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Abstract

Understanding the performance of realistic noisy encoded circuits is an important task
for the development of large-scale practical quantum computers. Specifically, the develop-
ment of proposals for quantum computation must be well informed by both the qualities of
the low-level physical system of choice, and the properties of the high-level quantum error
correction and fault-tolerance schemes. Gaining insight into how a particular computation
will play out on a physical system is in general a difficult problem, as the classical simu-
lation of arbitrary noisy quantum circuits is inefficient. Nevertheless, important classes of
noisy circuits can be simulated efficiently. Such simulations have led to numerical estimates
of threshold errors rates and resource estimates in topological codes subject to efficiently
simulable error models.

This thesis describes and analyzes a method that my collaborators and I have intro-
duced for leveraging efficient simulation techniques to understand the performance of large
quantum processors that are subject to errors lying outside of the efficient simulation al-
gorithm’s applicability. The idea is to approximate an arbitrary gate error with an error
from the efficiently simulable set in a way that “honestly” represents the original error’s
ability to preserve or distort quantum information. After introducing and analyzing the
individual gate approximation method, its utility as a means for estimating circuit per-
formance is studied. In particular, the method is tested within the use-case for which it
was originally conceived; understanding the performance of a hypothetical physical imple-
mentation of a quantum error-correction protocol. It is found that the method performs
exactly as desired in all cases. That is, the circuits composed of the approximated error
models honestly represent the circuits composed of the errors derived from the physical
models.
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Chapter 1

Introduction

Quantum computers offer potentially exponential speed-ups over their classical counter-
parts for well known and important computational problems [2, 3, 4]. As such, one of the
biggest tasks of applied quantum information is building a functioning quantum computer.
Doing so requires input at all levels; a deep understanding of the low-level physical system,
of high-level error correction protocols, and of how to effectively connect the two.

Connecting the low and high levels necessarily requires analysis of how the physical
system and error-correction protocol will work together. With regards to circuit-model
based computations, such an analysis can be phrased as the question: how will a given
circuit perform on a given physical system? This of course, is a very hard problem to
approach, as one cannot simply simulate the dynamics of the physical system on an existing
(classical) computer efficiently.

Efforts to analytically understand the performance of noisy quantum circuits have re-
sulted in threshold theorems for fault-tolerant circuits (e.g., [5]). That is, for certain fault-
tolerant error-correction protocols, given certain assumptions on the noise model, it is
possible to analytically find a threshold “error strength” for which, if the “error strength”
is below this threshold, the fault tolerance scheme can simulate a noiseless circuit with
arbitrary precision (at the cost of additional physical resources)1.

For some error-correction schemes, no analytic theorem currently exists. Nevertheless,
one would still like to get an idea of thresholds; how small do the errors have to be for
a computation to succeed? In some cases, efficiently simulable sub-theories of quantum
mechanics have proven useful for investigating such questions. If one restricts the types of

1The “error strength” is generally some parameter or set of parameters that quantifies the error.
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operations, initial states, and error models in an intelligent way, simulating the performance
of a quantum circuit can become tractable (see Section 3.2). On first glance one might
expect that the types of circuits admitting efficient simulation will be extremely limited, but
it turns out that many important and interesting circuits can be implemented using only
efficiently simulable circuit elements. The most well-known example is stabilizer circuits,
which are efficiently simulable on stabilizer states by the Gottesman-Knill Theorem (see
Section 3.2). Stabilizer circuits include error-correction steps in stabilizer codes, and can be
promoted to universal quantum computation by allowing the preparation of particular non-
stabilizer states [6]. Thus, while stabilizer circuits (on stabilizer states) are not universal,
and therefore will not be the only operations used in a meaningful computation, it is
generally believed that the majority of operations implemented on a quantum computer will
be devoted to error-correction, and so understanding the performance of circuits containing
only these elements remains valuable.

Such efficient simulation techniques have provided numerical estimates to thresholds
for topological codes [7, 8]. Even in cases when threshold theorems are known, such as in
the surface code [9], simulation can be used to find more optimistic estimates of a threshold
value [1]. They have also been useful for understanding resource requirements in cases when
the noise strength is already well below the threshold [10]. Thus, given these applications,
it would be highly desirable to find some way of using efficient simulation techniques to
say something about the performance of circuits on particular physical machines. The
difficulty of course arrises from the fact that the errors on gates implemented on a real
system will in general not take an efficiently simulable form.

1.1 Honest Representations of Channels

The idea presented in this thesis, which was proposed in [11], is a method for applying
classical efficient simulation techniques to noise models that lie outside of the efficient
simulation formalism. Any imperfectly implemented circuit can be viewed as a series of
perfect gates intermixed with noise operations. Concretely, we can write an imperfect
implementation Λ (a completely positive and trace preserving - CPTP - map) of a unitary
U , as Λ = E ◦ U , where E is some CPTP map that represents the noise of Λ as some
operation occurring after U . If, as discussed earlier, we are interested in circuits which
are efficiently simulable according to some algorithm, U will naturally be chosen from
the efficiently simulable set. However, the error E will almost certainly not be efficiently
simulable, and thus Λ will not be.

From here, our idea is simple. Denoting the efficiently simulable set of channels as S, we
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want to find some Γ ∈ S that approximates the error E . As we’re interested in evaluating
circuit performance however, it isn’t enough that Γ is close to E according to some metric.
We also want Γ to be an honest representation of the error E , in that we never want Γ to
underestimate the strength of the error E on the state. We want this property to be global,
in the sense that we want Γ to always be somehow worse than E regardless of the state
that is sent through.

The hope then is that if we can honestly represent every error in the circuit, then the
circuit composed of the honest representations will also be an honest representation of the
original circuit. We refer to this as the problem of “error composition”2.

We quantify error using the distance induced by the Schatten p-norms ‖ · ‖p (defined
in Chapter 2) on quantum states. We are mainly interested in the case when p = 1,
as there is a strong operational interpretation of the quantity ‖ρ0 − ρ1‖1 in terms of the
distinguishability of two quantum states ρ0 and ρ1, discussed in detail in Chapter 3. Thus,
if we feed a state ρ through an error E , we quantify the error by ‖ρ − E(ρ)‖p, for some
p ≥ 1, where, again, we are most interested in the case when p = 1, which measures how
hard it is to tell whether or not the error has occurred. We say that another error Γ is an
honest representation of E if, for some p ≥ 1, ‖ρ−Γ(ρ)‖p ≥ ‖ρ−E(ρ)‖p for all pure states
ρ. That is, no matter what pure state ρ is used, Γ always moves ρ further than E . Note
that we use the term “honest” differently from [11, 12], where “honesty” is reserved solely
for the p = 1 case. We remove this restriction here for simplicity, to avoid specifying which
p is meant when it is clear from context. While the cases when p > 1 have no operational
interpretation (known to me), if this type of inequality is satisfied for all pure states ρ,
then clearly Γ is somehow globally worse than E .

1.2 Overview

This thesis is organized as follows:

• Chapter 2 - Notation and relevant facts that will be used in this thesis are established.

• Chapter 3 - The concept of distinguishability is reviewed, and efficiently simulable
sub-theories of quantum mechanics are discussed.

2Note that we use the word “composition” to refer to both direct (serial) composition of maps, as well
as tensor products (parallel composition) of maps.
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• Chapter 4 - Results that are useful for finding approximations to arbitrary CPTP
maps that are also honest are established. Specifically, the statement of honesty given
in this introduction has the “for all pure states” qualification. Sufficient conditions
on the form of the maps which are easy to compute, and can therefore be used in
optimization problems for finding honest approximations, are given. An approxima-
tion problem based on these conditions is then specified, and then applied to some
instructive qubit examples.

• Chapter 5 - The utility of honest approximations for judging circuit performance
is numerically investigated. We begin with continuous-time models of physical sys-
tems, build gates from them, and then test our method on a typical error correcting
circuit using these gates. We find somewhat remarkably that in all cases, our approx-
imations perform exactly as desired. That is, the circuits composed of the honest
approximations are themselves honest representations of the circuits composed with
the errors derived from the physical models. This evidence is a strong boon for our
method. This chapter is a reproduction of the content of [12].

• Chapter 6 - The performance of “Pauli twirling” is analyzed (see Section 2.3), which
is a method of mapping an arbitrary error to a Pauli channel (which is efficiently
simulable via the formalism we focus on in this thesis, see Chapter 3). Pauli twirling
has been investigated as another means for performing the same task that our method
is designed for, due to that fact that it has certain computational benefits. In Chapter
5 we include statistics on the performance of Pauli twirling, which are analyzed in
this chapter.

• Chapter 7 - Concluding statements are given, remaining open questions are discussed,
and possible future directions and next steps are considered.
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Chapter 2

Mathematical Background

First, we establish some basic notation and concepts to work from. This notation is
primarily borrowed from the course notes of Watrous [13].

2.1 Basic Objects and Notation

2.1.1 Complex Inner Product Space

As we are dealing with finite-dimensional quantum systems, we wish to work in complex
finite-dimensional Hilbert spaces X that are isomorphic to Cn (with n = dim(H)) with
the standard Euclidean inner product 〈·, ·〉, and as such, we will simply work in Cn. A
vector v ∈ Cn is an n-tuple of complex numbers (a column vector), with brackets and
subscripts denoting entries. (Eg. (v)i is the ith entry of v ∈ Cn. This notation is chosen
to avoid notational collisions when a collection of vectors is indexed with subscripts.) The
inner product of two elements x, y ∈ Cn is given by 〈x, y〉 =

∑d
i=1(x)∗i (y)i, where ∗ denotes

complex conjugation. Using standard definitions of matrix multiplication, transposition
(T ), and conjugate transposition (†), we can write 〈x, y〉 = x†y (if x, y ∈ Rn, then 〈x, y〉 =
xTy). For a given vector space Cn, we call the set of vectors {ei}ni=1 satisfying (ei)j = δij,
where δij is the Kronecker delta function, the standard basis for Cn.

To represent a vector x ∈ Cn, we will sometimes use Dirac notation, |x〉. In Dirac
notation, we use the conventions |x〉† ≡ 〈x|, |x〉T ≡ 〈x∗|, and 〈x|y〉 ≡ 〈x, y〉. When there is
no need to make the dimension of the space explicit, we will just use symbols like X ,Y ,Z
to refer to finite-dimensional Hilbert spaces.
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2.1.2 Linear Operators and Hilbert-Schmidt Inner Product

The set of linear operators mapping Cn to Cm is denoted L(Cn,Cm). We use the simplifying
notation L(Cn) = L(Cn,Cn). These operators can be represented by matrices, where we
denote the i, jth entry of a matrix A as (A)ij = 〈fi, Aej〉, where fi ∈ Cm and ej ∈ Cn are
elements of the standard bases. The Hilbert-Schmidt inner product on operators A,B ∈
L(Cn,Cm) is defined as 〈A,B〉 = Tr(A†B), where Tr is the standard trace operation. We
will use the symbol 1 to refer to the identity element in L(Cn). If there is any chance of
confusion, it will be labelled as 1n, or if the dimension of the space is not specified (ie. we
are using a symbol like X to refer to the space), we will label it as 1X .

Of primary importance for us are Hermitian operators, which satisfy A = A†, or in index
notation, (A)ij = (A)∗ji. We denote the set of Hermitian operators in L(Cn) as Herm(Cn).
A nice property for A,B ∈ Herm(Cn) which can be easily verified is 〈A,B〉 ∈ R. Another
easy to verify property is that Herm(Cn) is closed under addition and multiplication by
real scalars. Thus, when Herm(Cn) is thought of as a vector space over R, it is a real inner
product space when coupled with the Hilbert-Schmidt inner product. As it takes n2 real
numbers to specify an element in Herm(Cn), it is an n2 dimensional real inner product
space. It can be shown that A ∈ Herm(Cn) if and only if 〈x,Ax〉 ∈ R for all x ∈ Cn.

Also of importance is the set of positive semi-definite operators. An operator P ∈
L(Cn) is called positive semi-definite if 〈x, Px〉 ≥ 0 for all x ∈ Cn. We denote the set of
such operators as Pos(Cn), and use the notation P ≥ 0 as equivalent to specifying that
P ∈ Pos(Cn). It follows from 〈x, Px〉 ∈ R that Pos(X ) ⊂ Herm(X ). For two operators
P,Q ∈ Herm(Cn), we write P ≥ Q if P − Q ≥ 0. A nice property for P,Q ∈ Pos(Cn), is
that 〈P,Q〉 ≥ 0. An important subset of Pos(Cn) is the set of density operators, which
represent quantum states. We denote the set of density operators as

D(Cn) ≡ {ρ ∈ Pos(Cn) : Tr(ρ) = 1}.

A final subset of Herm(Cn) that we give a special symbol to is

Herm1(Cn) = {A ∈ Herm(Cn) : Tr(A) = 1}.

2.1.3 Super Operators and Quantum Channels

A “super operator” is a linear operator that maps L(Cn) to L(Cm). We denote the set of
such operators as T(Cn,Cm), and as before we write T(Cn) = T(Cn,Cn). Similarly to how
we use 1 to refer to the identity linear operator, with subscripts denoting which space it
acts on, we will use 1L(Cn) to refer to the identity super operator in T(Cn).
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For a map Λ ∈ T(Cn,Cm), we have the following classifications:

• Λ is trace preserving (TP) if for all A ∈ L(Cn), Tr(Λ(A)) = Tr(A).

• Λ is Hermiticity preserving if for A ∈ Herm(Cn), Λ(A) ∈ Herm(Cm).

• Λ is positive if for A ∈ Pos(Cn), Λ(A) ∈ Pos(Cm). Note that positive maps are
necessarily also Hermiticity preserving by linearity and the fact that any Hermitian
matrix can be written as the difference of two positive matrices.

• Λ is completely positive (CP) if, for any k ∈ N, Λ⊗ 1L(Ck) ∈ T(Cn ⊗Ck,Cm ⊗Ck) is
positive, where 1L(Ck) ∈ T(Ck) is the identity super operator.

• Λ is called a quantum channel if it is both CP and TP (CPTP). We denote the set
of CPTP maps from L(Cn) to L(Cm) as C(Cn,Cm) and denote C(Cn) = C(Cn,Cn).

A quantum channel that we use often is the partial trace, TrY ∈ C(X ⊗ Y ,X ), defined
as TrY(A ⊗ B) = Tr(B)A, for all A ∈ L(X ), B ∈ L(Y), and extended to all operators in
L(X ⊗ Y) by linearity. The subscript denotes which subsystem the trace is being applied
to.

2.1.4 Characterizations of CPTP maps

In this document we make use of two characterizations of CPTP maps, the Kraus (or
operator-sum) and Stinespring representations. Let X and Y be finite dimensional complex
inner product spaces. For Λ ∈ T(X ,Y), the following statements are equivalent:

1. Λ ∈ C(X ,Y), ie. Λ is a CPTP map.

2. There exists operators {Ai}ki=1 ⊂ L(X ,Y), satisfying
∑k

i=1A
†
iAi = 1X for which

Λ(X) =
∑k

i=1AiXA
†
i for all X ∈ L(X ). The set {Ai}ki=1 is called a Kraus represen-

tation for Λ.

3. There exists another finite dimensional complex inner product space Z, and operator
B ∈ L(X ,Y ⊗ Z) for which Λ(X) = TrZ(BXB†) for all X ∈ L(X ), and B†B = 1X .
We call the tuple (Z, B) a Stinespring representation for Λ.
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2.1.5 Schatten p-norms

In this document we will make use of Schatten p-norms on elements of L(X ,Y). For an
element A ∈ L(X ,Y) and 1 ≤ p <∞, ‖ · ‖p is defined as

‖A‖p = (
∑
i

σpi )
1
p , (2.1)

where {σi} are the singular values of A (see Appendix A). As we will use these norms
exclusively on Hermitian operators, we will simply write, for A ∈ Herm(X ),

‖A‖p = (
∑
i

|λi|p)
1
p , (2.2)

where {λi} are the eigenvalues of A. Of primary importance for us are the special cases
p = 1 and p = 2, which, for A ∈ L(X ,Y), take the form

‖A‖1 = Tr(
√
A†A) (2.3)

‖A‖2 =
√

Tr(A†A). (2.4)

An important property of ‖ · ‖1 that we make use of is the monotonicity of ‖ · ‖1 under
the partial trace. That is, for X ∈ L(X ⊗ Y), it holds that

‖X‖1 ≥ ‖TrY(X)‖1 . (2.5)

Another useful relation is that the one-norm distance between unit vectors u, v ∈ X is
given simply as ‖uu† − vv†‖1 = 2

√
1− |〈u, v〉|2.

2.1.6 The Fidelity Function and Purification

We make use of the two related notions of fidelity and purification. For two positive
operators A,B ∈ Pos(X ), the fidelity is defined as the function F(A,B) = ‖

√
A
√
B‖1. If

one of the operators is a rank 1 projector, ie. A = uu† for some unit vector u ∈ X , then this
definition reduces to F(uu†, B) =

√
|〈u,Bu〉|, and similarly, for B = vv†, F(uu†, vv†) =

|〈u, v〉|. Given the simple forms of both the one-norm distance and the fidelity for pairs of
pure states, one can see that for unit vectors u, v ∈ X ,

‖uu† − vv†‖1 = 2
√

1− F (uu†, vv†)2. (2.6)
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For a state ρ ∈ D(X ), a purification is any pure state in some composite system
u ∈ X ⊗ Y for which ρ = TrY(uu†). A state ρ ∈ D(X ) can be purified to a vector in
X ⊗ Y if and only if dim(Y) ≥ rank(ρ). A useful theorem called Uhlmann’s Theorem [14]
connects the concepts of fidelity and purification.

Theorem 2.1.1. Given two states ρ1, ρ2 ∈ L(X ), it holds that for dim(Y) = max{rank(ρ1), rank(ρ2)},
and any purification u ∈ X ⊗ Y of ρ1

F(ρ1, ρ2) = max{|〈u, v〉| : v ∈ X ⊗ Y is a purification of ρ2} (2.7)

A clear consequence of this theorem is that for ρ1, ρ2 ∈ D(X ) with purifications u, v ∈
X ⊗ Y , F(ρ1, ρ2) ≥ F(uu†, vv†). Combining Uhlmann’s theorem with the monotonicity of
the 1-norm under partial trace, ‖ρ1 − ρ2‖1 ≤ ‖uu† − vv†‖1, one is able to arrive at one of
the Fuchs-van de Graaf inequalities [15]:

‖ρ1 − ρ2‖1 ≤ 2
√

1− F(ρ1, ρ2)2. (2.8)

2.2 Vectorization and the Generalized Bloch Repre-

sentation

For any finite dimensional complex vector space X = Cn, operators in L(X ) also form
a complex finite dimensional vector space (with dim(L(X )) = dim(X )2). Thus, we can
represent operators in L(X ) themselves as column vectors, and linear maps in T(X ,Y), for
some complex vector space Y = Cm, as matrices. Explicitly, this can be done by choosing
orthonormal bases BX = {λi}n

2

i=1 and BY = {σi}m
2

i=1 for L(X ) and L(Y) respectively, and
defining vec : L(X )→ Cn2

entry wise as

(vec(A))i = 〈λi, A〉,

and similarly for vec : L(Y) → Cm2
. (We use “vec” to refer to all such vectorization

functions. Context and what operators it is being applied to provide enough information
on which particular “vec” function is meant.) By straightforward computation, it can be
seen that vec is an isometry. That is, for A,B ∈ L(X ), 〈vec(A), vec(B)〉 = 〈A,B〉.

