The Cycling Property for the Clutter of Odd $s t$-Walks

by

Ahmad Abdi

A thesis
presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics
in
Combinatorics and Optimization

Waterloo, Ontario, Canada, 2014
© Ahmad Abdi 2014

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Abstract

A binary clutter is cycling if its packing and covering linear program have integral optimal solutions for all Eulerian edge capacities. We prove that the clutter of odd stwalks of a signed graph is cycling if and only if it does not contain as a minor the clutter of odd circuits of K_{5} nor the clutter of lines of the Fano matroid. Corollaries of this result include, of many, the characterization for weakly bipartite signed graphs [5], packing twocommodity paths [7, 11], packing T-joins with small $|T|$, a new result on covering odd circuits of a signed graph, as well as a new result on covering odd circuits and odd T-joins of a signed graft.

Acknowledgements

I would like to thank the brilliant Professor Bertrand Guenin for his support, without his everlasting assistance and guidance, this work would not have been possible.

Table of Contents

List of Figures vii
1 Introduction 1
1.1 Restating Theorem 1.2 3
1.2 Generalizing Theorem 1.5 4
2 Applications of Theorem 1.2 7
2.1 Signed graphs without $\widetilde{K_{5}}$ and F_{7} minor 8
2.1.1 Class (1): packing T-joins with $|T|=4$ 9
2.1.2 Class (2): packing two-commodity paths 9
2.1.3 Class (3): packing odd circuit covers 10
2.2 Clutter of odd circuits and odd T-joins 11
3 Overview of the Proof of Theorem 1.5 13
3.1 Template (I): Parts (1)-(4) 17
3.2 Template (II): Parts (5)-(7) 20
3.3 Template (III): Part (8) 21
4 Some lemmas 23
4.1 Basic lemmas 23
4.2 The Intersection Lemma 27
4.3 The $\widetilde{K_{5}}$ Lemma 28
4.4 The Reduction Lemma 28
4.5 The Mate Lemma 33
4.6 The Shore Lemma 36
4.7 The Linkage Lemma 40
5 The Proof 42
5.1 Part (1) 42
5.2 Three lemmas for Parts (2)-(4) 45
5.3 Part (2) 46
5.4 Setup and a lemma for Parts (3) and (4) 49
5.5 Part (3) 50
5.5.1 Part (3.1): $V C_{1} \cap V Q_{j}\left[v_{j}, t\right]=\emptyset$ for all $j \in I$ 52
5.5.2 Part (3.2): $V C_{1} \cap V Q_{j}\left[v_{j}, t\right] \neq \emptyset$ for some $j \in I$ 58
5.6 Part (4) 61
5.7 A lemma for Parts (5)-(7) 69
5.8 Part (5) 69
5.9 Part (6) 69
5.10 Part (7) 73
5.10.1 Part (7.1): $V C_{1} \cap V P_{j}\left[v_{j}, t\right]=\emptyset$ for all $j \in I$ 77
5.10.2 Part (7.2): $V C_{1} \cap V P_{j}\left[v_{j}, t\right] \neq \emptyset$ for some $j \in I$ 78
5.11 Part (8) 80
References 86

List of Figures

1.1 Signed graph F_{7} : a representation of \mathcal{L}_{7}. Dashed edges are odd. 4
2.1 Signed graft \widetilde{F}_{7}, where all edges are odd and shaded vertices are in T. For this signed graft, $\mathcal{C}=b(\mathcal{C}) \cong \mathcal{L}_{7}$. 12
3.1 Towards an F_{7} minor. Bold edges are odd. 18
3.2 Signed graph F_{7}, where the bold edges are odd. 18
3.3 Towards a $\widetilde{K_{5}}$ minor. The bold edge is odd. 18
3.4 Signed graph $\widetilde{K_{5}}$, where the bold edges are odd. 19
3.5 Towards an F_{7} minor. The bold edges are odd. 19
3.6 The bold edge is odd. 19
3.7 The bold edge is odd. 20
3.8 Towards an F_{7} minor. The three bold circuits are odd. 22

Chapter 1

Introduction

A clutter \mathcal{C} is a finite collection of sets, over some finite ground set $E(\mathcal{C})$, with the property that no set in \mathcal{C} is contained in, or is equal to, another set of \mathcal{C}. This terminology was first coined by Edmonds and Fulkerson [2]. A cover B is a subset of $E(\mathcal{C})$ such that $B \cap C \neq \emptyset$, for all $C \in \mathcal{C}$. The blocker $b(\mathcal{C})$ is the clutter of the minimal covers. It is well known that $b(b(\mathcal{C}))=\mathcal{C}([9,2])$. A clutter is binary if, for any $C_{1}, C_{2}, C_{3} \in \mathcal{C}$, their symmetric difference $C_{1} \triangle C_{2} \triangle C_{3}$ contains, or is equal to, a set of \mathcal{C}. Equivalently, a clutter is binary if, for every $C \in \mathcal{C}$ and $B \in b(\mathcal{C}),|C \cap B|$ is odd ([9]). It is therefore immediate that a clutter is binary if and only if its blocker is.

Let \mathcal{C} be a clutter and $e \in E(\mathcal{C})$. The contraction \mathcal{C} / e and deletion $\mathcal{C} \backslash e$ are clutters on the ground set $E(\mathcal{C})-\{e\}$ where \mathcal{C} / e is the collection of minimal sets in $\{C-\{e\}: C \in \mathcal{C}\}$ and $\mathcal{C} \backslash e:=\{C: e \notin C \in \mathcal{C}\}$. Observe that $b(\mathcal{C} / e)=b(\mathcal{C}) \backslash e$ and $b(\mathcal{C} \backslash e)=b(\mathcal{C}) / e$. Contractions and deletions can be performed sequentially and the result does not depend on the order. A clutter obtained from \mathcal{C} by a sequence of deletions E_{d} and a sequence of contractions $E_{c}\left(E_{d} \cap E_{c}=\emptyset\right)$ is called a minor of \mathcal{C} and is denoted $\mathcal{C} \backslash E_{d} / E_{c}$.

Given edge-capacities $w \in \mathbb{Z}_{+}^{E(\mathcal{C})}$ consider the linear program

$$
(P) \begin{cases}\min & \sum_{\text {s.t. }}\left(w_{e} x_{e}: e \in E(\mathcal{C})\right) \\ \text { s.t. } & x(C) \geq 1, \quad C \in \mathcal{C} \\ & x_{e} \geq 0, \quad e \in E(\mathcal{C})\end{cases}
$$

and its dual

$$
(D) \begin{cases}\max & \sum\left(y_{C}: C \in \mathcal{C}\right) \\ \text { s.t. } & \sum_{y_{C} \geq 0,}\left(y_{C}: e \in C \in \mathcal{C}\right) \leq w_{e}, \quad e \in E(\mathcal{C}) \\ & y_{C} \geq 0,\end{cases}
$$

A clutter is said to be ideal if, for every edge-capacities $w \in \mathbb{Z}_{+}^{E(\mathcal{C})},(P)$ has an optimal solution that is integral. A beautiful result of Lehman [10] states that a clutter is ideal if and only if its blocker is. Edge-capacities $w \in \mathbb{Z}_{+}^{E(\mathcal{C})}$ are said to be Eulerian if, for every B and B^{\prime} in $b(\mathcal{C}), w(B)$ and $w\left(B^{\prime}\right)$ have the same parity. Seymour [14] calls a binary clutter cycling if, for every Eulerian edge-capacities $w \in \mathbb{Z}_{+}^{E(\mathcal{C})},(P)$ and (D) both have optimal solutions that are integral. It can be readily checked that if a clutter is cycling (or ideal) then so are all its minors ($[14,15]$). Therefore, one can characterize the class of cycling clutters by excluding minor-minimal clutters that are not in this class. In this paper, we will only focus on binary clutters.
\mathcal{O}_{5} is the clutter of the odd circuits of K_{5}. Let \mathcal{L}_{7} be the clutter of the lines of the Fano matroid, i.e. $E\left(\mathcal{L}_{7}\right)=\{1,2,3,4,5,6,7\}$ and

$$
\mathcal{L}_{7}:=\{\{1,2,7\},\{3,4,7\},\{5,6,7\},\{1,3,5\},\{1,4,6\},\{2,3,6\},\{2,4,5\}\} .
$$

Let \mathcal{P}_{10} be the collection of the postman sets of the Petersen graph, i.e. sets of edges which induce a subgraph whose odd degree vertices are the (odd degree) vertices of the Petersen graph. Observe that the four clutters $\mathcal{O}_{5}, b\left(\mathcal{O}_{5}\right), \mathcal{L}_{7}, \mathcal{P}_{10}$ are binary, and moreover, it can be readily checked that none of these clutters is cycling. Hence, if a binary clutter is cycling then it cannot have any of these clutters as a minor. The following excluded minor characterization is predicted.

Conjecture 1.1 (Cycling Conjecture). A binary clutter is cycling if, and only if, it has none of the following minors: $\mathcal{O}_{5}, b\left(\mathcal{O}_{5}\right), \mathcal{L}_{7}, \mathcal{P}_{10}$.

The Cycling Conjecture, as stated, can be found in Schrijver [13]. However, this conjecture was first proposed by Seymour [14] and then edited by A.M.H. Gerards and B. Guenin. It is worth mentioning that this conjecture contains the four color theorem [16]. None of our results in this paper have any apparent bearings on this theorem.

Consider a finite graph G, where parallel edges and loops are allowed. A cycle of G is the edge set of a subgraph of G where every vertex has even degree. A circuit of G is a minimal cycle, and a path is a circuit minus an edge. We define an st-path as follows: if $s \neq t$ then it is a path where s and t are the degree one vertices of the path; otherwise, when $s=t$ then it is just the singleton vertex s. Let Σ be a subset of its edges. The pair (G, Σ) is called a signed graph. We say a subset S of the edges is odd (resp. even) in (G, Σ) if $|S \cap \Sigma|$ is odd (resp. even). Let s, t be vertices of G. We call a subset of the edges of (G, Σ) an odd st-walk if it is either an odd st-path, or it is the union of an even st-path P and an odd circuit C where P and C share at most one vertex. Observe that when $s=t$ then an odd st-walk is simply an odd circuit. It is easy to see that clutters of odd
$s t$-walks are closed under taking minors. As is shown in [6] the clutter of odd $s t$-walks is binary, and it does not have a minor isomorphic to $b\left(\mathcal{O}_{5}\right)$ or \mathcal{P}_{10}. In this paper, we verify the Cycling Conjecture for this class of binary clutters:

Theorem 1.2. A clutter of odd st-walks is cycling if, and only if, it has no \mathcal{O}_{5} and no \mathcal{L}_{7} minor.

1.1 Restating Theorem 1.2

One can view Theorem 1.2 as a packing and covering result. We first the following definition: we say that two edges of a signed graph are parallel if they have the same end-vertices as well as the same sign. Now let $(G=(V, E), \Sigma)$ be a signed graph without any parallel edges, and choose $s, t \in V$. Let \mathcal{C} be the clutter of the odd $s t$-walks, over the ground set E, and choose edge-capacities $w \in \mathbb{Z}_{+}^{E}$. An odd st-walk cover of (G, Σ) is simply a cover for \mathcal{C}. When there is no ambiguity, we refer to an odd $s t$-walk cover as just a cover.

Proposition 1.3 ([6]). If a subset of the edges is a minimal cover then it is either an st-bond (a minimal st-cut) or it is of the form $\Sigma \triangle C$, where C is a cut with s and t on the same shore.

The minimal covers of the latter form above are called signatures. Notice that if Σ^{\prime} is a signature, then (G, Σ) and $\left(G, \Sigma^{\prime}\right)$ have the same clutter of odd $s t$-walks.

Reset (G, Σ) as follows: replace each edge e of (G, Σ) with w_{e} parallel edges. The packing number $\nu(G, \Sigma)$ of (G, Σ) is the maximum number of pairwise (edge-)disjoint odd st-walks. A dual parameter to the packing number is the covering number $\tau(G, \Sigma)$, which records the minimum size of a cover of (G, Σ). Consider a packing of $\nu(G, \Sigma)$ pairwise disjoint odd $s t$-walk and a cover of size $\tau(G, \Sigma)$. As the cover intersects every odd stwalk in the packing it follows that $\tau(G, \Sigma) \geq \nu(G, \Sigma)$. A natural question arises: when does equality hold? Theorem 1.2 gives sufficient conditions for a signed graph to satisfy $\tau(G, \Sigma)=\nu(G, \Sigma)$. To elaborate, observe that $\tau(G, \Sigma)$ is the value of (P) and $\nu(G, \Sigma)$ is the value of (D). For w to be Eulerian is to say that every two minimal covers of (G, Σ) have the same parity. Therefore, Proposition 1.3 implies the following.

Remark 1.4. Edge-capacities w are Eulerian if, and only if,
(1) $s=t$ and the degree of every vertex is even, or
(2) $s \neq t$, $\operatorname{deg}(s)-|\Sigma|$ and the degree of every vertex in $V-\{s, t\}$ are even.

We call such signed graphs st-Eulerian.
Just like how we defined minor operations for clutters, we now define minor operations for signed graphs. Let $e \in E$. Then the minor operations for \mathcal{C} correspond to the following minor operations for (G, Σ) : (1) delete e : replace (G, Σ) by $(G \backslash e, \Sigma-\{e\})$, (2) contract e : replace (G, Σ) by $\left(G / e, \Sigma^{\prime}\right)$, where Σ^{\prime} is a signature of (G, Σ) that does not use the edge e. Observe that vertices s and t move to wherever the edge contractions take them, and if s and t are ever identified then we say $s=t$. A signed graph (H, Γ) is a minor of (G, Σ) if it is isomorphic to a signed graph obtained from (G, Σ) by a sequence of edge deletions, edge contractions, and possibly deletion of isolated vertices and switching s and t. Note that if (H, Γ) is a minor of (G, Σ), then the clutter of odd $s t$-walks of (H, Γ) is a minor of the clutter of odd $s t$-walks of (G, Σ).

The two special clutters \mathcal{O}_{5} and \mathcal{L}_{7} that appear in Theorem 1.2 have the following representations: \mathcal{O}_{5} is the clutter of odd $s t$-walks of $\widetilde{K_{5}}:=\left(K_{5}, E\left(K_{5}\right)\right)$ where $s=t$ is one of the five vertices, and \mathcal{L}_{7} is the clutter of odd st-walks of the signed graph F_{7} with $s \neq t$, as shown in Figure 1.1. Observe that $\tau\left(\widetilde{K_{5}}\right)=4>2=\nu\left(\widetilde{K_{5}}\right)$ and $\tau\left(F_{7}\right)=3>1=\nu\left(F_{7}\right)$. We can now restate Theorem 1.2 as follows, and in fact, we will prove this restatement

Figure 1.1: Signed graph F_{7} : a representation of \mathcal{L}_{7}. Dashed edges are odd.
instead of the original one:
Theorem 1.5. Let (G, Σ) be a signed graph with $s, t \in V(G)$. If (G, Σ) is an st-Eulerian signed graph that does not contain $\widetilde{K_{5}}$ or F_{7} as a minor then $\tau(G, \Sigma)=\nu(G, \Sigma)$.

1.2 Generalizing Theorem 1.5

Let $(G=(V, E), \Sigma)$ be a signed graph with $s, t \in V$. Suppose (G, Σ) is an st-Eulerian signed graph that does not contain $\widetilde{K_{5}}$ or F_{7} as a minor. If $s \neq t$ let $\tau_{s t}$ be the size of a
minimum st-bond, otherwise let $\tau_{s t}:=\tau(G, \Sigma)$. Observe that $\tau_{s t} \geq \tau(G, \Sigma)$ as every stbond is also a cover. Add $\tau_{s t}-\tau(G, \Sigma)$ odd loops to (G, Σ) to obtain another st-Eulerian signed graph $\left(G^{\prime}, \Sigma^{\prime}\right)$. Since neither $\widetilde{K_{5}}$ nor F_{7} contain an odd loop, it follows that $\left(G^{\prime}, \Sigma^{\prime}\right)$ also does not contain $\widetilde{K_{5}}$ or F_{7} as a minor. Observe that $\tau\left(G^{\prime}, \Sigma^{\prime}\right)=\tau(G, \Sigma)+\left(\tau_{s t}-\right.$ $\tau(G, \Sigma))=\tau_{s t}$ and so by Theorem 1.2, one can find a packing of $\tau_{s t}$ pairwise disjoint odd st-walks in $\left(G^{\prime}, \Sigma^{\prime}\right)$. In (G, Σ) this packing corresponds to a collection of $\tau_{s t}$ pairwise disjoint elements, at least (and therefore exactly) $\tau(G, \Sigma)$ of which are odd st-walks and the remaining elements are even st-paths. Therefore, we get the following generalization of Theorem 1.5.

Theorem 1.6. Let (G, Σ) be a signed graph with $s, t \in V(G)$. Suppose that (G, Σ) is an st-Eulerian signed graph that does not contain $\widetilde{K_{5}}$ or F_{7} as a minor. Then there exists a collection of $\tau_{s t}(G, \Sigma)$ pairwise disjoint elements, $\tau(G, \Sigma)$ of which are odd st-walks and the remaining elements are even st-paths.

To obtain another generalization of Theorem 1.5 and a counterpart to Theorem 1.6, let τ_{Σ} be the size of a minimum signature. Observe that $\tau_{\Sigma} \geq \tau(G, \Sigma)$ and that $\tau(G, \Sigma)=$ $\min \left\{\tau_{s t}, \tau_{\Sigma}\right\}$. In contrast to above, this time we add $\tau_{\Sigma}-\tau(G, \Sigma)$ even edges between s and t to (G, Σ) to obtain another st-Eulerian signed graph $\left(G^{\prime}, \Sigma^{\prime}\right)$. Notice, however, that we can no longer guarantee that $\left(G^{\prime}, \Sigma^{\prime}\right)$ contains no $\widetilde{K_{5}}$ or F_{7} minor. Observe that this is true if, and only if, (G, Σ) does not contain $\widetilde{K_{5}}, \widetilde{K}_{5}^{0}, \widetilde{K}_{5}^{1}, \widetilde{K}_{5}^{2}, \widetilde{K}_{5}^{3}$ or F_{7}^{-}as a minor, where
(1) for $i \in\{0,1,2,3\}, \widetilde{K}_{5}^{i}$ is the signed graph obtained from splitting a vertex, and its incident edges, of $\widetilde{K_{5}}$ into two vertices s, t, where s has degree i and t has degree $4-i$, and
(2) F_{7}^{-}is the signed graph obtained from F_{7} by deleting the edge between s and t.

Note that if we add an even edge to any of these signed graphs, then a $\widetilde{K_{5}}$ or an F_{7} appears as a minor. It can be readily checked that if (G, Σ) does not contain any of these five signed graphs as a minor, then $\left(G^{\prime}, \Sigma^{\prime}\right)$ contains no $\widetilde{K_{5}}$ or F_{7} minor. Observe now that $\tau\left(G^{\prime}, \Sigma^{\prime}\right)=\tau(G, \Sigma)+\left(\tau_{\Sigma}-\tau(G, \Sigma)\right)=\tau_{\Sigma}$ and so by Theorem 1.2, one can find a packing of τ_{Σ} pairwise disjoint odd st-walks in $\left(G^{\prime}, \Sigma^{\prime}\right)$. In (G, Σ) this packing corresponds to a collection of τ_{Σ} pairwise disjoint elements, $\tau(G, \Sigma)$ of which are odd st-walks and the remaining elements are odd circuits. Thus, the following counterpart to Theorem 1.6 is obtained.

Theorem 1.7. Let (G, Σ) be a signed graph with $s, t \in V(G)$. Suppose that (G, Σ) is an st-Eulerian signed graph that does not contain $\widetilde{K}_{5}, \widetilde{K}_{5}{ }^{0}, \widetilde{K}_{5}^{1}, \widetilde{K}_{5}{ }^{2}, \widetilde{K}_{5}^{3}$ or F_{7}^{-}as a minor. Then in (G, Σ) there exists a collection of $\tau_{\Sigma}(G, \Sigma)$ pairwise disjoint elements, $\tau(G, \Sigma)$ of which are odd st-walks and the remaining elements are odd circuits.

Chapter 2

Applications of Theorem 1.2

In this section, we discuss some applications of Theorem 1.2. Observe that a cycling clutter is also ideal. As a corollary, we get the following theorem:

Corollary 2.1 (Guenin [6]). A clutter of odd st-walks is ideal if, and only if, it has no \mathcal{O}_{5} and no \mathcal{L}_{7} minor.

When $s=t$ an odd st-walk is just an odd circuit. A signed graph is said to be weakly bipartite if the clutter of its odd circuits is ideal. The clutter of odd circuits does not contain an \mathcal{L}_{7} minor [6]. Hence, we get the following two results as corollaries of Theorem 1.2:

Corollary 2.2 (Guenin [5]). A signed graph is weakly bipartite if, and only if, it has no $\widetilde{K_{5}}$ minor.

Corollary 2.3 (Geelen and Guenin [3]). A clutter of odd circuits is cycling if, and only if, it has no \mathcal{O}_{5} minor.

Observe that $2 w$ is Eulerian for any $w \in \mathbb{Z}_{+}^{E(G)}$. As a result, the following result follows as a corollary of Theorem 1.2:

Theorem 2.4. Suppose that \mathcal{C} is a clutter of odd st-walks without an \mathcal{O}_{5} or an \mathcal{L}_{7} minor. Then, for any edge-capacities $w \in \mathbb{Z}_{+}^{E(G)}$, the linear program (P) has an optimal solution that is integral and its dual (D) has an optimal solution that is half-integral.

To obtain more applications of Theorem 1.2, we will turn to its restatement Theorem 1.5 , and naturally try to find nice classes of signed graphs without a $\widetilde{K_{5}}$ or an F_{7} minor.

2.1 Signed graphs without $\widetilde{K_{5}}$ and F_{7} minor

Let (G, Σ) be a signed graph with $s, t \in V$. Observe that if $s=t$ then (G, Σ) has no F_{7} minor, and there are many classes of such signed graphs without a $\widetilde{K_{5}}$ minor. For instance, whenever G is planar or $|\Sigma|=2,(G, \Sigma)$ does not contain a $\widetilde{K_{5}}$ minor. Other classes of such signed graphs can be found in [4, 3]. In this section, we focus only on signed graphs (G, Σ) with distinct $s, t \in V$.

A blocking vertex is a vertex v whose deletion removes all the odd cycles, and a blocking pair is a pair of vertices $\{u, v\}$ whose deletion removes all the odd cycles.

Remark 2.5. The following classes of signed graphs with $s \neq t$ do not contain $\widetilde{K_{5}}$ or F_{7} as a minor:
(1) signed graphs with a blocking vertex,
(2) signed graphs where $\{s, t\}$ is a blocking pair,
(3) plane signed graphs with at most two odd faces,
(4) signed graphs that have an even face embedding on the projective plane, and s and t are connected with an odd edge,
(5) signed graphs where every odd st-walk is connected, and
(6) plane signed graphs with a blocking pair $\{u, v\}$ where s, u, t, v appear on a facial cycle in this cyclic order.

Observe that class (5) contains (2) and (4). We will apply Theorem 1.5 to the first three classes, and in the first two cases, we obtain quite well-known results. However, the third class will yield a new and interesting result on packing odd circuit covers. Notice that one can even apply the generalization Theorem 1.6 to these classes.

Observe further that the signed graphs in (1) and (2) do not contain $\widetilde{K}_{5}{ }^{0}, \widetilde{K}_{5}^{1}, \widetilde{K}_{5}^{2}, \widetilde{K}_{5}^{3}$ or F_{7}^{-}as a minor either, so one may even consider applying Theorem 1.7 to these classes. We leave it to the reader to find out what Theorems 1.6 and 1.7 applied to these classes imply.

2.1.1 Class (1): packing T-joins with $|T|=4$

Let H be a graph with vertex set W, and choose an even vertex subset T. A T-join of H is an edge subset whose odd degree vertices are (all) the vertices in T. A T-cut of H is an edge subset of the form $\delta(U)$ where $U \subseteq W$ and $|U \cap T|$ is odd. Observe that the blocker of the clutter of minimal T-joins is the clutter of minimal T-cuts.

Corollary 2.6. Let H be a graph and choose a vertex subset T of size 4 . Suppose that every vertex of H not in T has even degree and that all the vertices in T have degrees of the same parity. Then the maximum number of pairwise disjoint T-joins is equal to the minimum size of a T-cut.

Proof. Suppose that $T=\left\{s, t, s^{\prime}, t^{\prime}\right\}$. Identify s^{\prime} and t^{\prime} to obtain G, and let $\Sigma=\delta_{H}\left(s^{\prime}\right)$. Then the signed graph (G, Σ) contains a blocking vertex $s^{\prime} t^{\prime}$, and so it belongs to class (1). By Remark $1.4(G, \Sigma)$ is $s t$-Eulerian. Theorem 1.2 then implies that $\tau(G, \Sigma)=\nu(G, \Sigma)$. However, observe that an odd $s t$-walk of (G, Σ) is a T-join of H, and a T-join in H contains an odd $s t$-walk of (G, Σ). Hence, $\tau(G, \Sigma)=\nu(G, \Sigma)$ implies that the maximum number of pairwise disjoint T-joins is equal to the minimum size of a T-cut.

This result is actually true for any even vertex subset T of size at most 8 [1].

2.1.2 Class (2): packing two-commodity paths

Corollary 2.7 (Hu [7], Rothschild and Whinston [11]). Let H be a graph and choose two pairs $\left(s_{1}, t_{1}\right)$ and $\left(s_{2}, t_{2}\right)$ of vertices, where $s_{1} \neq t_{1}, s_{2} \neq t_{2}$, all of $s_{1}, t_{1}, s_{2}, t_{2}$ have the same parity, and all the other vertices have even degree. Then the maximum number of pairwise disjoint paths, that are between s_{i} and t_{i} for some $i=1,2$, is equal to the minimum size of an edge subset whose deletion removes all $s_{1} t_{1}$ - and $s_{2} t_{2}$-paths.

Proof. Identify s_{1} and s_{2}, as well as t_{1} and t_{2} to obtain G, and let $\Sigma=\delta_{H}\left(s_{1}\right) \triangle \delta_{H}\left(t_{2}\right)$. Let $s:=s_{1} s_{2} \in V(G)$ and $t:=t_{1} t_{2} \in V(G)$. Then the signed graph (G, Σ) has $\{s, t\}$ as a blocking pair, and so it belongs to class (2). Again by Remark $1.4(G, \Sigma)$ is st-Eulerian. Therefore, by Theorem 1.2 we get that $\tau(G, \Sigma)=\nu(G, \Sigma)$. However, observe that an odd st-walk of (G, Σ) is an $s_{i} t_{i}$-path of H, for some $i=1,2$, and such a path in H contains an odd $s t$-walk of (G, Σ). Thus, $\tau(G, \Sigma)=\nu(G, \Sigma)$ proves the corollary.

2.1.3 Class (3): packing odd circuit covers

Theorem 2.8. Let (H, Σ) be a plane signed graph with exactly two odd faces and choose distinct $g, h \in V(H)$. Let (G, Σ) be the signed graph obtained from identifying g and h in H, and suppose that every two odd circuits of (G, Σ) have the same parity. Then in (G, Σ) the maximum number of pairwise disjoint odd circuit covers is equal to the size of a minimum odd circuit.
(Here an odd circuit cover is simply a cover for the clutter of odd circuits.) As the reader may be wondering, what is the rationale behind the rather strange construction of (G, Σ) above? Interestingly, the clutter of minimal odd circuit covers is binary, and so the Cycling Conjecture predicts an excluded minor characterization for when this clutter is cycling. As we did with the clutter of odd st-walks, one can restate the Cycling Conjecture for the clutter of odd circuit covers as follows:
(?) for signed graphs (G, Σ) without a $\widetilde{K_{5}}$ minor such that every two odd circuits have the same parity, the maximum number of pairwise disjoint odd circuit covers is equal to the minimum size of an odd circuit. (?)

The construction in the statement of Theorem 2.8 yields a signed graph (G, Σ) that has no $\widetilde{K_{5}}$ minor, and Theorem 2.8 verifies the restatement above for these classes of signed graphs.

Proof. Let H^{*} be the plane dual of H, and let P be an odd $g h$-path in (H, Σ). Let s and t be the two odd faces of (H, Σ). Consider the plane signed graph $\left(H^{*}, P\right)$; note that this signed graph has precisely two odd faces, namely g and h, and so it belongs to class (3). In particular, $\left(H^{*}, P\right)$ contains no \widetilde{K}_{5} and F_{7} minor. Since every two odd circuits of (G, Σ) have the same parity, it follows from Remark 1.4 that $\left(H^{*}, P\right)$ is $s t$-Eulerian. So Theorem 1.2 applies and we have $\tau\left(H^{*}, P\right)=\nu\left(H^{*}, P\right)$.

We claim that an odd cycle of (G, Σ) is an odd $s t$-walk cover of $\left(H^{*}, P\right)$, and vice-versa. Let L be an odd cycle of (G, Σ). If L is an odd cycle of (H, Σ) then L separates the two odd faces s and t, and so it is an $s t$-cut in $\left(H^{*}, P\right)$. Otherwise, L is an odd $g h$-path and so $L \triangle P$ is an even cycle of (H, Σ). However, an even cycle in (H, Σ) is a cut in $\left(H^{*}, P\right)$ having s and t on the same shore. Hence, L is of the form $P \triangle \delta(U)$ where $s, t \in U \subseteq V\left(H^{*}\right)$. Therefore, in either cases, L is an odd $s t$-walk cover of $\left(H^{*}, P\right)$. Similarly, one can show that an odd $s t$-walk cover of $\left(H^{*}, P\right)$ is an odd cycle of (G, Σ). Therefore, since $b(b(\mathcal{C}))=\mathcal{C}$ for any clutter \mathcal{C}, it follows that an odd circuit cover of (G, Σ) is an odd $s t$-walk of $\left(H^{*}, P\right)$, and vice-versa.

Hence, $\tau\left(H^{*}, P\right)$ is the minimum size of an odd circuit of (G, Σ), and $\nu\left(H^{*}, P\right)$ is the maximum number of pairwise disjoint odd circuit covers of (G, Σ). Since $\tau\left(H^{*}, P\right)=$ $\nu\left(H^{*}, P\right)$ the result follows.

In the next section, the restatement Theorem 1.5 delivers a packing and covering result for a very intriguing class of binary clutters.

2.2 Clutter of odd circuits and odd T-joins

Let $(G=(V, E), \Sigma)$ be a signed graph, and let $T \subseteq V$ be a subset of even size. We call the triple (G, Σ, T) a signed graft. Let \mathcal{C} be the clutter over the ground set E that consists of odd circuits and minimal odd T-joins of (G, Σ, T). This minor-closed class of such clutters is fairly large. For instance, if $T=\emptyset$ then \mathcal{C} is the clutter of odd circuits, and if Σ is a T-cut then \mathcal{C} is the clutter of T-joins.

Remark 2.9. \mathcal{C} is a binary clutter.
Proof. Take any three elements C_{1}, C_{2}, C_{3} of \mathcal{C}. If an even number of C_{1}, C_{2}, C_{3} are odd circuits, then $C_{1} \triangle C_{2} \triangle C_{3}$ is an odd T-join and so it contains an element of \mathcal{C}. Otherwise, an odd number of C_{1}, C_{2}, C_{3} are odd circuits, and so $C_{1} \triangle C_{2} \triangle C_{3}$ is an odd cycle and so it contains an element of \mathcal{C}. Since this is true for all C_{1}, C_{2}, C_{3} in \mathcal{C}, it follows from definition that \mathcal{C} is binary.

Remark 2.10. Minimal covers of \mathcal{C} are of the form $\Sigma \triangle \delta(U)$, where $U \subseteq V$ and $|U \cap T|$ is even.

Proof. Let B be a minimal cover of \mathcal{C}. Then B intersects every odd circuit of (G, Σ), and so $B \triangle \Sigma=\delta(U)$ for some $U \subseteq V$. The preceding remark showed \mathcal{C} is binary, and so B intersects every odd T-join in an odd number of edges, so $|U \cap T|$ must be even.

The result below follows as a corollary of Theorem 1.5.
Theorem 2.11. Let (G, Σ, T) be a plane signed graft with exactly two odd faces that has no minor isomorphic to \widetilde{F}_{7}. Let \mathcal{C} be the clutter of odd circuits and minimal odd T-joins, and suppose that every two elements of \mathcal{C} have the same size parity. Then the maximum of pairwise disjoint minimal covers of \mathcal{C} is equal to the minimum size of an element of \mathcal{C}.

Figure 2.1: Signed graft \widetilde{F}_{7}, where all edges are odd and shaded vertices are in T. For this signed graft, $\mathcal{C}=b(\mathcal{C}) \cong \mathcal{L}_{7}$.

Proof. Let G^{*} be the plane dual of G, and let P be an odd T-join in (G, Σ, T). Let s and t be the two odd faces of (G, Σ, T). Since (G, Σ, T) has no minor isomorphic to \widetilde{F}_{7}, it follows that the signed graph $\left(G^{*}, P\right)$ contains no F_{7} minor, and since it is planar, it has no $\widetilde{K_{5}}$ minor either. Since every two elements of \mathcal{C} have the same parity, it follows that $\left(G^{*}, P\right)$ is $s t$-Eulerian. So by Theorem 1.5, $\tau\left(G^{*}, P\right)=\nu\left(G^{*}, P\right)$.

We claim that \mathcal{C} is the clutter of odd st-walk covers of $\left(G^{*}, P\right)$, and vice-versa. Let $C \in \mathcal{C}$. If C is an odd circuit of (G, Σ, T), then C is an st-cut of G^{*}. Otherwise, C is an odd T-join and so $C \triangle P$ is an even cycle of (G, Σ). Thus, $C=P \triangle \delta(U)$ for some $U \subseteq V\left(G^{*}\right)-\{s, t\}$, i.e. C is a signature of $\left(G^{*}, P\right)$.

Hence, $\tau\left(G^{*}, P\right)$ is the minimum size of an element of \mathcal{C}, and $\nu\left(G^{*}, P\right)$ is the maximum number of pairwise disjoint covers of \mathcal{C}. Since $\tau\left(G^{*}, P\right)=\nu\left(G^{*}, P\right)$ the result follows.

Observe that this theorem is, in fact, a generalization of Theorem 2.8.

Chapter 3

Overview of the Proof of Theorem 1.5

We start with an $s t$-Eulerian signed graph (G, Σ) that does not pack, i.e. $\tau(G, \Sigma)>\nu(G, \Sigma)$, and we will look for either of the obstructions \widetilde{K}_{5}, F_{7} as a minor.

Among all the st-Eulerian non-packing weighted minors of (G, Σ), we pick one $\left(G^{\prime}, \Sigma^{\prime}\right)$ with smallest $\tau\left(G^{\prime}, \Sigma^{\prime}\right)$, smallest $\left|V\left(G^{\prime}\right)\right|$ and largest $\left|E\left(G^{\prime}\right)\right|$, in this order of priority. Such a non-packing weighted minor exists. Indeed, if an edge has sufficiently many parallel edges, then it may be contracted while keeping $\left(G^{\prime}, \Sigma^{\prime}\right)$ non-packing and $\tau\left(G^{\prime}, \Sigma^{\prime}\right)$ unchanged. Reset $(G, \Sigma):=\left(G^{\prime}, \Sigma^{\prime}\right)$ and let $\tau:=\tau(G, \Sigma), \nu:=\nu(G, \Sigma)$. By identifying a vertex of each (connected) component with s, if necessary, we may assume that G is connected. (Notice that none of the obstructions $\widetilde{K_{5}}, F_{7}$ have a cut-vertex.)

Remark 3.1. There do not exist $\tau-1$ pairwise disjoint odd st-walks in (G, Σ).
Proof. Suppose otherwise. Remove some $\tau-1$ pairwise disjoint odd st-walks in (G, Σ). Observe that what is left is an odd $\{s, t\}$-join because $|\Sigma|, \operatorname{deg}(s), \operatorname{deg}(t)$ and τ all have the same parity and all vertices other than s, t have even degree. Hence, since every odd $\{s, t\}$-join contains an odd $s t$-walk, one can actually find τ pairwise disjoint odd $s t$-walks in (G, Σ), contradicting the fact that (G, Σ) is non-packing.

Let B be a cover of (G, Σ) of size τ. Choose an edge Ω as follows. If $s=t$ then let $\Omega \in E-B$, and since label s is irrelevant to our problem in this case, we may as well assume $\Omega \in \delta(s)$. Otherwise, when $s \neq t$, let $\Omega \in \delta(s) \cup \delta(t)-B$. Indeed, if such an edge does not exist, then $\delta(s) \cup \delta(t)$ is contained in the minimum cover B, implying
that $\delta(s) \cup \delta(t)=\delta(s)=\delta(t)$, but this cannot be the case as G is connected and nonpacking. We may assume that Ω is incident to s. Let s^{\prime} be the other end-vertex of Ω. Add two parallel edges Ω_{1}, Ω_{2} to Ω to obtain (K, Γ); this st-Eulerian signed graph must pack since $\tau(K, \Gamma)=\tau$ as B is also a minimum cover for $(K, \Gamma), V(K)=V(G)$ but $|E(K)|>|E(G)|$. Hence, (K, Γ) contains a collection $\left\{L_{1}, L_{2}, \ldots, L_{\tau}\right\}$ of pairwise disjoint odd st-walks. Observe that all of Ω, Ω_{1} and Ω_{2} must be used by the odd st-walks in $\left\{L_{1}, L_{2}, \ldots, L_{\tau}\right\}$, say by L_{1}, L_{2}, L_{3}, since otherwise one finds at least $\tau-1$ disjoint odd stwalks in (G, Σ), which is not the case by the preceding remark. As a result, the sequence $\left(L_{1}, L_{2}, L_{3}, \ldots, L_{\tau}\right)$ corresponds to an Ω-packing of odd st-walks in (G, Σ), described as follows:
(1) L_{1}, \ldots, L_{τ} are odd $s t$-walks in (G, Σ),
(2) $\Omega \in L_{1} \cap L_{2} \cap L_{3}$ and $\Omega \notin L_{4} \cup \cdots \cup L_{\tau}$, and
(3) $\left(L_{j}-\{\Omega\}: 1 \leq j \leq \tau\right)$ are pairwise disjoint subsets.

We may assume that $\left(L_{1}, \ldots, L_{\tau}\right)$ covers a minimal subset of edges, amongst all the Ω packings of odd st-walks.

For an odd st-walk L, we say that a minimal cover B is a mate of L if $|B-L|=\tau-3$.
Lemma 3.2. Let L be an odd st-walk such that $(G, \Sigma) \backslash L$ contains at least $\tau-3$ pairwise disjoint odd st-walks. Then L has a mate.

Observe that if $L \subseteq L_{1} \cup L_{2} \cup L_{3}$ or $L \in\left\{L_{4}, \ldots, L_{\tau}\right\}$, then $(G, \Sigma) \backslash L$ contains at least $\tau-3$ pairwise disjoint odd $s t$-walks.

Proof. The signed graph $(G, \Sigma) \backslash L$ packs since it is st-Eulerian and $\tau((G, \Sigma) \backslash L)<\tau$. Let B^{\prime} be one of its minimum covers. By our assumption, $\tau((G, \Sigma) \backslash L) \geq \tau-3$. Since both (G, Σ) and $(G, \Sigma) \backslash L$ are $s t$-Eulerian it follows that $\tau((G, \Sigma) \backslash L)$ and τ have different parities, and so $\tau((G, \Sigma) \backslash L)$ is either $\tau-3$ or $\tau-1$. However, observe that the latter is not possible due to Remark 3.1 and the fact that $(G, \Sigma) \backslash L$ packs. As a result $\left|B^{\prime}\right|=\tau((G, \Sigma) \backslash L)=\tau-3$. It is now clear that $B^{\prime} \cup L$ contains a mate for L.

Choose an integer $3 \leq m \leq \tau$ and rearrange L_{4}, \ldots, L_{τ} such that $L_{m+1}, \ldots, L_{\tau}$ are the connected odd $s t$-walks. So each $L_{j}, 4 \leq j \leq m$, is the vertex-disjoint union of an odd circuit C_{j} and an even $s t$-path P_{j}, and each of $L_{m+1}, \ldots, L_{\tau}$ is either an odd st-path, or the union of an odd circuit C and an even st-path P such that C and P have a vertex
in common. Let $H:=L_{1} \cup L_{2} \cup L_{3} \cup \bigcup_{j=4}^{m} P_{j}$ and orient the edges in H so that each P_{j}, $1 \leq j \leq m$, is a directed st-path, and every odd circuit $C_{j}, 1 \leq j \leq 3$ (if any), is a directed circuit. We call an odd st-walk directed if it is either an odd directed st-path, or it is the union of an even directed st-path and a directed odd circuit. By our terminology, the three odd $s t$-walks L_{1}, L_{2} and L_{3} in H are directed.

