
An Evaluation of Contextual
Suggestion

by

Adriel Dean-Hall

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2014

c© Adriel Dean-Hall 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144147166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis examines techniques that can be used to evaluate systems that solve the
complex task of suggesting points of interest to users. A traveller visiting an unfamiliar,
foreign city might be looking for a place to have fun in the last few hours before return-
ing home. Our traveller might browse various search engines and travel websites to find
something that he is interested in doing, however this process is time consuming and the
visitor may want to find some suggestion quickly.

We will consider the type of system that is able to handle this complex request in such
a way that the user is satisfied. Because the type of suggestion one person wants will differ
from the type of suggestion another person wants we will consider systems that incorporate
some level of personalization. In this work we will develop user profiles that are based on
real users and set up experiments that many research groups can participate in, competing
to develop the best techniques for implementing this kind of system. These systems will
make suggestion of attractions to visit in various different US cities to many users.

This thesis is divided into two stages. During the first stage we will look at what
information will go into our user profiles and what information we need to know about the
users in order to decide whether they would visit an attraction. The second stage will be
deciding how to evaluate the suggestions that various systems make in order to determine
which system is able to make the best suggestions.

iii

Acknowledgements

I would like to thank my supervisor, Charlie Clarke, who introduced me to this field
and provided me just the right amount of guidance over the past two years while giving
me the freedom to chase after a couple butterflies. Charlie is a good friend and I am much
better off knowing him.

I would also like to thank current and former members of the PLG lab: Azin, Bahareh,
Younos, Gobi, Nomair, Gaurav, Adam, Luchen, Ashif, Brad, Maheedhar, and Jack. You
guys made my time at Waterloo what it is.

A big thank you to my family, I am lucky to have such great parents and such an
awesome brother. Thank you guys for always allowing me to be myself, not many people
would put up with that guy.

Finally I would like to thank the hundreds of participants in my studies and the dozens
of TREC participants who made this work possible.

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Research Approach . 2

1.2 Organization of the Thesis . 4

2 Related Work 6

2.1 Text REtrieval Conference (TREC) . 8

2.2 Evaluating Recommender Systems . 9

2.3 Evaluating IR Systems . 11

2.3.1 Precision at rank k . 12

2.3.2 Reciprocal rank . 12

2.3.3 Discounted cumulative gain . 12

2.3.4 Rank-biased precision . 13

2.3.5 Expected reciprocal rank . 14

2.3.6 Time-biased gain . 15

3 Experimental Design 17

3.1 Profiles . 18

v

3.1.1 Sample Attractions . 18

3.1.2 Developing Profiles . 18

3.1.3 User Quality . 24

3.2 Forming Contexts . 26

3.3 Results . 28

3.4 Data Collections . 28

3.5 Example Submission Excerpt . 29

3.6 Judging Returned Suggestions . 30

3.6.1 Profile Relevance . 30

3.6.2 Context Relevance . 31

3.7 Evaluation of Runs: P@5 and MRR . 32

4 Evaluation Metric Design 34

4.1 Motivation . 34

4.2 Time-biased Gain . 34

4.2.1 Gain . 36

4.2.2 Time . 37

5 Results 41

5.1 P@5 and MRR . 41

5.2 TBG Results . 42

5.3 Baseline runs . 42

5.3.1 2012 Baseline runs . 43

5.3.2 2013 Baseline runs . 43

5.4 System and Metric Comparisons . 48

5.5 Participant Approaches . 49

5.5.1 2012 Participant Approaches . 49

5.5.2 2013 Participant Approaches . 51

5.5.3 Leading Approaches . 52

vi

6 Conclusions & Future Work 54

6.1 Conclusion . 54

6.2 Future Work . 55

6.2.1 Crowdsourcing . 55

6.2.2 Practicality of TBG . 55

6.2.3 Sub-collection Building . 56

References 57

vii

List of Tables

2.1 Example relevance judgments. 11

2.2 DCG calculation. 13

2.3 RBP calculation. 14

2.4 ERR calculation. 15

3.1 Number of suggestion judged with respect to profile relevance. 31

3.2 Binary relevance based on description, website, and geographical appropri-
ateness. Dark cells indicate what made the suggestion non-relevant. 32

5.1 P@5, TBG, and MRR rankings for all 2012 runs. 44

5.2 P@5, TBG, and MRR rankings for all 2013 runs. Bold indicates a ClueWeb12
run. 45

5.3 Teams that participated in the 2012 track. 52

5.4 Teams that participated in the 2013 track. 53

viii

List of Figures

3.1 Profile gathering and suggestion description judgment interface (2012). . . 20

3.2 Profile gathering and suggestion website judgment interface (2012). 21

3.3 Profile gathering and suggestion judgment interface (2013). 22

3.4 Suggestion website viewing interface (2013). 23

4.1 Judgments times . 40

5.1 Comparisons between P@5, MRR, and TBG for 2012. 46

5.2 Comparisons between P@5, MRR, and TBG for 2013. 47

ix

Chapter 1

Introduction

Rome, Tokyo, Gaithersburg. Imagine a traveller visiting these cities. Perhaps our fictional
traveller is taking a vacation and wants to get the most out of his trip as possible, or
perhaps he has just finished attending a meeting and has a few hours to kill before leaving.
Regardless of the situation, our traveller wants to find something entertaining to do.

Our traveller has a smartphone, a connection to the internet, and a laptop which he
uses whenever he needs to browse the internet for longer than would be comfortable on
his phone. He has used several online travel guides and business review sites in the past
when finding something to do. He looks up the city he is in on Lonely Planet, Yelp, Google
Places, Wikitravel, TripAdvisor, or another similar site. The basic service provided by all
of these sites is a listing of things to do. Typically these sites have a description, some
photos, reviews, contact details, and other information available for each attraction. Often
listings are ordered by rating or popularity that way things that are more attractive appear
at the top of the list. Attractions are sometimes grouped into categories, such as “parks”
or “restaurants” and the sites typically provide tools that can be used to filter attractions
based on category. Some services offer a way of entering keywords that allow the set of
listings to be narrowed down to just attractions that are related to those keywords.

Our traveller has his favourite travel site for finding attractions which he navigates to,
spends a few minutes or longer searching for a handful of things he thinks he might be
interested in, puts the information in his phone, and then heads out to explore the city.
The question that we explore in this thesis is: How can we improve upon this process? We
want a system that shows users how to have a good time. The ideal is that our traveller
pulls out his smartphone, clicks a button, and a list of suggestions that the traveller finds
interesting appears. Note that this list is not the same list that would be generated from

1

one of the above services. In the second case the attraction that the traveller finds most
interesting appears at the very top of the list, the second item in the list is the second most
interesting attraction, etc. In the first case the traveller enters a city they are in (this is
sometimes automatically detected) and is presented with a list which he then has to filter
and search through (both manually and by using the tools of the service when available)
in order to find the attractions that are most interesting to him.

One of the key aspects of this thesis is personalization. We consider whether providing
a list of attractions tailored specifically to our traveller would get us closer to our magic
button which delivers a perfect list of attractions. Another important aspect that we will
consider is localization. In this thesis we will investigate is how incorporating user location
and time can bring us closer to our goal.

1.1 Research Approach

If we want to tailor attraction listings to individuals we need to know something about
the user that allows us predict which attractions will be the most interesting to him. For
our experiments we make the observation that our traveller will have some favourite places
that he likes to go to in his own city. He will have a favourite restaurant, a favourite place
to hangout on Friday nights, etc. If we know what attractions our traveller likes (and
dislikes) in his home city then we can use this information to predict what he will like in
other cities. The information that we know about our traveller makes up a profile.

Real systems would be able to gather data about users from, for example, what kinds of
searches a user does and what kinds of websites a user visits (and how long the user visits
the website for). It could also be gathered, more directly, from a check-in type system like
Foursquare or reviews that the user has written on a site like Yelp. When deciding on what
information will be contained in a profile we will keep in mind real systems and come up
with profiles that such systems could reasonably gather.

Another aspect that we want to consider when developing profiles is privacy. An ex-
tremely privacy sensitive system would gather no data about its users whereas a system
not concerned with privacy whatsoever might gather data about everywhere the user has
been, who they meet, what they did, etc. When developing a profile we will gather as
little data as we need to on our users while still providing a useful service. If we can create
a system that works with a minimal profile then we can create a system that is privacy
sensitive.

For our experiments, the profile will be a list of ratings for a set of attractions in a

2

specific city. This is data that can be reasonably gather by real systems while at the same
time being relatively minimal. We gather this rating information directly from users by
asking them to rate a set of attractions in a survey.

We also have to decide what, exactly, an attraction is. For our experiments an attraction
consists of a title, short description, and URL that all relate to an attraction. This is very
similar to what you would find provided by a general search engine, where the search results
consist of a bunch of page titles and descriptions with links that point to the corresponding
website.

Besides profiles, the other piece of information we want to know about our travellers
is the context that they are searching from. This includes where the user is, for our
purposes this is at the granularity of a city and what the time is when the user is searching
(this consists of time of the day, day of the week, and season of the year). Again, this
is information that real systems would have access to. A system can usually determine a
user’s location from their IP address to the level of which city they are in. If the user is on
a mobile phone there is also GPS data available which can provide a more precise location
for the user. Given where the user is searching from the system can determine local time
and season. For our experiments we randomly pick a location and time that the user is
searching in.

Our research focus is on comparing systems that are able to take in this profile and
contextual information about travellers and make helpful suggestions. In order to have
these systems developed using a variety of approaches we use TREC. TREC is a confer-
ence that has been running since 1992 which provides a venue for research groups from
around the world to develop information retrieval systems and compare their systems with
systems made by other groups. Each year a handful of specific tasks are decided upon
and throughout the year various organizations attempt to develop systems that solve these
tasks.

We will go into some of the previous tasks and background of TREC in Chapter 2
however as part of our experiments I developed a TREC task that was approved by the
organizers of TREC and then attempted to be solved by several research groups. Charlie
Clarke, Jaap Kamps, and Paul Thomas were co-organizers for this track along with me.
I lead the efforts for this track and my co-organizers were extremely helpful in providing
advice and guidance on how to run the track. The systems that were generated as part of
this track will be the systems that we compare in our experiments. In Chapter 3 we will
discuss the details of this track further.

The systems in our experiments all take in a profile and a context and for that profile-
context pair generate a list of attractions that the system thinks the user will find the most

3

interesting. Our experiments focus on comparing various systems and determining which
one does the best job. As part of the TREC task research groups built systems to create
lists of suggestions, downloaded sets of profiles and contexts, ran their systems on each
profile-context pair available, and submitted the output of their systems to us.

This research includes creating these profiles and contexts, gathering the output from
various systems, and then developing methods of comparing the outputs from the sys-
tems. The task of comparing systems is divided up into a judging stage, where individual
suggestions in the output are judged for how contextually appropriate they are and how
relevant they are to the profile they are. Judging is done both by trained NIST assessors
as well as users who we gathered the profiles from. After judging is complete we evaluate
the systems. Evaluation is done both by using established metrics and a modification on
the Time-Biased Gain framework proposed by Smucker and Clarke [22], which results in a
metric catered for this task.