In this way, the vectorized, or matrix, representation of a map Λ ∈ T(X ,Y), which we
denote SΛ ∈ L(X ⊗ X ,Y ⊗ Y), can be defined as the operator for which

SΛvec(X) = vec(Λ(X)),

for all X ∈ L(X ). Entry wise, it is defined as

(SΛ)ij = 〈vec(σi), SΛvec(λj)〉 = 〈vec(σi), vec(Λ(λj))〉 = 〈σi,Λ(λj)〉.
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2.2.1 Bloch Bases

We define a Bloch Basis for L(X = Cn), {λi}n
2−1
i=0 , as an orthonormal basis for L(X ) (with

the Hilbert-Schmidt inner product) that satisfies the following additional properties.

• λ0 = 1√
n
1X .

• {λi}n
2−1
i=0 ⊂ Herm(X ).

In other words, a Bloch basis for L(X ) is an orthonormal basis consisting of Hermitian
operators that are all traceless except for the element labeled with 0, which is a normalized
identity operator.

For X = C2, an example of such a basis is the normalized Pauli operators, given by:

λ0 =
1√
2

(
1 0
0 1

)
, λ1 =

1√
2

(
0 1
1 0

)
, λ2 =

1√
2

(
0 −i
i 0

)
, λ3 =

1√
2

(
1 0
0 −1

)
.

Similarly, for X = C2n , one can take the basis consisting of all normalized n-fold tensor
products of Pauli operators. For arbitrary dimension, an explicit construction of a Bloch
basis is given in Appendix A.2.

2.2.2 Properties of Matrix Representations of Channels in Bloch
Bases

As noted earlier, for X = Cn and Y = Cm, and respective Bloch bases {λi}n
2−1
i=0 and

{σi}m
2−1

i=0 , the matrix representation of a map Λ ∈ T(X ,Y), SΛ is defined entry wise as
(SΛ)ij = 〈σi,Λ(λi)〉.

Now, if we assume that Λ ∈ C(X ,Y), then it is Hermiticity preserving, and it follows
that (SΛ)ij ∈ R for all i, j, and so SΛ ∈ Rm2×n2

(a real matrix with m2 rows and n2

columns). Λ will also be trace preserving, and as such

(S)0j = 〈σ0,Λ(λj)〉 =
1√
m

Tr(Λ(λj)) =
1√
m

Tr(λj) =

√
n

m
δ0j.

Thus, we can write the matrix representation SΛ of any Λ ∈ C(X ,Y) as

SΛ =

 √
n/m 0T

v R

 ,
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where 0 is the zero vector in Rn2−1, v ∈ Rm2−1 and R ∈ Rm2−1×n2−1. (Here we use a block
matrix notation, where to the left of the vertical line is a single column and to the right is
n2 − 1 columns, and above the horizontal line is one row and below is m2 − 1 rows.)

2.2.3 The Generalized Bloch Representation of Quantum States
and Quantum Channels

Using the details of the previous sections, we now define the generalized Bloch representa-
tion of quantum states and channels. The aim of this representation is to represent states
ρ ∈ D(X = Cn) as vectors in S(Rn2−1) = {r ∈ Rn2−1|‖r‖2 ≤ 1}, and channels Λ ∈ C(X ,Y)
as linear transformations from Rn2−1 to Rm2−1 that take S(Rn2−1) into S(Rm2−1).

Let BX = {λi}n
2−1
i=0 be a Bloch basis for L(X ). Define the function bvec : Herm1(X )→

Rn2−1 as

bvec(X) =
1

α(n)
(〈λ1, X〉, ..., 〈λn2−1, X〉)T

for all X ∈ Herm1(X ), where α(n) is a to-be-determined positive function of the di-
mension n. For X ∈ Herm1(Cn), we call bvec(X) the (generalized) Bloch vector of
X. Note that for X ∈ Herm1(X ), the bvec and vec functions are related as vec(X) =( √

1/n α(n)bvec(X)T
)T

.

We now determine a form for α(n) that will fulfill the desire that for ρ ∈ D(X ),
r = bvec(ρ) ∈ S(Rn2−1). We do this by choosing α(n) so that ‖r‖2 = 1 if ρ is pure. If ρ is
pure, then Tr(ρ2) = Tr(ρ) = 1. Thus

1 = Tr(ρ2) = 〈ρ, ρ〉 = 〈vec(ρ), vec(ρ)〉 =
1

n
+ α(n)2‖r‖2

2. (2.9)

Setting ‖r‖2 = 1 and solving for α(n), we find that α(n) =
√

n−1
n

. Thus, for pure states,

‖bvec(ρ)‖ = 1, and it follows by linearity of vec and bvec, the triangle inequality, and
that all density operators are convex combinations of pure states, that ‖bvec(ρ)‖2 ≤ 1 in
general. Thus, for X ∈ Herm1(X ), and r = bvec(X), we have that

X =
1X +

√
n(n− 1)r · λ
n

(2.10)
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and

vec(X) =

 √
1/n√

(n−1)
n
r

 , (2.11)

where r · λ =
∑n2−1

i=1 (r)iλi.

The (generalized) Bloch representation of a channel Λ ∈ C(X ,Y) is a tuple (M, t), where
M ∈ R(m2−1)×(n2−1) and t ∈ Rm2−1, defined in the following way. For all X ∈ Herm1(X ),

bvec(Λ(X)) = Mbvec(X) + t. (2.12)

Recall that the matrix representation of a channel Λ, denoted SΛ, is given by

S =

 √
n/m 0T

v R

 , (2.13)

for some v ∈ Rm2−1 and R ∈ R(m2−1)×(n2−1). We claim and then verify that the following
definitions of M and t satisfy Equation (2.12):

M = (

√
m− 1

m
/

√
n− 1

n
)−1R (2.14)

~t = (
√
n

√
m− 1

m
)−1~v. (2.15)

Writing R in terms of M and v in terms of t, and recalling the relation between the
vectorization of an operator and its Bloch vector in Equation (2.11), we have that (denoting
s = bvec(Λ(X)) and r = bvec(X))

vec(Λ(X)) = SΛvec(X) (2.16) √
1/m√

(m−1)
m

s

 =

 √
n/m 0T

√
n
√

m−1
m
t (
√

m−1
m
/
√

n−1
n

)M

 √
1/n√

(n−1)
n
r

 (2.17)

=

 √
1/m√

(m−1)
m

(Mr + t)

 , (2.18)

verifying our expressions for M and t.

12



Note that the Bloch representation of a linear combination of channels is equal to the
linear combination of the Bloch representations of the originals. That is, for Λ1,Λ2 ∈
C(X ,Y), with Bloch representations (M1, t1) and (M2, t2), the Block representation of
αΛ1 +βΛ2 is (αM1 +βM2, αt1 +βt2). This follows from the linearity of the bvec operation.

2.3 The Process χ-Matrix, Average Gate Fidelity, and

Pauli twirling

Any arbitrary map Λ ∈ C(X ,Y) can be written as Λ(X) =
∑k

j=1 AjXA
†
j, for some op-

erators {Aj : j = 1, ..., n} ⊂ L(X ,Y). Given a basis {Pj}dim(X )dim(Y)
j=1 for L(X ,Y), one

can expand Ai =
∑

j αijPj for some complex numbers αij. In this way one can write

Λ(X) =
∑

ijk αijα
∗
ikPjXP

†
k =

∑
jk χjkPjXP

†
k , where χjk =

∑
i αijα

∗
ik is called the process

matrix [16].

The average gate fidelity of a quantum process Λ ∈ C(X ), which is the imperfect
implementation of some unitary U , is defined as

F (Λ, U) =

∫
dψ 〈ψ|U †Λ(|ψ〉 〈ψ|)U |ψ〉 .

In [17], it was shown that

F (Λ, U) =

∑
k |Tr(Ak)|2 + d

d2 + d
,

where d = dim(X ), and {Ak}k ⊂ L(X ) is a Kraus representation for U † ◦ Λ or Λ ◦ U †.
Now, as Λ is an erroneous implementation of U , E = Λ ◦ U † is the error on the gate U for
the implementation Λ. If one uses a Bloch basis to expand the error E , then |Tr(Ak)|2 =
|
∑

j αkjTr(Pj)|2 = |αk0

√
d|2, and thus

∑
k |Tr(Ak)|2 =

∑
k d|αk0|2 = χ00. Thus, it follows

that

F (Λ, U) =
χ00 + 1

d+ 1
,

where χ is the the process matrix for Λ ◦ U † in any Bloch basis.

For a Pauli channel E ∈ C(X = C2n), we can write its χ-matrix in terms of the
normalized basis of tensor product Pauli operators for L(X ). In this case, χ is diagonal,
with χjj = dpj, where d = 2n and pj is the probability that the jth Pauli operator (according
to whatever ordering is chosen) is applied. For an arbitrary map Λ, the effect of Pauli
twirling can be computed easily by simply removing the off-diagonal elements of the χ-
matrix for Λ in the Pauli basis [18].
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Chapter 3

Quantum Information Background

3.1 Error and Distinguishability

When one wishes to quantify how bad an error messes up a quantum state, it is necessary
to quantify how different (or similar) two quantum states are. Of course, quantum states
are represented as density operators, and there is no shortage of norms on the space of
operators from which distance measures between states can be induced. In particular, we
choose to use the Schatten p-norms (see Section 2.1.5) to quantify the difference between
states. For any p ≥ 1 and ρ ∈ D(X ), the amount that an “error” Λ ∈ C(X ) “messes up” ρ
can be defined as ‖ρ− Λ(ρ)‖p; that is, how far does Λ move the state according to ‖ · ‖p?

While any choice of p ≥ 1 is fine in principle, it is highly desirable to have an opera-
tionally motivated way of quantifying how different two quantum states are. A strong way
of defining how operationally different two states are, is by trying to quantify how hard it
would be tell them apart. That is, if you are given one of two states ρ0, ρ1 ∈ D(X ) (but
you don’t know which one), and you can do whatever you want with it, how likely are you
to be able to determine which state you were given?

The above scenario can be formalized in the following game. Let p : {0, 1} → [0, 1] be
a probability distribution (that is, p(0) = λ and p(1) = 1 − λ for some λ ∈ [0, 1]), and
let ρ0, ρ1 ∈ D(X ) be two states. The parameter λ and states ρ0 and ρ1 are known to the
player. A bit α ∈ {0, 1} is sampled according to p, and a single copy of ρα is given to the
player. The player is allowed to do anything with ρα, and they win if they can successfully
guess α.

In this scenario, effectively all the player can do is measure the state, as preceding a
measurement by some CPTP map is equivalent to making a different measurement. Also,
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the player might as well make only a two outcome measurement, where each outcome is
labelled by whether or not the player guesses 0 or 1. Thus, given a particular measurement
µ : {0, 1} → Pos(X ) (µ(0) + µ(1) = 1X ), the probability that the player correctly guess
the sampled bit is given by λ〈µ(0), ρ0〉+(1−λ)〈µ(1), ρ1〉. We’re of course interested in the
optimal success probability of this game, which is the maximization of this quantity over
all possible measurements. This brings us to what is referred to as the Holevo-Helstrom
Theorem [19].

Theorem 3.1.1. For ρ0, ρ1 ∈ D(X ), and λ ∈ [0, 1], and µ : {0, 1} → Pos(X ) a measure-
ment,

λ〈µ(0), ρ0〉+ (1− λ)〈µ(1), ρ1〉 ≤
1

2
+

1

2
‖λρ0 − (1− λ)ρ1‖1. (3.1)

There exists a projective measurement that achieves equality.1

This theorem tells us that the optimal success probability of the above game is given
by 1

2
+ 1

2
‖λρ0 − (1 − λ)ρ1‖1. Using this, the distinguishability of two quantum states ρ0

and ρ1 is defined as 1
2

+ 1
4
‖ρ0 − ρ1‖1, or equivalently, as the optimal success probability of

winning the above game when λ = 1
2
. Thus, discarding the pre-factors, ‖ρ0 − ρ1‖1 is an

excellent distance measure for quantifying how different two quantum states are.

One can further extend the above game to ask about the distinguishability between
two channels Λ0,Λ1 ∈ C(X ). Again, let p : {0, 1} → [0, 1] be a probability distribution
(where p(0) = λ, and p(1) = 1 − λ for some λ ∈ [0, 1]). We can ask what is the optimal
success probability of winning the following game. Let α ∈ {0, 1} be sampled according to
p. Given a single use of Λα, the player must guess what α is. This game can be essentially
reduced to the same game as before, by noting that once one uses Λα once (by passing
a state through it), the problem reduces to trying to distinguish the outputs of Λ0 and
Λ1. One subtlety however arises in that, for some complex Euclidean space Z, one could
choose to pass a state ρ ∈ D(X ⊗ Z) through Λα ⊗ 1L(Z), possibly utilizing entanglement
to get an advantage. It turns out that, in general, there is an optimal ρ ∈ D(X ⊗ Z)
when dim(Z) = dim(X ) (for some cases, it isn’t necessary for Z to be as large as X ). For
a given choice of ρ ∈ D(X ⊗ Z) and measurement µ : {0, 1} → Pos(X ⊗ Z) (where α
is guessed if µ(α) is observed), the probability that the player wins the game is given as
λ〈µ(0), (Λ0⊗1L(Z))(ρ)〉+(1−λ)〈µ(1), (Λ1⊗1L(Z))(ρ)〉. The optimal success probability of
this game is provided by the following theorem, in analogy to the state distinguishability
game [13].

1An example of an optimal projective measurement is given by µ : {0, 1} → Pos(X ), where µ(0) is the
orthogonal projector onto the span of eigenvectors with positive eigenvalues of the operator λρ0−(1−λ)ρ1,
and µ(1) = 1X − µ(0) [13].
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Theorem 3.1.2. Let X and Z be complex Euclidean spaces, Λ0,Λ1 ∈ C(X ), ρ ∈ D(X⊗Z),
µ : {0, 1} → Pos(X ⊗ Z) a measurement, and let λ ∈ [0, 1]. It follows that

λ〈µ(0), (Λ0 ⊗ 1L(Z))(ρ)〉+ (1− λ)〈µ(1), (Λ1 ⊗ 1L(Z))(ρ)〉 ≤ 1

2
+

1

2
‖λΛ0 − (1− λ)Λ1‖�,

(3.2)

with equality achieved for some choice of ρ and µ when dim(Z) = dim(X ).

In the above theorem, the function ‖ · ‖� is used. This function, commonly referred to
as the “diamond norm” (it is in fact a norm) is defined in the following way [20] (note that
this is just one of several equivalent definitions). For Λ ∈ T(X ,Y),

‖Λ‖� = sup{‖(Λ⊗ 1L(X ))(X)‖1 : X ∈ L(X ⊗ Y), ‖X‖1 ≤ 1}. (3.3)

When λ = 1/2, the optimal success probability of distinguishing Λ0,Λ1 ∈ C(X ) is given as
1
2

+ 1
4
‖Λ0−Λ1‖�. Thus, discarding the pre-factors, ‖Λ0−Λ1‖� is a well motived quantity for

measuring how different the two channels are. This will be useful when we are interested
in finding approximations to channels.

3.2 Efficiently Simulable Sub-theories

Quantum mechanics is not efficiently simulable on a classical computer in general, as the
number of parameters required to describe a system grows exponentially as the number of
parts of the system grows. Nevertheless, if one restricts the initial states and operations
allowable by quantum theory, in some cases, this can lead to an efficiently simulable sub-
theory of quantum theory. This can be understood intuitively by simply noting that if one
limits the number of degrees of freedom accessible to a system (by wisely choosing the types
of states and operations you wish to investigate), then the number of parameters required
to describe the system can be reduced from exponential to polynomial in the number of
subsystems, thereby admitting a compact description of the state of the system.

The most well known and commonly used efficiently simulable sub-theory is provided
by the Gottesman-Knill (GK) theorem [21]. The theorem, by means of an explicit sim-
ulation algorithm, gives that perfect “Clifford” operations and Pauli-basis measurements
(“stabilizer circuit elements”) are efficiently simulable on “stabilizer states”. We omit a
detailed description of this sub-theory, as the details of it are not important for this thesis,
but the basic idea is as follows. A “stabilizer” state on n-qubits is defined as the unique
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+1 eigenvector (of unit length, ignoring global phase) of n, mutually commuting Pauli
operators (called the stabilizer). Within this context, the Clifford operators are defined
as unitaries which, under the action of conjugation, permute the Pauli group. Thus, the
action of a Clifford on a stabilizer state can be tracked by acting the Clifford on the sta-
bilizer to get a new one, which stabilizes the output of the Clifford on the original state
(and therefore uniquely specifies it). The action of Pauli measurements is similar, though
indeterminacy must be handled.

The GK algorithm can be extended to simulate the action of certain types of noisy
circuits on stabilizer states. Specifically, if errors are modelled as probabilistic application
of stabilizer circuit elements (Clifford gates and Pauli measurements), then one can sim-
ulate the action of a noisy stabilizer circuit on a stabilizer state via Monte Carlo (MC).
The combination of these techniques (GK-MC) has been used to study performance of
error correcting circuits subject to limited error models. Examples include the numerical
estimation of threshold error rates in topological codes [1, 7, 8], and, in conjunction with
Sequential Monte-Carlo techniques, has enabled reasoning about overhead required even
when well below threshold [10].

While GK-MC is currently the most prominent method for efficiently simulating noisy
circuits (not least of all because of its applicability to one of the most important classes
of QEC protocols), and is therefore the example of choice within this thesis, we note that
the work in this thesis is not tied to GK-MC, and is applicable within the context of
other efficiently simulable sub-theories. These include Wigner function simulation [22],
matchcircuit simulation [23], quantum normalizer circuit simulation [24, 25], or the non-
adaptive strong-simulation algorithm for Clifford circuits [26].
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Chapter 4

Partial Order on Quantum Channels
and Honest Approximations

We now formally define the notion of one map being an honest representation of another.
We start by defining a family of partial orders on C(X ) which encapsulate possible defi-
nitions for a channel Λ ∈ C(X = Cn) to be somehow globally worse than another channel
E ∈ C(X ), and describe results that give sufficient conditions for when some of the partial
ordering relations hold for two maps. We leave the proofs of these results to Appendix B,
as they are technical and straightforward.

Using these partial order results, we define an optimization problem for finding honest
approximations to arbitrary error maps, and apply them to some simple examples for
intuition.

4.1 Partial Ordering Results

Definition 4.1.1. For channels Λ,Γ ∈ C(X ), and 1 ≤ p ≤ ∞, we write Λ ≥p Γ if

‖ρ− Λ(ρ)‖p ≥ ‖ρ− Γ(ρ)‖p (4.1)

for all ρ ∈ D(X ). We write Λ ≥∗p Γ to denote the restriction of this statement to pure
states. If Λ ≥p Γ (Λ ≥∗p Γ) and Γ ≥p Λ (Γ ≥∗p Λ), then we write Λ ∼p Γ (Λ ∼∗p Γ).

