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Abstract

Algorithmic mechanism design deals with efficiently-computable algorithmic constructions

in the presence of strategic players who hold the inputs to the problem and may misreport

their input if doing so benefits them. Algorithmic mechanism design finds applications in

a variety of internet settings such as resource allocation, facility location and e-commerce,

such as sponsored search auctions.

There is an extensive amount of work in algorithmic mechanism design on packing

problems such as single-item auctions, multi-unit auctions and combinatorial auctions.

But, surprisingly, covering problems, also called procurement auctions, have almost been

completely unexplored, especially in the multidimensional setting.

In this thesis, we systematically investigate multidimensional covering mechanism-

design problems, wherein there are m items that need to be covered and n players who

provide covering objects, with each player i having a private cost for the covering objects

he provides. A feasible solution to the covering problem is a collection of covering objects

(obtained from the various players) that together cover all items.

Two widely considered objectives in mechanism design are: (i) cost-minimization (CM)

which aims to minimize the total cost incurred by the players and the mechanism designer;

and (ii) payment minimization (PayM), which aims to minimize the payment to players.

Covering mechanism design problems turn out to behave quite differently from pack-

ing mechanism design problems. In particular, various techniques utilized successfully for

packing problems do not perform well for covering mechanism design problems, and this

necessitates new approaches and solution concepts. In this thesis we devise various tech-

niques for handling covering mechanism design problems, which yield a variety of results

for both the CM and PayM objectives.

In our investigation of the CM objective, we focus on two representative covering

problems: uncapacitated facility location (UFL) and vertex cover. For multi-dimensional

UFL, we give a black-box method to transform any Lagrangian-multiplier-preserving ρ-

approximation algorithm for UFL into a truthful-in-expectation, ρ-approximation mecha-

nism. This yields the first result for multi-dimensional UFL, namely a truthful-in-expectation
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2-approximation mechanism. For multi-dimensional VCP (Multi-VCP), we develop a de-

composition method that reduces the mechanism-design problem into the simpler task of

constructing threshold mechanisms, which are a restricted class of truthful mechanisms,

for simpler (in terms of graph structure or problem dimension) instances of Multi-VCP.

By suitably designing the decomposition and the threshold mechanisms it uses as build-

ing blocks, we obtain truthful mechanisms with approximation ratios (n is the number of

nodes): (1) O(r2 log n) for r-dimensional VCP; and (2) O(r log n) for r-dimensional VCP

on any proper minor-closed family of graphs (which improves to O(log n) if no two neigh-

bors of a node belong to the same player). These are the first truthful mechanisms for

Multi-VCP with non-trivial approximation guarantees.

For the PayM objective, we work in the oft-used Bayesian setting, where players’ types

are drawn from an underlying distribution and may be correlated, and the goal is to

minimize the expected total payment made by the mechanism. We consider the problem of

designing incentive compatible, ex-post individually rational (IR) mechanisms for covering

problems in the above model. The standard notion of incentive compatibility (IC) in

such settings is Bayesian incentive compatibility (BIC), but this notion is over-reliant on

having precise knowledge of the underlying distribution, which makes it a rather non-

robust notion. We formulate a notion of IC that we call robust Bayesian IC (robust BIC)

that is substantially more robust than BIC, and develop black-box reductions from robust

BIC-mechanism design to algorithm design. This black-box reduction applies to single-

dimensional settings even when we only have an LP-relative approximation algorithm for

the algorithmic problem. We obtain near-optimal mechanisms for various covering settings

including single- and multi-item procurement auctions, various single-dimensional covering

problems, and multidimensional facility location problems.

Finally, we study the notion of frugality, which considers the PayM objective but in

a worst-case setting, where one does not have prior information about the players’ types.

We show that some of our mechanisms developed for the CM objective are also good with

respect to certain oft-used frugality benchmarks proposed in the literature. We also intro-

duce an alternate benchmark for frugality, which more directly reflects the goal that the

mechanism’s payment be close to the best possible payment, and obtain some preliminary

results with respect to this benchmark.
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Chapter 1

Overview and Preliminaries

1.1 Introduction

Traditional algorithm design deals with problems in the standard Computer Science input-

output model, where the input is readily available to the algorithm, and the goal is to

efficiently compute an output satisfying one or more objectives. Such algorithm design

problems constitute the bread-and-butter of Computer Science, and have been extensively

studied; see, for example, Algorithm Design by Kleinberg and Tardos [30] and Approxi-

mation algorithms by Vazirani [49]. In recent years, with the advent of the Internet and

especially E-commerce platforms such as Google Ad-auctions, eBay, etc., we see various

settings, where the inputs to the underlying algorithmic problem are held by strategic en-

tities or players, who are motivated by their individual self-interests. This has naturally

led to the interaction of algorithm design with mechanism design, which is the field of

economics that traditionally studies such strategic settings using game theory to model

strategic behaviour, resulting in the emergence of the highly-active research area of algo-

rithmic mechanism design lying at the intersection of Computer Science and Economics.

Algorithmic mechanism design (AMD) deals with efficiently-computable algorithmic

constructions in the presence of strategic players who hold the input to the problem, and

may misreport their input if doing so benefits them. Thus, one seeks to suitably incentivize
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the players to truthfully report their private inputs. In order to achieve this task, a

mechanism is a protocol that specifies both an algorithm and a pricing or payment scheme

that can be used to incentivize players to reveal their true inputs by suitably affecting

their utilities. A mechanism is said to be truthful, if each player maximizes his utility by

revealing his true input regardless of the other players’ declarations. The challenge is to

design the algorithm and the relevant pricing or payment schemes such that they hold

desired properties from both the mechanism-design perspective, e.g. truthfulness, and

algorithm-design perspective, e.g. computational efficiency.

Motivated by resource-allocation problems, there is an extensive amount of literature in

AMD that deals with packing problems such as single-item auctions, multi-unit auctions

and combinatorial auctions. These problems have been well studied under two widely

considered objectives in mechanism design: social-welfare maximization (SWM), where

the goal is to maximize the total value received by the players, and revenue maximization,

where the goal is to maximize the total revenue of the mechanism. Furthermore, these

problems have been investigated both from the standpoint of designing efficient truthful

mechanisms with provable performance guarantees (e.g. see [17, 18, 20, 26, 32, 16, 21]) and

from the perspective of proving lower bounds on the performance guarantees achievable

by efficient truthful mechanisms (e.g. see [19, 39, 45, 31, 22]). In contrast, surprisingly,

covering problems, also called procurement auctions or reverse auctions, have been almost

completely unexplored, especially in the multidimensional settings (where dimensionality

is, roughly speaking, a measure of the complexity of the players’ private information; see

Section 1.2 for a precise definition).

In this thesis, we systematically investigate covering mechanism-design problems. In

a covering problem there are m items that need to be covered and n players who provide

covering objects, with each player i having a private cost for the covering objects he

provides. A feasible solution to the covering problem is a collection of covering objects

(obtained from the various players) that together cover all items.

In the context of covering problems, the aforementioned objectives of social-welfare- and

revenue- maximization translate respectively to the following: (i) cost minimization (CM),

(CM) which aims to minimize the total cost incurred by the players and the mechanism

designer; and (ii) payment minimization (PayM), which aims to minimize the payment
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to players. Our goal in AMD (as mentioned earlier) is to devise mechanisms for covering

mechanism design problems that satisfy various desirable mechanism- and algorithm-design

criteria, such as truthfulness, computational efficiency, and near-optimality for the under-

lying objective(s).

Covering mechanism design problems turn out to behave quite differently from pack-

ing mechanism design problems. In particular, various techniques utilized successfully for

packing problems do not perform well for covering mechanism design problems, and this

necessitates new approaches and solution concepts. In this thesis we devise various tech-

niques for handling covering mechanism design problems, which yield a variety of results

for both the CM and PayM objectives.

1.2 Preliminaries

In order to describe our contributions in a more meaningful way, and also lay some ground-

work and notation for the rest of this thesis, we describe some basic concepts from algo-

rithm and mechanism design. In subsequent chapters, we will supplement this with more

problem-specific information as and when needed.

Covering mechanism-design problems. In a multidimensional covering mechanism-

design problem, we have m items that need to be covered, and n players who provide

covering objects. Each player i provides a set Ti of covering objects where each covering

object v ∈ Ti covers a subset of items. All this information is public knowledge. We

use [k] to denote the set {1, . . . , k}. Each player i has a private cost (or type) vector

ci = {ci,v}v∈Ti , where ci,v is the cost he incurs for providing object v ∈ Ti; for T ⊆ Ti,
we use ci(T ) to denote

∑
v∈T ci,v. A solution or allocation selects a subset Ti ⊆ Ti for

each player i, denoting that i provides the objects in Ti. Given this solution, each player

i incurs the private cost ci(Ti). Also, the mechanism designer incurs a publicly-known

cost pub(T1, . . . , Tn). Note that we can encode any feasibility constraints in the covering

problem by simply setting pub(a) =∞ if a is not a feasible allocation.
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Cost minimization problem. A problem that we will often encounter is the cost-

minimization (CM) problem, where the goal is to minimize the total cost
∑

i ci(Ti) +

pub(T1, . . . , Tn) incurred. Observe that if we view the mechanism designer also as a player,

then the CM problem is equivalent to maximizing the social welfare, which is the total

value received by the players, and is given by
∑

i−ci(Ti)− pub(T1, . . . , Tn).

Let Ci denote the set of all possible types of player i, and C =
∏n

i=1Ci. Let Ω :=

{(T1, . . . , Tn) : pub(T1, . . . , Tn) <∞} be the (finite) set of all possible feasible allocations.

For a tuple x = (x1, . . . , xn), we use x−i to denote (x1, . . . , xi−1, xi+1, . . . , xn). Similarly,

let C−i =
∏

j 6=iCj. For an allocation ω = (T1, . . . , Tn), we sometimes use ωi to denote Ti,

ci(ω) to denote ci(ωi) = ci(Ti), and pub(ω) to denote pub(T1, . . . , Tn). We make the mild

assumption that pub(ω′) ≤ pub(ω) if ωi ⊆ ω′i for all i; so in particular, if ω is feasible, then

adding covering objects to the ωis preserves feasibility.

A (direct revelation) mechanism M = (A, p1, . . . , pn) for a covering problem consists of

an allocation algorithm A : C 7→ Ω and a payment function pi : C 7→ R for each player i.

Each player i reports a cost function ci (that might be different from his true cost function).

The mechanism computes the allocation A(c) = (T1, . . . , Tn) = ω ∈ Ω, and pays pi(c) to

each player i. The utility ui(ci, c−i; ci) that player i derives when he reports ci and the

others report c−i is pi(c)− ci(ωi) where ci is his true cost function, and each player i aims

to maximize his own utility.

Definition 1.2.1 We refer to maxi |Ti| as the dimension of a covering problem. Thus, for

a single-dimensional problem, each player i’s cost can be specified as ci(ω) = ciαi,ω, where

ci ∈ R+ is his private type and αi,ω = 1 if ωi 6= ∅ and 0 otherwise.

Note that, |Ti| is an upper bound on the type-domain dimension of player i which is de-

fined as the lowest dimension of an affine subspace of R|Ω| containing the set {(ci(ω))ω∈Ω|ci ∈
Ci}, and the maximum type-domain dimension among players is the dimension of the cov-

ering problem. But the above simpler definition holds true for most of general settings

which are our focus in this thesis. Observe that in single-dimensional covering problems,

by Definition 1.2.1, we can assume player i owns exactly one covering object i and incurs

cost ci for providing it.
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A desirable property for a mechanism to satisfy is truthfulness, wherein every player

i maximizes his utility by reporting his true cost function. Truthfulness is also (more

precisely) called dominant strategy incentive compatible (DSIC) since it is a dominant

strategy for each player to report his cost function truthfully. This explains one of the

main benefits of designing truthful mechanisms: since truth-telling is the best strategy for

each player regardless of the other players’ strategies, it is straightforward for him to play

according to his best interests; in particular, he does not need to perform any expensive

computations to figure out his best strategy (if one exists). All our mechanisms will also

satisfy the natural property of individual rationality (IR), which means that every player

has nonnegative utility if he reports his true cost.

Definition 1.2.2 A mechanism M =
(
A, {pi}

)
is truthful (DSIC) if for every player i,

every c−i ∈ C−i, and every ci, ci ∈ Ci, we have ui(ci, c−i; ci) ≥ ui(ci, c−i; ci). M is IR if for

every i, every ci ∈ Ci and every c−i ∈ C−i, we have ui(ci, c−i; ci) ≥ 0.

To ensure that truthfulness and IR are compatible, we consider monopoly-free settings:

for every player i, there is a feasible allocation ω (i.e., pub(ω) <∞) with ωi = ∅. (Other-

wise, if there is no such allocation, then i needs to be paid at least minv∈Ti ci,v for IR, so

he can lie and increase his utility arbitrarily.)

For a randomized mechanism M , where A or the pi’s are randomized, we say that M is

truthful in expectation if each player i maximizes his expected utility by reporting his true

cost. We now say that M is IR if for every coin toss of the mechanism, the utility of each

player is nonnegative upon bidding truthfully. There are other weaker notions of incentive

compatibility (IC) that are used in certain settings, e.g. Bayesian settings, where there is

an underlying distribution on the players’ types; we will define these in Chapter 3 when

we consider such settings.

Since the CM problem is often NP-hard, our goal is to design a mechanism M =(
A, {pi}

)
that is truthful (or truthful in expectation), and where A is a ρ-approximation

algorithm; that is, for every input c, the solution ω = A(c) satisfies
∑

i ci(ω) + pub(ω) ≤
ρ · minω′∈Ω

(∑
i ci(ω

′) + pub(ω′)
)
. We call such a mechanism a truthful, ρ-approximation

mechanism.
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A well-known truthful mechanism is the VCG mechanism, which is optimal for the

CM problem (i.e., achieves a 1-approximation). Moreover, in monopoly-free settings, the

mechanism is IR and has the additional desirable property that the mechanism only makes

positive payments to players from whom covering objects are procured.

Definition 1.2.3 The VCG mechanism M =
(
A, {pi}

)
for a covering problem is defined

as follows: for any c ∈ C we have A(c) = ω∗ := argminω∈Ω

(∑
i ci(ω) + pub(ω)

)
and the

payment to each player i is pi(c) = minω′∈Ω:ω′i=∅(
∑

j 6=i cj(ω
′) + pub(ω′)) − (

∑
j 6=i cj(ω

∗) +

pub(ω∗)).

Theorem 1.2.4 VCG is a truthful and IR mechanism that only makes positive payments

to players from whom covering objects are procured.

Proof : Fix a player i, his true cost ci ∈ Ci and reported cost of other players c−i ∈ C−i.

Truthfulness requires that for any given ci ∈ Ci we have ui(ci, c−i; ci) ≥ ui(ci, c−i; ci) or

if ω∗ := argminω∈Ω

(∑
j 6=i cj(ω)+ci(ω)+pub(ω)

)
and ω̂ := argminω∈Ω

(∑
j 6=i cj(ω)+ci(ω)+

pub(ω)
)

then it requires minω′∈Ω:ω′i=∅(
∑

j 6=i cj(ω
′) + pub(ω′)) − (

∑
j 6=i cj(ω

∗) + pub(ω∗)) −
ci(ω

∗) ≥ minω′∈Ω:ω′i=∅(
∑

j 6=i cj(ω
′) + pub(ω′)) − (

∑
j 6=i cj(ω̂) + pub(ω̂)) − ci(ω̂) which is

equivalent to (
∑

j 6=i cj(ω̂) + pub(ω̂)) + ci(ω̂) ≥ (
∑

j 6=i cj(ω
∗) + pub(ω∗)) + ci(ω

∗) and this is

true according to the definition of ω∗.

IR property is straightforward from the definition of pi(c). Note that if ω∗i = ∅ then

also ω∗ = argminω′∈Ω:ω′i=∅
(
∑

j 6=i cj(ω
′) + pub(ω′)) which leads to pi(c) = 0 and proves the

last desired property of VCG.

The following theorem gives a necessary and sometimes sufficient condition for when an

algorithm A is implementable, that is, admits suitable payment functions {pi} such that(
A, {pi}

)
is a truthful mechanism. Before stating the theorem, we need to define weak

monotonicity.

Definition 1.2.5 An algorithm A is said to satisfy weak monotonicity (WMON) if

for all i, and all c−i, we have that if A(ci, c−i) = ω, A(c′i, c−i) = ω′, then ci(ω)− ci(ω′) ≤
c′i(ω)− c′i(ω′).
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It is easy to see that for a single-dimensional covering problem WMON is equivalent

to the following simpler condition: say that A is monotone (MON) if for all i, all ci, c
′
i ∈

Ci, ci ≤ c′i, and all c−i ∈ C−i, if A(ci, c−i) = ω, A(c′i, c−i) = ω′ then ω′i ⊆ ωi.

Theorem 1.2.6 (Theorems 9.29 and 9.36 in [43]) If a mechanism
(
A, {pi}

)
is truth-

ful, then A satisfies WMON. Conversely, if the problem is single-dimensional, or if Ci is

convex for all i, then every WMON algorithm A is implementable.

In single-dimensional settings, given a MON algorithm A, one can specify precisely the

unique payments that when combined with it yield a truthful mechanism.

Definition 1.2.7 Let A be a MON algorithm for an instance of single-dimensional cover-

ing problem. Given players’ cost vector c, for each player i, its critical value is defined as

bi(A, c−i) := sup{c′i ∈ Ci|A(c′i, c−i)i 6= ∅} whenever the RHS is finite.

Theorem 1.2.8 (Theorem 9.36 in [43]) Let A be a MON algorithm such that bi(A, c−i)
is well defined for all i, all c ∈ C. Consider the mechanism M = (A, p1, ..., pn) where

pi(c) = bi(A, c−i) if player i wins, and 0 otherwise. This mechanism M is truthful, IR,

and makes zero payment to a player whose covering object is not chosen. Moreover, if

bi(A, c−i) = inf{c′i ∈ Ci|A(c′i, c−i) = ∅}, then these are the unique payments that yield a

truthful, IR mechanism that makes zero payments to a player whose covering object is not

chosen.

Note that if a mechanism for a single-dimensional covering problem has a bounded

approximation ratio, then by the monopoly-free nature of the single-dimensional setting,

the critical values (Definition 1.2.7) are always defined. This fact is implicitly used in the

subsequent chapters.

1.3 Summary of Our Contributions

In Chapter 2, we initiate a study of multidimensional covering mechanism-design prob-

lems from a cost-minimization (CM) perspective. We consider two representative covering
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problems, namely vertex cover (VCP) and uncapacitated facility location (UFL), and devise

polytime, truthful, approximation mechanisms for these problems. For multidimensional

UFL we present a black-box reduction from truthful mechanism design to algorithm design.

Such reductions from mechanism- to algorithm- design are highly sought after, but quite

rare. Whereas some such reductions are known for multidimensional packing problems,

e.g., [32, 20, 4], this is the first such black-box reduction for a multidimensional covering

problem, and it leads to the first result for multidimensional UFL, namely, a truthful-in-

expectation, 2-approximation mechanism.

We devise two main techniques for multidimensional vertex cover problem (Multi-VCP).

We introduce a simple class of truthful mechanisms called threshold mechanisms (Sec-

tion 2.4.1), and show that despite their restrictions, threshold mechanisms can achieve

non-trivial approximation guarantees. We next develop a decomposition method for Multi-

VCP (Section 2.4.2) that provides a general way of reducing the mechanism-design problem

for Multi-VCP into simpler—either in terms of graph structure, or problem dimension—

mechanism-design problems by using threshold mechanisms as building blocks. By leverag-

ing the decomposition method along with threshold mechanisms, we obtain various truth-

ful, approximation mechanisms for Multi-VCP, which yield the first truthful mechanisms

for multidimensional vertex cover with non-trivial approximation guarantees. We believe

that these techniques will also find use in other mechanism-design problems.

In Chapter 3, we consider the payment-minimization (PayM) objective. We investigate

covering problems in the Bayesian setting, where players’ types are drawn from an underly-

ing distribution and may be correlated and we seek to design incentive-compatible (IC) and

individually rational (IR) mechanisms with minimum expected total payment. We develop

black-box reductions from mechanism design to algorithm design whose application yields

a variety of optimal and near-optimal mechanisms. As we elaborate in Chapter 3, covering

problems turn out to behave quite differently in certain respects from packing problems,

which necessitates new approaches (and solution concepts).

The standard solution concept in Bayesian settings is Bayesian incentive compatibility

(BIC). However, this turns out to be a rather non-robust concept in that it is overly-reliant

on having precise knowledge of the underlying distribution. We formulate a notion of

incentive compatibility that we call robust Bayesian IC (robust BIC) that on the one hand
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is substantially more robust than BIC, and on the other is flexible enough that it allows one

to obtain various polytime near-optimal mechanisms satisfying this notion. A robust-(BIC,

IR) mechanism (see Section 3.2) ensures that truthful participation in the mechanism is in

the best interest of every player even after when the other players’ (randomly-chosen) types

are revealed to him; thus, such a mechanism retains its desirable (IC and IR) properties

for a wide variety of distributions, including those having the same support as the actual

distribution making robust BIC a significantly more robust notion.

We show that for a variety of settings, one can reduce the robust-(BIC, IR) payment-

minimization (PayM) mechanism-design problem to the algorithmic cost-minimization

(CM) problem. We emphasize that our definition of additive types (see Section 3.2) should

not be confused with, and is more general than, additive valuations in combinatorial auc-

tions (CAs).

Our reduction yields near-optimal mechanisms for a variety of covering settings such as

(a) various single-dimensional covering problems including single-item procurement auc-

tions (b) multi-item procurement auctions; and (c) multidimensional facility location.

In Chapter 4, we investigate payment-minimization from a worst-case perspective, when

we do not have any prior distribution on the players’ types, by focusing on the vertex cover

problem. This has been called the frugality objective in the literature to distinguish it

from the PayM objective (which usually implies a Bayesian setup). We obtain various

results regarding frugal truthful mechanism design for vertex cover. We show that some

of the mechanisms that we devise for Multi-VCP in Chapter 2 for the CM problem also

enjoy good frugality properties with respect to certain benchmarks used in the literature.

