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Electric power systems continue to increase in complexity because of the deployment of 

market mechanisms, the integration of renewable generation and distributed energy resources 

(DER) (e.g., wind and solar), the penetration of electric vehicles and other price sensitive loads. 

These revolutionary changes and the consequent increase in uncertainty and dynamicity call for 

significant modifications to power system operation models including unit commitment (UC), 

economic load dispatch (ELD) and optimal power flow (OPF). Planning and operation of these 

“smart” electric grids are expected to be impacted significantly, because of the intermittent nature 

of various supply and demand resources that have penetrated into the system with the recent 

advances. 

The main focus of this thesis is on the application of the Affine Arithmetic (AA) method to 

power system operational problems. The AA method is a very efficient and accurate tool to 

incorporate uncertainties, as it takes into account all the information amongst dependent 

variables, by considering their correlations, and hence provides less conservative bounds 

compared to the Interval Arithmetic (IA) method. Moreover, the AA method does not require 

assumptions to approximate the probability distribution function (pdf) of random variables. 

In order to take advantage of the AA method in power flow analysis problems, first a novel 

formulation of the power flow problem within an optimization framework that includes 

complementarity constraints is proposed. The power flow problem is formulated as a mixed 

complementarity problem (MCP), which can take advantage of robust and efficient state-of-the-

art nonlinear programming (NLP) and complementarity problems solvers. Based on the proposed 

MCP formulation, it is formally demonstrated that the Newton-Raphson (NR) solution of the 

power flow problem is essentially a step of the traditional General Reduced Gradient (GRG) 

algorithm. The solution of the proposed MCP model is compared with the commonly used NR 

method using a variety of small-, medium-, and large-sized systems in order to examine the 

flexibility and robustness of this approach.  

The MCP-based approach is then used in a power flow problem under uncertainties, in order to 

obtain the operational ranges for the variables based on the AA method considering active and 

reactive power demand uncertainties. The proposed approach does not rely on the pdf of the 

uncertain variables and is therefore shown to be more efficient than the traditional solution 
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methodologies, such as Monte Carlo Simulation (MCS). Also, because of the characteristics of 

the MCP-based method, the resulting bounds take into consideration the limits of real and 

reactive power generation. 

The thesis furthermore proposes a novel AA-based method to solve the OPF problem with 

uncertain generation sources and hence determine the operating margins of the thermal generators 

in systems under these conditions. In the AA-based OPF problem, all the state and control 

variables are treated in affine form, comprising a center value and the corresponding noise 

magnitudes, to represent forecast, model error, and other sources of uncertainty without the need 

to assume a pdf. The AA-based approach is benchmarked against the MCS-based intervals, and is 

shown to obtain bounds close to the ones obtained using the MCS method, although they are 

slightly more conservative. Furthermore, the proposed algorithm to solve the AA-based OPF 

problem is shown to be efficient as it does not need the pdf approximations of the random 

variables and does not rely on iterations to converge to a solution. The applicability of the 

suggested approach is tested on a large real European power system.  
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Indices and Sets 

𝑔𝑒𝑛 Set of generator buses 
𝑖, 𝑗,𝑘 Index of buses 
k Iteration counter, when appearing as a superscript 
L Set of all lines 
N Set of all buses 
ND Set of all buses with uncertain demand 
nP Set of all buses with real power injection uncertainty  
nQ Set of all buses with reactive power injection uncertainty 
nPQ Set of all the PQ buses 
rnw Set of buses with renewable sources of uncertainties 
slack Set of slack buses 
 

Variables 

�̃�𝑖 Affine form of real component of bus voltage at bus i (p.u.) 
𝑓𝑖 Affine form of imaginary component of bus voltage at bus i (p.u.) 
𝐼𝑖𝑗 Affine form of line currents at line connecting bus i to j (p.u.) 
𝐼𝑖𝑚 Vector of the affine imaginary component of bus currents (p.u.) 
𝐼𝑖𝑚𝑖 Affine imaginary component of currents at bus i (p.u.) 
𝐼𝑟 Vector of the affine real component of current (p.u.) 
𝐼𝑟𝑖 Affine real component of current at bus i (p.u.) 

𝛿 Vector of bus voltage angles (radians) 
𝛿𝑖𝑗 Angle difference between bus i and j (radians) 
𝛿𝑖 Affine form of bus angle at bus i (radians) 
∆𝛿 Vector of bus angle mismatch at each NR step (radians) 
𝜀 Vector of mismatch variables (p.u.) 
𝜀𝑖 Noise representation of an independent source of uncertainty 
𝜀𝑝 Vector of real power mismatch (p.u.) 
𝜀𝑃𝑗𝐷

 Noise symbol representing uncertainties of active power injections at bus j  
𝜀𝑞 Vector of reactive power mismatch (p.u.) 
𝜀𝑄𝑗𝐷

 Noise symbol representing  uncertainties of reactive power injections at bus j 
𝜀𝑇𝑖 Noise symbol representing  errors due to the approximations of non-affine operations 

𝜆𝑖, 𝜇𝑖 Lagrangian multipliers 
𝑃�𝑖 Affine representation of real power injection (p.u.) 
𝑃�𝐺 Vector of affine form of real power generation (p.u.) 
𝑃�𝑖𝐺 Affine form of real power generation at bus i (p.u.) 
𝑃𝑖 Real power generation at bus i (p.u.) 
∆𝑃 Vector of real power injection mismatch variable at each NR step (p.u.) 
∆𝑃𝑠  Vector of real power generation mismatch variable at slack bus at each NR step 

(p.u.) 
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Parameters and Functions 

A Matrix of partial deviations for affine form of real and reactive power injection 
𝐴0 Vector of center values for affine form of real and reactive power injection 
𝛼 Correction factor in NR method 
𝛼𝑖 Coefficient of real power generation at bus i in total generation cost function 

($/𝑀𝑊2)  
𝛼𝑘 Step size of the updated NR solution at the 𝑘𝑡ℎ iteration 
𝐵𝑇 Vector of approximation noise magnitude associated with non-affine operations 
𝐵1 Vector of center values plus noise magnitudes resulting from non-affine operations 

approximations 
𝐵2 Vector of center values minus noise magnitudes resulting from non-affine operations 

approximations 
𝛽 Scalar for step-size adjustment 
𝛽𝑖 Coefficient of real power generation at bus i in total generation cost function ($/𝑀𝑊) 
𝐵𝑖𝑗 Imaginary part of admittance bus matrix (p.u.) 
𝐶𝑖 Fixed parameter in quadratic total generation cost at bus i ($) 
∇𝑥𝑓( . ) Gradient of a function in respect to x 
𝛿𝑖𝑗 The angle between bus i and j (radians) 
𝛿𝑖,0 Center value of bus angles at bus i (radians) 

𝑃𝑠 Real power generation variable at the slack bus (p.u.) 
𝑄�𝑖 Affine representation of reactive power injection (p.u.) 
𝑄�𝑖𝐺

 Affine form of reactive power generation at bus i 
𝑄𝐺 Reactive power generation at PV buses (p.u.) 
𝑄𝑖 Reactive power injection at bus i (p.u.) 
∆𝑄 Vector of reactive power mismatch at each NR step (p.u.) 
∆𝑄𝐺 Vector of reactive power generation mismatch at PV buses at each NR iteration 

(p.u.) 
u Vector of control variables in OPF 
|𝑉𝐷| Vector of bus voltage magnitude at PQ buses (p.u.) 
∆|𝑉𝐷| Vector of bus voltage magnitude mismatch at PQ buses at each NR step (p.u.) 
|𝑉𝐺| Vector of bus voltage magnitude at PV buses (p.u.) 
|𝑉𝑖| Bus voltage magnitude at bus i (p.u.) 
𝑉𝑖 Bus voltage at bus i (p.u.) 
𝑉�𝑖 Affine form of bus voltage at bus i (p.u.) 
𝑉𝐺𝑎,𝑉𝐺𝑏 Auxiliary variables to track bus voltage magnitude variation (p.u.) 
𝑥 Vector of power flow variables 
𝑥𝜀 The vector of noises associated with the external uncertainties  
𝑥� Interval representation of variable x 
𝑥� Affine representation of a variable x 
𝑥0 Center value of an affine variable x 
𝑥𝑖 Partial deviations of an affine variable x 
𝑥𝑇 Vector of noise uncertainties for approximation error resulting from non-affine 

operations 
𝑥𝑚𝑖𝑛 Vector of minimum noise variables  
𝑥𝑚𝑎𝑥 Vector of maximum noise variables 
𝑦 Vector of independent auxiliary and |VG|variables 
𝑧 Vector of optimization variables  
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𝛿𝑖,𝑗𝑃  Partial deviations of bus angle at bus i due to real power injection at bus j (radians) 
𝛿𝑖,𝑗
𝑄  Partial deviations of bus angle at bus i due to reactive power injection at bus j 

(radians) 
𝐷𝑥𝑓( . ) Differential equations of a function in respect to x 
𝑒𝑖,0 Center value of the real component of bus voltage at bus i (p.u.) 
𝑒𝑖0 Initial values of real components of bus voltages obtained from the deterministic 

model (p.u.) 
𝑒𝑖𝑁 New values for real component of bus voltage at bus i (p.u.) 
𝑒𝑖,𝑗𝑃  Partial deviation of real component of bus voltage at bus i due to the active power 

injection uncertainties at bus 𝑗 (p.u.) 
𝑒𝑖,𝑗
𝑄  Partial deviation of real component of bus voltage at bus i due to the  

reactive power injection at bus 𝑗 (p.u.) 
𝑒𝑖𝑇 Truncation error for affine real component of bus voltage (p.u.) 
𝜑 Representation of a constant in equations 
𝑓𝑖𝑁 New values for imaginary component of bus voltage at bus i (p.u.) 
𝑓𝑖,0 Center value of imaginary component of bus voltage at bus i (p.u.) 
𝑓𝑖0 Initial values of imaginary components of bus voltages obtained from deterministic 

model (p.u.) 
𝑓𝑖,𝑗𝑃  Partial deviation of imaginary component of bus voltage at bus i due to active power 

injection at bus 𝑗 (p.u.) 
𝑓𝑖,𝑗
𝑄 Partial deviation of imaginary component of bus voltage at bus i due to reactive 

power injection at bus j (p.u.) 
𝑓𝑖𝑇 Truncation error for affine imaginary component of bus voltage (p.u.) 
𝑓( . ) Lower bound of an affine variable 

𝑓( . ) Upper bound of an affine variable 
∇𝑓(𝑥𝑘) Gradient of the function f(x) at 𝑥𝑘 
𝐺𝑖𝑗 Real part of admittance bus matrix 
𝐻(𝑥𝑘) The Hessian matrix of a function 
𝐼𝑖𝑚,0 Center value for affine imaginary current at bus 𝑖 (p.u.) 
𝐼𝑖𝑗𝑚𝑖𝑛 Minimum limits for line currents (p.u.) 
𝐼𝑖𝑗𝑚𝑎𝑥 Maximum limits for line currents (p.u.) 
𝐼𝑖𝑚𝑖,𝑗

𝑃  Partial deviation of the imaginary component of current at bus i due to the active 
power injection at bus 𝑗 (p.u.) 

𝐼𝑖𝑚𝑖,𝑗
𝑄  Partial deviation of the imaginary component of current at bus i due to the reactive 

power injection at bus 𝑗 (p.u.) 
𝐼𝑟𝑖,0 The center value for affine real current at bus 𝑖 (p.u.) 
𝐼𝑟𝑖,𝑗
𝑃  Partial deviation of the real component of current at bus i due to the active power 

injection at bus 𝑗 (p.u.) 
𝐼𝑟𝑖,𝑗
𝑄  Partial deviation of the real component of current at bus i due to the reactive power 

injection at bus 𝑗 (p.u.) 
𝐽 Jacobian matrix 
𝑀 Matrix used to calculate GRG step 
𝑁𝐺  Number of generators 
𝑃𝑖,0 Center value for affine real power injection at bus 𝑖 (p.u.) 

𝑃𝑖
𝐷

 Maximum value for real power demand (p.u.) 

𝑃𝑖 Upper bound of real power injection (p.u.) 
𝑃 𝑖
𝐷 Minimum value for real power demand (p.u.) 
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𝑃𝑖 Lower bound of real power injection (p.u.) 
𝑃�𝑖𝐷 Affine real power demand at bus i (p.u.) 
𝑃𝑖𝑚𝑖𝑛 Minimum limit for real power generation at bus i (p.u.) 
𝑃𝑖𝑚𝑎𝑥 Maximum limit for real power generation at bus i (p.u.) 
𝑃𝑖,𝑗𝑃  Partial deviation of real power at bus i due to active power injection variation at bus 𝑗 

(p.u.) 
𝑃𝑖,𝑗
𝑄  Partial deviation of the real power at bus i due to reactive power injection at bus 𝑗 

(p.u.) 
𝑃𝑖𝑇 Noise magnitude associated with approximation error for real power at bus 𝑖 (p.u.) 
𝑃𝑟𝑎𝑡𝑒𝑑 Wind turbine rated active power output (p.u.) 

∆𝑃( . ) Nonlinear function for real power injection mismatch at a bus 
∆𝑃�𝑖( . ) Affine real power mismatch function at bus i 
∆𝑃𝑗𝐷 Amount of perturbation in real power injections at bus 𝑗 
𝑄𝑖,0 Center value for affine reactive power at bus 𝑖 (p.u.) 

𝑄𝑖
𝐷

 Maximum value for reactive power demand (p.u.) 

𝑄𝑖 Upper bound of reactive power injection (p.u.) 
𝑄 𝑖
𝐷 Minimum value for reactive power demand (p.u.) 

𝑄𝑖 Lower bound of reactive power injection (p.u.) 
𝑄�𝑖𝐷 Affine reactive power demand at bus i (p.u.) 
𝑄𝑖𝑚𝑖𝑛 Minimum limit for reactive power generation at bus i (p.u.) 
𝑄𝑖𝑚𝑎𝑥 Maximum limit for reactive power generation at bus i (p.u.) 
𝑄𝑖,𝑗𝑃  Partial deviation of reactive power at bus i due to active power injection at bus 𝑗 

(p.u.) 
𝑄𝑖,𝑗
𝑄  Partial deviation of reactive power at bus i due to reactive power injection at bus 𝑗 

(p.u.) 

𝑄𝑖𝑇 Noise magnitude associated with approximation error for reactive power at bus 𝑖 
(p.u.) 

∆𝑄( . ) Nonlinear function for reactive power injection mismatch at a bus  
∆𝑄�𝑖( . ) Affine reactive power mismatch function at bus i 
∆𝑄𝑗𝐷 Perturbation in reactive power injections at bus 𝑗 
𝑄𝐺𝑚𝑎𝑥 Vector of maximum reactive power at generator buses (p.u.) 
𝑄𝐺𝑚𝑖𝑛 Vector of minimum reactive power at generator buses (p.u.) 
𝑟𝑎𝑑𝑃𝑖( . ) Function of noise variables, presenting the deviations from center value for real 

power generation at bus i 
𝑟𝑎𝑑𝑄𝑖( . ) Function of noise variables, presenting the deviations from center value for reactive 

power generation at bus i 
𝜎 Standard deviation of a random variable 
𝜎𝑖2 Variance of a random variable 𝑥𝑖 
𝑠 GRG step  
𝜏 Tolerance level for the Newton-Raphson method 
𝑉𝑖,𝑗𝑃  Partial deviations of bus voltage magnitude at bus i due to real power injection at bus 

j 
𝑉𝑖,𝑗
𝑄  Partial deviations of bus voltage magnitude at bus i due to reactive power injection at 

𝑃𝑖
𝑠𝑝 Specified real power injection at bus i (p.u.) 

𝑃𝑑𝑒𝑚 Uncertain real power demand (p.u.) 
𝑃�𝑑𝑒𝑚 Mean value of real power demand (p.u.) 

𝑄𝑖
𝑠𝑝 Specified reactive power injection at bus i (p.u.) 
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bus j 
𝑉𝑖,0 Center value for bus voltage magnitude at bus i 
𝑉𝑖𝑚𝑎𝑥 Maximum limit for bus voltage magnitude at bus i (p.u.) 
𝑉𝑖𝑚𝑖𝑛 Minimum limit for bus voltage magnitude at bus i (p.u.) 
|𝑉𝐺𝑖0| Set point value for bus voltage magnitude at PV buses (p.u.) 
𝑥 Upper bound of variable x 
𝑥 Lower bound of variable x 
∆𝑥𝑘+1 The solution update after (k+1)th iteration of the Newton-Raphson method. 
𝑧𝑘 Noise magnitude for the approximation error in non-affine operations 
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FIT Feed-in Tariff 
GA Genetic Algorithm 
GMRES General Minimal Residual Method 
IA Interval Arithmetic 
IESO Independent Electricity System Operator 
IP Interior Point 
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CHAPTER 1 

INTRODUCTION 

 Motivation  1.1

Restructuring of the power sector has motivated new developments in power system operation 

and planning. Although distributed generation (DG) and demand response programs are not very 

recent, the current power system operational requirements necessitate that these are looked at 

more seriously, in order to provide enough supply, in an economical and efficient manner, for the 

increasing rate of demand growth. 

Energy security concerns, environmental issues, transmission line requirements, increasing 

demand and volatile oil prices have directed lots of attention to renewable DG technologies, 

specially wind and solar. Wind power penetration has been the highest among all the available 

DG sources. For instance, in the European Union, 11.6 GW of wind generation capacity was 

installed in 2012, representing 26% of all new installations, bringing the total wind power 

capacity to 105.6 GW or 7% of Europe’s total electricity demand in that year [1]. Canada had 

more than 6,400 MW of installed wind energy capacity in 2012, with over 2,000 MW of 

installation in Ontario and approximately 1,600 MW, and 1,100 MW in Quebec and Alberta, 

respectively [2]. It is estimated that 2,400 MW of embedded solar and wind capacities will be 

available in Ontario by 2015 [3]. Ontario’s Independent Electricity System Operator (IESO) uses 

a centralized forecast of all renewable generation output to maintain reliability and efficiency of 

the system in the presence of uncertainties. 

In order to achieve their targets on renewable energy, governments around the world strive to 

incorporate policy tools such as Feed-in Tariff (FIT) and cap-and-trade mechanisms to incentivize 

DG investments. For instance, Ontario’s targets for renewable energy developments include 

5,000 MW of wind energy, 1,500 MW of new hydro capacities and 40 MW of solar by 2025 [4]. 

Planning and operation of the modern electricity grid is expected to be impacted significantly 

because of the presence of intermittent renewable sources. The analytical tools used in a 

traditional grid such as, power flow analysis, optimal power flow (OPF), economic dispatch and 

unit commitment (UC) will require appropriate modifications to incorporate the variabilities 

arising from renewable sources. Although local control mechanisms have been developed to 
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regulate the generation from these renewable sources, they have not been able to accommodate 

system operators dispatch instructions, and balance the electricity supply and demand.  

A wide variety of stochastic methods such as Monte Carlo Simulation (MCS) and Interval 

Arithmetic (IA) have been exploited in the literature to model and analyze the uncertainties 

arising from these energy sources. Some of these methods are practically expensive to be 

developed, while some lack the accuracy required in power system applications. The Affine 

Arithmetic (AA) method has been demonstrated in [5] to be a highly efficient and accurate 

technique and provides less conservative bounds than the IA method. This method takes into 

consideration both the internal and external uncertainties that may arise in the current operation of 

power systems. However, the AA-based power flow analysis in [5] uses the Newton-Raphson 

(NR) method of solution which may have convergence problems for large systems when using a 

flat-start or exceeding the maximum loadability of a system, and require an initial solution which 

is close to the final solution. Also, the conventional power flow solution methods require iterative 

PV-PQ bus switching when the reactive power at a generator bus violates the limits. 

Therefore there is a need for a more accurate, flexible and robust power flow solution method 

for undertaking power system analytical studies considering uncertainties. In order to achieve 

this, an optimization framework is proposed in this thesis that is based on the mixed 

complementarity problem (MCP)1 formulation and has the advantage of embedding various 

power flow solution steps as optimization constraints. The proposed method needs be validated 

against other established NR-based power flow solution methods, for its computational 

advantages and accuracy. 

Furthermore, there is a need to examine how such a novel power flow solution method can be 

incorporated within the AA modeling framework, and consequently, to examine how one of the 

most important power system operational tools - the OPF, can be adopted to the AA-based 

framework. It is also important to validate the accuracy of the bounds obtained from the AA-

based methods with other established methods such as MCS. 

 Literature Review  1.2

1.2.1 The Power Flow Analysis and Optimal Power Flow (OPF) Problem 

The power flow analysis problem is a widely used tool for power system operations and 

                                                      
1In mathematical literature the optimization problem which has complementarity constraints is called Mathematical Program with 
Complementarity Constraints (MPCC). However, in this thesis, such class of optimization problems has been referred to, as MCP. A 
review of power system literature in this subject reveals a certain degree of ambiguity between these two terminologies. 
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planning, since it provides network solutions such as bus voltage magnitudes and angles for a 

given set of operating conditions. It can also serve as a security analysis tool, providing 

guidelines on acceptable operating conditions in case of sudden disturbances and load changes.  

Since the power flow equations are nonlinear, the solution methodologies for these problems 

have traditionally involved iterative procedures such as the Gauss-Seidel and the NR methods [6] 

and [7]. In order to address some of the numerical issues in the Gauss-Seidel method, the NR 

method exploits its “quadratic” convergence characteristics and takes advantage of the admittance 

matrix sparsity to attain faster convergence [8]. Various improvements to the NR method are 

reported in the literature involving selection of effective starting point [7], reduction of the 

number of iterations [9] and [10], and improving the algorithm robustness [11] and [12]. 

Moreover, in [13] and [14] optimization frameworks are used to solve the power flow analysis 

problem, however the reported methods do not consider reactive power limits, and therefore rely 

on PV-PQ bus switching in order to consider the aforementioned limits. 

In [15], an approach based on the Krylov subspace methodology is proposed to solve large-

scale power flow problems. The method uses an approximation of the Jacobian matrix without 

explicitly forming this matrix and then eliminates the need for matrix factorizations. The Krylov 

subspace method uses the Conjugate Gradient (CG) method for linear systems to minimize the 

residuals in each iteration [16], which is improved in [17] to accommodate other types of matrices 

such as non-symmetric, non-definite matrices and nonlinear systems. Since the objective of the 

algorithm is to minimize the residuals, it is also referred to as the Generalized Minimal Residual 

Method (GMRES) [16]. In order to improve the efficiency of the CG method, a preconditioning 

technique, based on the Chebyshev pre-conditioner, which does not need matrix ordering, is 

proposed in [18]. In [19], a fast Newton GMRES algorithm is presented to solve power flow 

equations using three acceleration schemes: a hybrid scheme, a partial pre-conditioner update 

scheme, and an adaptive tolerance control scheme. In [20], a novel approach to formulating 

power flow problems based on the vector continuous Newton’s method is presented. The power 

flow problem is classified into four possible categories: the well-conditioned case in which the 

solution can be reached from a flat start; the ill-conditioned case wherein the solution cannot be 

reached from a flat start; the bifurcation point in which a solution exists, which can be either the 

saddle-node bifurcation or a limit induced bifurcation; and finally the unsolvable case. 