The relation ≥p (≥∗p) is a partial order on C(X ).
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The case we are most interested in is when p = 1, due to the relationship between ‖ · ‖1

and distinguishability. Nevertheless, we will say that Λ is an honest approximation of E if
Λ ≥p E (or Λ ≥∗p E) for some 1 ≤ p ≤ ∞. Note that this definition differs from [11, 12],
where we explicitly reserve the designation “honest” for the case when p = 1. We redefine
it here to avoid having to constantly qualify statements about honest approximations, as
what p is meant is always clear within context. Below we add one more partial order to
the mix, involving the Fidelity function (see Section 2.1.6).

Definition 4.1.2. For channels Λ,Γ ∈ C(X ), we write Λ ≥F Γ if

F (Λ(ρ), ρ) ≤ F (Γ(ρ), ρ)

for all ρ ∈ D(X ). We write Λ ≥∗F Γ to denote the restriction of the above statement to
pure states.

The following results provide sufficient conditions for a channel to be an honest repre-
sentation of another. They are corollaries to statements proven in Appendix B.

Corollary 4.1.1. Let Λ,Γ ∈ C(X = Cn) and let their Bloch representations be denoted
(MΛ, tΛ) and (MΓ, tΓ) respectively. Define

A = (1n2−1 −MΛ)T (1n2−1 −MΛ)− (1n2−1 −MΓ)T (1n2−1 −MΓ) (4.2)

+ (‖tΛ‖2
2 − ‖tΓ‖2

2 − 2‖(1n2−1 −MΛ)T tΛ − (1n2−1 −MΓ)T tΓ‖2)1n2−1, (4.3)

Where 1n2−1 ∈ R(n2−1)×(n2−1) is the identity matrix. It holds that if A ≥ 0, then Λ ≥∗2 Γ.

If, in addition,

‖tΛ‖2
2 − ‖tΓ‖2

2 = 0 (4.4)

‖(1n2−1 −MΛ)T tΛ − (1n2−1 −MΓ)T tΓ‖2 = 0, (4.5)

then Λ ≥2 Γ.

Corollary 4.1.2. For Λ,Γ ∈ C(X = Cn) and p ≥ 1, if rank(ρ − Γ(ρ)) ≤ 2 for all pure
states ρ ∈ D(X ) and Λ ≥∗p Γ, then Λ ≥∗1 Γ.

Corollary 4.1.3. Let Λ,Γ ∈ C(X = C2). For any q, p ≥ 1, Λ ≥q Γ⇔ Λ ≥p Γ (Λ ≥∗q Γ⇔
Λ ≥∗p Γ).

19



Corollary 4.1.4. Let Λ,Γ ∈ C(X = Cn), A ∈ L(X ,X⊗Z) be a Stinespring representation
of Γ for some space Z, u ∈ Z an arbitrary unit vector, and (MΛ, tΛ) the Bloch representa-
tion of Λ. Define the maps Γ1,Γ2 ∈ C(X ,X ⊗Z) as Γ1(X) = X⊗uu† and Γ2(X) = AXA†

for X ∈ L(X ), and let (MΓ1 , tΓ1) and (MΓ2 , tΓ2) be their respective Bloch representations.
Define

B = (1n2−1 −MΛ)T (1n2−1 −MΛ)− (MΓ1 −MΓ2)
T (MΓ1 −MΓ2)

+ (‖tΛ‖2
2 − ‖tΓ1 − tΓ2‖2

2

− 2‖(1n2−1 −MΛ)T (−tΛ)− (MΓ1 −MΓ2)
T (tΓ1 − tΓ2)‖2)1n2−1.

It holds that if B ≥ 0, then Λ ≥∗1 Γ and Γ ≥∗F Λ.

Corollary 4.1.1 is a slightly generalized version of the result in [11], which takes into
account the possible non-unitality of the map Λ. This condition is used throughout the rest
of this thesis as the condition in an optimization problem for finding honest approximations
in the p = 2 sense. As already noted, the case we’re most interested in is honesty in the
p = 1 sense. Corollary 4.1.2, gives that honesty in the p = 2 sense is sufficient for the p = 1
sense if rank(ρ − E(ρ)) ≤ 2 for all pure states ρ (and, in particular, for all qubit maps).
As an example, if E is a unitary map, this condition is satisfied. Finally, Corollary 4.1.4
provides a condition that is sufficient to ensure honesty in the p = 1 sense for arbitrary
maps in arbitrary dimensions, and with an added bonus is also sufficient for the Fidelity
partial order to hold.

4.2 Approximation Algorithm

We now use Corollary 4.1.1 to generate honest approximations to a given channel E ∈
C(X ). As we’re interested in classically simulable approximations, we consider optimization
problems over convex combinations of some specified set of channels. Eg. for GK-MC
simulable channels, this would be some subset of channels achievable using only Clifford
operations and Pauli measurements. Thus, we have the following optimization problem
(as given in [12]):
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input: Finite set of channels {Λi}ni=1and channel E

minimize: f(p1, ..., pn) =

∥∥∥∥∥
n∑
i=1

piΛi − E

∥∥∥∥∥
�

s.t.
n∑
i=1

pi = 1, pi ≥ 0, and A ≥ 0, where

A = (1−MΛ)T (1−MΛ)− (1−ME)T (1−ME)+
(‖~tΛ‖2

2 − ‖~tE‖2
2 − 2‖(1−MΛ)T~tΛ − (1−ME)T~tE‖2)1,

(4.6)

where MΛ =
∑n

i=1 piMi, ~tΛ =
∑n

i=1 pi~ti, (Mi,~ti) is the Bloch representation of channel Λi,
(ME ,~tE) is the Bloch representation of E , and 1 is the identity matrix of appropriate size.1

We implement the approximation optimization problem in MATLAB using the built
in fmincon function. The diamond norm is computed using a semi-definite program given
by Watrous [27] and implemented using the CVX package [28]. Linear constraints ensure
that the vector (p1, ..., pn) is a probability vector and non-linear constraints check that
the eigenvalues of the matrix A are non-negative with a tolerance of 10−15. The SQP
algorithm is used for the optimization. Due to the non-convexity of this problem it is
necessary to run many local solvers and then choose the best result. This is done using the
MultiStart function which instantiates the local solver many times over randomly chosen
starting points that satisfy the constraints. For every approximation in this thesis we used
72 starting points (a common, high-ish multiple of the number of cores available on the
computers used for this work).

4.3 Metrics for Judging Approximations

Given a set of approximations for some error E , we need some metrics for checking how
honest they are, and comparing how they perform next to each other. The metrics given
here are taken from [12] with minimal modification.

1The complexity of this optimization problem has not been analyzed, but it certainly doesn’t scale well
with the dimension or with the number of input channels used to find an approximation. For example,
when the system is a qubit and the input set is the set of Pauli operators, one run of our implementation
takes less than a minute. When the system is two qubits (with the input set being two qubit Pauli
operators), it takes on the order of an hour. Finding a better algorithm has, however, not been a priority.
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As, in the end, we’re interested in talking about errors on gates, we set some notation
consistent with that. Suppose ΛOriginal is a map representing an imperfect implementation
of some ideal operation UIdeal. Then, we can write ΛOriginal = E ◦UIdeal, where E represents
the error. Given an approximation ΛE to the error E , we let the operation Λ = ΛE ◦ UIdeal

denote the approximation to the gate ΛOriginal.

Several metrics are used to compare how each approximation performs on individual
gates. In what follows we denote the noisy implementation of some ideal operation Uideal

by ΛOriginal, and use Λ as a place holder for the various approximations. The first few
metrics are well known quantities.

• χ00 — The first entry of the χ-process matrix of the error in the Pauli basis [16].
This quantity is reported due to its relation to the average gate fidelity (see [17] and
Section 2.3), and, for Pauli channels, is the probability that the identity operation
occurs.

• ‖Λ−UIdeal‖� and ‖Λ−ΛOriginal‖� — The distance of the approximation Λ to the ideal
gate and original error, respectively.

The rest stem from our definition of honesty. Using the function

h(Γ, E , ρ) ≡ ‖ρ− Γ(ρ)‖1 − ‖ρ− E(ρ)‖1, (4.7)

which we call the hedging of the channel Γ relative to E for the state ρ, the statement that
Λ honestly represents the error of ΛOriginal can be restated as h(Λ,ΛOriginal, ρ) ≥ 0 for all
pure states ρ. We calculate three quantities related to the hedging, which we approximate
by randomly sampling N pure states {|ψi〉}Ni=1 according to the Haar measure.

• h̄(Λ,ΛOriginal) ≡
∫
dψ h(Λ,ΛOriginal, |ψ〉 〈ψ|)

≈ 1
N

∑N
i=1 h(Λ,ΛOriginal, |ψi〉 〈ψi|) — The Haar average of the hedging function over

pure states.

• pviol ≈ Nviol

N
— The number of sampled pure states |ψ〉 for which honesty is violated

(that is, h(Λ,ΛOriginal, |ψ〉 〈ψ|) < 0) divided by the total number, where Nviol =
|{|ψ〉 ∈ {|ψi〉}Ni=1 : h(Λ,ΛOriginal, |ψ〉 〈ψ|) < 0}|.

Throughout this thesis we compute the latter two metrics by sampling N = 106. In
Appendix C we give a quick calculation and argument to show that N = 106 provides a
very good estimate of h̄ in the vast majority of cases in this thesis, and most importantly,
in Table 5.2 in Section 5.5, where the usefulness of our method for bounding circuit perfor-
mance is tested. We also show that the estimate of pviol (the probability that a randomly
chosen pure state has negative hedging) is very good in all cases.
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4.4 Instructive Qubit Examples

We now apply this approximation algorithm to some instructive qubit examples, where we
can use the Bloch sphere to visualize how the channels warp state space. We start with
approximations to small unitary rotations, following examples given in [11], and end with
approximations to a (non-unital) depolarizing channel. In both cases, we approximate
the errors using Pauli channels, and add some additional, efficiently-simulable-by-GK-MC
(see Section 3.2), operations to attain better representation of the errors. Note that the
non-unital examples are similar to those in [29].

4.4.1 Unitary Rotations

Consider the three unitary rotations, Λk(ρ) = UkρU
†
k , where Uk = exp

(
−i θ

2
~nk · ~σ

)
, ~nk =

(sin(kπ/8), 0, cos(kπ/8)), and ~σ = (X, Y, Z), for k ∈ {0, 1, 2}, and θ = 0.02. We approx-
imate these channels as a Pauli channel, a mixed-Clifford channel (where we include all
single qubit Cliffords), and the Pauli twirled channel. Statistics for each approximation
are given in Table 4.1, where N = 106 pure states were used to generate the hedging
statistics. Note that, in principle, the statistics for the Clifford approximations of Λ0 and
Λ2 should be the same. The Clifford approximation for Λ0 is a probabilistic application a
π/2 rotation about the z-axis. The analogue for this in the Λ2 case would be a probabilis-
tic application of the Hadamard gate, which, by symmetry, would have the same hedging
statistics and distance to the Original as the Clifford approximation has for Λ0 (which
would be closer, and therefore a better approximation). This is an example of how the
approximation algorithm is not particularly well behaved.

The effect of the unitary rotations, the Pauli approximations, and Pauli twirled approx-
imations, on the x-z axis of the Bloch sphere are plotted in Figure 4.1 (where we instead
use the rotation angle θ = 2 sin−1(

√
0.1) ≈ 0.64 to exaggerate the visual features of the ap-

proximations). The action of the unitary rotation, which rotates states out of the x-z plane,
is represented as a dephasing channel about the rotation axis. Using Λ0 as an example,
this is done by noting that, for any qubit state ρ, ‖Λ0(ρ)− ρ‖1 = 2 |sin (θ/2)| |sin(α)| ‖r‖2,
where r is the Bloch vector of ρ, and α is the angle of r away from the z axis. If one
considers a dephasing channel about z, given by Λ(ρ) = (1− p)ρ+ pZρZ, one sees that for
any qubit state ρ, ‖Λ(ρ) − ρ‖1 = 2p |sin(α)| ‖r‖2, where α and r are defined in the same
way as previously. Thus, by setting p = | sin(θ/2)| for the dephasing channel, it can exactly
reproduce the input-output distinguishability profile of the rotation. It is this dephasing
channel that we plot in Figure 4.1 in place of each unitary, for easy visual comparison to
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the approximations. Notice that for Λ0, the average hedging of both the Pauli and Clifford
approximations is 0, and visually, in Figure 4.1, one can confirm that the honest Pauli ap-
proximation is exactly the dephasing channel that perfectly reproduces the input-output
distinguishability of Λ0.

Table 4.1: Statistics for approximations to the unitary rotations for θ = 0.02 (which yields
χ00 ≈ 0.9999). N = 106 pure states were sampled for the hedging statistics.

Unitary Example

Gate/Statistics Original Pauli Clifford Pauli twirled

Λ0

χ00 0.999900 0.990000 0.992929 0.999900
‖Λ− UIdeal‖� 2.00× 10−2 2.00× 10−2 2.00× 10−2 2.00× 10−4

‖Λ− ΛOriginal‖� 2.81× 10−2 1.51× 10−2 2.00× 10−2

h 0. 0. −1.56× 10−2

pviol 0. 0. 1.

Λ1

χ00 0.999900 0.986025 0.990489 0.999900
‖Λ− UIdeal‖� 2.00× 10−2 2.80× 10−2 2.34× 10−2 2.00× 10−4

‖Λ− ΛOriginal‖� 3.59× 10−2 2.05× 10−2 2.00× 10−2

h 3.29× 10−3 8.15× 10−4 −1.56× 10−2

pviol 0. 0. 1.

Λ2

χ00 0.999900 0.985000 0.989794 0.999900
‖Λ− UIdeal‖� 2.00× 10−2 3.00× 10−2 2.41× 10−2 2.00× 10−4

‖Λ− ΛOriginal‖� 3.81× 10−2 2.23× 10−2 2.00× 10−2

h 4.29× 10−3 9.76× 10−4 −1.56× 10−2

pviol 0. 0. 0.99999

4.4.2 Non-unital Channels

Let E(X) = K1XK
†
1 +K2XK

†
2 for

K1 =

(
1 0
0
√

1− γ

)
, K2 =

(
0
√
γ

0 0

)
. (4.8)

Define Eα = Uα ◦ E ◦ U †α, for α ∈ {0, 1, 2} and Uα = exp
(
−iαπ

8
Y
)
. These channels are

examples of amplitude damping channels which drive the system towards a particular state.
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We approximate these channels as a Pauli channel, something we label as a Pauli &
Measurement channel, and a Pauli twirled channel. A Pauli & Measurement approximation
here denotes an approximation which uses the following channels:

{1, X, Y, Z,Φx+,Φx−,Φy+,Φy−,Φz+,Φz−},

where Φα±(X) = |α±〉 〈α±| for α ∈ {X, Y, Z}, and |α±〉 satisfies α |α±〉 = ± |α±〉. (In
the above list, {1, X, Y, Z} denote both the Pauli operators themselves, as well as the
channels defined by conjugation of these unitaries.) For example Φx+ maps every state to
the +1 eigenstate of the X operator. This channel can be viewed as measuring the state in
the X basis, then conditionally performing a Y or Z gate on the state if −1 is measured.
As these channels consist of Pauli measurements and conditional Pauli gates, they are
efficiently simulable. Channels like this enable the generation of efficiently simulable non-
unital gates [29].

Statistics for these approximations are given in Table 4.2, and the visualizations for
the Pauli approximations are given in Figure 4.2, and for the Pauli & Measurement in
Figure 4.3 (for the visualizations, we set γ = 0.25 to exaggerate the effects on the Bloch
sphere). One sees that, as expected, as Pauli & Measurement channels can generate non-
unital effects, they do a much better job of approximating the various amplitude damping
channels. Notice that for E0, the Pauli & Measurement approximation is able to “touch”
the top of the deformed Bloch sphere of E0, whereas this is not the case for E1 or E2.
The reason for this is that the “Measurement” part of Pauli & Measurement channels
can only prepare states that are convex combinations of Pauli eigenstates, and as such,
when the amplitude damping channel is driving the system to a Pauli eigenstate, the Pauli
& Measurement channel can approximate it quite closely. When the amplitude damping
channel isn’t driving to a convex combination of Pauli eigenstates, as for E1 and E2, the
Pauli & Measurement channels can’t approximate it quite as well, as they can’t push the
centre of the Bloch sphere outside of the convex set. It is also clear that the Pauli &
Measurement channels provide a much better fit to the I/O Distinguishability profiles of
the Original.

4.4.3 Foreshadowing Observations

Before moving on, it is worth noting a couple of observations in anticipation of what will
follow. The parameters in the unitary and non-unital examples were chosen so that the
Original channels would all have the same χ00 element (equivalently, the same average gate
fidelity). In the case of the unitary examples, we see that the χ00 element of the honest
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Table 4.2: Statistics for approximations to the amplitude damping channels for γ = 2×10−4

(which yields χ00 ≈ 0.9999). N = 106 pure states were sampled for the hedging statistics.

Amplitude Damping

Gate/Statistics Original Pauli Pauli & Measurement Pauli Twirled

E0

χ00 0.999900 0.999720 0.999850 0.999900
‖Λ− UIdeal‖� 4.00× 10−4 5.61× 10−4 4.00× 10−4 2.00× 10−4

‖Λ− ΛOriginal‖� 4.23× 10−4 1.00× 10−4 2.00× 10−4

h 1.53× 10−4 4.60× 10−5 −8.26× 10−5

pviol 0. 0. 0.74941

E1

χ00 0.999900 0.999713 0.999830 0.999900
‖Λ− UIdeal‖� 4.00× 10−4 5.75× 10−4 4.06× 10−4 2.00× 10−4

‖Λ− ΛOriginal‖� 4.33× 10−4 1.41× 10−4 2.35× 10−4

h 1.63× 10−4 5.03× 10−5 −8.43× 10−5

pviol 0. 0. 0.75218

E2

χ00 0.999900 0.999710 0.999824 0.999900
‖Λ− UIdeal‖� 4.00× 10−4 5.80× 10−4 4.10× 10−4 2.00× 10−4

‖Λ− ΛOriginal‖� 4.37× 10−4 1.54× 10−4 2.50× 10−4

h 1.66× 10−4 5.27× 10−5 −8.59× 10−5

pviol 0. 0. 0.74498

approximations is much lower than that of the Original as compared to the non-unital
example. Also, in the unitary example, the hedging of the Pauli Twirled approximation is
much worse than in the non-unital example. This observation, and the contrast between
the performance of the honest approximations and Pauli Twirled channels is explained in
detail in Chapter 6.
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Figure 4.1: Bloch visualizations for the unitary examples and their Pauli and Pauli twirled
approximations. From top to bottom, the channel (and its approximations) being repre-
sented are Λ0, Λ1, Λ2. The solid red line represents the action of the Original channel, the
dashed blue represents the Pauli, and the dotted gold represents the Pauli Twirled. The
left column is a visualization of how the channels affect the x-z plane of the Bloch sphere,
and the right column is a curve of the input-output distinguishability for the states in the
x-z plane an angle θ from the z-axis.
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Figure 4.2: Bloch visualizations for the non-unital examples and their Pauli and Pauli
twirled approximations. From top to bottom, the channel (and its approximations) being
represented are E0, E1, E2. The solid red line represents the action of the Original channel,
the dashed blue represents the Pauli, and the dotted gold represents the Pauli Twirled.
The left column is a visualization of how the channels affect the x-z plane of the Bloch
sphere, and the right column is a curve of the input-output distinguishability for the states
in the x-z plane an angle θ from the z-axis.
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Figure 4.3: Bloch visualizations for the non-unital examples and their Pauli & Measurement
and Pauli twirled approximations. From top to bottom, the channel (and its approxima-
tions) being represented are E0, E1, E2. The solid red line represents the action of the
Original channel, the dashed blue represents the Pauli, and the dotted gold represents the
Pauli Twirled. The left column is a visualization of how the channels affect the x-z plane
of the Bloch sphere, and the right column is a curve of the input-output distinguishability
for the states in the x-z plane an angle θ from the z-axis.
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Chapter 5

Numerical Studies of Circuit
Performance

Up until now, we’ve described and studied honesty of approximations in terms of the
performance of individual gates. Ultimately however, we’re interested in how the honest
gate approximations can be used to understand circuit performance. We phrase this as the
problem of composition. That is, while the individual gates may be honest, when they are
put into a circuit, the “approximate” circuit may not be an honest representation of the
original circuit.