Thus, we obtain polytime mechanisms that are simultaneously good with respect to both

the approximation and frugality measures. Finally, we consider an alternate frugality

benchmark to address some of the limitations of existing benchmarks, and obtain some

preliminary results with respect to this benchmark.
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1.4 Related Work

As mentioned earlier, although packing mechanism design problems have been studied

from various perspectives in the AMD literature, there is a general lack of work on covering

mechanism design problems, especially multidimensional covering CM problems (a recent

result of [20] is an exception). In fact, to our knowledge, the only multidimensional problem

with a covering flavour that has been studied in the AMD literature is the makespan-

minimization problem on unrelated machines [42, 33, 3], which is not an CM problem.

For the PayM objective discussed extensively in Chapter 3, whereas the analogous

revenue-maximization problem for packing domains, such as combinatorial auctions (CAs),

has been extensively studied in the algorithmic mechanism design (AMD) literature, both

in the case of independent and correlated (even interdependent) player-types (see, e.g., [6,

7, 5, 1, 9, 26, 17, 44, 5, 47] and the references therein), surprisingly, there are almost no

results on the payment-minimization problem in the AMD literature (see however [7]).

The economics literature does contain various general results that apply to both covering

and packing problems. However much of this work focuses on characterizing special cases;

see, e.g., [51]. An exception is the work of Crémer and McLean [12, 13], which shows that

under certain conditions, one can devise a Bayesian-incentive-compatible (BIC) mechanism

whose expected total payment is exactly equal to the expected cost incurred by the players,

albeit one where players may incur negative utility under certain type-profile realizations.

Our work on the PayM objective was inspired by the work of Dobzinski et al. [17], who

address similar questions for the revenue-maximization objective. However, as noted ear-

lier, fundamental differences between packing and covering problems necessitate different

approaches. We elaborate on the benchmarks proposed in this body of work in Chapter 4.

The frugality objective considered in Chapter 4 is perhaps the only objective pertaining

to covering problems that has been actively investigated. In particular, single-dimensional

covering problems have been well studied from the perspective of frugality. Starting with

the work of Archer and Tardos [2], various benchmarks for frugality have been proposed

and investigated for various problems including VCP, k-edge-disjoint paths, spanning tree,

s-t cut; see [28, 23, 29, 10] and the references therein.
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1.5 Outline of the Thesis

The rest of this thesis is organized as follows.

In Chapter 2 we develop various techniques to design efficient, truthful and IR mech-

anisms for multi-dimensional uncapacitated facility location and vertex cover problems,

from a cost-minimization standpoint. A preliminary version of the results of this chapter

appeared as [37].

In Chapter 3 we investigate payment-minimization objective for covering problems in

Bayesian setting. A preliminary version of the results of this chapter appeared as [38].

In Chapter 4 we study mechanism design for covering problems from a frugality view-

point.

In Chapter 5 we briefly list some open questions regarding the study of multidimensional

covering mechanism design problems.

Chapters 2, 3 and 4 are mostly independent of each other. Chapter 3 uses a lemma

proved in Section 2.3, and Chapter 4 explores two classes of mechanisms for Multi-VCP

introduced in Section 2.4.1.
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Chapter 2

Cost-Minimization for

Multidimensional Covering Problems

2.1 Introduction

In this chapter, we initiate a study of multidimensional covering mechanism-design prob-

lems from a cost-minimization (CM) perspective. Recall the definition from Chapter 1:

there are m items that need to be covered and n players who provide covering objects, with

each player i having a private cost for the covering objects he provides. The goal is to select

(or buy) a suitable set of covering objects from each player so that their union covers all

the items, and the total covering cost incurred is minimized. This cost-minimization (CM)

problem is equivalent to the social-welfare maximization (SWM) (where the social welfare

is − (total cost incurred by the players and the mechanism designer)), so ignoring compu-

tational efficiency, the classical VCG mechanism [50, 11, 24] yields a truthful mechanism

that always returns an optimal solution. However, the CM problem is often NP-hard, so

we seek to design a polytime truthful mechanism where the underlying algorithm returns

a near-optimal solution to the CM problem.

Although multidimensional packing mechanism-design problems have received much

attention in the AMD literature, multidimensional covering CM problems are conspicuous
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by their absence in the literature. For example, the packing SWM problem of combinatorial

auctions has been studied (in various flavors) in numerous works both from the viewpoint

of designing polytime truthful, approximation mechanisms [18, 32, 16, 21], and from the

perspective of proving lower bounds on the capabilities of computationally- (or query-)

efficient truthful mechanisms [31, 22, 19]. In contrast, the lack of study of multidimensional

covering CM problems is aptly summarized by the blank table entry for results on truthful

approximations for procurement auctions in Fig. 11.2 in [43] (see “Related work” below).

As stated in Chapter 1, to our knowledge, the only multidimensional problem with a

covering flavor that has been studied in the AMD literature is the makespan-minimization

problem on unrelated machines [42, 33, 3], which is not an SWM problem.

2.1.1 Summary of Results and Techniques

We study two representative multidimensional covering problems, namely (metric) unca-

pacitated facility location (UFL), and vertex cover (VCP), and develop various techniques

to devise polytime, truthful, approximation mechanisms for these problems.

In UFL, there is a set of clients who need to be served, and a set of players. Each

player provides a (known) set of facilities for serving clients and the opening costs for these

facilities is private information. Each client has to be assigned to one facility for service

and doing so incurs a public client-assignment cost. The goal is to open a subset of facilities

so as to minimize the total facility-opening and client-assignment costs.

In VCP, the edges of a graph need to be covered and each player provides a subset of

nodes of the graph. The goal is to choose a minimum-cost vertex cover of the graph. (See

detailed definitions in Section 2.2.)

For multidimensional UFL (Section 2.3), we present a black-box reduction from truthful

mechanism design to algorithm design. We show that any ρ-approximation algorithm

for UFL satisfying an additional Lagrangian-multiplier-preserving (LMP) property (that

indeed holds for various algorithms) can be converted in a black-box fashion to a truthful-

in-expectation ρ-approximation mechanism (Theorem 2.3.1). This is the first such black-

box reduction for a multidimensional covering problem, and it leads to the first result

for multidimensional UFL, namely, a truthful-in-expectation, 2-approximation mechanism.
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Our result builds upon the convex-decomposition technique in [32]. Lavi and Swamy [32]

primarily focus on packing problems, but remark that their convex-decomposition idea

also yields results for single-dimensional covering problems, and leave open the problem

of obtaining results for multidimensional covering problems. Our result for UFL identifies

an interesting property under which a ρ-approximation algorithm for a covering problem

can be transformed into a truthful, ρ-approximation mechanism in the multidimensional

setting.

In Section 2.4, we consider multidimensional VCP. Although, algorithmically, VCP is

one of the simplest covering problems, it becomes a surprisingly challenging mechanism-

design problem in the multidimensional mechanism-design setting, and, in fact, seems

significantly more difficult than multidimensional UFL. This is in stark contrast with the

single-dimensional setting, where each player owns a single node. Before detailing our

results and techniques, we mention some of the difficulties encountered. We use Multi-

VCP to distinguish the multidimensional mechanism-design problem from the algorithmic

problem.

For single-dimensional problems, a simple monotonicity condition characterizes the

implementability of an algorithm, that is, whether it can be combined with suitable pay-

ments to obtain a truthful mechanism (see Theorem 1.2.8). This condition allows for ample

flexibility and various algorithm-design techniques can be leveraged to design monotone al-

gorithms for both covering and packing problems (see, e.g., [4, 32]). For single-dimensional

VCP, many of the known 2-approximation algorithms for the algorithmic problem (based

on LP-rounding, primal-dual methods, or combinatorial methods) are either already mono-

tone, or can be modified in simple ways so that they become monotone, and thereby yield

truthful 2-approximation mechanisms [14]. However, the underlying algorithm-design tech-

niques fail to yield algorithms satisfying weak monotonicity (WMON)—a necessary con-

dition for implementability (see Theorem 1.2.6)—even for the simplest multidimensional

setting, namely, 2-dimensional VCP, where every player owns at most two nodes. We show

this for various LP-rounding methods in Section 2.5, and for primal-dual algorithms in

Section 2.6.

Furthermore, various techniques that have been devised for designing polytime truth-

ful mechanisms for multidimensional packing problems (such as combinatorial auctions)
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do not seem to be helpful for Multi-VCP. For instance, the well-known technique of con-

structing a maximal-in-range, or more generally, a maximal-in-distributional-range (MIDR)

mechanism—fix some subset of outcomes and return the best outcome in this set—does

not work for Multi-VCP [20] (and more generally, for multidimensional covering problems).

More precisely, any algorithm for Multi-VCP whose range is a proper subset of the collection

of minimal vertex covers, cannot have bounded approximation ratio (see footnote 1 in Sec-

tion 2.4). This also rules out the convex-decomposition technique of [32], which we exploit

for multidimensional UFL, because, as noted in [32], this yields an MIDR mechanism.

Thus, we need to develop new techniques to attack Multi-VCP (and multidimensional

covering problems in general). We devise two main techniques for Multi-VCP. We intro-

duce a simple class of truthful mechanisms called threshold mechanisms (Section 2.4.1), and

show that despite their restrictions, threshold mechanisms can achieve non-trivial approxi-

mation guarantees. We next develop a decomposition method for Multi-VCP (Section 2.4.2)

that provides a general way of reducing the mechanism-design problem for Multi-VCP into

simpler—either in terms of graph structure, or problem dimension—mechanism-design

problems by using threshold mechanisms as building blocks. We believe that these tech-

niques will also find use in other mechanism-design problems.

By leveraging the decomposition method along with threshold mechanisms, we obtain

various truthful, approximation mechanisms for Multi-VCP, which yield the first truthful

mechanisms for multidimensional vertex cover with non-trivial approximation guarantees.

Let n be the number of nodes. Our decomposition method shows that any instance of

r-dimensional VCP can be broken up into O(r2 log n) instances of single-dimensional VCP;

this in turn leads to a truthful, O(r2 log n)-approximation mechanism for r-dimensional

VCP (Theorem 2.4.9). In particular, for any fixed r, we obtain an O(log n)-approximation

for any graph. We give another decomposition method that yields an improved truthful,

O(r log n)-approximation mechanism (Theorem 2.4.11) for any proper minor-closed family

of graphs (such as planar graphs). This guarantee improves to O(log n) for any proper

minor-closed family, when no two neighbors of a node belong to the same player.
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2.1.2 Related Work

As mentioned earlier, there is little prior work on the CM problem for multidimensional

covering problems. Dughmi and Roughgarden [20] give a general technique to convert an

FPTAS for an SWM problem to a truthful-in-expectation FPTAS by constructing an MIDR

mechanism. However, for covering problems, they obtain an additive approximation, which

does not translate to a (worst-case) multiplicative approximation. In fact, as observed in

[20] and noted earlier, a multiplicative approximation ratio is impossible (in polytime)

using their technique, or any other technique that constructs an MIDR mechanism whose

range is a proper subset of all outcomes.

For single-dimensional covering problems, various other results, including black-box re-

sults, are known. Briest et al. [4] consider a closely-related generalization, which one may

call the “single-value setting”; although this is a multidimensional setting, it admits a sim-

ple monotonicity condition sufficient for implementability, which makes this setting easier

to deal with than our multidimensional settings. They show that a pseudopolynomial time

algorithm (for covering and packing problems) can be converted into a truthful FPTAS.

Lavi and Swamy [32] mainly consider packing problems, but mention that their technique

also yields results for single-dimensional covering problems.

Our decomposition method, where we combine mechanisms for simpler problems into a

mechanism for the given problem, is somewhat in the same spirit as the construction in [40].

They give a toolkit for combining truthful mechanisms, identifying sufficient conditions

under which this combination preserves truthfulness. But they work only with the single-

dimensional setting, which is much more tractable to deal with.

2.2 Problem Definitions and Preliminaries

Various covering problems can be cast in the framework defined in Section 1.2. For example,

in the mechanism-design version of vertex cover (Section 2.4), the items are edges of a graph.

Each player i provides a subset Ti of the nodes of the graph and incurs a private cost ci,v

if node v ∈ Ti is used to cover an edge. We can set pub(T1, . . . , Tn) = 0 if
⋃
i Ti is a vertex

17



cover, and∞ otherwise, to encode that the solution must be a vertex cover. It is also easy to

see that the mechanism-design version of uncapacitated facility location (UFL; Section 2.3),

where each player provides some facilities and has private facility-opening costs, and the

client-assignment costs are public, can be modeled by letting pub(T1, . . . , Tn) be the total

client-assignment cost given the set
⋃
i Ti of open facilities.

Below we formally define both problems and related notations.

Multi-VCP mechanism design problem In this problem, we have a graph G = (V,E)

with n nodes. Each player i provides a subset Ti of nodes. For simplicity, we first assume

that the Tis are disjoint, and given a cost-vector {ci,u}i∈[n],u∈Ti , we use cu to denote ci,u

for u ∈ Ti. Notice that our assumption of monopoly-free then means that each Ti is an

independent set. In Remark 2.4.7 we argue that many of the results obtained in this

disjoint-Tis setting (in particular, Theorems 2.4.11 and 2.4.9) also hold when the Tis are

not disjoint (but each Ti is still an independent set). The goal is to choose a minimum-cost

vertex cover, i.e., a min-cost set S ⊆ V such that every edge is incident to a node in S.

UFL mechanism design problem In this problem we have a set D of clients that need

to be serviced by facilities, and a set F of locations where facilities may be opened. Each

player i may provide facilities at the locations in Ti ⊆ F . By making multiple copies of

a location if necessary, we may assume that the Tis are disjoint. Hence, we will simply

say “facility `” to refer to the facility at location ` ∈ F . For each facility ` ∈ Ti that is

opened, i incurs a private opening cost of f i,`, and assigning client j to an open facility

` incurs a publicly known assignment/connection cost c`j. To simplify notation, given a

tuple {fi,`}i∈[n],`∈Ti of facility costs, we use f` to denote fi,` for ` ∈ Ti. The goal is to open

a subset F ⊆ F of facilities, so as to minimize
∑

`∈F f ` +
∑

j∈Dmin`∈F c`j. We will assume

throughout that the c`js form a metric. It will be notationally convenient to allow our

algorithms to have the flexibility of choosing the open facility σ(j) to which a client j is

assigned (instead of argmin`∈F c`j); since assignment costs are public, this does not affect

truthfulness, and any approximation guarantee achieved also clearly holds when we drop

this flexibility.

18



2.3 A Black-Box Reduction for Multidimensional Met-

ric UFL

In this section, we consider the multidimensional metric uncapacitated facility location

(UFL) problem and present a black-box reduction from truthful mechanism design to al-

gorithm design. We show that any ρ-approximation algorithm for UFL satisfying an ad-

ditional property can be converted in a black-box fashion to a truthful-in-expectation

ρ-approximation mechanism (Theorem 2.3.1). This is the first such result for a multi-

dimensional covering problem. As a corollary, we obtain a truthful-in-expectation, 2-

approximation mechanism (Corollary 2.3.3).

We can formulate (metric) UFL as an integer program as follows. Throughout, we use

` to index facilities in F and j to index clients in D.

min
∑
`

f`y` +
∑
j,`

c`jx`j

s.t.
∑
`

x`j ≥ 1 for all j,

x`,j ≤ y` for all `, j,

x`,j, y` ∈ {0, 1} for all `, j.

Here, {f`}` = {fi,`}i∈[n],`∈Ti is the vector of reported facility costs. Variable y` denotes

if facility ` is opened, and x`j denotes if client j is assigned to facility `; the constraints

encode that each client is assigned to a facility, and that this facility must be open.

By relaxing the integrality constraints and removing redundant constraints we obtain

the following LP

min
∑
`

f`y` +
∑
j,`

c`jx`j s.t.
∑
`

x`j ≥ 1 ∀j, 0 ≤ x`j ≤ y` ≤ 1 ∀`, j.

(FL-P)
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Say that an algorithm A is a Lagrangian multiplier preserving (LMP) ρ-approximation

algorithm for UFL if for every instance, it returns a solution
(
F, {σ(j)}j∈D

)
such that

ρ
∑

`∈F f` +
∑

j cσ(j)j ≤ ρ ·OPT(FL-P).

The main result of this section is the following black-box reduction.

Theorem 2.3.1 Given a polytime, LMP ρ-approximation algorithm A for UFL, one can

construct a polytime, truthful-in-expectation, individually rational, ρ-approximation mech-

anism M for multidimensional UFL.

Proof : We build upon the convex-decomposition idea used in [32]. The randomized

mechanism M works as follows. Let f = {f`} be the vector of reported facility-opening

costs, and c be the public connection-cost metric.

1. Compute the optimal solution (y∗, x∗) to (FL-P) (for the input (f, c)). Let {p∗i = p∗i (f)}
be the payments made by the ”fractional VCG” mechanism that outputs the optimal LP

solution for every input. That is, p∗i =
(∑

` f`y
′
`+
∑

`,j c`jx
′
`j

)
−
(∑

`/∈Ti f`y
∗
` +
∑

`,j c`jx
∗
`j

)
,

where (y′, x′) is the optimal solution to (FL-P) with the additional constraints y` = 0

for all ` ∈ Ti.

2. Let Z(P ) = {(y(q), x(q))}q∈I be the set of all integral solutions to (FL-P) (i.e. all feasible

solutions to UFL). In Lemma 2.3.2, we prove the key technical result that using the LMP

algorithm A, one can compute, in polynomial time, nonnegative multipliers {λ(q)}q∈I
such that

∑
q λ

(q) = 1,
∑

q λ
(q)y

(q)
` = y∗` for all `, and

∑
q,`,j λ

(q)c`jx
(q)
`j ≤ ρ

∑
`,j c`jx

∗
`j.

3. With probability λ(q): (a) output the solution
(
y(q), x(q)

)
; (b) pay p

(q)
i to player i, where

p
(q)
i = 0 if

∑
`∈Ti f`y

∗
` = 0, and

∑
`∈Ti f`y

(q)
` ·

p∗i∑
`∈Ti

f`y
∗
`

otherwise.

Clearly, M runs in polynomial time. Fix a player i. Let f i and fi be the true and re-

ported cost vector of i. Let f−i be the reported cost vectors of the other players. Let (y∗, x∗)

be an optimal solution to (FL-P) for (f, c). Note that E[pi(f)] = p∗i (f). If
∑

`∈Ti f`y
∗
` = 0

then this follows since p∗i (f) = 0 (because then (y∗, x∗) is also an optimal solution to

(FL-P) when player i does not participate). Otherwise, this follows since
∑

q λ
(q)y(q) = y∗`

for all `. So E[ui(fi, fi; f i)] = E[pi] −
∑

q λ
(q)
∑

`∈Ti f `y
(q)
` = p∗i (f) −∑`∈Ti f `y

∗
` where the
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last equality is again because
∑

q λ
(q)y(q) = y∗` for all `. Since p∗i and y∗ are respectively

the payment to i and the assignment computed for input (fi, f−i) by the fractional VCG

mechanism, which is truthful, it follows that player i maximizes his utility in the VCG

mechanism, and hence, his expected utility under mechanism M , by reporting his true

opening costs. Thus, M is truthful in expectation.

Note that the above argument (on truthfulness in expectation of M) is heavily de-

pendent on the fact that
∑

q λ
(q)y(q) = y∗` for all `, and it is the LMP ρ-approximation

algorithm (see Lemma 2.3.2) that enables us to efficiently decompose (y∗, x∗) in this way

(or precisely as stated in Step 2).

This also implies the ρ-approximation guarantee because the convex decomposition

obtained in Step 2 shows that the expected cost of the solution computed by M for input

(f, c) (where we may assume that f is the true cost vector) is at most ρ · OPT(FL-P)(f, c).

Finally, since the fractional VCG mechanism is IR, for any player i, the VCG payment

p∗i (f) satisfies p∗i (f) ≥∑`∈Ti f`y
∗
` , and therefore p

(q)
i ≥

∑
`∈Ti f`y

(q)
` . So M is IR.

Lemma 2.3.2 The convex decomposition in step 2 can be computed in polytime.

Proof : It suffices to show that the LP (P) can be solved in polynomial time and its

optimal value is 1. Recall that {(y(q), x(q))}q∈I is the set of all integral solutions to (FL-P).

max
∑
q

λ(q) (P)

s.t.
∑
q

λ(q)y
(q)
` = y∗` ∀` (2.1)

∑
j,`,q

λ(q)c`jx
(q)
`j ≤ ρ

∑
j,`

c`jx
∗
`j (2.2)

∑
q

λ(q) ≤ 1 (2.3)

λ ≥ 0.

min
∑
`

y∗`α` +
(
ρ
∑
j,`

c`jx
∗
`j

)
β + z (D)

s.t.
∑
`

y
(q)
` α` +

(∑
j,`

c`jx
(q)
`j

)
β + z ≥ 1 ∀q

(2.4)

z, β ≥ 0.

Since (P) has an exponential number of variables, we consider the dual (D). Here the

α`s, β and z are the dual variables corresponding to constraints (2.1), (2.2), and (2.3)
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respectively. Clearly, OPT (D) ≤ 1 since z = 1, α` = 0 = β for all ` is a feasible dual

solution. If there is a feasible dual solution (α′, β′, z′) of value smaller than 1, then the

rough idea is that by running A on the UFL instance with facility costs {α
′
`

ρ
} and connection

costs {β′c`j}, we can obtain an integral solution whose constraint (2.4) is violated. (This

idea needs be modified a bit since α′` could be negative; see below.) Hence, we can solve

(D) efficiently via the ellipsoid method using A to provide the separation oracle. This also

yields an equivalent dual LP consisting of only the polynomially many violated inequalities

found during the ellipsoid method. The dual of this compact LP gives an LP equivalent

to (P) with polynomially many λ(q) variables whose solution yields the desired convex

decomposition.

We now fill in the details. Suppose (α′, β′, z′) is feasible to (D) where
∑

` y
∗
`α
′
` +

(ρ
∑

j,` c`jx
∗
`j)β

′ + z′ < 1. Define a+ := max(0, a); for a vector v = (v1, . . . , vn), define

v+ := (v+
1 , . . . , v

+
n ). Consider the UFL instance with facility costs {f ′` = α′+` /ρ} and

connection costs {c′`j = β′c`j}. (Clearly c′ is also a metric.) Running A on this input, we

can obtain an integral solution (y(q), x(q)) such that

ρ
∑
`

α
′+
`

ρ
y

(q)
` +

∑
j,`

β′c`jx
(q)
`j ≤ ρ ·OPT(FL-P)(f

′, c′) ≤ ρ
(∑

`

α
′+
`

ρ
y∗` +

∑
j,`

β′c`jx
∗
`j

)
.