All existing iterative algorithms need an initial solution such as a “flat-start”, i.e. setting the bus 

voltage angles to zero radian and load bus voltage magnitudes to 1 p.u. However, most of the 

solution methods encounter convergence problems from flat-start initialization when the size of 
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the system is large (typically, more than 1000 buses) [7].  

The OPF problem is to optimize the steady state performance of a system, by minimizing an 

objective function such as loss or cost and satisfying some equality and inequality constraints. 

The OPF problem has received lots of attention from utilities in the past three decades. It was first 

introduced in [21], aiming to optimize different objective functions such as fuel cost and system 

loss, subject to power flow and other operating constraints, such as real power control, generator 

bus voltage magnitude limit, reactive power control of switchable VAR sources and transformer 

tap setting [22]. Depending on the system size and operating conditions, these problems can be 

large scale, nonlinear and non-convex. A vast body of literature, proposing different solution 

methods to the OPF problem using Nonlinear Programming (NLP) algorithms, Quadratic 

Programming (QP), Linear Programming (LP), Interior point methods (IP) and heuristics has 

evolved. 

Most of the proposed NLP methods are based on the NR method, relying on Lagrange 

multipliers and Kurush-Kuhn-Tucker (KKT) conditions. In [23], the OPF problem, dispatching 

real power is formulated based on Lagrange multipliers, where all the Lagrange multipliers 

associated with the equality constraints are obtained using an iterative method, while the 

Lagrange multipliers associated with the binding inequality constraints are calculated once the 

optimal solution is obtained. In [24], the Powell and Fletcher-Powell methods are used to find an 

accurate and efficient direction for an optimal solution to the OPF problem. This method ensures 

that the minimum point is obtained when the Hessian is constructed, does not need to evaluate the 

inverse of the Jacobian directly, and demonstrates quadratic convergence. Furthermore, in [25] 

the Powell method is used to solve the constrained OPF problem while the Fletcher-Powell 

method solves the unconstrained problem. This method depicts a substantially better performance 

than the Hessian approach. In [26] an optimization method is proposed to solve the OPF problem, 

based on the reduced gradient method. In this approach the load flow solution is obtained by a 

very efficient NR method, using a proper weighting factor and incorporating the gradient directly 

from the reduced Jacobian, and there is no need to solve the load flow problem repeatedly. In 

order to reduce the computation time and simplify the OPF problem, decomposition-based 

methods have been proposed. In [27], the OPF problem is decomposed into a P-optimization 

problem, solving for real power dispatch and angles and a Q-optimization problem, solving for 

reactive power and bus voltage magnitudes. In [28] the OPF problem is decomposed into active 

power and reactive power sub-problems, which are solved by the Newton’s approach using KKT 
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conditions, and an advanced sparsity technique. The method uses a heuristic to find the binding 

inequality constraints. 

Another nonlinear method that has been vastly used in solving the OPF problem is sequential 

quadratic programming (SQP), where an NLP is approximated by a quadratic program (QP), and 

then the solution to this intermediary QP is obtained by solving a sequence of LPs. In [29] the 

economic dispatch problem is formulated as a QP, using Wolfe’s algorithm to handle equality 

and non-equality constraints. The main advantage of the method is that it does not need any 

penalty factors or determination of gradient step size. A quadratic nonlinear optimization 

approach is proposed in [30], that uses the exact second derivative solution for the OPF problem. 

The method creates a sequence of QP sub-problems, quadratically converging to the optimal 

solution of the original non-linear problem. It can also handle non-convergent problems, by 

adding shunt capacitors when the problem is ill-conditioned or infeasible. In [31] the constrained 

load flow problem is solved by a sequence of QP sub-problems, where only one control variable 

is adjusted at a time, till a solution to the problem is obtained. The priority order for adjustment of 

control variables is reactive power, followed by bus voltage magnitude, and then transformer tap 

ratios. However, using the SQP method the reduced Hessian is built iteratively, which renders 

these methods slow as there are larger number of control variables. To overcome the drawbacks 

of the Newton’s method for its reliance on good initial solutions points, an improved quadratic 

interior point (IQIP) method is proposed in [32] that has the advantage of using a general starting 

point and fast convergence for OPF problems. 

In order to overcome the deficiencies of NLP algorithms, such as convergence and choosing 

initial solutions, linearization techniques are used to solve the OPF problems. The major 

modelling challenge with these approaches is linearizing the power flow equations. The dual 

simplex method is widely used to solve the linearized OPF problem as it has a simpler 

initialization and also less storage needs than the primal problem. In [33], a linear programming 

(LP) model, using fast decoupled technique is proposed to determine the reactive power dispatch 

in an OPF framework, in which the active power dispatch is fixed. A linearization technique 

based on Newton’s method is proposed in [34], that uses quadratic penalties to enforce inequality 

constraints. The emergence of the Interior Point (IP) method is a major breakthrough in solving 

the OPF problems. This method can easily handle the inequalities by using logarithmic barrier 

functions in the Lagrangian expression and also does not need a strictly feasible initial solution 

[35]. However it requires a heuristic to decrease the barrier parameter and also a positive slack 

variable for inequality constraints. To overcome these problems, extensions to the IP method such 
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as the primal-dual IP and higher-order IP methods (e.g., the predictor-corrector, multiple 

predictor-corrector and multiple centrally corrections) are used to solve OPF problems [36]. Since 

the solution to the large sparse matrix in primal-dual IP is a significant task, the number of matrix 

factorizations is reduced to a necessary minimum in the predictor-corrector algorithm and is 

found to be faster than primal-dual IP method. Furthermore, to improve the predictor-corrector IP 

method, in [37] an efficient multiple centrally correction (MCC) technique is introduced to solve 

the OPF problem. It uses the same predictor direction as the predictor-corrector method, but looks 

at more corrector terms to improve the centrality of the next iterate and to increase the step length 

in order to converge faster. Testing this method on a large test system, MCC is proved to be fast 

and robust.  

Since most of the NLP and LP methods are based on assumptions of smoothness and convexity 

of the optimization models, the role of heuristic methods has become more significant in the 

literature. In [38] and [39], genetic algorithm (GA) is used to solve the OPF problem, while in 

[40] a particle swarm optimization (PSO) technique is employed, wherein the assumption on the 

differentiability of the optimization problem is no longer necessary since it is a derivative free 

technique. 

1.2.2 Probabilistic Power Flow and OPF 

Since deterministic power flow models ignore the uncertainties associated with load and 

generation, a wide variety of probabilistic approaches have been reported in the literature to 

incorporate these uncertainties in power flow models. The main idea behind probabilistic power 

flow is to model the statistical characteristics of the state variables, e.g., bus voltage magnitude 

and angles. Three main approaches are suggested in the literature to solve these problems: 1) 

numerical approach, using MCS; 2) analytical approach, using convolution methods; and 3) 

alternative approaches such as IA, AA and fuzzy arithmetic methods. Numerical approaches are 

very time consuming since they require a large number of simulations; therefore the main focus 

in the literature has been on analytical and alternative approaches.  

Methods to solve the probabilistic power flow problems, using analytical approaches, first 

introduced in [41] and [42], considered a dc model of the network, and loads as independent 

random variables with a probability distribution function (pdf). Thus the results are obtained in 

the form of power flow pdfs after using convolution methods. Since demand is assumed to have a 

normal pdf, the output random variables are also assumed to be normally distributed (central limit 

theorem) [43]. However this assumption is proven to be unreliable in [44], as the output variables 

can have different pdfs, regardless of the size of the system. The probabilistic approach proposed 
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in [42] is improved in [44] by considering correlation amongst demand variables. All the 

dependent variables are converted to a single variable by considering their net arithmetic sum and 

the resulting independent variable is convoluted with the rest of the independent variables. In 

[45], the generation system is classified as dependent (e.g., peak and intermittent generators) and 

independent generators (e.g., base generators), and hence a “requested dependent generation” 

factor is defined which is convoluted with the rest of the independent generators. Two 

linearization techniques are proposed in [46] to improve the pdf of the state variables in an ac 

power flow. Both dc power flow and independency assumptions are removed by suggesting a 

linear dependence between input values in an AC power system in [47] and [48].  

In [48], the power flow equations are linearized around their expected value and then a Fast 

Fourier Transform (FFT) convolution based technique is proposed to transform the input data, 

e.g., load and generation into output information. This technique shows a better precision and 

speed than other convolution methods, e.g., Laplace transformation, as it takes advantage of the 

properties of exponential functions. A multi-linearization technique is proposed in [49], that 

reduces the inaccuracy resulting from power flow linearization only around the expected value of 

the input data, especially around the tail region as it is furthest from the point of linearization. In 

this paper instead of one linearization around the expected value, different points based on the 

maximum and minimum values of input data are linearized. A convolution process is then used to 

find the pdf of each of these linearized points. In order to improve the linear approximations of 

the power flow equations, a second order probabilistic load flow method, based on the expansion 

of the power flow equations around a solution point using Taylor series is used in [50], and then 

the technique of moments is applied to the second order approximations to obtain the statistical 

characteristics of the output variables. In a different approach, [51] uses a linearized power flow 

model around a deterministic point, but solves the probabilistic power flow by the cumulants 

method instead of convolution techniques suggested in previous literature. This technique has the 

advantage of easier implementation by using the same subroutines, employed in the deterministic 

power flow. Enhancing the cumulants method, [52] proposed a method combining the concept of 

cumulants and Gram-Charlier expansion theory to estimate the pdf of line flow. This method is 

substantially faster than the other method and is able to obtain the Cumulative Distribution 

Function (cdf) and pdf of line flow in one run. In [53] a hybrid approach using the convolution 

method and MCS is suggested which incorporates the statistical nature and characterization of 

wind generation. This method is proven to have better efficiency than MCS and better accuracy 

than convolution methods. 



 

8 

 

Although MCS is a very popular method for its simple implementation, it suffers from large 

execution time, on the other hand convolution methods suffer from lack of accuracy and for the 

complexity of their mathematical developments. Therefore, other methods are suggested in the 

literature as alternatives to analytical and numerical approaches. In [54] the IA method is used to 

determine strict bounds to the solution of the power flow problem with uncertainties, where the 

interval linear power flow equations are solved by using iterative methods or by employing 

explicit inverse of matrices to obtain the hull of the solution set. One of the main advantages of 

IA is its ability to consider internal errors related to roundoff during computational process. In 

[55], the statistical moments of the solution quantities are obtained using a two-point estimate 

method, taking into account the uncertainties of the network parameters (e.g., line parameters 

changing due to temperature variations) and power injections. Uncertainties in power flow 

problems are also modeled as fuzzy sets in [56] and [57], where the fuzzy generations and loads 

values are defined using different membership functions with a certain degree of possibility. In 

[58] an optimization algorithm based on the worst case scenario is proposed to estimate the 

boundaries of the power flow variables.  

In [5], a new solution methodology based on a self-validated approach is proposed, where 

uncertain variables are presented in affine form, representing uncertainties in data and calculation. 

The AA-based method is shown to provide more conservative bounds since it considers all 

sources of internal and external uncertainties. The AA-based intervals associated with the power 

flow variables are compared with the MCS intervals. 

Since the development of the probabilistic load flow models, significant emphasis has been 

placed on their applications to large and real power systems for both short-term operations and 

long-term planning. In [59], probabilistic power flow is applied to a Brazilian North/north-eastern 

system to study network expansion planning, considering problems such as overload on 

transmission equipment, overload or under-voltage at bus bars and insufficient active/reactive 

power injections. In [60], probabilistic power flow is used to consider network topology 

uncertainties. The distribution probability of the power flow variables are calculated for every 

possible network topology and the weighted sum of the pdfs from each solution is used to find the 

pdf of the final solution. Furthermore, in [61] MCS is used to capture the load and generation 

variations in the power flow problem based on their expected mean and standard deviation, which 

are used to find the impact of wind generation on grid voltage profile.  

Moreover, in order to incorporate uncertainties associated with the OPF problem, probabilistic 

approaches are suggested in the literature. One of the first attempts in solving the P-OPF problem 
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is proposed in [62] where the multivariate Gram-Charlier method is employed to model the pdf of 

uncertain variables. Furthermore, in [63] the error between the forecast and the actual demand is 

assumed to have a Gaussian probability function. The model is solved using MCS and then the 

statistical characteristics (e.g., mean and variance) of the system variables such as active power 

generation and system losses are calculated, so that the dispatcher can allocate enough spinning 

reserve capacity for a certain time interval, knowing uncertainties associated with optimal values. 

A different approach, based on sensitivity analysis technique is proposed in [64] wherein 

operating constraint violations and their probabilities are determined for the whole planning 

horizon and then an iterative approach is used to adjust the control variables while satisfying their 

limits. 

In order to improve the computational efficiency of OPF solution methods, analytical methods 

are proposed as well. For instance, in [65] the Cumulant method is suggested to simplify the 

convolution of independent random variables, and then Gram-Charlier/Edgeworth Expansion 

theory is used to reconstruct the pdfs from the cumulants. Furthermore, [66] uses the Cumulant 

method to solve the P-OPF problem using logarithmic barrier IP method. The proposed method 

compares the results for load variables using the Gaussian distribution and Gamma distribution. 

Since some of these approaches require derivatives of nonlinear functions, the functions are 

assumed to be differentiable. Another method to solve the P-OPF problem based on the two-point 

estimate method is proposed in [67] which alleviates the calculation of derivatives and thus 

improves the computational efficiency of the solution process. Finally, in [68], a Chance 

Constrained Programming (CPP) method is used to solve an OPF problem with uncertain demand 

variables; in order to enhance the execution time, the OPF problem is linearized and a back-

mapping approach is implemented to compute the probabilities of satisfying the inequality 

constraints. 

A security assessment approach is proposed in [69] to measure the trade-off between economy 

and system security in power system operation. This optimal probabilistic security analysis 

method uses the P-OPF framework to assess the probability of outage of generators and 

transmission facilities by employing an improved PSO method. 

1.2.3 Distributed Generation (DG) 

In [70], DG is described as “an electric power source connected directly to the distribution 

network or on the consumer site of the meter”. This definition does not consider the size of DG, 

the area of power delivery, DG technology, and its environmental impacts. In [71], DG is defined 
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under a wider category: distributed energy resources (DER), where, besides generation capacities, 

it also includes mechanisms to reduce demand (e.g., demand side management (DSM), and 

storage capacities. Other literature define DG based on using renewables, congestion, and 

dispatchability [72]. 

In [73] the barriers of DG integration are categorized as technical, institutional practices and 

regulatory policies. The benefits from DG [71] are identified as combined heat and power plants, 

standby/emergency generation, peak shaving, grid loss reduction, generation and transmission 

expansion deferral, renewable energy production. Its technical and financial barriers are 

categorized as islanding, voltage regulation, harmonics, reverse power flow, over voltage 

conditions, metering and system losses.  

In [74] appropriate policy mechanisms to encourage the deployment of DG resources are 

studied. Although these mechanisms, especially FIT, have proven to be significant incentives for 

DG investors, a study reported in [75] concludes that this mechanism reduces the social welfare 

in Ontario’s electricity market, even though it increases producers’ welfare or basically the 

investors’ profit. 

In [76] a SQP algorithm is proposed to achieve minimum cost while satisfying demand and 

system constraints. The SQP program evaluates different DG sources, in regards to their 

contribution in network loss and also their associated cost. Since DGs are located in the 

distribution networks, their impacts on transmission networks are not studied much in literature. 

However, DGs can have significant impacts on transmission lines when DG operators participate 

in spot market and need to trade electricity with remote areas. In [77] a multi-objective model 

given the uncertainties in load and generation is presented. This paper uses two stochastic 

processes, geometric Brownian and a mean reverting process to estimate the system load and 

market price in order to measure the values of different DG investments. Then the proposed 

transmission expansion planning multi-objective model simulates the transmission companies’ 

behaviour. 

1.2.3.1 DG Impact on System Operation 

Because of the large-scale penetration of wind generation sources into the grid, most of the 

literature on system impacts of DG are focused on this aspect. Their analysis includes stochastic 

wind dispatch in short-term, reserve requirements, and wind operation, in coordination with other 

sources of energy such as thermal generators. 

In [78] a stochastic day-ahead UC model is presented for power systems with wind penetration; 
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and then a real-time UC model uses the output to re-dispatch generation based on wind power 

availability. In [79], an approach referred to as the “risk limiting dispatch” is introduced, in which 

risks are managed by considering generation as a heterogeneous commodity of probabilistic 

power in an optimization framework, maximizing operators’ profit subject to constraints on loss 

of load risk. 

Since wind power is unpredictable, varies randomly over time and has inverse correlation with 

demand, its scheduling and dispatch models are quite different than traditional generation 

scheduling problems. Many probabilistic-based decision making approaches are suggested in the 

literature to incorporate this variability. One of the major issues in wind dispatch is the associated 

reserve requirements, to keep track of the stochastic wind generation and assuring the adequacy 

of generation capacity to meet the demand.  

In [80], a UC model considering stochastic nature of wind generation and demand, and ramp 

rate limitations of generating capacities for the Swedish wind-hydro-thermal power system is 

proposed. Since the model fixes the spinning reserve requirements at all time periods, therefore 

the trade-off between the cost of providing reserve capacities and reduction in the cost of 

interruptions is ignored. A stochastic security constrained UC model is presented in [81] and [82], 

in which the reserve requirements are scheduled in an implicit manner, and reserve capacities are 

determined at each time period and for each generating unit. In [83], another technique to 

calculate reserve requirements, while minimizing the total system operating cost is suggested. In 

this model, the optimal amount of reserve capacity is included in the UC model as a constraint 

based on the estimations of demand and wind generation. Contradictory to other literature, 

authors in this paper conclude that increasing amount of wind power does not require more 

reserve capacity. In [84] a security based UC model is proposed to schedule the flexible reserve 

requirements that are deployed due to the intra-hour variability of wind generation. In this paper, 

the variability of wind generation is detected by its power spectral density and then the flexibility 

of reserve capacities is modeled in frequency domain. Finally, a new set of constraints are 

introduced that can be added to the original UC models. 

 Research Objectives 1.3

As previously discussed, the existing NR-based power flow solution methods have 

convergence problems for large systems when using a flat-start or exceeding the maximum 

loadability of a system, and require an initial solution which is close to the final solution. This 
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research proposes an MCP optimization framework to address this issue and properly represent 

reactive power generation limits and the voltage recovery process of voltage regulators. 

Also, integration of DG sources into the electricity grid has introduced significant levels of 

uncertainties in power system operations, including power flow analysis, OPF, UC and ELD 

models. Since many of the approaches, addressing these uncertainties suffer from large 

computation time, lack of accuracy and difficulties in pdf approximations, this thesis attempts to 

exploit the AA method, in order to accommodate these uncertainties. The main objectives of this 

research are as follows: 

- Develop an optimization based model of the classical power flow problem using 

complementarity conditions, to properly represent generator bus voltage control, including 

reactive power limits and voltage recovery processes.  

- Establish the mathematical proof that the NR solution method for solving the power flow 

problem is basically a step of the Generalized Reduced Gradient (GRG) algorithm, applied 

to solve the proposed same problem.  

- Validate the proposed MCP based power flow solution method against other NR based 

methods to ensure its accuracy, computational advantages and flexibility, considering a 

range of test systems, including real and large-scale systems. 

- Develop the complete mathematical formulation for the AA-based power flow analysis 

problem, incorporating uncertainties arising from both external (e.g., weather forecast and 

measurement errors) and internal sources (e.g., truncation and roundoff errors),  where the 

power flow problem is solved using the previously proposed MCP formulation. 

- Validate the outcomes of the AA model with the ones from other robust stochastic methods 

such as the MCS. 

- Develop a novel AA-OPF formulation and its solution methodology for analysis and 

determination of optimal operational bounds for dispatchable generators in a power system 

with uncertainties arising from the presence of intermittent generation sources. 

- Validate the AA-OPF model considering both, a small test system and a large-scale real 

power system, to compare and contrast the accuracy of operational margins vis-à-vis those 

obtained from MCS. 

 Thesis Outline 1.4

The rest of the thesis is outlined as follows: 
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Chapter-2 presents a background review on uncertainty analysis tools, such as IA, AA and 

MCS; and also NLP solution methods such as NR and gradient methods. In addition, DG 

technologies, their benefits and shortcomings are briefly discussed. Finally the chapter presents a 

review of power flow analysis techniques, including deterministic and stochastic methods, i.e., 

NR method and AA, respectively. 

Chapter-3 discusses the proposed MCP formulation for an optimization based power flow 

model and examines its robustness and flexibility by providing a benchmark against other 

classical methods, such as the NR method. In Chapter-4, the probabilistic power flow model is 

solved using the AA method. A thorough comparison of the solution of the power flow uncertain 

variables, using the AA and MCS methods is presented. Chapter-5 presents a novel AA-based 

formulation of the OPF problem with uncertain variables. The accuracy of the proposed model is 

tested by comparing the obtained bounds from the AA method with those from MCS. 

Finally, Chapter-6 summarizes the thesis and discusses the contributions of this research, and 

outlines the scope for future. 
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CHAPTER 2 

BACKGROUND REVIEW 

 Introduction 2.1

This Chapter provides a background to the tools and methodologies used in the research 

presented in this thesis. First the deterministic and probabilistic power flow and the OPF 

problems are discussed and then a brief background to the NLP and its solution approaches is 

presented. Furthermore, the tools for uncertainty analysis, such as IA, AA and MCS are 

discussed. And finally a brief review of DGs, including their advantages and barriers are 

discussed. 