We call T a transversal of a collection of sets if T picks exactly one element from each of the sets.

Remark 3.3. Let B be a mate of L_{i}, for some $1 \leq i \leq 3$. If B is a signature then $B \cap E(H)=B \cap L_{i}$.

Proof. Since $\left|B-L_{i}\right|=\tau-3$ it follows that $\Omega \in B$ and $B-L_{i}$ is a transversal of L_{4}, \ldots, L_{τ}. However, as B is a signature, we get that $\left|B \cap C_{j}\right|$ is odd for all $4 \leq j \leq m$ implying that $B \cap P_{j}=\emptyset$ for all $4 \leq j \leq m$. Since $B \cap L_{k}=\{\Omega\}$ for $k \in[3]-\{i\}$, and $\Omega \in L_{i}$, it follows that $B \cap E(H)=B \cap L_{i}$.

Let $\left(G^{\prime}, \Sigma^{\prime}\right)$ be a minor of (G, Σ) and let H^{\prime} be a directed graph obtained by orienting edges in a subgraph of G^{\prime}, where $\left(G^{\prime}, \Sigma^{\prime}\right)$ and H^{\prime} are minimal subject to
(M1) $E(G)-E\left(G^{\prime}\right) \subseteq E(H \backslash \Omega)$, and $E\left(H^{\prime}\right) \subseteq L_{1} \cup L_{2} \cup L_{3} \cup \bigcup_{j=4}^{m} P_{j}$,
(M2) there exist m edge subsets in H^{\prime} that are pairwise disjoint except possibly at Ω, exactly three of which contain Ω which are directed odd st-walks, and the remaining $m-3$ edge subsets are even directed $s t$-paths,
(M3) for any directed odd st-walk L of H^{\prime} for which $\left(G^{\prime}, \Sigma^{\prime}\right) \backslash L$ contains $\tau-3$ pairwise disjoint odd st-walks, there exists an odd st-walk cover B of $\left(G^{\prime}, \Sigma^{\prime}\right)$ such that $|B-L|=\tau-3$, and
(M4) there is no odd $s t$-walk cover for $\left(G^{\prime}, \Sigma^{\prime}\right)$ of size $\tau-2$.
Note that these conditions are satisfied by (G, Σ) and H, so $\left(G^{\prime}, \Sigma^{\prime}\right)$ and H^{\prime} are welldefined. As in (M2) let $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, P_{4}^{\prime}, P_{5}^{\prime}, \ldots, P_{m}^{\prime}$ be m edge subsets of H^{\prime} that are pairwise disjoint except possibly at $\Omega, L_{1}^{\prime}, L_{2}^{\prime}$ and L_{3}^{\prime} are directed odd $s t$-walks that contain Ω, and $P_{4}^{\prime}, \ldots, P_{m}^{\prime}$ are even directed $s t$-paths that do not contain Ω. We make the following three assumptions about the choice of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}, P_{4}^{\prime}, P_{5}^{\prime}, \ldots, P_{m}^{\prime}$, in this order of priority:
(A1) $L_{1}^{\prime} \cup L_{2}^{\prime} \cup L_{3}^{\prime} \cup \bigcup_{j=4}^{m} P_{j}^{\prime}$ is a minimal edge subset among all possible choices for the m edge subsets as in (M2),
(A2) the number of non-simple odd $s t$-walks amongst $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ is maximum among all possible choices for the m edge subsets, and
(A3) $H^{\prime}=L_{1}^{\prime} \cup L_{2}^{\prime} \cup L_{3}^{\prime} \cup \bigcup_{j=4}^{m} P_{j}^{\prime}$.
For notational convenience, let $V^{\prime}:=V\left(G^{\prime}\right), E^{\prime}:=E\left(G^{\prime}\right)$ and reset $L_{i}:=L_{i}^{\prime}, L_{j}:=C_{j} \cup P_{j}^{\prime}$ and $P_{j}:=P_{j}^{\prime}$ for all $1 \leq i \leq 3$ and $4 \leq j \leq m$. By identifying a vertex of each component with s, if necessary, we may assume that
(A4) H^{\prime} is connected.
For each $1 \leq i \leq 3$, choose a minimal mate B_{i} for L_{i} as in (M3). Observe that for each $1 \leq i \leq 3$ since $\left|B_{i}-L_{i}\right|=\tau-3, B_{i}-L_{i}$ must be a transversal of $\left\{L_{4}, \ldots, L_{\tau}\right\}$ and $\Omega \in B_{i}$. Keep in mind that each of B_{1}, B_{2}, B_{3} is either an st-bond or a signature, and complicating matters more, each of L_{1}, L_{2}, L_{3} is either simple or non-simple. Even more, if $L_{i}, 1 \leq i \leq 3$ is non-simple then Ω could be in either C_{i} or P_{i}. The various combinations of the possibilities for $L_{1}, L_{2}, L_{3}, B_{1}, B_{2}, B_{3}$ and where the edge Ω is sitting only makes the problem of finding the obstructions more complex. However, as we will see in the following lemma, various combinations for L_{1}, L_{2} and L_{3} restricts the possibilities for B_{1}, B_{2}, B_{3} and where Ω is sitting. Recall that s and s^{\prime} are the end-vertices of Ω.

Lemma 3.4. One of the following holds:

Template (I): L_{1}, L_{2} and L_{3} are simple,
Template (II): at least one of L_{1}, L_{2}, L_{3} is non-simple, and whenever L_{k} is non-simple for some $1 \leq k \leq 3$, then $\Omega \in C_{k}$,

Template (III): at least two of L_{1}, L_{2}, L_{3} are non-simple, and $\Omega \in P_{1} \cap P_{2} \cap P_{3}$.
Proof. We will show that if (I) or (II) does not hold, then (III) must hold. In other words, we assume that at least one L_{k} of L_{1}, L_{2}, L_{3} is non-simple and $\Omega \notin C_{k}$, and we will show that at least two of L_{1}, L_{2}, L_{3} must be non-simple and $\Omega \in P_{1} \cap P_{2} \cap P_{3}$.

We may assume that $k=1$. Then $\Omega \in P_{1}$. We first show that $\Omega \in P_{2} \cap P_{3}$. Notice that, for $i=2,3, B_{i} \cap L_{1}=\{\Omega\}$ and $\Omega \notin C_{1}$, implying that $B_{i} \cap C_{1}=\emptyset$. Hence, B_{2} and B_{3} cannot be signatures, i.e. they are st-bonds. Hence, since $B_{2} \cap L_{3}=B_{3} \cap L_{2}=\{\Omega\}$ and B_{2} intersects any circuit an even number of times, it follows that $\Omega \notin C_{2} \cup C_{3}$ and so $\Omega \in P_{2} \cap P_{3}$.

It remains to show that L_{2} and L_{3} cannot both be simple odd $s t$-walks. Suppose otherwise. Choose minimal vertex subsets $U_{i} \subseteq V^{\prime}-\{t\}$ such that $\delta\left(U_{i}\right)=B_{i}$, for $i=2,3$. Let $U:=U_{2} \cap U_{3}$ and $B:=\delta(U)$. Note $B \subseteq B_{2} \cup B_{3}$, and B is an st-cut so it is a cover of $\left(G^{\prime}, \Sigma^{\prime}\right)$, implying $|B| \geq \tau$. We will obtain a contradiction to (M4) by showing that $|B|=\tau-2$.

Take $1 \leq i \leq \tau$. We will show that $\left|B \cap L_{i}\right|=1$. If $i \notin\{2,3\}$ then $\left|B \cap L_{i}\right| \leq\left|B_{2} \cap L_{i}\right|+$ $\left|B_{3} \cap L_{i}\right|=2$, and since $\left|B \cap L_{i}\right|$ is odd it follows that $\left|B \cap L_{i}\right|=1$. Otherwise, $i \in\{2,3\}$. Since $\Omega \in B \cap L_{i}$ and $s \in U$, we get that $s^{\prime} \notin U_{2} \cup U_{3}$. We claim that $B \cap L_{i}=\{\Omega\}$. If not, then there exists a vertex $u \in V\left(L_{i}\right) \cap U-\{s\}$. But then $L_{i}\left[s^{\prime}, u\right] \cap B_{5-i} \neq \emptyset$, which cannot be the case as $L_{i} \cap B_{5-i}=\{\Omega\}$. (Here $L_{i}\left[s^{\prime}, u\right]$ denotes the subpath in L_{i} between s^{\prime} and u.) As a result, $|B|=\left|B \cap\left(\bigcup_{i=1}^{\tau} L_{i}\right)\right|=1+\sum_{i=4}^{\tau}\left|B \cap L_{i}\right|=\tau-2$, a contradiction.

Observe that the case where $s=t$ is under template (II). We find either of the obstructions \widetilde{K}_{5}, F_{7} as a minor starting from one of the templates (I),(II) and (III). The template having the least structure is (I) and the one with the most structure is (III). Hence, as the reader may expect, finding the obstructions is most difficult when (I) occurs and it is least difficult for (III). The proof is split into eight parts, four of which are spent to find an obstruction in (I), three parts are taken by (II), and the remaining part considers (III).

3.1 Template (I): Parts (1)-(4)

Suppose we are given Template (I). There are three main factors that extensively split the proof into four parts. The first factor is whether $\left(H^{\prime} \backslash \Omega, \Sigma^{\prime} \cap E\left(H^{\prime} \backslash \Omega\right)\right.$) contains an odd cycle.

In Part (1) we assume that $\left(H^{\prime} \backslash \Omega, \Sigma^{\prime} \cap E\left(H^{\prime} \backslash \Omega\right)\right.$) does contain an odd cycle. In this case, we show that exactly one of B_{1}, B_{2}, B_{3}, say B_{3}, is an st-bond. Therefore, $B_{3}=\delta\left(U_{3}\right)$ for some vertex subset $U_{3} \subseteq V$. We then move on to showing that $P_{1} \cup P_{2}$ contains two odd cycles, and then a disentangling argument allows us to assume that P_{1}, P_{2} and P_{3} do not pairwise intersect "wildly". Then connectivity inside $G^{\prime}\left[U_{3}\right]$ gives us a path R connecting s to $V P_{3}-\{s\}$, see Figure 3.1. (Hereinafter, $V Q:=V(Q)$ for a path, circuit or an $\{s, t\}$-join Q.) At this point, once R is contracted the signed graph in Figure 3.2 is obtained, which clearly is F_{7}.

For the other three parts, we assume that $\left(H^{\prime} \backslash \Omega, \Sigma^{\prime} \cap E\left(H^{\prime} \backslash \Omega\right)\right)$ is bipartite. Now a second factor comes into effect, and that is whether or not the following holds:
(X1) no odd st-dipath of $\left(H^{\prime}, \Sigma^{\prime} \cap E\left(H^{\prime}\right)\right)$ has a mate which is an st-bond.

Figure 3.1: Towards an F_{7} minor. Bold edges are odd.

Figure 3.2: Signed graph F_{7}, where the bold edges are odd.

In Part (2) we assume that (X1) holds. If vertex t lies on every odd circuit of ($H^{\prime}, \Sigma^{\prime} \cap$ $E\left(H^{\prime}\right)$), then a disentangling argument allows us to assume that P_{1}, P_{2}, P_{3} and P_{4} (whose existence is also proved) do not intersect wildly in H^{\prime}, see Figure 3.3; the path P_{4} is

Figure 3.3: Towards a $\widetilde{K_{5}}$ minor. The bold edge is odd.
contracted to identify s and t, and then carefully chosen paths in $\left(G^{\prime}, \Sigma^{\prime}\right)$ are added to obtain the signed graph in Figure 3.4, which evidently is $\widetilde{K_{5}}$. Otherwise, there is an odd circuit C of $\left(H^{\prime}, \Sigma^{\prime} \cap E\left(H^{\prime}\right)\right)$ that avoids t. In this case, we find a vertex v common to both P_{1} and P_{2} that is closest to t, followed by two vertex disjoint paths Q and P, one connecting s^{\prime} to v and the other connecting s to t, see Figure 3.5. Then, after considering the mates B_{1} and B_{2}, we are able to find a path R in $\left(G^{\prime}, \Sigma^{\prime}\right)$, vertex disjoint from $P \cup Q \cup C$, connecting $V P_{1}[v, t]-\{v, t\}$ to $V P_{2}[v, t]-\{v, t\}$. We then contract paths R and Q to obtain F_{7}, as in Figure 3.2.

For the remaining two parts, we assume that (X1) does not hold. So there exists a

Figure 3.4: Signed graph $\widetilde{K_{5}}$, where the bold edges are odd.

Figure 3.5: Towards an F_{7} minor. The bold edges are odd.
simple odd st-walk L of $\left(H^{\prime}, \Sigma^{\prime} \cap E\left(H^{\prime}\right)\right)$ owning an $s t$-bond B as a mate, i.e. B is a cover of $\left(G^{\prime}, \Sigma^{\prime}\right)$ such that $|B-L|=\tau-3$. It turns out that we may assume $L=L_{1}$ and $B=B_{1}$. Choose $U_{1} \subseteq V-\{t\}$ so that $B_{1}=\delta\left(U_{1}\right)$, see Figure 3.6. Let $u \neq s$ and

Figure 3.6: The bold edge is odd.
w be, respectively, the closest and furthest vertices on P_{1} from s that lie inside U_{1}. Let $C_{1}:=P_{1}[s, u], Q_{1}:=P_{1}[w, t]$, and $F^{\prime}:=\left(P_{1} \cap G^{\prime}\left[U_{1}\right]\right) \cup C_{1} \cup Q_{1} \cup \bigcup_{j=2}^{m} P_{j}$. The third factor presents itself: whether or not

$$
\text { (X2) for every even st-dipath } P \text { in }\left(F^{\prime}, \Sigma^{\prime} \cap E\left(F^{\prime}\right)\right), V(P) \cap V\left(C_{1}\right) \subseteq U_{1}
$$

In Part (3) we assume that (X2) holds, and in Part (4) (X2) does not hold. In either parts, both obstructions can be present as minors.

Here is a summary of the four parts:
Part (1): Template (I) holds, and ($H^{\prime} \backslash \Omega, \Sigma^{\prime} \cap E\left(H^{\prime} \backslash \Omega\right)$) is not bipartite.
Part (2): Template (I) holds, ($H^{\prime} \backslash \Omega, \Sigma^{\prime} \cap E\left(H^{\prime} \backslash \Omega\right)$) is bipartite, and (X1) holds.
Part (3): Template (I) holds, ($H^{\prime} \backslash \Omega, \Sigma^{\prime} \cap E\left(H^{\prime} \backslash \Omega\right)$) is bipartite, (X1) does not hold, and (X2) holds.

Part (4): Template (I) holds, ($H^{\prime} \backslash \Omega, \Sigma^{\prime} \cap E\left(H^{\prime} \backslash \Omega\right)$) is bipartite, (X1) does not hold, and (X2) does not hold.

3.2 Template (II): Parts (5)-(7)

Suppose now we are given Template (II). A natural question to ask is how many of L_{1}, L_{2}, L_{3} are non-simple odd st-walks, and the three possibilities form the three parts taken by Template (II).

In Part (5) we assume that all of L_{1}, L_{2}, L_{3} are non-simple. If $s=t$ then we appeal to a lemma by Geelen and Guenin [3] to find a $\widetilde{K_{5}}$ minor. Otherwise, an even st-path P is carefully chosen and contracted to identify s and t and then the same lemma comes to the rescue, see Figure 3.7. In Part (6) we assume that two of L_{1}, L_{2}, L_{3} are non-simple. In

Figure 3.7: The bold edge is odd.
this part, an F_{7} minor is found in a similar manner as it was constructed in Part (2) (see Figures 3.5 and 3.2). In Part (7) we assume that only one of L_{1}, L_{2}, L_{3} is non-simple. This part turns out to be more complex than the other two parts, and both obstructions can in fact appear as minors.

Here is a summary of the three parts:

Part (5): Template (II) holds, and all of L_{1}, L_{2}, L_{3} are non-simple.
Part (6): Template (II) holds, and two of L_{1}, L_{2}, L_{3} are non-simple.
Part (7): Template (II) holds, and one of L_{1}, L_{2}, L_{3} is non-simple.

3.3 Template (III): Part (8)

In the last part, Part (8), we assume that Template (III) is given.
Part (8): Template (III) holds.
That is, at least two of L_{1}, L_{2}, L_{3}, say L_{1} and L_{2}, are non-simple, and $\Omega \in P_{1} \cap P_{2} \cap P_{3}$. Here we find an F_{7} minor. However, our arguments for this part will be presented in a more general setting, as we will refer to this part as a subroutine in the other parts of the proof. For this part, we assume
(M1') $\left(G^{\prime}, \Sigma^{\prime}\right)$ contains τ odd $\{s, t\}$-joins $L_{1}, L_{2}, L_{3}, \ldots, L_{\tau}$ that are pairwise disjoint except possibly at Ω,
(M2') $\Omega \in L_{j}$ if and only if $1 \leq j \leq 3$,
(M3') L_{1}, L_{2} and L_{3} are odd st-walks, at least two of which are non-simple,
(M4') for every odd $s t$-walk $L \subseteq L_{1} \cup L_{2} \cup L_{3}$, there exists an odd $s t$-walk cover B of $\left(G^{\prime}, \Sigma^{\prime}\right)$ such that $|B-L|=\tau-3$,
(M5') there is no odd $s t$-walk of $\left(G^{\prime}, \Sigma^{\prime}\right)$ of size $\tau-2$.
We may assume that L_{1}, L_{2} and L_{3} as above have a minimal union amongst all possible choices for L_{1}, L_{2}, L_{3} in $\left(G^{\prime}, \Sigma^{\prime}\right)$. As before let B_{i} be a of L_{i}, for $1 \leq i \leq 3$. We first show that the covers B_{1}, B_{2} and B_{3} are all st-bonds. Then if U_{i} is the shore of B_{i} containing $s(1 \leq i \leq 3)$ we prove that $U_{1} \subsetneq U_{2} \subsetneq U_{3}$. To explain the ideas of the proof more transparently, suppose that L_{3} is non-simple as well. As we will see, this implies that $\Omega \in P_{3}$. Then we show that $P_{i} \cap B_{i}=\{\Omega\}$ and $\left|C_{i} \cap B_{i}\right| \geq 2$ for $1 \leq i \leq 3$. Moreover, we will see that $V\left(C_{1}\right) \subseteq U_{2}, V\left(C_{2}\right) \subseteq U_{3}-U_{1}$ and $V\left(C_{3}\right) \in V-U_{1}-U_{2}$. Then for the final argument we will show that there is enough connectivity in each of the pieces $U_{1}, U_{2}-U_{1}, U_{3}-U_{2}$ and $V-U_{3}$ so as to connect s to $V\left(C_{1}\right) \cap U_{1}, V\left(C_{1}\right) \cap\left(U_{2}-U_{1}\right)$ to $V\left(C_{2}\right) \cap\left(U_{2}-U_{1}\right), V\left(C_{2}\right) \cap\left(U_{3}-U_{2}\right)$ to $V\left(C_{3}\right) \cap\left(U_{3}-U_{2}\right)$, and $V\left(C_{3}\right) \cap\left(V-U_{3}\right)$ to t in each of the respective pieces, see Figure 3.8. Then appropriate edges are contracted and an F_{7} minor, as in Figure 3.2 is found.

Figure 3.8: Towards an F_{7} minor. The three bold circuits are odd.

Chapter 4

Some lemmas

For the sake of notational convenience, we denote $X-\left(Y_{1} \cup Y_{2} \cup \cdots \cup Y_{n}\right)$ by $X-Y_{1}-$ $Y_{2}-\cdots-Y_{n}$, for sets $X, Y_{1}, Y_{2}, \ldots, Y_{n}$.

4.1 Basic lemmas

Lemma 4.1. Let (F, Γ) be a signed graph with distinguished vertices s, t that is nonpacking, and let B be a minimal cover. Then B cannot be both a signature and an st-bond.

Proof. Suppose not, and let B be a minimal cover that is both a signature and an st-bond. Let P be an st-path. Then $|B \cap P|$ is odd as B is an st-cut, and so P is odd as B is also a signature. Hence, every st-path is odd and so every odd $s t$-walk is an $s t$-path, and vice-versa. Therefore, Menger's theorem implies that (F, Γ) packs, a contradiction.

Lemma 4.2. Let $(F=(V, E), \Gamma)$ be a signed graph with distinguished vertices s, t that is st-Eulerian, and let Ω be an edge incident to s. Suppose that $\tau(F, \Gamma)>\tau-2$ for some integer $\tau \geq 3$. Let Q_{1} and Q_{2} be (edge-)disjoint paths such that $\Omega \notin Q_{1} \cup Q_{2}$. Suppose there exist minimal covers S_{1}, S_{2} such that
(1) for $i \in\{1,2\}, \Omega \in S_{i}$ and $\left|S_{i}-Q_{i}-\{\Omega\}\right|=\tau-3$,
(2) $S_{1} \cap Q_{2}=S_{2} \cap Q_{1}=\emptyset$, and
(3) S_{1} and S_{2} are signatures.

Suppose further that there exists a collection \mathcal{L} of $\tau-3$ pairwise disjoint edge subsets of $E-Q_{1}-Q_{2}-\{\Omega\}$, each of which is either an odd circuit or an odd st-path. Choose a vertex subset U of $V-\{s, t\}$ such that $\delta(U)=S_{1} \triangle S_{2}$. Then there exists a path in $F[U]-S_{1}-S_{2}$ between $V\left(Q_{1}\right)$ and $V\left(Q_{2}\right)$.

Proof. Observe first that, for each $i=1,2, S_{i}-Q_{i}-\{\Omega\}$ is a transversal of \mathcal{L}, as every element of \mathcal{L} is odd and $|\mathcal{L}|=\left|S_{i}-Q_{i}-\{\Omega\}\right|$.

We next show that there exists a path in $F[U]$ between $V\left(Q_{1}\right)$ and $V\left(Q_{2}\right)$. Suppose not. Then there exists $U_{0} \subseteq U$ such that $V\left(Q_{1}\right) \cap U \subseteq U_{0}, V\left(Q_{2}\right) \cap U \cap U_{0}=\emptyset$ and $\delta\left(U_{0}\right)-\delta(U)=\emptyset$. Let $S:=S_{1} \triangle \delta\left(U_{0}\right)$ which is another cover of (F, Γ). We claim that $|S|=\tau-2$. Observe that $S \cap Q_{1}=\emptyset$ as $S_{1} \cap Q_{1}=\delta\left(U_{0}\right) \cap Q_{1}$. Moreover, for every $L \in \mathcal{L}$, $|S \cap L|=1$. Indeed, if $L \cap \delta\left(U_{0}\right)=\emptyset$ then $S \cap L=S_{1} \cap L$ and so $|S \cap L|=1$. Otherwise, if $L \cap \delta\left(U_{0}\right) \neq \emptyset$ then $\left|L \cap \delta\left(U_{0}\right)\right|=2$ as $L \cap \delta\left(U_{0}\right)=L \cap \delta(U)=\left(L \cap S_{1}\right) \cup\left(L \cap S_{2}\right)$ since L is either a circuit or an st-path. Therefore, since $S \subseteq\{\Omega\} \cup Q_{1} \cup(\bigcup(L: L \in \mathcal{L}))$, it follows that $|S|=1+|\mathcal{L}|=\tau-2$, as claimed. However, $\tau-2=|S| \geq \tau(F, \Gamma)>\tau-2$, a contradiction. So there exists a path P in $F[U]$ between $V\left(Q_{1}\right)$ and $V\left(Q_{2}\right)$.

To finish the proof, note that if $e \in S_{1} \cup S_{2}$ is an edge of $F[U]$ then e must be in both S_{1} and S_{2} as $e \notin \delta(U)=S_{1} \triangle S_{2}$. Thus if $P \cap\left(S_{1} \cap S_{2}\right)=\emptyset$ then we are done. Otherwise, let $e \in P \cap S_{1} \cap S_{2}$. Then e must belong to an element L of \mathcal{L}. Observe that L must be a circuit lying completely in $F[U]$ since otherwise, for some $i \in\{1,2\},\left|L \cap S_{i}\right|>1$. But then one can bypass the edge e by rerouting P through $L \backslash e$. By repeatedly applying this operation, we will end up with a path in $F[U]-S_{1}-S_{2}$ between $V\left(Q_{1}\right)$ and $V\left(Q_{2}\right)$, as desired.

Lemma 4.3. Let $(F=(V, E), \Gamma)$ be a signed graph with distinguished vertices s, t that is st-Eulerian, and let Ω be an edge incident to s. Suppose that $\tau(F, \Gamma)>\tau-2$ for some integer $\tau \geq 3$. Let Q_{1} and Q_{2} be odd st-paths such that $\Omega \in Q_{1} \cap Q_{2}$. Suppose there exist minimal covers S_{1}, S_{2} such that
(1) $\Omega \in S_{1} \cap S_{2}$ and $\left|S_{i}-Q_{i}\right|=\tau-3$ for $i=1,2$,
(2) $S_{1} \cap Q_{2}=S_{2} \cap Q_{1}=\{\Omega\}$, and
(3) S_{1} is an st-bond and S_{2} is a signature.

Suppose further that there exists a collection \mathcal{L} of $\tau-3$ pairwise disjoint odd $\{s, t\}$-joins of $E-Q_{1}-Q_{2}$. Choose a vertex subset U of $V-\{t\}$ such that $\delta(U)=S_{1}$. Then there exists a path in $F[U]-S_{2}$ between s and $V\left(Q_{1}\right)-\{s\}$.

Proof. As above, observe that, for $i=1,2, S_{i}-Q_{i}$ has size $\tau-3$ and so is a transversal of \mathcal{L}, as every element of \mathcal{L} contains an odd $s t$-walk. Suppose, for a contradiction, there is no path in $F[U]-S_{2}$ connecting s and $V\left(Q_{1}\right)-\{s\}$. Then there exists $U_{0} \subseteq U$ such that $V\left(Q_{1}\right) \cap U_{0}=\{s\}$ and $\delta\left(U_{0}\right)-\delta(U) \subseteq S_{2}$.

Let $S:=\delta\left(U_{0}\right)$. Then S is a cover of (F, Γ) contained in $S_{1} \cup S_{2}$. We claim that $|S|=\tau-2$. Observe that $S \cap Q_{1}=\{\Omega\}$ and, since $\Omega \in Q_{2}$ and $S_{1} \cap Q_{2}=\{\Omega\}$, we also have $S \cap Q_{2}=\{\Omega\}$. Moreover, for every $L \in \mathcal{L},|L \cap S| \leq\left|L \cap S_{1}\right|+\left|L \cap S_{2}\right|=2$ and so $|L \cap S|=1$ as $|L \cap S|$ is odd. Therefore, since $S \subseteq\{\Omega\} \cup(\bigcup(L: L \in \mathcal{L}))$, it follows that $|S|=1+|\mathcal{L}|=\tau-2$, as claimed. However, $\tau-2=|S| \geq \tau(F, \Gamma)>\tau-2$, a contradiction.

Lemma 4.4. Let $(F=(V, E), \Gamma)$ be a signed graph with distinguished vertices s, t that is st-Eulerian, and let Ω be an edge incident to s. Suppose that $\tau(F, \Gamma)>\tau-2$ for some integer $\tau \geq 3$. Let $\left(L_{1}, L_{2}, \ldots, L_{\tau}\right)$ be an Ω-packing of odd $\{s, t\}$-joins, where L_{1} and L_{2} are connected. Suppose that B_{1}, B_{2} are minimal covers such that, for $i=1,2,\left|B_{i}-L_{i}\right|=\tau-3$. Then B_{1}, B_{2} cannot both be st-bonds.

Proof. Observe, for $i=1,2, \Omega \in B_{i}$ and that $B_{i}-L_{i}$ is a transversal of L_{4}, \ldots, L_{τ}. Suppose, for a contradiction, that both B_{1} and B_{2} are $s t$-bonds. For $i=1,2$, choose minimal vertex subsets $U_{i} \subseteq V-\{t\}$ such that $\delta\left(U_{i}\right)=B_{i}$. Let $U:=U_{1} \cap U_{2}$ and $B:=\delta(U)$. Note that B is an st-cut, in particular, it is a cover, and that $B \subseteq B_{1} \cup B_{2}$. We will show that $|B|=\tau-2$. Take $1 \leq i \leq \tau$. If $i \neq 1,2$ then $\left|B \cap L_{i}\right| \leq\left|B_{1} \cap L_{i}\right|+\left|B_{2} \cap L_{i}\right|=2$, and since $\left|B \cap L_{i}\right|$ is odd it follows that $\left|B \cap L_{i}\right|=1$.

Take $j \in\{1,2\}$. Suppose that s, s^{\prime} are the end-vertices of Ω. Since $\Omega \in B \cap L_{j}$ and $s \in U$, we get that $s^{\prime} \notin U_{1} \cup U_{2}$. We claim that $B \cap L_{j}=\{\Omega\}$. If not then there exists a vertex $u \in V L_{j} \cap U-\{s\}$. Since L_{j} is connected, $L_{j}\left[s^{\prime}, u\right] \cap B_{3-j} \neq \emptyset$ (here $L_{j}\left[s^{\prime}, u\right]$ denotes the subpath of L_{j} between s^{\prime} and u). But then $L_{j} \cap B_{3-j} \supsetneq\{\Omega\}$, which is not the case.

As a result, $|B|=\left|B \cap\left(\bigcup_{j=1}^{\tau} L_{j}\right)=\left|=1+\sum_{j=4}^{\tau}\right| B \cap L_{j}\right|=\tau-2$. However, $\tau-2=$ $|B| \geq \tau(F, \Gamma)>\tau-2$, a contradiction.

Lemma 4.5. Let (F, Γ) be a signed graph with distinguished vertices s, t that is st-Eulerian, and let Ω be an edge incident to s. Suppose that $\tau(F, \Gamma)>\tau-2$ for some integer $\tau \geq 3$. Let $\left(L_{1}, L_{2}, \ldots, L_{\tau}\right)$ be an Ω-packing of odd $\{s, t\}$-joins, and suppose that, for each $1 \leq i \leq 3$, there exists a minimal cover B_{i} such that $\left|B_{i}-L_{i}\right|=\tau-3$. If s has degree one in $F\left[L_{1} \cup L_{2} \cup L_{3}\right]$, then it cannot be the case that one of L_{1}, L_{2}, L_{3} is a non-simple odd st-walk and the other two are simple odd st-walks.

Proof. Suppose otherwise. We may assume that L_{3} is a non-simple odd st-walk and the two odd st-walks L_{1} and L_{2} are simple. Choose $1 \leq i \leq 2$. Since $\left|B_{i}-L_{i}\right|=\tau-3$, it follows that $B_{i}-L_{i}$ is a transversal of L_{4}, \ldots, L_{τ}, and $B_{i} \cap L_{1}=\{\Omega\}$. Let C be the odd circuit contained in L_{3}. As s has degree one in $F\left[L_{1} \cup L_{2} \cup L_{3}\right]$ it follows that $B_{i} \cap C=\emptyset$, implying that B_{i} is an $s t$-bond. Therefore, B_{1} and B_{2} are st-bonds, contradicting Lemma 4.4.

Lemma 4.6. Let (F, Γ) be a signed graph with distinguished vertices s, t that is st-Eulerian, and let Ω be an edge incident to s. Suppose that $\tau(F, \Gamma)>\tau-2$ for some integer $\tau \geq 3$. Let $\left(L_{1}, L_{2}, \ldots, L_{\tau}\right)$ be an Ω-packing of odd $\{s, t\}$-joins, where
(1) L_{1} is a simple odd st-walk and L_{4} is contains an even st-path P_{4},
(2) there exists a vertex $v \in V\left(L_{1}\right) \cap V\left(P_{4}\right)-\{s, t\}$, and
(3) there exist minimal covers B_{1}, B_{4} of (F, Γ) such that $\left|B_{1}-\{\Omega\}-L_{1}[v, t]\right|=\tau-3$ and $\left|B_{4}-\{\Omega\}-P_{4}[v, t]\right|=\tau-3$.

Then B_{1}, B_{4} cannot both be st-bonds.
Proof. Suppose not. Choose minimal vertex subsets $U_{1}, U_{4} \subseteq V-\{t\}$ such that $B_{i}=\delta\left(U_{i}\right)$ for $i=1,4$. Let $U:=U_{1} \cap U_{4}$ and $B:=\delta(U)$, which is an st-cut. We will show that $|B|=\tau-2$.

Observe that $\left|B_{1}-L_{1}\right| \geq \tau-3$ as each of $L_{4}, L_{5}, \ldots, L_{\tau}$ contain an st-path, and so $B_{1} \cap L_{j} \neq \emptyset$ for all $4 \leq j \leq \tau$. However, $\left|B_{1}-L_{1}\right| \leq\left|B_{1}-\{\Omega\}-L_{1}[v, t]\right|=\tau-3$, and so $\left|B_{1}-L_{1}\right|=\tau-3, \Omega \in B_{1}$ and

$$
(*) \quad B_{1} \cap L_{1}[s, v]=\{\Omega\},\left|B_{1} \cap P_{4}[s, v]\right|=1 .
$$

Note that since $\left|B_{1} \cap L_{4}\right|=1,(*)$ implies that $B_{1} \cap P_{4}[v, t]=\emptyset$.
Let $L_{1}^{\prime}:=L_{1}[s, v] \cup P_{4}[v, t]$ and $L_{4}^{\prime}:=\left(L_{4}-P_{4}\right) \cup\left(P_{4}[s, v] \cup L_{4}[v, t]\right)$. Similarly, $\left|B_{4}-L_{1}^{\prime}\right| \geq \tau-3$ as each of $L_{4}^{\prime}, L_{5}, \ldots, L_{\tau}$ contain an st-path, and so $B_{4} \cap L_{4}^{\prime} \neq \emptyset$ and $B_{4} \cap L_{j} \neq \emptyset$ for all $5 \leq j \leq \tau$. However, $\left|B_{4}-L_{1}^{\prime}\right| \leq\left|B_{4}-\{\Omega\}-P_{4}[v, t]\right|=\tau-3$, and so $\left|B_{4}-L_{1}^{\prime}\right|=\tau-3$ and

$$
(* *) \quad B_{4} \cap L_{1}[s, v]=\{\Omega\},\left|B_{4} \cap P_{4}[s, v]\right|=1 .
$$

Again, since $\left|B_{4} \cap L_{4}^{\prime}\right|=1,(* *)$ implies that $B_{4} \cap L_{1}=\{\Omega\}$.
Take $1<i \leq \tau$ such that $i \neq 4$. Then $\left|B \cap L_{i}\right| \leq\left|B_{1} \cap L_{i}\right|+\left|B_{4} \cap L_{i}\right|=2$, and since $\left|B \cap L_{i}\right|$ is odd it follows that $\left|B \cap L_{i}\right|=1$. We claim that $B \cap L_{1}=\{\Omega\}$. If not then
there exists a vertex $u \in V L_{1} \cap U-\{s\}$. Since L_{1} is an odd st-path, $L_{1}\left[s^{\prime}, u\right] \cap \delta\left(U_{4}\right) \neq \emptyset$, which is not the case as $B_{4} \cap L_{1}=\{\Omega\}$. Lastly, we show that $\left|B \cap L_{4}\right|=1$. Observe that $B \cap L_{4}=B \cap P_{4}$ since $\left(B_{1} \cup B_{4}\right) \cap\left(L_{4}-P_{4}\right)=\emptyset$. Notice that $(*)$ and $(* *)$ imply that $\left|B \cap P_{4}[s, v]\right|=1$. Moreover, $B \cap P_{4}[v, t]=\emptyset$ since $B_{1} \cap P_{4}[v, t]=\emptyset$. Hence, $\left|B \cap L_{4}\right|=\left|B \cap P_{4}\right|=1$.

As a result, $|B|=\left|B \cap\left(\bigcup_{j=1}^{\tau} L_{j}\right)=\left|=1+\sum_{j=4}^{\tau}\right| B \cap L_{j}\right|=\tau-2$. However, $\tau-2=$ $|B| \geq \tau(F, \Gamma)>\tau-2$, a contradiction.

Lemma 4.7. Let (F, Γ) be a signed graph that is the union of pairwise disjoint xy-paths Q_{1}, \ldots, Q_{n}, for some distinct vertices $x, y \in V(F)$. If $Q_{i} \cup Q_{j}$ contains no odd cycle, for all $i, j \in\{1, \ldots, n\}$, then (F, Γ) is bipartite.

Proof. We proceed by induction on n. For $n=1$ the lemma is trivial. Choose $n \geq 2$, and assume that the statement holds for all $2 \leq k<n$. Then $Q_{1} \cup \cdots \cup Q_{n-1}$ is bipartite, and so there exists a signature $\Gamma^{\prime} \subseteq Q_{n}$. Choose a vertex subset $U \subseteq V(F)-\{x\}$ such that $\Gamma^{\prime} \cap Q_{n}=\delta(U) \cap Q_{n}$. Since $Q_{n} \cup Q_{j}$ is bipartite, for all $1 \leq j \leq n-1$, it follows that $y \notin U$, and $U \cap V\left(Q_{j}\right)=\emptyset$. As a result, $\Gamma^{\prime}=\delta(U)$, implying that $\left(F, \Gamma^{\prime}\right)$, and therefore (F, Γ), is bipartite.

4.2 The Intersection Lemma

For an acyclic graph F and two of its vertices x, y, we say that $x \succeq y$ if there is a $y x$-dipath. If $x \neq y$ then $x \succ y$. For an edge subset E^{\prime} of $E(F)$, we say $x \succeq_{E^{\prime}} y$ if there is a $y x$-dipath in E^{\prime}. Similarly, if $x \neq y$ then $x \succ_{E^{\prime}} y$.

Lemma 4.8 (Intersection Lemma). Let F be an acyclic directed graph and let s,t be distinct vertices of F. Suppose further that F is the union of st-dipaths Q_{1}, \ldots, Q_{m}. For every $j \in\{1, \ldots, m\}$, let $v_{j} \succ s$ be the closest vertex to s on Q_{j} that also lies on Q_{i}, for some $i \in\{1, \ldots, m\}-\{j\}$. Then there exists an index $i \in\{1, \ldots, m\}$ such that $v_{i} \preceq v_{1}$, and whenever $v_{i} \in V\left(Q_{j}\right), v_{i}=v_{j}$.

Proof. Suppose otherwise. Then for each $i \in\{1,2, \ldots, m\}$ such that $v_{i} \preceq v_{1}$, there exists $f(i) \in\{1,2, \ldots, m\}-\{i\}$ such that $v_{i} \in V\left(Q_{f(i)}\right)$ but $v_{f(i)} \prec v_{i}$. But then $v_{1} \succ v_{f(1)} \succ$ $v_{f(f(1))} \succ v_{f(f(f(1)))} \succ \cdots$. However, this not possible since there are only finitely many vertices in F and F is acyclic, a contradiction.

4.3 The $\widetilde{K_{5}}$ Lemma

Lemma 4.9 ([3]). Let (F, Γ) be a signed graph and let $\Omega=\{x, y\}$ be an edge of F, for some distinct vertices x and y of F. Suppose that every odd circuit cover of (F, Γ) has length more than $\tau-2$, for some integer $\tau \geq 3$. Suppose that $\left(C_{1}, C_{2}, C_{3}, \ldots, C_{\tau}\right)$ is a sequence of odd circuits of (F, Γ) such that
(1) $\Omega \in C_{1} \cap C_{2} \cap C_{3}$ but $\Omega \notin \bigcup_{j=4}^{\tau} C_{j}$,
(2) $\left(C_{j}-\{\Omega\}: 1 \leq j \leq \tau\right)$ are pairwise edge-disjoint,
(3) the three xy-paths $P_{j}:=C_{j}-\{\Omega\}, j=1,2,3$ are pairwise internally vertex-disjoint, and
(4) for every $j \in\{1,2,3\}$, there exists a minimal odd circuit cover B_{j} such that $\left|B_{j}-C_{j}\right|=$ $\tau-3$.

Then (F, Γ) has a $\widetilde{K_{5}}$ minor.

4.4 The Reduction Lemma

The following is essentially due to Geelen and Guenin [3]. However, the proof we provide here is slightly different than theirs and makes use of Menger's theorem.