1.2 Organization of the Thesis

The remainder of this thesis is organized as follows:

In chapter 2, we conduct a review of the evaluation of both information systems and
recommender systems. We discuss general strategies for how systems can be evaluated
and consider a few specific metrics that can be used with system-style evaluation. We also
discuss TREC, a venue where many different systems have been evaluated.

In chapter 3, we discuss how profiles and contexts are developed as well as how results
from the systems that generate suggestions are gathered. We first look at what a profile
in our experiment consists of, how we gather profiles from real users, as well as the format
of a context. We then discuss how we gathered suggestions from many different systems
and how these suggestions were judged for relevance with respect to both the profiles and
the contexts.

In chapter 4, we develop an advanced technique for evaluating contextual suggestion
systems that is tailored specifically for evaluating this kind of task. Our metric is based
on the Time-Biased Gain framework introduced by Smucker and Clarke [22] which is then
customized to meet the needs of our task.

In chapter 5, we evaluate the suggestions given by systems according to several metrics,
including our modified Time-Biased Gain metric. We consider the appropriateness and
usefulness of each metric as well as the ranking of all the systems.

4

Finally, in chapter 6, we discuss potential future avenues of research into contextual
suggestions systems as well as evaluation metrics for such systems. In particular we con-
sider further modifications to our modified Time-Biased Gain metric as well as how those
modifications could be tested.

5

Chapter 2

Related Work

Information retrieval evaluation can be done using one of two main strategies. The first
strategy involves running user studies that let real users try to meet some goal by interact-
ing with the systems directly. The second strategy relies on estimating how well a system
would meet a user’s needs. In the second style of evaluation, judgments are made about
the relevance of the documents returned by systems. These judgments are then used in
a calculation that estimates system usefulness. A simple way of calculating this estimate
is to score systems by how many relevant documents they return. This score may not
be an accurate estimate of system usefulness and we will look at more accurate ways of
calculating this estimate later on in this chapter.

User study style testing tests systems in a setting that is closer to how the systems
will actually be used than batch-style testing however it is more expensive because real
users must spend time interacting with the systems. Batch-style testing allows us to very
quickly evaluate a system once we have relevance judgments. For our experiments we will
be using batch-style testing. However in this style of testing we still have to decide exactly
how a score is calculated, which is based on which model of user behaviour we are using.
The simple metric above, i.e., calculating how many relevant documents were returned, is
based on the model that users will consider each document that is returned. This would
be a time consuming process and is probably not how a user really interacts with a system.
Our goal is to find a model which reflects how users really use systems and base our metric
on that model. This will ultimately lead to a metric that gives systems which are more
useful to users, higher scores.

When deciding on a user model which reflects how users will interact with our systems
we should consider the goals of the systems we are evaluating. Systems that return legal

6

documents and may want to return every relevant document and will be evaluated differ-
ently than general information retrieval systems where the user wants to find any relevant
document relatively quickly. The systems that we are evaluating makes attraction sugges-
tions to tourists, we will keep this goal in mind when considering evaluation metrics. In
this section we will consider some established evaluation metrics that have been used to
evaluate other systems. Particularly, we will focus on evaluation metrics that have been
used with information retrieval (IR) systems and recommender systems.

The goal of a recommender system is to make item suggestions to users. The system
assigns ratings to items that the user has not rated in order to make these item suggestions.
Users will have rated other items already and systems will try to make guesses about
how users will rate new items based on the ratings they have already given. Commonly
systems will use ratings for the items given by other users in order to help them make their
prediction. In some systems these predicted ratings are exposed to users directly, or in the
form of ranked lists of items, or as the top n recommended items. An example of such a
system is the one used by Amazon.com to recommend products [11].

On the other hand, information retrieval systems take in a query, a set of terms, as
input and produce a ranked list of documents that are relevant to the particular query.
Some documents are filtered out if they are non-relevant, and some documents will be
placed higher in the result list, if they are considered more relevant. An example of this
kind of system is the one provided by Google Search.

The type of system that we concentrate on in our experiments fall somewhere between
traditional IR systems and traditional recommender systems. Our systems don’t have an
explicit query like traditional IR systems, however we are still searching a large corpus
of documents. Like recommender systems, we are trying to suggest items (in our case
attractions) that the user would find interesting, however we have no ratings for attractions
or even an established list of attractions to draw from when developing our systems. Our
systems will be returning documents that represent attractions in some way, for example
they could be the official home page of a particular attraction.

In order to compare systems an evaluation metric needs to be decided upon. Our choice
in metric should be based on a model that reflects how users will actually interact with
our attraction suggestion systems. In this chapter we will review TREC, a conference that
has successfully evaluated hundreds of systems using batch-style testing. We will also look
at a few of the commonly used metrics used to evaluate recommender and IR systems.

7

2.1 Text REtrieval Conference (TREC)

A popular venue to test information retrieval system ideas is the Text REtrieval Conference
(TREC). When information retrieval researchers develop a concept for a new system an
important task they have to do is evaluate their system against other systems. Even when
doing system style testing evaluation is not an easy task. The systems all have to be
compatible: they have to take in the same input format and product the same output
format. Also, in order to be able to evaluate systems fairly they all have to be tested on
the same dataset and this dataset has to be judged. Judging is a process that takes a
significant amount of resources.

TREC solves these issues by providing a common platform for many different search
systems to be evaluated against each other. Since 1992 TREC has developed tasks that
researchers from around the world are invited to attempt to solve. The most basic task
is adhoc retrieval [6]. For this task systems are provided with topic queries and are asked
to search a specific dataset for any documents that are relevant. By coordinating research
efforts in information retrieval around a task like this we already have multiple systems
with the same input and output specifications and multiple systems using the same dataset.

Because all the systems taking part in this challenge are using the same dataset and
queries, we can manually judge the relevancy of documents in this dataset and then com-
pare these manual judgments against system output. TREC regularly invests in having
trained assessors judge the relevance of documents in the datasets being used. System
output and these judgments can be plugged into evaluation metric calculations to deter-
mine which system performed the best, which in turn tells the research community which
information retrieval techniques are superior. We will discuss a few options for evaluation
metrics in the next two sections.

Since starting, TREC has been the host to many different IR focused tasks. For exam-
ple, besides adhoc retrieval, there have been tasks on:

• Filtering [18] where, in addition to a query, systems are given, as input, a set of
documents that the searcher liked. The focus of this task is to see whether systems
can improve results if they know which documents the searcher liked.

• Question answering [23] where systems are asked to directly answer a question, using
a short text snippet, that users are looking for instead of simply returning a document
that might be relevant to the question.

• Spam filtering [4] where systems are required to give a binary judgments for docu-
ments indicating whether they are spam or not.

8

TREC also has supported many other tracks, for each track a dataset is decided upon,
any input, such as queries or training data is provided, then research teams have a few
weeks to develop their systems and return results. TREC then organizes the judging
process and evaluates the systems, results are then released at the time of the conference.

Each year, TREC supports a different set of tasks, for our experiments we set up a
TREC task, which was accepted by the organizers of TREC, in chapter 3 we will discuss
how this task was designed, what inputs were used, what outputs were expected, and what
datasets were decided upon.

2.2 Evaluating Recommender Systems

The basic task of recommender systems is to try to predict the ratings that users will give
to items. One strategy when evaluating these systems is to compare the true rating given
by users to the predicted ratings given by the system.

One widely used metric to evaluate recommender systems is mean absolute error (MAE),
and variations on it [7]. This metric measures the mean of the absolute difference between
the actual ratings and the ratings given by the system:

1

N

N∑
i=1

|pi − ri|, (2.1)

where pi is the ratings given by the system, ri is the rating given by the user, and N is the
number of ratings. If we replace the absolute value function in the equation above with
the square function, we get the mean squared error :

1

N

N∑
i=1

(pi − ri)2. (2.2)

This metric will magnify errors that the system makes. In this metric, if two systems
are compared, one that makes many small errors and one that makes a few large errors,
the metric will rank the second system worse than the first. With MAE the two system’s
performances will be closer together.

A third variation is root mean squared error, which is simply the square root of MSE:

9

√√√√ 1

N

N∑
i=1

(pi − ri)2. (2.3)

Precision and recall are two other well known metrics that have been used to evalu-
ate recommender systems. Precision is the number of liked recommendations suggested,
divided by the total number of recommendations suggested:

|retrieved ∩ relevant|
|retrieved|

. (2.4)

Note that this metric uses binary relevance judgments, i.e., items are grouped into
two categories: relevant or non-relevant. The previous three metrics use graded relevance
judgments, for example, users could give ratings on a 5-point scale, they could say that
an item is one of very good, good, fair, poor, or very poor. For our metrics user ratings
are treated as numbers so we could map these ratings to 5 (very good), 4, 3, 2, or 1 (very
poor). Depending on our situation we may have more or fewer ratings levels that have
been given to items.

When we have ratings given on a 2-point scale (a rating of either good or bad) it is
simple to group items into the two categories, items with a good rating will be considered
relevant and items with a bad rating will be considered non-relevant. However we can
still use precision if we have graded relevance judgments, in order to do this, the items
will have to be mapped to relevant or non-relevant. The simplest way to do this is pick a
threshold where ratings below the threshold are considered non-relevant and ratings above
the threshold are considered relevant. For example, if ratings were on a 5-point scale items
with a rating of 4 or 5 could be considered relevant and items with a rating of less than 4
could be considered non-relevant.

Recall is the the number of suggestions made by the system that the user likes, divided
by the number of suggestions that the user would like if they had seen them:

|retrieved ∩ relevant|
|relevant|

. (2.5)

Here users have rated more items than systems will retrieve because the judging process
is separate from the system output and metric calculation step. However even during the
judging process users will not see even possible item, there are often many more items
than can be reasonably rated by a user. Users will rate some subset of the items available

10

and every item that is not rated will be considered non-relevant for the purposes of our
metrics. So, in the above equation, we usually don’t know all the suggestions that the user
likes because the user hasn’t given a rating for every single item. In this case the number
of relevant items is estimated as the number of relevant items that we have user ratings
for.

Recommender systems often make ordered recommendations to users. In these cases
we can make an analogy between evaluation of recommender systems and information
retrieval systems. In our analogy recommendations are documents and user ratings are
relevance judgments. Using this strategy all the evaluation metrics described in the next
section can also be used with recommender systems.

2.3 Evaluating IR Systems

The evaluation of information retrieval systems is traditionally based on document rele-
vance judgments made by human assessors. These judgments are often binary judgments
(relevant or non-relevant) but judgments can also be made for greater levels of relevance
granularity (graded relevance).

Systems will return ranked (ordered) lists of documents and our goal is to determine
how useful this list is which in turn indicates how useful the system is. For example,
suppose we have a list of 5 documents that have been assigned the following relevance
judgments:

Rank Document title Judgment
1 Waterfront Grill Non-relevant
2 Copeland’s Relevant
3 Cormier’s Cajun Catering & Restaurant Relevant
4 Enoch’s Pub & Grill Relevant
5 Cotton Non-relevant

Table 2.1: Example relevance judgments.