Clearly the facilities ` with α′` ≤ 0 contribute 0 to the LHS and RHS of the above inequality.

Now consider the integer solution ŷ(q) where ŷ
(q)
` is 1 if α′` ≤ 0 and is y

(q)
` otherwise. Adding∑

`:α′`≤0 α
′
`ŷ

(q)
` to the LHS and

∑
`:α′`≤0 α

′
`y
∗
` to the RHS of the above inequality, since y∗` ≤ 1

for all ` and α
′+
` = α′` when α′` > 0, we infer that∑
`

α′`ŷ
(q)
` +

∑
j,`

β′c`jx
(q)
`j ≤

∑
`

α′`y
∗
` +

(
ρ
∑
j,`

c`jx
∗
`j

)
β′ < 1− z′

which contradicts that (α′, β′, z′) is feasible to (D). Hence, OPT (D) = OPT (P) = 1.

Thus, we can add the constraint
∑

` y
∗
`α` + (ρ

∑
j,` c`jx

∗
`j)β + z ≤ 1 to (D) without

altering anything. If we solve the resulting LP using the ellipsoid method, and take the

inequalities corresponding to the violated inequalities (2.4) found by A during the ellipsoid

method, then we obtain a compact LP with only a polynomial number of constraints that

is equivalent to (D). The dual of this compact LP yields an LP equivalent to (P) with
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a polynomial number of λ(q) variables which we can solve to obtain the desired convex

decomposition.

By using the polytime LMP 2-approximation algorithm for UFL devised by Jain et

al. [27], we obtain the following corollary of Theorem 2.3.1.

Theorem 2.3.3 There is a polytime, IR, truthful-in-expectation, 2-approximation mecha-

nism for multidimensional UFL.

2.4 Truthful Mechanisms for Multidimensional VCP

We now consider the multidimensional vertex-cover problem (VCP), and devise various

polytime, truthful, approximation mechanisms for it. We often use Multi-VCP to distinguish

multidimensional VCP from its algorithmic counterpart.

As mentioned earlier, VCP becomes a rather challenging mechanism-design problem

in the multidimensional mechanism-design setting. Whereas for single-dimensional VCP,

many of the known 2-approximation algorithms for VCP are implementable, none of these

underlying techniques yield implementable algorithms even for the simplest multidimen-

sional setting, 2-dimensional VCP, where every player owns at most two nodes; see Sec-

tion 2.5 and 2.6 for examples. Moreover, no maximal-in-distributional-range (MIDR) mech-

anism whose range is a proper subset of all outcomes can achieve a bounded multiplicative

approximation guarantee [20].1 This also rules out the convex-decomposition technique

of [32], which yields MIDR mechanisms.

We develop two main techniques for Multi-VCP in this section. In Section 2.4.1, we

introduce a simple class of truthful mechanisms called threshold mechanisms, and show

that although seemingly restricted, threshold mechanisms can achieve non-trivial approx-

imation guarantees. In Section 2.4.2, we develop a decomposition method for Multi-VCP

1If A is a randomized MIDR algorithm and S is an inclusion-wise minimal vertex cover such that the

range of A does not include a distribution that returns S with probability 1, then A incurs non-zero cost

on the instance where the cost of a node u is 0 if u ∈ S and is 1 (say) otherwise, and so its approximation

ratio is unbounded.
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that uses threshold mechanisms as building blocks and gives a general way of reducing the

mechanism-design problem for Multi-VCP into simpler mechanism-design problems.

By leveraging the decomposition method along with threshold mechanisms, we obtain

various truthful, approximation mechanisms for Multi-VCP, which yield the first truthful

mechanisms for multidimensional vertex cover with non-trivial approximation guarantees.

(1) We show that any instance of r-dimensional VCP can be decomposed into O(r2 log n)

single-dimensional VCP instances; this leads to a truthful, O(r2 log n)-approximation mech-

anism for r-dimensional VCP (Theorem 2.4.9). In particular, for any fixed r, we obtain an

O(log n)-approximation. (2) For any proper minor-closed family of graphs (such as pla-

nar graphs), we obtain an improved truthful, O(r log n)-approximation mechanism (The-

orem 2.4.11); this improves to an O(log n)-approximation if no two neighbors of a node

belong to the same player (Corollary 2.4.12).

Theorem 4.3.3 shows that our mechanisms also enjoy good frugality properties. We

obtain the first mechanisms for Multi-VCP that are polytime, truthful, and achieve bounded

approximation ratio and bounded frugality ratio. This nicely complements a result of [10],

who devise such mechanisms for single-dimensional VCP.

2.4.1 Threshold Mechanisms

Definition 2.4.1 A threshold mechanism M for Multi-VCP works as follows. On input c,

for every i and every node u ∈ Ti, M computes a threshold tu = tu(c−i) (i.e., tu does not

depend on i’s reported costs). M then returns the solution S = {v ∈ V : cv ≤ tv} as the

output, and pays pi =
∑

u∈S∩Ti tu to player i.

If tu only depends on the costs in the neighbor-set N(u) of u, for all u ∈ V (note that

N(u) ∩ Ti = ∅ if u ∈ Ti), we call M a neighbor-threshold mechanism. A special case of

a neighbor-threshold mechanism is an edge-threshold mechanism: for every edge uv ∈ E
we have edge thresholds t

(uv)
u = t

(uv)
u (cv), t

(uv)
v = t

(uv)
v (cu), and the threshold of a node u is

given by tu = maxv∈N(u)(t
(uv)
u ).

In general, threshold mechanisms may not output a vertex cover, however it is easy to

argue that threshold mechanisms are always truthful and IR.
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Lemma 2.4.2 Every threshold mechanism for Multi-VCP is IR and truthful.

Proof : IR is immediate from the definition of payments. To see truthfulness, fix a player

i. For every ci, ci ∈ Ci, c−i ∈ C−i we have ui(ci, c−i; ci) =
∑

v∈Ti:cv≤tv(tv − cv). It follows

that i’s utility is maximized by reporting ci = ci.

Inspired by [29, 10], we define an x-scaled edge-threshold mechanism as follows: fix a

vector (xu)u∈V , where xu > 0 for all u, and set t
(uv)
u := xucv/xv for every edge (u, v). We

abuse notation and use Ax to denote both the resulting edge-threshold mechanism and its

allocation algorithm. Also, define Bx to be the neighbor-threshold mechanism where we

set tu :=
∑

v∈N(u) xucv/xv. Define α(G;x) := maxu∈V
(
maxS⊆N(u):S independent

x(S)
xu

)
.

Lemma 2.4.3 Ax and Bx output feasible solutions and have a tight approximation ratio

α(G;x) + 1.

Proof : Clearly, every node selected by Ax is also selected by Bx. So it suffices to show

that Ax is feasible, and to show the approximation ratio for Bx. For any edge (u, v), either

cu ≤ xucv/xv and u is output, or cv ≤ xvcu/xu and v is output. So Ax returns a vertex

cover.

Let S be the output of Bx on input c, and let S∗ be a min-cost vertex cover. We have

c(S) = c(S∩S∗)+c(S\S∗) ≤ c(S∗)+
∑

u∈S\S∗ tu = c(S∗)+
∑

u∈S\S∗
∑

v∈N(u) xucv/xv. Note

that S \S∗ is an independent set since S∗ is a vertex cover, so
∑

u∈S\S∗
∑

v∈N(u) xucv/xv ≤∑
v∈S∗

cv
xv

∑
u∈N(v)\S∗ xu ≤

∑
v∈S∗ cv · α(G;x). Hence c(S) ≤ (α(G;x) + 1)c(S∗). The

tightness of the approximation guarantee follows from Example 2.4.5 below.

Corollary 2.4.4 (i) Setting x = ~1 gives α(G;x) ≤ ∆(G), which is the maximum degree

of a node in G, so A~1 has approximation ratio at most ∆(G) + 1.

(ii) Taking x to be the eigenvector corresponding to the largest eigenvalue λmax of the

adjacency matrix of G (x > 0 by the Perron-Frobenius theorem) gives α(G;x) ≤ λmax

(see [10]), so Ax has approximation ratio λmax + 1.
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Example 2.4.5 (Tightness of approximation ratio of Ax and Bx) Let u and S ⊆
N(u) achieve the maximum in the definition of α(G;x). Now consider the instance (G, c)

where cu = xu, cv = xv for all v ∈ S and cw = 0 for all w ∈ V \ ({u}∪S). The mechanism

Ax will include {u} ∪ S in the output, whereas V \ S is a vertex cover of cost cu = xu. So,

Ax has approximation ratio at least xu+x(S)
xu

= 1 + α(G;x).

Although neighbor-threshold mechanisms are more general than edge-threshold mech-

anisms, Lemma 2.4.6 shows that this yields limited dividends in the approximation ratio.

Define α′(G) = minorientations of G

(
maxu∈V,S⊆N in(u):S independent |S|

)
, where N in(u) = {v ∈

N(u) : (u, v) is directed into u}. Note that α′(G) ≤ α(G;~1) ≤ ∆(G). If G = (V,E) is

everywhere γ-sparse, i.e., |{(u, v) ∈ E : u, v ∈ S}| ≤ γ|S| for all S ⊆ V , then α′(G) ≤ γ;

this follows from Hakimi’s theorem [25]. A well-known result in graph theory states that

for every proper family G of graphs that is closed under taking minors (e.g., planar graphs),

there is a constant γ, such that every G ∈ G has at most γ|V (G)| edges [35] (see also [15],

Chapter 7, Exer. 20); since G is minor-closed, this also implies that G is everywhere

γ-sparse, and hence α′(G) ≤ γ for all G ∈ G.

Lemma 2.4.6 A (feasible) neighbor-threshold mechanism M for graph G with approxi-

mation ratio ρ, yields an O
(
ρ log(α′(G))

)
-approximation edge-threshold mechanism for G.

This implies an approximation ratio of (i) O(ρ log γ) if G is an everywhere γ-sparse graph;

(ii) O(ρ) if G belongs to a proper minor-closed family of graphs (where the constant in the

O(.) depends on the graph family).

Proof : Statements (i) and (ii) follow from the statement for general graphs and the

graph-theoretic facts mentioned before Lemma 2.4.6, so we focus on proving the statement

for an arbitrary graph G. Let α′ = α′(G).

Consider an arbitrary vertex v ∈ V . For any u ∈ N(v) define x
(uv)
v := inf{σ ≥ 0 :

tu(cv = β, c−v = ~0) ≥ 1 ∀β ≥ σ}.

Claim 1: x
(uv)
v < ∞. If not, then for any p > 0, there exists q ≥ p such that tu(cv =

q, c−v = ~0) < 1. So, let p = ρ + ε for some small ε > 0 and q ≥ p be such that

tu(cv = q, c−v = ~0) < 1. Consider the cost vector c where cu = 1, cv = q, and cz = 0 for
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z 6= u, v, we see that the approximation ratio ρ is contradicted for the instance (G, c) (i.e.,

graph G with the cost vector c): V \v is an optimal vertex cover of cost 1 but the threshold

mechanism does not choose u so it chooses v as it is feasible and incurs cost q > ρ.

Claim 2: x
(uv)
v > 0. If x

(uv)
v = 0, then similar to the above, by considering c where cu = 1,

cv = ε, cz = 0 for z 6= u, v, where ε is very small, we see that M outputs u, which means

M does not have the approximation ratio ρ.

Now orient the edges of G according to the orientation that determines α′(G) to obtain

the directed graph D. For any arc (u, v) in D, consider linear edge-threshold functions

t
(uv)
v (cu) = x

(uv)
v cu, and t

(uv)
u (cv) = (1/x

(uv)
v )cv. Using these edge-thresholds we obtain an

edge-threshold mechanism M ′. M ′ is feasible since for any arc (u, v) if u is not chosen by

M ′, we should have cu > t
(uv)
u (cv) = (1/x

(uv)
v )cv which implies t

(uv)
v (cu) = x

(uv)
v cu > cv hence

v is chosen by M ′.

u′

v

u

t
(uv)
v (cu) = x

(uv)
v cut

(u′v)
v (cu′) = cu′

x
(u′v)

u′

We assert that M ′ has approximation ratio O(ρ log(α′)). Note that if T is the outcome

of M ′ and T ∗ is the optimal outcome, then we have

c(T ) = c(T ∩ T ∗) + c(T \ T ∗) ≤ c(T ∗) +
∑

w∈T\T ∗
max
u∈N(w)

t(uw)
w (cu)

≤ c(T ∗) +
∑

w∈T\T ∗

∑
u∈N(w)

t(uw)
w (cu) = c(T ∗) +

∑
w∈T\T ∗
u∈N(w)

cut
(uw)
w (1)

= c(T ∗) +
∑
u∈T ∗

cu
∑

w∈N(u)∩(T\T ∗)

t(uw)
w (1) (since N(w) ⊆ T ∗ for w /∈ T ∗)

Note that T \ T ∗ is an independent set, so it suffices to show for any u ∈ V (G), if

S ⊆ N(u) forms an independent set then
∑

w∈S t
(uw)
w (1) ≤ ρ(log(α′) + 2).
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Let δout(u) = {v : (u, v) ∈ D}, S1 := S ∩ δout(u), and S2 := S \ S1. So, we have∑
w∈S

t(uw)
w (1) =

∑
w∈S1

t(uw)
w (1) +

∑
w∈S2

t(uw)
w (1) =

∑
w∈S1

x(uw)
w +

∑
w∈S2

1

x
(uw)
u

(2.5)

Choose an arbitrary w ∈ S1. By definition of x
(uw)
w , for every εw ≥ 0, there is some

0 ≤ δw ≤ εw such that tu(cw = x
(uw)
w − εw + δw,~0) < 1. Hence, u /∈ M(G, ĉ) where

ĉw = x
(uw)
w − εw + δw, ĉu = 1, and ĉz = 0 otherwise. So, since M(G, ĉ) is a vertex cover, we

should have w ∈ M(G, ĉ) which means tw(cu = 1,~0) ≥ x
(uw)
w − εw + δw. Thus, as S1 is an

independent set, for the cost vector c′ where c′u = 1, c′w = x
(uw)
w − εw + δw if w ∈ S1, and

c′z = 0 otherwise, we have S1 ⊆M(G, c′) (since tw(c′N(w)) = tw(cu = 1,~0)). Letting εw tend

to 0, we get that ρ ≥∑w∈S1
x

(uw)
w , as V \N(u) is a vertex cover of cost 1.

Let S2 = {v1, . . . , vk} where x
(uv1)
u ≤ x

(uv2)
u ≤ . . . ≤ x

(uvk)
u . Consider c′′ where c′′u =

x
(uvq)
u , c′′z = 1 if z ∈ S2, and c′′z = 0 otherwise. Then, {v1, . . . , vq} ⊆ M(G, c′′) hence ρ ≥
q/x

(uvq)
u for each q = 1, . . . , k. So,

∑k
q=1

1

x
(uvq)
u

≤∑k
q=1 ρ/q ≤ ρ(log(|S2|)+1) ≤ ρ log(α′)+ρ.

Therefore, (2.5) gives∑
w∈S

t(uw)
w (1) ≤ ρ+ ρ log(α′) + ρ = ρ(log(α′) + 2).

Remark 2.4.7 Any neighbor-threshold mechanism M with approximation ratio ρ that

works under the disjoint-Tis assumption can be modified to yield a truthful, ρ-approximation

mechanism when we drop this assumption. Let Au = {i : u ∈ Ti}. Set ĉu = mini∈Au ci,u for

each u ∈ V and let t̂u be the neighbor-threshold of u for the input ĉ. Note that t̂u depends

only on c−i for every i ∈ Au. Set tiu := min{t̂u,minj 6=i:u∈Tj cj,u} for all i, u ∈ Ti. Consider

the threshold mechanism M ′ with {tiu} thresholds, where we use a fixed tie-breaking rule to

ensure that we pick u for at most one player i ∈ Au with ci,u = tiu. Then the outputs of M

on c, and of M ′ on input ĉ coincide. Thus, M ′ is a truthful, ρ-approximation mechanism.

2.4.2 A Decomposition Method

We now propose a general reduction method for Multi-VCP that uses threshold mechanisms

as building blocks to reduce the task of designing truthful mechanisms for Multi-VCP to
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the task of designing threshold mechanisms for simpler (in terms of graph structure or

the dimensionality of the problem) Multi-VCP problems. This reduction is useful because

designing good threshold mechanisms appears to be a much more tractable task for Multi-

VCP. By utilizing the threshold mechanisms designed in Section 2.4.1 in our decomposition

method, we obtain an O(r log n)-approximation mechanism for any proper minor-closed

family of graphs, and an O(r2 log n)-approximation mechanism for r-dimensional VCP.

A decomposition mechanism M for G = (V,E) is constructed as follows.

– Let G1, . . . , Gk be subgraphs of G such that
⋃k
q=1E(Gq) = E,

– Let M1, . . . ,Mk be threshold mechanisms for G1, . . . , Gk respectively. For any v ∈ V ,

let tqv be v’s threshold in Mq if v ∈ V (Gi), and 0 otherwise.

– Define M to be the threshold mechanism obtained by setting the threshold for each

node v to tv := maxq=1,...,k(t
q
v) for any v ∈ V . The payments of M are then as specified

in Definition 2.4.1. Notice that if all the Mis are neighbor threshold mechanisms, then

so is M .

Lemma 2.4.8 The decomposition mechanism M described above is IR and truthful. If

ρ1, . . . , ρk are the approximation ratios of M1, . . . ,Mk respectively, then M has approxima-

tion ratio
(∑

q ρq
)
.

Proof : Since M is a threshold mechanism, it is IR and truthful by Lemma 2.4.2. The

optimal vertex cover for G induces a vertex cover for each subgraph Gq. So Mq outputs a

vertex cover Sq of cost at most ρq ·OPT , where OPT is the optimal vertex-cover cost for

G. It is clear that M outputs
⋃
q Sq, which has cost at most

(∑
q ρq
)
·OPT .

Theorem 2.4.9 For any r-dimensional instance of Multi-VCP on G = (V,E), one can

obtain a polytime, O(r2 log |V |)-approximation, decomposition mechanism, even when the

Tis are not disjoint.

Proof : We decompose G into single-dimensional subgraphs, by which we mean subgraphs

that contain at most one node from each Ti. Initialize j = 1, Vj = ∅. While,
⋃j−1
q=1E(Gq) 6=
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E, we do the following: for every player i, we pick one of the nodes of Ti uniformly at

random and add it to Vj. We also add all the nodes in V \
(⋃n

i=1 Ti
)

to Vj. Let Gj be the

induced subgraph on Vj; set j ← j + 1.

For any edge e ∈ E, the probability that both of its ends appear in some subgraph

Gj is at least 1/r2. So, the expected value of |E \ ⋃j−1
q=1E(Gq)| decreases by a factor of

at least (1 − 1/r2) with j. Hence, the expected number of subgraphs produced above is

O
( log |E|

log(r2/(r2−1))

)
= O(r2 log |V |) (this also holds with high probability). Each Gj yields a

single-dimensional VCP instance (where a node may be owned by multiple players). Any

truthful mechanism for a 1D-problem is a threshold mechanism (recall Theorem 1.2.8). So

we can use any truthful, 2-approximation mechanism for single-dimensional VCP for the

Gjs and obtain an O(r2 log n)-approximation for r-dimensional Multi-VCP.

The following lemma shows that the decomposition into single-dimensional subgraphs,

obtained above, is essentially the best that can hope for, when r = 2.

Lemma 2.4.10 There are instances of 2-dimensional VCP that require Ω(log |V (G)|)
single-dimensional subgraphs in any decomposition of G.

Proof : Define Gn to be the bipartite graph with vertices {u1, . . . , un, v1, . . . , vn} and edges

{(ui, vj) : i 6= j}. Each player i = 1, . . . , n owns vertices ui and vi.

For n = 2 the claim is obvious. Let qn be the minimum number of single-dimensional

subgraphs needed to decompose Gn. Suppose the claim is true for all j < n and we

have decomposed Gn into single-dimensional subgraphs D = {G1, . . . , Gqn}. We may

assume that V (G1) = {u1, . . . , uk, vk+1, . . . , vn} (if G1 has less than n nodes, pad it with

extra nodes). Let H1 and H2 be the subgraphs of G induced by {u1, . . . , uk, v1, . . . , vk}
and {uk+1, . . . , un, vk+1, . . . , vn}, respectively. The graphs in D \ {G1} must contain a

decomposition of H1 and a decomposition of H2. So qn ≥ 1 + max(qk, qn−k), and hence, by

induction, we obtain that qn ≥ 1 + (1 + log2(n/2)) = 1 + log2 n.

Complementing Theorem 2.4.9, we next present another decomposition mechanism

that exploits the graph structure to obtain an improved approximation guarantee. Given

a graph G = (V,E) and a set S ⊆ V , we use E[S] to denote the set of edges having both
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end points in S, and N(S) = {u ∈ V \ S : ∃v ∈ S s.t. (u, v) ∈ E} to denote the neighbors

of S. Also, let δ(S, T ) denote the set of edges of G having one end point each in S and T .

When we subscript a quantity (e.g., δ(S) or N(S)) with a specific graph, we are referring

to the quantity in that specific graph.

Theorem 2.4.11 If G = (V,E) is everywhere γ-sparse, then one can devise a poly-

time, O(γr log |V |)-approximation decomposition mechanism for r-dimensional VCP on G.

Hence, there is a polytime, truthful, O(r log n)-approximation mechanism for r-dimensional

VCP on any proper minor-closed family of graphs. These guarantees also hold when the

Tis are not disjoint.

Proof : Set G = G0 = (V0, E0), and let n0 = |V0|. Since |E0| ≤ γn0, there are at most

n0/2 nodes in V0 with degree larger than 4γ. Let T1 = {u ∈ V0 : δ(u) ≤ 4γ}. Let H1 =(
T1, E[T1]

)
be the subgraph of G0 induced by T1. Also, consider the bipartite subgraph

B1 =
(
T1 ∪NG1(T1), δG1(T1, NG1(T1))

)
where G1 := G0 \ T1 (i.e., we delete the nodes in T1

and the edges incident to them to obtain G1) is also γ-sparse. So, we can similarly find

a subgraph H2 that contains at least half of the nodes of G1, and the bipartite subgraph

B2 of G1. Continuing this process, we obtain subgraphs H1, B1, H2, B2, . . . , Hk, Bk that

partition G, where for every q, each node of Hq and each node on one of the sides of Bq

has degree (in that subgraph) at most 4γ, and |V (Hq)| ≥ |V (G \ (T1 ∪ . . . Tq−1)|/2. Hence,

k ≤ log n. Using the (edge-threshold) mechanism A~1 defined in Corollary 2.4.4, for each

Hq subgraph gives a (4γ + 1)-approximation for each Hq. Let Bq =
(
Tq ∪ Rq, Fq), where

Rq = NGq(Tq), and Fq = δGq(Tq, Rq).

