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Abstract

In this thesis, we address the challenge of information overload in online participatory
messaging environments using an artificial intelligence approach drawn from research in
multiagent systems trust modeling. In particular, we reason about which messages to
show to users based on modeling both credibility and similarity, motivated by a need
to discriminate between (false) popular and truly beneficial messages. Our work focuses
on environments wherein users’ ratings on messages reveal their preferences and where
the trustworthiness of those ratings then needs to be modeled, in order to make effective
recommendations.

We first present one solution, CredTrust, and demonstrate its efficacy in comparison
with LOAR — an established trust-based recommender system applicable to participatory
media networks which fails to incorporate the modeling of credibility. Validation for our
framework is provided through the simulation of an environment where the ground truth
of the benefit of a message to a user is known. We are able to show that our approach
performs well in terms of successfully recommending those messages with high predicted
benefit and avoiding those messages with low predicted benefit.

We continue by developing a new model for making recommendations that is grounded
in Bayesian statistics and uses Partially Observable Markov Decision Processes (POMDPs).
This model is an important next step, as both CredTrust and LOAR encode particular
functions of user features (viz., similarity and credibility) when making recommendations;
our new model, denoted POMDPTrust, learns the appropriate evaluation functions in
order to make “correct” belief updates about the usefulness of messages. We validate our
new approach in simulation, showing that it outperforms both LOAR and CredTrust in a
variety of agent scenarios. Furthermore, we demonstrate how POMDPTrust performs well
against real world data sets from Reddit.com and Epinions.com.

In all, we offer a novel trust model which is shown, through simulation and real-world
experimentation, to be an effective agent-based solution to the problem of managing the
messages posted by users in participatory media networks.

iii



Acknowledgements

First and foremost, I thank my supervisor, Professor Robin Cohen. Robin was an in-
credible guiding influence throughout the entirety of my graduate studies at the University
of Waterloo. She devoted countless hours working with me, providing suggestions for and
feedback about my research. I consider myself extremely fortunate to have had the op-
portunity to work so closely with Robin; she is a stalwart professor, and the motivation
she provided me was pivotal to my success in graduate school. I would also like to express
my gratitude to Professor Pascal Poupart and Professor Kate Larson for devoting some of
their time to serve as readers for this thesis and for their valuable feedback.

Thank you also to Hadi Hosseini for being a great officemate and for always being
willing to lend an ear. Likewise, I thank John Doucette, Alan Tsang, and Graham Pinhey
for their friendship and moral support. Thanks also to all of the other graduate students
(CS Club 7) with whom I shared many laughs; it was truly wonderful to be able to meet
and work with such a mix of intelligent, accomplished, and driven people.

My mother, father, and brother (Mary, Pankaj, and Alan) were also important influ-
ences and provided unwavering support that has been and continues to be a source of
strength and motivation for me. Thank you very much.

Lastly, I am grateful for the financial assistance provided by the Natural Sciences and
Engineering Research Council of Canada (NSERC), NSERC’s Strategic Networks of Re-
search hSITE project, and the David R. Cheriton Graduate Scholarship.

iv



Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4

2.1 Agents and Multiagent Systems . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Trust and Reputation . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2 Latent Factor Models . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Markov Decision Processes (MDPs) . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Fully Observable MDPs . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Partially Observable MDPs (POMDPs) . . . . . . . . . . . . . . . . 19

2.3.3 Monte Carlo Tree Search . . . . . . . . . . . . . . . . . . . . . . . . 20

3 User Credibility and Folklore 22

3.1 Motivation: Folklore and Popularity . . . . . . . . . . . . . . . . . . . . . . 22

3.2 New Trust Model to Address Folklore . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Recasting the trust model . . . . . . . . . . . . . . . . . . . . . . . 24

v



3.2.2 Incorporating a measure of credibility . . . . . . . . . . . . . . . . . 26

3.2.3 Incorporating annotator reputation . . . . . . . . . . . . . . . . . . 28

3.2.4 Example Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Agent Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.3 Closer look at LOAR . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.4 Experiments with sparsity . . . . . . . . . . . . . . . . . . . . . . . 36

4 POMDP Classification Model 39

4.1 POMDP Classification Model . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 POMDP Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.2 Learning the Observation Function . . . . . . . . . . . . . . . . . . 45

4.1.3 Policy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Real World Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Discussion of Results 68

6 Conclusions and Future Work 75

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2.1 Extending POMDPTrust to Use Additional Features . . . . . . . . 77

6.2.2 Learning a Good Reward Function . . . . . . . . . . . . . . . . . . 78

6.2.3 Trust-Related Extensions . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.4 Additional Experiments . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.5 Long-Term Considerations . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

vi



APPENDICES 87

A Glossary 88

B Calculations for LOAR Folklore Example 90

C Real World Datasets 92

C.1 Suitability for Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

C.2 Data Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

D Learning the Observation Function 95

References 97

vii



List of Tables

3.1 Folklore example: message ratings . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Folklore example: peer similarities . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Folklore example: Hamming ratios . . . . . . . . . . . . . . . . . . . . . . 29

4.1 POMDP example observation function . . . . . . . . . . . . . . . . . . . . 43

4.2 POMDP example reward function . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 POMDP example message ratings . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 POMDP belief blending example . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Reddit.com dataset descriptive statistics . . . . . . . . . . . . . . . . . . . 56

4.6 Epinions.com dataset descriptive statistics . . . . . . . . . . . . . . . . . . 61

4.7 Reddit.com dataset results classification matrices. . . . . . . . . . . . . . . 65

4.8 Epinions.com dataset results classification matrices. . . . . . . . . . . . . . 66

C.1 Reddit article ratings information . . . . . . . . . . . . . . . . . . . . . . . 93

C.2 Epinions article author information . . . . . . . . . . . . . . . . . . . . . . 93

C.3 Epinions article ratings information . . . . . . . . . . . . . . . . . . . . . . 94

viii



List of Figures

2.1 BLADE Bayesian Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 CredTrust distribution simulation results . . . . . . . . . . . . . . . . . . . 33

3.2 CredTrust sparsity simulation results . . . . . . . . . . . . . . . . . . . . . 38

4.1 POMDP belief evolution example . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 POMDP distribution simulations results . . . . . . . . . . . . . . . . . . . 52

4.3 POMDP sparsity simulation results . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Latent Factor Model distribution simulation results . . . . . . . . . . . . . 54

4.5 Latent Factor Model sparsity simulation results . . . . . . . . . . . . . . . 55

4.6 Ratings distributions for real-world datasets . . . . . . . . . . . . . . . . . 57

4.7 Number of ratings per user for real-world datasets . . . . . . . . . . . . . . 58

4.8 Average number of commonly rated messages per user for real-world datasets 59

4.9 Number of advisors per user for real-world datasets . . . . . . . . . . . . . 60

4.10 Real-world experiment results. . . . . . . . . . . . . . . . . . . . . . . . . . 67

ix



Chapter 1

Introduction

Today, users are increasingly engaged with online media via the internet. A plethora of
available information, ranging from online news networks to various forums to social and
participatory media sites, contributes to information overload germane to our information
rich society. Moreover, the advent of Massive Open Online Courses (MOOCs), provided
by such services as Coursera, and the increasing use of both online retailers (like eBay and
Amazon) and information feeds (like Twitter and Facebook) beg the following question:
how can we help users sift through excess information to retrieve the most relevant objects
of interest?

Much work has been published on the subject of modeling peer trustworthiness, partic-
ularly for use in e-marketplace environments (see, for example, [44, 50, 35]). Beyond the
e-marketplace domain, the problem of determining the trustworthiness of social network
peers can be of particular use when evaluating which messages users might like to see,
especially if those peers provide advice and feedback about messages. Peer similarities is
at the heart of collaborative filtering techniques used in recommendations; learning which
peers are trustworthy is then certainly of value. Accordingly, the trust literature provides
a good foundation for developing techniques for message recommendation.

One model in particular, Champaign et al.’s Learning Object Annotation Recommender
system (LOAR) [12], drew insipiration from trust models in order to determine which
learning object annotations to recommend to students in order to maximize their learning
gains when participating in online learning environments. In this domain, LOAR assumes
that students can rate annotations positively (1) and negatively (0). Using the ratings
left on annotations, LOAR computes similarity scores between students and employs a
similarity-weighted combination of annotation ratings to derive the annotation reputation.
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Combining this reputation with the annotator reputation, LOAR derives a final predicted
benefit of the annotation for a given student.

We demonstrate how LOAR can fall short when making recommendations because it
enables false information propagation: if many similar peers provide positive feedback
about a given message, it has a higher likelihood of being recommended despite any inac-
curacies it may contain. This leads us to develop a model and algorithm called CredTrust,
which explores the concept of user credibility and its use in combating the spread of such
“folklore”. We draw inspiration from Seth et al.’s Bayesian Credibility Model [39] when
considering how credibility should be modeled within our framework, though we assume
that credibility values can be provided by an oracle (and return to discuss extensions to
incorporate deeper reasoning about credibility for future work). In particular, CredTrust
combines both similarity and credibility when making recommendations, which helps to
avoid recommending false popular messages.

To validate our model, we perform simulations to demonstrate how CredTrust outper-
forms LOAR under a variety of conditions. These simulations were designed with careful
consideration given to the nature and distribution of agents and their rating behaviour,
and we incorporated a notion of agent types in order to simulate different agent preferences
for certain types of messages. The consideration given to simulating a multiagent environ-
ment also led us to investigate several properties inherent to LOAR; the insights gleaned
during this process leads to our proving two properties about LOAR and developing further
simulations that codify precisely the environments in which LOAR has difficulty coping.

While CredTrust is shown to be superior to LOAR in a number of circumstances, we
note that both models encode particular linear combinations of user features (specifically,
similarity and credibility). As a result, there exist environments that cause both models
to underperform. Hence, we continue by developing a new model grounded in Bayesian
statistics that draws on concepts from Markov Decision Processes (MDPs) and Partially
Observable MDPs (POMDPs) in order to further improve message recommendations. This
new model, denoted POMDPTrust, draws upon other Bayesian approaches like BLADE
[35], however also explicitly accounts for user utilities when ultimately making message
recommendations. In addition to demonstrating its efficacy in simulation, we evaluate the
performance of the POMDP model against real world data from Reddit.com and Epin-
ions.com, two websites where users can share and rate messages. These real-world data
are meaningful for validation, as they offer a realistic and unique mix of user ratings. We
are able to demonstrate that POMDPTrust perfoms well in terms of true/false positives
and true/false negatives when set against the ground truth.

In all, this work explores the topic of message recommendations in a social network
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of peers wherein users can share and rate messages. To do this, we develop models that
draw on ideas from the trust modeling literature. We explore the relationship between
message classification/recommender systems and trust modeling, and we provide a concrete
evaluation of our models to serve as a backdrop for future work in both trust modeling
and recommender system research.

Our POMDP model for message recommendations is interesting from the perspective
of trust evaluation, as it uses Bayesian learning to derive an observation function that com-
bines user features in a way that is statistically “correct” given the environment. Moreover,
it is novel for the trust community because it incorporates a notion of user utilities in or-
der to determine how to act on the basis of evaluated trust. Ultimately, we believe our
research provides a novel perspective on and partial solution to the problem of message
recommendation through the application of Bayesian learning using POMDPs and through
the exploration of user credibilities in order to help users sift through the raft of informa-
tion available to them in online messaging environments, and furthermore to ensure that
they are exposed to the right information.

1.1 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 presents the background
concepts that underpin this research, including an in-depth discussion of trust modeling
as well as an overview of recommender systems more generally and a discussion of Markov
Decision Processes. Chapter 3 introduces the notion of crediblity as a means of combating
false information propagation in participatory media networks, inspired by the work of
Champaign et al. [12]. Chapter 4 continues by preseting a new model for making recom-
mendations, central to which is the use of a Partially Observable Markov Decision Process.
Chapter 5 continues with a detailed discussion of our results. Lastly, Chapter 6 concludes
by offering some final points about our work and experiments, as well as a discussion of
opportunities for future work.
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Chapter 2

Background

In this chapter, we cover some basic terminology and models from related work on trust
which form a backdrop to our solutions and to which we return to compare and contrast
our work in Chapter 5; we also briefly review Recommender Systems work for which we also
offer deeper discussion/contrast (in Chapter 5) after displaying our proposed algorithms
in full. We review basic concepts associated with Markov Decision Processes (MDPs)
for reasoning under uncertainty, which provide an important background to our POMDP
approach to message recommendations developed in Chapter 4. Finally, we discuss Latent
Factor Classification Models, to which we compare our POMDP approach as part of our
validation in our Chapter 4 simulations. For convenience, we also log definitions for various
terms used throughout this thesis in Appendix A.

2.1 Agents and Multiagent Systems

This research is concerned with interactions between users in online messaging environ-
ments. Within this setting, intelligent agents [48] are entities that represent the users in
the system, for example, to act on their behalf, to record their preferences (for types of
messages), to aid in decision making, etc. Agents can perceive the environment in which
they operate; they respond to stimuli and react on the basis of their perception of their
surroundings. They can be fully autonomous, acting on behalf of (but without interacting
with) the users they represent, or they can be semi-autonomous, requiring occasional guid-
ance from humans to correct their behaviour or to clarify information they receive from
the environment. In our research, our overall goal is to design agents that help users by
filtering messages into different classes: those worth seeing, and those not worth seeing.
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Since our setting consists of multiple users, and therefore multiple agents that coexist
with one another, it is considered to be a multiagent system [48]. Multiagent systems
can also, depending on the domain, be static with a fixed set of agents, or they can be
dynamic, allowing for the agent population to grow and shrink as agents come and go. For
our context, the system is dynamic, meaning that agents may come and go in tandum with
the coming and going of users in the participatory media network.

2.2 Recommender Systems

Recommender systems aim to recommend new items of use to users by suggesting relevant
objects on which to focus one’s attention. Such systems can be categorized in one of two
ways [23]:

Content-based systems recommend new items to a user based on the characteristics of
the items (e.g., the content they contain, when they were published, etc.).

Collaborative-filtering systems recommend items to users based on users’ preferences
and their similarity to other users’ preferences, especially insofar as those preferences
are expressed explicitly through ratings on experienced items.

In this work, we focus primarily on collaborative filtering (CF) approaches, which have
gained widespread attention in recent years, not the least because of their success and
exposure in the recent Netflix competition1. However, we believe that an all-encompassing
solution could make use of both CF methods as well as content-based methods, especially
to cope with cold-start problems and data sparsity. We will revisit this notion in Chapter 5
and in Section 6.2.1.

2.2.1 Trust and Reputation

One flavour of collaborative filtering relies on exploiting a user’s neighbourhood when mak-
ing recommendations. The basic idea behind neighbourhood-based approaches is to deter-
mine the similarity between users based on past commonly experienced/rated items. For
example, in the movie domain, two users A and B may have seen and rated several movies
in common. The users’ past likes/dislikes serve as evidence as to their similarity with

1If interested, see http://www.netflixprize.com/ for details regarding the competition, which was
completed in September, 2009.
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respect to movie tastes. To the extent that the two users have similar ratings behaviour,
new movies can then be recommended to A, for example, by considering other movies that
B has seen and rated but that A has not yet seen.

Much research has been conducted to try to determine how to trust other users within
a network. The notion of trust and the many models that explore its derivation is very
much related to the neighbourhood method of collaborative filtering. In this thesis, we
then focus on developing a trust-based solution to message recommendation. This section
presents several trust models in order to acclimate the reader to some of the concepts
and notations used throughout this thesis. In particular, we present in detail Jøsang et
al.’s Beta Reputation System (BRS) [28], Teacy et al.’s TRAVOS [44] approach, Zhang
et al.’s Personalized Trust Model (PTM), Champaign et al.’s Learning Object Annotation
Recommender (LOAR) [12], Seth et al.’s Bayesian Credibility Model [39], and Regan et
al.’s BLADE [35]. Two models in particular from this section, LOAR and BLADE, will
reappear in later chapters as baseline comparators for our work.

Beta Reputation System (BRS)

The Beta Reputation System, proposed by Jøsang and Ismail in [28] for use in e-marketplace
reputation systems, provides a foundation for later trust modelling work carried out by
Zhang et al. in [50]. BRS is foundational because it is grounded in probability theory; it
uses the Beta probability distribution, which describes probability distributions of binary
events (e.g., flipping a coin, or rating a product good versus bad).

Formally, the Beta distribution2 is a family of distributions and represents the proba-
bility Pr(p ; α, β), viz., the probability of parameter p ∈ [0, 1] given two hyperparameters,
α, β ∈ (0,∞). In BRS, it is used as a second-order probability, or the “probability of a
probability”, since it is used to describe the prior belief about a probability. The Beta
density function is expressed as follows:

Pr(p ; α, β) =
pα−1(1− p)β−1

B(α, β)
(2.1)

where B(α, β) is the Euler Beta-function, given by

B(α, β) =

∫ 1

0

x(α−1)(1− x)(β−1)dx (2.2)

2 The Beta distribution is the conjugate prior for Bernoulli distributions. For example, it can be used
to reason about whether a coin is biased with a 90% chance of turning up heads given that a set of coin
tosses {x1, . . . , xn} was observed, but given that one has a prior belief about the coin’s fairness.
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The expected value of a Beta density function is given by the following formula:

E[p] =
α

α + β
(2.3)

In [28], the authors interpret this expected value as the probability of some positive outcome
occuring in the future, where α = r + 1 (r being the number of positive outcomes that
occurred in the past) and β = s + 1 (s being the number of negative outcomes that
previously occurred). Thus, the expected value of a Beta distribution is a suitable trust
metric (i.e., one has high trust in an agent if one expects positive outcomes from that agent
in the future). The authors generalize this notion to include real-valued parameters (r, s),
which represent the degree of satisfaction/disatisfaction given some interaction between a
buyer and a seller in an e-marketplace. Modeling the probability of future behaviour (i.e.,
the probability of fulfilling future contractual obligations in the e-marketplace setting) as
a random variable and thus using Bayesian inference to estimate this probability is more
appropriate than using confidence intervals and the frequentist approach in trust models,
since there is an implicit assumption that agents’ behaviours are dynamic rather than fixed.
This view also allows the use of prior knowledge to temper the derived trust values and
allows trust beliefs to evolve over time, both of which support the choice to model trust
using the Beta distribution.

While the Beta distribution provides the framework for the authors’ reputation func-
tion3, BRS is characterized by several further tenets:

1. The notation φXT (p), P ∼ Beta(rXT + 1, sXT + 1) is used to denote the reputation
function for T from the perspective of X.

2. A real-valued reputation is derived from the reputation function by mapping its
expected value, E(φXT ) ∈ [0, 1], onto any desired interval ([−1,+1] in [28]).

3. Feedback from mutiple sources, say Q = {(r1T , s1T ), . . . , (rnT , s
n
T )} (where superscripts

serve to differentiate feedback sources), can be combined by (rQT , s
Q
T ) = (

∑n
i=1 r

i
T ,
∑n

i=1 s
i
T ).

4. Feedback/advice from other users, Y , can serve to discount a user X’s opinion about
a party T , derived from Jøsang’s belief model in [27]. In particular, given X’s opinion
about Y ’s advice in the form of a 3-tuple (bXY , d

X
Y , u

X
Y ) (representing belief, disbelief,

and uncertainty), and given Y ’s opinion about T as (bYT , d
Y
T , u

Y
T ), X’s opinion of T

given Y ’s advice is (bXY b
Y
T , d

X
Y d

Y
T , d

X
Y + uXY + bXY u

Y
T ). The authors interpret this model

in the BRS by setting b = r
r+s+2

, d = s
r+s+2

, and u = 2
r+s+2

.

3We also use Beta distributions as the basis for amalgamating peer advice about messages in our
approaches presented in Chapters 3 and 4.
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5. Peer advice is weighted according to a “forgetting factor” to lend more weight to
recent feedback under the assumption that parties are more likely to behave according
to their recent activities. As such, combined feedback can be modified by (rQT , s

Q
T ) =

(
∑n

i=1 r
i
Tλ

n−i,
∑n

i=1 s
i
Tλ

n−i) where 0 ≤ λ ≤ 1, and λ = 1 corresponds to equally
weighting all past advice (never forgetting).