Lemma 4.10. Let (F, Γ) be a signed graph with distinguished vertices s, t. (It is possible that $s=t$.) Let $\Omega=\left\{s, s^{\prime}\right\}$ be an edge of F, for some vertex $s^{\prime} \in V(F)-\{s, t\}$. Suppose that $\tau(F, \Gamma)>\tau-2$ for some integer $\tau \geq 3$. Let $\left(L_{1}, L_{2}, L_{3}, \ldots, L_{\tau}\right)$ be a sequence of odd $\{s, t\}$-joins such that
(R1) $\Omega \in L_{1} \cap L_{2} \cap L_{3}$ and $\Omega \notin L_{4} \cup \ldots \cup L_{\tau}$,
(R2) $\left(L_{j}-\{\Omega\}: 1 \leq j \leq \tau\right)$ are pairwise disjoint,
(R3) if $s=t$, then L_{1}, L_{2}, L_{3} are odd circuits, and otherwise when $s \neq t, L_{1}, L_{2}, L_{3}$ are odd st-paths,
(R4) if $L_{1}^{\prime}, L_{2}^{\prime}$ and L_{3}^{\prime} are odd st-walks in $L_{1} \cup L_{2} \cup L_{3}$ that use Ω and are pairwise disjoint except at Ω, then $L_{1}^{\prime} \cup L_{2}^{\prime} \cup L_{3}^{\prime}=L_{1} \cup L_{2} \cup L_{3}$,
(R5) for every odd st-walk $L \subseteq L_{1} \cup L_{2} \cup L_{3}$, there exists an odd st-walk cover B of (F, Γ) for which $|B-L|=\tau-3$, and
(R6) whenever L and B satisfy the following, then B is a signature: $L \subseteq L_{1} \cup L_{2} \cup L_{3}$ is an odd st-walk and B is an odd st-walk cover of (F, Γ) such that $|B-L|=\tau-3$, and for every other odd st-walk cover B^{\prime} of (F, Γ) such that $\left|B^{\prime}-L\right|=\tau-3$, we have $B^{\prime} \cap L \not \subset B \cap L$.

Then there exists a minor $\left(F^{\prime}, \Gamma^{\prime}\right)$ of (F, Γ) and odd st-walks $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime} \subseteq L_{1} \cup L_{2} \cup L_{3}$ such that
$\left(R 1^{\prime}\right) E(F)-E\left(F^{\prime}\right) \subseteq L_{1} \cup L_{2} \cup L_{3}-\{\Omega\}$,
(R2') if $s=t$ then $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ are odd circuits, otherwise when $s \neq t, L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ are odd st-paths.
(R3') $L_{1}^{\prime}-\{\Omega\}, L_{2}^{\prime}-\{\Omega\}$ and $L_{3}^{\prime}-\{\Omega\}$ are pairwise internally vertex-disjoint $s^{\prime} t$-paths,
(R4') for $j \in\{1,2,3\}$, there exists a signature B_{j}^{\prime} of $\left(F^{\prime}, \Gamma^{\prime}\right)$ for which $\left|B_{j}^{\prime}-L_{j}^{\prime}\right|=\tau-3$, and
(25^{\prime}) there is no odd st-walk cover of $\left(F^{\prime}, \Gamma^{\prime}\right)$ of size $\tau-2$, i.e. $\tau\left(F^{\prime}, \Gamma^{\prime}\right)>\tau-2$.
Before we prove the lemma, let us make the following definition. Let L be an odd stwalk contained in $L_{1} \cup L_{2} \cup L_{3}$. An odd st-walk cover B of (F, Γ) is said to be an internally minimal mate of L if $|B-L|=\tau-3$, and for any other odd st-walk cover B^{\prime} of (F, Γ) such that $\left|B^{\prime}-L\right|=\tau-3$, we have $B^{\prime} \cap L \not \subset B \cap L$. So condition (R6) of the lemma can be rephrased as follows: for every odd st-walk $L \subseteq L_{1} \cup L_{2} \cup L_{3}$ and every internally minimal mate B of L, B is a signature.

Proof. We will now proceed to prove the lemma. Let $H:=L_{1} \cup L_{2} \cup L_{3}-\{\Omega\}$, and for each $i \in\{1,2,3\}$, let B_{i} be an internally minimal mate for L_{i}, which exists by (R5) and is a signature by (R6).

Claim 1. $\{\Omega\}$ is a signature for $\left(H \cup\{\Omega\},(E H \cup\{\Omega\}) \cap \Gamma^{\prime}\right)$.

Proof of Claim. Let $J:=H \cup\{\Omega\}$. We will proceed by finding a vertex subset $U \subseteq$ $V(F)-\{s, t\}$ such that $\left(B_{3} \triangle \delta(U)\right) \cap E J=\{\Omega\}$. Let $U \subseteq V L_{3}-\{s, t\}$ be the unique
subset for which $L_{3} \cap \delta(U)=L_{3} \cap B_{3}-\{\Omega\}$. Observe that $B_{1} \cap\left(L_{2} \cup L_{3}\right)=\{\Omega\}$, and so $L_{2} \cup L_{3}-\{\Omega\}$ is bipartite, which in turn implies $U \cap V L_{2}=\emptyset$. Similarly, $U \cap V L_{1}=\emptyset$. Therefore, $\delta(U) \cap E J=\delta(U) \cap L_{3}=B_{3} \cap E J-\{\Omega\}$ and so

$$
\left(B_{3} \triangle \delta(U)\right) \cap E J=\left(B_{3} \cap E J\right) \triangle\left(B_{3} \cap E J-\{\Omega\}\right)=\{\Omega\},
$$

as claimed.

For each $L_{j}, 1 \leq j \leq 3$ let $P_{j}:=L_{j}-\{\Omega\}$, which is an $s^{\prime} t$-path, whether $s=t$ or not. Then $H=P_{1} \cup P_{2} \cup P_{3}$, and orient the edges of H so that each $P_{i}, 1 \leq i \leq 3$ is a directed $s^{\prime} t$-path. Observe that Claim 1 implies that $(H, E H \cap \Gamma)$ is bipartite.

Claim 2. H is acyclic.

Proof of Claim. Suppose otherwise, and let C be a directed circuit in H. As H is acyclic, we can find three pairwise disjoint $s^{\prime} t$-dipaths $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ in $H \backslash C$. However, by Claim 1, each $P_{j}^{\prime} \cup\{\Omega\}, 1 \leq j \leq 3$ is an odd st-walk, contradicting the minimality assumption (R4) of Lemma 4.10.

Let $\left(F^{\prime}, \Gamma^{\prime}\right)$ be a minor of (F, Γ), and let H^{\prime} be a directed subgraph of $\left(F^{\prime}, \Gamma^{\prime}\right)$, where $\left(F^{\prime}, \Gamma^{\prime}\right)$ and H^{\prime} are minimal subject to
(i) $E(F)-E\left(F^{\prime}\right) \subseteq P_{1} \cup P_{2} \cup P_{3}$, and $E\left(H^{\prime}\right) \subseteq P_{1} \cup P_{2} \cup P_{3}$
(ii) H^{\prime} is acyclic and there exist three disjoint $s^{\prime} t$-dipaths in H^{\prime},
(iii) for every $s^{\prime} t$-dipath P^{\prime} of $H^{\prime}, P \cup\{\Omega\}$ is an odd $s t$-walk, and there exists an odd st-walk cover B^{\prime} of $\left(F^{\prime}, \Gamma^{\prime}\right)$ such that $\left|B^{\prime}-P^{\prime}\right|=\tau-3$,
(iv) for every $s^{\prime} t$-dipath P^{\prime} of H^{\prime} and every internally minimal mate B^{\prime} of P^{\prime}, B^{\prime} is a signature, and
(v) there is no odd $s t$-walk cover of $\left(F^{\prime}, \Gamma^{\prime}\right)$ of size $\tau-2$.

Observe that (F, Γ) and H satisfy all of the five properties, so $\left(F^{\prime}, \Gamma^{\prime}\right)$ and H^{\prime} are welldefined. Let $P_{1}^{\prime}, P_{2}^{\prime}$ and P_{3}^{\prime} be three disjoint $s^{\prime} t$-dipaths of H^{\prime} as in (ii), and for each $1 \leq j \leq 3$ let $L_{j}^{\prime}:=P_{j}^{\prime} \cup\{\Omega\}$, which is an odd st-walk by (iii). We claim that $\left(F^{\prime}, \Gamma^{\prime}\right)$ and
$L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ satisfy ($\left.\mathrm{R}^{\prime}\right)-\left(\mathrm{R} 5^{\prime}\right)$, and this will finish the proof of Lemma 4.10. It is clear that (R1'), (R2'), (R4') and (R5') hold. We are then left with (R3').

We need to prove that $P_{1}^{\prime}, P_{2}^{\prime}$ and P_{3}^{\prime} are pairwise internally vertex-disjoint. Suppose, for a contradiction, that this is not the case. We will obtain a contradiction by showing that $\left(F^{\prime}, \Gamma^{\prime}\right)$ and H^{\prime} were not a minimal choice subject to $(i)-(v)$. For each $1 \leq i \leq 3$, let $v_{i} \neq t$ be the closest vertex to t on P_{i}^{\prime} that also lies on another P_{j}^{\prime}. We may assume that $v_{1} \neq s^{\prime}$, so $s^{\prime} \succ v_{1} \succ t$. Since H is acyclic by Claim 2, the Intersection Lemma implies that there exists $v_{i} \succeq v_{1}$ such that whenever $v_{i} \in V\left(P_{j}^{\prime}\right)$ then $v_{i}=v_{j}$. We may again assume that $i=1$. Let I be the set of all indices j in $\{1,2,3\}$ such that $v_{1}=v_{j}$. Note that $1 \in I$ and $|I| \geq 2$.

Claim 3. For every $i \in I$, there exists an odd st-walk cover B^{\prime} of $\left(F^{\prime}, \Gamma^{\prime}\right)$ such that $\left|B^{\prime}-P_{i}^{\prime}\left[v_{i}, t\right]-\{\Omega\}\right|=\tau-3$.

Proof of Claim. Suppose otherwise. By symmetry, we may assume that there is no odd st-walk cover B^{\prime} of $\left(F^{\prime}, \Gamma^{\prime}\right)$ such that $\left|B^{\prime}-P_{1}^{\prime}\left[v_{1}, t\right]-\{\Omega\}\right|=\tau-3$. Let $\left(F^{\prime \prime}, \Gamma^{\prime \prime}\right):=\left(F^{\prime}, \Gamma^{\prime}\right) \backslash$ $P_{1}^{\prime}\left[v_{1}, t\right] / \cup\left(P_{j}^{\prime}\left[v_{j}, t\right]: j \in I, j \neq 1\right)$ and $H^{\prime \prime}:=H^{\prime} \backslash P_{1}^{\prime}\left[v_{1}, t\right] / \cup\left(P_{j}^{\prime}\left[v_{j}, t\right]: j \in I, j \neq 1\right)$. It is clear that $\left(F^{\prime \prime}, \Gamma^{\prime \prime}\right)$ and $H^{\prime \prime}$ still satisfy (i) and $(i i)$. We claim that $(i i i)-(v)$ also hold, thereby contradicting the minimality of $\left(F^{\prime}, \Gamma^{\prime}\right)$ and H^{\prime}. We may assume that $2 \in I-\{1\}$.

To prove (iii), let $P^{\prime \prime}$ be an $s^{\prime} t$-dipath of $H^{\prime \prime}$. Then $P^{\prime \prime} \cup P_{2}^{\prime}\left[v_{2}, t\right]$ contains an $s^{\prime} t$-dipath of H^{\prime}, and since $v_{1}=v_{2}$, it follows that $P^{\prime \prime} \cup P_{1}^{\prime}\left[v_{1}, t\right]$ also contains an $s^{\prime} t$-dipath of H^{\prime}. Hence, since (iii) holds for $\left(F^{\prime}, \Gamma^{\prime}\right)$ and $H^{\prime \prime}$, there exists an odd st-walk cover B^{\prime} of $\left(F^{\prime}, \Gamma^{\prime}\right)$ such that $\left|B^{\prime}-\left(P^{\prime \prime} \cup P_{1}^{\prime}\left[v_{1}, t\right]\right)-\{\Omega\}\right|=\tau-3$. Let $B^{\prime \prime}:=B-P_{1}^{\prime}\left[v_{1}, t\right]$, which is an odd st-walk cover for $\left(F^{\prime \prime}, \Gamma^{\prime \prime}\right)$. Then $\left|B^{\prime \prime}-P^{\prime \prime}\right|=\tau-3$ and this proves (iii) for $\left(F^{\prime \prime}, \Gamma^{\prime \prime}\right)$ and $H^{\prime \prime}$.

To prove (iv), let $B^{\prime \prime}$ be an internally minimal mate for $P^{\prime \prime}$, for some $s^{\prime} t$-dipath $P^{\prime \prime}$ of $\left(F^{\prime \prime}, \Gamma^{\prime \prime}\right)$. Let P^{\prime} be the $s^{\prime} t$-dipath of $\left(F^{\prime}, \Gamma^{\prime}\right)$ contained in $P^{\prime \prime} \cup P_{1}^{\prime}\left[v_{1}, t\right]$. Then $B^{\prime \prime} \cup P_{1}^{\prime}\left[v_{1}, t\right]$ contains an internally minimal mate B^{\prime} of P^{\prime} in $\left(F^{\prime}, \Gamma^{\prime}\right)$. Observe that it must be the case that $B^{\prime \prime} \subseteq B^{\prime}$, and since B^{\prime} is a signature for $\left(F^{\prime}, \Gamma^{\prime}\right)$ by $(i v)$, it follows that $B^{\prime \prime}$ too is a signature for $\left(F^{\prime \prime}, \Gamma^{\prime \prime}\right)$.

It remains to prove (v). If there were an odd $s t$-walk cover $B^{\prime \prime}$ of ($F^{\prime \prime}, \Gamma^{\prime \prime}$) of size $\tau-2$, then $B^{\prime}:=B^{\prime \prime} \cup P_{1}^{\prime}\left[v_{1}, t\right]$ would be an odd $s t$-walk cover of $\left(F^{\prime}, \Gamma^{\prime}\right)$, but $\left|B^{\prime}-P_{1}^{\prime}\left[v_{1}, t\right]-\{\Omega\}\right|=$ $\left|B^{\prime \prime}-\{\Omega\}\right|=\tau-3$, a contradiction since we assumed such B^{\prime} does not exist. This finishes the proof of the claim.

Claim 4. There is no cut-vertex in H^{\prime} separating s^{\prime} from $\left\{v_{1}, t\right\}$.

Proof of Claim. Suppose otherwise. Let $v \in V\left(H^{\prime}\right)-\left\{s^{\prime}, t\right\}$ be a cut-vertex of H^{\prime} separating s^{\prime} from $\left\{v_{1}, t\right\}$. Then $v \in V\left(P_{i}^{\prime}\right)$ for every $i \in\{1,2,3\}$. Let $R_{i}^{\prime}:=P_{i}^{\prime}[v, t]$ for $i \in\{1,2,3\}$. One of the following must hold:
(1) for every $v t$-dipath R^{\prime} in $R_{1}^{\prime} \cup R_{2}^{\prime} \cup R_{3}^{\prime}$, there is an odd $s t$-walk cover B^{\prime} such that $\left|B^{\prime}-R^{\prime}-\{\Omega\}\right|=\tau-3$, or
(2) there exists a $v t$-dipath R^{\prime} in $R_{1}^{\prime} \cup R_{2}^{\prime} \cup R_{3}^{\prime}$ for which there is no odd st-walk cover B^{\prime} such that $\left|B^{\prime}-R^{\prime}-\{\Omega\}\right|=\tau-3$.

If (1) holds then let $\left(F^{\prime \prime}, \Gamma^{\prime \prime}\right):=\left(F^{\prime}, \Gamma^{\prime}\right) / \cup\left(P_{j}^{\prime}\left[s^{\prime}, v\right]: 1 \leq j \leq 3\right)$ and $H^{\prime \prime}:=H^{\prime} / \cup\left(P_{j}^{\prime}\left[s^{\prime}, v\right]\right.$: $1 \leq j \leq 3)$. It can be readily checked that $(i),(i i),(i v)$ and (v) still hold, and by assumption (1), (iii) also holds for $\left(F^{\prime \prime}, \Gamma^{\prime \prime}\right)$ and $H^{\prime \prime}$. However, this cannot be the case by the minimality of $\left(F^{\prime}, \Gamma^{\prime}\right)$ and H^{\prime}. Hence, (2) holds. By the acyclicity of H^{\prime}, we may assume that $R^{\prime}=R_{1}^{\prime}$. Then let $\left(F^{\prime \prime}, \Gamma^{\prime \prime}\right):=\left(F^{\prime}, \Gamma^{\prime}\right) \backslash R_{1}^{\prime} /\left(R_{2}^{\prime} \cup R_{3}^{\prime}\right)$ and $H^{\prime \prime}:=H^{\prime} \backslash R_{1}^{\prime} /\left(R_{2}^{\prime} \cup R_{3}^{\prime}\right)$. Again, it is clear that (i) and (ii) still hold. Likewise to the proof of the preceding claim, (iii) and (iv) hold, and by assumption (2), (v) also holds for $\left(F^{\prime \prime}, \Gamma^{\prime \prime}\right)$ and $H^{\prime \prime}$. But this is a contradiction to the minimality of $\left(F^{\prime}, \Gamma^{\prime}\right)$ and H^{\prime}. This finishes the proof of the claim.

Hence, by Menger's theorem, there exists two directed paths P and $P_{3}^{\prime \prime}$ that have only vertex s^{\prime} in common, P is from s^{\prime} to v_{1}, and $P_{3}^{\prime \prime}$ is from s^{\prime} to t. Let $P_{i}^{\prime \prime}:=P_{i}^{\prime}\left[v_{i}, t\right]$ for $i=1,2$, and let $\left(F^{\prime \prime}, \Gamma^{\prime \prime}\right):=\left(F^{\prime}, \Gamma^{\prime}\right) / P$ and $H^{\prime \prime}:=P_{1}^{\prime \prime} \cup P_{2}^{\prime \prime} \cup P_{3}^{\prime \prime}$. Notice that $P_{1}^{\prime \prime}, P_{2}^{\prime \prime}$ and $P_{3}^{\prime \prime}$ are pairwise internally vertex-disjoint $s^{\prime} t$-dipaths in $\left(F^{\prime \prime}, \Gamma^{\prime \prime}\right)$. It is clear that $(i),(i i),(i v)$ and (v) still hold for $\left(F^{\prime \prime}, \Gamma^{\prime \prime}\right)$ and $H^{\prime \prime}$. Moreover, by Claim 3, for each $j \in\{1,2\}$, there exists an odd st-walk cover $B^{\prime \prime}$ of $\left(F^{\prime \prime}, \Gamma^{\prime \prime}\right)$ such that $\left|B^{\prime \prime}-P_{i}^{\prime \prime}-\{\Omega\}\right|=\tau-3$. Moreover, $P_{3}^{\prime \prime}$ is also an $s^{\prime} t$-dipath for $\left(F^{\prime}, \Gamma^{\prime}\right)$ and so by (iii) applied to ($F^{\prime}, \Gamma^{\prime}$) and H^{\prime}, there exists an odd st-walk cover B^{\prime} of $\left(F^{\prime}, \Gamma^{\prime}\right)$ such that $\left|B^{\prime}-P_{3}^{\prime \prime}-\{\Omega\}\right|=\tau-3$. However, B^{\prime} is also an odd st-walk cover for $\left(F^{\prime \prime}, \Gamma^{\prime \prime}\right)$, and so (iii) holds for $\left(F^{\prime \prime}, \Gamma^{\prime \prime}\right)$ and $H^{\prime \prime}$. This is however a contradiction to the minimality of $\left(F^{\prime}, \Gamma^{\prime}\right)$ and H^{\prime}.

Hence, $P_{1}^{\prime}, P_{2}^{\prime}$ and P_{3}^{\prime} are pairwise internally vertex-disjoint, proving the last needed piece (R3'). This finishes the proof of the Reduction Lemma.

4.5 The Mate Lemma

Lemma 4.11. Let $(F=(V, E), \Gamma)$ be a connected signed graph with distinguished vertices s, t that is st-Eulerian. Let m and τ be integers so that $3 \leq m \leq \tau,\left(L_{1}, L_{2}, L_{3}, \ldots, L_{\tau}\right)$ be a sequence of odd $\{s, t\}$-joins, and $\left(B_{1}, \ldots, B_{m}\right)$ be a sequence of minimal covers such that
(1) $\Omega \in L_{1} \cap L_{2} \cap L_{3}$ and $\Omega \notin L_{4} \cup \ldots \cup L_{\tau}$,
(2) $\left(L_{j}-\{\Omega\}: 1 \leq j \leq \tau\right)$ are pairwise disjoint,
(3) L_{1}, L_{2} and L_{3} are odd st-walks, and for each $j \in\{4, \ldots, m\}, L_{j}$ contains a disconnected odd st-walk $C_{j} \cup P_{j}$, and each of $L_{m+1}, \ldots, L_{\tau}$ contains a connected odd st-walk, and
(4) $\left|B_{j}-L_{j}\right|=\tau-3$ for all $1 \leq j \leq m$.

Suppose further that $\tau(F, \Gamma)>\tau-2$. If $\left|B_{j}-P_{j}-\{\Omega\}\right|=\tau-3$ for all $1 \leq j \leq m$, then B_{i} is an st-bond for some $1 \leq i \leq m$.

Proof. Suppose that $\left|B_{j}-P_{j}-\{\Omega\}\right|=\tau-3$ for all $1 \leq j \leq m$. If L_{j} is non-simple and $\Omega \in P_{j}$, for some $j \in\{1,2,3\}$ then for any $i \in\{1,2, \ldots, m\}-\{j\}, B_{i} \cap L_{j}=\{\Omega\}$ and so $B_{i} \cap C_{j}=\emptyset$, implying in turn that B_{i} must be an $s t$-bond, and so we are done.

Otherwise,
whenever $L_{j} \in\left\{L_{1}, L_{2}, L_{3}\right\}$ is non-simple, $\Omega \in C_{j}$ and so in particular, $s \in V C_{j}$.
Suppose, for a contradiction, that none of $B_{1}, B_{2}, \ldots, B_{m}$ is an $s t$-bond, so they are all signatures. We will find an odd $s t$-walk cover for (F, Γ) of size $\tau-2$, which would yield a contradiction as $\tau(F, \Gamma)>\tau-2$.

For all distinct $i, j \in\{1,2, \ldots, m\}$, choose $U_{i j} \subseteq V-\{s, t\}$ such that $\delta\left(U_{i j}\right)=B_{i} \triangle B_{j}$. Take distinct $i, j, k \in\{1, \ldots, m\}$. Observe that

$$
\delta\left(U_{i j} \triangle U_{j k} \triangle U_{k i}\right)=\left(B_{i} \triangle B_{j}\right) \triangle\left(B_{j} \triangle B_{k}\right) \triangle\left(B_{k} \triangle B_{i}\right)=\emptyset
$$

Since F is connected and $s, t \notin U_{i j} \cup U_{j k} \cup U_{k i}$, it then follows that $U_{i j} \triangle U_{j k} \triangle U_{k i}=\emptyset$ and so, in particular, $U_{i j} \cap U_{j k} \cap U_{k i}=\emptyset$.

For each $i \in\{1,2, \ldots, m\}$ and $\emptyset \neq A \subseteq\{1,2, \ldots, m\}-\{i\}$, let

$$
S_{i}^{A}:=\bigcap_{j \in A} U_{i j} .
$$

Observe that

$$
\delta\left(S_{i}^{A}\right) \subseteq \cup_{j \in\{i\} \cup A} B_{j} .
$$

Indeed, if $e=\{u, v\} \in \delta\left(S_{i}^{A}\right)$ with $v \notin S_{i}^{A}$, then $v \notin U_{i j}$ for some $j \in A$ and so $e \in \delta\left(U_{i j}\right)$, implying that $e \in B_{i}$ or $e \in B_{j}$. Furthermore, for all distinct $i, j, k \in\{1, \ldots, m\}$ and A such that $\{j, k\} \subseteq A \subseteq\{1, \ldots, m\}-\{i\}$, since $S_{i}^{A} \subseteq U_{i j} \cap U_{i k}$ and $U_{i j} \cap U_{i k} \cap U_{j k}=\emptyset$, it follows that

$$
S_{i}^{A} \cap U_{j k}=\emptyset
$$

Take $i \in\{1,2, \ldots, m\}$ and $\emptyset \neq A \subseteq\{1,2, \ldots, m\}-\{i\}$.

Claim 1. $P_{i} \cap \delta\left(S_{i}^{A}\right)=P_{i} \cap B_{i}-\{\Omega\}$, and $P_{j} \cap \delta\left(S_{i}^{A}\right)=\emptyset$ for all $j \in\{1, \ldots, m\}-\{i\}$ such that $A-\{j\} \neq \emptyset$.

Proof of Claim. To see why $P_{i} \cap \delta\left(S_{i}^{A}\right)=P_{i} \cap B_{i}-\{\Omega\}$, notice that $P_{i} \cap \delta\left(U_{i k}\right)=P_{i} \cap B_{i}-\{\Omega\}$ and $s, t \notin U_{i k}$, for any $k \in A$. Moreover, since $P_{j} \cap \delta\left(U_{i k}\right)=\emptyset$ for any $k \in A-\{j\}$, it follows that $P_{j} \cap \delta\left(S_{i}^{A}\right)=\emptyset$. This proves the claim.

Claim 2. If $L \in\left\{L_{j}: m<j \leq \tau\right\}$ and $L \cap \delta\left(S_{i}^{A}\right) \neq \emptyset$, then $\left|L \cap \delta\left(S_{i}^{A}\right)\right|=2$ and $\left|L \cap \delta\left(S_{i}^{A}\right) \cap B_{i}\right|=1$.

Proof of Claim. Take $L \in\left\{L_{j}: m<\tau \leq \tau\right\}$ such that $L \cap \delta\left(S_{i}^{A}\right) \neq \emptyset$. We may assume that $i=1$. Notice that L is a connected odd $\{s, t\}$-join, and so we are able to write $L=\left(s=v_{0}, e_{1}, v_{1}, e_{2}, \ldots, e_{p}, v_{p}=t\right)$. Choose $1 \leq i<k \leq p$ such that $e_{i}, e_{k} \in \delta\left(S_{1}^{A}\right)$ with $v_{i}, v_{k-1} \in S_{1}^{A}$. As $\left|L \cap B_{1}\right|=1$ we may assume that $L\left[s, v_{i}\right] \cap B_{1}=\emptyset$. Since $v_{i} \in U_{1 j}$ and $s \notin U_{1 j}$ for all $j \in A$, we have that $L\left[s, v_{i}\right] \cap \delta\left(U_{1 j}\right) \neq \emptyset$. However, $L\left[s, v_{i}\right] \cap B_{1}=\emptyset$, so $L\left[s, v_{i}\right] \cap B_{j} \neq \emptyset$ for all $j \in A$.

We claim that $e_{k} \in B_{1}$. As $v_{k} \notin S_{1}^{A}$, there exists $j \in A$ such that $v_{k} \notin U_{1 j}$ and so $e_{k} \in \delta\left(U_{1 j}\right)$. However, $\left|L \cap B_{j}\right|=1$ and $L\left[s, v_{i}\right] \cap B_{j} \neq \emptyset$, implying that $L\left[v_{k-1}, t\right] \cap B_{j}=\emptyset$. Hence, $e_{k} \notin B_{j}$ and so $e_{k} \in B_{1}$. Since $\left|L \cap B_{j}\right|=1$ for all $j \in\{1\} \cup A$, it follows that $L \cap \delta\left(S_{1}^{A}\right)=\left\{e_{i}, e_{k}\right\}$ and $L \cap \delta\left(S_{1}^{A}\right) \cap B_{1}=\left\{e_{k}\right\}$, as claimed.

For the next claim, let $C_{j}:=\emptyset$ if L_{j} contains no odd circuit, for $1 \leq j \leq 3$.

Claim 3. If $C \in\left\{C_{j}: 1 \leq j \leq m\right\}$ and $C \cap \delta\left(S_{i}^{A}\right) \neq \emptyset$ then $\left|C \cap \delta\left(S_{i}^{A}\right)\right|=2$. Moreover, if $C \cap \delta\left(S_{i}^{A}\right) \subseteq B_{j} \cup B_{k}$ for distinct $j, k \in A$, then $V(C) \subseteq U_{i j} \cup U_{i k}$.

Proof of Claim. Assume $C \cap \delta\left(S_{i}^{A}\right) \neq \emptyset$ for some $C \in\left\{C_{j}: 1 \leq j \leq m\right\}$. By symmetry, we may assume that $i=1$. Write $C=\left(v_{0}, e_{1}, v_{1}, e_{2}, \ldots, e_{p}, v_{p}=v_{0}\right)$.

Suppose there exist $1 \leq i<k \leq p$ such that $e_{i}, e_{k} \in \delta\left(S_{1}^{A}\right)-B_{1}$ with $v_{i}, v_{k-1} \notin S_{1}^{A}$. Assume that $e_{i} \in B_{j}$ for some $j \in A$. Since $e_{i} \notin B_{1}$, we get that $e_{i} \in \delta\left(U_{1 j}\right)$. Because $v_{i-1} \in S_{1}^{A} \subseteq U_{1 j}$, it follows that $v_{i} \notin U_{1 j}$. Since $\left|C \cap B_{j}\right|=1$ it follows that $e_{k} \notin \delta\left(U_{1 j}\right)$. However, $v_{k} \in S_{1}^{A} \subseteq U_{1 j}$, so $v_{k-1} \in U_{1 j}$. Therefore, since $v_{i} \notin U_{1 j}$ but $v_{k-1} \in U_{1 j}$, it follows that $C\left[v_{i}, v_{k-1}\right] \cap \delta\left(U_{1 j}\right) \neq \emptyset$, for $C\left[v_{i}, v_{k-1}\right]=\left(v_{i}, e_{i+1}, \ldots, e_{k-1}, v_{k-1}\right)$. However, $C \cap B_{j}=\left\{e_{i}\right\}$ and so $C\left[v_{i}, v_{k-1}\right] \cap B_{1} \neq \emptyset$.

As a result, if there exist $1 \leq i<k \leq p$ such that $e_{i}, e_{k} \in \delta\left(S_{1}^{A}\right)-B_{1}$ with $v_{i}, v_{k-1} \notin S_{1}^{A}$, then $C\left[v_{i}, v_{k-1}\right] \cap B_{1} \neq \emptyset$. Therefore, as $\left|C \cap B_{1}\right|=1$, we get that $\left|C \cap \delta\left(S_{i}^{A}\right)\right|=2$. This proves the first part of the claim.

For the second part, assume $C \cap \delta\left(S_{1}^{A}\right)=\{e, f\}$ where $e \in B_{j}$ and $f \in B_{k}$. If $e \in B_{1}$ then $C \cap \delta\left(U_{1 j}\right)=\emptyset$, but $V(C) \cap S_{1}^{A} \neq \emptyset$ and $S_{1}^{A} \subseteq U_{1 j}$, implying that $V(C) \subseteq U_{1 j} \subseteq U_{1 j} \cup U_{1 k}$, and so we are done. Similarly, if $f \in B_{1}$ then $V(C) \subseteq U_{1 k} \subseteq U_{1 j} \cup U_{1 k}$, and we are again done. Otherwise, $\{e, f\} \cap B_{1}=\emptyset$. Write $C=\left(v_{0}, e_{1}, v_{1}, e_{2}, \ldots, e_{p}, v_{p}=v_{0}\right)$ for some $v_{0} \in S_{1}^{A}$, and assume that $e=e_{i}, f=e_{l}$ for some $1 \leq i<l \leq p$ where $v_{i}, v_{l-1} \notin S_{1}^{A}$. As $e \in B_{j}-B_{1}$ it follows that $e \in \delta\left(U_{1 j}\right)$, and since $v_{i-1} \in S_{1}^{A} \subseteq U_{1 j}$, we get $v_{i} \notin U_{1 j}$. Also, as $\left|C \cap B_{j}\right|=1$, we have $f \notin B_{j}$. This, together with the facts that $f \notin B_{1}$ and $v_{l} \in S_{1}^{A} \subseteq U_{1 j}$, implies that $v_{l-1} \in U_{1 j}$.

Observe that $v_{i} \notin U_{1 j}, v_{l-1} \in U_{1 j}$ and $\left|C \cap B_{1}\right|=1$ imply that there exists a unique edge $e_{r} \in B_{1} \cap C$ where $i<r<l$, and $v_{r}, v_{r+1}, \ldots, v_{l-1} \in U_{1 j}$. Similarly, we have $v_{i}, v_{i+1}, \ldots, v_{r-1} \in U_{1 k}$. Furthermore, note that $v_{0}, v_{1}, \ldots, v_{i-1}, v_{l}, v_{l+1}, \ldots, v_{p-1} \in S_{1}^{A} \subseteq$ $U_{1 j} \cap U_{1 k}$. Therefore, $V(C)=\left\{v_{0}, v_{1}, \ldots, v_{p-1}\right\} \subseteq U_{1 j} \cup U_{1 k}$, as claimed. This finishes the proof of the claim.

For every $k \geq 1$, let $[k]$ denote $\{1,2, \ldots, k\}$. Consider the $m-2$ sets in

$$
\mathcal{S}:=\left\{S_{j}^{[j-1]}: 3 \leq j \leq m\right\}
$$

We call a circuit $C \in\left\{C_{j}: 1 \leq j \leq m\right\}$ bad for $S:=S_{i}^{[i-1]} \in \mathcal{S}$ if $|C \cap \delta(S)|=2$ but $C \cap \delta(S) \cap B_{i}=\emptyset$. Let C be a bad circuit for $S=S_{i}^{[i-1]} \in \mathcal{S}$ (if any), and assume that $C \cap \delta(S) \subseteq B_{j} \cup B_{k}$ for distinct $j, k \in\{1,2, \ldots, i-1\}$. Then by Claim 3 we have that
$V(C) \subseteq U_{i j} \cup U_{i k}$ and so $s \notin V(C)$ and $V(C) \cap S_{\ell}^{[\ell-1]}=\emptyset$ for any $m \geq \ell>i$ (since $\left.\left(U_{i j} \cup U_{i k}\right) \cap S_{\ell}^{[\ell-1]}=\emptyset\right)$. Thus, in particular, C is not bad for $S_{\ell}^{[\ell-1]}$ for any $m \geq \ell>i$, and $C \notin\left\{C_{1}, C_{2}, C_{3}\right\}$, since $s \in V\left(C_{j}\right)$ if $C_{j} \neq \emptyset$ for some $j \in\{1,2,3\}$. Thus each $C \in\left\{C_{j}: 1 \leq j \leq m\right\}$ is bad for at most one set in \mathcal{S} and every bad circuit is in $\left\{C_{j}: 4 \leq j \leq m\right\}$. Therefore, since $|\mathcal{S}|=m-2$ and there are at most $m-3$ bad circuits, there exists $S:=S_{i}^{[i-1]} \in \mathcal{S}$ which has no bad circuit.

Let $B:=B_{i} \triangle \delta(S)$. Then B is an odd st-walk cover. We claim that $|B|=\tau-2$, which would yield a contradiction, thereby finishing the proof of Lemma 4.11. Observe that $B \subseteq \bigcup_{j=1}^{\tau} L_{j}$.

Take $m<j \leq \tau$. If $L_{j} \cap \delta(S)=\emptyset$, then $\left|L_{j} \cap B\right|=\left|L_{j} \cap B_{i}\right|=1$. Otherwise by Claim $2,\left|L_{j} \cap \delta(S)\right|=2$ and $\left|L_{j} \cap \delta(S) \cap B_{i}\right|=1$, implying that $\left|L_{j} \cap B\right|=\left|L_{j} \cap\left(B_{i} \triangle \delta(S)\right)\right|=1$.

Next take $1 \leq j \leq m$. We claim that $\left|L_{j} \cap B\right|=1$. By Claim 1, $P_{j} \cap B=P_{j} \cap\left(B_{i} \triangle \delta(S)\right)$ is either \emptyset (if $C_{j} \neq \emptyset$) or $\{\Omega\}$ (if $C_{j}=\emptyset$). We now consider $C_{j} \cap B$. If $C_{j} \cap \delta(S)=\emptyset$ then $C_{j} \cap B=C_{j} \cap B_{i}$. Otherwise, $C_{j} \cap \delta(S) \neq \emptyset$. Then by Claim 3 and the fact that C_{j} is not bad for S, it follows that $\left|C_{j} \cap \delta(S)\right|=2$ and $\left|C_{j} \cap \delta(S) \cap B_{i}\right|=1$. As a result, $\left|C_{j} \cap B\right|=\left|C_{j} \cap\left(B_{i} \triangle \delta(S)\right)\right|=1$. Hence, $\left|L_{j} \cap B\right|=1$, as claimed.

Notice that $L_{j} \cap B=\{\Omega\}$ for $j \in\{1,2,3\}$. Thus, $|B|=1+\sum_{j=4}^{\tau}\left|B \cap L_{j}\right|=\tau-2$, a contradiction as $\tau-2=|B| \geq \tau(F, \Gamma)>\tau-2$. This finishes the proof of the Mate Lemma.

4.6 The Shore Lemma

Lemma 4.12. Let $(F=(V, E), \Gamma)$ be a connected signed graph with distinguished vertices s, t that is st-Eulerian. Let m and τ be integers so that $3 \leq m \leq \tau,\left(L_{1}, L_{2}, L_{3}, \ldots, L_{\tau}\right)$ be a sequence of odd $\{s, t\}$-joins, and $\left(B_{1}, \ldots, B_{m}\right)$ be a sequence of minimal covers such that
(1) $\Omega \in L_{1} \cap L_{2} \cap L_{3}$ and $\Omega \notin L_{4} \cup \ldots \cup L_{\tau}$,
(2) $\left(L_{j}-\{\Omega\}: 1 \leq j \leq \tau\right)$ are pairwise disjoint,
(3) L_{1}, L_{2} and L_{3} are simple odd st-walks, and for each $j \in\{4, \ldots, m\}, L_{j}$ contains a disconnected odd st-walk $C_{j} \cup P_{j}$, and each of $L_{m+1}, \ldots, L_{\tau}$ contains a connected odd st-walk, and
(4) $\left|B_{j}-L_{j}\right|=\tau-3$ and $\left|B_{k}-P_{k}-\{\Omega\}\right|=\tau-3$, for all $1 \leq j \leq 3<k \leq m$,
(5) B_{1} is an st-bond and $B_{1}=\delta\left(U_{1}\right)$ for some $U_{1} \subseteq V-\{t\}$, but $B_{2}, B_{3}, \ldots, B_{m}$ are signatures,
(6) for every st-bond B such that $\left|B-L_{1}\right|=\tau-3$, we have $B \cap L_{1} \not \subset B_{1} \cap L_{1}$, and
(7) $B_{j} \cap P_{j} \cap E F\left[U_{1}\right]=\emptyset$ for all $j \in\{4,5, \ldots, m\}$.

Suppose further that $\tau(F, \Gamma)>\tau-2$. Then there exists a path between s and every connected component of $L_{1} \cap F\left[U_{1}\right]$ in $F\left[U_{1}\right] \backslash \bigcup_{j=2}^{m} B_{j}$.

Proof. As in the proof for the Mate Lemma, for all distinct $i, j \in\{2,3, \ldots, m\}$, choose $U_{i j} \subseteq V-\{s, t\}$ such that $\delta\left(U_{i j}\right)=B_{i} \triangle B_{j}$. For each $i \in\{2,3, \ldots, m\}$ and $\emptyset \neq A \subseteq$ $\{2,3, \ldots, m\}-\{i\}$, let $S_{i}^{A}:=\bigcap_{j \in A} U_{i j}$. As before, $\delta\left(S_{i}^{A}\right) \subseteq \cup_{j \in\{i\} \cup A} B_{j}$. Also, $S_{i}^{A} \cap U_{j k}=\emptyset$ for all distinct $i, j, k \in\{2,3, \ldots, m\}$ and A such that $\{j, k\} \subseteq A \subseteq\{2,3, \ldots, m\}-\{i\}$.

Take $i \in\{2,3, \ldots, m\}$ and $\emptyset \neq A \subseteq\{2,3, \ldots, m\}-\{i\}$. Then the following three statements hold, and the proofs are exactly the same as the proofs for the Mate Lemma.

Claim 1. $P_{i} \cap \delta\left(S_{i}^{A}\right)=P_{i} \cap B_{i}-\{\Omega\}$, and $P_{j} \cap \delta\left(S_{i}^{A}\right)=\emptyset$ for all $j \in\{1, \ldots, m\}-\{i\}$ such that $A-\{j\} \neq \emptyset$.

Claim 2. If $L \in\left\{L_{j}: m<j \leq \tau\right\}$ and $L \cap \delta\left(S_{i}^{A}\right) \neq \emptyset$, then $\left|L \cap \delta\left(S_{i}^{A}\right)\right|=2$ and $\left|L \cap \delta\left(S_{i}^{A}\right) \cap B_{i}\right|=1$.

Claim 3. If $C \in\left\{C_{j}: 4 \leq j \leq m\right\}$ and $C \cap \delta\left(S_{i}^{A}\right) \neq \emptyset$ then $\left|C \cap \delta\left(S_{i}^{A}\right)\right|=2$. Moreover, if $C \cap \delta\left(S_{i}^{A}\right) \subseteq B_{j} \cup B_{k}$ for distinct $j, k \in A$, then $V(C) \subseteq U_{i j} \cup U_{i k}$.