Let T =
⋃
q Tq, R =

⋃
q Rq. Note that a node u could lie in T ∩ R. We replace

each such node u ∈ T ∩ R with two distinct “copies” u1 and u2, and place u1 in T

and u2 in R. If u ∈ Ti for some player i, then we include both u1, u2 in Ti, and set

ci,u1 = ci,u2 = ci,u. The understanding is that if any of u1 or u2 is picked, then we pick u; in

other words, the threshold of u is the maximum of the thresholds of u1 and u2. Let T ]R
denote the resulting set of nodes (with bipartition T,R). We create a bipartite graph B =

(T]R,F ) representing the union of all the Bqs, where F is defined as follows. For notational

simplicity, if a node u is in exactly one of T and R (so it has only one copy in T ]R), we

set u1 = u2 = u. For every q = 1, . . . , k, and every edge (u, v) ∈ Fq, where u ∈ Rq, v ∈ Tq,
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we include the edge (u2, v1) in F . Note that: (a) B is bipartite; (b) the maximum degree

of T (in B) is at most 4γ; and, (c) every edge in E \⋃q E(Hq) maps to exactly one edge of

F . We show that one can obtain an O(rγ log n)-approximation decomposition mechanism

for B. Thus, we obtain an O(rγ log n)-approximation decomposition mechanism for G.

We obtain O(r log n) bipartite graphs whose edges cover F , with the property that in

each resulting bipartite subgraph Z, for each node u ∈ R ∩ V (Z), and each player i, at

most one of u’s neighbors in Z is in Ti. We use a procedure similar to that in the proof of

Theorem 2.4.9. For each i, we pick one node from T ∩ Ti uniformly at random; let X be

the set of nodes picked from T . We create the bipartite graph Zj consisting of all edges

between X and NB(X). We increment j and continue this process until all edges of F have

been covered. Since the probability that an edge (u, v) ∈ F is covered in an iteration is at

least 1
r
, O(r log n) subgraphs suffice, in expectation and with high probability, to cover F .

Now, for each bipartite graph Zj with bipartition Xj ∪ Y j, where Xj ⊆ T, Y j ⊆ R,

we use the following threshold mechanism. Assume for now that the Tis are disjoint, and

set cu = ci,u if u ∈ Ti. For each u ∈ Y j, we pick u if cu ≤
∑

v∈N
Zj

(u) cv, and we pick

NZj(u) if
∑

v∈N
Zj

(u) cv ≤ cu. Note that since |Xj ∩ Ti| ≤ 1 for every i, this is a valid

threshold mechanism. The cost of the solution S output by this mechanism for Zj is

at most 2
∑

u∈Y j c(S
∗
u), where S∗u is the optimal vertex cover for the star consisting of u

and NZj(u). Since every node in Xj has degree at most 4γ, it is not hard to see that∑
u∈Y j c(S

∗
u) ≤ 4γ · OPT (Zj), where OPT (Zj) is the value of an optimal vertex cover for

Zj. This follows since, for example, concatenating the optimal dual solutions corresponding

to the S∗us and scaling by 4γ yields a feasible solution to the dual of the vertex-cover LP

for Zj. Therefore, the threshold mechanism for Zj is an 8γ-approximation, and hence we

obtain an O(rγ log n)-approximation for B.

If the Tis are not disjoint, then by Remark 2.4.7, the O(γ)-approximation for the Hqs

still holds. When constructing Zj, we set the “owners” of a node v ∈ T included in Zj

to be all the players i who picked v as the random node from their Ti-set (and hence

caused v to be included in Zj); the owners of a node u ∈ Y j are unchanged, that is,

{i : u ∈ Ti}. Now, as in Remark 2.4.7, we can move from this to an instance where

each node is owned by at most one player. Although the mechanism described above for
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Zj is not a neighbor-threshold mechanism, it is not hard to see that since the threshold

for a node v ∈ T ∩ V (Zj) depends only on nodes that are at hop-distance at most 2

from v, none of which are owned by any player owning v in Zj, the same reasoning as

in Remark 2.4.7 shows that the O(γ)-approximation threshold mechanism obtained above

for Zj holds even when a node is owned by multiple players. Thus, we still obtain an

O(γr log |V |)-approximation mechanism.

As noted in Section 2.4.1, every proper minor-closed family of graphs is everywhere γ-

sparse for some γ > 0. Thus, the above result implies a truthful, O(r log2 n)-approximation

for any proper minor-closed family (where the constant in the O(.) depends on the graph

family; e.g., for planar graphs γ ≤ 4).

Given a graph G = (V,E), define a 3-hop-far instance of Multi-VCP on G to be one

that satisfies |N(u)∩Ti| ≤ 1 for every u ∈ V and every player i; that is no two neighbors of

a node are owned by the same player. On such instances, one can improve the guarantee

of Theorem 2.4.11 by removing the dependence on maxi |Ti|.

Corollary 2.4.12 Let G = (V,E) be an everywhere γ-sparse graph. One can devise a

polytime O(γ log |V |)-approximation decomposition mechanism for 3-hop-far instances of

Multi-VCP on G. Hence, one obtains a polytime, truthful O(log n)-approximation mecha-

nism for 3-hop far Multi-VCP on any proper minor-closed family of graphs. These guaran-

tees also hold when the Tis are not disjoint.

Proof : The proof follows from that of Theorem 2.4.11. The only change is that we

no longer need to decompose the bipartite graph B into the Zj subgraphs: since the

input is a 3-hop-far Multi-VCP instance, the Multi-VCP instance on B already satisfies the

property required of the Zj graphs. Thus, we obtain an O(γ)-approximation for B, and

an O(γ)-approximation for each Hq, and hence an O(γ log |V |)-approximation for G. The

consequences when the Tis are not necessarily disjoint, and for a proper minor-closed family

of graphs follow as in the proof of Theorem 2.4.11.
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2.5 LP-rounding Does Not Work for Multi-VCP

A common method for designing approximation algorithms for VCP (and in general) is to

solve the following LP-relaxation and then round the optimal solution.

min
∑
v

cvxv s.t. xu + xv ≥ 1 ∀(u, v) ∈ E. (VC-P)

We show that any LP-rounding algorithm that always includes nodes with xu ≥ 1
2

and

does not include any node u with xu = 0 is not WMON.

Example 2.5.1 Consider the graph G shown below where u and v belong to player 1. For

the cost-vector (cu, ca, cb, cv, cd) = (5/4, 1, 1, 1, 1), the unique optimal solution to the LP is

(xu, xa, xb, xv, xd) = (1/2, 1/2, 1/2, 1/2, 1/2). Therefore, the algorithm includes both u and

v in the output.

d

v b

a

u

5/4↘ 9/8

1

1↘ ε 1

1

G

Figure 2.1: Example showing that a natural LP-rounding algorithm is not WMON.

Consider the cost vector c′ = (c′1, c−1) where player 1 reduces the costs for u and v to

c′u = 9/8 and c′v = ε < 1/16 (all other costs are unchanged). Then WMON dictates that

both u and v must still be chosen. However, the unique optimal solution to the LP with

the new costs is xa = xd = xv = 1, xu = xb = 0 with cost 2 + ε. (This follows because if
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xu = 1 then the cost of an LP solution is at least 1 + 9/8; if xu = 1/2, then the cost of an

LP solution is at least 9/16 + 1 + 1/2; both are greater than 2 + ε as ε < 1/16.) So M will

not output u, which contradicts WMON.

The example mentioned above also shows that the following well-known combinatorial

2-approximation algorithm for VCP does not satisfy WMON: Given a graph G = (V,E),

construct a bipartite graph G′ having two copies of V , say V1, V2, and having edges

(u1, v2), (u2, v1) for every edge (u, v) ∈ E; solve VCP on G′ and if any of the copies of

a node are chosen in this solution, then pick that node in the solution for G.

In the above example, for the cost-vector c, every optimal vertex cover for G′ includes

exactly one copy of u and one copy of v, so both u and v will be chosen in the solution for

G. For the cost-vector c′, no optimal vertex cover for G′ includes any copies of u, so u will

not be chosen in the solution for G. This contradicts WMON.

2.6 Primal-dual Methods Do Not Work for Multi-VCP

The dual of (VC-P) is as follows.

max
∑
e

ye s.t.
∑
e∈δ(v)

ye ≤ cv ∀v ∈ V. (VC-D)

Various primal-dual algorithm based on dual ascent are known to yield 2-approximation

algorithms. All of these start with y = ~0, raise dual variables while maintaining dual

feasibility, and return the nodes whose costs are completely “paid” by the dual variables.

The two most common variants are where one fixes an ordering of the edges in which

to raise dual variables, and where one raises all (unfrozen) dual variables simultaneously.

We show that neither of these lead to WMON algorithms.

Example 2.6.1 Consider the graph shown in Fig. 2.2, where the dual variables are in-

creased in the order ux, xy, yv, and u and v belong to one player.

Let cu = 1, cx = 1.5, cy = 1.05, cv = 0.5. The primal-dual algorithm will output

{u, x, v}. Now, if we reduce cu to 0.5 and cv to 0.3, and keep cx and cy unchanged, the

algorithm outputs {u, x, y} which contradicts WMON.
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y x

uv

1.05 1.5

1↘ 0.50.3↙ 0.5

Figure 2.2: Example showing Primal-Dual algorithm is not WMON; dual variables are

increased in a fixed order.

Example 2.6.2 Now consider the simultaneous-dual-ascent primal-dual algorithm. Con-

sider again the same graph as in Example 2.6.1 but with a different assignment of costs,

as shown in Fig. 2.3. Let cu = 1, cx = 3, cy = 4.6, cv = 2.5. The primal-dual algorithm

outputs {u, x, v}. Now, if we reduce cu to 0.5 and cv to 2.4 and keep cx and cy unchanged,

the algorithm outputs {u, y}, which contradicts WMON.

y x

uv

4.6 3

1↘ 0.52.4↙ 2.5

Figure 2.3: Example showing Primal-Dual algorithm is not WMON; dual variables are

increased simultaneously.
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Chapter 3

Near-Optimal and Robust

Mechanisms for Payment

Minimization

3.1 Introduction

In this chapter we consider the payment-minimization (PayM) problem of designing incentive-

compatible, ex-post individually rational (IR) mechanisms for covering problems in the

Bayesian setting, where players’ types are drawn from an underlying distribution and may

be correlated, and the goal is to minimize the expected total payment made by the mecha-

nism. This kind of objective is indeed considered in various real-life settings, for example

Ariba.com is providing online procurement auctions as supply management tool for various

industries. Consider the simplest such setting of a single-item procurement auction, where

a buyer wants to buy an item from any one of n sellers. Myerson’s seminal result [41]

solves this problem (and other single-dimensional problems) when players’ private types

are independent. However, no such result (or characterization) is known when players’

types are correlated. This is the question that motivates the work in this chapter.

Whereas the analogous revenue-maximization problem for packing domains, such as
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combinatorial auctions (CAs), has been extensively studied in the algorithmic mechanism

design (AMD) literature, both in the case of independent and correlated (even interdepen-

dent) player-types (see, e.g., [6, 7, 5, 1, 9, 26, 17, 44, 5, 47] and the references therein),

surprisingly, there are almost no results on the payment-minimization problem in the AMD

literature (see however [7]). The economics literature does contain various general results

that apply to both covering and packing problems. However much of this work focuses

on characterizing special cases; see, e.g., [51]. An exception is the work of Crémer and

McLean [12, 13], which shows that under certain conditions, one can devise a Bayesian-

incentive-compatible (BIC) mechanism whose expected total payment is exactly equal to

the expected cost incurred by the players, albeit one where players may incur negative

utility under certain type-profile realizations.

3.1.1 Summary of Results

We initiate a study of payment-minimization (PayM) problems from the AMD perspective

of designing computationally efficient, near-optimal mechanisms. We develop black-box

reductions from mechanism design to algorithm design whose application yields a variety

of optimal and near-optimal mechanisms. As we elaborate below, covering problems turn

out to behave quite differently in certain respects from packing problems, which necessitates

new approaches (and solution concepts).

Formally, we consider the setting of correlated players in the explicit model, that is,

where we have an explicitly-specified arbitrary discrete joint distribution of players’ types.

The most common solution concept in Bayesian settings is, as hinted briefly in Chapter

1, Bayesian incentive compatibility (BIC) and interim individual rationality (interim IR),

wherein at the interim stage when a player knows his type but is oblivious of the random

choice of other players’ types, truthful participation in the mechanism by all players forms

a Bayes-Nash equilibrium. Two serious drawbacks of this solution concept (which are ex-

ploited strikingly and elegantly in [12, 13]) are that: (i) a player may regret his decision

of participating and/or truthtelling ex post, that is, after observing the realization of other

players’ types; and (ii) it is overly-reliant on having precise knowledge of the true under-

lying distribution making this a rather non-robust concept: if the true distribution differs,
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possibly even slightly, from the mechanism designer and/or players’ beliefs or information

about it, then the mechanism could lose its IC and IR properties.

We formulate a notion of incentive compatibility (IC) that we call robust Bayesian IC

(robust BIC) that on the one hand is substantially more robust than BIC, and on the other

is flexible enough that it allows one to obtain various polytime near-optimal mechanisms

satisfying this notion. A robust-(BIC, IR) mechanism (see Section 3.2) ensures that truthful

participation in the mechanism is in the best interest of every player (i.e. a “no-regret”

choice) even at the ex-post stage when the other players’ (randomly-chosen) types are

revealed to him. Thus, a robust-(BIC, IR) mechanism is significantly more robust than a

(BIC, interim-IR) mechanism since it retains its IC and IR properties for a wide variety

of distributions, including those having the same support as the actual distribution. In

other words, in keeping with Wilson’s doctrine of detail-free mechanisms, the mechanism

functions robustly even under fairly limited information about the type-distribution.

We show that for a variety of settings, one can reduce the robust-(BIC, IR) payment-

minimization (PayM) mechanism-design problem to the algorithmic cost-minimization

(CM) problem of finding an outcome that minimizes the total cost incurred. Moreover,

this black-box reduction applies to: (a) single-dimensional settings even when we only have

an LP-relative approximation algorithm for the CM problem (that is required to work only

with nonnegative costs) (Theorem 3.6.2); and (b) multidimensional problems with additive

types (Corollary 3.5.3).

Our reduction yields near-optimal robust-(BIC-in-expectation, IR) mechanisms for a

variety of covering settings such as (a) various single-dimensional covering problems includ-

ing single-item procurement auctions (Table 3.1); (b) multi-item procurement auctions

(Theorem 3.7.1); and (c) multidimensional facility location (Theorem 3.7.3). (Robust

BIC-in-expectation means that the robust-BIC guarantee holds for the expected utility of

a player, where the expectation is over the random coin tosses of the mechanism.) Our

techniques can be adapted to yield truthful-in-expectation mechanisms with the same guar-

antees for single-dimensional problems with a constant number of players. These are the

first results for the PayM mechanism-design problem with correlated players under a no-

tion stronger than (BIC, interim IR). To our knowledge, our results are new even for the

simplest covering setting of single-item procurement auctions.
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On a side note, we note that we can leverage our ideas to also expand upon the results

in [17] for revenue-maximization with correlated players and make significant progress on

a research direction proposed in [17]. We show that any “integrality-gap verifying” ρ-

approximation algorithm for the SWM problem (as defined in [32]) can be used to obtain

a truthful-in-expectation mechanism whose revenue is at least a ρ-fraction of the optimum

revenue (see Appendix A).

In comparison with [17], which is the work most closely-related to ours, our reduc-

tion from robust-BIC mechanism design to the algorithmic CM problem is stronger than

the reduction in [17] in two ways. First, for single-dimensional settings, it applies even

with LP-relative approximation algorithms, and the approximation algorithm is required

to work only for “proper inputs” with nonnegative costs. (Note that whereas for packing

problems, allowing negative-value inputs can be benign, this can change the character of

a covering problem considerably; in particular, the standard notion of approximation be-

comes meaningless since the optimum could be negative.) In contrast, Dobzinski et al. [17]

require an exact algorithm for the analogous social-welfare-maximization (SWM) problem.

Second, our reduction also applies to multidimensional settings with additive types (see

Section 3.2), albeit we now require an exact algorithm for the CM problem.

3.1.2 Related Work

The AMD literature has concentrated mostly on the independent-players setting [6, 7, 5, 1,

9, 26]. There has been some, mostly recent, work that also considers correlated players [46,

17, 44, 5, 47]; as noted earlier, all of this work pertains to the revenue-maximization setting.

Ronen [46] considers the single-item auction setting in the oracle model, where one samples

from the distribution conditioned on some players’ values. He proposes the (1-) lookahead

auction and shows that it achieves a 1
2
-approximation. [44] shows that the optimal (DSIC,

IR) mechanism for the single-item auction can be computed efficiently with at most 2

players, and is NP-hard otherwise. Cai et al. [5] give a characterization of the optimal

auction under certain settings. [47] considers interdependent types, which generalizes the

correlated type-distribution setting, and develop an analog of Myerson’s theory for certain

such settings.

40



Various reductions from revenue-maximization to SWM are given in [6, 7, 5]. These

reductions also apply to covering problems and the PayM objective, but they are incompa-

rable to our results. These works focus on the (BIC, interim-IR) solution concept, which is a

rather weak/liberal notion for correlated distributions. Most (but not all) of these consider

independent players and additive valuations, and often require that the SWM-algorithm

also work with negative values, which is a benign requirement for downwards-closed envi-

ronments such as CAs but is quite problematic for covering problems when only has an

approximation algorithm. [5] considers correlated players and obtains mechanisms having

running time polynomial in the maximum support-size of the marginal distribution of a

player, which could be substantially smaller than the support-size of the entire distribution.

This savings can be traced to the use of the (BIC, interim-IR) notion which allows [5] to

work with a compact description of the mechanism. It is unclear if these ideas are applica-

ble when one considers robust-(BIC, IR) mechanisms. A very interesting open question is

whether one can design robust-(BIC-in-expectation, IR) mechanisms having running time

polynomial in the support-sizes of the marginal player distributions (as in [5, 17]).

3.2 Problem Definition and Preliminaries

The setup in Section 1.2 yields a multidimensional covering mechanism-design problem

with additive types, where additivity is the property that if ci, c
′
i ∈ Ci, then the type ci + c′i

defined by (ci+c
′
i)(ω) = ci(ω)+c′i(ω) for all ω ∈ Ω, is also in Ci. It is possible to define more

general multidimensional settings, but additive type spaces is a reasonable starting point to

explore the multidimensional covering mechanism-design setting. (As noted earlier, there

has been almost no work on designing polytime, near-optimal mechanisms for covering

problems.)

The Bayesian setting. We consider Bayesian settings where there is an underlying

publicly-known discrete and possibly correlated joint type-distribution on C from which

the players’ types are drawn. We consider the so-called explicit model, where the players’

type distribution is explicitly specified. We use D ⊆ C to denote the support of the type
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distribution, and PrD(c) to denote the probability of realization of c ∈ C. Also, we define

Di := {ci ∈ Ci : ∃c−i s.t. (ci, c−i) ∈ D}, and D−i to be {c−i : ∃ci s.t. (ci, c−i) ∈ D}.

Solution concepts. A mechanism sets up a game between the players, and the solution

concept dictates certain desirable properties that this game should satisfy, so that one

can reason about the outcome that results when rational are presented with a mechanism

satisfying the solution concept. As mentioned earlier, the two chief properties that one

seeks to capture relate to incentive compatibility (IC) and individual rationality (IR).

Differences and subtleties arise in Bayesian settings depending on the stage at which we

impose these properties and how robust we would like these properties to be with respect

to the underlying type distribution.

Definition 3.2.1 A mechanism M =
(
A, {pi}

)
is Bayesian incentive compatible (BIC)

and interim IR if for every player i and every ci, ci ∈ Ci, we have Ec−i [ui(ci, c−i; ci)|ci] ≥
Ec−i [ui(ci, c−i; ci)|ci] (BIC) and Ec−i [ui(ci, c−i; ci)|ci] ≥ 0 (interim IR), where Ec−i [.|ci] de-

notes the expectation over the other players’ types conditioned on i’s type being ci.

As mentioned in the Introduction of this chapter, the (BIC, interim-IR) solution concept

may yet lead to ex-post “regret”, and is quite non-robust in the sense that the mechanism’s

IC and IR properties rely on having detailed knowledge of the type-distribution; conse-

quently, in order to be confident that a BIC mechanism achieves its intended functionality,

one must be confident about the “correctness” of the underlying distribution, and learning

this information might entail significant cost. To remedy these weaknesses, we propose

and investigate the following stronger IC and IR notions.

Definition 3.2.2 A mechanism M =
(
A, {pi}

)
is robust BIC and robust IR, if for every

player i, every ci, ci ∈ Ci, and every c−i ∈ D−i, we have ui(ci, c−i; ci) ≥ ui(ci, c−i; ci) (robust

BIC) and ui(ci, c−i; ci) ≥ 0 (robust IR).

Robust (BIC, IR) ensures that participating truthfully in the mechanism is in the best

interest of every player even at the ex-post stage when he knows the realized types of all

players. Recall that we focus on monopoly-free settings where for every player i, there

is some ω ∈ Ω with ωi = ∅, to ensure that robust BIC and robust IR are compatible.
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Notice that robust (BIC, IR) is subtly weaker than the notion of (DSIC, IR), wherein

the IC and IR conditions of Definition 3.2.2 must hold for all c−i ∈ C−i, ensuring that

truth-telling and participation are no-regret choices for a player even if the other players’

reports are outside the support of the underlying type-distribution. We focus on robust BIC

because it forms a suitable middle-ground between BIC and DSIC: it inherits the desirable

robustness properties of DSIC, making it much more robust than BIC (and closer to a

worst-case notion), and yet is flexible enough that one can devise polytime mechanisms

satisfying this solution concept.