TRAVOS

Teacy et al. developed a system dubbed “TRAVOS” (a trust and reputation model for
agent-based virtual organisations) to model trust relationships between agents in virtual
organizations [44]. Like BRS, TRAVOS defines a trust metric to be the probability that
a trustee will perform on a future obligation and uses a Beta PDF to model relative trust
probabilities. Unlike BRS, TRAVOS incorporates the notion of confidence in the inferred
trust metric. That is, limited past experiences may be inadequate to accurately derive a
trust metric, and so γ represents the probability that the true trust metric, τ ∗, lies within
some margin of error ε, i.e., τ ∗ ∈ [τ − ε, τ + ε] [44]. τ is again described by the expectation
of a Beta distribution given parameters representing the number of positive and negative
past outcomes, and γ is given by

γ =

∫ τ+ε
τ−ε x

α−1(1− x)β−1dx

B(α, β)
(2.4)

Furthermore, TRAVOS allows the truster to seek third party advice when γ is too small
(i.e., below some threshold). Trusters can aggregate reported trust parameters, viz., the
number of positive and negative past interactions, from pundits (other agents) to assemble
a more confident perspective of a trustee (i.e., one founded on more observations of the
trustee’s performance). However, a simple aggregation scheme implicitly assumes that
pundits report truthfully and that their advice is based on similar rating criteria to the
truster. Accordingly, a more robust scheme that adjusts the opinions of a given pundit to
account for potential dishonesty works as follows:

1. A trust parameter report is a 2-tuple of positive and negative outcomes between a
pundit and another agent. The current (potentially dishonest) report being evaluated
is r̂ = (np, nn), with np, nn ∈ Z≥0; it has a Beta distribution with expected value Er̂
that describes the pundit’s reported view of the trustee’s trustworthiness.

2. Assemble a set of historical reports, R (note r̂ 6∈ R). These reports were previously
requested of the pundit by the truster for evaluating other agents; accordingly, the
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truster has a set of corresponding historical outcomes, O (one outcome for each
report).

3. Each r ∈ R forms a Beta distribution Br that describes the trust metric for that
report. Each o ∈ O is binary: a satisfactory or unsatisfactory historical interaction.

4. Find a maximal subset of historical reports, H ⊆ R, that correspond most closely to
r̂. Equivalently, ∀h ∈ H, E(Bh) lies within some margin of error of Er̂.

5. Using the outcomes of the previous interactions corresponding to H, create a new
Beta distribution Bo. Compute ρ, the proportion of Bo that lies within the margin
of error of Er̂.

6. ρ discounts the pundit’s report r̂ by perturbing the expected value and variance of a
Beta(1, 1), a.k.a. Uniform(0, 1), distribution, and then using the perturbed values
to derive discounted r̂ trust parameters.

TRAVOS builds on the BRS by including some notion of heterogeneity of agents, viz., by
discounting reports from peers who are deemed dishonest or untrustworthy (this is roughly
equivalent to discounting advice from dissimilar peers). In gathering advice, TRAVOS
relies on the assumption that the truster and pundits have extensive historical dealings
with which the truster can evaluate each pundit’s expected honesty.

Personalized Trust Model (PTM)

Zhang and Cohen [50] suggest a personalized trust model to determine whom to listen
to amongst a network of buyers and sellers in the e-marketplace domain. In particular,
they address whether a buyer, b, should purchase a product from a seller, s, based on a
combination of global advice from other buyers (i.e., advisors, a), and b’s own local past
experiences with s.

The PTM global metric is further broken down to combine private and public trust
estimates of advisors. The intuition is that b may have radically different expectations
or preferences regarding s’s product than a, and so b should have some notion of how
much to trust a. To the extent that b relies on past common experiences to evaluate a’s
trustworthiness, b uses a private trust metric to incorporate a’s recommendation. To the
extent that b relies on a’s similarity to the global rating of various sellers (i.e., how fair are
a’s ratings), b uses a public trust metric to incorporate a’s recommendation.
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The above overview is made more concrete as follows. In PTM, ratings of a product
are binary. The Beta probability distribution is used to estimate the probability that an
advisor will provide a fair rating to b. To estimate the private reputation of advisor a,
PTM defines:

R(a)private = E[Pra(fair rating)] =
α

α + β
(2.5)

where α and β are parameters to the Beta distribution and can be defined as follows:

α = 1 +
∑
s∈S

∑
t

¬(~rb,s,t ⊕ ~ra,s,t) ·~1 (2.6)

β = 1 +
∑
s∈S

∑
t

(~rb,s,t ⊕ ~ra,s,t) ·~1 (2.7)

The notation in these equations have the following meaning:

• S is the set of sellers rated in common by b and a;

• ~rb,s,t is a ratings vector of b’s experiences with seller s ∈ S in time window t;

• ~ra,s,t is a ratings vector for a such that each rating element ri ∈ ~ra,s,t corresponds to
the most recent rating prior to ri ∈ ~rb,s,t;

• ⊕ denotes element-wise XOR, and ¬ denotes element-wise logical NOT.

Equation 2.6 counts the number of times for which b and a have the same rating of s ∈ S,
denoted Na

s in [50]; Equation 2.7 analogously counts the number of non-similar ratings.
(Note that the equations presented here appear different than the algorithmic description
in [50], however they are equivalent definitions).

An advisor’s public reputation, R(a)public, is also calculated using a Beta probability
distribution as above, except that α is derived using the number of fair ratings, denoted
Na
f , where fair is measured as the degree to which a’s ratings vector corresponds to the

average ratings vector over all ratings of s.

The overall trust level of advisor a is derived by combining R(a)private and R(a)public
according to a weight function, viz., the ratio of the number of common ratings between
a and b, Na

all, to the minimum number of common ratings, Nmin, required to achieve
some level of confidence. Nmin is derived from the Chernoff Lower Bound theorem using a
confidence level, γ ∈ [0, 1], and an acceptable error level, ε:

Nmin = − 1

2ε2
ln

1− γ
2

(2.8)
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A sum over all advisors’ experiences with s, weighted according to trust values derived
according to the above discussion and according to a “forgetting factor” that weights recent
interactions more heavily than distant past interactions, is then computed to determine
the global reputation of the seller, s. Lastly, the same Beta distribution derivation is used
to arrive at a local reputation of s derived from b’s own experiences with s, also weighted
by a “forgetting” factor. Analagous to the derivation of global trust values for advisors,
the overal trust value for a seller is determined via a weighted combination of global and
local reputations, according to the Chernoff Bound. (That is, the more local experience a
buyer has, the more he will rely on his own experience).

Learning Object Annotation Recommender (LOAR)

Champaign et al. [12] (see also [11]) develop a model for recommending commentary (an-
notations) on learning objects (texts or videos) to users in a peer-based, online learning
environment, which we term LOAR (Learning Object Annotation Recommendation). The
model displays those annotations with the highest predicted learning benefits. This work
in turn draws inspiration from Zhang et al.’s PTM trust model [50], which reasons proba-
bilistically about the trustworthiness of sellers in an electronic commerce setting in order
to select the one with the highest predicted benefit for a user.

In LOAR, when viewing learning objects, users are allowed to rate the attached anno-
tations as valuable (1) or not (0). The “current” user is presented with peer commentary
in a way that is customized according to each annotation’s predicted learning benefit for
that user. An annotation’s predicted benefit is calculated using a combination of the anno-
tator’s reputation and explicit ratings the given annotation has recieved. An annotator’s
reputation is derived as follows:

1. An author q has created a set of annotations Aq = {a1, . . . , an}, each of which has
an associated set of ratings Rai = {r1, . . . , rmi

} left by some number, mi, of students
who have experienced the annotation.

2. Compute a set of average ratings, V = {va1 , . . . , van}, corresponding to each annota-
tion using the associated rating set, i.e., vai = 1

mi

∑
ri

3. The annotator reputation, Tq, is the mean average rating, i.e., 1
n

∑
vai .

Here, parallels between Champaign’s annotator model and Zhang’s trust model begin to
emerge. An annotator in LOAR corresponds to a seller in PTM, and the total annotator
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reputation, Tq, is akin to Zhang’s global reputation of a seller, R(S)global. Moreover, peers
in LOAR act as advisors in the system, though the calculation of R(S)global from advisor
experiences in PTM requires additional work, involving timewindows. One difference is
that LOAR focuses on modeling the trustworthiness of annotations, whereas PTM is more
focused on what would be annotators. It is important to note that, in LOAR, even if the
annotator is highly regarded in a community, the predicted value of a particular annotation
will be influenced more heavily by the ratings it receives4.

In addition, in LOAR what constitutes a “local” annotation reputation depends on the
number of votes it receives. In particular, votes for (vFa) and against (vAa) an annotation
a are weighted according to the similarity between the current user and peer voter, which
is calculated according to prior votes the pair have cast in common. The global and local
annotation reputations are then combined in one of three ways to derive the predicted
benefit for the current user (where those with highest predicted benefit are then shown):

1. Tally: the predicted benefit is entirely determined by the “local” reputation by nor-
malizing vFa−vAa

vFa+vAa
.

2. Cauchy: combining local and global reputations using a Cauchy CDF,
1
π

arctan
(
vFa−vAa+Tq

γ

)
+ 1

2
.

3. Trust: blending Tq with the predicted tally benefit according to a minimum num-
ber of ratings Nmin and the number of ratings on the annotation |Rai |. That is,

min
(

1,
|Rai |
Nmin

)
· tally + max

(
0, 1− |Rai |

Nmin

)
· Tq.

While LOAR was designed with the goal of operating within the context of an intelligent
tutoring system that employs a repository of learning objects (allowing peers to leave
commentary on those objects and then reasoning about which commentary to show or
to avoid), the system fundamentally determines which messages from peers to present, in
order to improve the learning achieved by a user. In this respect, it should be suitable to
be applied to the task of recommending messages in online participatory media networks,
as well.

Bayesian Credibility Model (BCM)

In this thesis, we advocate the use of a “credibility model” as part of our message rec-
ommendation algorithm. One model that provides insights into how to model credibility

4The annotator reputation serves only as a proxy for ratings when an annotation has not received votes
(e.g., is relatively new).

12



in social networking environments is that of Seth, Zhang, and Cohen [39], who propose a
Bayesian model to derive the crediblity of messages within a social network of peers for the
purpose of recommending participatory media content (e.g., blog posts, consumer product
reviews, Twitter tweets, etc.) to users. BCM uses the strength of weak ties hypothesis
from social network theory to categorize clusters of users within a social network, G. The
topic-induced subgraph of G, denoted Gt, is a subgraph of users who are interested in
some topic, t. Users within Gt can be categorized as belonging to particular clusters, i.e.,
subgraphs of users that are strongly tied and affect knowledge propagation throughout
the cluster in certain ways. Clusters are connected together via weak ties to form the
topic-induced subgraph Gt.

For each user ui ∈ Gt, BCM derives a topic-specific crediblity score for each message
mk, denoted Ck,t. Ck,t depends on Contextual (how easily a message is understood, CN)
and Completeness (the depth and breadth of media content, CM) information. Context
and Completeness are in turn dependent on four sub-crediblity types (evidence variables):

Cluster credibility (denoted si,k,t) is the credibility the cluster of user ui (denoted Vit)
assigns to message mk authored by some other user, uj.

Public crediblity (denoted pk,t) is the credibility that the entire network of users in Gt

assigns to message mk.

Experienced credibility (denoted ei,k,t) is the credibility that ui assigns to message k
based on ui’s past experience with the author of mk, viz., uj.

Role-based credibility (denoted li,k,t) is the credibility ui assigns to mk given that uj has
some role (and thus has some level of expertise).

More formally, the joint probability distribution for the Bayesian network is as follows (we
drop the subscripts t, i, k for brevity):

P (C,CN,CM, s, l, e, p) = P (C|CN,CM)·P (CN |s, l, e)·P (CM |p, l, e)·P (s)·P (l)·P (e)·P (p)
(2.9)

To calculate the evidence variables given a topic t, BCM uses:

• an author matrix A ∈ {0, 1}k×n where k is the number of messages and n is the
number of users, and aij indicates mi was authored by uj;

• a ratings matrix R ∈ {0, 1}k×n where rij is uj’s rating of mi; and
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• an adjacency matrix N ∈ {0, 1}n×n where nij indicates the existence of a link (i.e.,
relationship) between ui and uj.

As an example, the calculation of Pt (the k × 1 vector of public message credibilities) is
derived as follows. Credibilies for the other evidence variables can be derived following a
similar process. First, the authors compute credibilities owing to the structure of the topic
subgraph as G = (β ·NT

r +(1−β) ·Zc ·1T ) ·G. In this definition, Zc is the column-stochastic
form of an n × 1 vector Z wherein each element zi is the mean similarity between user
ui and and uj for all j 6= i, given Sim(ui, uj) is computed using the Jacquard coefficient.
Hence, G can be computed as the dominant eigenvector of β ·NT

r + (1− β) ·Zc · 1T . (Note
that β is a blending weight to indicate how much the similarity matrix should be perturb
the network matrix).

Next, compute P′, the n × 1 vector of public user credibilities using P′ = (α · AT
c ·

Rr + (1 − α) ·Gc · 1T ) · P′, again by computing the principal eigenvector (e.g., using the
power method). Finally, the public message credibilities can be derived from the equation
P = Rr ·P′ (Rr is the row stochastic form of R above). Lastly, once the evidence variables
are found, the Expectation Maximazation algorithm is used to learn the Bayesian model5.

BLADE

Our proposed solution in Chapter 4 is a POMDP approach. The following trust model is
thus quite relevant: it also tries to learn the evaluation functions of advisors as a stand in
for trust modeling and with a Bayesian perspective. As will be revealed in Chapter 5, the
primary difference between our approach and BLADE is our consideration of user utilities
and the inherent decision-making aspect of our POMDP classification model.

In [35], Regan et al. developed a model called “BLADE” (Bayesian Learning to Adapt
to Deception in E-Marketplaces). In BLADE, sellers are evaluated on the basis of several
features, say k of them. For example, a particular seller, s, could be evaluated based on
product quality, the speed with which purchased products are delivered, the degree to which
products correspond to their advertised descriptions, etc. In general, each feature can take
on a number of values with some probability (e.g., delivery speed could be “on time”, “one
day late”, “one week late”, etc.). Accordingly, each seller feature, denoted F s

i , can be

5It is worth noting here that these fixed point equations were derived in [39] using a variety of heuristics
that define credibility recursively (e.g. “a message is credible if credible peers rate it highly” and “a peer
is credible if he has many credible messages”). The exact definitions are not reiterated in this paper for
brevity, but can be reviewed in [39].
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viewed as a random variable that follows a multinomial distribution; each F s
i is therefore

characterized by a corresponding probability vector ~Θs
i . The goal of a prospective buyer

is to learn each ~Θs
i . In particular, ~Θs

i ∼ Dir(~α), where the Dirichlet hyperparameters
are interpreted as the number of past observations of corresponding events, and buyers
perform Bayesian updates on the basis of evidence they observe with each interaction.
Then, given beliefs about ~Θs = {~Θs

i}ki=1, buyers can reason about Pr(~F s = ~f |~Θs), and can
furthermore make purchasing decisions that depend arbitrarily on utility derived from a
given realization of seller features.

Of course, buyers may not always have sufficient past interactions to draw upon when
inferring seller feature distributions. In such situations, buyers can elicit feedback from
advisors who provide ratings, denoted Ra

s , based on their own past interactions with the
seller in focus. The beauty of BLADE lies in its treatment of such advice. In general,
advisors report ratings — perhaps stochastically — according to some private reporting
function6. That is, advisors report ratings that are described by the function Pr(Ra

s |~f).
Once again, Ra

s is in general a multinomial random variable, and so ratings can be described

as depending on parameters ~Θa
s ∼ Dir(~α). The induced Bayesian network can then be

queried by marginalizing out unobserved variables to answer questions about, for example,
Pr(~f s|~ras ), i.e., given the reported ratings, what is the probability of realizing a particular
combination of seller features? The true power in this approach is that advisors do not
even have to provide ratings based on the same seller features as the buyer — so long as
advisor criteria are not completely anti-correlated with the seller features upon which the
buyer’s utility depends, and so long as advisors are consistent (across different sellers) and
reasonably deterministic in their ratings, BLADE will correctly learn the parameters that
drive the network.

To make these notions more concrete, Figure 2.1 exhibits a plate model of the Bayesian
network described above (note that the illustration given here is a more general version
of the examples provided in [35]). Ultimately, BLADE can be seen as a generalization of
several other trust models. In particular, BRS and TRAVOS can both be described by a
particular realization of the BLADE Bayesian network wherein each seller has a single bi-
nary feature variable F s that corresponds to the seller’s overall reputation/trustworthiness
(i.e., trustworthy or not) and that is fully determined by a single parameter Θs. By
constrast, BLADE allows buyer utilities to depend arbitrarily on various seller features,
and allows advisors to report ratings using whatever (independent) scale they deem most
suitable.

6In particular, BLADE can handle equally well advisors who report truthfully or deceptively. How-
ever, BLADE depends on consistent or deterministic ratings; more stochastic rating functions offer less
information to be inferred.
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Figure 2.1: The induced BLADE Bayesian network plate model for a single buyer. The
highlighted independent parameters are modeled as Dirichlet distributions; a buyer updates
his belief about these parameters based on observed evidence about seller features F s

i and
observed advisor ratings Ra

s .

Trust Modeling with Propagation in Social Networks

Hang and Singh [23] and Hang, Zhang, and Singh [24] approach the problem of trust in
a social network with a different view. Their work focuses on trust propagation in a net-
work of peers. In [23], the authors create an approach called “LocPat”, which recommends
trustworthy agents on the basis of a graph similarity. In particular, recommendations are
made by suggesting links to other agents (vertices in the graph) based vertex similarity
to nodes in a structure graph. Structure graphs are essentially heuristics for making rec-
ommendations. For example, one such structure graph might encapsulate the notion that
a “friend of a friend” is a good candidate for recommendation (in fact, this heuristic is
used by Facebook to recommend potential relationships). Thus, agents to which multiple
neighbours connect (so-called “friends of friends”) with high trust value weights might be
good candidates for recommendations.

In [24], the authors develop an approach called “Shin” for propagating trust through
unreachable witnesses, viz., those agents in a network graph for which there is no trust-
worthy connecting path. The main idea is to evaluate the trustworthiness of a witness
by evaluating the degree of trust the witness places in some common acquaintance. This
trust model describes trust using a Beta distribution and also uses the notion of confidence
(similar to TRAVOS) to discount trust values.

This research suggests some future directions for our own work, which we discuss at
greater length in Section 6.2.
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2.2.2 Latent Factor Models

Latent Factor Models (LFMs) provide an alternate collaborative filtering method to the
neighbourhood method for making item recommendations to users. They work by inferring
some number of factors, f , from user ratings on items [29]. The meaning and nature of the
inferred factors are unknown (hence “latent” factor); they are “uncovered” in the process
of analyzing user ratings patterns. Factors essentially characterize the items and users of
interest and encode similarities between them.

One particular class of LFMs use matrix factorization. In such models, each item i is
mapped to a vector qi ∈ Rf and each user u is mapped to a vector pu ∈ Rf so that the dot
product qTi pu is a prediction of u’s rating for item i [29].

In order to compute rating predictions under matrix factorization models, it is nec-
essary to derive the vectors qi and pu. One way to do this is to perform singular value
decomposition after assembling a user-item ratings matrix and imputing missing ratings
[37]. However, imputing ratings, which is necessary to ensure the user-item ratings matrix
is “dense”, can be expensive and can distort the data [29]. Instead, more recent approaches
seek to minimize the following objective function given a set of ratings ri,u ∈ R, i.e., ratings
by user u on item i: ∑

ri,u∈R

(ri,u − qTi pu)2 + λ(||qi||2 + ||pu||2) (2.10)

Here, λ ≥ 0 is a regularization constant to prevent overfitting. Two typical techniques for
minimizing the above quantity include stochastic gradient descent (SGD) and alternating
least squares (ALS) [29]. SGD seeks to minimize the quantity directly by iteratively com-
puting a prediction error and subsequently improving the estimates for qi and pu by taking
steps in a direction opposite the gradient given the current values for qi and pu. ALS,
by contrast, alternates between fixing qi and pu at each iteration. Doing so transforms
Equation 2.10 into a convex function so that the global minimum can be computed exactly
[2]. The SGD method is typically faster than ALS (especially when ratings are sparse),
easier to implement, and tends to perform well (although it is not guaranteed to converge
to a global optimum because the objective function is non-convex). However, ALS can
potentially be highly parallelized to great benefit [51], and can be more efficient when con-
sidering implicit feedback from users about their preferences, in which case user preference
data is not sparse (so that looping through each user/item rating on each iteration, as in
SGD, is not practical) [25].