The output of the system, combined with the relevance judgments, is used to calculate
an effective metric, the result of this calculation will then give us an indication of the
performance of the system and its usefulness. We want a metric that represents the quality
of the system that produced this list of documents. Various metrics have been proposed
to represent system utility, we outline a few below.

11

2.3.1 Precision at rank k

One commonly used metric is precision at rank k or P@k which is simply the number of
relevant documents on or before rank k divided by k[2]:

∑k
i=1 rel(i)

k
, (2.6)

where rel(i) is 1 if the document at rank i has been judged relevant and 0 otherwise. Note
that this metric only uses binary relevance judgments. If graded relevance judgments are
available then these need to be mapped to binary relevance judgments.

So the P@5, where k is set to 5, of the documents in the above table would be 0.6.
The user model corresponding to this metric is a user who looks at the first k documents
in the search results before becoming bored and stopping, regardless of how many relevant
documents have been seen.

2.3.2 Reciprocal rank

Another possible metric is reciprocal rank or RR which is the reciprocal of the rank of the
first relevant document[2]:

1

first(i)
, (2.7)

where first(i) is the rank of the first relevant document. So the RR of the documents
in the above table would be 1

2
= 0.5. If there are no relevant documents in the list the

reciprocal rank will be 0. The user model corresponding to this metric is a user who stops
looking through the list of documents once the first relevant document is encountered.

2.3.3 Discounted cumulative gain

Discounted cumulative gain is a metric proposed by Järvelin and Kekäläinen[9], which is
widely used in web search contexts. Here we add the relevance judgment for documents
up to a certain rank, k, however these judgments are discounted by a certain amount at
each rank, commonly the judgments are divided by the log of the rank to provide this
discounting:

12

rel(1) +
k∑

i=2

rel(i)

log2(i)
. (2.8)

Again, here rel(i) is the relevance judgments of document i but unlike for P@k these
judgments do not need to be restricted to binary judgments. For our example this metric
is calculated as follows:

Rank Document title Judgment
1 Waterfront Grill Non-relevant 0.0000
2 Copeland’s Relevant 1.0000
3 Cormier’s Cajun Catering & Restaurant Relevant 0.6309
4 Enoch’s Pub & Grill Relevant 0.5000
5 Cotton Non-relevant 0.0000
- - Total 2.1309

Table 2.2: DCG calculation.

We calculate the discounted gain for each rank and then sum to get 2.1309. The user
model for this metric is somebody who gets less and less likely to read the documents as
they progress down the list. Note that here we stopped the calculation at rank k because
this is the last rank we have judgements for, typically the calculation will be done up to
the last rank judgements are available for.

2.3.4 Rank-biased precision

A fourth metric, proposed by Moffat and Zobel[15], is rank-biased precision (RBP). This
metric, like DCG, incorporates a discounting factor for each document in the list:

(1− p) ·
k∑

i=1

rel(i) · pi−1, (2.9)

where p is the probability that the user will continue to the next document in the list, for
example it is very likely somebody with p = 0.99 will move to the next document in the
list however somebody with probability p = 0.0 will only read the first document in the
list. For RBP the parameter p allows us to adjust how likely the person is to continue.

13

We can calculate the RBP for our example above, setting p = 0.95 and k = 5:

Rank Document title Judgment rel(i) · pi−1
1 Waterfront Grill Non-relevant 0.0000
2 Copeland’s Relevant 0.9500
3 Cormier’s Cajun Catering & Restaurant Relevant 0.9025
4 Enoch’s Pub & Grill Relevant 0.8574
5 Cotton Non-relevant 0.0000
- - Total 2.7099

Table 2.3: RBP calculation.

After calculating rel(i) ·pi−1 for each rank, we take the sum (2.7099) and then multiply
by 1 − p to get 0.1355. This user model, like the one for DCG, corresponds to somebody
who is less and less likely to continue scanning the list as they scan down it.

2.3.5 Expected reciprocal rank

Chapelle et. al., introduced another option for metric choice, expected reciprocal rank
(ERR)[3]. Like DCG and RBP this metric uses a discount factor for each document in
the list, however this factor is based on not only the rank of the document (like the other
two) but also on the number of relevant documents that come before the document being
considered. ERR can be expressed as:

k∑
i=1

1

i

i−1∏
j=1

(1− reln(j)) · reln(i), (2.10)

where reln(i) is proportional to the document relevance judgment:

reln(i) =
2rel(i) − 1

2max rel
. (2.11)

In the previous equation max rel is the highest judgment a document can get. This
is another metric that has the flexibility to use graded relevance, in our example, which
uses binary relevance, max rel = 1, so if the document at rank i is relevant reln(i) = 0.5,
otherwise reln(i) = 0.

14

In equation 2.10, the 1
i

is the discount factor based on position and the product is the
discount factor based on the number of relevant documents that are ranked higher in the
list. For our example, we can calculate ERR as follows:

Rank Judgment reln(i)
∏i−1

j=1(1− reln(j)) 1
i

∏i−1
j=1(1− reln(j)) · reln(i)

1 Non-relevant 0.0 0.000 0.0000
2 Relevant 0.5 1.000 0.5000
3 Relevant 0.5 0.500 0.1667
4 Relevant 0.5 0.250 0.0625
5 Non-relevant 0.0 0.125 0.0000
- - - Total 0.7292

Table 2.4: ERR calculation.

We calculate the individual addends and then sum them to get 0.7292. The user model
here is slightly modified from DCG and RBP in that the user becomes less and less likely
to view a document as they progress down the list but viewing relevant documents will
also make the user less likely to continue scanning the list of documents.

2.3.6 Time-biased gain

DCG, RBG, and ERR all have a related user model, a user who scans a list of documents
and eventually stops due to some factor, either because they have seen enough relevant
documents or have seen too many documents and have gotten bored. Smucker and Clarke
introduced a framework that encompassed these metric and has the flexibility to allow
other factors to be incorporated[22]. The most general form of this time-biased gain (TBG)
framework can be expressed as:

1

N

∫ ∞
0

D(t)dG(t). (2.12)

The equation assumes that the user is working through a ranked list of retrieval results,
reading documents, clicking on links, or performing whatever other actions are appropriate
to the retrieval task at hand. The function G(t) represents the cumulative gain, or benefit,
received by the user as time passes.

15

The decay function D(t) indicates the probability that the user continues until time t.
This function represents the possibility that the user will stop at some point due to factors
such as tiredness or boredom, rather than due to the influence of the results themselves.

N is the maximum amount of gain a user can experience (an optional normalization
factor). TBG is simplified as:

1

N

∞∑
k=1

gkD(T (k)). (2.13)

In this equation, gk represents the gain realized from the kth item. The function T (k)
represents the time it takes the user to reach rank k.

This framework will prove useful when developing our own metric later in this thesis
in chapter 4. We will go into more detail of TBG and discuss our extension to it then.

16

Chapter 3

Experimental Design

The experiments reported in this thesis revolve around the Contextual Suggestion TREC
Track, which I was the lead coordinator for, that first ran in 2012 and continued, with
the same basic format, in 2013. As the lead coordinator I ran the task as described in
this chapter. Besides offering advice and guidance on how to run the task my fellow
coordinators sometimes provided help running the task. The most significant contribution
from my fellow coordinators was in the building of a subcollection described in section 3.4.

The experiment investigates search techniques for complex information needs that are
highly dependent on context and user interests, with a particular focus on “attractions” or
“places-of-interest”. For example, imagine a traveller visiting Philadelphia, a contextual
suggestion system might recommend the Flying Fish Brewery1 or Elfreths Alley Museum2.
Our experiment looks at methods of evaluating contextual suggestion systems.

Our strategy is to provide the same input (a profile and a context) to multiple contextual
suggestion systems which will then return, as output, a ranked list of attractions the
systems thinks is relevant for the profile and context. These ranked lists of attractions
will be then judged for relevance. The systems used are developed by participants in the
Contextual Suggestion Track. In this chapter we will look at what a profile, a context, and
what a list of attractions consist of in detail.

1http://flyingfish.com/
2http://www.elfrethsalley.org

17

http://flyingfish.com/
http://www.elfrethsalley.org

3.1 Profiles

For our experiments profiles are lists of attractions that a user has given ratings for. A real
system might, for example, know which attractions the user likes and dislikes in their home
town and use that as input when trying to make suggestions when the user is travelling
outside of their home town. The list of attractions rated will be the same for all users, so
we first need to decide which attractions users will be rating.

3.1.1 Sample Attractions

Attractions are places that the user can visit. This could be a museum, gallery, restaurant,
park, or even a less specific place like a shopping district. For our purposes, the data we
have on an attraction is a title, a short description, and a URL that represents a page
about the attraction. Two sets of sample attractions were created, one for the 2012 track
and one for the 2013 track.

In the 2012 track all sample attractions were gathered from the Toronto, ON region.
A list of sample attractions was created from the results of a series of manual searches on
commercial search engines. The attractions were chosen based on the quality of informa-
tion available about them online, while ensuring that there was diversity in the types of
attractions put in the list. In order to ensure this diversity, the list of attractions included,
for example, art galleries, restaurants, and amusement parks, rather than many attractions
all from the same category.

In the 2013 track the sample attractions were gathered from the Philadelphia, PA
region. This list was based on attractions returned by contextual suggestion systems in
the 2012 track. Again, attractions were chosen for the quality of the descriptions and
websites available about them as well as maintaining a diverse list of attractions in an
effort to support the preferences of different types of users.

3.1.2 Developing Profiles

Profiles indicate a user’s preference for a particular list of attractions, in our experiments
this list of attractions is the list of sample attractions described in the previous section.
These profiles are then used as input for the contextual suggestion systems. We created
an online survey which each user completed, the responses to this survey were used to
make up the user’s profile. In the survey, users were shown a list of the sample attractions

18

in the format of a search results page, where they initially saw a list of titles and short
descriptions for all the attractions and then had to click through to see the attraction page.
These attractions were presented in a random order to each user. Each user was instructed
to give two ratings for each attraction. The first rating was the level of interest the user
had in going to the attraction after reading the title and description, the second rating was
the level of interest the user had in going to the attraction after browsing around on the
website for a short amount of time (usually less than a minute).

Figures 3.1, 3.2, 3.3, and 3.4 show samples from the survey used to gather attraction
ratings. For each attraction on the first page the user saw and rating the description
and then clicked through to the website. In 2012 the rating for the website was gathered
directly on the website page. In 2012 we experienced some technical issues with loading
pages into HTML IFrames so in 2013 users returned to the original page, once they had
viewed the website, to give their website ratings.

In 2012 we recruited users from the University of Waterloo student body to complete
our survey, in 2013, in addition to recruiting from the student body, we also used Amazon’s
Mechanical Turk service to recruit users to complete our survey. In both years the profile
consisted of ratings for 50 sample attractions. Approval to run these studies was granted
by the Office of Research Ethics at the University of Waterloo.

