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Abstract

A binary clutter is cycling if its packing and covering linear program have integral
optimal solutions for all Eulerian edge capacities. We prove that the clutter of odd st-
walks of a signed graph is cycling if and only if it does not contain as a minor the clutter
of odd circuits of K5 nor the clutter of lines of the Fano matroid. Corollaries of this result
include, of many, the characterization for weakly bipartite signed graphs [5], packing two-
commodity paths [7, 11], packing T -joins with small |T |, a new result on covering odd
circuits of a signed graph, as well as a new result on covering odd circuits and odd T -joins
of a signed graft.
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Chapter 1

Introduction

A clutter C is a finite collection of sets, over some finite ground set E(C), with the property
that no set in C is contained in, or is equal to, another set of C. This terminology was first
coined by Edmonds and Fulkerson [2]. A cover B is a subset of E(C) such that B ∩C 6= ∅,
for all C ∈ C. The blocker b(C) is the clutter of the minimal covers. It is well known that
b(b(C)) = C ([9, 2]). A clutter is binary if, for any C1, C2, C3 ∈ C, their symmetric difference
C1 4 C2 4 C3 contains, or is equal to, a set of C. Equivalently, a clutter is binary if, for
every C ∈ C and B ∈ b(C), |C ∩B| is odd ([9]). It is therefore immediate that a clutter is
binary if and only if its blocker is.

Let C be a clutter and e ∈ E(C). The contraction C/e and deletion C \ e are clutters on
the ground set E(C)−{e} where C/e is the collection of minimal sets in {C−{e} : C ∈ C}
and C \ e := {C : e /∈ C ∈ C}. Observe that b(C/e) = b(C) \ e and b(C \ e) = b(C)/e.
Contractions and deletions can be performed sequentially and the result does not depend
on the order. A clutter obtained from C by a sequence of deletions Ed and a sequence of
contractions Ec (Ed ∩ Ec = ∅) is called a minor of C and is denoted C \ Ed/Ec.

Given edge-capacities w ∈ ZE(C)
+ consider the linear program

(P )


min

∑
(wexe : e ∈ E(C))

s.t. x(C) ≥ 1, C ∈ C
xe ≥ 0, e ∈ E(C),

and its dual

(D)


max

∑
(yC : C ∈ C)

s.t.
∑

(yC : e ∈ C ∈ C) ≤ we, e ∈ E(C)
yC ≥ 0, C ∈ C.
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A clutter is said to be ideal if, for every edge-capacities w ∈ ZE(C)
+ , (P ) has an optimal

solution that is integral. A beautiful result of Lehman [10] states that a clutter is ideal if

and only if its blocker is. Edge-capacities w ∈ ZE(C)
+ are said to be Eulerian if, for every B

and B′ in b(C), w(B) and w(B′) have the same parity. Seymour [14] calls a binary clutter

cycling if, for every Eulerian edge-capacities w ∈ ZE(C)
+ , (P ) and (D) both have optimal

solutions that are integral. It can be readily checked that if a clutter is cycling (or ideal)
then so are all its minors ([14, 15]). Therefore, one can characterize the class of cycling
clutters by excluding minor-minimal clutters that are not in this class. In this paper, we
will only focus on binary clutters.

O5 is the clutter of the odd circuits of K5. Let L7 be the clutter of the lines of the Fano
matroid, i.e. E(L7) = {1, 2, 3, 4, 5, 6, 7} and

L7 := {{1, 2, 7}, {3, 4, 7}, {5, 6, 7}, {1, 3, 5}, {1, 4, 6}, {2, 3, 6}, {2, 4, 5}}.

Let P10 be the collection of the postman sets of the Petersen graph, i.e. sets of edges
which induce a subgraph whose odd degree vertices are the (odd degree) vertices of the
Petersen graph. Observe that the four clutters O5, b(O5),L7,P10 are binary, and moreover,
it can be readily checked that none of these clutters is cycling. Hence, if a binary clutter is
cycling then it cannot have any of these clutters as a minor. The following excluded minor
characterization is predicted.

Conjecture 1.1 (Cycling Conjecture). A binary clutter is cycling if, and only if, it has
none of the following minors: O5, b(O5),L7,P10.

The Cycling Conjecture, as stated, can be found in Schrijver [13]. However, this con-
jecture was first proposed by Seymour [14] and then edited by A.M.H. Gerards and B.
Guenin. It is worth mentioning that this conjecture contains the four color theorem [16].
None of our results in this paper have any apparent bearings on this theorem.

Consider a finite graph G, where parallel edges and loops are allowed. A cycle of G is
the edge set of a subgraph of G where every vertex has even degree. A circuit of G is a
minimal cycle, and a path is a circuit minus an edge. We define an st-path as follows: if
s 6= t then it is a path where s and t are the degree one vertices of the path; otherwise,
when s = t then it is just the singleton vertex s. Let Σ be a subset of its edges. The pair
(G,Σ) is called a signed graph. We say a subset S of the edges is odd (resp. even) in (G,Σ)
if |S ∩ Σ| is odd (resp. even). Let s, t be vertices of G. We call a subset of the edges of
(G,Σ) an odd st-walk if it is either an odd st-path, or it is the union of an even st-path
P and an odd circuit C where P and C share at most one vertex. Observe that when
s = t then an odd st-walk is simply an odd circuit. It is easy to see that clutters of odd
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st-walks are closed under taking minors. As is shown in [6] the clutter of odd st-walks is
binary, and it does not have a minor isomorphic to b(O5) or P10. In this paper, we verify
the Cycling Conjecture for this class of binary clutters:

Theorem 1.2. A clutter of odd st-walks is cycling if, and only if, it has no O5 and no L7

minor.

1.1 Restating Theorem 1.2

One can view Theorem 1.2 as a packing and covering result. We first the following defini-
tion: we say that two edges of a signed graph are parallel if they have the same end-vertices
as well as the same sign. Now let (G = (V,E),Σ) be a signed graph without any parallel
edges, and choose s, t ∈ V . Let C be the clutter of the odd st-walks, over the ground set
E, and choose edge-capacities w ∈ ZE+. An odd st-walk cover of (G,Σ) is simply a cover
for C. When there is no ambiguity, we refer to an odd st-walk cover as just a cover.

Proposition 1.3 ([6]). If a subset of the edges is a minimal cover then it is either an
st-bond (a minimal st-cut) or it is of the form Σ4 C, where C is a cut with s and t on
the same shore.

The minimal covers of the latter form above are called signatures. Notice that if Σ′ is a
signature, then (G,Σ) and (G,Σ′) have the same clutter of odd st-walks.

Reset (G,Σ) as follows: replace each edge e of (G,Σ) with we parallel edges. The
packing number ν(G,Σ) of (G,Σ) is the maximum number of pairwise (edge-)disjoint odd
st-walks. A dual parameter to the packing number is the covering number τ(G,Σ), which
records the minimum size of a cover of (G,Σ). Consider a packing of ν(G,Σ) pairwise
disjoint odd st-walk and a cover of size τ(G,Σ). As the cover intersects every odd st-
walk in the packing it follows that τ(G,Σ) ≥ ν(G,Σ). A natural question arises: when
does equality hold? Theorem 1.2 gives sufficient conditions for a signed graph to satisfy
τ(G,Σ) = ν(G,Σ). To elaborate, observe that τ(G,Σ) is the value of (P ) and ν(G,Σ) is
the value of (D). For w to be Eulerian is to say that every two minimal covers of (G,Σ)
have the same parity. Therefore, Proposition 1.3 implies the following.

Remark 1.4. Edge-capacities w are Eulerian if, and only if,

(1) s = t and the degree of every vertex is even, or

(2) s 6= t, deg(s)− |Σ| and the degree of every vertex in V − {s, t} are even.
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We call such signed graphs st-Eulerian.

Just like how we defined minor operations for clutters, we now define minor operations
for signed graphs. Let e ∈ E. Then the minor operations for C correspond to the following
minor operations for (G,Σ): (1) delete e: replace (G,Σ) by (G \ e,Σ − {e}), (2) contract
e: replace (G,Σ) by (G/e,Σ′), where Σ′ is a signature of (G,Σ) that does not use the edge
e. Observe that vertices s and t move to wherever the edge contractions take them, and if
s and t are ever identified then we say s = t. A signed graph (H,Γ) is a minor of (G,Σ)
if it is isomorphic to a signed graph obtained from (G,Σ) by a sequence of edge deletions,
edge contractions, and possibly deletion of isolated vertices and switching s and t. Note
that if (H,Γ) is a minor of (G,Σ), then the clutter of odd st-walks of (H,Γ) is a minor of
the clutter of odd st-walks of (G,Σ).

The two special clutters O5 and L7 that appear in Theorem 1.2 have the following
representations: O5 is the clutter of odd st-walks of K̃5 := (K5, E(K5)) where s = t is one
of the five vertices, and L7 is the clutter of odd st-walks of the signed graph F7 with s 6= t,
as shown in Figure 1.1. Observe that τ(K̃5) = 4 > 2 = ν(K̃5) and τ(F7) = 3 > 1 = ν(F7).
We can now restate Theorem 1.2 as follows, and in fact, we will prove this restatement

s t

Figure 1.1: Signed graph F7: a representation of L7. Dashed edges are odd.

instead of the original one:

Theorem 1.5. Let (G,Σ) be a signed graph with s, t ∈ V (G). If (G,Σ) is an st-Eulerian

signed graph that does not contain K̃5 or F7 as a minor then τ(G,Σ) = ν(G,Σ).

1.2 Generalizing Theorem 1.5

Let (G = (V,E),Σ) be a signed graph with s, t ∈ V . Suppose (G,Σ) is an st-Eulerian

signed graph that does not contain K̃5 or F7 as a minor. If s 6= t let τst be the size of a
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minimum st-bond, otherwise let τst := τ(G,Σ). Observe that τst ≥ τ(G,Σ) as every st-
bond is also a cover. Add τst − τ(G,Σ) odd loops to (G,Σ) to obtain another st-Eulerian

signed graph (G′,Σ′). Since neither K̃5 nor F7 contain an odd loop, it follows that (G′,Σ′)

also does not contain K̃5 or F7 as a minor. Observe that τ(G′,Σ′) = τ(G,Σ) + (τst −
τ(G,Σ)) = τst and so by Theorem 1.2, one can find a packing of τst pairwise disjoint
odd st-walks in (G′,Σ′). In (G,Σ) this packing corresponds to a collection of τst pairwise
disjoint elements, at least (and therefore exactly) τ(G,Σ) of which are odd st-walks and
the remaining elements are even st-paths. Therefore, we get the following generalization
of Theorem 1.5.

Theorem 1.6. Let (G,Σ) be a signed graph with s, t ∈ V (G). Suppose that (G,Σ) is an

st-Eulerian signed graph that does not contain K̃5 or F7 as a minor. Then there exists a
collection of τst(G,Σ) pairwise disjoint elements, τ(G,Σ) of which are odd st-walks and
the remaining elements are even st-paths.

To obtain another generalization of Theorem 1.5 and a counterpart to Theorem 1.6,
let τΣ be the size of a minimum signature. Observe that τΣ ≥ τ(G,Σ) and that τ(G,Σ) =
min{τst, τΣ}. In contrast to above, this time we add τΣ − τ(G,Σ) even edges between s
and t to (G,Σ) to obtain another st-Eulerian signed graph (G′,Σ′). Notice, however, that

we can no longer guarantee that (G′,Σ′) contains no K̃5 or F7 minor. Observe that this

is true if, and only if, (G,Σ) does not contain K̃5, K̃5

0
, K̃5

1
, K̃5

2
, K̃5

3
or F−7 as a minor,

where

(1) for i ∈ {0, 1, 2, 3}, K̃5

i
is the signed graph obtained from splitting a vertex, and its

incident edges, of K̃5 into two vertices s, t, where s has degree i and t has degree 4− i,
and

(2) F−7 is the signed graph obtained from F7 by deleting the edge between s and t.

Note that if we add an even edge to any of these signed graphs, then a K̃5 or an F7

appears as a minor. It can be readily checked that if (G,Σ) does not contain any of these

five signed graphs as a minor, then (G′,Σ′) contains no K̃5 or F7 minor. Observe now
that τ(G′,Σ′) = τ(G,Σ) + (τΣ − τ(G,Σ)) = τΣ and so by Theorem 1.2, one can find a
packing of τΣ pairwise disjoint odd st-walks in (G′,Σ′). In (G,Σ) this packing corresponds
to a collection of τΣ pairwise disjoint elements, τ(G,Σ) of which are odd st-walks and the
remaining elements are odd circuits. Thus, the following counterpart to Theorem 1.6 is
obtained.
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Theorem 1.7. Let (G,Σ) be a signed graph with s, t ∈ V (G). Suppose that (G,Σ) is an

st-Eulerian signed graph that does not contain K̃5, K̃5

0
, K̃5

1
, K̃5

2
, K̃5

3
or F−7 as a minor.

Then in (G,Σ) there exists a collection of τΣ(G,Σ) pairwise disjoint elements, τ(G,Σ) of
which are odd st-walks and the remaining elements are odd circuits.
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Chapter 2

Applications of Theorem 1.2

In this section, we discuss some applications of Theorem 1.2. Observe that a cycling clutter
is also ideal. As a corollary, we get the following theorem:

Corollary 2.1 (Guenin [6]). A clutter of odd st-walks is ideal if, and only if, it has no O5

and no L7 minor.

When s = t an odd st-walk is just an odd circuit. A signed graph is said to be weakly
bipartite if the clutter of its odd circuits is ideal. The clutter of odd circuits does not
contain an L7 minor [6]. Hence, we get the following two results as corollaries of Theorem
1.2:

Corollary 2.2 (Guenin [5]). A signed graph is weakly bipartite if, and only if, it has no

K̃5 minor.

Corollary 2.3 (Geelen and Guenin [3]). A clutter of odd circuits is cycling if, and only
if, it has no O5 minor.

Observe that 2w is Eulerian for any w ∈ ZE(G)
+ . As a result, the following result follows

as a corollary of Theorem 1.2:

Theorem 2.4. Suppose that C is a clutter of odd st-walks without an O5 or an L7 minor.
Then, for any edge-capacities w ∈ ZE(G)

+ , the linear program (P ) has an optimal solution
that is integral and its dual (D) has an optimal solution that is half-integral.

To obtain more applications of Theorem 1.2, we will turn to its restatement Theorem
1.5, and naturally try to find nice classes of signed graphs without a K̃5 or an F7 minor.
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2.1 Signed graphs without K̃5 and F7 minor

Let (G,Σ) be a signed graph with s, t ∈ V . Observe that if s = t then (G,Σ) has no F7

minor, and there are many classes of such signed graphs without a K̃5 minor. For instance,
whenever G is planar or |Σ| = 2, (G,Σ) does not contain a K̃5 minor. Other classes of
such signed graphs can be found in [4, 3]. In this section, we focus only on signed graphs
(G,Σ) with distinct s, t ∈ V .

A blocking vertex is a vertex v whose deletion removes all the odd cycles, and a blocking
pair is a pair of vertices {u, v} whose deletion removes all the odd cycles.

Remark 2.5. The following classes of signed graphs with s 6= t do not contain K̃5 or F7

as a minor:

(1) signed graphs with a blocking vertex,

(2) signed graphs where {s, t} is a blocking pair,

(3) plane signed graphs with at most two odd faces,

(4) signed graphs that have an even face embedding on the projective plane, and s and t
are connected with an odd edge,

(5) signed graphs where every odd st-walk is connected, and

(6) plane signed graphs with a blocking pair {u, v} where s, u, t, v appear on a facial cycle
in this cyclic order.

Observe that class (5) contains (2) and (4). We will apply Theorem 1.5 to the first three
classes, and in the first two cases, we obtain quite well-known results. However, the third
class will yield a new and interesting result on packing odd circuit covers. Notice that one
can even apply the generalization Theorem 1.6 to these classes.

Observe further that the signed graphs in (1) and (2) do not contain K̃5

0
, K̃5

1
, K̃5

2
, K̃5

3

or F−7 as a minor either, so one may even consider applying Theorem 1.7 to these classes.
We leave it to the reader to find out what Theorems 1.6 and 1.7 applied to these classes
imply.
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2.1.1 Class (1): packing T -joins with |T | = 4

Let H be a graph with vertex set W , and choose an even vertex subset T . A T -join of H
is an edge subset whose odd degree vertices are (all) the vertices in T . A T -cut of H is an
edge subset of the form δ(U) where U ⊆ W and |U ∩ T | is odd. Observe that the blocker
of the clutter of minimal T -joins is the clutter of minimal T -cuts.

Corollary 2.6. Let H be a graph and choose a vertex subset T of size 4. Suppose that
every vertex of H not in T has even degree and that all the vertices in T have degrees of
the same parity. Then the maximum number of pairwise disjoint T -joins is equal to the
minimum size of a T -cut.

Proof. Suppose that T = {s, t, s′, t′}. Identify s′ and t′ to obtain G, and let Σ = δH(s′).
Then the signed graph (G,Σ) contains a blocking vertex s′t′, and so it belongs to class (1).
By Remark 1.4 (G,Σ) is st-Eulerian. Theorem 1.2 then implies that τ(G,Σ) = ν(G,Σ).
However, observe that an odd st-walk of (G,Σ) is a T -join of H, and a T -join in H contains
an odd st-walk of (G,Σ). Hence, τ(G,Σ) = ν(G,Σ) implies that the maximum number of
pairwise disjoint T -joins is equal to the minimum size of a T -cut.

This result is actually true for any even vertex subset T of size at most 8 [1].

2.1.2 Class (2): packing two-commodity paths

Corollary 2.7 (Hu [7], Rothschild and Whinston [11]). Let H be a graph and choose two
pairs (s1, t1) and (s2, t2) of vertices, where s1 6= t1, s2 6= t2, all of s1, t1, s2, t2 have the same
parity, and all the other vertices have even degree. Then the maximum number of pairwise
disjoint paths, that are between si and ti for some i = 1, 2, is equal to the minimum size of
an edge subset whose deletion removes all s1t1- and s2t2-paths.

Proof. Identify s1 and s2, as well as t1 and t2 to obtain G, and let Σ = δH(s1)4 δH(t2).
Let s := s1s2 ∈ V (G) and t := t1t2 ∈ V (G). Then the signed graph (G,Σ) has {s, t} as a
blocking pair, and so it belongs to class (2). Again by Remark 1.4 (G,Σ) is st-Eulerian.
Therefore, by Theorem 1.2 we get that τ(G,Σ) = ν(G,Σ). However, observe that an odd
st-walk of (G,Σ) is an siti-path of H, for some i = 1, 2, and such a path in H contains an
odd st-walk of (G,Σ). Thus, τ(G,Σ) = ν(G,Σ) proves the corollary.
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2.1.3 Class (3): packing odd circuit covers

Theorem 2.8. Let (H,Σ) be a plane signed graph with exactly two odd faces and choose
distinct g, h ∈ V (H). Let (G,Σ) be the signed graph obtained from identifying g and h
in H, and suppose that every two odd circuits of (G,Σ) have the same parity. Then in
(G,Σ) the maximum number of pairwise disjoint odd circuit covers is equal to the size of
a minimum odd circuit.

(Here an odd circuit cover is simply a cover for the clutter of odd circuits.) As the
reader may be wondering, what is the rationale behind the rather strange construction of
(G,Σ) above? Interestingly, the clutter of minimal odd circuit covers is binary, and so the
Cycling Conjecture predicts an excluded minor characterization for when this clutter is
cycling. As we did with the clutter of odd st-walks, one can restate the Cycling Conjecture
for the clutter of odd circuit covers as follows:

(?) for signed graphs (G,Σ) without a K̃5 minor such that every two odd
circuits have the same parity, the maximum number of pairwise disjoint odd
circuit covers is equal to the minimum size of an odd circuit. (?)

The construction in the statement of Theorem 2.8 yields a signed graph (G,Σ) that has

no K̃5 minor, and Theorem 2.8 verifies the restatement above for these classes of signed
graphs.

Proof. Let H∗ be the plane dual of H, and let P be an odd gh-path in (H,Σ). Let s and
t be the two odd faces of (H,Σ). Consider the plane signed graph (H∗, P ); note that this
signed graph has precisely two odd faces, namely g and h, and so it belongs to class (3).

In particular, (H∗, P ) contains no K̃5 and F7 minor. Since every two odd circuits of (G,Σ)
have the same parity, it follows from Remark 1.4 that (H∗, P ) is st-Eulerian. So Theorem
1.2 applies and we have τ(H∗, P ) = ν(H∗, P ).

We claim that an odd cycle of (G,Σ) is an odd st-walk cover of (H∗, P ), and vice-versa.
Let L be an odd cycle of (G,Σ). If L is an odd cycle of (H,Σ) then L separates the two
odd faces s and t, and so it is an st-cut in (H∗, P ). Otherwise, L is an odd gh-path and so
L4P is an even cycle of (H,Σ). However, an even cycle in (H,Σ) is a cut in (H∗, P ) having
s and t on the same shore. Hence, L is of the form P 4 δ(U) where s, t ∈ U ⊆ V (H∗).
Therefore, in either cases, L is an odd st-walk cover of (H∗, P ). Similarly, one can show
that an odd st-walk cover of (H∗, P ) is an odd cycle of (G,Σ). Therefore, since b(b(C)) = C
for any clutter C, it follows that an odd circuit cover of (G,Σ) is an odd st-walk of (H∗, P ),
and vice-versa.
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Hence, τ(H∗, P ) is the minimum size of an odd circuit of (G,Σ), and ν(H∗, P ) is the
maximum number of pairwise disjoint odd circuit covers of (G,Σ). Since τ(H∗, P ) =
ν(H∗, P ) the result follows.

In the next section, the restatement Theorem 1.5 delivers a packing and covering result
for a very intriguing class of binary clutters.

2.2 Clutter of odd circuits and odd T -joins

Let (G = (V,E),Σ) be a signed graph, and let T ⊆ V be a subset of even size. We call the
triple (G,Σ, T ) a signed graft. Let C be the clutter over the ground set E that consists of
odd circuits and minimal odd T -joins of (G,Σ, T ). This minor-closed class of such clutters
is fairly large. For instance, if T = ∅ then C is the clutter of odd circuits, and if Σ is a
T -cut then C is the clutter of T -joins.

Remark 2.9. C is a binary clutter.

Proof. Take any three elements C1, C2, C3 of C. If an even number of C1, C2, C3 are odd
circuits, then C14C24C3 is an odd T -join and so it contains an element of C. Otherwise,
an odd number of C1, C2, C3 are odd circuits, and so C14C24C3 is an odd cycle and so it
contains an element of C. Since this is true for all C1, C2, C3 in C, it follows from definition
that C is binary.

Remark 2.10. Minimal covers of C are of the form Σ4 δ(U), where U ⊆ V and |U ∩ T |
is even.

Proof. Let B be a minimal cover of C. Then B intersects every odd circuit of (G,Σ), and
so B 4 Σ = δ(U) for some U ⊆ V . The preceding remark showed C is binary, and so B
intersects every odd T -join in an odd number of edges, so |U ∩ T | must be even.

The result below follows as a corollary of Theorem 1.5.

Theorem 2.11. Let (G,Σ, T ) be a plane signed graft with exactly two odd faces that has

no minor isomorphic to F̃7. Let C be the clutter of odd circuits and minimal odd T -joins,
and suppose that every two elements of C have the same size parity. Then the maximum
of pairwise disjoint minimal covers of C is equal to the minimum size of an element of C.

11



Figure 2.1: Signed graft F̃7, where all edges are odd and shaded vertices are in T . For this
signed graft, C = b(C) ∼= L7.

Proof. Let G∗ be the plane dual of G, and let P be an odd T -join in (G,Σ, T ). Let s and t

be the two odd faces of (G,Σ, T ). Since (G,Σ, T ) has no minor isomorphic to F̃7, it follows

that the signed graph (G∗, P ) contains no F7 minor, and since it is planar, it has no K̃5

minor either. Since every two elements of C have the same parity, it follows that (G∗, P )
is st-Eulerian. So by Theorem 1.5, τ(G∗, P ) = ν(G∗, P ).

We claim that C is the clutter of odd st-walk covers of (G∗, P ), and vice-versa. Let
C ∈ C. If C is an odd circuit of (G,Σ, T ), then C is an st-cut of G∗. Otherwise, C is
an odd T -join and so C 4 P is an even cycle of (G,Σ). Thus, C = P 4 δ(U) for some
U ⊆ V (G∗)− {s, t}, i.e. C is a signature of (G∗, P ).

Hence, τ(G∗, P ) is the minimum size of an element of C, and ν(G∗, P ) is the maximum
number of pairwise disjoint covers of C. Since τ(G∗, P ) = ν(G∗, P ) the result follows.

Observe that this theorem is, in fact, a generalization of Theorem 2.8.
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Chapter 3

Overview of the Proof of
Theorem 1.5

We start with an st-Eulerian signed graph (G,Σ) that does not pack, i.e. τ(G,Σ)> ν(G,Σ),

and we will look for either of the obstructions K̃5, F7 as a minor.

Among all the st-Eulerian non-packing weighted minors of (G,Σ), we pick one (G′,Σ′)
with smallest τ(G′,Σ′), smallest |V (G′)| and largest |E(G′)|, in this order of priority. Such a
non-packing weighted minor exists. Indeed, if an edge has sufficiently many parallel edges,
then it may be contracted while keeping (G′,Σ′) non-packing and τ(G′,Σ′) unchanged.
Reset (G,Σ) := (G′,Σ′) and let τ := τ(G,Σ), ν := ν(G,Σ). By identifying a vertex of each
(connected) component with s, if necessary, we may assume that G is connected. (Notice

that none of the obstructions K̃5, F7 have a cut-vertex.)

Remark 3.1. There do not exist τ − 1 pairwise disjoint odd st-walks in (G,Σ).

Proof. Suppose otherwise. Remove some τ − 1 pairwise disjoint odd st-walks in (G,Σ).
Observe that what is left is an odd {s, t}-join because |Σ|, deg(s), deg(t) and τ all have
the same parity and all vertices other than s, t have even degree. Hence, since every odd
{s, t}-join contains an odd st-walk, one can actually find τ pairwise disjoint odd st-walks
in (G,Σ), contradicting the fact that (G,Σ) is non-packing.

Let B be a cover of (G,Σ) of size τ . Choose an edge Ω as follows. If s = t then
let Ω ∈ E − B, and since label s is irrelevant to our problem in this case, we may as
well assume Ω ∈ δ(s). Otherwise, when s 6= t, let Ω ∈ δ(s) ∪ δ(t) − B. Indeed, if such
an edge does not exist, then δ(s) ∪ δ(t) is contained in the minimum cover B, implying
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that δ(s) ∪ δ(t) = δ(s) = δ(t), but this cannot be the case as G is connected and non-
packing. We may assume that Ω is incident to s. Let s′ be the other end-vertex of Ω.
Add two parallel edges Ω1,Ω2 to Ω to obtain (K,Γ); this st-Eulerian signed graph must
pack since τ(K,Γ) = τ as B is also a minimum cover for (K,Γ), V (K) = V (G) but
|E(K)| > |E(G)|. Hence, (K,Γ) contains a collection {L1, L2, . . . , Lτ} of pairwise disjoint
odd st-walks. Observe that all of Ω,Ω1 and Ω2 must be used by the odd st-walks in
{L1, L2, . . . , Lτ}, say by L1, L2, L3, since otherwise one finds at least τ − 1 disjoint odd st-
walks in (G,Σ), which is not the case by the preceding remark. As a result, the sequence
(L1, L2, L3, . . . , Lτ ) corresponds to an Ω-packing of odd st-walks in (G,Σ), described as
follows:

(1) L1, . . . , Lτ are odd st-walks in (G,Σ),

(2) Ω ∈ L1 ∩ L2 ∩ L3 and Ω /∈ L4 ∪ · · · ∪ Lτ , and

(3) (Lj − {Ω} : 1 ≤ j ≤ τ) are pairwise disjoint subsets.

We may assume that (L1, . . . , Lτ ) covers a minimal subset of edges, amongst all the Ω-
packings of odd st-walks.

For an odd st-walk L, we say that a minimal cover B is a mate of L if |B−L| = τ − 3.

Lemma 3.2. Let L be an odd st-walk such that (G,Σ) \L contains at least τ − 3 pairwise
disjoint odd st-walks. Then L has a mate.

Observe that if L ⊆ L1 ∪L2 ∪L3 or L ∈ {L4, . . . , Lτ}, then (G,Σ) \L contains at least
τ − 3 pairwise disjoint odd st-walks.

Proof. The signed graph (G,Σ)\L packs since it is st-Eulerian and τ((G,Σ)\L) < τ . LetB′

be one of its minimum covers. By our assumption, τ((G,Σ)\L) ≥ τ−3. Since both (G,Σ)
and (G,Σ)\L are st-Eulerian it follows that τ((G,Σ)\L) and τ have different parities, and
so τ((G,Σ)\L) is either τ−3 or τ−1. However, observe that the latter is not possible due
to Remark 3.1 and the fact that (G,Σ) \L packs. As a result |B′| = τ((G,Σ) \L) = τ − 3.
It is now clear that B′ ∪ L contains a mate for L.