The SGD-based recommendation approach is reintroduced in Section 4.1.4 as a com-
petitor, when we map out a validation of our proposed model.
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2.3 Markov Decision Processes (MDPs)

In this section, we briefly introduce Markov Decision Processes and describe one mecha-
nism, Monte Carlo Tree Search, for computing a policy in an online fashion. This back-
ground is especially valuable as the backdrop to Chapter 4.

2.3.1 Fully Observable MDPs

A Markov Decision Process (MDP) is a mathematical model for decision making in a
sequential, stochastic environment. In an MDP, a decision-making agent navigates through
a state space by taking actions in a sequential manner (for example, at discrete time steps).
The agent’s goal is to maximize the rewards it receives and minimize the costs in incurs
as it navigates through the world. More formally, an MDP is characterized by a 6-tuple
(S,A, T,R, γ, h), where the components are as follows:

• S is a set of states that encode information about the domain.

• A is the set of actions the agent can take at each time step.

• T : S × A × S 7→ R is a transition probability kernel that encodes Pr(St+1 = s′ |
St = s, At = a), the probability with which a state will be reached given the current
state and action.

• R : S×A 7→ R is a reward function that dictates the rewards (or equivalently, utility)
the agent receives given the current state-action pair.

• 0 ≤ γ < 1 is a discount factor that encodes the tradeoff between immediate and future
rewards. Setting γ = 1 has the effect of making future rewards exactly as valuable
as present ones (there is no time-weighted discounting). On the other hand, γ = 0
indicates that the agent derives no utility from future rewards (full discounting).

• h is the horizon for the process, which could be infinite.

In a fully observable MDP, the agent knows the current state and is able to take an action
based on this knowledge. For example, an MDP can be used to describe the process by
which a robot navigates through a room: the state space corresponds to its current location,
it can choose to move forwards or backwards, it receives a negative utility for crashing into
a wall, etc.
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A policy π : S 7→ A is a function that encodes the action the agent should take given
its current state. Since the agent derives utility at various points in time depending on
the states it reaches and the actions it takes, we can calculate the maximum expected
utility for a given state in the MDP. One technique for accomplishing this, called “value
iteration”, uses dynamic programming to recursively solving Bellman’s equation [3]:

V ∗(St = s) = max
a∈A

R(s, a) + γ
∑
s′∈S

Pr(St+1 = s′ | St = s, At = a)V (St+1 = s′)

V ∗(S0 = s) = max
a∈A

R(s, a)
(2.11)

This system of equations can be solved by computing the values of states in reverse chrono-
logical order. Doing so implies a policy π∗, which yields a maximum expected utility for the
agent when followed. Note that the value function V , a function of the state, essentially
encodes max

a
Q(s, a), the maximum value over all actions that could be taken in a given

state. The latter function is known as the Q function.

2.3.2 Partially Observable MDPs (POMDPs)

A Partially Observable MDP (POMDP) is an MDP for which the agent does not know
the current state. A POMDP has two additional components to describe the model: O
is a set of observations that the agent receives that are in some way correlated with the
underlying state, and Ω : S×A×O 7→ R is the observation probability kernel that encodes
the function Pr(Ot+1 = o | St+1 = s, At = a).

The navigation process in a POMDP is slightly different than in an MDP: after each
action, the agent makes an observation. This action-observation sequence induces a history
ht = 〈a0, o1, a1, o2, . . . , at−1, ot〉 that describes the nature of the agent’s traversal up to
time t. Unfortunately, since the states are unobservable, the agent can no longer follow a
Markovian policy; rather, policies must dictate actions based on the entire history the agent
experiences. That is, a policy for navigating a POMDP is a function π : B0 × Ht → At
from the initial belief space B0 and the history space Ht to an action. The initial belief
space is a probability distribution over the starting state for the process, which encodes
the fact that the agent might not know the starting state.

Since the space of histories induces an exponentially large policy tree (in which each
root-null path represents a different action/observation sequence) for each initial belief,
we need to represent the POMDP differently. POMDPs can be mapped to continuous
belief-state MDPs, which allows us to reinforce the Markovian assumption when solving
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for an optimal policy. In particular, we designate the agent to maintain a belief about
the underlying message state; this belief is updated at every time step in the process, viz.,
after each observation, according to the following equation7:

bt+1(st+1) ∝ Pr(ot+1 | st+1, at)
∑
st

Pr(st+1 | st, at)bt(st) (2.12)

By maintaining and updating beliefs, we can devise a policy function π : B → A from
beliefs to actions. Thus, the belief become sufficient statistics that encode a history of
actions/observations.

2.3.3 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is an online, stochastic technique for deriving a POMDP
policy. The technique constructs a partial search tree by simulating actions over a number
of iterations to a certain depth and pruning branches that seem unpromising, viz., those
branches that return a minimum mean reward when followed during simulation. When
simulating POMDP traversals, the decision-making agent chooses an action that balances
the exploration of unknown or less well-searched paths with exploitation of known low-cost,
high-reward paths. One elegant mechanism that achieves a good balance relies on the use
of upper confidence bounds (UCB) [1]:

µa ≤ κ · µ̄a + c ·
√

lnn

na
(2.13)

Here κ is a constant that scales the rewards in case they do not lie in the interval [0, 1] [46],
c is a tuning constant, and, in the context of MCTS, n is the total number of simulation
runs and na is the number of times a particular action was taken (and hence, a particular
branch followed)8. During simulation, the agent chooses the action a that maximizes the
UCB expression.

By balancing exploration and exploitation during simulation and pruning accordingly,
MCTS methods construct partial and unbalanced search trees, thus exploring some paths
more deeply than others. As the accuracy of Monte-Carlo estimates of tree node values
(i.e., estimates of the Q function) improve, the search tree expands in the direction of the

7The proportionality hides a normalizing constant that ensures that the beliefs over all states sum to
1, since the beliefs represent probabilities of the underlying state.

8The UCB algorithm comes from the multi-armed bandit domain, wherein na is the number of times
machine a was tested and n is the total number of tests.
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most promising nodes [19]. When a simulation reaches a state that is not contained within
the simulation search tree, the simulation continues by following a roll-out policy [19]. The
general process can be outlined as in Algorithm 1 [21]. MCTS resurfaces in Section 4.1.3
as one means for computing a policy in our POMDP classification model.

Algorithm 1: A Generic MCTS Algorithm (details from [21, 41, 47] excluded)

Input: An empty search tree, t, an empty history h, an observation/reward
generator G

1 repeat
2 begin Do n simulations starting history h
3 Sample state s from current belief state
4 if s has been visited then
5 Select action via UCB
6 Generate observation/reward from G
7 Update search tree nodes
8 Recurse from new state s′

9 else
10 Follow rollout policy
11 Update search tree nodes

12 end

13 end

14 Take action argmax
a

(
Q(s, h, a)

)
// Q is the Monte-Carlo estimate of the true Q function

15 Receive observation and reward from environment
16 Update history and belief state

17 until process ends (e.g., no more observations);
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Chapter 3

User Credibility and Folklore

In this chapter, we explore the notion of credibility as it arises to combat the potential
proliferation of folklore through a network of agents. We develop a simple, heuristic-based
approach to cope with ratings in environments that contain many non-credible users1. To
begin, we present a motivating example to illustrate where the LOAR model may fall short
for the problem of recommending messages to users in participatory media networks. Then,
we outline our new CredTrust model, encapsulated in an algorithm and clarified through
an example and simulations.

3.1 Motivation: Folklore and Popularity

It would be helpful to refer back to Section 2.2.1 while reading the subsequent text, as
we make use of the terminology and notation presented in the original LOAR discussion.
To begin, we develop an example that exhibits the “folklore” problem in Champaign’s
model. This is the scenario where strong similarity among uneducated users is heeded at
the expense of valuable opinions of less similar, credible peers. We sketch what LOAR
does with this and assume the following:

• A single annotator, a, has created a set of 6 annotations/messages, Ma = {m1, . . . ,m6}.
The 6th annotation contains false information (e.g., claims cancer can be cured by
magic crystals).

1A preliminary version of this work appeared in [36]
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Table 3.1: User message ratings

m1 m2 m3 m4 m5 m6

p1 0 1 1 1 0 1
p2 1 1 1 1 0 1
p3 0 0 0 1 0 0
p4 0 1 1 0 1 1
s 1 1 1 1 1 ?

Table 3.2: Peer similarities to student s

p1 p2 p3 p4
s 0.2 0.6 -0.6 0.2

• Four peers, p1 through p4, have experienced and rated a’s annotations.

• We are trying to determine whether to recommend m6 to a user s.

Table 3.1 shows the ratings given by each respective participant to each mi ∈ M . In
Table 3.1, a’s reputation is simply the mean average rating, Tq, which can be verified2 to
be 0.6583. Next, we calculate the participant pairwise similarity scores per Champaign’s
model (see Table 3.2). Note that we only show the relevant pairwise similarities (to user
s).

To calculate these scores, LOAR finds the number of common ratings that are the same
between two agents, denoted vS, and the number of common ratings that are different,

denoted vD. The final LOAR similarity metric is given by
vS − vD
vS + vD

.

Next, LOAR uses the similarity scores along with peer scores for the marginal message
in order to derive a trust value for that message, for the user. In particular, LOAR records
the votes for and against a given message, and combines these. So, for example, p1’s vote
for m6 would increase the “votes for” tally by 1 + 1 ∗ 0.2 = 1.2. On the other hand, p2
would increase the “votes for” tally by 1 + 1 ∗ 0.6 = 1.6, and p3 would increase the “votes
against” tally by 1 + 1 ∗ (−0.6) = 0.4. Lastly, the system combines the ratings on m6

with a’s overall reputation (Tq) to derive the predicted benefit, which results in a predicted
benefit of 0.86 and 0.76, for Cauchy and Trust, respectively.

2Please refer to Appendix B for an deeper clarification of the calculations presented throughout this
example.
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Clearly then, m6 has a very high predicted benefit. Accordingly, there is a high like-
lihood that m6 will be shown to s (it will likely be over a predetermined threshold of
acceptability, and will be among the top annotations). However, the message contains
“errors” that could detract from learning, and so should in fact not be shown to s. This
example shows how the popular opinion of a message could ultimately enable false infor-
mation to spread in a network of peers.

3.2 New Trust Model to Address Folklore

At first glance, it appears as though the folklore problem could be addressed by classifying
peers into different roles and weighting peer feedback according to these roles. For example,
one could introduce two classes of users, “students” and “professors”, and set professors’
weights to infinity. This would allow professors to prevent false message propagation; a
single bad vote from a professor would outweigh any number of votes from students. But
even “professors” can be wrong, so instead of an infinite weight, one could set the weights
according to some heuristic that allows for a sufficiently large number of other user roles
to outweigh a “super user”. Even then, it seems reasonable that the weights of users in
any role should be variable, owing to the fact that users can make mistakes and can gain
and lose credibility in a community.

Instead, we proceed first by redefining the notion of “trust”. In LOAR, a trust metric
was annotation-specific, and corresponded to the predicted benefit of a given message,
where predicted benefit was a combination of an annotator’s mean reputation and the
annotation’s similarity-weighted rating. Instead of introducing a weight under the same
model, we develop a new model drawing on the probability theory used throughout trust
literature. We draw inspiration from BRS [28], PTM [50], and TRAVOS [44] in the use
of Beta distributions, but continue to model the benefit of annotation objects themselves,
drawing inspiration from Seth’s Bayesian Credibility Model (BCM) [39] in this regard.

3.2.1 Recasting the trust model

Determining whether an annotation or message will be well-received (i.e., is beneficial) is
not deterministic; it can instead be modelled as a Bernoulli process. That is, if M is the
event that a message is well-received, then we seek to determine ψ = Pr(M). Moreover,
we allow this parameter to itself be represented as a random variable and rely on Bayes’
theorem to update prior probability distributions over ψ. In particular, we can use the
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Beta distribution3 to represent the prior Pr(ψ):

ψ ∼ Beta(α∗, β∗) (3.1)

However, since we model the trustworthiness of messages (not annotators), the user does
not have any prior belief that directly corresponds to the message itself (has yet to experi-
ence it, so the only rational belief is to assume that α∗ = β∗ = 1, i.e., that ψ is uniformly
distributed in the interval [0, 1]). Accordingly, we construct a suitable belief by looking to
the experiences of peers, as in LOAR4.

When a user solicits feedback about a message, his peers report binary ratings. Equiv-
alently, peers report parameters αp and βp such that αp + βp = 1. In this work, we restrict
this report5 such that αp, βp ∈ {0, 1}. To combine peer reports, we model the similarity
between users i and j using Hamming distance. The Hamming distance is a measure of the
number of bits by which two binary strings differ, or equivalently, how many changes need
to be made to string a to transform it into string b. Here, we can consider the series of
common annotation ratings between two users to form “binary rating strings”. (Table 3.1
above shows such a set of binary rating strings in the form of a matrix).

We normalize the Hamming distance between i and j to arrive at a similarity metric
called the Hamming ratio, denoted hij (the Hamming distance divided by the length of the
binary strings, i.e., the number of common ratings). Since a Hamming distance of 0 means
that the two strings are identical, a Hamming ratio of 0 suggests we simply take a peer
report as given; in contrast, if the Hamming ratio is 1, we swap the values reported for αp
and βp. This captures the fact that non-similar peers can still deliver useful information;
perfect negative correlations are just as informative as positive ones. We formalize this
combination as follows:

α∗ = 1 +
∑
p∈P

(1− hsp) · αp + hsp · βp (3.2)

β∗ = 1 +
∑
p∈P

(1− hsp) · βp + hsp · αp (3.3)

3In particular, α∗ (β∗) represents the strength of a user’s belief that a message will be good (bad).
Thus, when α∗ is high and β∗ is low (β∗ is high and α∗ is low), the user will be very confident that he
should see (not see) the message.

4One could potentially use a more informed prior, such as the trustworthiness or reputation of the
annotator, to inform the distribution. Another use for such an informed prior is presented in Section 3.2.3,
and we revisit this notion as future work in Section 6.2.1.

5A report of 1 corresponds to the combination (αp, βp) = (1, 0) whereas a report of 0 corresponds to
(αp, βp) = (0, 1).
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Here, P is the set of all peers. This combination capitalizes on the fact that the Beta
distribution is well-defined for all real-valued parameters α, β > 0. Moreover, it allows us
to easily extend peer reports to include expectations on message trust values. That is, a
report r ∈ [0, 1] can be translated into parameters (α, β) = (r, 1 − r) so that a report of
r = 1 corresponds to α = 1, β = 0, a report of r = 0.5 corresponds to α = β = 0.5, and
r = 0 to α = 0, β = 1. Thus, a user can solicit feedback from peers about an annotation
even if those peers have yet to personally experience the annotation. This is useful if, for
example, the current user has no or limited ratings in common with peers who have rated
the annotation in focus. (That is, it might be more useful to use a report of expected benefit
from a peer who is highly similar to the current user rather than use an explicit report
from a peer with whom the user has no history and thus no notion of similarity). This
notion, while not explicitly considered in this work, relates to the idea of trust propagation
as explored by Hang et al. [24] and trust delegation by Burnett and Oren [10].

3.2.2 Incorporating a measure of credibility

Under the new trust framework described above, we now introduce the notion of credibil-
ity. Credibility is a measure of the extent to which users should trust the opinions of peers
within the community. Thus, credibility influences the similarity weighted Beta distribu-
tion derived above. In particular, we now also seek to determine κ = Pr(C), where C is
the event that a peer report is credible.

As before, we assume that κ is randomly distributed and can be described by a Beta
distribution. Thus, the credibility metric E[Pr(κ)] is reported alongside peer ratings of
annotations. For now, we assume that this credibility score is made available by an oracle,
and we leave a discussion of one possible derivation to Section 6.2.5.

The question that remains is how a user should combine his knowledge of peer credibility
and a particular annotation’s reputation gleaned through peer reports. When a user is
highly similar to the peer from whom he receives a report, this combination is trivial;
credibility can directly discount the reported rating. That is, one should listen to the advice
of highly credible and similar peers more than the advice of non-credible peers. However,
a difficulty arises when a user is dissimilar from a credible peer. In this circumstance, our
above model will reverse the opinion of a credible peer. In some instances, this reversal
could actually detract from the user’s learning.

To make this more explicit, suppose that user i solicits advice from user j about a
message m. Suppose further that the Hamming ratio between i and j is 1 (that is, they
are completely opposite). Then, if j reports (α, β) = (0, 1) (i.e., he thinks the message
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Algorithm 2: Deriving a predicted benefit using similarity and credibility
(CredTrust)

Input: The current user, u, his set of peers, P , their credibility scores, cp ∈ [0, 1],
and their corresponding ratings for the annotation in focus, rp ∈ {0, 1}

Output: Parameters α∗ and β∗ to a Beta distribution describing trust in the
current annotation

1 α∗ = β∗ = 1 // At the start, user has a uniform expectation about

the message

2 foreach p ∈ P do
3 hup ←− computeHammingRatio(u, p)

// Perform a Bayesian update after discounting heuristic

4 if rp == 0 then
// Adjust the similarity weight by credibility:

5 α∗+ = hup(1− cp)
6 β∗+ = 1− hup · (1− cp)
7 else

// Else simply compute a credibility-dampened trust score

8 α∗+ = cp · (1− hup)
9 β∗+ = cp · hup

10 end

11 end

not useful, or perhaps even incorrect), the similarity weighting scheme described above
will reverse this opinion to (α, β) = (1, 0) when determining the trust metric from i’s
perspective. That is, the message, which j thinks should not be shown, will now be more
likely to be shown. However, in this case, if j is perfectly credible, his opinion of a message
corresponds to a very credible one. Accordingly, his report might be better taken verbatim
rather than dampened by the Hamming ratio.

Accordingly, we propose a scheme detailed in Algorithm 2. This algorithm computes a
trust metric by discounting peer reports by their community credibility (cp), except when
they report negatively on the given annotation. When this happens, the peer’s negative
rating is weighted using a combination of similarity and credibility. In particular, the role
that similarity plays in blending the reported message rating is linearly reversed as the
peer’s credibility approaches 1 (i.e., perfect credibility). This credibility weighting scheme
helps to address the issue of folklore propagation in an e-learning system. That is, highly
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credible peers (like professors and TAs) who report negatively about a given annotation
will hold more sway than a number of less credible peers, even if the credible voters usual
voting patterns tend to make them dissimilar to the current student.

3.2.3 Incorporating annotator reputation

Lastly, we address the notion of an annotator’s reputation. It is useful to model an annota-
tion’s reputation using some combination of explicit annotation ratings and the annotator’s
inherent reputation, especially when the given annotation has little or no explicit ratings.
We will assume that an annotator’s reputation is the same as his credibility (described
and used above). In order to calculate the credibility for user u, we propose the following
heuristic, inspired by the recursive derivation of credibility evidence variables in BCM [39]:
that a peer is considered credible if credible peers vouch for his annotations. We can derive
such a credibility score as follows:

1. User credibility is given by κu ∼ Beta(αcu , βcu). In this paper, we assume that
a single, global credibility distribution across all subjects suffices to describe the
reputation of an annotator (versus a topic-specific metric as in BCM).

2. When a peer p rates message mu authored by u, p’s report updates αcu and βcu as
follows: a positive (negative) rating will increment αcu (βcu) by 1.

3. A rating by p should also only affect u’s credibility to the extent that p is credible.
That is, when p rates mu, the κu hyperparameters are incremented as above, except
that p’s report is discounted by E(κp). Thus, if p rates m positively and p is perfectly
credible, i.e., E(κp) = 1, αc is incremented by 1. If p is not credible at all, i.e.,
E(κp) = 0, then αc is incremented by 0 (i.e., non-credible peers cannot influence u’s
credibility).

Ultimately, the annotation-specific reputation and annotator credibility can be combined
to finalize a trust metric using either of the schemes proposed in LOAR (e.g., Cauchy-based
combination), or by using an informed prior6.

6This only works for users who have created annotations and is only useful if those annotations have
received ratings.
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Table 3.3: Similarities and Hamming Ratios

p1 p2 p3 p4
s 0.2 0.6 -0.6 0.2
h 0.4 0.2 0.8 0.4

Table 3.4: α and β reports (ci = 1)

p1 p2 p3 p4
h 0.4 0.2 0.8 0.4

(αp, βp) (1,0) (1,0) (0,1) (1,0)
(α′p, β

′
p) (0.6,0.4) (0.8,0.2) (0,1) (0.6,0.4)

3.2.4 Example Revisited

Returning to the example in Section 3.1, we present the LOAR similarities and Hamming
ratios together in Table 3.3. Here we see very clearly the relationship between the similarity
metric used by LOAR and the Hamming ratio. In particular, a higher Hamming ratio
corresponds to a similarity that is closer to −1. A mapping f : h 7→ s from row h to row s
is defined as f(h) = 1− 2 · h. Hence, these metrics fundamentally measure the same thing
and differ only by an affine transformation.