The level of interest ratings that users gave were on a 3-points scale and a 5-points
scale in 2012 and 2013 respectively. In 2012 the three labels for ratings, presented to users
were (labels in brackets were shown when the mouse is hovering over the rating button):

0 -1 (Looks boring)
1 0 (Meh, i.e. indifferent)
2 +1 (Looks interesting)

In 2013 the labels were reworded and two extra ones were included:

0 Strongly uninterested
1 Uninterested
2 Neutral
3 Interested
4 Strongly interested

Additionally, for the website, a rating of -2 was given if it didn’t load at the time of
judgment. In our experiments the time between when a suggestion was make by the system

19

Figure 3.1: Profile gathering and suggestion description judgment interface (2012).

20

Figure 3.2: Profile gathering and suggestion website judgment interface (2012).

21

Figure 3.3: Profile gathering and suggestion judgment interface (2013).

22

Figure 3.4: Suggestion website viewing interface (2013).

23

and when a user was asked to judge the suggestion was a few weeks. Sometimes the website
broke or was taken offline in the delay between suggesting and judging. Other times the
website was so slow that the assessor gave up trying to load it and reported a judgment of
-2. As we’ll see in section 3.4 some of the websites being judged were not live websites on
the open web but websites from the ClueWeb12 dataset being mirrored on other servers,
occasionally these pages in particular would be offenders in loading slowly.

In the 2012 experiment 34 profiles were created using this method, in the 2013 exper-
iment 562 profiles were created. This large increase in number of profiles was due to the
more extensive recruitment done on Mechanical Turk.

Profiles were distributed in two files: sample suggestions and ratings. For 2012, we can
see excerpts of the two files in listings 3.1 and 3.2. For 2013, the excerpts are in the listings
3.3 and 3.4.

Listing 3.1: Excerpt of example suggestions file for 2012.

<examples >

<example number ="1">

<title >Fresh on Bloor </title >

<description >Our vegan menu boasts an array of exotic

starters , multi -layered salads , filling wraps , high

protein burgers and our signature Fresh bowls.</

description >

<url >http ://www.freshrestaurants.ca </url >

</example >

...

</examples >

3.1.3 User Quality

In addition to the ratings given by users, timing logs were collected. A timestamp of
when a user made a judgment was recorded. For each judgment made, we calculated the
difference between each rating’s timestamp and the timestamp of the last recorded rating.
This gave us an approximation of the amount of time it took to make a judgment, however
is inaccurate when users take breaks between judging attractions. The estimate of the time
it took to make judgements was used to provide us with an estimate of the quality of the
ratings being given.

24

Listing 3.2: Excerpt of profiles file for 2012.

<profiles >

<profile number ="1">

<example number ="1" initial ="-1" final ="0"/ >

<example number ="2" initial ="1" final ="1"/>

<example number ="3" initial ="1" final ="1"/>

...

</profile >

...

</profiles >

Listing 3.3: Excerpt of example suggestions file for 2013.

id ,title ,description ,url

51,Elfreths Alley Museum ,Elfreths Alley Museum is a reputable

museum. A lovely little piece of history. Definitely a must

while visiting Philadelphia ... To walk down the oldest

residential street in the country is just something I think

everyone should do at least once if in the area! I really

enjoyed it.,http ://www.elfrethsalley.org

...

It takes a minimum amount of time to read a description, load a webpage, and read
the webpage, if the user is does this very quickly then they have probably not given us
high quality ratings. User who didn’t meet a certain quality threshold had their profiles
marked as bad and were not used as part of the system evaluation metrics.

In the 2013 experiment we expanded this quality assessment to include giving users a
question with a known answer for each attraction. As well as collecting timing logs we
asked each user, for each attraction, where the attraction was located. All the attractions
used to develop profiles were located in Philadelphia, PA, the choices we gave users for this
question were:

• Located in Philadelphia, PA
• Located in another city (we asked the user to give the name of the city)
• Unsure where it is located

25

Listing 3.4: Excerpt of profiles file for 2013.

id ,attraction_id ,description ,website

35,51,0,4

35,52,1,4

35,53,3,3

...

We also put five attractions that we knew where not located in Philadelphia, PA into
the survey used to build profiles. For these attractions the same location question was
asked with the same options. The answers to these question, in addition to the timing log
data, were used to give each user a quality rating. Again users who answered too quickly
or didn’t get enough of the location questions correct were not included in the metric
calculations for system evaluation.

Of the users who completed the initial survey 6% of users got less than 80% of the
geographical judgements correct. Additionally, as we will see later, users were invited back
to do a second survey, the order that users were invited back in corresponds to how many
geographical judgements they got correct, in the end only the top 80% of users were invited
back. This number was a combination of the limit of how many users we could invite back
(due to resource constraints) and the return rate of the users that we did invite back.

3.2 Forming Contexts

Contexts indicate where a user is physically located and what the time is when the user
is searching. The geographical component is at the granularity of the city-level and the
user is considered to be looking for any attractions within the city or in nearby cities
(short driving distance). The temporal component consists of a part of week (weekday or
weekend), a time of day (morning, afternoon, or evening), and a season (spring, summer,
fall, or winter).

For the geographical component, in the 2012 track experiment the cities were chosen
from the geonames.org list of US cities with a population greater than 100 thousand. The
likelihood of being included in the list was proportionate to the population of the city. In
the 2013 track experiment the cities were chosen from the wikipedia.org list of primary
cities for metropolitan areas in the US3 (excluding Philadelphia, PA as it was the city used

3http://en.wikipedia.org/wiki/List_of_metropolitan_areas_of_the_United_States

26

http://en.wikipedia.org/wiki/List_of_metropolitan_areas_of_the_United_States

for seeding the profiles).

For the temporal component, we selected a part of week, time of day, and season at
random in 2012. For the 2013 track experiment we abandoned the temporal component
completely leaving only the geographical component to form our contexts. This decision
was based on the fact that the temporal component complicated the task without providing
any benefit to many of the contextual suggestion systems (many systems ignored the
temporal component).

In both years 50 contexts were generated. See listings 3.5 and 3.6 for excerpts of the
context files which were distributed to participants in 2012 and 2013 respectively.

Listing 3.5: Excerpt of context file for 2012.

<contexts >

<context number ="1">

<city >New York City </city >

<state >NY </state >

<lat >40.71427 </lat >

<long > -74.00597 </long >

<day >weekday </day >

<time >afternoon </time >

<season >summer </season >

</context >

...

</contexts >

Listing 3.6: Excerpt of context file for 2013.

id ,city ,state ,lat ,long

51,Springfield ,IL ,39.80172 , -89.64371

52,Cheyenne ,WY ,41.13998 , -104.82025

53,Fargo ,ND ,46.87719 , -96.78980

...

27

3.3 Results

These profiles and contexts were released to research groups, throughout the world, partic-
ipating in the TREC Contextual Suggestion track. Several groups responded, developed
systems and returned the results to us as part of the track.

Each research group was asked to develop one or two systems that took a profile and a
context as input and produced a list of up to 50 ranked suggestions (attractions). These
attractions are in the same format as the attractions given in the profile, i.e., a title, a
short description, and a URL. For each system a list of suggestions was returned for each
context-profile pair, this was considered a run. Participants were relatively free in how to
implement their systems and what sources they could draw on, for example, systems could
make use of data sources such as Yelp or Google Places, however the systems needed to be
completely automated.

3.4 Data Collections

In both 2012 and 2013, systems could return URLs from the open web that described the
attraction. In 2013 systems were also given the option of returning documents from an
offline dataset, ClueWeb124.

ClueWeb12 is a dataset created as part of the Lemur Project. It consists of the source
of approximately 733 million webpages (documents), which as well as the main text of the
page include the HTML, CSS, JavaScript, etc. of the pages, but not the multimedia on
the page, for example not the images or videos. Each webpage in the crawl was assigned
a unique document id, for example clueweb12-0013wb-88-00134.

The crawl used to capture the source of these pages was conducted in early 2012 and
was seeded with about 3 million webpages including about 6 thousand from travel websites.
The inclusion of these travel websites makes ClueWeb12 an appropriate dataset for use in
this task.

In addition to the full ClueWeb12 dataset two subcollections were created that par-
ticipants had the option of using for this task, one developed by the same people who
developed ClueWeb12 and another developed by a co-organizer of the Contextual Sug-
gestion track. The first subcollection, ClueWeb12 B13 was created by simply uniformly

4http://lemurproject.org/clueweb12/

28

http://lemurproject.org/clueweb12/

sampling 7% of the full ClueWeb12 dataset, this provides participants who don’t have the
resources to process the full dataset an option to use.

The second subcollection, ClueWeb12 CS, was developed with the contextual suggestion
task in mind. In order to develop this collection a series of queries were issued to a
commercial search engine which returned a list of URLs from the open web relevant to the
given queries. Queries were of the form “location keywords”, where location was the city
and state of one of the contexts and keywords was a category of attractions, for example
“park”.

For each location queries were issued for a variety of categories. The URLs from all
of these queries were then filtered on whether the URL had a corresponding document in
ClueWeb12 or not (i.e., if it was saved in the crawl done in early 2012). All the webpages
that remained were included in the subcollection. This was done for each of the locations
in the contexts and the documents in the subcollection were grouped by location.

Participants who choose to use ClueWeb12 rather than the open web to gather sugges-
tions returned ClueWeb12 document ids rather than URLs in their submitted suggestions.

3.5 Example Submission Excerpt

Excerpts of files submitted by participants containing suggestions for 2012 and 2013 are in
listings 3.7 and 3.8 for each year respectively.

Listing 3.7: Excerpt of a suggestions file for 2012.

<context2012 groupid =" waterloo" runid =" waterloo12a">

<suggestion profile ="1" context ="1" rank ="1">

<title >Manhattan Skyline </title >

<description >Type: Landmarks/ Points of Interest

Activities: Helicopter rides </ description >

<url >http ://www.tripadvisor.com/Attraction_Review -

g60763 -d267031 -Reviews -Manhattan_Skyline -

New_York_City_New_York.html </url >

</suggestion >

...

</context2012 >

29

Listing 3.8: Excerpt of a suggestions file for 2013.

groupid ,runid ,profile ,context ,rank ,title ,description ,url ,docId

UWaterlooCLAC ,baselineA ,35,73,1, Rensselaer Polytechnic

Institute ," Rensselaer is A m e r i c a s oldest technological

research university , offering b a c h e l o r s , m a s t e r s , and

doctoral degrees in engineering , the sciences , IT and web

science , architecture , and the humanities",https :// www.rpi.

edu/dept/cct/public/eship/contactus.html ,

...

3.6 Judging Returned Suggestions

The returned suggestions from each of the runs were judged in two parts. They were first
judged according to geographical relevance by both users and trained NIST assessors then
according to how well they satisfied the profile by just users. Judgments were done for a
subset of the topics (profile-context pairs), which were selected randomly. Most judgments
were done up to rank 5 except for some of the topics in 2013 where the trained assessors
only judged for geographical appropriateness up to rank 4 due to time constraints. In these
cases geographical appropriateness judgements were still available from users.

3.6.1 Profile Relevance

In order to judge the relevance of suggestions with respect to a profile, we conducted a
second survey similar to the initial survey used to form profiles. In the second survey, the
same users from the first survey were invited to judge suggestions from task participants
that were made for their profile. Judgments were split into sessions, where a session
consisted of judging every suggestion up to rank 5 from all runs for a certain context for
their profile. This meant that a session in 2012 consisted of at most 135 suggestions and
in 2013 of at most 170 suggestions as we received 27 runs in 2012 and 34 runs in 2013.