Choose an integer 3 ≤ m ≤ τ and rearrange L4, . . . , Lτ such that Lm+1, . . . , Lτ are the
connected odd st-walks. So each Lj, 4 ≤ j ≤ m, is the vertex-disjoint union of an odd
circuit Cj and an even st-path Pj, and each of Lm+1, . . . , Lτ is either an odd st-path, or
the union of an odd circuit C and an even st-path P such that C and P have a vertex
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in common. Let H := L1 ∪ L2 ∪ L3 ∪
⋃m
j=4 Pj and orient the edges in H so that each Pj,

1 ≤ j ≤ m, is a directed st-path, and every odd circuit Cj, 1 ≤ j ≤ 3 (if any), is a directed
circuit. We call an odd st-walk directed if it is either an odd directed st-path, or it is the
union of an even directed st-path and a directed odd circuit. By our terminology, the three
odd st-walks L1, L2 and L3 in H are directed.

We call T a transversal of a collection of sets if T picks exactly one element from each
of the sets.

Remark 3.3. Let B be a mate of Li, for some 1 ≤ i ≤ 3. If B is a signature then
B ∩ E(H) = B ∩ Li.

Proof. Since |B−Li| = τ−3 it follows that Ω ∈ B and B−Li is a transversal of L4, . . . , Lτ .
However, as B is a signature, we get that |B ∩ Cj| is odd for all 4 ≤ j ≤ m implying that
B ∩ Pj = ∅ for all 4 ≤ j ≤ m. Since B ∩Lk = {Ω} for k ∈ [3]− {i}, and Ω ∈ Li, it follows
that B ∩ E(H) = B ∩ Li.

Let (G′,Σ′) be a minor of (G,Σ) and let H ′ be a directed graph obtained by orienting
edges in a subgraph of G′, where (G′,Σ′) and H ′ are minimal subject to

(M1) E(G)− E(G′) ⊆ E(H \ Ω), and E(H ′) ⊆ L1 ∪ L2 ∪ L3 ∪
⋃m
j=4 Pj,

(M2) there exist m edge subsets in H ′ that are pairwise disjoint except possibly at Ω,
exactly three of which contain Ω which are directed odd st-walks, and the remaining
m− 3 edge subsets are even directed st-paths,

(M3) for any directed odd st-walk L of H ′ for which (G′,Σ′) \ L contains τ − 3 pairwise
disjoint odd st-walks, there exists an odd st-walk cover B of (G′,Σ′) such that
|B − L| = τ − 3, and

(M4) there is no odd st-walk cover for (G′,Σ′) of size τ − 2.

Note that these conditions are satisfied by (G,Σ) and H, so (G′,Σ′) and H ′ are well-
defined. As in (M2) let L′1, L

′
2, L

′
3, P

′
4, P

′
5, . . . , P

′
m be m edge subsets of H ′ that are pairwise

disjoint except possibly at Ω, L′1, L
′
2 and L′3 are directed odd st-walks that contain Ω, and

P ′4, . . . , P
′
m are even directed st-paths that do not contain Ω. We make the following three

assumptions about the choice of L′1, L
′
2, L

′
3, P

′
4, P

′
5, . . . , P

′
m, in this order of priority:

(A1) L′1 ∪L′2 ∪L′3 ∪
⋃m
j=4 P

′
j is a minimal edge subset among all possible choices for the m

edge subsets as in (M2),
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(A2) the number of non-simple odd st-walks amongst L′1, L
′
2, L

′
3 is maximum among all

possible choices for the m edge subsets, and

(A3) H ′ = L′1 ∪ L′2 ∪ L′3 ∪
⋃m
j=4 P

′
j .

For notational convenience, let V ′ := V (G′), E ′ := E(G′) and reset Li := L′i, Lj := Cj ∪P ′j
and Pj := P ′j for all 1 ≤ i ≤ 3 and 4 ≤ j ≤ m. By identifying a vertex of each component
with s, if necessary, we may assume that

(A4) H ′ is connected.

For each 1 ≤ i ≤ 3, choose a minimal mate Bi for Li as in (M3). Observe that for each
1 ≤ i ≤ 3 since |Bi − Li| = τ − 3, Bi − Li must be a transversal of {L4, . . . , Lτ} and
Ω ∈ Bi. Keep in mind that each of B1, B2, B3 is either an st-bond or a signature, and
complicating matters more, each of L1, L2, L3 is either simple or non-simple. Even more,
if Li, 1 ≤ i ≤ 3 is non-simple then Ω could be in either Ci or Pi. The various combinations
of the possibilities for L1, L2, L3, B1, B2, B3 and where the edge Ω is sitting only makes the
problem of finding the obstructions more complex. However, as we will see in the following
lemma, various combinations for L1, L2 and L3 restricts the possibilities for B1, B2, B3 and
where Ω is sitting. Recall that s and s′ are the end-vertices of Ω.

Lemma 3.4. One of the following holds:

Template (I): L1, L2 and L3 are simple,

Template (II): at least one of L1, L2, L3 is non-simple, and whenever Lk is non-simple
for some 1 ≤ k ≤ 3, then Ω ∈ Ck,

Template (III): at least two of L1, L2, L3 are non-simple, and Ω ∈ P1 ∩ P2 ∩ P3.

Proof. We will show that if (I) or (II) does not hold, then (III) must hold. In other words,
we assume that at least one Lk of L1, L2, L3 is non-simple and Ω /∈ Ck, and we will show
that at least two of L1, L2, L3 must be non-simple and Ω ∈ P1 ∩ P2 ∩ P3.

We may assume that k = 1. Then Ω ∈ P1. We first show that Ω ∈ P2 ∩ P3. Notice
that, for i = 2, 3, Bi ∩ L1 = {Ω} and Ω /∈ C1, implying that Bi ∩ C1 = ∅. Hence, B2 and
B3 cannot be signatures, i.e. they are st-bonds. Hence, since B2 ∩ L3 = B3 ∩ L2 = {Ω}
and B2 intersects any circuit an even number of times, it follows that Ω /∈ C2 ∪ C3 and so
Ω ∈ P2 ∩ P3.
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It remains to show that L2 and L3 cannot both be simple odd st-walks. Suppose
otherwise. Choose minimal vertex subsets Ui ⊆ V ′−{t} such that δ(Ui) = Bi, for i = 2, 3.
Let U := U2 ∩ U3 and B := δ(U). Note B ⊆ B2 ∪ B3, and B is an st-cut so it is a cover
of (G′,Σ′), implying |B| ≥ τ . We will obtain a contradiction to (M4) by showing that
|B| = τ − 2.

Take 1 ≤ i ≤ τ . We will show that |B∩Li| = 1. If i /∈ {2, 3} then |B∩Li| ≤ |B2∩Li|+
|B3 ∩ Li| = 2, and since |B ∩ Li| is odd it follows that |B ∩ Li| = 1. Otherwise, i ∈ {2, 3}.
Since Ω ∈ B∩Li and s ∈ U , we get that s′ /∈ U2∪U3. We claim that B∩Li = {Ω}. If not,
then there exists a vertex u ∈ V (Li)∩U −{s}. But then Li[s

′, u]∩B5−i 6= ∅, which cannot
be the case as Li ∩ B5−i = {Ω}. (Here Li[s

′, u] denotes the subpath in Li between s′ and
u.) As a result, |B| = |B ∩ (

⋃τ
i=1 Li)| = 1 +

∑τ
i=4 |B ∩ Li| = τ − 2, a contradiction.

Observe that the case where s = t is under template (II). We find either of the obstruc-

tions K̃5, F7 as a minor starting from one of the templates (I),(II) and (III). The template
having the least structure is (I) and the one with the most structure is (III). Hence, as
the reader may expect, finding the obstructions is most difficult when (I) occurs and it is
least difficult for (III). The proof is split into eight parts, four of which are spent to find
an obstruction in (I), three parts are taken by (II), and the remaining part considers (III).

3.1 Template (I): Parts (1)-(4)

Suppose we are given Template (I). There are three main factors that extensively split the
proof into four parts. The first factor is whether (H ′ \Ω,Σ′ ∩E(H ′ \Ω)) contains an odd
cycle.

In Part (1) we assume that (H ′ \Ω,Σ′ ∩E(H ′ \Ω)) does contain an odd cycle. In this
case, we show that exactly one of B1, B2, B3, say B3, is an st-bond. Therefore, B3 = δ(U3)
for some vertex subset U3 ⊆ V . We then move on to showing that P1∪P2 contains two odd
cycles, and then a disentangling argument allows us to assume that P1, P2 and P3 do not
pairwise intersect “wildly”. Then connectivity inside G′[U3] gives us a path R connecting s
to V P3−{s}, see Figure 3.1. (Hereinafter, V Q := V (Q) for a path, circuit or an {s, t}-join
Q.) At this point, once R is contracted the signed graph in Figure 3.2 is obtained, which
clearly is F7.

For the other three parts, we assume that (H ′ \ Ω,Σ′ ∩E(H ′ \ Ω)) is bipartite. Now a
second factor comes into effect, and that is whether or not the following holds:

(X1) no odd st-dipath of (H ′,Σ′ ∩ E(H ′)) has a mate which is an st-bond.
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s t

P1

P2

P3U3 R

Figure 3.1: Towards an F7 minor. Bold edges are odd.

s t

Figure 3.2: Signed graph F7, where the bold edges are odd.

In Part (2) we assume that (X1) holds. If vertex t lies on every odd circuit of (H ′,Σ′ ∩
E(H ′)), then a disentangling argument allows us to assume that P1, P2, P3 and P4 (whose
existence is also proved) do not intersect wildly in H ′, see Figure 3.3; the path P4 is

s t

P1

P2

P3

P4

Figure 3.3: Towards a K̃5 minor. The bold edge is odd.

contracted to identify s and t, and then carefully chosen paths in (G′,Σ′) are added to

obtain the signed graph in Figure 3.4, which evidently is K̃5. Otherwise, there is an odd
circuit C of (H ′,Σ′∩E(H ′)) that avoids t. In this case, we find a vertex v common to both
P1 and P2 that is closest to t, followed by two vertex disjoint paths Q and P , one connecting
s′ to v and the other connecting s to t, see Figure 3.5. Then, after considering the mates B1

and B2, we are able to find a path R in (G′,Σ′), vertex disjoint from P ∪Q∪C, connecting
V P1[v, t] − {v, t} to V P2[v, t] − {v, t}. We then contract paths R and Q to obtain F7, as
in Figure 3.2.

For the remaining two parts, we assume that (X1) does not hold. So there exists a
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s = t

Figure 3.4: Signed graph K̃5, where the bold edges are odd.

s t

C

P

Q
R

P1[v, t]

P2[v, t]

vs0

Figure 3.5: Towards an F7 minor. The bold edges are odd.

simple odd st-walk L of (H ′,Σ′ ∩ E(H ′)) owning an st-bond B as a mate, i.e. B is a
cover of (G′,Σ′) such that |B − L| = τ − 3. It turns out that we may assume L = L1

and B = B1. Choose U1 ⊆ V − {t} so that B1 = δ(U1), see Figure 3.6. Let u 6= s and

s t

P1

P2

P3

U1

u

w

Figure 3.6: The bold edge is odd.

w be, respectively, the closest and furthest vertices on P1 from s that lie inside U1. Let
C1 := P1[s, u], Q1 := P1[w, t], and F ′ := (P1∩G′[U1])∪C1∪Q1∪

⋃m
j=2 Pj. The third factor

presents itself: whether or not

(X2) for every even st-dipath P in (F ′,Σ′ ∩ E(F ′)), V (P ) ∩ V (C1) ⊆ U1.

In Part (3) we assume that (X2) holds, and in Part (4) (X2) does not hold. In either
parts, both obstructions can be present as minors.
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Here is a summary of the four parts:

Part (1): Template (I) holds, and (H ′ \ Ω,Σ′ ∩ E(H ′ \ Ω)) is not bipartite.

Part (2): Template (I) holds, (H ′ \ Ω,Σ′ ∩ E(H ′ \ Ω)) is bipartite, and (X1) holds.

Part (3): Template (I) holds, (H ′ \Ω,Σ′∩E(H ′ \Ω)) is bipartite, (X1) does not hold, and
(X2) holds.

Part (4): Template (I) holds, (H ′ \Ω,Σ′∩E(H ′ \Ω)) is bipartite, (X1) does not hold, and
(X2) does not hold.

3.2 Template (II): Parts (5)-(7)

Suppose now we are given Template (II). A natural question to ask is how many of L1, L2, L3

are non-simple odd st-walks, and the three possibilities form the three parts taken by
Template (II).

In Part (5) we assume that all of L1, L2, L3 are non-simple. If s = t then we appeal

to a lemma by Geelen and Guenin [3] to find a K̃5 minor. Otherwise, an even st-path P
is carefully chosen and contracted to identify s and t and then the same lemma comes to
the rescue, see Figure 3.7. In Part (6) we assume that two of L1, L2, L3 are non-simple. In

s t

C1

C2

C3

⌦ P

Figure 3.7: The bold edge is odd.

this part, an F7 minor is found in a similar manner as it was constructed in Part (2) (see
Figures 3.5 and 3.2). In Part (7) we assume that only one of L1, L2, L3 is non-simple. This
part turns out to be more complex than the other two parts, and both obstructions can in
fact appear as minors.

Here is a summary of the three parts:
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Part (5): Template (II) holds, and all of L1, L2, L3 are non-simple.

Part (6): Template (II) holds, and two of L1, L2, L3 are non-simple.

Part (7): Template (II) holds, and one of L1, L2, L3 is non-simple.

3.3 Template (III): Part (8)

In the last part, Part (8), we assume that Template (III) is given.

Part (8): Template (III) holds.

That is, at least two of L1, L2, L3, say L1 and L2, are non-simple, and Ω ∈ P1 ∩ P2 ∩ P3.
Here we find an F7 minor. However, our arguments for this part will be presented in a
more general setting, as we will refer to this part as a subroutine in the other parts of the
proof. For this part, we assume

(M1’) (G′,Σ′) contains τ odd {s, t}-joins L1, L2, L3, . . . , Lτ that are pairwise disjoint except
possibly at Ω,

(M2’) Ω ∈ Lj if and only if 1 ≤ j ≤ 3,

(M3’) L1, L2 and L3 are odd st-walks, at least two of which are non-simple,

(M4’) for every odd st-walk L ⊆ L1 ∪ L2 ∪ L3, there exists an odd st-walk cover B of
(G′,Σ′) such that |B − L| = τ − 3,

(M5’) there is no odd st-walk of (G′,Σ′) of size τ − 2.

We may assume that L1, L2 and L3 as above have a minimal union amongst all possible
choices for L1, L2, L3 in (G′,Σ′). As before let Bi be a of Li, for 1 ≤ i ≤ 3. We first show
that the covers B1, B2 and B3 are all st-bonds. Then if Ui is the shore of Bi containing
s (1 ≤ i ≤ 3) we prove that U1 ( U2 ( U3. To explain the ideas of the proof more
transparently, suppose that L3 is non-simple as well. As we will see, this implies that
Ω ∈ P3. Then we show that Pi ∩ Bi = {Ω} and |Ci ∩ Bi| ≥ 2 for 1 ≤ i ≤ 3. Moreover,
we will see that V (C1) ⊆ U2, V (C2) ⊆ U3 − U1 and V (C3) ∈ V − U1 − U2. Then for
the final argument we will show that there is enough connectivity in each of the pieces
U1, U2 − U1, U3 − U2 and V − U3 so as to connect s to V (C1) ∩ U1, V (C1) ∩ (U2 − U1) to
V (C2) ∩ (U2 − U1), V (C2) ∩ (U3 − U2) to V (C3) ∩ (U3 − U2), and V (C3) ∩ (V − U3) to t in
each of the respective pieces, see Figure 3.8. Then appropriate edges are contracted and
an F7 minor, as in Figure 3.2 is found.
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U1
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U3

Figure 3.8: Towards an F7 minor. The three bold circuits are odd.
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Chapter 4

Some lemmas

For the sake of notational convenience, we denote X − (Y1 ∪ Y2 ∪ · · · ∪ Yn) by X − Y1 −
Y2 − · · · − Yn, for sets X, Y1, Y2, . . . , Yn.

4.1 Basic lemmas

Lemma 4.1. Let (F,Γ) be a signed graph with distinguished vertices s, t that is non-
packing, and let B be a minimal cover. Then B cannot be both a signature and an st-bond.

Proof. Suppose not, and let B be a minimal cover that is both a signature and an st-bond.
Let P be an st-path. Then |B ∩ P | is odd as B is an st-cut, and so P is odd as B is
also a signature. Hence, every st-path is odd and so every odd st-walk is an st-path, and
vice-versa. Therefore, Menger’s theorem implies that (F,Γ) packs, a contradiction.

Lemma 4.2. Let (F = (V,E),Γ) be a signed graph with distinguished vertices s, t that is
st-Eulerian, and let Ω be an edge incident to s. Suppose that τ(F,Γ) > τ − 2 for some
integer τ ≥ 3. Let Q1 and Q2 be (edge-)disjoint paths such that Ω /∈ Q1 ∪ Q2. Suppose
there exist minimal covers S1, S2 such that

(1) for i ∈ {1, 2}, Ω ∈ Si and |Si −Qi − {Ω}| = τ − 3,

(2) S1 ∩Q2 = S2 ∩Q1 = ∅, and

(3) S1 and S2 are signatures.
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Suppose further that there exists a collection L of τ − 3 pairwise disjoint edge subsets of
E − Q1 − Q2 − {Ω}, each of which is either an odd circuit or an odd st-path. Choose
a vertex subset U of V − {s, t} such that δ(U) = S1 4 S2. Then there exists a path in
F [U ]− S1 − S2 between V (Q1) and V (Q2).

Proof. Observe first that, for each i = 1, 2, Si − Qi − {Ω} is a transversal of L, as every
element of L is odd and |L| = |Si −Qi − {Ω}|.

We next show that there exists a path in F [U ] between V (Q1) and V (Q2). Suppose
not. Then there exists U0 ⊆ U such that V (Q1) ∩ U ⊆ U0, V (Q2) ∩ U ∩ U0 = ∅ and
δ(U0) − δ(U) = ∅. Let S := S1 4 δ(U0) which is another cover of (F,Γ). We claim that
|S| = τ − 2. Observe that S ∩Q1 = ∅ as S1 ∩Q1 = δ(U0)∩Q1. Moreover, for every L ∈ L,
|S ∩ L| = 1. Indeed, if L ∩ δ(U0) = ∅ then S ∩ L = S1 ∩ L and so |S ∩ L| = 1. Otherwise,
if L ∩ δ(U0) 6= ∅ then |L ∩ δ(U0)| = 2 as L ∩ δ(U0) = L ∩ δ(U) = (L ∩ S1) ∪ (L ∩ S2) since
L is either a circuit or an st-path. Therefore, since S ⊆ {Ω} ∪ Q1 ∪ (

⋃
(L : L ∈ L)), it

follows that |S| = 1 + |L| = τ − 2, as claimed. However, τ − 2 = |S| ≥ τ(F,Γ) > τ − 2, a
contradiction. So there exists a path P in F [U ] between V (Q1) and V (Q2).

To finish the proof, note that if e ∈ S1 ∪ S2 is an edge of F [U ] then e must be in both
S1 and S2 as e /∈ δ(U) = S14 S2. Thus if P ∩ (S1 ∩ S2) = ∅ then we are done. Otherwise,
let e ∈ P ∩ S1 ∩ S2. Then e must belong to an element L of L. Observe that L must be
a circuit lying completely in F [U ] since otherwise, for some i ∈ {1, 2}, |L ∩ Si| > 1. But
then one can bypass the edge e by rerouting P through L \ e. By repeatedly applying this
operation, we will end up with a path in F [U ] − S1 − S2 between V (Q1) and V (Q2), as
desired.

Lemma 4.3. Let (F = (V,E),Γ) be a signed graph with distinguished vertices s, t that is
st-Eulerian, and let Ω be an edge incident to s. Suppose that τ(F,Γ) > τ − 2 for some
integer τ ≥ 3. Let Q1 and Q2 be odd st-paths such that Ω ∈ Q1 ∩Q2. Suppose there exist
minimal covers S1, S2 such that

(1) Ω ∈ S1 ∩ S2 and |Si −Qi| = τ − 3 for i = 1, 2,

(2) S1 ∩Q2 = S2 ∩Q1 = {Ω}, and

(3) S1 is an st-bond and S2 is a signature.

Suppose further that there exists a collection L of τ − 3 pairwise disjoint odd {s, t}-joins
of E − Q1 − Q2. Choose a vertex subset U of V − {t} such that δ(U) = S1. Then there
exists a path in F [U ]− S2 between s and V (Q1)− {s}.
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Proof. As above, observe that, for i = 1, 2, Si − Qi has size τ − 3 and so is a transversal
of L, as every element of L contains an odd st-walk. Suppose, for a contradiction, there is
no path in F [U ]− S2 connecting s and V (Q1)− {s}. Then there exists U0 ⊆ U such that
V (Q1) ∩ U0 = {s} and δ(U0)− δ(U) ⊆ S2.

Let S := δ(U0). Then S is a cover of (F,Γ) contained in S1 ∪ S2. We claim that
|S| = τ − 2. Observe that S ∩ Q1 = {Ω} and, since Ω ∈ Q2 and S1 ∩ Q2 = {Ω}, we also
have S ∩ Q2 = {Ω}. Moreover, for every L ∈ L, |L ∩ S| ≤ |L ∩ S1| + |L ∩ S2| = 2 and
so |L ∩ S| = 1 as |L ∩ S| is odd. Therefore, since S ⊆ {Ω} ∪ (

⋃
(L : L ∈ L)), it follows

that |S| = 1 + |L| = τ − 2, as claimed. However, τ − 2 = |S| ≥ τ(F,Γ) > τ − 2, a
contradiction.

Lemma 4.4. Let (F = (V,E),Γ) be a signed graph with distinguished vertices s, t that is
st-Eulerian, and let Ω be an edge incident to s. Suppose that τ(F,Γ) > τ − 2 for some
integer τ ≥ 3. Let (L1, L2, . . . , Lτ ) be an Ω-packing of odd {s, t}-joins, where L1 and L2 are
connected. Suppose that B1, B2 are minimal covers such that, for i = 1, 2, |Bi−Li| = τ−3.
Then B1, B2 cannot both be st-bonds.

Proof. Observe, for i = 1, 2, Ω ∈ Bi and that Bi−Li is a transversal of L4, . . . , Lτ . Suppose,
for a contradiction, that both B1 and B2 are st-bonds. For i = 1, 2, choose minimal vertex
subsets Ui ⊆ V − {t} such that δ(Ui) = Bi. Let U := U1 ∩ U2 and B := δ(U). Note
that B is an st-cut, in particular, it is a cover, and that B ⊆ B1 ∪ B2. We will show that
|B| = τ − 2. Take 1 ≤ i ≤ τ . If i 6= 1, 2 then |B ∩Li| ≤ |B1 ∩Li|+ |B2 ∩Li| = 2, and since
|B ∩ Li| is odd it follows that |B ∩ Li| = 1.

Take j ∈ {1, 2}. Suppose that s, s′ are the end-vertices of Ω. Since Ω ∈ B ∩ Lj and
s ∈ U , we get that s′ /∈ U1 ∪ U2. We claim that B ∩ Lj = {Ω}. If not then there exists a
vertex u ∈ V Lj∩U−{s}. Since Lj is connected, Lj[s

′, u]∩B3−j 6= ∅ (here Lj[s
′, u] denotes

the subpath of Lj between s′ and u). But then Lj ∩B3−j ) {Ω}, which is not the case.

As a result, |B| =
∣∣∣B ∩ (⋃τ

j=1 Lj

)
=
∣∣∣ = 1 +

∑τ
j=4 |B ∩ Lj| = τ − 2. However, τ − 2 =

|B| ≥ τ(F,Γ) > τ − 2, a contradiction.

Lemma 4.5. Let (F,Γ) be a signed graph with distinguished vertices s, t that is st-Eulerian,
and let Ω be an edge incident to s. Suppose that τ(F,Γ) > τ−2 for some integer τ ≥ 3. Let
(L1, L2, . . . , Lτ ) be an Ω-packing of odd {s, t}-joins, and suppose that, for each 1 ≤ i ≤ 3,
there exists a minimal cover Bi such that |Bi − Li| = τ − 3. If s has degree one in
F [L1 ∪ L2 ∪ L3], then it cannot be the case that one of L1, L2, L3 is a non-simple odd
st-walk and the other two are simple odd st-walks.
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Proof. Suppose otherwise. We may assume that L3 is a non-simple odd st-walk and the
two odd st-walks L1 and L2 are simple. Choose 1 ≤ i ≤ 2. Since |Bi−Li| = τ−3, it follows
that Bi − Li is a transversal of L4, . . . , Lτ , and Bi ∩ L1 = {Ω}. Let C be the odd circuit
contained in L3. As s has degree one in F [L1∪L2∪L3] it follows that Bi∩C = ∅, implying
that Bi is an st-bond. Therefore, B1 and B2 are st-bonds, contradicting Lemma 4.4.

Lemma 4.6. Let (F,Γ) be a signed graph with distinguished vertices s, t that is st-Eulerian,
and let Ω be an edge incident to s. Suppose that τ(F,Γ) > τ − 2 for some integer τ ≥ 3.
Let (L1, L2, . . . , Lτ ) be an Ω-packing of odd {s, t}-joins, where

(1) L1 is a simple odd st-walk and L4 is contains an even st-path P4,

(2) there exists a vertex v ∈ V (L1) ∩ V (P4)− {s, t}, and

(3) there exist minimal covers B1, B4 of (F,Γ) such that |B1−{Ω}−L1[v, t]| = τ − 3 and
|B4 − {Ω} − P4[v, t]| = τ − 3.

Then B1, B4 cannot both be st-bonds.

Proof. Suppose not. Choose minimal vertex subsets U1, U4 ⊆ V −{t} such that Bi = δ(Ui)
for i = 1, 4. Let U := U1 ∩ U4 and B := δ(U), which is an st-cut. We will show that
|B| = τ − 2.

Observe that |B1 − L1| ≥ τ − 3 as each of L4, L5, . . . , Lτ contain an st-path, and so
B1 ∩ Lj 6= ∅ for all 4 ≤ j ≤ τ . However, |B1 − L1| ≤ |B1 − {Ω} − L1[v, t]| = τ − 3, and so
|B1 − L1| = τ − 3, Ω ∈ B1 and

(∗) B1 ∩ L1[s, v] = {Ω}, |B1 ∩ P4[s, v]| = 1.

Note that since |B1 ∩ L4| = 1, (∗) implies that B1 ∩ P4[v, t] = ∅.
Let L′1 := L1[s, v] ∪ P4[v, t] and L′4 := (L4 − P4) ∪ (P4[s, v] ∪ L4[v, t]). Similarly,

|B4 − L′1| ≥ τ − 3 as each of L′4, L5, . . . , Lτ contain an st-path, and so B4 ∩ L′4 6= ∅ and
B4 ∩ Lj 6= ∅ for all 5 ≤ j ≤ τ . However, |B4 − L′1| ≤ |B4 − {Ω} − P4[v, t]| = τ − 3, and so
|B4 − L′1| = τ − 3 and

(∗∗) B4 ∩ L1[s, v] = {Ω}, |B4 ∩ P4[s, v]| = 1.

Again, since |B4 ∩ L′4| = 1, (∗∗) implies that B4 ∩ L1 = {Ω}.
Take 1 < i ≤ τ such that i 6= 4. Then |B ∩ Li| ≤ |B1 ∩ Li| + |B4 ∩ Li| = 2, and since

|B ∩ Li| is odd it follows that |B ∩ Li| = 1. We claim that B ∩ L1 = {Ω}. If not then
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there exists a vertex u ∈ V L1 ∩ U − {s}. Since L1 is an odd st-path, L1[s′, u] ∩ δ(U4) 6= ∅,
which is not the case as B4 ∩ L1 = {Ω}. Lastly, we show that |B ∩ L4| = 1. Observe
that B ∩ L4 = B ∩ P4 since (B1 ∪ B4) ∩ (L4 − P4) = ∅. Notice that (∗) and (∗∗) imply
that |B ∩ P4[s, v]| = 1. Moreover, B ∩ P4[v, t] = ∅ since B1 ∩ P4[v, t] = ∅. Hence,
|B ∩ L4| = |B ∩ P4| = 1.

As a result, |B| =
∣∣∣B ∩ (⋃τ

j=1 Lj

)
=
∣∣∣ = 1 +

∑τ
j=4 |B ∩ Lj| = τ − 2. However, τ − 2 =

|B| ≥ τ(F,Γ) > τ − 2, a contradiction.

Lemma 4.7. Let (F,Γ) be a signed graph that is the union of pairwise disjoint xy-paths
Q1, . . . , Qn, for some distinct vertices x, y ∈ V (F ). If Qi ∪ Qj contains no odd cycle, for
all i, j ∈ {1, . . . , n}, then (F,Γ) is bipartite.

Proof. We proceed by induction on n. For n = 1 the lemma is trivial. Choose n ≥ 2, and
assume that the statement holds for all 2 ≤ k < n. Then Q1 ∪ · · · ∪Qn−1 is bipartite, and
so there exists a signature Γ′ ⊆ Qn. Choose a vertex subset U ⊆ V (F ) − {x} such that
Γ′ ∩ Qn = δ(U) ∩ Qn. Since Qn ∪ Qj is bipartite, for all 1 ≤ j ≤ n − 1, it follows that
y /∈ U , and U ∩ V (Qj) = ∅. As a result, Γ′ = δ(U), implying that (F,Γ′), and therefore
(F,Γ), is bipartite.