For every $k \geq 2$, let $[k]^{\prime}$ denote $\{2,3, \ldots, k\}$. Consider the $m-3$ sets in

$$
\mathcal{S}:=\left\{S_{j}^{[j-1]^{\prime}}: 4 \leq j \leq m\right\} .
$$

As before, we call a circuit $C \in\left\{C_{j}: 4 \leq j \leq m\right\}$ bad for $S:=S_{i}^{[i-1]^{\prime}} \in \mathcal{S}$ if $|C \cap \delta(S)|=2$ but $C \cap \delta(S) \cap B_{i}=\emptyset$. Let C be a bad circuit for $S=S_{i}^{[i-1]^{\prime}} \in \mathcal{S}$ (if any), and assume that $C \cap \delta(S) \subseteq B_{j} \cup B_{k}$ for distinct $j, k \in\{2,3, \ldots, i-1\}$. Then by Claim 3, we have that $V(C) \subseteq U_{i j} \cup U_{i k}$ and so $V(C) \cap S_{\ell}^{[\ell-1]^{\prime}}=\emptyset$ for any $m \geq \ell>i$ (since $\left.\left(U_{i j} \cup U_{i k}\right) \cap S_{\ell}^{[\ell-1]^{\prime}}=\emptyset\right)$. Thus, in particular, C is not bad for $S_{\ell}^{[\ell-1]^{\prime}}$ for any $m \geq \ell>i$.

Thus each $C \in\left\{C_{j}: 4 \leq j \leq m\right\}$ is bad for at most one set in \mathcal{S}.

Claim 4. There is a bad circuit for every $S \in \mathcal{S}$.

Proof of Claim. Suppose otherwise. Choose an $S:=S_{i}^{[i-1]^{\prime}} \in \mathcal{S}$ that has no bad circuit. Let $B:=B_{i} \triangle \delta(S)$. Then B is an odd st-walk cover. We claim that $|B|=\tau-2$, which would yield a contradiction. Observe that $B \subseteq \bigcup_{j=1}^{\tau} L_{j}$.

Take $m<j \leq \tau$. If $L_{j} \cap \delta(S)=\emptyset$ then $\left|L_{j} \cap B\right|=\left|L_{j} \cap B_{i}\right|=1$. Otherwise by Claim 2, $\left|L_{j} \cap \delta(S)\right|=2$ and $\left|L_{j} \cap \delta(S) \cap B_{i}\right|=1$, implying that $\left|L_{j} \cap B\right|=\left|L_{j} \cap\left(B_{i} \triangle \delta(S)\right)\right|=1$.

Next take $1 \leq j \leq m$. We claim that $\left|L_{j} \cap B\right|=1$. By Claim 1, $P_{j} \cap B=P_{j} \cap\left(B_{i} \triangle \delta(S)\right)$ is either \emptyset (if $4 \leq j \leq m$) or $\{\Omega\}$ (if $1 \leq j \leq 3$). We now consider $C_{j} \cap B$. If $C_{j} \cap \delta(S)=\emptyset$ then $C_{j} \cap B=C_{j} \cap B_{i}$. Otherwise, $C_{j} \cap \delta(S) \neq \emptyset$. Then by Claim 3 and the fact that C_{j} is not bad for S, it follows that $\left|C_{j} \cap \delta(S)\right|=2$ and $\left|C_{j} \cap \delta(S) \cap B_{i}\right|=1$. As a result, $\left|C_{j} \cap B\right|=\left|C_{j} \cap\left(B_{i} \triangle \delta(S)\right)\right|=1$. Hence, $\left|L_{j} \cap B\right|=1$, as claimed.

Notice that $L_{j} \cap B=\{\Omega\}$ for $j \in\{1,2,3\}$. Thus, $|B|=1+\sum_{j=4}^{\tau}\left|B \cap L_{j}\right|=\tau-2$, a contradiction as $\tau-2=|B| \geq \tau(F, \Gamma)>\tau-2$.

Therefore, since $|\mathcal{S}|=m-3$, it follows that there is a one-to-one correspondence between the circuits and the elements of \mathcal{S}, where every circuit is bad for its corresponding element of \mathcal{S}. Hence, by Claim 3, we get that

$$
\bigcup_{j=4}^{m} V\left(C_{j}\right) \subseteq \bigcup_{i, j \in[m]^{\prime}} U_{i j}
$$

Claim 5. Take an edge $e \in E$ with both ends in $V-\bigcup_{i, j \in[m]^{\prime}} U_{i j}$. If $e \in B_{l}$ for some $l \in\{2,3, \ldots, m\}$, then $e \in \bigcap_{k \in[m]^{\prime}} B_{k}$.

Proof of Claim. Since e has both ends in $V-\bigcup_{i, j \in[m]^{\prime}} U_{i j}$, it follows that $e \notin \delta\left(U_{k l}\right)=$ $B_{k} \triangle B_{l}$ for any $k, l \in\{2,3, \ldots, m\}$, proving the claim.

To prove the lemma, we need to show that there exists a path in $F\left[U_{1}\right] \backslash \bigcup_{j=2}^{m} B_{j}$ between s and every connected component of $L_{1} \cap F\left[U_{1}\right]$. Suppose, for a contradiction,
that this is not true. Then, in particular, there is no path in $F\left[U_{1}-\bigcup_{i, j \in[m]^{\prime}} U_{i j}\right] \backslash \bigcup_{j=2}^{m} B_{j}$ between s and some connected component of $L_{1} \cap F\left[U_{1}\right]$. Hence, there exists a vertex subset $U \subseteq U_{1}-\bigcup_{i, j \in[m]^{\prime}} U_{i j}$ with $s \notin U$ and $L_{1} \cap \delta(U) \neq \emptyset$ such that $\delta(U)-B_{1}-\delta\left(\bigcup_{i, j \in[m]^{\prime}} U_{i j}\right) \subseteq$ $\bigcup_{l \in[m]^{\prime}} B_{l}$. By Claim 5, it follows that $\delta(U)-B_{1}-\delta\left(\bigcup_{i, j \in[m]^{\prime}} U_{i j}\right) \subseteq \bigcap_{l \in[m]^{\prime}} B_{l}$.

Let

$$
B:=B_{1} \triangle \delta(U)=\delta\left(U_{1} \triangle U\right)
$$

We claim that $L_{1} \cap B \subsetneq L_{1} \cap B_{1}$ and $\left|B-L_{1}\right|=\tau-3$, contradicting assumption (6) of Lemma 4.12. Observe that

$$
L_{1} \cap B=L_{1} \cap\left(B_{1} \triangle \delta(U)\right)=\left(L_{1} \cap B_{1}\right) \triangle\left(L_{1} \cap \delta(U)\right) \subsetneq L_{1} \cap B_{1}
$$

because $\emptyset \neq L_{1} \cap \delta(U) \subseteq L_{1} \cap B_{1}$.
It remains to show that $\left|B-L_{1}\right|=\tau-3$. Since $B \subseteq \bigcup_{j=1}^{\tau} L_{j}$, we can proceed by showing that $B \cap L_{2}=B \cap L_{3}=\{\Omega\}$ and $\left|B \cap L_{j}\right|=1$ for all $4 \leq j \leq \tau$. Note that $L_{2} \cap \delta\left(U_{1}\right)=L_{3} \cap \delta\left(U_{1}\right)=\{\Omega\}$, and so $L_{2} \cap \delta(U)=L_{3} \cap \delta(U)=\emptyset$, since L_{2} and L_{3} are simple. Hence, $L_{2} \cap B=L_{3} \cap B=\{\Omega\}$. Observe then that $C_{k} \cap \delta(U)=\emptyset$ for all $4 \leq k \leq m$, as $U \cap \bigcup_{i, j \in[m]^{\prime}} U_{i j}=\emptyset$ but $V\left(C_{k}\right) \subseteq \bigcup_{i, j \in[m]^{\prime}} U_{i j}$.

Take $j \in\{4,5, \ldots, \tau\}$. If $L_{j} \cap \delta(U)=\emptyset$ then $L_{j} \cap B=L_{j} \cap B_{1}$, and so $\left|L_{j} \cap B\right|=1$. Otherwise, $L_{j} \cap \delta(U) \neq \emptyset$. Write $\left(s=v_{0}, e_{0}, v_{1}, \ldots, e_{n}, v_{n}=t\right)$ for L_{j} if $j \notin\{4, \ldots, m\}$, and for P_{j} otherwise. Note that, for $4 \leq j \leq m, L_{j} \cap \delta(U)=\left(s=v_{0}, e_{0}, v_{1}, \ldots, e_{k}, v_{k}=t\right) \cap \delta(U)$ since $C_{j} \cap \delta(U)=\emptyset$. Note further that $P_{j} \cap\left(B_{2} \cap B_{3} \cap \cdots \cap B_{m}\right)=\emptyset$, for all $4 \leq j \leq m$.

We claim that $\left|L_{j} \cap \delta(U)\right|=2$ and $\left|L_{j} \cap \delta(U) \cap B_{1}\right|=1$. Suppose that $e_{i}, e_{k} \in L_{j} \cap \delta(U)$ for some $0 \leq i<k \leq n$ with $v_{i}, v_{k+1} \notin U$. We will prove that $e_{k} \in B_{1}$, and note that once this is proved, it then easily follows that $\left|L_{j} \cap \delta(U)\right|=2$ and $\left|L_{j} \cap \delta(U) \cap B_{1}\right|=1$. Thus, it remains to show that $e_{k} \in B_{1}$.

Since $\left|L_{j} \cap \delta\left(U_{1}\right)\right|=1$, it must be that $v_{i} \in U_{1}$. If $v_{i} \notin \bigcup_{a, b \in[m]^{\prime}} U_{a b}$, then we must have that $e_{i} \in \bigcap_{\ell \in[m]^{\prime}} B_{\ell}$. So $m<j \leq \tau$, and since $L_{j} \cap B_{k}=\left\{e_{i}\right\}$ for all $k \in\{2,3, \ldots, m\}$, it follows that $e_{k} \in B_{1}$. Otherwise, we have that $v_{i} \in \bigcup_{a, b \in[m]^{\prime}} U_{a b}$. Then $e_{i} \in \bigcup_{a \in[m]^{\prime}} B_{a}$ and so $e_{i} \in B_{p}$, for some $p \in\{2,3, \ldots, m\}$. Suppose, for a contradiction, that $e_{k} \notin B_{1}$. So $v_{k+1} \in U_{1}$. Notice that $v_{k+1} \in \bigcup_{a, b \in[m]^{\prime}} U_{a b}$ since otherwise $e_{k} \in \bigcap_{\ell \in[m]^{\prime}} B_{\ell}$, implying that $m<j \leq \tau$, but then $L_{j} \cap B_{p} \supseteq\left\{e_{i}, e_{k}\right\}$, which cannot be the case. As $v_{k+1} \in \bigcup_{a, b \in[m]^{\prime}} U_{a b}$, it follows that $e_{k} \in B_{q}$ for some $q \in\{2,3, \ldots, m\}$. If e_{k} is also in B_{p}, then $\left|L_{j} \cap B_{p}\right| \geq 2$ implying that $4 \leq j=p \leq m$, which cannot be possible by assumption (7) (since $e_{i}, e_{k} \in$ $\left.E F\left[U_{1}\right]\right)$. Hence, $e_{k} \notin B_{p}$ and similarly, $e_{i} \notin B_{q}$. In fact, since $e_{i} \in B_{p} \cap E F\left[U_{1}\right]$ and
$e_{k} \in B_{q} \cap E F\left[U_{1}\right]$, it follows from assumption (7) that $j \notin\{p, q\}$. Since $e_{k} \in B_{q}-B_{p}$ and $e_{i} \in B_{p}-B_{q},\left\{e_{i}, e_{k}\right\} \subseteq L_{j} \cap \delta\left(U_{p q}\right)$. Hence, since $v_{i+1} \in U$ and $U \subseteq U_{1}-U_{p q}$, we get that $v_{i} \in U_{p q}$. But $s \notin U_{p q}$ and so there exists an edge e_{r} such that $0 \leq r<i$ and $e_{r} \in \delta\left(U_{p q}\right)$. Hence, $L_{j} \cap \delta\left(U_{p q}\right) \supseteq\left\{e_{r}, e_{i}, e_{k}\right\}$ implying that $j \in\{p, q\}$, a contradiction. Therefore, it must be the case that $e_{k} \in B_{1}$.

Therefore, $\left|L_{j} \cap \delta(U)\right|=2$ and $\left|L_{j} \cap \delta(U) \cap B_{1}\right|=1$ and so

$$
\left|L_{j} \cap B\right|=\left|L_{j} \cap\left(B_{1} \triangle \delta(U)\right)\right|=1
$$

as claimed. As a result, $L_{1} \cap B \subsetneq L_{1} \cap B_{1}$ and $\left|B-L_{1}\right|=\tau-3$, contradicting assumption (6). This finishes the proof of the Shore Lemma.

4.7 The Linkage Lemma

Let H be a graph, and take distinct vertices $s, s^{\prime}, t^{\prime}$ and t. We are interested in characterizing when we can find a pair of vertex-disjoint paths, one between s and t and the other between s^{\prime} and t^{\prime}. The following lemma is due to Seymour [17], and it is stated similarly as in [8].

Lemma 4.13 ([17]). There is no pair of vertex-disjoint paths $P_{\text {st }}$ and $P_{s^{\prime} t^{\prime}}$ in H, where $P_{s t}$ is an st-path and $P_{s^{\prime} t^{\prime}}$ is an $s^{\prime} t^{\prime}$-path, if and only if H can be obtained as follows:
(L1) place a circuit C on the boundary S^{1} of the unit disc, and the circuit contains the vertices s, s^{\prime}, t, v_{1} in this cyclic order,
(L2) add vertices to the interior of the disc, and triangulate the resulting graph inside the disc to get K,
(L3) for every facial triangle T, consider an arbitrary graph K_{T} such that $V\left(K_{T}\right) \cap V(K)=$ $V(T)$,
(L4) take the union $K \cup \bigcup_{T} K_{T}$, and delete some edges to obtain H.

We call the vertices of H in K pinned. We assume that every vertex on the boundary S^{1} is pinned. We draw H on the unit disc so that $H \mid K$ (H restricted to K) agrees with the given plane drawing of K, and each $H \mid K_{T}$ is drawn (though not necessarily a plane drawing) in the interior of the facial triangle T.

Remark 4.14. Let P be an $x y$-path of H, where x and y are distinct vertices of H on S^{1}. Suppose that $v \in V(P)$ is not pinned, that is, $v \in V(P) \cap\left(V\left(K_{T}\right)-V(T)\right)$ for some T. Then P contains a subpath $P[u, w]$ where u, w are distinct (pinned) vertices of T and $P[u, w]$ is a path contained in K_{T} that contains v.

The previous remark allows us to define, for every $x y$-path (x and y on S^{1}), two pinned sides: take an $x y$-path P as above. Then P restricted to the pinned vertices induces an $x y$-path \widetilde{P} in K, and as K is drawn on the plane, it divides the pinned vertices into two sides, where the pinned vertices on P are considered to be on both sides.

Remark 4.15. Let P be an $x y$-path of H, where x and y are distinct vertices of H on S^{1}. If u is a pinned vertex off of P, then all the vertices in $V(T)$, and therefore $H \mid K_{T}$, lie in the same side as u if $u \in V(T)$.

The preceding remark shows that the notion of sides to an $x y$-path P can be generalized to H, and not just K. Note that if $V(T) \subseteq V(P)$ for some K_{T}, then $H \mid K_{T}$ is thought of as being on both sides.

Remark 4.16. Let P be an $x y$-path of H, where x and y are distinct vertices of H on S^{1}. Take vertices u and v of H that lie on different sides of P, and let Q be a uv-path in H. Then Q and P must intersect on a pinned vertex.

Chapter 5

The Proof

5.1 Part (1)

Recall that L_{1}, L_{2}, L_{3} are simple and $\left(H^{\prime} \backslash \Omega, \Sigma^{\prime} \cap E\left(H^{\prime} \backslash \Omega\right)\right.$) contains an odd cycle. Notice $L_{i}=P_{i}$ for $i \in\{1,2,3\}$.

Claim 1. Exactly one of B_{1}, B_{2}, B_{3} is an st-bond.

Proof of Claim. Observe that Lemma 4.4 implies that at most one of B_{1}, B_{2}, B_{3} is an stbond. So the only thing we need to show is that not all of B_{1}, B_{2}, B_{3} are signatures. Suppose otherwise. Observe that, for all $k \in\{1,2,3\}, B_{k} \cap E\left(H^{\prime}\right)=B_{k} \cap P_{k}$, as $B_{k} \cap P_{j}=\emptyset$ for all $j \in\{4, \ldots, m\}$ and $B_{k} \cap P_{i}=\{\Omega\}$ for all $i \in\{1,2,3\}-\{k\}$. Take distinct $i, j \in\{1, \ldots, m\}$ and take $k \in\{1,2,3\}-\{i, j\}$. Then $B_{k} \cap\left(P_{i} \cup P_{j}-\{\Omega\}\right)=\emptyset$ and so $P_{i} \cup P_{j}-\{\Omega\}$ is bipartite. Since this is true for all such i and j, it follows from Lemma 4.7 that ($H^{\prime} \backslash \Omega, \Sigma^{\prime} \cap E\left(H^{\prime} \backslash \Omega\right)$) is bipartite, contrary to our assumption.

By symmetry, we may assume that B_{3} is an $s t$-bond and B_{1}, B_{2} are signatures.

Claim 2. $P_{1} \cup P_{2}$ contains an odd cycle, and $P_{1} \cup P_{3}$ and $P_{2} \cup P_{3}$ are bipartite.

Proof of Claim. Take distinct $i, j \in\{1, \ldots, m\}$ such that $\{i, j\} \neq\{1,2\}$. Take $k \in$ $\{1,2\}-\{i, j\}$ and notice that $B_{k} \cap\left(P_{i} \cup P_{j}-\{\Omega\}\right)=\emptyset$ as B_{k} is a signature. So $P_{i} \cup P_{j}-\{\Omega\}$
is bipartite. In particular, $P_{1} \cup P_{3}$ and $P_{2} \cup P_{3}$ are bipartite. If $P_{1} \cup P_{2}-\{\Omega\}$ is also bipartite then $\left(H^{\prime} \backslash \Omega, \Sigma^{\prime} \cap E\left(H^{\prime} \backslash \Omega\right)\right)$ is bipartite by Lemma 4.7, which is not the case. Hence, $P_{1} \cup P_{2}$ contains an odd cycle.

Claim 3. Take two distinct vertices $u, v \in V\left(P_{i}\right) \cap V\left(P_{j}\right)$, for some distinct $i, j \in\{1,2,3\}$. If $u \prec_{P_{i}} v$ and $v \prec_{P_{j}} u$, then $\{i, j\}=\{1,2\}$.

Proof of Claim. Suppose that $u \prec_{P_{i}} v$ and $v \prec_{P_{j}} u$, but $\{i, j\} \neq\{1,2\}$. We assume that $i=1, j=3$ and the other cases such as $i=2, j=3$ or $i=3, j=1$ can be treated similarly. Let $L_{1}^{\prime}:=P_{1}[s, u] \cup P_{3}[u, t]$ and $L_{3}^{\prime}:=P_{3}[s, v] \cup P_{1}[v, t]$, which are connected $\{s, t\}$-joins. Then $L_{1}^{\prime} \cap B_{2}=L_{3}^{\prime} \cap B_{2}=\{\Omega\}$, implying that both L_{1}^{\prime} and L_{3}^{\prime} are odd. However, $L_{1}^{\prime} \cup L_{2} \cup L_{3}^{\prime} \cup \bigcup_{j=4}^{m} P_{j}$ contradicts the minimality of $L_{1} \cup L_{2} \cup L_{3} \cup \bigcup_{j=4}^{m} P_{j}$ by (A1). Hence $\{i, j\}=\{1,2\}$, finishing the proof.

As a corollary, $P_{i} \cup P_{3}$ is acyclic for $i=1,2$. Let $F^{\prime}:=P_{1} \cup P_{2} \cup P_{3}$. Let ($\left.G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ be a minor of $\left(G^{\prime}, \Sigma^{\prime}\right)$ and let $F^{\prime \prime}$ be a directed graph obtained by orienting edges in a subgraph of G^{\prime}, where $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$ are minimal subject to
(F1) $E\left(G^{\prime}\right)-E\left(G^{\prime \prime}\right) \subseteq E\left(F^{\prime} \backslash \Omega\right)$, and $E\left(F^{\prime \prime}\right) \subseteq P_{1} \cup P_{2} \cup P_{3}$,
(F2) there exist three odd st-dipaths $P_{1}^{\prime \prime}, P_{2}^{\prime \prime}, P_{3}^{\prime \prime}$ in $F^{\prime \prime}$ that are pairwise disjoint except at Ω,
(F3) $P_{i}^{\prime \prime} \cup P_{3}^{\prime \prime}$ is bipartite and acyclic for $i=1,2$, but $P_{1}^{\prime \prime} \cup P_{2}^{\prime \prime}$ contains an odd cycle,
(F4) for any odd st-walk L of $F^{\prime \prime}$ there exists a cover B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $|B-L|=\tau-3$, and
(F5) there is no cover for $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ of size $\tau-2$.
Note that these conditions are satisfied by $\left(G^{\prime}, \Sigma^{\prime}\right)$ and F^{\prime}, so $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$ are welldefined. We may assume that $F^{\prime \prime}=P_{1}^{\prime \prime} \cup P_{2}^{\prime \prime} \cup P_{3}^{\prime \prime}$. Let $B_{i}^{\prime \prime}$ be a minimal cover of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|B_{i}^{\prime \prime}-P_{i}^{\prime \prime}\right|=\tau-3$, whose existence is guaranteed by (F4). Since $P_{1}^{\prime \prime} \cup P_{2}^{\prime \prime}$ contains an odd cycle, it follows that $B_{3}^{\prime \prime}$ is an $s t$-bond, and so by Lemma 4.4, $B_{1}^{\prime \prime}, B_{2}^{\prime \prime}$ are signatures. For the sake of notational ease, reset $P_{i}:=P_{i}^{\prime \prime}$ and $B_{i}:=B_{i}^{\prime \prime}$ for all $1 \leq i \leq 3$.

Choose minimal vertex subsets $U_{12} \in V\left(G^{\prime \prime}\right)-\{s, t\}$ and $U_{3} \subseteq V\left(G^{\prime \prime}\right)-\{t\}$ so that $B_{1} \triangle B_{2}=\delta\left(U_{12}\right)$ and $B_{3}=\delta\left(U_{3}\right)$. Since $P_{1} \cup P_{2}$ contains an odd cycle, it follows that
$V P_{1} \cap V P_{2} \cap U_{12} \neq \emptyset$.

Claim 4. P_{3} is internally vertex-disjoint from P_{1} and P_{2}.

Proof of Claim. Suppose otherwise. Let $v_{1} \neq s^{\prime}, s$ and $v_{2} \neq t$ be, respectively, the closest vertices to s^{\prime} and t on P_{3} that lie on $P_{1} \cup P_{2}$. Observe that $v_{1} \preceq_{P_{3}} v_{2}$ and $v_{1}, v_{2} \notin U_{12}$. We may assume that $v_{2} \in V P_{2}$. Suppose that $v_{1} \in V P_{k}$ for some $k \in\{1,2\}$.

We claim that there is an odd cycle in $P_{1} \cup P_{2}$ that avoids either $P_{k}\left[s^{\prime}, v_{1}\right]$ or $P_{2}\left[v_{2}, t\right]$. Suppose for a contradiction that this is not the case. Let $y \in V P_{1} \cap V P_{2} \cap U_{12}$. Since each of $P_{1}\left[s^{\prime}, y\right] \cup P_{2}\left[s^{\prime}, y\right]$ and $P_{1}[y, t] \cup P_{2}[y, t]$ contains an odd cycle, and since $P_{2} \cup P_{3}$ is acyclic, it follows that $k \neq 2$, and so $k=1$. For every odd cycle intersects $P_{1}\left[s^{\prime}, v_{1}\right]$ and $P_{2}\left[v_{2}, t\right]$, it follows that $y \in V P_{1}\left[s^{\prime}, v_{1}\right]$ and $y \in V P_{2}\left[v_{2}, t\right]$.

Let $C_{1}^{\prime}:=P_{1}\left[y, v_{1}\right] \cup P_{3}\left[v_{1}, v_{2}\right] \cup P_{2}\left[v_{2}, y\right], P_{1}^{\prime}:=P_{1}[s, y] \cup P_{2}[y, t], L_{2}^{\prime}:=P_{2}\left[s, v_{2}\right] \cup P_{3}\left[v_{2}, t\right]$ and $L_{3}^{\prime}:=P_{3}\left[s, v_{1}\right] \cup P_{1}\left[v_{1}, t\right]$. Let $L_{1}^{\prime}:=C_{1}^{\prime} \cup P_{1}^{\prime}$, which is a non-simple odd $\{s, t\}$-join. Note further that L_{2}^{\prime} and L_{3}^{\prime} are also odd $\{s, t\}$-joins. By Lemma 4.5 therefore, at least two of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ are non-simple, and so by Part (8), $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ contains an F_{7} minor, implying that (G, Σ) contains an F_{7} minor, which is a contradiction.

Hence, there is an odd cycle in $P_{1} \cup P_{2}$ that avoids either $P_{k}\left[s^{\prime}, v_{1}\right]$ or $P_{2}\left[v_{2}, t\right]$. Suppose w.l.o.g. that there is an odd cycle in $P_{1} \cup P_{2}$ that avoids $P_{2}\left[v_{2}, t\right]$.

Observe that if there is a cover B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|B-P_{2}\left[v_{2}, t\right]-\{\Omega\}\right|=\tau-3$, then B must be an st-cut, since there is an odd cycle of $F^{\prime \prime}$ avoiding $P_{2}\left[v_{2}, t\right]$ (and Ω), which in turn is in conflict with Lemma 4.4 as B_{3} is an $s t$-cut. Therefore, there is no cover B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|B-P_{2}\left[v_{2}, t\right]-\{\Omega\}\right|=\tau-3$.

Let $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right):=\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right) \backslash P_{2}\left[v_{2}, t\right] / P_{3}\left[v_{2}, t\right]$ and $F^{\prime \prime \prime}:=F^{\prime \prime} \backslash P_{2}\left[v_{2}, t\right] / P_{3}\left[v_{2}, t\right]$. It is easily seen that (F1),(F2) and (F4) hold for ($G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}$) and $F^{\prime \prime \prime}$. We just showed that (F5) holds as well. Moreover, since there is an odd cycle in $P_{1} \cup P_{2}$ avoiding $P_{2}\left[v_{2}, t\right]$, it follows that (F3) holds as well for $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right)$ and $F^{\prime \prime \prime}$, contradicting the minimality of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$.

Thus, P_{3} is internally vertex-disjoint from P_{1} and P_{2}, as claimed.

Claim 5. If there is a directed circuit C in $P_{1} \cup P_{2}$ then C is even.

Proof of Claim. Suppose otherwise. Decompose $P_{1} \cup P_{2} \backslash C$ into the union of two $\{s, t\}-$ joins P_{1}^{\prime} and L_{2}^{\prime}. We may assume that P_{1}^{\prime} is even and L_{2}^{\prime} is odd. Let $L_{1}^{\prime}:=C \cup P_{1}^{\prime}$, which
is a non-simple odd $\{s, t\}$-join. Hence, applying Lemma 4.5, followed by the argument of Part (8), we get that ($G^{\prime \prime}, \Sigma^{\prime \prime}$), and so (G, Σ), has an F_{7} minor, a contradiction.

By Lemma 4.3, there exists a path R in $G^{\prime \prime}\left[U_{3}\right] \backslash B_{1}$ between s and $V P_{3}$. After contracting all the directed even circuits in $P_{1} \cup P_{2}$, it is easily seen that $P_{1} \cup P_{2} \cup P_{3} \cup R$ has an F_{7} minor. But then (G, Σ) has an F_{7} minor, a contradiction. As a result, Part (1) is not feasible.

5.2 Three lemmas for Parts (2)-(4)

In this section, we provide three lemmas that will be needed for Parts (2)-(4). Recall that for these three parts, L_{1}, L_{2}, L_{3} are simple and $\left(H^{\prime} \backslash \Omega, \Sigma^{\prime} \cap E\left(H^{\prime} \backslash \Omega\right)\right.$) is bipartite.

Lemma 5.1. An st-path P in $\left(H^{\prime} \backslash \Omega, \Sigma^{\prime} \cap E\left(H^{\prime} \backslash \Omega\right)\right)$ is odd if and only if $\Omega \in P$.
Proof. Let P be an st-path of H^{\prime}. Then $P \triangle P_{1}$ is an even cycle if and only if P is odd. However, as ($H^{\prime} \backslash \Omega, \Sigma^{\prime} \cap E\left(H^{\prime} \backslash \Omega\right)$) is bipartite, it follows that $P \triangle P_{1}$ is even if and only if $\Omega \notin P \triangle P_{1}$. So P is odd if and only if $\Omega \in P$, as claimed.

Lemma 5.2. H^{\prime} is acyclic.

Proof. Suppose otherwise, and let C be a directed circuit in H^{\prime}. Clearly $\Omega \notin C$, and so one can find m st-dipaths $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}, \ldots, P_{m}^{\prime}$ in $H^{\prime} \backslash C$ such that $\Omega \in P_{1}^{\prime} \cap P_{2}^{\prime} \cap P_{3}^{\prime}, \Omega \notin P_{4}^{\prime} \cup \cdots P_{m}^{\prime}$ and $\left(P_{j}^{\prime}-\{\Omega\}: 1 \leq j \leq m\right)$ are pairwise disjoint. By Lemma 5.1 it follows that $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}$ are odd and $P_{4}^{\prime}, \ldots, P_{m}^{\prime}$ are even. But then $\left(P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}, P_{4}^{\prime} \cup C_{4}, \ldots, P_{m}^{\prime} \cup C_{m}, L_{m+1}, \ldots, L_{\tau}\right)$ is an Ω-packing, contradicting the minimality of ($L_{1}, L_{2}, L_{3}, \ldots, L_{\tau}$) by (A1).

Lemma 5.3. Every odd st-dipath P in $\left(H^{\prime}, \Sigma^{\prime} \cap E\left(H^{\prime}\right)\right)$ has a mate, i.e. there exists a cover B of $\left(G^{\prime}, \Sigma^{\prime}\right)$ such that $|B-P|=\tau-3$.

Proof. Since H^{\prime} is acyclic, after rerouting $P_{1}, P_{2}, P_{3}, \ldots, P_{m}$ in H^{\prime}, if necessary, we may assume that $P=P_{1}$, and so by (M3) P has a mate.

5.3 Part (2)

Recall that L_{1}, L_{2}, L_{3} are simple odd st-walks, $\left(H^{\prime} \backslash \Omega, \Sigma^{\prime} \cap E\left(H^{\prime} \backslash \Omega\right)\right)$ is bipartite, and the following holds:
(X1) no odd st-dipath of $\left(H^{\prime}, \Sigma^{\prime} \cap E\left(H^{\prime}\right)\right)$ has a mate which is an st-bond.
We will use lemmas from §5.2. Observe that (X1), together with Lemma 5.3, implies that every odd st-path of $\left(H^{\prime}, \Sigma^{\prime} \cap E\left(H^{\prime}\right)\right)$ has only, and at least one, signature mates.

Claim 1. $m \geq 4$.

Proof of Claim. (X1) implies in particular that B_{1}, B_{2}, B_{3} are all signatures, and so by the Mate Lemma and Lemma 4.1 it follows that $m \geq 4$.

Claim 2. There is an odd circuit C in H^{\prime} that avoids t.

Proof of Claim. Suppose otherwise. Then $V P_{4} \cap\left(V P_{1} \cup V P_{2} \cup V P_{3}\right)=\{s, t\}$, since otherwise $P_{i}[s, v] \cup P_{4}[s, v]$ is an odd cycle in H^{\prime} that avoids t where $v \in V P_{4} \cap V P_{i}-\{s, t\}$ for some $1 \leq i \leq 3$. Now contract the even $s t$-dipath to identify s and t, then apply the Reduction Lemma, followed by the \widetilde{K}_{5} Lemma, to obtain a \widetilde{K}_{5} minor. This implies that $\left(G^{\prime}, \Sigma^{\prime}\right)$, and so (G, Σ), contains a $\widetilde{K_{5}}$ minor, a contradiction.

For each $1 \leq j \leq m$, let $v_{j} \neq t$ be the closest vertex to t on P_{j} that also lies on P_{i}, for some $i \in\{1, \ldots, m\}-\{j\}$. By the Intersection Lemma there exists an index $i \in\{1, \ldots, m\}$ such that whenever $v_{i} \in V P_{j}$ for some $j \in\{1, \ldots, m\}$ then $v_{i}=v_{j}$. Let I be the set of all indices j such that $v_{i}=v_{j}$. Note that $i \in I$ and $|I| \geq 2$. Recall that the end-vertices of Ω are s and s^{\prime}.

Claim 3. There exists a directed path in H^{\prime} from s^{\prime} to v_{i}.

Proof of Claim. Suppose not. Let $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right):=\left(G^{\prime}, \Sigma^{\prime}\right) / \cup\left(P_{j}\left[v_{j}, t\right]: j \in I\right)$ and $H^{\prime \prime}:=$ $H^{\prime} / \cup\left(P_{j}\left[v_{j}, t\right]: j \in I\right)$. It is clear that (M1), (M2) and (M4) still hold for ($G^{\prime \prime}, \Sigma^{\prime \prime}$) and $H^{\prime \prime}$. Moreover, by our assumption, (M3) also holds as there is no odd st-dipath in H^{\prime} that uses an edge of $\cup\left(P_{j}\left[v_{j}, t\right]: j \in I\right)$. However, this contradicts the minimality of $\left(G^{\prime}, \Sigma^{\prime}\right)$
and H^{\prime}.

So by rerouting $P_{1}, P_{2}, \ldots, P_{m}$ in H^{\prime}, if necessary, we may assume that $i=1$.

Claim 4. For each $j \in I$, there exists a cover B of $\left(G^{\prime}, \Sigma^{\prime}\right)$ such that $\left|B-P_{j}\left[v_{j}, t\right]-\{\Omega\}\right|=$ $\tau-3$.

Proof of Claim. Suppose otherwise. Then there exists $j \in I$ such that $\left|B-P_{j}\left[v_{j}, t\right]-\{\Omega\}\right|>$ $\tau-3$, for all covers B of $\left(G^{\prime}, \Sigma^{\prime}\right)$. Let $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right):=\left(G^{\prime}, \Sigma^{\prime}\right) \backslash P_{j}\left[v_{j}, t\right] / \cup\left(P_{k}\left[v_{k}, t\right]: k \in I, k \neq j\right)$ and $H^{\prime \prime}:=H^{\prime} \backslash P_{j}\left[v_{j}, t\right] / \cup\left(P_{k}\left[v_{k}, t\right]: k \in I, k \neq j\right)$. It is clear that (M1) and (M2) still hold for $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $H^{\prime \prime}$. Moreover, by our hypothesis, (M4) also holds. Moreover, (M3) also holds true, for if P is an odd st-dipath of $H^{\prime \prime}$ then $P \cup P_{j}\left[v_{j}, t\right]$ contains an odd $s t$-dipath of H^{\prime}. However, this contradicts the minimality of $\left(G^{\prime}, \Sigma^{\prime}\right)$ and H^{\prime}.

Claim 5. There do not exist vertex-disjoint paths P and Q in H^{\prime}, where P is between s and t and Q is between s^{\prime} and v_{1}.

Proof of Claim. Suppose, for a contradiction, there exist vertex-disjoint paths P and Q in H^{\prime}, where P is between s and t and Q is between s^{\prime} and v_{1}. Take $j \in I \backslash\{1\}$. Note that $(P \cup Q) \cap\left(P_{1}\left[v_{1}, t\right] \cup P_{j}\left[v_{j}, t\right]\right)=\emptyset$. By Claim 3 we can choose minimal covers B_{1} and B_{j} such that $\left|B_{1}-P_{1}\left[v_{1}, t\right]-\{\Omega\}\right|=\tau-3=\left|B_{j}-P_{j}\left[v_{j}, t\right]-\{\Omega\}\right|$. By (X1) both of B_{1} and B_{j} are signatures. So Remark 3.3 implies that $\left(B_{1}-P_{1}\left[v_{1}, t\right]-\{\Omega\}\right) \cap E H^{\prime}=$ $\emptyset=\left(B_{j}-P_{j}\left[v_{j}, t\right]-\{\Omega\}\right) \cap E H^{\prime}$. Now choose a minimal $U_{1 j} \subseteq V G^{\prime} \backslash\{s, t\}$ so that $\delta\left(U_{1 j}\right)=B_{1} \triangle B_{j}$. Then by Lemma 4.2, there exists a path R in $G^{\prime}\left[U_{1 j}\right]$ between $V P_{1}\left[v_{1}, t\right]$ and $V P_{j}\left[v_{j}, t\right]$ that is disjoint from B_{1}. Note that $V R \cap(V P \cup V Q \cup V C)=\emptyset$. It is now easily seen that $C \cup P \cup Q \cup P_{1}\left[v_{1}, t\right] \cup P_{j}\left[v_{j}, t\right] \cup R$ has an F_{7} minor. This implies that ($G^{\prime}, \Sigma^{\prime}$), and hence (G, Σ), has an F_{7} minor, a contradiction.

Claim 5, together with the Linkage Lemma, implies that H^{\prime} can be obtained as follows:
(L1) place a circuit C on the boundary S^{1} of the unit disc, and the circuit contains the vertices s, s^{\prime}, t, v_{1} in this cyclic order,
(L2) add vertices to the interior of the disc, and triangulate the resulting graph inside the disc to get K,
(L3) for every facial triangle T, consider an arbitrary graph K_{T} such that $V\left(K_{T}\right) \cap V(K)=$ $V(T)$,
(L4) take the union $K \cup \bigcup_{T} K_{T}$, and delete some edges to get H^{\prime}.
Consider the st-path P_{1} in the drawing. Observe that s and t lie on different sides of the path $P_{1}\left[s^{\prime}, v_{1}\right]$. Consider the set $\Gamma_{P_{1}}$ of pinned vertices that lie strictly inside the side of $P_{1}\left[s^{\prime}, v_{1}\right]$ that contains s. As H^{\prime} is acyclic, we may assume that the set $\Gamma_{P_{1}}$ is minimal over all possible odd $s t$-dipaths P_{1} in H^{\prime}.

Note that every $P_{j}, j \in\{4, \ldots, m\}$, is an st-path. So for every such j, there exists a pinned vertex u_{j} that lies on both P_{j} and $P_{1}\left[s^{\prime}, v_{1}\right]$; we may assume that u_{j} is the closest such vertex to t on P_{j}. Note that this implies that $u_{i}=v_{i}$ for all $i \in I$.

For each $j \in\{4, \ldots, m\}$ let $R_{j}:=P_{j}\left[u_{j}, t\right]$ and $Q_{j}:=P_{1}\left[s, u_{j}\right] \cup R_{j}$. For $j \in[3]-I$ let $R_{j}:=P_{j}\left[u_{j}=v_{j}, t\right]$ and $Q_{j}:=P_{1}\left[s, u_{j}=v_{j}\right] \cup R_{j}$, and for $j \in\{1,2,3\}-I$ let $R_{j}:=P_{j}\left[s^{\prime}, t\right]$ and $Q_{j}:=P_{j}$. By the Mate Lemma and (X1), we get that there exists $k \in\{1, \ldots, m\}$ such that $\left|B-R_{k}-\{\Omega\}\right|>\tau-3$, for all covers B of $\left(G^{\prime}, \Sigma^{\prime}\right)$. Notice that $k \notin I$ due to Claim 4.

Claim 6. Take an odd st-dipath P in H^{\prime}. Suppose that $V P \cap V P_{1}\left[u_{k}, t\right] \neq\{t\}$ and let u be the closest vertex to s on P that lies on $P_{1}\left[u_{k}, t\right]$. Then there exists a vertex $v \in V P[s, u]$ that lies on R_{k}.