 Power Flow Analysis Problem 2.2

2.2.1 Power Flow Analysis Problem 

The power flow analysis problem is formulated as a set of simultaneous nonlinear equations for 

real and reactive power injection mismatch functions ∆𝑃( . ) and ∆𝑄( . ), respectively, as follows: 

∆𝑃(𝛿,𝑃𝑠, |𝑉𝐷|,𝑄𝐺) =   𝑃𝑖
𝑠𝑝 − |𝑉𝑖|� |𝑉𝑗| �𝐺𝑖𝑗 cos𝛿𝑖𝑗 + 𝐵𝑖𝑗 sin𝛿𝑖𝑗�

𝑛

𝑗=1

= 0 
∀𝑖 ∈ 𝑁 

 𝑖 ≠ 𝑠𝑙𝑎𝑐𝑘 
(1) 

∆𝑄(𝛿,𝑃𝑠, |𝑉𝐷|,𝑄𝐺) = 𝑄𝑖
𝑠𝑝 − |𝑉𝑖|��𝑉𝑗� �𝐺𝑖𝑗 sin𝛿𝑖𝑗 − 𝐵𝑖𝑗 cos𝛿𝑖𝑗�

𝑛

𝑗=1

= 0 ∀𝑖 ∈ 𝑛𝑃𝑄 

 
(2) 

where all the variables are defined in the nomenclature. Equations (1) and (2) can be expressed in 

vector form as: 

𝑓(𝑥) = �∆𝑃
(𝛿,𝑃𝑠, |𝑉𝐷|,𝑄𝐺)

∆𝑄(𝛿,𝑃𝑠, |𝑉𝐷|,𝑄𝐺)� = 0 (3) 

Since the solution to (3) cannot be expressed in closed form [85], these equations are solved 

iteratively, in which an initial guess �𝛿0,𝑃𝑠0, �𝑉𝐷0�,𝑄𝐺
0� is selected close to the “desired” solution 

(𝛿∗,𝑃𝑠∗, |𝑉𝐷∗|,𝑄𝐺∗), and it is iteratively updated to obtain a solution 𝑥∗ such that 𝑓(𝑥∗) ≈ 0.  

The NR method applied to the solution of the power flow equations (1) and (2), yields the 

following linear equations:  
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�∆𝑃∆𝑄� = [ 𝐽 ] �

∆𝛿
∆𝑃𝑠

 |∆𝑉𝐷|
 ∆𝑄𝐺

� (4) 

In this process, at the end of each iteration, the reactive power generation 𝑄𝐺 from each 

generator is calculated. If 𝑄𝐺 violates either of its limits at a bus, it is fixed at the corresponding 

limiting value and the particular “generator” bus (PV bus) is switched to a “load” bus (PQ bus). 

The bus is switched back to a PV bus when |𝑉𝐺| returns to its set-point value. 

The NR method is much faster than other iterative methods since it converges quadratically 

when starting from an initial point “close” to the observed solution [15]. One of the main 

disadvantages of this method is that, when the initial solution is “too far” from the final solution, 

it has difficulties to converge. In such a case, the assumption that higher order terms of the Taylor 

series can be ignored is no longer valid, since these terms have a significant effect on the 

convergence of the solution.  

Although the NR method has a fast convergence with less iterations, each iteration is 

computationally heavy, since the computational burden of the full Jacobian matrix is a function of 

𝑁2 [85]. In [86], a method is proposed to update the Jacobian matrix whenever the rate of 

convergence slows down, which is referred to as the “dishonest” Newton method.  

2.2.2 Probabilistic Power Flow Analysis  

Because of the existence of uncertainties in power systems, probabilistic approaches to power 

flow analysis problems have been proposed. These uncertainties arise from either approximation 

errors or external sources such as generation intermittency, demand fluctuation, weather forecast, 

random outage, gas price and energy policies. 

Probabilistic approaches try to capture these uncertainties by approximating or linearizing the 

power flow equations (3) and using the pdf of the input data (demand and generation) to directly 

obtain probabilistic characteristics, e.g., pdf of the power flow variables. In order to use 

convolution methods for probabilistic power flow calculations, nodal power injections need be 

independent. For instance, if 𝐴 and 𝐵 are two independent random variables with pdfs 𝑓𝐴(𝑎) and 

𝑓𝐵(𝑏), using convolution method, random variable 𝐶 and its pdf is obtained as follows: 

𝐶 = 𝐴 + 𝐵 (5) 
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𝑓𝐶(𝑐) = � 𝑓𝐴(𝑎)
∞

−∞
𝑓𝐵(𝑐 − 𝑎) 𝑑𝑎 (6) 

On the other hand, numerical methods, such as MCS can be used to solve probabilistic power 

flows. Although MCS has a high computation cost, it is one of the most popular methods for 

power system uncertainty analysis because of its simple implementation. For instance, in the 

context of the probabilistic power flow problem, generation and demand are uncertain and can be 

associated with an appropriate pdf, especially when there is large-scale integration of non-

dispatchable renewable energy sources (e.g., wind and solar). The pdf for load is usually assumed 

to be normal, as follows [87]: 

𝑝𝑑𝑓�𝑃𝑑𝑒𝑚� =
1

𝜎√2𝜋
 𝑒
−(𝑃𝑑𝑒𝑚−𝑃�𝑑𝑒𝑚)2

2𝜎2  (7) 

where 𝑃�𝑑𝑒𝑚 is the mean value and 𝜎 is the standard deviation. As a result, the standard deviation 

and the average of historical data determine the load at each time period. 

Employment of self-validated computation (SVC) methods such as AA, are also gaining 

popularity in solving probabilistic power flow models because of the accuracy and efficiency of 

their solution algorithm [5]. In this method, the power flow state variables are represented in 

affine form as follows: 

𝑉�𝑖 = 𝑉𝑖,0 + �𝑉𝑖,𝑗𝑃  𝜀𝑃𝑗𝐷
𝑗𝜖𝑁

+ �𝑉𝑖,𝑗
𝑄  𝜀𝑄𝑗𝐷

𝑗𝜖𝑁

  ∀𝑖 ∈ 𝑁 (8) 

𝛿𝑖 = 𝛿𝑖,0 + �𝛿𝑖,𝑗𝑃  𝜀𝑃𝑗𝐷
𝑗𝜖𝑁

+ �𝛿𝑖,𝑗
𝑄  𝜀𝑄𝑗𝐷

𝑗𝜖𝑁

  ∀𝑖 ∈ 𝑁 (9) 

where 𝜀𝑃𝑗𝐷 and 𝜀𝑄𝑗𝐷 are the noises representing the uncertainties of the active power and reactive 

power injections at the 𝑗th bus respectively, while 𝑉𝑖,0 and 𝛿𝑖,0 are the center values for voltage 

magnitudes and bus angles at bus 𝑖. 𝑉𝑖,𝑗𝑃  and 𝛿𝑖,𝑗𝑃  are partial deviations of the 𝑖th bus voltage 

magnitudes and bus angles due to changes in real power injection at bus 𝑗, and 𝑉𝑖,𝑗
𝑄  and 𝛿𝑖,𝑗

𝑄  are 

partial deviations of the 𝑖th bus voltage magnitudes and bus angles due to changes in reactive 

power injection at bus 𝑗. 

Using the affine equations (8)-(9) and affine operations (discussed later), the real and reactive 

power injections at a bus can be easily represented in affine forms 𝑃�𝑖 and 𝑄�𝑖 as follows: 
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𝑃�𝑖 = 𝑃𝑖,0 + �𝑃𝑖,𝑗𝑃  𝜀𝑃𝑗𝐷
𝑗𝜖𝑁

+ �𝑃𝑖,𝑗
𝑄  𝜀𝑄𝑗𝐷

𝑗𝜖𝑁

+ 𝑃𝑖𝑇𝜀𝑇𝑖   ∀𝑖 ∈ 𝑁 (10) 

𝑄�𝑖 = 𝑄𝑖,0 + �𝑄𝑖,𝑗𝑃  𝜀𝑃𝑗𝐷
𝑗𝜖𝑁

+ �𝑄𝑖,𝑗
𝑄  𝜀𝑄𝑗𝐷

𝑗𝜖𝑁

 + 𝑄𝑖𝑇𝜀𝑇𝑖 ∀𝑖 ∈ 𝑁 (11) 

where 𝜀𝑇𝑖 is the new noise variable representing approximation errors due to the presence of non-

affine operations. All the other variables and parameters are explained in the Nomenclature. 

Having the affine forms of (10)-(11), real and reactive powers can be easily represented in 

interval forms. 

 The Optimal Power Flow Problem 2.3

The OPF problem [22] is an optimization problem, that seeks to find the optimal setting of 

control variables in order to minimize or maximize an objective function such as total generation 

cost, real power losses, bus voltage deviations or emissions, while satisfying various operating 

constraints such as power flow equations, bus voltage magnitude and angle limits, and real and 

reactive power generation limits. The general form of an OPF problem is as follows: 

min  𝐹(𝑥,𝑢) (12) 

s.t.  𝑔(𝑥,𝑢) = 0 (13) 

  ℎ(𝑥, 𝑢) ≤ 0 (14) 

where 𝑔(𝑥,𝑢) represents the nonlinear power flow equations (1) and (2) and ℎ(𝑥,𝑢) is the set of 

nonlinear inequality constraints on the vectors 𝑥 (vector of state variables, e.g., bus voltage 

magnitudes, angles and reactive power output of generators)  and 𝑢 (vector of control variables). 

Depending on the objective function, the control variables in an OPF framework can be as 

follows: 

- Active and reactive power generation  

- Phase-shifter angles 

- Net interchange 

- Active and reactive power load (load shedding) 

- Transmission line flows 
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- Control voltage setting 

- LTC transformer tap setting 

- Line switching 

For example, in the fuel cost minimization OPF problem, the only control variable is active 

power generation, and the other variables are held at their nominal values. Depending on the 

objective function and constraints, the OPF problem can be categorized as follows [88]: 

1-  Linear problem (LP): when the objective function and constraints are linear (e.g., dc power 

flow) 

2- Nonlinear problem (NLP): when the objective function or constraints are nonlinear (e.g., ac 

power flow) 

3- Mixed-integer linear (nonlinear) problem: when the control variables are both discrete and 

continuous. 

The basic mathematical formulation of the OPF problem for an active power loss minimization 

objective is as follows: 

min   
1
2

 ��𝐺𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

�𝑉𝑖2 + 𝑉𝑗2 − 2𝑉𝑖𝑉𝑗 cos�𝛿𝑗 − 𝛿𝑖��  (15) 

s.t. ∆𝑃(𝛿,𝑃𝑠, |𝑉𝐷|,𝑄𝐺) =   𝑃𝑖
𝑠𝑝 − |𝑉𝑖|� |𝑉𝑗| �𝐺𝑖𝑗 cos𝛿𝑖𝑗 + 𝐵𝑖𝑗 sin𝛿𝑖𝑗�

𝑛

𝑗=1

= 0 ∀𝑖 ∈ 𝑁 (16) 

 ∆𝑄(𝛿,𝑃𝑠, |𝑉𝐷|,𝑄𝐺) = 𝑄𝑖
𝑠𝑝 − |𝑉𝑖|��𝑉𝑗� �𝐺𝑖𝑗 sin𝛿𝑖𝑗 − 𝐵𝑖𝑗 cos𝛿𝑖𝑗�

𝑛

𝑗=1

= 0   ∀𝑖 ∈ 𝑁 (17) 

 𝑃𝑖𝑀𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖𝑀𝑎𝑥 ∀𝑖 ∈ 𝑔𝑒𝑛 (18) 

 𝑄𝑖𝑀𝑖𝑛 ≤ 𝑄𝑖 ≤ 𝑄𝑖𝑀𝑎𝑥 ∀𝑖 ∈ 𝑔𝑒𝑛 (19) 

 𝑉𝑖𝑀𝑖𝑛 ≤ |𝑉𝑖| ≤ 𝑉𝑖𝑀𝑎𝑥 ∀𝑖 ∈ 𝑁 (20) 

In the above optimization problem, (15) is a quadratic objective function minimizing the total 

active power loss, (16)-(17) are nonlinear power flow constraints, representing real and reactive 

power mismatch at a bus, and (18)-(22) represent the limits associated with real and reactive 
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power generation, bus voltage magnitudes and phasor angles at each bus, and line current at each 

line respectively. 

An extension to the OPF problem is the Security Constrained OPF (SCOPF), in which the 

objective is to minimize the total generation cost, subject to constraints (16)-(20) and additional 

security constraints such as limits on bus voltage magnitudes, thermal limits determined by the 

lines’ current carrying capacity, and line power flow limits [89], as written below: 

 −𝜋 ≤ 𝛿𝑖 ≤ 𝜋 ∀𝑖 ∈ 𝑁 (21) 

 𝐼𝑖𝑗𝑚𝑖𝑛 ≤ 𝐼𝑖𝑗 ≤ 𝐼𝑖𝑗𝑚𝑎𝑥     and     𝑃𝑖𝑗 ≤ 𝑃𝑖𝑗𝑀𝑎𝑥 ∀𝑖𝑗 ∈ 𝐿 (22) 

There are many LP and NLP-based methods, suggested in the literature to solve OPF problems. 

Since these problems are usually applied to large systems, in real time, they are required to be 

reliable, fast, flexible and maintainable [89]. For instance, in a cost minimizing OPF problem, the 

nonlinear cost curve is linearized by piecewise linearization technique, in which the cost curve is 

segmented into smaller units and where adjacent points are connected by straight lines, and then 

the LP problem is solved using simplex method. 

Interior point (IP) is another technique which can either solve the linearized OPF from within 

the feasible interior region or directly solve the non-linear OPF problem. The IP method starts the 

search from inside the polytope and moves towards the direction of the optimal point, choosing a 

proper step length. In the IP algorithm, an elimination procedure is applied on the linearized load 

flow around the base load flow solution considering small perturbations in order to apply the 

Improved Quadratic Interior Point Method (QIPM). The modified model has a quadratic 

objective function subject to the linear constraints. 

 Nonlinear Programming (NLP) 2.4

An NLP problem can either be an unconstrained optimization problem or a constrained one. It 

is an unconstrained problem, when there are no additional constraints on 𝑥 except that it is a 

vector defined over a feasible set. On the other hand, a general constrained NLP problem is 

represented as follows [90]: 

min  𝑧 = 𝑓(𝑥) (23) 

s.t.    ℎ𝑖(𝑥)  = 0 (24)  
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         𝑔𝑖(𝑥)   ≤  0 (25) 

where 𝑓(𝑥), ℎ(𝑥) and 𝑔(𝑥) are the objective function, and the set of equality and inequality 

constraints, respectively, in which at least one is nonlinear. They are also continuously 

differentiable in the feasible region. The feasible region for an NLP problem is a convex set, 

meaning that any line connecting two-points in the region, lies entirely in the feasible region.  

The Lagrangian of the above NLP problem (23)-(25) is as follows: 

𝐿(𝑥, 𝜆, 𝜇) = 𝑓(𝑥) +�𝜆𝑖𝑇

𝑖

ℎ𝑖(𝑥) + �𝜇𝑖𝑇

𝑖

𝑔𝑖(𝑥) (26) 

where 𝜆𝑖 and 𝜇𝑖 are the dual variables of the constraints (24)-(25). The Lagrangian plays an 

important role in NLP algorithms as it combines the objective function and all the constraints into 

a single unconstrained function.  

Karush-Kuhn-Tucker (KKT) conditions are necessary but not sufficient conditions for a point 𝑥 

to be a local optimal point. KKT conditions for a local optimal point 𝑥∗, for a minimization NLP, 

in which all the constraints are converted into the form of less than or equality (e.g., 𝑔𝑖(𝑥) ≤ 0) 

with the Lagrangian multiplier 𝜆𝑖 are as follows [90]: 

∇𝑥𝐿(𝑥, 𝜆, 𝜇) = 0 (27) 

ℎ(𝑥) = 0 (28) 

𝑔(𝑥) ≤ 0 (29) 

𝜇𝑇𝑔(𝑥) = 0 (30) 

𝜇 ≥ 0 (31) 

where ∇𝑥 denotes the gradient of a function in respect to 𝑥, and ℎ(𝑥), 𝑔(𝑥) and 𝜇 are vectors with 

components ℎ𝑖(𝑥), 𝑔𝑖(𝑥) and 𝜇𝑖, as their components respectively. Constraint (27) states that the 

gradient of the Lagrangian with respect to 𝑥 at an optimal solution is zero. Constraints (28) and 

(29) are to enforce the equality and inequality constraints.  

Constraint (30) is referenced to as the complementarity constraint, denoted by “⊥”. For a 

continuously differentiable function 𝑔(𝑥), the complementarity condition is defined as follows: 
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𝜇 ⊥ 𝑔(𝑥) (32) 

for all 𝜇 and 𝑔(𝑥), there would be three situations in which (32) is satisfied: 

𝜇𝑖 = 0 and 𝑔𝑖(𝑥) ≠ 0 (33) 

𝜇𝑖 ≠ 0 and 𝑔𝑖(𝑥) = 0 (34) 

𝜇𝑖 = 0 and 𝑔𝑖(𝑥) = 0 (35) 

Among the above three equations, conditions (33) and (34) (strict complementarity conditions) 

are the most desirable situations in the application of engineering and economics, while the last 

condition (35) (non-strict complementarity) is not desirable. Available solvers such as PATH [91] 

introduce mechanisms to avoid such a condition.  

2.4.1 Solution Methods 

There are many algorithms, proposed in the literature to solve NLP problems. The major 

classical approaches use the gradient method, line search, Lagrange multiplier method, NR 

method, trust region optimization, quasi-Newton method, double dogleg optimization and 

conjugate gradient optimization [88]. Besides the classical approaches, problem specific heuristic 

methods such as neural network, evolutionary algorithm (e.g., evolutionary programming, 

evolutionary strategy and genetic algorithms), tabu search and PSO have been used to solve 

large-scale NLP problems. All the available algorithms are categorized into two groups [90]: 

1- Direct algorithms in which a finite number of operations result in the final solution. 

2- Iterative algorithms in which a sequence of iterations converge to a solution that is very 

close to the optimal and satisfies the termination criterion. 

In general the iterative methods for solving NLP problems adopt the following solution step [90]: 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘 ∆𝑥𝑘 (36) 

where 𝑥0 is the initial solution, 𝑘 is the number of the iteration, 𝑥𝑘 is the value of the solution at 

the 𝑘th iteration, 𝛼𝑘 is the step size which is usually between 0 and 1; and ∆𝑥𝑘 is the step 

direction in the 𝑘th iteration. The step direction ensures that the algorithm is moving in a 

direction to improve the solution which the step size ensures a sufficient improvement from the 

solution in the previous iterate.  
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2.4.1.1 The Newton-Raphson Method (NR) 

Using the KKT conditions, the NLP problem can be converted to a system of nonlinear 

equations. Since 1980, significant research has been carried out on the development of solution 

methods for nonlinear simultaneous equations, including pivoting and iterative methods. One of 

the well-established iterative methods, the NR method, has been found most suitable because of 

its fast convergence properties [92].  

The NR method relies on nonlinear approximation obtained from a Taylor series [93]. 

Expanding the nonlinear function 𝑓(𝑥) = 0 around a nominal value of 𝑥 = 𝑥𝑘 results in the 

following expression for an iteration 𝑘 + 1: 

𝑓(𝑥) ≈ 𝑓�𝑥𝑘� + 𝑑𝑓�𝑥𝑘�
𝑑𝑥

�𝑥𝑘+1 − 𝑥𝑘� ≈ 𝑓�𝑥𝑘�+ 𝑑𝑓�𝑥𝑘�
𝑑𝑥

∆𝑥𝑘+1 = 0 (37) 

Therefore, the solution update from the previous iteration can be expressed as follows, if the 

initial guess for the solution at k = 0 (𝑥0) is very close to the final solution 𝑥∗: 

∆𝑥𝑘+1 = −𝛼 �
𝑑𝑓�𝑥𝑘�
𝑑𝑥

�
−1

𝑓�𝑥𝑘� (38) 

𝑥𝑘+1 = 𝑥𝑘 − 𝛼 �
𝑑𝑓�𝑥𝑘�
𝑑𝑥

�
−1

𝑓�𝑥𝑘� (39) 

where the scalar 𝛼 > 0 is a “correction” factor to control the NR convergence [94]. This method, 

typically referred as “robust” NR, converges when �𝑓�𝑥𝑘+1� − 𝑓�𝑥𝑘�� < 𝜏, where 𝜏 is the 

convergence tolerance.  

2.4.1.2 Gradient Method 

The gradient method [90] maintains the feasibility of solution in each iteration; and therefore 

the algorithm can be terminated before it converges while the approximate solution is still useful. 

However, this method suffers from heavy computation time, as it should ensure that all the linear 

and nonlinear constraints are satisfied in each iteration. 

This method relies on the gradient of the function in order to find the direction of the search as 

given below: 

𝑆𝑘 = −∇𝑓(𝑥𝑘) (40) 
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𝑆𝑘 = ∇𝑓(𝑥𝑘) (41) 

where ∇𝑓�𝑥𝑘� is the gradient of the function 𝑓(𝑥) at 𝑥𝑘. The simplest gradient method is based 

on the direction of the steepest descent (40) for minimization problems and steepest ascent (41) 

for maximization problems. The optimum search step can be computed as follows: 

𝛼∗𝑘 =
[∇𝑓�𝑥𝑘�]𝑇∇𝑓�𝑥𝑘�

[∇𝑓(𝑥𝑘)]𝑇𝐻(𝑥𝑘) ∇𝑓(𝑥𝑘) (42) 

where T denotes transpose and 𝐻�𝑥𝑘� is the Hessian matrix of the objective function. 

 Tools for Uncertainty Analysis 2.5

Numerical calculations are prone to errors in obtaining the exact values of the mathematical 

computations, because of the existence of uncertainties. Most of the uncertainty analysis 

techniques, such as MCS try to capture the external uncertainties, affecting the input data; and 

neglect the impact of the internal errors, caused by approximation and truncation. To resolve this 

issue SVC or “automatic result verification” such as IA, and AA methods are proposed, which 

keep track of internal errors inherently. In the next three subsections, the two most popular SVC 

methods, i.e., IA and AA and subsequently the MCS method are discussed. 

2.5.1 Interval Arithmetic (IA) 

The IA method [95], is the simplest self-validated range analysis technique, providing the most 

conservative bounds where the value of 𝑥� lies between an upper bound �̅� and lower bound 𝑥. 

Basic IA operations between two quantities 𝑥� and 𝑦� return the following intervals, assuming two 

conditions: 1) None of the intervals are empty; 2) The upper and lower bounds of each interval 

are finite real numbers. These assumptions prevent certain operations such as 0 × ∞ and (−∞) ×

(+∞): 

𝑥� + 𝑦� = [ 𝑥 + 𝑦 , �̅� + 𝑦� ] (43) 

𝑥� − 𝑦� = [ 𝑥 − 𝑦� , �̅� − 𝑦 ] (44) 

𝑥� .𝑦� = [ 𝑧𝑝𝑟𝑜𝑑  , 𝑧𝑝𝑟𝑜𝑑  ] (45) 

𝑥�  /  𝑦� = [ 𝑧𝑑𝑖𝑣  , 𝑧𝑑𝑖𝑣  ] (46) 
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where: 

𝑧𝑝𝑟𝑜𝑑 = min { 𝑥.𝑦 , 𝑥.𝑦�, �̅�.𝑦 , �̅�.𝑦� } 

𝑧𝑝𝑟𝑜𝑑 = max { 𝑥.𝑦 , 𝑥.𝑦�, �̅�.𝑦 , �̅�.𝑦� } 

where: 

𝑧𝑑𝑖𝑣 = min { 𝑥 / 𝑦 , 𝑥 / 𝑦�, �̅� / 𝑦 , �̅� / 𝑦� }, assuming   𝑦� ≠ 0 and 𝑦 ≠ 0 

𝑧𝑑𝑖𝑣 = max { 𝑥 / 𝑦 , 𝑥 / 𝑦�, �̅� / 𝑦 , �̅� / 𝑦� }, assuming   𝑦� ≠ 0 and 𝑦 ≠ 0 

IA functional relations for other operations such as logarithm, square root, exponential, sine 

and cosine are given in [95]. More complicated functions can be implemented using the 

elementary ones. In all the above operations, it is recommended to widen the bounds by rounding 

them in the most conservative direction to handle round-off errors. Moreover one should be 

careful of the overflow problem in which the result is greater than allocated memory space, and 

the domain violation problem, in which the argument interval of an IA operation is outside the 

domain of the corresponding function. 