The CredTrust algorithm dampens trust values according to peer credibility. A peer
is credible if credible peers rate their annotations highly, or if credible peers rely on their
ratings. For example, Table 3.4 shows the initial αp, βp reports as well as their credibility-
weighted values α′p, β

′
p (as given by Algorithm 2) when peers are all perfectly credible. Using

these values, we can see that the reported predicted benefit would be 0.5. Upon reflection,
this predicted benefit makes sense. Similarity forms a continuum between “exactly like
me” and “exactly opposite me”. Peers p1 and p4 have Hamming ratios of 0.4, indicating
they are centered in that continuum. Accordingly, one cannot gain much insight from their
reports. Furthermore, p2 (p3) has a Hamming ratio of 0.2 (0.8). On the balance, these
two peers’ opinions should offset each other. Ultimately, we cannot learn anything about
the trustworthiness of the medium in this case, since all peers are equally and perfectly
credible.

Table 3.5 illustrates the case where all peers have a credibility score of 0. These com-
binations result in a trust metric equal to 0.6. In this case, the algorithm completely
disregards the votes of peers who liked the given message. However, p3, who is almost
completely opposite to s, disliked the message. Even though p3 is not credible at all,
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Table 3.5: α and β reports (ci = 0)

p1 p2 p3 p4
h 0.4 0.2 0.8 0.4

(αp, βp) (1,0) (1,0) (0,1) (1,0)
(α′p, β

′
p) (0,0) (0,0) (0.8,0.2) (0,0)

or perhaps because he is not credible, the algorithm reverses his opinion, resulting in a
predicted benefit of 0.6.

Finally, if c1 = c2 = c4 = 0 and c3 = 1, then the message will have a predicted benefit of
0.3; the opinion of the credible p3 completely outweighs the advice of similar, non-credible
peers. This is captured by lines 5–6 in Algorithm 2. This scenario would capture well the
case that motivated our exploration of folklore: a dissimilar expert who rates a message as
problematic should assist in overriding popularity of messages among similar, less credible
peers.

3.3 Agent Simulations

3.3.1 Experimental Design

To evaluate this credibility-based trust model, we conducted simulations and compared the
performance of CredTrust verus LOAR. We began by simulating an environment consisting
of 20 agents, each of whom create messages and rate messages created by other the agents.
Each agent is assigned a credibility score according to one of two schemes depending on
the experiment, described below:

Mean Credibility Trials Agents are assigned randomly generated credibility scores at
the outset, distributed according to a Binomial distribution. The distribution pa-
rameters are varied on each simulation iteration. For example, choosing a mean
credibility of 0.5 ensures that approximately half of the agents will have a credibility
score greater than 0.5.

Dichotonomous Agent Trials Agents are partitioned into one of two sets: low credi-
bility agents or high credibility agents.

When authoring messages, credibility scores influence the “underlying message credibility”
of the messages the agents create. For example, when an agent has a credibility of 0.5,
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approximately half of the messages it authors will be simulated to be beneficial and ap-
proximately half of the messages will have a “flaw” that detracts from agents’ utilities if
read7.

In addition to credibility, agents are randomly assigned a type θa ∈ [0, 1]. The agent’s
type is a parameter that influences similarity; agents of the same type tend to like the
same messages. Moreover, messages have a type θm ∈ [0, 1] in order to appeal to different
agents. In particular, we simulate agents rating messages more highly when those messages
correspond to their type. However, agents’ evaluation of the credibility of each message is
modeled by flipping biased coins with probabilities proportional to their own credibilities;
if an agent considers a message to be credible, and that message closely matches the agent’s
type, it will rate the message highly. The result is that less credible agents tend to rate
messages they like highly, irregardless of any misinformation or flaws contained within the
message.

Each agent randomly produces between 1 and 10 messages and rates all of the messages
produced by other agents. In order to evaluate the quality of the inferred benefits for mes-
sages, we randomly partition messages into a training and validation set. The training set
is composed of approximately 70% of the messages and is used for the purpose of deter-
mining the Hamming distances (for CredTrust) and the similarities and author reputations
(for LOAR).

Once all of the algorithm inputs have been computed, the simulation runs each al-
gorithm on the testing set to find the predicted benefits for each message based on the
advisory ratings. If the predicted benefit of a message is determined to be high (i.e.,
greater than 0.5), the message is recommended; otherwise, it is rejected. We compute the
number of correctly classified messages (i.e., correctly recommended or correctly rejected)
by comparing to the “correct” message classifications (based on the known benefits of each
message to each agent) and report the Matthew’s Correlation Coefficient (MCC), which
relates the true positive, false positive, false negative, and true negative rates8. In these
simulations, we evaluate four algorithms for predicting benefit, which include a constant
prediction scheme (which recommended all messages), a random prediction scheme (which
randomly classifies messages), the Tally version of LOAR, and CredTrust.

7This treatment of authorship allows for credible (non-credible) agents to potentially create poor (good)
messages, as in LOAR.

8The MCC metric is in the interval [−1, 1], with higher numbers being better. In particular, 1 implies
perfect classification accuracy and 0 means no better than random accuracy.
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3.3.2 Results

The simulation results are depicted in Figures 3.1a and 3.1b. Figure 3.1a illustrates the
simulation for which user credibilities were randomly generated according to a Binomial
distribution. In this scenario, we see that the performance of both CredTrust and LOAR
generally improve as mean overall credibility in the system increases. As mean credibility
approaches 1, both LOAR and CredTrust converge to approximately the same performance.
This result follows by examining the heuristics that both approaches use to ascribe benefits
to messages; as credibility tends towards 1, CredTrust increasingly “ignores” credibility
information and performs a similar update as LOAR. A widening performance gap is
exhibited as mean credibility in the system falls; LOAR outperforms slightly when mean
credibility is roughly 0.6, while CredTrust outperforms as mean credibility falls below 0.5.
This result makes clear that CredTrust is increasingly able to delineate between useful
ratings and stochastic ones, especially in the presence of a large number of non-credible
agents. In some sense, the CredTrust heuristic informs which agents are trustworthy and
worth listening to in an environment replete with non-credible agents.

The results in Figure 3.1a suggested a second experiment (shown in Figure 3.1b). In
particular, the results of the first experiment make clear that there is some interplay
between message credibility and message benefits as the mean credibility in the system
evolves, but in particular, LOAR and CredTrust tend to diverge as mean credibility falls.
Accordingly, we simulate an environment in which users are partitioned into two general
credibility classes: low (corresponding to a credibility of 0.05) and high (corresponding to
credibility 0.95). The results of this simulation are make clear that CredTrust is able to
correctly account for diverging agent credibilities when ascribing benefits to messages.

3.3.3 Closer look at LOAR

We initially found it surprising that LOAR performed so well in simulation, given that its
authors describe the model as heuristic-based and use what appear to be arbitrary (albeit
intuitive) functions to combine peer similarity and ratings. We now demonstrate that the
“heuristics” used in LOAR in fact have some statistical grounding, which helps to explain
why LOAR performs as well as it does.

Lemma 3.1. The similarity coefficient, S, used in LOAR corresponds to a Maximum
Likelihood Estimation (MLE).

Proof. Let X be the event that two users, A and B, rate a given message the same (note
that ratings in LOAR are binary). Then X ∼ Bin(1, θ), where Pr(Xi = 1) = θ is
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(a) MCC versus mean credibility for randomly generated agent credibilities.

(b) MCC versus percentage of non-credible advisors for dichotonomous agent credibilities.

Figure 3.1: Matthew’s Correlation Coefficient (MCC) performance for various agent
environments (higher MCC is better).
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unknown. Let {x1, x2, . . . , xn} be the evidence set of commonly rated messages between A
and B (where xi = 1 if and only if A and B rated the ith message the same), and suppose
that each instance was drawn independently from X. Then the likelihood function L(θ) is
as follows:

L(θ) = f(x1, . . . , xn; θ)

= P (X1 = x1, . . . , Xn = xn; θ)

= θx1(1− θ)1−x1 · · · θxn(1− θ)1−xn

= θ
∑n

i=1 xi(1− θ)n−
∑n

i=1 xi

To maximize this expression, we can take the derivative with respect to θ of `(θ) = ln (L(θ)),
and set the result equal to 0 to solve for the MLE θ̂:

`(θ) =

(
n∑
i=1

xi

)
ln (θ) +

(
n−

n∑
i=1

xi

)
ln (1− θ)

⇔ d`

dθ
=

∑n
i=1 xi
θ

− n−
∑n

i=1 xi
1− θ

⇔ θ̂ =

∑n
i=1 xi
n

SA,B is simply the affine transormation 2 · θ̂ − 1 to map the result to the interval [−1, 1]:

SA,B =

∑n
i=1 xi
n

−
∑n

i=1 (1− xi)
n

=

∑n
i=1 xi
n

− n−
∑n

i=1 xi
n

=
2
∑n

i=1 xi
n

− n

n

= 2θ̂ − 1

Thus, SA,B corresponds to an affine transformation of the MLE for θ.

Lemma 3.2. The LOAR tally approach for combining peer advice into an estimate of pre-
dicted benefit corresponds to performing repeated Bayesian updates to obtain the posterior
of a Beta distribution and then summarizing this distribution using its expected value.

Proof. Let R be the set of ratings on a given annotation, ri be the binary rating on
the annotation from the ith peer, Su,i be the LOAR similarity between the current user
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u and the ith peer, and θ̂i be the MLE estimator from Lemma 3.1. We first consider
the unnormalized LOAR tally benefit computation for a user u for a given message, the
numerator of which is as follows:

N =

|R|∑
i=1

(
ri + riSu,i

)
−
|R|∑
i=1

(
(1− ri) + (1− ri)Su,i

)
=

|R|∑
i=1

(
ri + riSu,i − 1 + ri − Su,i + riSu,i

)
=

|R|∑
i=1

(
2ri + 2riSu,i − Su,i − 1

)
=

|R|∑
i=1

(
2ri + 2ri(2θ̂i − 1)− (2θ̂i − 1)− 1

)
=

|R|∑
i=1

(
4riθ̂i − 2θ̂i

)
= 4

|R|∑
i=1

riθ̂i − 2

|R|∑
i=1

θ̂i

In LOAR, this expression is divided by the following quantity:

D =

|R|∑
i=1

(
ri + riSu,i

)
+

|R|∑
i=1

(
(1− ri) + (1− ri)Su,i

)
=

|R|∑
i=1

(
ri + riSu,i + 1− ri + Su,i − riSu,i

)
= 2

|R|∑
i=1

θ̂i
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The full expression for the LOAR predicted benefit is:

1

2

(
N

D
+ 1

)
=

1

2D

(
N +D

)
=

1

2D

4

|R|∑
i=1

riθ̂i − 2

|R|∑
i=1

θ̂i + 2

|R|∑
i=1

θ̂i


=

∑|R|
i=1 riθ̂i∑|R|
i=1 θ̂i

=

∑
j:rj=1 θ̂j∑

j:rj=1 θ̂j +
∑

k:rk=0 θ̂k

= E
[
Beta

( ∑
j:rj=1

θ̂j,
∑
j:rj=0

θ̂j

)]
That is, the LOAR predicted benefit is exactly the expectation of a Beta distribution
with α =

∑
j:rj=1 θ̂j and β =

∑
j:rj=0 θ̂j, corresponding to the positive and negative peer

evidence, respectively. Importantly, each peer opinion has been discounted by the MLE of
the probability that the user and the peer vote the same way on messages. Accordingly,
the LOAR computation corresponds to summarizing a Beta distribution by its expectation
after performing repeated, discounted Bayesian updates9.

These results demonstrate that the methods used by LOAR to predict the benefit of
a given message correspond to other well-studied approaches for trust measurement. In
fact, this mechanism for deriving trust is exactly the one employed by the Beta Reputation
System, with one significant difference: updates are discounted by a maximum likelihood
estimator for peer similarity. Unfortunately, this pure discounting is actually not necessar-
ily appropriate in all circumstances. For example, if peer advice about a given message is
dominated by non-similar agents, LOAR will be unable to accurately assess the benefit of
the message. This fact informs our next experiments.

3.3.4 Experiments with sparsity

We continue our investigation of LOAR versus CredTrust by considering a new set of
experiments where sparsity of ratings plays a role. The agent setup is equivalent to the

9Equivalently, this amounts to performing inference in a Bayesian network with a single binomial
random variable that has a single Beta random variable parent.
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previous experiments, except now we remove the credibility metric from the simulation.
In doing so, we assume that all agents have perfect credibility (this assumption has no
effect on LOAR). Now, however, agents rate messages sporadically according to a sparsity
parameter. When sparsity equals 0, agents rate all messages in the system; when sparsity
reaches 1, agents do not rate any messages. Figures 3.2a and 3.2b depict the results of two
sparsity experiments.

The first, corresponding to Figure 3.2a, investigates agents who do not discriminate
when choosing which messages to rate. That is, when considering whether or not to
rate a message, agents simply flip a coin with probability equal to the sparsity metric.
Accordingly, agents rate both messages that they like and those that they dislike. The
results illustrate that LOAR and CredTrust perform comparably when agents have no bias
with respect to ratings selectivity. Both methods deteriorate as the sparsity of ratings
increase, to the point where both methods are no better than random when no ratings are
present. This of course makes sense, since it corresponds to an environment in which there
is no training data that can be used to predict future ratings.

The second experiment, corresponding to Figure 3.2b, investigates another sparsity
experiment in which agents are both sporadic and selective in their ratings. In this exper-
iment, agents always report when they like a message, but if they dislike a message, they
will flip a coin to determine whether or not to report. When sparsity is 0, agents always
report negative opinions; when sparsity is 1, agents never report negative opinions. This
captures the logic “if you have nothing nice to say, don’t say anything at all”. Moreover, it
illustrates the relative performance of the algorithms when there is a selection bias in the
agents’ ratings. These results demonstrate where CredTrust really shines; it allows agents
to reinterpret ratings from peers whose opinions are negatively correlated with their own
so that useful information is still extracted. On the other hand, LOAR falls short in this
environment; rather than reinterpretting ratings from peers whose opinions are negatively
with their own, agents simply disregard the potentially useful advice of such peers. Thus,
by linearly reversing information received from non-similar peers, CredTrust’s treatment
of peer advice results in a clearly superior performance compared to how LOAR treats the
same advice. Moreover, CredTrust maintains an MCC of approximately 0.5, significantly
above the random benchmark, until sparsity in the system reaches 50%, demonstrating
robustness in the face of declining participation.
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(a) MCC versus sparsity. Agents do not discriminate between rating messages they like versus
ones they dislike.

(b) MCC versus sparsity. Agents tend to only rate the messages they like.

Figure 3.2: Matthew’s Correlation Coefficient (MCC) performance for sparse ratings
environments (higher MCC is better).

38



Chapter 4

POMDP Classification Model

The results of the simulations presented in Chapter 3 make clear that, while a credibil-
ity feature might be useful to consider when evaluating advisor recommendations, the
CredTrust scheme does not outperform in all circumstances. Rather, it is finely-tuned for
a particular distribution of agent credibilities, which makes sense because it was devel-
oped specifically to combat the potential spread of false information in a network wherein
messages were falsely promoted by many non-credible peers. Likewise, LOAR encodes a
particular function to account for peer similarity when soliciting advice, which works well
for a particular mix of agent similarities. However, both approaches might underperform
if the mix of agent types and credibilities are inappropriate for the heuristic functions each
model encodes. We demonstrated this fact with LOAR in Section 3.3.3, which led us to
explore sparsity as part of our simulations. As for CredTrust, while a lot of thought was
given to devise a set of formulae, there is no reason to believe that those formulae will al-
ways be optimal. Accordingly, we now seek to devise a model that can learn the “correct”
function of features by extracting the right amount of information from advisors (i.e., peers
who provide ratings) when predicting which messages users might like to see.

We proceed by developing a model for classifying messages that uses a more principled
method for considering advisory ratings when making decisions about which messages to
recommend to a given user. We demonstrate its efficacy once again in simulation, under
the same environment as in Chapter 3. Finally, we conclude this chapter by validating our
new model using real world data from Epinions.com and Reddit.com.
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4.1 POMDP Classification Model

To begin, we make an observation: all of the trust models and classifiers discussed thus far
attempt to classify messages as either beneficial for a user to see or not. They accomplish
this by imputing a benefit to each message by modeling the trustworthiness of advisors and
their ratings on the message; those messages with the highest imputed benefits are selected
to show the user. Interestingly, this entire process can be accomplished by designing
a decision-making agent that can decide whether or not to recommend a message to a
particular user1. That is, the task of classifying messages as useful to show or not can
be mapped to a Partially Observable Markov Decision Process (POMDP). Formally, the
POMDP is defined as follows:

• S = {good, bad} :: each message can be either “good” or “bad”

• A = {recommend, reject, poll} :: the agent can choose to recommend a message, to
reject it, or to poll advisors

• O = {(rating, similarity, credibility)} :: if an agent polls for advice, it receives
an observation tuple consisting of the received rating, the advisor similarity (as it
appears in LOAR2), the advisor credibility, etc.

– In general, each observation tuple consists of features that are (hopefully strongly)
correlated with the underlying message state. The similarity feature, for exam-
ple, measures the degree to which a user’s past ratings agree with a given advi-
sor’s past ratings in the hopes that this feature has predictive value for future
ratings as well.

– An assignment of values to an observation tuple corresponds to a row in a
conditional probability table (CPT) that reflects the probability of seeing a
certain trio of (rating, similarity, credibility) values given the ground truth that
a message is good/bad.

• T : P (s′|s) :: the state transition probabilities (an identity function, since the under-
lying message state does not change)

1Note that in this model, we delineate between a “user” in a participatory media network, for whom we
are recommending messages, a “simulation agent”, which is an entity constructed for the purpose of our
simulations, and the “decision-making agent”, which corresponds to the entity that traverses this POMDP
classifier on behalf of a user. When describing the POMDP model, “agent” refers to the latter.

2That is, two users are similar if they rated messages similarly in the past.
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• Discount factor 0 ≤ γ < 1

• Infinite horizon h

• Ω : P (o′|s′, a) :: the probability of an observation given the state and action

• R : A× S → R :: a reward function that encodes the desirability of each state for a
particular agent

This simple POMDP, which we dub POMDPTrust, describes a process in which a decision
making agent participates to determine the desirability of a message. This process can
be applied for each message in the network, individually, while still exploiting the overall
POMDP structure. When making recommendations for a particular user, a given message
can be viewed as having an underlying state that is either “good” or “bad”. This state is
static, albeit itself unobservable. Said another way, for a given user, a message has only
one interpretation as either good or bad, but the decision-making agent cannot directly
perceive the correct interpretation. Instead, the agent can choose to perform one of three
actions. It can either recommend the message, reject it, or poll an advisor for advice about
it. Such advice constitutes the observable states in the POMDP; the states consist of
tuples that include the advisor’s rating, his similarity, and his credibility. In this setting,
the transition function is an identity; a message’s underlying suitability is static and does
not evolve over time3.

The benefits of using a POMDP to help classify messages are manifold. First, this model
intrinsically encodes the uncertainty in our knowledge of the world and in particular, the
desirability of each message for each user. It allows us to express this uncertainty using
probability distributions over our beliefs about the state of the the world. Moreover, we
can using reinforcement learning techniques to learn the correct distributions over advisory
ratings, which allows us to correctly evaluate evidence that we receive from advisors in a
principled manner. Furthermore, this formulation of the problem remains tractable, since
the space over states, actions, and observations is small and the process is Markovian.
Lastly, we can extend this model to specifically account for individual user utilities by
modifying the reward function.

As a final consideration, note that the reward function encodes the relative utilities
for each action. We assume that the reward for polling should be equivalent in all states,
reflecting the fact that the “price” of obtaining more information from advisors is the
same regardless of the agent’s belief about the underlying message state. We point out

3Note, however, that a given message’s underlying state can be different for different users, which
reflects the fact that different users might derive different utility by experiencing the same message.

41



that the higher the polling reward, the stronger the belief required in order to make a
recommendation/rejection decision (as polling for more advice becomes more attractive
in expectation than making a decision). In fact, if the reward for polling is greater than
the expected rewards from making a recommendation/rejection decision, then it always
becomes more beneficial to poll for advice if possible (i.e., to follow a “greedy” policy).
Note as well that we discuss some strategies for learning an appropriate reward function
in Section 6.2.2.