Proof of Claim. Suppose not. Then in particular $u \notin V R_{k}=V P_{k}\left[u_{k}, t\right]$. As H^{\prime} is acyclic it follows that $u \notin V P_{k}\left[s, u_{k}\right]$, and so $u \notin V P_{k}$. It is now easily seen that u lies strictly inside the side of P_{k} which contains v_{1}. As P is odd it follows that $s^{\prime} \in V P$. Consider the subpath $P\left[s^{\prime}, u\right]$ of P. Since s^{\prime} lies on a different side of P_{k} than that of u, Remark 4.16 implies that $P\left[s^{\prime}, u\right]$ and P_{k} share a pinned vertex w, say, and suppose that w is the closest such vertex to u. By our hypothesis, $w \notin V R_{k}=V P_{k}\left[u_{k}, t\right]$. Hence, $w \in V P\left[s, u_{k}\right]-\left\{u_{k}\right\}$. Let w^{\prime} be the closest vertex to w in $P\left[s^{\prime}, w\right]$ that lies on $P_{1}\left[s^{\prime}, u_{k}\right]$. Then $P_{1}^{\prime}:=P_{1}\left[s, w^{\prime}\right] \cup P\left[w^{\prime}, w\right] \cup P_{k}\left[w, u_{k}\right] \cup P_{1}\left[u_{k}, t\right]$ contradicts the minimality of P_{1} as $\Gamma_{P_{1}^{\prime}} \subseteq \Gamma_{P_{1}}-\{w\}$. Hence, there exists a vertex $v \in V P[s, u]$ that lies on R_{k}, proving the claim.

Now let $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right):=\left(G^{\prime}, \Sigma^{\prime}\right) \backslash R_{k} / P_{1}\left[u_{k}, t\right]$ and let $H^{\prime \prime}$ be obtained from $H^{\prime} \backslash R_{k} / P_{1}\left[u_{k}, t\right]$ after deleting all the outgoing arcs at t. We claim that ($G^{\prime \prime}, \Sigma^{\prime \prime}$) and $H^{\prime \prime}$ satisfy (M1)-(M4), therefore contradicting the minimality of $\left(G^{\prime}, \Sigma^{\prime}\right)$ and H^{\prime}. It is clear that (M1) holds and that $H^{\prime \prime}$ is acyclic. The choice of R_{k} implies that (M4) holds as well. To show
(M3) holds, let Q be an odd st-dipath of $H^{\prime \prime}$. Let P be an st-dipath of H^{\prime} contained in $Q \cup P_{1}\left[u_{k}, t\right]$. If $P \cap P_{1}\left[u_{k}, t\right]=\emptyset$ then clearly (M3) holds. Otherwise, define u as in the preceding claim, and find v as found above. Choose B^{\prime} to a cover of $\left(G^{\prime}, \Sigma^{\prime}\right)$ such that $\left|B^{\prime}-P[s, v]-R_{k}[v, t]\right|=\tau-3$. Then $B^{\prime}-R_{k}$ is a cover of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ for which $\left|\left(B^{\prime}-R_{k}\right)-Q\right|=\tau-3$. This proves (M3) holds. Using the preceding claim again shows that (M2) also holds. However, this contradicts the minimality of ($G^{\prime}, \Sigma^{\prime}$) and H^{\prime}. Therefore, Part (2) is not feasible.

5.4 Setup and a lemma for Parts (3) and (4)

In this section, we provide the setup needed to initiate Parts (3) and (4), as well as a lemma that will be frequently referenced. For these two parts, L_{1}, L_{2}, L_{3} are simple, ($H^{\prime} \backslash \Omega, \Sigma^{\prime} \cap E\left(H^{\prime} \backslash \Omega\right)$) is bipartite, and (X1) does not hold.

Since (X1) does not hold, there exists an odd st-dipath Q in $\left(H^{\prime}, \Sigma^{\prime} \cap E\left(H^{\prime}\right)\right)$ and an stbond S such that $|S-Q|=\tau-3$. Recall that a cover S is said to be an internally minimal mate for Q if $|S-Q|=\tau-3$, and there is no other cover $S^{\prime \prime}$ such that $\left|S^{\prime}-Q\right|=\tau-3$ and $S^{\prime} \cap Q \subsetneq S \cap Q$. A cover S is said to be an internally minimal st-bond mate for Q if S is an st-bond and $|S-Q|=\tau-3$, and there is no other st-bond S^{\prime} such that $\left|S^{\prime}-Q\right|=\tau-3$ and $S^{\prime} \cap Q \subsetneq S \cap Q$. The closest non- Ω edge on Q to Ω that is in $S \cap Q$ is what we call the head of (Q, S).

Let e and f be two distinct edges of H^{\prime}. We say e precedes f if there exists an st-dipath in H^{\prime} containing both e and f but, on the path, e is closer to s than f. Observe that since H^{\prime} is acyclic, there cannot exist two edges mutually preceding one another, and therefore, there cannot be an infinite sequence of edges in H^{\prime}, where each edge of the sequence is preceded by the next edge. This observation allows us to pick an odd st-dipath P in H^{\prime} that satisfies the following:
(B1) there exists an internally minimal st-bond mate B for P, and
(B2) for any odd st-path P^{\prime} in H^{\prime} and any internally minimal st-bond mate B^{\prime} for P^{\prime} (if any), the head of $\left(P^{\prime}, B^{\prime}\right)$ does not precede the head of (P, B).

We may assume by rerouting $P_{1}, P_{2}, P_{3}, \ldots, P_{m}$ in H^{\prime}, if necessary, that $P=P_{1}$. Reset $B_{1}:=B$ and choose a minimal vertex subset $U_{1} \subseteq V\left(G^{\prime}\right)-\{t\}$ such that $B_{1}=\delta\left(U_{1}\right)$.

Let $u \neq s$ and w be, respectively, the closest and furthest vertices on P_{1} from s that lie inside U_{1}. Let u^{\prime} (resp. w^{\prime}) be the neighboring vertex of u (resp. w) on P_{1} that lies
outside U_{1}. Let $C_{1}:=P_{1}[s, u]$ and $Q_{1}:=P_{1}[w, t]$ followed by $Q_{j}:=P_{j}, \forall 2 \leq j \leq m$ and $F^{\prime}:=\left(P_{1} \cap G^{\prime}\left[U_{1}\right]\right) \cup C_{1} \cup \bigcup_{j=1}^{m} Q_{j}$. Let $\widetilde{R}:=P_{1} \cap G^{\prime}\left[U_{1}\right]$.

Lemma 5.4. Let P be an odd st-dipath in $\left(F^{\prime}, \Sigma^{\prime} \cap E\left(F^{\prime}\right)\right)$ such that $V(P) \cap U_{1}=\{s\}$, and let B be an internally minimal mate for P. Then B is not an st-bond.

Proof. Suppose otherwise. Let $R:=P_{1}\left[u^{\prime}, w^{\prime}\right]$. Observe that $P \cap P_{1}[u, w]=\emptyset$ as $P \subseteq E\left(F^{\prime}\right)$ and $E\left(F^{\prime}\right) \cap P_{1}[u, w]=\emptyset$. Hence, since $V(P) \cap U_{1}=\{s\}$, it follows that $P \cap R=\emptyset$.

Let $P_{1}^{\prime}:=P$, and decompose $H^{\prime} \backslash(P-\{\Omega\})$ into st-dipaths $P_{2}^{\prime}, P_{3}^{\prime}, \ldots, P_{m}^{\prime}$, keeping R in one of the st-dipaths P_{j}^{\prime}, where $\Omega \in P_{1}^{\prime} \cap P_{2}^{\prime} \cap P_{3}^{\prime}, \Omega \notin P_{4}^{\prime} \cup \cdots \cup P_{m}^{\prime}$ and $\left(P_{i}^{\prime}-\{\Omega\}: 1 \leq i \leq m\right)$ are pairwise disjoint. Set $B_{1}^{\prime}:=B$ and $B_{j}^{\prime}:=B_{1}$.

If $j \in\{2,3\}$ then st-cuts B_{1}^{\prime} and B_{j}^{\prime} contradict Lemma 4.4. Otherwise, we may assume that $j=4$ and there exists a vertex $v \in V\left(P_{4}^{\prime}\right) \cap V\left(P_{1}^{\prime}\right)$ between s^{\prime} and u^{\prime} (so v may be s^{\prime} or $\left.u^{\prime}\right)$. We may assume such a v exists since $R \subseteq P_{1}$. Notice that $P_{1}^{\prime}[s, v] \cap B_{1}^{\prime}=\{\Omega\}$, since otherwise the head of $\left(P_{1}^{\prime}, B_{1}^{\prime}\right)$ would precede the head $\left\{u^{\prime}, u\right\}$ of $\left(P_{1}, B_{1}\right)$, which is not possible by (B2). Hence, $\left|B_{1}^{\prime}-\{\Omega\}-P_{1}^{\prime}[v, t]\right|=\left|B_{1}^{\prime}-P_{1}^{\prime}\right|=\tau-3$.

We claim that $\left|B_{4}^{\prime}-\{\Omega\}-P_{4}^{\prime}[v, t]\right|=\tau-3$. Observe that

$$
\left|B_{4}^{\prime}-\{\Omega\}-P_{4}^{\prime}[v, t]\right| \geq\left|B_{4}^{\prime}-\left(P_{1}^{\prime}[s, v] \cup P_{4}^{\prime}[v, t]\right)\right| \geq \tau-3
$$

as $P_{4}^{\prime}[s, v] \cup P_{1}^{\prime}[v, t], P_{5}^{\prime}, P_{6}^{\prime}, \ldots, P_{m}^{\prime}, L_{m+1}, \ldots, L_{\tau}$ are disjoint edge-subsets of $E\left(G^{\prime}\right)-\left(P_{1}^{\prime}[s, v] \cup\right.$ $\left.P_{4}^{\prime}[v, t]\right)$ and each contain an $s t$-dipath. However,

$$
\left|B_{4}^{\prime}-\{\Omega\}-P_{4}^{\prime}[v, t]\right| \leq\left|B_{1}-\{\Omega\}-R\right|=\tau-3,
$$

and so $\left|B_{4}^{\prime}-\{\Omega\}-P_{4}^{\prime}[v, t]\right|=\tau-3$, as claimed. But this is a contradiction to Lemma 4.6. Hence, B is not an st-bond.

Consider the following statement:

$$
\text { (X2) for every even st-dipath } P \text { in }\left(F^{\prime}, \Sigma^{\prime} \cap E\left(F^{\prime}\right)\right), V(P) \cap V\left(C_{1}\right) \subseteq U_{1} .
$$

In Part (3) we assume (X2) is true, and in Part (4) we assume (X2) does not hold.

5.5 Part (3)

The setup for this part is provided in §5.4. Recall that L_{1}, L_{2}, L_{3} are simple, $\left(H^{\prime} \backslash \Omega, \Sigma^{\prime} \cap\right.$ $E\left(H^{\prime} \backslash \Omega\right)$) is bipartite, (X1) does not hold, and (X2) holds.

Let $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ be a minor of $\left(G^{\prime}, \Sigma^{\prime}\right)$ and let $F^{\prime \prime}$ be a directed graph obtained by orienting edges in a subgraph of G^{\prime}, where $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$ are minimal subject to
(F1) $E\left(G^{\prime}\right)-E\left(G^{\prime \prime}\right) \subseteq E\left(F^{\prime \prime}\left[V-U_{1}\right]\right)$, and $E\left(F^{\prime \prime}\right) \subseteq E\left(F^{\prime}\right)$,
(F2) for each even st-dipath P in $F^{\prime \prime}, V(P) \cap V\left(C_{1}\right) \subseteq U_{1}$,
(F3) $F_{u w}^{\prime \prime}$ is acyclic, where $F_{u w}^{\prime \prime}$ is obtained from $F^{\prime \prime}$ after identifying the two vertices u, w, and there exist m st-dipaths in $F_{u w}^{\prime \prime}$ that are disjoint except possibly at Ω, exactly three of which contain Ω and exactly one of these contains the identified vertex $u w$,
(F4) for any odd st-dipath P of $F^{\prime \prime}$ such that $V(P) \cap U_{1}=\{s\}$, there exists a signature B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $|B-P|=\tau-3$, and
(F5) there is no cover of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ of size $\tau-2$.

Note that these conditions are satisfied by $\left(G^{\prime}, \Sigma^{\prime}\right)$ and F^{\prime}, so $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$ are welldefined. By identifying a vertex of each component with s, if necessary, we may assume that $G^{\prime \prime}$ is connected. Now let $\left(Q_{j}^{\prime \prime}\right)_{j=1}^{m}$ be m st-dipaths in $F_{u w}^{\prime \prime}$ that are pairwise disjoint except possibly at $\Omega, \Omega \in Q_{j}^{\prime \prime}$ if and only if $j \in\{1,2,3\}$, and $Q_{1}^{\prime \prime}$ uses the identified vertex $u w$ in $F_{u w}^{\prime \prime}$. Note that $F_{u w}^{\prime \prime}=\widetilde{R} \cup \bigcup_{j=1}^{m} Q_{j}^{\prime \prime}$. For the sake of notational ease, let $Q_{j}:=Q_{j}^{\prime \prime}$ for all $2 \leq j \leq m$, and define $Q_{1}:=Q_{1}^{\prime \prime}[u w, t]$ and $C_{1}:=Q_{1}^{\prime \prime}[s, u w]$. Observe that Q_{2}, \ldots, Q_{m} are st-dipaths in $F^{\prime \prime}$, and that C_{1} and Q_{1} have endvertices s, u and w, t, respectively. Observe that P is an odd st-dipath in $F^{\prime \prime}$ if and only if $\Omega \in P$, since $\left(H^{\prime} \backslash \Omega, \Sigma^{\prime} \cap E\left(H^{\prime} \backslash \Omega\right)\right.$) is bipartite.

For each Q_{j} other than Q_{1}, let $v_{j} \neq t$ be the closest vertex to t on Q_{j} that also lies on another $Q_{i}, i \in\{1, \ldots, m\}-\{j\}$. Let $v_{1} \neq t$ be the closest vertex to t in $V Q_{1} \cup\{s\}$ that also lies on another $Q_{i}, i \in\{2, \ldots, m\}$. Then by the Intersection Lemma there exists $i \in\{1, \ldots, m\}$ such that whenever $v_{i} \in V Q_{j}$ then $v_{i}=v_{j}$. Let I be the set of all indices $j \in\{1, \ldots, m\}$ such that $v_{j}=v_{i}$. Note that $i \in I$ and $|I| \geq 2$. We may assume $v_{i} \notin U_{1}$ (otherwise, remove all paths $Q_{j}, j \in I$ temporarily and reapply the Intersection Lemma). This implies that $V Q_{j}\left[v_{j}, t\right] \cap U_{1}=\emptyset$ for all $j \in I$.

In Part (3.1) we assume $V C_{1} \cap V Q_{j}\left[v_{j}, t\right]=\emptyset$, for all $j \in I$. In Part (3.2) we assume $V C_{1} \cap V Q_{j}\left[v_{j}, t\right] \neq \emptyset$, for some $j \in I$.

5.5.1 Part (3.1): $V C_{1} \cap V Q_{j}\left[v_{j}, t\right]=\emptyset$ for all $j \in I$

Claim 1. $Q_{i}\left[v_{i}, t\right]$ is contained in an odd st-dipath of $\left(F^{\prime \prime}, \Sigma^{\prime \prime} \cap E\left(F^{\prime \prime}\right)\right)$ that intersects U_{1} at only s.

Proof of Claim. Suppose otherwise. Then let $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right):=\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right) / \cup\left(Q_{j}\left[v_{j}, t\right]: j \in I\right)$ and $F^{\prime \prime \prime}:=F^{\prime \prime} / \cup\left(Q_{j}\left[v_{j}, t\right]: j \in I\right)$. Clearly, (F1), (F3) and (F5) still hold for ($G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}$) and $F^{\prime \prime \prime}$. Since $V Q_{j}\left[v_{j}, t\right] \cap V C_{1}=\emptyset$ for all $j \in I$, it follows that (F2) also holds. Furthermore, our assumption implies that (F4) also holds, a contradiction to the minimality of ($G^{\prime \prime}, \Sigma^{\prime \prime}$) and $F^{\prime \prime}$.

This claim allows us to assume that $i=2$.

Claim 2. For each $j \in I$ there exists a minimal cover B_{j} such that $\left|B_{j}-Q_{j}\left[v_{j}, t\right]-\{\Omega\}\right|=$ $\tau-3$.

Proof of Claim. Suppose otherwise. Then there is no cover B such that $\mid B-Q_{i}\left[v_{i}, t\right]-$ $\{\Omega\} \mid=\tau-3$, for some $i \in I$. Then let $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right):=\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right) \backslash Q_{i}\left[v_{i}, t\right] / \cup\left(Q_{j}\left[v_{j}, t\right]: j \in\right.$ $I, j \neq i)$ and $F^{\prime \prime \prime}:=F^{\prime \prime} \backslash Q_{i}\left[v_{i}, t\right] / \cup\left(Q_{j}\left[v_{j}, t\right]: j \in I, j \neq i\right)$. Clearly, (F1), (F3) and (F4) still hold for $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $H^{\prime \prime}$. Since $V Q_{j}\left[v_{j}, t\right] \cap V C_{1}=\emptyset$ for all $j \in I$, it follows that (F2) also holds. Our assumption implies that (F5) also holds, a contradiction to the minimality of $\left(G^{\prime \prime}, \Sigma^{\prime}\right)$ and $F^{\prime \prime}$.

We may assume that each $B_{j}, j \in I$ is an internally minimal mate of $Q_{j}\left[v_{j}, t\right]$. Observe that each B_{j} is a signature, by Lemma 5.4. Pick $k \in I-\{2\}$, and choose a minimal $U \subseteq V\left(G^{\prime \prime}\right)-\{s, t\}$ such that $\delta(U)=B_{2} \triangle B_{k}$.

Claim 3. Suppose there exists a path in $G^{\prime \prime}[U] \backslash B_{k}$ between $V Q_{2}$ and $V Q_{k}$ for which there is a vertex-disjoint path in $G^{\prime \prime}\left[U_{1}\right] \backslash B_{k}$ between s and every component of \widetilde{R}. Then $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ contains an F_{7} minor.

Proof of Claim. To prove the claim, we first show the following.

Subclaim 3.1. There exist two vertex-disjoint paths P and Q in $F^{\prime \prime}$, where Q is between s^{\prime} and v_{2}, and P is between t and either of s, w.

Proof of Subclaim 3.1. We will treat U_{1} as a vertex, and in order to prove the subclaim, it suffices to find two vertex-disjoint paths P and Q in $F^{\prime \prime}$, where Q is between s^{\prime} and v_{2}, and P is between t and U_{1}. Suppose for a contradiction that this is not possible. Then the Linkage Lemma implies that $F^{\prime \prime}$ can be obtained as follows:
(L1) place a circuit C on the boundary S^{1} of the unit disc, and the circuit contains the vertices $U_{1}, s^{\prime}, t, v_{2}$ in this cyclic order,
(L2) add vertices to the interior of the disc, and triangulate the resulting graph inside the disc to get K,
(L3) for every facial triangle T, consider an arbitrary graph K_{T} such that $V\left(K_{T}\right) \cap V(K)=$ $V(T)$,
(L4) take the union $K \cup \bigcup_{T} K_{T}$, and delete some edges to get $F^{\prime \prime}$.
Consider the $s t$-path Q_{2} in the drawing. Observe that s (which is now merged with U_{1}) and t lie on different sides of the path $Q_{2}\left[s^{\prime}, v_{2}\right]$. Consider the set $\Gamma_{Q_{2}}$ of pinned vertices that lie strictly inside the side of $Q_{2}\left[s^{\prime}, v_{2}\right]$ that contains s. As $F^{\prime \prime}$ is acyclic, we may assume that the set $\Gamma_{Q_{2}}$ is minimal over all possible odd st-dipaths Q_{2} in $F^{\prime \prime}$.

Note that every $Q_{j}, j \in\{1, \ldots, m\}-\{2,3\}$, is an st-path. Hence, for every $j \in$ $\{1, \ldots, m\}-\{2,3\}$, there exists a pinned vertex u_{j} that lies on both Q_{j} and $Q_{2}\left[s^{\prime}, v_{2}\right]$; we may assume that u_{j} is the closest such vertex to t on Q_{j}. Note that this implies that $u_{i}=v_{i}$ for all $i \in I$.

For each $j \in\{1, \ldots, m\}-\{2,3\}$ let $R_{j}:=Q_{j}\left[u_{j}, t\right]$ and $S_{j}:=Q_{2}\left[s, u_{j}\right] \cup R_{j}$. For $j \in\{2,3\} \cap I$ let $R_{j}:=Q_{j}\left[u_{j}=v_{j}, t\right]$ and $S_{j}:=Q_{2}\left[s, u_{j}=v_{j}\right] \cup R_{j}$, and for $j \in\{2,3\} \backslash I$ let $R_{j}:=Q_{j}\left[s^{\prime}, t\right]$ and $S_{j}:=Q_{j}$. By the Mate Lemma and Lemma 5.4, we get that there exists an R_{k} such that $\left|B-R_{k}-\{\Omega\}\right|>\tau-3$, for all covers B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$. Notice that $k \notin I$ and that $k \notin\{2,3\}$.

Subclaim 3.1.1. Take an odd st-dipath P in $\left(F^{\prime \prime}, \Sigma^{\prime \prime} \cap E\left(F^{\prime \prime}\right)\right)$ that has intersection $\{s\}$ with U_{1}. Suppose that $V P \cap V Q_{2}\left[u_{k}, t\right] \neq\{t\}$ and let u be the closest vertex to s on P that lies on $Q_{2}\left[u_{k}, t\right]$. Then there exists a vertex $v \in V P[s, u]$ that lies on R_{k}.

Proof of Subclaim 3.1.1. Suppose not. Then in particular $u \notin V R_{k}=V Q_{k}\left[u_{k}, t\right]$. As $F^{\prime \prime}$ is acyclic it follows that $u \notin V Q_{k}\left[s, u_{k}\right]$, and so $u \notin V Q_{k}$. It is now easily seen that u
lies strictly inside the side of Q_{k} which contains v_{2}. As P is odd it follows that $s^{\prime} \in V P$. Consider the subpath $P\left[s^{\prime}, u\right]$ of P. Since s^{\prime} lies on a different side of Q_{k} than that of u, Remark 4.16 implies that $P\left[s^{\prime}, u\right]$ and Q_{k} share a pinned vertex w, say, and suppose that w is the closest such vertex to u. By our hypothesis, $w \notin V R_{k}=V Q_{k}\left[u_{k}, t\right]$. Hence, $w \in V P\left[s, u_{k}\right]-\left\{u_{k}\right\}$. Let w^{\prime} be the closest vertex to w in $P\left[s^{\prime}, w\right]$ that lies on $Q_{2}\left[s^{\prime}, u_{k}\right]$. Then $Q_{2}^{\prime}:=Q_{2}\left[s, w^{\prime}\right] \cup P\left[w^{\prime}, w\right] \cup Q_{k}\left[w, u_{k}\right] \cup Q_{2}\left[u_{k}, t\right]$ contradicts the minimality of Q_{2} as $\Gamma_{Q_{2}^{\prime}} \subseteq \Gamma_{Q_{2}}-\{w\}$. Hence, there exists a vertex $v \in V P[s, u]$ that lies on R_{k}. This finishes the proof of Subclaim 3.1.1.

Now let $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right):=\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right) \backslash R_{k} / Q_{2}\left[u_{k}, t\right]$ and let $F^{\prime \prime \prime}$ be obtained from $F^{\prime \prime} \backslash R_{k} / Q_{2}\left[u_{k}, t\right]$ after deleting all the outgoing arcs at t. We claim that ($G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}$) and $F^{\prime \prime \prime}$ satisfy (F1)-(F5), therefore contradicting the minimality of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$. It is clear that (F1) and (F3) hold. The choice of R_{k} implies that (F5) holds as well. To prove (F2) holds, it suffices to show that $V C_{1} \cap V Q_{2}\left[u_{k}, t\right]=\emptyset$. If not, then by the preceding claim, we get that $V C_{1} \cap V R_{k} \neq \emptyset$, a contradiction as R_{k} belongs to the even st-path Q_{k} and $V Q_{k} \cap V C_{1} \subseteq U_{1}$ by (F2). Hence, $V C_{1} \cap V Q_{2}\left[u_{k}, t\right]=\emptyset$ and so (F2) still holds for ($G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}$) and $F^{\prime \prime \prime \prime}$. Lastly, to show (F4) holds, let Q be an odd st-dipath of $F^{\prime \prime \prime}$. Let P be an st-dipath of $F^{\prime \prime}$ contained in $Q \cup Q_{2}\left[u_{k}, t\right]$. If $P \cap Q_{2}\left[u_{k}, t\right]=\emptyset$ then clearly (F4) holds. Otherwise, define u as in the preceding claim, and find v as found above. Choose B^{\prime} to a cover of ($G^{\prime \prime}, \Sigma^{\prime \prime}$) such that $\left|B^{\prime}-P[s, v]-R_{k}[v, t]\right|=\tau-3$. Then $B^{\prime}-R_{k}$ is a cover of $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right)$ for which $\left|\left(B^{\prime}-R_{k}\right)-Q\right|=\tau-3$. This proves (F4) holds. However, this contradicts the minimality of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$.

End of Proof of Subclaim 3.1

We are now ready to prove Claim 3. Recall that $k \in I-\{2\}$, that the both of B_{2} and B_{k} are signatures, and $\delta(U)=B_{2} \triangle B_{k}$. Let R be a shortest path in $G^{\prime \prime}[U] \backslash B_{k}$ between $V Q_{2}$ and $V Q_{j}$, as given in the statement of Claim 3. By our assumption, there exist paths R_{1} and R_{2} in $G^{\prime \prime}\left[U_{1}\right] \backslash B_{k}$ between s and u, and s and w, respectively, that are vertex-disjoint R. (Note that $\widetilde{R} \cap\left(B_{2} \cup B_{k}\right)=\emptyset$.) It is now easily seen that $R_{1} \cup R_{2} \cup P \cup Q \cup C_{1} \cup Q_{2}\left[v_{2}, t\right] \cup Q_{j}\left[v_{j}, t\right] \cup R$ has an F_{7} minor. This concludes the proof of Claim 3.

However, (G, Σ) does not have an F_{7} minor, and so the assumption of Claim 3 cannot be true. Hence, in particular,
$(*)$ for a connected component K of \widetilde{R}, there is no path in $G\left[U_{1}\right] \backslash \bigcup_{j \in I} B_{j}$ between s and K,
and also that
$(* *) U_{1} \cap U \neq \emptyset$, and there is no path in $G^{\prime \prime}\left[U-U_{1}\right] \backslash B_{k}$ between $V Q_{2}$ and $V Q_{k}$.

Observe that the Shore Lemma, together with (*), implies that $m \geq 4$.

Claim 4. There exist vertex disjoint paths P and Q in $F^{\prime \prime}$, where P is between s and t and Q is between s^{\prime} and v_{2}.

Proof of Claim. Suppose for a contradiction that this is not possible. Then the Linkage Lemma implies that $F^{\prime \prime}$ can be obtained as follows:
(L1) place a circuit C on the boundary S^{1} of the unit disc, and the circuit contains the vertices s, s^{\prime}, t, v_{2} in this cyclic order,
(L2) add vertices to the interior of the disc, and triangulate the resulting graph inside the disc to get K,
(L3) for every facial triangle T, consider an arbitrary graph K_{T} such that $V\left(K_{T}\right) \cap V(K)=$ $V(T)$,
(L4) take the union $K \cup \bigcup_{T} K_{T}$, and delete some edges to get $F^{\prime \prime}$.
Consider the st-path Q_{2} in the drawing. Observe that s and t lie on different sides of the path $Q_{2}\left[s^{\prime}, v_{2}\right]$. Consider the set $\Gamma_{Q_{2}}$ of pinned vertices that lie strictly inside the side of $Q_{2}\left[s^{\prime}, v_{2}\right]$ that contains s. As $F^{\prime \prime}$ is acyclic, we may assume that the set $\Gamma_{Q_{2}}$ is minimal over all possible odd st-dipaths Q_{2} in $F^{\prime \prime}$ that have intersection $\{s\}$ with U_{1}.

Note that every $Q_{j}, j \in\{4, \ldots, m\}$, is an st-path. So for every $j \in\{4, \ldots, m\}$, there exists a pinned vertex u_{j} that lies on both Q_{j} and $Q_{2}\left[s^{\prime}, v_{2}\right]$; we may assume that u_{j} is the closest such vertex to t on Q_{j}. Note that this implies that $u_{i}=v_{i}$ for all $i \in I$. For each $j \in\{4, \ldots, m\}$ let $R_{j}:=Q_{j}\left[u_{j}, t\right]$ and $S_{j}:=Q_{2}\left[s, u_{j}\right] \cup R_{j}$. For $j \in\{2,3\} \cap I$ let $R_{j}:=Q_{j}\left[u_{j}=v_{j}, t\right]$ and $S_{j}:=Q_{2}\left[s, u_{j}=v_{j}\right] \cup R_{j}$, and for $j \in\{2,3\}-I$ let $R_{j}:=Q_{j}\left[s^{\prime}, t\right]$ and $S_{j}:=Q_{j}$.

By the Shore Lemma, along with $(*)$ and Lemma 5.4, we get that there exists an R_{k} such that $\left|B-R_{k}-\{\Omega\}\right|>\tau-3$, for all covers B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$. Notice that $k \notin I$ and that
$k \notin\{2,3\}$.

Subclaim 4.1. Take an odd st-dipath P in $\left(F^{\prime \prime}, \Sigma^{\prime \prime} \cap E\left(F^{\prime \prime}\right)\right)$ that has intersection $\{s\}$ with U_{1}. Suppose that $V P \cap V Q_{2}\left[u_{k}, t\right] \neq\{t\}$ and let u be the closest vertex to s on P that lies on $Q_{2}\left[u_{k}, t\right]$. Then there exists a vertex $v \in V P[s, u]$ that lies on R_{k}.

Proof of Subclaim 4.1. Suppose otherwise. Then in particular $u \notin V R_{k}=V Q_{k}\left[u_{k}, t\right]$. As $F^{\prime \prime}$ is acyclic it follows that $u \notin V Q_{k}\left[s, u_{k}\right]$, and so $u \notin V Q_{k}$. It is now easily seen that u lies strictly inside the side of Q_{k} which contains v_{2}. As P is odd it follows that $s^{\prime} \in V P$. Consider the subpath $P\left[s^{\prime}, u\right]$ of P. Since s^{\prime} lies on a different side of Q_{k} than that of u, Remark 4.16 implies that $P\left[s^{\prime}, u\right]$ and Q_{k} share a pinned vertex w, say, and suppose that w is the closest such vertex to u. By our hypothesis, $w \notin V R_{k}=V Q_{k}\left[u_{k}, t\right]$. Hence, $w \in V P\left[s, u_{k}\right]-\left\{u_{k}\right\}$. Let w^{\prime} be the closest vertex to w in $P\left[s^{\prime}, w\right]$ that lies on $Q_{2}\left[s^{\prime}, u_{k}\right]$. Then $Q_{2}^{\prime}:=Q_{2}\left[s, w^{\prime}\right] \cup P\left[w^{\prime}, w\right] \cup Q_{k}\left[w, u_{k}\right] \cup Q_{2}\left[u_{k}, t\right]$ contradicts the minimality of Q_{2} as $\Gamma_{Q_{2}^{\prime}} \subseteq \Gamma_{Q_{2}}-\{w\}$. Hence, there exists a vertex $v \in V P[s, u]$ that lies on R_{k}. End of Proof of Subclaim 4.1

Now let $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right):=\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right) \backslash R_{k} / Q_{2}\left[u_{k}, t\right]$ and let $F^{\prime \prime \prime}$ be obtained from $F^{\prime \prime} \backslash R_{k} / Q_{2}\left[u_{k}, t\right]$ after deleting all the outgoing arcs at t. We claim that ($G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}$) and $F^{\prime \prime \prime}$ satisfy (F1)-(F5), therefore contradicting the minimality of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$. It is clear that (F1) and (F3) hold. The choice of R_{k} implies that (F5) holds as well. To prove (F2) holds, it suffices to show that $V C_{1} \cap V Q_{2}\left[u_{k}, t\right]=\emptyset$. If not, then by the preceding claim, we get that $V C_{1} \cap V R_{k} \neq \emptyset$, a contradiction as R_{k} belongs to the even st-path Q_{k} and $V Q_{k} \cap V C_{1} \subseteq U_{1}$ by (F2). Hence, $V C_{1} \cap V Q_{2}\left[u_{k}, t\right]=\emptyset$ and so (F2) still holds for ($G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}$) and $F^{\prime \prime \prime}$. Lastly, to show (F4) holds, let Q be an odd st-dipath of $F^{\prime \prime \prime}$. Let P be an $s t$-dipath of $F^{\prime \prime}$ contained in $Q \cup Q_{2}\left[u_{k}, t\right]$. If $P \cap Q_{2}\left[u_{k}, t\right]=\emptyset$ then clearly (F4) holds. Otherwise, define u as in the preceding claim, and find v as found above. Choose B^{\prime} to a cover of ($G^{\prime \prime}, \Sigma^{\prime \prime}$) such that $\left|B^{\prime}-P[s, v]-R_{k}[v, t]\right|=\tau-3$. Then $B^{\prime}-R_{k}$ is a cover of $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right)$ for which $\left|\left(B^{\prime}-R_{k}\right)-Q\right|=\tau-3$. This proves (F4) holds. However, this contradicts the minimality of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$. This finally finishes the proof of Claim 4.

Claim 5. There is no odd circuit C in $F^{\prime \prime}$ that avoids the vertex t.

Proof of Claim. Suppose otherwise. Pick $j \in I-\{2\}$. Recall that the both of B_{2} and B_{j} are signatures. Choose a minimal $U \subseteq V-\{s, t\}$ so that $\delta(U)=B_{2} \triangle B_{j}$. By Lemma 4.2, there exists a shortest path R in $G^{\prime \prime}[U] \backslash B_{i}$ between $V Q_{2}$ and $V Q_{j}$.

Observe that $V P \cap V R=V Q \cap V R=V C \cap V R=\emptyset$. It is now easily seen that $C \cup P \cup Q \cup Q_{2}\left[v_{2}, t\right] \cup Q_{j}\left[v_{j}, t\right] \cup R$ has an F_{7} minor. However, (G, Σ) has no such minor, a contradiction.

Since $m \geq 4$ it follows that every even st-path $Q_{j}, 4 \leq j \leq m$, is internally vertexdisjoint from Q_{2} and Q_{3}. So $I \subseteq\{1,2,3\}$, and Q_{4} is internally vertex-disjoint from Q_{2} and Q_{3}.

We will now analyze $(* *)$. Since there is no path in $G^{\prime \prime}\left[U-U_{1}\right] \backslash B_{k}$ between $V Q_{2}$ and $V Q_{k}$, it follows that $U-U_{1}$ partitions into two sets Y_{2} and Y_{k} such that

$$
V Q_{i} \cap U \subseteq Y_{i} \text { and } \delta\left(Y_{i}\right)-\left(\delta(U) \cup \delta\left(U_{1}\right)\right)=\emptyset \text { for } i=2, k
$$

Claim 6. The following hold:
(1) $\left(U_{1} \cap U\right) \cap\left(V Q_{2} \cup V Q_{k}\right)=\emptyset$,
(2) $\delta\left(Y_{i}\right) \cap Q_{i} \neq \emptyset$ and $\delta\left(Y_{i}\right) \cap Q_{j}=\emptyset$ for all i, j such that $\{i, j\}=\{2, k\}$,
(3) $\delta\left(Y_{i}\right) \subseteq B_{2} \cup B_{k} \cup \delta\left(U_{1}\right)$ for $i=2, k$, and
(4) $\delta\left(Y_{1}\right) \cap \delta\left(Y_{2}\right)=\emptyset$.

Proof of Claim. (1) follows from the fact that $s \notin U_{1} \cap U, Q_{i} \cap \delta\left(U_{1}\right)=\{\Omega\}$ for $i=2, k$. For (2) fix $i \in\{2, k\}$ and let j be the other index. As $V Q_{i} \cap U \subseteq Y_{i}$ it follows that $Q_{i} \cap \delta\left(Y_{j}\right)=\emptyset$. Note that $\delta(U) \cap Q_{i} \neq \emptyset$. However,

$$
Q_{i} \cap \delta(U) \subseteq\left(Q_{i} \cap \delta\left(Y_{i}\right)\right) \cup\left(Q_{i} \cap \delta\left(Y_{j}\right)\right) \cup\left(Q_{i} \cap \delta\left(U_{1} \cap U\right)\right)=Q_{i} \cap \delta\left(Y_{i}\right)
$$

and so $Q_{i} \cap \delta\left(Y_{i}\right) \neq \emptyset$. (3) follows directly from definition. We show (4) by contradiction. Suppose that $e \in \delta\left(Y_{1}\right) \cap \delta\left(Y_{2}\right)$. Then e has endvertices x, y where $x \in Y_{1}$ and $y \in Y_{2}$. Therefore, $e \in \delta(U) \cup \delta\left(U_{1}\right)$. However, $x, y \notin U_{1}$, which implies that $e \in \delta(U)$, a contradiction as $x, y \in U$.

Claim 7. For each $i \in\{2, k\}$, there exists $\tau \geq p(i) \geq m+1$ such that $\left|L_{p(i)} \cap \delta\left(Y_{i}\right)\right|=2$ and $L_{p(i)} \cap \delta\left(Y_{i}\right) \cap B_{i}=\emptyset$, and there is a shortest (possibly empty) path R_{i} in $G^{\prime \prime}\left[Y_{i}\right]$ between $V Q_{i}$ and $V L_{p(i)}$ such that $R_{i} \cap B_{i}=\emptyset$.

Proof of Claim. We may assume that $i=2$. Let $U^{\prime} \subseteq Y_{2}$ be the largest component of $G^{\prime \prime}\left[Y_{2}\right]$ containing a vertex of Q_{2}. Note that $\delta\left(U^{\prime}\right)=\delta\left(U^{\prime}\right) \cap \delta\left(Y_{2}\right) \subseteq B_{2} \cup B_{k} \cup \delta\left(U_{1}\right)$, and as U^{\prime} contains a vertex of Q_{2}, it follows that $\delta\left(U^{\prime}\right) \cap Q_{2} \cap B_{2}=\delta\left(U^{\prime}\right) \cap Q_{2} \neq \emptyset$. Let $B:=B_{2} \triangle \delta\left(U^{\prime}\right)$. Then $B \cap Q_{2} \subsetneq B_{2} \cap Q_{2}$ and $B \cap Q_{3}=B \cap\left(Q_{1} \cup C_{1}\right)=\{\Omega\}$ as $\delta\left(Y_{2}\right) \cap Q_{3}=\delta\left(Y_{1}\right) \cap\left(Q_{1} \cup C_{1}\right)=\{\Omega\}$. Moreover, it is easily seen that $\left|B \cap L_{j}\right|=1$ for all $4 \leq j \leq m$. Therefore, by the minimality of B_{2}, there exists $\tau \geq p(2) \geq m+1$ such that $\delta\left(U^{\prime}\right) \cap L_{p(i)} \neq \emptyset$ and $\delta\left(U^{\prime}\right) \cap L_{p(2)} \cap B_{2}=\emptyset$. Hence, $\left|\delta\left(Y_{2}\right) \cap L_{p(2)}\right| \geq 2$ and so $\left|\delta\left(Y_{2}\right) \cap L_{p(2)}\right|=2$.

Moreover, note that if $e \in B_{2} \cap E G^{\prime \prime}\left[U^{\prime}\right]$ then $e \in B_{2} \cap B_{k}$, and so $e \in C_{j}$ for some $m \geq j \geq 4$, where $C_{j} \subseteq E G^{\prime \prime}\left[U^{\prime}\right]$. Hence, there is a path Q in $G^{\prime \prime}\left[U^{\prime}\right]$ between the endvertices of e such that $Q \cap B_{2}=\emptyset$. This observation implies that there is a shortest (possibly empty) path R_{2} in $G^{\prime \prime}\left[U^{\prime}\right]$ (in particular, $G^{\prime \prime}\left[Y_{2}\right]$) between $V Q_{2}$ and $V L_{p(2)}$ such that $R_{2} \cap B_{2}=\emptyset$.

Claim 8. $p(1)$ and $p(2)$ are distinct.

Proof of Claim. Suppose otherwise. Then $\left|L_{p(2)} \cap \delta\left(Y_{2}\right)\right|=2=\left|L_{p(2)} \cap \delta\left(Y_{k}\right)\right|$, and so as $\delta\left(Y_{2}\right) \cap \delta\left(Y_{k}\right)=\emptyset$ and $\delta\left(Y_{2}\right) \cup \delta\left(Y_{k}\right) \subseteq B_{2} \cup B_{k} \cup \delta\left(U_{1}\right)$, it follows that $\left|L_{p(2)} \cap B_{i}\right|>1$ for some $i \in\{2, k\}$ or $\left|L_{p(2)} \cap \delta\left(U_{1}\right)\right|>1$, a contradiction either way.