One of the main disadvantages of IA is error explosion, resulting in very conservative final 

bounds, which are too wide to be useful. Error explosion usually occurs in long chains of 

computation, where the input of one operation is the output of another, which is typical in power 

system analysis problems. The main reason for the wider bounds in IA calculations is the 

independency problem, in which the correlation between IA values are neglected and are 

therefore considered independent, e.g., 𝑥� and 𝑦� are independent values in (43)-(46). 

To overcome the error explosion problem, the IA arguments can be split into smaller sub-

domains and then the limits are obtained using the small ranges which can be combined to form a 

final, single interval. Other techniques to overcome the error explosion problem depending on the 

function and the input intervals, have been suggested in [95]. 

2.5.2 Affine Arithmetic (AA) 

The AA method is a range analysis technique, which not only handles external uncertainties 

such as weather forecast errors but also internal errors such as arithmetic roundoff, series 

truncation and function approximation [95]. Although AA is computationally more expensive 

than the IA method, it provides narrower intervals, thus justifying the extra cost.  

An affine value 𝑥� of a value (either a variable or a parameter) 𝑥, is represented in the following 

form: 
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𝑥� = 𝑥0 + 𝑥1𝜀1 + 𝑥2𝜀2 + ⋯+ 𝑥𝑛𝜀𝑛 (47) 

where: 

𝑥�  The representation of a value in affine form 

𝑥0  The central value of the affine form 

𝑥𝑖  Partial deviations of the affine form or the coefficient of the noise variable 𝜀𝑖 

𝜀𝑖  Noise variables which are in the interval [-1,+1] 

Each noise variable 𝜀𝑖 represents an independent source of uncertainty and each coefficient 𝑥𝑖 

states the magnitude of that uncertainty. Each affine form can be converted to an interval form by 

adding or subtracting the summation of the absolute values of all noise magnitudes to or from the 

central value 𝑥0 in order to find the upper and lower bounds, as follows: 

[𝑥�] = �𝑥0 −�|𝑥𝑖|
𝑖

 , 𝑥0 + �|𝑥𝑖|
𝑖

� (48)  

In (48), ∑ |𝑥𝑖|𝑖  is called the total deviation of the affine form 𝑥�. 

On the other hand, knowing the interval [𝑎, 𝑏] for 𝑥, an equivalent affine form for 𝑥� can be 

obtained as follows: 

𝑥0 =
𝑏 + 𝑎

2
 (49)  

𝑥1 =
𝑏 − 𝑎

2
 (50) 

𝑥� = 𝑥0 + 𝑥1𝜀1 (51) 

As shown in (49)-(51), 𝑥0 is the midpoint and 𝑥1 is half of the interval width. 

2.5.2.1 Affine Operations 

Each affine operation 𝑓(.) computes an affine form �̃�, which is consistent with the affine input 

values as follows: 

𝑓(𝑥�,𝑦�) → �̃� (52) 

Let consider 𝑥� and 𝑦� as follows: 
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𝑥� = 𝑥0 + 𝑥1𝜀1 + 𝑥2𝜀2 + ⋯+ 𝑥𝑛𝜀𝑛 = 𝑥0 + �𝑥𝑖𝜀𝑖

𝑛

𝑖=1

 (53) 

𝑦� = 𝑦0 + 𝑦1𝜀1 + 𝑦2𝜀2 + ⋯+ 𝑦𝑛𝜀𝑛 = 𝑦0 + �𝑦𝑖𝜀𝑖

𝑛

𝑖=1

 (54) 

Then the affine elementary operations in order to find �̂� are as follows: 

𝑥� ± 𝑦� = (𝑥0 ± 𝑦0) + (𝑥1 ± 𝑦1)𝜀1 + (𝑥2 ± 𝑦2)𝜀2 +⋯+ (𝑥𝑛 ± 𝑦𝑛)𝜀𝑛 (55) 

𝜑𝑥� = (𝜑𝑥0) + (𝜑𝑥1)𝜀1 + (𝜑𝑥2)𝜀2 + ⋯+ (𝜑𝑥𝑛)𝜀𝑛 (56) 

𝑥� ± 𝜑 = (𝑥0 ± 𝜑) + 𝑥1𝜀1 + 𝑥2𝜀2 + ⋯+ 𝑥𝑛𝜀𝑛 (57) 

where 𝜑 is a constant in (56) and (57). 

From (53)-(54) it is noted that each noise variable 𝜀𝑖 shows a partial dependency between the 

two values 𝑥� and 𝑦�. Therefore, in (55), 𝜀𝑖 contributes to the same uncertainty in the resulting 

affine form �̃� with the noise magnitudes corresponding to the coefficients of 𝜀𝑖 in affine input 

values. 

2.5.2.2 Non-Affine Operations 

Non-affine operations require a good affine approximation and an extra term, called 

approximation error, to represent internal errors such as the roundoff error. For instance, a non-

affine multiplication operation between the two affine values 𝑥� and 𝑦� are given as follows: 

𝑥�.𝑦� = 𝑥0 𝑦0 + �(𝑥0 𝑦𝑖 + 𝑦0 𝑥𝑖) 𝜀𝑖

𝑛

𝑖=1

+ 𝑧𝑘  𝜀𝑘 (58) 

The result of the above non-affine function is an affine value containing the information 

provided by 𝑥� and 𝑦�; and the approximation error represented by 𝑧𝑘𝜀𝑘, where |𝑧𝑘| must be an 

upper bound on the absolute magnitude of the approximation error, as follows: 

��|𝑥𝑖  𝜀𝑖|
𝑛

𝑖=1

���|𝑦𝑖  𝜀𝑖|
𝑛

𝑖=1

� ≤ |𝑧𝑘| (59) 
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The simplest and most conservative affine approximation (e.g., trivial affine approximation) is 

calculated as follows: 

𝑧𝑘 = �|𝑥𝑖|
𝑛

𝑖=1

�|𝑦𝑖|
𝑛

𝑖=1

 (60) 

Therefore after substituting (60) in (58) the product function can be represented as follows: 

𝑥�.𝑦� = 𝑥0 𝑦0 +�(𝑥0 𝑦𝑖 + 𝑦0 𝑥𝑖) 𝜀𝑖

𝑛

𝑖=1

+ ��|𝑥𝑖|
𝑛

𝑖=1

�|𝑦𝑖|
𝑛

𝑖=1

�  𝜀𝑘 (61) 

The affine approximation presented in (61) is computationally efficient, but not the most 

accurate one. The error of this approximation is at most four times the error reported by the most 

accurate method, Chebyshev approximation [95]. Furthermore, 𝜀𝑘 is assumed to be 1 throughout 

this thesis. Even though this simplification may result in wider intervals, it reduces the number of 

noise symbols for each non-affine operation, and since there are many non-affine operations in 

power system models, this would significantly reduce the number of noise symbols in realistic 

applications. 

2.5.3 Monte Carlo Simulation (MCS) 

MCS is the process of generating a set of deterministic solutions to a stochastic problem, 

wherein each solution is obtained by random input values based on their corresponding pdf [96]. 

In order to obtain valid simulation results, the process is repeated many times and then the 

statistical characteristics of the simulation such as min, max, average, median and variance of the 

sample are calculated. 

The main concerns in MCS are: 

- Choosing the appropriate pdf to generate random input values 

- Number of the iterations to obtain the convergence of the expected values 

Usually thousands of simulations are required, thus the computation cost of this approach and 

resource requirement is very high when the size of the problem is large. 

  After obtaining the simulation results on a random variable 𝑋, its statistical characteristics 

are calculated using the following equations: 
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𝜇𝑖 = 𝐸(𝑋𝑖) = � 𝑥𝑓𝑋𝑖(𝑥) 𝑑𝑥
∞

−∞
 (62) 

𝜎𝑖2 = 𝐸[(𝑋𝑖 − 𝜇𝑖)2] = 𝐸�𝑋𝑖2� − 𝜇𝑖2 (63) 

where 𝑓𝑋𝑖(𝑥) is the pdf that the continuous variable 𝑋 takes the value 𝑥𝑖 and 𝜇𝑖 and 𝜎𝑖2 are the 

mean (expected value) and the variance of the random variable 𝑥𝑖. 

 Distributed Generation (DG) 2.6

Although the concept of DG is not new, there has been more attention on DG developments in 

recent years, because of the advances in renewable energy technologies, government incentives 

such as FIT and Renewable Portfolio Standards, energy security concerns, environmental 

issues, transmission line requirements and increased demand. The main drivers for such 

investments around the globe are as follows [97]: 

- Environmental drivers: These drivers include limiting greenhouse gas (GHG) emissions 

and avoidance of the construction of the new transmission circuits and large generating 

units.  

- Commercial drivers: DG investments are predicted to lower electricity prices in the long 

run, also they help in deferring the construction of large generation capacities. 

Furthermore, building DGs close to load centers helps alleviate investments in long 

transmission lines. Besides, combined heat and power (CHP) units help in utilizing the 

system (60% to 70% efficiency) in industrial sites where there is a continuous need for 

power and heat. 

- Technical drivers: Voltage drop and line losses in distribution networks are high, since 

resistance becomes significant in distribution feeders [98]. DGs can assist in improving the 

voltage profiles and hence improve the power quality. It can also help in load factor 

correction.  

DG sources may be categorized as follows [99]: 

- Renewable sources: wind power, solar photovoltaic, small hydro, biomass, tidal energy, 

wave energy and geothermal.  

- Non-renewables: reciprocating engine, micro-turbine and fuel cell  
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- Storage devices: super conducting magnetic energy storage (SMES), battery energy storage 

system (BESS), flywheel, ultra capacitors and modular pumped hydro. 

All the above renewable sources except biomass generation are not dispatchable and therefore 

integrating them to the grid causes a great deal of uncertainty due to the stochastic nature of 

their availability. Wind power is the most mature technology among all the available renewable 

sources. The average cost of wind power generation is projected to be as low as 3 cents per 

KWh by 2020 [100].  

Introducing high penetration of DG can impact power system operations, such as system 

security, voltage regulation and power flow. Some of the DG integration issues, mentioned in 

the literature are as follows [101]: 

- In contrast to transmission networks, distribution networks provide one-directional power 

flow, while DG integration requires networks accommodating bi-directional power flow 

[102], since they generate active power and sometimes generate or absorb reactive power. 

Therefore distribution systems with DG integration are active, not passive networks. 

- DG units use asynchronous generators versus large central capacities which use 

synchronous generators. Synchronous machines help in reactive power support while 

asynchronous machines not only do not provide reactive power, but also need reactive 

power for their operation. Thus, induction based DGs may cause voltage drop in the system 

[103]. 

- Transmission expansion planning is more complicated in the presence of DG penetration, 

as the planner should consider the objectives of all the DG investors, facilitate market 

competition, provide non-discriminating network access for all DGs, and enhance 

reliability and security of the system [77]. 

 Summary 2.7

In this Chapter a background on deterministic and stochastic power flow and OPF problems is 

presented. Also, the mathematical tools for uncertainty analysis, including MCS and SVC such as 

AA and IA are discussed. It is concluded that AA is one of the superior SVC-based sensitivity 

analysis tools, since it considers all the information amongst dependent variables and also 

provides less conservative bounds compared to IA.  
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Furthermore, a brief review of NLP and complementarity conditions, and their formulation and 

solution methodologies are presented. Among all the solution methodologies, the main focus is 

on optimality conditions (e.g., KT conditions), NR and gradient method.  

Finally a brief review of DG technologies, their advantages and shortcomings, and their system 

operation and planning issues are presented. 
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CHAPTER 3 

REVISITING THE POWER FLOW PROBLEM 

BASED ON A MIXED COMPEMENTARITY 

FORMULATION APPROACH 

 Introduction 3.1

In order to formulate the power flow problem under uncertainty, an optimization framework is 

needed to assure the flexibility, accuracy and robustness of the solution methodology. Hence, in 

this Chapter, a novel formulation of the power flow problem is proposed within an optimization 

framework that includes complementarity constraints. Accordingly, the power flow problem is 

formulated as a MCP, which can take advantage of state-of-the-art NLP and complementarity 

problems using solvers such as COINIPOPT [104], MINOS [105] and PATHNLP [16]. The 

proposed method properly represents reactive power generation limits and the voltage recovery 

process of voltage regulators. Furthermore, the MCP-based power flow model, which by design 

always has a theoretical solution, is shown to have increased robustness and flexibility with 

respect to the existent power flow methods, which have convergence problems for large systems 

when using a flat-start and cannot yield solutions when the maximum loadability of the system is 

exceeded. Based on the proposed MCP formulation, it is also formally demonstrated that the NR 

solution of the power flow problem is essentially a step of the traditional GRG algorithm. Finally, 

the solution of the proposed MCP model is compared with the “standard” NR solution approach 

for a variety of small-, medium-, large-sized systems in order to examine the flexibility and 

robustness of this approach. 

 Optimization Formulation of the Power Flow Problem 3.2

Based on [106], the power flow analysis problem can be represented, as an MCP problem as 

follows: 

min  𝐹(𝜀𝑝, 𝜀𝑞) = ��𝜀𝑝𝑖
2 + 𝜀𝑞𝑖

2�
𝑖

  (64) 

s.t. ∆𝑃𝑖(𝛿,𝑃𝑠, |𝑉𝐷|, |𝑉𝐺|,𝑄𝐺) − 𝜀𝑝𝑖 = 0          ∀𝑖 ∈ 𝑁 (65) 
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 ∆𝑄𝑖(𝛿,𝑃𝑠, |𝑉𝐷|, |𝑉𝐺|,𝑄𝐺)− 𝜀𝑞𝑖 = 0          ∀𝑖 ∈ 𝑁 (66) 

 |𝑉𝐺𝑖�=  |𝑉𝐺𝑖0�+  𝑉𝐺𝑎𝑖 −  𝑉𝐺𝑏𝑖          ∀𝑖 ∈ 𝑔𝑒𝑛 (67) 

 0 ≤ �𝑄𝐺𝑖 − 𝑄𝐺𝑖
𝑚𝑖𝑛�  ⊥  𝑉𝐺𝑎𝑖 ≥ 0    ∀𝑖 ∈ 𝑔𝑒𝑛 (68) 

 0 ≤ �𝑄𝐺𝑖
𝑚𝑎𝑥 − 𝑄𝐺𝑖�  ⊥  𝑉𝐺𝑏𝑖 ≥ 0    ∀𝑖 ∈ 𝑔𝑒𝑛 (69) 

 |𝑉𝐺𝑖|,𝑉𝐺𝑎𝑖 ,𝑉𝐺𝑏𝑖 ≥ 0                           ∀𝑖 ∈ 𝑔𝑒𝑛 (70) 

where ⊥ represents a complementarity condition, i.e., for 0 ≤ 𝑎 ⊥ 𝑏 ≥ 0,𝑎 = 0, if 𝑏 ≥ 0, and 

𝑏 = 0,  if 𝑎 ≥ 0, which can be presented by: 𝑎𝑏 = 0,𝑎 ≥ 0, 𝑏 ≥ 0. This optimization formulation 

comprises the set of nonlinear constraints (65) and (66) representing the power flow equations, 

where |𝑉𝐺| is treated as a variable, and a set of complementarity constraints given by (68) and 

(69), and associated constraints (67) and (70). This model includes the auxiliary variables 𝑉𝐺𝑎 and 

𝑉𝐺𝑏 to track bus voltage magnitude variations, at generator and slack buses, when reactive power 

generation reaches limits as explained in more detail in Section 3.2.1. The objective is to 

minimize the total active and reactive power mismatches at all buses.  

There may be multiple feasible solutions to the proposed optimization model (64)-(70), as there 

are up to 2𝑁 solutions to a power flow problem [107], which may be found by varying the initial 

guess and utilizing different solution algorithms. All optimal solutions are mathematically 

acceptable, because they satisfy all the complementarity and power flow constraints imposed in 

the model; however, only one is typically adequate in practice. 

Expressing the power flow problem as an optimization model presents greater flexibility, 

because it allows finding “partial” solutions and other types of constraints, such as voltage limits 

at buses, can be included to help find solutions to “non-converging” power flows. Furthermore, 

this formulation allows finding “critical” buses in the system, based on Lagrangian multipliers, 

for compensation purposes. Finally, the proposed MCP model always has a theoretically feasible 

solution since 𝜀 may not necessarily be zero, which could be useful for studying non-convergent 

power flow problems. 

3.2.1 Complementarity Conditions to Model Reactive Power Limits 

In [106], the following set of complementarity conditions is proposed in an OPF framework, to 

model the relationship between the reactive power generation 𝑄𝐺 and bus voltage magnitude 

|𝑉𝐺| at each “generator” bus, representing the effect of maximum and minimum limits on voltage 

control: 
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0 ≤ �𝑄𝐺𝑖 − 𝑄𝐺𝑖
𝑚𝑖𝑛�  ⊥ 𝑉𝐺𝑎𝑖 ≥ 0        ∀𝑖 ∈ 𝑔𝑒𝑛 (71) 

0 ≤ �𝑄𝐺𝑖
𝑚𝑎𝑥 − 𝑄𝐺𝑖�  ⊥ 𝑉𝐺𝑏𝑖 ≥ 0       ∀𝑖 ∈ 𝑔𝑒𝑛 (72) 

Here, the operator ⊥ denotes the following: 

�𝑄𝐺𝑖 − 𝑄𝐺𝑖
𝑚𝑖𝑛� 𝑉𝐺𝑎𝑖 = 0 ∀𝑖 ∈ 𝑔𝑒𝑛 (73) 

�𝑄𝐺𝑖 − 𝑄𝐺𝑖
𝑚𝑖𝑛� ≥  0 ∀𝑖 ∈ 𝑔𝑒𝑛 (74) 

 𝑉𝐺𝑎𝑖 ≥  0 ∀𝑖 ∈ 𝑔𝑒𝑛 (75) 

�𝑄𝐺𝑖
𝑚𝑎𝑥 − 𝑄𝐺𝑖� 𝑉𝐺𝑏𝑖 = 0 ∀𝑖 ∈ 𝑔𝑒𝑛 (76) 

�𝑄𝐺𝑖
𝑚𝑎𝑥 − 𝑄𝐺𝑖� ≥  0 ∀𝑖 ∈ 𝑔𝑒𝑛 (77) 

 𝑉𝐺𝑏𝑖 ≥  0 ∀𝑖 ∈ 𝑔𝑒𝑛 (78) 

Equations (73)-(75) state that when 𝑄𝐺 is at its minimum limit, 𝑉𝐺𝑎 can take a positive value, 

and similarly for (76)-(78), so that when 𝑄𝐺 is at its maximum limit, 𝑉𝐺𝑏 can take a positive 

value. It is to be noted that (73) and (76) are complementarity conditions, and hence are not 

“active” simultaneously; therefore, it is not possible for both 𝑉𝐺𝑎 and 𝑉𝐺𝑏 to have positive values 

at the same time. The auxiliary variables 𝑉𝐺𝑎 and 𝑉𝐺𝑏  are, accordingly, used to affect the changes 

of the bus voltage magnitudes at the generator buses as follows: 

|𝑉𝐺𝑖�=  |𝑉𝐺𝑖0�+  𝑉𝐺𝑎𝑖 −  𝑉𝐺𝑏𝑖 ∀𝑖 ∈ 𝑔𝑒𝑛 (79) 

This complementarity model properly represents a generator’s voltage control system, since if 

 𝑉𝐺𝑎𝑖 is positive and  𝑉𝐺𝑏𝑖 = 0 for 𝑄𝐺𝑖 = 𝑄𝐺𝑖
𝑚𝑖𝑛, the corresponding bus voltage increases; on the 

other hand, if 𝑉𝐺𝑏𝑖 is positive and  𝑉𝐺𝑎𝑖 = 0 for 𝑄𝐺𝑖 = 𝑄𝐺𝑖
𝑚𝑎𝑥, the corresponding bus voltage 

decreases. In (73)-(79), the 𝑄𝐺 variables are independent of the auxiliary variables 𝑉𝐺𝑎 and 𝑉𝐺𝑏.  

Based on equations (73)-(79), the proposed MCP model (64)-(70) can be represented as 

follows: 
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min 𝐹(𝜀𝑝, 𝜀𝑞) = ��𝜀𝑝𝑖
2 + 𝜀𝑞𝑖

2�
𝑖

  (80) 

s.t. ∆𝑃𝑖(𝛿,𝑃𝑠, |𝑉𝐷|, |𝑉𝐺|,𝑄𝐺) − 𝜀𝑝𝑖 = 0 ∀𝑖 ∈ 𝑁 (81) 

 ∆𝑄𝑖(𝛿,𝑃𝑠, |𝑉𝐷|, |𝑉𝐺|,𝑄𝐺)− 𝜀𝑞𝑖 = 0 ∀𝑖 ∈ 𝑁 (82) 

 |𝑉𝐺𝑖�−|𝑉𝐺𝑖0� −  𝑉𝐺𝑎𝑖 +  𝑉𝐺𝑏𝑖 = 0 ∀𝑖 ∈ 𝑔𝑒𝑛 (83) 

 �𝑄𝐺𝑖 − 𝑄𝐺𝑖
𝑚𝑖𝑛� 𝑉𝐺𝑎𝑖 = 0 ∀𝑖 ∈ 𝑔𝑒𝑛 (84) 

 �𝑄𝐺𝑖
𝑚𝑎𝑥 − 𝑄𝐺𝑖� 𝑉𝐺𝑏𝑖 = 0 ∀𝑖 ∈ 𝑔𝑒𝑛 (85) 

 �𝑄𝐺𝑖 − 𝑄𝐺𝑖
𝑚𝑖𝑛� ≥  0 ∀𝑖 ∈ 𝑔𝑒𝑛 (86) 

 �𝑄𝐺𝑖
𝑚𝑎𝑥 − 𝑄𝐺𝑖� ≥  0  ∀𝑖 ∈ 𝑔𝑒𝑛 (87) 

 |𝑉𝐺𝑖|,𝑉𝐺𝑎𝑖 ,𝑉𝐺𝑏𝑖 ≥ 0 ∀𝑖 ∈ 𝑔𝑒𝑛 (88) 

 Newton-Raphson as an MCP Solution Step 3.3

This section presents an in-depth explanation of the differences between the proposed 

optimization-based power flow method and the standard NR-based power flow solution approach. 