4.2 The Intersection Lemma

For an acyclic graph F and two of its vertices x, y, we say that x � y if there is a yx-dipath.
If x 6= y then x � y. For an edge subset E ′ of E(F ), we say x �E′ y if there is a yx-dipath
in E ′. Similarly, if x 6= y then x �E′ y.

Lemma 4.8 (Intersection Lemma). Let F be an acyclic directed graph and let s, t be
distinct vertices of F . Suppose further that F is the union of st-dipaths Q1, . . . , Qm. For
every j ∈ {1, . . . ,m}, let vj � s be the closest vertex to s on Qj that also lies on Qi, for
some i ∈ {1, . . . ,m} − {j}. Then there exists an index i ∈ {1, . . . ,m} such that vi � v1,
and whenever vi ∈ V (Qj), vi = vj.

Proof. Suppose otherwise. Then for each i ∈ {1, 2, . . . ,m} such that vi � v1, there exists
f(i) ∈ {1, 2, . . . ,m} − {i} such that vi ∈ V (Qf(i)) but vf(i) ≺ vi. But then v1 � vf(1) �
vf(f(1)) � vf(f(f(1))) � · · · . However, this not possible since there are only finitely many
vertices in F and F is acyclic, a contradiction.
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4.3 The K̃5 Lemma

Lemma 4.9 ([3]). Let (F,Γ) be a signed graph and let Ω = {x, y} be an edge of F , for
some distinct vertices x and y of F . Suppose that every odd circuit cover of (F,Γ) has
length more than τ − 2, for some integer τ ≥ 3. Suppose that (C1, C2, C3, . . . , Cτ ) is a
sequence of odd circuits of (F,Γ) such that

(1) Ω ∈ C1 ∩ C2 ∩ C3 but Ω /∈
⋃τ
j=4 Cj,

(2) (Cj − {Ω} : 1 ≤ j ≤ τ) are pairwise edge-disjoint,

(3) the three xy-paths Pj := Cj − {Ω}, j = 1, 2, 3 are pairwise internally vertex-disjoint,
and

(4) for every j ∈ {1, 2, 3}, there exists a minimal odd circuit cover Bj such that |Bj−Cj| =
τ − 3.

Then (F,Γ) has a K̃5 minor.

4.4 The Reduction Lemma

The following is essentially due to Geelen and Guenin [3]. However, the proof we provide
here is slightly different than theirs and makes use of Menger’s theorem.

Lemma 4.10. Let (F,Γ) be a signed graph with distinguished vertices s, t. (It is possible
that s = t.) Let Ω = {s, s′} be an edge of F , for some vertex s′ ∈ V (F )− {s, t}. Suppose
that τ(F,Γ) > τ − 2 for some integer τ ≥ 3. Let (L1, L2, L3, . . . , Lτ ) be a sequence of odd
{s, t}-joins such that

(R1) Ω ∈ L1 ∩ L2 ∩ L3 and Ω /∈ L4 ∪ . . . ∪ Lτ ,

(R2) (Lj − {Ω} : 1 ≤ j ≤ τ) are pairwise disjoint,

(R3) if s = t, then L1, L2, L3 are odd circuits, and otherwise when s 6= t, L1, L2, L3 are
odd st-paths,

(R4) if L′1, L
′
2 and L′3 are odd st-walks in L1∪L2∪L3 that use Ω and are pairwise disjoint

except at Ω, then L′1 ∪ L′2 ∪ L′3 = L1 ∪ L2 ∪ L3,
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(R5) for every odd st-walk L ⊆ L1 ∪L2 ∪L3, there exists an odd st-walk cover B of (F,Γ)
for which |B − L| = τ − 3, and

(R6) whenever L and B satisfy the following, then B is a signature: L ⊆ L1 ∪ L2 ∪ L3 is
an odd st-walk and B is an odd st-walk cover of (F,Γ) such that |B − L| = τ − 3,
and for every other odd st-walk cover B′ of (F,Γ) such that |B′ − L| = τ − 3, we
have B′ ∩ L 6⊂ B ∩ L.

Then there exists a minor (F ′,Γ′) of (F,Γ) and odd st-walks L′1, L
′
2, L

′
3 ⊆ L1∪L2∪L3 such

that

(R1’) E(F )− E(F ′) ⊆ L1 ∪ L2 ∪ L3 − {Ω},

(R2’) if s = t then L′1, L
′
2, L

′
3 are odd circuits, otherwise when s 6= t, L′1, L

′
2, L

′
3 are odd

st-paths.

(R3’) L′1 − {Ω}, L′2 − {Ω} and L′3 − {Ω} are pairwise internally vertex-disjoint s′t-paths,

(R4’) for j ∈ {1, 2, 3}, there exists a signature B′j of (F ′,Γ′) for which |B′j − L′j| = τ − 3,
and

(R5’) there is no odd st-walk cover of (F ′,Γ′) of size τ − 2, i.e. τ(F ′,Γ′) > τ − 2.

Before we prove the lemma, let us make the following definition. Let L be an odd st-
walk contained in L1∪L2∪L3. An odd st-walk cover B of (F,Γ) is said to be an internally
minimal mate of L if |B − L| = τ − 3, and for any other odd st-walk cover B′ of (F,Γ)
such that |B′ − L| = τ − 3, we have B′ ∩ L 6⊂ B ∩ L. So condition (R6) of the lemma
can be rephrased as follows: for every odd st-walk L ⊆ L1 ∪ L2 ∪ L3 and every internally
minimal mate B of L, B is a signature.

Proof. We will now proceed to prove the lemma. Let H := L1 ∪ L2 ∪ L3 − {Ω}, and for
each i ∈ {1, 2, 3}, let Bi be an internally minimal mate for Li, which exists by (R5) and is
a signature by (R6).

Claim 1. {Ω} is a signature for (H ∪ {Ω}, (EH ∪ {Ω}) ∩ Γ′).

Proof of Claim. Let J := H ∪ {Ω}. We will proceed by finding a vertex subset U ⊆
V (F ) − {s, t} such that (B3 4 δ(U)) ∩ EJ = {Ω}. Let U ⊆ V L3 − {s, t} be the unique
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subset for which L3 ∩ δ(U) = L3 ∩ B3 − {Ω}. Observe that B1 ∩ (L2 ∪ L3) = {Ω}, and so
L2 ∪ L3 − {Ω} is bipartite, which in turn implies U ∩ V L2 = ∅. Similarly, U ∩ V L1 = ∅.
Therefore, δ(U) ∩ EJ = δ(U) ∩ L3 = B3 ∩ EJ − {Ω} and so

(B34 δ(U)) ∩ EJ = (B3 ∩ EJ)4 (B3 ∩ EJ − {Ω}) = {Ω},

as claimed. 3

For each Lj, 1 ≤ j ≤ 3 let Pj := Lj − {Ω}, which is an s′t-path, whether s = t or not.
Then H = P1 ∪ P2 ∪ P3, and orient the edges of H so that each Pi, 1 ≤ i ≤ 3 is a directed
s′t-path. Observe that Claim 1 implies that (H,EH ∩ Γ) is bipartite.

Claim 2. H is acyclic.

Proof of Claim. Suppose otherwise, and let C be a directed circuit in H. As H is acyclic,
we can find three pairwise disjoint s′t-dipaths P ′1, P

′
2, P

′
3 in H \ C. However, by Claim 1,

each P ′j ∪{Ω}, 1 ≤ j ≤ 3 is an odd st-walk, contradicting the minimality assumption (R4)
of Lemma 4.10. 3

Let (F ′,Γ′) be a minor of (F,Γ), and let H ′ be a directed subgraph of (F ′,Γ′), where
(F ′,Γ′) and H ′ are minimal subject to

(i) E(F )− E(F ′) ⊆ P1 ∪ P2 ∪ P3, and E(H ′) ⊆ P1 ∪ P2 ∪ P3

(ii) H ′ is acyclic and there exist three disjoint s′t-dipaths in H ′,

(iii) for every s′t-dipath P ′ of H ′, P ∪ {Ω} is an odd st-walk, and there exists an odd
st-walk cover B′ of (F ′,Γ′) such that |B′ − P ′| = τ − 3,

(iv) for every s′t-dipath P ′ of H ′ and every internally minimal mate B′ of P ′, B′ is a
signature, and

(v) there is no odd st-walk cover of (F ′,Γ′) of size τ − 2.

Observe that (F,Γ) and H satisfy all of the five properties, so (F ′,Γ′) and H ′ are well-
defined. Let P ′1, P

′
2 and P ′3 be three disjoint s′t-dipaths of H ′ as in (ii), and for each

1 ≤ j ≤ 3 let L′j := P ′j ∪ {Ω}, which is an odd st-walk by (iii). We claim that (F ′,Γ′) and
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L′1, L
′
2, L

′
3 satisfy (R1’)-(R5’), and this will finish the proof of Lemma 4.10. It is clear that

(R1’), (R2’), (R4’) and (R5’) hold. We are then left with (R3’).

We need to prove that P ′1, P
′
2 and P ′3 are pairwise internally vertex-disjoint. Suppose,

for a contradiction, that this is not the case. We will obtain a contradiction by showing
that (F ′,Γ′) and H ′ were not a minimal choice subject to (i)− (v). For each 1 ≤ i ≤ 3, let
vi 6= t be the closest vertex to t on P ′i that also lies on another P ′j . We may assume that
v1 6= s′, so s′ � v1 � t. Since H is acyclic by Claim 2, the Intersection Lemma implies that
there exists vi � v1 such that whenever vi ∈ V (P ′j) then vi = vj. We may again assume
that i = 1. Let I be the set of all indices j in {1, 2, 3} such that v1 = vj. Note that 1 ∈ I
and |I| ≥ 2.

Claim 3. For every i ∈ I, there exists an odd st-walk cover B′ of (F ′,Γ′) such that
|B′ − P ′i [vi, t]− {Ω}| = τ − 3.

Proof of Claim. Suppose otherwise. By symmetry, we may assume that there is no odd
st-walk cover B′ of (F ′,Γ′) such that |B′−P ′1[v1, t]−{Ω}| = τ−3. Let (F ′′,Γ′′) := (F ′,Γ′)\
P ′1[v1, t]/ ∪ (P ′j [vj, t] : j ∈ I, j 6= 1) and H ′′ := H ′ \ P ′1[v1, t]/ ∪ (P ′j [vj, t] : j ∈ I, j 6= 1). It
is clear that (F ′′,Γ′′) and H ′′ still satisfy (i) and (ii). We claim that (iii)− (v) also hold,
thereby contradicting the minimality of (F ′,Γ′) and H ′. We may assume that 2 ∈ I −{1}.

To prove (iii), let P ′′ be an s′t-dipath of H ′′. Then P ′′ ∪P ′2[v2, t] contains an s′t-dipath
of H ′, and since v1 = v2, it follows that P ′′ ∪ P ′1[v1, t] also contains an s′t-dipath of H ′.
Hence, since (iii) holds for (F ′,Γ′) and H”, there exists an odd st-walk cover B′ of (F ′,Γ′)
such that |B′ − (P ′′ ∪ P ′1[v1, t]) − {Ω}| = τ − 3. Let B′′ := B − P ′1[v1, t], which is an odd
st-walk cover for (F ′′,Γ′′). Then |B′′ − P ′′| = τ − 3 and this proves (iii) for (F ′′,Γ′′) and
H ′′.

To prove (iv), let B′′ be an internally minimal mate for P ′′, for some s′t-dipath P ′′ of
(F ′′,Γ′′). Let P ′ be the s′t-dipath of (F ′,Γ′) contained in P ′′∪P ′1[v1, t]. Then B′′∪P ′1[v1, t]
contains an internally minimal mate B′ of P ′ in (F ′,Γ′). Observe that it must be the case
that B′′ ⊆ B′, and since B′ is a signature for (F ′,Γ′) by (iv), it follows that B′′ too is a
signature for (F ′′,Γ′′).

It remains to prove (v). If there were an odd st-walk cover B′′ of (F ′′,Γ′′) of size τ − 2,
then B′ := B′′∪P ′1[v1, t] would be an odd st-walk cover of (F ′,Γ′), but |B′−P ′1[v1, t]−{Ω}| =
|B′′−{Ω}| = τ − 3, a contradiction since we assumed such B′ does not exist. This finishes
the proof of the claim. 3
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Claim 4. There is no cut-vertex in H ′ separating s′ from {v1, t}.

Proof of Claim. Suppose otherwise. Let v ∈ V (H ′)−{s′, t} be a cut-vertex of H ′ separating
s′ from {v1, t}. Then v ∈ V (P ′i ) for every i ∈ {1, 2, 3}. Let R′i := P ′i [v, t] for i ∈ {1, 2, 3}.
One of the following must hold:

(1) for every vt-dipath R′ in R′1 ∪ R′2 ∪ R′3, there is an odd st-walk cover B′ such that
|B′ −R′ − {Ω}| = τ − 3, or

(2) there exists a vt-dipath R′ in R′1 ∪R′2 ∪R′3 for which there is no odd st-walk cover B′

such that |B′ −R′ − {Ω}| = τ − 3.

If (1) holds then let (F ′′,Γ′′) := (F ′,Γ′)/∪(P ′j [s
′, v] : 1 ≤ j ≤ 3) and H ′′ := H ′/∪(P ′j [s

′, v] :
1 ≤ j ≤ 3). It can be readily checked that (i), (ii), (iv) and (v) still hold, and by assump-
tion (1), (iii) also holds for (F ′′,Γ′′) and H ′′. However, this cannot be the case by the
minimality of (F ′,Γ′) and H ′. Hence, (2) holds. By the acyclicity of H ′, we may assume
that R′ = R′1. Then let (F ′′,Γ′′) := (F ′,Γ′) \ R′1/(R′2 ∪ R′3) and H ′′ := H ′ \ R′1/(R′2 ∪ R′3).
Again, it is clear that (i) and (ii) still hold. Likewise to the proof of the preceding claim,
(iii) and (iv) hold, and by assumption (2), (v) also holds for (F ′′,Γ′′) and H ′′. But this is
a contradiction to the minimality of (F ′,Γ′) and H ′. This finishes the proof of the claim. 3

Hence, by Menger’s theorem, there exists two directed paths P and P ′′3 that have only
vertex s′ in common, P is from s′ to v1, and P ′′3 is from s′ to t. Let P ′′i := P ′i [vi, t] for
i = 1, 2, and let (F ′′,Γ′′) := (F ′,Γ′)/P and H ′′ := P ′′1 ∪P ′′2 ∪P ′′3 . Notice that P ′′1 , P

′′
2 and P ′′3

are pairwise internally vertex-disjoint s′t-dipaths in (F ′′,Γ′′). It is clear that (i), (ii), (iv)
and (v) still hold for (F ′′,Γ′′) and H ′′. Moreover, by Claim 3, for each j ∈ {1, 2}, there
exists an odd st-walk cover B′′ of (F ′′,Γ′′) such that |B′′ − P ′′i − {Ω}| = τ − 3. Moreover,
P ′′3 is also an s′t-dipath for (F ′,Γ′) and so by (iii) applied to (F ′,Γ′) and H ′, there exists
an odd st-walk cover B′ of (F ′,Γ′) such that |B′−P ′′3 −{Ω}| = τ − 3. However, B′ is also
an odd st-walk cover for (F ′′,Γ′′), and so (iii) holds for (F ′′,Γ′′) and H ′′. This is however
a contradiction to the minimality of (F ′,Γ′) and H ′.

Hence, P ′1, P
′
2 and P ′3 are pairwise internally vertex-disjoint, proving the last needed

piece (R3’). This finishes the proof of the Reduction Lemma.
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4.5 The Mate Lemma

Lemma 4.11. Let (F = (V,E),Γ) be a connected signed graph with distinguished vertices
s, t that is st-Eulerian. Let m and τ be integers so that 3 ≤ m ≤ τ , (L1, L2, L3, . . . , Lτ ) be
a sequence of odd {s, t}-joins, and (B1, . . . , Bm) be a sequence of minimal covers such that

(1) Ω ∈ L1 ∩ L2 ∩ L3 and Ω /∈ L4 ∪ . . . ∪ Lτ ,

(2) (Lj − {Ω} : 1 ≤ j ≤ τ) are pairwise disjoint,

(3) L1, L2 and L3 are odd st-walks, and for each j ∈ {4, . . . ,m}, Lj contains a disconnected
odd st-walk Cj ∪ Pj, and each of Lm+1, . . . , Lτ contains a connected odd st-walk, and

(4) |Bj − Lj| = τ − 3 for all 1 ≤ j ≤ m.

Suppose further that τ(F,Γ) > τ − 2. If |Bj − Pj − {Ω}| = τ − 3 for all 1 ≤ j ≤ m, then
Bi is an st-bond for some 1 ≤ i ≤ m.

Proof. Suppose that |Bj − Pj − {Ω}| = τ − 3 for all 1 ≤ j ≤ m. If Lj is non-simple and
Ω ∈ Pj, for some j ∈ {1, 2, 3} then for any i ∈ {1, 2, . . . ,m} − {j}, Bi ∩ Lj = {Ω} and so
Bi ∩ Cj = ∅, implying in turn that Bi must be an st-bond, and so we are done.

Otherwise,

whenever Lj ∈ {L1, L2, L3} is non-simple, Ω ∈ Cj and so in particular, s ∈ V Cj.

Suppose, for a contradiction, that none of B1, B2, . . . , Bm is an st-bond, so they are all
signatures. We will find an odd st-walk cover for (F,Γ) of size τ − 2, which would yield a
contradiction as τ(F,Γ) > τ − 2.

For all distinct i, j ∈ {1, 2, . . . ,m}, choose Uij ⊆ V −{s, t} such that δ(Uij) = Bi4Bj.
Take distinct i, j, k ∈ {1, . . . ,m}. Observe that

δ(Uij 4 Ujk 4 Uki) = (Bi4Bj)4 (Bj 4Bk)4 (Bk 4Bi) = ∅.

Since F is connected and s, t /∈ Uij ∪ Ujk ∪ Uki, it then follows that Uij 4 Ujk 4 Uki = ∅
and so, in particular, Uij ∩ Ujk ∩ Uki = ∅.

For each i ∈ {1, 2, . . . ,m} and ∅ 6= A ⊆ {1, 2, . . . ,m} − {i}, let

SAi :=
⋂
j∈A

Uij.
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Observe that

δ(SAi ) ⊆ ∪j∈{i}∪ABj.

Indeed, if e = {u, v} ∈ δ(SAi ) with v /∈ SAi , then v /∈ Uij for some j ∈ A and so e ∈ δ(Uij),
implying that e ∈ Bi or e ∈ Bj. Furthermore, for all distinct i, j, k ∈ {1, . . . ,m} and A
such that {j, k} ⊆ A ⊆ {1, . . . ,m} − {i}, since SAi ⊆ Uij ∩ Uik and Uij ∩ Uik ∩ Ujk = ∅, it
follows that

SAi ∩ Ujk = ∅.

Take i ∈ {1, 2, . . . ,m} and ∅ 6= A ⊆ {1, 2, . . . ,m} − {i}.

Claim 1. Pi ∩ δ(SAi ) = Pi ∩ Bi − {Ω}, and Pj ∩ δ(SAi ) = ∅ for all j ∈ {1, . . . ,m} − {i}
such that A− {j} 6= ∅.

Proof of Claim. To see why Pi∩δ(SAi ) = Pi∩Bi−{Ω}, notice that Pi∩δ(Uik) = Pi∩Bi−{Ω}
and s, t /∈ Uik, for any k ∈ A. Moreover, since Pj ∩ δ(Uik) = ∅ for any k ∈ A − {j}, it
follows that Pj ∩ δ(SAi ) = ∅. This proves the claim. 3

Claim 2. If L ∈ {Lj : m < j ≤ τ} and L ∩ δ(SAi ) 6= ∅, then |L ∩ δ(SAi )| = 2 and
|L ∩ δ(SAi ) ∩Bi| = 1.

Proof of Claim. Take L ∈ {Lj : m < τ ≤ τ} such that L ∩ δ(SAi ) 6= ∅. We may assume
that i = 1. Notice that L is a connected odd {s, t}-join, and so we are able to write
L = (s = v0, e1, v1, e2, . . . , ep, vp = t). Choose 1 ≤ i < k ≤ p such that ei, ek ∈ δ(SA1 ) with
vi, vk−1 ∈ SA1 . As |L ∩ B1| = 1 we may assume that L[s, vi] ∩ B1 = ∅. Since vi ∈ U1j and
s /∈ U1j for all j ∈ A, we have that L[s, vi] ∩ δ(U1j) 6= ∅. However, L[s, vi] ∩ B1 = ∅, so
L[s, vi] ∩Bj 6= ∅ for all j ∈ A.

We claim that ek ∈ B1. As vk /∈ SA1 , there exists j ∈ A such that vk /∈ U1j and so
ek ∈ δ(U1j). However, |L∩Bj| = 1 and L[s, vi]∩Bj 6= ∅, implying that L[vk−1, t]∩Bj = ∅.
Hence, ek /∈ Bj and so ek ∈ B1. Since |L ∩ Bj| = 1 for all j ∈ {1} ∪ A, it follows that
L ∩ δ(SA1 ) = {ei, ek} and L ∩ δ(SA1 ) ∩B1 = {ek}, as claimed. 3

For the next claim, let Cj := ∅ if Lj contains no odd circuit, for 1 ≤ j ≤ 3.
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Claim 3. If C ∈ {Cj : 1 ≤ j ≤ m} and C ∩ δ(SAi ) 6= ∅ then |C ∩ δ(SAi )| = 2. Moreover, if
C ∩ δ(SAi ) ⊆ Bj ∪Bk for distinct j, k ∈ A, then V (C) ⊆ Uij ∪ Uik.

Proof of Claim. Assume C ∩ δ(SAi ) 6= ∅ for some C ∈ {Cj : 1 ≤ j ≤ m}. By symmetry, we
may assume that i = 1. Write C = (v0, e1, v1, e2, . . . , ep, vp = v0).

Suppose there exist 1 ≤ i < k ≤ p such that ei, ek ∈ δ(SA1 ) − B1 with vi, vk−1 /∈ SA1 .
Assume that ei ∈ Bj for some j ∈ A. Since ei /∈ B1, we get that ei ∈ δ(U1j). Because
vi−1 ∈ SA1 ⊆ U1j, it follows that vi /∈ U1j. Since |C ∩ Bj| = 1 it follows that ek /∈ δ(U1j).
However, vk ∈ SA1 ⊆ U1j, so vk−1 ∈ U1j. Therefore, since vi /∈ U1j but vk−1 ∈ U1j, it
follows that C[vi, vk−1] ∩ δ(U1j) 6= ∅, for C[vi, vk−1] = (vi, ei+1, . . . , ek−1, vk−1). However,
C ∩Bj = {ei} and so C[vi, vk−1] ∩B1 6= ∅.

As a result, if there exist 1 ≤ i < k ≤ p such that ei, ek ∈ δ(SA1 )−B1 with vi, vk−1 /∈ SA1 ,
then C[vi, vk−1] ∩ B1 6= ∅. Therefore, as |C ∩ B1| = 1, we get that |C ∩ δ(SAi )| = 2. This
proves the first part of the claim.

For the second part, assume C∩δ(SA1 ) = {e, f} where e ∈ Bj and f ∈ Bk. If e ∈ B1 then
C ∩ δ(U1j) = ∅, but V (C)∩ SA1 6= ∅ and SA1 ⊆ U1j, implying that V (C) ⊆ U1j ⊆ U1j ∪U1k,
and so we are done. Similarly, if f ∈ B1 then V (C) ⊆ U1k ⊆ U1j ∪ U1k, and we are
again done. Otherwise, {e, f} ∩ B1 = ∅. Write C = (v0, e1, v1, e2, . . . , ep, vp = v0) for some
v0 ∈ SA1 , and assume that e = ei, f = el for some 1 ≤ i < l ≤ p where vi, vl−1 /∈ SA1 .
As e ∈ Bj − B1 it follows that e ∈ δ(U1j), and since vi−1 ∈ SA1 ⊆ U1j, we get vi /∈ U1j.
Also, as |C ∩ Bj| = 1, we have f /∈ Bj. This, together with the facts that f /∈ B1 and
vl ∈ SA1 ⊆ U1j, implies that vl−1 ∈ U1j.

Observe that vi /∈ U1j, vl−1 ∈ U1j and |C ∩ B1| = 1 imply that there exists a unique
edge er ∈ B1 ∩ C where i < r < l, and vr, vr+1, . . . , vl−1 ∈ U1j. Similarly, we have
vi, vi+1, . . . , vr−1 ∈ U1k. Furthermore, note that v0, v1, . . . , vi−1, vl, vl+1, . . . , vp−1 ∈ SA1 ⊆
U1j ∩ U1k. Therefore, V (C) = {v0, v1, . . . , vp−1} ⊆ U1j ∪ U1k, as claimed. This finishes the
proof of the claim. 3

For every k ≥ 1, let [k] denote {1, 2, . . . , k}. Consider the m− 2 sets in

S :=
{
S

[j−1]
j : 3 ≤ j ≤ m

}
.

We call a circuit C ∈ {Cj : 1 ≤ j ≤ m} bad for S := S
[i−1]
i ∈ S if |C ∩ δ(S)| = 2 but

C ∩ δ(S) ∩ Bi = ∅. Let C be a bad circuit for S = S
[i−1]
i ∈ S (if any), and assume that

C ∩ δ(S) ⊆ Bj ∪ Bk for distinct j, k ∈ {1, 2, . . . , i − 1}. Then by Claim 3 we have that
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V (C) ⊆ Uij ∪ Uik and so s /∈ V (C) and V (C) ∩ S[`−1]
` = ∅ for any m ≥ ` > i (since

(Uij ∪ Uik) ∩ S[`−1]
` = ∅). Thus, in particular, C is not bad for S

[`−1]
` for any m ≥ ` > i,

and C /∈ {C1, C2, C3}, since s ∈ V (Cj) if Cj 6= ∅ for some j ∈ {1, 2, 3}. Thus each
C ∈ {Cj : 1 ≤ j ≤ m} is bad for at most one set in S and every bad circuit is in
{Cj : 4 ≤ j ≤ m}. Therefore, since |S| = m− 2 and there are at most m− 3 bad circuits,

there exists S := S
[i−1]
i ∈ S which has no bad circuit.

Let B := Bi 4 δ(S). Then B is an odd st-walk cover. We claim that |B| = τ − 2,
which would yield a contradiction, thereby finishing the proof of Lemma 4.11. Observe
that B ⊆

⋃τ
j=1 Lj.

Take m < j ≤ τ . If Lj ∩ δ(S) = ∅, then |Lj ∩ B| = |Lj ∩ Bi| = 1. Otherwise by Claim
2, |Lj ∩ δ(S)| = 2 and |Lj ∩ δ(S)∩Bi| = 1, implying that |Lj ∩B| = |Lj ∩ (Bi4 δ(S))| = 1.

Next take 1 ≤ j ≤ m. We claim that |Lj∩B| = 1. By Claim 1, Pj∩B = Pj∩(Bi4δ(S))
is either ∅ (if Cj 6= ∅) or {Ω} (if Cj = ∅). We now consider Cj ∩ B. If Cj ∩ δ(S) = ∅
then Cj ∩ B = Cj ∩ Bi. Otherwise, Cj ∩ δ(S) 6= ∅. Then by Claim 3 and the fact that
Cj is not bad for S, it follows that |Cj ∩ δ(S)| = 2 and |Cj ∩ δ(S) ∩ Bi| = 1. As a result,
|Cj ∩B| = |Cj ∩ (Bi4 δ(S))| = 1. Hence, |Lj ∩B| = 1, as claimed.

Notice that Lj ∩ B = {Ω} for j ∈ {1, 2, 3}. Thus, |B| = 1 +
∑τ

j=4 |B ∩ Lj| = τ − 2,
a contradiction as τ − 2 = |B| ≥ τ(F,Γ) > τ − 2. This finishes the proof of the Mate
Lemma.

4.6 The Shore Lemma

Lemma 4.12. Let (F = (V,E),Γ) be a connected signed graph with distinguished vertices
s, t that is st-Eulerian. Let m and τ be integers so that 3 ≤ m ≤ τ , (L1, L2, L3, . . . , Lτ ) be
a sequence of odd {s, t}-joins, and (B1, . . . , Bm) be a sequence of minimal covers such that

(1) Ω ∈ L1 ∩ L2 ∩ L3 and Ω /∈ L4 ∪ . . . ∪ Lτ ,

(2) (Lj − {Ω} : 1 ≤ j ≤ τ) are pairwise disjoint,

(3) L1, L2 and L3 are simple odd st-walks, and for each j ∈ {4, . . . ,m}, Lj contains a
disconnected odd st-walk Cj ∪ Pj, and each of Lm+1, . . . , Lτ contains a connected odd
st-walk, and

(4) |Bj − Lj| = τ − 3 and |Bk − Pk − {Ω}| = τ − 3, for all 1 ≤ j ≤ 3 < k ≤ m,
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(5) B1 is an st-bond and B1 = δ(U1) for some U1 ⊆ V − {t}, but B2, B3, . . . , Bm are
signatures,

(6) for every st-bond B such that |B − L1| = τ − 3, we have B ∩ L1 6⊂ B1 ∩ L1, and

(7) Bj ∩ Pj ∩ EF [U1] = ∅ for all j ∈ {4, 5, . . . ,m}.