Suppose that $R_{2}:\left[u_{2}, v_{2}\right]$ for $u_{2} \in V Q_{2} \cap Y_{2}$ and $v_{2} \in V L_{p(2)}$ where $L_{p(2)}\left[s, v_{2}\right]$ is internally vertex-disjoint from $Q_{2}\left[s, u_{2}\right]$. Also, assume that $R_{k}:\left[u_{k}, v_{k}\right]$ for $u_{k} \in V Q_{k} \cap Y_{k}$ and $v_{k} \in V L_{p(k)}$ where $L_{p(k)}\left[v_{k}, t\right]$ is internally vertex-disjoint from $Q_{k}\left[u_{k}, t\right]$. Note that $R_{2} \cap B_{2}=R_{k} \cap B_{2}=\emptyset$. Observe that $V L_{p(2)}\left[s, v_{2}\right] \subseteq U \cup U_{1}-Y_{k}$ and $V L_{p(k)}\left[v_{k}, t\right] \subseteq$ $Y_{k} \cup\left(V-U_{1}-U\right)$. We may assume that $L_{p(2)}\left[s, v_{2}\right]$ and $L_{p(k)}\left[v_{k}, t\right]$ are paths (otherwise, replace them with the longest paths contained in them). Next let $Q:[u, v]$ be the shortest path in $G^{\prime \prime}[U]$ between $V Q_{2} \cup V L_{p(2)}\left[s, v_{2}\right] \cup R_{2}$ and $V Q_{k} \cup V L_{p(k)}\left[v_{k}, t\right] \cup R_{k}$ such that $Q \cap B_{1}=\emptyset$. Now observe that $Q_{2} \cup L_{p(2)}\left[s, v_{2}\right] \cup R_{2} \cup Q_{k} \cup L_{p(k)}\left[v_{k}, t\right] \cup R_{k} \cup Q \cup Q_{4}$ contains an F_{7} minor. But this implies that $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$, and therefore (G, Σ), has an F_{7} minor, which is a contradiction.

Therefore, Part (3.1) is not possible.

5.5.2 Part (3.2): $V C_{1} \cap V Q_{j}\left[v_{j}, t\right] \neq \emptyset$ for some $j \in I$

We may assume that $V C_{1} \cap V Q_{i}\left[v_{i}, t\right] \neq \emptyset$. Observe that this implies that $Q_{i}\left[v_{i}, t\right]$, and therefore $Q_{j}\left[v_{j}, t\right]$ for all $j \in I$, is not contained in any even st-path of $F^{\prime \prime}$, due to (X2).

Hence, $I \subseteq\{1,2,3\}$, and since H^{\prime} is acyclic by Lemma 5.2, it follows that $I=\{2,3\}$.
The following claim easily follows from the acyclicity of H^{\prime}.

Claim 1. Q_{j} is internally vertex-disjoint from Q_{2} and Q_{3}, for $j=1$ and all $4 \leq j \leq m$.

Claim 2. If $m=3$ then $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ has a $\widetilde{K_{5}}$ minor.

Proof of Claim. Suppose that $m=3$ and set $R_{1}:=C_{1}, R_{2}:=Q_{2}, R_{3}:=Q_{3}$ and $R_{4}:=Q_{1}$. For $j \in\{1,2,3\}$, let u_{j} be the closest vertex to s^{\prime} in $V\left(R_{j}\right)-\left\{s, s^{\prime}\right\}$ that also lies on another $R_{i}, i \in\{1,2,3\}-\{j\}$. By the Intersection Lemma there exists $i \in\{1,2,3\}$ such that whenever $u_{i} \in V R_{j}$ then $u_{i}=u_{j}$. Let $J \subseteq\{1,2,3\}$ be the set of all indices j such that $u_{j}=u_{i}$. Note that $i \in J$ and $|J| \geq 2$.

Subclaim 2.1. For each $j \in J$, there exists a minimal cover B_{j} of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|B_{j}-R_{j}\left[s, u_{j}\right]\right|=\tau-3$.

Proof of Subclaim 2.1. Suppose otherwise. Let $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right):=\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right) \backslash R_{j}\left[s^{\prime}, u_{j}\right] / \cup$ $\left(R_{k}\left[s^{\prime}, u_{k}\right]: k \in J, k \neq j\right)$ and $F^{\prime \prime \prime}:=F^{\prime \prime} \backslash R_{j}\left[s^{\prime}, u_{j}\right] / \cup\left(R_{k}\left[s^{\prime}, u_{k}\right]: k \in J, k \neq j\right)$, and now it is easily seen that $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right)$ and $F^{\prime \prime \prime}$ satisfy $(F 1)-(F 5)$. However, this contradicts the minimality of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$.

End of Proof of Subclaim 2.1

We may assume that each $B_{j}, j \in J$ is an internally minimal mate of $R_{j}\left[s, u_{j}\right]$. Observe that Lemma 5.4 implies that each $B_{j}, j \in J$ is a signature.

Subclaim 2.2. There are two internally vertex-disjoint directed paths P and Q in $F^{\prime \prime}$, where Q is from u_{i} to t and P is from s^{\prime} to t.

Proof of Subclaim 2.2. Suppose otherwise. Then by Menger's theorem, there exists a vertex $v \notin\left\{s, s^{\prime}, t\right\}$, whose removal from $F^{\prime \prime}$ leaves no $s^{\prime} t$-dipath behind. So, in particular, $v \in V R_{j}$ for $j \in\{2,3\}$. Observe, further, that the assumption that $V C_{1} \cap V Q_{j}\left[v_{j}, t\right] \neq \emptyset$ for some $j \in I$, implies that $v \in V R_{1}$.

If there exists an $s^{\prime} v$-dipath R^{\prime} in $F^{\prime \prime}$ for which there is no cover B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|B-R^{\prime}-\{\Omega\}\right|=\tau-3$, then delete R^{\prime} and contract all the other $s^{\prime} v$-dipaths in $F^{\prime \prime}$ to get a more minimal instance $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right)$ and $F^{\prime \prime \prime}$, which is not possible.

Otherwise, for evey $s^{\prime} v$-dipath R^{\prime} in $F^{\prime \prime}$, there is a cover B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|B-R^{\prime}-\{\Omega\}\right|=\tau-3$. After applying the Reduction Lemma on $\bigcup_{j=1}^{3} R_{j}[s, v]$, if necessary, we may assume that $\left(R_{j}\left[s^{\prime}, v\right]: 1 \leq j \leq 3\right)$ are pairwise internally vertex-disjoint. For each $1 \leq j \leq 3$, let D_{j} be an internally minimal mate of $R_{j}[s, v]$. (So, in particular, each D_{j} is a cover of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|D_{j}-R_{j}[s, v]\right|=\tau-3$.) Observe that Lemma 5.4 implies that each D_{j} is a signature. By the Shore Lemma, there is a path R in $G^{\prime \prime}\left[U_{1}\right] \backslash \cup\left(D_{j}: 1 \leq j \leq 3\right)$ between s and $V R_{4}$ (note $m=3$). Now applying the $\widetilde{K_{5}}$ Lemma to $\left(R \cup \bigcup_{j=1}^{4} R_{j}\right) / \cup\left(R_{j}[v, t]: 1 \leq j \leq 3\right) /\left(R \cup R_{4}\right)$ gives us a $\widetilde{K_{5}}$ minor, which implies in turn that (G, Σ) has a $\widetilde{K_{5}}$ minor, a contradiction. End of Proof of Subclaim 2.2

So, in particular, $|J|=2$. Let $R_{1}^{\prime}:=P \cup\{\Omega\}$ and let $R_{2}^{\prime}, R_{3}^{\prime}$ be the two paths $R_{j}\left[s, u_{j}\right], j \in J$. For each $1 \leq j \leq 3$, Let D_{j} be an internally minimal mate for R_{j}^{\prime}. (So, in particular, each D_{j} is a cover of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|D_{j}-R_{j}^{\prime}\right|=\tau-3$.) Lemma 5.4 implies that each D_{j} is a signature, and so by the Shore Lemma, there exists a path R in $G^{\prime \prime}\left[U_{1}\right] \backslash \cup\left(D_{j}: 1 \leq j \leq 3\right)$ between s and $V R_{4}$. Now contract the two paths $R_{j}\left[u_{j}, t\right], j \in J$ and apply the $\widetilde{K_{5}}$ Lemma to $\left(R \cup R_{4} \cup R_{1}^{\prime} \cup R_{2}^{\prime} \cup R_{3}^{\prime}\right) /\left(R \cup R_{4}\right)$ to obtain a $\widetilde{K_{5}}$ minor. Hence, $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ contains a $\widetilde{K_{5}}$ minor, and this finishes the proof of Claim 2.

However, (G, Σ) does not contain a $\widetilde{K_{5}}$ minor, and so $m \geq 4$. Set $R_{1}:=C_{1}, R_{2}:=Q_{2}$ and $R_{3}:=Q_{3}$. As above, for $j \in\{1,2,3\}$, let u_{j} be the closest vertex to s^{\prime} in $V\left(R_{j}\right)-\left\{s, s^{\prime}\right\}$ that also lies on another R_{i}. By the Intersection Lemma there exists $i \in\{1,2,3\}$ such that whenever $u_{i} \in V R_{j}$ then $u_{i}=u_{j}$. Let $J \subseteq\{1,2,3\}$ be the set of all indices j such that $u_{j}=u_{i}$. Note that $i \in J$ and $|J| \geq 2$.

Claim 3. For each $j \in J$, there exists a minimal cover B_{j} of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\mid B_{j}-$ $R_{j}\left[s, u_{j}\right] \mid=\tau-3$.

Proof of Claim. Suppose otherwise. Let $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right):=\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right) \backslash R_{j}\left[s^{\prime}, u_{j}\right] / \cup\left(R_{k}\left[s^{\prime}, u_{k}\right]\right.$: $k \in J, k \neq j)$ and $F^{\prime \prime \prime}:=F^{\prime \prime} \backslash R_{j}\left[s^{\prime}, u_{j}\right] / \cup\left(R_{k}\left[s^{\prime}, u_{k}\right]: k \in J, k \neq j\right)$, and now it is easily seen that $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right)$ and $F^{\prime \prime \prime}$ satisfy $(F 1)-(F 5)$. However, this contradicts the minimality of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$.

We may assume that each $B_{j}, j \in J$ is an internally minimal mate of $R_{j}\left[s, u_{j}\right]$. Observe that Lemma 5.4 implies that each $B_{j}, j \in J$ is a signature.

Claim 4. There are two internally vertex-disjoint directed paths P and Q in $F^{\prime \prime}$, where Q is from u_{i} to t and P is from s^{\prime} to t.

Proof of Claim. Suppose otherwise. Then by Menger's theorem, there exists a vertex $v \notin\left\{s, s^{\prime}, t\right\}$, whose removal from $F^{\prime \prime}$ leaves no $s^{\prime} t$-dipath behind. So, in particular, $v \in V R_{j}$ for $j \in\{2,3\}$. Observe, further, that the assumption that $V C_{1} \cap V Q_{j}\left[v_{j}, t\right] \neq \emptyset$ for some $j \in I$, implies that $v \in V R_{1}$.

If there exists an $s^{\prime} v$-dipath R^{\prime} in $F^{\prime \prime}$ for which there is no cover B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|B-R^{\prime}-\{\Omega\}\right|=\tau-3$, then delete R^{\prime} and contract all the other $s^{\prime} v$-dipaths in $F^{\prime \prime}$ to get a more minimal instance $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right)$ and $F^{\prime \prime \prime}$, which is not possible.

Otherwise, for evey $s^{\prime} v$-dipath R^{\prime} in $F^{\prime \prime}$, there is a cover B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|B-R^{\prime}-\{\Omega\}\right|=\tau-3$. After applying the Reduction Lemma on $\bigcup_{j=1}^{3} R_{j}[s, v]$, if necessary, we may assume that $\left(R_{j}\left[s^{\prime}, v\right]: 1 \leq j \leq 3\right)$ are pairwise internally vertex-disjoint. For each $1 \leq j \leq 3$, let D_{j} be an internally minimal mate of $R_{j}[s, v]$. So, in particular, each D_{j} is a cover of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|D_{j}-R_{j}[s, v]\right|=\tau-3$. Observe that Lemma 5.4 implies that each B_{j} is a signature. Now applying the $\widetilde{K_{5}}$ Lemma to $\left(Q_{4} \cup \bigcup_{j=1}^{3} R_{j} / \cup\left(R_{j}[v, t]: 1 \leq j \leq 3\right) / Q_{4}\right.$ gives us a \widetilde{K}_{5} minor, which implies in turn that (G, Σ) has a \widetilde{K}_{5} minor, a contradiction. \diamond

So, in particular, $|J|=2$. Let $R_{1}^{\prime}:=P \cup\{\Omega\}$ and let $R_{2}^{\prime}, R_{3}^{\prime}$ be the two paths $R_{j}\left[s, u_{j}\right], j \in J$. Let D_{j} be an internally minimal mate of R_{j}^{\prime}, for each $1 \leq j \leq 3$. So, in particular, D_{j} is a cover of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|D_{j}-R_{j}^{\prime}\right|=\tau-3$. Lemma 5.4 implies that each D_{j} is a signature. Now contract the two paths $R_{j}\left[u_{j}, t\right], j \in J$ and apply the $\widetilde{K_{5}}$ Lemma to $\left(Q_{4} \cup R_{1}^{\prime} \cup R_{2}^{\prime} \cup R_{3}^{\prime}\right) / Q_{4}$ to obtain a $\widetilde{K_{5}}$ minor. Hence, $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$, and therefore (G, Σ), contains a $\widetilde{K_{5}}$ minor, a contradiction.

As a result, Part (3.2) is not feasible, which is turn implies that Part (3) is not possible.

5.6 Part (4)

The setup for this part is provided in $\S 5.4$. Recall that L_{1}, L_{2}, L_{3} are simple, $\left(H^{\prime} \backslash \Omega, \Sigma^{\prime} \cap\right.$ $E\left(H^{\prime} \backslash \Omega\right)$) is bipartite, and neither of (X1), (X2) hold. The argument for this part is partially similar to that of Part (3). Since (X2) does hold there exists an even st-dipath P in $\left(F^{\prime}, \Sigma^{\prime} \cap E\left(F^{\prime}\right)\right)$ such that $V(P) \cap V\left(C_{1}\right)-U_{1} \neq \emptyset$. In particular, $m \geq 4$. After rerouting $C_{1}, Q_{1}, Q_{2}, \ldots, Q_{m}$, if necessary, we may assume that $P=Q_{4}$. Let $x \in V\left(Q_{4}\right) \cap V\left(C_{1}\right)-U_{1}$
and let $R:=Q_{4}[s, x] \cup C_{1}[x, u]$. Redefine Q_{1}, Q_{4} and $F^{\prime \prime}$ as follows: $Q_{4}:=Q_{1}, Q_{1}:=$ $C_{1}[s, x] \cup Q_{4}[x, t]$, and $F^{\prime \prime}:=\bigcup_{j=1}^{m} Q_{j}$.

Let $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ be a minor of $\left(G^{\prime}, \Sigma^{\prime}\right)$ and let $F^{\prime \prime}$ be a directed graph obtained by orienting edges in a subgraph of G^{\prime}, where $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$ are minimal subject to
(F1) $E\left(G^{\prime}\right)-E\left(G^{\prime \prime}\right) \subseteq E\left(F^{\prime \prime}\left[V-U_{1}\right]\right)$, and $E\left(F^{\prime \prime}\right) \subseteq E\left(F^{\prime}\right)$,
(F2) $F^{\prime \prime}$ is acyclic and there exist m directed paths in $F^{\prime \prime}$ that are disjoint except possibly at Ω, exactly three of which contais $\Omega ; m-1$ of these paths are $s t$-dipaths and the remaining one is a $w t$-dipath,
(F3) for any odd st-dipath P of $F^{\prime \prime}$ such that $V(P) \cap U_{1}=\{s\}$, there exists a signature B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $|B-P|=\tau-3$, and
(F4) there is no cover of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ of size $\tau-2$.
Note that these conditions are satisfied by $\left(G^{\prime}, \Sigma^{\prime}\right)$ and F^{\prime}, so $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$ are welldefined. By identifying a vertex of each component with s, if necessary, we may assume that $G^{\prime \prime}$ is connected. Now let $\left(Q_{j}^{\prime \prime}\right)_{j=1}^{m}$ be m directed paths in $F^{\prime \prime}$ that are pairwise disjoint except possibly at $\Omega, \Omega \in Q_{j}^{\prime \prime}$ if and only if $j \in\{1,2,3\}$, and $Q_{4}^{\prime \prime}$ is a $w t$-dipath. For the sake of notational ease, reset $Q_{j}:=Q_{j}^{\prime \prime}$ for all $1 \leq j \leq m$. Observe that P is an odd st-dipath in $F^{\prime \prime}$ if and only if $\Omega \in P$, since ($H^{\prime} \backslash \Omega, \Sigma^{\prime} \cap E\left(H^{\prime} \backslash \Omega\right)$) is bipartite.

For each Q_{j} other than Q_{4}, let $v_{j} \neq t$ be the closest vertex to t on Q_{j} that also lies on another $Q_{i}, i \in\{1, \ldots, m\}-\{j\}$. Let $v_{4} \neq t$ be the closest vertex to t in $V Q_{4} \cup\{s\}$ that also lies on another $Q_{i}, i \in\{1, \ldots, m\}-\{4\}$. Then by the Intersection Lemma there exists $i \in\{1, \ldots, m\}$ such that whenever $v_{i} \in V Q_{j}$ then $v_{i}=v_{j}$. Let I be the set of all indices $j \in\{1, \ldots, m\}$ such that $v_{j}=v_{i}$. Note that $i \in I$ and $|I| \geq 2$. We may assume $v_{i} \notin U_{1}$ (otherwise, remove all paths $Q_{j}, j \in I$ temporarily and reapply the Intersection Lemma). This implies that $V Q_{j}\left[v_{j}, t\right] \cap U_{1}=\emptyset$ for all $j \in I$.

Claim 1. For each $j \in I, Q_{j}\left[v_{j}, t\right]$ is contained in an odd st-dipath of $\left(F^{\prime \prime}, \Sigma^{\prime \prime} \cap E\left(F^{\prime \prime}\right)\right)$ that intersects U_{1} at only s.

Proof of Claim. Suppose not. Then let $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right):=\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right) / \cup\left(Q_{j}\left[v_{j}, t\right]: j \in I\right)$ and $F^{\prime \prime \prime}:=F^{\prime \prime} / \cup\left(Q_{j}\left[v_{j}, t\right]: j \in I\right)$. Clearly, (F1), (F2) and (F4) still hold for ($G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}$) and $F^{\prime \prime \prime}$. Furthermore, our assumption implies that (F3) also holds, a contradiction to the
minimality of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$.

We may therefore assume that $i=1$.

Claim 2. For each $j \in I$, there exists a minimal cover B_{j} such that $\left|B_{j}-Q_{j}\left[v_{j}, t\right]-\{\Omega\}\right|=$ $\tau-3$.

Proof of Claim. Suppose otherwise. Then there is no cover B such that $\mid B-Q_{i}\left[v_{i}, t\right]-$ $\{\Omega\} \mid=\tau-3$, for some $i \in I$. Then let $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right)=\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right) \backslash Q_{i}\left[v_{i}, t\right] / \cup\left(Q_{j}\left[v_{j}, t\right]: j \in\right.$ $I, j \neq i)$ and $F^{\prime \prime \prime}=F^{\prime \prime} \backslash Q_{i}\left[v_{i}, t\right] / \cup\left(Q_{j}\left[v_{j}, t\right]: j \in I, j \neq i\right)$. Clearly, (F1)-(F3) still hold for ($G^{\prime \prime}, \Sigma^{\prime \prime}$) and $H^{\prime \prime}$. Our assumption implies that (F4) also holds, a contradiction to the minimality of $\left(G^{\prime \prime}, \Sigma^{\prime}\right)$ and $F^{\prime \prime}$.

We may assume that each $B_{j}, j \in I$ is an internally minimal mate of $Q_{j}\left[v_{j}, t\right]$. Observe that each B_{j} is a signature, by Lemma 5.4.

Claim 3. There exists an odd circuit C in $F^{\prime \prime} \cup R$ such that $V C \cap V Q_{j}\left[v_{j}, t\right]-\left\{v_{j}\right\}=\emptyset$ for all $j \in I$.

Proof of Claim. Suppose otherwise. Then
(1) $I \subseteq\{1,2,3,4\}$,
(2) $V R \cap V Q_{i}-\{s\} \subseteq \bigcup_{j \in I} V Q_{j}\left[v_{j}, t\right]-\left\{v_{j}\right\}$, for all $i \in\{1,2,3\}$, and
(3) every odd st-dipath of $F^{\prime \prime}$ is internally vertex-disjoint from Q_{j}, for any $5 \leq j \leq m$.

Moreover, by the definition of R and the existence of x, it follows that $V R \cap V Q_{k}\left[v_{k}, t\right]-$ $\left\{v_{k}\right\} \neq \emptyset$ for some $k \in I$. Choose $y \in V R \cap V Q_{k}\left[v_{k}, t\right]-\left\{v_{k}\right\}$ such that $R[s, y]$ is internally vertex-disjoint from each $Q_{i}, i \in\{1,2,3\}$. Notice that the acyclicity of H^{\prime}, by Lemma 5.2, implies that $I \subseteq\{1,2,3\}$ and that $V Q_{4} \cap V Q_{j}=\{t\}$ for all $j \in I$. Hence, we may assume that $k=1$.

For $j \in\{1,2,3\}$, let u_{j} be the closest vertex to s^{\prime} in $V Q_{j}-\left\{s, s^{\prime}\right\}$ that also lies on another Q_{i}. By the Intersection Lemma there exists $i \in\{1,2,3\}$ such that whenever $u_{i} \in V Q_{j}$, for some $j \in\{1,2,3\}$, then $u_{i}=u_{j}$. Let $J \subseteq\{1,2,3\}$ be the set of all indices j
such that $u_{j}=u_{i}$. Note that $i \in J$ and $|J| \geq 2$.

Subclaim 3.1. For each $j \in J$, there exists a minimal cover B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|B-Q_{j}\left[s, u_{j}\right]\right|=\tau-3$.

Proof of Subclaim 3.1. Suppose otherwise. Let $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right):=\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right) \backslash Q_{j}\left[s^{\prime}, u_{j}\right] / \cup$ $\left(Q_{k}\left[s^{\prime}, u_{k}\right]: k \in J, k \neq j\right)$ and $F^{\prime \prime \prime}:=F^{\prime \prime} \backslash Q_{j}\left[s^{\prime}, u_{j}\right] / \cup\left(Q_{k}\left[s^{\prime}, u_{k}\right]: k \in J, k \neq j\right)$, and now it is easily seen that $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right)$ and $F^{\prime \prime \prime}$ satisfy (F1)-(F4). However, this contradicts the minimality of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$.

End of Proof of Subclaim 3.1

Subclaim 3.2. There are two internally vertex-disjoint directed paths P and Q in $F^{\prime \prime}$, where Q is from u_{i} to t and P is from s^{\prime} to t.

Proof of Subclaim 3.2. Suppose otherwise. Then by Menger's theorem, there exists a vertex $v \notin\left\{s, s^{\prime}, t\right\}$, whose removal from $F^{\prime \prime}$ leaves no $s^{\prime} t$-dipath behind. So, in particular, $v \in V Q_{j}$ for $j \in\{1,2,3\}$.

If there exists an $s^{\prime} v$-dipath R^{\prime} in $F^{\prime \prime}$ for which there is no cover B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|B-R^{\prime}-\{\Omega\}\right|=\tau-3$, then delete R^{\prime} and contract all the other $s^{\prime} v$-dipaths in $F^{\prime \prime}$ to get a more minimal instance $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right)$ and $F^{\prime \prime \prime}$, which is not possible.

Otherwise, for evey $s^{\prime} v$-dipath R^{\prime} in $F^{\prime \prime}$, there is a cover B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|B-R^{\prime}-\{\Omega\}\right|=\tau-3$. After applying the Reduction Lemma on $\bigcup_{j=1}^{3} Q_{j}[s, v]$, if necessary, we may assume that ($Q_{j}\left[s^{\prime}, v\right]: 1 \leq j \leq 3$) are pairwise internally vertex-disjoint. For each $1 \leq j \leq 3$, let D_{j} be an internally minimal mate of $Q_{j}[s, v]$. So, in particular, D_{j} is a cover of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|D_{j}-Q_{j}[s, v]\right|=\tau-3$. Observe that Lemma 5.4 implies that each B_{j} is a signature. Now applying the $\widetilde{K_{5}}$ Lemma to $\left(R[s, y] \cup \bigcup_{j=1}^{3} Q_{j} / \cup\left(Q_{j}[v, t]: 1 \leq j \leq 3\right) / R[s, y]\right.$ gives us a $\widetilde{K_{5}}$ minor, which implies in turn that (G, Σ) has a $\widetilde{K_{5}}$ minor, a contradiction.

End of Proof of Subclaim 3.2

So, in particular, $|J|=2$. By rerouting P or Q, if necessary, we may assume that $Q_{1}\left[v_{1}, t\right] \cap P=Q_{1}\left[v_{1}, t\right] \cap Q=\emptyset$. Let $R_{1}:=P \cup\{\Omega\}$ and let R_{2}, R_{3} be the two paths $Q_{j}\left[s, u_{j}\right], j \in J$. For each $1 \leq j \leq 3$, let D_{j} be an internally minimal mate of R_{j}. So, in particular, D_{j} is a cover of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|D_{j}-R_{j}\right|=\tau-3$. Lemma 5.4 implies that each D_{j} is a signature. Now contract the two paths $Q_{j}\left[u_{j}, t\right], j \in J$ and apply the $\widetilde{K_{5}}$ Lemma to $\left(R[s, y] \cup Q_{1}[y, t] \cup R_{1} \cup R_{2} \cup R_{3}\right) /\left(R[s, y] \cup Q_{1}[y, t]\right)$ to obtain a $\widetilde{K_{5}}$ minor.

Hence, $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$, and therefore (G, Σ), contains a $\widetilde{K_{5}}$ minor, a contradiction. This finishes the proof of Claim 3.

Claim 4. Suppose there exists a path in $G^{\prime \prime}\left[U_{1}\right] \backslash \bigcup_{j \in I} B_{j}$ between s and every connected component of \widetilde{R}. Then $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ contains an F_{7} minor.

Proof of Claim. We will first prove the following.

Subclaim 4.1. There exist two vertex-disjoint paths P and Q in $F^{\prime \prime}$, where Q is between s^{\prime} and v_{1}, and P is between t and either of s, w.

Proof of Subclaim 4.1. We will treat U_{1} as a vertex, and in order to prove the lemma, it suffices to find two vertex-disjoint paths P and Q in $F^{\prime \prime}$, where Q is between s^{\prime} and v_{1}, and P is between t and U_{1}. Suppose for a contradiction that this is not possible. Then the Linkage Lemma implies that $F^{\prime \prime}$ can be obtained as follows:
(L1) place a circuit C on the boundary S^{1} of the unit disc, and the circuit contains the vertices $U_{1}, s^{\prime}, t, v_{1}$ in this cyclic order,
(L2) add vertices to the interior of the disc, and triangulate the resulting graph inside the disc to get K,
(L3) for every facial triangle T, consider an arbitrary graph K_{T} such that $V\left(K_{T}\right) \cap V(K)=$ $V(T)$,
(L4) take the union $K \cup \bigcup_{T} K_{T}$, and delete some edges to get $F^{\prime \prime}$.
Now consider the st-path Q_{1} in the drawing. Observe that s (which is now merged with U_{1}) and t lie on different sides of the path $Q_{1}\left[s^{\prime}, v_{1}\right]$. Consider the set $\Gamma_{Q_{1}}$ of pinned vertices that lie strictly inside the side of $Q_{1}\left[s^{\prime}, v_{1}\right]$ that contains s. As $F^{\prime \prime}$ is acyclic, we may assume that the set $\Gamma_{Q_{1}}$ is minimal over all possible odd $s t$-dipaths Q_{1} in $F^{\prime \prime}$.

Note that every $Q_{j}, j \in\{2, \ldots, m\}$, is an $s t$-path (note s and U_{1} are merged). Thus, for every $j \in\{2, \ldots, m\}$, there exists a pinned vertex u_{j} that lies on both Q_{j} and $Q_{1}\left[s^{\prime}, v_{1}\right]$; we may assume that u_{j} is the closest such vertex to t on Q_{j}. Note that this implies that $u_{i}=v_{i}$ for all $i \in I$.

For each $j \in[m]-\{1\}$ let $R_{j}:=Q_{j}\left[u_{j}, t\right]$ and $S_{j}:=Q_{1}\left[s, u_{j}\right] \cup R_{j}$. For $j \in\{1,2,3\} \cap I$ let $R_{j}:=Q_{j}\left[u_{j}=v_{j}, t\right]$ and $S_{j}:=Q_{1}\left[s, u_{j}=v_{j}\right] \cup R_{j}$, and for $j \in\{1,2,3\}-I$ let $R_{j}:=Q_{j}\left[s^{\prime}, t\right]$
and $S_{j}:=Q_{j}$. By the Mate Lemma and Lemma 5.4, we get that there exists an R_{k} such that $\left|B-R_{k}-\{\Omega\}\right|>\tau-3$, for all covers B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$. Notice that $k \notin I$ and that $k \notin\{1,2,3\}$.

Subclaim 4.1.1. Take an odd st-dipath P in $F^{\prime \prime}$ that has intersection $\{s\}$ with U_{1}. Suppose that $V P \cap V Q_{1}\left[u_{k}, t\right] \neq\{t\}$ and let u be the closest vertex to s on P that lies on $Q_{1}\left[u_{k}, t\right]$. Then there exists a vertex $v \in V P[s, u]$ that lies on R_{k}.

Proof of Subclaim 4.1.1. Suppose otherwise. Then in particular $u \notin V R_{k}=V Q_{k}\left[u_{k}, t\right]$. As $F^{\prime \prime}$ is acyclic it follows that $u \notin V Q_{k}\left[s, u_{k}\right]$, and so $u \notin V Q_{k}$. It is now easily seen that u lies strictly inside the side of Q_{k} which contains v_{1}. As P is odd it follows that $s^{\prime} \in V P$. Consider the subpath $P\left[s^{\prime}, u\right]$ of P. Since s^{\prime} lies on a different side of Q_{k} than that of u, Remark 4.16 implies that $P\left[s^{\prime}, u\right]$ and Q_{k} share a pinned vertex w, say, and suppose that w is the closest such vertex to u. By our hypothesis, $w \notin V R_{k}=V Q_{k}\left[u_{k}, t\right]$. Hence, $w \in V P\left[s, u_{k}\right]-\left\{u_{k}\right\}$. Let w^{\prime} be the closest vertex to w in $P\left[s^{\prime}, w\right]$ that lies on $Q_{1}\left[s^{\prime}, u_{k}\right]$. Then $Q_{1}^{\prime}:=Q_{1}\left[s, w^{\prime}\right] \cup P\left[w^{\prime}, w\right] \cup Q_{k}\left[w, u_{k}\right] \cup Q_{1}\left[u_{k}, t\right]$ contradicts the minimality of Q_{1} as $\Gamma_{Q_{1}^{\prime}} \subseteq \Gamma_{Q_{1}}-\{w\}$. Hence, there exists a vertex $v \in V P[s, u]$ that lies on R_{k}. This finishes the proof of Subclaim 4.1.1.

Now let $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right):=\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right) \backslash R_{k} / Q_{1}\left[u_{k}, t\right]$ and let $F^{\prime \prime \prime}$ be obtained from $F^{\prime \prime} \backslash R_{k} / Q_{1}\left[u_{k}, t\right]$ after deleting all the outgoing arcs at t. We claim that ($G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}$) and $F^{\prime \prime \prime}$ satisfy (F1)(F4), therefore contradicting the minimality of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$. It is clear that (F1) and (F2) hold. The choice of R_{k} implies that (F4) holds as well. Lastly, to show (F3) holds, let Q be an odd st-dipath of $F^{\prime \prime \prime}$. Let P be an st-dipath of $F^{\prime \prime}$ contained in $Q \cup Q_{1}\left[u_{k}, t\right]$. If $P \cap Q_{1}\left[u_{k}, t\right]=\emptyset$ then clearly (F3) holds. Otherwise, define u as in the preceding claim, and find v as found above. Choose B^{\prime} to a cover of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|B^{\prime}-P[s, v]-R_{k}[v, t]\right|=\tau-3$. Then $B^{\prime}-R_{k}$ is a cover of $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right)$ for which $\left|\left(B^{\prime}-R_{k}\right)-Q\right|=\tau-3$. This proves (F3) holds. However, this contradicts the minimality of ($G^{\prime \prime}, \Sigma^{\prime \prime}$) and $F^{\prime \prime}$.

End of Proof of Subclaim 4.1

We are now ready to prove Claim 4. Choose $i \in I-\{1\}$, and let $U \subseteq V-\{s, t\}$ be a minimal vertex subset such that $\delta(U)=B_{1} \triangle B_{i}$. By Lemma 4.2, there exists a shortest path R^{\prime} in $G^{\prime \prime}[U] \backslash B_{1}$ between $V Q_{1}$ and $V Q_{i}$. By the assumption of Claim 4, there exist a path $R^{\prime \prime}$ in $G^{\prime \prime}\left[U_{1}\right] \backslash\left(B_{2} \cup B_{i}\right)$ between s and w. (Note that $\widetilde{R} \cap\left(B_{2} \cup B_{i}\right)=\emptyset$.) It is now easily seen that $C \cup R^{\prime \prime} \cup P \cup Q \cup Q_{1}\left[v_{1}, t\right] \cup Q_{i}\left[v_{i}, t\right] \cup R^{\prime}$ has an F_{7} minor. This concludes the proof of Claim 4.

However, (G, Σ) does not have an F_{7} minor, and so the assumption of Claim 4 cannot be true, i.e.
$(*)$ for a connected component K of \widetilde{R}, there is no path in $G\left[U_{1}\right] \backslash \bigcup_{j \in I} B_{j}$ between s and K.

Observe that the Shore Lemma, together with (*), implies that $m \geq 5$.

Claim 5. There exist vertex disjoint paths P and Q in $F^{\prime \prime}$, where P is between s and t and Q is between s^{\prime} and v_{1}.

Proof of Claim. Suppose for a contradiction that this is not possible. Then the Linkage Lemma implies that $F^{\prime \prime}$ can be obtained as follows:
(L1) place a circuit C on the boundary S^{1} of the unit disc, and the circuit contains the vertices s, s^{\prime}, t, v_{1} in this cyclic order,
(L2) add vertices to the interior of the disc, and triangulate the resulting graph inside the disc to get K,
(L3) for every facial triangle T, consider an arbitrary graph K_{T} such that $V\left(K_{T}\right) \cap V(K)=$ $V(T)$,
(L4) take the union $K \cup \bigcup_{T} K_{T}$, and delete some edges to get $F^{\prime \prime}$.
Now consider the st-path Q_{1} in the drawing. Observe that s and t lie on different sides of the path $Q_{1}\left[s^{\prime}, v_{1}\right]$. Consider the set $\Gamma_{Q_{1}}$ of pinned vertices that lie strictly inside the side of $Q_{1}\left[s^{\prime}, v_{1}\right]$ that contains s. As $F^{\prime \prime}$ is acyclic, we may assume that the set $\Gamma_{Q_{1}}$ is minimal over all possible odd st-dipaths Q_{1} in $F^{\prime \prime}$ that have intersection $\{s\}$ with U_{1}.

Note that every $Q_{j}, j \in\{5, \ldots, m\}$, is an $s t$-path. So for every $j \in\{5, \ldots, m\}$, there exists a pinned vertex u_{j} that lies on both Q_{j} and $Q_{1}\left[s^{\prime}, v_{1}\right]$; we may assume that u_{j} is the closest such vertex to t on Q_{j}. Note that this implies that $u_{i}=v_{i}$ for all $i \in I$. For each $j \in\{5, \ldots, m\}$ let $R_{j}:=Q_{j}\left[u_{j}, t\right]$ and $S_{j}:=Q_{1}\left[s, u_{j}\right] \cup R_{j}$. For $j \in\{1,2,3\} \cap I$ let $R_{j}:=Q_{j}\left[u_{j}=v_{j}, t\right]$ and $S_{j}:=Q_{1}\left[s, u_{j}=v_{j}\right] \cup R_{j}$, and for $j \in\{1,2,3\}-I$ let $R_{j}:=Q_{j}\left[s^{\prime}, t\right]$ and $S_{j}:=Q_{j}$.

By the Shore Lemma, along with $(*)$ and Lemma 5.4, we get that there exists an R_{k} such that $\left|B-R_{k}-\{\Omega\}\right|>\tau-3$, for all covers B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$. Notice that $k \notin I$ and that $k \notin\{1,2,3\}$.

Subclaim 5.1. Take an odd st-dipath P in $F^{\prime \prime}$ that has intersection $\{s\}$ with U_{1}. Suppose that $V P \cap V Q_{1}\left[u_{k}, t\right] \neq\{t\}$ and let u be the closest vertex to s on P that lies on $Q_{1}\left[u_{k}, t\right]$. Then there exists a vertex $v \in V P[s, u]$ that lies on R_{k}.

Proof of Subclaim 5.1. Suppose not. Then in particular $u \notin V R_{k}=V Q_{k}\left[u_{k}, t\right]$. As $F^{\prime \prime}$ is acyclic it follows that $u \notin V Q_{k}\left[s, u_{k}\right]$, and so $u \notin V Q_{k}$. It is now easily seen that u lies strictly inside the side of Q_{k} which contains v_{1}. As P is odd it follows that $s^{\prime} \in V P$. Consider the subpath $P\left[s^{\prime}, u\right]$ of P. Since s^{\prime} lies on a different side of Q_{k} than that of u, Remark 4.16 implies that $P\left[s^{\prime}, u\right]$ and Q_{k} share a pinned vertex w, say, and suppose that w is the closest such vertex to u. By our hypothesis, $w \notin V R_{k}=V Q_{k}\left[u_{k}, t\right]$. Hence, $w \in V P\left[s, u_{k}\right]-\left\{u_{k}\right\}$. Let w^{\prime} be the closest vertex to w in $P\left[s^{\prime}, w\right]$ that lies on $Q_{1}\left[s^{\prime}, u_{k}\right]$. Then $Q_{1}^{\prime}:=Q_{1}\left[s, w^{\prime}\right] \cup P\left[w^{\prime}, w\right] \cup Q_{k}\left[w, u_{k}\right] \cup Q_{1}\left[u_{k}, t\right]$ contradicts the minimality of Q_{1} as $\Gamma_{Q_{1}^{\prime}} \subseteq \Gamma_{Q_{1}}-\{w\}$. Hence, there exists a vertex $v \in V P[s, u]$ that lies on R_{k}. End of Proof of Subclaim 5.1

Now let $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right):=\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right) \backslash R_{k} / Q_{1}\left[u_{k}, t\right]$ and let $F^{\prime \prime \prime}$ be obtained from $F^{\prime \prime} \backslash R_{k} / Q_{1}\left[u_{k}, t\right]$ after deleting all the outgoing arcs at t. We claim that ($G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}$) and $F^{\prime \prime \prime}$ satisfy (F1)(F4), therefore contradicting the minimality of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$. It is clear that (F1) and (F2) hold. The choice of R_{k} implies that (F4) holds as well. Lastly, to show (F3) holds, let Q be an odd st-dipath of $F^{\prime \prime \prime}$. Let P be an st-dipath of $F^{\prime \prime}$ contained in $Q \cup Q_{1}\left[u_{k}, t\right]$. If $P \cap Q_{2}\left[u_{k}, t\right]=\emptyset$ then clearly (F3) holds. Otherwise, define u as in the preceding claim, and find v as found above. Choose B^{\prime} to a cover of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|B^{\prime}-P[s, v]-R_{k}[v, t]\right|=\tau-3$. Then $B^{\prime}-R_{k}$ is a cover of $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right)$ for which $\left|\left(B^{\prime}-R_{k}\right)-Q\right|=\tau-3$. This proves (F3) holds. However, this contradicts the minimality of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$. This finally finishes the proof of Claim 5.

Pick $i \in I-\{1\}$. Recall that the both of B_{1} and B_{i} are signatures. Choose a minimal $U \subseteq V-\{s, t\}$ so that $\delta(U)=B_{1} \triangle B_{i}$. By Lemma 4.2, there exists a shortest path R^{\prime} in $G^{\prime \prime}[U] \backslash B_{1}$ between $V Q_{1}$ and $V Q_{i}$. Observe that $V P \cap V R^{\prime}=V Q \cap V R^{\prime}=V C \cap V R^{\prime}=\emptyset$. It is now easily seen that $C \cup P \cup Q \cup Q_{1}\left[v_{1}, t\right] \cup Q_{i}\left[v_{i}, t\right] \cup R$ has an F_{7} minor. But then (G, Σ) has an F_{7} minor. However, this is not possible, implying that Part (4) is not possible.