In [24], Carpentier discusses the use of NR to solve the corrector step equations of the GRG 

method applied to the “classical” OPF problem. A similar approach is used here in order to 

demonstrate that the solution of the MCP power flow model (64)-(70), which is not a standard 

OPF problem, basically corresponds to the NR solution of the power flow equations (65) and (66) 

for 𝜀𝑝 = 𝜀𝑞 = 0. Thus, this section explains why the power flow solvers do not converge in some 

cases. To demonstrate this, first the GRG method is applied to the power flow problem where the 

generator bus voltage magnitudes are fixed and the complementarity constraints are ignored, 

demonstrating that the standard NR-based power flow solution method is just a particular step of 

the GRG approach applied to a simplified version of the proposed optimization method. The 

complementarity constraints are subsequently included in the analysis to properly represent 

generator voltage controls and reactive power limits, proposing a possible extension to the 

existing NR-based approach to better compare the power flow solution process for practical 
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applications. Observe that such a perspective on power flow problems is not available in the 

power system literature to the best of our knowledge. 

First, the GRG method of solution of the optimization model considering only constraints (65) 

and (66) is compared with the NR method. Thus, Let the proposed MCP model be written as 

follows, for |𝑉𝐺�= |𝑉𝐺0�: 

min  𝐹(𝜀) (89) 

s.t.  𝑓(𝑥, 𝜀) = 𝑓 (𝑧) = �∆𝑃
(𝛿,𝑃𝑠, |𝑉𝐷|,𝑄𝐺 , 𝜀)

∆𝑄(𝛿,𝑃𝑠, |𝑉𝐷|,𝑄𝐺 , 𝜀)� = 0 (90) 

where the optimization variables z are divided into power flow variables 𝑥 and mismatch 

variables 𝜀, as follows: 

𝑥 = �

𝛿
𝑃𝑆

|𝑉𝐷|
𝑄𝐺

�,  𝜀 =  �
𝜀𝑝
𝜀𝑞� (91) 

Then, in order to solve (89)-(90) using the GRG method, the following two steps are required 

[108]: 

1. Predictor Step: Assuming that there is a set of values for 𝑧 satisfying the constraints 𝑓(𝑧) =

0, say 𝑧𝑚  = (𝑥𝑚, 𝜀𝑚), this “guess” can be improved by moving in the direction of the 

steepest descent, resulting in 𝑧𝑚+1 =  (𝑥𝑚+1, 𝜀𝑚+1) as follows: 

𝑧𝑚+1 = 𝑧𝑚 + 𝛽𝑠𝑚 (92) 

where 𝑠𝑚 is the step calculated by the gradient of 𝐹(𝜀) as follows: 

𝑠𝑚 = −𝑀𝑀𝑇∇𝑧𝐹(𝜀𝑚) (93) 

𝑀 = � 
−[𝐷𝑥𝑓(𝑧𝑚)]−1 𝐷𝜀𝑓(𝑧𝑚)

𝐼2𝑁 
�

(2𝑁+2𝑁)×2𝑁
 (94) 

and 𝛽 >  0 is a scalar for step-size adjustment such that 𝐹(𝜀𝑚+1) <  𝐹(𝜀𝑚). 

2. Corrector Step: The predicted value of 𝑧𝑚+1 should then be corrected to ensure it satisfies 

the constraints 𝑓 (𝑧) = 0. This can be done by the following robust NR procedure to obtain a 

𝑧∗ = (𝑥∗, 𝜀𝑚+1) such that 𝑓 (𝑧∗) = 0: 
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𝑥𝑘+1 = 𝑥𝑘 − 𝛼[𝐷𝑥𝑓(𝑥𝑘 , 𝜀𝑚+1)]−1𝑓(𝑥𝑘 , 𝜀𝑚+1) (95) 

where 𝑥𝑘 =  𝑥𝑚+1 obtained from (92), and the scalar 𝛼 > 0 is used to ensure convergence. 

The iteration 𝑘 is repeated until convergence is obtained, i.e., until 𝑧∗ is found. These 

predictor and corrector steps are repeated until 𝐹(𝜀) is “close” to zero.  

Observe that (95) is exactly the same as (39) for 𝜀 = 0. Thus, it can be readily concluded that 

the NR method applied to the solution of power flow equations (1) and (2), basically corresponds 

to the corrector step of the GRG method applied to the solution of the optimization model (89)-

(90). 

Now, let rewrite the proposed MCP model as follows:  

min 𝐹(𝜀) (96) 

s.t 𝑔(𝑥�, 𝜀) = �
𝑓(𝑥,𝑦, 𝜀)
ℎ(𝑥,𝑦, 𝜀)� = 0 (97) 

 𝑔�(𝑥,𝑦) ≥ 0 (98) 

where 𝑓(𝑥,𝑦, 𝜀) represents the equality constraints (81) and (82); ℎ(𝑥,𝑦, 𝜀) represents the 

equality constraints (83)-(85); 𝑔�(𝑥,𝑦) corresponds to the inequality constraints (86)-(88); and 𝑥� is 

a vector of dependent variables defined as: 

𝑥� = �
𝑥
−
𝑦
� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

 

𝛿
𝑃𝑆

|𝑉𝐷|
𝑄𝐺

|𝑉𝐺|
𝑉𝐺𝑎
𝑉𝐺𝑏

 

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (99) 

Therefore, the predictor and corrector steps of the GRG method can be stated as follows, 

considering that 𝜀 is a set of independent variables: 

1. Predictor Step: 

𝑧𝑚+1 = 𝑧𝑚 + 𝛽𝑠𝑚 (100) 

𝑠𝑚 = −𝑀𝑀𝑇∇𝑧𝐹(𝜀𝑚) (101) 

�
−[𝐷𝑥� 𝑔(𝑧𝑚)]−1 𝐷𝜀𝑔(𝑧𝑚)

𝐼2𝑁 
�

(2𝑁+2𝑁+3𝑁𝐺)×(2𝑁+3𝑁𝐺)
 (102) 
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where 𝑧 = (𝑥,𝑦, 𝜀), and 𝛽 is a scalar chosen so that 𝐹(𝜀𝑚+1) <  𝐹(𝜀𝑚) and 𝑔�(𝑥�𝑚+1) =

𝑔�(𝑥𝑚+1,𝑦𝑚+1) ≥ 0.  

2. Corrector Step: 

𝑥�𝑘+1 = 𝑥�𝑘 − 𝛼[𝐷𝑥�𝑔(𝑥�𝑘 , 𝜀𝑚+1)]−1𝑔(𝑥�𝑘 , 𝜀𝑚+1) (103) 

where 𝛼 is chosen to ensure convergence, and guarantee that 𝑔��𝑥�𝑘+1� = 𝑔�(𝑥𝑘+1,𝑦𝑘+1)  ≥ 0.  

Note that (103), for 𝜀 = 0, can be considered basically a “new” NR solution procedure to 

solve the power flow problem that properly models the generator voltage controls, since it 

accounts for the generator reactive power limits and its terminal voltage recovery. Some 

commercially available solvers that use a variety of numerical techniques to solve optimization 

problems, such as the NLP formulation (64)-(70), including the aforementioned GRG method, 

and their performance for various test-systems are discussed in the next section. 

 Results and Discussions 3.4

3.4.1 Base Model 

The proposed mathematical model (64)-(70) is coded in the General Algebraic Modeling 

System (GAMS) programming platform [109]. The model is tested considering the IEEE 14-bus, 

30-bus, 57-bus, 118-bus and 300-bus test systems and real 1211-bus and 2975-bus systems using 

the power flow optimization model (80)-(88). The 1211-bus system has 312 generators and 447 

loads, 1143 lines, 622 fixed transformers; and the 2975-bus system has 374 generators, 874 loads, 

273 shunts, 2146 lines and 1411 transformers. A flat start is used in all cases since this is known 

to yield convergence problems in “standard” NR-based power flow solvers as the system size 

increases. This was indeed the case when using the robust NR-based power flow program 

UWPFLOW [110] DSAT [111] to solve the large practical systems from a flat start.  

The solvers used for the studies shown here are: (1) MINOS [105], which is a GRG-based 

solver; (2) PATH-NLP, a PATH-based solver; and (3) COINIPOPT, an interior-point solver. All 

solvers have their parameters set at their respective default, off-the-shelf settings, so as not to bias 

their “standard” performance. Major settings such as tolerance level or maximum number of 

iterations of the solver are by default the same for all solvers (e.g., feasibility tolerance is 10−6). 

The large execution times for the large systems in Tables I to III can be attributed in part to the 

overhead and non-optimality of the code used to solve the MCP model using GAMS. 
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The results presented in Table I show the total execution time required to solve each test-

system with various solvers in GAMS. Observe that for the small 14-bus, 30-bus and the 57-bus 

systems, and medium 118-bus and 300-bus systems, feasible and locally optimal solutions are 

attained in a few seconds, with all the different methods considered. However, the larger 1211-

bus and 2975-bus systems are only solved by the IP method, which is a barrier method that 

generates a sequence of strictly feasible iterates lying in the interior of the feasible region. The 

GRG-based solver is only able to solve the test systems up to the 300-bus system, and does not 

converge for larger systems as expected, given the well-known poor convergence characteristics 

of this method. The PATH-based method shows reasonably good convergence for systems up to 

1211-bus; however, it fails to arrive at an optimal solution for the 2975-bus system. In all the 

convergent cases, the objective function 𝐹(𝜀) did not exceed a value of 10−7,thus showing that a 

proper solution of the power flow equations was obtained. 

Some of the NLP methods and associated solvers failed to yield a solution in some cases. This 

is due to the non-convex characteristics of the MCP model, as well as possible non-strict 

solutions of the complementarity constraints, which makes the problem numerically hard to solve. 

Table I 
EXECUTION TIME FOR POLAR FORM MCP POWER FLOW MODEL 

System Interior-point 
Method (s) Path Method(s) GRG-Based 

Method(s) 

14-bus 0.125 0.083 0.078 

30-bus 0.063 0.145 0.188 

57- bus 0.275 0.109 0.516 

118-bus 0.615 0.625 8.02 

300-bus 5.187 5.5 4.047 

1211-bus 23.297 71.265 Non-convergent 

2975-bus 162.301 Non-convergent Non-convergent 
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The MCP solutions obtained for the IEEE test systems match closely the power flow solutions 

reported by the standard NR-based power flow solution approach, and the solutions for the real 

systems are basically the same as those obtained with commercial-grade power flow solvers, 

UWPFLOW and DSAT. Hence, these solutions can be considered to be “adequate in practice”. 

 

Table III 

CONVERGENCE TIME WITH DIFFERENT BUS VOLTAGE LIMITS, USING INTERIOR-POINT METHOD IN 
POLAR FORM 

System Bus voltage limits 
[0.8, 1.2] (s) 

Bus voltage limits 
[0.9, 1.1] (s) 

14-bus 0.156 0.109 

30-bus 0.079 0.074 

57- bus 2.301 0.625 

118-bus 4.451 1.764 

300-bus 17.547 5.797 

1211-bus 644.761 44.172 

2975-bus 225.016 419.922 

 

Table II 

EXECUTION TIME FOR RECTANGULAR FORM MCP POWER FLOW MODEL 

System Interior-point 
Method(s) 

Path-Based 
Method(s) 

GRG-Based 
Method(s) 

14-bus 0.156 0.078 0.047 

30-bus 0.392 0.039 0.141 

57- bus 1.296 0.078 0.344 

118-bus 10.665 0.39 1.359 

300-bus 8.812 3.687 Non-convergent 

1211-bus 94.907 28.39 Non-convergent 

2975-bus 381.025 Non-convergent Non-convergent 
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3.4.2 Flexibility of the Proposed Model 

It is important to highlight the flexibility and adaptability of the proposed model, which easily 

accommodates other forms of power flow representations. For example, power flow analysis in 

rectangular coordinates, where the voltage phasor is represented as a complex number, can be 

carried out without the need for extensive software coding. Thus, Table II summarizes the results 

of representing the power flow equations in rectangular coordinates. Observe the faster 

convergence for the GRG-based and PATH-based solvers. For instance, for the IEEE 118-bus 

system, the GRG-based solver converges after 1.359 seconds, while it takes 8.02 seconds for the 

polar form model (Table I). Furthermore, the PATH-based solver now converges for larger test 

systems, such as the 1211-bus system in 28.39 seconds, while it takes 71.265 seconds to converge 

in polar form. On the other hand, the interior-point-based solver shows worse performance with 

the rectangular form model, with a significant increase in the execution time.  

Other advantage of the proposed MCP optimization formulation of the power flow problem is 

its ability to incorporate system constraints such as bus voltage limits to guarantee the quality of 

the solution. Thus, observe in Table III, that imposing voltage limits [0.8,1.2] and [0.9,1.1] allows 

the solver to attain a feasible solution with the polar form. Considering the limits for the voltages 

reduces the feasible search area, resulting in a better search direction to find a feasible solution. 

Finally, different loading conditions have been tested to demonstrate the flexibility of the 

model. For instance, when real power demand is increased to 91.6 MW from 21.7 MW at Bus 2 

for the 30-bus test system, the standard NR method fails to obtain a solution, while the MCP 

model yields a power flow solution under the same loading conditions while maintaining bus 

voltages within 0.95 and 1.05 at all buses, thus meeting the voltage constraints considered in this 

case. On another test for the same system, the standard NR solution approach fails to obtain a 

solution when reactive power demand is increased to 150 MVAR at Bus 21, whereas the MCP 

model yields a solution with a reactive power mismatch at this bus of 𝜀𝑞=0.059, being the largest 

mismatch of all power flow mismatch equations, which signals to the operator that reactive power 

support is needed at that bus. These types of analyses are not feasible with a standard power flow 

formulation. 

In order to test the quality of the final converged solutions for bus voltage magnitudes, a 

parameter, “Voltage Quality Index” (𝑉𝑄𝐼) is defined for each test system as follows: 
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𝑉𝑄𝐼 =
1
𝑁��|𝑉𝑖|−𝑉0�

𝑁

𝑖=1
 (104) 

where 𝑉0 is the desired bus voltage magnitude of 1.0 p.u. and |𝑉𝑖| is the converged bus voltage 

magnitude, using either the proposed MCP formulation or the standard NR-based power flow 

solution approach. Note that a better value of this index means less loss and reactive power flows 

in the system, thus it is an adequate means for judging the quality of the solution. Table IV 

depicts the VQI values for all test systems; observe that VQI is very small in all cases, but this 

index is smaller for large systems when using the proposed MCP method than when using the 

standard NR-based power flow solution approach. Thus, it can be argued that the quality of the 

solutions obtained by the MCP formulation is somewhat superior to the standard NR-based 

approach for large systems. 

3.4.3 Robustness 

The proposed model is said to be robust when a feasible and practical solution is obtained, 

regardless of the choice of initial guess. The robustness of the model is based on the premise that 

the proposed MCP formulation leads to converged power flow solutions with flat-starts, when 

standard power flow solution methods are not able to do so. Therefore, since the proposed MCP 

leads to a converged solution with flat-starts for the large, real 1211-bus and 2975-bus systems, it 

is argued that the proposed method is robust. 

Table IV 
COMPARISON OF VOLTAGE QUALITY INDEX USING DIFFERENT METHODS 

System Proposed MCP based 
Power Flow, using IP 

NR Power Flow 
solution approach 

14-bus 0.04847 0.04864 

30-bus 0.02986 0.02983 

57-bus 0.02395 0.02370 

118-bus 0.02268 0.02277 

300-bus 0.02713 0.02555 

1211-bus 0.03597 0.03685 

2975-bus 0.00751 0.05981 
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In order to evaluate the convergence performance of the proposed MCP model in terms of 

iterations, a comparison is made between the PATH-based solver using the proposed MCP model 

and the robust NR-based power flow solvers. As shown in Table V, the performance of the MCP 

solver for small and medium sized systems is very close to the performance of the power flow 

solvers. However, as shown in this table and Figure 1, the proposed method converges to the 

solution from a flat start for large systems, while the power flow solvers do not converge in these 

cases. 

It should be mentioned that restating the power flow problem as the proposed optimization 

model, allows the use of more sophisticated and robust optimization solution approaches. For 

example, trust-region methods, which are shown to be quite robust for the solution of a variety of 

OPF-based problems can be used to obtain solutions of non-converging power flow cases. 

 

Table V 
ITERATION COMPARISON OF THE PROPOSED MCP MODEL 

System Proposed MCP 
based Power Flow NR Power Flow 

IEEE 14-bus 3 3 

IEEE 30-bus 3 4 

IEEE 57-bus 6 5 

IEEE 118-bus 9 5 

IEEE 300-bus 12 10 

1200-bus 12 Non-convergent 

Real 2975-bus 147 Non-convergent 
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 Summary 3.5

In this Chapter, a novel MCP model has been proposed to solve the power flow problem. This 

model is used to demonstrate that the NR-based iteration procedure is basically a step of the GRG 

method applied to the solution of the proposed MCP model. The optimization is shown to have 

numerous benefits such as, ease of implementation, flexibility and more importantly, robustness. 

Thus numerical results show that the proposed optimization method converges when a robust 

NR-based power flow solver fails to converge for large systems. The proposed model is now 

applied to power flow studies of systems with uncertain parameters, based on the AA techniques. 

 

 
Figure 1: Convergence performance of proposed MCP formulation compared to a robust NR-based solver 

for the 1211-bus system 
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CHAPTER 4 

AN AFFINE ARITHMETIC APPROACH TO THE 

POWER FLOW PROBLEM USING MCP 

FORMULATION 

 Introduction 4.1

In this chapter, the optimization framework, proposed in Chapter 3 is applied to a power flow 

problem under uncertainty using the AA-based approach in order to obtain the operational ranges 

for power flow variables. The associated uncertainties could be internal such as approximation 

error or external such as forecasting error (e.g., demand, generation and weather forecast). The 

proposed AA algorithm is tested on a 14-bus test system and its results are then compared with 

the MCS results. The AA method shows slightly more conservative bounds, however it is faster 

and does not need any information for statistical distributions of random variables. 

 AA Forms of Power Flow Variables in AA Form 4.2

All the state variables associated with the proposed optimization based power flow model (e.g., 

the bus voltage magnitude and the voltage angle in polar form or real and imaginary components 

of bus voltage in rectangular form) are stated in affine form with a center value and noise 

magnitudes. Center values represent the value of a variable considering the given deterministic 

case, i.e., when uncertainties are neglected; and noise magnitudes represent deviations of the 

power flow variables due to the uncertainties. There is also a noise error (𝜀) associated with each 

noise magnitude. 

4.2.1 Calculating Affine Real and Imaginary Bus Voltage Components 

If the sources of uncertainties are assumed to be the real and reactive power injections, the 

affine forms of the real and imaginary components of the bus voltage magnitude (�̃�𝑖 and 𝑓𝑖) can 

be presented as follows: 

�̃�𝑖 = 𝑒𝑖,0 + �𝑒𝑖,𝑗𝑃  𝜀𝑃𝑗𝐷
𝑗𝜖𝑁

+�𝑒𝑖,𝑗
𝑄  𝜀𝑄𝑗𝐷

𝑗𝜖𝑁

  ∀𝑖 ∈ 𝑁 (105) 
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𝑓𝑖 = 𝑓𝑖,0 + �𝑓𝑖,𝑗𝑃  𝜀𝑃𝑗𝐷
𝑗𝜖𝑁

+ �𝑓𝑖,𝑗
𝑄  𝜀𝑄𝑗𝐷

𝑗𝜖𝑁

 ∀𝑖 ∈ 𝑁 (106) 

where:  

𝑒𝑖,0  is the center value of the real component of bus voltage at bus i; 

𝑓𝑖,0   is the center value of the imaginary component of bus voltage at bus i; 

𝑒𝑖,𝑗𝑃   is the partial deviation of the real component of bus voltage at bus i due to the active 

power injection at bus 𝑗 

𝑓𝑖,𝑗𝑃   is the partial deviation of the imaginary component of bus voltage at bus i due to the 

active power injection at bus 𝑗 

𝑒𝑖,𝑗
𝑄   is the partial deviation of the real component of bus voltage at bus i due to the reactive 

power injection at bus 𝑗 

𝑓𝑖,𝑗
𝑄  is the partial deviation of the imaginary component of bus voltage at bus i due to the 

reactive power injection at bus 𝑗 

𝜀𝑃𝑗𝐷   is the uncertainty associated with the active power injection at bus 𝑗 

𝜀𝑄𝑗𝐷   is the uncertainty associated with the reactive power injection at bus 𝑗 

Center values of the power flow variables are calculated by the proposed MCP, where active 

power demand (𝑃𝑖𝐷) and reactive power demand (𝑄𝑖𝐷) parameters at each bus i are specified by 

considering the center of the given intervals for lower and upper bounds of 𝑃𝑖𝐷 and 𝑄𝑖𝐷 as follows: 

𝑃𝑖𝐷 =
�𝑃𝑖

𝐷
+  𝑃 𝑖

𝐷�
2
�  ∀𝑖 ∈ 𝑛𝑃 (107) 

𝑄𝑖𝐷 =
�𝑄𝑖

𝐷
+ 𝑄 𝑖

𝐷�
2
�  ∀𝑖 ∈ 𝑛𝑄 (108) 

In order to find the partial deviations, a sensitivity analysis technique is used in which 𝑃𝑗𝐷 is 

perturbed at buses with sources of uncertainty, while it is fixed at its initial values at the other 

buses. Solving the power flow model (80)-(88) with the modified parameter 𝑃𝑗𝐷, the new values 

for real and imaginary components of bus voltage magnitudes 𝑒𝑖𝑁 and 𝑓𝑖𝑁 are obtained. 

Subtracting the new values from the ones obtained from solving the deterministic power flow 

problem provides the partial deviation of variables due to changes in real power demand at bus 𝑗 

as follows: 
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𝑒𝑖,𝑗𝑃 = 𝑒𝑖𝑁 − 𝑒𝑖,0 ∀𝑖, 𝑗 ∈ 𝑁 (109) 

𝑓𝑖,𝑗𝑃 = 𝑓𝑖𝑁 − 𝑓𝑖,0 
∀𝑖, 𝑗 ∈ 𝑁 

(110) 

4.2.2 Affine Real and Reactive Power Calculations 

Affine real power injection 𝑃� is obtained using the affine real and imaginary bus voltage and 

current components and affine operations. Two different methods are used to calculate the affine 

reactive power injection 𝑄�  in the proposed affine power flow problem. One calculates the affine 

reactive power injection, using the obtained �̃�𝑖 and 𝑓𝑖 from the MCP model and affine and non-

affine operations, explained in Chapter 2. The other method calculates the affine reactive power 

injection as the by-product of the MCP model, the same way that �̃�𝑖 and 𝑓𝑖 are calculated. Both 

methods take into consideration the reactive power generation limits by not violating them 

because they employ the MCP model in their solution method, which inherently consider the 

given limits by considering the complementarity conditions. However, the former method has the 

advantage of calculating the internal errors associated with non-affine operations. 