In Section 5.1, we discuss the problem of composition in more detail and give a simple
example that shows that honest approximations will not “honestly compose” in general.
Nevertheless, despite the possible issues with generic error composition, it is possible that
when considering realistic error models within typical QEC circuits, our approximations
will compose honestly. In Section 5.2 and onward, we put our approximation method to the
test within a work flow that strongly motivated this research. That is, within the context
of understanding the performance of particular QEC circuits implemented on particular
physical machines, as described in the introduction.

This chapter contains the main body of [12], slightly reorganized and modified for the
flow of this thesis.
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5.1 The Problem of Composition

We begin by constructing a simple example in which honest approximations compose dis-
honestly. This example demonstrates the inherent limitations of approximating an error
with another error that composes in a fundamentally different way. Consider the two
single-qubit maps

Γ(ρ) = U(θ)ρU †(θ) (5.1)

Λ(ρ) = (1− p)ρ+ pZρZ, (5.2)

where U(θ) = exp(−i θ
2
Z) and Z is the Pauli z operator. In [11], it was shown that if

p = | sin(θ/2)|, then Λ and Γ have identical IO distinguishability properties; that is,

‖ρ− U(θ)ρU(θ)†‖1 = ‖ρ− Λ(ρ)‖1, (5.3)

for all ρ, and therefore Λ is an honest representation of Γ. Consider the state ρ+ = |+〉 〈+|,
where X |+〉 = |+〉, and X is the Pauli x operator, which is chosen as it is maximally
sensitive to both U(θ) and Λ. One can check that

‖ρ+ − Γ(ρ+)‖1 = ‖ρ+ − Λ(ρ+)‖1 = 2| sin(θ/2)| = 2p. (5.4)

Now, consider the circuit composed of two applications of Γ, C = Γ◦Γ, and the approximate
circuit C(a) = Λ ◦ Λ, where

C(a)(ρ) = [(1− p)2 + p2]ρ+ 2p(1− p)ZρZ. (5.5)

For θ ∈ [−π
2
, π

2
], it can be checked that

‖ρ+ − C(ρ+)‖1 > ‖ρ+ − C(a)(ρ+)‖1, (5.6)

and thus the composition of approximations is not an honest representation of the original
circuit.

This example can be understood by looking at how repetitive application of these
channels affects the state. Each application of Γ, a unitary error, deterministically rotates
the state by a small angle, whereas Λ, a dephasing error, rotates the state by 180◦, but
with a small probability. In the former case, the distance that each application moves
the current state remains constant, whereas in the latter case, this distance decreases
exponentially in the number of applications, resulting in an underestimation of errors
after only two applications. We encounter this situation in our simulations; one of the
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gate sets we consider has an identity gate error that is essentially a unitary about the
z-axis, and the honest Pauli approximation is the dephasing channel that reproduces its
IO distinguishability properties. Given this discussion and the frequency with which the
gate occurs, we expected that our approximations might underestimate the overall circuit
error. However, even in this case, our approximations perform as desired, providing strong
numerical evidence for the value of this method in QEC circuits.1

Despite these potential difficulties with error composition, it remains possible that, after
a QEC protocol is applied, the resulting effective errors might compose more desirably. As
an example, the first step of QEC in stabilizer codes is measuring the error syndrome.
This consists of measuring a generating set of stabilizer elements {Qi}ki=1, which produces
a k-bit string b with bi = 1 if the outcome from measuring Qi is −1, and bi = 0 if it is +1.
If a particular string b is measured, then the system is projected onto the subspace defined
by the projector

Πb = 2−k(1 + (−1)b1Q1) · · · (1 + (−1)bkQk). (5.7)

For a Pauli operator P and codeword |ψ〉, ΠbP |ψ〉 = 0 if P does not produce syndrome
b, and ΠbP |ψ〉 = P |ψ〉 if P produces syndrome b. Thus, indexing the Pauli operators as
{Pi}, and denoting Sb as the set of indices for Pauli operators that produce syndrome b, if
a particular syndrome b is measured after an error Λ, with χ-matrix χij in the Pauli basis
[16], acts on an arbitrary codeword |ψ〉, the state will be (ignoring normalization)

ΠbΛ(|ψ〉 〈ψ|)Πb =
∑
ij

χijΠbPi |ψ〉 〈ψ|PjΠb

=
∑
ij∈Sb

χijPi |ψ〉 〈ψ|Pj.

Given this form, it is clear that if Pi and Pj have different syndromes, then χij can play
no part in the post-syndrome measurement state, and is therefore effectively truncated by
syndrome measurement. In this way, errors become more “incoherent” and this, at least
superficially, makes errors “more like” Pauli channels (which have diagonal χ-matrices in
the Pauli basis). Thus, whatever the form of Λ, after a syndrome extraction step is enacted,

1This example is for serial composition, but an interested example where honest parallel composition
fails can be constructed in the following way. Take two unitary qubit maps, Λ1,Λ2, with the property
that if they are composed in parallel on a maximally entangled state, the state is invariant. As is dis-
cussed in Section 4.4.1, there exist dephasing channels E1 and E2 that perfectly match the input-output
distinguishability function of each unitary. Thus, individually, Λ1 is a 1-honest representation of E1, and
similarly for Λ2 and E2. However, when composed in parallel on the maximally entangled state, labelled
ρ, 0 = ‖ρ− (Λ1 ⊗ Λ2)(ρ)‖1 < ‖ρ− (E1 ⊗ E2)(ρ)‖1 6= 0.
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Figure 5.1: Circuit to produce a Choi state for the logical action Φgadget of a QEC gadget
acting on an Jn, k, dK stabilizer code, where r ≡ n−k. Note that errors act on all operations
in the dashed box (including measurements), aside from the recovery operation labelled
with R. A detailed account of this circuit (including an explanation as to why R is
left noiseless) is given in Section 5.5. Note that, while the Z measurements are part of
syndrome measurement, we use the the box labelled “syndrome meas.” to refer only to
the gate operations required before actual measurement occurs.

|β00〉 1
2k J(Φgadget)Φgadget

Eideal 1

syndrome meas.

R Dideal|0⊗r〉 Tr...
...

...
...

...
...

|0⊗r〉
1 Z •
...

...
...

1 Z •

the effective error may compose more like a Pauli channel. In practice, this argument may
fail due to various aspects of imperfect syndrome measurement, such as limited visibility
measurements, and the time it takes to perform measurement protocols like ancilla-assisted
syndrome measurement.

5.2 Simulation Schema

In this section, we work through three examples of the workflow described in the intro-
duction. Starting with two physical models (given in terms of deterministic and stochastic
continuous-time evolution), we generate three sets of gates via various pulse design tech-
niques and physical model parameters. Given these gate sets, we approximate the errors
on each gate using our approximation method to create efficiently simulable honest gate
sets. We then simulate a small, typical, QEC gadget, and compare how our approximate
gate sets compare to the original, un-approximated gate sets. We find that in all cases, our
approximations perform exactly as desired. We also include the performance of the Pauli
twirled approximations.

Our simulation schema begins with a low level physical model, and ends with a high
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level, efficient simulation of a QEC circuit, with our approximation method being a bridge
between the two. A physical model is a description of the continuous-time dynamics of
a candidate physical system for QIP, consisting of deterministic and stochastic parts to
internal and control Hamiltonians, as well as dissipative open quantum-system dynamics,
and includes constraints on control amplitudes. Using control techniques, a gate set is
generated from a physical model, which consists of all elementary quantum logic gates
required for the desired QEC circuit. Once a gate set is generated, the error on each gate
is approximated using our method, yielding an honest representation of the original gate
set, which is used in an efficient simulation of the desired QEC circuit.

The circuit that we simulate, shown in Figure 5.1, is a gadget that performs one round
of error-correction in an Jn, k, dK stabilizer code, which we implement using the 5-qubit
perfect code (a J5, 1, 3K code). The circuit was chosen by balancing the desire that it
be representative of standard practices, with the requirement that it be small enough
to allow for fast simulation of arbitrary gate errors, thereby allowing for comparison of
the efficiently simulable errors to the original. For us, a gate set consists of the gates
{1, X, Y, Z,H,cnot}, where the first four are standard single qubit Pauli gates, H is the
Hadamard gate, and cnot is the two qubit controlled-not gate.2

We implement this procedure for three gate sets, generated from two physical models
with varying model parameters and control techniques. The physical models and control
techniques are chosen to be representative of those found in experiment. Doing so allows us
to encounter errors not typically considered in fault-tolerance research, despite naturally
occurring in physical implementations. We emphasize however that neither the approxima-
tion method, nor the procedure for testing it given here, have been tailored for a particular
outcome. The method is generic; it is independent of both the underlying physical model
and gates, as well as the QEC circuit.

5.3 Gate Set Generation

We consider two physical models, PM1 and PM2. PM1 is motivated by a double quantum
dot system, and PM2 represents an archetypal two level system (see Appendix E for a
description and full details). Gate Set 1 (GS1) is built on PM1, and Gate Sets 2 and 3 (GS2
and GS3) are built on PM2 (using different model parameters). GS1 and GS2 use noise
refocusing techniques [30, 31], which mitigate errors induced by stochastic Hamiltonians.

2Note that the circuit we ultimately simulate uses only the 1, H, and cnot gates. The rest are included
for further comparison of the gate approximations.
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GS2 and GS3 implement gates via hard pulses; that is, the pulse sequences used to generate
the gates are manually specified by choosing control amplitudes. Due to the complicated
structure of the Hamiltonian in PM1, optimal control theory (OCT) was used to find pulse
sequences that implement the gates in GS1 with high fidelity [32, 33]. Every gate in a set
is made to be the same length in time, as our circuit simulation proceeds in discrete time
steps in which a single gate acts on every register qubit. A full description of how the gates
are simulated is given in Appendix F.1.

The different combinations of physical model and control techniques give rise to different
types of gate errors. A detailed account on the form of the errors for each gate set is given
in Chapter 6, as it has particular relevance within the context of that discussion. We do
however wish to highlight that some gates in GS1 have largely unitary errors, resulting
from the use of OCT pulse finding in gate implementation. Thus, given the discussion on
error composition, GS1 provides a strong test for our method.

5.4 Gate Set Approximations and Statistics

For each gate set we generate three efficiently simulable approximate gate sets:

Pauli twirled The Pauli twirled errors.

Pauli The honest Pauli channel approximation.

Clifford The honest mixed-Clifford channel approximation.3

Table 5.1 presents the statistics for the identity gate from each gate set, using N = 106

uniformly sampled pure states (see Section 4.3 for a description of the displayed quantities).
See Appendix D for tables containing statistics on all gates.

Looking at the various diamond norm distances between the Original, Ideal, Pauli
twirled (ΛPT), and Pauli errors (ΛP), a simple ordering can be seen to hold for every gate:

‖ΛPT − UIdeal‖� ≤ ‖ΛOriginal − UIdeal‖� ≤ ‖ΛP − UIdeal‖� ,
‖ΛPT − ΛOriginal‖� ≤ ‖ΛP − ΛOriginal‖� .

3Note that only the single-qubit errors are approximated as mixed-Cliffords (we allowed the algorithm
to search over all mixed-Cliffords). Due to the large number of two-qubit Cliffords, the honest Pauli
approximation for the cnot gate is reused.
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Table 5.1: Statistics for the various approximations of the identity gate for each gate set,
approximated from N = 106 random pure states.

Set/Statistics Original Pauli twirled Pauli Clifford

GS1

χ00 0.999994 0.999994 0.997618 0.998314
‖Λ− UIdeal‖� 4.76× 10−3 1.20× 10−5 4.76× 10−3 4.77× 10−3

‖Λ− ΛOriginal‖� 4.76× 10−3 6.73× 10−3 3.64× 10−3

h −3.73× 10−3 1.14× 10−7 1.64× 10−6

pviol 1. 0. 0.

GS2

χ00 0.999087 0.999087 0.999085 0.999086
‖Λ− UIdeal‖� 1.83× 10−3 1.83× 10−3 1.83× 10−3 1.83× 10−3

‖Λ− ΛOriginal‖� 2.48× 10−5 2.50× 10−5 2.06× 10−6

h −1.63× 10−7 2.65× 10−6 8.34× 10−7

pviol 0.49861 0. 0.

GS3

χ00 0.998751 0.998751 0.996501 0.996501
‖Λ− UIdeal‖� 4.99× 10−3 2.50× 10−3 7.00× 10−3 7.00× 10−3

‖Λ− ΛOriginal‖� 2.50× 10−3 5.28× 10−3 5.28× 10−3

h −1.03× 10−3 1.91× 10−3 1.91× 10−3

pviol 0.74978 0. 0.
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Thus, while the Pauli twirled error is always closer than the Pauli to the Original, it is also
always closer to the Ideal than the Original, and is therefore a less noticeable error than
the Original. The location of the Clifford approximation in the second inequality chain
varies; for some gates, it is an order of magnitude closer to the Original than both the
Pauli and Pauli twirled approximations, for others, it is the same distance to the Original
as the Pauli, indicating that the best Pauli is also the best Clifford approximation, and for
the rest, it is in between the two.

Two other important and connected observations can be made. In some cases, the χ00

element of the honest approximations is much lower than that of the Original, and in others
it is not appreciably different. In the former cases, the Pauli twirled approximations tend
to be much closer to the Ideal, and have worse hedging performance, than in the latter
cases. These are demonstrations of channels with different average fidelities but similar
IO distinguishability properties, and channels with identical average fidelities but very
different IO distinguishability properties. This observation is connected to the different
regimes of performance for Pauli twirling, as well as how “coherent” or “unitary” an error
is, and is explained in detail in Chapter 6.

5.5 Circuit Design and Simulation Results

We simulate the gadget Φgadget that performs one round of error correction on one block
of an error-correcting code, as per Figure 5.1. We isolate the action Φgadget of this gadget
on the encoded state by preceding and following it with perfect encoding and decoding
operations, Eideal and Dideal

4. The circuit is simulated by computing its Choi state; for a
code that encodes k logical qubits into n physical qubits, we take the state

|β00〉 =
1√
2k

2k∑
i=1

|i〉 ⊗ |i〉 , (5.8)

where {|i〉}2k

i=1 is an orthonormal basis for the k-qubit Hilbert space, and compute(
C ⊗ 1L(Ck)

)
(|β00〉 〈β00|) =

1

2k
J(C), (5.9)

where C represents the entire circuit and J(C) is the Choi-Jamio lkowski matrix for the
circuit. (This simulation method is chosen due to the efficiency with which maps of the

4Note that sandwiching gadgets in a circuit between perfect encoding and decoding operations will not
guarantee that the approximate gadgets will compose honestly.
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form we consider can be applied to states. See Appendix F.2 for details.) Due to the perfect
encoding and decoding operations, J(C) = J(Φgadget). Explicitly, the circuit performs the
following operations:

1. The state |β00〉 (Equation 5.8) is prepared, half of which is perfectly encoded into an
Jn, k, dK stabilizer code.

2. The gadget Φgadget is applied to the encoded physical qubits, consisting of:

i) One imperfect wait location on all of the data qubits. This is a placeholder for
possible non-trivial operations in gadgets meant to perform logical operations.

ii) Simultaneously, a register of ancillas for ancilla-assisted syndrome measurement
is prepared. An imperfect identity operation acts on each ancilla to represent
imperfect ancilla preparation.

iii) Imperfect ancilla-assisted syndrome measurement is performed (see Figure 5.3).
Measurement of the physical ancillas is taken to be perfect, with errors repre-
sented by identity gates that precede the measurement.

3. A perfect recovery operation is performed by classical feed-forward of syndrome mea-
surement details (see Figure 5.4).

4. Once Φgadget is done, the resultant state is then perfectly decoded and the physical
ancillas are discarded.

The recovery operation is chosen to be perfect as, in practice, it isn’t always necessary
to physically perform the recovery; errors can be tracked and taken into account when
further operations are performed on the block [34].

We implement this simulation schema using the 5-qubit perfect code, with the syndrome
measurement and recovery circuits designed by the Python package QuaEC [35]. Note that
we choose to perform the syndrome measurement in a non-fault-tolerant way, as a fault-
tolerant gadget for a code with n physical qubits would require at least 2n ancilla qubits
for the Steane or Knill fault-tolerant error correction (FTEC) gadgets, or strictly more
than

∑
i wt(Si) = 16 ancillae for the Shor FTEC gadget. Thus, at least 10 ancillae are

needed for the perfect code, requiring simulation of at least 16 qubits, putting us outside
the range of quickly simulable circuits with arbitrary errors.

With 4 stabilizer generators, this code requires 4 ancillas for encoding and 4 for syn-
drome measurement using the circuit shown in Figure 5.3. Any redundant Hadamard gates
have been removed. The recovery operation is shown in Figure 5.4. This type of non-fault
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|0〉 Z

Figure 5.2: Circuit to measure the stabilizer generator Z⊗4, proposed by Fowler et al [1]
for use in surface codes.

tolerant syndrome measurement is similar to gadgets proposed for use in topological QEC
codes, such as the surface code. In particular, the syndrome measurement gadget used by
Fowler et al [1], shown in Figure 5.2, relies on cnot gates between each data qubit in the
support of a stabilizer generator and a common ancilla qubit. We emphasize that we are
not concerned with absolute circuit performance. Rather, the task at hand is the com-
parison of relative performance of efficiently simulable error approximations, so it suffices
that this circuit contains all of the typical elements and procedures for QEC, regardless of
fault-tolerance.