The above definitions are stated for a deterministic mechanism, but they have analogous

extensions to a randomized mechanism M ; the only change is that each ui(.) and pi(.)

term is now replaced by the expected utility EM [ui(.)] and expected price EM [pi(.)] over

the random coin tosses of M . We denote the analogous solution concept for a randomized

mechanism by appending “in expectation” to the solution concept, e.g., a (BIC, interim

IR)-in-expectation mechanism denotes a randomized mechanism whose expected utility

satisfies the BIC and interim-IR requirements stated in Definition 3.2.1.

A robust-(BIC, IR)-in-expectation mechanism M =
(
A, {pi}

)
can be easily modified

so that the IR condition holds with probability 1 (with respect to M ’s coin tosses) while

the expected payment to a player (again over M ’s coin tosses) is unchanged: on input c,

if A(c) = ω ∈ Ω with probability q, the new mechanism returns, with probability q, the

allocation ω, and payment ci(ω) · EM [pi(c)]
EM [ci(ω)]

to each player i (where we take 0/0 to be 0, so

if ci(ω) = 0, the payment to i is 0). Thus, we obtain a mechanism whose expected utility

satisfies the robust-BIC condition, and IR holds with probability 1 for all ci ∈ Ci, c−i ∈ D−i,
A similar transformation can be applied to a (DSIC, IR)-in-expectation mechanism.

Optimization problems. Our main consideration is to minimize the expected total

payment of the mechanism. It is natural to also incorporate the mechanism-designer’s cost

into the objective. Define the disutility of a mechanism M =
(
f, {pi}

)
under input v to

be
∑

i pi(v) + κ · pub
(
f(v)

)
, where κ ≥ 0 is a scaling factor. Our objective is to devise

a polynomial-time robust (BIC-in-expectation, IR)-mechanism with minimum expected

disutility. Since most problems we consider have pub(ω) = 0 for all feasible allocations,

in which case disutility equals the total payment, abusing terminology slightly, we refer to
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the above mechanism-design problem as the payment-minimization (PayM) problem. (An

exception is metric uncapacitated facility location (UFL), where players provide facilities

and the underlying metric is public knowledge; here, pub(ω) is the total client-assignment

cost of the solution ω.) We always use O∗ to denote the expected disutility of an optimal

mechanism for the PayM problem under consideration.

The following technical lemma will prove quite useful, since it allows us to restrict the

domain to a bounded set, which is essential to achieve IR with finite prices. (For example,

in the single-dimensional setting, the payment depends on the integral going to ∞ of a

certain quantity, one needs boundedness of the support to ensure that this is well defined.)

Note that such complications do not arise for packing problems. We state the lemma here

but defer its proof to the end of Section 3.5 as we need Theorem 3.5.2 in the proof. Let

1Ti be the |Ti|-dimensional all 1s vector. Let I denote the input size.

Lemma 3.2.3 We can efficiently compute an estimate mi > maxci∈Di,v∈Ti ci,v with logmi =

poly(I) for all i such that there is an optimal robust-(BIC-in-expectation, IR) mechanism

M∗ =
(
A∗, {p∗i }

)
where A∗(mi1Ti , c−i) = ∅ with probability 1 (over the random choices of

M∗) for all i and all c−i ∈ D−i.

It is easy to obtain the stated estimates if we consider only deterministic mechanisms,

but it turns out to be tricky to obtain this when one allows randomized mechanisms due to

the artifact that a randomized mechanism may choose arbitrarily high-cost solutions as long

as they are chosen with small enough probability. In the sequel, we set Di := Di∪{mi1Ti}
for all i ∈ [n], and D :=

⋃
i(Di ×D−i). Note that |D| = O(n|D|2).

3.3 Overview of Our Construction

The starting point for our construction is the observation that the problem of designing an

optimal robust-(BIC, IR)-in-expectation mechanism can be encoded via an LP (P). This

was also observed by [17] in the context of the revenue-maximization problem for CAs,

but the covering nature of the problem renders various techniques utilized successfully in
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the context of packing problems inapplicable, and therefore from here on our techniques

diverge.

We show that an optimal solution to (P) can be computed given an optimal algorithm

A for the CM problem since A can be used to obtain a separation oracle for the dual

LP. Next, we prove that a feasible solution to (P) yields a robust-(BIC-in-expectation, IR)

mechanism with no larger objective value.

For single-dimensional problems, we show that even LP-relative ρ-approximation algo-

rithms for the CM problem can be utilized, as follows. We move to a relaxation of (P),

where we replace the set of allocations with the feasible region of the CM-LP. This can

be solved efficiently, since the separation oracle for the dual can be obtained by optimiz-

ing over the feasible region of CM-LP, which can be done efficiently! But now we need

to work harder to “round” an optimal solution (x, p) to the relaxation of (P) and ob-

tain a robust-(BIC-in-expectation, IR) mechanism. Here, we exploit the Lavi-Swamy [32]

convex-decomposition procedure, using which we can show (roughly speaking) that we

can decompose ρx into a convex combination of allocations. This allows us to obtain a

robust-(BIC-in-expectation, IR) mechanism while blowing up the payment by a ρ-factor.

3.4 Differences with Respect to Packing Problems

Note that [17] obtain (DSIC-in-expectation, IR)-mechanisms, which is a subtly stronger

notion than the robust-(BIC-in-expectation, IR) solution concept that our mechanisms

satisfy. This difference arises due to the different nature of covering and packing problems.

[17] also first obtains a robust-(BIC, IR)-in-expectation mechanism. The key difference is

that for combinatorial auctions, one can show that any robust-(BIC, IR)-in-expectation

mechanism—in particular, the one obtained from the optimal LP solution—can be con-

verted into a (DSIC-in-expectation, IR) mechanism without any loss in expected revenue

(see Section A.1). Intuitively, this works because one can focus on a single player by allo-

cating no items to the other players. Clearly, one cannot mimic this for covering problems:

dropping players may render the problem infeasible, and it is not clear how to extend

an LP-solution to a (DSIC-in-expectation, IR) mechanism for covering problems. We
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suspect that there is a gap between the optimal expected total payments of robust-(BIC-

in-expectation, IR) and (DSIC, IR) mechanisms; we leave this as an open problem. Due

to this complication, we sacrifice a modicum of the IC, IR properties in favor of obtaining

polytime near-optimal mechanisms and settle for the weaker, but still quite robust notion

of robust (BIC-in-expectation, IR). We consider this to be a reasonable starting point

for exploring mechanism-design solutions for covering problems, which leads to various

interesting research directions.

A more-stunning aspect where covering and packing problems diverge can be seen when

one considers the idea of a k-lookahead auction [46, 17]. This was used by [17] to convert

their results in the explicit model to the oracle model introduced by [46]. This however fails

spectacularly in the covering setting. One can show that even for single-item procurement

auctions, dropping even a single player can lead to an arbitrarily large payment compared

to the optimum (see Section 3.9).

3.5 LP-relaxations for the Payment-Minimization Prob-

lem

The starting point for our results is the LP (P) that essentially encodes the payment-

minimization problem. Throughout, we use i to index players, c to index type-profiles in

D, and ω to index Ω. We use variables xc,ω to denote the probability of choosing ω, and

pi,c to denote the expected payment to player i, for input c. For c ∈ D, let Ω(c) = Ω if

c ∈ ⋃i(Di ×D−i), and otherwise if c = (mi1Ti , c−i), let Ω(c) = {ω ∈ Ω : ωi = ∅} (which is

non-empty since we are in a monopoly-free setting).
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min
∑
c∈D

PrD(c)
(∑

i

pi,c + κ
∑
ω

xc,ωpub(ω)
)

(P)

s.t.
∑
ω

xc,ω = 1 ∀c ∈ D (3.1)

pi,(ci,c−i) −
∑
ω

ci(ω)x(ci,c−i),ω ≥

pi,(c′i,c−i) −
∑
ω

ci(ω)x(c′i,c−i),ω
∀i, ci, c′i ∈ Di, c−i ∈ D−i (3.2)

pi,(ci,c−i) −
∑
ω

ci(ω)x(ci,c−i),ω ≥ 0 ∀i, ci ∈ Di, c−i ∈ D−i (3.3)

p, x ≥ 0, xc,ω = 0 ∀c, ω /∈ Ω(c). (3.4)

(3.1) encodes that an allocation is chosen for every c ∈ D, and (3.2) and (3.3) encode the

robust BIC and robust IR conditions respectively. Lemma 3.2.3 ensures that (P) correctly

encodes PayM, so that OPT := OPT P is a lower bound on the expected disutility of an

optimal mechanism.

Our results are obtained by computing an optimal solution to (P), or a further relax-

ation of it, and translating this to a near-optimal robust (BIC-in-expectation, IR) mech-

anism. Both steps come with their own challenges. Except in very simple settings (such

as single-item procurement auctions), |Ω| is typically exponential in the input size, and

therefore it is not clear how to solve (P) efficiently. We therefore consider the dual LP

(D), which has variables γc, yi,(ci,c−i),c′i and βi,(ci,c−i) corresponding to (3.1), (3.2) and (3.3)

respectively.

max
∑
c

γc (D)

s.t.
∑

i:c∈Di×D−i

(∑
c′i∈Di

(
ci(ω)yi,(ci,c−i),c′i − c

′
i(ω)yi,(c′i,c−i),ci

)
+ ci(ω)βi,c

)
+ κ · PrD(c)pub(ω) ≥ γc ∀c ∈ D, ω ∈ Ω(c) (3.5)∑

c′i∈Di

(
yi,(ci,c−i),c′i − yi,(c′i,c−i),ci

)
+ βi,ci,c−i ≤ PrD(c) ∀i, ci ∈ Di, c−i ∈ D−i (3.6)

y, β ≥ 0. (3.7)
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With additive types, the separation problem for constraints (3.5) amounts to determining

if the optimal value of the CM problem defined by a certain input with possibly negative

costs, is at least γc. Hence, an optimal algorithm for the CM problem can be used to solve

(D), and hence, (P) efficiently.

Theorem 3.5.1 With additive types, one can efficiently solve (P) given an optimal algo-

rithm for the CM problem.

Proof : Let A be an optimal algorithm for the CM problem. First, observe that we can

use A to find a solution that minimizes
∑

i ci(ω) + κ · pub(ω) for any κ ≥ 0, even for an

input c = {ci,v}i,v∈Ti where some of the ci,vs are negative. Let Ai = {v ∈ Ti : ci,v < 0}.
Clearly, if ω∗ is an optimal solution, then Ai ⊆ ω∗i (since pub(.) does not increase upon

adding covering objects). Define c+
i,v := max(0, ci,v) and c+

i := {c+
i,v}v∈Ti .

Let Γ = 1
κ

if κ > 0; otherwise let Γ = NU , where U is a strict upper bound on

maxω∈Ω pub(ω) and N is an integer such that all the c+
i,vs are integer multiples of 1

N
. Note

that for any ω, ω′ ∈ Ω, if
∑

i c
+
i (ω) −∑i c

+
i (ω′) is non-zero, then its absolute value is at

least 1
N

. Also, U and N may be efficiently computed (for rational data) and log(NU) is

polynomially bounded. Let (S1, . . . , Sn) be the solution returned by A for the CM problem

on the input where all the c+
i,vs are scaled by Γ. The choice of Γ ensures that∑

i

c+
i (Si) + κ · pub

(⋃
i

Si
)
≤
∑
i

c+
i (ω∗i ) + κ · pub(ω∗) =

∑
i

(
ci(ω

∗
i )− ci(Ai)

)
+ κ · pub(ω∗).

So setting ωi = Ai∪Si for every i yields a feasible solution such that
∑

i ci(ω)+κ ·pub(ω) ≤∑
i ci(ω

∗) + κ · pub(ω∗); hence ω is an optimal solution.

Given a dual solution (y, β, γ), we can easily check if (3.6), (3.7) hold. Fix c ∈ D and

player i. Notice that for every ω ∈ Ω, we have
∑

c′i∈Di

(
ci(ω)yi,(ci,c−i),c′i − c′i(ω)yi,(c′i,c−i),ci

)
+

ci(ω)βi,c = θci (ω) :=
∑

v∈ωi θ
c
i,v, where θci,v =

∑
c′i∈Di

(
ci,vyi,(ci,c−i),c′i − c′i,vyi,(c′i,c−i),ci + ci,vβi,c.

Define I := {i : c ∈ Di × D−i}. Constraints (3.5) for c can then be written as
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minω∈Ω(c)

(∑
i∈I θ

c
i (ω) + κ · PrD(c)pub(ω)

)
≥ γc. Define c̃ as follows:

c̃i,v =


γc + 1 if ci = mi1Ti ,

θci,v if i ∈ I, ci ∈ Di,
0 otherwise.

It is easy to see that (3.5) holds for c iff minω∈Ω

(∑
i c̃i(ω)+κ ·PrD(c)pub(ω)

)
, which can be

computed using A, is at least γc. Thus, we can use the ellipsoid method to solve (D). This

also yields a compact dual consisting of constraints (3.6), (3.7) and the polynomially-many

(3.5) constraints that were returned by the separation oracle during the execution of the

ellipsoid method, whose optimal value is OPT D. The dual of this compact dual is an LP

of the same form as (P) but with polynomially many xc,ω-variables; solving this yields an

optimal solution to (P).

Complementing Theorem 3.5.1, we argue that a feasible solution (x, p) to (P) can be

“rounded” to a robust-(BIC-in-expectation, IR) mechanism having expected disutility at

most the value of (x, p) (Theorem 3.5.2). Combining this with Theorem 3.5.1 yields the

corollary that an optimal algorithm for the CM problem can be used to obtain an optimal

mechanism for the PayM problem (Corollary 3.5.3).

Theorem 3.5.2 We can extend a feasible solution (x, p) to (P) to a robust-(BIC-in-

expectation, IR) mechanism with expected disutility
∑

c PrD(c)
(∑

i pi,c+κ
∑

ω xc,ωpub(ω)
)
.

Proof : Let Ω′ = {ω : xc,ω > 0 for some c ∈ D}. We use xc to denote the vector

{xc,ω}ω∈Ω′ . Consider a player i, c−i ∈ D−i, and ci, c
′
i ∈ Di. Note that (3.2) implies that if

x(ci,c−i) = x(c′i,c−i)
, then pi,(ci,c−i) = pi,(c′i,c−i). For c−i ∈ D−i, define R(i, c−i) =

{
x(ci,c−i) :

(ci, c−i) ∈ D
}

, and for y = x(ci,c−i) ∈ R(i, c−i) define pi,y to be pi,(ci,c−i) (which is well

defined by the above argument).

We now define the randomized mechanism M =
(
A, {qi}

)
, where A(c) and qi(c) denote

respectively the probability distribution over allocations and the expected payment to

player i, on input c. We sometimes viewA(c) equivalently as the random variable specifying

the allocation chosen for input c. Fix an allocation ω0 ∈ Ω. Consider an input c. If
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c ∈ D, we set A(c) = x(c), and qi(c) = pi,c for all i. So consider c /∈ D. If there

is no i such that c−i ∈ D−i, we simply set A(c) = ω0, qi(c) = ci(ω0) for all i; such

a c does not figure in the robust (BIC, IR) conditions. Otherwise there is a unique i

such that c−i ∈ D−i, ci ∈ Ci \ Di. Set A(c) = arg maxy∈R(i,c−i)

(
pi,y −

∑
ω∈Ω′ ci(ω)yω

)
and qj(c) = pj,A(c) for all players j. Note that (ci, c−i) figures in (3.2) only for player i.

Crucially, note that since y = x(mi,c−i) ∈ R(i, c−i) and
∑

ω∈Ω ci(ω)yω = 0 by definition, we

always have qi(c) − EA[ci(A(c))] ≥ 0. Thus, by definition, and by (3.2), we have ensured

that M is robust (BIC, IR)-in-expectation and its expected disutility is exactly the value

of (x, p). This can be modified so that IR holds with probability 1.

This rounding is efficient if
∑

ω∈Ω′ ci(ω)xc,ω can be calculated efficiently. This is clearly

true if |Ω′| is polynomially bounded, but it could hold under weaker conditions as well.

Corollary 3.5.3 Given an optimal algorithm for the CM problem, we can obtain an opti-

mal robust-(BIC-in-expectation, IR) mechanism for the PayM problem in multidimensional

settings with additive types.

As mentioned earlier, the CM problem is however often NP-hard (e.g., for vertex cover),

and we would like to be able to exploit approximation algorithms for the CM problem to

obtain near-optimal mechanisms. The usual approach is to use an approximation algorithm

to “approximately” separate over constraints (3.5). However, this does not work here since

the CM problem that one needs to solve in the separation problem involves negative costs,

which renders the usual notion of approximation meaningless. Instead, if the CM problem

admits a certain type of LP-relaxation (C-P), then we argue that one can solve a relaxation

of (P) where the allocation-set is the set of extreme points of (C-P) (Theorem 3.5.4).

For single-dimensional problems (Section 3.6), we leverage this to obtain strong and far-

reaching results. We show that a ρ-approximation algorithm relative to (C-P) can be used

to “round” the optimal solution to this relaxation to a robust-(BIC-in-expectation, IR)-

mechanism losing a ρ-factor in the disutility (Theorem 3.6.2). Thus, we obtain near-optimal

mechanisms for a variety of single-dimensional problems.

Suppose that the CM problem admits an LP-relaxation of the following form, where
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c = {ci,v}i∈[n],v∈Ti is the input type-profile.

min cTx+ dT z s.t. Ax+Bz ≥ b, x, z ≥ 0. (C-P)

Intuitively x encodes the allocation chosen, and dT z encodes pub(.). For x ≥ 0, define

z(x) := arg min{dT z : (x, z) is feasible to (C-P)}; if there is no z such that (x, z) is feasible

to (C-P), set z(x) := ⊥. Define ΩLP := {x : z(x) 6= ⊥, 0 ≤ xi,v ≤ 1 ∀i, v ∈ Ti}. We

require that: (a) a {0, 1}-vector x is in ΩLP iff it is the characteristic vector of an allocation

ω ∈ Ω, and in this case, we have dT z(x) = pub(ω); (b) A ≥ 0; (c) for any input c ≥ 0

to the covering problem, (C-P) is not unbounded, and if it has an optimal solution, it has

one where x ∈ ΩLP; (d) for any c, we can efficiently find an optimal solution to (C-P) or

detect that it is unbounded or infeasible.

We extend the type ci of each player i and pub to assign values also to points in ΩLP:

define ci(x) =
∑

v∈Ti ci,vxi,v and pub(x) = dT z(x) for x ∈ ΩLP. Let Ωext denote the finite

set of extreme points of ΩLP. Condition (a) ensures that Ωext contains the characteristic

vectors of all feasible allocations. Let (P’) denote the relaxation of (P), where we replace

the set of feasible allocations Ω with Ωext (so ω indexes Ωext now), and for c ∈ D with

ci = mi1(Ti), we now define Ω(c) := {ω ∈ Ωext : ωi,v = 0 ∀v ∈ Ti}. Since one can optimize

efficiently over ΩLP, and hence Ωext, even for negative type-profiles, we have the following.

Theorem 3.5.4 We can efficiently compute an optimal solution to (P’).

Now, given Theorem 3.5.2, we have the tool to prove Lemma 3.2.3.

Proof of Lemma 3.2.3 : Consider the following LP, which is the same as (P) except that
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we only consider c ∈ ⋃i(Di ×D−i).

min
∑
c∈D

PrD(c)
(∑

i

qi,c + κ
∑
ω

xc,ωpub(ω)
)

(LP)

s.t.
∑
ω

xc,ω = 1 ∀c ∈
⋃
i

(Di ×D−i) (3.8)

qi,(ci,c−i) −
∑
ω

ci(ω)x(ci,c−i),ω ≥

qi,(c′i,c−i) −
∑
ω

ci(ω)x(c′i,c−i),ω
∀i, ci, c′i ∈ Di, c−i ∈ D−i (3.9)

qi,(ci,c−i) −
∑
ω

ci(ω)x(ci,c−i),ω ≥ 0 ∀i, ci ∈ Di, c−i ∈ D−i (3.10)

q, x ≥ 0. (3.11)

Let M =
(
A, {pi}

)
be an optimal mechanism. Define O∗ to be the expected disutility

of M . Then, M naturally yields a feasible solution (x, q) to (3.8)–(3.11) of objective

value O∗, where xc,ω = PrM [A(c) = ω] and qi,c = EM [pi(c)]. Let (x̂, q̂) be an optimal

basic solution to (LP). Then, for some N such that logN is polynomially bounded in the

input size I, we can say that the values of all variables are integer multiples of 1
N

, and

log(Nx̂c,ω), log(Nq̂i,c) = poly(I) for all i, c ∈ ⋃i(Di ×D−i), ω.

First, we claim that we may assume that for every i, ci ∈ Di, c−i ∈ D−i, if whenever

x̂c,ω > 0 we have ωi = ∅ (where c = (ci, c−i)), then q̂i,c = 0. If not, then (3.9) implies

that q̂i,(c̃i,c−i)−
∑

ω c̃i(ω)x(c̃i,c−i),ω ≥ q̂i,c for all c̃i ∈ Di and decreasing q̂i,(c̃i,c−i) by q̂i,c for all

c̃i ∈ Di continues to satisfy (3.9)–(3.11).

Set mi := max
(
2
∑

i,v∈Ti maxci∈Di ci,v, N
∑

i,c q̂i,c
)

for all i. So logmi = poly(I). Recall

that Di := Di ∪ {mi1Ti} for all i ∈ [n], and D :=
⋃
i(Di ×D−i).

Now we extend (x̂, q̂) to (x̃, q̃) that assigns values also to type-profiles in D\⋃i(Di×D−i)
so that constraints (3.8)–(3.11) hold for all i, ci, c

′
i ∈ Di, c−i ∈ D−i. First set x̃c,ω =

x̂c,ω, q̃i,c = q̂i,c for all i, ω, c ∈ ⋃i(Di ×D−i). Consider c ∈ D \⋃i(Di ×D−i), and let i be

such that ci = mi1Ti (there is exactly one such i). We “run” VCG on c considering only the

cost incurred by the players. That is, we set x̃c,ω = 1 for ω = ω(c) := arg minω∈Ω

∑
i ci(ω)

and pay q̃i,c = minω∈Ω:ωi=∅
∑

j cj(ω)−∑j 6=i cj
(
ω(c)

)
to each player i. Note that the choice

of mi ensures that ω(c)i = ∅ and hence, q̃i,c = 0.
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We claim that this extension satisfies (3.8)–(3.11) for all i, ci, c
′
i ∈ Di, c−i ∈ D−i. Fix

i, ci, c
′
i ∈ Di, c−i ∈ D−i. It is clear that (3.8), (3.11) hold. If ci ∈ Di, then (3.10) clearly

holds; if ci = mi1Ti , then it again holds since x̃c,ω = 1 for ω = ω(c) and ω(c)i = ∅. To verify

(3.9), we consider four cases. If ci, c
′
i ∈ Di, then (3.9) holds since (x̃, q̃) extends (x̂, q̂). If

ci = c′i = mi1Ti , then (3.9) trivially holds. If ci ∈ Di, c′i = mi1Ti , then (3.9) holds since

the RHS of (3.9) is 0 (as x̃(c′i,c−i),ω(c′i,c−i)
= 1 and ω(c′i, c−i)i = ∅). We are left with the case

ci = mi1Ti and c′i ∈ Di. If whenever x̃(c′i,c−i),ω
= x̂(c′i,c−i),ω

> 0 we have ωi = ∅, then we also

have q̃i,(c′i,c−i) = q̂i,(c′i,c−i) = 0 by our earlier claim, so the RHS of (3.9) is 0, and (3.9) holds.