1) Affine real and reactive power calculation using affine operations 

In order to find the affine form of the real and reactive power, affine representation of the real 

and imaginary components of bus currents have to be found. Calculating the affine form of the 

real and imaginary components of bus voltage in (109) and (110), the affine form of the bus 

current is obtained by knowing the followings: 

𝐼 = 𝑌 𝑉�  (111) 

𝐼 = (𝐺 + 𝑗𝐵)(�̃� + 𝑗𝑓) (112) 

Therefore the real and imaginary values for bus current are calculated as follows: 

𝐼𝑟 = 𝐺�̃� − 𝐵𝑓 (113) 

𝐼𝑖𝑚 = 𝐺𝑓 + 𝐵�̃� (114) 

where 𝐼𝑟 and 𝐼𝑖𝑚 have the affine forms as shown in (115) and (116). 

𝐼𝑟𝑖 = 𝐼𝑟𝑖,0 + �𝐼𝑟𝑖,𝑗
𝑃  𝜀𝑃𝑗𝐷 

𝑗𝜖𝑁

+ �𝐼𝑟𝑖,𝑗
𝑄  𝜀𝑄𝑗𝐷

𝑗𝜖𝑁

  ∀𝑖 ∈ 𝑁 (115) 

𝐼𝑖𝑚𝑖 = 𝐼𝑖𝑚,0 + �𝐼𝑖𝑚𝑖,𝑗
𝑃  𝜀𝑃𝑗𝐷

𝑗𝜖𝑁

+ �𝐼𝑟𝑖,𝑗
𝑄  𝜀𝑄𝑗𝐷 

𝑗𝜖𝑁

  ∀𝑖 ∈ 𝑁 (116) 



 

47 

 

Note that the real and imaginary components of current share the same sources of uncertainties, 

i.e., real and reactive power injection. 

Furthermore, using the affine and non-affine operations, and the affine forms �̃�𝑖, 𝑓𝑖, 𝐼𝑟𝑖 and 

𝐼𝑖𝑚𝑖, the real and reactive power 𝑃�𝑖and 𝑄�𝑖 are calculated as presented in (117) and (118): 

𝑃� = �̃� 𝐼𝑟 + 𝑓 𝐼𝑖𝑚 (117) 

𝑄� = 𝑓 �𝐼𝑟 − �̃� 𝐼𝑖𝑚 (118) 

where 𝑃�𝑖 and 𝑄�𝑖 have the following affine forms, with center value and associated partial 

deviations: 

𝑃�𝑖 = 𝑃𝑖,0 +�𝑃𝑖,𝑗𝑃  𝜀𝑃𝑗𝐷
𝑗𝜖𝑁

+ �𝑃𝑖,𝑗
𝑄  𝜀𝑄𝑗𝐷

𝑗𝜖𝑁

+ 𝑃𝑖𝑇𝜀𝑇𝑖 ∀𝑖 ∈ 𝑁 (119) 

𝑄�𝑖 = 𝑄𝑖,0 + �𝑄𝑖,𝑗𝑃  𝜀𝑃𝑗𝐷 + �𝑄𝑖,𝑗
𝑄  𝜀𝑄𝑗𝐷

𝑗𝜖𝑁𝑗𝜖𝑁

+ 𝑄𝑖𝑇𝜀𝑇𝑖 ∀𝑖 ∈ 𝑁 (120) 

The center values, 𝑃𝑖,0 and 𝑄𝑖,0; partial deviations, 𝑃𝑖,𝑗𝑃  and 𝑄𝑖,𝑗𝑃 ; and truncation errors 𝑃𝑖𝑇and 

𝑄𝑖𝑇are calculated as follows: 

𝑃𝑖,0 = 𝑒𝑖,0 𝐼𝑟𝑖,0 + 𝑓𝑖,0 𝐼𝑖𝑚𝑖,0 ∀𝑖 ∈ 𝑁 (121) 

𝑄𝑖,0 = 𝑓𝑖,0 𝐼𝑟𝑖,0 −  𝑒𝑖,0 𝐼𝑖𝑚𝑖,0 ∀𝑖 ∈ 𝑁 (122) 

𝑃𝑖,𝑗𝑃 = 𝑒𝑖,0 𝐼𝑟𝑖,𝑗
𝑃 +  𝐼𝑟𝑖,0 𝑒𝑖,𝑗𝑃 + 𝑓𝑖,0 𝐼𝑖𝑚𝑖,𝑗

𝑃 + 𝐼𝑖𝑚𝑖,0  𝑓𝑖,𝑗𝑃  ∀𝑖, 𝑗 ∈ 𝑁 (123) 

𝑄𝑖,𝑗𝑃 = 𝑓𝑖,0 𝐼𝑟𝑖,𝑗
𝑃 +  𝐼𝑟𝑖,0 𝑓𝑖,𝑗𝑃 − 𝑒𝑖,0 𝐼𝑖𝑚𝑖,𝑗

𝑃 − 𝐼𝑖𝑚𝑖,0  𝑒𝑖,𝑗𝑃  ∀𝑖, 𝑗 ∈ 𝑁 (124) 

𝑃𝑖𝑇 = ��𝑒𝑖,𝑗𝑃 �
𝑗

 ��𝐼𝑟𝑖,𝑗
𝑃 �

𝑗

+ ��𝑓𝑖,𝑗𝑃 �
𝑗

 ��𝐼𝑖𝑚𝑖,𝑗
𝑃 �

𝑗

 ∀𝑖 ∈ 𝑁 (125) 

𝑄𝑖𝑇 = ��𝑓𝑖,𝑗𝑃 �
𝑗

 ��𝐼𝑟𝑖,𝑗
𝑃 �

𝑗

−��𝑒𝑖,𝑗𝑃 �
𝑗

 ��𝐼𝑖𝑚𝑖,𝑗
𝑃 �

𝑗

 ∀𝑖 ∈ 𝑁 (126) 

In the above equations, the noise magnitudes related to reactive power deviations 𝑃𝑖,𝑘
𝑄  and 𝑄𝑖,𝑘

𝑄  are 

ignored, as the reactive power generation is assumed to be zero, and therefore the associated 

noise magnitudes are zero.  The formulation presented in (125) and (126) is the most conservative 

and computationally efficient method to calculate the magnitude of the internal errors 𝑃𝑖𝑇 and 𝑄𝑖𝑇, 

related to non-affine calculations. This method simply uses the product of the absolute value of 

the external noise magnitudes. There are other methods to calculate the magnitude of internal 

error in which the obtained range could be smaller; however they need more computational effort. 
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In order to find the minimum amount of the noise variables and therefore obtaining narrower 

AA-based solution intervals, a noise contraction algorithm is used [5]. For this purpose, the 

obtained affine form (119) and (120) is rearranged in matrix-vector form as follows: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑃
�1

⋯

𝑃�𝑁

𝑄�1

⋯

𝑄�𝑁⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑃1,0

⋯

𝑃𝑁,0

𝑄1,0

⋯

𝑄𝑁,0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑃1,1

𝑃 𝑃1,2
𝑃 ⋯ 𝑃1,𝑁

𝑃

⋯ ⋯ ⋯ ⋯

𝑃𝑁,1
𝑃 𝑃𝑁,2

𝑃 ⋯ 𝑃𝑁,𝑁
𝑃

𝑄1,1
𝑃 𝑄1,2

𝑃 ⋯ 𝑄1,𝑁
𝑃

⋯ ⋯ ⋯ ⋯

𝑄𝑁,1
𝑃 𝑄𝑁,2

𝑃 ⋯ 𝑄𝑁,𝑁
𝑃 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝜀𝑃1

𝐷

⋯

𝜀𝑃𝑁𝐷⎦
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑃1,1

𝑄 𝑃1,2
𝑄 ⋯ 𝑃1,𝑁

𝑄

⋯ ⋯ ⋯ ⋯

𝑃𝑁,1
𝑄 𝑃𝑁,2

𝑄 ⋯ 𝑃𝑁,𝑁
𝑄

𝑄1,1
𝑄 𝑄1,2

𝑄 ⋯ 𝑄1,𝑛𝑃𝑄
𝑄

⋯ ⋯ ⋯ ⋯

𝑄𝑛𝑃𝑄,1
𝑄 𝑄𝑛𝑃𝑄,2

𝑄 ⋯ 𝑄𝑛𝑃𝑄,𝑛𝑃𝑄
𝑄

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝜀𝑄1

𝐷

⋯

𝜀𝑄𝑁𝐷⎦
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑃1

𝑇

⋯

𝑃𝑁𝑇

𝑄1𝑇

⋯

𝑄𝑁𝑇⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

∙

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜀𝑇1

⋯

𝜀𝑇𝑁

𝜀𝑇𝑁+1

⋯

𝜀𝑇2𝑁 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(127) 

The above equation is represented in the following general form: 

𝑓(𝑥) = 𝐴0 + 𝐴𝑥𝜀 + 𝐵𝑇 . 𝑥𝑇 (128) 

where: 

 𝑓(𝑥)   is the power flow equations in affine form. 

 𝐴0   is the vector of center values. 

 𝐴    is the matrix of partial deviations. 

 𝑥𝜀    is the vector of external uncertainties. 

 𝐵𝑇   is the vector of internal noise magnitude associated with non-affine operations. 

 𝑥𝑇   is the vector of noise variables associated with non-affine operations. 

In (128), 𝑥𝑇 varies in the interval [-1,1], and since it represents the noises associated with non-

affine operations, it cannot be contracted, therefore the largest value and the smallest value of the 

range, i.e., 1.00 and -1.00 are considered for 𝜀𝑇𝑖
𝑀𝑎𝑥and 𝜀𝑇𝑖

𝑀𝑖𝑛 accordingly. Hence the affine 



 

49 

 

equation (128) is converted to an interval form with the upper bound 𝑓(𝑥) and lower bound 𝑓(𝑥) 

as follows: 

𝑓(𝑥) = 𝐴𝑥𝑀𝑎𝑥 + 𝐵1 (129) 

𝑓(𝑥) = 𝐴𝑥𝑀𝑖𝑛 + 𝐵2 (130) 

where: 

𝑥𝑀𝑎𝑥  is the vector of maximum noise variables associated with the real and reactive power 

injection. 

𝑥𝑀𝑖𝑛 is the vector of minimum noise variables associated with the real and reactive power 

injection. 

𝑓(𝑥)  is the vector of maximum value of real and reactive power injections 

𝑓(𝑥)  is the vector of minimum value of real and reactive power injections 

𝐵1  is the vector of center values plus the noise magnitude value for the affine operation error 

as shown (131). 

𝐵2  is the vector of center values minus the noise magnitude for the affine operation error as 

shown in (131). 

𝐵1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑃1,0

⋯

𝑃𝑁,0

𝑄1,0

⋯

𝑄𝑛𝑃𝑄,0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑃1

𝑇

⋯

𝑃𝑁𝑇

𝑄1𝑇

⋯

𝑄𝑛𝑃𝑄𝑇 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

    &   𝐵2 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑃1,0

⋯

𝑃𝑁,0

𝑄1,0

⋯

𝑄𝑛𝑃𝑄,0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

−

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑃1

𝑇

⋯

𝑃𝑁𝑇

𝑄1𝑇

⋯

𝑄𝑛𝑃𝑄𝑇 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (131) 

The above equations (129) and (130) are as follows for the real and reactive power upper and 

lower bounds: 

𝑃𝑖 = 𝑃𝑖,0 +�𝑃𝑖,𝑗𝑃  𝜀𝑃𝑗
𝑀𝑎𝑥

𝑗

+�𝑃𝑖,𝑗
𝑄  𝜀𝑄𝑗

𝑀𝑎𝑥

𝑗

+ 𝑃𝑖𝑇 ∀𝑖 ∈ 𝑁 (132) 

𝑃𝑖 = 𝑃𝑖,0 + �𝑃𝑖,𝑗𝑃  𝜀𝑃𝑗
𝑀𝑖𝑛

𝑗

+ �𝑃𝑖,𝑗
𝑄  𝜀𝑄𝑗

𝑀𝑖𝑛

𝑗

− 𝑃𝑖𝑇 ∀𝑖 ∈ 𝑁 (133) 

𝑄𝑖 = 𝑄𝑖,0 + �𝑄𝑖,𝑗𝑃  𝜀𝑃𝑗
𝑀𝑎𝑥

𝑗

+ �𝑄𝑖,𝑗
𝑄  𝜀𝑄𝑗

𝑀𝑎𝑥

𝑗

+ 𝑄𝑖𝑇 ∀𝑖 ∈ 𝑁 (134) 
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𝑄𝑖 = 𝑄𝑖,0 + �𝑄𝑖,𝑗𝑃  𝜀𝑃𝑗
𝑀𝑖𝑛

𝑗

+ �𝑄𝑖,𝑗
𝑄  𝜀𝑄𝑗

𝑀𝑖𝑛

𝑗

− 𝑄𝑖𝑇 ∀𝑖 ∈ 𝑁 (135) 

where: 

𝑃𝑖 and 𝑄𝑖   are the maximum values of real and reactive power at bus 𝑖; 

𝑃𝑖 and 𝑄𝑖   are the minimum values of real and reactive power at bus 𝑖; 

𝜀𝑃𝑗
𝑀𝑖𝑛    is the minimum uncertainty associated with the real power injection at bus 𝑗 

𝜀𝑄𝑗
𝑀𝑖𝑛    is the minimum uncertainty associated with the reactive power injection at bus 𝑗 

𝜀𝑃𝑗
𝑀𝑎𝑥   is the maximum uncertainty due to real power injection at bus 𝑗 

𝜀𝑄𝑗
𝑀𝑎𝑥    is the maximum uncertainty due to reactive power injection at bus 𝑗 

In (129) and (130), 𝑓(𝑥) and 𝑓(𝑥) are already known, as they are the input intervals to the 

power flow problem. The matrix 𝐴 is calculated by the sensitivity analysis technique and 𝐵1 and 

𝐵2 vectors are known by calculating the center values and internal error noise magnitude. Hence 

the only variables are 𝑥𝑀𝑎𝑥 and 𝑥𝑀𝑖𝑛 which are found by the following LP models:  

min 
s.t. 

�  𝜀𝑃𝑖
𝑀𝑖𝑛

𝑖

 

−1 ≤ 𝜀𝑃𝑀𝑖𝑛 ≤ 1 
𝑓(𝑥) ≤ 𝐴 𝜀𝑃𝑀𝑖𝑛 + 𝐵2 

(136) 

 
 

 

max 
s.t. 

�  𝜀𝑃𝑖
𝑀𝑎𝑥

𝑖

 

−1 ≤ 𝜀𝑃𝑀𝑎𝑥 ≤ 1 
𝐴 𝜀𝑃𝑀𝑎𝑥 + 𝐵1 ≤ 𝑓(𝑥) 

(137) 

LP models (136) and (137) can be easily solved using the available LP solvers, such as 

CPLEX. Furthermore, 𝜀𝑃𝑀𝑎𝑥 and 𝜀𝑃𝑀𝑖𝑛 are used to find the real and reactive power intervals as 

formulated in (132), (133), (134) and (135) and also real and imaginary components of bus 

voltage as shown in (105) and (106). 

2) Affine reactive power calculation as the by-product of the MCP model 

Another method to calculate the affine reactive power injection (120) is using the MCP model 

directly. This approach calculates 𝑄�  with the same method proposed for calculating �̃� and 𝑓. It 

uses the MCP model with the given values for demand to find the center values and then employs 
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the sensitivity analysis technique to calculate the partial deviations. In order to find the intervals 

the contraction method is used as previously was explained. 

  Numerical Results 4.3

In this section, the AA and the MCS methods are both tested on a power flow analysis problem 

using the IEEE 14-bus system, shown in Figure 2. The uncertainties are assumed to be real and 

reactive power injection, because of real and reactive power demand variations, caused by 

“forecast error”. A constant power factor is assumed to consider the same proportion of changes 

in real and reactive power demand. The proposed model is simulated in General Algebraic 

Modeling System (GAMS). 

The implemented MCS method has 3000 iterations, and uses uniform distribution, which is 

assumed to yield a reliable solution interval [5]. The real and reactive power demands are 

randomly selected from the input interval, which is in the 10% range of the given demand. The 

proposed MCP problem is solved to obtain the power flow variables, such as bus voltage 

magnitude, in each MCS iteration and then the maximum value amongst all the iterations is 

considered to be the upper bound and the minimum value is considered to be the lower bound. It 

is noted that increasing the number of iterations in the MCS method does not improve the 

associated bounds. 

 

Figure 2: IEEE 14 bus test system [112]  
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The proposed AA-based method is applied to the IEEE 14-bus system [112] with the same 

conditions and the same input intervals (10% deviation of the given real and reactive power 

demands). The center values are obtained by running the MCP model with the deterministic data; 

and the noise magnitudes are obtained from a sensitivity analysis technique, perturbing active and 

reactive power demands by 10%. As suggested in [5], an amplification factor can be used to force 

the AA-based intervals to be beyond the MCS-based ones. However, the obtained AA-based 

intervals for real and imaginary bus voltage components, in this numerical example are all outside 

of the MCS-based bounds and therefore there is no need to use an amplification factor to increase 

the noise magnitudes. 

The intervals obtained by the MCS method are used as reference to check the validity of the AA-

based intervals. As presented in Figure 3 to Figure 5, the AA intervals associated with the bus 

voltage magnitudes (vUpAA and vLoAA), the real component of bus voltage magnitude (eUpAA 

and eLoAA) and the imaginary component of bus voltage magnitude (fUpAA and fLoAA) are 

outside the corresponding MCS intervals. Most of the generator bus voltage magnitudes (bus 1, 

bus 3, bus 6 and bus 8) are at their set-point values, because their reactive power generation is not 

Figure 3: Bus voltage magnitude bounds 
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at the limits, and hence the voltage magnitudes do not deviate from their corresponding set-point 

values. However the reactive power generation at bus 2 is at its maximum limit and hence the 

voltage magnitude at this bus deviates from its set-point according to the range, shown in Figure 

3. The contraction method proposed in [5] is used to find the value of the noise variables. Figure 

6 illustrates the substantial improvement in the bus voltage magnitude intervals from their initial 

values, i.e., the noise variables are 1 and (-1), after the first iteration of the contraction method. 

However as presented in Figure 7, for this specific example, there is no significant improvement 

in the intervals after the first iteration of the contraction method, therefore the obtained noise 

values after the first iteration are considered to be satisfactory. Figure 7 presents the interval 

improvement in bus voltage magnitudes after the first and the 5th iterations of the contraction 

method.  

 

  

 

Figure 4: Bus voltage real component bounds 
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Using the proposed power flow MCP model, there is no need to perform the standard PV- and 

PQ-bus switching to find the center value of affine reactive power generation, as the 

complementarity conditions inherently take care of the situation when reactive power generation 

is at its limits. Thus the center value of the affine reactive power generation does not violate the 

reactive power generation limits. The intervals associated with the reactive power generation also 

respect the given limits, as the AA-based upper and lower bounds are obtained by adding the 

noise magnitudes, calculated by (123) and (124), and when the center value is already at the 

limits the partial deviations would be zero or negligible. 

Figure 5: Bus voltage imaginary component 
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Figure 6: Contraction Method performance after first iteration 

 

Figure 7: Contraction method performance improvement 
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Figure 8 illustrates the AA-based reactive power generation interval (AA-qGUp and AA-

qGLo) and its center value (AA-qGCtr) and compares them with the given limits. As shown in 

Figure 8, reactive power generation at the Bus-2 is at the maximum limit and therefore the AA-

based upper and lower bounds do not deviate from the center values as all the corresponding 

partial deviations are zero.  

 

Another method to calculate the AA-based reactive power generation interval is to use the 

MCP model directly by generating the affine form of the reactive power generation as a by-

product of the model. Figure 9 demonstrates the results, obtained using this method: 

Figure 8: Reactive power generation AA-based limits 
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As shown in Figure 9, the obtained interval does not violate the given reactive power 

generation interval. Also it is much narrower than the interval obtained in Figure 8, as it does not 

take into consideration the internal errors associated with the calculations. 

Figure 10 presents a comparison between the real power injection intervals using the AA and 

the MCS method. As shown in Figure 10, the real power injection intervals for all buses but the 

slack bus are almost the same for both the AA and the MCS method, as the real power generation 

is fixed at these buses and the demand is changing considering the perturbation in the AA method 

and the pdf in the MCS method. The slack bus real power injection interval is slightly different 

between the two methods as the real power generation is a variable at the slack bus. 

 
Figure 9: AA-based reactive power generation limits as the by-product of the MCP model 
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Figure 10: Real power injection 

 Summary 4.4
In this chapter, an AA-based method is used to solve the power flow problem under 

uncertainty. The MCP model, proposed in the previous chapter is used to calculate the affine 

form of real and imaginary components of bus voltage magnitudes in the uncertain power flow 

problem. The calculated affine forms of real and imaginary components of the bus voltage 

magnitude are then used to calculate the affine forms of real and reactive power injections. Then 

the AA form is converted to IA form in order to compare the obtained intervals with the MCS 

intervals. The proposed method is tested on IEEE 14-bus test system. The results show that the 

AA intervals are more conservative than the MCS ones, as they consider the worst cases and also 

the internal errors such as truncation error. The main advantage of the AA method is that it does 

not need the pdf of the uncertain variables. 
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CHAPTER 5 

AN AFFINE ARITHMETIC METHOD TO SOLVE 

OPTIMAL POWER FLOW PROBLEMS WITH 

UNCERTAINTIES 

 Introduction 5.1

The increased focus on renewable generation has brought forth several concerns pertaining to 

planning and operation of modern power systems, because of their inherent characteristic of 

intermittency. In order to fulfill the requirements of the evolving smart power grid, the 

intermittency need be taken into account in traditional UC, ELD, and OPF models, as well as in 

long-term planning models of transmission and generation systems. 

An AA method is proposed in this chapter to solve the OPF problem with uncertain generation 

sources. In the AA-based OPF problem, all the state and control variables are treated in affine 

form, comprising a center value and the corresponding noise magnitudes, to represent forecast, 

model error, and other sources of uncertainty without the need to assume a pdf. The proposed 

AA-based OPF problem is used to determine the operating margins of the thermal generators in 

systems with uncertain wind and solar generation dispatch. The AA-based approach is 

benchmarked against MCS intervals in order to determine its effectiveness. The proposed 

technique is tested and demonstrated on the IEEE 30-bus system and also a real 1211-bus 

European system. Some of the mathematical formulations to obtain the affine form of the state 

variables associated with the power flow analysis problem are re-stated in this chapter, for the 

sake of continuity in reading. 