Suppose further that τ(F,Γ) > τ−2. Then there exists a path between s and every connected
component of L1 ∩ F [U1] in F [U1] \

⋃m
j=2Bj.

Proof. As in the proof for the Mate Lemma, for all distinct i, j ∈ {2, 3, . . . ,m}, choose
Uij ⊆ V − {s, t} such that δ(Uij) = Bi 4 Bj. For each i ∈ {2, 3, . . . ,m} and ∅ 6= A ⊆
{2, 3, . . . ,m}−{i}, let SAi :=

⋂
j∈A Uij. As before, δ(SAi ) ⊆ ∪j∈{i}∪ABj. Also, SAi ∩Ujk = ∅

for all distinct i, j, k ∈ {2, 3, . . . ,m} and A such that {j, k} ⊆ A ⊆ {2, 3, . . . ,m} − {i}.

Take i ∈ {2, 3, . . . ,m} and ∅ 6= A ⊆ {2, 3, . . . ,m} − {i}. Then the following three
statements hold, and the proofs are exactly the same as the proofs for the Mate Lemma.

Claim 1. Pi ∩ δ(SAi ) = Pi ∩ Bi − {Ω}, and Pj ∩ δ(SAi ) = ∅ for all j ∈ {1, . . . ,m} − {i}
such that A− {j} 6= ∅.

Claim 2. If L ∈ {Lj : m < j ≤ τ} and L ∩ δ(SAi ) 6= ∅, then |L ∩ δ(SAi )| = 2 and
|L ∩ δ(SAi ) ∩Bi| = 1.

Claim 3. If C ∈ {Cj : 4 ≤ j ≤ m} and C ∩ δ(SAi ) 6= ∅ then |C ∩ δ(SAi )| = 2. Moreover, if
C ∩ δ(SAi ) ⊆ Bj ∪Bk for distinct j, k ∈ A, then V (C) ⊆ Uij ∪ Uik.

For every k ≥ 2, let [k]′ denote {2, 3, . . . , k}. Consider the m− 3 sets in

S :=
{
S

[j−1]′

j : 4 ≤ j ≤ m
}
.

As before, we call a circuit C ∈ {Cj : 4 ≤ j ≤ m} bad for S := S
[i−1]′

i ∈ S if |C ∩ δ(S)| = 2

but C ∩ δ(S) ∩ Bi = ∅. Let C be a bad circuit for S = S
[i−1]′

i ∈ S (if any), and as-
sume that C ∩ δ(S) ⊆ Bj ∪ Bk for distinct j, k ∈ {2, 3, . . . , i − 1}. Then by Claim 3,

we have that V (C) ⊆ Uij ∪ Uik and so V (C) ∩ S[`−1]′

` = ∅ for any m ≥ ` > i (since

(Uij ∪ Uik) ∩ S[`−1]′

` = ∅). Thus, in particular, C is not bad for S
[`−1]′

` for any m ≥ ` > i.
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Thus each C ∈ {Cj : 4 ≤ j ≤ m} is bad for at most one set in S.

Claim 4. There is a bad circuit for every S ∈ S.

Proof of Claim. Suppose otherwise. Choose an S := S
[i−1]′

i ∈ S that has no bad circuit.
Let B := Bi 4 δ(S). Then B is an odd st-walk cover. We claim that |B| = τ − 2, which
would yield a contradiction. Observe that B ⊆

⋃τ
j=1 Lj.

Take m < j ≤ τ . If Lj ∩ δ(S) = ∅ then |Lj ∩B| = |Lj ∩Bi| = 1. Otherwise by Claim 2,
|Lj ∩ δ(S)| = 2 and |Lj ∩ δ(S) ∩Bi| = 1, implying that |Lj ∩B| = |Lj ∩ (Bi4 δ(S))| = 1.

Next take 1 ≤ j ≤ m. We claim that |Lj∩B| = 1. By Claim 1, Pj∩B = Pj∩(Bi4δ(S))
is either ∅ (if 4 ≤ j ≤ m) or {Ω} (if 1 ≤ j ≤ 3). We now consider Cj ∩B. If Cj ∩ δ(S) = ∅
then Cj ∩ B = Cj ∩ Bi. Otherwise, Cj ∩ δ(S) 6= ∅. Then by Claim 3 and the fact that
Cj is not bad for S, it follows that |Cj ∩ δ(S)| = 2 and |Cj ∩ δ(S) ∩ Bi| = 1. As a result,
|Cj ∩B| = |Cj ∩ (Bi4 δ(S))| = 1. Hence, |Lj ∩B| = 1, as claimed.

Notice that Lj ∩ B = {Ω} for j ∈ {1, 2, 3}. Thus, |B| = 1 +
∑τ

j=4 |B ∩ Lj| = τ − 2, a
contradiction as τ − 2 = |B| ≥ τ(F,Γ) > τ − 2. 3

Therefore, since |S| = m − 3, it follows that there is a one-to-one correspondence
between the circuits and the elements of S, where every circuit is bad for its corresponding
element of S. Hence, by Claim 3, we get that

m⋃
j=4

V (Cj) ⊆
⋃

i,j∈[m]′

Uij.

Claim 5. Take an edge e ∈ E with both ends in V −
⋃
i,j∈[m]′ Uij. If e ∈ Bl for some

l ∈ {2, 3, . . . ,m}, then e ∈
⋂
k∈[m]′ Bk.

Proof of Claim. Since e has both ends in V −
⋃
i,j∈[m]′ Uij, it follows that e /∈ δ(Ukl) =

Bk 4Bl for any k, l ∈ {2, 3, . . . ,m}, proving the claim. 3

To prove the lemma, we need to show that there exists a path in F [U1] \
⋃m
j=2Bj

between s and every connected component of L1 ∩ F [U1]. Suppose, for a contradiction,
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that this is not true. Then, in particular, there is no path in F
[
U1 −

⋃
i,j∈[m]′ Uij

]
\
⋃m
j=2Bj

between s and some connected component of L1∩F [U1]. Hence, there exists a vertex subset

U ⊆ U1−
⋃
i,j∈[m]′ Uij with s /∈ U and L1∩δ(U) 6= ∅ such that δ(U)−B1−δ

(⋃
i,j∈[m]′ Uij

)
⊆⋃

l∈[m]′ Bl. By Claim 5, it follows that δ(U)−B1 − δ
(⋃

i,j∈[m]′ Uij

)
⊆
⋂
l∈[m]′ Bl.

Let
B := B14 δ(U) = δ(U14 U).

We claim that L1 ∩ B ( L1 ∩ B1 and |B − L1| = τ − 3, contradicting assumption (6) of
Lemma 4.12. Observe that

L1 ∩B = L1 ∩ (B14 δ(U)) = (L1 ∩B1)4 (L1 ∩ δ(U)) ( L1 ∩B1

because ∅ 6= L1 ∩ δ(U) ⊆ L1 ∩B1.

It remains to show that |B − L1| = τ − 3. Since B ⊆
⋃τ
j=1 Lj, we can proceed by

showing that B ∩ L2 = B ∩ L3 = {Ω} and |B ∩ Lj| = 1 for all 4 ≤ j ≤ τ . Note that
L2 ∩ δ(U1) = L3 ∩ δ(U1) = {Ω}, and so L2 ∩ δ(U) = L3 ∩ δ(U) = ∅, since L2 and L3

are simple. Hence, L2 ∩ B = L3 ∩ B = {Ω}. Observe then that Ck ∩ δ(U) = ∅ for all
4 ≤ k ≤ m, as U ∩

⋃
i,j∈[m]′ Uij = ∅ but V (Ck) ⊆

⋃
i,j∈[m]′ Uij.

Take j ∈ {4, 5, . . . , τ}. If Lj ∩ δ(U) = ∅ then Lj ∩ B = Lj ∩ B1, and so |Lj ∩ B| = 1.
Otherwise, Lj∩δ(U) 6= ∅. Write (s = v0, e0, v1, . . . , en, vn = t) for Lj if j /∈ {4, . . . ,m}, and
for Pj otherwise. Note that, for 4 ≤ j ≤ m, Lj∩δ(U) = (s = v0, e0, v1, . . . , ek, vk = t)∩δ(U)
since Cj ∩ δ(U) = ∅. Note further that Pj ∩ (B2 ∩B3 ∩ · · · ∩Bm) = ∅, for all 4 ≤ j ≤ m.

We claim that |Lj ∩δ(U)| = 2 and |Lj ∩δ(U)∩B1| = 1. Suppose that ei, ek ∈ Lj ∩δ(U)
for some 0 ≤ i < k ≤ n with vi, vk+1 /∈ U . We will prove that ek ∈ B1, and note that once
this is proved, it then easily follows that |Lj ∩ δ(U)| = 2 and |Lj ∩ δ(U) ∩ B1| = 1. Thus,
it remains to show that ek ∈ B1.

Since |Lj ∩ δ(U1)| = 1, it must be that vi ∈ U1. If vi /∈
⋃
a,b∈[m]′ Uab, then we must have

that ei ∈
⋂
`∈[m]′ B`. So m < j ≤ τ , and since Lj ∩ Bk = {ei} for all k ∈ {2, 3, . . . ,m},

it follows that ek ∈ B1. Otherwise, we have that vi ∈
⋃
a,b∈[m]′ Uab. Then ei ∈

⋃
a∈[m]′ Ba

and so ei ∈ Bp, for some p ∈ {2, 3, . . . ,m}. Suppose, for a contradiction, that ek /∈ B1. So
vk+1 ∈ U1. Notice that vk+1 ∈

⋃
a,b∈[m]′ Uab since otherwise ek ∈

⋂
`∈[m]′ B`, implying that

m < j ≤ τ , but then Lj ∩Bp ⊇ {ei, ek}, which cannot be the case. As vk+1 ∈
⋃
a,b∈[m]′ Uab,

it follows that ek ∈ Bq for some q ∈ {2, 3, . . . ,m}. If ek is also in Bp, then |Lj ∩ Bp| ≥ 2
implying that 4 ≤ j = p ≤ m, which cannot be possible by assumption (7) (since ei, ek ∈
EF [U1]). Hence, ek /∈ Bp and similarly, ei /∈ Bq. In fact, since ei ∈ Bp ∩ EF [U1] and
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ek ∈ Bq ∩ EF [U1], it follows from assumption (7) that j /∈ {p, q}. Since ek ∈ Bq − Bp and
ei ∈ Bp −Bq, {ei, ek} ⊆ Lj ∩ δ(Upq). Hence, since vi+1 ∈ U and U ⊆ U1 −Upq, we get that
vi ∈ Upq. But s /∈ Upq and so there exists an edge er such that 0 ≤ r < i and er ∈ δ(Upq).
Hence, Lj ∩ δ(Upq) ⊇ {er, ei, ek} implying that j ∈ {p, q}, a contradiction. Therefore, it
must be the case that ek ∈ B1.

Therefore, |Lj ∩ δ(U)| = 2 and |Lj ∩ δ(U) ∩B1| = 1 and so

|Lj ∩B| = |Lj ∩ (B14 δ(U))| = 1,

as claimed. As a result, L1 ∩B ( L1 ∩B1 and |B−L1| = τ − 3, contradicting assumption
(6). This finishes the proof of the Shore Lemma.

4.7 The Linkage Lemma

Let H be a graph, and take distinct vertices s, s′, t′ and t. We are interested in character-
izing when we can find a pair of vertex-disjoint paths, one between s and t and the other
between s′ and t′. The following lemma is due to Seymour [17], and it is stated similarly
as in [8].

Lemma 4.13 ([17]). There is no pair of vertex-disjoint paths Pst and Ps′t′ in H, where Pst
is an st-path and Ps′t′ is an s′t′-path, if and only if H can be obtained as follows:

(L1) place a circuit C on the boundary S1 of the unit disc, and the circuit contains the
vertices s, s′, t, v1 in this cyclic order,

(L2) add vertices to the interior of the disc, and triangulate the resulting graph inside the
disc to get K,

(L3) for every facial triangle T , consider an arbitrary graph KT such that V (KT )∩V (K) =
V (T ),

(L4) take the union K ∪
⋃
T KT , and delete some edges to obtain H.

We call the vertices of H in K pinned. We assume that every vertex on the boundary
S1 is pinned. We draw H on the unit disc so that H|K (H restricted to K) agrees with
the given plane drawing of K, and each H|KT is drawn (though not necessarily a plane
drawing) in the interior of the facial triangle T .
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Remark 4.14. Let P be an xy-path of H, where x and y are distinct vertices of H on
S1. Suppose that v ∈ V (P ) is not pinned, that is, v ∈ V (P ) ∩ (V (KT ) − V (T )) for some
T . Then P contains a subpath P [u,w] where u,w are distinct (pinned) vertices of T and
P [u,w] is a path contained in KT that contains v.

The previous remark allows us to define, for every xy-path (x and y on S1), two pinned
sides: take an xy-path P as above. Then P restricted to the pinned vertices induces an
xy-path P̃ in K, and as K is drawn on the plane, it divides the pinned vertices into two
sides, where the pinned vertices on P are considered to be on both sides.

Remark 4.15. Let P be an xy-path of H, where x and y are distinct vertices of H on S1.
If u is a pinned vertex off of P , then all the vertices in V (T ), and therefore H|KT , lie in
the same side as u if u ∈ V (T ).

The preceding remark shows that the notion of sides to an xy-path P can be generalized
to H, and not just K. Note that if V (T ) ⊆ V (P ) for some KT , then H|KT is thought of
as being on both sides.

Remark 4.16. Let P be an xy-path of H, where x and y are distinct vertices of H on S1.
Take vertices u and v of H that lie on different sides of P , and let Q be a uv-path in H.
Then Q and P must intersect on a pinned vertex.
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Chapter 5

The Proof

5.1 Part (1)

Recall that L1, L2, L3 are simple and (H ′ \Ω,Σ′∩E(H ′ \Ω)) contains an odd cycle. Notice
Li = Pi for i ∈ {1, 2, 3}.

Claim 1. Exactly one of B1, B2, B3 is an st-bond.

Proof of Claim. Observe that Lemma 4.4 implies that at most one of B1, B2, B3 is an st-
bond. So the only thing we need to show is that not all ofB1, B2, B3 are signatures. Suppose
otherwise. Observe that, for all k ∈ {1, 2, 3}, Bk ∩E(H ′) = Bk ∩Pk, as Bk ∩Pj = ∅ for all
j ∈ {4, . . . ,m} and Bk∩Pi = {Ω} for all i ∈ {1, 2, 3}−{k}. Take distinct i, j ∈ {1, . . . ,m}
and take k ∈ {1, 2, 3}−{i, j}. Then Bk∩(Pi∪Pj−{Ω}) = ∅ and so Pi∪Pj−{Ω} is bipartite.
Since this is true for all such i and j, it follows from Lemma 4.7 that (H ′\Ω,Σ′∩E(H ′\Ω))
is bipartite, contrary to our assumption. 3

By symmetry, we may assume that B3 is an st-bond and B1, B2 are signatures.

Claim 2. P1 ∪ P2 contains an odd cycle, and P1 ∪ P3 and P2 ∪ P3 are bipartite.

Proof of Claim. Take distinct i, j ∈ {1, . . . ,m} such that {i, j} 6= {1, 2}. Take k ∈
{1, 2}−{i, j} and notice that Bk∩(Pi∪Pj−{Ω}) = ∅ as Bk is a signature. So Pi∪Pj−{Ω}
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is bipartite. In particular, P1∪P3 and P2∪P3 are bipartite. If P1∪P2−{Ω} is also bipartite
then (H ′ \ Ω,Σ′ ∩ E(H ′ \ Ω)) is bipartite by Lemma 4.7, which is not the case. Hence,
P1 ∪ P2 contains an odd cycle. 3

Claim 3. Take two distinct vertices u, v ∈ V (Pi)∩V (Pj), for some distinct i, j ∈ {1, 2, 3}.
If u ≺Pi

v and v ≺Pj
u, then {i, j} = {1, 2}.

Proof of Claim. Suppose that u ≺Pi
v and v ≺Pj

u, but {i, j} 6= {1, 2}. We assume that
i = 1, j = 3 and the other cases such as i = 2, j = 3 or i = 3, j = 1 can be treated
similarly. Let L′1 := P1[s, u] ∪ P3[u, t] and L′3 := P3[s, v] ∪ P1[v, t], which are connected
{s, t}-joins. Then L′1 ∩ B2 = L′3 ∩ B2 = {Ω}, implying that both L′1 and L′3 are odd.
However, L′1 ∪ L2 ∪ L′3 ∪

⋃m
j=4 Pj contradicts the minimality of L1 ∪ L2 ∪ L3 ∪

⋃m
j=4 Pj by

(A1). Hence {i, j} = {1, 2}, finishing the proof. 3

As a corollary, Pi ∪ P3 is acyclic for i = 1, 2. Let F ′ := P1 ∪ P2 ∪ P3. Let (G′′,Σ′′) be a
minor of (G′,Σ′) and let F ′′ be a directed graph obtained by orienting edges in a subgraph
of G′, where (G′′,Σ′′) and F ′′ are minimal subject to

(F1) E(G′)− E(G′′) ⊆ E(F ′ \ Ω), and E(F ′′) ⊆ P1 ∪ P2 ∪ P3,

(F2) there exist three odd st-dipaths P ′′1 , P
′′
2 , P

′′
3 in F ′′ that are pairwise disjoint except at

Ω,

(F3) P ′′i ∪ P ′′3 is bipartite and acyclic for i = 1, 2, but P ′′1 ∪ P ′′2 contains an odd cycle,

(F4) for any odd st-walk L of F ′′ there exists a cover B of (G′′,Σ′′) such that |B−L| = τ−3,
and

(F5) there is no cover for (G′′,Σ′′) of size τ − 2.

Note that these conditions are satisfied by (G′,Σ′) and F ′, so (G′′,Σ′′) and F ′′ are well-
defined. We may assume that F ′′ = P ′′1 ∪ P ′′2 ∪ P ′′3 . Let B′′i be a minimal cover of (G′′,Σ′′)
such that |B′′i −P ′′i | = τ−3, whose existence is guaranteed by (F4). Since P ′′1 ∪P ′′2 contains
an odd cycle, it follows that B′′3 is an st-bond, and so by Lemma 4.4, B′′1 , B

′′
2 are signatures.

For the sake of notational ease, reset Pi := P ′′i and Bi := B′′i for all 1 ≤ i ≤ 3.

Choose minimal vertex subsets U12 ∈ V (G′′) − {s, t} and U3 ⊆ V (G′′) − {t} so that
B1 4 B2 = δ(U12) and B3 = δ(U3). Since P1 ∪ P2 contains an odd cycle, it follows that
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V P1 ∩ V P2 ∩ U12 6= ∅.

Claim 4. P3 is internally vertex-disjoint from P1 and P2.

Proof of Claim. Suppose otherwise. Let v1 6= s′, s and v2 6= t be, respectively, the closest
vertices to s′ and t on P3 that lie on P1 ∪ P2. Observe that v1 �P3 v2 and v1, v2 /∈ U12. We
may assume that v2 ∈ V P2. Suppose that v1 ∈ V Pk for some k ∈ {1, 2}.

We claim that there is an odd cycle in P1 ∪ P2 that avoids either Pk[s
′, v1] or P2[v2, t].

Suppose for a contradiction that this is not the case. Let y ∈ V P1 ∩ V P2 ∩ U12. Since
each of P1[s′, y] ∪ P2[s′, y] and P1[y, t] ∪ P2[y, t] contains an odd cycle, and since P2 ∪ P3 is
acyclic, it follows that k 6= 2, and so k = 1. For every odd cycle intersects P1[s′, v1] and
P2[v2, t], it follows that y ∈ V P1[s′, v1] and y ∈ V P2[v2, t].

Let C ′1 := P1[y, v1]∪P3[v1, v2]∪P2[v2, y], P ′1 := P1[s, y]∪P2[y, t], L′2 := P2[s, v2]∪P3[v2, t]
and L′3 := P3[s, v1] ∪ P1[v1, t]. Let L′1 := C ′1 ∪ P ′1, which is a non-simple odd {s, t}-join.
Note further that L′2 and L′3 are also odd {s, t}-joins. By Lemma 4.5 therefore, at least two
of L′1, L

′
2, L

′
3 are non-simple, and so by Part (8), (G′′,Σ′′) contains an F7 minor, implying

that (G,Σ) contains an F7 minor, which is a contradiction.

Hence, there is an odd cycle in P1∪P2 that avoids either Pk[s
′, v1] or P2[v2, t]. Suppose

w.l.o.g. that there is an odd cycle in P1 ∪ P2 that avoids P2[v2, t].

Observe that if there is a cover B of (G′′,Σ′′) such that |B − P2[v2, t]− {Ω}| = τ − 3,
then B must be an st-cut, since there is an odd cycle of F ′′ avoiding P2[v2, t] (and Ω),
which in turn is in conflict with Lemma 4.4 as B3 is an st-cut. Therefore, there is no cover
B of (G′′,Σ′′) such that |B − P2[v2, t]− {Ω}| = τ − 3.

Let (G′′′,Σ′′′) := (G′′,Σ′′) \ P2[v2, t]/P3[v2, t] and F ′′′ := F ′′ \ P2[v2, t]/P3[v2, t]. It is
easily seen that (F1),(F2) and (F4) hold for (G′′′,Σ′′′) and F ′′′. We just showed that (F5)
holds as well. Moreover, since there is an odd cycle in P1 ∪ P2 avoiding P2[v2, t], it follows
that (F3) holds as well for (G′′′,Σ′′′) and F ′′′, contradicting the minimality of (G′′,Σ′′) and
F ′′.

Thus, P3 is internally vertex-disjoint from P1 and P2, as claimed. 3

Claim 5. If there is a directed circuit C in P1 ∪ P2 then C is even.

Proof of Claim. Suppose otherwise. Decompose P1 ∪ P2 \ C into the union of two {s, t}-
joins P ′1 and L′2. We may assume that P ′1 is even and L′2 is odd. Let L′1 := C ∪ P ′1, which
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is a non-simple odd {s, t}-join. Hence, applying Lemma 4.5, followed by the argument of
Part (8), we get that (G′′,Σ′′), and so (G,Σ), has an F7 minor, a contradiction. 3

By Lemma 4.3, there exists a path R in G′′[U3] \ B1 between s and V P3. After con-
tracting all the directed even circuits in P1 ∪P2, it is easily seen that P1 ∪P2 ∪P3 ∪R has
an F7 minor. But then (G,Σ) has an F7 minor, a contradiction. As a result, Part (1) is
not feasible.

5.2 Three lemmas for Parts (2)-(4)

In this section, we provide three lemmas that will be needed for Parts (2)-(4). Recall that
for these three parts, L1, L2, L3 are simple and (H ′ \ Ω,Σ′ ∩ E(H ′ \ Ω)) is bipartite.

Lemma 5.1. An st-path P in (H ′ \ Ω,Σ′ ∩ E(H ′ \ Ω)) is odd if and only if Ω ∈ P .

Proof. Let P be an st-path of H ′. Then P 4 P1 is an even cycle if and only if P is odd.
However, as (H ′ \Ω,Σ′ ∩E(H ′ \Ω)) is bipartite, it follows that P 4P1 is even if and only
if Ω /∈ P 4 P1. So P is odd if and only if Ω ∈ P , as claimed.

Lemma 5.2. H ′ is acyclic.

Proof. Suppose otherwise, and let C be a directed circuit in H ′. Clearly Ω /∈ C, and so one
can find m st-dipaths P ′1, P

′
2, P

′
3, . . . , P

′
m in H ′\C such that Ω ∈ P ′1∩P ′2∩P ′3, Ω /∈ P ′4∪· · ·P ′m

and (P ′j − {Ω} : 1 ≤ j ≤ m) are pairwise disjoint. By Lemma 5.1 it follows that P ′1, P
′
2, P

′
3

are odd and P ′4, . . . , P
′
m are even. But then (P ′1, P

′
2, P

′
3, P

′
4∪C4, . . . , P

′
m∪Cm, Lm+1, . . . , Lτ )

is an Ω-packing, contradicting the minimality of (L1, L2, L3, . . . , Lτ ) by (A1).

Lemma 5.3. Every odd st-dipath P in (H ′,Σ′ ∩ E(H ′)) has a mate, i.e. there exists a
cover B of (G′,Σ′) such that |B − P | = τ − 3.

Proof. Since H ′ is acyclic, after rerouting P1, P2, P3, . . . , Pm in H ′, if necessary, we may
assume that P = P1, and so by (M3) P has a mate.
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5.3 Part (2)

Recall that L1, L2, L3 are simple odd st-walks, (H ′ \ Ω,Σ′ ∩ E(H ′ \ Ω)) is bipartite, and
the following holds:

(X1) no odd st-dipath of (H ′,Σ′ ∩ E(H ′)) has a mate which is an st-bond.

We will use lemmas from §5.2. Observe that (X1), together with Lemma 5.3, implies that
every odd st-path of (H ′,Σ′ ∩ E(H ′)) has only, and at least one, signature mates.

Claim 1. m ≥ 4.

Proof of Claim. (X1) implies in particular that B1, B2, B3 are all signatures, and so by the
Mate Lemma and Lemma 4.1 it follows that m ≥ 4. 3

Claim 2. There is an odd circuit C in H ′ that avoids t.

Proof of Claim. Suppose otherwise. Then V P4 ∩ (V P1 ∪ V P2 ∪ V P3) = {s, t}, since oth-
erwise Pi[s, v] ∪ P4[s, v] is an odd cycle in H ′ that avoids t where v ∈ V P4 ∩ V Pi − {s, t}
for some 1 ≤ i ≤ 3. Now contract the even st-dipath to identify s and t, then apply the
Reduction Lemma, followed by the K̃5 Lemma, to obtain a K̃5 minor. This implies that
(G′,Σ′), and so (G,Σ), contains a K̃5 minor, a contradiction. 3

For each 1 ≤ j ≤ m, let vj 6= t be the closest vertex to t on Pj that also lies on Pi, for
some i ∈ {1, . . . ,m}−{j}. By the Intersection Lemma there exists an index i ∈ {1, . . . ,m}
such that whenever vi ∈ V Pj for some j ∈ {1, . . . ,m} then vi = vj. Let I be the set of all
indices j such that vi = vj. Note that i ∈ I and |I| ≥ 2. Recall that the end-vertices of Ω
are s and s′.

Claim 3. There exists a directed path in H ′ from s′ to vi.

Proof of Claim. Suppose not. Let (G′′,Σ′′) := (G′,Σ′)/ ∪ (Pj[vj, t] : j ∈ I) and H ′′ :=
H ′/ ∪ (Pj[vj, t] : j ∈ I). It is clear that (M1), (M2) and (M4) still hold for (G′′,Σ′′) and
H ′′. Moreover, by our assumption, (M3) also holds as there is no odd st-dipath in H ′ that
uses an edge of ∪(Pj[vj, t] : j ∈ I). However, this contradicts the minimality of (G′,Σ′)
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and H ′. 3

So by rerouting P1, P2, . . . , Pm in H ′, if necessary, we may assume that i = 1.

Claim 4. For each j ∈ I, there exists a cover B of (G′,Σ′) such that |B−Pj[vj, t]−{Ω}| =
τ − 3.

Proof of Claim. Suppose otherwise. Then there exists j ∈ I such that |B−Pj[vj, t]−{Ω}| >
τ−3, for all covers B of (G′,Σ′). Let (G′′,Σ′′) := (G′,Σ′)\Pj[vj, t]/∪(Pk[vk, t] : k ∈ I, k 6= j)
and H ′′ := H ′\Pj[vj, t]/∪(Pk[vk, t] : k ∈ I, k 6= j). It is clear that (M1) and (M2) still hold
for (G′′,Σ′′) and H ′′. Moreover, by our hypothesis, (M4) also holds. Moreover, (M3) also
holds true, for if P is an odd st-dipath of H ′′ then P ∪ Pj[vj, t] contains an odd st-dipath
of H ′. However, this contradicts the minimality of (G′,Σ′) and H ′. 3

Claim 5. There do not exist vertex-disjoint paths P and Q in H ′, where P is between s
and t and Q is between s′ and v1.

Proof of Claim. Suppose, for a contradiction, there exist vertex-disjoint paths P and Q
in H ′, where P is between s and t and Q is between s′ and v1. Take j ∈ I \ {1}. Note
that (P ∪ Q) ∩ (P1[v1, t] ∪ Pj[vj, t]) = ∅. By Claim 3 we can choose minimal covers B1

and Bj such that |B1 − P1[v1, t] − {Ω}| = τ − 3 = |Bj − Pj[vj, t] − {Ω}|. By (X1) both
of B1 and Bj are signatures. So Remark 3.3 implies that (B1 − P1[v1, t] − {Ω}) ∩ EH ′ =
∅ = (Bj − Pj[vj, t] − {Ω}) ∩ EH ′. Now choose a minimal U1j ⊆ V G′ \ {s, t} so that
δ(U1j) = B14Bj. Then by Lemma 4.2, there exists a path R in G′[U1j] between V P1[v1, t]
and V Pj[vj, t] that is disjoint from B1. Note that V R ∩ (V P ∪ V Q ∪ V C) = ∅. It is now
easily seen that C ∪ P ∪ Q ∪ P1[v1, t] ∪ Pj[vj, t] ∪ R has an F7 minor. This implies that
(G′,Σ′), and hence (G,Σ), has an F7 minor, a contradiction. 3

Claim 5, together with the Linkage Lemma, implies that H ′ can be obtained as follows:

(L1) place a circuit C on the boundary S1 of the unit disc, and the circuit contains the
vertices s, s′, t, v1 in this cyclic order,

(L2) add vertices to the interior of the disc, and triangulate the resulting graph inside the
disc to get K,

47



(L3) for every facial triangle T , consider an arbitrary graph KT such that V (KT )∩V (K) =
V (T ),

(L4) take the union K ∪
⋃
T KT , and delete some edges to get H ′.