5.7 A lemma for Parts (5)-(7)

In this section, we provide a lemma that is frequently referenced in Parts (5)-(7). Recall that at least one of L_{1}, L_{2}, L_{3} is non-simple and whenever $L_{i}, 1 \leq i \leq 3$, is non-simple then $\Omega \in C_{i}$.
Lemma 5.5. Let $P_{j} \in\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$ be an even st-path, and let B be a minimal odd st-walk cover of $\left(G^{\prime}, \Sigma^{\prime}\right)$ such that $\left|B-P_{j}-\{\Omega\}\right|=\tau-3$. Then B cannot be an st-bond.

Proof. After rearranging $P_{1}, P_{2}, \ldots, P_{m}$, if necessary, we may assume that $j \in\{1,2,3\}$. Notice that $B \cap L_{j} \neq \emptyset$ for all $4 \leq j \leq \tau$, and since $\left|B-P_{j}-\{\Omega\}\right|=\tau-3$, it then follows that $B \cap C_{j}=\{\Omega\}$. Therefore, since C_{j} is a circuit and $B \cap C_{j}$ has odd size, it follows that B cannot be an $s t$-bond.

5.8 Part (5)

Recall that all of L_{1}, L_{2}, L_{3} are non-simple, and $\Omega \in C_{1} \cap C_{2} \cap C_{3}$. For this part, we will use the lemma stated in §5.7.

We will first show that $s=t$. Suppose otherwise. Lemma 5.5, together with the Mate Lemma, ensures that there exists $P_{j} \in\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$ for which there is no odd st-walk cover B of $\left(G^{\prime}, \Sigma^{\prime}\right)$ such that $\left|B-P_{j}-\{\Omega\}\right|=\tau-3$. In particular, P_{j} must be an even $s t$-path - due to (M3). After rearranging $P_{1}, P_{2}, P_{3}, \ldots, P_{m}$, if necessary, we may assume that $j=1$. Observe that the minimality of $L_{1}, L_{2}, L_{3}, P_{4}, \ldots, P_{m}$ by (A1) shows that each $C_{i}, 1 \leq i \leq 3$, and each $P_{j}, 1 \leq j \leq m$, are vertex disjoint except at s. Let $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right):=\left(G^{\prime}, \Sigma^{\prime}\right) \backslash P_{1} / \bigcup_{j=2}^{m} P_{j}$ and $H^{\prime \prime}:=H^{\prime} \backslash P_{1} / \bigcup_{j=2}^{m} P_{j}$. Observe that $s=t$ in $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$, and that $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $H^{\prime \prime}$ satisfy all of (M1)-(M4), which is in contradiction with the minimality of $\left(G^{\prime}, \Sigma^{\prime}\right)$ and H^{\prime}.

Thus, $s=t$. Applying the Reduction Lemma, followed by the $\widetilde{K_{5}}$ Lemma, gives us a $\widetilde{K_{5}}$ minor for $\left(G^{\prime}, \Sigma^{\prime}\right)$. But then (G, Σ) has a $\widetilde{K_{5}}$ minor, which is not possible. So Part (5) is not feasible.

5.9 Part (6)

Recall that exactly two, say L_{1} and L_{2}, of L_{1}, L_{2}, L_{3} are non-simple, and $\Omega \in C_{1} \cap C_{2} \cap P_{3}$. For this part, we will use the lemma stated in §5.7.

Claim 1. Each of B_{1}, B_{2} and B_{3} is a signature.

Proof of Claim. Let $i \in\{1,2,3\}$, and take $j \in\{1,2\}-\{i\}$. Notice that $B_{i} \cap C_{j}=\{\Omega\}$, and so B_{i} must be a signature.

Claim 2. $\{\Omega\}$ is a signature for $\left(H^{\prime}, \Sigma^{\prime} \cap E\left(H^{\prime}\right)\right)$.

Proof of Claim. We will prove this by finding a vertex subset $U \subseteq V\left(G^{\prime}\right)-\{s, t\}$ such that $\left(B_{3} \triangle \delta(U)\right) \cap E H^{\prime}=\{\Omega\}$. Let $U \subseteq V P_{3}-\{s, t\}$ be the unique subset for which $P_{3} \cap \delta(U)=P_{3} \cap B_{3}-\{\Omega\}$. We will show that $U \cap V L_{i}=U \cap V P_{j}=\emptyset$ for all $i \in\{1,2\}$ and $4 \leq j \leq m$. Observe that $B_{1} \cap\left(L_{2} \cup P_{3}\right)=\{\Omega\}$, and so $L_{2} \cup P_{3}-\{\Omega\}$ is bipartite, which in turn implies $U \cap V L_{2}=\emptyset$. Similarly, $U \cap V L_{1}=\emptyset$. Furthermore, for all $4 \leq j \leq m$, $B_{1} \cap\left(P_{j} \cup P_{3}\right)=\{\Omega\}$ implying that $P_{j} \cup P_{3}-\{\Omega\}$ is bipartite, and so $U \cap V P_{j}=\emptyset$. Therefore, $\delta(U) \cap E H^{\prime}=\delta(U) \cap P_{3}=B_{3} \cap E H^{\prime}-\{\Omega\}$ and so

$$
\left(B_{3} \triangle \delta(U)\right) \cap E H^{\prime}=\left(B_{3} \cap E H^{\prime}\right) \triangle\left(B_{3} \cap E H^{\prime}-\{\Omega\}\right)=\{\Omega\}
$$

as claimed.

Claim 3. $H^{\prime} \backslash\left(C_{1} \cup C_{2}-\{\Omega\}\right)$ is acyclic.

Proof of Claim. Suppose otherwise, and let C be a directed circuit in $H^{\prime} \backslash\left(C_{1} \cup C_{2}-\{\Omega\}\right)$. Clearly $\Omega \notin C$, and so one can find m pairwise disjoint st-dipaths $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}, \ldots, P_{m}^{\prime}$ in $H^{\prime} \backslash\left(C_{1} \cup C_{2}-\{\Omega\}\right) \backslash C$ such that $\Omega \in P_{3}^{\prime}$. Let $L_{i}^{\prime}:=C_{i} \cup P_{i}^{\prime}$, for $i \in\{1,2\}$, and $L_{3}^{\prime}:=P_{3}^{\prime}$. By Claim 2, each of $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}^{\prime}$ is odd, and that each $P_{j}^{\prime}, 4 \leq j \leq m$, is even. However, this contradicts the minimality of $L_{1}, L_{2}, L_{3}, P_{4}, \ldots, P_{m}$ by (A1).

Claim 4. Every even st-dipath P of Σ^{\prime}-signed subgraph $H^{\prime} \backslash\left(C_{1} \cup C_{2}-\{\Omega\}\right)$ is vertexdisjoint from C_{1} and C_{2} except at s.

Proof of Claim. By rerouting $P_{1}, P_{2}, P_{3}, \ldots, P_{m}$ in $H^{\prime} \backslash\left(C_{1} \cup C_{2}-\{\Omega\}\right)$, if necessary, we may assume that $P=P_{1}$, and it is therefore clear that P and C_{1} are vertex-disjoint except at s. Similarly, P and C_{2} are vertex-disjoint except at s.

Claim 5. For every odd st-dipath P of Σ^{\prime}-signed subgraph $H^{\prime} \backslash\left(C_{1} \cup C_{2}-\{\Omega\}\right)$, there
exists a cover B of $\left(G^{\prime}, \Sigma^{\prime}\right)$ such that $|B-P|=\tau-3$.

Proof of Claim. By rerouting $P_{1}, P_{2}, P_{3}, \ldots, P_{m}$ in $H^{\prime} \backslash\left(C_{1} \cup C_{2}-\{\Omega\}\right)$, if necessary, we may assume that $P=P_{3}$, and by (M3) such B exists.

For each P_{j} let $v_{j} \neq t$ be the closest vertex to t on P_{j} that also lies on another P_{i}, $i \in\{1, \ldots, m\}-\{j\}$. Then by the Intersection Lemma there exists $v_{i} \succeq v_{3}$ such that whenever $v_{i} \in V P_{j}$ then $v_{i}=v_{j}$. Let I be the set of all indices $j \in\{1, \ldots, m\}$ such that $v_{j}=v_{i}$. Note that $i \in I$ and $|I| \geq 2$, and we may assume that $i \neq 3$.

Lemma 5.5, together with the Mate Lemma, implies that there exists $P_{j} \in\left\{P_{1}, \ldots, P_{m}\right\}$ for which there is no cover B such that $\left|B-P_{j}-\{\Omega\}\right|=\tau-3$. By Claim 5 we get that $j \neq 3$. After rerouting P_{1}, \ldots, P_{m} in $H^{\prime} \backslash\left(C_{1} \cup C_{2}-\{\Omega\}\right)$, if necessary, we may assume that $j=1$.

Claim 6. $v_{3} \neq s$.

Proof of Claim. Suppose otherwise. Then, for some $j \in I, P_{j}\left[v_{j}, t\right]$ is not contained in an odd $s t$-path of Σ^{\prime}-signed subgraph $H^{\prime} \backslash\left(C_{1} \cup C_{2}-\{\Omega\}\right)$. Let $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right):=\left(G^{\prime}, \Sigma^{\prime}\right) \backslash P_{1} / P_{2}$ and $H^{\prime \prime}:=H^{\prime} \backslash P_{1} / P_{2}$. Then it is easily seen that (M1) and (M2) are still satisfied by $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $H^{\prime \prime}$. Our choice of P_{1} implies that (M4) also holds, and since $v_{3}=s$, it follows that (M3) holds as well, subsequently contradicting the minimality of $\left(G^{\prime}, \Sigma^{\prime}\right)$ and H^{\prime}. 厄

Observe that Claim 6, together with the fact that $v_{i} \succeq v_{3}$, implies that, for every $j \in I$, $P_{j}\left[v_{j}, t\right]$ is contained in an odd $s t$-dipath of Σ^{\prime}-signed subgraph $H^{\prime} \backslash\left(C_{1} \cup C_{2}-\{\Omega\}\right)$. It also implies that $v_{i} \neq s$, and so $P_{j}\left[v_{j}, t\right]$ is contained in an even st-dipath of Σ^{\prime}-signed subgraph $H^{\prime} \backslash\left(C_{1} \cup C_{2}-\{\Omega\}\right)$, for all $j \in I$, and so it is vertex-disjoint from C_{1} and C_{2}.

Claim 7. For each $j \in I$, there exists a cover B of $\left(G^{\prime}, \Sigma^{\prime}\right)$ such that $\left|B-P_{j}\left[v_{j}, t\right]-\{\Omega\}\right|=$ $\tau-3$.

Proof of Claim. Suppose otherwise. Then, for some $j \in I$, there is no cover B of $\left(G^{\prime}, \Sigma^{\prime}\right)$ such that $\left|B-P_{j}\left[v_{j}, t\right]-\{\Omega\}\right|=\tau-3$. Let $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right):=\left(G^{\prime}, \Sigma^{\prime}\right) \backslash P_{j}\left[v_{j}, t\right] / \cup\left(P_{k}\left[v_{k}, t\right]: k \in\right.$ $I, k \neq j)$ and $H^{\prime \prime}:=H^{\prime} \backslash P_{j}\left[v_{j}, t\right] / \cup\left(P_{k}\left[v_{k}, t\right]: k \in I, k \neq j\right)$. It is now easily seen that (1)-(4) still hold for $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $H^{\prime \prime}$, contradicting the minimality of $\left(G^{\prime}, \Sigma^{\prime}\right)$ and H^{\prime}.

Notice that, as a corollary, $1 \notin I$.

Claim 8. There exists an $s^{\prime} v_{i}$-dipath Q in $H^{\prime} \backslash\left(C_{1} \cup C_{2}-\{\Omega\}\right)$ that is vertex-disjoint from P_{1}.

Proof of Claim. Suppose otherwise. Choose $v \in V P_{1}$ to be the closest vertex to s for which there is a $v v_{i}$-dipath R in $H^{\prime} \backslash\left(C_{1} \cup C_{2}-\{\Omega\}\right)$ with $\Omega \notin R$ and $V R \cap V P_{1}=\{v\}$. Note that $P_{1}[s, v] \cup R \cup P_{i}\left[v_{i}, t\right]$ is an even st-dipath in $H^{\prime} \backslash\left(C_{1} \cup C_{2}-\{\Omega\}\right)$ and so by Claim 4, $V R \cap V C_{1}=V R \cap V C_{2} \subseteq\{s\}$. Now let $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right):=\left(G^{\prime}, \Sigma^{\prime}\right) \backslash P_{1}[v, t] /\left(R \cup P_{i}\left[v_{i}, t\right]\right)$ and $H^{\prime \prime}:=H^{\prime} \backslash P_{1}[v, t] /\left(R \cup P_{i}\left[v_{i}, t\right]\right)$. Clearly, (M1) and (M2) still hold for ($\left.G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $H^{\prime \prime}$. Our choice of P_{1} implies that (M4) holds as well. We will now show that (M3) holds as well.

Let P be an odd $s t$-dipath of $\left(H^{\prime \prime}, \Sigma^{\prime \prime} \cap E\left(H^{\prime \prime}\right)\right)$. Then P is a dipath in H^{\prime} from s to a vertex $w \in\{t\} \cup V R$ and $\Omega \in P$. If $w=t$ then (M3) clearly holds. Otherwise $w \in V R$ and so by our assumption, it follows that $V P\left[s^{\prime}, w\right] \cap V P_{1} \neq \emptyset$. By our choice of v, it follows that $V P\left[s^{\prime}, w\right] \cap V P_{1}[v, t] \neq \emptyset$. Choose $w^{\prime} \in V P\left[s^{\prime}, w\right] \cap V P_{1}[v, t]$, and let B be a cover of $\left(G^{\prime}, \Sigma^{\prime}\right)$ such that $\left|B-\left(P\left[s, w^{\prime}\right] \cup P_{1}\left[w^{\prime}, t\right]\right)\right|=\tau-3$. Let $B^{\prime}:=B-P_{1}\left[w^{\prime}, t\right]$, this is a cover for ($G^{\prime \prime}, \Sigma^{\prime \prime}$) that satisfies $\tau-3 \leq\left|B^{\prime}-P\right| \leq\left|B^{\prime}-P\left[s, w^{\prime}\right]\right|=\tau-3$, and so (M3) holds.

Next let L be a non-simple directed odd st-walk of $H^{\prime \prime}$, and let C and Q be, respectively, the odd directed circuit and the even st-dipath contained in it. If $Q=\emptyset$, following the exact same approach as above on C (rather than P) shows that (M3) holds. Otherwise, C is still an odd directed circuit in H^{\prime} and Q is a dipath in H^{\prime} from s to a vertex $w \in\{t\} \cup V R$ and $\Omega \notin Q$.

If $w=t$ then (M3) clearly holds. Otherwise $w \in V R$ and so by our choice of v, it follows that $V Q[s, w] \cap V P_{1}[v, t] \neq \emptyset$. Choose $w^{\prime} \in V Q[s, w] \cap V P_{1}[v, t]$, and let B be a cover of $\left(G^{\prime}, \Sigma^{\prime}\right)$ such that $\left|B-\left(C \cup Q\left[s, w^{\prime}\right] \cup P_{1}\left[w^{\prime}, t\right]\right)\right|=\tau-3$. Let $B^{\prime}:=B-P_{1}\left[w^{\prime}, t\right]$, this is a cover for $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ that satisfies $\tau-3 \leq\left|B^{\prime}-L\right| \leq\left|B^{\prime}-C \cup Q\left[s, w^{\prime}\right]\right|=\tau-3$, and so (M3) holds.

Thus, (M3) also holds for $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $H^{\prime \prime}$, contradicting the minimality of $\left(G^{\prime}, \Sigma^{\prime}\right)$ and H^{\prime}.

Pick $j \in I-\{i\}$, and choose minimal covers B_{i} and B_{j} such that $\left|B_{i}-P_{i}\left[v_{i}, t\right]-\{\Omega\}\right|=$ $\left|B_{j}-P_{j}\left[v_{j}, t\right]-\{\Omega\}\right|=\tau-3$. Since $B_{i} \cap C_{1}=B_{j} \cap C_{1}=\{\Omega\}$ it follows that both B_{i} and B_{j} are signatures. Choose a minimal $U \subseteq V-\{s, t\}$ so that $\delta(U)=B_{i} \triangle B_{j}$. By Lemma 4.2, there is a shortest path R in $G^{\prime}[U] \backslash B_{i}$ between $V P_{i}$ and $V P_{j}$. Observe that
$V C_{1} \cap U=V P_{1} \cap U=V Q \cap U=\emptyset$. It is now easily seen that $C_{1} \cup Q \cup P_{i}\left[v_{i}, t\right] \cup P_{j}\left[v_{j}, t\right] \cup R \cup P_{1}$ has an F_{7} minor. But then (G, Σ) has an F_{7} minor, which is not possible. Thus, Part (6) is not feasible.

5.10 Part (7)

Recall that exactly one, say L_{1}, of L_{1}, L_{2}, L_{3} is non-simple, and $\Omega \in C_{1} \cap P_{2} \cap P_{3}$. For this part, we will use the lemma stated in $\S 5.7$.

Claim. ($H^{\prime} \backslash \Omega, \Sigma^{\prime} \cap E\left(H^{\prime} \backslash \Omega\right)$) does not contain an odd cycle.

Proof of Claim. Suppose, for a contradiction, that ($H^{\prime} \backslash \Omega, \Sigma^{\prime} \cap E\left(H^{\prime} \backslash \Omega\right)$) does contain an odd cycle. We will yield a contradiction by showing that $\left(G^{\prime}, \Sigma^{\prime}\right)$, and therefore (G, Σ), must have an F_{7} minor. Recall that B_{1}, B_{2}, B_{3} are minimal covers of (G, Σ) such that $\left|B_{j}-L_{j}\right|=\tau-3$, for all $1 \leq j \leq 3$.

Subclaim 1. B_{2} and B_{3} are signatures but, B_{1} is an st-bond.

Proof of Subclaim 1. Observe that, for $i=2,3, B_{i} \cap C_{1}=\{\Omega\}$ and so B_{i} cannot be an st-bond. It remains to show that B_{1} is an $s t$-bond. Suppose otherwise. Observe that, for all $k \in\{1,2,3\}, B_{k} \cap E\left(H^{\prime}\right)=B_{k} \cap L_{k}$, as $B_{k} \cap P_{j}=\emptyset$ for all $j \in\{4, \ldots, m\}$ and $B_{k} \cap L_{i}=\{\Omega\}$ for all $i \in\{1,2,3\}-\{k\}$. Take $j \in\{2,3, \ldots, m\}$ and $k \in\{2,3\}-\{j\}$. Then $B_{k} \cap\left(L_{1} \cup P_{j}-\{\Omega\}\right)=\emptyset$ and so $P_{i} \cup P_{j}-\{\Omega\}$ is bipartite. Since this is true for all $j \in\{2,3, \ldots, m\}$ and since B_{1} is a signature, it follows that $\left(H^{\prime} \backslash \Omega, \Sigma^{\prime} \cap E\left(H^{\prime} \backslash \Omega\right)\right.$) is bipartite, contrary to our assumption.

End of Proof of Subclaim 1

Subclaim 2. $P_{2} \cup P_{3}$ contains an odd cycle, and $L_{1} \cup P_{2}-\{\Omega\}$ and $L_{1} \cup P_{3}-\{\Omega\}$ are bipartite.

Proof of Subclaim 2. Take distinct $i, j \in\{2,3, \ldots, m\}$ such that $\{i, j\} \neq\{2,3\}$. Take $k \in\{2,3\}-\{i, j\}$. Then $B_{k} \cap\left(P_{i} \cup P_{j}-\{\Omega\}\right)=\emptyset$ and $B_{k} \cap\left(L_{1} \cup P_{j}-\{\Omega\}\right)=\emptyset$, because B_{k} is a signature. So $L_{1} \cup P_{j}-\{\Omega\}$ and $P_{i} \cup P_{j}-\{\Omega\}$ are bipartite, for all $i, j \in\{2,3, \ldots, m\}$ such that $\{i, j\} \neq\{2,3\}$. In particular, $L_{1} \cup P_{2}-\{\Omega\}$ and $L_{1} \cup P_{3}-\{\Omega\}$ are bipartite. If
$P_{2} \cup P_{3}$ is also bipartite, then $\left(H^{\prime} \backslash \Omega, \Sigma^{\prime} \cap E\left(H^{\prime} \backslash \Omega\right)\right)$ is bipartite as before, which is not the case. Hence, $P_{2} \cup P_{3}$ contains an odd cycle. End of Proof of Subclaim 2

Subclaim 3. Take two distinct vertices $u, v \in V L_{i} \cap V L_{j}-\{s\}$, for some distinct $i, j \in\{1,2,3\}$. If $u \prec_{L_{i}} v$ but $v \prec_{L_{j}} u$ then $\{i, j\}=\{2,3\}$.

Proof of Subclaim 1.3. Suppose that $u \prec_{L_{i}} v$ but $v \prec_{L_{j}} u$, but $\{i, j\} \neq\{2,3\}$. We assume that $i=2, j=1$ and the other cases such as $i=1, j=3$ or $i=3, j=1$ can be treated similarly. Let $L_{2}^{\prime}:=L_{2}[s, u] \cup L_{1}[u, t]$ and $L_{1}^{\prime}:=L_{1}[s, v] \cup L_{2}[v, t]$, which are connected $\{s, t\}$-joins. Then $L_{2}^{\prime} \cap B_{3}=L_{1}^{\prime} \cap B_{3}=\{\Omega\}$, implying that L_{1}^{\prime} and L_{2}^{\prime} are both odd. However, this contradicts the minimality of $L_{1} \cup L_{2} \cup L_{3} \cup \bigcup_{j=4}^{m} P_{j}$ by (A1). Hence $\{i, j\}=\{2,3\}$.

End of Proof of Subclaim 3

Therefore, $L_{1} \cup L_{i}-\{\Omega\}$ is ayclic, for $i=2,3$. Let $F^{\prime}:=L_{1} \cup L_{2} \cup L_{3}$. Let $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ be a minor of $\left(G^{\prime}, \Sigma^{\prime}\right)$ and let $F^{\prime \prime}$ be a directed graph obtained by orienting edges in a subgraph of G^{\prime}, where $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$ are minimal subject to
(F1) $E\left(G^{\prime}\right)-E\left(G^{\prime \prime}\right) \subseteq E\left(F^{\prime} \backslash \Omega\right)$, and $E\left(F^{\prime \prime}\right) \subseteq L_{1} \cup L_{2} \cup L_{3}$,
(F2) there exist three directed odd $s t$-walks $L_{1}^{\prime \prime}, L_{2}^{\prime \prime}, L_{3}^{\prime \prime}$ in $F^{\prime \prime}$ that are pairwise disjoint except at Ω, where $L_{1}^{\prime \prime}$ is non-simple and $\Omega \in C_{1}^{\prime \prime}$, and $L_{2}^{\prime \prime}, L_{3}^{\prime \prime}$ are simple,
(F3) $L_{1}^{\prime \prime} \cup L_{i}^{\prime \prime}-\{\Omega\}$ is bipartite and acyclic for $i=2,3$, but $L_{2}^{\prime \prime} \cup L_{3}^{\prime \prime}$ contains an odd cycle,
(F4) for any odd st-walk L of $F^{\prime \prime}$ there exists a cover B of ($G^{\prime \prime}, \Sigma^{\prime \prime}$) such that $|B-L|=\tau-3$, and
(F5) there is no cover for $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ of size $\tau-2$.
Note that these conditions are satisfied by $\left(G^{\prime}, \Sigma^{\prime}\right)$ and F^{\prime}, so $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$ are welldefined. We may assume that $F^{\prime \prime}=L_{1}^{\prime \prime} \cup L_{2}^{\prime \prime} \cup L_{3}^{\prime \prime}$. Let $B_{i}^{\prime \prime}$ be a minimal cover of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|B_{i}^{\prime \prime}-L_{i}^{\prime \prime}\right|=\tau-3$, whose existence is guaranteed by (F4). Since $L_{2}^{\prime \prime} \cup P_{3}^{\prime \prime}$ contains an odd cycle, it follows that $B_{1}^{\prime \prime}$ is an st-bond, and since $B_{2}^{\prime \prime} \cap C_{1}^{\prime \prime}=B_{3}^{\prime \prime} \cap C_{1}^{\prime \prime}=\{\Omega\}$, $B_{2}^{\prime \prime}, B_{3}^{\prime \prime}$ are signatures. For the sake of notational ease, reset $L_{i}:=L_{i}^{\prime \prime}$ and $B_{i}:=B_{i}^{\prime \prime}$ for all $1 \leq i \leq 3$.

Choose a minimal vertex subset $U_{23} \in V\left(G^{\prime \prime}\right)-\{s, t\}$ such that $B_{2} \triangle B_{3}=\delta\left(U_{23}\right)$. Since $P_{2} \cup P_{3}$ contains an odd cycle, it follows that $V P_{2} \cap V P_{3} \cap U_{23} \neq \emptyset$.

Subclaim 4. L_{1} is internally vertex-disjoint from P_{2} and P_{3}.

Proof of Subclaim 4. We first show that C_{1} is internally vertex-disjoint from P_{2} and P_{3}. Suppose otherwise. Let $v \neq s^{\prime}, s$ be the closest vertex to s^{\prime} on C_{1} that lies on $P_{2} \cup P_{3}$. We may assume that $v \in V P_{2}$.

We claim that there is an odd cycle in $P_{2} \cup P_{3}$ that avoids $P_{2}[s, v]$. Suppose for a contradiction that this is not the case. Let $y \in V P_{2} \cap V P_{3} \cap U_{23}$. Since every odd cycle intersects $P_{2}\left[s^{\prime}, v\right]$, it follows that $y \in V P_{2}\left[s^{\prime}, v\right]$. Let $C_{1}^{\prime}:=P_{2}[s, v] \cup C_{1}[v, t]$ and $P_{2}^{\prime}:=C_{1}[s, v] \cup P_{2}[v, t]$. Let $C:=C_{1}^{\prime}\left[s^{\prime}, y\right] \cup P_{3}\left[s^{\prime}, y\right]$, which is an odd cycle in $C_{1}^{\prime} \cup P_{3}-\{\Omega\}$. Notice that C_{1}^{\prime} is an odd circuit and P_{2}^{\prime} is an odd st-dipath in $F^{\prime \prime}$. Hence, by (F4) there is a cover B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|B-P_{2}^{\prime}\right|=\tau-3$. Then $B \cap\left(C_{1}^{\prime} \cup P_{3}\right)=\{\Omega\}$, and so B must be a signature as $B \cap C_{1}^{\prime}=\{\Omega\}$. But $B \cap\left(C_{1}^{\prime} \cup P_{3}\right)=\{\Omega\}$, implying that $B \cap C=\emptyset$, a contradiction since C is odd. Hence, there is an odd cycle in $P_{2} \cup P_{3}$ that avoids $P_{2}[s, v]$.

Observe that if there is a cover B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|B-P_{2}[s, v]\right|=\tau-3$, then B must be an st-cut, since there is an odd cycle of $F^{\prime \prime}$ avoiding $P_{2}[s, v]$, a contradiction to Lemma 5.5. Therefore, there is no cover B of ($G^{\prime \prime}, \Sigma^{\prime \prime}$) such that $\left|B-P_{2}[s, v]\right|=\tau-3$. Let $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right):=\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right) \backslash P_{2}\left[s^{\prime}, v\right] / C_{1}\left[s^{\prime}, v\right]$ and $F^{\prime \prime \prime}:=F^{\prime \prime} \backslash P_{2}\left[s^{\prime}, v\right] / C_{1}\left[s^{\prime}, v\right]$. It is easily seen that (F1),(F2) and (F4) hold for ($G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}$) and $F^{\prime \prime \prime}$. We just showed that (F5) holds as well. Moreover, since there is an odd cycle in $P_{2} \cup P_{3}$ avoiding $P_{2}[s, v]$ (and L_{1}), it follows that (F3) holds as well for $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right)$ and $F^{\prime \prime \prime}$, contradicting the minimality of ($G^{\prime \prime}, \Sigma^{\prime \prime}$) and $F^{\prime \prime}$. Thus, C_{1} is internally vertex-disjoint from P_{2} and P_{3}.

We next show that P_{1} is internally vertex-disjoint from P_{2} and P_{3}. Suppose otherwise. Let $u \neq t$ be the closest vertex to t on P_{1} that lies on $P_{2} \cup P_{3}$. We may assume that $u \in V P_{2}$.

We claim that there is an odd cycle in $P_{2} \cup P_{3}$ that avoids $P_{2}[u, t]$. Suppose for a contradiction that this is not the case. Let $y \in V P_{2} \cap V P_{3} \cap U_{23}$. Since every odd cycle intersects $P_{2}[u, t]$, it follows that $y \in V P_{2}[u, t]$. Let $P_{1}^{\prime}:=P_{1}[s, u] \cup P_{2}[u, t]$ and $P_{2}^{\prime}:=P_{2}[s, u] \cup P_{1}[u, t]$. Let $C:=P_{1}^{\prime}[y, t] \cup P_{3}[y, t]$, which is an odd cycle in $P_{1}^{\prime} \cup P_{3}-\{\Omega\}$. Notice that P_{2}^{\prime} is an odd st-dipath in $F^{\prime \prime}$, so by (F4) there is a cover B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|B-P_{2}^{\prime}\right|=\tau-3$. Then $B \cap\left(C_{1} \cup P_{1}^{\prime} \cup P_{3}\right)=\{\Omega\}$, and so B must be a signature as $B \cap C_{1}^{\prime}=\{\Omega\}$. But $B \cap\left(P_{1}^{\prime} \cup P_{3}\right)=\{\Omega\}$, implying that $B \cap C=\emptyset$, a contradiction since C is odd. Hence, there is an odd cycle in $P_{2} \cup P_{3}$ that avoids $P_{2}[u, t]$.

Observe that if there is a cover B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|B-P_{2}[u, t]-\{\Omega\}\right|=\tau-3$, then B must be an st-cut, since there is an odd cycle of $P_{2} \cup P_{3}$ avoiding $P_{2}[u, t]$, a contradiction to Lemma 5.5. Therefore, there is no cover B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|B-P_{2}[u, t]-\{\Omega\}\right|=\tau-3$. Let $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right):=\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right) \backslash P_{2}[u, t] / P_{1}[u, t]$ and $F^{\prime \prime \prime}:=F^{\prime \prime} \backslash P_{2}[u, t] / P_{1}[u, t]$. It is easily seen
that (F1),(F2) and (F4) hold for ($G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}$) and $F^{\prime \prime \prime}$. We just showed that (F5) holds as well. Moreover, since there is an odd cycle in $P_{2} \cup P_{3}$ avoiding $P_{2}[s, v]$, it follows that (F3) holds as well for ($G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}$) and $F^{\prime \prime \prime}$, contradicting the minimality of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$. Thus, P_{1} is internally vertex-disjoint from P_{2} and P_{3}.

Thus, L_{1} is internally vertex-disjoint from P_{2} and P_{3}, as claimed.
End of Proof of Subclaim 4

Subclaim 5. If there is a directed circuit C in $P_{2} \cup P_{3}$ then C is even.

Proof of Subclaim 5. Suppose otherwise. Decompose $P_{2} \cup P_{3} \backslash C$ into the union of two $\{s, t\}$-joins P_{2}^{\prime} and L_{3}^{\prime}. We may assume that P_{2}^{\prime} is even and L_{3}^{\prime} is odd. Let $L_{2}^{\prime}:=C \cup P_{2}^{\prime}$, which is a non-simple odd $\{s, t\}$-join. But then $\Omega \in C_{1}$ but $\Omega \notin C$, a contradiction to Lemma 4.5.

End of Proof of Subclaim 5

After contracting all the directed even circuits in $P_{2} \cup P_{3}$, it is easily seen that $L_{1} \cup P_{2} \cup P_{3}$ has an F_{7} minor. But then (G, Σ) has an F_{7} minor, a contradiction. This finishes the proof of Claim.

Observe that Claim implies that
(*) $H^{\prime} \backslash \Omega$ is acyclic.
Suppose otherwise, and let C be a directed circuit in $H^{\prime} \backslash \Omega$. Then one can find m stdipaths $P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}, \ldots, P_{m}^{\prime}$ and a directed circuit C_{1}^{\prime} in $H^{\prime} \backslash C$ that are pairwise disjoint except possibly at Ω, and where $\Omega \in C_{1}^{\prime} \cap P_{2}^{\prime} \cap P_{3}^{\prime}$ and $\Omega \notin P_{1}^{\prime} \cup P_{4}^{\prime} \cup P_{5}^{\prime} \cup \cdots \cup P_{m}^{\prime}$. However, Claim implies that $L_{1}^{\prime}:=C_{1}^{\prime} \cup P_{1}^{\prime}, L_{2}^{\prime}:=P_{2}^{\prime}, L_{3}^{\prime}:=P_{3}^{\prime}$ are directed odd $s t$-walks, and $P_{4}^{\prime}, \ldots, P_{m}^{\prime}$ are even $s t$-dipaths, contradicting the minimality of $L_{1}, L_{2}, L_{3}, P_{4}, \ldots, P_{m}$ given by (A1).

Notice that (*) implies that
(a) every even st-dipath Q in $H^{\prime} \backslash\left(C_{1}-\{\Omega\}\right)$ is vertex-disjoint from C_{1} except at s, and
(b) for every odd st-dipath P in $H^{\prime} \backslash\left(C_{1}-\{\Omega\}\right)$, there exists a cover B of $\left(G^{\prime}, \Sigma^{\prime}\right)$ such that $|B-P|=\tau-3$.

To see (a), by rerouting $P_{1}, P_{2}, P_{3}, \ldots, P_{m}$ in $H^{\prime} \backslash\left(C_{1}-\{\Omega\}\right)$, if necessary, we may assume that $Q=P_{1}$, and it is therefore clear that Q and C_{1} are vertex-disjoint except at s. To see (b), by rerouting $P_{1}, P_{2}, P_{3}, \ldots, P_{m}$ in $H^{\prime} \backslash\left(C_{1}-\{\Omega\}\right)$, if necessary, we may assume that $P=P_{2}$, and by (M3) such B exists.

For each $P_{j}, 1 \leq j \leq m$, let $v_{j} \neq t$ be the closest vertex to t on P_{j} that also lies on another $P_{i}, i \in\{1, \ldots, m\}-\{j\}$. Then by the Intersection Lemma there exists $v_{i} \succeq v_{3}$ such that whenever $v_{i} \in V P_{j}$ then $v_{i}=v_{j}$. Let I be the set of all indices $j \in\{1, \ldots, m\}$ such that $v_{j}=v_{i}$. Note that $i \in I$ and $|I| \geq 2$. We may assume that $i \neq 1$. There are two possibilities based on whether or not $V C_{1} \cap V P_{j}\left[v_{j}, t\right]=\emptyset$ for all $j \in I$.

5.10.1 Part (7.1): $V C_{1} \cap V P_{j}\left[v_{j}, t\right]=\emptyset$ for all $j \in I$

Observe that since $v_{i} \succeq v_{3}$ and $v_{3} \neq s$, it follows that, for every $j \in I, P_{j}\left[v_{j}, t\right]$ is contained in an odd $s t$-dipath of $H^{\prime} \backslash\left(C_{1}-\{\Omega\}\right)$.

Claim 1. For each $j \in I$, there exists a cover B of $\left(G^{\prime}, \Sigma^{\prime}\right)$ such that $\left|B-P_{j}\left[v_{j}, t\right]-\{\Omega\}\right|=$ $\tau-3$.

Proof of Claim. Suppose otherwise. Then, for some $j \in I$, there is no cover B of $\left(G^{\prime}, \Sigma^{\prime}\right)$ such that $\left|B-P_{j}\left[v_{j}, t\right]-\{\Omega\}\right|=\tau-3$. Let $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right):=\left(G^{\prime}, \Sigma^{\prime}\right) \backslash P_{j}\left[v_{j}, t\right] / \cup\left(P_{k}\left[v_{k}, t\right]: k \in\right.$ $I, k \neq j)$ and $H^{\prime \prime}:=H^{\prime} \backslash P_{j}\left[v_{j}, t\right] / \cup\left(P_{k}\left[v_{k}, t\right]: k \in I, k \neq j\right)$. It is now easily seen that (M1) and (M2) still hold for ($G^{\prime \prime}, \Sigma^{\prime \prime}$) and $H^{\prime \prime}$. By our assumption, (M4) holds as well, and since $V C_{1} \cap V P_{j}\left[v_{j}, t\right]=\emptyset$ for all $j \in I$, it follows that (M3) also holds, contradicting the minimality of $\left(G^{\prime}, \Sigma^{\prime}\right)$ and H^{\prime}.

Lemma 5.5, together with the Mate Lemma, implies that there exists $P_{j} \in\left\{P_{1}, \ldots, P_{m}\right\}$ for which there is no cover B such that $\left|B-P_{j}-\{\Omega\}\right|=\tau-3$. By (b) and Claim 1, we get that $j \notin\{2,3\} \cup I$. After rerouting P_{1}, \ldots, P_{m} in $H^{\prime} \backslash\left(C_{1}-\{\Omega\}\right)$, if necessary, we may assume that $j=1$.

Claim 2. There exists an $s^{\prime} v_{i}$-dipath Q in $H^{\prime} \backslash\left(C_{1}-\{\Omega\}\right)$ that is vertex-disjoint from P_{1}.

Proof of Claim. Suppose otherwise. Choose $v \in V P_{1}$ to be the closest vertex to s for which there is a $v v_{i}$-dipath R in $H^{\prime} \backslash\left(C_{1}-\{\Omega\}\right)$ with $\Omega \notin R$ and $V R \cap V P_{1}=\{v\}$. Note that $P_{1}[s, v] \cup R \cup P_{i}\left[v_{i}, t\right]$ is an even st-dipath in $H^{\prime} \backslash\left(C_{1}-\{\Omega\}\right)$ and so by (a), $V R \cap V C_{1} \subseteq\{s\}$.

Now let $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right):=\left(G^{\prime}, \Sigma^{\prime}\right) \backslash P_{1}[v, t] /\left(R \cup P_{i}\left[v_{i}, t\right]\right)$ and $H^{\prime \prime}:=H^{\prime} \backslash P_{1}[v, t] /\left(R \cup P_{i}\left[v_{i}, t\right]\right)$. Clearly, (M1) and (M2) still hold for ($G^{\prime \prime}, \Sigma^{\prime \prime}$) and $H^{\prime \prime}$. Our choice of P_{1} implies that (M4) holds as well. We will now show that (M3) holds as well.

Let P be an odd $s t$-dipath of $H^{\prime \prime}$. Then P is a dipath in H^{\prime} from s to a vertex $w \in\{t\} \cup V R$ and $\Omega \in P$. If $w=t$ then (M3) clearly holds. Otherwise $w \in V R$ and so by our assumption, it follows that $V P\left[s^{\prime}, w\right] \cap V P_{1} \neq \emptyset$. By our choice of v, it follows that $V P\left[s^{\prime}, w\right] \cap V P_{1}[v, t] \neq \emptyset$. Choose $w^{\prime} \in V P\left[s^{\prime}, w\right] \cap V P_{1}[v, t]$, and let B be a cover of $\left(G^{\prime}, \Sigma^{\prime}\right)$ such that $\left|B-\left(P\left[s, w^{\prime}\right] \cup P_{1}\left[w^{\prime}, t\right]\right)\right|=\tau-3$. Let $B^{\prime}:=B-P_{1}\left[w^{\prime}, t\right]$, this is a cover for ($G^{\prime \prime}, \Sigma^{\prime \prime}$) that satisfies $\tau-3 \leq\left|B^{\prime}-P\right| \leq\left|B^{\prime}-P\left[s, w^{\prime}\right]\right|=\tau-3$, and so (M3) holds.

Next let L be a non-simple directed odd st-walk of $H^{\prime \prime}$, and let C and Q be, respectively, the odd directed circuit and the even st-dipath contained in it. If $Q=\emptyset$, following the exact same approach as above on C (rather than P) shows that (M3) holds. Otherwise, C is still an odd directed circuit in H^{\prime} and Q is a dipath in H^{\prime} from s to a vertex $w \in\{t\} \cup V R$ and $\Omega \notin Q$.

If $w=t$ then (M3) clearly holds. Otherwise $w \in V R$ and so by our choice of v, it follows that $V Q[s, w] \cap V P_{1}[v, t] \neq \emptyset$. Choose $w^{\prime} \in V Q[s, w] \cap V P_{1}[v, t]$, and let B be a cover of $\left(G^{\prime}, \Sigma^{\prime}\right)$ such that $\left|B-\left(C \cup Q\left[s, w^{\prime}\right] \cup P_{1}\left[w^{\prime}, t\right]\right)\right|=\tau-3$. Let $B^{\prime}:=B-P_{1}\left[w^{\prime}, t\right]$, this is a cover for $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ that satisfies $\tau-3 \leq\left|B^{\prime}-L\right| \leq\left|B^{\prime}-C \cup Q\left[s, w^{\prime}\right]\right|=\tau-3$, and so (M3) holds.