After completing the first session users were invited back to complete a second or
sometimes third session (although in 2013 nobody was invited for a third session because
we had received an adequate number of judgments). In table 3.1 we see how many users
participated in the judging process, how many sessions judging was completed in, and
how many suggestions in total were judged. Note that not every user who contributed to

30

Profiles # Users Judged # Sessions # Suggestions
2012 34 19 44 5940
2013 562 127 213 35988

Table 3.1: Number of suggestion judged with respect to profile relevance.

creating a profile was part of the judging process because some users did not respond to
invitations to return for a second survey and others were disqualified.

As we did when developing profiles, all suggestions were presented to users in a random
order while judging. Again two judgments were requested, one for the description and one
for the website. Users were asked to score suggestions with the same rating levels as before
and we continued to collect timing data.

3.6.2 Context Relevance

In order to judge the relevance of suggestion with respect to context, assessors at NIST
reviewed some of the suggestions. Assessors visited the attraction’s website and looked for
hours of operation as well as the location of the attraction. Each judged suggestion was
given a geographical and temporal judgment:

-2 Could not load
0 Not appropriate
1 Marginally appropriate
2 Appropriate

In 2013, the temporal judgment was dropped because, as we saw in section 3.2 there
was no longer a temporal component in the context. Also users, in addition to NIST
assessors, were asked to give judgments on how contextually appropriate a suggestion
was, although users were not given the opportunity to assign a judgment of “marginally
appropriate” (1). Of the suggestions judged for context by both NIST assessors and users
there was an agreement of judgments of 77% if judgments of “marginally appropriate” (1)
and “appropriate” (2) are considered the same.

31

3.7 Evaluation of Runs: P@5 and MRR

In order to evaluate the contextual suggestion systems we used the metrics precision at
rank 5 (P@5) and mean reciprocal rank (MRR). For each attraction we calculated whether
or not it was relevant using binary relevance based on various combinations of description,
website, geographical, and temporal judgments. For example, an attraction might be
considered relevant if it is geographically appropriate (or marginally appropriate) and
both the description and website look interesting (or strongly interesting). This definition
of relevance was the main one used and the results in Chapter 5 are based off of this
definition. Table 3.2 shows whether 5 example suggestions are relevant or not for this
definition.

Rank Document title Description Website Geographical Relevant
1 Waterfront Grill Interested Strongly

Interested
Appropriate Relevant

2 Copeland’s Interested Strongly
Interested

Appropriate Relevant

3 Cormier’s Cajun Cater-
ing & Restaurant

Interested Uninterested Not
Appropriate

Non-
relevant

4 Enoch’s Pub & Grill Uninterested Neutral Appropriate Non-
relevant

5 Cotton Neutral Interested Appropriate Non-
relevant

Table 3.2: Binary relevance based on description, website, and geographical appropriate-
ness. Dark cells indicate what made the suggestion non-relevant.

This definition allows us to consider suggestions relevant if they are relevant according
to all categories, however, we might be interested in only looking at specific aspects of sug-
gestions. For example, if we are only interested in which systems made the best suggestions
regardless of geographical appropriateness we could ignore the geographical judgments and
only consider whether the description and website looks interesting when deciding if an
attraction is relevant.

The P@5 scores are simply how many attractions are relevant in the first five attractions
in the ranked list of suggestions divided by 5. MRR scores are 1 divided by the rank of
the first relevant attraction.

32

In Chapter 5 we will discuss how the systems in our experiments performed when
compared with these two metrics as well as with a modified version of TBG which we will
discuss next in Chapter 4.

33

Chapter 4

Evaluation Metric Design

P@5 and MRR are metrics that were both designed for evaluation of generic information
retrieval tasks. There are many other metrics also designed to evaluate similar tasks, such
as discounted cumulative gain [9], rank-biased precision [15], expected reciprocal rank [3],
and many others. While the contextual suggestion task is an information retrieval task
it might be possible to develop an evaluation metric that is suited better for this task in
particular.

4.1 Motivation

Neither P@5 nor MRR are ideally suited to contextual suggestion. P@5 assumes that the
user always views exactly 5 suggestions never more, never less. MRR assumes that the user
stops at the first suggestion they like. Both measures ignore the impact of descriptions and
negative suggestions, which may cause the user to abandon the results. In this chapter,
we describe a metric that takes into account these factors and is tailored more closely to
our task.

4.2 Time-biased Gain

To accommodate the limitations of traditional information retrieval measures Smucker and
Clarke [22] introduced the TBG framework. We turn to this framework to help us create

34

a measure that accommodates the custom aspects of our task. This framework uses time-
based calibration to account for the impact of user choices and actions. We specialized
this framework to create a version of TBG specifically geared to our contextual suggestion
task[5], below we describe TBG and the modifications we made to it.

As seen earlier, a general form of TBG may be written as the Riemann-Stieltjes integral:∫ ∞
0

D(t)dG(t). (4.1)

In this equation, we have removed the optional normalization factor from equation 2.12.

The function G(t) represents the cumulative gain, or benefit, received by the user as
time passes.

The decay function D(t) indicates the probability that the user continues until time t.
This function represents the possibility that the user will stop at some point due to factors
such as tiredness or boredom, rather than due to the influence of the results themselves.

Based on an analysis of a log from a commercial search engine, Smucker and Clarke
suggest an exponential decay function with a half-life of H = 224 seconds. In the absence
of other information, we adopt the same decay function for our version of TBG:

D(x) = exp(x ∗ − log(2)

H
). (4.2)

When gain is realized as a step function, e.g., increasing by a fixed amount when the user
views a suggestion they like, equation 4.1 may be re-expressed as a sum over documents,
suggestions, or other discrete retrieval items:

∞∑
k=1

gkD(T (k)). (4.3)

In this equation, gk represents the gain realized from the kth item. In the case of
contextual suggestion, we measure gain as the number of suggested webpages the user
views and likes. The function T (k) represents the time it takes the user to reach rank k.
The decay function is applied to this time to determine the portion of users who reach
rank k.

This equation assumes that the user is working through a ranked list of retrieval results,
reading documents, clicking on links, or in our case considering suggestions for attractions.

We provide estimates for gk and T (k) below.

35

4.2.1 Gain

To estimate gk, we borrow an idea from the cascade model of browsing behaviour of search
results [3, 26]. Under the cascade model, the gain realized at rank k depends on the
relevance of documents appearing at ranks 1 to k − 1. As more relevant documents are
seen by the user, the more likely they are to stop browsing, since their information need
may be satisfied.

For contextual suggestion, we use a cascade-like model to account for disliked sugges-
tions. As more disliked suggestions are seen, the more likely the user stops browsing. In
equation 4.7 as more disliked suggestions are seen the potential gain from further sugges-
tions goes down. The amount that this goes down is based on the parameter θ.

We define a function indicating if the user likes the suggestion at rank k as follows:

A(k) =

1, if the user likes or is neutral about the

description at rank k and also likes the

(geotemporally appropriate) webpage at

rank k

0, otherwise.

(4.4)

Thus, the user likes a suggestion only if they don’t dislike the description, and, after
clicking through to the webpage, they like it. Geotemporal appropriateness is consid-
ered only at the webpage level: the user never likes a webpage unless it is geotemporally
appropriate.

We define a function indicating if the user dislikes the suggestion at rank k as follows:

Z(k) =

1, if the user dislikes the description at rank k

or if ther user likes or is neutral about the

description but dislikes the webpage

0, otherwise.

(4.5)

Thus, the user dislikes a suggestion if they dislike the description, but also can dislike
a suggestion if they don’t dislike the description, but after clicking through they end up
disliking the website.

Using this we can calculation how many suggestions the user dislikes after reaching
rank i in the list of suggestions:

36

hi =
i∑

j=1

Z(j). (4.6)

We now define gk in terms of the user’s likes and dislikes as they browse a ranked list
of suggestions, as:

gk = A(k)(1− θ)hk−1 . (4.7)

If the user views and likes the suggestion at rank k, they receive a gain of 1, but this
gain is attenuated according to the number of disliked suggestions seen at ranks 1 to k−1.
The parameter θ (0 < θ < 1) indicates the probability that the user will stop browsing
after viewing a disliked suggestion. In the absence of other information, we adopt a value
of θ = 0.5. Note that under this model neutral documents have no impact nor any gain.

Note that this gain function is based on our assumptions about how users read sugges-
tion lists. The users in our experiments were focus on judging while looking at suggestions
are were actually viewing every suggestion description and website rather than only clicking
on websites that interested them for some reason. An area of future work would be to run
another experiment where users are given instructions to simply read a suggestion list with
the goal of finding interesting attractions rather than rating each and every suggestion.
This experiment would give us a better idea of how users actually browser suggestion lists.

4.2.2 Time

The time to reach rank k, T (k), on this interface, may be estimated from actual user be-
haviour captured during the judgment process. Using timing logs from potential travellers,
we compute the mean time it takes for users to read a description, TD, and the mean time
it takes users to examine a webpage, TW . Often the suggested webpage is the front page of
a large site describing the suggestion and may contain Flash, banners, etc., potential trav-
ellers may have looked at only the webpage suggested by the system, or may have clicked
through to additional, linked, pages. Examination of these additional pages is included in
the times to examine the suggested webpage.

In estimating the time taken to examine a document, Smucker and Clarke [22] consider
the document’s length. Since users are allowed to click on links and view webpages other
than the webpage associated with the suggestions, we do not know the length of the website.
Therefore we do not take it into account the website length when calculating the average

37

time to judge websites. In addition, since descriptions are limited, by the task, to 512
characters, and are generally close to that length, the length of descriptions are not taken
into account when calculating the average time to judge descriptions.

As part of the judging process, users clicked through to every website regardless of
whether or not they liked the description. In building our model, we assume real users
would exhibit different behaviour, only clicking through to pages with a description they
like. Under our model, users read every description, and if they like a description they will
click through to the website and examine it. Thus, the time to reach rank k is expressed
as:

T (k) =
k−1∑
j=1

TD + ljTW . (4.8)

where lj is 1 if the user likes the description at rank j, and therefore examines the
webpage, otherwise it is 0.

The time that judgements were made was recorded. In order to estimate how long
it took users to make judgements we subtract the timestamp of a judgment from the
timestamp of the previously judged item. This gives us the length of time it took users to
make each description and website judgements. In order to estimate how long it takes a
user in general we take the mean of all the times users took to make judgements. However
before calculating this mean we removed the slowest 10% of judgements.

When making judgements users sometimes took a break from judging and did something
else unrelated to judging before returning to their task. This meant that it looked like
users took a very long time to make judgements. Removing the lowest 10% was done in
order to eliminate these cases. 10% was chosen in order to gives us a reasonable standard
deviation. For example, in 2012, before removing these judgements the standard deviation
is approximately 6500 and after removing the slowest judgements the standard deviation
is 5.