Consider the st-path P1 in the drawing. Observe that s and t lie on different sides of
the path P1[s′, v1]. Consider the set ΓP1 of pinned vertices that lie strictly inside the side
of P1[s′, v1] that contains s. As H ′ is acyclic, we may assume that the set ΓP1 is minimal
over all possible odd st-dipaths P1 in H ′.

Note that every Pj, j ∈ {4, . . . ,m}, is an st-path. So for every such j, there exists a
pinned vertex uj that lies on both Pj and P1[s′, v1]; we may assume that uj is the closest
such vertex to t on Pj. Note that this implies that ui = vi for all i ∈ I.

For each j ∈ {4, . . . ,m} let Rj := Pj[uj, t] and Qj := P1[s, uj] ∪ Rj. For j ∈ [3]− I let
Rj := Pj[uj = vj, t] and Qj := P1[s, uj = vj]∪Rj, and for j ∈ {1, 2, 3}−I let Rj := Pj[s

′, t]
and Qj := Pj. By the Mate Lemma and (X1), we get that there exists k ∈ {1, . . . ,m} such
that |B−Rk−{Ω}| > τ − 3, for all covers B of (G′,Σ′). Notice that k /∈ I due to Claim 4.

Claim 6. Take an odd st-dipath P in H ′. Suppose that V P ∩V P1[uk, t] 6= {t} and let u be
the closest vertex to s on P that lies on P1[uk, t]. Then there exists a vertex v ∈ V P [s, u]
that lies on Rk.

Proof of Claim. Suppose not. Then in particular u /∈ V Rk = V Pk[uk, t]. As H ′ is acyclic
it follows that u /∈ V Pk[s, uk], and so u /∈ V Pk. It is now easily seen that u lies strictly
inside the side of Pk which contains v1. As P is odd it follows that s′ ∈ V P . Con-
sider the subpath P [s′, u] of P . Since s′ lies on a different side of Pk than that of u,
Remark 4.16 implies that P [s′, u] and Pk share a pinned vertex w, say, and suppose that
w is the closest such vertex to u. By our hypothesis, w /∈ V Rk = V Pk[uk, t]. Hence,
w ∈ V P [s, uk] − {uk}. Let w′ be the closest vertex to w in P [s′, w] that lies on P1[s′, uk].
Then P ′1 := P1[s, w′] ∪ P [w′, w] ∪ Pk[w, uk] ∪ P1[uk, t] contradicts the minimality of P1 as
ΓP ′

1
⊆ ΓP1 − {w}. Hence, there exists a vertex v ∈ V P [s, u] that lies on Rk, proving the

claim. 3

Now let (G′′,Σ′′) := (G′,Σ′)\Rk/P1[uk, t] and let H ′′ be obtained from H ′\Rk/P1[uk, t]
after deleting all the outgoing arcs at t. We claim that (G′′,Σ′′) and H ′′ satisfy (M1)-(M4),
therefore contradicting the minimality of (G′,Σ′) and H ′. It is clear that (M1) holds
and that H ′′ is acyclic. The choice of Rk implies that (M4) holds as well. To show
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(M3) holds, let Q be an odd st-dipath of H ′′. Let P be an st-dipath of H ′ contained
in Q ∪ P1[uk, t]. If P ∩ P1[uk, t] = ∅ then clearly (M3) holds. Otherwise, define u as in
the preceding claim, and find v as found above. Choose B′ to a cover of (G′,Σ′) such
that |B′ − P [s, v] − Rk[v, t]| = τ − 3. Then B′ − Rk is a cover of (G′′,Σ′′) for which
|(B′ − Rk) − Q| = τ − 3. This proves (M3) holds. Using the preceding claim again
shows that (M2) also holds. However, this contradicts the minimality of (G′,Σ′) and H ′.
Therefore, Part (2) is not feasible.

5.4 Setup and a lemma for Parts (3) and (4)

In this section, we provide the setup needed to initiate Parts (3) and (4), as well as
a lemma that will be frequently referenced. For these two parts, L1, L2, L3 are simple,
(H ′ \ Ω,Σ′ ∩ E(H ′ \ Ω)) is bipartite, and (X1) does not hold.

Since (X1) does not hold, there exists an odd st-dipath Q in (H ′,Σ′∩E(H ′)) and an st-
bond S such that |S−Q| = τ −3. Recall that a cover S is said to be an internally minimal
mate for Q if |S−Q| = τ −3, and there is no other cover S ′ such that |S ′−Q| = τ −3 and
S ′∩Q ( S∩Q. A cover S is said to be an internally minimal st-bond mate for Q if S is an
st-bond and |S −Q| = τ − 3, and there is no other st-bond S ′ such that |S ′ −Q| = τ − 3
and S ′ ∩ Q ( S ∩ Q. The closest non-Ω edge on Q to Ω that is in S ∩ Q is what we call
the head of (Q,S).

Let e and f be two distinct edges of H ′. We say e precedes f if there exists an st-dipath
in H ′ containing both e and f but, on the path, e is closer to s than f . Observe that since
H ′ is acyclic, there cannot exist two edges mutually preceding one another, and therefore,
there cannot be an infinite sequence of edges in H ′, where each edge of the sequence is
preceded by the next edge. This observation allows us to pick an odd st-dipath P in H ′

that satisfies the following:

(B1) there exists an internally minimal st-bond mate B for P , and

(B2) for any odd st-path P ′ in H ′ and any internally minimal st-bond mate B′ for P ′ (if
any), the head of (P ′, B′) does not precede the head of (P,B).

We may assume by rerouting P1, P2, P3, . . . , Pm in H ′, if necessary, that P = P1. Reset
B1 := B and choose a minimal vertex subset U1 ⊆ V (G′)− {t} such that B1 = δ(U1).

Let u 6= s and w be, respectively, the closest and furthest vertices on P1 from s that
lie inside U1. Let u′ (resp. w′) be the neighboring vertex of u (resp. w) on P1 that lies
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outside U1. Let C1 := P1[s, u] and Q1 := P1[w, t] followed by Qj := Pj,∀2 ≤ j ≤ m and

F ′ := (P1 ∩G′[U1]) ∪ C1 ∪
⋃m
j=1Qj. Let R̃ := P1 ∩G′[U1].

Lemma 5.4. Let P be an odd st-dipath in (F ′,Σ′ ∩ E(F ′)) such that V (P ) ∩ U1 = {s},
and let B be an internally minimal mate for P . Then B is not an st-bond.

Proof. Suppose otherwise. Let R := P1[u′, w′]. Observe that P∩P1[u,w] = ∅ as P ⊆ E(F ′)
and E(F ′) ∩ P1[u,w] = ∅. Hence, since V (P ) ∩ U1 = {s}, it follows that P ∩R = ∅.

Let P ′1 := P , and decompose H ′\(P−{Ω}) into st-dipaths P ′2, P
′
3, . . . , P

′
m, keeping R in

one of the st-dipaths P ′j , where Ω ∈ P ′1∩P ′2∩P ′3, Ω /∈ P ′4∪· · ·∪P ′m and (P ′i−{Ω} : 1 ≤ i ≤ m)
are pairwise disjoint. Set B′1 := B and B′j := B1.

If j ∈ {2, 3} then st-cuts B′1 and B′j contradict Lemma 4.4. Otherwise, we may assume
that j = 4 and there exists a vertex v ∈ V (P ′4) ∩ V (P ′1) between s′ and u′ (so v may be
s′ or u′). We may assume such a v exists since R ⊆ P1. Notice that P ′1[s, v] ∩ B′1 = {Ω},
since otherwise the head of (P ′1, B

′
1) would precede the head {u′, u} of (P1, B1), which is

not possible by (B2). Hence, |B′1 − {Ω} − P ′1[v, t]| = |B′1 − P ′1| = τ − 3.

We claim that |B′4 − {Ω} − P ′4[v, t]| = τ − 3. Observe that

|B′4 − {Ω} − P ′4[v, t]| ≥ |B′4 − (P ′1[s, v] ∪ P ′4[v, t])| ≥ τ − 3

as P ′4[s, v]∪P ′1[v, t], P ′5, P
′
6, . . . , P

′
m, Lm+1, . . . , Lτ are disjoint edge-subsets of E(G′)−(P ′1[s, v]∪

P ′4[v, t]) and each contain an st-dipath. However,

|B′4 − {Ω} − P ′4[v, t]| ≤ |B1 − {Ω} −R| = τ − 3,

and so |B′4−{Ω}−P ′4[v, t]| = τ − 3, as claimed. But this is a contradiction to Lemma 4.6.
Hence, B is not an st-bond.

Consider the following statement:

(X2) for every even st-dipath P in (F ′,Σ′ ∩ E(F ′)), V (P ) ∩ V (C1) ⊆ U1.

In Part (3) we assume (X2) is true, and in Part (4) we assume (X2) does not hold.

5.5 Part (3)

The setup for this part is provided in §5.4. Recall that L1, L2, L3 are simple, (H ′ \Ω,Σ′ ∩
E(H ′ \ Ω)) is bipartite, (X1) does not hold, and (X2) holds.
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Let (G′′,Σ′′) be a minor of (G′,Σ′) and let F ′′ be a directed graph obtained by orienting
edges in a subgraph of G′, where (G′′,Σ′′) and F ′′ are minimal subject to

(F1) E(G′)− E(G′′) ⊆ E(F ′′[V − U1]), and E(F ′′) ⊆ E(F ′),

(F2) for each even st-dipath P in F ′′, V (P ) ∩ V (C1) ⊆ U1,

(F3) F ′′uw is acyclic, where F ′′uw is obtained from F ′′ after identifying the two vertices u,w,
and there exist m st-dipaths in F ′′uw that are disjoint except possibly at Ω, exactly
three of which contain Ω and exactly one of these contains the identified vertex uw,

(F4) for any odd st-dipath P of F ′′ such that V (P ) ∩ U1 = {s}, there exists a signature
B of (G′′,Σ′′) such that |B − P | = τ − 3, and

(F5) there is no cover of (G′′,Σ′′) of size τ − 2.

Note that these conditions are satisfied by (G′,Σ′) and F ′, so (G′′,Σ′′) and F ′′ are well-
defined. By identifying a vertex of each component with s, if necessary, we may assume that
G′′ is connected. Now let

(
Q′′j
)m
j=1

be m st-dipaths in F ′′uw that are pairwise disjoint except

possibly at Ω, Ω ∈ Q′′j if and only if j ∈ {1, 2, 3}, and Q′′1 uses the identified vertex uw in

F ′′uw. Note that F ′′uw = R̃ ∪
⋃m
j=1Q

′′
j . For the sake of notational ease, let Qj := Q′′j for all

2 ≤ j ≤ m, and define Q1 := Q′′1[uw, t] and C1 := Q′′1[s, uw]. Observe that Q2, . . . , Qm are
st-dipaths in F ′′, and that C1 and Q1 have endvertices s, u and w, t, respectively. Observe
that P is an odd st-dipath in F ′′ if and only if Ω ∈ P , since (H ′ \ Ω,Σ′ ∩ E(H ′ \ Ω)) is
bipartite.

For each Qj other than Q1, let vj 6= t be the closest vertex to t on Qj that also lies
on another Qi, i ∈ {1, . . . ,m} − {j}. Let v1 6= t be the closest vertex to t in V Q1 ∪ {s}
that also lies on another Qi, i ∈ {2, . . . ,m}. Then by the Intersection Lemma there exists
i ∈ {1, . . . ,m} such that whenever vi ∈ V Qj then vi = vj. Let I be the set of all indices
j ∈ {1, . . . ,m} such that vj = vi. Note that i ∈ I and |I| ≥ 2. We may assume vi /∈ U1

(otherwise, remove all paths Qj, j ∈ I temporarily and reapply the Intersection Lemma).
This implies that V Qj[vj, t] ∩ U1 = ∅ for all j ∈ I.

In Part (3.1) we assume V C1 ∩ V Qj[vj, t] = ∅, for all j ∈ I. In Part (3.2) we assume
V C1 ∩ V Qj[vj, t] 6= ∅, for some j ∈ I.
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5.5.1 Part (3.1): V C1 ∩ V Qj[vj, t] = ∅ for all j ∈ I

Claim 1. Qi[vi, t] is contained in an odd st-dipath of (F ′′,Σ′′ ∩ E(F ′′)) that intersects U1

at only s.

Proof of Claim. Suppose otherwise. Then let (G′′′,Σ′′′) := (G′′,Σ′′)/ ∪ (Qj[vj, t] : j ∈ I)
and F ′′′ := F ′′/∪(Qj[vj, t] : j ∈ I). Clearly, (F1), (F3) and (F5) still hold for (G′′′,Σ′′′) and
F ′′′. Since V Qj[vj, t]∩ V C1 = ∅ for all j ∈ I, it follows that (F2) also holds. Furthermore,
our assumption implies that (F4) also holds, a contradiction to the minimality of (G′′,Σ′′)
and F ′′. 3

This claim allows us to assume that i = 2.

Claim 2. For each j ∈ I there exists a minimal cover Bj such that |Bj−Qj[vj, t]−{Ω}| =
τ − 3.

Proof of Claim. Suppose otherwise. Then there is no cover B such that |B − Qi[vi, t] −
{Ω}| = τ − 3, for some i ∈ I. Then let (G′′′,Σ′′′) := (G′′,Σ′′) \ Qi[vi, t]/ ∪ (Qj[vj, t] : j ∈
I, j 6= i) and F ′′′ := F ′′ \Qi[vi, t]/ ∪ (Qj[vj, t] : j ∈ I, j 6= i). Clearly, (F1), (F3) and (F4)
still hold for (G′′,Σ′′) and H ′′. Since V Qj[vj, t]∩V C1 = ∅ for all j ∈ I, it follows that (F2)
also holds. Our assumption implies that (F5) also holds, a contradiction to the minimality
of (G′′,Σ′) and F ′′. 3

We may assume that each Bj, j ∈ I is an internally minimal mate of Qj[vj, t]. Observe
that each Bj is a signature, by Lemma 5.4. Pick k ∈ I − {2}, and choose a minimal
U ⊆ V (G′′)− {s, t} such that δ(U) = B24Bk.

Claim 3. Suppose there exists a path in G′′[U ]\Bk between V Q2 and V Qk for which there

is a vertex-disjoint path in G′′[U1]\Bk between s and every component of R̃. Then (G′′,Σ′′)
contains an F7 minor.

Proof of Claim. To prove the claim, we first show the following.

Subclaim 3.1. There exist two vertex-disjoint paths P and Q in F ′′, where Q is between
s′ and v2, and P is between t and either of s, w.
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Proof of Subclaim 3.1. We will treat U1 as a vertex, and in order to prove the subclaim,
it suffices to find two vertex-disjoint paths P and Q in F ′′, where Q is between s′ and v2,
and P is between t and U1. Suppose for a contradiction that this is not possible. Then the
Linkage Lemma implies that F ′′ can be obtained as follows:

(L1) place a circuit C on the boundary S1 of the unit disc, and the circuit contains the
vertices U1, s

′, t, v2 in this cyclic order,

(L2) add vertices to the interior of the disc, and triangulate the resulting graph inside the
disc to get K,

(L3) for every facial triangle T , consider an arbitrary graph KT such that V (KT )∩V (K) =
V (T ),

(L4) take the union K ∪
⋃
T KT , and delete some edges to get F ′′.

Consider the st-path Q2 in the drawing. Observe that s (which is now merged with U1)
and t lie on different sides of the path Q2[s′, v2]. Consider the set ΓQ2 of pinned vertices
that lie strictly inside the side of Q2[s′, v2] that contains s. As F ′′ is acyclic, we may assume
that the set ΓQ2 is minimal over all possible odd st-dipaths Q2 in F ′′.

Note that every Qj, j ∈ {1, . . . ,m} − {2, 3}, is an st-path. Hence, for every j ∈
{1, . . . ,m} − {2, 3}, there exists a pinned vertex uj that lies on both Qj and Q2[s′, v2];
we may assume that uj is the closest such vertex to t on Qj. Note that this implies that
ui = vi for all i ∈ I.

For each j ∈ {1, . . . ,m} − {2, 3} let Rj := Qj[uj, t] and Sj := Q2[s, uj] ∪ Rj. For
j ∈ {2, 3} ∩ I let Rj := Qj[uj = vj, t] and Sj := Q2[s, uj = vj] ∪ Rj, and for j ∈ {2, 3} \ I
let Rj := Qj[s

′, t] and Sj := Qj. By the Mate Lemma and Lemma 5.4, we get that there
exists an Rk such that |B − Rk − {Ω}| > τ − 3, for all covers B of (G′′,Σ′′). Notice that
k /∈ I and that k /∈ {2, 3}.

Subclaim 3.1.1. Take an odd st-dipath P in (F ′′,Σ′′ ∩ E(F ′′)) that has intersection {s}
with U1. Suppose that V P ∩ V Q2[uk, t] 6= {t} and let u be the closest vertex to s on P that
lies on Q2[uk, t]. Then there exists a vertex v ∈ V P [s, u] that lies on Rk.

Proof of Subclaim 3.1.1. Suppose not. Then in particular u /∈ V Rk = V Qk[uk, t]. As F ′′

is acyclic it follows that u /∈ V Qk[s, uk], and so u /∈ V Qk. It is now easily seen that u
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lies strictly inside the side of Qk which contains v2. As P is odd it follows that s′ ∈ V P .
Consider the subpath P [s′, u] of P . Since s′ lies on a different side of Qk than that of
u, Remark 4.16 implies that P [s′, u] and Qk share a pinned vertex w, say, and suppose
that w is the closest such vertex to u. By our hypothesis, w /∈ V Rk = V Qk[uk, t]. Hence,
w ∈ V P [s, uk]− {uk}. Let w′ be the closest vertex to w in P [s′, w] that lies on Q2[s′, uk].
Then Q′2 := Q2[s, w′] ∪ P [w′, w] ∪Qk[w, uk] ∪Q2[uk, t] contradicts the minimality of Q2 as
ΓQ′

2
⊆ ΓQ2 − {w}. Hence, there exists a vertex v ∈ V P [s, u] that lies on Rk. This finishes

the proof of Subclaim 3.1.1.

Now let (G′′′,Σ′′′) := (G′′,Σ′′)\Rk/Q2[uk, t] and let F ′′′ be obtained from F ′′\Rk/Q2[uk, t]
after deleting all the outgoing arcs at t. We claim that (G′′′,Σ′′′) and F ′′′ satisfy (F1)-(F5),
therefore contradicting the minimality of (G′′,Σ′′) and F ′′. It is clear that (F1) and (F3)
hold. The choice of Rk implies that (F5) holds as well. To prove (F2) holds, it suf-
fices to show that V C1 ∩ V Q2[uk, t] = ∅. If not, then by the preceding claim, we get that
V C1∩V Rk 6= ∅, a contradiction as Rk belongs to the even st-path Qk and V Qk∩V C1 ⊆ U1

by (F2). Hence, V C1∩V Q2[uk, t] = ∅ and so (F2) still holds for (G′′′,Σ′′′) and F ′′′. Lastly,
to show (F4) holds, let Q be an odd st-dipath of F ′′′. Let P be an st-dipath of F ′′ con-
tained in Q ∪ Q2[uk, t]. If P ∩ Q2[uk, t] = ∅ then clearly (F4) holds. Otherwise, define u
as in the preceding claim, and find v as found above. Choose B′ to a cover of (G′′,Σ′′)
such that |B′ − P [s, v]− Rk[v, t]| = τ − 3. Then B′ − Rk is a cover of (G′′′,Σ′′′) for which
|(B′−Rk)−Q| = τ − 3. This proves (F4) holds. However, this contradicts the minimality
of (G′′,Σ′′) and F ′′.

End of Proof of Subclaim 3.1

We are now ready to prove Claim 3. Recall that k ∈ I − {2}, that the both of B2

and Bk are signatures, and δ(U) = B2 4 Bk. Let R be a shortest path in G′′[U ] \ Bk

between V Q2 and V Qj, as given in the statement of Claim 3. By our assumption,
there exist paths R1 and R2 in G′′[U1] \ Bk between s and u, and s and w, respectively,

that are vertex-disjoint R. (Note that R̃ ∩ (B2 ∪ Bk) = ∅.) It is now easily seen that
R1 ∪R2 ∪ P ∪Q ∪C1 ∪Q2[v2, t] ∪Qj[vj, t] ∪R has an F7 minor. This concludes the proof
of Claim 3. 3

However, (G,Σ) does not have an F7 minor, and so the assumption of Claim 3 cannot
be true. Hence, in particular,

(∗) for a connected component K of R̃, there is no path in G[U1] \
⋃
j∈I Bj

between s and K,
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and also that

(∗∗) U1 ∩ U 6= ∅, and there is no path in G′′[U − U1] \ Bk between V Q2 and
V Qk.

Observe that the Shore Lemma, together with (∗), implies that m ≥ 4.

Claim 4. There exist vertex disjoint paths P and Q in F ′′, where P is between s and t
and Q is between s′ and v2.

Proof of Claim. Suppose for a contradiction that this is not possible. Then the Linkage
Lemma implies that F ′′ can be obtained as follows:

(L1) place a circuit C on the boundary S1 of the unit disc, and the circuit contains the
vertices s, s′, t, v2 in this cyclic order,

(L2) add vertices to the interior of the disc, and triangulate the resulting graph inside the
disc to get K,

(L3) for every facial triangle T , consider an arbitrary graph KT such that V (KT )∩V (K) =
V (T ),

(L4) take the union K ∪
⋃
T KT , and delete some edges to get F ′′.

Consider the st-path Q2 in the drawing. Observe that s and t lie on different sides of
the path Q2[s′, v2]. Consider the set ΓQ2 of pinned vertices that lie strictly inside the side
of Q2[s′, v2] that contains s. As F ′′ is acyclic, we may assume that the set ΓQ2 is minimal
over all possible odd st-dipaths Q2 in F ′′ that have intersection {s} with U1.

Note that every Qj, j ∈ {4, . . . ,m}, is an st-path. So for every j ∈ {4, . . . ,m}, there
exists a pinned vertex uj that lies on both Qj and Q2[s′, v2]; we may assume that uj is
the closest such vertex to t on Qj. Note that this implies that ui = vi for all i ∈ I. For
each j ∈ {4, . . . ,m} let Rj := Qj[uj, t] and Sj := Q2[s, uj] ∪ Rj. For j ∈ {2, 3} ∩ I let
Rj := Qj[uj = vj, t] and Sj := Q2[s, uj = vj] ∪Rj, and for j ∈ {2, 3} − I let Rj := Qj[s

′, t]
and Sj := Qj.

By the Shore Lemma, along with (∗) and Lemma 5.4, we get that there exists an Rk

such that |B−Rk −{Ω}| > τ − 3, for all covers B of (G′′,Σ′′). Notice that k /∈ I and that
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k /∈ {2, 3}.

Subclaim 4.1. Take an odd st-dipath P in (F ′′,Σ′′ ∩ E(F ′′)) that has intersection {s}
with U1. Suppose that V P ∩ V Q2[uk, t] 6= {t} and let u be the closest vertex to s on P that
lies on Q2[uk, t]. Then there exists a vertex v ∈ V P [s, u] that lies on Rk.

Proof of Subclaim 4.1. Suppose otherwise. Then in particular u /∈ V Rk = V Qk[uk, t]. As
F ′′ is acyclic it follows that u /∈ V Qk[s, uk], and so u /∈ V Qk. It is now easily seen that u
lies strictly inside the side of Qk which contains v2. As P is odd it follows that s′ ∈ V P .
Consider the subpath P [s′, u] of P . Since s′ lies on a different side of Qk than that of
u, Remark 4.16 implies that P [s′, u] and Qk share a pinned vertex w, say, and suppose
that w is the closest such vertex to u. By our hypothesis, w /∈ V Rk = V Qk[uk, t]. Hence,
w ∈ V P [s, uk]− {uk}. Let w′ be the closest vertex to w in P [s′, w] that lies on Q2[s′, uk].
Then Q′2 := Q2[s, w′] ∪ P [w′, w] ∪Qk[w, uk] ∪Q2[uk, t] contradicts the minimality of Q2 as
ΓQ′

2
⊆ ΓQ2 − {w}. Hence, there exists a vertex v ∈ V P [s, u] that lies on Rk. End of Proof

of Subclaim 4.1

Now let (G′′′,Σ′′′) := (G′′,Σ′′)\Rk/Q2[uk, t] and let F ′′′ be obtained from F ′′\Rk/Q2[uk, t]
after deleting all the outgoing arcs at t. We claim that (G′′′,Σ′′′) and F ′′′ satisfy (F1)-(F5),
therefore contradicting the minimality of (G′′,Σ′′) and F ′′. It is clear that (F1) and (F3)
hold. The choice of Rk implies that (F5) holds as well. To prove (F2) holds, it suf-
fices to show that V C1 ∩ V Q2[uk, t] = ∅. If not, then by the preceding claim, we get that
V C1∩V Rk 6= ∅, a contradiction as Rk belongs to the even st-path Qk and V Qk∩V C1 ⊆ U1

by (F2). Hence, V C1∩V Q2[uk, t] = ∅ and so (F2) still holds for (G′′′,Σ′′′) and F ′′′. Lastly,
to show (F4) holds, let Q be an odd st-dipath of F ′′′. Let P be an st-dipath of F ′′ con-
tained in Q ∪ Q2[uk, t]. If P ∩ Q2[uk, t] = ∅ then clearly (F4) holds. Otherwise, define u
as in the preceding claim, and find v as found above. Choose B′ to a cover of (G′′,Σ′′)
such that |B′ − P [s, v]− Rk[v, t]| = τ − 3. Then B′ − Rk is a cover of (G′′′,Σ′′′) for which
|(B′−Rk)−Q| = τ − 3. This proves (F4) holds. However, this contradicts the minimality
of (G′′,Σ′′) and F ′′. This finally finishes the proof of Claim 4. 3

Claim 5. There is no odd circuit C in F ′′ that avoids the vertex t.

Proof of Claim. Suppose otherwise. Pick j ∈ I − {2}. Recall that the both of B2

and Bj are signatures. Choose a minimal U ⊆ V − {s, t} so that δ(U) = B2 4 Bj.
By Lemma 4.2, there exists a shortest path R in G′′[U ] \ Bi between V Q2 and V Qj.
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Observe that V P ∩ V R = V Q ∩ V R = V C ∩ V R = ∅. It is now easily seen that
C ∪ P ∪Q ∪Q2[v2, t] ∪Qj[vj, t] ∪R has an F7 minor. However, (G,Σ) has no such minor,
a contradiction. 3

Since m ≥ 4 it follows that every even st-path Qj, 4 ≤ j ≤ m, is internally vertex-
disjoint from Q2 and Q3. So I ⊆ {1, 2, 3}, and Q4 is internally vertex-disjoint from Q2 and
Q3.

We will now analyze (∗∗). Since there is no path in G′′[U −U1] \Bk between V Q2 and
V Qk, it follows that U − U1 partitions into two sets Y2 and Yk such that

V Qi ∩ U ⊆ Yi and δ(Yi)− (δ(U) ∪ δ(U1)) = ∅ for i = 2, k.

Claim 6. The following hold:

(1) (U1 ∩ U) ∩ (V Q2 ∪ V Qk) = ∅,

(2) δ(Yi) ∩Qi 6= ∅ and δ(Yi) ∩Qj = ∅ for all i, j such that {i, j} = {2, k},

(3) δ(Yi) ⊆ B2 ∪Bk ∪ δ(U1) for i = 2, k, and

(4) δ(Y1) ∩ δ(Y2) = ∅.

Proof of Claim. (1) follows from the fact that s /∈ U1 ∩ U , Qi ∩ δ(U1) = {Ω} for i = 2, k.
For (2) fix i ∈ {2, k} and let j be the other index. As V Qi ∩ U ⊆ Yi it follows that
Qi ∩ δ(Yj) = ∅. Note that δ(U) ∩Qi 6= ∅. However,

Qi ∩ δ(U) ⊆ (Qi ∩ δ(Yi)) ∪ (Qi ∩ δ(Yj)) ∪ (Qi ∩ δ(U1 ∩ U)) = Qi ∩ δ(Yi)

and so Qi ∩ δ(Yi) 6= ∅. (3) follows directly from definition. We show (4) by contradiction.
Suppose that e ∈ δ(Y1) ∩ δ(Y2). Then e has endvertices x, y where x ∈ Y1 and y ∈ Y2.
Therefore, e ∈ δ(U) ∪ δ(U1). However, x, y /∈ U1, which implies that e ∈ δ(U), a contra-
diction as x, y ∈ U . 3

Claim 7. For each i ∈ {2, k}, there exists τ ≥ p(i) ≥ m + 1 such that |Lp(i) ∩ δ(Yi)| = 2
and Lp(i)∩δ(Yi)∩Bi = ∅, and there is a shortest (possibly empty) path Ri in G′′[Yi] between
V Qi and V Lp(i) such that Ri ∩Bi = ∅.
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Proof of Claim. We may assume that i = 2. Let U ′ ⊆ Y2 be the largest component of
G′′[Y2] containing a vertex of Q2. Note that δ(U ′) = δ(U ′) ∩ δ(Y2) ⊆ B2 ∪ Bk ∪ δ(U1),
and as U ′ contains a vertex of Q2, it follows that δ(U ′) ∩ Q2 ∩ B2 = δ(U ′) ∩ Q2 6= ∅.
Let B := B2 4 δ(U ′). Then B ∩ Q2 ( B2 ∩ Q2 and B ∩ Q3 = B ∩ (Q1 ∪ C1) = {Ω}
as δ(Y2) ∩ Q3 = δ(Y1) ∩ (Q1 ∪ C1) = {Ω}. Moreover, it is easily seen that |B ∩ Lj| = 1
for all 4 ≤ j ≤ m. Therefore, by the minimality of B2, there exists τ ≥ p(2) ≥ m + 1
such that δ(U ′) ∩ Lp(i) 6= ∅ and δ(U ′) ∩ Lp(2) ∩ B2 = ∅. Hence, |δ(Y2) ∩ Lp(2)| ≥ 2 and so
|δ(Y2) ∩ Lp(2)| = 2.