Thus, (M3) also holds for $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $H^{\prime \prime}$, contradicting the minimality of $\left(G^{\prime}, \Sigma^{\prime}\right)$ and H^{\prime}.

Pick $j \in I-\{i\}$, and choose minimal covers B_{i} and B_{j} such that $\left|B_{i}-P_{i}\left[v_{i}, t\right]-\{\Omega\}\right|=$ $\left|B_{j}-P_{j}\left[v_{j}, t\right]-\{\Omega\}\right|=\tau-3$. Since $B_{i} \cap C_{1}=B_{j} \cap C_{1}=\{\Omega\}$ it follows that both B_{i} and B_{j} are signatures. Choose a minimal $U \subseteq V-\{s, t\}$ so that $\delta(U)=B_{i} \triangle B_{j}$. Then by Lemma 4.2, there exists a shortest path R in $G^{\prime}[U] \backslash B_{i}$ between $V P_{i}$ and $V P_{j}$. Observe that $V C_{1} \cap U=V P_{1} \cap U=V Q \cap U=\emptyset$. It is now easily seen that $C_{1} \cup Q \cup P_{i}\left[v_{i}, t\right] \cup P_{j}\left[v_{j}, t\right] \cup R \cup P_{1}$ has an F_{7} minor. But then (G, Σ) has an F_{7} minor, which is not possible. Hence, Part (7.1) is not possible.

5.10.2 Part (7.2): $V C_{1} \cap V P_{j}\left[v_{j}, t\right] \neq \emptyset$ for some $j \in I$

We may assume that $V C_{1} \cap V P_{i}\left[v_{i}, t\right] \neq \emptyset$. Therefore, (a) implies that $P_{i}\left[v_{i}, t\right]$, and so every $P_{j}\left[v_{j}, t\right](j \in I)$, is not contained in any even st-dipath of $H^{\prime} \backslash\left(C_{1}-\{\Omega\}\right)$. Hence, $I=\{2,3\}$ and $V P_{j} \cap V P_{k}=\{s, t\}$ for all $j \in[m]-\{2,3\}$ and $k \in\{2,3\}$. Let F^{\prime} be the signed subgraph of H^{\prime} induced by $L_{1} \cup L_{2} \cup L_{3}$.

Let $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ be a minor of $\left(G^{\prime}, \Sigma^{\prime}\right)$ and let $F^{\prime \prime}$ be a directed graph obtained by orienting edges in a subgraph of $G^{\prime \prime}$, where $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$ are minimal subject to
(F1) $E\left(G^{\prime}\right)-E\left(G^{\prime \prime}\right) \subseteq E\left(F^{\prime}\right)-\left(P_{1} \cup \delta(s)\right)$, and $E\left(F^{\prime \prime}\right) \subseteq E\left(F^{\prime}\right)$,
(F2) $F^{\prime \prime} \backslash \Omega$ is acyclic, and there exist three pairwise disjoint $s^{\prime} t$-dipaths in $F^{\prime \prime}$, exactly one of which uses s,
(F3) for any $s^{\prime} t$-dipath Q of $F^{\prime \prime}$ that avoids s, there exists a cover B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $|B-Q-\{\Omega\}|=\tau-3$, and
(F4) there is no cover for $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ of size $\tau-2$.
Note that these conditions are satisfied by $\left(G^{\prime}, \Sigma^{\prime}\right)$ and F^{\prime}, so $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$ are welldefined. By identifying a vertex of each component with s, if necessary, we may assume that $G^{\prime \prime}$ is connected. Now let $\left(Q_{j}\right)_{j=1}^{3}$ be pairwise disjoint $s^{\prime} t$-dipaths in $F^{\prime \prime}$, as in (F2), such that $s \in V Q_{j}$ if and only if $j=1$. Note that $P_{1} \subsetneq Q_{1}, Q_{j} \cup\{\Omega\}$ is an odd st-path for $j=2,3$, and $Q_{1} \cup\{\Omega\}$ is a non-simple odd st-walk (note it is possible that $t \in V Q_{1}$). We may assume that $F^{\prime \prime} \backslash \Omega=\bigcup_{j=1}^{3} Q_{j}$. Notice $\left(F^{\prime \prime} \backslash \Omega, \Sigma^{\prime \prime} \cap E\left(F^{\prime \prime} \backslash \Omega\right)\right.$) is bipartite.

Claim 1. Let P be an odd st-dipath of $F^{\prime \prime}$, and let B be a cover of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $|B-P|=\tau-3$. Then B is a signature.

Proof of Claim. Since $F^{\prime \prime} \backslash \Omega$ is acyclic, we may assume that $P=Q_{2}$, and so since $B \cap\left(\{\Omega\} \cup Q_{1}\left[s^{\prime}, s\right]\right)=\{\Omega\}$, it follows that B is a signature.

For each Q_{j} let $v_{j} \neq s^{\prime}$ be the closest vertex to s^{\prime} on Q_{j} that also lies on another Q_{i}, $i \in\{1,2,3\}-\{j\}$. Then by the Intersection Lemma, there exists $i \in\{1,2,3\}$ such that whenever $v_{i} \in V Q_{j}$ then $v_{i}=v_{j}$. Let I be the set of all indices j in $\{1,2,3\}$ such that $v_{j}=v_{i}$. Note that $i \in I$ and $|I| \geq 2$.

Claim 2. There exist internally vertex-disjoint paths Q and R in $F^{\prime \prime}$ that do not use s, and where Q is an $s^{\prime} t$-dipath and R is a $v_{i} t$-dipath.

Proof of Claim. Suppose otherwise. Then there exists a vertex v in $F^{\prime \prime}$ for which there is no $s^{\prime} t$-dipath in $F^{\prime \prime}-\{s, v\}$. In particular, $v \in V Q_{2} \cap V Q_{3}$.

In the first case, assume that $v \in V Q_{1}$. If there exists an $s^{\prime} v$-dipath R^{\prime} in $F^{\prime \prime}$ for which there is no cover B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|B-R^{\prime}-\{\Omega\}\right|=\tau-3$, then delete R^{\prime} and contract all the other $s^{\prime} v$-dipaths in $F^{\prime \prime}$ to get $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right)$ and $F^{\prime \prime \prime}$ that satisfy all of (F1)-(F4), which is not possible by the minimality of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$. Otherwise, contract all the $v t$-dipaths in $F^{\prime \prime}$, and then apply the $\widetilde{K_{5}}$ Lemma on $\left(\{\Omega\} \cup P_{1} \cup\left(Q_{i}\left[s^{\prime}, v\right]: i \in[3]\right)\right) / P_{1}$ to obtain a $\widetilde{K_{5}}$ minor, which cannot be the case since (G, Σ) has no such minor.

Hence, $v \notin V Q_{1}$. Then $\left(V Q_{2}[v, t] \cup V Q_{3}[v, t]\right) \cap V Q_{1}\left[s^{\prime}, s\right]=\emptyset$. If there exists a $v t$ dipath R^{\prime} in $F^{\prime \prime}$ for which there is no cover B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|B-R^{\prime}-\{\Omega\}\right|=\tau-3$, then delete R^{\prime} and contract all the other vt-dipaths in $F^{\prime \prime}$ to get ($G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}$) and $F^{\prime \prime \prime}$ that satisfy all of (F1)-(F4), which is not possible by the minimality of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$.

Otherwise, for $i=2,3$, let B_{i} be a cover of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|B_{i}-Q_{i}[v, t]-\{\Omega\}\right|=\tau-3$. By Claim 1, both B_{2} and B_{3} are signatures. Let $U \subseteq V\left(G^{\prime \prime}\right)-\{s, t\}$ be a minimal subset such that $\delta(U)=B_{2} \triangle B_{3}$, and let R be a shortest path in $G^{\prime \prime}[U] \backslash B_{3}$ between $V Q_{2}$ and $V Q_{3}$. Note that $V Q_{1} \cap U=\emptyset$. Now it is easily seen that $\{\Omega\} \cup Q_{1} \cup Q_{2} \cup Q_{3}[v, t] \cup R$ has an F_{7} minor, a contradiction since (G, Σ) has no such minor.

Therefore, in particular, $|I|=2$.

Claim 3. For each $j \in I$, there exists a cover B of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ such that $\left|B-Q_{j}\left[s^{\prime}, v_{j}\right]-\{\Omega\}\right|=$ $\tau-3$.

Proof of Claim. If not, delete $Q_{j}\left[s^{\prime}, v_{j}\right]$ and contract the other path $Q_{k}\left[s^{\prime}, v_{k}\right], k \in I-\{j\}$, to get $\left(G^{\prime \prime \prime}, \Sigma^{\prime \prime \prime}\right)$ and $F^{\prime \prime \prime}$ that satisfy all of (F1)-(F4), a contradiction to the minimality of $\left(G^{\prime \prime}, \Sigma^{\prime \prime}\right)$ and $F^{\prime \prime}$.

Now apply the $\widetilde{K_{5}}$ Lemma to $\left(\{\Omega\} \cup P_{1} \cup Q \cup R \cup\left(Q_{i}\left[v_{i}, t\right]: i \in I\right)\right) /\left(R \cup P_{1}\right)$ to obtain a $\widetilde{K_{5}}$ minor, a contradiction since (G, Σ) has no such minor. Hence, Part (7.2), and therefore Part (7), is not possible.

5.11 Part (8)

Recall that at least two, say L_{1} and L_{2}, of L_{1}, L_{2}, L_{3} are non-simple, and $\Omega \in P_{1} \cap P_{2} \cap P_{3}$. We will finish off the proof by showing that $\left(G^{\prime}, \Sigma^{\prime}\right)$, and therefore (G, Σ), contains an F_{7} minor. Observe that all of B_{1}, B_{2} and B_{3} are $s t$-bonds. Indeed, take $B_{i} \in\left\{B_{1}, B_{2}, B_{3}\right\}$,
and choose $j \in\{1,2\}-\{i\}$. Then $B_{i} \cap L_{j}=\{\Omega\}$ and so, since $\Omega \notin C_{j}$, it follows that $B_{i} \cap C_{j}=\emptyset$. However, C_{j} is an odd circuit, and so B_{i} cannot be a signature.

We now abandon our earlier criterion for the choice of B_{i} being minimal, and we assume instead that, for every $i \in\{1,2,3\}$,
$(*) B_{i}=\delta\left(U_{i}\right)$ is an st-cut such that $\left|B_{i}-L_{i}\right|=\tau-3$, and $U_{i} \subseteq V-\{t\}$ is minimal among all possible choices of B_{i}. In other words, B_{i} is shorewise minimal.

Claim 1. For all $i \in\{1,2,3\}, G^{\prime \prime}\left[U_{i}\right]$ is connected.

Proof of Claim. Suppose otherwise. Then there exists a vertex subset $U \subseteq U_{i}-\{s\}$ for which $\delta(U) \subseteq \delta\left(U_{i}\right)$. Let $B:=B_{i} \triangle \delta(U)=\delta\left(U_{i} \triangle U\right)=\delta\left(U_{i}-U\right)$, which is another st-cut for which $\left|B-L_{i}\right|=\tau-3$, contradicting the shorewise minimality of B_{i}.

Claim 2. Whenever L_{i} is non-simple, for some $i \in\{1,2,3\}$, then $P_{i} \cap B_{i}=\{\Omega\}$.

Proof of Claim. Suppose that L_{i} is non-simple for some $i \in\{1,2,3\}$. We may assume that $i=1$. Suppose, for a contradiction, that $\{\Omega\} \subsetneq P_{1} \cap B_{1}$. By (M4') there exists a cover B such that $\left|B-C_{1}-P_{2}\right|=\tau-3$. Since $B \cap C_{2}=\emptyset$, it follows that B is an st-cut. So $B=\delta(U)$ for some $U \subseteq V-\{t\}$. Note that $U_{1} \nsubseteq U$ since $P_{1} \cap \delta\left(U_{1}\right) \supsetneq\{\Omega\}$ but $P_{1} \cap \delta(U)=\{\Omega\}$. Now let $U_{1}^{\prime}:=U_{1} \cap U \subsetneq U_{1}$, and let $B_{1}^{\prime}:=\delta\left(U_{1}^{\prime}\right)$. We claim that $\left|B_{1}^{\prime}-L_{1}\right|=\tau-3$, and this will contradict the shorewise minimality of B_{1}.

Observe first that $B_{1}^{\prime} \subseteq B_{1} \cup B$. For any $L_{r} \in\left\{L_{3}, L_{4}, \ldots, L_{\tau}\right\}$, we know that $\left|B_{1}^{\prime} \cap L_{r}\right| \leq\left|B_{1} \cap L_{r}\right|+\left|B \cap L_{r}\right|=2$ and since $\left|B_{1}^{\prime} \cap L_{r}\right|$ is odd, it follows that $\left|B_{1}^{\prime} \cap L_{r}\right|=1$. Moreover, $B_{1}^{\prime} \cap C_{2} \subseteq\left(B_{1} \cap C_{2}\right) \cup\left(B \cap C_{2}\right)=\emptyset$ and so $B_{1}^{\prime} \cap C_{2}=\emptyset$. Since $U_{1}^{\prime} \subsetneq U_{1}$ and $\delta\left(U_{1}\right) \cap P_{2}=\{\Omega\}$, it follows that $B_{1}^{\prime} \cap P_{2}=\{\Omega\}$. Combining the two equalities yields $B_{1}^{\prime} \cap L_{2}=\{\Omega\}$. Hence, since $B_{1}^{\prime} \subseteq B \cup B_{1} \cup \bigcup_{j=1}^{\tau} L_{j}$, it follows that $\left|B-L_{1}\right|=\tau-3$, as claimed, but this contradicts the shorewise minimality of B_{1}. Hence, $P_{i} \cap B_{i}=\{\Omega\}$ whenever L_{i} is non-simple for some $i \in\{1,2,3\}$.

Claim 3. There is a rearrangement i_{1}, i_{2}, i_{3} of $1,2,3$ such that $U_{i_{1}} \subseteq U_{i_{2}} \subseteq U_{i_{3}}$.

Proof of Claim. Choose distinct $i, j \in\{1,2,3\}$ and let k be the other index in $\{1,2,3\}$. We will show that either $U_{i} \subseteq U_{j}$ or $U_{j} \subseteq U_{i}$, and since this is true for all such i, j, it will follow that there is a rearrangement i_{1}, i_{2}, i_{3} of $1,2,3$ such that $U_{i_{1}} \subseteq U_{i_{2}} \subseteq U_{i_{3}}$.

Suppose, for a contradiction, that neither $U_{i} \subseteq U_{j}$ nor $U_{j} \subseteq U_{i}$ is true. Let $U:=U_{i} \cap U_{j}$, which is strictly contained in U_{i} and U_{j}, and let $U^{\prime}:=U_{i} \cup U_{j}$. Similarly as above, $\delta(U) \subseteq B_{i} \cup B_{j}$, and $\left|\delta(U) \cap L_{r}\right|=1$ for all $L_{r} \subset\left\{L_{k}, L_{4}, \ldots, L_{\tau}\right\}$.

Since $\Omega \in \delta(U)$ and $P_{i} \cap B_{j}=P_{j} \cap B_{i}=\{\Omega\}$, it follows that $P_{i} \cap \delta(U)=P_{j} \cap \delta(U)=\{\Omega\}$. However, since U is strictly contained in U_{i} and U_{j}, the shorewise minimality of B_{i} and B_{j} therefore implies that $\delta(U) \cap L_{j} \neq\{\Omega\}$ and $\delta(U) \cap L_{i} \neq\{\Omega\}$. Hence, L_{i} and L_{j} are non-simple, and $\delta(U) \cap C_{j} \neq \emptyset$ and $\delta(U) \cap C_{i} \neq \emptyset$. Thus, since $C_{i} \cap \delta\left(U_{j}\right)=C_{j} \cap \delta\left(U_{i}\right)=\emptyset$, it follows that $C_{i} \subseteq G^{\prime}\left[U_{j}\right]$ and $C_{j} \subseteq G^{\prime}\left[U_{i}\right]$, and so $C_{i} \cup C_{j} \subseteq G^{\prime}\left[U^{\prime}\right]$.

Next consider $\delta\left(U^{\prime}\right)$. It is again the case that $\delta\left(U^{\prime}\right) \subseteq B_{i} \cup B_{j}$ and $\left|\delta\left(U^{\prime}\right) \cap L_{r}\right|=1$ for all $L_{r} \in\left\{L_{k}, L_{4}, \ldots, L_{\tau}\right\}$. Since $C_{i} \cup C_{j} \subseteq G^{\prime}\left[U^{\prime}\right]$, and since $P_{i} \cap B_{i}=P_{j} \cap B_{j}=\{\Omega\}$ by Claim 2, it follows that $\delta\left(U^{\prime}\right) \cap L_{i}=\delta\left(U^{\prime}\right) \cap L_{j}=\{\Omega\}$. However, $\delta\left(U^{\prime}\right) \subseteq B_{i} \cup B_{j} \subseteq \bigcup_{j=1}^{\tau}$ and so $\left|\delta\left(U^{\prime}\right)\right|=\tau-2$, a contradiction to (M5'). Consequently, either $U_{i} \subseteq U_{j}$ or $U_{j} \subseteq U_{i} . \diamond$

Note that if $C_{3}=\emptyset$, then $P_{3} \cap B_{3} \neq\{\Omega\}$ and so we cannot have $U_{3} \subseteq U_{1}$ or $U_{3} \subseteq U_{2}$. Moreover, notice that U_{1}, U_{2} and U_{3} are pairwise different, because B_{1}, B_{2} and B_{3} are pairwise different. Therefore, we may assume that $U_{1} \subsetneq U_{2} \subsetneq U_{3}$.

Claim 4. Suppose that C and C^{\prime} are two disjoint odd cycles such that $C \cup C^{\prime}=C_{1} \cup C_{2}$ and $C^{\prime} \cap \delta\left(U_{1}\right) \neq \emptyset$. Then C and C^{\prime} are odd circuits, $V C \subseteq V-U_{1}$ and $V C \nsubseteq U_{2}$.

Proof of Claim. Observe first that C and C^{\prime} are odd circuits due to the minimality of L_{1}, L_{2}, L_{3}. Let $L_{1}^{\prime}=C^{\prime} \cup P_{1}$ and $L_{2}^{\prime}=C \cup P_{2}$. By (M4') there exist covers B_{1}^{\prime} and B_{2}^{\prime} such that $\left|B_{1}^{\prime}-L_{1}^{\prime}\right|=\left|B_{2}^{\prime}-L_{2}^{\prime}\right|=\tau-3$. Since $B_{1}^{\prime} \cap C=B_{2}^{\prime} \cap C^{\prime}=\emptyset$ it follows that B_{1}^{\prime} and B_{2}^{\prime} are st-bonds, and so there exist $U_{1}^{\prime}, U_{2}^{\prime} \subseteq V-\{t\}$ such that $B_{i}^{\prime}=\delta\left(U_{i}^{\prime}\right)$ for $i=1,2$. Suppose further that, for $i=1,2, B_{i}^{\prime}$ and U_{i}^{\prime} are chosen under $(*)$, so that U_{i}^{\prime} is minimal. So by Claims 2 and $3, B_{i}^{\prime} \cap P_{i}=\{\Omega\}$ for $i=1,2$, and either $U_{1}^{\prime} \subseteq U_{2}^{\prime} \subseteq U_{3}$ or $U_{2}^{\prime} \subseteq U_{1}^{\prime} \subseteq U_{3}$.

Let $W:=U_{1}^{\prime} \cap U_{2}^{\prime} \in\left\{U_{1}^{\prime}, U_{2}^{\prime}\right\}$ and consider $\delta\left(W \cap U_{1}\right)$. Observe that $\delta\left(W \cap U_{1}\right) \subseteq$ $\delta(W) \cup B_{1}$, and since $V C_{2} \subseteq V-U_{1}, \delta\left(W \cap U_{1}\right) \cap C_{2}=\emptyset$. Hence, $\left|\delta\left(W \cap U_{1}\right)-L_{1}\right|=\tau-3$, and so by the minimality of U_{1}, it follows that $W \cap U_{1}=U_{1}$. Similarly, by reversing the roles of L_{1}, L_{2}, L_{3} by $L_{1}^{\prime}, L_{2}^{\prime}, L_{3}$, one can show that $W \cap U_{1}=W$ and so $W=U_{1}$. However, $\emptyset \neq C^{\prime} \cap \delta\left(U_{1}\right)=C^{\prime} \cap \delta(W)$ and so $U_{1}=W=U_{1}^{\prime}$ and $U_{1}^{\prime} \subseteq U_{2}^{\prime}$. But $V C \subseteq U-U_{1}^{\prime}=U-U_{1}$, as claimed.

Next consider $\delta\left(U_{2}^{\prime} \cup U_{2}\right)$, which is a subset of $B_{2}^{\prime} \cup B_{2}$. We know that $V C^{\prime} \subseteq U_{2}^{\prime}$. If $V C \subseteq U_{2}$ then $V C_{1} \cup V C_{2}=V C \cup V C^{\prime} \subseteq U_{2}^{\prime} \cup U_{2}$, implying that $\delta\left(U \cup U_{2}\right) \cap\left(C_{1} \cup C_{2}\right)=\emptyset$
and so $\left|\delta\left(U \cup U_{2}\right)\right|=\tau-2$, a contradiction to (M5'). Hence $V C \nsubseteq U_{2}$, as claimed.

Observe that in the proof above, the minimality of B_{2} and U_{2} under ($*$) was not used at all. This fact will come in handy later.

Claim 5. Assume that $C_{3}=\emptyset$. Suppose that C is an odd cycle and L is an odd $\{s, t\}$-join disjoint from C such that $C \cup L=C_{2} \cup P_{3}$. Then C is an odd circuit, L is an odd st-walk and $L \cap \delta\left(U_{2}\right)=\{\Omega\}$.

Proof of Claim. Due to the minimality of L_{1}, L_{2}, L_{3}, it trivially follows that C is an odd circuit and L is an odd st-walk. Let $L_{2}^{\prime}:=C \cup P_{2}$ and $L_{3}^{\prime}:=L$. By (M4') there exist covers B_{2}^{\prime} and B_{3}^{\prime} such that $\left|B_{2}^{\prime}-L_{2}^{\prime}\right|=\left|B_{3}^{\prime}-L_{3}^{\prime}\right|=\tau-3$. Since $B_{i}^{\prime} \cap C_{1}=\emptyset$, it follows that B_{i}^{\prime} is an $s t$-bond, for $i=2,3$. So there exist $U_{2}^{\prime}, U_{3}^{\prime} \subseteq V-\{t\}$ such that $B_{i}^{\prime}=\delta\left(U_{i}^{\prime}\right)$ for $i=2,3$. Suppose further that, for $i=2,3, B_{i}^{\prime}$ and U_{i}^{\prime} are chosen under ($*$), so that U_{i}^{\prime} is minimal. By Claim 3 we get that $U_{2}^{\prime} \subseteq U_{3}^{\prime}$. Now consider $\delta\left(U_{2}^{\prime} \cap U_{2}\right)$. Observe that $\delta\left(U_{2}^{\prime} \cap U_{2}\right) \subseteq B_{2}^{\prime} \cup B_{2}$, and since $V L_{3}-\{s\} \subseteq V-U_{2}, \delta\left(U_{2}^{\prime} \cap U_{2}\right) \cap L_{3}=\{\Omega\}$. Thus $\left|\delta\left(U^{\prime} \cap U_{2}\right)-L_{3}\right|=\tau-3$, and so by the minimality of U_{2}, it follows that $U_{2}^{\prime} \cap U_{2}=U_{2}$. Similarly, by reversing the roles of L_{1}, L_{2}, L_{3} by $L_{1}, L_{2}^{\prime}, L_{3}^{\prime}$, one can show that $U_{2}^{\prime} \cap U_{2}=U_{2}^{\prime}$ and so $U_{2}^{\prime}=U_{2}$. But $\{\Omega\}=L_{3}^{\prime} \cap \delta\left(U_{2}^{\prime}\right)=L \cap \delta\left(U_{2}\right)$, as claimed.

Claim 6. Assume that $C_{3}=\emptyset$. Suppose that $L \subseteq P_{2} \cup L_{3}$ is an odd $\{s, t\}$-join. Then L is an odd st-walk, $L \triangle P_{2} \triangle L_{3}$ is an even st-path, and $L \cap \delta\left(U_{3}\right)=L_{3} \cap \delta\left(U_{3}\right)$.

Proof of Claim. Due to the minimality of L_{1}, L_{2}, L_{3}, it trivially follows that L is an odd st-walk and $L \triangle P_{2} \triangle L_{3}$ is an even st-path. Let $L_{2}^{\prime}:=C_{2} \cup\left(L \triangle P_{2} \triangle L_{3}\right)$ and $L_{3}^{\prime}:=L$. By (M4') there exist covers B_{2}^{\prime} and B_{3}^{\prime} such that $\left|B_{2}^{\prime}-L_{2}^{\prime}\right|=\left|B_{3}^{\prime}-L_{3}^{\prime}\right|=\tau-3$. Since $B_{i}^{\prime} \cap C_{1}=\emptyset$, it follows that B_{i}^{\prime} is an $s t$-bond, for $i=2,3$. So there exist $U_{2}^{\prime}, U_{3}^{\prime} \subseteq V\left(G^{\prime}\right)-\{t\}$ such that $B_{i}^{\prime}=\delta\left(U_{i}^{\prime}\right)$ for $i=2,3$. Suppose further that, for $i=2,3, B_{i}^{\prime}$ and U_{i}^{\prime} are chosen under $(*)$, so that U_{i}^{\prime} is minimal. By Claim 3 we get that $U_{2}^{\prime} \subseteq U_{3}^{\prime}$. Consider $\delta\left(U_{3}^{\prime} \cap U_{3}\right)$. Observe that $\delta\left(U_{3}^{\prime} \cap U_{3}\right) \subseteq B_{3}^{\prime} \cup B_{3}$, and since $V P_{2}-\{s\} \subseteq V-U_{3}$ and $V C_{2} \subseteq U_{3}^{\prime} \cap U_{3}$, $\delta\left(U_{3}^{\prime} \cap U_{3}\right) \cap L_{2}=\{\Omega\}$. Thus, $\left|\delta\left(U_{3}^{\prime} \cap U_{3}\right)-L_{3}\right|=\tau-3$ and so by the minimality of U_{3}, it follows that $U_{3}^{\prime} \cap U_{3}=U_{3}$. Similarly, by reversing the roles of L_{1}, L_{2}, L_{3} by L_{1}, L_{2}^{\prime}, L_{3}^{\prime}, one can show that $U_{3}^{\prime} \cap U_{3}=U_{3}^{\prime}$, and so $U_{3}^{\prime}=U_{3}$. The result now easily follows.

This is an immediate corollary of Claim 6.

Claim 7. Assume that $C_{3}=\emptyset$. Suppose that $L \subseteq P_{2} \cup L_{3}$ is an odd $\{s, t\}$-join. Suppose that $w \in V P_{2} \cap V L_{3}$. Then either $L_{3}\left[s^{\prime}, w\right] \subseteq G^{\prime}\left[V-U_{3}\right]$ and $L_{3}\left[s^{\prime}, w\right] \cup P_{2}\left[s^{\prime}, w\right]$ is an even cycle, or $L_{3}[w, t] \subseteq G^{\prime}\left[V-U_{3}\right]$ and $L_{3}[w, t] \cup P_{2}[w, t]$ is an even cycle.

The following is the last ingredient needed to find an F_{7} minor. Let L_{0} be the singleton vertex $\{s\}, U_{0}:=\emptyset$ and $B_{0}:=\emptyset$.

Claim 8. Take $v \in V L_{j+1} \cap\left(U_{j+1}-U_{j}\right)$ for some $j \in\{0,1,2\}$. Let U be the component of $G^{\prime}\left[U_{j+1}-U_{j}\right]$ containing v. Then $V L_{j} \cap U \neq \emptyset$.

Proof of Claim. Suppose otherwise. Observe that $\delta(U) \subseteq B_{j} \cup B_{j+1}, \delta(U) \cap L_{j+1} \neq \emptyset$ and $\delta(U) \cap L_{j}=\emptyset$. But then $\left|\delta\left(U_{j+1}-U\right)-L_{j+1}\right|=\tau-3$ since $\delta\left(U_{j+1}-U\right)=\delta\left(U_{j+1} \triangle U\right)=$ $B_{j+1} \triangle \delta(U)$, contradicting the choice of B_{j+1}, U_{j+1} under (*).

Claim 9. $\left(G^{\prime}, \Sigma^{\prime}\right)$ has an F_{7} minor.

Proof of Claim. Here \mathbf{X} denotes the image of object X after contraction and/or deletion is applied in $\left(G^{\prime}, \Sigma^{\prime}\right)$. If X is not affected under the operation, then $X=\mathbf{X}$; repeatedly applying contraction and/or deletion resets \mathbf{X}.

By Claim 8 , there exists a shortest path Q_{0} in $G^{\prime}\left[U_{1}\right]$ between s and $V C_{1}$. Suppose that x is the other end-vertex of Q_{0}. Contract Q_{0}, and then contract all the edges in $\mathbf{C}_{\mathbf{1}}$ that are not incident with \mathbf{s}. At this stage, $\mathbf{C}_{\mathbf{1}}$ is an odd circuit with two edges and two vertices \mathbf{s} and, say, u.

We claim that $\mathbf{C}_{\mathbf{1}}$ is the only odd circuit in $\left(\mathbf{C}_{\mathbf{1}} \cup \mathbf{C}_{\mathbf{2}}\right) \cap \mathbf{G}^{\prime}\left[\mathbf{U}_{\mathbf{2}}\right]$. Suppose otherwise. Let $\mathbf{C} \subseteq\left(\mathbf{C}_{\mathbf{1}} \cup \mathbf{C}_{\mathbf{2}}\right) \cap \mathbf{G}^{\prime}\left[\mathbf{U}_{\mathbf{2}}\right]$ be an odd circuit different from $\mathbf{C}_{\mathbf{1}}$. Notice that $\mathbf{s} \notin V \mathbf{C}$. Let C be an inverse image of \mathbf{C} under the contractions such that C avoids the vertex x, it is odd and $C \subseteq\left(C_{1} \cup C_{2}\right) \cap G^{\prime}\left[U_{2}\right]$. By Claim 4 then, since $V C \subseteq U_{2}$, we must have that $C \cap \delta\left(U_{1}\right)=C_{1} \cap \delta\left(U_{1}\right)$ and $C \cap E G^{\prime}\left[U_{1}\right]=C_{1} \cap E G^{\prime}\left[U_{1}\right]$. So $x \in V C$, which is not the case. Hence, $\mathbf{C}_{\mathbf{1}}$ is the only odd circuit in $\left(\mathbf{C}_{\mathbf{1}} \cup \mathbf{C}_{\mathbf{2}}\right) \cap \mathbf{G}^{\prime}\left[\mathbf{U}_{\mathbf{2}}\right]$.

By Claim 8 there is a shortest path Q_{1} in $\mathbf{G}^{\prime}\left[\mathbf{U}_{\mathbf{2}}\right]$ between $V \mathbf{C}_{\mathbf{1}}$ and $V \mathbf{C}_{\mathbf{2}}$ that does not use the vertex s. (It is possible that $Q_{1}=\emptyset$.) Contract Q_{1} and note that $\mathbf{C}_{\mathbf{1}}$ is still the only odd circuit in $\left(\mathbf{C}_{\mathbf{1}} \cup \mathbf{C}_{\mathbf{2}}\right) \cap \mathbf{G}^{\prime}\left[\mathbf{U}_{\mathbf{2}}\right]$. Let $\mathbf{C}_{\mathbf{2}}^{\prime}$ be an odd circuit contained in $\mathbf{C}_{\mathbf{2}}$ that uses the vertex \mathbf{u}. Let U be the union of the components of $G^{\prime}\left[U_{3}-U_{2}\right]$ that contain a vertex of of $V \mathbf{C}_{\mathbf{2}}^{\prime}$.

We claim that $U \cap V L_{3} \neq \emptyset$. Suppose not. Then there exists an inverse image C^{\prime} of $\mathbf{C}_{\mathbf{2}}^{\prime}$ under the contractions such that $x \notin V C^{\prime}, C^{\prime}$ is odd and $C^{\prime} \subseteq\left(C_{1} \cup C_{2}\right) \cap G^{\prime}\left[U_{2} \cup U\right]$. Let $U_{2}^{\prime}:=U_{2} \cup U=U_{2} \triangle U$, and note that for $B_{2}^{\prime}:=\delta\left(U_{2}^{\prime}\right)=\delta\left(U_{2}\right) \triangle \delta(U)$, we have $\left|B_{2}^{\prime}-L_{2}\right|=$ $\tau-3$. By Claim 4 then, since $V C^{\prime} \subseteq U_{2}^{\prime}$, we must have that $C^{\prime} \cap \delta\left(U_{1}\right)=C_{1} \cap \delta\left(U_{1}\right)$ and $C^{\prime} \cap E G^{\prime}\left[U_{1}\right]=C_{1} \cap E G^{\prime}\left[U_{1}\right]$. But then $x \in V C^{\prime}$, which is not the case. Thus, $U \cap V L_{3} \neq \emptyset$, and so there exists a shortest path Q_{2} between $V \mathbf{C}_{\mathbf{2}}^{\prime}$ and $V L_{3}$ in $G^{\prime}\left[U_{3}-U_{2}\right]$.

Now contract all the edges in $\mathbf{C}_{\mathbf{2}}^{\prime}$ that are not incident with u. At this stage, $\mathbf{C}_{\mathbf{2}}:=\mathbf{C}_{\mathbf{2}}^{\prime}$ is an odd circuit with exactly two edges and two vertices \mathbf{u} and, say, v. Similarly as above, by using Claim 4 and Claim 5 this time though, we obtain that $\mathbf{C}_{\mathbf{2}}$ is the only odd circuit in $\left(\mathbf{C}_{\mathbf{2}} \cup \mathbf{L}_{\mathbf{3}}\right) \cap \mathbf{G}^{\prime}\left[\mathbf{U}_{\mathbf{3}}\right]$. Notice that $\mathbf{s}, \mathbf{u} \notin V \mathbf{Q}_{\mathbf{2}}$. Contract $\mathbf{Q}_{\mathbf{2}}$ and note that $\mathbf{C}_{\mathbf{2}}$ is still the only odd circuit in $\left(\mathbf{C}_{\mathbf{2}} \cup \mathbf{L}_{\mathbf{3}}\right) \cap \mathbf{G}^{\prime}\left[\mathbf{U}_{\mathbf{3}}\right]$.

First assume that L_{3} is non-simple. Let $\mathbf{C}_{\mathbf{3}}^{\prime}$ be an odd circuit contained in $\mathbf{C}_{\mathbf{3}}$ that uses the vertex \mathbf{v}. Let U^{\prime} be the union of the components of $G^{\prime}\left[V-U_{3}\right]$ that contain a vertex of $V \mathbf{C}_{3}^{\prime}$. As before, by Claim 4 it follows that $t \in U^{\prime}$. So there is a shortest path Q_{3} in $G^{\prime}\left[V-U_{3}\right]$ between $V \mathbf{C}_{3}^{\prime}$ and $V P_{3}$. Contract all the edges in $\mathbf{C}_{\mathbf{3}}^{\prime}$ that are not incident with \mathbf{v} and all the edges in $P_{3} \cup Q_{3}-\{\Omega\}$. Now $\mathbf{C}_{\mathbf{3}}:=\mathbf{C}_{\mathbf{3}}^{\prime}$ is an odd circuit with exactly two edges and two vertices \mathbf{v} and \mathbf{t}. Note that Ω is an even edge between \mathbf{s} and \mathbf{t}. As a result, $\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup\{\Omega\}$ is isomorphic to F_{7}.

Next assume that L_{3} is simple. In the first case, assume that there exists an odd st-path $\mathbf{P}_{\mathbf{3}}^{\prime}$ in $\mathbf{P}_{\mathbf{3}}$ that uses the vertex \mathbf{v}. Contract all the edges in $P_{2}-\{\Omega\}$ and all the edges in $\mathbf{P}_{\mathbf{3}}^{\prime}$ that are not incident with \mathbf{v}. By Claim $7, \mathbf{P}_{\mathbf{3}}^{\prime}$ contains an odd $s t$-walk that consists of the even edge $\boldsymbol{\Omega}$, which is between \mathbf{s} and \mathbf{t}, and an odd circuit D_{3} of length two between \mathbf{v} and \mathbf{t}. It is clear that $\mathbf{C}_{\mathbf{1}} \cup \mathbf{C}_{\mathbf{2}} \cup D_{3} \cup\{\boldsymbol{\Omega}\}$ is isomorphic to F_{7}.

In the remaining case, there exists an odd circuit C_{3}^{\prime} in $\mathbf{P}_{\mathbf{3}}$ that uses the vertex \mathbf{v}. Let $U^{\prime \prime}$ be the union of the components of $G^{\prime}\left[V-U_{3}\right]$ that contain a vertex of $V C_{3}^{\prime}$. Similarly as before, we know that $t \in U^{\prime \prime}$. According to Claim 7, $V P_{2} \cap V C_{3}^{\prime}=\emptyset$. Now let Q_{3} be a shortest path in $G^{\prime}\left[V-U_{3}\right]$ between $V C_{3}^{\prime}$ and $V P_{2}$. Now contract all the edges in C_{3}^{\prime} that are not incident with \mathbf{v} and all the edges in $\left(\mathbf{P}_{\mathbf{3}} \cup Q_{3}\right) \cap G^{\prime}\left[V-U_{3}\right] . \mathbf{C}_{\mathbf{3}}^{\prime}$ is now an odd circuit with exactly two edges and two vertices \mathbf{v} and \mathbf{t}, and Ω is an even edge between \mathbf{s} and \mathbf{t}. So $\mathbf{C}_{\mathbf{1}} \cup \mathbf{C}_{\mathbf{2}} \cup \mathbf{C}_{\mathbf{3}}^{\prime} \cup\{\boldsymbol{\Omega}\}$ is isomorphic to F_{7}.

Therefore, $\left(G^{\prime}, \Sigma^{\prime}\right)$, and therefore (G, Σ), has a minor isomorphic to F_{7}, proving Claim 9.

However, (G, Σ) does not have such a minor, proving that Part (8) is not possible either. This finally finishes the proof of Theorem 1.5.

References

[1] Cohen, J. and Lucchesi, C.: Minimax relations for T-join packing problems. Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems (ISTCS '97), 38-44 (1997)
[2] Edmonds, J. and Fulkerson, D.R.: Bottleneck Extrema. J. Combin. Theory Ser. B 8, 299-306 (1970)
[3] Geelen, J.F. and Guenin, B.: Packing odd circuits in Eulerian graphs. J. Combin. Theory Ser. B 86, 280-295 (2002)
[4] Gerards, A.M.H.: Multicommodity flows and polyhedra. CWI Quart. 6, 281-296 (1993)
[5] Guenin, B.: A characterization of weakly bipartite graphs. J. Combin. Theory Ser. B 83, 112-168 (2001)
[6] Guenin, B.: Integral polyhedra related to even-cycle and even-cut matroids. Math. Oper. Res. 27(4), 693-710 (2002)
[7] Hu, T.C.: Multicommodity network flows. Oper. Res. 11, 344-360 (1963)
[8] Kawarabayashi, K. and Ozeki, K.: A simpler proof for the two disjoint odd cycles theorem. J. Combin. Theory Ser. B 103, 313-319 (2013)
[9] Lehman, A.: A solution of the Shannon switching game. Society for Industrial Appl. Math. 12(4), 687-725 (1964)
[10] Lehman, A.: On the width-length inequality. Math. Program. 17(1), 403-417 (1979)
[11] Rothschild, B. and Whinston, A.: Feasibility of two-commodity network flows. Oper. Res. 14, 1121-1129 (1966)
[12] Schrijver, A.: A short proof of Guenin's characterization of weakly bipartite graphs. J. Combin. Theory Ser. B 85, 255-260 (2002)
[13] Schrijver, A.: Combinatorial optimization. Polyhedra and efficiency. Springer, 14081409 (2003)
[14] Seymour, P.D.: Matroids and multicommodity flows. Europ. J. Combinatorics 2, 257290 (1981)
[15] Seymour, P.D.: The forbidden minors of binary matrices. J. London Math. Society 2(12), 356-360 (1976)
[16] Seymour, P.D.: The matroids with the max-flow min-cut property. J. Combin. Theory Ser. B 23, 189-222 (1977)
[17] Seymour, P.D.: Disjoint paths in graphs. Discrete Math. 29, 293-309 (1980)