Obtaining the margins of operations for thermal generators in the presence of uncertain 

generation (e.g., wind and solar) and load [113] helps significantly in determining the required 

reserve capacities, so that the system operates reliably and economically. System operators 

provide such ancillary services to maintain system reliability [114] and [115]. The Electric 

Reliability Council of Texas (ERCOT) has faced resource adequacy issues, since less thermal 

capacity has been added as compared to wind, since 2003, and the additional wind capacity has 

not contributed to the peak load carrying capability, as wind blows more during off-peak periods 

[116]. 
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 AA-Based Optimal Power Flow 5.2

As demonstrated in Chapter 4, all the variables associated with the proposed AA-based OPF 

problem (e.g., the bus voltage magnitude and the voltage angle, or real and imaginary 

components of bus voltages in rectangular form) can be stated in affine form consisting of a 

center value and noise magnitudes. Center values represent the value of a variable under 

deterministic assumptions, i.e., when uncertainties are neglected, and noise magnitudes represent 

deviations of the OPF variables due to the uncertainties. 

5.2.1 AA-based Mathematical Model 

The proposed AA-based OPF model uses a cost minimization objective function, with all the 

uncertain variables, such as real and reactive power generation 𝑃�𝑖𝐺 and 𝑄�𝑖𝐺, real and reactive 

power demand 𝑃�𝑖𝐷 and 𝑄�𝑖𝐷, bus voltage magnitude |𝑉�𝑖|, real and imaginary components of bus 

voltages �̃�𝑖  and 𝑓𝑖, real and imaginary components of bus currents 𝐼𝑟𝑖 and 𝐼𝑖𝑚𝑖, and line currents 

𝐼𝑖𝑗 in affine form. The following equations correspond to the rectangular form of the AA-based 

cost minimizing OPF problem: 

min 𝐹(𝑃�𝐺) = � 𝛼𝑖𝑃�𝑖𝐺
2

𝑖∈𝑇ℎ 

+ 𝛽𝑖𝑃�𝑖𝐺 + 𝑐𝑖  (144) 

s.t.: ∆𝑃�𝑖��̃�𝑖, 𝑓𝑖, 𝐼𝑟𝑖, 𝐼𝑖𝑚𝑖,𝑃�𝑖
𝐺 ,𝑃�𝑖𝐷� = 0      ∀𝑖 ∈ 𝑁 (145) 

 ∆𝑄�𝑖��̃�𝑖 ,𝑓𝑖, 𝐼𝑟𝑖, 𝐼𝑖𝑚𝑖,𝑄�𝑖
𝐺 ,𝑄�𝑖𝐷� = 0    ∀𝑖 ∈ 𝑁 (146) 

 |𝑉�𝑖|2 = �̃�𝑖2 + 𝑓𝑖2          ∀𝑖 ∈ 𝑁 (147) 

 𝑃𝑖𝑚𝑖𝑛 ≤ 𝑃�𝑖𝐺 ≤ 𝑃𝑖𝑚𝑎𝑥                                      ∀𝑖 ∈ 𝑔𝑒𝑛 (148) 

 𝑄𝑖𝑚𝑖𝑛 ≤ 𝑄�𝑖𝐺 ≤ 𝑄𝑖𝑚𝑎𝑥                                      ∀𝑖 ∈ 𝑔𝑒𝑛 (149) 

 𝐼𝑖𝑗𝑚𝑖𝑛 ≤ 𝐼𝑖𝑗 ≤ 𝐼𝑖𝑗𝑚𝑎𝑥                                      ∀𝑖𝑗 ∈ 𝐿 (150) 

 𝑉𝑖𝑚𝑖𝑛
2 ≤ �𝑉�𝑖�

2 ≤ 𝑉𝑖𝑚𝑎𝑥
2    ∀𝑖 ∈ 𝑁 (151) 

where 𝑁 is the set of all buses, 𝑛𝑃𝐺 is the set of all generator buses, and 𝐿 is the set of all lines. 

Furthermore, ∆𝑃�𝑖(. ) and ∆𝑄�𝑖(. ) are affine real and reactive power mismatch functions, and 𝑃𝑖𝑚𝑖𝑛, 

𝑃𝑖𝑚𝑎𝑥, 𝑄𝑖𝑚𝑖𝑛, 𝑄𝑖𝑚𝑎𝑥, 𝐼𝑖𝑗𝑚𝑖𝑛, 𝐼𝑖𝑗𝑚𝑎𝑥, 𝑉𝑖𝑚𝑖𝑛 and 𝑉𝑖𝑚𝑎𝑥 are minimum and maximum limits for real 

power, reactive power, line currents, and bus voltage magnitudes, respectively, at bus 𝑖. All the 

state and control variables in these equations are in affine form, comprising a center value and the 

corresponding noise magnitudes. The center values are obtained by solving a deterministic OPF, 
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in which the mean of the given intervals for upper and lower bounds of real and reactive power 

demand 𝑃𝑖
𝐷

 and  𝑃 𝑖
𝐷, and 𝑄𝑖

𝐷
 and 𝑄 𝑖

𝐷 are considered deterministic demands as follows: 

𝑃𝑖𝐷 =
𝑃𝑖
𝐷

+  𝑃 𝑖
𝐷

2
 ∀𝑖 ∈ 𝑛𝑃 (152) 

𝑄𝑖𝐷 =
𝑄𝑖
𝐷

+ 𝑄 𝑖
𝐷

2
 ∀𝑖 ∈ 𝑛𝑄 (153) 

In this paper, uncertain wind and solar generation sources are treated as interval negative loads 

with a constant power factor, and are hence represented using (152) and (153) in the deterministic 

OPF. 

To obtain the noise magnitudes of real and imaginary components of bus voltages, a sensitivity 

analysis is carried out, where the generation and demand are perturbed by a small magnitude 

(e.g., ±1%) at each node. A deterministic OPF is solved for each of these variations, thus solving 

as many OPFs as the number of uncertain inputs in the system, which corresponds to the number 

of renewable generators being studied. Therefore, the noise magnitudes can be obtained as 

follows [5]: 

𝑒𝑖,𝑗𝑃 =
𝜕𝑒𝑖
𝜕𝑃𝑗𝐷

�
0

≈  
𝑒𝑖𝑁 − 𝑒𝑖0

∆𝑃𝑗𝐷
 ∀𝑖, 𝑗 ∈ 𝑁 (154) 

𝑒𝑖,𝑗
𝑄 =

𝜕𝑒𝑖
𝜕𝑄𝑗𝐷

�
0

≈  
𝑒𝑖𝑁 − 𝑒𝑖0

∆𝑄𝑗𝐷
 ∀𝑖, 𝑗 ∈ 𝑁 (155) 

𝑓𝑖,𝑗𝑃 =
𝜕𝑓𝑖
𝜕𝑃𝑗𝐷

�
0

≈  
𝑓𝑖𝑁 − 𝑓𝑖0

∆𝑃𝑗𝐷
 ∀𝑖, 𝑗 ∈ 𝑁 (156) 

𝑓𝑖,𝑗
𝑄 =

𝜕𝑓𝑖
𝜕𝑄𝑗𝐷

�
0

≈  
𝑓𝑖𝑁 − 𝑓𝑖0

∆𝑄𝑗𝐷
  ∀𝑖, 𝑗 ∈ 𝑁 (157) 

where  𝑒𝑖,𝑗𝑃  and 𝑓𝑖,𝑗𝑃  are partial deviations of real and imaginary components of bus voltages due to 

changes in real power injection, and 𝑒𝑖,𝑗
𝑄  and 𝑓𝑖,𝑗

𝑄 are partial deviations of real and imaginary 

components of bus voltages at bus 𝑖 due to changes in reactive power injection at bus 𝑗. The 

parameters 𝑒𝑖𝑁 and 𝑓𝑖𝑁 are the new real and imaginary components of the bus voltages when the 

real and reactive power injections are perturbed; 𝑒𝑖0 and 𝑓𝑖0 are the initial values of real and 

imaginary components of bus voltages obtained from the deterministic model; and ∆𝑃𝑗𝐷 and ∆𝑄𝑗𝐷 

are the amount of perturbation in real and reactive power injections at bus 𝑗.  
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Note that since the power flow equations are nonlinear, the suggested calculations in (154)-

(157) may result in the underestimation of the solution and, therefore, not include the “exact” 

solutions. In order to avoid underestimation of the solution, an “affine extension” technique 

suggested in [5] and [117] is used here to increase each noise magnitude using an independent 

magnification coefficient. Also, it is assumed that an OPF solution for the center value can be 

obtained as the starting point; hence, the derivatives (154)-(157), which can be obtained by 

inverting Jacobians of the center-value OPF solution, exist. In the case that a center-value OPF 

solution cannot be obtained, the proposed technique cannot be applied; this may be resolved by 

redefining the intervals. It should be noted that, since the classical OPF problem is highly non-

convex, using NLP solution methods such as the Interior Point (IP), do not guarantee a global 

optimal solution. To prevent widely different solutions during the perturbation method used in the 

sensitivity analysis, at each run, the initial values for each variable are set at the values obtained 

from solving the center-value OPF. Since these perturbations are small, this procedure guarantees 

in practice obtaining local maxima close to the center-value OPF solutions. 

The affine forms of the real and imaginary components of the bus voltage magnitude �̃�𝑖 and 𝑓𝑖, 

which are linear functions of noise variables 𝜀𝑃𝑗𝐷 and 𝜀𝑄𝑗𝐷 representing the uncertainties of active 

power and reactive power injections at bus 𝑗, can then be presented as follows: 

�̃�𝑖 = 𝑒𝑖0 + �𝑒𝑖,𝑗𝑃  𝜀𝑃𝑗𝐷
𝑗𝜖𝑁

+�𝑒𝑖,𝑗
𝑄  𝜀𝑄𝑗𝐷

𝑗𝜖𝑁

 ∀𝑖 ∈ 𝑁 (158) 

𝑓𝑖 = 𝑓𝑖0 + �𝑓𝑖,𝑗𝑃  𝜀𝑃𝑗𝐷
𝑗𝜖𝑁

+ �𝑓𝑖,𝑗
𝑄  𝜀𝑄𝑗𝐷

𝑗𝜖𝑁

 ∀𝑖 ∈ 𝑁 (159) 

where  𝑒𝑖0 and 𝑓𝑖0 are the center values for real and imaginary components of bus voltages at bus 

𝑖, respectively, and 𝑒𝑖,𝑗𝑃 , 𝑓𝑖,𝑗𝑃 , 𝑒𝑖,𝑗
𝑄 , and 𝑓𝑖,𝑗

𝑄 are defined in (154) to (157). 

The affine forms of real and imaginary components of bus voltages, �̃�𝑖 and 𝑓𝑖 can be used to 

calculate, from (58), the square of bus voltage magnitude, using the following relationship: 

 |𝑉�𝑖|2 = �̃�𝑖2 + 𝑓𝑖2  ∀𝑖 ∈ 𝑁 (160) 

Thus,  |𝑉�𝑖|2 has the following form: 

 |𝑉�𝑖|2 = �𝑒𝑖02 +𝑓𝑖02�+ 2��𝑒𝑖0𝑒𝑖,𝑗𝑃 + 𝑓𝑖0𝑓𝑖,𝑗𝑃� 𝜀𝑃𝑗𝐷
𝑗𝜖𝑁

+ 2��𝑒𝑖0𝑒𝑖,𝑗
𝑄 + 𝑓𝑖0𝑓𝑖,𝑗

𝑄� 𝜀𝑄𝑗𝐷
𝑗𝜖𝑁

+ �𝑒𝑖𝑇 + 𝑓𝑖𝑇�  
∀𝑖 ∈ 𝑁 161) 
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Here 𝑒𝑖𝑇 and 𝑓𝑖𝑇 are linear approximation errors due to non-affine operations. Furthermore, 

knowing the affine forms of the real and imaginary components of the bus voltage magnitude, the 

real and reactive power can be calculated using the following affine operations: 

𝐼𝑖 = ��G𝑖𝑗 + 𝚥̂B𝑖𝑗�(�̃�𝑗 + 𝚥̂𝑓𝑗)
𝑗𝜖𝑁

 ∀𝑖 ∈ 𝑁 162) 

where 𝚥̂ = √−1, and G𝑖𝑗 and B𝑖𝑗 are the real and imaginary components of the Y-bus matrix, 

respectively. Therefore, the linear affine forms of real and imaginary bus currents 𝐼𝑟𝑖 and 𝐼𝑖𝑚𝑖 can 

be calculated as follows: 

𝐼𝑟𝑖 = ��G𝑖𝑗��̃�𝑖 − �̃�𝑗� − B𝑖𝑗�𝑓𝑖−𝑓𝑗��
𝑗𝜖𝑁

 ∀𝑖 ∈ 𝑁 163) 

𝐼𝑖𝑚𝑖 = ��G𝑖𝑗�𝑓𝑖 − 𝑓𝑗� + B𝑖𝑗��̃�𝑖−�̃�𝑗��
𝑗𝜖𝑁

 ∀𝑖 ∈ 𝑁 164) 

where 𝐼𝑟𝑖 and 𝐼𝑖𝑚𝑖 have the following general forms after affine operations: 

𝐼𝑟𝑖 = 𝐼𝑟𝑖0 + �𝐼𝑟𝑖,𝑗
𝑃  𝜀𝑃𝑗𝐷 

𝑗𝜖𝑁

+ �𝐼𝑟𝑖,𝑗
𝑄  𝜀𝑄𝑗𝐷 

𝑗𝜖𝑁

 ∀𝑖 ∈ 𝑁 (165) 

𝐼𝑖𝑚𝑖 = 𝐼𝑖𝑚𝑖0 + �𝐼𝑖𝑚𝑖,𝑗
𝑃  𝜀𝑃𝑗𝐷

𝑗𝜖𝑁

+ �𝐼𝑖𝑚𝑖,𝑗
𝑄  𝜀𝑄𝑗𝐷 

𝑗𝜖𝑁

 ∀𝑖 ∈ 𝑁 (166) 

Here, 𝐼𝑟𝑖0 and 𝐼𝑖𝑚𝑖0 are the center values for real and imaginary components of current 

magnitudes. 𝐼𝑟𝑖,𝑗
𝑃  and 𝐼𝑟𝑖,𝑗

𝑄  are partial deviations of the real component of current at bus 𝑖 for 

deviation in real and reactive power injection at a bus 𝑗, respectively; and 𝐼𝑖𝑚𝑖,𝑗
𝑃  and 𝐼𝑖𝑚𝑖,𝑗

𝑄  are 

partial deviations of imaginary component of current at bus 𝑖 for deviation in real and reactive 

power injection at bus 𝑗, respectively. Note that the real and imaginary components of the current 

share the same sources of uncertainties, i.e., real and reactive power injections 𝜀𝑃𝑗𝐷 and 𝜀𝑄𝑗𝐷. 

Furthermore, using affine and non-affine operations and �̃�𝑖, 𝑓𝑖, 𝐼𝑟𝑖, and 𝐼𝑖𝑚𝑖, the real and reactive 

power mismatch ∆𝑃�𝑖(. )and ∆𝑄�𝑖(. ) in (145) and (146), respectively, can be calculated as follows: 

∆𝑃�𝑖��̃�𝑖,𝑓𝑖, 𝐼𝑟𝑖, 𝐼𝑖𝑚𝑖,𝑃�𝑖
𝐺 ,𝑃�𝑖𝐷� = 𝑃�𝑖 − �̃�𝑖  𝐼𝑟𝑖 − 𝑓𝑖 𝐼𝑖𝑚𝑖 = 0 ∀𝑖 ∈ 𝑁 (167) 

∆𝑄�𝑖��̃�𝑖 ,𝑓𝑖, 𝐼𝑟𝑖, 𝐼𝑖𝑚𝑖,𝑄�𝑖
𝐺 ,𝑄�𝑖𝐷� = 𝑄𝚤� − 𝑓𝑖𝐼𝑟𝑖 + �̃�𝑖 𝐼𝑖𝑚𝑖 = 0   ∀𝑖 ∈ 𝑁 (168) 
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Where 𝑃�𝑖 and 𝑄�𝑖 represent the affine real and reactive power injections, and have the following 

affine forms, with center value and associated partial deviations: 

𝑃�𝑖 = 𝑃𝑖0 +�𝑃𝑖,𝑗𝑃  𝜀𝑃𝑗𝐷
𝑗𝜖𝑁

+ �𝑃𝑖,𝑗
𝑄𝜀𝑄𝑗𝐷

𝑗𝜖𝑁

+ 𝑃𝑖𝑇 ∀𝑖 ∈ 𝑁 (169) 

𝑄�𝑖 = 𝑄𝑖0 + �𝑄𝑖,𝑗𝑃 𝜀𝑃𝑗𝐷 +�𝑄𝑖,𝑗
𝑄  𝜀𝑄𝑗𝐷

𝑗𝜖𝑁𝑗𝜖𝑁

+ 𝑄𝑖𝑇 ∀𝑖 ∈ 𝑁 (170) 

Where 𝑃𝑖0 and 𝑄𝑖0 are the center values of affine real and reactive power injections; 𝑃𝑖,𝑗𝑃  and 𝑄𝑖,𝑗𝑃  

are the partial deviations of real and reactive power injections due to changes in real power 

injections at a bus j, respectively; 𝑃𝑖,𝑗
𝑄  and 𝑄𝑖,𝑗

𝑄  are the partial deviations of real and reactive power 

injections due to changes in reactive power injections at bus j, respectively; and 𝑃𝑖𝑇and 𝑄𝑖𝑇 are 

real and reactive power injection truncation errors, based on (58). The above affine forms can be 

calculated as follows: 

𝑃𝑖0 = 𝑒𝑖0 𝐼𝑟𝑖0 + 𝑓𝑖0 𝐼𝑖𝑚𝑖0 ∀𝑖 ∈ 𝑁 (171) 

𝑄𝑖0 = 𝑓𝑖0𝐼𝑟𝑖0 −  𝑒𝑖0 𝐼𝑖𝑚𝑖0 ∀𝑖 ∈ 𝑁 (172) 

𝑃𝑖,𝑗𝑃 = 𝑒𝑖0 𝐼𝑟𝑖,𝑗
𝑃 +  𝐼𝑟𝑖0 𝑒𝑖,𝑗𝑃 + 𝑓𝑖,0 𝐼𝑖𝑚𝑖,𝑗

𝑃 + 𝐼𝑖𝑚𝑖0  𝑓𝑖,𝑗𝑃  ∀𝑖, 𝑗 ∈ 𝑁 (173) 

𝑄𝑖,𝑗𝑃 = 𝑓𝑖0 𝐼𝑟𝑖,𝑗
𝑃 +  𝐼𝑟𝑖0 𝑓𝑖,𝑗𝑃 − 𝑒𝑖,0 𝐼𝑖𝑚𝑖,𝑗

𝑃 − 𝐼𝑖𝑚𝑖0  𝑒𝑖,𝑗𝑃  ∀𝑖, 𝑗 ∈ 𝑁 (174) 

𝑃𝑖,𝑗
𝑄 = 𝑒𝑖0 𝐼𝑟𝑖,𝑗

𝑄 +  𝐼𝑟𝑖0 𝑒𝑖,𝑗
𝑄 + 𝑓𝑖,0 𝐼𝑖𝑚𝑖,𝑗

𝑄 + 𝐼𝑖𝑚𝑖0  𝑓𝑖,𝑗
𝑄 ∀𝑖, 𝑗 ∈ 𝑁 (175) 

𝑄𝑖,𝑗
𝑄 = 𝑓𝑖0 𝐼𝑟𝑖,𝑗

𝑄 + 𝐼𝑟𝑖0 𝑓𝑖,𝑗
𝑄 − 𝑒𝑖,0 𝐼𝑖𝑚𝑖,𝑗

𝑄 − 𝐼𝑖𝑚𝑖0  𝑒𝑖,𝑗
𝑄  ∀𝑖, 𝑗 ∈ 𝑁 (176) 

𝑃𝑖𝑇 = ���𝑒𝑖,𝑗𝑃 � + �𝑒𝑖,𝑗
𝑄 ��

𝑗𝜖𝑁

 ���𝐼𝑟𝑖,𝑗
𝑃 � + �𝐼𝑟𝑖,𝑗

𝑄 ��
𝑗𝜖𝑁

+ ���𝑓𝑖,𝑗𝑃 � + �𝑓𝑖,𝑗
𝑄��

𝑗𝜖𝑁

 ���𝐼𝑖𝑚𝑖,𝑗
𝑃 � + �𝐼𝑖𝑚𝑖,𝑗

𝑄 ��
𝑗𝜖𝑁

 
∀𝑖 ∈ 𝑁 (177) 

𝑄𝑖𝑇 = ���𝑓𝑖,𝑗𝑃 � + �𝑓𝑖,𝑗
𝑄��

𝑗𝜖𝑁

 ���𝐼𝑟𝑖,𝑗
𝑃 � + �𝐼𝑟𝑖,𝑗

𝑄 ��
𝑗𝜖𝑁

−���𝑒𝑖,𝑗𝑃 � + �𝑒𝑖,𝑗
𝑄 ��

𝑗𝜖𝑁

 ���𝐼𝑖𝑚𝑖,𝑗
𝑃 � + �𝐼𝑖𝑚𝑖,𝑗

𝑄 ��
𝑗𝜖𝑁

 
∀𝑖 ∈ 𝑁 (178) 

This formulation, as previously mentioned, is the most conservative but computationally 

efficient for calculating the magnitude of the internal errors 𝑃𝑖𝑇 and 𝑄𝑖𝑇. The affine forms (169) 
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and (170) for real and reactive powers can be represented in interval forms �𝑃𝑖 ,𝑃𝑖� and �𝑄𝑖,𝑄𝑖�, 

where: 

𝑃𝑖 = 𝑃𝑖0 + 𝑟𝑎𝑑𝑃𝑖 �𝜀𝑃𝑗𝐷 , 𝜀𝑄𝑗𝐷� ∀𝑖 ∈ 𝑁 (179) 

𝑃𝑖 = 𝑃𝑖0 − 𝑟𝑎𝑑𝑃𝑖 �𝜀𝑃𝑗𝐷 , 𝜀𝑄𝑗𝐷� ∀𝑖 ∈ 𝑁 (180) 

𝑄𝑖 = 𝑄𝑖0 + 𝑟𝑎𝑑𝑄𝑖 �𝜀𝑃𝑗𝐷 , 𝜀𝑄𝑗𝐷� ∀𝑖 ∈ 𝑁 (181) 

𝑄𝑖 = 𝑄𝑖0 − 𝑟𝑎𝑑𝑄𝑖 �𝜀𝑃𝑗𝐷 , 𝜀𝑄𝑗𝐷� ∀𝑖 ∈ 𝑁 (182) 

Here, 𝑟𝑎𝑑𝑃𝑖 �𝜀𝑃𝑗𝐷 , 𝜀𝑄𝑗𝐷� and 𝑟𝑎𝑑𝑄𝑖 �𝜀𝑃𝑗𝐷 , 𝜀𝑄𝑗𝐷� are the following functions of noise variables 

𝜀𝑃𝑗𝐷 and 𝜀𝑄𝑗𝐷, with the most conservative values when they are equal to 1 or -1, and represent the 

total amount of deviation from the center value: 

𝑟𝑎𝑑𝑃𝑖 �𝜀𝑃𝑗𝐷 , 𝜀𝑄𝑗𝐷� = �𝑃𝑖,𝑗𝑃 𝜀𝑃𝑗𝐷
𝑗𝜖𝑁

+ �𝑃𝑖,𝑗
𝑄𝜀𝑄𝑗𝐷

𝑗𝜖𝑁

+ 𝑃𝑖𝑇     ∀𝑖 ∈ 𝑁 (183) 

𝑟𝑎𝑑𝑄𝑖 �𝜀𝑃𝑗𝐷 , 𝜀𝑄𝑗𝐷� = �𝑄𝑖,𝑗𝑃 𝜀𝑃𝑗𝐷 + �𝑄𝑖,𝑗
𝑄  𝜀𝑄𝑗𝐷

𝑗𝜖𝑁𝑗𝜖𝑁

+ 𝑄𝑖𝑇 ∀𝑖 ∈ 𝑁 (184) 

These intervals can be used to determine the operational range of generation for dispatchable 

generators (e.g., thermal, hydro), when there are sources of uncertainty such as renewable 

generation in the system. 