Tables 5.2 and 5.3 give the simulation statistics for Φgadget, again using N = 106 sample
pure states to compute the hedging parameters. For each gate set, the Pauli and Clifford
approximations compose well; the approximated circuit honestly represents the error of the
original. This is especially encouraging for GS1, given its unitary identity error. For the
Pauli twirled errors, we see that in GS1 they fail the honesty condition for every tested pure
state. For GS2, they fail the honesty condition for just over half of the pure states tested,
but by an arguably small degree. Interestingly, for GS3, the Pauli twirled approximations
provide an honest representation of the circuit performance.

5.6 Discussion

In all examined cases, the honest approximations led to honest representations of circuit
performance, providing confidence in our method as a tool for evaluating the performance
of typical QEC circuits with realistic gate errors. By starting from continuous-time physical
models, and building gates using common control techniques, we tested our method against
errors typical of those found in experiment, which were not tailor-made for any desired
outcome. The strongest test of our method came from errors with strong unitary parts,
arising from OCT designed pulses, a regime not typically considered in fault-tolerance
research. Additionally, our results, in conjunction with the recent work by Geller and
Zhou [36], demonstrate two regimes of performance for Pauli twirled error approximations.
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(a) Original syndrome measurement circuit.
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(b) Circuit with simplifications and with explicit wait locations.

Figure 5.3: Syndrome measurement circuit for the five-qubit perfect code.

1 X 1 1 1 1 1 1 1 1 Z Y 1 1 1 1

1 1 1 1 1 Z 1 1 X 1 1 1 1 Y 1 1

1 1 Z 1 1 1 1 1 1 1 1 1 X 1 Y 1

1 1 1 1 1 1 X 1 1 Z 1 1 1 1 1 Y

1 1 1 X Z 1 1 Y 1 1 1 1 1 1 1 1

• • • • • • • •
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Figure 5.4: Recovery circuit for the five-qubit perfect code.
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Table 5.2: Statistics for Φgadget using N = 106 randomly sampled pure states. The key
point to notice is that pviol = 0 for all approximations that were generated using our
method. That is, the action of the circuit on all sampled pure states was found to be
1-honest. This is summarized in Table 5.3.

Set/Statistics Original Pauli twirled Pauli Clifford

GS1

χ00 0.999964 0.999964 0.985820 0.989930
‖Λ− UIdeal‖� 4.76× 10−3 7.28× 10−5 2.84× 10−2 2.04× 10−2

‖Λ− ΛOriginal‖� 4.76× 10−3 2.87× 10−2 2.01× 10−2

h −3.69× 10−3 1.85× 10−2 1.23× 10−2

pviol 1. 0. 0.

GS2

χ00 0.991372 0.991372 0.991355 0.991367
‖Λ− UIdeal‖� 1.73× 10−2 1.73× 10−2 1.73× 10−2 1.73× 10−2

‖Λ− ΛOriginal‖� 2.45× 10−5 4.29× 10−5 1.14× 10−5

h −1.63× 10−8 2.24× 10−5 7.66× 10−6

pviol 0.55566 0. 0.

GS3

χ00 0.992495 0.987594 0.969499 0.969499
‖Λ− UIdeal‖� 1.51× 10−2 2.48× 10−2 6.10× 10−2 6.10× 10−2

‖Λ− ΛOriginal‖� 1.03× 10−2 4.60× 10−2 4.60× 10−2

h 6.36× 10−3 3.04× 10−2 3.04× 10−2

pviol 0. 0. 0.

Table 5.3: A summary of Table 5.2. If the approximation performed as desired (produced
a 1-honest representation of the original circuit) then it gets a 3, and if not, an 7. For the
Pauli twirled approximation for GS2, we put both a 3 and an 7, as while approximately
half of the sampled states failed the honesty condition, the underestimation was small.

Set Pauli twirled Pauli Clifford

GS1 7 3 3

GS2 3/7 3 3

GS3 3 3 3
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In one regime, their performance can be considered “sufficiently good”, while in the other,
Pauli twirling results in systematic underestimation of the IO distinguishability notion of
error (see Chapter 6 for a systematic investigation of this observation).

Our work is motivated by the desire for the simulations to be pessimistic. We want to
be reasonably assured that, if the simulation with the approximated errors performs well
according to some metric, then the actual implementation will perform well also. Currently,
experimental implementations of QIP are limited to small system sizes. Extrapolating their
performance to hypothetical large-scale systems requires caution. Quantum processors will
require constant application of error-correction protocols like the one we consider, and it
is imaginable that in large systems, consisting of hundreds of qubits or more, even a small
underestimation of the effect of physical-level errors may dramatically compound, resulting
in false expectations of over-all performance. This work provides hope that our method
can be used as a tool for extrapolating performance from small systems in an honest way.
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Chapter 6

Analysis of the Form of Errors

This chapter contains an analysis of how the form of the original errors affects the various
approximations that we have considered throughout this thesis. In particular, we identify
good and poor regimes of performance for the “Pauli twirled” errors, and classify the
gate sets of the preceding chapter into these regimes. This also aids in the understanding
of the behaviour of the approximations generated by our own method; in particular the
observations made in Sections 4.4 and 5.4 that, in some cases, the average fidelity of our
approximations is much less than that of the original, whereas in some cases they are very
similar. Given the importance on the classification of errors to this discussion, we conclude
by explaining why the errors for each gate set in the preceding chapter take the form that
they do. We note that this chapter is Appendix C in [12], with minor modifications for
incorporation into this thesis.

The identification of these regimes requires analysis on what happens to the IO distin-
guishability properties of a channel when it is twirled. Generally, twirling a map Λ by a set
of unitaries {Uk}Nk=1 is the action of mapping Λ → 1

N

∑N
k=1 U

†
k ◦ Λ ◦ Uk. The twirled map

results from choosing a unitary operator from the twirling set with uniform probability,
applying it, applying Λ, then inverting the twirling operator. If the twirling set is chosen
to be the Pauli operators, it is called a Pauli twirl and, if perfectly implemented, will
transform any map into the Pauli channel that results from mathematically truncating the
off-diagonal elements of the process (χ-)matrix [16].

Before analyzing the effects of Pauli twirling specifically, we can look at the general
effect of twirling on the diamond norm distance of an arbitrary channel to the identity
operation. Let H denote a finite dimensional Hilbert space, and L(H) the set of linear
operators from H → H. One property of the diamond norm is that for Φ : L(H)→ L(H),
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and any unitary operators U, V ∈ L(H), it holds that ‖U ◦ Φ ◦ V ‖� = ‖Φ‖� [13]. Thus,
for any finite set of unitaries {Uk}Nk=1 ⊂ L(H), and quantum channel Λ : L(H)→ L(H), it
holds by straightforward application of the triangle inequality that∥∥∥∥∥1L(H) −

1

N

N∑
k=1

U †k ◦ Λ ◦ Uk

∥∥∥∥∥
�

≤
∥∥1L(H) − Λ

∥∥
� , (6.1)

where 1L(H) is the identity channel. In other words, the distance of a twirled error to the
identity operation is always bounded above by that of the original error and so, in a worst
case sense, twirling typically acts to make an error harder to detect.

To specify the regimes of performance of twirling, we look at the Bloch representation
of quantum channels. Any qubit map Λ can be represented as a matrix M and vector ~t that
acts on Bloch vectors as ~r →M~r+~t. M can be written in terms of its polar decomposition
M = OP , where O and P are an orthogonal and positive semidefinite matrix, respectively.
Thus, the action on the Bloch sphere can be represented as ~r → O(P~r + OT~t) [37]. That
is, as a possibly non-unital channel followed by an orthogonal rotation of the Bloch sphere,
which corresponds to a unitary rotation for qubits [38]. We say that a channel is in the
“unitary regime” if the effect of O is relatively large compared to P and ~t, and we say the
channel is in the “deforming regime” if the opposite is true. To quantify the “effect” of a
Bloch matrix M , we use the quantity ‖1−M‖2, and use ‖~t‖2 to quantify the effect of the
non-unital part. We use ‖·‖2 to denote both the Hilbert-Schmidt norm on matrices and the
Euclidean norm on vectors, where context and notation will make clear which is meant. In
the following paragraphs, we examine how twirling affects worst-case IO distinguishability
properties of different errors in these regimes.

First, for a unital deforming qubit channel Λ, the Bloch representation is simply a
positive semi-definite matrix P . Diagonalize P as P = UDU †, for some orthogonal matrix
U and diagonal non-negative matrix D. Then, as diagonal Bloch matrices are realizable
as Pauli channels, we can write Λ as Λ(ρ) =

∑3
i=0 piV PiV

†ρV PiV
†, where V is the unitary

corresponding to U . Channels of this form are called Generalized Pauli channels, and the
diamond norm distance between channels of this form with different probability vectors
~p and ~q is given by

∑3
i=0 |pi − qi| [39, 40]. For these channels, as V PiV

† has no identity
part for i ≥ 1, the χ00 element in the Pauli basis is identical to the probability assigned to
the identity operator. As this quantity is conserved in Pauli twirling, and as the identity
map on qubits 1L(C2) is a Generalized Pauli channel, it follows that, for a deforming unital
qubit channel Λ and its Pauli twirl ΛPT, ‖1L(C2) − Λ‖� = (1 − p0) + p1 + p2 + p3 =
2(1 − p0) = ‖1L(C2) − ΛPT‖�. Thus, diamond norm distance to the identity for these
channels is unaffected by Pauli twirling.
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To examine the qualitative behaviour of Pauli twirling on a non-unital deforming chan-
nel, we examine the special case of an amplitude damping channel, which has Kraus oper-
ators

K1 =

(
1 0
0
√

1− γ

)
, K2 =

(
0
√
γ

0 0

)
, (6.2)

for some parameter γ, and Bloch representation

M =

 √1− γ 0 0
0

√
1− γ 0

0 0 1− γ

 , ~t =

 0
0
γ

 . (6.3)

In the Bloch representation, the effect of Pauli twirling is to remove the off-diagonal ele-
ments of M and set ~t → 0. Thus, the only effect that twirling has on this channel is to
remove the non-unital part. Note that the dominant error considered by Geller and Zhou
in [36] is of this form; the Bloch matrix is diagonal, and so in some sense, Pauli twirling has
a minimal effect. We consider the worst case performance of this channel on a pure qubit
state. It is clear that the state most affected by Λ, and by its Pauli twirl ΛPT, is the −1
eigenstate of Z, which we denote as ρ−. It can be easily checked that ‖ρ−−Λ(ρ−)‖1 = 2γ,
and ‖ρ−−ΛPT(ρ−)‖1 = γ. Thus, while the worst case performance in this case is lessened
by Pauli twirling, it is only by a factor of 2.

Lastly, we look at purely unitary channels. For two unitary operators U, V in L(H),
there exists a pure state |ψ〉 ∈ H for which

‖U · U † − V · V †‖� = ‖U |ψ〉 〈ψ|U † − V |ψ〉 〈ψ|V †‖1 = 2
√

1− | 〈ψ|U †V |ψ〉 |2 (6.4)

[13]. From this form, it is clear that any state that maximizes the distinguishability between
the identity operation and a unitary U will be orthogonal to the unitary’s rotation axis.
Thus, for a rotation U by an angle θ, ‖1L(C2)−U ·U †‖� = 2| sin(θ/2)|. As the χ00 element
of a qubit rotation by angle θ is cos2(θ/2), it follows from the preceding discussion that,
for the Pauli twirled error ΛPT, ‖1L(C2) − ΛPT‖� = 2(1 − cos2(θ/2)) = 2 sin2(θ/2). Thus,
for small values of θ, the twirled channel can be orders of magnitude closer to the identity
than the original.

With this qualitative analysis in hand, we examine the form of the Bloch representation
of the errors considered in this paper. The Bloch representation of each error is decomposed
into the three pieces O, P , and ~t, and the size of each piece is reported in Table 6.1. As the
identity gate occurs most frequently in the circuit, its properties are the most important.
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Table 6.1: We denote the Bloch representation of each gate error as (OP,~t), where O is
an orthogonal matrix, P is positive-semidefinite, and ~t is the “non-unital part”. Norms of
size less than 10−10 are displayed as 0, as at this size they are irrelevant compared to the
dominant parts of the error.

Set/Statistics 1 X Y Z H cnot

GS1
‖1−O‖2 6.74× 10−3 1.83× 10−2 1.83× 10−2 5.06× 10−3 1.63× 10−2 5.78× 10−2

‖1− P‖2 8.22× 10−7 1.06× 10−2 4.43× 10−3 1.33× 10−2 6.24× 10−3 3.56× 10−2

‖~t‖2 0. 5.51× 10−9 5.56× 10−9 0. 1.36× 10−8 2.19× 10−8

GS2
‖1−O‖2 3.35× 10−5 5.52× 10−4 5.52× 10−4 2.09× 10−4 1.59× 10−3 1.73× 10−3

‖1− P‖2 2.16× 10−3 2.15× 10−3 2.15× 10−3 2.32× 10−3 2.19× 10−3 8.13× 10−3

‖~t‖2 4.01× 10−8 5.65× 10−5 4.95× 10−5 1.66× 10−4 9.91× 10−5 2.14× 10−4

GS3
‖1−O‖2 0. 1.09× 10−5 1.50× 10−5 1.04× 10−5 2.83× 10−6 4.45× 10−2

‖1− P‖2 3.06× 10−3 2.93× 10−3 2.93× 10−3 3.06× 10−3 2.96× 10−3 1.12× 10−2

‖~t‖2 2.50× 10−3 1.37× 10−3 1.37× 10−3 2.50× 10−3 2.11× 10−3 2.95× 10−3

We see that GS1 has the largest unitary component to its errors (in terms of the ratio
to the other components). The error in the identity gate is almost entirely unitary, and
therefore falls neatly into the unitary regime. Indeed, this is consistent with the fact that a
single-qubit unitary rotation by an angle θ will have a χ00 element of cos2(θ/2) ≈ 0.99999,
whereas the Pauli channel that exactly matches its IO distinguishably has a χ00 element
of 1 − | sin(θ/2)| ≈ 0.99762. We see that these numbers correspond exactly to the given
number of digits in Table 5.1, where a two-order-of-magnitude decrease in the distance of
the Pauli twirled error to the identity channel is shown. While the other errors in the set
have unitary parts, the non-unitary parts are comparable in size. As such, character from
both the unitary and unital deforming regimes is observed; the diamond norm distance of
the Pauli twirled error to the identity decreases, but the decrease is not as impressive as
for the identity gate. For the Y and H errors, the unitary part is 2 or 3 times larger than
the non-unitary, and thus the decrease in diamond norm distance to the ideal channel for
the Pauli twirled errors is the greatest of the non-identity gates.

For every gate in GS2, ‖~t‖2 is relatively small and ‖1− O‖2 is in most cases an order
of magnitude smaller than ‖1−P‖2, putting GS2 into the unital deforming regime. When
looking at the diamond norm distances of the Pauli twirled channels to the identity, we see
that, as expected in this regime, there is very little decrease. Indeed, while the Pauli twirled
channels generally underestimate the error in the hedging metrics, the underestimation is
small.
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For GS3, ‖1 − O‖2 is usually of comparatively negligible size, and ‖~t‖2 is of the same
order of magnitude as ‖1−P‖2, putting this gate set into the non-unital deforming regime.
Looking at the decrease of the diamond norm distance to the ideal operations for the Pauli
twirled errors, we see roughly what is expected; a decrease on the order of a factor of 2.
As in the case of GS2, while the Pauli twirled errors show underestimation in the hedging
statistics, it is by a small degree.

The performance of the gadget, as simulated using the Pauli twirled approximations
to the various gate sets, is more-or-less in-line with what might be expected from the
preceding discussion of these regimes. For GS1, in the unitary regime, we observe large
underestimation of IO distinguishability properties on an individual gate basis, and this
underestimation propagates upwards; the gadget simulated with Pauli twirled errors is
much harder to distinguish from the perfect gadget than the gadget subject to the Original
errors. In the deformation regime (GS2 and GS3), where the Pauli twirled errors may only
slightly underestimate the Original gate errors, we see very minor underestimation of gadget
errors in GS2. One might argue, as Geller and Zhou do, that this level of underestimation
is acceptable. Indeed, for GS3, the Pauli twirled circuit even has positive hedging.

These observations are perhaps not surprising on an intuitive level. Pauli channels are
a subset of deforming channels, and while not all deforming errors are Pauli channels, they
are like Pauli channels. All deforming channels contract the Bloch sphere inwards (with
possible non-unital shifts), so Pauli twirling simply maps one deforming channel to an-
other, which doesn’t dramatically change the IO distinguishability properties. This stands
in contrast to the unitary regime where, in regards to IO distinguishability, something
fundamental can be lost when a dominantly unitary error is mapped to a Pauli channel
via Pauli twirling.

In addition to understanding the performance of the Pauli twirled errors, this discus-
sion also demonstrates why our approximations behave the way they do in regards to
average gate fidelity. As we’ve seen from the Pauli twirl analysis, for a fixed average fi-
delity, channels in the unitary regime are much more distinguishable from the identity
operation than those in the deforming regime. Thus, if the original error is in the unitary
regime, our approximations, which fall into the deforming regime, will sometimes have a
much worse average fidelity than the original to allow them to honestly represent its IO
distinguishability properties.

As a final point, we can ask why the errors for each gate set have the form that they
do. To explain this, it is necessary to examine the physical models and the pulse design
techniques used, which are described in detail in Appendix E. The simplest case is GS3,
where hard pulses with no refocusing sequences were used. As the T1 time was the shortest
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of all of the gate sets, and no refocusing pulses were used, the strong non-unital effects
were allowed to continue building in their natural direction throughout each gate resulting
in primarily non-unital errors. In GS2, which used the same physical model as GS3, the T1

time was an order of magnitude longer. In addition, the refocusing pulse sequence used has
the effect of “flipping” the non-unital shift between the positive and negative z-direction,
and so, when averaged over the whole sequence, the effective non-unital shift tends to zero.
As a result, the size of the non-unital piece tends to be at least an order of magnitude
smaller than the other pieces, putting this gate set into the unital deformation regime.
Finally, as GS1 had the longest T1 time, and the refocusing sequence was performed at
a rate far faster than the T1 time, the non-unital error components are negligible. Aside
from this, the prime difference between GS1 and the other gate sets is that the pulses used
were found using the GRAPE algorithm, rather than being hard, which accounts for the
dominant unitary components of the errors. For hard pulses, in the limit of no noise, the
implemented unitary should be perfect, aside from numerical imprecision in the field ampli-
tudes, which can be made arbitrarily small with low overhead. For pulses found using the
GRAPE algorithm this is not the case; even a noiseless implementation will not produce
the perfect unitary. Arguably, this situation is more prevalent in experimental implementa-
tions as pulse finding algorithms like GRAPE are necessary to obtain high-fidelity control
over systems with complicated Hamiltonians. In addition, these types of algorithms can
be used to achieve high-fidelity control across a range of internal Hamiltonian parameters,
even when the Hamiltonian is simple [33]. Pulse finding algorithms also tend to naturally
incorporate the physical constraints of the control device, and as such are preferable over
naively implemented hard pulses.
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Chapter 7

Conclusion

In this thesis we presented the idea of honest error approximations for use in efficient
classical simulations of quantum circuits for the purposes of evaluating circuit performance.
Strong numerical evidence was provided showing the utility of the method for generating
honest representations of circuits under composition. Indeed, the success of the method
for errors in the unitary regime is especially surprising and encouraging, given that at the
outset of the study, this regime was precisely where underestimation was expected.

