%
{3,4,7}{1,2,5,6} 0.00395962 −0.00395958 1.0× 10−5%
{3,5,6}{1,2,4,7} −0.006673719 0.00667372 1.2× 10−6%
{3,5,7}{1,2,4,6} 2.363790× 10−7 −2.363757× 10−7 1.4× 10−5%
{3,6,7}{1,2,4,6} −0.000026712880 0.000026712871 3.4× 10−7%

Table 5.2: Numerical Values for 7-Graviton Computation



Chapter 6

Concluding Remarks

It is now time to look backward and summarize this work, although more detailed con-

cluding remarks have been presented at the end of each chapter.

What have made the new developments in amplitude calculations so interesting and

noteworthy are both effectiveness in calculations and novelty in attitude. While the former

has led to producing compact algebraic expressions for amplitudes in a considerably shorter

time, the latter has deepened our understanding of quantum field theory in many different

ways.

As Risager’s method was one of our favourites throughout this thesis, we examined itself

earlier in chapter 2 by a generalization of the deformation to contain two complex variables

rather than one. Unexpectedly, we saw how new physical terms, soft terms, appeared in

the expansion for the case of Yang-Mills NMHV amplitudes. It would be very interesting

if one would take this approach and apply it to gravity to see what could happen there. It

is worth mentioning that here we are trying to better understand the analytic structure of

amplitudes rather than to only compute them for which one may use shorter prescriptions.

We saw that one of the powerful approaches to construct tree-level amplitudes is a

simple on-shell expansion which uses MHV amplitudes as input, the CSW expansion,

systematically produced by Risager’s method. When applied to gravity, Risager’s method
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needs to be modified to produce correct amplitudes with higher than eleven gravitons. For

the case of 12-graviton amplitude in the NMHV sector, chapter 3 presented the missing

piece of Risager’s method to make the physical amplitude. Our instruction can be also

applied to higher point amplitudes for a complete modification of Risager’s method which

we leave to be done by interested readers. The main problem with gravity is that no off-

shell definition of MHV amplitudes has been found which could provide a CSW expansion

for gravity, whereas in Yang-Mills the holomorphic nature of MHV amplitudes allows a

simple off-shell extension.

With a different approach, originally used for Yang-Mills amplitudes, we found an

expansion for gravity tree amplitudes whose terms are CSW-like. In chapter 5, we explicitly

showed our calculations and numerical checks for 6- and 7-graviton amplitudes and verified

the validity of our method for any number of external gravitons. Some hints for further

interesting works were also mentioned in 5.7.

As was seen, very recently, two novel formulas were proposed for tree-level amplitudes

of N = 8 supergravity in all R-charge sectors, Cachazo-Geyer and Cachazo-Skinner formu-

las. While the latter has been proved to be the correct amplitude, the former still needs a

justification, providing that the parity symmetry and soft limit behaviour were acknowl-

edged for the formula, Chapter 4. The next goal is hence obvious: to analytically prove

the Cachazo-Geyer formula.

As a final comment, we would like to mention that it would be striking to explore

loop-level gravity given the recent improvements at the tree level. Although we did not

review the loop calculation techniques, as they were irrelevant to this work, there have

been remarkable developments probing higher orders of perturbation, mainly, unitarity

cut methods and leading singularities which also benefit from information about tree level.

How new insights into tree-level amplitudes can be used for higher loops in gravity is worth

revealing.

In the end and in a broader sense, these modern methods developed for calculating am-

plitudes can potentially be utilized in other areas of physics subject to suitable extensions
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and modifications.
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