Moreover, note that if e ∈ B2 ∩ EG′′[U ′] then e ∈ B2 ∩ Bk, and so e ∈ Cj for some
m ≥ j ≥ 4, where Cj ⊆ EG′′[U ′]. Hence, there is a path Q in G′′[U ′] between the end-
vertices of e such that Q ∩ B2 = ∅. This observation implies that there is a shortest
(possibly empty) path R2 in G′′[U ′] (in particular, G′′[Y2]) between V Q2 and V Lp(2) such
that R2 ∩B2 = ∅. 3

Claim 8. p(1) and p(2) are distinct.

Proof of Claim. Suppose otherwise. Then |Lp(2) ∩ δ(Y2)| = 2 = |Lp(2) ∩ δ(Yk)|, and so as
δ(Y2) ∩ δ(Yk) = ∅ and δ(Y2) ∪ δ(Yk) ⊆ B2 ∪ Bk ∪ δ(U1), it follows that |Lp(2) ∩ Bi| > 1 for
some i ∈ {2, k} or |Lp(2) ∩ δ(U1)| > 1, a contradiction either way. 3

Suppose that R2 : [u2, v2] for u2 ∈ V Q2 ∩ Y2 and v2 ∈ V Lp(2) where Lp(2)[s, v2] is
internally vertex-disjoint from Q2[s, u2]. Also, assume that Rk : [uk, vk] for uk ∈ V Qk ∩ Yk
and vk ∈ V Lp(k) where Lp(k)[vk, t] is internally vertex-disjoint from Qk[uk, t]. Note that
R2 ∩ B2 = Rk ∩ B2 = ∅. Observe that V Lp(2)[s, v2] ⊆ U ∪ U1 − Yk and V Lp(k)[vk, t] ⊆
Yk ∪ (V − U1 − U). We may assume that Lp(2)[s, v2] and Lp(k)[vk, t] are paths (otherwise,
replace them with the longest paths contained in them). Next let Q : [u, v] be the shortest
path in G′′[U ] between V Q2 ∪ V Lp(2)[s, v2] ∪ R2 and V Qk ∪ V Lp(k)[vk, t] ∪ Rk such that
Q∩B1 = ∅. Now observe that Q2∪Lp(2)[s, v2]∪R2∪Qk∪Lp(k)[vk, t]∪Rk∪Q∪Q4 contains
an F7 minor. But this implies that (G′′,Σ′′), and therefore (G,Σ), has an F7 minor, which
is a contradiction.

Therefore, Part (3.1) is not possible.

5.5.2 Part (3.2): V C1 ∩ V Qj[vj, t] 6= ∅ for some j ∈ I

We may assume that V C1 ∩ V Qi[vi, t] 6= ∅. Observe that this implies that Qi[vi, t], and
therefore Qj[vj, t] for all j ∈ I, is not contained in any even st-path of F ′′, due to (X2).
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Hence, I ⊆ {1, 2, 3}, and since H ′ is acyclic by Lemma 5.2, it follows that I = {2, 3}.
The following claim easily follows from the acyclicity of H ′.

Claim 1. Qj is internally vertex-disjoint from Q2 and Q3, for j = 1 and all 4 ≤ j ≤ m.

Claim 2. If m = 3 then (G′′,Σ′′) has a K̃5 minor.

Proof of Claim. Suppose that m = 3 and set R1 := C1, R2 := Q2, R3 := Q3 and R4 := Q1.
For j ∈ {1, 2, 3}, let uj be the closest vertex to s′ in V (Rj) − {s, s′} that also lies on
another Ri, i ∈ {1, 2, 3} − {j}. By the Intersection Lemma there exists i ∈ {1, 2, 3} such
that whenever ui ∈ V Rj then ui = uj. Let J ⊆ {1, 2, 3} be the set of all indices j such
that uj = ui. Note that i ∈ J and |J | ≥ 2.

Subclaim 2.1. For each j ∈ J , there exists a minimal cover Bj of (G′′,Σ′′) such that
|Bj −Rj[s, uj]| = τ − 3.

Proof of Subclaim 2.1. Suppose otherwise. Let (G′′′,Σ′′′) := (G′′,Σ′′) \ Rj[s
′, uj]/ ∪

(Rk[s
′, uk] : k ∈ J, k 6= j) and F ′′′ := F ′′ \ Rj[s

′, uj]/ ∪ (Rk[s
′, uk] : k ∈ J, k 6= j), and

now it is easily seen that (G′′′,Σ′′′) and F ′′′ satisfy (F1)− (F5). However, this contradicts
the minimality of (G′′,Σ′′) and F ′′. End of Proof of Subclaim 2.1

We may assume that each Bj, j ∈ J is an internally minimal mate of Rj[s, uj]. Observe
that Lemma 5.4 implies that each Bj, j ∈ J is a signature.

Subclaim 2.2. There are two internally vertex-disjoint directed paths P and Q in F ′′,
where Q is from ui to t and P is from s′ to t.

Proof of Subclaim 2.2. Suppose otherwise. Then by Menger’s theorem, there exists a
vertex v /∈ {s, s′, t}, whose removal from F ′′ leaves no s′t-dipath behind. So, in particular,
v ∈ V Rj for j ∈ {2, 3}. Observe, further, that the assumption that V C1 ∩ V Qj[vj, t] 6= ∅
for some j ∈ I, implies that v ∈ V R1.

If there exists an s′v-dipath R′ in F ′′ for which there is no cover B of (G′′,Σ′′) such
that |B − R′ − {Ω}| = τ − 3, then delete R′ and contract all the other s′v-dipaths in F ′′

to get a more minimal instance (G′′′,Σ′′′) and F ′′′, which is not possible.
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Otherwise, for evey s′v-dipath R′ in F ′′, there is a cover B of (G′′,Σ′′) such that
|B − R′ − {Ω}| = τ − 3. After applying the Reduction Lemma on

⋃3
j=1 Rj[s, v], if nec-

essary, we may assume that (Rj[s
′, v] : 1 ≤ j ≤ 3) are pairwise internally vertex-disjoint.

For each 1 ≤ j ≤ 3, let Dj be an internally minimal mate of Rj[s, v]. (So, in partic-
ular, each Dj is a cover of (G′′,Σ′′) such that |Dj − Rj[s, v]| = τ − 3.) Observe that
Lemma 5.4 implies that each Dj is a signature. By the Shore Lemma, there is a path R

in G′′[U1] \ ∪(Dj : 1 ≤ j ≤ 3) between s and V R4 (note m = 3). Now applying the K̃5

Lemma to (R ∪
⋃4
j=1Rj)/ ∪ (Rj[v, t] : 1 ≤ j ≤ 3)/(R ∪ R4) gives us a K̃5 minor, which

implies in turn that (G,Σ) has a K̃5 minor, a contradiction. End of Proof of Subclaim 2.2

So, in particular, |J | = 2. Let R′1 := P ∪ {Ω} and let R′2, R
′
3 be the two paths

Rj[s, uj], j ∈ J . For each 1 ≤ j ≤ 3, Let Dj be an internally minimal mate for R′j. (So,
in particular, each Dj is a cover of (G′′,Σ′′) such that |Dj − R′j| = τ − 3.) Lemma 5.4
implies that each Dj is a signature, and so by the Shore Lemma, there exists a path R in
G′′[U1]\∪(Dj : 1 ≤ j ≤ 3) between s and V R4. Now contract the two paths Rj[uj, t], j ∈ J
and apply the K̃5 Lemma to (R ∪ R4 ∪ R′1 ∪ R′2 ∪ R′3)/(R ∪ R4) to obtain a K̃5 minor.

Hence, (G′′,Σ′′) contains a K̃5 minor, and this finishes the proof of Claim 2. 3

However, (G,Σ) does not contain a K̃5 minor, and so m ≥ 4. Set R1 := C1, R2 := Q2

and R3 := Q3. As above, for j ∈ {1, 2, 3}, let uj be the closest vertex to s′ in V (Rj)−{s, s′}
that also lies on another Ri. By the Intersection Lemma there exists i ∈ {1, 2, 3} such that
whenever ui ∈ V Rj then ui = uj. Let J ⊆ {1, 2, 3} be the set of all indices j such that
uj = ui. Note that i ∈ J and |J | ≥ 2.

Claim 3. For each j ∈ J , there exists a minimal cover Bj of (G′′,Σ′′) such that |Bj −
Rj[s, uj]| = τ − 3.

Proof of Claim. Suppose otherwise. Let (G′′′,Σ′′′) := (G′′,Σ′′) \ Rj[s
′, uj]/ ∪ (Rk[s

′, uk] :
k ∈ J, k 6= j) and F ′′′ := F ′′ \ Rj[s

′, uj]/ ∪ (Rk[s
′, uk] : k ∈ J, k 6= j), and now it is easily

seen that (G′′′,Σ′′′) and F ′′′ satisfy (F1)− (F5). However, this contradicts the minimality
of (G′′,Σ′′) and F ′′. 3

We may assume that each Bj, j ∈ J is an internally minimal mate of Rj[s, uj]. Observe
that Lemma 5.4 implies that each Bj, j ∈ J is a signature.
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Claim 4. There are two internally vertex-disjoint directed paths P and Q in F ′′, where Q
is from ui to t and P is from s′ to t.

Proof of Claim. Suppose otherwise. Then by Menger’s theorem, there exists a vertex
v /∈ {s, s′, t}, whose removal from F ′′ leaves no s′t-dipath behind. So, in particular, v ∈ V Rj

for j ∈ {2, 3}. Observe, further, that the assumption that V C1 ∩ V Qj[vj, t] 6= ∅ for some
j ∈ I, implies that v ∈ V R1.

If there exists an s′v-dipath R′ in F ′′ for which there is no cover B of (G′′,Σ′′) such
that |B − R′ − {Ω}| = τ − 3, then delete R′ and contract all the other s′v-dipaths in F ′′

to get a more minimal instance (G′′′,Σ′′′) and F ′′′, which is not possible.

Otherwise, for evey s′v-dipath R′ in F ′′, there is a cover B of (G′′,Σ′′) such that
|B−R′−{Ω}| = τ−3. After applying the Reduction Lemma on

⋃3
j=1 Rj[s, v], if necessary,

we may assume that (Rj[s
′, v] : 1 ≤ j ≤ 3) are pairwise internally vertex-disjoint. For each

1 ≤ j ≤ 3, let Dj be an internally minimal mate of Rj[s, v]. So, in particular, each Dj is a
cover of (G′′,Σ′′) such that |Dj−Rj[s, v]| = τ−3. Observe that Lemma 5.4 implies that each

Bj is a signature. Now applying the K̃5 Lemma to (Q4∪
⋃3
j=1Rj/∪(Rj[v, t] : 1 ≤ j ≤ 3)/Q4

gives us a K̃5 minor, which implies in turn that (G,Σ) has a K̃5 minor, a contradiction.3

So, in particular, |J | = 2. Let R′1 := P ∪ {Ω} and let R′2, R
′
3 be the two paths

Rj[s, uj], j ∈ J . Let Dj be an internally minimal mate of R′j, for each 1 ≤ j ≤ 3. So,
in particular, Dj is a cover of (G′′,Σ′′) such that |Dj − R′j| = τ − 3. Lemma 5.4 implies

that each Dj is a signature. Now contract the two paths Rj[uj, t], j ∈ J and apply the K̃5

Lemma to (Q4 ∪ R′1 ∪ R′2 ∪ R′3)/Q4 to obtain a K̃5 minor. Hence, (G′′,Σ′′), and therefore

(G,Σ), contains a K̃5 minor, a contradiction.

As a result, Part (3.2) is not feasible, which is turn implies that Part (3) is not possible.

5.6 Part (4)

The setup for this part is provided in §5.4. Recall that L1, L2, L3 are simple, (H ′ \Ω,Σ′ ∩
E(H ′ \ Ω)) is bipartite, and neither of (X1), (X2) hold. The argument for this part is
partially similar to that of Part (3). Since (X2) does hold there exists an even st-dipath P
in (F ′,Σ′∩E(F ′)) such that V (P )∩V (C1)−U1 6= ∅. In particular, m ≥ 4. After rerouting
C1, Q1, Q2, . . . , Qm, if necessary, we may assume that P = Q4. Let x ∈ V (Q4)∩V (C1)−U1
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and let R := Q4[s, x] ∪ C1[x, u]. Redefine Q1, Q4 and F ′′ as follows: Q4 := Q1, Q1 :=
C1[s, x] ∪Q4[x, t], and F ′′ :=

⋃m
j=1 Qj.

Let (G′′,Σ′′) be a minor of (G′,Σ′) and let F ′′ be a directed graph obtained by orienting
edges in a subgraph of G′, where (G′′,Σ′′) and F ′′ are minimal subject to

(F1) E(G′)− E(G′′) ⊆ E(F ′′[V − U1]), and E(F ′′) ⊆ E(F ′),

(F2) F ′′ is acyclic and there exist m directed paths in F ′′ that are disjoint except possibly
at Ω, exactly three of which contais Ω; m − 1 of these paths are st-dipaths and the
remaining one is a wt-dipath,

(F3) for any odd st-dipath P of F ′′ such that V (P ) ∩ U1 = {s}, there exists a signature
B of (G′′,Σ′′) such that |B − P | = τ − 3, and

(F4) there is no cover of (G′′,Σ′′) of size τ − 2.

Note that these conditions are satisfied by (G′,Σ′) and F ′, so (G′′,Σ′′) and F ′′ are well-
defined. By identifying a vertex of each component with s, if necessary, we may assume
that G′′ is connected. Now let

(
Q′′j
)m
j=1

be m directed paths in F ′′ that are pairwise disjoint

except possibly at Ω, Ω ∈ Q′′j if and only if j ∈ {1, 2, 3}, and Q′′4 is a wt-dipath. For the
sake of notational ease, reset Qj := Q′′j for all 1 ≤ j ≤ m. Observe that P is an odd
st-dipath in F ′′ if and only if Ω ∈ P , since (H ′ \ Ω,Σ′ ∩ E(H ′ \ Ω)) is bipartite.

For each Qj other than Q4, let vj 6= t be the closest vertex to t on Qj that also lies on
another Qi, i ∈ {1, . . . ,m} − {j}. Let v4 6= t be the closest vertex to t in V Q4 ∪ {s} that
also lies on another Qi, i ∈ {1, . . . ,m}−{4}. Then by the Intersection Lemma there exists
i ∈ {1, . . . ,m} such that whenever vi ∈ V Qj then vi = vj. Let I be the set of all indices
j ∈ {1, . . . ,m} such that vj = vi. Note that i ∈ I and |I| ≥ 2. We may assume vi /∈ U1

(otherwise, remove all paths Qj, j ∈ I temporarily and reapply the Intersection Lemma).
This implies that V Qj[vj, t] ∩ U1 = ∅ for all j ∈ I.

Claim 1. For each j ∈ I, Qj[vj, t] is contained in an odd st-dipath of (F ′′,Σ′′ ∩ E(F ′′))
that intersects U1 at only s.

Proof of Claim. Suppose not. Then let (G′′′,Σ′′′) := (G′′,Σ′′)/ ∪ (Qj[vj, t] : j ∈ I) and
F ′′′ := F ′′/ ∪ (Qj[vj, t] : j ∈ I). Clearly, (F1), (F2) and (F4) still hold for (G′′′,Σ′′′) and
F ′′′. Furthermore, our assumption implies that (F3) also holds, a contradiction to the
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minimality of (G′′,Σ′′) and F ′′. 3

We may therefore assume that i = 1.

Claim 2. For each j ∈ I, there exists a minimal cover Bj such that |Bj−Qj[vj, t]−{Ω}| =
τ − 3.

Proof of Claim. Suppose otherwise. Then there is no cover B such that |B − Qi[vi, t] −
{Ω}| = τ − 3, for some i ∈ I. Then let (G′′′,Σ′′′) = (G′′,Σ′′) \ Qi[vi, t]/ ∪ (Qj[vj, t] : j ∈
I, j 6= i) and F ′′′ = F ′′ \ Qi[vi, t]/ ∪ (Qj[vj, t] : j ∈ I, j 6= i). Clearly, (F1)-(F3) still hold
for (G′′,Σ′′) and H ′′. Our assumption implies that (F4) also holds, a contradiction to the
minimality of (G′′,Σ′) and F ′′. 3

We may assume that each Bj, j ∈ I is an internally minimal mate of Qj[vj, t]. Observe
that each Bj is a signature, by Lemma 5.4.

Claim 3. There exists an odd circuit C in F ′′ ∪ R such that V C ∩ V Qj[vj, t] − {vj} = ∅
for all j ∈ I.

Proof of Claim. Suppose otherwise. Then

(1) I ⊆ {1, 2, 3, 4},

(2) V R ∩ V Qi − {s} ⊆
⋃
j∈I V Qj[vj, t]− {vj}, for all i ∈ {1, 2, 3}, and

(3) every odd st-dipath of F ′′ is internally vertex-disjoint from Qj, for any 5 ≤ j ≤ m.

Moreover, by the definition of R and the existence of x, it follows that V R ∩ V Qk[vk, t]−
{vk} 6= ∅ for some k ∈ I. Choose y ∈ V R∩V Qk[vk, t]−{vk} such that R[s, y] is internally
vertex-disjoint from each Qi, i ∈ {1, 2, 3}. Notice that the acyclicity of H ′, by Lemma 5.2,
implies that I ⊆ {1, 2, 3} and that V Q4 ∩ V Qj = {t} for all j ∈ I. Hence, we may assume
that k = 1.

For j ∈ {1, 2, 3}, let uj be the closest vertex to s′ in V Qj − {s, s′} that also lies on
another Qi. By the Intersection Lemma there exists i ∈ {1, 2, 3} such that whenever
ui ∈ V Qj, for some j ∈ {1, 2, 3}, then ui = uj. Let J ⊆ {1, 2, 3} be the set of all indices j
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such that uj = ui. Note that i ∈ J and |J | ≥ 2.

Subclaim 3.1. For each j ∈ J , there exists a minimal cover B of (G′′,Σ′′) such that
|B −Qj[s, uj]| = τ − 3.

Proof of Subclaim 3.1. Suppose otherwise. Let (G′′′,Σ′′′) := (G′′,Σ′′) \ Qj[s
′, uj]/ ∪

(Qk[s
′, uk] : k ∈ J, k 6= j) and F ′′′ := F ′′ \ Qj[s

′, uj]/ ∪ (Qk[s
′, uk] : k ∈ J, k 6= j), and

now it is easily seen that (G′′′,Σ′′′) and F ′′′ satisfy (F1)-(F4). However, this contradicts
the minimality of (G′′,Σ′′) and F ′′. End of Proof of Subclaim 3.1

Subclaim 3.2. There are two internally vertex-disjoint directed paths P and Q in F ′′,
where Q is from ui to t and P is from s′ to t.

Proof of Subclaim 3.2. Suppose otherwise. Then by Menger’s theorem, there exists a
vertex v /∈ {s, s′, t}, whose removal from F ′′ leaves no s′t-dipath behind. So, in particular,
v ∈ V Qj for j ∈ {1, 2, 3}.

If there exists an s′v-dipath R′ in F ′′ for which there is no cover B of (G′′,Σ′′) such
that |B − R′ − {Ω}| = τ − 3, then delete R′ and contract all the other s′v-dipaths in F ′′

to get a more minimal instance (G′′′,Σ′′′) and F ′′′, which is not possible.

Otherwise, for evey s′v-dipath R′ in F ′′, there is a cover B of (G′′,Σ′′) such that
|B−R′−{Ω}| = τ−3. After applying the Reduction Lemma on

⋃3
j=1Qj[s, v], if necessary,

we may assume that (Qj[s
′, v] : 1 ≤ j ≤ 3) are pairwise internally vertex-disjoint. For each

1 ≤ j ≤ 3, letDj be an internally minimal mate ofQj[s, v]. So, in particular, Dj is a cover of
(G′′,Σ′′) such that |Dj−Qj[s, v]| = τ−3. Observe that Lemma 5.4 implies that each Bj is a

signature. Now applying the K̃5 Lemma to (R[s, y]∪
⋃3
j=1Qj/∪(Qj[v, t] : 1 ≤ j ≤ 3)/R[s, y]

gives us a K̃5 minor, which implies in turn that (G,Σ) has a K̃5 minor, a contradiction.

End of Proof of Subclaim 3.2

So, in particular, |J | = 2. By rerouting P or Q, if necessary, we may assume that
Q1[v1, t] ∩ P = Q1[v1, t] ∩ Q = ∅. Let R1 := P ∪ {Ω} and let R2, R3 be the two paths
Qj[s, uj], j ∈ J . For each 1 ≤ j ≤ 3, let Dj be an internally minimal mate of Rj. So,
in particular, Dj is a cover of (G′′,Σ′′) such that |Dj − Rj| = τ − 3. Lemma 5.4 implies
that each Dj is a signature. Now contract the two paths Qj[uj, t], j ∈ J and apply the

K̃5 Lemma to (R[s, y] ∪Q1[y, t] ∪R1 ∪R2 ∪R3)/(R[s, y] ∪Q1[y, t]) to obtain a K̃5 minor.
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Hence, (G′′,Σ′′), and therefore (G,Σ), contains a K̃5 minor, a contradiction. This finishes
the proof of Claim 3. 3

Claim 4. Suppose there exists a path in G′′[U1] \
⋃
j∈I Bj between s and every connected

component of R̃. Then (G′′,Σ′′) contains an F7 minor.

Proof of Claim. We will first prove the following.

Subclaim 4.1. There exist two vertex-disjoint paths P and Q in F ′′, where Q is between
s′ and v1, and P is between t and either of s, w.

Proof of Subclaim 4.1. We will treat U1 as a vertex, and in order to prove the lemma, it
suffices to find two vertex-disjoint paths P and Q in F ′′, where Q is between s′ and v1,
and P is between t and U1. Suppose for a contradiction that this is not possible. Then the
Linkage Lemma implies that F ′′ can be obtained as follows:

(L1) place a circuit C on the boundary S1 of the unit disc, and the circuit contains the
vertices U1, s

′, t, v1 in this cyclic order,

(L2) add vertices to the interior of the disc, and triangulate the resulting graph inside the
disc to get K,

(L3) for every facial triangle T , consider an arbitrary graph KT such that V (KT )∩V (K) =
V (T ),

(L4) take the union K ∪
⋃
T KT , and delete some edges to get F ′′.

Now consider the st-path Q1 in the drawing. Observe that s (which is now merged
with U1) and t lie on different sides of the path Q1[s′, v1]. Consider the set ΓQ1 of pinned
vertices that lie strictly inside the side of Q1[s′, v1] that contains s. As F ′′ is acyclic, we
may assume that the set ΓQ1 is minimal over all possible odd st-dipaths Q1 in F ′′.

Note that every Qj, j ∈ {2, . . . ,m}, is an st-path (note s and U1 are merged). Thus,
for every j ∈ {2, . . . ,m}, there exists a pinned vertex uj that lies on both Qj and Q1[s′, v1];
we may assume that uj is the closest such vertex to t on Qj. Note that this implies that
ui = vi for all i ∈ I.

For each j ∈ [m]−{1} let Rj := Qj[uj, t] and Sj := Q1[s, uj]∪Rj. For j ∈ {1, 2, 3}∩I let
Rj := Qj[uj = vj, t] and Sj := Q1[s, uj = vj]∪Rj, and for j ∈ {1, 2, 3}−I let Rj := Qj[s

′, t]
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and Sj := Qj. By the Mate Lemma and Lemma 5.4, we get that there exists an Rk such
that |B − Rk − {Ω}| > τ − 3, for all covers B of (G′′,Σ′′). Notice that k /∈ I and that
k /∈ {1, 2, 3}.

Subclaim 4.1.1. Take an odd st-dipath P in F ′′ that has intersection {s} with U1. Sup-
pose that V P ∩ V Q1[uk, t] 6= {t} and let u be the closest vertex to s on P that lies on
Q1[uk, t]. Then there exists a vertex v ∈ V P [s, u] that lies on Rk.

Proof of Subclaim 4.1.1. Suppose otherwise. Then in particular u /∈ V Rk = V Qk[uk, t]. As
F ′′ is acyclic it follows that u /∈ V Qk[s, uk], and so u /∈ V Qk. It is now easily seen that u
lies strictly inside the side of Qk which contains v1. As P is odd it follows that s′ ∈ V P .
Consider the subpath P [s′, u] of P . Since s′ lies on a different side of Qk than that of
u, Remark 4.16 implies that P [s′, u] and Qk share a pinned vertex w, say, and suppose
that w is the closest such vertex to u. By our hypothesis, w /∈ V Rk = V Qk[uk, t]. Hence,
w ∈ V P [s, uk]− {uk}. Let w′ be the closest vertex to w in P [s′, w] that lies on Q1[s′, uk].
Then Q′1 := Q1[s, w′] ∪ P [w′, w] ∪Qk[w, uk] ∪Q1[uk, t] contradicts the minimality of Q1 as
ΓQ′

1
⊆ ΓQ1 − {w}. Hence, there exists a vertex v ∈ V P [s, u] that lies on Rk. This finishes

the proof of Subclaim 4.1.1.

Now let (G′′′,Σ′′′) := (G′′,Σ′′)\Rk/Q1[uk, t] and let F ′′′ be obtained from F ′′\Rk/Q1[uk, t]
after deleting all the outgoing arcs at t. We claim that (G′′′,Σ′′′) and F ′′′ satisfy (F1)-
(F4), therefore contradicting the minimality of (G′′,Σ′′) and F ′′. It is clear that (F1)
and (F2) hold. The choice of Rk implies that (F4) holds as well. Lastly, to show (F3)
holds, let Q be an odd st-dipath of F ′′′. Let P be an st-dipath of F ′′ contained in
Q ∪ Q1[uk, t]. If P ∩ Q1[uk, t] = ∅ then clearly (F3) holds. Otherwise, define u as in
the preceding claim, and find v as found above. Choose B′ to a cover of (G′′,Σ′′) such
that |B′ − P [s, v] − Rk[v, t]| = τ − 3. Then B′ − Rk is a cover of (G′′′,Σ′′′) for which
|(B′−Rk)−Q| = τ − 3. This proves (F3) holds. However, this contradicts the minimality
of (G′′,Σ′′) and F ′′. End of Proof of Subclaim 4.1

We are now ready to prove Claim 4. Choose i ∈ I − {1}, and let U ⊆ V − {s, t} be a
minimal vertex subset such that δ(U) = B1 4 Bi. By Lemma 4.2, there exists a shortest
path R′ in G′′[U ] \B1 between V Q1 and V Qi. By the assumption of Claim 4, there exist a

path R′′ in G′′[U1] \ (B2 ∪Bi) between s and w. (Note that R̃ ∩ (B2 ∪Bi) = ∅.) It is now
easily seen that C ∪R′′ ∪P ∪Q∪Q1[v1, t]∪Qi[vi, t]∪R′ has an F7 minor. This concludes
the proof of Claim 4. 3
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However, (G,Σ) does not have an F7 minor, and so the assumption of Claim 4 cannot
be true, i.e.

(∗) for a connected component K of R̃, there is no path in G[U1] \
⋃
j∈I Bj

between s and K.

Observe that the Shore Lemma, together with (∗), implies that m ≥ 5.

Claim 5. There exist vertex disjoint paths P and Q in F ′′, where P is between s and t
and Q is between s′ and v1.

Proof of Claim. Suppose for a contradiction that this is not possible. Then the Linkage
Lemma implies that F ′′ can be obtained as follows:

(L1) place a circuit C on the boundary S1 of the unit disc, and the circuit contains the
vertices s, s′, t, v1 in this cyclic order,

(L2) add vertices to the interior of the disc, and triangulate the resulting graph inside the
disc to get K,

(L3) for every facial triangle T , consider an arbitrary graph KT such that V (KT )∩V (K) =
V (T ),

(L4) take the union K ∪
⋃
T KT , and delete some edges to get F ′′.

Now consider the st-path Q1 in the drawing. Observe that s and t lie on different sides
of the path Q1[s′, v1]. Consider the set ΓQ1 of pinned vertices that lie strictly inside the
side of Q1[s′, v1] that contains s. As F ′′ is acyclic, we may assume that the set ΓQ1 is
minimal over all possible odd st-dipaths Q1 in F ′′ that have intersection {s} with U1.