A. Contraction Method 

The intervals obtained from (179)-(182) are dependent on the value of the noise variables 𝜀𝑃𝑗𝐷 

and 𝜀𝑄𝑗𝐷, which are between -1 and 1. The most conservative intervals are obtained by fixing 

these variables at their maximum values; however, this results in large intervals. Hence, based on 

the method presented in [118] and [119], a contraction method is used to reduce the bounds. In 

order to reasonably contract the intervals, while respecting the physical characteristics of the 

system (e.g. voltage and generation limits), the discussed next LP is solved to obtain the 

minimum values of noise variables; the suggested optimization problem is linear since all the 

affine variables are constructed using linear affine operations. Thus, by replacing in the AA-based 

OPF model (144)-(151), all uncertain variables with their AA forms defined in (158)-(170), one 

obtains the following representation of the OPF model: 
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min 𝐹� �𝜀𝑃𝑗𝐷 , 𝜀𝑄𝑗𝐷�  (185) 

 ∆𝑃�𝑖 �𝜀𝑃𝑗𝐷 , 𝜀𝑄𝑗𝐷� = 0 ∀𝑖 ∈ 𝑁 (186) 

 ∆𝑄�𝑖 �𝜀𝑃𝑗𝐷 , 𝜀𝑄𝑗𝐷� = 0 ∀𝑖 ∈ 𝑁 (187) 

 𝑃𝑖𝑚𝑖𝑛 ≤ 𝑃𝑖 �𝜀𝑃𝑗𝐷 , 𝜀𝑄𝑗𝐷� ≤ 𝑃𝑖𝑚𝑎𝑥 ∀𝑖 ∈ 𝑁𝑃𝐺 (188) 

 𝑄𝑖𝑚𝑖𝑛 ≤ 𝑄𝑖 �𝜀𝑃𝑗𝐷 , 𝜀𝑄𝑗𝐷� ≤ 𝑄𝑖𝑚𝑎𝑥 ∀𝑖 ∈ 𝑁𝑃𝐺 (189) 

 𝐼𝑖𝑗𝑚𝑖𝑛2 ≤ 𝐼𝑟𝑖𝑗
2 �𝜀𝑃𝑗𝐷 , 𝜀𝑄𝑗𝐷� + 𝐼𝑖𝑚𝑖𝑗

2 �𝜀𝑃𝑗𝐷 , 𝜀𝑄𝑗𝐷� ≤ 𝐼𝑖𝑗𝑚𝑎𝑥2 ∀𝑖𝑗 ∈ 𝐿 (190) 

 𝑉𝑖𝑚𝑖𝑛2 ≤ 𝑉�𝑖2 �𝜀𝑃𝑗𝐷 , 𝜀𝑄𝑗𝐷� ≤ 𝑉𝑖𝑚𝑎𝑥
2 ∀𝑖 ∈ 𝑁 (191) 

 −1 ≤ 𝜀𝑃𝑗𝐷 ≤ 1 ∀𝑗 ∈ 𝑟𝑛𝑤 (192) 

 −1 ≤ 𝜀𝑄𝑗𝐷 ≤ 1 ∀𝑗 ∈ 𝑟𝑛𝑤 (193) 

where the objective function 𝐹�(. ) is the affine linear expansion of (144), as follows: 

𝐹� �𝜀𝑃𝑗𝐷 , 𝜀𝑄𝑗𝐷� = ��𝛼𝑖 �𝑃𝑖02 + � 2𝑃𝑖0
𝑗𝜖𝑁

𝑃𝑖,𝑗𝑃 𝜀𝑃𝑗𝐷 + � 2𝑃𝑖0𝑃𝑖,𝑗
𝑄𝜀𝑄𝑗𝐷 +

𝑗𝜖𝑁

2𝑃𝑖0𝑃𝑖𝑇 + 𝑃𝑖𝑇
′�

𝑖𝜖𝑁

+ 𝛽𝑖 ��𝑃𝑖0 + 𝑃𝑖,𝑗𝑃  𝜀𝑃𝑗𝐷
𝑗𝜖𝑁

+ �𝑃𝑖,𝑗
𝑄𝜀𝑄𝑗𝐷

𝑗𝜖𝑁

+ 𝑃𝑖𝑇� + 𝑐𝑖� 

(194) 

Note that in the above equation, due to an affine product, a new error magnitude 𝑃𝑖𝑇
′
 is 

introduced. The line currents 𝐼𝑟𝑖𝑗 and 𝐼𝑖𝑚𝑖𝑗 in (190) are calculated as follows: 

𝐼𝑟𝑖𝑗 = G𝑖𝑗��̃�𝑖 − �̃�𝑗� − B𝑖𝑗�𝑓𝑖 − 𝑓𝑗� ∀𝑖𝑗 ∈ 𝐿 (195) 

𝐼𝑖𝑚𝑖𝑗 = G𝑖𝑗�𝑓𝑖 − 𝑓𝑗� + B𝑖𝑗��̃�𝑖 − �̃�𝑗� ∀𝑖𝑗 ∈ 𝐿 (196) 

Observe that the OPF model (185)-(191) is an LP problem, since all affine forms are linear 

functions of the noise variables 𝜀𝑃𝑗𝐷 and  𝜀𝑄𝑗𝐷. This linear noise contraction model can be easily 

solved using available LP solvers, such as CPLEX [120].  

Figure 11 depicts the procedure used to calculate the intervals for the affine variables and hence 

arrive at the solution intervals to the OPF with uncertainties. Note that the demand intervals at 

each bus are the input of the model. These intervals consider the uncertainties associated with 

both demand and renewable generation by considering the latter as negative loads. Then affine 
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variables �̃�𝑖 and 𝑓𝑖 are constructed using both a deterministic OPF model to obtain center values, 

and a sensitivity analysis based on several perturbed OPFs to obtain the noise magnitudes. Affine 

operations are then applied on these affine variables in order to calculate other affine variables, 

such as 𝑃�𝑖 and 𝑄�𝑖. To minimize the size of the intervals, a contraction method is used to minimize 

the noise magnitudes associated with each of these variables. 

 

 
Figure 11: Proposed AA-based OPF 
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 Results and Discussions 5.3

In this section, the proposed AA-based OPF is tested using the IEEE 30-bus system [112] and a 

real European 1211-bus system, and compared with the MCS solution. The IA method has not 

been used as a means for comparison in this thesis, since the bounds provided by the IA approach 

are too conservative or simply cannot be obtained and therefore is not a feasible method. The IA 

wider bounds are simply because of not considering the correlation amongst the variables which 

leads to error explosion. In fact, the application of the IA method to the OPF problem has been 

studied by researchers and observed that the IA-based OPF diverges for realistic systems with a 

reasonable number of uncertainties due to too wide intervals. This resulted in singularities of the 

Jacobian of the Lagrangian function, even after preconditioning, and hence it could not be used 

for the types of studies presented in the current work. 

In the 30-bus system, one of the generators is replaced with a wind turbine to study the effects 

of uncertainty arising from the renewable sources in the system. The 1211-bus real European 

system has 160 generators (thermal, hydro, wind, and solar), 58 are solar and 8 are wind 

generators, for a total renewable capacity of 11678 MW; considering that the total generation 

capacity of the system, including imports, is 183 GW, this corresponds to 6.4% of the generation 

capacity of the system. The total system demand is 153 GW, including exports. The transmission 

system comprises 1567 lines and 122 fixed transformers. The intermittency in wind and solar 

generation is assumed to be compensated by thermal generation in both of the test systems, and 

thus the proposed AA-based method is used to determine the power output intervals of these 

generators, hence calculating the generation reserve needed to reliably and optimally supply the 

demand. The proposed model is simulated in the General Algebraic Modeling System (GAMS) 

[121]. The solvers used, i.e., COINIPOPT for the OPF solution [122], and CPLEX for the LP 

contraction problem, have their parameters set at their respective default, off-the-shelf settings, so 

as not to bias their “standard” performance. Major settings such as tolerance level or maximum 

number of iterations of the solver are by default the same for all solvers (e.g., feasibility tolerance 

is 10−6). The implemented MCS method converges after 3000 iterations for both test systems, 

assuming that the uncertain parameters have uniform distribution within the bounds defined for 

the assumed variable generation. 

A. 30-bus System 

In the IEEE 30-bus test system, a wind turbine is assumed to be located at Bus 2. It is 

considered that this generator power output varies in a ±30% range of its forecasted center value, 

𝑃20𝐷 = −1.283 𝑝.𝑢., since this is treated as a negative injection with unity power factor. 
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All the center values are obtained by executing the nonlinear OPF model with the deterministic 

data, and the noise magnitudes are obtained from the sensitivity analysis technique described in 

Section IV. The intervals obtained by the MCS method are used as the benchmark to check the 

validity of the obtained AA-based intervals. Figure 12 compares the bus voltage magnitude 

bounds using both AA (VupAA and VloAA) and MCS (VupMC and VloMC) methods. Note that 

there is no significant difference between the two approaches. The bounds obtained by the MCS 

method lie slightly inside the AA-based ones, because the MCS method provides the “exact” 

intervals, whereas the AA-based approach provides more conservative margins, as expected. 

 

 
Figure 12:  Bus voltage magnitude bounds. 
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Figure 13:  Real power generation intervals. 

 

 

 
Figure 14:  Reactive power generation intervals. 
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Observe that the difference between the AA-based and MCS-based methods is very small. The 

real power intervals, shown in Figure 13, depict the interval output for thermal generators at Bus 

1 and Bus 8, when the wind turbine output varies in the given interval at Bus 2; all other 

generators are synchronous condensers and hence have zero real power output. 

Figure 14 demonstrates the recative power generation inervals. As shown, the resulted AA-

based margins of reactive power generation closely match the ones obtained from the MCS 

method. Note that the differnce between the upper and lower bounds of the illustrated intervals in 

Figure 14 is very small  

B. 1211-bus System 

The AA method is also applied to a real European 1211-bus system. Figure 15 and Figure 16 

show the real and reactive power deviations of the thermal generators, and Figure 17 shows the 

deviation of bus voltage magnitudes at all buses with respect to the center value, in percentage, 

obtained from both the AA-based approach and MCS. In this case, a ±10% deviation active 

power injection for wind and solar with unity power factor is assumed. 

 

 

Figure 15: Percentage of real power deviation for thermal generators. 
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Figure 16: Percentage of reactive power deviation for thermal generators. 

 
Figure 17: Percentage of deviation for bus voltage magnitudes. 
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The deviations are obtained as follows: 

%  deviation for 𝑥� =  
𝑋 −  𝑋
𝑋0

∗ 100 (197) 

Observe that the errors in this case are significantly large for some generators than those obtained 

for the smaller IEEE 30-bus system, as expected, since the number of uncertainties is much 

larger, i.e., 1 in the small system versus 66 in the real system. Table I illustrates the error of the 

proposed AA-method in the maximum total thermal generation required to compensate for the 

wind and solar power generation uncertainties. Note that the 1.015% total error in table I is only 

1231 MW in the real European system. 

Table VI: THERMAL CAPACITIES, USING MCS AND AA-BASED APPROACHES 

Total Thermal Reserve 
AA-based 

Method (GW) 

MCS Method 

(GW) 
% of Error 

Maximum   144.04 142.57 1.02% 

Minimum  131.1 128.2 2.21 

The AA method is faster than the MCS approach, as the MCS method needs 3000 iterations 

for convergence, while the AA method requires as many iterations as the number of uncertain 

variables, i.e., one iteration for the IEEE 30-bus test system and 66 iterations for the real 1211-

bus system. Furthermore, the additional OPFs are based on small perturbations of the center-

value OPF, and hence convergence can quickly be attained by using the center-value OPF 

solution as starting point. 

 Summary 5.4

A novel AA-based model has been proposed to solve the OPF problem with intervals to 

represent system uncertainty, such as variable wind and solar power generation. The AA-based 

method has significant advantages over exiting methods to study the uncertainties in OPF 

problems, which can be summarized as follows: 

• The method does not rely on the pdf approximation of the uncertain variables, such as 

demand and generation.  

• In the AA approach, the correlation among the variables is considered and, therefore, the 

output intervals are not as conservative as in IA. 
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• The proposed method takes into account the internal errors caused by truncations and 

approximations. 

• The method is accurate, as it yields results close to the “exact” intervals. 

• The proposed approach is efficient, as it does not require many iterations to converge, and 

hence it is much faster than other existing methods such as MCS. 

The intervals obtained from the proposed technique can be used to approximate the margins of 

operation for dispatchable generators needed to properly account for system uncertainties. In 

order to test the efficiency and accuracy of the AA-based OPF, the method was tested on the 

IEEE 30-bus test system and a real 1211-bus European system, and benchmarked against the 

MCS method. The AA-based approach was shown to efficiently yield intervals close to the MCS 

bounds. This method can be used to also study the impact of demand variations in power systems, 

and other similar applications where intervals could be used to represent uncertainties, without 

the need to assume pdfs. 
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CHAPTER 6 

 

SUMMARY AND FUTURE WORK 

 Summary of the Thesis 6.1

Chapter-1 presents an introduction to this thesis, and lays out the motivation behind the 

research. A comprehensive review of the literature, focusing on the deterministic and 

probabilistic power flow analysis problem, the deterministic and probabilistic OPF problem and 

DG impacts on the operation and planning of power systems is presented. Thereafter, the main 

research objectives are outlined. 

In Chapter-2 a background to the mathematical tools which are used throughout the thesis is 

presented. First, the formulation of power system operations, i.e., power flow analysis problem 

and OPF are discussed, and then their solution methodologies for both deterministic and 

probabilistic problems are laid out. The discussed NLP methods are NR and gradient methods; 

and the probabilistic methods are SVC-based approaches such as AA and IA, and finally MCS. It 

is argued that the AA method has significant advantages in solution accuracy over other presented 

methods. Finally, the Chapter presents a brief review on DGs, their advantages and shortcomings 

in the context of power system operation and planning. 

In Chapter-3, a novel MCP model is proposed to solve the power flow problem. This method is 

shown to be more flexible, accurate and robust than the classical power flow solution methods, 

such as NR. Various features of power flow analysis problem such as PV-PQ bus switching are 

embedded in this formulation, as new optimization constraints. The proposed model is used to 

demonstrate that the NR-based iteration procedure is basically a step of the GRG method which is 

applied to the solution of the proposed MCP model. Furthermore, the numerical results 

demonstrate that the proposed model converges while a robust NR-based power flow solver fails 

to converge for large systems.  

In Chapter-4, the MCP model is used to calculate the affine form of real and imaginary 

components of bus voltage magnitudes in the stochastic power flow problem. The calculated 

affine forms of real and imaginary components of the bus voltage magnitude are then used to 

calculate the affine forms of real and reactive power injections. Then the AA form is converted to 
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IA form in order to compare the obtained intervals with the MCS intervals. The proposed method 

is tested on the IEEE 14-Bus Test System. The results show that the AA intervals are more 

conservative than the MCS intervals, as they consider the worst cases and also the internal errors 

such as truncation error. 

Finally, in Chapter-5, the probabilistic OPF problem is solved using the AA method. In the 

AA-based OPF problem, all the state and control variables are treated in affine form, comprising 

a center value and the corresponding noise magnitudes, to represent forecast, model error, and 

other sources of uncertainty without the need to assume a pdf. The proposed AA-based OPF 

problem is used to determine the operating margins of the thermal generators in systems with 

uncertain wind and solar generation dispatch. The AA-based approach is benchmarked against 

MCS intervals in order to determine its effectiveness. The proposed technique is tested and 

demonstrated on the IEEE 30-bus system and also a real 1211-bus European system. 

 Main Contributions 6.2

The major contributions of the research presented in this thesis are as follows: 

1. Reformulating the Power Flow Problem as an MCP 

A novel formulation of the power flow problem is proposed within an optimization 

framework that includes complementarity constraints. The proposed formulation can 

take advantage of state-of-the-art solvers for NLP and complementarity problems. The 

proposed MCP-based power flow model, which by design always has a theoretical 

solution, is shown to have increased robustness and flexibility with respect to the 

existent power flow methods. Based on the proposed MCP formulation, it is also 

formally demonstrated that the NR solution of the power flow problem is essentially a 

step of the traditional GRG algorithm.  

2. Solving the Probabilistic Power Flow Problem Under Uncertainty Using an AA-based 

Approach 

The MCP-based power flow model is used in an AA-based power flow problem, in 

order to obtain the operational ranges for the power flow variables under uncertainty. 

The associated uncertainties could be internal such as rounding error or external such 

as forecasting error (e.g., demand, generation and weather forecast). The proposed AA 

algorithm is tested on a 14-bus test system and its results are then compared with the 

MCS results. The AA method shows slightly more conservative bounds, however it is 
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faster and does not need any information for statistical distributions of random 

variables. 

3. Solving the Probabilistic OPF Problem Using an AA-based Approach 

An AA method is proposed to solve the OPF problem with uncertain generation 

sources. In the AA-based OPF problem, all the state and control variables are treated in 

affine form, comprising a center value and the corresponding noise magnitudes, to 

represent forecast, model error, and other sources of uncertainty without the need to 

assume a pdf. The AA-based approach is benchmarked against MCS intervals in order 

to determine its effectiveness. The proposed technique is tested and demonstrated on 

the IEEE 30-bus system and also a real 1211-bus European system. 

4. Obtaining the Margins of Thermal Generators to Estimate the reserve requirements 

The proposed AA-based OPF problem is used to determine the operating margins of 

the thermal generators in systems with uncertain wind and solar generation dispatch. 

Obtaining the margins of operations for thermal generators in the presence of uncertain 

generation (e.g., wind and solar) and load helps significantly in determining the 

required reserve capacities, so that the system operates reliably and economically. 

 Scope for Future Work 6.3

The following directions for future research are suggested, based on the research carried out 

and presented in this thesis: 

1. AA-Based Market Clearing UC Model with Uncertainty 

This research can be extended to solve the UC problem in the presence of data 

uncertainty, based on the AA approach. The market clearing UC models determine a 

generation commitment and production schedule for the participating generators and a 

procurement schedule for customers in a day-ahead energy market. These problems are 

influenced significantly by uncertainties in power generation and demand. Uncertainties 

in generation may arise from the presence of intermittent sources of energy such as 

wind and solar; while that in demand, from load forecast errors. Because the UC 

problem has binary variables, the AA method could be implemented in the second stage 

of a multi-stage UC problem, after the binary variables are fixed in the first stage of the 

solution method.  

2. AA-Based Method to Determine Spinning Reserve Requirements in Microgrids 
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The AA method can serve as an effective tool to estimate the spinning reserve 

requirements in microgrids with renewable sources of generation. By incorporating the 

spinning reserve requirements in the AA-based OPF model, proposed in Chapter 4, the 

operator is able to provide enough spinning reserve capacity, while minimizing the cost 

of providing it. 

The provision of spinning reserves enables the power system operators to provide 

enough capacity, when there is an imbalance between demand and generation due to the 

unpredictable incidents such as generator outage, demand forecast errors and 

unexpected generation deviations from supply sources.  

This research proposes to apply the AA-based method to estimate spinning reserve 

requirements considering renewable generation intermittency and demand forecast 

errors as well as possible contingencies that may arise prior to dispatch. Calculating the 

AA-based generation bounds, the operator knows the expected range of electricity 

production from the available renewable sources, and therefore can estimate how much 

spinning reserve is needed to maintain the system operation within specified regions. 

It is expected that the AA-based method provides more conservative bounds than the 

MCS method, as it considers the worst cases and also it take into consideration the 

internal errors associated with calculations. This method is much more computationally 

efficient than the MCS method, since it does not need many iterations as the MCS 

method requires. 

3. Stochastic Optimal Transmission Switching 

Transmission line switching problems are often formulated as MINLP or MIP models 

to optimize the topology of the transmission system in order to reduce the dispatch cost. 

Since 2005, a few papers have proposed optimization models based on a modified OPF 

model along with N-1 contingency analysis to find the binary state of the transmission 

lines while preserving the reliability of the system and minimizing the cost of supplying 

electricity. Finding the new topology, the generator is then capable of co-optimizing the 

generation dispatch without jeopardizing system reliability. Therefore, instead of 

considering transmission assets as static assets in OPF problems, they are treated as 

controllable variables. Optimal transmission line switching can play a significant role in 

the economics of smart grids, moreover it improves voltage profiles and increase 

transfer capacity. Optimal transmission switching solution is based on the existing 

transmission system and does not address transmission expansion planning aspects. 
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None of the proposed models consider the uncertainties within the power system 

operation such as demand forecast error or generation intermittency. These uncertainties 

are not captured by performing N-1 contingency analysis. Furthermore, the high 

penetration of DG sources such as wind farms can significantly impact transmission 

system operations, and therefore a stochastic optimal transmission switching model is 

vital to consider all the associated uncertainties. 

This research seeks to apply the AA-based method on stochastic optimal switching to 

find the intervals associated with state and control variables when the model obtains an 

optimal transmission topology. 
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