As described in Section 5.6, this work has been motivated, from its outset, by the
desire for simulations to “honestly” represent the performance of a realistic implementation
of a quantum circuit. That is, we want the strength of the errors in the simulation to
somehow lower-bound the strength of the errors of the implementation of the circuit we’re
interested in. Of course, other metrics of simulation performance may be considered as
well. For example, in Geller and Zhou’s study [36], they start from the viewpoint that it’s
more desirable for the simulation to be close to the performance of the original circuit,
and they are happy with some level of underestimation of error strength, so long as the
underestimation isn’t too bad. In their study, they show that the Pauli twirled error
approximations are able to closely model the failure probability of a well-motivated circuit
for a variety of error strengths. However, as discussed in Chapter 6, the dominant part
of their error model falls into a regime (the “deforming regime”) where Pauli twirling the
errors doesn’t change their character significantly, and therefore the close representation of
circuit performance may not be surprising. Given these facts, it would be very interesting
to extend their study to include dominant errors in the “unitary regime”, where, given the
discussion in Chapter 6, orders-of-magnitude underestimation of error strength is possible.

A natural question to ask is whether or not the concept of honest error approximations
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could be useful for extending the applicability of threshold theorems. For example, could
error models that have so-far eluded threshold theorems be honestly approximated by
models that are easier to handle? A related question is how strongly threshold type values
depend on the error model. While two error models may be comparable in terms of
some measure of error strength (e.g., average gate fidelity or diamond norm distance) they
may differ significantly in others. Thus, it is important to understand what measures of
individual gate performance best predict the performance of the circuits that they will
ultimately be used to implement.
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Appendix A

Mathematical Background

A.1 Spectral Theorem and Singular Value Decompo-

sition

For a finite dimensional Hilbert space X , an operator A ∈ L(X ) is called normal if A†A =
AA†. The most important subset of normal operators for this thesis is Herm(X ).

Theorem A.1.1. (Spectral Theorem)
For every normal operator A ∈ L(X ), there exists an orthonormal basis for X , {x1, x2, ..., xn},
where n = dim(X ), of eigenvectors of A, for which

A =
n∑
i=1

λixix
†
i ,

where the λi are the (not necessarily distinct) eigenvalues of A.

Theorem A.1.2. (Singular Value Decomposition) For an operator A ∈ L(X ,Y), there
exist orthonormal sets {x1, ..., xr} ⊂ X and {y1, ..., yr} ⊂ Y, and positive real numbers
σ1, ..., σr (called the singular values) for which A =

∑r
i=1 σiyix

†
i . The xi and yi are eigen-

vectors of A†A and AA† respectively. The singular values are unique, up to ordering, and
are the (non-distinct) square roots of the (positive) eigenvalues of A†A and AA†.
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A.2 Explicit Construction of a Bloch Basis in Arbi-

trary Finite Dimension

Here we give an explicit construction of a particular “Bloch Basis”, following [41], that
works in any finite dimension. Let X = Cn, and let {ek}nk=1 be the standard basis for X .
Let Pjk = eje

†
k ∈ L(X ), and define the following Hermitian operators

Wl = − 1√
l(l + 1)

(
l∑

m=1

Pmm − lPl+1,l+1) (A.1)

Ujk =
1√
2

(Pjk + Pkj) (A.2)

Vjk =
i√
2

(Pjk − Pkj), (A.3)

for 1 ≤ l ≤ n − 1 and 1 ≤ j < k ≤ n. It can be easily verified that this defines n2 − 1
operators. (Note that these definitions differ from [41] by a factor of

√
2.)

Now, order them as (W1, ...,Wn−1, U12, ..., Un−1,n, V12, ..., Vn−1,n), and relabel this order-
ing as (λ1, ..., λn2−1). Finally, define λ0 = 1X√

n
. It can be verified that the set of operators

BX = {λi}n
2−1
i=0 is orthonormal (with respect to the Hilbert-Schmidt inner product), and,

given that there are n2 elements, it is a basis for L(X ).
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Appendix B

Partial Ordering Proofs

Here the proofs for the partial ordering results of Chapter 4 are given. The main idea is to
convert the partial ordering statements which are statements about all (pure) states into
state independent statements that depend only on the matrix representation of channels.

B.1 Quadratic Forms and Schatten 2-norm inequali-

ties

All of what we do in this section is based on the following propositions. The first is a
statement about quadratic forms defined on vectorized unit trace Hermitian matrices in
the Bloch basis.

Proposition B.1.1. Let Q ∈ Rn2×n2
be a symmetric matrix (Q = QT ), and write it in

block form as

Q =

 β vT

v B

 ,

where β ∈ R, v ∈ Rn2−1, and B ∈ R(n2−1)×(n2−1) real matrix. Define Q± ∈ R(n2−1)×(n2−1)

as

Q± =
1

n

[
α2B + (β ± 2α‖v‖2)1n2−1

]
,
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where 1n2−1 ∈ R(n2−1)×(n2−1) is the identity matrix, and α =
√
n− 1.

Then for any operator X ∈ Herm1(X ), satisfying ‖r‖2 = 1 for r = bvec(X), it holds
that

rTQ−r ≤ vec(X)TQvec(X) ≤ rTQ+r.

If β = ‖v‖2 = 0, then Q+ = Q−, the above inequalities become equalities, and the statement
holds for all X ∈ Herm1(X ) (without restriction on Bloch vector length).

Proof. We first prove the special case statement when β = ‖v‖2 = 0. In this case,
Q± = α2

n
B. Recall that for any X ∈ Herm1(X ) with corresponding Bloch vector r, the

vectorization of X in the Bloch basis is given by

vec(A) =

√
1

n

 1

αr

 .

It is then clear by direct matrix multiplication that vec(X)TQvec(X) = rTQ±r without
any assumptions on r.

We now show the general case. Let X ∈ Herm1(X ) with Bloch vector r, and we assume
‖r‖2 = 1. Then

vec(X)TQvec(X) =
1

n

(
1 αrT

) β vT

v B

 1

αr


=

1

n
(β + 2αvT r + α2rTBr).

By the Cauchy-Schwarz inequality, |vT r| ≤ ‖v‖2‖r‖2, from which follows the following
string of inequalities:

−‖v‖2‖r‖2 ≤ −|vT r| ≤ vT r ≤ |vT r| ≤ ‖v‖2‖r‖2,

and thus

1

n
(β − 2α‖v‖2‖r‖2 + α2rTBr) ≤ vec(A)TQvec(A) ≤ 1

n
(β + 2α‖v‖2‖r‖2 + α2rTBr).
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By assumption, ‖r‖2 = 1, and so

1

n
(β ± 2α‖v‖2‖r‖2 + α2rTBr) =

1

n
(β‖r‖2

2 ± 2α‖v‖2‖r‖2
2 + α2rTBr)

= rTQ±r,

from which the desired inequalities follow.

Corollary B.1.1. Let Λ1,Λ2 ∈ C(X = Cn,Y = Cm), Γ1,Γ2 ∈ C(X ,Z = Ck), and
let their Bloch representations be denoted (MΛ1 , tΛ1), (MΛ2 , tΛ2), (MΓ1 , tΓ1) and (MΓ2 , tΓ2)
respectively. Define

A =
m− 1

m
(MΛ1 −MΛ2)

T (MΛ1 −MΛ2)−
k − 1

k
(MΓ1 −MΓ2)

T (MΓ1 −MΓ2)

+

(
m− 1

m
‖tΛ1 − tΛ2‖2

2 −
k − 1

k
‖tΓ1 − tΓ2‖2

2

− 2

∥∥∥∥m− 1

m
(MΛ1 −MΛ2)

T (tΛ1 − tΛ2)−
k − 1

k
(MΓ1 −MΓ2)

T (tΓ1 − tΓ2)

∥∥∥∥
2

)
1n2−1.

It holds that if A ≥ 0, then

‖Λ1(X)− Λ2(X)‖2 ≥ ‖Γ1(X)− Γ2(X)‖2

for all X ∈ Herm1(X ) satisfying ‖bvec(X)‖2 = 1. If both

m− 1

m
‖tΛ1 − tΛ2‖2

2 −
k − 1

k
‖tΓ1 − tΓ2‖2

2 = 0∥∥∥∥m− 1

m
(MΛ1 −MΛ2)

T (tΛ1 − tΛ2)−
k − 1

k
(MΓ1 −MΓ2)

T (tΓ1 − tΓ2)

∥∥∥∥
2

= 0,

then the result holds for all X ∈ Herm1(X ) without restrictions on the length of the Bloch
vector.

Proof. Let SE denote the matrix representation of the channel E . Let X ∈ Herm1(X ).
By applying the definition of the 2-norm in terms of the inner product, it is clear that
‖Λ1(X)− Λ2(X)‖2

2 ≥ ‖Γ1(X)− Γ2(X)‖2
2 is equivalent to vec(X)TQvec(X) ≥ 0, where

Q = (SΛ1 − SΛ2)
T (SΛ1 − SΛ2)− (SΓ1 − SΓ2)

T (SΓ1 − SΓ2).
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Now, write the matrix Q in the form of Proposition B.1.1 as

Q =

 β vT

v B

 .

By direct computation, we can find β, v and B.

(SΛ1 − SΛ2)
T (SΛ1 − SΛ2)

=

 0
√

n(m−1)
m

(tΛ1 − tΛ2)
T

0

√
n(m−1)
m(n−1)

(MΛ1 −MΛ2)
T


 0 0T√

n(m−1)
m

(tΛ1 − tΛ2)

√
n(m−1)
m(n−1)

(MΛ1 −MΛ2)


=

 n(m−1)
m
‖tΛ1 − tΛ2‖2

2
n(m−1)

m
√
n−1

(tΛ1 − tΛ2)
T (MΛ1 −MΛ2)

n(m−1)

m
√
n−1

(MΛ1 −MΛ2)
T (tΛ1 − tΛ2)

n(m−1)
m(n−1)

(MΛ1 −MΛ2)
T (MΛ1 −MΛ2)

 ,

and so, with a similar form for (SΓ1 − SΓ2)
T (SΓ1 − SΓ2), we see that the parameters of Q

are

β = n

(
m− 1

m
‖tΛ1 − tΛ2‖2

2 −
k − 1

k
‖tΓ1 − tΓ2‖2

2

)
v =

n√
n− 1

(
m− 1

m
(MΛ1 −MΛ2)

T (tΛ1 − tΛ2)−
k − 1

k
(MΓ1 −MΓ2)

T (tΓ1 − tΓ2)

)
B =

n

n− 1

(
m− 1

m
(MΛ1 −MΛ2)

T (MΛ1 −MΛ2)−
k − 1

k
(MΓ1 −MΓ2)

T (MΓ1 −MΓ2)

)
.

Plugging these expressions for β, v, and B into the expression for Q− in Proposition
B.1.1, reveals that A = Q− (where A is given in the statement of this corollary). Thus, by
Proposition B.1.1, vec(X)TQvec(X) ≥ bvec(X)TAbvec(X) if ‖bvec(X)‖2 = 1, and thus if
A ≥ 0, it follows that

‖Λ1(X)− Λ2(X)‖2
2 − ‖Γ1(X)− Γ2(X)‖2

2 = vec(X)TQvec(X) ≥ 0

for X ∈ Herm1(X) satisfying ‖bvec(X)‖2 = 1.

If β = ‖v‖2 = 0, then it holds for all X ∈ Herm1(X ), without restriction on the Bloch
vector length, that ‖Λ1(X) − Λ2(X)‖2

2 − ‖Γ1(X) − Γ2(X)‖2
2 = bvec(X)TAbvec(X), and

thus A ≥ 0 implies ‖Λ1(X)− Λ2(X)‖2 ≥ ‖Γ1(X)− Γ2(X)‖2 for all X ∈ Herm1(X ).
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B.2 Relating Norm Inequalities

Lemma B.2.1. Let A ∈ Herm(X ) such that Tr(A) = 0 and rank(A) ≤ 2. Then it holds

that ‖A‖p = 2
1
p
−1‖A‖1.

Proof. Tr(A) = 0 and rank(A) ≤ 2 implies that A has at most two non-zero eigenvalues of

equal magnitude and opposite sign {±λ}. Then, by definition, ‖A‖p = (2|λ|p)
1
p = 2

1
p |λ| =

2
1
p
−1‖A‖1.

Lemma B.2.2. Let A ∈ Herm(X ) and B ∈ Herm(Y) such that Tr(A) = Tr(B) = 0 and
rank(B) ≤ 2, and let p ≥ 1. Then if ‖A‖p ≥ ‖B‖p, it holds that ‖A‖1 ≥ ‖B‖1.

Proof. First we show that for any traceless Hermitian operator A, ‖A‖1 ≥ 2
1
p
−1‖A‖p. Let

P,Q ∈ Pos(X ) be two positive semi-definite operators such that A = P −Q and PQ = 0.
Then, Tr(A) = 0 means that ‖P‖1 = Tr(P ) = Tr(Q) = ‖Q‖1, and as PQ = 0, we have
that ‖A‖pp = ‖P‖pp + ‖Q‖pp. Thus

‖A‖pp = ‖P‖pp + ‖Q‖pp ≤ ‖P‖
p
1 + ‖Q‖p1 = 2‖P‖p1 = 2(

1

2
‖A‖1)p = 21−p‖A‖p1,

where the inequality follows from ‖X‖p ≤ ‖X‖1 for any operator X and p ≥ 1.

From Lemma B.2.1, by the assumptions on B, it follows that ‖B‖1 = 2
1
p
−1‖B‖p, and

thus it follows that ‖A‖1 ≥ 2
1
p
−1‖A‖p ≥ 2

1
p
−1‖B‖p = ‖B‖1.

B.3 Partial Ordering of Quantum Channels

We can now apply the statements of the previous sections to situations of interest regarding
quantum channels. These are the proofs to the Corollaries in Section 4.

Proof of Corollary 4.1.1. This is a straightforward application of Corollary B.1.1. In
the notation of that Corollary, make the associations Λ1 = Γ1 = 1L(X ) (which has Bloch
representation (1n2−1, 0)), and Λ2 = Λ, Γ2 = Γ, with corresponding Bloch representations
(MΛ, tΛ) and (MΓ, tΓ). The conditions of this Corollary can be obtained by plugging these
Bloch representations into the conditions in Corollary B.1.1 (and removing dimensional
factors), to obtain the desired result.
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Proof of Corollary 4.1.2. If Λ ≥∗p Γ, then for any pure ρ ∈ D(X ), ‖ρ − Λ(ρ)‖p ≥
‖ρ − Γ(ρ)‖p. By the assumption that rank(ρ − Γ(ρ)) ≤ 2 for all pure states ρ, and by
the fact that ρ− Γ(ρ) ∈ Herm(X ) and Tr(ρ− Γ(ρ)) = 0, Lemma B.2.2 then gives us that
‖ρ− Λ(ρ)‖1 ≥ ‖ρ− Γ(ρ)‖1 for all pure ρ, ie. Λ ≥∗1 Γ.

Proof of Corollary 4.1.3. By Lemma B.2.1, for any ρ1, ρ2 ∈ D(X ), ‖ρ1−ρ2‖q = 2
1
q
− 1
p‖ρ1−

ρ2‖p, thus any inequality on differences of qubit states with the Schatten q-norm can be
converted into one of the Schatten p-norm.

Before proving Corollary 4.1.4, we first prove the following proposition.

Proposition B.3.1. Let Λ,Γ ∈ C(X ), p ≥ 1, A ∈ L(X ,X ⊗ Z) be a Stinespring repre-
sentation of Γ for some space Z, and u ∈ Z an arbitrary unit vector. Define the maps
Γ1,Γ2 ∈ C(X ,X ⊗ Z) as Γ1(X) = X ⊗ uu† and Γ2(X) = AXA† for X ∈ L(X ). If

‖ρ− Λ(ρ)‖p ≥ ‖Γ1(ρ)− Γ2(ρ)‖p

for all pure states ρ ∈ D(X ), it follows that Λ ≥∗1 Γ and Γ ≥∗F Λ.

Proof. The important thing to note is that both Γ1 and Γ2 map pure states in D(X ) to pure
states in D(X⊗Z). Thus, for any pure state ρ ∈ D(X ), it follows that rank(Γ1(ρ)−Γ2(ρ)) ≤
2, and we can then apply Lemma B.2.2 to conclude that ‖ρ − Λ(ρ)‖1 ≥ ‖Γ1(ρ) − Γ2(ρ)‖1

for all pure states ρ ∈ D(X ). From the fact that ‖ · ‖1 is non-increasing under partial trace
(‖A‖1 ≥ ‖TrZ(A)‖1 for all A ∈ L(X ⊗ Z)), it follows that Λ ≥∗1 Γ.

To get that Γ ≥∗F Λ, we need one of the Fuchs-van de Graaf inequalities, F (ρ1, ρ2) ≤√
1− 1

4
‖ρ1 − ρ2‖2

1, that there is equality if ρ1, ρ2 are pure, and Uhlmann’s Theorem, which

in particular implies that F (ρ1, ρ2) ≥ F (u1u
†
1, u2u

†
2) for any purifications u1 and u2 of ρ1

and ρ2 respectively. The first two facts (along with the preceding part of the proof) give
that, for any pure state ρ ∈ D(X ),

F (Λ(ρ), ρ) ≤
√

1− 1

4
‖ρ− Λ(ρ)‖2

1 ≤
√

1− 1

4
‖Γ1(ρ)− Γ2(ρ)‖2

1 = F (Γ1(ρ),Γ2(ρ)).

As Γ1(ρ) and Γ2(ρ) are purifications of ρ and Γ(ρ) respectively, it follows that F (Γ1(ρ),Γ2(ρ)) ≤
F (ρ,Γ(ρ)), and therefore, as ρ was an arbitrary pure state, it follows that Γ ≥∗F Λ.

Proof of Corollary 4.1.4. By Corollary B.1.1, if B ≥ 0, then ‖ρ − Λ(ρ)‖2 ≥ ‖Γ1(ρ) −
Γ2(ρ)‖2 for all pure ρ ∈ D(X ). By Proposition B.3.1, the result follows.
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Appendix C

Sampled Estimation of Parameters

This appendix gives a brief analysis of how accurately the hedging parameters for honest
approximations, defined in Section 4.3, are estimated by sampling N = 106 points (a
number which is used throughout this thesis). Recall, for two channels Λ,Γ ∈ C(X ), and
a state ρ ∈ D(X ) we defined the hedging of Λ with respect to Γ for the state ρ as:

h(Λ,Γ, ρ) = ‖ρ− Λ(ρ)‖1 − ‖ρ− Γ(ρ)‖1. (C.1)

We are interested in two quantities: the average of h over all pure states, which we denote
h̄(Λ,Γ), and the probability that any given pure state produces negative hedging, which
we denote pviol.