Note that every Qj, j ∈ {5, . . . ,m}, is an st-path. So for every j ∈ {5, . . . ,m}, there
exists a pinned vertex uj that lies on both Qj and Q1[s′, v1]; we may assume that uj is
the closest such vertex to t on Qj. Note that this implies that ui = vi for all i ∈ I. For
each j ∈ {5, . . . ,m} let Rj := Qj[uj, t] and Sj := Q1[s, uj] ∪ Rj. For j ∈ {1, 2, 3} ∩ I let
Rj := Qj[uj = vj, t] and Sj := Q1[s, uj = vj]∪Rj, and for j ∈ {1, 2, 3}−I let Rj := Qj[s

′, t]
and Sj := Qj.
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By the Shore Lemma, along with (∗) and Lemma 5.4, we get that there exists an Rk

such that |B−Rk −{Ω}| > τ − 3, for all covers B of (G′′,Σ′′). Notice that k /∈ I and that
k /∈ {1, 2, 3}.

Subclaim 5.1. Take an odd st-dipath P in F ′′ that has intersection {s} with U1. Suppose
that V P ∩ V Q1[uk, t] 6= {t} and let u be the closest vertex to s on P that lies on Q1[uk, t].
Then there exists a vertex v ∈ V P [s, u] that lies on Rk.

Proof of Subclaim 5.1. Suppose not. Then in particular u /∈ V Rk = V Qk[uk, t]. As F ′′

is acyclic it follows that u /∈ V Qk[s, uk], and so u /∈ V Qk. It is now easily seen that u
lies strictly inside the side of Qk which contains v1. As P is odd it follows that s′ ∈ V P .
Consider the subpath P [s′, u] of P . Since s′ lies on a different side of Qk than that of
u, Remark 4.16 implies that P [s′, u] and Qk share a pinned vertex w, say, and suppose
that w is the closest such vertex to u. By our hypothesis, w /∈ V Rk = V Qk[uk, t]. Hence,
w ∈ V P [s, uk]− {uk}. Let w′ be the closest vertex to w in P [s′, w] that lies on Q1[s′, uk].
Then Q′1 := Q1[s, w′] ∪ P [w′, w] ∪Qk[w, uk] ∪Q1[uk, t] contradicts the minimality of Q1 as
ΓQ′

1
⊆ ΓQ1 − {w}. Hence, there exists a vertex v ∈ V P [s, u] that lies on Rk. End of Proof

of Subclaim 5.1

Now let (G′′′,Σ′′′) := (G′′,Σ′′)\Rk/Q1[uk, t] and let F ′′′ be obtained from F ′′\Rk/Q1[uk, t]
after deleting all the outgoing arcs at t. We claim that (G′′′,Σ′′′) and F ′′′ satisfy (F1)-
(F4), therefore contradicting the minimality of (G′′,Σ′′) and F ′′. It is clear that (F1)
and (F2) hold. The choice of Rk implies that (F4) holds as well. Lastly, to show (F3)
holds, let Q be an odd st-dipath of F ′′′. Let P be an st-dipath of F ′′ contained in
Q ∪ Q1[uk, t]. If P ∩ Q2[uk, t] = ∅ then clearly (F3) holds. Otherwise, define u as in
the preceding claim, and find v as found above. Choose B′ to a cover of (G′′,Σ′′) such
that |B′ − P [s, v] − Rk[v, t]| = τ − 3. Then B′ − Rk is a cover of (G′′′,Σ′′′) for which
|(B′−Rk)−Q| = τ − 3. This proves (F3) holds. However, this contradicts the minimality
of (G′′,Σ′′) and F ′′. This finally finishes the proof of Claim 5. 3

Pick i ∈ I − {1}. Recall that the both of B1 and Bi are signatures. Choose a minimal
U ⊆ V − {s, t} so that δ(U) = B14Bi. By Lemma 4.2, there exists a shortest path R′ in
G′′[U ]\B1 between V Q1 and V Qi. Observe that V P ∩V R′ = V Q∩V R′ = V C ∩V R′ = ∅.
It is now easily seen that C∪P∪Q∪Q1[v1, t]∪Qi[vi, t]∪R has an F7 minor. But then (G,Σ)
has an F7 minor. However, this is not possible, implying that Part (4) is not possible.
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5.7 A lemma for Parts (5)-(7)

In this section, we provide a lemma that is frequently referenced in Parts (5)-(7). Recall
that at least one of L1, L2, L3 is non-simple and whenever Li, 1 ≤ i ≤ 3, is non-simple then
Ω ∈ Ci.
Lemma 5.5. Let Pj ∈ {P1, P2, . . . , Pm} be an even st-path, and let B be a minimal odd
st-walk cover of (G′,Σ′) such that |B − Pj − {Ω}| = τ − 3. Then B cannot be an st-bond.

Proof. After rearranging P1, P2, . . . , Pm, if necessary, we may assume that j ∈ {1, 2, 3}.
Notice that B ∩Lj 6= ∅ for all 4 ≤ j ≤ τ , and since |B−Pj −{Ω}| = τ − 3, it then follows
that B ∩Cj = {Ω}. Therefore, since Cj is a circuit and B ∩Cj has odd size, it follows that
B cannot be an st-bond.

5.8 Part (5)

Recall that all of L1, L2, L3 are non-simple, and Ω ∈ C1 ∩ C2 ∩ C3. For this part, we will
use the lemma stated in §5.7.

We will first show that s = t. Suppose otherwise. Lemma 5.5, together with the
Mate Lemma, ensures that there exists Pj ∈ {P1, P2, . . . , Pm} for which there is no odd
st-walk cover B of (G′,Σ′) such that |B − Pj − {Ω}| = τ − 3. In particular, Pj must be
an even st-path – due to (M3). After rearranging P1, P2, P3, . . . , Pm, if necessary, we may
assume that j = 1. Observe that the minimality of L1, L2, L3, P4, . . . , Pm by (A1) shows
that each Ci, 1 ≤ i ≤ 3, and each Pj, 1 ≤ j ≤ m, are vertex disjoint except at s. Let
(G′′,Σ′′) := (G′,Σ′) \ P1/

⋃m
j=2 Pj and H ′′ := H ′ \ P1/

⋃m
j=2 Pj. Observe that s = t in

(G′′,Σ′′), and that (G′′,Σ′′) and H ′′ satisfy all of (M1)-(M4), which is in contradiction with
the minimality of (G′,Σ′) and H ′.

Thus, s = t. Applying the Reduction Lemma, followed by the K̃5 Lemma, gives us a
K̃5 minor for (G′,Σ′). But then (G,Σ) has a K̃5 minor, which is not possible. So Part (5)
is not feasible.

5.9 Part (6)

Recall that exactly two, say L1 and L2, of L1, L2, L3 are non-simple, and Ω ∈ C1∩C2∩P3.
For this part, we will use the lemma stated in §5.7.
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Claim 1. Each of B1, B2 and B3 is a signature.

Proof of Claim. Let i ∈ {1, 2, 3}, and take j ∈ {1, 2} − {i}. Notice that Bi ∩ Cj = {Ω},
and so Bi must be a signature. 3

Claim 2. {Ω} is a signature for (H ′,Σ′ ∩ E(H ′)).

Proof of Claim. We will prove this by finding a vertex subset U ⊆ V (G′) − {s, t} such
that (B3 4 δ(U)) ∩ EH ′ = {Ω}. Let U ⊆ V P3 − {s, t} be the unique subset for which
P3∩δ(U) = P3∩B3−{Ω}. We will show that U ∩V Li = U ∩V Pj = ∅ for all i ∈ {1, 2} and
4 ≤ j ≤ m. Observe that B1 ∩ (L2 ∪ P3) = {Ω}, and so L2 ∪ P3 − {Ω} is bipartite, which
in turn implies U ∩ V L2 = ∅. Similarly, U ∩ V L1 = ∅. Furthermore, for all 4 ≤ j ≤ m,
B1 ∩ (Pj ∪ P3) = {Ω} implying that Pj ∪ P3 − {Ω} is bipartite, and so U ∩ V Pj = ∅.
Therefore, δ(U) ∩ EH ′ = δ(U) ∩ P3 = B3 ∩ EH ′ − {Ω} and so

(B34 δ(U)) ∩ EH ′ = (B3 ∩ EH ′)4 (B3 ∩ EH ′ − {Ω}) = {Ω},

as claimed. 3

Claim 3. H ′ \ (C1 ∪ C2 − {Ω}) is acyclic.

Proof of Claim. Suppose otherwise, and let C be a directed circuit in H ′ \ (C1∪C2−{Ω}).
Clearly Ω /∈ C, and so one can find m pairwise disjoint st-dipaths P ′1, P

′
2, P

′
3, . . . , P

′
m in

H ′ \ (C1 ∪C2−{Ω}) \C such that Ω ∈ P ′3. Let L′i := Ci ∪P ′i , for i ∈ {1, 2}, and L′3 := P ′3.
By Claim 2, each of L′1, L

′
2, L

′
3 is odd, and that each P ′j , 4 ≤ j ≤ m, is even. However, this

contradicts the minimality of L1, L2, L3, P4, . . . , Pm by (A1). 3

Claim 4. Every even st-dipath P of Σ′-signed subgraph H ′ \ (C1 ∪ C2 − {Ω}) is vertex-
disjoint from C1 and C2 except at s.

Proof of Claim. By rerouting P1, P2, P3, . . . , Pm in H ′ \ (C1 ∪ C2 − {Ω}), if necessary, we
may assume that P = P1, and it is therefore clear that P and C1 are vertex-disjoint except
at s. Similarly, P and C2 are vertex-disjoint except at s. 3

Claim 5. For every odd st-dipath P of Σ′-signed subgraph H ′ \ (C1 ∪ C2 − {Ω}), there
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exists a cover B of (G′,Σ′) such that |B − P | = τ − 3.

Proof of Claim. By rerouting P1, P2, P3, . . . , Pm in H ′ \ (C1 ∪ C2 − {Ω}), if necessary, we
may assume that P = P3, and by (M3) such B exists. 3

For each Pj let vj 6= t be the closest vertex to t on Pj that also lies on another Pi,
i ∈ {1, . . . ,m} − {j}. Then by the Intersection Lemma there exists vi � v3 such that
whenever vi ∈ V Pj then vi = vj. Let I be the set of all indices j ∈ {1, . . . ,m} such that
vj = vi. Note that i ∈ I and |I| ≥ 2, and we may assume that i 6= 3.

Lemma 5.5, together with the Mate Lemma, implies that there exists Pj ∈ {P1, . . . , Pm}
for which there is no cover B such that |B − Pj − {Ω}| = τ − 3. By Claim 5 we get that
j 6= 3. After rerouting P1, . . . , Pm in H ′ \ (C1 ∪ C2 − {Ω}), if necessary, we may assume
that j = 1.

Claim 6. v3 6= s.

Proof of Claim. Suppose otherwise. Then, for some j ∈ I, Pj[vj, t] is not contained in an
odd st-path of Σ′-signed subgraph H ′ \ (C1 ∪ C2 − {Ω}). Let (G′′,Σ′′) := (G′,Σ′) \ P1/P2

and H ′′ := H ′ \ P1/P2. Then it is easily seen that (M1) and (M2) are still satisfied by
(G′′,Σ′′) and H ′′. Our choice of P1 implies that (M4) also holds, and since v3 = s, it follows
that (M3) holds as well, subsequently contradicting the minimality of (G′,Σ′) and H ′. 3

Observe that Claim 6, together with the fact that vi � v3, implies that, for every j ∈ I,
Pj[vj, t] is contained in an odd st-dipath of Σ′-signed subgraph H ′ \(C1∪C2−{Ω}). It also
implies that vi 6= s, and so Pj[vj, t] is contained in an even st-dipath of Σ′-signed subgraph
H ′ \ (C1 ∪ C2 − {Ω}), for all j ∈ I, and so it is vertex-disjoint from C1 and C2.

Claim 7. For each j ∈ I, there exists a cover B of (G′,Σ′) such that |B−Pj[vj, t]−{Ω}| =
τ − 3.

Proof of Claim. Suppose otherwise. Then, for some j ∈ I, there is no cover B of (G′,Σ′)
such that |B−Pj[vj, t]−{Ω}| = τ − 3. Let (G′′,Σ′′) := (G′,Σ′) \Pj[vj, t]/∪ (Pk[vk, t] : k ∈
I, k 6= j) and H ′′ := H ′ \ Pj[vj, t]/ ∪ (Pk[vk, t] : k ∈ I, k 6= j). It is now easily seen that
(1)-(4) still hold for (G′′,Σ′′) and H ′′, contradicting the minimality of (G′,Σ′) and H ′. 3
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Notice that, as a corollary, 1 /∈ I.

Claim 8. There exists an s′vi-dipath Q in H ′ \ (C1∪C2−{Ω}) that is vertex-disjoint from
P1.

Proof of Claim. Suppose otherwise. Choose v ∈ V P1 to be the closest vertex to s for which
there is a vvi-dipath R in H ′ \ (C1 ∪ C2 − {Ω}) with Ω /∈ R and V R ∩ V P1 = {v}. Note
that P1[s, v]∪R ∪ Pi[vi, t] is an even st-dipath in H ′ \ (C1 ∪C2 − {Ω}) and so by Claim 4,
V R ∩ V C1 = V R ∩ V C2 ⊆ {s}. Now let (G′′,Σ′′) := (G′,Σ′) \ P1[v, t]/(R ∪ Pi[vi, t]) and
H ′′ := H ′ \ P1[v, t]/(R ∪ Pi[vi, t]). Clearly, (M1) and (M2) still hold for (G′′,Σ′′) and H ′′.
Our choice of P1 implies that (M4) holds as well. We will now show that (M3) holds as
well.

Let P be an odd st-dipath of (H ′′,Σ′′ ∩E(H ′′)). Then P is a dipath in H ′ from s to a
vertex w ∈ {t}∪V R and Ω ∈ P . If w = t then (M3) clearly holds. Otherwise w ∈ V R and
so by our assumption, it follows that V P [s′, w] ∩ V P1 6= ∅. By our choice of v, it follows
that V P [s′, w] ∩ V P1[v, t] 6= ∅. Choose w′ ∈ V P [s′, w] ∩ V P1[v, t], and let B be a cover of
(G′,Σ′) such that |B− (P [s, w′]∪P1[w′, t])| = τ − 3. Let B′ := B−P1[w′, t], this is a cover
for (G′′,Σ′′) that satisfies τ − 3 ≤ |B′ − P | ≤ |B′ − P [s, w′]| = τ − 3, and so (M3) holds.

Next let L be a non-simple directed odd st-walk of H ′′, and let C and Q be, respectively,
the odd directed circuit and the even st-dipath contained in it. If Q = ∅, following the
exact same approach as above on C (rather than P ) shows that (M3) holds. Otherwise, C
is still an odd directed circuit in H ′ and Q is a dipath in H ′ from s to a vertex w ∈ {t}∪V R
and Ω /∈ Q.

If w = t then (M3) clearly holds. Otherwise w ∈ V R and so by our choice of v, it
follows that V Q[s, w] ∩ V P1[v, t] 6= ∅. Choose w′ ∈ V Q[s, w] ∩ V P1[v, t], and let B be a
cover of (G′,Σ′) such that |B − (C ∪Q[s, w′] ∪ P1[w′, t])| = τ − 3. Let B′ := B − P1[w′, t],
this is a cover for (G′′,Σ′′) that satisfies τ − 3 ≤ |B′ − L| ≤ |B′ − C ∪ Q[s, w′]| = τ − 3,
and so (M3) holds.

Thus, (M3) also holds for (G′′,Σ′′) and H ′′, contradicting the minimality of (G′,Σ′) and
H ′. 3

Pick j ∈ I−{i}, and choose minimal covers Bi and Bj such that |Bi−Pi[vi, t]−{Ω}| =
|Bj − Pj[vj, t] − {Ω}| = τ − 3. Since Bi ∩ C1 = Bj ∩ C1 = {Ω} it follows that both Bi

and Bj are signatures. Choose a minimal U ⊆ V − {s, t} so that δ(U) = Bi 4 Bj. By
Lemma 4.2, there is a shortest path R in G′[U ] \ Bi between V Pi and V Pj. Observe that
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V C1∩U = V P1∩U = V Q∩U = ∅. It is now easily seen that C1∪Q∪Pi[vi, t]∪Pj[vj, t]∪R∪P1

has an F7 minor. But then (G,Σ) has an F7 minor, which is not possible. Thus, Part (6)
is not feasible.

5.10 Part (7)

Recall that exactly one, say L1, of L1, L2, L3 is non-simple, and Ω ∈ C1 ∩P2 ∩P3. For this
part, we will use the lemma stated in §5.7.

Claim. (H ′ \ Ω,Σ′ ∩ E(H ′ \ Ω)) does not contain an odd cycle.

Proof of Claim. Suppose, for a contradiction, that (H ′ \ Ω,Σ′ ∩ E(H ′ \ Ω)) does contain
an odd cycle. We will yield a contradiction by showing that (G′,Σ′), and therefore (G,Σ),
must have an F7 minor. Recall that B1, B2, B3 are minimal covers of (G,Σ) such that
|Bj − Lj| = τ − 3, for all 1 ≤ j ≤ 3.

Subclaim 1. B2 and B3 are signatures but, B1 is an st-bond.

Proof of Subclaim 1. Observe that, for i = 2, 3, Bi ∩ C1 = {Ω} and so Bi cannot be an
st-bond. It remains to show that B1 is an st-bond. Suppose otherwise. Observe that,
for all k ∈ {1, 2, 3}, Bk ∩ E(H ′) = Bk ∩ Lk, as Bk ∩ Pj = ∅ for all j ∈ {4, . . . ,m} and
Bk ∩ Li = {Ω} for all i ∈ {1, 2, 3} − {k}. Take j ∈ {2, 3, . . . ,m} and k ∈ {2, 3} − {j}.
Then Bk ∩ (L1 ∪ Pj − {Ω}) = ∅ and so Pi ∪ Pj − {Ω} is bipartite. Since this is true for
all j ∈ {2, 3, . . . ,m} and since B1 is a signature, it follows that (H ′ \Ω,Σ′ ∩E(H ′ \Ω)) is
bipartite, contrary to our assumption.

End of Proof of Subclaim 1

Subclaim 2. P2 ∪ P3 contains an odd cycle, and L1 ∪ P2 − {Ω} and L1 ∪ P3 − {Ω} are
bipartite.

Proof of Subclaim 2. Take distinct i, j ∈ {2, 3, . . . ,m} such that {i, j} 6= {2, 3}. Take
k ∈ {2, 3} − {i, j}. Then Bk ∩ (Pi ∪ Pj − {Ω}) = ∅ and Bk ∩ (L1 ∪ Pj − {Ω}) = ∅, because
Bk is a signature. So L1∪Pj−{Ω} and Pi∪Pj−{Ω} are bipartite, for all i, j ∈ {2, 3, . . . ,m}
such that {i, j} 6= {2, 3}. In particular, L1 ∪ P2 − {Ω} and L1 ∪ P3 − {Ω} are bipartite. If
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P2 ∪ P3 is also bipartite, then (H ′ \ Ω,Σ′ ∩ E(H ′ \ Ω)) is bipartite as before, which is not
the case. Hence, P2 ∪ P3 contains an odd cycle. End of Proof of Subclaim 2

Subclaim 3. Take two distinct vertices u, v ∈ V Li ∩ V Lj − {s}, for some distinct
i, j ∈ {1, 2, 3}. If u ≺Li

v but v ≺Lj
u then {i, j} = {2, 3}.

Proof of Subclaim 1.3. Suppose that u ≺Li
v but v ≺Lj

u, but {i, j} 6= {2, 3}. We as-
sume that i = 2, j = 1 and the other cases such as i = 1, j = 3 or i = 3, j = 1 can
be treated similarly. Let L′2 := L2[s, u] ∪ L1[u, t] and L′1 := L1[s, v] ∪ L2[v, t], which are
connected {s, t}-joins. Then L′2 ∩B3 = L′1 ∩B3 = {Ω}, implying that L′1 and L′2 are both
odd. However, this contradicts the minimality of L1 ∪ L2 ∪ L3 ∪

⋃m
j=4 Pj by (A1). Hence

{i, j} = {2, 3}. End of Proof of Subclaim 3

Therefore, L1∪Li−{Ω} is ayclic, for i = 2, 3. Let F ′ := L1∪L2∪L3. Let (G′′,Σ′′) be a
minor of (G′,Σ′) and let F ′′ be a directed graph obtained by orienting edges in a subgraph
of G′, where (G′′,Σ′′) and F ′′ are minimal subject to

(F1) E(G′)− E(G′′) ⊆ E(F ′ \ Ω), and E(F ′′) ⊆ L1 ∪ L2 ∪ L3,

(F2) there exist three directed odd st-walks L′′1, L
′′
2, L

′′
3 in F ′′ that are pairwise disjoint

except at Ω, where L′′1 is non-simple and Ω ∈ C ′′1 , and L′′2, L
′′
3 are simple,

(F3) L′′1 ∪L′′i −{Ω} is bipartite and acyclic for i = 2, 3, but L′′2 ∪L′′3 contains an odd cycle,

(F4) for any odd st-walk L of F ′′ there exists a cover B of (G′′,Σ′′) such that |B−L| = τ−3,
and

(F5) there is no cover for (G′′,Σ′′) of size τ − 2.

Note that these conditions are satisfied by (G′,Σ′) and F ′, so (G′′,Σ′′) and F ′′ are well-
defined. We may assume that F ′′ = L′′1 ∪ L′′2 ∪ L′′3. Let B′′i be a minimal cover of (G′′,Σ′′)
such that |B′′i −L′′i | = τ −3, whose existence is guaranteed by (F4). Since L′′2 ∪P ′′3 contains
an odd cycle, it follows that B′′1 is an st-bond, and since B′′2 ∩ C ′′1 = B′′3 ∩ C ′′1 = {Ω},
B′′2 , B

′′
3 are signatures. For the sake of notational ease, reset Li := L′′i and Bi := B′′i for all

1 ≤ i ≤ 3.

Choose a minimal vertex subset U23 ∈ V (G′′) − {s, t} such that B2 4 B3 = δ(U23).
Since P2 ∪ P3 contains an odd cycle, it follows that V P2 ∩ V P3 ∩ U23 6= ∅.
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Subclaim 4. L1 is internally vertex-disjoint from P2 and P3.

Proof of Subclaim 4. We first show that C1 is internally vertex-disjoint from P2 and P3.
Suppose otherwise. Let v 6= s′, s be the closest vertex to s′ on C1 that lies on P2 ∪ P3. We
may assume that v ∈ V P2.

We claim that there is an odd cycle in P2 ∪ P3 that avoids P2[s, v]. Suppose for a
contradiction that this is not the case. Let y ∈ V P2 ∩ V P3 ∩ U23. Since every odd
cycle intersects P2[s′, v], it follows that y ∈ V P2[s′, v]. Let C ′1 := P2[s, v] ∪ C1[v, t] and
P ′2 := C1[s, v]∪P2[v, t]. Let C := C ′1[s′, y]∪P3[s′, y], which is an odd cycle in C ′1∪P3−{Ω}.
Notice that C ′1 is an odd circuit and P ′2 is an odd st-dipath in F ′′. Hence, by (F4) there is
a cover B of (G′′,Σ′′) such that |B − P ′2| = τ − 3. Then B ∩ (C ′1 ∪ P3) = {Ω}, and so B
must be a signature as B ∩C ′1 = {Ω}. But B ∩ (C ′1 ∪P3) = {Ω}, implying that B ∩C = ∅,
a contradiction since C is odd. Hence, there is an odd cycle in P2 ∪P3 that avoids P2[s, v].

Observe that if there is a cover B of (G′′,Σ′′) such that |B − P2[s, v]| = τ − 3, then B
must be an st-cut, since there is an odd cycle of F ′′ avoiding P2[s, v], a contradiction to
Lemma 5.5. Therefore, there is no cover B of (G′′,Σ′′) such that |B−P2[s, v]| = τ −3. Let
(G′′′,Σ′′′) := (G′′,Σ′′) \ P2[s′, v]/C1[s′, v] and F ′′′ := F ′′ \ P2[s′, v]/C1[s′, v]. It is easily seen
that (F1),(F2) and (F4) hold for (G′′′,Σ′′′) and F ′′′. We just showed that (F5) holds as
well. Moreover, since there is an odd cycle in P2 ∪ P3 avoiding P2[s, v] (and L1), it follows
that (F3) holds as well for (G′′′,Σ′′′) and F ′′′, contradicting the minimality of (G′′,Σ′′) and
F ′′. Thus, C1 is internally vertex-disjoint from P2 and P3.

We next show that P1 is internally vertex-disjoint from P2 and P3. Suppose otherwise.
Let u 6= t be the closest vertex to t on P1 that lies on P2 ∪ P3. We may assume that
u ∈ V P2.

We claim that there is an odd cycle in P2 ∪ P3 that avoids P2[u, t]. Suppose for a
contradiction that this is not the case. Let y ∈ V P2 ∩ V P3 ∩ U23. Since every odd
cycle intersects P2[u, t], it follows that y ∈ V P2[u, t]. Let P ′1 := P1[s, u] ∪ P2[u, t] and
P ′2 := P2[s, u]∪P1[u, t]. Let C := P ′1[y, t]∪P3[y, t], which is an odd cycle in P ′1 ∪P3−{Ω}.
Notice that P ′2 is an odd st-dipath in F ′′, so by (F4) there is a cover B of (G′′,Σ′′) such
that |B − P ′2| = τ − 3. Then B ∩ (C1 ∪ P ′1 ∪ P3) = {Ω}, and so B must be a signature as
B ∩ C ′1 = {Ω}. But B ∩ (P ′1 ∪ P3) = {Ω}, implying that B ∩ C = ∅, a contradiction since
C is odd. Hence, there is an odd cycle in P2 ∪ P3 that avoids P2[u, t].

Observe that if there is a coverB of (G′′,Σ′′) such that |B−P2[u, t]−{Ω}| = τ−3, thenB
must be an st-cut, since there is an odd cycle of P2∪P3 avoiding P2[u, t], a contradiction to
Lemma 5.5. Therefore, there is no cover B of (G′′,Σ′′) such that |B−P2[u, t]−{Ω}| = τ−3.
Let (G′′′,Σ′′′) := (G′′,Σ′′)\P2[u, t]/P1[u, t] and F ′′′ := F ′′ \P2[u, t]/P1[u, t]. It is easily seen
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that (F1),(F2) and (F4) hold for (G′′′,Σ′′′) and F ′′′. We just showed that (F5) holds as
well. Moreover, since there is an odd cycle in P2 ∪P3 avoiding P2[s, v], it follows that (F3)
holds as well for (G′′′,Σ′′′) and F ′′′, contradicting the minimality of (G′′,Σ′′) and F ′′. Thus,
P1 is internally vertex-disjoint from P2 and P3.

Thus, L1 is internally vertex-disjoint from P2 and P3, as claimed.

End of Proof of Subclaim 4

Subclaim 5. If there is a directed circuit C in P2 ∪ P3 then C is even.

Proof of Subclaim 5. Suppose otherwise. Decompose P2 ∪ P3 \ C into the union of two
{s, t}-joins P ′2 and L′3. We may assume that P ′2 is even and L′3 is odd. Let L′2 := C ∪ P ′2,
which is a non-simple odd {s, t}-join. But then Ω ∈ C1 but Ω /∈ C, a contradiction to
Lemma 4.5.

End of Proof of Subclaim 5

After contracting all the directed even circuits in P2∪P3, it is easily seen that L1∪P2∪P3

has an F7 minor. But then (G,Σ) has an F7 minor, a contradiction. This finishes the proof
of Claim. 3

Observe that Claim implies that

(∗) H ′ \ Ω is acyclic.

Suppose otherwise, and let C be a directed circuit in H ′ \ Ω. Then one can find m st-
dipaths P ′1, P

′
2, P

′
3, . . . , P

′
m and a directed circuit C ′1 in H ′ \ C that are pairwise disjoint

except possibly at Ω, and where Ω ∈ C ′1 ∩ P ′2 ∩ P ′3 and Ω /∈ P ′1 ∪ P ′4 ∪ P ′5 ∪ · · · ∪ P ′m.
However, Claim implies that L′1 := C ′1 ∪ P ′1, L′2 := P ′2, L

′
3 := P ′3 are directed odd st-walks,

and P ′4, . . . , P
′
m are even st-dipaths, contradicting the minimality of L1, L2, L3, P4, . . . , Pm

given by (A1).

Notice that (∗) implies that

(a) every even st-dipath Q in H ′ \ (C1 − {Ω}) is vertex-disjoint from C1 except at s, and

(b) for every odd st-dipath P in H ′ \ (C1 − {Ω}), there exists a cover B of (G′,Σ′) such
that |B − P | = τ − 3.
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To see (a), by rerouting P1, P2, P3, . . . , Pm in H ′ \ (C1−{Ω}), if necessary, we may assume
that Q = P1, and it is therefore clear that Q and C1 are vertex-disjoint except at s. To see
(b), by rerouting P1, P2, P3, . . . , Pm in H ′ \ (C1 − {Ω}), if necessary, we may assume that
P = P2, and by (M3) such B exists.