Otherwise, we have
∑

ω ci(ω)x̃(c′i,c−i),ω
≥ mi

N
≥ q̂i,(c′i,c−i), so the RHS of (3.9) is at most 0,

and (3.9) holds.

Thus, we have shown that (x̃, q̃) is a feasible solution to (P). Now we can apply

Theorem 3.5.2 to extend (x̃, q̃) and obtain a robust-(BIC-in-expectation, IR) mechanism

M∗ whose expected disutility is at most
∑

c PrD(c)
(∑

i q̃i,c +
∑

ω x̃c,ωpub(ω)
)
≤ O∗. Since

x̃(mi1Ti ,c−i),ω
> 0 implies that ωi = ∅ for all i, M∗ satisfies the required conditions.

3.6 Single-Dimensional Problems

Corollary 3.5.3 immediately yields results for certain single-dimensional problems (see Ta-

ble 3.1), most notably, single-item procurement auctions. We now substantially expand the

scope of PayM problems for which one can obtain near-optimal mechanisms by showing

how to leverage “LP-relative” approximation algorithms for the CM problem. Suppose

that the CM problem can be encoded as (C-P). An LP-relative ρ-approximation algorithm

for the CM problem is a polytime algorithm that for any input c ≥ 0 to the covering

problem, returns a {0, 1}-vector x ∈ ΩLP such that cTx + dT z(x) ≤ ρOPT C-P. Using

the convex-decomposition procedure in [32] (see Section 5.1 of [32]), one can show the

following.

Lemma 3.6.1 Let x ∈ ΩLP. Given an LP-relative ρ-approximation algorithm for the CM

problem, A, one can efficiently obtain (λ(1), x(1)), . . . , (λ(k), x(k)), where
∑

` λ
(`) = 1, λ ≥ 0,

and x(`) is a {0, 1}-vector in ΩLP for all `, such that
∑

` λ
(`)x

(`)
i,v = min(ρxi,v, 1) for all

i, v ∈ Ti, and
∑

` λ
(`)dT z(x(`)) ≤ ρdT z(x).
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Proof : It suffices to show that the LP (Q) can be solved in polytime and its optimal value

is 1. Throughout, we use ` to index {0, 1} vectors in ΩLP. (Recall that these correspond

to feasible allocations.)

max
∑
`

λ(`) (Q)

s.t.
∑
`

λ(`)x
(`)
i,v = min(ρxi,v, 1) ∀i, v ∈ Ti

(3.12)∑
`

λ(`)dT
(
z(x(`))

)
≤ ρdT z(x) (3.13)∑

`

λ(`) ≤ 1 (3.14)

λ ≥ 0.

min
∑
i,v∈Ti

min(ρxi,v, 1)αi,v + ρdT z(x) · β + θ

(R)

s.t.
∑
i,v∈Ti

x
(`)
i,vαi,v + dT

(
z(x(`))

)
β + θ ≥ 1 ∀`

(3.15)

β, θ ≥ 0.

Here the α`s, β and θ are the dual variables corresponding to constraints (3.12), (3.13),

and (3.14) respectively. Clearly, OPT (D) ≤ 1 since θ = 1, αi,v = 0 = β for all i, v is a

feasible dual solution.

Suppose (α̂, β̂, θ̂) is a feasible dual solution of value less than 1. Set α̃i,v = α̂i,v if α̂i,v ≥ 0

and ρxi,v ≤ 1, and α̃i,v = 0 otherwise. Let Γ = 1

β̂
if β̂ > 0 and equal to 2NdT z otherwise,

where N is is such that for all {0, 1}-vectors x(`) ∈ ΩLP, we have that cTx(`) > cTx implies

cTx(`) ≥ cTx+ 1
N

. Note that we can choose N so that its size is poly(I, size of x). Consider

the CM problem defined by the input Γα̃. Running A on this input, we obtain a {0, 1}-
vector x(`) ∈ ΩLP whose total cost is at most ρ times the cost of the fractional solution(
x, z(x)

)
. This translates to∑

i,v

x
(`)
i,v α̃i,v + dT

(
z(x(`))

)
β̂ ≤ ρ

(∑
i,v

xi,vα̃i,v + dT z(x) · β̂
)
. (3.16)

Now augment x(`) to the following {0, 1}-vector x̂: set x̂i,v = 1 if ρxi,v > 1 or α̂i,v < 0, and

x
(`)
i,v otherwise. Then x̂ is the characteristic vector of a feasible allocation, since we have

only added covering objects to the allocation corresponding to x(`); hence x̂ ∈ ΩLP. We
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have dT z(x̂) = pub(x̂) ≤ pub(x(`)) = dT
(
z(x`)

)
and∑

i,v

x̂i,vα̂i,v =
∑

i,v:ρxi,v>1
or α̂i,v<0

α̂i,v +
∑
i,v

x
(`)
i,v α̃i,v ≤

∑
i,v:ρxi,v>1
or α̂i,v<0

min(ρxi,v, 1)α̂i,v +
∑
i,v

x
(`)
i,v α̃i,v.

Combined with (3.16), this shows that∑
i,v

x̂i,vα̂i,v + dT z(x̂)β̂ ≤
∑

i,v:ρxi,v>1
or α̂i,v<0

min(ρxi,v, 1)α̂i,v +
∑

i,v:α̃i,v>0
or ρxi,v≤1

ρxi,vα̃i,v + ρdT z(x) · β̂

=
∑
i,v

min(ρxi,v, 1)α̂i,v + ρdT z(x) · β̂ < 1− θ̂

which contradicts that (α̂, β̂, θ̂) is feasible to (R). Hence, OPT (Q) = OPT (R) = 1.

Thus, we can add the constraint
∑

i,v∈Ti min(ρxi,v, 1)αi,v + ρdT z(x) · β + θ ≤ 1 to (R)

without altering anything. If we solve the resulting LP using the ellipsoid method, and

take the inequalities corresponding to the violated inequalities (3.15) found by A during

the ellipsoid method, then we obtain a compact LP with only a polynomial number of

constraints that is equivalent to (R). The dual of this compact LP yields an LP equivalent

to (Q) with a polynomial number of λ(`) variables which we can solve to obtain the desired

convex decomposition.

Theorem 3.6.2 Given an LP-relative ρ-approximation algorithm for the CM problem, one

can obtain a polytime ρ-approximation robust-(BIC-in-expectation, IR) mechanism for the

PayM problem.

Proof : We solve (P’) to obtain an optimal solution (x, p). Since |Ti| = 1 for all i, it will

be convenient to view ω ∈ ΩLP as a vector {ωi}i∈[n], where wi ≡ ωi,v for the single covering

object v ∈ Ti. Fix c ∈ D. Define yc =
∑

ω∈Ωext
xc,ωω (which can be efficiently computed).

Then,
∑

ω∈Ωext
ci(ω)xc,ω = ciyc,i and dT z(y) =

∑
ω∈Ωext

pub(ω)xc,ω. By Lemma 3.6.1, we can

efficiently find a point ỹc =
∑

ω∈Ω x̃c,ωω, where x̃c ≥ 0,
∑

w∈Ω x̃c,ω = 1, in the convex hull

of the {0, 1}-vectors in ΩLP such that ỹc,i = min(ρyc,i, 1) for all i, and
∑

w∈Ω x̃c,ωpub(ω) ≤
ρdT z(y).
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We now argue that one can obtain payments {qi,c} such that (x̃, q) is feasible to (P)

and qi,c ≤ ρpi,c for all i, c ∈ D. Thus, the value of (x̃, q) is at most ρ times the value of

(x, p). Applying Theorem 3.5.2 to (x̃, q) yields the desired result.

Fix i and c−i ∈ D−i. Constraints (3.4) and (3.2) ensure that y(mi,c−i),i = 0, and

y(ci,c−i),i ≥ y(c′i,c−i),i
for all ci, c

′
i ∈ Di s.t. ci < c′i. Hence, ỹ(mi,c−i)mi = 0, ỹ(ci,c−i),i ≥ ỹ(c′i,c−i),i

for ci, c
′
i ∈ Di, ci > c′i. Define qi,(mi,c−i) = 0. Let 0 ≤ c1

i < c2
i < . . . < ckii be the values in

Di. For ci = c`i , define

qi,(ci,c−i) = ciỹ(ci,c−i),i +

ki∑
t=`+1

(cti − ct−1
i )ỹ(cti,c−i),i

.

Since
∑

ω∈Ω ci(ω)x̃(ci,c−i),ω = ciỹ(ci,c−i),i, (3.3) holds. By construction, for consecutive values

ci = c`i , c
′
i = c`+1

i , we have

qi,(ci,c−i) − qi,(c′i,c−i) = ci
(
ỹ(ci,c−i),i − ỹ(c′i,c−i),i

)
≤ ρ · ci

(
y(ci,c−i),i − y(c′i,c−i),i

)
≤ ρ
(
pi,(ci,c−i) − pi,(c′i,c−i)

)
.

Since qi,(mi,c−i) = 0 ≤ ρpi,(mi,c−i), this implies that qi,(ci,c−i) ≤ ρpi,(ci,c−i). Finally, it is

easy to verify that for any ci, c
′
i ∈ Di, we have qi,(ci,c−i)− qi,(c′i,c−i) ≥ ci

(
ỹ(ci,c−i),i− ỹ(c′i,c−i),i

)
,

so (x̃, q) satisfies (3.2).

Corollary 3.5.3 and Theorem 3.6.2 yield polytime near-optimal mechanisms for a host

of single-dimensional PayM problems. Table 3.1 summarizes a few applications. Even

for single-item procurement auctions, these are the first results for PayM problems with

correlated players satisfying a notion stronger than (BIC, interim IR).

3.7 Multidimensional Problems

We obtain results for multidimensional PayM problems via two distinct approaches. One

is by directly applying Corollary 3.5.3 (e.g., Theorem 3.7.1). The other approach is based

on again moving to an LP-relaxation of the CM problem and utilizing Theorem 3.5.4 in

conjunction with a stronger LP-rounding approach. This yields results for multidimensional

(metric) UFL and its variants (Theorem 3.7.3).
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Problem Approximation Due to

Single-item procurement auction: buy one item pro-

vided by n players

1 Corollary 3.5.3

Metric UFL: players are facilities, output should be

a UFL solution

1.488 using [34] Theorem 3.6.2

Vertex cover: players are nodes, output should be a

vertex cover

2 Theorem 3.6.2

Set cover: players are sets, output should be a set

cover

O(log n) Theorem 3.6.2

Steiner forest: players are edges, output should be a

Steiner forest

2 Theorem 3.6.2

Multiway cut (a), Multicut (b): players are edges,

output should be a multiway cut in (a), or a multicut

in (b)

2 for (a)

O(log n) for (b)

Theorem 3.6.2

Table 3.1: Results for some representative single-dimensional PayM problems.

Multi-item procurement auctions. Here, we have n sellers and k (heterogeneous)

items. Each seller i has a supply vector si ∈ Zk+ denoting his supply for the various items,

and the buyer has a demand vector d ∈ Zk+ specifying his demand for the various items.

This is public knowledge. Each seller i has a private cost-vector ci ∈ Rk
+, where ci,` is

the cost he incurs for supplying one unit of item `. A feasible solution is an allocation

specifying how many units of each item each seller supplies to the buyer such that for each

item `, each seller i provides at most si,` units of ` and the buyer obtains d` total units

of `. The corresponding CM problem is a min-cost flow problem (in a bipartite graph),

which can be efficiently solved optimally, thus we obtain a polytime optimal mechanism.

Theorem 3.7.1 There is a polytime optimal robust-(BIC-in-expectation, IR) mechanism

for multi-unit procurement auctions.
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Multidimensional budgeted (metric) uncapacitated facility location (UFL). In

this problem, we have a set E of clients that need to be serviced by facilities, and a set

F of locations where facilities may be opened. Each player i may provide facilities at the

locations in Ti ⊆ F . We may assume that the Tis are disjoint. For each facility ` ∈ Ti
that is opened, i incurs a private opening cost f` ≡ fi,`, and assigning client j to an open

facility ` incurs a publicly-known assignment cost d`j, where the d`js form a metric. We

are also given a public assignment-cost budget B. The goal in Budget-UFL is to open a

subset F ⊆ F of facilities and assign each client j to an open facility σ(j) ∈ F so as to

minimize
∑

`∈F f` +
∑

j∈E dσ(j)j subject to
∑

j∈E dσ(j)j ≤ B; UFL is the special case where

B =∞. We can define pub(T ) to be the total assignment cost if this is at most B, and ∞
otherwise.

Let O∗ denote the expected disutility of an optimal mechanism for Budget-UFL. We ob-

tain a mechanism with expected disutility at most 2O∗ that always returns a solution with

expected assignment cost at most 2B. Consider the following LP-relaxation for Budget-

UFL.

min
∑
`∈F

f`x` +
∑

j∈E,`∈F

d`jz`j s.t. (BFL-P)∑
j∈E,`∈F

d`jz`j ≤ B,
∑
`∈F

z`j ≥ 1 ∀j ∈ E , 0 ≤ z`j ≤ x` ∀` ∈ F , j ∈ E . (3.17)

Let (FL-P) denote (BFL-P) with B = ∞, and OPT(FL-P) denote its optimal value.

Recall from Section 2.3 that an algorithm A is a Lagrangian multiplier preserving (LMP)

ρ-approximation algorithm for UFL if for every instance, it returns a solution (F, σ) such

that ρ
∑

`∈F f` +
∑

j∈E dσ(j)j ≤ ρ · OPT(FL-P). Lemma 2.3.2 shows that given such an

algorithm A, one can take any solution (x, z) to (FL-P) and obtain a convex combination

of UFL solutions (λ(1);F (1), σ(1)), . . . , (λ(k);F (k), σ(k)), so λ ≥ 0,
∑

r λ
(r) = 1, such that∑

r:`∈F (r) λ(r) = x` for all ` and
∑

r λ
(r)
(∑

j dσ(r)(j)j

)
≤ ρ

∑
j,` d`jz`j. As mentioned in

Chapter 2, an LMP 2-approximation algorithm for UFL is known [27].

Lemma 3.7.2 Given an LMP ρ-approximation algorithm for UFL, one can design a poly-

time robust-(BIC-in-expectation, IR) mechanism for Budget-UFL whose expected disutility

is at most ρO∗ while violating the budget by at most a ρ-factor.
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Proof : The LP-relaxation (BFL-P) for the CM problem is of the form (C-P) and satisfies

the required properties. Recall that for x ≥ 0, z(x) denotes the min-cost completion of x

to a feasible solution to (BFL-P) if one exists, and is ⊥ if there is no such completion of

x. Let ΩLP := {x : z(x) 6= ⊥, 0 ≤ x` ≤ 1 ∀`}. For integral ω ∈ ΩLP, z(ω) specifies the

assignment where each client j is assigned to the nearest open facility. By Theorem 3.5.4,

one can efficiently compute an optimal solution (X, p) to the relaxation of (P) where the

set of feasible allocations is the set Ωext of extreme points of ΩLP.

We proceed similarly to the proof of Theorem 3.6.2. Let ΩUFL be the set of characteristic

vectors of all integral UFL solutions. We use ` to index facilities in F and j to index clients

in E . Fix c ∈ D. Define yc =
∑

ω∈Ωext
Xc,ωω, so

∑
w∈Ωext

ci(ω)Xc,ω =
∑

`∈Ti f`yc,`. Let

zc =
∑

ω∈Ωext
Xc,ωz(ω), so

∑
j,` zc,`jd`j ≤ B. We use the LMP ρ-approximation algorithm

to express yc as a convex combination
∑

ω∈ΩUFL
x̃c,ωω of (integral) UFL-solutions such that

the expected assignment cost
∑

ω∈ΩUFL
x̃c,ω

∑
j,` z(ω)`jd`j is at most ρ

∑
j,` d`jzc,`j ≤ ρB.

Hence, (x̃, p) is a feasible solution to (P). Theorem 3.5.2 now yields the desired mechanism.

Theorem 3.7.3 There is a polytime robust-(BIC-in-expectation, IR) mechanism for Budget-

UFL with expected disutility at most 2O∗, which always returns a solution with expected

assignment cost at most 2B.

3.8 Extension: DSIC Mechanisms

We can strengthen our results from Section 3.6 to obtain (near-) optimal dominant-strategy

incentive compatible (DSIC) mechanisms for single-dimensional problems in time exponen-

tial in n. Thus, if n is a constant, we obtain polytime mechanisms. We describe briefly

the changes needed, and their implications.

The key change is in the LP (P) (or (P’)), where we now enforce (3.1)—(3.4) for all

type profiles in
∏

iDi. The rounding procedure and arguments in Theorem 3.6.2 proceed

essentially identically to yield a near-optimal solution to this LP. But we can now argue

that in single-dimensional settings, a feasible solution to the LP can be rounded to a
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(DSIC-in-expectation, IR) mechanism without increasing the expected disutility. Thus,

we obtain the same guarantees as in Table 3.1, but under the stronger solution concept of

DSIC-in-expectation and IR.

Analogous to Lemma 3.2.3, we can obtain estimates mi such that there is an optimal

mechanism M∗ such that on any input c ∈∏i(Di ∪{mi}) where ci < mi for at least one i,

M∗ only buys the item with non-zero probability from a player i with ci < mi (the same

proof approach works). Let D̃ :=
∏

iDi and D̃−i :=
∏

j 6=iDj; also, let D̃i := Di := Di∪{mi}
for uniformity of notation. The key change is in the LP (P) or (P’) (where we consider an

LP-relaxation of the CM problem and move to the allocation-set Ωext). For c ∈ D̃, define

Ω(c) = {ω ∈ Ω : ωi = ∅ for all i s.t. ci = mi}, if there is some i such that ci < mi, and Ω

otherwise. In our LP, we now enforce (3.1)–(3.4) for all i, all ci, c
′
i ∈ D̃i and all c−i ∈ D̃−i.

Let (K-P), (K-P’) (with allocation-set ΩLP) denote these new LPs. When n is a constant,

both LPs have a polynomial number of constraints. So again by considering the dual, we

can efficiently compute: (i) an optimal solution to (K-P) given an optimal algorithm for

the CM problem; and (ii) an optimal solution to (K-P’).

The rounding procedure and arguments in Theorem 3.6.2 proceed essentially identically

to yield a near-optimal solution to (K-P). We argue that in single-dimensional settings,

one can round a solution (x, p) to (K-P) to a (DSIC-in-expectation, IR) mechanism M =(
A, {qi}

)
without increasing the expected total payment. Here, A(c) and qi(c) denote as

before the allocation-distribution and expected payment to i, on input c.

Define yc =
∑

ω xc,ωω, where we treat ω as a vector in {0, 1}n with ωi ≡ ωi,v for the

single covering object v ∈ Ti. Let 0 ≤ c1
i < c2

i < . . . < ckii = cmax
i be the values inDi, and set

cki+1
i := mi. Define the mapping H : C → D̃ as follows: set H(c) :=

(
Hi(ci)

)
i=1,...,n

, where

Hi(ci) is cr+1
i if ci ∈ (cri , c

r+1
i ], r ≤ ki, and mi if ci ≥ mi. Define H−i(c−i) :=

(
Hj(cj)

)
j 6=i.

Consider c ∈ C. If ci ≤ cmax
i for at least one i, we set A(c) = yH(c). If ci > cmax

i for all

i, we set A(c) as in the VCG mechanism. Since we are in the single-dimensional setting,

generalizing Theorem 1.2.8 if we show that for all i, c−i ∈ C−i, A(c)i is non-increasing in

ci and hits 0 at some point, then setting qi(c) = ciA(c)i+
∫∞
ci
A(t, c−i)idt ensures such that

M =
(
A, {qi}

)
is (DSIC, IR)-in-expectation.

Consider some i, c−i ∈ C−i. If cj ≤ cmax
j for some j 6= i, then A(c) = yH(c). Since
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Hi is non-decreasing in ci and yc,i is non-increasing in ci (which is easily verified), it

follows that A(c)i is non-increasing in ci. Also, if c−i ∈ D̃−i, then one can argue as in the

proof of Theorem 3.6.2 that qi(c) ≤ pi,c. Hence, M has expected total payment at most∑
c,i PrD(c)pi,c. Suppose cj > cmax

j for all j 6= i. Then, Hj(cj) = mj for all j 6= i. So

A(c) = yH(c) for ci ≤ cmax
i , and is the VCG allocation for ci > cmax

i . Therefore, A(c)i = 1

for ci ≤ cmax
i , and the VCG allocation for ci > cmax

i , which is clearly non-increasing in ci.

Theorem 3.8.1 For single-dimensional problems with a constant number of players, we

obtain the same guarantees as in Table 3.1, but under the stronger solution concept of

DSIC-in-expectation and IR.

3.9 Inferiority of k-lookahead Procurement Auctions

The following auction, called k-lookahead, was proposed by [17] for the single-item revenue-

maximization problem generalizing the 1-lookahead auction considered by [46, 45]: on

input v = (v1, . . . , vn), pick the set I of k players with highest values, and run the revenue-

maximizing (DSIC, IR) mechanism for player-set I where the distribution we use for I is

the conditional distribution of the values for I given the values (vi)i/∈I for the other players.

Dobzinski et al. [17] show that the k-lookahead auction achieves a constant-fraction of the

revenue of the optimal (DSIC, IR) mechanism.