More formally, h̄(Λ,Γ) is the mean of the random variable H ≡ h(Λ,Γ, |ψ〉 〈ψ|), where
|ψ〉 a random variable distributed according to the uniform measure on states (induced
by the Haar measure), and pviol is the probability, p = Prob(P = 1), where P is defined
as the random variable P ≡ f (h(Λ,Γ, |ψ〉 〈ψ|))), where f(x) = 1 if x < 0 and f(x) = 0
if x ≥ 0 (ie. the function which indicates if its argument is negative), and |ψ〉 is again
distributed uniformly (note that p is also the expectation value of P ). By naive application
of Chebyshev’s inequality, we can see that uniformly sampling N = 106 pure states provides
good estimates for these quantities.

Recall, Chebyshev’s inequality gives that, for a random variable X with mean µ and
variance σ2, the probability that the average of N independent realizations of X, X̄,
deviates from the mean by more than a > 0 is bounded by

Prob
(
|X̄ − µ| ≥ a

)
≤ σ2

Na2
. (C.2)
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By applying the definition of H, we can compute a very loose upper bound on its variance,
σ2
H (with its mean denoted µH):

σ2
H = E[H2]− µ2

H (C.3)

≤ E[H2] (C.4)

=

∫
dψh(Λ,Γ, |ψ〉 〈ψ|)2 (C.5)

=

∫
dψ (‖|ψ〉 〈ψ| − Λ(|ψ〉 〈ψ|)‖1 − ‖|ψ〉 〈ψ| − Γ(|ψ〉 〈ψ|)‖1)2 (C.6)

≤
∫
dψ ‖Λ(|ψ〉 〈ψ|)− Γ(|ψ〉 〈ψ|)‖2

1 (C.7)

≤
∫
dψ ‖Λ− Γ‖2

� (C.8)

= ‖Λ− Γ‖2
� , (C.9)

where the second last inequality follows from the triangle inequality, the last inequality
from the definition of ‖ · ‖� (see Section 3), and the last equality by

∫
dψ = 1. Note that

this is likely a very poor bound on σ2
H , but it will be sufficient for our purposes.

Thus, for H̄ = 1
N

(H1 + ...+HN), where Hi is independently drawn according to H, for
any a > 0,

Prob
(
|H̄ − µH | ≥ a

)
≤ ‖Λ− Γ‖2

�
Na2

. (C.10)

Letting a = 10−2‖Λ− Γ‖� and N = 106, we arrive at the expression:

Prob
(
|H̄ − µH | ≥ 10−2‖Λ− Γ‖�

)
≤ 10−2. (C.11)

In other words, there is at most a 1% chance that our estimate of µH differs from the
true value by more than 10−2‖Λ − Γ‖�. In the vast majority of cases within this thesis,
the computed value of h̄ is on the same order of magnitude as ‖Λ − Γ‖�, and as such,
in these cases, it is unlikely that our estimate of µH deviates from the true value in any
significant way. In a few cases, the estimate of µH is on the same order of magnitude as
10−2‖Λ− Γ‖�, and some are as low as 10−4‖Λ− Γ‖�. In the former case, our bound gives
a good chance that we have the first significant digit right (ie. a good order-of-magnitude
estimate) and in the latter case, our bound isn’t of much use. Nevertheless, given that this
bound was derived in an incredibly loose way, and given that, in these cases, the hedging
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is so small as to be considered negligible, we can conclude that the estimates still provide
good qualitative insight.1

To examine our computation of pviol, note again that we’re trying to estimate p =
Prob(P = 1) = E[P ]. In such a case, σ2

P = E [(P − p)2] = (1−p)2p+(0−p)2(1−p) ≤ 1/4.
Thus, applying Chebyshev’s inequality gives that, for P̄ = 1

N
(P1 + ...+ PN), where Pi are

independent realizations of P ,

Prob(|P̄ − µP | ≥ 10−2) ≤ (1/4)× 10−2, (C.12)

when N = 106 samples are used. In other words, our computed values of pviol have less
than a 0.25% chance of being off from the true value by more than 1%, which is more than
acceptable for our purposes.

1The most important estimates of this parameter are given in Table 5.2 in Section 5.5, where we test
how well our approximations represent circuit performance. The average hedging is the same order of
magnitude as the diamond norm in all but two cases – both for Pauli twirled approximations. In one case
it is one order of magnitude smaller, and thus our computed value is still very good. In the other case, it is
three orders of magnitude smaller, and thus there is, roughly, at most a 10% that our computed quantity
differs in the most significant digit. Again, given that our bounds on this probability are derived naively
and very loosely, we are confident that this is an accurate estimate.
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Appendix D

Gate Statistics
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Table D.1: Statistics for the various approximations of the gates in GS1, approximated
from N = 106 random pure states.

GS1

Gate/Statistics Original Pauli twirled Pauli Clifford

1

χ00 0.999994 0.999994 0.997618 0.998314
‖Λ− UIdeal‖� 4.76× 10−3 1.20× 10−5 4.76× 10−3 4.77× 10−3

‖Λ− ΛOriginal‖� 4.76× 10−3 6.73× 10−3 3.64× 10−3

h −3.73× 10−3 1.14× 10−7 1.64× 10−6

pviol 1. 0. 0.

X

χ00 0.996147 0.996147 0.991234 0.994179
‖Λ− UIdeal‖� 1.51× 10−2 7.71× 10−3 1.75× 10−2 1.59× 10−2

‖Λ− ΛOriginal‖� 1.29× 10−2 1.67× 10−2 4.58× 10−3

h −5.76× 10−3 1.12× 10−3 3.90× 10−4

pviol 0.99892 0. 0.

Y

χ00 0.998330 0.998330 0.992021 0.994711
‖Λ− UIdeal‖� 1.35× 10−2 3.34× 10−3 1.60× 10−2 1.43× 10−2

‖Λ− ΛOriginal‖� 1.30× 10−2 1.86× 10−2 8.15× 10−3

h −7.96× 10−3 9.94× 10−4 3.09× 10−4

pviol 0.99953 0. 0.

Z

χ00 0.995289 0.995289 0.992055 0.993663
‖Λ− UIdeal‖� 1.06× 10−2 9.42× 10−3 1.59× 10−2 1.31× 10−2

‖Λ− ΛOriginal‖� 4.59× 10−3 7.68× 10−3 3.46× 10−3

h −5.71× 10−4 3.01× 10−3 1.29× 10−3

pviol 0.60369 0. 0.

H

χ00 0.997642 0.997642 0.991031 0.993638
‖Λ− UIdeal‖� 1.35× 10−2 4.72× 10−3 1.79× 10−2 1.54× 10−2

‖Λ− ΛOriginal‖� 1.27× 10−2 1.85× 10−2 8.83× 10−3

h −6.42× 10−3 2.51× 10−3 1.10× 10−3

pviol 1. 0. 0.

cnot

χ00 0.993152 0.993152 0.976600 0.976600
‖Λ− UIdeal‖� 3.09× 10−2 1.37× 10−2 4.68× 10−2 4.68× 10−2

‖Λ− ΛOriginal‖� 2.82× 10−2 4.52× 10−2 4.52× 10−2

h −1.17× 10−2 1.52× 10−2 1.52× 10−2

pviol 1. 0. 0.
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Table D.2: Statistics for the various approximations of the gates in GS2, approximated
from N = 106 random pure states.

GS2

Gate/Statistics Original Pauli twirled Pauli Clifford

1

χ00 0.999087 0.999087 0.999085 0.999086
‖Λ− UIdeal‖� 1.83× 10−3 1.83× 10−3 1.83× 10−3 1.83× 10−3

‖Λ− ΛOriginal‖� 2.48× 10−5 2.50× 10−5 2.06× 10−6

h −1.63× 10−7 2.65× 10−6 8.34× 10−7

pviol 0.49861 0. 0.

X

χ00 0.999074 0.999074 0.998972 0.999029
‖Λ− UIdeal‖� 1.91× 10−3 1.85× 10−3 2.06× 10−3 2.00× 10−3

‖Λ− ΛOriginal‖� 4.38× 10−4 4.85× 10−4 1.16× 10−4

h −4.04× 10−5 9.61× 10−5 6.12× 10−5

pviol 0.7897 0. 0.

Y

χ00 0.999075 0.999075 0.998990 0.999033
‖Λ− UIdeal‖� 1.91× 10−3 1.85× 10−3 2.02× 10−3 1.99× 10−3

‖Λ− ΛOriginal‖� 4.32× 10−4 4.72× 10−4 1.03× 10−4

h −4.02× 10−5 7.32× 10−5 5.58× 10−5

pviol 0.8674 0. 0.

Z

χ00 0.999023 0.999023 0.998869 0.998901
‖Λ− UIdeal‖� 1.97× 10−3 1.95× 10−3 2.26× 10−3 2.21× 10−3

‖Λ− ΛOriginal‖� 2.67× 10−4 4.27× 10−4 3.33× 10−4

h −1.37× 10−5 1.87× 10−4 1.52× 10−4

pviol 0.61392 0. 0.

H

χ00 0.999060 0.999060 0.998684 0.998878
‖Λ− UIdeal‖� 2.33× 10−3 1.88× 10−3 2.63× 10−3 2.53× 10−3

‖Λ− ΛOriginal‖� 1.25× 10−3 1.45× 10−3 4.35× 10−4

h −3.05× 10−4 1.98× 10−4 1.32× 10−4

pviol 1. 0. 0.

cnot

χ00 0.998071 0.998071 0.997683 0.997683
‖Λ− UIdeal‖� 3.99× 10−3 3.86× 10−3 4.63× 10−3 4.63× 10−3

‖Λ− ΛOriginal‖� 1.01× 10−3 1.33× 10−3 1.33× 10−3

h −7.38× 10−5 5.44× 10−4 5.44× 10−4

pviol 0.76905 0. 0.
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Table D.3: Statistics for the various approximations of the gates in GS3, approximated
from N = 106 random pure states.

GS3

Gate/Statistics Original Pauli twirled Pauli Clifford

1

χ00 0.998751 0.998751 0.996501 0.996501
‖Λ− UIdeal‖� 4.99× 10−3 2.50× 10−3 7.00× 10−3 7.00× 10−3

‖Λ− ΛOriginal‖� 2.50× 10−3 5.28× 10−3 5.28× 10−3

h −1.03× 10−3 1.91× 10−3 1.91× 10−3

pviol 0.74978 0. 0.

X

χ00 0.998751 0.998751 0.997447 0.997674
‖Λ− UIdeal‖� 3.17× 10−3 2.50× 10−3 5.11× 10−3 4.65× 10−3

‖Λ− ΛOriginal‖� 1.37× 10−3 3.12× 10−3 2.75× 10−3

h −3.64× 10−4 1.39× 10−3 1.06× 10−3

pviol 0.69216 0. 0.

Y

χ00 0.998751 0.998751 0.997669 0.997669
‖Λ− UIdeal‖� 3.17× 10−3 2.50× 10−3 4.66× 10−3 4.66× 10−3

‖Λ− ΛOriginal‖� 1.38× 10−3 2.76× 10−3 2.76× 10−3

h −3.63× 10−4 1.06× 10−3 1.06× 10−3

pviol 0.69113 0. 0.

Z

χ00 0.998751 0.998751 0.996501 0.996501
‖Λ− UIdeal‖� 4.99× 10−3 2.50× 10−3 7.00× 10−3 7.00× 10−3

‖Λ− ΛOriginal‖� 2.50× 10−3 5.28× 10−3 5.28× 10−3

h −1.03× 10−3 1.92× 10−3 1.91× 10−3

pviol 0.75055 0. 0.

H

χ00 0.998751 0.998751 0.996883 0.996940
‖Λ− UIdeal‖� 4.31× 10−3 2.50× 10−3 6.23× 10−3 6.12× 10−3

‖Λ− ΛOriginal‖� 2.27× 10−3 4.43× 10−3 4.36× 10−3

h −7.92× 10−4 1.68× 10−3 1.60× 10−3

pviol 0.74018 0. 0.

cnot

χ00 0.997441 0.997441 0.981266 0.981266
‖Λ− UIdeal‖� 1.98× 10−2 5.12× 10−3 3.75× 10−2 3.75× 10−2

‖Λ− ΛOriginal‖� 1.83× 10−2 3.90× 10−2 3.90× 10−2

h −1.15× 10−2 1.48× 10−2 1.48× 10−2

pviol 0.99988 0. 0.
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Appendix E

Physical Models and Gate Protocol
Details

This is a reproduction of Appendix B from [12]. It should be considered technically separate
from this thesis, and is only included for completeness.

This appendix describes the physical models, noise refocusing techniques, and the subse-
quent gate sets generated from these. It is assumed that the density matrix ρ(t) describing
a physical system evolves according to

∂

∂t
ρ(t) = −i[H(t), ρ(t)] +

∑
i

(
Liρ(t)L†i −

1

2
{L†iLi, ρ(t)}

)
, (E.1)

where H(t) is the Hamiltonian for the system and {Li} is a set of Lindblad operators
generating non-unitary dynamics [42, 43, 44]. A physical model must specify all determin-
istic and stochastic Hamiltonians (both internal, and control), and specify any Lindblad
operators that the system is subject to.

E.1 Physical Model 1

Physical Model 1 is motivated by a double quantum dot physical system. A double quan-
tum dot is a pair of electrons contained in a double potential well. The spatial and spin
states of the electrons encode logical states |0〉 and |1〉,

|0〉 = |ΦT
11〉 ⊗ (|↑↓〉+ |↓↑〉) /

√
2 (E.2)

|1〉 =
(
a |ΦS

11〉+ b |ΦS
02〉
)
⊗ (|↑↓〉 − |↓↑〉) /

√
2, (E.3)
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where |ΦS
11〉 and |ΦT

11〉 are symmetric and anti-symmetric spatial states with one electron
in each of the potential wells, and |ΦS

02〉 is a symmetric spatial state having two electrons
in one particular well.

The electron state can be controlled by varying the voltage detuning B(t) and Zeeman
splitting difference A(t), described below.

• Voltage detuning introduces a potential energy difference B between the quantum
wells. B > 0 favours the |ΦS

02〉 spatial state over |ΦS
11〉 and |ΦT

11〉, because |ΦS
02〉 allows

for both electrons to minimize their potential energy. The parameters a and b in
Equation (E.3) are therefore B-dependent and given by Fermi-Dirac statistics [45]
such that the probability p11 = |a|2 of having an electron with potential energy B is
given by p11 = 1

1+eB/B1−B2
, whereby

a(B) =

√
1

1 + eB/B1−B2

b(B) =

√
1

1 + e−(B/B1−B2)
.

The detuning Hamiltonian H(B) is diagonal in the spatial states {|ΦS
11〉 , |ΦT

11〉 , |ΦS
02〉}

and takes a form

H(B) = B
(
|ΦS

11〉 〈ΦS
11|+ |ΦT

11〉 〈ΦT
11|
)

+B0 |ΦS
02〉 〈ΦS

02| , (E.4)

where B0 is the energy eigenvalue of |Φ02〉 at zero detuning. Up to a constant identity
contribution, this yields the following Hamiltonian for logical states

H(B) =

(
〈0|H(B) |0〉 〈0|H(B) |1〉
〈1|H(B) |0〉 〈1|H(B) |1〉

)
=

1

2

(
|b|2(B −B0) 0

0 −|b|2(B −B0)

)
.

• Zeeman splitting is related to the energy difference between electron spin-up and
spin-down states in the presence of an external magnetic field. A magnetic field gra-
dient across the potential wells introduces an energy splitting A between |Φ11〉⊗ |↑↓〉
and |Φ11〉 ⊗ |↓↑〉, where |Φ11〉 = |ΦS

11〉+ |ΦT
11〉, leading to a Hamiltonian

H(A) = A
2

(|Φ11〉 〈Φ11| ⊗ |↑↓〉 〈↑↓| − |Φ11〉 〈Φ11| ⊗ |↓↑〉 〈↓↑|). The resulting matrix
H(A) in the logical basis is

H(A) =

(
〈0|H(A) |0〉 〈0|H(A) |1〉
〈1|H(A) |0〉 〈1|H(A) |1〉

)
=

1

2

(
0 aA
a∗A 0

)
.
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Substituting the parameters a(B) and b(B) into the above expressions and summing
them results in the effective logical single qubit Hamiltonian

H(t) =
1

2

A(t) + α(t)√
1 + exp

(
B(t)
B1
−B2

)X +
1

2

B(t)−B0 + β(t)

1 + exp
[
−
(
B(t)
B1
−B2

)]Z, (E.5)

where the parameters α(t) and β(t) encapsulate the stochastic behaviour of the parameters
A(t) and B(t). As the logical state |0〉 corresponds to the ground state of the physical
Hamiltonian at zero detuning (B = 0) and in zero magnetic field gradient (A = 0), we
make an assumption that relaxation acts on the logical state simply as a Lindblad operator
L = 1

2
√
T1

(X + iY ).

The parameters A(t), B(t), Bi for i ∈ {0, 1, 2}, and T1, define the deterministic evolu-
tion of the system, with the first two representing the single-qubit controls and the latter
being the T1 time-constant of the system. Both control scalars are specified for inter-
vals of length δt, over which the controls remain constant, whereas the rate of change

of these control scalars between adjacent intervals is bounded with
∣∣∣dA(t)

dt

∣∣∣ ≤ ∆Amax and∣∣∣dB(t)
dt

∣∣∣ ≤ ∆Bmax. Additionally, the controls are bounded by some maximum value; that is

|A(t)| ≤ Amax and 0 ≤ B(t) ≤ Bmax for some Amax, Bmax ≥ 0.

The parameters specified by α and β are independent, zero-mean, stationary Gaussian
processes [46], such that 〈α(t)〉 = 〈β(t)〉 = 0 and 〈α(t1)β(t2)〉 = 0. The auto-correlation
functions are given by

〈α(t1)α(t2)〉 = Γ2
α1
δ(|t1 − t2|) + Γ2

α2
e
−
(
|t1−t2|
τ1

)2
+
(
|t1−t2|
τ2

)4
−
(
|t1−t2|
τ3

)6

〈β(t1)β(t2)〉 = Γ2
β1

+ Γ2
β2
δ(|t1 − t2|),

(E.6)

where δ(t) is the Dirac delta function. Parameters labelled with the letter Γ represent the
noise strengths, and those labelled with τ represent various correlation times.

The Hamiltonian for simulating two-qubit gates is given by

H(t) = H(1)(t)⊗ 1 + 1⊗H(2)(t) +Hzz(t)

Hzz(t) =
1

4

C(t)(1 + γ(t))(
1 + exp

[
−
(
B(1)(t)
B1
−B2

)]) × Z ⊗ Z − Z ⊗ 1− 1⊗ Z(
1 + exp

[
−
(
B(2)(t)
B1
−B2

)]) ,
with two Lindblad operators L1 = 1

2
√
T1

(X + iY ) ⊗ 1 and L2 = 1
2
√
T1
1 ⊗ (X + iY ). Any

parameters or Hamiltonians denoted by superscript (i) mark either the first (i = 1) or
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the second (i = 2) qubit, and are identical to the Hamiltonian in line (E.5). The stochas-
tic parts for single-qubit Hamiltonians on different qubits are taken to be independent.
The two-qubit control parameter C(t) can only take two values, C(t) ∈ {0, Cmax}, and
the noise parameter γ(t) is an independent zero-mean stationary Gaussian process with
autocorrelation function

〈γ(t1)γ(t2)〉 = Γ2
γδ(|t1 − t2|). (E.7)

E.2 Physical Model 2

Physical Model 2 is an archetypal two level system. For a single qubit, the Hamiltonian is
given by

H(t) =
1

2
[B(t)(1 + β1(t)) + β2(t)]Z +

1

2
A(t)(1 + α(t)) [cos(φ(t))X + sin(φ(t))Y ] , (E.8)

with the only Lindblad operator given by L = 1
2
√
T1

(X + iY ).