For each Pj, 1 ≤ j ≤ m, let vj 6= t be the closest vertex to t on Pj that also lies on
another Pi, i ∈ {1, . . . ,m} − {j}. Then by the Intersection Lemma there exists vi � v3

such that whenever vi ∈ V Pj then vi = vj. Let I be the set of all indices j ∈ {1, . . . ,m}
such that vj = vi. Note that i ∈ I and |I| ≥ 2. We may assume that i 6= 1. There are two
possibilities based on whether or not V C1 ∩ V Pj[vj, t] = ∅ for all j ∈ I.

5.10.1 Part (7.1): V C1 ∩ V Pj[vj, t] = ∅ for all j ∈ I

Observe that since vi � v3 and v3 6= s, it follows that, for every j ∈ I, Pj[vj, t] is contained
in an odd st-dipath of H ′ \ (C1 − {Ω}).

Claim 1. For each j ∈ I, there exists a cover B of (G′,Σ′) such that |B−Pj[vj, t]−{Ω}| =
τ − 3.

Proof of Claim. Suppose otherwise. Then, for some j ∈ I, there is no cover B of (G′,Σ′)
such that |B−Pj[vj, t]−{Ω}| = τ − 3. Let (G′′,Σ′′) := (G′,Σ′) \Pj[vj, t]/∪ (Pk[vk, t] : k ∈
I, k 6= j) and H ′′ := H ′ \ Pj[vj, t]/ ∪ (Pk[vk, t] : k ∈ I, k 6= j). It is now easily seen that
(M1) and (M2) still hold for (G′′,Σ′′) and H ′′. By our assumption, (M4) holds as well, and
since V C1 ∩ V Pj[vj, t] = ∅ for all j ∈ I, it follows that (M3) also holds, contradicting the
minimality of (G′,Σ′) and H ′. 3

Lemma 5.5, together with the Mate Lemma, implies that there exists Pj ∈ {P1, . . . , Pm}
for which there is no cover B such that |B − Pj − {Ω}| = τ − 3. By (b) and Claim 1, we
get that j /∈ {2, 3}∪ I. After rerouting P1, . . . , Pm in H ′ \ (C1−{Ω}), if necessary, we may
assume that j = 1.

Claim 2. There exists an s′vi-dipath Q in H ′ \ (C1−{Ω}) that is vertex-disjoint from P1.

Proof of Claim. Suppose otherwise. Choose v ∈ V P1 to be the closest vertex to s for which
there is a vvi-dipath R in H ′ \ (C1 − {Ω}) with Ω /∈ R and V R ∩ V P1 = {v}. Note that
P1[s, v]∪R∪Pi[vi, t] is an even st-dipath in H ′\(C1−{Ω}) and so by (a), V R∩V C1 ⊆ {s}.
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Now let (G′′,Σ′′) := (G′,Σ′) \ P1[v, t]/(R ∪ Pi[vi, t]) and H ′′ := H ′ \ P1[v, t]/(R ∪ Pi[vi, t]).
Clearly, (M1) and (M2) still hold for (G′′,Σ′′) and H ′′. Our choice of P1 implies that (M4)
holds as well. We will now show that (M3) holds as well.

Let P be an odd st-dipath of H ′′. Then P is a dipath in H ′ from s to a vertex
w ∈ {t} ∪ V R and Ω ∈ P . If w = t then (M3) clearly holds. Otherwise w ∈ V R and
so by our assumption, it follows that V P [s′, w] ∩ V P1 6= ∅. By our choice of v, it follows
that V P [s′, w] ∩ V P1[v, t] 6= ∅. Choose w′ ∈ V P [s′, w] ∩ V P1[v, t], and let B be a cover of
(G′,Σ′) such that |B− (P [s, w′]∪P1[w′, t])| = τ − 3. Let B′ := B−P1[w′, t], this is a cover
for (G′′,Σ′′) that satisfies τ − 3 ≤ |B′ − P | ≤ |B′ − P [s, w′]| = τ − 3, and so (M3) holds.

Next let L be a non-simple directed odd st-walk of H ′′, and let C and Q be, respectively,
the odd directed circuit and the even st-dipath contained in it. If Q = ∅, following the
exact same approach as above on C (rather than P ) shows that (M3) holds. Otherwise, C
is still an odd directed circuit in H ′ and Q is a dipath in H ′ from s to a vertex w ∈ {t}∪V R
and Ω /∈ Q.

If w = t then (M3) clearly holds. Otherwise w ∈ V R and so by our choice of v, it
follows that V Q[s, w] ∩ V P1[v, t] 6= ∅. Choose w′ ∈ V Q[s, w] ∩ V P1[v, t], and let B be a
cover of (G′,Σ′) such that |B − (C ∪Q[s, w′] ∪ P1[w′, t])| = τ − 3. Let B′ := B − P1[w′, t],
this is a cover for (G′′,Σ′′) that satisfies τ − 3 ≤ |B′ − L| ≤ |B′ − C ∪ Q[s, w′]| = τ − 3,
and so (M3) holds.

Thus, (M3) also holds for (G′′,Σ′′) and H ′′, contradicting the minimality of (G′,Σ′) and
H ′. 3

Pick j ∈ I−{i}, and choose minimal covers Bi and Bj such that |Bi−Pi[vi, t]−{Ω}| =
|Bj − Pj[vj, t]− {Ω}| = τ − 3. Since Bi ∩C1 = Bj ∩C1 = {Ω} it follows that both Bi and
Bj are signatures. Choose a minimal U ⊆ V − {s, t} so that δ(U) = Bi 4 Bj. Then by
Lemma 4.2, there exists a shortest path R in G′[U ]\Bi between V Pi and V Pj. Observe that
V C1∩U = V P1∩U = V Q∩U = ∅. It is now easily seen that C1∪Q∪Pi[vi, t]∪Pj[vj, t]∪R∪P1

has an F7 minor. But then (G,Σ) has an F7 minor, which is not possible. Hence, Part
(7.1) is not possible.

5.10.2 Part (7.2): V C1 ∩ V Pj[vj, t] 6= ∅ for some j ∈ I

We may assume that V C1 ∩ V Pi[vi, t] 6= ∅. Therefore, (a) implies that Pi[vi, t], and so
every Pj[vj, t] (j ∈ I), is not contained in any even st-dipath of H ′ \ (C1 − {Ω}). Hence,
I = {2, 3} and V Pj ∩ V Pk = {s, t} for all j ∈ [m] − {2, 3} and k ∈ {2, 3}. Let F ′ be the
signed subgraph of H ′ induced by L1 ∪ L2 ∪ L3.
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Let (G′′,Σ′′) be a minor of (G′,Σ′) and let F ′′ be a directed graph obtained by orienting
edges in a subgraph of G′′, where (G′′,Σ′′) and F ′′ are minimal subject to

(F1) E(G′)− E(G′′) ⊆ E(F ′)− (P1 ∪ δ(s)), and E(F ′′) ⊆ E(F ′),

(F2) F ′′ \Ω is acyclic, and there exist three pairwise disjoint s′t-dipaths in F ′′, exactly one
of which uses s,

(F3) for any s′t-dipath Q of F ′′ that avoids s, there exists a cover B of (G′′,Σ′′) such that
|B −Q− {Ω}| = τ − 3, and

(F4) there is no cover for (G′′,Σ′′) of size τ − 2.

Note that these conditions are satisfied by (G′,Σ′) and F ′, so (G′′,Σ′′) and F ′′ are well-
defined. By identifying a vertex of each component with s, if necessary, we may assume
that G′′ is connected. Now let (Qj)

3
j=1 be pairwise disjoint s′t-dipaths in F ′′, as in (F2),

such that s ∈ V Qj if and only if j = 1. Note that P1 ( Q1, Qj ∪{Ω} is an odd st-path for
j = 2, 3, and Q1 ∪ {Ω} is a non-simple odd st-walk (note it is possible that t ∈ V Q1). We
may assume that F ′′ \ Ω =

⋃3
j=1Qj. Notice (F ′′ \ Ω,Σ′′ ∩ E(F ′′ \ Ω)) is bipartite.

Claim 1. Let P be an odd st-dipath of F ′′, and let B be a cover of (G′′,Σ′′) such that
|B − P | = τ − 3. Then B is a signature.

Proof of Claim. Since F ′′ \ Ω is acyclic, we may assume that P = Q2, and so since
B ∩ ({Ω} ∪Q1[s′, s]) = {Ω}, it follows that B is a signature. 3

For each Qj let vj 6= s′ be the closest vertex to s′ on Qj that also lies on another Qi,
i ∈ {1, 2, 3} − {j}. Then by the Intersection Lemma, there exists i ∈ {1, 2, 3} such that
whenever vi ∈ V Qj then vi = vj. Let I be the set of all indices j in {1, 2, 3} such that
vj = vi. Note that i ∈ I and |I| ≥ 2.

Claim 2. There exist internally vertex-disjoint paths Q and R in F ′′ that do not use s,
and where Q is an s′t-dipath and R is a vit-dipath.

Proof of Claim. Suppose otherwise. Then there exists a vertex v in F ′′ for which there is
no s′t-dipath in F ′′ − {s, v}. In particular, v ∈ V Q2 ∩ V Q3.
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In the first case, assume that v ∈ V Q1. If there exists an s′v-dipath R′ in F ′′ for which
there is no cover B of (G′′,Σ′′) such that |B−R′−{Ω}| = τ−3, then delete R′ and contract
all the other s′v-dipaths in F ′′ to get (G′′′,Σ′′′) and F ′′′ that satisfy all of (F1)-(F4), which
is not possible by the minimality of (G′′,Σ′′) and F ′′. Otherwise, contract all the vt-dipaths

in F ′′, and then apply the K̃5 Lemma on ({Ω} ∪ P1 ∪ (Qi[s
′, v] : i ∈ [3]))/P1 to obtain a

K̃5 minor, which cannot be the case since (G,Σ) has no such minor.

Hence, v /∈ V Q1. Then (V Q2[v, t] ∪ V Q3[v, t]) ∩ V Q1[s′, s] = ∅. If there exists a vt-
dipath R′ in F ′′ for which there is no cover B of (G′′,Σ′′) such that |B−R′−{Ω}| = τ −3,
then delete R′ and contract all the other vt-dipaths in F ′′ to get (G′′′,Σ′′′) and F ′′′ that
satisfy all of (F1)-(F4), which is not possible by the minimality of (G′′,Σ′′) and F ′′.

Otherwise, for i = 2, 3, let Bi be a cover of (G′′,Σ′′) such that |Bi−Qi[v, t]−{Ω}| = τ−3.
By Claim 1, both B2 and B3 are signatures. Let U ⊆ V (G′′)− {s, t} be a minimal subset
such that δ(U) = B2 4 B3, and let R be a shortest path in G′′[U ] \ B3 between V Q2 and
V Q3. Note that V Q1 ∩ U = ∅. Now it is easily seen that {Ω} ∪Q1 ∪Q2 ∪Q3[v, t] ∪R has
an F7 minor, a contradiction since (G,Σ) has no such minor. 3

Therefore, in particular, |I| = 2.

Claim 3. For each j ∈ I, there exists a cover B of (G′′,Σ′′) such that |B−Qj[s
′, vj]−{Ω}| =

τ − 3.

Proof of Claim. If not, delete Qj[s
′, vj] and contract the other path Qk[s

′, vk], k ∈ I −{j},
to get (G′′′,Σ′′′) and F ′′′ that satisfy all of (F1)-(F4), a contradiction to the minimality of
(G′′,Σ′′) and F ′′. 3

Now apply the K̃5 Lemma to ({Ω}∪P1∪Q∪R∪ (Qi[vi, t] : i ∈ I))/(R∪P1) to obtain a

K̃5 minor, a contradiction since (G,Σ) has no such minor. Hence, Part (7.2), and therefore
Part (7), is not possible.

5.11 Part (8)

Recall that at least two, say L1 and L2, of L1, L2, L3 are non-simple, and Ω ∈ P1∩P2∩P3.
We will finish off the proof by showing that (G′,Σ′), and therefore (G,Σ), contains an F7

minor. Observe that all of B1, B2 and B3 are st-bonds. Indeed, take Bi ∈ {B1, B2, B3},
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and choose j ∈ {1, 2} − {i}. Then Bi ∩ Lj = {Ω} and so, since Ω /∈ Cj, it follows that
Bi ∩ Cj = ∅. However, Cj is an odd circuit, and so Bi cannot be a signature.

We now abandon our earlier criterion for the choice of Bi being minimal, and we assume
instead that, for every i ∈ {1, 2, 3},

(∗) Bi = δ(Ui) is an st-cut such that |Bi − Li| = τ − 3, and Ui ⊆ V − {t}
is minimal among all possible choices of Bi. In other words, Bi is shorewise
minimal.

Claim 1. For all i ∈ {1, 2, 3}, G′′[Ui] is connected.

Proof of Claim. Suppose otherwise. Then there exists a vertex subset U ⊆ Ui − {s} for
which δ(U) ⊆ δ(Ui). Let B := Bi4 δ(U) = δ(Ui4U) = δ(Ui−U), which is another st-cut
for which |B − Li| = τ − 3, contradicting the shorewise minimality of Bi. 3

Claim 2. Whenever Li is non-simple, for some i ∈ {1, 2, 3}, then Pi ∩Bi = {Ω}.

Proof of Claim. Suppose that Li is non-simple for some i ∈ {1, 2, 3}. We may assume
that i = 1. Suppose, for a contradiction, that {Ω} ( P1 ∩ B1. By (M4’) there exists
a cover B such that |B − C1 − P2| = τ − 3. Since B ∩ C2 = ∅, it follows that B is an
st-cut. So B = δ(U) for some U ⊆ V − {t}. Note that U1 * U since P1 ∩ δ(U1) ) {Ω}
but P1 ∩ δ(U) = {Ω}. Now let U ′1 := U1 ∩ U ( U1, and let B′1 := δ(U ′1). We claim that
|B′1 − L1| = τ − 3, and this will contradict the shorewise minimality of B1.

Observe first that B′1 ⊆ B1 ∪ B. For any Lr ∈ {L3, L4, . . . , Lτ}, we know that
|B′1∩Lr| ≤ |B1∩Lr|+ |B∩Lr| = 2 and since |B′1∩Lr| is odd, it follows that |B′1∩Lr| = 1.
Moreover, B′1 ∩ C2 ⊆ (B1 ∩ C2) ∪ (B ∩ C2) = ∅ and so B′1 ∩ C2 = ∅. Since U ′1 ( U1 and
δ(U1) ∩ P2 = {Ω}, it follows that B′1 ∩ P2 = {Ω}. Combining the two equalities yields
B′1 ∩ L2 = {Ω}. Hence, since B′1 ⊆ B ∪ B1 ∪

⋃τ
j=1 Lj, it follows that |B − L1| = τ − 3,

as claimed, but this contradicts the shorewise minimality of B1. Hence, Pi ∩ Bi = {Ω}
whenever Li is non-simple for some i ∈ {1, 2, 3}. 3

Claim 3. There is a rearrangement i1, i2, i3 of 1, 2, 3 such that Ui1 ⊆ Ui2 ⊆ Ui3.

Proof of Claim. Choose distinct i, j ∈ {1, 2, 3} and let k be the other index in {1, 2, 3}.
We will show that either Ui ⊆ Uj or Uj ⊆ Ui, and since this is true for all such i, j, it will
follow that there is a rearrangement i1, i2, i3 of 1, 2, 3 such that Ui1 ⊆ Ui2 ⊆ Ui3 .
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Suppose, for a contradiction, that neither Ui ⊆ Uj nor Uj ⊆ Ui is true. Let U := Ui∩Uj,
which is strictly contained in Ui and Uj, and let U ′ := Ui ∪ Uj. Similarly as above,
δ(U) ⊆ Bi ∪Bj, and |δ(U) ∩ Lr| = 1 for all Lr ⊂ {Lk, L4, . . . , Lτ}.

Since Ω ∈ δ(U) and Pi∩Bj = Pj∩Bi = {Ω}, it follows that Pi∩δ(U) = Pj∩δ(U) = {Ω}.
However, since U is strictly contained in Ui and Uj, the shorewise minimality of Bi and
Bj therefore implies that δ(U) ∩ Lj 6= {Ω} and δ(U) ∩ Li 6= {Ω}. Hence, Li and Lj are
non-simple, and δ(U)∩Cj 6= ∅ and δ(U)∩Ci 6= ∅. Thus, since Ci∩ δ(Uj) = Cj ∩ δ(Ui) = ∅,
it follows that Ci ⊆ G′[Uj] and Cj ⊆ G′[Ui], and so Ci ∪ Cj ⊆ G′[U ′].

Next consider δ(U ′). It is again the case that δ(U ′) ⊆ Bi ∪Bj and |δ(U ′) ∩ Lr| = 1 for
all Lr ∈ {Lk, L4, . . . , Lτ}. Since Ci ∪ Cj ⊆ G′[U ′], and since Pi ∩ Bi = Pj ∩ Bj = {Ω} by
Claim 2, it follows that δ(U ′) ∩ Li = δ(U ′) ∩ Lj = {Ω}. However, δ(U ′) ⊆ Bi ∪Bj ⊆

⋃τ
j=1

and so |δ(U ′)| = τ−2, a contradiction to (M5’). Consequently, either Ui ⊆ Uj or Uj ⊆ Ui.3

Note that if C3 = ∅, then P3 ∩ B3 6= {Ω} and so we cannot have U3 ⊆ U1 or U3 ⊆ U2.
Moreover, notice that U1, U2 and U3 are pairwise different, because B1, B2 and B3 are pair-
wise different. Therefore, we may assume that U1 ( U2 ( U3.

Claim 4. Suppose that C and C ′ are two disjoint odd cycles such that C ∪ C ′ = C1 ∪ C2

and C ′ ∩ δ(U1) 6= ∅. Then C and C ′ are odd circuits, V C ⊆ V − U1 and V C * U2.

Proof of Claim. Observe first that C and C ′ are odd circuits due to the minimality of
L1, L2, L3. Let L′1 = C ′ ∪ P1 and L′2 = C ∪ P2. By (M4’) there exist covers B′1 and B′2
such that |B′1 − L′1| = |B′2 − L′2| = τ − 3. Since B′1 ∩ C = B′2 ∩ C ′ = ∅ it follows that
B′1 and B′2 are st-bonds, and so there exist U ′1, U

′
2 ⊆ V − {t} such that B′i = δ(U ′i) for

i = 1, 2. Suppose further that, for i = 1, 2, B′i and U ′i are chosen under (∗), so that U ′i is
minimal. So by Claims 2 and 3, B′i ∩ Pi = {Ω} for i = 1, 2, and either U ′1 ⊆ U ′2 ⊆ U3 or
U ′2 ⊆ U ′1 ⊆ U3.

Let W := U ′1 ∩ U ′2 ∈ {U ′1, U ′2} and consider δ(W ∩ U1). Observe that δ(W ∩ U1) ⊆
δ(W )∪B1, and since V C2 ⊆ V −U1, δ(W ∩U1)∩C2 = ∅. Hence, |δ(W ∩U1)−L1| = τ −3,
and so by the minimality of U1, it follows that W ∩ U1 = U1. Similarly, by reversing the
roles of L1, L2, L3 by L′1, L

′
2, L3, one can show that W ∩U1 = W and so W = U1. However,

∅ 6= C ′∩δ(U1) = C ′∩δ(W ) and so U1 = W = U ′1 and U ′1 ⊆ U ′2. But V C ⊆ U−U ′1 = U−U1,
as claimed.

Next consider δ(U ′2 ∪ U2), which is a subset of B′2 ∪ B2. We know that V C ′ ⊆ U ′2. If
V C ⊆ U2 then V C1∪V C2 = V C ∪V C ′ ⊆ U ′2∪U2, implying that δ(U ∪U2)∩ (C1∪C2) = ∅
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and so |δ(U ∪ U2)| = τ − 2, a contradiction to (M5’). Hence V C * U2, as claimed. 3

Observe that in the proof above, the minimality of B2 and U2 under (∗) was not used
at all. This fact will come in handy later.

Claim 5. Assume that C3 = ∅. Suppose that C is an odd cycle and L is an odd {s, t}-join
disjoint from C such that C ∪ L = C2 ∪ P3. Then C is an odd circuit, L is an odd st-walk
and L ∩ δ(U2) = {Ω}.

Proof of Claim. Due to the minimality of L1, L2, L3, it trivially follows that C is an odd
circuit and L is an odd st-walk. Let L′2 := C ∪ P2 and L′3 := L. By (M4’) there exist
covers B′2 and B′3 such that |B′2 − L′2| = |B′3 − L′3| = τ − 3. Since B′i ∩ C1 = ∅, it follows
that B′i is an st-bond, for i = 2, 3. So there exist U ′2, U

′
3 ⊆ V − {t} such that B′i = δ(U ′i)

for i = 2, 3. Suppose further that, for i = 2, 3, B′i and U ′i are chosen under (∗), so that
U ′i is minimal. By Claim 3 we get that U ′2 ⊆ U ′3. Now consider δ(U ′2 ∩ U2). Observe that
δ(U ′2 ∩ U2) ⊆ B′2 ∪ B2, and since V L3 − {s} ⊆ V − U2, δ(U ′2 ∩ U2) ∩ L3 = {Ω}. Thus
|δ(U ′ ∩ U2) − L3| = τ − 3, and so by the minimality of U2, it follows that U ′2 ∩ U2 = U2.
Similarly, by reversing the roles of L1, L2, L3 by L1, L

′
2, L

′
3, one can show that U ′2∩U2 = U ′2

and so U ′2 = U2. But {Ω} = L′3 ∩ δ(U ′2) = L ∩ δ(U2), as claimed. 3

Claim 6. Assume that C3 = ∅. Suppose that L ⊆ P2 ∪ L3 is an odd {s, t}-join. Then L
is an odd st-walk, L4 P24 L3 is an even st-path, and L ∩ δ(U3) = L3 ∩ δ(U3).

Proof of Claim. Due to the minimality of L1, L2, L3, it trivially follows that L is an odd
st-walk and L4 P2 4 L3 is an even st-path. Let L′2 := C2 ∪ (L4 P2 4 L3) and L′3 := L.
By (M4’) there exist covers B′2 and B′3 such that |B′2 − L′2| = |B′3 − L′3| = τ − 3. Since
B′i∩C1 = ∅, it follows that B′i is an st-bond, for i = 2, 3. So there exist U ′2, U

′
3 ⊆ V (G′)−{t}

such that B′i = δ(U ′i) for i = 2, 3. Suppose further that, for i = 2, 3, B′i and U ′i are chosen
under (∗), so that U ′i is minimal. By Claim 3 we get that U ′2 ⊆ U ′3. Consider δ(U ′3 ∩ U3).
Observe that δ(U ′3 ∩ U3) ⊆ B′3 ∪ B3, and since V P2 − {s} ⊆ V − U3 and V C2 ⊆ U ′3 ∩ U3,
δ(U ′3 ∩U3)∩L2 = {Ω}. Thus, |δ(U ′3 ∩U3)−L3| = τ − 3 and so by the minimality of U3, it
follows that U ′3 ∩ U3 = U3. Similarly, by reversing the roles of L1, L2, L3 by L1, L

′
2, L

′
3, one

can show that U ′3 ∩ U3 = U ′3, and so U ′3 = U3. The result now easily follows. 3

This is an immediate corollary of Claim 6.
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Claim 7. Assume that C3 = ∅. Suppose that L ⊆ P2 ∪ L3 is an odd {s, t}-join. Suppose
that w ∈ V P2∩V L3. Then either L3[s′, w] ⊆ G′[V −U3] and L3[s′, w]∪P2[s′, w] is an even
cycle, or L3[w, t] ⊆ G′[V − U3] and L3[w, t] ∪ P2[w, t] is an even cycle.

The following is the last ingredient needed to find an F7 minor. Let L0 be the singleton
vertex {s}, U0 := ∅ and B0 := ∅.

Claim 8. Take v ∈ V Lj+1 ∩ (Uj+1 − Uj) for some j ∈ {0, 1, 2}. Let U be the component
of G′[Uj+1 − Uj] containing v. Then V Lj ∩ U 6= ∅.

Proof of Claim. Suppose otherwise. Observe that δ(U) ⊆ Bj ∪Bj+1, δ(U) ∩ Lj+1 6= ∅ and
δ(U)∩Lj = ∅. But then |δ(Uj+1 −U)−Lj+1| = τ − 3 since δ(Uj+1 −U) = δ(Uj+14U) =
Bj+14 δ(U), contradicting the choice of Bj+1, Uj+1 under (∗). 3

Claim 9. (G′,Σ′) has an F7 minor.

Proof of Claim. Here X denotes the image of object X after contraction and/or deletion
is applied in (G′,Σ′). If X is not affected under the operation, then X = X; repeatedly
applying contraction and/or deletion resets X.

By Claim 8, there exists a shortest path Q0 in G′[U1] between s and V C1. Suppose
that x is the other end-vertex of Q0. Contract Q0, and then contract all the edges in C1

that are not incident with s. At this stage, C1 is an odd circuit with two edges and two
vertices s and, say, u.

We claim that C1 is the only odd circuit in (C1 ∪ C2) ∩G′[U2]. Suppose otherwise.
Let C ⊆ (C1 ∪ C2) ∩G′[U2] be an odd circuit different from C1. Notice that s /∈ VC.
Let C be an inverse image of C under the contractions such that C avoids the vertex x, it
is odd and C ⊆ (C1 ∪ C2) ∩ G′[U2]. By Claim 4 then, since V C ⊆ U2, we must have that
C ∩ δ(U1) = C1 ∩ δ(U1) and C ∩ EG′[U1] = C1 ∩ EG′[U1]. So x ∈ V C, which is not the
case. Hence, C1 is the only odd circuit in (C1 ∪C2) ∩G′[U2].

By Claim 8 there is a shortest path Q1 in G′[U2] between VC1 and VC2 that does not
use the vertex s. (It is possible that Q1 = ∅.) Contract Q1 and note that C1 is still the
only odd circuit in (C1 ∪ C2) ∩G′[U2]. Let C′2 be an odd circuit contained in C2 that
uses the vertex u. Let U be the union of the components of G′[U3 − U2] that contain a
vertex of of VC′2.
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We claim that U ∩V L3 6= ∅. Suppose not. Then there exists an inverse image C ′ of C′2
under the contractions such that x /∈ V C ′, C ′ is odd and C ′ ⊆ (C1 ∪C2)∩G′[U2 ∪U ]. Let
U ′2 := U2∪U = U24U , and note that for B′2 := δ(U ′2) = δ(U2)4δ(U), we have |B′2−L2| =
τ − 3. By Claim 4 then, since V C ′ ⊆ U ′2, we must have that C ′ ∩ δ(U1) = C1 ∩ δ(U1) and
C ′∩EG′[U1] = C1∩EG′[U1]. But then x ∈ V C ′, which is not the case. Thus, U∩V L3 6= ∅,
and so there exists a shortest path Q2 between VC′2 and V L3 in G′[U3 − U2].

Now contract all the edges in C′2 that are not incident with u. At this stage, C2 := C′2
is an odd circuit with exactly two edges and two vertices u and, say, v. Similarly as above,
by using Claim 4 and Claim 5 this time though, we obtain that C2 is the only odd circuit
in (C2 ∪L3)∩G′[U3]. Notice that s,u /∈ VQ2. Contract Q2 and note that C2 is still the
only odd circuit in (C2 ∪ L3) ∩G′[U3].

First assume that L3 is non-simple. Let C′3 be an odd circuit contained in C3 that uses
the vertex v. Let U ′ be the union of the components of G′[V − U3] that contain a vertex
of VC′3. As before, by Claim 4 it follows that t ∈ U ′. So there is a shortest path Q3 in
G′[V −U3] between VC′3 and V P3. Contract all the edges in C′3 that are not incident with
v and all the edges in P3 ∪ Q3 − {Ω}. Now C3 := C′3 is an odd circuit with exactly two
edges and two vertices v and t. Note that Ω is an even edge between s and t . As a result,
C1 ∪C2 ∪C3 ∪ {Ω} is isomorphic to F7.

Next assume that L3 is simple. In the first case, assume that there exists an odd st-path
P′3 in P3 that uses the vertex v. Contract all the edges in P2 − {Ω} and all the edges in
P′3 that are not incident with v. By Claim 7, P′3 contains an odd st-walk that consists of
the even edge Ω, which is between s and t, and an odd circuit D3 of length two between
v and t. It is clear that C1 ∪C2 ∪D3 ∪ {Ω} is isomorphic to F7.

In the remaining case, there exists an odd circuit C ′3 in P3 that uses the vertex v. Let
U ′′ be the union of the components of G′[V − U3] that contain a vertex of V C ′3. Similarly
as before, we know that t ∈ U ′′. According to Claim 7, V P2 ∩ V C ′3 = ∅. Now let Q3 be a
shortest path in G′[V − U3] between V C ′3 and V P2. Now contract all the edges in C ′3 that
are not incident with v and all the edges in (P3 ∪ Q3) ∩ G′[V − U3]. C′3 is now an odd
circuit with exactly two edges and two vertices v and t, and Ω is an even edge between s
and t . So C1 ∪C2 ∪C′3 ∪ {Ω} is isomorphic to F7.

Therefore, (G′,Σ′), and therefore (G,Σ), has a minor isomorphic to F7, proving Claim 9.

3

However, (G,Σ) does not have such a minor, proving that Part (8) is not possible either.
This finally finishes the proof of Theorem 1.5.
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