For any k ≥ 2, we can consider an analogous definition of k-lookahead auction for the

single-item procurement problem: on input c, we pick the set I of k players with smallest

costs, and run the payment-minimizing robust (BIC-in-expectation, IR) mechanism for

I for the conditional distribution of I’s costs given (ci)i/∈I . We call this the k-lookahead

procurement auction. The following example shows that the expected total payment of

the k-lookahead procurement auction can be arbitrarily large, even when k = n − 1 (so

we drop only 1 player), and compared to the optimal expected total payment of even a

deterministic (DSIC, IR) mechanism.

Let t = K + ε where ε > 0, and δ > 0. The distribution D consists of n points: each c

in
⋃
i=1,...,n−1{c : ci = 0, cj = K ∀j 6= i, n, cn = t} has probability PrD(c) = 1−δ

n−1
, and the

type-profile c where ci = K ∀i 6= n, cn = t has probability PrD(c) = δ.
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Let k = n− 1. The k-lookahead procurement auction will always select the player-set

I = {1, . . . , n − 1}, and the conditional distribution of values of players in I is simply

D. Let M ′ be the robust (BIC-in-expectation, IR) mechanism for the players in I under

this conditional distribution D. Suppose that on input (K,K, . . . ,K, t), the k-lookahead

auction (which runs M ′) buys the item from player i with probability at least 1
n−1

. Then,

on the input c̃ where c̃i = 0, c̃j = K for all j 6= i, n, c̃n = t, the mechanism must also buy

the item from player i with probability at least 1
n−1

since M ′ is robust BIC. So since M ′ is

robust (BIC-in-expectation, IR), the payment to player i under input c̃ is at least K, and

therefore the expected total payment of the k-lookahead auction is at least Kδ + K(1−δ)
n−1

.

Now consider the following mechanism M = (A, pi). Consider input c. If some player

i < n has ci = 0, M buys the item from such a player i (breaking ties in some fixed way).

Otherwise, if cn ≤ t, M buys from player n; else, M buys from the player i with smallest

ci. It is easy to verify that for every i and c−i, this allocation rule A is monotonically

decreasing in ci. Let pi(c) = 0 if M does not buy the item from i on input c, and

max{z : M buys the item from i on input (z, c−i)} otherwise. By a well-known fact (see,

e.g., Theorem 9.39 in [43]), M =
(
A, {pi}

)
is DSIC and IR. Then, the total payment under

any c ∈ D for which ci = 0 for some i is 0, and the total payment under the input where

ci = K for all i 6= n, cn = t is t. So the expected total payment of M is tδ.

Thus the ratio of the expected total payments of M ′ and M is at least
Kδ+

K(1−δ)
n−1

tδ
=

(n−2)Kδ+K
tδ

, which can be made arbitrarily large by choosing δ and ε = t−K small enough.
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Chapter 4

Frugal Mechanisms for VCP

4.1 Introduction

In this chapter, we consider the notion of frugality, wherein we again consider the payment

of a mechanism (for a covering problem), but in a worst-case setting. That is, unlike

Chapter 3, we do not assume that there is an underlying prior distribution over players’

type profiles, and seek to prove worst-case performance guarantees.

An immediate difficulty that arises when working with worst-case guarantees is that

there is no point-wise optimal (truthful) mechanism whose payment, for every type-profile

c is minimum among the payment of all truthful, IR mechanisms for input c. Moreover

(see Theorem 4.4.2), for every truthful, IR mechanism M and any factor α, one can tailor

a truthful, IR mechanism M ′ and an input c, such that the payment of M on c is α times

the payment of M ′ on c. Thus, one of the main issues when trying to measure frugality

is in fact to come up with a reasonable benchmark for frugality relative to which one can

obtain meaningful bounds.

The extant work on frugality has focused on the single-dimensional setting. The first

proposed benchmark was for the (single-dimensional) shortest-path problem. In this prob-

lem each player owns an edge of a graph G and has a private cost for it. The goal of the

mechanism is to buy the shortest (s, t)-path for a given pair s, t ∈ V (G). The benchmark
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proposed was to compare the payment of the mechanism when the outcome is ω1 ∈ Ω

(note that the algorithmic problem is polytime solvable and hence they assume that ω1 is

the shortest (s, t)-path, say p(ω1)), with the cost of the shortest outcome ω2 ∈ Ω where

ω1 ∩ ω2 = ∅ ( see Archer et al. [2] and Talwar [48]). However, this benchmark has some

limits and cannot be applied to several other problems or instances of problems in AMD,

although it was generalized to “set-system” problems by [48]. (Set-systems are an alter-

native way of defining single-dimensional covering problems proposed by [48], which are

captured by our general framework.)

Later, Karlin et al. [28] discuss the restrictions of the frugality notion in [2] and

introduce a new frugality notion (Definition P2) based on the cheapest Nash equilibrium

in a monopoly-free set system. Elkind et al. [23] develop some other frugality notions that

are in the same spirit as the rationale underlying the benchmark in [28]. Their proposed

NTUmax benchmark (see Definition 4.2.1) is used later in [29]. The problem of designing

polytime truthful and IR mechanisms for single-dimensional VCP with bounded frugality

ratios was initiated by [8] and followed by [23], [29].

4.1.1 Summary of Results

In Section 4.3, we consider the question of designing of polytime frugal truthful and IR

mechanisms for single-dimensional and multi-dimensional VCP with respect to the frugality

benchmarks proposed by [23] and [28]. To the best of our knowledge we are the first to

consider and obtain polytime truthful and IR mechanisms for multi-dimensional settings.

We show that some of our mechanisms defined in Section 2.4.1 for Multi-VCP enjoy good

frugality properties. Thus, we obtain the first mechanisms for Multi-VCP that are polytime,

truthful and simultaneously achieve bounded approximation ratio and bounded frugality

ratio with respect to the benchmarks in [10, 29]. This nicely complements a result of [10],

who devises such a mechanism for single-dimensional VCP.

We show that neither of the benchmarks NTUmax and NTUmin proposed in [28, 23] yield

a pointwise lower-bound on the payment of a truthful, IR mechanism. Although, as noted

earlier, no meaningful guarantees are possible when one compares against all truthful, IR

mechanisms, the example that shows this involves a somewhat esoteric mechanism that
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may output a very sub-optimal vertex cover. Motivated by this, we ask whether meaningful

guarantees are possible if we compare against the pointwise-optimal payment of a strict

subset of truthful, IR mechanisms (e.g., truthful, IR approximation mechanisms). To

study this question, we define a new frugality notion in Section 4.4, where we compare the

payment of a mechanism with the pointwise-optimal payment of a given class of truthful,

IR mechanisms. We obtain some preliminary results, both upper and lower bounds, that

shed light on how the frugality ratio (under this new measure) is affected by restrictions

on the approximation ratio or the type of optimality guarantee of the class of mechanisms

that one compares against.

4.1.2 Related Work

Single-dimensional covering problems have been well studied from the perspective of fru-

gality. Starting with the work of Archer and Tardos [2], various benchmarks for frugality

have been proposed and investigated for various problems including VCP, k-edge-disjoint

paths, spanning tree, s-t cut; see [28, 23, 29, 10] and the references therein. In [28], the

authors propose a new benchmark for the shortest-path auctions problem and subsequently

Elkind et al. [23] designed a frugal mechanism for single-dimensional VCP with respect to

this benchmark. They also gave an alternative benchmark in their paper, which is used by

Kempe et al. [29], to analyze the frugality ratio of their mechanism for single-dimensional

VCP.

4.2 Problem Definition and Preliminaries

Recall from Chapter 2 that in the Multi-VCP mechanism design problem we have a graph

G = (V,E) with n nodes. Each player i provides a subset Ti of nodes. Given Remark 2.4.7,

for simplicity, we assume that the Tis are disjoint, and given a cost-vector {ci,u}i∈[n],u∈Ti ,

we use cu to denote ci,u for u ∈ Ti. The goal is to choose a minimum-cost vertex cover,

i.e., a min-cost set S ⊆ V such that every edge is incident to a node in S. Recall that we

consider this problem in a monopoly-free setting.
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As in Chapter 2 we use VCP to refer to the algorithmic vertex cover problem in this

chapter. We use (G, c) to denote a Multi-VCP instance G with true players’ cost vector c.

Frugality notion. Karlin et al. [28] and Elkind et al. [23] propose various benchmarks for

measuring the frugality ratio of a mechanism, which is a measure of the (over-)payment of a

mechanism where there is no underlying distribution over players’ types. The mechanisms

that we devised in Chapter 2 also enjoy good frugality ratios with respect to the following

benchmark introduced by [23], which is denoted by NTUmax in [23] (and ν+(G, c) in [29]).

Definition 4.2.1 (Frugality benchmark NTUmax(G, c) [28, 23]) Given an instance

of VCP on a graph G = (V,E) with node costs {cu}, we define NTUmax(G, c) as follows.

Fix an arbitrary min-cost vertex cover S (with respect to c).

NTUmax(G, c) := max
∑
v∈S

xv (P1)

s.t. xv ≥ cv for all v ∈ S∑
v∈S\T

xv ≤
∑
v∈T\S

cv for all vertex covers T .

The above benchmark is defined along with the definition of NTUmin which was also

defined by Elkind et al. ([23]).

Definition 4.2.2 [28] Given an instance of VCP on a graph G = (V,E) with node costs

{cu}, we define NTUmin(G, c) as follows. Fix an arbitrary min-cost vertex cover S (with

respect to c).

NTUmin(G, c) := min
∑
v∈S

xv (P2)

s.t. xv ≥ cv for all v ∈ S∑
v∈S\T

xv ≤
∑
v∈T\S

cv for all vertex covers T

∀v ∈S, ∃vertex cover T 63 v s.t.
∑
u∈S\T

xu =
∑
u∈T\S

cu
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Theorem 4.2.3 [23] NTUmin(G, c) and NTUmax(G, c) are independent of the choice of S.

The above theorem shows that NTUmin(G, c) and NTUmax(G, c) are well-defined even

if (G, c) has more than one min-cost vertex cover. The following proposition regarding

NTUmax(G, c), NTUmin(G, c) and c is used in some of our sequel arguments.

Lemma 4.2.4 [23] Let S be a min-cost vertex cover of an instance (G, c) of VCP. We have

NTUmax ≥ NTUmin ≥ max{c(S), c(V \ S)}. Hence, NTUmax ≥ NTUmin ≥ c(V )/2.

Definition 4.2.5 [28] Let M be a truthful and IR mechanism for single-dimensional VCP

with underlying graph G. Suppose c is the true players’ cost vector. Let pM(G, c) denote

the total payment of M to the players in (G, c) instance.

With respect to the NTUmin benchmark, the frugality ratio of M on (G, c) is defined as

φM(G, c) := pM (G,c)
NTUmin(G,c)

, and the frugality ratio of M is defined as φM(G) := supc φM(G, c).

Similarly, for the NTUmax benchmark, we define φ+
M(G, c) := pM (G,c)

NTUmax(G,c)
and φ+

M(G) :=

supc φ
+
M(G, c).

Definition 4.2.6 [23] An algorithm A for VCP, is called locally-optimal if for any vertex

v in the outcome of A on any instance (G, c) we have cv ≤
∑

uv∈E(G) cu.

For the ease of notation, we restated Definition 1.2.7 for single-dimensional VCP as

follows.

Definition 4.2.7 Let A be a MON algorithm for an instance G of single-dimensional

VCP. Given players’ cost vector c, for each vertex v ∈ V (G), its critical value is defined as

bv(A, c−v) := sup{c′v|v ∈ A(G, (c′v, c−i))} whenever the RHS is finite, where i is the owner

of vertex v.

Note that, as mentioned in Section 1.2 if a mechanism for single-dimensional VCP has a

bounded total cost, then by the monopoly-free nature of single-dimensional setting the

critical values (recall Definition 1.2.7) are always defined. This fact is implicitly used by

some sequel propositions such as Proposition 4.3.2.
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4.3 Frugal Mechanisms for VCP

In this section, we consider the task of designing frugal truthful and IR mechanisms for

single-dimensional VCP and Multi-VCP. Along with restating some needed notions and

results we also mention our results on the frugality of the two threshold mechanisms defined

in Section 2.4.1 with respect to the NTUmax and NTUmin benchmarks.

Theorem 4.3.1 For any mechanism M = (A, p1, . . . , pn) , where A is a locally-optimal

algorithm, we have φM(G, c) ≤ 2∆ for any instance G of single-dimensional VCP and any

cost vector c, where ∆ is the maximum degree of a vertex of G.

Proof : By Lemma 4.2.4 we have NTUmin(G, c) ≥ c(V )/2. On the other hand, by Theorem

1.2.8 we have

pM(G, c) =
∑

v∈A(G,c)

bv(A, c−v) ≤
∑

v∈A(G,c)

(
∑

uv∈E(G)

cu) ≤
∑

u∈V (G)

∆cu = ∆c(V ).

Hence, φM(G, c) = pM (G,c)
NTUmin(G,c)

≤ ∆c(V )
c(V )/2

= 2∆.

Corollary 4.3.2 [23] There exists a 2-approximation truthful mechanism M for single-

dimensional VCP such that φM(G, c) ≤ 2∆ for any instance (G, c) where ∆ is the max

vertex degree of G.

Proof : By fixing an order on the set of vertices and edges of G, the 2-approximation

primal-dual algorithm for vertex cover problem mentioned in [49], where dual variables

corresponding to edges are increased sequentially, has the MON property. Moreover, it is

locally-optimal. Hence, by Theorem 1.2.8 we obtain the above mentioned 2-approximation

truthful mechanism for any instance (G, c) of single-dimensional VCP.

As one might notice, the mechanism introduced in the previous proof is in fact a mecha-

nism that returns a near-optimal VC and has bounded overpayment, i.e., it simultaneously

has good approximation ratio and good frugality.
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Recall from Section 2.4.1 that we define an x-scaled edge-threshold mechanism as fol-

lows: fix a vector (xu)u∈V , where xu > 0 for all u, and set t
(uv)
u := xucv/xv for every edge

(u, v). We use MA and Ax to denote the resulting edge-threshold mechanism and its allo-

cation algorithm, respectively. Also, define MB and Bx to be the neighbor-threshold mech-

anism and its allocation algorithm, respectively, where we set tu :=
∑

v∈N(u) xucv/xv. The

proof of Lemma 2.4.3 is easily modified to show that the x-scaled mechanism MA satisfies∑
i pi(c) ≤

∑
u tu ≤ β(G;x)c(V ), where β(G;x) = maxu∈V

x(N(u))
xu

. Since NTUmax(G, c) ≥
c(V )/2 by Lemma 4.2.4, this implies that φMA(G) ≤ 2β(G;x). Also, if M is a decom-

position mechanism constructed from threshold mechanisms M1, . . . ,Mk, where each Mq

satisfies
∑

u t
q
u ≤ φq · c(V (Gq)), then it is easy to see that φM(G) ≤ 2

∑k
q=1 φq. Thus, we

obtain the following results.

Theorem 4.3.3 Let G = (V,E) be a graph with n nodes. We can obtain a polytime,

truthful, IR mechanism M with the following approximation ρ = ρM(G) and frugality

φ = φM(G) ratios.

(i) ρ = (α(G;x) + 1), φ ≤ 2β(G;x) for Multi-VCP on G;

(ii) ρ = O(r2 log n)), φ = O
(
r2 log n · ∆(G)

)
for r-dimensional VCP on G (using a 2-

approximation mechanism with frugality ratio 2∆(G) [23] for single-dimensional VCP

in the construction of Theorem 2.4.9);

(iii) ρ = O(rγ log n), φ = O(rγ log n∆(G)) for r-dimensional VCP on G when G is ev-

erywhere γ-sparse; hence, we achieve ρ = O(r log n), φ = O(r log n∆(G)) for r-

dimensional VCP on any proper minor-closed family.

Kempe et al. [29], consider the NTUmax(G, c) benchmark. Recall that with respect

to this benchmark, the frugality ratio of M on (G, c) is denoted by φ+
M(G, c) := pM (G,c)

ν+(G,c)

and the the frugality ratio of M is denoted by φ+
M(G) := supc φ

+
M(G, c). They propose a

computationally-inefficient mechanism for single-dimensional VCP that has frugality ratio

at most λ′1 on any instance (G, c), where λ′1 is the largest eigenvalue of a scaled adjacency

matrix of G.

A fundamental question in [29] concerns the motivation behind, and the validity of,

using NTUmax(G, c) as a benchmark. That is, is it the case that φ+
M is at least 1 for every
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truthful IR mechanism M , for general set system problems. Here we answer the question

in the affirmative for single-dimensional VCP.

Proposition 4.3.4 If M is a truthful and IR mechanism for single-dimensional VCP on

a given graph G, then φ+
M(G) ≥ 1 and φM(G) ≥ 1.

Proof : By the definition of φ+
M(G) and φM(G), we just need to show that there exists a

cost vector c such that φ+
M(G, c) ≥ 1 and φM(G, c) ≥ 1. Let C = {v1, . . . , vk} be a maximal

clique in G and let a > 0 be a real number. Suppose the cost vector c is as follows:

cv = a for all v ∈ C and cv = 0 for any v ∈ V \ C. Now we claim that NTUmin(G, c) =

NTUmax(G, c) = c(S) where S is a min-cost vertex cover of (G, c). Since M is individually

rational we have pM(G, c) ≥ c(S). So if we prove the claim we are done.

First of all, any min-cost vertex cover S includes exactly k − 1 (i.e.,|C| − 1) vertices of

C. Hence, c(S) = a(k − 1). By Theorem 4.2.3, WLOG, we can assume S = V \ {vk}.

We need to show NTUmax(G, c) = NTUmin(G, c) = a(k−1)(= c(S)). As NTUmax(G, c) ≥
NTUmin(G, c) ≥ c(S) we just need to show NTUmax(G, c) = a(k − 1). That means, by

definition of NTUmax(G, c), it suffices to show that if x∗ is an optimal solution for the LP

(P1), then x∗v = cv for every v ∈ S. This is equivalent to showing that for any v ∈ S

there exists a vertex cover Tv such that c(Tv) = c(S) and v /∈ Tv (since then, the second

constraint of (P1) implies that x∗(S \ Tv) = c(Tv \S) thus x∗v = cv). We have the following

two cases for any v ∈ S.

Case 1 v ∈ C \ {vk}: Let Tv = V \ {v} ∈ O.

Case 2 v ∈ V \ C: Since C is maximal, there is u ∈ C such that uv /∈ E(G). Let

Tv = V \ {u, v} ∈ O.

In the sequel, we may use mechanism M to represent the algorithm used in that mech-

anism, e.g. using M(G, c) instead of A(G, c) or bv(M, c−v) instead of bv(A, c−v) where A
is the algorithm used in M .

Proposition 4.3.5 There exist an instance (G, c) and a truthful mechanism M for it

such that pM(G, c) < NTUmin(G, c) [and consequently pM(G, c) < NTUmax(G, c) since

NTUmin(G, c) ≤ NTUmax(G, c)].
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Proof : Let G = ({u1, u2, v1, v2}, {u1v1, u2v2}) and let A be an algorithm that on (G, c),

for any cost vector c ∈ R4
+, outputs {u1, u2} if cu1 +cu2 ≤ cv1 +cv2 , {v1, v2} if otherwise. M

is MON, so by using the prices stated in Theorem 1.2.8 we obtain a truthful mechanism

(more exactly, a truthful and IR mechanism).

Now if we set c = (cu1 , cu2 , cv1 , cv2) = (a, b, b, a) for some a < b ∈ R, then M(G, c) [i.e.,

A(G, c)] is {u1, u2} and pM(G, c) = a+ b. On the other hand, NTUmin(G, c) = b+ b = 2b.

Hence, pM(G, c) < NTUmin(G, c), as claimed.

Note that for this instance (G, c) we have NTUmin(G, c) = NTUmax(G, c).

4.4 A New Frugality Benchmark

Proposition 4.3.5 shows that neither of NTUmin(G, c) nor NTUmax(G, c) is a lower bound

on the payment of every truthful, IR mechanism for single-dimensional VCP on the instance

(G, c). That is, they do not yield a pointwise lower bound on the payment of a truthful,

IR mechanism. Moreover, an unsatisfactory aspect of these benchmarks is that while the

benchmark is obtained by considering the payment of a mechanism that outputs a min-cost

solution (i.e., min-cost vertex cover), there is no such (near-) optimality requirement on

the mechanism whose frugality-factor is being evaluated. Taking a leaf from the area of

approximation algorithms, we would ideally like to compare the payment of our mechanism

on an instance (G, c) to the optimal payment among all truthful and IR mechanisms for

single-dimensional VCP on the instance (G, c). This motivates the following notion of

frugality.

Definition 4.4.1 Let G be an instance of single-dimensional VCP where |V (G)| = n and

let M be a truthful and IR mechanism for G. Let M1 be a class of truthful and IR

mechanisms for G. We define the payment ratio of M with respect to M1 to be

ρ(G,M,M1) := sup
M1∈M1
c∈Rn+

pM(G, c)

pM1(G, c)

and we define the payment ratio of class M2 of mechanisms with respect to M1 to be

ρ(G,M2,M1) := inf
M∈M2

ρ(G,M,M1).
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As seen from the above definition, the above notion of payment ratio can be considered

as the worst-case “frugality ratio” of a truthful mechanism. To the best of our knowledge,

this notion of frugality is new and has not been considered in the literature.

Theorem 4.4.2 proves a basic impossibility result showing that if we compare against

the class M of all truthful, IR mechanisms then no mechanism can achieve a bounded

frugality ratio. This holds even for the simplest single-dimensional VCP instance where the

graph G = ({u, v}, {uv}) consists of a single edge.

Consider the simplest non-trivial connected graph G = ({u, v}, {uv}). Let A be

a vertex cover algorithm for G where A outputs {u} if (cu = 0 and cv ∈ [0, 1]) or

(cu ≤ cv and cv > 1), and {v} otherwise (see Figure 4.1). One can check that A is

MON and hence by Theorem 1.2.8 there exist payments such that together with A form a

truthful mechanism M∗.

u	
  

v	
  

cu

cv

0

1

Figure 4.1: Output of A on graph of single-edge uv for all possible cost vectors (cu, cv); in

the red areas u and in the blue areas v is the output.

Theorem 4.4.2 Let M be the set of all truthful mechanisms for G = K2, then we have

ρ(G,M,M) =∞ for any M ∈M.
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Proof : Assume that G = ({u, v}, {uv}). For simplicity we break the argument into two

cases.