The parameters A(t), B(t), φ(t), and T1, define the deterministic evolution of the
system, with the first three representing the single-qubit controls. Every control value is
specified for intervals of length δt, over which the controls remain constant. Each control
scalar is bounded by some maximum value; that is |A(t)| ≤ Amax and |B(t)| ≤ Bmax for
some Amax, Bmax ≥ 0, but is not limited by any control rates.

The parameters specified using the letters α and β are all stationary Gaussian processes.
All are zero-mean and independent. That is, 〈α(t)〉 = 〈βi(t)〉 = 0 for i = 1, 2, and
〈α(t1)βi(t2)〉 = 〈β1(t1)β2(t2)〉 = 0 for i = 1, 2. The auto-correlation functions are given as

〈α(t1)α(t2)〉 = Γ2
α g1/f (Λ

(l)
α ,Λ

(u)
α , |t1 − t2|) (E.9)

〈β1(t1)β1(t2)〉 = Γ2
β1
g1/f (Λ

(l)
β1
,Λ

(u)
β1
, |t1 − t2|) (E.10)

〈β2(t1)β2(t2)〉 = Γ2
β2
g1/f (Λ

(l)
β2
,Λ

(u)
β2
, |t1 − t2|), (E.11)

where the parameters labelled with the letter Γ are the noise strengths and those labelled
with Λ represent upper and lower cutoffs for 1/f noise. The autocorrelation function g1/f

for 1/f noise is defined as the Fourier transform of 1/f spectral density with smooth cutoffs
[47]

g1/f (Λ1,Λ2,∆t) =

∫ ∞
−∞

2

πω

(
arctan

(
ω

Λ1

)
− arctan

(
ω

Λ2

))
e−iω∆t dω. (E.12)
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Notice that lim
Λ1→0,Λ2→∞

2
πω

(
arctan

(
ω
Λ1

)
− arctan

(
ω
Λ2

))
= 1
|ω| .

The two-qubit Hamiltonian for this model is given by

H(t) = H(1)(t)⊗ 1 + 1⊗H(2)(t) +Hzz(t)

Hzz(t) = −1

2
C(t)(1 + γ(t))Z ⊗ Z,

(E.13)

with two Lindblad operators L1 = 1
2
√
T1

(X + iY )⊗ 1 and L2 = 1
2
√
T1
1⊗ (X + iY ).

Single-qubit Hamiltonians denoted by H(i) acting either on the first (i = 1) or the
second (i = 2) qubit have identical parameters to the Hamiltonian in Equation (E.8),
and stochastic parts for single-qubit Hamiltonians are taken to be independent. The two-
qubit control parameter C(t) is bounded in its maximum value |C(t)| ≤ Cmax, but is
otherwise unconstrained. γ(t) is an independent zero-mean stationary Gaussian process,
its autocorrelation function being given by

〈γ(t1)γ(t2)〉 = Γ2
γ g1/f (Λ

(l)
γ ,Λ

(u)
γ , |t1 − t2|). (E.14)

E.3 XY Sequence Gate Protocol

Suppose we have a dynamical decoupling sequence which is given as a list of unitary
operations {Ai}, i = 1, ..., N , where i denotes the temporal order of these operations. We
demand that

AN ... A2A1 = eiφ 1, (E.15)

where eiφ is an arbitrary global phase. If we want to spread a unitary gate U across the
sequence {Ai}, we first find

U1 = A1U
1/NA−1

1 (E.16)

U2 = A2A1U
1/NA−1

1 A−1
2 (E.17)

... (E.18)

UN = AN ... A2A1U
1/NA−1

1 A−1
2 ... A−1

N , (E.19)

where
(
U1/N

)N
= U , and then implement the sequence A1, U1, A2, U2,..., AN , UN resulting

in UNAN ... U2A2U1A1 = eiφU , which follows from direct substitution and Equation (E.15).
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E.3.1 XY8 sequence

The XY8 sequence [30] is an 8-unitary decoupling sequence where, following the notation
above, A1 = A3 = A6 = A8 = X and A2 = A4 = A5 = A7 = Y . In the limit of perfect
control and infinitesimally short (delta) pulses, the sequence refocuses noise along any
direction that varies slower than the sequence is implemented. To implement a unitary
gate U within the sequence, we split it into 8 parts,

U1 = U7 = XU
1
8X, U2 = U6 = Y XU

1
8XY,

U3 = U5 = XYXU
1
8XYX, U4 = U8 = U

1
8 ,

(E.20)

where we simplify the expression using XYXY = Y XY X = −1, and the fact that the
global phase of the desired unitary is irrelevant.

E.3.2 XY4 sequence

The XY4 sequence [31] is a 4-unitary decoupling sequence where, following the notation
above, A1 = A3 = X and A2 = A4 = Y . Like the XY8 sequence, the XY4 sequence
refocuses noise along any direction that varies slower than the sequence is implemented,
given that the pulses are ideal and infinitesimally short. We spread a unitary gate U across
the sequence by breaking it into four parts,

U1 = XU
1
4X, U2 = Y XU

1
4XY,

U3 = XYXU
1
4XYX, U4 = U

1
4 .

(E.21)

E.4 Gate Sets

Gate Set 1 (GS1) is built on Physical Model 1 using the parameters in Table E.1. This gate
set was built from an XY8 pulse sequence [30], with single-qubit gates being implemented
within this sequence according to the XY sequence gate protocol. Each pulse piece in the
sequence was found via the GRAPE algorithm [32, 33] with control constraints from Table
E.1 incorporated into the algorithm. All gates are 199.2 ns long and the discretization step
for cumulant simulations was chosen to be 0.1 ns.

Gate set 2 (GS2) is built on Physical Model 2 using the parameters in Table E.2. This
gate set was built from an XY4 pulse sequence [31], again, with single-qubit gates being
implemented within this sequence according to the XY sequence gate protocol. All pulse
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Table E.1: Parameters used for Physical Model 1, Gate Set 1.

Control
Value

Noise
Value

Parameter Parameter

B0 1.5193× 1013 Hz T1 1 s
B1 1.5193× 1011 Hz Γα1 4.804 Hz
B2 120 Γα2 1.519× 108 Hz
Amax 3.798× 108 Hz τ1 10−2 s
Bmax 3.0385× 1013 Hz τ2 10−3 s
∆Amax 0.7596× 1018 Hz / s τ3 10−4 s
∆Bmax 1.215× 1023 Hz / s Γβ1 1.519× 109 Hz
Cmax 8.73568× 1012 Hz Γβ2 4.804× 106 Hz
δt 10−10 s Γγ 103 Hz

pieces are performed using hard pulses. All gates are 168 ns long and the discretization
step for cumulant simulations was chosen to be 0.25 ns1.

Gate set 3 (GS3) is also built on Physical Model 2, but uses the noise parameters in
Table E.3 to provide variety in the resultant gate errors. No refocusing pulse sequences
are used; all gates are generated from simple hard pulses. All gates are 25 ns long and the
discretization step for cumulant simulations was chosen to be 0.1 ns.

For each gate set, the two-qubit cnot gate is implemented using the identity

(−1)
3
4Ucnot = ei

π
2
1⊗X

2 e−i
π
2
1⊗Y

2 e−iπ
Z⊗Z

4 ei
π
2
1⊗Y

2 ei
π
2
Z
2
⊗1. (E.22)

For GS1 and GS2, as for single-qubit gates, the gate is broken into parts that are inter-
spersed into their respective XY sequences. In this case however, the first two single-qubit
rotations are done during the first half of the XY sequence, and the last two single-qubit
rotations are done during the second half of the XY sequence, in a way similar to the
single-qubit gates. The two-qubit coupling operation is implemented in the middle of the
XY sequence. For GS3, the cnot gate is implemented according to the above identity,
using hard pulses.

See Appendix F.1 for details on the procedure used to simulate the gates.

1As GS2 uses hard pulses, the cumulant simulation can be discretized more coarsely, as the pulse
amplitudes and phases remain constant for longer periods of time. The same can be said for GS3, though
given that the gates are so short, a smaller time step was used anyway.
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Table E.2: Parameters used for Physical Model 2, Gate Set 2

Control
Value

Noise
Value

Parameter Parameter

Amax 2π × 108 Hz T1 10−4 s
Bmax 2π × 109 Hz Γα 3× 104 Hz
Cmax 2π × 108 Hz Γβ1 3× 104 Hz
δt 10−9 s Γβ2 106/2π Hz

Λ
(l)
α 1/2π Hz

Λ
(u)
α 109 Hz

Λ
(l)
β1

1/2π Hz

Λ
(u)
β1

109 Hz

Λ
(l)
β2

1/2π Hz

Λ
(u)
β2

109 Hz

Γγ 1.2× 103/2π Hz

Λ
(l)
γ 1/2π Hz

Λ
(u)
γ 109 Hz
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Table E.3: Parameters used for Physical Model 2, Gate Set 3

Control
Value

Noise
Value

Parameter Parameter

Amax 2π × 108 Hz T1 10−5 s
Bmax 2π × 109 Hz Γα 0 Hz
Cmax 2π × 108 Hz Γβ1 104 Hz
δt 10−9 s Γβ2 104 Hz

Λ
(l)
α 1/2π Hz

Λ
(u)
α 109 Hz

Λ
(l)
β1

1/2π Hz

Λ
(u)
β1

109 Hz

Λ
(l)
β2

1/2π Hz

Λ
(u)
β2

109 Hz

Γγ 1.2× 103/2π Hz

Λ
(l)
γ 1/2π Hz

Λ
(u)
γ 109 Hz
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Appendix F

Methods

Note, the content of this Appendix is reproduced from Appendix A of [12]. It should be
considered technically separate from this thesis, and is only included for completeness.

F.1 Cumulant Simulation

To simulate quantum logic gates using our noise models, a method for the simulation
of stochastic quantum evolution is required. This has been considered in the context of
analyzing the fidelity with which decoherence-free subsystems can be implemented [48]. In
that case, the cumulant expansion [49, 50, 51] was applied to model the effects of stochastic
dynamics on a quantum system.

Following that approach, we will consider that, conditioned on a particular realization
of noise, our system evolves according to the Liouville-von Neumann equation

∂

∂t
ρ(t) = −i[H(t), ρ(t)] +D[ρ(t)], (F.1)

where ρ(t) is the density operator describing our system at time t, H is the Hamiltonian
of the system, and where D ∈ T(H) is a linear transformation describing the decoherence
of the system. We assume that H(t) can be decomposed into deterministic and stochastic
parts,

H(t) = Hdet(t) +Hst(t). (F.2)
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We then further decompose Hst(t) such that all of the stochasticity is encapsulated in a
set of scalar-valued functions {ω1(t), . . . , ωk(t)}. Thus,

Hst(t) =
∑
i

ωi(t)Ai(t) (F.3)

for some set of deterministic operator-valued functions {Ai(t)}.
To analyze the dissipation transformation D, we assume that it can be written in

Lindblad form,

D[ρ(t)] =
∑
i

Liρ(t)L†i −
1

2
{L†iLi, ρ(t)}, (F.4)

where {Li} are called the Lindblad operators of the system.

Both the Liouvillian operator L[ρ(t)] ≡ [H, ρ(t)] and the dissipation operator D act
linearly on density operators, and thus may be represented by superoperators L̂, D̂ ∈
L(L(H)), where L(H) marks the set of all linear operators acting on Hilbert space H.
Using the isomorphism that L(H) ∼= H ⊗ H, we shall use the column-stacking basis for
H⊗H, such that ||i〉 〈j|〉〉 = |j〉 ⊗ |i〉. Therefore one can rewrite Equation (F.1) as

∂

∂t
|ρ(t)〉〉 =

(
−i[L̂det(t) + L̂st(t)] + D̂

)
|ρ(t)〉〉. (F.5)

Now we go to the rotating frame of the deterministic superoperator L̂det(t), i.e. we define

a unitary U(t) = T exp
(
−i
∫ t

0
L̂det(t

′)dt′
)

such that

∂

∂t
|ρ̃(t)〉〉 =

(
−i U †(t)L̂st(t)U(t) + U †(t)D̂U(t)

)
|ρ̃(t)〉〉, (F.6)

where |ρ̃(t)〉〉 = U †(t) |ρ(t)〉〉.
The formal solution to Equation (F.6), then, for a single realization of the trajectories

{ω(t)} is given by

|ρ̃(t)〉〉 = T exp

(
−i
∫ t

0

Ĝ(t′)dt′
)
|ρ(0)〉〉, (F.7)

with Ĝ(t) ≡ U †(t)L̂st(t)U(t) + i U †(t)D̂U(t).

For our purposes, we are interested in the average evolution Ŝ over the ensemble of
control trajectories,

Ŝ(t) =

〈
T exp

(
−i
∫ t

0

Ĝ(t′)dt′
)〉

. (F.8)
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The cumulant expansion gives us that Ŝ(t) = exp(K̂(t)), where

K̂(t) =
∞∑
n=1

(−it)n

n!
Kn = −itK̂1 −

t2

2
K̂2 + · · · , (F.9)

K̂1 =
1

t

∫ t

0

dt1

〈
Ĝ(t1)

〉
, (F.10)

K̂2 =
1

t2
T

∫ t

0

dt1

∫ t

0

dt2

〈
Ĝ(t1)Ĝ(t2)

〉
− K̂2

1 . (F.11)

To simplify this, we assume that each control parameter ωi(t) is a trajectory of a stationary
zero-mean process (The zero-mean assumption technically isn’t an assumption; the mean
of each random process can be absorbed into the deterministic part of the Hamiltonian.)

That is, that ~ω ∼ GP(0,
~~φ), where

~~φ is the matrix-valued autocorrelation function for ~ω(t),
such that φi,j(t1 − t2) = 〈ωi(t1)ωj(t2)〉.

Then K̂1 becomes simply

K̂1 =
i

t

∫ t

0

dt1 U †(t1)D̂U(t1), (F.12)

whereas we can then rewrite K̂2 in terms of the autocorrelation function,

K̂2 =
2

t2

∫ t

0

dt1

∫ t1

0

dt2

k∑
i,j=1

φi,j(t1 − t2)U †(t1)Âi(t1)U(t1)U †(t2)Âj(t2)U(t2) (F.13)

− 2

t2

∫ t

0

dt1

∫ t1

0

dt2 U †(t1)D̂U(t1)U †(t2)D̂U(t2)− K̂2
1 , (F.14)

where Âi(t) = −A∗i (t)⊗ 1 + 1⊗ Ai(t). In this way, we note that the cumulant expansion
generalizes the Magnus expansion so as to account for stochastically-varying fields. The
motivation for using cumulants instead of expanding the time-ordered exponential in terms
of moments of the stochastic process stems from the fact that cumulant averages enter in
the exponential, reducing the risk of truncation artefacts.

To numerically simulate the gate action, we discretize L̂det(t
′) along our gate length t at

N points, with equal time intervals ∆t between these points, i.e. we evaluate {L̂det(m∆t)},
with m = 1, ..., N while t = N∆t. Next we approximate U(n∆) by

U(n∆) ≈ exp
(
−iL̂det(n∆t)∆t

)
... exp

(
−iL̂det(∆t)∆t

)
exp

(
−iL̂det(0)∆t

)
. (F.15)
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Finally, we turn turn the integral in line (F.12) into a sum

K̂1 ≈
i

N

N−1∑
n=0

U †(n∆t)D̂U(n∆t), (F.16)

and the double integral in line (F.13) into a double sum

K̂2 ≈
1

N2

N−1∑
n=0

k∑
i,j=1

φi,j(0)U †(n∆t)Âi(n∆t)U(n∆t)U †(n∆t)Âj(n∆t)U(n∆t)

+
2

N2

N−1∑
n=1

n−1∑
m=0

k∑
i,j=1

φi,j((n−m)∆t)U †(n∆t)Âi(n∆t)U(n∆t)U †(m∆t)Âj(m∆t)U(m∆t)

− 1

N2

N−1∑
n=0

U †(n∆t)D̂U(n∆t)U †(n∆t)D̂U(n∆t)

− 2

N2

N−1∑
n=1

n−1∑
m=0

U †(n∆t)D̂U(n∆t)U †(m∆t)D̂U(m∆t)− K̂2
1 .

(F.17)

To simulate the gates, we truncated K̂(t) in Equation (F.9) at second order, which can
be partially justified with the following. If we have no dissipator term in Equation (F.1),
then due to statistical independence, the mth order cumulant disappears if, for a set of
times {t1, t2, ..., tn}, any of the time gaps |t1− t2|, |t2− t3|, ...,|tn−1− tn| are larger than the
correlation time τc of the stochastic process [49]. Since cumulants at every order vanish
once the gap between the set of time points exceeds τc, then if t � τc, the mth order
cumulant K̂m is effectively an integral over an (m − 1) dimensional sphere with radius
τc, integrated over t. Therefore, K̂m scales roughly as τm−1

c Amt, where A is the maximum
norm of Âi(t). Comparing the second- and fourth-order cumulants, K̂2 and K̂4, reveals that
τ3cA

4t
τcA2t

= τ 2
cA

2, meaning that if τcA � 1 and t � τc, we have a justification for truncating
the cumulant expansion at second order. For the physical models considered in this work,
the dissipator terms in the Liouville-von Neumann equation were considerably smaller in
their norm than the noise Hamiltonian terms, so we assume that the arguments above are
still applicable.
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F.2 Circuit Simulation

Each gate in the gate set acts on either one or two qubits, subjecting the rest to identical,
uncorrelated noise (the noisy identity gate). The action of a noisy process on a quantum
register can be calculated in the Kraus representation,

Λ(ρ) =
4n∑
j=1

AjρA
†
j. (F.18)

For a generic noisy process, using näıve matrix multiplication, this calculation involves
∼ 25n operations and requires the storage of ∼ 24n complex parameters. These costs can
be reduced dramatically by exploiting the fact that the noise is independent and that the
gate set acts identically on different qubits. Noise maps that act independently commute,
and can be applied in sequence as a result:

λ⊗n = λ1(λ2(. . . λn(ρ))) (F.19)

Thus, the amount of storage is reduced to that required to store the gate set and the
current state, ∼ 22n complex parameters, and the number of operations required now
scales as n23n. This can be further reduced by noting that each channel λj is equivalent
to the perfect identity on n − 1 qubits, and its effect can be pre-calculated to reduce the
total number of operations to n22n. The extension to two-qubit gates is straightforward;
for further information, see [52].
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