4.1.1 POMDP Example

We now illustrate how the POMDP model can be used to classify two messages, m1 and
m2, for a given user u. For the sake of this example, we make the following assumptions
about the POMDP model and about the messages:

• The underlying state for message m1 is “good”, denoted G (m1 should be recom-
mended).

• The underlying state for message m2 is “bad”, denoted B (m2 should be rejected).

• The observation function for the poll action is encoded in Table 4.1 (other actions
do not elicit any peer advice and so have zero probability).

– R refers to the rating (either 1 or 0).

– M refers to similarity (either similar, 1, or not, 0).

– C refers to credibility (either credible, 1, or not, 0).

– For example, looking at the first row of Table 4.1, the probability of seeing the
trio of (R,M,C) values (1, 1, 1) given that the message is Good (Bad) is 0.3
(0.025). (Note that the probabilities are entirely fabricated for the sake of this
example to demonstrate the belief update process. For a discussion as to how
to learn a good observation function, see Section 4.1.2).

• Table 4.2 encodes the user’s reward function (table cells are utilities, derived arbi-
trarily for the purpose of these examples).

• Peer ratings are depicted in Table 4.3

– Ratings are either positive (1) or negative (0)

– Peers have a similarity S ∈ {0, 1} to the current user
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Table 4.1: Observation function conditional probability table Pr(O | S,A = poll) (values
are in [0, 1]).

Observation State

R M C Good Bad

1 1 1 0.3 0.025
1 1 0 0.15 0.1
1 0 1 0.025 0.3
1 0 0 0.05 0.05
0 1 1 0.025 0.3
0 1 0 0.1 0.15
0 0 1 0.3 0.025
0 0 0 0.05 0.05

Table 4.2: User reward function R(s, a)

Action
State

Good Bad

Poll 1.5 1.5
Recommend 1 -1

Reject -1 1

Table 4.3: Advisor ratings (observations) for messages m1 and m2

Observation
Peer

p1 p2 p3 p4 p5

Rating m1 1 0 0 1 1
Rating m2 1 0 1 0 0
Similarity 1 1 0 0 1

Credibility 1 0 1 0 0
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– Peers have a credibility C ∈ {0, 1}

For both m1 and m2, the agent starts with belief b(mi)(s0) = 0.5, viz., that the message is
equally likely to be good or bad. In other words, the agent has no a priori knowledge about
the message and therefore begins with a uniform belief4. From this starting belief state,
the agent makes observations about the underlying message by polling for peer advice. In
this example, we do not demonstrate how the polling decision might be made; we simply
assume that the agent follows a policy to always poll if possible (indeed, this strategy is
optimal given that polling offers a higher reward than either recommending or rejecting
a message, as can be seen in Table 4.2). The agent can update its belief about the true
message state through repeated updates:

bt+1(st+1) ∝ Pr(ot+1 | st+1, at)
∑
st

Pr(st+1 | st, at)bt(st) (4.1)

For example, here we demonstrate the belief update for m1 after polling for advice from
p1 and receiving the observation tuple 〈R,M,C〉 = 〈1, 1, 1〉 (viz., positive feedback about
the message from a peer who is both similar and credible):

b1(G) ∝ Pr(〈1, 1, 1〉 | G)
∑

s0∈{G,B}

Pr(G | s0, a0)b0(s0)

= 0.3 · (1.0 · 0.5 + 0.0 · 0.5)

= 0.15

b1(B) ∝ Pr(〈1, 1, 1〉 | B)
∑

s0∈{G,B}

Pr(B | s0, a0)b0(s0)

= 0.025 · (0.0 · 0.5 + 1.0 · 0.5)

= 0.0125

After normalizing5, we arrive at the belief b1 = [0.92 0.08], namely that the message
is “good” with probability 0.92. Following this same belief update procedure, Figure

4In a robust implementation of this model, a domain expert could conceivably augment the starting
belief with suitable prior knowledge. For example, perhaps past experience with the author of a given
message can inform the starting belief about the suitability of the given message. LOAR does this to some
extent by blending together the “global” author reputation with “local” annotation ratings information.

5Note that in the observation CPT, the individual columns for states Good and Bad each sum to 1,
but the rows do not sum to 1. Moreover, after applying a belief update as above, the new beliefs do not
necessarily sum to 1. Since a belief represents the probability of each respective state, we need to then
normalize the values.
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4.1 illustrates the agent’s belief evolution as it polls for advice from peers p1, . . . , p5. In
particular, we can see that after polling for advice about each message, the agent’s belief
about m1 suggests that the message is “good”, while the agent’s belief about m2 suggests
that the message is “bad”.

Note that after belief updates are complete, decision-making agents have to advise
their users. Taking m1 as an example (Figure 4.1a), the agent would perform the following
expected utility calculations:

EUrecommend = b5(G) ·Rrecommend(G) + b5(B) ·Rrecommend(B)

= 0.99 · 1 + 0.01 · (−1)

= 0.98

EUreject = b5(G) ·Rreject(G) + b5(B) ·Rreject(B)

= 0.99 · (−1) + 0.01 · (1)

= −0.98

Since the expected utility for recommending the message (0.98) is greater than that for
rejecting the message (-0.98), the agent would recommend m1 to the user.

4.1.2 Learning the Observation Function

We now examine the treatment of observations under this model. The observation kernel,
Ω, encodes the function Pr(Ot+1 = o | St+1 = s, At = a). We can denote this function by
a matrix of |A| × |S| multinomial distributions:

~θ =

 θs1,a1 · · · θs1,a|A|
...

. . .
...

θs|S|,a1 · · · θs|S|,a|A|


where each distribution contains |O| parameters:

Pr(Ot+1 = o | St+1 = si, At = aj) ∼ θsi,aj = Mult(m1,m2, . . . ,m|O|)

Since the POMDPTrust model only produces observations when the agent chooses to poll
for advice, we only need to encode two multinomial distributions, viz., ~θ = [θgood θbad]. In
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(a) Belief evolution for m1: belief converges on S = good so that recommending the message
results in a maximum expected utility.

(b) Belief evolution for m2: belief tends towards S = bad so that rejecting the message results
in a maximum expected utility.

Figure 4.1: POMDP model example: belief state tracking.
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order to traverse the POMDP, we need to know each of the distributions θi. Alternatively,
we can allow each of the parameters to be distributed according to a Dirichlet distribution:

θi ∼ Dir(α1, . . . , α|O|)

Then, we can refine each of these distributions as the agent traverses the POMDP and
retrieves evidence from the user. That is, whenever a user provides feedback about a
message as to the true state of the message (for example, by rating the message), we can
perform a Bayesian update to determine the posterior distribution:

Pr(θi | d) =
Pr(d | θi)Pr(θi)

Pr(d)

We can perform an update for each peer rating on a message when the current user informs
the agent about the true state of the message.

4.1.3 Policy Evaluation

Since the similarity and credibility feature variables, denoted M and C, are continuous
in the interval [0, 1], it is non-obvious how such metrics should index the observation
function. One technique that can be used to incorporate these metrics is to consider them
as parameters to binomial distributions, viz., θM and θC . Then, whenever the agent solicits
advice, it simply samples from the similarity and credibility distributions, respectively, to
obtain a discrete, binary observation. For example, if similarity were 0.7 and credibility
were 0.9, then this technique would entail observing a similarity of 1 with probability 0.7
and a credibility 1 with probability 0.9. This results in a single, discrete observation.
Observe that the mix of sampled discrete observations converge to the parameter from
which those observations were sampled in the limit (i.e., as the number of advisors with
similarity s and credibility c goes to infinity, a consequence of the central limit theorem),
so that this sampling technique performs the right combination of belief updates in the
limit.

Since ratings in real world datasets are often sparse (see Section 4.2), another technique
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Table 4.4: Separate, discrete belief update results

Observation State

R M C bt+1(good) bt+1(bad)

1 1 1 0.923 0.077
1 1 0 0.6 0.4
1 0 1 0.077 0.926
1 0 0 0.5 0.5

would be to blend different belief states together by extending Equation 4.1 as follows6:

bt+1(st+1) ∝ Pr(ot+1 | st+1, at)
∑
st

Pr(st+1 | st, at)bt(st) (4.2)

= Pr(ot+1 | st+1, at) · κ (4.3)

=
∑
mt+1

∑
ct+1

Pr(rt+1 ∧mt+1 ∧ ct+1 | st+1, at) · κ (4.4)

=
∑
mt+1

∑
ct+1

Pr(mt+1 ∧ ct+1 | st+1, at)Pr(rt+1 | mt+1, ct+1, st+1, at) · κ (4.5)

=
∑
mt+1

∑
ct+1

θmt+1 · θct+1Pr(rt+1 | mt+1, ct+1, st+1, at) · κ (4.6)

Here, 4.3 introduces a constant κ to represent the summation in 4.2 for notational simplic-
ity; 4.4 encodes the fact that the observation function is a joint probability distribution
over the elements of the observation tuple, and hence we can marginalize out the unob-
served variables Mt+1 and Ct+1; 4.5 follows from the chain rule of probability, and; 4.6
encodes the heuristic in our mechanism, viz., that the similarity and credibility random
variables are independent.

To make this more concrete, consider the following small example. Suppose that the
observation function is once again given by Table 4.1 and that we receive a positive rating
about a message (rt+1 = 1) from a peer for whom we’ve calculated a similarity score of 0.7
and a credibility score of 0.9. The belief updates for the different discrete assignments to
observation variables are exhibited in Table 4.4. To arrive at a final belief, we combine the

6Note that by using this blending technique, Monte-Carlo Tree Search to derive a policy becomes more
difficult, since the observation corresponds to a real number. One way to get around this would be to
discretize the observation interval.
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beliefs according to the weights given by the similarity and credibility parameters (shown
in parentheses)7:

bt+1(G) = (0.7 · 0.9) · 0.923 + (0.7 · 0.1) · 0.6 + (0.3 · 0.9) · 0.077 + (0.3 · 0.1) · 0.5
= 0.664

bt+1(B) = (0.7 · 0.9) · 0.077 + (0.7 · 0.1) · 0.4 + (0.3 · 0.9) · 0.923 + (0.3 · 0.1) · 0.5
= 0.336

4.1.4 Simulation Results

We perform the same simulations8 as in Chapter 3, this time observing the performance
of the POMDP model in an environment with 20 users. We assume that credibility values
are provided by an oracle, similarities are computed on the basis of common ratings, and
ratings are simulated by virtue of agent types. We run experiments wherein we vary the
user credibilities or the sparsity of ratings.

For our experiments, we instantiate POMPDTrust with a single, global reward function
for all agents. This reward function matches the one from Table 4.2, i.e., one where
recommending good messages yields a reward of 1, while recommending a bad message
yields a reward of −1.

Beyond this, we use a simple greedy policy that polls for as much advice as possible9, and
then takes the action that maximizes the expected utility for agents based on the POMDP
belief state. This is roughly the same policy that is found via Monte Carlo Tree Search
(MCTS), depending on the relative utilities between polling and recommending/rejecting
messages, except it is also significantly faster in simulation due to the small ratings set per
message (namely, at most 20, since there are 20 agents in our simulations, as is explained in
Section 3.3.1 and reviewed in this section). We postulate that MCTS would be beneficial
when the number of ratings on a given message is very large (in which case the MCTS
might discover the better course of action to make an early decision rather than considering
all ratings attached to the message, and thus could prove faster). While explicit ratings
tend to be rather sparse (so that dealing with a large rating set is typically not an issue),

7These weights/parameters were chosen arbitrarily for the sake of this example.
8Please refer to Section 3.3.1 for a more detailed discussion of the simulation setup.
9This is equivalent to setting the reward for polling to be higher than the reward for recommend-

ing/rejecting a message.
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considering implicit ratings makes the data much more dense, and so MCTS could prove
useful under such conditions. (See Section 6.2.1 for a discussion of implicit ratings).

The results of our simulations are depicted in Figures 4.2a, 4.2b, 4.3a, and 4.3b. Once
again, we split the simulation into a training phase and a testing phase. During the training
phase, we use the training messages as evidence to learn the POMDP observation function
by performing repeated Bayesian updates (illustrated in more detail in Appendix D). We
also use the training data to compute a similarity metric (for all three models) and assume
once again that the underlying credibilities of the agents are known.

Overall, the new POMDP model tends to outperform in all of the experiments, which
makes sense given that it uses Bayesian updates to extract exactly the right amount of
information from a given set of peer advice. The POMDP model only underperforms
CredTrust in one instance: the lower spectrum in Figure 4.2a.

We also compare the performance of POMDPTrust versus a latent factor model using
stochastic gradient descent (see Section 2.2.2), which we dub the “SGD” model10, by
repeating the same four simulations. In order to perform a fair comparison, we first tuned
the SGD model by running a separate set of simulations to determine which combination
of SGD parameters yielded the best results. We varied the number of latent features from
1 to 20 and experimented with regularization parameters from the set {0.1, 0.3, 1, 3, 10}.
Our experiments revealed that a regularization parameter λ = 3 yielded the best results by
sufficiently minimizing residuals while avoiding overfitting the training data. Furthermore,
the number of features beyond f = 7 had little impact on the overall performance of the
SGD model. Accordingly, we chose parameters f = 10 and λ = 3 as the parameters that
yielded the best results for the SGD model.

For SGD, the training data is used to optimize the feature vectors for both items and
users. In particular, the training data is used to compute the cost function described in
Equation 2.10 and gradient; these are used to solve an optimization problem that finds
cost-minimizing values for the feature vectors.

The results of these runs are exhibited in Figures 4.4a, 4.4b, 4.5a, and 4.5b, which depict
only the SGD curves and POMDPTrust curves. These results are slightly more mixed.
In Figure 4.4b, the two algorithms trace a similar performance curve until credibility
in the system reaches 0.5, after which the SGD algorithm significantly outperforms the
POMDP model. Figure 4.4b tells a slightly different story; in the dichotomous case, SGD

10Strictly speaking, our SGD model implementation does not perform stochastic gradient descent, as the
cost function is evaluated in “batch” fashion (wherein the cost contribution of all the training examples
is calculated before modifying the factor parameters on each iteration of gradient descent); however, this
distinction is pedantic and we hereafter refer to the latent factor model as “SGD”.
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outperforms until the percentage of non-credible peers reaches 50%, after which point
the POMDP model outperforms. The sparsity simulations depict a smaller difference in
performance between the two approaches, however the story remains similar in that SGD
outperforms in lower sparsity settings while the POMDPTrust model modestly outperforms
in the higher sparsity settings.

We save a more detailed discussion of these and the previous results for Chapter 5,
after exploring performance on two real world datasets in the next section.

4.2 Real World Experiments

Having demonstrated the POMDP model’s effectiveness in simulation against LOAR,
CredTrust, and to a lesser extent, the SGD model, we now turn our attention to valida-
tion using real-world data available from Reddit.com and Epinions.com. While we believe
the simulations presented in Section 4.1.4 were an important first step in examining our
POMDP model, it is also important to consider models against real-world data, which have
their own unique characteristics (for example, with respect to the distribution of ratings,
discussed below). Reddit.com is a website that allows users to create and post messages
for other users to see; other users in the Reddit community can then choose to “upvote”
the message (i.e., rate it positively) or “downvote” the message (rate it negatively). Mes-
sages are then more or less likely to be seen by other users based on the mix of positive
and negative feedback the messages have received. Epinions.com is a website that allows
users to submit reviews about real-world products they have used. Other users can then
read and rate the reviews (not the products themselves) on a 5-point scale (1–5 stars),
as well as provide concrete, written feedback. Data from these websites has been made
available for research purposes, and given the nature of the services they provide, the data
seems appropriate for the problem our research seeks to address (more discussion as to
the suitability of these data for our experiments is provided in Appendix C). Accordingly,
through these real-world experiments, we hope to demonstrate that the POMDP model is
an effective model for use in classifying messages as either beneficial or not for users given
a realistic distribution of users and their ratings.

The Reddit.com data contains a total of approximately 7.4 million user ratings by ap-
proximately 31 thousand different users on approximately 2.0 million messages11. Of these
ratings, approximately 76% were positive. Table 4.5 provides a more detailed summary

11The raw, anonymized Reddit data can be retrieved from http://www.reddit.com/r/redditdev/

comments/dtg4j/want_to_help_reddit_build_a_recommender_a_public/
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(a) MCC versus mean credibility for randomly generated agent credibilities.

(b) MCC versus percentage of non-credible advisors for dichotonomous agent credibilities.

Figure 4.2: Matthew’s Correlation Coefficient (MCC) performance for various agent
environments (higher MCC is better).

52



(a) MCC versus sparsity. Agents do not discriminate between rating messages they like versus
ones they dislike.

(b) MCC versus sparsity. Agents tend to only rate the messages they like.

Figure 4.3: Matthew’s Correlation Coefficient (MCC) performance for sparse ratings
environments (higher MCC is better).
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(a) MCC versus mean credibility for randomly generated agent credibilities.

(b) MCC versus percentage of non-credible advisors for dichotonomous agent credibilities.

Figure 4.4: Matthew’s Correlation Coefficient (MCC) performance for various agent
environments (higher MCC is better).
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(a) MCC versus sparsity. Agents do not discriminate between rating messages they like versus
ones they dislike.

(b) MCC versus sparsity. Agents tend to only rate the messages they like.

Figure 4.5: Matthew’s Correlation Coefficient (MCC) performance for sparse ratings
environments (higher MCC is better).
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Table 4.5: Reddit.com dataset descriptive statistics

User Ratings Common Ratings Advisors

count 31553 31553 31553
mean 234.66 2.3269 2315.99
std 446.64 4.1893 3285.83
min 1 0.0000 0
Q1 3 0.0000 0
Q2 20 1.1176 320
Q3 194 2.5579 4058
max 2000 188.00 13322

of the dataset by reporting the means, standard deviations, and quartiles for various fea-
tures. There were 31,553 users connected with this dataset; the first row, “count”, shows
the number of users over which the remaining statistics were calculated. “User Ratings”
in this table summarizes the number of ratings left by each user in the dataset. “Common
Ratings” summarizes the average number of ratings each user had in common with each
other user. “Advisors” summarizes the average number of ratings that were left on mes-
sages rated by a given user12. Q1, Q2, Q3 means that 25%, 50%, 75% of the users had the
given number or lower.

Figure 4.6a shows the distribution of user ratings. Figure 4.7a shows the distribution of
the number of ratings per user; this graph makes clear that most users rate a small number
of messages. Figure 4.8a shows the distribution of average commonly rated messages
between users, and again, users tend to rate a small number common ratings (perhaps
because users tend to rate a small number of messages at all). Lastly, Figure 4.9a depicts
the average number of advisors per user for each message. A sample of messages from this
data set can be viewed in Appendix C.

The Epinions.com data contains a total of approximately 13.7 million user ratings by
132 thousand users on approximately 1.56 million different messages13. As before, Table 4.6
provides a more detailed summary of the dataset, and Figure 4.6b shows the distribution

12To draw a distinction between “Common Ratings” and “Advisors”, consider the case where a user A
has rated only 1 message. It may be the case that all other users also rated that message, in which case
the user has a large number of advisors (for that message). However, since A only rated 1 message, it can
only have on average 1 common rating with each other user.

13The raw, anonymized Epinions data can be retrieved from http://www.trustlet.org/wiki/

Extended_Epinions_dataset, and was generously donated to the scientific community for research pur-
poses as a result of the work of Paolo Massa [32].
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(a) Reddit.com dataset ratings distribution.

(b) Epinions.com dataset ratings distribution.

Figure 4.6: Ratings distributions for real-world datasets
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(a) Reddit.com dataset: number of ratings per user.

(b) Epinions.com dataset: number of ratings per user.

Figure 4.7: Number of ratings per user for real-world datasets
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(a) Reddit.com dataset: average number of commonly rated messages per user.

(b) Epinions.com dataset: average number of commonly rated messages per user.

Figure 4.8: Average number of commonly rated messages per user for real-world datasets
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(a) Reddit.com dataset: number of advisors per user.

(b) Epinions.com dataset: number of advisors per user.