We used the amount of time it took users to make judgements as the amount of time
it took users to read descriptions and websites. For 2012, this calculation gives us TD =
7.45 sec for the amount of time it takes users to read descriptions and TW = 8.49 sec for
the amount of time it takes users to read website judgements. One slightly surprising
observation is that the amount of time it takes users to read websites isn’t that that much
longer than the amount of time it takes to read a description. The instructions given to
users was to read the description and then visit the website for a short period of time.
Our guess is that because users were visiting every website in the list of suggestions for the

38

purposes of judging they spent less time on each suggestion than they would have if they
only visited websites with interesting descriptions.

See figure 4.1 for how long it took to make judgments on descriptions and websites.
Note that our measures for judgement time were taken in seconds and in some of these
histograms there are more bins than seconds so some of the bins are empty. These graphs
show the general trend for how long judgements take and where the mean judgement time
lies.

39

0 5 10 15 20

Seconds

0

50

100

150

200

250

300

350

400

#
 J
u
d
g
e
m

e
n
ts

(a) Description judgment time for 2012, mean
(marked) is 7.45sec.

0 5 10 15 20 25 30

Seconds

0

100

200

300

400

500

#
 J
u
d
g
e
m

e
n
ts

(b) Website judgment time for 2012, mean
(marked) is 8.49sec.

0 5 10 15 20
Seconds

0

500

1000

1500

2000

2500

3000

#
 J
u
d
g
e
m

e
n
ts

(c) Description judgment time for 2013, mean
(marked) is 5.23sec.

0 5 10 15 20 25 30 35 40
Seconds

0

500

1000

1500

2000

2500

3000

3500

#
 J
u
d
g
e
m

e
n
ts

(d) Website judgment time for 2013, mean
(marked) is 11.83sec.

Figure 4.1: Judgments times

40

Chapter 5

Results

There are two sets of data included in our results. In our 2012 experiment there were 27
contextual suggestions systems (or runs) being compared. In 2013 participation increased
slightly with 34 runs submitted. We used three metrics for evaluating runs: Precision at
rank 5 (P@5), Mean Reciprocal Rank (MRR) and Time-Biased Gain (TBG) with variations
on on P@5 and MRR. Table 5.1 shows the rankings of the 2012 runs and table 5.2 shows
the rankings of the 2013 runs.

5.1 P@5 and MRR

P@5 is calculated by taking the sum of the number of relevant documents in the first 5
suggestion in our ranked lists of suggestion and dividing by 5. MRR is calculated by taking
1 over the rank of the first relevant suggestion (or 0 if there are no relevant suggestions).
For both these metrics we have to determine when a suggestions is considered relevant.

There are three judgments given for each suggestion: a geographical relevance judg-
ment, a description judgment, and a document judgment. For our 2012 experiment there
was also a temporal relevance judgment. For the primary scores calculated for TREC in
2012 suggestion were considered relevant if they were geographically appropriate, and both
the description and document was interesting. So all three had to have a score of 2 to be
considered appropriate (in 2012 all judgments were on a 3-point scale).

In 2013, when description and document judgments were changed to a 5-point scale,
a suggestion is considered relevant if it is at least somewhat geographically appropriate
(a score of 1 or more), and both the description and document are at least interesting (a

41

score of 3 or more). For the geographical aspect the change for required a score of 2 to
considering 1 good enough was made because the judgments made by users were only on
a 2-point scale (although the NIST judgments were still on a 3-point scale).

In addition to these primary relevance definitions (which are the ones used in table 5.1
and 5.2) we also could have used different definitions of relevance which concentrated on
and isolated specific judgments.

The relevance definitions above were chosen to represent systems that performed well
overall. Other options for relevance definitions could have been used if we want to find out
what system performed well in one specific aspect of the task. For example, if we wanted
to find out what systems were able to correctly identify location we could have treated
all suggestions that were geographically appropriate as relevant, ignoring the description
and document judgments. On the other hand, we could have treated all suggestions where
both the description and document were interesting as relevant, and ignored the geograph-
ical judgment, if we wanted to see what system was best of predicting interesting things
regardless of context. Other options for the definition of relevance are also possible if we
are interested in considering other aspects of the systems.

5.2 TBG Results

In addition to P@5 and MRR we also consider TBG scores which are calculated as described
in chapter 3. The only difference between the 2012 and 2013 experiments for these number
is the threshold for acceptability for the description and document judgments. In 2012 it
was 2 and in 2013 it was 3, again this change was a consequence of the change from a
3-point to a 5-point scale for judgments.

The TBG system scores for 2012 and 2013 can be seen in igures 5.1 and 5.2 respectively.

5.3 Baseline runs

In addition to using metrics to compare runs against each other we also implemented
very simple basic systems which we compared to the other runs. Four baseline runs were
created in 2012, two as part of our experiments and two by co-organizers of the Contextual
Suggestion track. In 2013 only 2 baselines were created.

42

5.3.1 2012 Baseline runs

In 2012 two baselines were developed one with no personalization and one with very simple
personalization. For the first one, waterloo12a each ranked list of suggestions returned
consisted of the top 50 attractions, according to the given rating for attractions, returned
for each city from a commercial service (http://tripadvisor.com). For waterloo12b the
same service was used except that the service’s search tool was also to search for attractions
similar to the ones that the particular user gave a high rating for.

This was done by assigning a few terms to each attraction in the profile and searching
for each of those terms for each city. If the user liked the description and document in the
profile then we used the results from those searches when forming a personalized ranked
list of attractions. The result lists were merged and ranked by using the rating that the
site gave to each attraction.

Note that for our two baselines, most runs perform better however there are several
that perform worse. Also the unpersonalized baseline performs better than the personalized
one. However this is likely because of the simplicity of the personalization technique as
several of the runs that perform better than the baselines utilize personalization.

As a note, the two baselines produced outside of our experiment for 2012, baselineA
and baselineB used another commercial service (Google Places) to search, return lists of
attractions, without personalization. BaselineA is what Google Places gives with some
minor filtering and baselineB is the same as baselineA except with attractions limited to
pubs, restaurants, and cafes.

5.3.2 2013 Baseline runs

In 2013 we created two baselines runs focusing on highlighting the differences between
ClueWeb12 and the open-web as choices for where to gather attractions from. Again, a
commercial service was used, this time Google Places (which ranks attraction), in order
to gather and rank the list of attractions. No personalization is done in either of these
runs. In baselineA the top 50 attractions that Google Places returns for a city is used as
the ranked list of attractions with open web urls. For the description, a Google Places
provided description, review, or a blurb from the meta-description tag on the website is
used. In baselineB the same strategy is used except that the urls are mapped to ClueWeb12
documents. Attractions without corresponding ClueWeb12 documents are filtered out.

Note that most open web runs perform better than baselineA however all ClueWeb12
runs perform worse than baselineB. Also note that baselineB performs slightly better than

43

http://tripadvisor.com

baselineA.

Run P@5 Score MRR Score TBG Score P@5 Rank MRR Rank TBG Rank
iritSplit3CPv1 0.3235 0.4675 1.0126 1 1 (-) 3 (Down 2)
guinit 0.2920 0.4492 1.1670 2 3 (Down 1) 1 (Up 1)
gufinal 0.2710 0.4514 1.1544 3 2 (Up 1) 2 (Up 1)
UDInfoCSTc 0.2481 0.4195 0.8151 4 4 (-) 5 (Down 1)
PRISabc 0.2475 0.4086 0.8521 5 5 (-) 4 (Up 1)
hplcranking 0.2333 0.3868 0.7832 6 7 (Down 1) 8 (Down 2)
UDInfoCSTdc 0.2210 0.3668 0.7103 7 8 (Down 1) 9 (Down 2)
run02K 0.2185 0.3643 0.8022 8 9 (Down 1) 7 (Up 1)
hplcrating 0.2117 0.4037 0.8068 9 6 (Up 3) 6 (Up 3)
udelp 0.2111 0.3118 0.4330 10 14 (Down 4) 16 (Down 6)
ICTCONTEXTRUN2 0.1907 0.3010 0.5622 12 15 (Down 3) 12 (-)
run01TI 0.1907 0.3307 0.6996 11 13 (Down 2) 10 (Up 1)
udelnp 0.1883 0.3395 0.4511 13 11 (Up 2) 15 (Down 2)
iritSplit3CPv2 0.1790 0.3377 0.4574 14 12 (Up 2) 14 (-)
baselineA 0.1784 0.2993 0.5818 15 16 (Down 1) 11 (Up 4)
baselineB 0.1704 0.3504 0.4075 16 10 (Up 6) 17 (Down 1)
waterloo12a 0.1377 0.2130 0.4934 17 18 (Down 1) 13 (Up 4)
UAmsCS12wtSUM 0.1352 0.1727 0.3281 18 19 (Down 1) 18 (-)
ICTCONTEXTRUN1 0.1111 0.2346 0.2979 19 17 (Up 2) 19 (-)
waterloo12b 0.0864 0.1404 0.2691 20 20 (-) 20 (-)
csiroth 0.0772 0.1237 0.1857 21 22 (Down 1) 22 (Down 1)
UAmsCS12wtSUMb 0.0704 0.1058 0.1728 22 24 (Down 2) 23 (Down 1)
csiroht 0.0698 0.1281 0.1191 23 21 (Up 2) 25 (Down 2)
FASILKOMUI02 0.0667 0.1163 0.1629 24 23 (Up 1) 24 (-)
FASILKOMUI01 0.0660 0.0800 0.2253 25 25 (-) 21 (Up 4)
watcs12a 0.0049 0.0062 0.0196 26 26 (-) 26 (-)
watcs12b 0.0000 0.0000 0.0000 27 27 (-) 27 (-)

Table 5.1: P@5, TBG, and MRR rankings for all 2012 runs.