Case 1 M = M∗: Let c = (cu, cv) = (ε, 0) for some 0 < ε < 1. Thus, M∗(G, c) = {v}
and pM∗(G, c) = bv(M

∗, c−v) = 1. Now let M1 ∈ M be the VCG mechanism for G. So,

M1(G, c) = {v} and pM1(G, c) = ε. Hence

pM(G, c)

pM1(G, c)
=

1

ε
−→∞ as ε −→ 0

Case 2 M 6= M∗: Let c = (0, a) for some 0 ≤ a ≤ 1 and M1 = M∗ ∈ M. We

have M1(G, c) = {u} and pM1(G, c) = 0. Now if M(G, c) = {v} by IR property of M ,

pM(G, c) ≥ a, hence pM(G, c)/pM1(G, c) = ∞. Otherwise, M(G, c) has to be {u}. But

again, if pM(G, c) > 0 then we have pM(G, c)/pM1(G, c) =∞. So, the only remaining case

to be considered is when for every 0 ≤ a ≤ 1 we have M(G, c) = {u} and pM(G, c) = 0

which by Theorem 1.2.8 implies that bu(M, c) = pM(G, c) = 0.

Hence, for every a ∈ [0, 1], if c′ = (ε, a) then M(G, c′) = {v} and pM(G, c′) = bv(M, c′−v) ≥
1. This behaviour of M is similar to M∗ and hence the argument for Case 1 shows that

comparing to VCG, the payment ratio of M tends to ∞.

Given the above theorem, in the sequel, we will focus on a large reasonable subclass

of mechanisms — e.g. the class of γ-approximation truthful mechanisms, or the class of

locally-optimal truthful and IR mechanisms — and compute the ρ-ratio of a mechanism

(or class of mechanisms) with respect to this subclass. (Note that the mechanism M∗,

used in Theorem 4.4.2, is neither a γ-approximation, for any γ ≥ 1, nor locally-optimal,

mechanism.)

Fix a single-dimensional VCP instance G and let Ml be the set of all truthful and IR

locally-optimal mechanisms for G. Recall from Section 4.3 that we define x-scaled edge-

threshold mechanism MA as follows: fix a vector (xu)u∈V , where xu > 0 for all u, and set

t
(uv)
u := xucv/xv for every edge (u, v). Also, we define MB to be the neighbor-threshold

mechanism where we set tu :=
∑

v∈N(u) xucv/xv. The following theorem shows that for

(xu)u∈V = (1, . . . , 1), our proposed mechanisms MA and MB, have bounded payment ratio

with respect to the class Ml.
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Definition 4.4.3 The local independence number, αl, for a graph G is defined to be the

maximum-size independent set of vertices that share a common neighbor:

α′ = max
u∈V (G)

max
S⊆N(u)

S:independent

|S|.

Theorem 4.4.4 For I ∈ {A,B}, we have

ρ(G,MI ,Ml) ≤ α′ + ∆(2α′ + 1)

where α′ is the local independence number and ∆ is the maximum degree of graph G.

Proof :

Since for each vertex v ∈ V (G) its threshold in MB is not less than its threshold in MA,

the output of MA is a subset of the output of MB and also the total payment of MA is not

more than the total payment of MB. Thus, it suffices to prove the lemma for MB.

Fix any cost vector c ∈ R+. Let Ml ∈Ml, Sl = Ml(G, c), and S = MB(G, c). We need

to show pMB(G, c) ≤ (α′ + ∆(2α′ + 1))pMl
(G, c).

For each vertex u let tu denote its threshold in MB. By definition of MB we know

pMB(G, c) =
∑

u∈S\Sl tu +
∑

u∈S∩Sl tu.

As Sl is a vertex cover we have N(u) ⊆ Sl for all u ∈ S \ Sl and since S \ Sl is an

independent set we obtain∑
u∈S\Sl

tu ≤
∑
v∈Sl

α′cv = α′c(Sl) ≤ α′pMl
(G, c)

where the last inequality follows since Ml is individually rational.

Hence it remains to show
∑

u∈S∩Sl tu ≤ ∆(2α′ + 1)pMl
(G, c). By tu’s definition we

have
∑

u∈S∩Sl tu =
∑

u∈S∩Sl c(N(u)) = ∆c(A) + ∆c(B) + ∆c(C) + ∆c(D) for some subsets

A ⊆ S \ Sl, B ⊆ S ∩ Sl, C ⊆ Sl \ S, and D ⊆ V \ (S ∪ Sl).

Note that c(A) can be upper bounded by
∑

u∈A tu ≤ α′pMl
(G, c). Also, c(B) + c(C) ≤

c(Sl). So we focus on bounding c(D). For each v ∈ D since v is not in S we have
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cv > c(N(v)). In addition, as S and Sl are both vertex covers we have N(v) ⊆ S ∩ Sl. If

c(N(v)) < cv then v /∈ Sl (due to local optimality of Ml), and hence, N(v) ⊆ Sl. Hence,

for every u ∈ N(v), we have that if cu < cv − c(N(v) \ {u}), then u ∈ Sl. Hence, by

Theorem 1.2.8, we have pu(Ml, c) ≥ cv− c(N(v)\{u}), which implies that cv ≤ pu(Ml, c)+

c(N(v) \ {u}), for every u ∈ N(v). So c(D) ≤ ∑v∈D
(
pσ(v)(MB, c) + c(N(v) \ {σ(v)})

)
where σ(v) ∈ N(v) denotes some arbitrary neighbour of v. Considering the maximum num-

ber of neighbours that each vertex in S∩Sl can have we obtain c(D) ≤∑u∈Sl(r
upu(MB, c)+

sucu) where ru = |{v ∈ D|σ(v) = u}|, and su = |{v ∈ D|u ∈ N(v), σ(v) 6= u}|. Note that

ru + su ≤ α′. As cu ≤ pu(MB, c) (by IR property of MB) we infer c(D) ≤ α′pMl
(G, c).

Therefore, ∑
u∈S∩Sl

tu ≤ ∆(α′c(Sl) + c(Sl) + α′c(Sl)) ≤ ∆(2α′ + 1)pMl
(G, c)

as desired.

Next, we prove some lower bounds for the payment ratio when we compare against the

class of approximation, truthful, IR mechanisms.

Proposition 4.4.5 Let G = K1,r be the star with r leaves and γ > 1. If M is the set of

all truthful and IR mechanisms and M(γ) is the set of all γ-approximation truthful and

IR mechanisms, for single-dimensional VCP on G, then ρ(G,M,M(γ)) ≥ γ.

Proof : we need to show that for every M ∈ M, there exist c′ ∈ Rr+1
+ and M1 ∈ M(γ)

such that pM (G,c′)
pM1

(G,c′)
≥ γ.

Let V (G) = {u, v1, . . . , vr} where deg(u) = r. Now set c = (cu, cv1 , . . . , cvr) = (a, a, 0, . . . , 0)

for some positive real number a.

Case 1 u ∈ M(G, c): Let M1 be the γ-approximation truthful mechanism that on an

instance (G, c′) of single-dimensional VCP outputs {u} if c′u ≤
∑r

i=1 c
′
vi
/γ and {v1, . . . , vr}

otherwise. Note that M1 is MON and hence by Theorem1.2.8 its payments are determined.

So, M1 is in M(γ).

Now set c′ = (a/γ, a, 0, . . . , 0). M1(G, c′) = {u} and pM1(G, c
′) = bu(M1, c

′
−u) = a/γ. On
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the other hand, as M is truthful, it is MON, thus u ∈M(G, c′) (since u ∈M(G, c) and c′u ≤
cu while c′−u = c−u). So, pM(G, c′) = bu(M, c′−u) ≥ a. Therefore, pM(G, c′)/PM1(G, c

′) ≥
a/( a

γ
) = γ.

Case 2 u /∈ M(G, c): Since M(G, c) is a vertex cover, we must have v1 ∈ M(G, c).

Let M1 be the γ-approximation truthful mechansim that on an instance (G, c′) of single-

dimensional VCP, outputs {v1, . . . , vr} if
∑

i c
′
vi
≤ c′u/γ, and {u} otherwise. One can easily

check that M1 ∈M(γ). Now set c′ = (a, a/γ, 0, . . . , 0). We have

v1 ∈M(G, c)⇒ v1 ∈M(G, c′)⇒ pM(G, c′) = bv1(M, c′−v1) ≥ a

and

M1(G, c′) = {v1, . . . , vr} ⇒ pM1(G, c
′) =

∑
i

bvi(M1, c
′
−vi) = a/γ + 0 + . . .+ 0 = a/γ.

Therefore, pM (G,c′)
pM1

(G,c′)
≥ a/( a

γ
) = γ.

Proposition 4.4.6 The above lower bound is tight for r = 1.

Proof : Suppose G = K1,1 and V (G) = {u, v}. Let M be the VCG mechansim. I.e., on

an instance (G, c) of single-dimensional VCP, M outputs {u} if cu ≤ cv, and {v} otherwise

(and the payments are according to Theorem 1.2.8). It suffices to show that for every

c ∈ R2
+ and every M1 ∈M(γ), we have

pM(G, c)

pM1(G, c)
≤ γ.

Note that pM(G, c) = max(cu, cv) for any c ∈ R2
+.

Fix an arbitrary c ∈ R2
+ and M1 ∈M(γ). There are two cases.

Case 1 M(G, c) = {v}: So we have cu > cv and pM(G, c) = cu.

If pM1(G, c) < cu/γ, by the fact that M1 is IR we conclude that M1(G, c) = {v}. Thus, by

Theorem 1.2.8, pM1(G, c) = bv(M1, c−v).
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Now choose ε > 0 so that c̄v := bv(M1, c−v) + ε < cu/γ and let c̄ = (cu, c̄v). The mechanism

M1 outputs {u} on (G, c̄) but cu/c̄v > γ which contradicts approximation ratio γ of M .

Therefore, pM1(G, c) ≥ cu/γ, as we wanted to show.

Case 2 M(G, c) = {u}: The argument is along the lines of Case 1.

Definition 4.4.7 A truthful mechanism M for single-dimensional VCP has the no-bossiness

property if when a winner decreases his cost while others keep their costs the same, the

outcome of M remains unchanged. In other words, none of the winners can change the

outcome of the mechanism M by reducing his cost.

LetMnb be the class of all truthful mechanisms for Kr with the no-bossiness property.

The following mechanism, which we call M̃ , will be used to show that ρ(Kr,Mnb,M(γ)) ≥
γ.

Let γ > 1 and G = Kr. Assume that V (G) = {v1, . . . , vr} and let Ã be the vertex cover

algorithm for (G, c) such that for each i = 1, . . . , r−1, vi ∈ Ã(G, c) iff (ci ≤ cr/γ) or (ci ≤ cj

for some 1 ≤ j 6= i ≤ r − 1), and vr ∈ Ã(G, c) iff (cr < γcj for some 1 ≤ j ≤ r − 1). It is

easy to check that Ã is MON and hence, by Theorem 1.2.8, there exist unique payments

with which it forms a truthful mechanism M̃ .

Lemma 4.4.8 M̃ ∈M(γ) for γ ≥ 2.

Proof Sketch : We only need to show that M̃ has approximation ratio γ. Let, WLOG,

assume that c1 ≤ c2 ≤ . . . ≤ cr−1 and hence {v1, . . . , vr−2} is a min-cost vertex cover of

(Kr−1, c−r) induced by vertices {v1, . . . , vr−1}.

We know that {v1, . . . , vr−2} ∈ M̃(G, c) and also if q =
∑r−2

i=1 ci then the min-cost vertex

cover of (G, c) has cost q + min{cr−1, cr}. Now if vr−1 ∈ M̃(G, c) then either cr−1 = cr−2

(which implies q ≥ cr−1) or cr−1 ≤ cr/γ. Moreover, if vr ∈ M̃(G, c) then cr < γcr−1. So,
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conditioning on whether vr−1 or vr (or both) are in M̃(G, c), and whether cr−1 ≤ cr or the

opposite, we can see that c(M̃(G,c))
q+min(cr−1,cr)

≤ γ for γ ≥ 2.

Lemma 4.4.9 We have

ρ(Kr,Mnb,M(γ)) ≥ γ

for all γ ≥ 2.

Proof : Let G = Kr and M ∈Mnb. We need to show there exist M1 ∈M(γ) and c ∈ Rr
+

such that pM(G, c)/pM1(G, c) ≥ γ.

Let V (G) = {v1, . . . , vr} and c = (c1, . . . , cn). Suppose, WLOG, {v1, . . . , vr−1} ∈
M(G, (a, . . . , a)) for some a > 0. Since M has no-bossiness property, we have M(G, c =

(0, . . . , 0, a)) = M(G, (a, . . . , a)) and hence pM(G, c) =
∑r−1

i=1 bvi(M, c−vi) ≥
∑r−1

i=1 a =

(r − 1)a.

Now let M1 = M̃ . By Lemma 4.4.8 we have M1 ∈ M(γ) for γ ≥ 2. Furthermore,

M1(G, c) = {v1, . . . , vr−1} and pM(G, c) =
∑r−1

i=1 bvi(M, c−vi) =
∑r−1

i=1 a/γ = (r − 1)a/γ.

Therefore, pM (G,c)
pM1

(G,c)
≥ (r−1)a

(r−1)a/γ
≥ γ for γ ≥ 2.
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Chapter 5

Future Directions

In this thesis, we initiated a systematic study of multidimensional covering mechanism

design problems. We have only scratched the surface in this area, and a variety of open

questions remain in this area. We briefly list some open questions regarding the various

objectives considered in the thesis.

Cost Minimization (CM). A natural question is whether one can obtain efficient truth-

ful, approximation mechanisms for other multidimensional covering problems (e.g., set

cover, Steiner tree) where the approximation ratio is close to the approximation known for

the underlying algorithmic problem.

For vertex cover, there is a large gap between the approximation known for the algorithmic

problem and what we achieve for the multidimensional problem. It would be interesting

to either obtain some lower bounds, or improve the upper bounds for Multi-VCP (i.e., the

mechanism design problem). Even finding a lower bound on the approximation that can

be achieved by threshold mechanisms for Multi-VCP would be illuminating.

Payment Minimization (PayM). The first question is if there is a gap between robust-

BIC and DSIC notions in terms of optimal expected payment?

The running time of the robust-BIC mechanisms that we have obtained are polytime with

respect to the number of items and players and the size of type-distribution, i.e. |D|. The
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question is if one can improve the running time to be dependent on marginal distribution,

i.e. maxi |Di|, instead of |D|, parallel to the results in [5]?

Frugality. The frugality objective seems to be completely unexplored in multidimen-

sional settings. It is worthwhile to investigate here whether there are other, potentially

stronger, frugality benchmarks that are better suited to multidimensional settings. We

have obtained some preliminary results for the frugality notion that we propose in Chap-

ter 4, but it is clear that there are wide gaps in our understanding here. Improving the

state-of-the-art here is an interesting and challenging research direction.

Finally, a general question that applies to both the CM and PayM objectives is whether

there are other reasonable notions of truthfulness, stronger or weaker than the ones we have

already considered, under which one can get interesting positive results?
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Appendix A

Black-box Reduction from Revenue-

to Social-Welfare- Maximization for

Packing Problems

We can leverage our ideas, in particular those in Theorem 3.6.2 and Lemma 3.7.2, to

devise a powerful black-box reduction for packing problems showing that any “integrality-

gap verifying” ρ-approximation algorithm A for the SWM problem can be used to obtain

a DSIC-in-expectation mechanism whose revenue is at least a ρ-fraction of the optimum

revenue. This is substantially stronger than the reduction in [17] in two respects: (a) it

utilizes approximation algorithms, and (b) it applies also to multidimensional problems.

In particular, we obtain, in the demand-oracle model, the first results for (multi-unit)

combinatorial auctions with general valuations, and multi-unit auctions (Theorem A.1.1).

We briefly sketch the main ideas. we consider the prototypical problem of combinatorial

auctions (CAs), where a feasible allocation ω consisting of allocating a disjoint set ωi of

items (which could be empty) to each player i, and player i’s value under allocation ω is

vi(ωi), where vi : 2[m] 7→ R+ is player i’s private valuation function. We use vi(ω) to denote

vi(ωi). Let Vi denote the set of all private types of player i, and V−i =
∏

j 6=i Vj.

Dobzinski et al. [17] also consider an LP-relaxation for the revenue-maximization prob-

lem, but their variables encode the probability that a player i receives a set S of items.
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Our LP (R-P) below is subtly, but as it turns out, crucially different from the LP in [17] in

that we force the LP to also deliver a convex combination of integer/fractional allocations

that will define the randomized mechanism. As Dobzinski et al. mention, there are two

issues with their LP-relaxation: solving the LP, and extracting a mechanism from the LP

solution. An integrality-gap verifying ρ-approximation algorithm for the SWM problem

can be used to decompose a solution to the LP in [17] scaled by ρ into a convex combination

of integer solutions, and thereby extract a DSIC-in-expectation mechanism; however, it is

unclear how to solve their LP. This is precisely the power that our approach of moving first

to an LP-relaxation of the SWM problem and then writing down the revenue-maximization

LP in terms of solutions to the SWM-LP affords us: since one can efficiently optimize over

the LP-relaxation of the SWM problem, we can give a separation oracle for the dual of

(R-P), and hence solve (R-P).

Let ΩLP denote the set of feasible solutions to the standard LP-relaxation for the CA

problem. Note that ΩLP is a polytope. let Ωext be the set of extreme points of ΩLP.

We consider the following LP. Since we are in a packing setting, we do not need the mi

estimates. We may assume that each Di contains the valuation 0i, where 0i(ω) = 0 for all

ω, since if not, we can just add this to Di, and set PrD(0i, v−i) = 0. Let D′ := ⋃i(Di×D−i).
Throughout ω indexes Ωext.

max
∑
v∈D

PrD(v)
∑
i

pi,v (R-P)

s.t.
∑
ω

xv,ω = 1 ∀v ∈ D′ (A.1)∑
ω

vi(ω)x(vi,v−i),ω − pi,(vi,v−i) ≥∑
ω

vi(ω)x(v′i,v−i),ω
− pi,(v′i,v−i) ∀i, vi, v′i ∈ Di, v−i ∈ D−i (A.2)∑

ω

vi(ω)x(vi,v−i),ω − pi,(vi,v−i) ≥ 0 ∀i, v ∈ D′ (A.3)

p, x ≥ 0. (A.4)
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The dual is:

min
∑
v

γv (R-D)

s.t.
∑

i:v∈Di×D−i

(∑
v′i∈Di

(
vi(ω)yi,(vi,v−i),v′i − v

′
i(ω)yi,(v′i,v−i),vi

)
+ vi(ω)βi,v

)
≤ γc ∀v ∈ D′, ω ∈ Ω (A.5)∑

v′i∈Di

(
yi,(vi,v−i),v′i − yi,(v′i,v−i),vi

)
+ βi,vi,v−i ≥ PrD(v)

∀i, v ∈ D′ (A.6)

y, β ≥ 0. (A.7)

As in the case of Theorem 3.5.4, the separation problem for (R-D) amounts to solving an

SWM problem over the allocation space Ωext for an input that might involve negative val-

uations. Since we can efficiently optimize over ΩLP, the dual, and hence the primal (R-P),

can be solved efficiently. So let (x, p) be an optimal solution to (R-P) with polynomial-size

support.

We argue that this can be converted to a (DSIC-in-expectation, IR) mechanism whose

revenue is at least a ρ-fraction of the value of p. Let Ω be the set of all feasible (integer)

allocations to the CA problem. Applying the convex-decomposition theorem in [32], we

can use A to express x/ρ as a convex combination of integer allocations. Hence, (x̃ =

x/ρ, p̃ = p/ρ) yields a feasible solution to the LP (R-P’) that is identical to (R-P), except

that the allocation-space is now the set Ω of all feasible integer allocations.

A.1 Extending (x̃, p̃) to a (DSIC-in-expectation, IR)

Mechanism

Finally, we show how to convert (x̃, p̃) to a (DSIC-in-expectation, IR) mechanism M =(
A, {qi}

)
with no smaller expected total revenue. Here, A(v) and qi(v) are the allocation-

distribution and expected price of player i on input v. This construction works for any
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feasible solution to (R-P’); since any robust (BIC-in-expectation, IR) mechanism yields

a feasible solution to (R-P’), this shows that in combinatorial-auction settings, any ro-

bust (BIC-in-expectation, IR)-mechanism can be extended to a (DSIC-in-expectation, IR)

mechanism without any loss in revenue.

Our argument is similar to that in the proof of Theorem 3.5.2, but the packing nature

of the problem simplifies things significantly. First, we set A(v) = x̃v, qi(v) = p̃i,v for all

v ∈ D′ and all i, so it is clear that the expected total revenue of M is the value of (x̃, p̃).

If |{i : vi /∈ Di}| ≥ 2, then we give everyone the empty-set and charge everyone 0.

Otherwise, suppose vi /∈ Di, v−i ∈ D−i. Let v̄(i) = arg maxṽi∈Di
(∑

ω vi(ω)x̃(ṽi,v−i),ω −
p̃i,(ṽi,v−i)

)
and ȳ(i) = x̃

(v̄
(i)
i ,v−i)

. For ω ∈ Ω, let proji(ω) denote the allocation where player i

receives ωi ⊆ [m], and the other players receive ∅. Viewing A(v) as the random variable

specifying the allocation selected, we set A(v) = proji(ω) with probability ȳ
(i)
ω . We set

qi(v) = p̃i,(v̄(i),v−i). Since 0i ∈ Di, we have EA[vi(A(v))] − qi(v) ≥ ∑ω 0i(ω)x̃(0i,v−i),ω −
p̃i,(0i,v−i) ≥ 0, so M is IR-in-expectation.

To see that M is DSIC-in-expectation, consider some i, vi, v
′
i ∈ Vi, v−i ∈ V−i. If

v−i /∈ D−i, then player i always receives the empty set and pays 0. Otherwise, we have

ensured by definition that player i does not benefit by lying.

There are polytime integrality-gap verifying algorithms for multi-unit CAs with B

copies per item, and multi-unit auctions (where all items are identical) with approximation

ratios O
(
m

1
B+1

)
and 2 respectively. Thus, we obtain the following.

Theorem A.1.1 With demand oracles, we can obtain polytime (DSIC-in-expectation, IR)

mechanisms with the following approximation ratios for the revenue-maximization problem:

(i)
√
m for CAs with general valuations; (ii) O

(
m

1
B+1

)
for multi-unit CAs with B copies of

each item and general valuations; (iii) 2-approximation for multi-unit auctions with general

valuations.
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