Figure 4.9: Number of advisors per user for real-world datasets
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Table 4.6: Epinions.com dataset descriptive statistics

User Ratings Common Ratings Advisors

count 119,901 119,901 119,901
mean 112.571 2.27976 538.931
std 1052.70 5.92368 1794.91
min 1 0.0000 0
Q1 1 1.0000 19
Q2 3 1.0471 67
Q3 12 1.5192 258
max 159,607 148.14 68,563

of user ratings. Figure 4.7b shows the distribution of the number of ratings per user; this
graph makes clear that most users rate a small number of messages. Figure 4.8b shows the
distribution of average commonly rated messages between users, and again, users tend to
rate a small number common ratings (perhaps because users tend to rate a small number
of messages at all). Lastly, Figure 4.9b depicts the average number of advisors per user
for each message. Note that these reports do not include the users who left no ratings (so
that the minimum number of ratings is 1 as opposed to 0). A sample of messages from
this data set can be viewed in Appendix C.

4.2.1 Experimental Design

In these experiments, we compare three approaches for classifying messages: LOAR,
BLADE, and our POMDP model. We show the LOAR results as a baseline estimate
of classification accuracy, as LOAR has been discussed throughout this thesis and exhib-
ited in our simulations as well. We chose BLADE as another comparator because it uses
Bayesian techniques to evaluate peer trustworthiness (see Section 2.2.1). Accordingly, it
has several similarities to our own POMDP approach (discussed further in Chapter 5). We
do not include CredTrust in these experiments because we view our POMDP approach as
an improved version of CredTrust (and indeed, have demonstrated in Section 4.1.4 that the
POMDP approach outperforms CredTrust in all of our simulations). Furthermore, since
the real-world data does not contain explicit credibility metrics (which we assumed were
made available through an oracle in simulation), CredTrust cannot be validated against
these data.

In order to evaluate the effectiveness of these models against the Reddit.com and Epin-
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ions.com datasets, we use repeated random sub-sampling validation. In particular, we run
10 trials for each algorithm, and on each trial, we randomly partition the data into a train-
ing and testing set consisting of 70% and 30% of the ratings, respectively. The training
data is used for the purpose of determining the similarities between peers (for both LOAR
and POMPTrust) and updating the BayesNet Dirichlet priors in BLADE. The testing set
is withheld from the training phase and then used to evaluate the efficacy of each model. In
particular, after training the models, each algorithm (i.e., LOAR, BLADE, and POMDP-
Trust) develops predictions for the ratings that users give to messages in the testing set.
The actual ratings that users give to messages in the testing set is known and therefore
considered to be the ground truth message benefit.

We run the LOAR tally algorithm against both datasets. However, LOAR was only
developed to work with binary data. Accordingly, for the Epinions dataset, we substitute
the LOAR similarity metric with a standard cosine similarity metric and accumulate evi-
dence in five separate buckets (representing one through five star ratings). Thus, whereas
we demonstrated that the standard LOAR tally approach essentially uses a Beta distribu-
tion to amalgamate peer advice, we extend LOAR to use a Dirichlet distribution for the
Epinions data.

We also run the BLADE model against both datasets. Since information about message
authors is unavailable for the Reddit dataset, we assume that each message is submitted
by an anonymous author. The result is that users are unable to develop strong posterior
beliefs about the message authors, since at most each user interacts only once with a given
anonymous author (viz., either the user rates a message in the training set or not). In the
original BLADE model, it is important for buyers to develop strong posterior beliefs about
sellers so that the buyers can more accurately learn advisor evaluation functions. Projected
into our context, this requires us to model beliefs about authors. However, in this setting,
since there is at most a single data point with which to arrive at a posterior belief about a
given anonymous author, the hope is that there is sufficient additional training data (i.e.,
additional common ratings) to improve estimates of advisor evaluation functions.

For the Epinions dataset, we hybridized the BLADE model. If the message author
was known, then BLADE was set up to learn the author’s features; if the message author
was unknown, BLADE proceeded as in the Reddit case and assumed that the message
was authored anonymously. In this case, BLADE also made use of posterior belief about
authors when reasoning about the probability of author features for messages in the testing
set. (That is, if a message in the testing set was known to have been authored by a
particular user, then that user’s posterior feature distribution was used as a prior in addition
to the explicit advisor ratings on the message for the purpose of classifying the message).
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4.2.2 Results

Tables 4.7 and 4.8 depict the confusion matrices14 for each algorithm for the Reddit and
Epinions experiments, respectively. The rows of each table show what each algorithm pre-
dicted for messages in the testing set, while the columns show the ground truth message
class (with 1, 679, 101 (542, 177) messages for which the ground truth was positive (neg-
ative)). For example, in Table 4.7, the first row under the LOAR heading reports the
number of messages that LOAR classified as positive; the first column depicts the number
of messages that were actually positively rated, while the second column reports the num-
ber of messages that were actually negatively rated. Using LOAR as an example, there
were 1, 599, 762 true positives, 414, 036 false positives, 79, 339 false negatives, and 128, 141
true negatives. The reported numbers are averaged over all trials, with standard devia-
tions reported in parentheses. For Reddit, we also compute the Matthew’s Correlation
Coefficient (MCC) and exhibit the results in Figure 4.10a. For Epinions, we compute the
Mean Absolute Error (MAE); these results are depicted in Figure 4.10b.

For the Reddit experiment, we report the results of two separate POMDPTrust instan-
tiations, corresponding to two separate global reward functions. The first (“POMDP”)
rewards true positives slightly more than true negatives to reflect the positive skew of the
data set. The second (“POMDP2”) rewards true positives and true negatives equally. We
begin by reporting the positive/negative hit rates:

• LOAR achieves accuracies of 95% and 24%, respectively

• BLADE achieves 88% and 46%

• POMDPTrust achieves 81% and 56% for the first instantiation, versus 63% and 79%
for the second instantiation.

In both instantiations, we see that POMDPTrust achieves a significantly higher true neg-
ative rate at the expense of a lower true positive rate versus both LOAR and BLADE.
Accordingly, based on hit rates alone, it is difficult to distinguish which algorithms per-
form better15. As a result, and also due to the skewed nature of the data, the Matthew’s
Correlation Coefficient is another important metric to report since it balances the true

14A confusion matrix, or classification table, depicts the performance of prediction algorithms in terms
of true/false positives and true/false negatives (for the binary case). In the general case, it depicts the hit
rates for each given prediction class [26] (see Section 14.5).

15In many scenarios, correctly rejecting bad messages (i.e., a higher true negative rate) is a more impor-
tant consideration than ensuring that all good messages are shown (i.e., a higher true positive rate).
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positive and true negative rates to arrive at an overall accuracy that corrects in some sense
for class skewness. For this data, the MCC is important to examine because a scheme
that simply recommends all messages will achieve true positive rate of 100% and an overall
accuracy of 76% (since 76% of the messages were rated positively in the original dataset).
Figure 4.10a illustrates how the first POMDP instantiation has a 23% higher MCC versus
LOAR and a 6% lower MCC versus BLADE. On the other hand, the second instantiation
outperforms LOAR by 31%, and achieves a not significantly different MCC versus BLADE.
Overall, POMDPTrust performs very well against the Reddit data, despite using a single,
global reward function (as opposed to tailoring a reward function to each individual user).

For the Epinions experiment, we extend the two-state POMDPTrust to be able to clas-
sify messages on a scale of 1 through 5 stars. (This is done very simply by extending the
number of states to 5 and increasing the transition and observation functions accordingly).
We only run a single instantiation of POMDPTrust with a specific global reward function
for all agents that accounts for the skewness of the Epinions data (e.g., by emphasizing a
higher reward for classifying messages as “5 star”). As a result, we observe that POMDP-
Trust achieves higher individual hit rates and is able to correctly classify messages with
an overall accuracy of 82% versus LOAR (80%) and BLADE (78%)16. Additionally, Fig-
ure 4.10b depicts the mean absolute error (MAE) achieved by each algorithm. The MAE
is a measure of the average distance each classification is from the true message classifica-
tion. Note that a low MAE is desirable. From this figure, we can see that POMDPTrust
outperforms BLADE by approximately 20%, while it slightly underperforms LOAR by 7%.
Again, POMDPTrust performs very well against the Epinions data despite using a single,
global reward function for all advisors (which presumably hurts performance, since not all
advisors have the same utility functions). We offer some discussion as to how the results
can be improved further by considering individual reward functions in Section 6.2.2.

In all, the results of these experiments demonstrate that POMDPTrust performs very
well in real-world scenarios, outperforming LOAR in the Reddit experiment and BLADE
in the Epinions one. A deeper discussion of POMDPTrust as it compares to both LOAR
and BLADE follows in Chapter 5.

16The overall accuracy rates can be computed by dividing the sum of the diagonal entries in the respective
classification matrices by the total number of messages in the testing set (which has been pre-computed
for the convenience of the reader and is located in the bottom right corner of the respective classification
matrices).
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Table 4.7: Reddit.com dataset results classification matrices.

Observed

Predicted Positive Ratings (1) Negative Ratings (-1) Total

LOAR
Positive Ratings (1) 1, 599, 762 (σ = 6, 120) 414, 036 (1, 075) 2,013,798
Negative Ratings (-1) 79, 339 (342.1) 128, 141 (829.3) 207,480
Total 1,679,101 542,177 2,221,278

BLADE
Positive Ratings (1) 1, 476, 253 (5, 930) 290, 701 (795.9) 1,766,954
Negative Ratings (-1) 202, 847 (1, 010) 251, 476 (1, 108) 454,323
Total 1,679,100 542,177 2,221,278

POMDP
Positive Ratings (1) 1,347,475 (5,518) 239,535 (520) 1,587,010
Negative Ratings (-1) 331,626 (1,832) 302,641 (1,160) 634,263
Total 1,679,101 542,179 2,221,280

POMDP2
Positive Ratings (1) 1,056,839 (5,172) 111,392 (407) 1,168,230
Negative Ratings (-1) 622,262 (2,015) 430,786 (1,240) 1,053,047
Total 1,679,101 542,176 2,221,277
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(a) Reddit.com results: Matthew’s Correlation Coefficient (MCC), by algorithm (higher is better)

(b) Epinions.com results: Mean Absolute Error (MAE), by algorithm (lower is better)

Figure 4.10: Real-world experiment results.
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Chapter 5

Discussion of Results

We will now discuss in greater detail the results of our experiments and will explore how
our model relates to other trust research. As a reminder, in Chapter 4, we introduced a
POMDP model called POMDPTrust to reason about which messages should be recom-
mended to a user. We ran several simulations and carried out experiments using real-
world data from Reddit.com and Epinions.com, and we compared the accuracy (using the
Matthew’s Correlation Coefficient and the Mean Absolute Error) of the recommendations
using the POMDP approach versus the accuracy of several other approaches, including
CredTrust, LOAR, SGD, and BLADE.

POMDPTrust vs. CredTrust

In our view, the POMDP model is an improved version of the CredTrust model for a
variety of reasons. First, the POMDP approach introduces a mathematical framework for
reasoning about which messages to show to users by drawing on well-established methods
from the (PO)MDP literature for reasoning and making decisions under uncertainty. Unlike
in CredTrust, the update rules used in POMDPTrust are principled in that they go beyond
more ad-hoc heuristics. Instead, POMDPTrust learns an appropriate observation function
in order to amalgamate advice from peers in the “right” way given the environment and
distribution of users (viz., the mix of user credibilities and preferences). As a result, we
see that POMDPTrust outperforms CredTrust in nearly all of the simulations.

However, POMDPTrust does slightly underperform CredTrust in the simulation de-
picted in Figure 4.2a when the mean credibility of peers in the simulation falls below
0.4. We believe this to be the case because CredTrust discounts, and hence filters out,
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the advice of less credible peers whose ratings tend to be more stochastic. In particular,
in such cases, POMDP sometimes learns an incorrect observation function because the
ratings of peers are less deterministic and hence less indicative of the true probabilities.
Perhaps seeding the POMDP model with an appropriate prior for the observation func-
tions could help to boost POMDPTrust’s performance in this particular simulation (and
in such circumstances). The development of an appropriate prior is typically considered
a domain-specific challenge; this is another area that could be considered as future work
(see Section 6.2.1).

POMDPTrust vs. LOAR

It is clear that our POMDP approach outperforms LOAR in all of the simulations pre-
sented in Chapter 4 as well as in the real-world experiments we performed (see Figures 4.2,
4.3, 4.10a, and 4.10b). In some sense, POMDPTrust can thus be viewed as an evolution
of LOAR; it corrects for the biases that LOAR introduces in the form of heuristic updates
(see, for example, Section 3.3.3). Furthermore, unlike LOAR, the POMDPTrust model can
be easily extended to include additional user features by simply extending the observation
function to include the features. We demonstrated this in simulation where POMDPTrust
was able to make use of both similarity and credibility information, whereas LOAR only
makes use of user similarities. But POMDPTrust can be easily made to handle any addi-
tional information (e.g., message-specific features like message length or topic). As long as
there is sufficient data from which to learn the observation function, POMDPTrust will al-
ways be able to make use of any additional information. In order to boost the performance
of POMDPTrust, it is therefore important to identify features that are strongly correlated
with the underlying message states. Further discussion of this is included in Section 6.2.1.

POMDPTrust vs. SGD

In Chapter 4 we also compared the POMDPTrust model to a Latent Factor Model that we
abbreviated as “SGD”. The results of these comparisons depicted SGD as outperforming
POMDPTrust in a variety of scenarios (see Figures 4.4 and 4.5). Recall from Section 2.2.2
that the SGD model learns a number of hidden features of both messages and users. Es-
sentially, the SGD model solves a nonlinear optimization problem to find a least-squares
solution that situates each user and each message in a vector space for users and messages,
respectively. Accordingly, we believe that part of the reason why the SGD model out-
performs is because it performs a number of computations that the POMDPTrust model
does not. For example, POMDPTrust does not consider any message-specific features.
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Furthermore, in the simulations, POMDPTrust only considered two user-specific features:
user similarity and credibility (whereas SGD learned 10 latent features). We postulate
that POMDPTrust could be improved by considering message specific features in addi-
tion to user features, and by searching for additional, informative, and correlated metrics.
Moreover, our implementation of POMDPTrust used a single, global reward function for
all users. We postulate that using a user-specific reward function that caters to each user’s
individual preferences could help boost the model’s performance. Additional discussion of
this extension is offered in Section 6.2.2.

One method that could be considered for learning user reward functions draws on
research concerned with inverse reinforcement learning [14, 33] (viz., the problem of learning
the reward function that an expert is maximizing given the expert’s policy). In particular,
one could perform something akin to logistic regression: for a given user, we can use
past messages that the user has rated as training data. Moreover, we can compute the
POMDP beliefs for each training example. Taken together, we should be able to learn the
rewards that cause the POMDP to classify messages based on the computed beliefs in such
a way that a logistic cost function is minimized. We believe that such a technique could
be used to derive user-specific reward functions that improves the overall performance of
POMDPTrust.

As a final point, consider that SGD requires finding the least-squares minimizer solution
given anM×N ratings matrix (M being the number of messages andN being the number of
users). Whenever a new message is created or a new user enters the system, their associated
feature variables are unknown. Accordingly, a new solution needs to be computed every
time the system changes (additional messages are created or new users enter); given that
real-world participatory media networks like Reddit can potentially have many thousands
of messages created and millions of new votes cast per day, recomputing a least-squares
solution may be prohibitive, and thus the SGD approach may not be the most desirable
solution for such dynamic contexts. In contrast, the POMDPTrust approach can be done
entirely online (and thus is perhaps more appropriate for online message recommendations).
It would be interesting to perform a head-to-head experiment in the future to empirically
validate this hypothesis and quantify the relative benefits of these two methods for different
environments.

POMDPTrust vs. BLADE

The POMDPTrust model has many parallels to the Bayesian approach for inferring trust
in e-marketplaces espoused by Reagan et al. in their BLADE model [35]. The most
striking similarity is in the use of probability distributions to encode uncertainty about the
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underlying parameters that drive inference about trust in the network. Both approaches
essentially learn the “right” way to treat peer advice. That is, POMDPTrust performs
Bayesian updates to learn the correct observation function for a given user. Likewise,
BLADE performs Bayesian updates to learn the evaluation functions of peers in the system.

However, there are some differences, too. One difference is that the POMDP model
incorporates some notion of user utilities1 for making decisions about messages by using
a reward function. In particular, POMDPTrust computes the expected utility for recom-
mending a message versus rejecting it, and chooses the action that maximizes a user’s
overall expected utility. On the other hand, BLADE does not incorporate any model for
reasoning about decisions or actions that agents should take2.

Accordingly, in order to make recommendations using the BLADE model (for our exper-
iments), we used a maximum likelihood estimate based on BLADE’s prediction of author
features in order to classify messages. This strategy worked reasonably well in the case of
Reddit.com (where BLADE matched the MCC performance of POMDPTrust). However,
BLADE underperformed in the Epinions experiment, where ratings sparsity is higher as a
result of a larger number of classification classes (i.e., 1 through 5 stars); this hampered
BLADE’s ability to learn a good evaluation function, which resulted in lower overall per-
formance in terms of MAE and individual hit rates. In contrast, the POMDP model’s use
of utilities gives rise to a natural means for making recommendation decisions, and was
shown to perform very well in both simulation and against real-world data. Moreover, the
model could potentially be extended to explicitly account for individual user preferences;
individualized reward functions could serve to boost POMDPTrust’s performance. (One
potential avenue that could be explored for developing appropriate user reward functions
was suggested in the SGD discussion above; another approach could be to specifically ask
users about their preferences and encode there responses using suitable reward functions).

A second difference is that POMDPTrust is able to make use of a number of dif-
ferent features that could be correlated to the underlying message state. In particular,
POMDPTrust can be extended to make use of message-specific features, social network
information, etc., simply by extending the observation function. In fact, it is quite possible
that POMDPTrust could operate in environments where there are no ratings provided for
messages (we discuss these ideas further in Section 6.2.1). BLADE on the other hand is

1Note that we use utilities interchangeably with the rewards from the reward function specified by
POMDPTrust.

2 We consider [35] to be the standard reference to BLADE. We note, however, that Regan’s thesis [34]
includes a future work section that expands on possible decision making solutions. Interestingly, these
suggest the use of POMDPs. We developed our POMDPTrust model independently (and later discovered
the overlap with [34]).

71



tuned to make use of the evaluation functions of advisors to learn seller features, which are
represented by Dirichlet priors; it offers no way to take advantage of other features.

Finally, BLADE offers little insight into how one might prune the advisor space; if
all peers in a network provide feedback about a given message (or if implicit feedback is
used to impute ratings), BLADE offers no insight as to how to choose which ones are
most important to listen to. POMDPTrust, on the other hand, can follow a policy that
“short circuits” once it develops a strong enough belief about a message state, thereby
potentially avoiding a large amount of unnecessary computation. For example, consider
a case where there exist hundreds of thousands of imputed ratings for a given message.
In such a scenario, BLADE will consider every single rating before coming to a decision.
POMDPTrust, on the other hand, might only need to view a small percentage of the ratings
set, at which point it might obtain a belief about the message that is strong enough to
make the expected utility for recommending/rejecting the message high enough that further
polling becomes unnecessary3. Of course, this approach does not go as far as the work of
Gorner et al. [20], whose work explicitly considers a careful selection of advisors to boost
the overall accuracy of trust imputation; we discuss this in detail in Section 6.2.5.

Relationship with Trust Models

Since we approached the problem of recommending/classifying messages from the perspec-
tive of imputing trust to users in participatory media networks, it comes as no surprise that
our work is closely related to the work of other trust researchers. One might reasonably
draw a comparison between POMDPTrust and models like BRS, PTM, and TRAVOS,
given that all of these models make use of Beta distributions (or the more general Dirichlet
distribution) in one form or another during trust evaluation. It is important, however, to
draw a distinction between the mechanisms used by POMDPTrust to amalgamate peer
reports and the methods employed by the latter models. In particular, POMDPTrust uses
Bayesian updates in order to learn an observation function, which is in turn used to ex-
tract the “correct” amount of information from subsequent advisor reports. In other words,
POMDPTrust chooses the weights for its belief updates entirely on the basis of the data.
On the other hand, BRS, PTM, and TRAVOS weight belief updates according to particular
formulas which are shown to perform well in simulations (much like LOAR weighted its own
belief updates; see Section 3.3.3). In would be interesting to further compare and contrast
these different approaches and to concretely evaluate whether POMDPTrust outperforms
these models in simulation. Morever, the notion of “uncertainty” used by BRS might be

3This is of course less of a concern when considering explicit ratings alone, given the sparse nature of
real-world ratings on data.
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a useful future addition as part of the POMDPTrust observation function to codify the
degree to which advice from a particular peer is stochastic. In this way, POMDPTrust
could be extended so that it learns to avoid stochastic peers’ opinions4.