44

Run P@5 Rank P@5 Score TBG Rank TBG Score MRR Rank MRR Score
UDInfoCS1 1 0.5094 1 (-) 2.4474 1 (-) 0.6320
UDInfoCS2 2 0.4969 2 (-) 2.4310 2 (-) 0.6300
simpleScore 3 0.4332 4 (Down 1) 1.8374 4 (Down 1) 0.5871
complexScore 4 0.4152 5 (Down 1) 1.8226 6 (Down 2) 0.5777
DuTH B 5 0.4090 3 (Up 2) 1.8508 3 (Up 2) 0.5955
1 6 0.3857 8 (Down 2) 1.5329 7 (Down 1) 0.5588
2 7 0.3731 7 (-) 1.5843 5 (Up 2) 0.5785
udel run D 8 0.3659 9 (Down 1) 1.5243 8 (-) 0.5544
isirun 9 0.3650 6 (Up 3) 1.6278 9 (-) 0.5165
udel run SD 10 0.3354 16 (Down 6) 1.2882 10 (-) 0.5061
york13cr2 11 0.3309 12 (Down 1) 1.3483 15 (Down 4) 0.4637
DuTH A 12 0.3283 14 (Down 2) 1.3109 12 (-) 0.4836
york13cr1 13 0.3274 15 (Down 2) 1.2970 14 (Down 1) 0.4743
UAmsTF30WU 14 0.3121 17 (Down 3) 1.1905 13 (Up 1) 0.4803
IRIT.OpenWeb 15 0.3112 10 (Up 5) 1.4638 11 (Up 4) 0.4915
CIRG IRDISCOA 16 0.3013 18 (Down 2) 1.1681 16 (-) 0.4567
CIRG IRDISCOB 17 0.2906 20 (Down 3) 1.1183 19 (Down 2) 0.4212
uncsils param 18 0.2780 13 (Up 5) 1.3115 18 (-) 0.4271
uogTrCFP 19 0.2753 11 (Up 8) 1.3568 17 (Up 2) 0.4327
ming 1 20 0.2601 22 (Down 2) 1.0495 22 (Down 2) 0.3816
uncsils base 21 0.2565 19 (Up 2) 1.1374 20 (Up 1) 0.4136
ming 2 22 0.2493 23 (Down 1) 0.9673 23 (Down 1) 0.3473
uogTrCFX 23 0.2332 21 (Up 2) 1.0894 21 (Up 2) 0.4022
run01 24 0.1650 24 (-) 0.7359 24 (-) 0.2994
baselineB 25 0.1417 26 (Down 1) 0.4797 25 (-) 0.2452
baselineA 26 0.1372 25 (Up 1) 0.5234 26 (-) 0.2316
BOW V17 27 0.1022 28 (Down 1) 0.3389 28 (Down 1) 0.1877
BOW V18 28 0.1004 27 (Up 1) 0.3514 27 (Up 1) 0.1971
IRIT.ClueWeb 29 0.0798 29 (-) 0.3279 29 (-) 0.1346
RUN1 30 0.0628 30 (-) 0.2069 30 (-) 0.1265
RUN2 31 0.0565 31 (-) 0.2020 31 (-) 0.1223
csui02 32 0.0565 32 (-) 0.1785 32 (-) 0.1200
csui01 33 0.0565 33 (-) 0.1765 33 (-) 0.1016
IBCosTop1 34 0.0448 34 (-) 0.1029 34 (-) 0.0569

Table 5.2: P@5, TBG, and MRR rankings for all 2013 runs. Bold indicates a ClueWeb12
run.

45

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
P@5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
B

G

(a) P@5 vs TBG τ = 0.8502

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
P@5

0.0

0.1

0.2

0.3

0.4

0.5

M
R

R

(b) P@5 vs MRR τ = 0.8730

0.0 0.1 0.2 0.3 0.4 0.5
MRR

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T
B

G

(c) MRR vs TBG τ = 0.7949

Figure 5.1: Comparisons between P@5, MRR, and TBG for 2012.

46

0.0 0.1 0.2 0.3 0.4 0.5 0.6
P@5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
B

G

(a) P@5 vs TBG τ = 0.8160

0.0 0.1 0.2 0.3 0.4 0.5 0.6
P@5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
R

R

(b) P@5 vs MRR τ = 0.8959

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
MRR

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
B

G

(c) MRR vs TBG τ = 0.8632

Figure 5.2: Comparisons between P@5, MRR, and TBG for 2013.

47

5.4 System and Metric Comparisons

Tables 5.1 and 5.2 show the system scores for the 2012 and 2013 experiments. There are
a few things to take note of in these tables. Firstly, we can compare the systems against
the default results provided by commercial services in our baselines systems. For 2012, the
baseline systems (baselineA, baslineB, waterloo12a, and waterloo12b) all performed very
similarly to each other are were approximately the median scoring systems.

Systems that performed worse than the baselines didn’t improve on existing commer-
cial services already available to users, however many systems performed better than the
baselines and potentially improve on existing commercial services.

For 2013 we can again note the position of the baseline systems (baselineA and base-
lineB), however this time we note that many of the systems improved on the baselines.
Remember, for 2013 a second dataset could be used by participants (ClueWeb12 rather
than the open web). Runs that choose to use this dataset are marked in bold. Although
these runs scored worse than the open web runs we cannot make any claims about the
performance between the ClueWeb12 and open web runs. Only runs that operate on the
same dataset can be compared to each other.

The second thing to note in these tables is the amount of shifting of ranks is done when
ordering runs by the three different metrics (P@5, MRR, and TBG). These tables are
ordered by P@5 rank and for the TBG rank and MRR rank columns the move in position
up or down from the P@5 rank has been noted. Also the darker the colour of the cell in
these columns the greater the movement in rank.

For 2012, we can note that there is some movement in rank when changing the ordering
metric used but most systems stay at a similar rank, the greatest change is a move by 6
rank positions. We are especially interested in the movement near the top of the ranked
list of systems because ultimately we are most interested in the top performing systems.
Here we can see some movement but the top 3 systems remain the top 3 systems (in a
different order) regardless of the metric used.

For 2013, a similar situation can be seen, with slightly larger shifts in the middle of
the list, the largest being a shift of 8 positions. Again, in the top scoring systems there
is little movement, the top two systems remain exactly the same regardless of metric and
the third best scoring system according to P@5 moves down by 1 position according to the
other two metrics.

Figures 5.1 and 5.2 show the correlation between the scores given by the three metrics
more clearly than the tables do. Again, by looking at these graphs the same conclusion

48

can be drawn: there is little shift in the ranks given to systems by changing the metric
used. The Kendall’s tau coefficient is high (above 0.8) in all cases except when comparing
MRR and TBG for the 2012 experiments where it is slightly lower at 0.79.

The main conclusions that can be seen from these results is that systems can potentially
improve on existing commercial services and that there is not much difference in system
position ranking with different metric choices. This doesn’t help much when trying to
choose a metric but, as discussed briefly in Chapter 6, the choice of which metric to use is
made in part by how closely the user model that the metric follows the behaviour of actual
users.

5.5 Participant Approaches

14 teams participated in the TREC experiments in 2012 and 19 teams participated in 2013.
The teams are listed in tables 5.3 and 5.4 for 2012 and 2013 respectively.

Participants used various different strategies to implement their systems, however there
were common themes among these system. Described below are the general strategies that
participants used.

5.5.1 2012 Participant Approaches

Although each participant’s system in the 2012 experiment was different, every system
followed a similar framework. For each profile-context pair systems were required to output
a list of up to 50 ranked suggestions. In order to do this systems first gathered a set of
candidate suggestions. These suggestions consisted of, at least, a URL but often had
other information associated with them, for example, ratings, descriptions, titles, etc.
These candidate suggestions were then filtered and sorted based on the profile and context.
Finally description snippets were generated using strategies from returning a commercial
search engine’s snippet for the URL to composing sentences from multiple sources.

For the first step of gathering candidate suggestions systems crawled general search
engines such as Google or Bing, travel listings sites such as TripAdvisor1 or Yelp2, or queried
APIs such as the Google Places API [16, 12, 14, 13, 19, 10, 24, 8]. A common strategy
was to query or crawl pages for specific locations so that sets of candidate suggestions were

1http://tripadvisor.com
2http://www.yelp.com

49

http://tripadvisor.com
http://www.yelp.com

developed on a per-context basis [16, 12]. Some systems also searched for specific keywords
that appeared in the example suggestions to further direct their crawl [10].

Another strategy used by systems was to search by venue category, for example “park”,
which allowed them to group candidate suggestion by category in addition to location [25].

Some candidates did no filtering by either category, keyword, or location and simply
gathered a list of candidate suggestions. For filtering based on location, these systems
then gathered the address and geographical coordinates for candidate suggestions from the
service used directly or from the URL of the candidate suggestion. A comparison between
the location of the candidate and the location in the context was then done and candidates
that were too far from the location in the context were filtered out [13].

Some systems used more than one service to gather candidate suggestions. If the
candidate suggestion appeared in more than one service the systems had to detect and
merge or remove duplicated suggestions. Strategies used to do this were by matching by
name, matching by URL, matching by proximity, and some combination of these [14, 25].

At this point systems had a set of candidate suggestion grouped by, at least, location.
Depending on the service used to gather candidate suggestion systems had some level of
data on each candidate. Some services provided formated data such as name, ratings,
popularity, comments, opening hours, etc. Some services simply provided URLs. Some
systems supplemented the data they had about candidates with more information gathered
from the candidate suggestion’s URL and pages linked from this URL. Useful information
needed was extracted from these pages [16, 12, 13]. Systems often also supplemented the
example suggestion from information from their URLs or information about them provided
by other services.

Many systems also filtered by time in some fashion. Some systems extracted business
hours from the candidate websites or services [16, 13, 24]. Another strategy used was
to use social check-ins from sites like FourSquare to estimate when venues were typically
open [14]. A third strategy was to map categories to coarse business hours, for example
“morning” and candidates with the same category were assigned the same business hours
[8]. Candidate suggestions that had business hours that did not match with the context
were then filtered out.

After filtering candidate suggestions and gathering information about them the can-
didates had to be ranked. Systems used various different features to rank candidates. A
common feature was to use the textual similarity between example suggestions that the
user found to “look interesting” and candidate suggestions. Other features used included
the number of reviews, how positive the reviews were, and the rank of the candidate given
by the original service it was listed in [25]. Some systems also gave a higher ranking to

50

candidates with the same categories as example suggestions that the used found to “look
interesting” [12, 25, 24]. Another feature used by some systems was to assign each category
a season and give a higher rank to candidate suggestions if its season matched the context’s
season [16, 8].

All the features used by systems where then combined in some fashion, often linearly,
to give each candidate suggestion an overall ranking. In addition to boosting scores of
candidates that matched highly rated example suggestions some systems also penalized
candidates that matched poorly rated example suggestions [14, 19, 8].

After ranking the example suggestions the final step systems did was to develop a
description for each suggestion in the ranked list. Some systems gathered this information
directly from the text in the webpage [16], the meta description tags [12], or snippets
provided by the services used to gather candidate suggestions [12]. Another option used
by some systems was to pass the URL to a search engine and use the snippet that it returned
[14, 8]. Finally, some systems returned positive reviews for the suggestion [25, 19].

5.5.2 2013 Participant Approaches

The task systems were required to do didn’t change substantially from 2012 to 2013 and
the basic strategy used by 2013 systems was similar to the strategy used by 2012 systems.
Systems gathered candidate suggestions from various listings, search engines, and APIs.
Different systems used different keywords to search by, but again searching by location
was common in order to group candidates by context. These services provided information
about the candidates which sometimes included the URL, reviews, popularity, category
and other information.

One change from the 2012 experiment was that the temporal component was dropped
from contexts so systems no longer spent effort to filter by opening hours or season.

Again different systems used different features to rank the list of candidate suggestions.
Textual similarity between suggestions the user liked and candidates was a common fea-
tures, but other features such as reviews of the suggestion, popularity, etc. were also used.
How these features were combined varied by system. Some systems also introduced a at-
tempt at diversity in the ranked results based on the category of suggestions, i.e., systems
had a variety of suggestions from different categories in the results.

Like in 2012, systems also had to generate descriptions for candidates to show users.
Again strategies such as used snippets from a search engine and returning reviews or
descriptions from the service were used. Some systems used more complicated strategies
such as developing descriptions from multiple sources.