Relationship to Recommender Systems

As a final consideration, we draw attention back to recommender systems more generally,
which the reader will recall were introduced in Section 2.2. In that discussion, we briefly
touched on the distinction between content-based and collaborative filtering methods for
recommendations. We are now in a position to more fully explore the relationship between
such recommender systems and the trust models with which our research is concerned.

The problem of recommending messages (or more generally, items) and the problem of
evaluating peer trustworthiness are inexorably linked: both problems are defined by their
goal of helping users access the right information or make the right choices. Recommender
systems are tasked with finding for users the items that will provide them with the highest
utilities; trust evaluation would be useful to perform so that users know which peers to
interact with. Collaborative filtering recommender systems in particular try to exploit
user similarities in order to recommender new messages of interest. In this context, the
notion of user similarity is closely related to the notion of user trustworthiness ; however,
we believe that trustworthiness goes further, since it must incorporate notions like user
expertise (i.e., credibility) and reputation (e.g., to avoid issues like folklore).

Clearly, there are many parallels that can be drawn between the two topics of research.
Given this, our POMDPTrust model straddles the two, both providing recommendations
to users as to which messages are likely to be the most desirable to see, while also incor-
porating notions of trustworthiness from other models, most notably in its Bayesian belief
update model. POMDPTrust is therefore an interesting model from the perspective of
trust researchers, as it begins to bridge the gap between the evaluation of trustworthiness
and the ability to act on the basis of derived trust. It is also an interesting model from the
perspective of recommender systems, because it provides some insight into exactly what
types of messages users should be concerned with seeing; making decisions solely on the
basis of similar-peer advice may not be the most appropriate in all domains. Moreover, the
POMDP reward function is a convenient mechanism for incorporating user preferences.

4 Note that this is a pitfall in both BLADE and POMDPTrust, which cannot differentiate well be-
tween those advisors whose evaluation functions are deterministic versus those whose ratings are provided
randomly.
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Contribution to a Comprehensive Trust Module

In [38], Sen discusses how trust research has focused primarily on the a posteriori evalua-
tion of trust and how research has for the large part ignored issues regarding establishing,
engaging, and using trusted relationships. He envisions a holistic multiagent systems ar-
chitecture that incorporates a trust module as a core component to facilitate and shape
interactions with other agents in the environment. With this goal in mind, Sen proposes
a comprehensive trust management scheme (CMTS) that involves four major components
to address trust issues and manage trusted relationships:

1. The ability to evaluate other agents’ trustworthiness.

2. The ability for an agent to establish trustworthiness by taking certain actions.

3. The ability to strategically engage with agents on the basis of evaluated trustworthi-
ness and for the purpose of further evaluating trust.

4. The ability to use trust relationships to select future actions.

To date, trust literature has largely focused on the evaluation of agent trustworthiness
and has placed little emphasis on the other facets of a comprehensive trust module as
proposed by Sen. Our POMDPTrust model is therefore novel with respect to the CTMS,
as it explores the usage of trust information to select future actions by incorporating
notions of user utilities that are associated with different outcomes (e.g., recommending
a “good” message or rejecting a “bad” message). POMDPTrust also provides a novel
approach to the evaluation of agent trustworthiness through the belief update mechanism
inherent to POMDPs. Taken together, our work offers insight into various aspects of Sen’s
comprehensive trust module [38] and is therefore, we feel, of particular interest and value
to trust researchers.
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Chapter 6

Conclusions and Future Work

6.1 Summary

In this thesis, we explored the problem of recommending messages to users in partici-
patory media networks. We approached the problem from the perspective of modeling
the trustworthiness of peers in the network, which we argued is related to the neighbour-
hood collaborative filtering approach to recommender systems. This led to our developing
CredTrust, an algorithm that incorporates peer similarity and credibility in order to recom-
mend messages and stop the spread of false information. We demonstrated that CredTrust
outperformed LOAR [12], another recommender system developed specifically to recom-
mend annotations on learning objects in online learning environments so as to maximize
the learning gains of students in the system. We also demonstrated that the LOAR model
corresponded closely to other well-established models in trust literature (specifically, the
Beta Reputation System [28]), and thus can be classified as a simple collaborative filtering
algorithm for message recommendation.

From CredTrust, we moved on to develop POMDPTrust, a model grounded in Bayesian
probability that uses a POMDP to account for peer ratings on messages. We pursued this
avenue after observing that the linear functions proposed by CredTrust, LOAR, and sev-
eral other trust models amount to heuristics that necessarily underperform under specific
circumstances. POMDPTrust, by contrast, learns the statistically “correct” evaluation
function for belief updates. We demonstrated the merits of this approach in simulation
versus LOAR and CredTrust (wherein the POMDP model outperformed), and also consid-
ered its performance against a class of Latent Factor Models (wherein the POMDPTrust
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stood its ground). Apart from simulation, we also validated our approach against real
world data. Taken together, our efforts make clear the value of the POMDPTrust model.

In all, we have developed a new approach for making recommendations to users in
participatory media networks regarding messages of interest with applications to both trust
modeling and message recommendation. Specific contributions which have been produced
in this thesis include the following:

• An exploration of credibility as it applies to trust evaluation in order to combat false
information propagation. In particular, considering a user’s credibility or expertise is
important when trying to recommend the right messages, not necessarily just those
(popular) messages that a user wants to see.

• A method for capturing the value of a trust modeling framework through simulation
that varies agents’ preferences by using types ; this allows us to explore environments
with different mixes of agents and their preferences.

• Proofs of two properties about LOAR that tease out some subtleties in the model,
and as a result of these proofs, a demonstration of exactly where the model struggles.

• The insight that modeling rating sparsity is valuable to validate the performance of
trust-based message recommendation algorithms (used as part of the validation of
our approach)

• A demonstration of the application of POMDPs to recommender systems and trust
modeling domains, as well as a concrete model that was shown to perform well in a
variety of simulated and real-world environments.

• An investigation into two particular real-world data sets for use in validating message
recommending algorithms, and a discussion of the properties required to carry out
validation on other real-world data sets.

• An implementation of competing models so that they could become competitors as
part of our evaluation of POMDPTrust.

6.2 Future Work

We conclude this thesis with a discussion of several next steps that could build on the work
we have presented.
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6.2.1 Extending POMDPTrust to Use Additional Features

In our simulations and real-world experiments, we calibrated POMDPTrust by using sim-
ilarities and credibility1. It would be interesting to explore the use of additional features
in order to further improve the recommendations made by POMDPTrust.

For example, recall that POMDPTrust emerged as a result of our exploration of CredTrust,
but that model was focused primarily on advisor similarity and credibility. Investigating
author similarity and credibility would also be valuable for future work. Inspired by ob-
servations such as these, different features that might be interesting to explore include the
following:

• The distance a user is from the message author and peer raters in an associated social
network. The idea behind considering social network properties stems from work like
Seth et al. [39], in which the authors contend that strong and weak links between
peers in a network contribute to the credibility associated with feedback about a
particular message.

• Similarity between users and raters on the basis of implicit preferences/cues (as op-
posed to ratings). For example, in the online learning scenario, it might be interesting
to look at the similarity between users on the basis of test scores, or on the basis of
the length of time spent reading material versus watching learning videos, etc. Deriv-
ing user preferences on the basis of their actions outside of leaving ratings naturally
brings in an element of user modeling that can serve to augment POMDPTrust (by
more richly specifying similarities between users).

• The topic of the message, or number of different “entities” the message contains.
Certain users might be more interested in different topics than others, or in messages
that cover a number of different subjects.

In addition to considering additional features, it might also be useful to explore the use
of non-uniform priors. In particular, for a given message, POMDPTrust starts with a
uniform belief over the message state. However, given the often skewed nature of the data
in real-world environments, it might be beneficial to start with a non-uniform prior that
reflects this skewness. Moreover, if information regarding message authors is available, it
might be useful to start with a prior that reflects a given user’s past experience with the
author (i.e., does a user typically find a given author’s message to be useful or not). Using

1Credibility was only used in simulation, since we assumed the credibility information was available
through use of an oracle.
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a non-uniform prior can also be helpful in cold-start scenarios (when there is not a lot
of evidence about a particular message). This would then afford modeling the author a
greater role in message recommendation; the focus to date has been on modeling the raters
(advisors) instead.

A related extension would be to consider implicit feedback by users to improve classi-
fication accuracy, as in the work of Hu et al. [25]. Implicit data can potentially be used to
make rating sets more “dense”, and might be helpful in systems where explicit feedback
simply is not available. For example, on the social media site Twitter, users cannot explic-
itly rate tweets (the name given to messages). However, users can “retweet” messages, can
choose to “favourite” a tweet, and can create new tweets that highlight subjects by using
“hashtags”. Perhaps such actions can be indicative of positive or negative feedback about
a given message, and thus could be used in order to provide message recommendations
for Twitter messages. Likewise, other implicit factors like the time a user spends reading
certain threads of messages could be indicative of positive/negative feedback about the
messages or the entities they contain. These implicit factors could then be used to extend
the features included in the POMDP observation function.

Ultimately, considering additional features could be useful to improve recommendation
accuracy, especially given the sparse ratings nature of real-world environments. In partic-
ular, such features might be able to help boost performance in cold-start scenarios, viz.,
when users have little common interactions with advisors (and thus have little evidence
on which to judge and learn advisor evaluation functions). In addressing such problems,
we might also benefit by drawing upon the work of Guo et al. [22], who discuss the use
of social trust to improve collaborative filtering performance. In particular, their “Merge”
method boosts performance in such cold-start scenarios by merging the ratings of trusted
neighbours in order to improve similarity calculations between two particular users (who
otherwise might have a very common small ratings set on the basis of which their similarity
can be measured). Incorporating a similar notion to the web of trust as used by Guo et
al. could find application in our own work, in addition to the ideas suggested above.

6.2.2 Learning a Good Reward Function

It is clear that the reward function has a very important role to play in POMDPTrust.
In the Reddit.com experiment, a minor change in the relative true positive versus true
negative rewards caused a 5% improvement in MCC. Accordingly, there is some evidence
that the careful selection of rewards can improve POMDPTrust’s performance immensely.
We believe that future work could explore different ways to derive a good reward function
in order to further boost POMDPTrust’s classification accuracy:
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• One idea would be to use standard regression techniques in order to find the re-
wards that minimize a cost function that quantifies the classification error made by
POMDPTrust on the training data (see, for example, Chapter 4 of [4]). Such an
approach could also integrate inverse reinforcement learning techniques, as explored
by Ng and Russel in [33] or by Choi and Kim in [14].

• Another idea is to explore the use preference elicitation techniques in order to de-
termine a good utility function for a given user, as is done by, for example, Craig
Boutilier in [5].

Overall, we believe that this would be a promising step to consider in future work, as
it seems reasonable that using user-specific reward functions should serve to improve the
classification accuracy achieved by POMDPTrust, which in this thesis only uses a single,
global reward function, as a first step.

6.2.3 Trust-Related Extensions

Applying POMDPTrust to Trust-Specific Problems

Our POMDPTrust model is related to trust research more generally. In particular, the
POMDP agent’s belief about message states is akin to a trust evaluation. One interesting
application to explore would be e-marketplaces, especially given the intrinsic consideration
of user utilities in POMDPs. In an e-marketplace domain, user utilities have a natural
interpretation with respect to an agent’s profit (from a fulfilled contract/interaction) and
loss (from a failed transaction). We postulate that this explicit integration of user utilities
would be useful in trust scenarios where evaluating the trustworthiness of sellers/advisors
and deciding how to act on the basis of estimated trustworthiness (e.g., to make a purchase)
is important and has economic consequences. In fact, this is similar to what was proposed
by Shani, Heckerman, and Brafman [40], who present an MDPs to make recommendations
in such e-commerce environments. Their work is thus related to our own POMDPTrust,
however it is separate, as it focuses on recommending particular lists (sequences) of items
that users are likely to purchase in a given order, and considers a state space of ordered
purchase sequences. However, it nonetheless provides some interesting insights that would
be useful in applying our own techniques to such a domain, and indeed also for simply
considering extensions to our own model (e.g., with respect to new features).

Aside from extending POMDPTrust in the context of e-marketplaces, it would also be
interesting to incorporate some notions of uncertainty as espoused by Jøsang and Ismail in

79



their Beta Reputation System [28]. Perhaps their notion of uncertainty could be used as an
additional feature to capture the stochasticity of certain raters’ evaluation functions, and
hence allow POMDPTrust to learn to avoid stochastic advisors in favour of deterministic
ones. Similarly, Şensoy et al. [16] use of a subset of Description Logics combined with
Dempster-Shafer theory to reason about uncertain information and make decisions about
deleting and/or discounting peer advice. This line of work could also prove informative
when reasoning about the stochasiticity of peer feedback, as the authors offer specific
methods for reasoning about how to discount feedback based on evidence.

Drawing on Latent Factor Models to Improve Trust Evaluation

Given the relationship between trust modeling and recommender systems as discussed
in Chapter 5, we postulate that there could be some interesting crossover between the
two topics of research. In particular, we have shown how notions of trust can influence
recommendations in our POMDPTrust model; however, we also believe that recommender
systems could provide some interesting insights into trust derivation. In particular, in
Section 4.1.4, we demonstrated how SGD models can achieve great accuracy by combining
a modeling of both messages and users; it would be very interesting to see if some of those
same concepts can be ported for use in evaluating peer trustworthiness2. One challenge
that might arise when exploring this relationship would be in finding an appropriate ground
truth to use for in the least squares optimization required by, for example, gradient descent
methods. Moreover, Latent Factor Models typically consider both users and items ; trust
models tend to focus more on users alone, though researchers such as Tran [45] discuss
the potential value of item-specific trust. Accordingly, more consideration may need to be
given to the items of exchange in trust modeling scenarios (e.g., products being sold in an
e-marketplace) in order to apply LFM concepts, but if applicable, LFM concepts might be
able to improve trust evaluation performance.

At the very least, it is clear that the problems of recommendation and trust evaluation
are related, and this relationship could provide inspiration for future work in both domains.

6.2.4 Additional Experiments

As a final consideration, we briefly outline some ideas on different experiments that we
think would be interesting to perform to further test and refine our models. One would be

2Indeed, we have already suggested in Section 6.2.1 that a hybrid content-based/collaborative approach
could be useful for improving the performance of POMDPTrust by considering message-specific features.
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to integrate social network features (like explicit friendship links between users) into a sim-
ulation environment in order to test how social links can affect message recommendations,
and how POMDPTrust can be adapted to make use of social network information. Another
simulation that would be interesting to run would be one that varies rating stochasticity,
to see how various models cope with stochastic advisors.

Aside from new simulations, we also believe that it would be valuable to consider addi-
tional real-world messaging environments for further validation. In particular, it would be
very interesting to experiment with environments like Twitter, Facebook, or YouTube. Un-
fortunately, these websites do not have readily available datasets for research purposes, so
obtaining the appropriate data could be a challenge. Moreover, the websites just mentioned
do not all make explicit positive/negative ratings information available (if they even record
such information at all), so such experimenting with data from such sites would require
developing and using implicit feedback (as described previously). Moreover, evaluating
such data would also be challenging, given that implicit feedback might not contains a
ground truth against which accuracy can be measured.

Lastly, it would also be useful to integrate several additional models into our experi-
ments, including BRS [28], TRAVOS [44], PTM [50], BCM [39], and latent factor models
[29], to provide additional comparitors. Adjusting some existing parameter values in our
current experiments could be integrated as well. Another future comparator will be HABIT
[43], a the state-of-the-art model that adopts a BLADE-like Bayesian model but with sta-
tistical inference leveraged by third party relationships. HABIT integrates user behaviour
modeling, considering user utilities when making decisions on the basis of evaluated trust-
worthiness. Our model remains separate given its explicit consideration of user utilities in
the decision making framework that we provide. That said, a more in-depth evaluation
would be interesting to conduct.

6.2.5 Long-Term Considerations

The original vision for this thesis was to not only complete a trust-inspired model for mes-
sage recommendation that was sensitive to similarity and credibility but also to accomplish
two related aims. The first was to revisit the notion of credibility in order to move beyond
the placeholder for it in Chapter 3: a value that would be provided by an oracle. The
second was to resolve not only which messages are best shown to users but also to weigh
in on what the ideal set of peers within a social network would be; this would then provide
another avenue for reducing the flood of messages, considering those provided only by a
subset of valued peers.
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We have therefore delegated a bit more space to these two items of future work, within
this chapter. Our current ideas for these subtopics form a useful detailed starting point for
future research that could ultimately form the basis of an expanded proposal for message
recommendation in social networks.

Further Exploration and Derivation of Credibility

Our exploration of user credibility relates to stereotypical trust and role-based trust deriva-
tion. In these contexts, a user’s trustworthiness can be inferred on the basis of their
stereotypical class. For example, in [7, 9], Burnett et al. propose the use of stereotypes to
improve trust evaluations when there is little evidence about a given trustee (i.e., a lim-
ited number of past interactions between a given truster and trustee). They use decision
trees to encode stereotyping functions that provide a priori trust evaluations and propose
deriving stereotype features by observing the relationships between agents [8]. Their work
on stereotypes is related to our notion of credibility in that stereotypes are features that
are correlated with agent biases that provide insight into how agents act. Likewise, Liu et
al. [31, 30] present StereoTrust, which also explores the use of stereotypes for improving
trust evaluations. Essentially, stereotypes learn about different classes of users by captur-
ing semantic information about them (for example, by considering information contained
in their profiles).

Fang et al. [17] generalize these ideas by constructing a semantic ontology of seller
attributes in e-marketplaces. Stereotypes can then be learned (using a “fuzzy” semantic
decision tree) on the basis of identified seller attributes, resulting in more accurate trust
evaluations when limited data is available (to address cold-start issues). While our notion
of credibility was not developed with the cold-start issue in mind, it relates to the use of
stereotypes in that we use user credibilities to improve message recommendations and to
prevent false information propagation. It is important to note, however, that our notion of
credibility goes beyond that of stereotypes, as a user can be atypical with respect to their
stereotype. Our approaches allow for learning a user-specific metric, and thus to evaluate
each user individually. Future work might explore how to integrate existing stereotype
classifications of users into reasoning about credibility or to suggest our methods as a way
of fine-tuning existing stereotypical trust proposals.

There is also merit in conducting a deep and detailed study of how credibility should
be modeled. We note that credibility should not simply be equated with trustworthiness.
Some trust models, e.g., [50], make an effort to combine both private and public reputation
when calculating trustworthiness, but then the calculation will include a user-specific com-
ponent. We would like to instead respect some of the tenets proposed in [39], requiring,
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for example, the influence of credible people on determining who is credible. If we were
to incorporate restrictions like this, it would help considerably in combating the “tyranny
of the majority” (which already motivated our inclusion of credibility in CredTrust). We
note that attempting a detailed model of credibility will be useful both for the modeling
of authors and the modeling of raters, towards message recommendation. In particular, if
authors are determined to be credible, then one might expect that most of their messages
will be credible. However, even credible people may occasionally leave a bad message; this
would be one challenge to address in our future research. An additional challenge that
we can imagine is attempting to model credibility in environments where users are very
homogeneous. However, we may be able to consider additional characteristics: if a user
exhibits stochastic behaviour, for instance, they would be less reliable and therefore one
would be less inclined to consider them as credible.

There are also some parallels between our notion of credibility and the notion of learning
influence in social networks, where more credible peers may correspond to more influencial
ones. Thus, work by, for example, Franks et al. [18] and Karthik et al. [42] could serve as
a backdrop for a future investigation of identifying credible peers. In particular, Franks et
al. [18] provide a general methodology for learning the network value of a node in terms
of influence, and Karthik et al. [42] consider measuring the social capital of peers in the
network. Both of these approaches could be useful in deriving the credibility of peers in
our contexts.

Choosing Good Advisors

Research considering the issue of advisory network composition and size also provides in-
teresting avenues for future work. In [20], Gorner et al. demonstrate through simulation
that choosing a subset of trusted advisors can actually improve performance when eval-
uating agent trustworthiness especially in contexts such as e-marketplaces. In particular,
they outline an approach to empirically determine the “optimal” network size. In their
work, the authors vary the size of a buyers advisor network according to two separate
criteria: a trustworthiness threshold and a maximum number of neighbours. Gorner et al.
evaluate their approach to optimizing network size by considering the performance gains
realized in two separate trust models: TRAVOS [44] and Zhang et al.s personalized trust
model (PTM) [50]. In particular, for each model, the authors simulate an agent network
consisting of a single buyer, 80 advisors, and 100 sellers. Sellers are simulated as having
an inherent trustworthiness probability T ∈ [0.1, 1], and advisors report ratings of sellers,
lying with some probability (in particular, the authors examine cases wherein advisors lie
30% and 60% of the time). The authors also examine the impact that advisor referrals
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have in calculating trust metrics, drawing inspiration from the work of Yu and Singh [49]
(i.e., if a trusted advisor does not have direct experience with a given seller, the buyer can
transitively elicit feedback from the advisors advisor network). They are able to demon-
strate how the size of advisor networks can be set to minimize the usage of untrustworthy
advisor reports.

Although such techniques have not been tested in sparse ratings environments, it seems
reasonable that carefully selecting advisors on behalf of a user could be beneficial for im-
proving classification accuracy. Moreover, relying on a small set of advisors for advice
regarding all messages opens opportunities to integrate research that examines trust prop-
agation as it is examined by Hang et al. [24] (since it is unreasonable to expect advisors
to have first-hand experience with all messages).

One framework that might prove useful for reasoning about the optimal number of
advisors in a user’s advisory network and for expanding on the findings presented by Gorner
et al. [20] that we have explored builds on certain game-theoretic concepts. Cheap-talk
is a model for communication between an informed sender and an uninformed receiver:
the idea is that the receiver makes some decision (for example, reading a message, or
buying a product from a seller) after receiving messages from senders (i.e., polling for
advice from advisors), and the decision results in a payoff for both the sender(s) and the
receiver. Crawford and Sobel [15] and Chen et al. [13] formalize a model for cheap-talk
communication and characterize various solution concepts for the game. Drawing on such
work, Buntain et al. [6] describe a game theoretic framework that can be applied to study
and address certain vulnerabilities in trust systems. The authors present a model under
which agents can be one of three types (“honest”, “fraudulent”, and “saboteurs”); this
model provides an interesting foundation upon which the process of trust evaluation and
establishment can be studied. With these concepts in mind, we propose the following
repeated Bayesian game:

• N is the set of players, which includes the current agent a and its peers p ∈ P

• As in POMDPTrust, the message has an intrinsic underlying state s∗ ∈ [0, 1], con-
sidered here to be deterimined by Nature, drawn from some probability distribution
S

• Advisors partially observe this state and then send messages m ∈ M = [0, 1] to a
(such reporting might be stochastic); the agent a chooses to set some threshold R
that determines which reports should be heeded
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• Advisors have hidden types θp (known to themselves but not to a) that dictates their
reporting behaviour and determines whether or not their advice should be heeded;
advisors report with expected error ε = |s∗ − E[mp]|

• Each p ∈ P has a utility function up : S ×M × R × Θ 7→ R that depends on the
error in its report ε : S×M 7→ R, a’s threshold setting (i.e., whether or not a listens
to p), and on p’s own type We propose this utility function is decreasing in R (i.e.,
∂
∂R
up(·) < 0), and convex in both θ and ε (i.e., ∂2

∂2
Θ
up(·) > 0 and ∂2

∂ε2
up(·) > 0)

• Similarly, a has a utility function ua : S × ~M × R × ~Θ 7→ R that depends on the
error in its inference of the state of the world, the advisor threshold it sets, and the
types of the solicited advisors. One potential utility function might take the form
ua(s

∗, ~m, r, ~theta) =
∑

p∈P H(θp − r)f(|s∗ −mp|) where the unit step function H(·)
serves to discriminate those reports from agents who do not meet the threshold r
and d

dε
(·) < 0.

We present this preliminary and very general framework in order to motivate future work
on choosing the right advisors to listen to. In particular, the problem of choosing advisors
is akin to setting the threshold R in this game; reasoning about how to set this threshold
could be done by finding a strategy for u that maximizes u’s expected utility. It is our
hope that these ideas can provide a starting point for further investigation into choosing a
good (optimal) set of advisors. Perhaps developing this or a related model further might
lead to a specific strategy that agents can follow for choosing their advisors, without the
need to simulate an agent environment and determine empirically an appropriate set of
advisors.

Trust delegation chains offer another interesting avenue for future work regarding elicit-
ing peer feedback, as in the work of Burnett and Oren [10]. In particular, delegation chains
allow advisors to recursively delegate a given task (in our case, the task of opining about a
message) to other users in a network. The notion of trust delegation is therefore also useful
when considering the size and composition of one’s advisory network: we postulate that
maintaining a small set of advisors for whom one can accurately estimate an evaluation
function (on the basis of a lot of past evidence/interactions), and allowing those advisors
to recursively delegate feedback to other similarly maintained advisor sets, could improve
ratings even further (especially given the sparse nature of real-world data).
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6.3 Closing Remarks

In closing, we believe we have provided a number of novel contributions in this thesis by
examining the problem of recommending messages to users in online, participatory media
environments. Our decision to integrate both credibility and similarity into our approach
is motivated in part by the desire to prevent popular messages from similar but perhaps
less credible peers to be a major influence on what users will see. Handling this problem
is especially valuable in contexts such as peer-based education or, even more dramatically,
self-help online health networks. The model that we have presented in this thesis works
towards finding applications in recommender systems as well as in trust evaluation and
management. We are excited by the prospects of further developing this model and have
proposed several concrete directions for doing so. Taken together, we believe that we have
provided research that begins to address the “use” and “evaluation” components of Sen’s
proposed comprehensive trust module [38], and as such offer an attractive starting point
for future trust modeling research. In addition, we believe we have provided new insights
as well for researchers who are focused on POMDPs: we have shed some light on how this
paradigm can be used for trust modeling, providing both a deep and detailed model and a
validation that clarifies how to measure the intrinsic value of this approach.
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Appendix A

Glossary

Agent An (semi-)autonomous entity that acts on behalf of a human user.

Bayesian Network A directed graph that encodes probabilistic dependencies (edges)
between random variables (nodes).

Collaborative Filtering An overarching paradigm that considers the user similarities
(e.g., ratings similarities) in order to make recommendations.

Credibility A global measure of the extent to which a user’s messages are believable.

Latent Factor Model A class of collaborative filtering models that learns hidden fea-
tures for users and items in order to make recommendations.

Markov Decision Process A mathematical model for decision making that incorporates
uncertainty about the environment in the form of probabilistic state transitions.

Monte-Carlo Simulation A stochastic technique that is used to approximate some value
(e.g., the expectation of a random variable) by averaging sample values obtained
through repeated trials in a simulation.

Monte-Carlo Tree Search A method for approximating the optimal policy for a POMDP
that constructs a biased search tree by using Monte-Carlo Simulation to evaluate the
desirability of different actions.

Partially Observable MDP A mathematical model for decision making wherein the
agent cannot directly perceive the state of the environment, but rather can only
make correlated observations. See also Markov Decision Process.

88



Similarity A measure of the degree to which two users have the same preferences (e.g.,
for messages).

Stochastic Gradient Descent A technique for optimizing an objective function. Also,
the name given to our implementation of a particular latent factor model for recom-
mending messages.

Trust A measure that can be interpreted as the probability with which the trustee will
fulfill some future obligation to the truster, e.g., by performing adequately on a
contract in an e-commerce setting.
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Appendix B

Calculations for LOAR Folklore
Example

Here we illustrate various calculations for the example presented in Section 3.1. To begin,
we demonstrate how to calculate the LOAR similarity metric between s and p1. Since
both users voted the same for messages {m2,m3,m4}, vS = 3, and since both users voted
differently for messages {m1,m5}, vD = 2. Thus, the final similarity metric is:

S =
vS − vD
vS + vD

=
3− 2

3 + 2
=

1

5
= 0.2

The remaining similarity metrics displayed in Table 3.2 can be calculated in the same
manner.

Next we demonstrate how to calculate the overall annotator reputation, Tq. Recall that
Tq is calculated by taking the mean annotation reputation over all annotations created by
author q. This requires first calculating each annotation’s general reputation, va, which is
simply the average annotation reputation (i.e., the number of positive ratings divided by
the number of ratings left on the annotation). For m1, this equates to the following:

va1 =
0 + 1 + 0 + 0 + 1

5
= 0.4

The remaining ratings for (vm2 , vm3 , vm4 , vm5 , vm6) can be calculated in a similar fashion,
yielding (0.8, 0.8, 0.8, 0.4, 0.75), respectively. Then, Tq is simply the mean over all the vmi

’s:

Tq =
0.4 + 0.8 + 0.8 + 0.8 + 0.4 + 0.75

6
= 0.6583
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Finally, we demonstrate how to arrive at the predicted benefit for m6 under the Tally,
Trust, and Cauchy approaches. Each approach requires calculating the “votes for” m6,
denoted vF , and the “votes against”, denoted vA. Each positive rating on m6 increments
vF by 1 plus the similarity between s and the peer from whom the rating came. So,

vF = (1 + 1 ∗ (0.2)) + (1 + 1 ∗ (0.6)) + (1 + 1 ∗ (0.2)) = 4

vA = (1 + 1 ∗ (−0.6)) = 0.4

Given these counts, the Tally predicted benefit is as follows:

Tally =
1

2

(
vF − vA
vF + vA

+ 1

)
=

1

2

(
4− 0.4

4 + 0.4
+ 1

)
= 0.9091

The Cauchy predicted benefit is as follows (arbitrarily setting γ = 2):

Cauchy =
1

π
· arctan

(
vF − vA+ Tq

γ

)
+ 0.5

=
1

π
· arctan

(
4− 0.4 + 0.6583

0.2

)
+ 0.5

= 0.8602

And lastly, the Trust predicted benefit is computed as follows (setting Nmin to 10 as in
[11], and letting nV represent “number of votes”):

Trust =
min (Nmin, nV )

Nmin

· Tally +

(
1− min (Nmin, nV )

Nmin

)
· Tq

= 0.4 · 0.9091 + 0.6 · 0.6583

= 0.7586
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Appendix C

Real World Datasets

C.1 Suitability for Experiments

The data from Reddit.com was appropriate for the purpose of validating our POMDP
approach because it contains associations between users, messages, and ratings. In par-
ticular, from the data, we can determine which user rated which message. Moreover, the
ratings themselves are binary and contain both positive and negative ratings. Likewise,
the data from Epinions was appropriate because the same user-message-rating associations
are present. The Epinions data also contains authorship associations between users and
messages, so it is possible to determine author reputations (for deriving message priors
in BLADE and for determining the overall author reputations in LOAR). That said, the
authorship information was only used in the BLADE model (we did not experiment with
either of the LOAR Cauchy or Trust approaches).

In order to validate our approach, a dataset must contain at minimum an association
between users, messages, and their ratings (so that the observation functions and similari-
ties/peer evaluation functions can be learned and exploited). Furthermore, there must be
a way of interpreting ratings as belonging to two or more classes (e.g., binary, as in the
case of Reddit, or multinomial, as in the case of Epinions). This precludes datasets from
services in which users can only express positive feedback about messages (e.g., by “lik-
ing” the message), unless the absence of positive feedback can be reasonably interpreted
as negative feedback. This point is important, as several services (e.g., Facebook, Digg,
Twitter) do no allow users to provide negative feedback. Accordingly, a mechanism for
imputing multiclass feedback would be required in order to carry out experiments against
such data.
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C.2 Data Samples

This section exhibits a short selection of data from each of the Reddit and Epinions data
sets. Note that the data in each case has been anonymized by the original data providers.

Table C.1: Reddit article ratings information

Username Link ID Vote

00ash00 t3 as2t0 1
00ash00 t3 ascto -1
00ash00 t3 asll7 1
00ash00 t3 atawm 1
00ash00 t3 avosd 1

0-0 t3 6vlrz 1
0-0 t3 6vmwa 1
0-0 t3 6wdiv 1
0-0 t3 6wegp 1
0-0 t3 6wegz 1

Table C.2: Epinions article author information

Article ID Author ID Subject ID

1,445,594 718,357 149,002,425,217
1,445,595 220,568 149,003,604,865
1,445,596 717,325 5,303,145,344
1,445,597 360,156 192,620,893,057
1,445,598 718,857 149,002,163,073
1,445,600 513,114 34,252
1,445,601 718,997 5,576,168,320
1,445,602 719,278 34,252
1,445,603 372,997 44,674
1,445,604 298,574 70,012
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Table C.3: Epinions article ratings information

Article ID Member ID Rating

139,431,556 591,156 5
139,431,556 1,312,460,676 5
139,431,556 204,358 5
139,431,556 368,725 5
139,431,556 277,629 5
139,431,556 246,386 5
139,431,556 293,732 5
139,431,556 525,858 5
139,431,556 237,120 5
139,431,556 971,935,620 5
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Appendix D

Learning the Observation Function

In this appendix, we clarify the Bayesian update procedure for learning the observation
function in POMDPTrust.

The goal is to refine our belief about each θs so that the observation function converges
on one that represents a good belief about the probability of obtaining a particular obser-
vation tuple given the state s of the message. Repeatedly, for each message in the training
set, we elicit feedback from each advisor a, which results in obtaining an observation
oas = (ras ,m

a, ca), where ma and ca are the similarity and credibility metrics, respectively,
for the advisor. (We assume that these metrics can be interpreted as the parameters θam
and θac to binomial distributions that dictate whether or not agents are similar/credible,
as in Section 4.1.3, and that these values are independent of the message state). Since we
know the ground truth benefit of each training message, we then can perform a Bayesian
update to learn the posterior probability as follows:

Pr(θs | oas) ∝ Pr(oas | θs) · Pr(θs) (D.1)

=
∑
m

∑
c

Pr(ras ∧ma
s ∧ cas | θs) · Pr(θs) (D.2)

=
∑
m

∑
c

Pr(ma ∧ ca)Pr(ras | ma, ca, θs) · Pr(θs) (D.3)

=
∑
m

∑
c

(θm · θc) · θs,oas · Pr(θs) (D.4)

=
∑
m

∑
c

κm,c ·Ds,oas (θs) (D.5)
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Here, D.3 follows from the chain rule of probability and D.4 follows because we assume
that similarity and credibility are independent parameters. Moreover, since we model
Pr(θs) as a Dirichlet distribution Ds(θs), D.5 follows because θs,oasPr(θs) = Ds,oas (θs), i.e.,
is the same Dirichlet distribution except that the hyperparameter that corresponds to the
observation oas has been incremented by 1. Accordingly, the updated observation function
is a mixture of Dirichlets, where each Dirichlet is weighted by κm,c. As in [35], we can
preserve the expectations over this Dirichlet mixture by instead storing a single Dirichlet
distribution whose hyperparameters are a weighted mixture of each individual Dirichlet
hyperparameters.
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Szepesvári, and Olivier Teytaud. The grand challenge of computer go: Monte carlo
tree search and extensions. Communications of the ACM, 55(3):106–113, 2012.

[20] Joshua Gorner, Jie Zhang, and Robin Cohen. Improving trust modelling through the
limit of advisor network size and use of referrals. Electronic Commerce Research and
Applications (ECRA), page accepted., 2012.

98



[21] Arthur Guez, David Silver, and Peter Dayan. Efficient bayes-adaptive reinforcement
learning using sample-based search. Advances in Neural Information Processing Sys-
tems (NIPS), 2:1025–1033, 2012.

[22] Guibing Guo, Jie Zhang, and Daniel Thalmann. A simple but effective method to
incorporate trusted neighbors in recommender systems. In Proceedings of the 20th
international conference on User Modeling, Adaptation, and Personalization, pages
114–125, 2012.

[23] Chung-Wei Hang and Munindar P. Singh. Generalized framework for personalized
recommendations in agent networks. Autonomous Agents and Multi-Agent Systems
(AAMAS), pages 1–27, 2011.

[24] Chung-Wei Hang, Zhe Zhang, and Munindar P. Singh. Generalized trust propagation
with limited evidence. IEEE Computer, pages 1–8, 2012.

[25] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit
feedback datasets. In IEEE International Conference on Data Mining, pages 263–
272, 2008.

[26] Carl J. Huberty and Stephen Olejnik. Applied MANOVA and Discriminant Analysis.
Wiley, 2006.

[27] Audun Jøsang. A logic for uncertain probabilities. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems, 9(3):279–311, 2001.

[28] Audun Jøsang and Roslan Ismail. The beta reputation system. In Proceedings of the
15th Bled Electronic Commerce Conference, pages 324–337, 2002.

[29] Yehuda Koren, Robert M. Bell, and Chris Volinksy. Matrix factorization techniques
for recommender systems. Computer, 42:30–37, 2009.

[30] Xin Liu, Anwitaman Datta, and Krzysztof Rzadca. Trust beyond reputation: A
computational trust model based on stereotypes. Electronic Commerce Research and
Applications, 12(1):24–39, 2013.

[31] Xin Liu, Anwitaman Datta, Krzysztof Rzadca, and Ee-Peng Lim. Stereotrust: a
group based personalized trust model. In 18th ACM Conference on Information and
Knowledge Management (CIKM), pages 7–16, 2009.

[32] Paolo Massa and Paolo Avesani. Trust aware recommender systems. In ACM confer-
ence on Recommender Systems, pages 17–24, 2007.

99



[33] Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning.
In International Conference on Machine Learning, pages 663–670, 2000.

[34] Kevin Regan. A social reputation model for electronic marketplaces sensitive to sub-
jectivity, deception and change. Master’s thesis, University of Waterloo, 2006.

[35] Kevin Regan, Pascal Poupart, and Robin Cohen. Bayesian reputation modeling in
e-marketplaces sensitive to subjectivity, deception and change. In Proceedings of the
21st National Conference on Artificial Intelligence (AAAI), pages 1206–1212, 2006.

[36] Noel Sardana, Robin Cohen, Jie Zhang, and John Champaign. Credibility-based
trust in social networks. In Proceedings of the AAMAS 2013 international workshop
on Trust in Agent Societies (TRUST13), pages 12–23, 2013.

[37] Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John T. Riedl. Appli-
cation of dimensionality reduction in recommender system — a case study. In ACM
WEBKDD Workshop, 2000.

[38] Sandip Sen. A comprehensive approach to trust management. In International Con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages 797–800,
2013.

[39] A. Seth, J. Zhang, and R. Cohen. Bayesian credibility modeling for personalized rec-
ommendation in participatory media. In Proceedings of the International Conference
on User Modeling, Adaptation and Personalization (UMAP), pages 279–290, 2010.

[40] Guy Shani, David Heckerman, and Ronen I. Brafman. An mdp-based recommender
system. In Journal of Machine Learning Research, pages 1265–1295, 2005.

[41] David Silver and Joel Veness. Monte-carlo planning in large pomdps. In Advances in
Neural Information Processing Systems (NIPS), pages 2164–2172, 2010.

[42] Karthik Subbian, Dhruv Sharma, Zhen Wen, and Jaideep Srivastava. Social capi-
tal: The power of influencers in networks. In Proceedings of the 12th International
Conference on Autonomous Agents and Multiagent Systems, pages 1243–1244, 2013.

[43] W. T. Luke Teacy, Michael Luck, Alex Rogers, and Nicholas R. Jennings. An efficient
and versatile approach to trust and reputation using hierarchical bayesian modelling.
Artificial Intelligence, 2012.

100



[44] W. T. Luke Teacy, Jigar Patel, Nicholas R. Jennings, and Michael Luck. Travos: Trust
and reputation in the context of inaccurate information sources. Autonomous Agents
and Multi-Agent Systems (AAMAS), 12(2):183–198, 2006.

[45] Thomas Thanh Tran. Reputation-Oriented Reinforcement Learning Strategies for
Economically-Motivated Agents in Electronic Market Environments. PhD thesis, Uni-
versity of Waterloo, 2004.

[46] Joel Veness, Kee Siong Ng, Marcus Hutter, and David Silver. A monte carlo aixi
approximation. J. Artif. Intell. Res, pages 95–142, 2010.

[47] Ngo Anh Vien, Wolfgang Ertel, Viet-Hung Dang, and TaeChoong Chun. Monte-carlo
tree search for bayesian reinforcement learning. Applied Intelligence, 39:345–353, 2013.

[48] Gerhard Weiss. Multiagent Systems. MIT Press, 2013.

[49] Bin Yu and Munindar P. Singh. A social mechanism of reputation management in
electronic communities. In Proceedings of the Fourth International Workshop on Co-
operative Information Agents, pages 154–165, 2000.

[50] Jie Zhang and Robin Cohen. Evaluating the trustworthiness of advice about seller
agents in e-marketplaces: A personalized approach. Electronic Commerce Research
and Applications, pages 330–340, 2008.

[51] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. Large-scale
parallel collaborative filtering for the netflix prize. In International Conference on
Algorithmic Aspects in Information and Management, pages 337–348, 2008.

101