51

Organization Runs
CSIRO 1 baselineA, baselineB
CSIRO 2 csiroht, csiroth
Georgetown University gufinal, guinit
HP Labs China hplcranking, hplcrating
Indian Statistical Institute watcsl2a, watcsl2b
Inst de Recherche en Info de Toulouse iritsplit3CPv1, iritSplit3CPv2
Inst of Comp Tech, Chinese Academy of Sciences ICTCONTEXTRUN1, ICTCONTEXTRUN2
Pattem Recognition and Intelligence System Lab PRISabc
TNO and Radboud University Nijmegen run01TI, run02K
University of Amsterdam UAmsCS12wtSUM, UAmsCSl2wtSUMb
University of Delaware udelnp, udelp
University of Delaware, Infolab UDInfoCSTc, UDInfoCSTdc
University of Indonesia FASILKOMUIO1, FASILKOMUIO2
University of Waterloo waterlool2a, waterlool2b

Table 5.3: Teams that participated in the 2012 track.

Another change from the 2012 experiment was the option to use the ClueWeb12 dataset
rather than the open web. Most systems did not take this option but for those that did an
extra step was needed to gather candidate suggestions. Some systems simply mapped open
web documents to ClueWeb12 but many systems indexed ClueWeb12 (or some subset of
ClueWeb12) and retrieved candidate suggestions by issuing searches against their index.

5.5.3 Leading Approaches

In addition to looking at the general strategy used by participants, it is also interesting
to look at the strategies used by groups who performed well. In 2012, the iritSplit3CPv1
run performed the best (according to P@5), their overall strategy was similar to other
strategies however we can look at a couple choices made when implementing this system.
Hubert and Guillaume [8] developed a model for each user that consisted of terms they
liked and terms they disliked. Each suggestion was boosted if it matched the positive terms
and given a lower score if it matched the negative terms.

The runs guinit and gufinal also performed quite well. Yates et al. [25] implemented a
system that had heavier filtering of unwanted pages (like error pages) then other systems.
They also incorporated the idea of mixing well-known attractions (ones the location is
famous for) with personalized attractions. The difference between these two runs is whether
the description judgment was used to match example and candidate suggestions (guinit)
or whether the document judgment was used (gufinal).

52

Organization Runs
Pattern Recognition and Intelligent System laboratory 1, 2
University of Waterloo baselineA, baselineB
Georgetown University (Yang) BOW V17, BOW V18
National University of Ireland, Galway CIRG IRDISCOA, CIRG IRDISCOB
University of Lugano complexScore, simpleScore
University of Indonesia csui01, csui02
Democritus University of Thrace DuTH A, DuTH B
Centrum Wiskunde & Informatica IBCosTop1
Institt de Recherche en Informatique de Toulouse IRIT.ClueWeb, IRIT.OpenWeb
Indian Statistical Institute isirun
School of Information Sciences, University of Pittsburgh ming 1, ming 2
University of Sao Paulo run01
Institute of Computing Technology, Chinese Academy of Sciences RUN1, RUN2
University of Amsterdam UAmsTF30WU
University of Delaware udel run D, udel run SD
InfoLab at University of Delaware UDInfoCS1, UDInfoCS2
School of Information and Library Science, UNC-CH uncsils base, uncsils param
University of Glasgow (Terrier Team) uogTrCFP, uogTrCFX
Department of ITEC, YORK University, Toronto york13cr1, york13cr2

Table 5.4: Teams that participated in the 2013 track.

53

Chapter 6

Conclusions & Future Work

6.1 Conclusion

During the past two years we have ran two TREC based experiments that involved the
participation of several research groups. We developed the framework used to run these
experiments, how to develop profiles and contexts, what the systems should produce, and
how to judge the system output. Profiles were developed by asking real users for ratings
of attractions, contexts were developed by sampling US cities and randomly picking the
temporal component, and judging was done with a mix of professional assessors and real
user judgments.

We also developed a metric that is an extension to TBG which caters to the task the
systems in the TREC experiments developed. The metric takes into account the effects
of positive and negative descriptions and wasting user time by having them read negative
documents.

As can be seen from figures 5.1 and 5.2 our extension to TBG correlates quite well with
other metrics, for example when compared to P@5 the Kendall’s tau coefficient is between
0.79 and 0.90 for our experiments. The benefit from using this metric is not immediately
clear and in fact, for our experiments in TREC, we treated P@5 as our primary measure
used to determine which systems performed best. However the modified TBG metric has
a more realistic user model and we plan to continue investigating it for both possible
improvements and in experiments that support its usefulness.

54

6.2 Future Work

These experiments will continue for another year as part of TREC 2014. We plan to run
a similar experiment to 2013 with a few changes:

• We will only use users from crowdsourcing sites.

• We will have more example suggestions in profiles and investigate if this improves
system performance.

• We will investigate if systems can provide more relevant suggestions if demographic
data such as age is in the profile.

• We will investigate how adding who the user is travelling with (friends, family, alone)
to the context changes systems.

• We will investigate the effects of sampling from US cites with known tourism activity
rather than sampling from cities based on population.

We also want to investigate our usage of crowdsourcing, our metric, and the focus on
the task of only extracting all candidate suggestions from the open web and ClueWeb12.

6.2.1 Crowdsourcing

We used a mix of crowdsourced workers and university students as users in the 2013
experiment. We want to investigate how these two compare in terms of quality of judgments
and difficulty in discovering interesting suggestions for. We hope to use the data already
gathered to get some insight into crowdsourcing.

6.2.2 Practicality of TBG

We plan to continue using our modified TBG metric in the 2014 experiments, however
we want to investigate if we could improve this metric. As part of our experiments we
gathered timing data for how long users took to make judgments for the descriptions and
websites.

In our experiments we used the mean time across all users as an estimate of how long
every user takes to make judgments. Smucker and Clarke have discussed [21] an option for

55

modelling user behaviour in a more realistic way. We will investigate using their techniques
and develop models for how long each user takes to make judgments, using these models
in our metric calculations. This would involve picking at random how long a user takes to
make a judgment out of a model of all the times the user took to make judgments. Since
this involves random sampling the metric would become more complicated and we would
have to report both the mean and variance for the metric. Other improvements to our
metric can also be considered during future investigations.

6.2.3 Sub-collection Building

A first step most systems took when building ranked list of suggestions was to gather a list
of candidate suggestions from either the open web or ClueWeb12 using a variety of services
and APIs such as Yelp. In order to make it so that the differences in the systems are limited
to only the differences the systems used to rank suggestions and generate descriptions we
will investigate the possibility of generating a list of candidate suggestions for each context
in advance that systems can use.

This end goal here will be to have a sub collection of known candidate suggestions with
at least a URL for each candidate.

56

References

[1] Nicholas J. Belkin, Charles L.A. Clarke, Ning Gao, Jaap Kamps, and Jussi Karlgren.
Report on the SIGIR workshop on ”entertain me”: Supporting complex search tasks.
SIGIR Forum, 45(2):51–59, December 2012.

[2] Stefan Büttcher, Charles Clarke, and Gordon V. Cormack. Information Retrieval:
Implementing and Evaluating Search Engines, chapter 12. The MIT Press, 2010.

[3] Olivier Chapelle, Donald Metlzer, Ya Zhang, and Pierre Grinspan. Expected reciprocal
rank for graded relevance. In Proceedings of the 18th ACM conference on Information
and knowledge management, pages 621–630. ACM, 2009.

[4] Gordon V Cormack and Thomas R Lynam. Trec 2005 spam track overview. In
Proceedings of TREC, volume 14, 2005.

[5] Adriel Dean-Hall, Charles LA Clarke, Jaap Kamps, and Paul Thomas. Evaluating
contextual suggestion. In Proceedings of EVIA, 2013.

[6] Donna Harman. Trec 1992 overview of the first text retrieval conference. In Proceedings
of TREC, volume 1, 1993.

[7] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T Riedl. Evalu-
ating collaborative filtering recommender systems. ACM Transactions on Information
Systems (TOIS), 22(1):5–53, 2004.

[8] Gilles Hubert and Guillaume Cabanac. Irit at trec 2012 contextual suggestion track.
In Proceedings of TREC, volume 12, 2012.

[9] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir tech-
niques. ACM Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

57

[10] Marijn Koolen, Jaap Kamps, and Hugo Huurdeman. Contextual suggestion from wik-
itravel: Exploiting community-based suggestions. In Proceedings of TREC, volume 12,
2012.

[11] Greg Linden, Brent Smith, and Jeremy York. Amazon. com recommendations: Item-
to-item collaborative filtering. Internet Computing, IEEE, 7(1):76–80, 2003.

[12] Bingyang Liu, Tong Wu, Xianghui Lin, Yanqin Zhong, Qian Liu, Yue Liu, and Xueqi
Cheng. Ictnet at context suggestion track trec 2012. In Proceedings of TREC, vol-
ume 12, 2012.

[13] Abhishek Mallik, Mandar Mitra, and Kripabandhu Ghost. Contextual suggestion. In
Proceedings of TREC, volume 12, 2012.

[14] David Milne, Paul Thomas, and Cecile Paris. Finding, weighting and describing
venues: Csiro at the 2012 trec contextual suggestion track. In Proceedings of TREC,
volume 12, 2012.

[15] Alistair Moffat and Justin Zobel. Rank-biased precision for measurement of retrieval
effectiveness. ACM Transactions on Information Systems (TOIS), 27(1):2, 2008.

[16] Lin Qiu, JunRui Peng, QianQian Wang, Yue Liu, ZhiHua Zhou Weiran Xu, Guang
Chen, and Jun Guo. Pris at trec2012 contextual suggestion track. In Proceedings of
TREC, volume 12, 2012.

[17] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl.
Grouplens: an open architecture for collaborative filtering of netnews. In Proceedings
of the 1994 ACM conference on Computer supported cooperative work, CSCW ’94,
pages 175–186, New York, NY, USA, 1994. ACM.

[18] Stephen E Robertson and Ian Soboroff. The trec 2002 filtering track report. In
Proceedings of TREC, volume 11, 2002.

[19] Maya Sappelli, Suzan Verberne, and Wessel Kraaij. Tno and run at the trec 2012
contextual suggestion track: Recommending personalized touristic sights using google
places. In Proceedings of TREC, volume 12, 2012.

[20] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based collab-
orative filtering recommendation algorithms. In Proceedings of the 10th international
conference on World Wide Web, WWW ’01, pages 285–295, New York, NY, USA,
2001. ACM.

58

[21] Mark D Smucker and Charles LA Clarke. Modeling user variance in time-biased gain.
In Proceedings of the Symposium on Human-Computer Interaction and Information
Retrieval, page 3. ACM, 2012.

[22] Mark D Smucker and Charles LA Clarke. Time-based calibration of effectiveness
measures. In Proceedings of the 35th international ACM SIGIR conference on Research
and development in information retrieval, pages 95–104. ACM, 2012.

[23] Ellen M Voorhees et al. The trec-8 question answering track report. In Proceedings
of TREC, volume 8, 1999.

[24] Peilin Yang and Hui Fang. An exploration of ranking-based strategy for contextual
suggestion. In Proceedings of TREC, volume 12, 2012.

[25] Andrew Yates, Dave DeBoer, Hui Yang, Nazli Goharian, Steve Kunath, and Ophir
Frieder. (not too) personalized learning to rank for contextual suggestion. In Proceed-
ings of TREC, volume 12, 2012.

[26] Emine Yilmaz, Milad Shokouhi, Nick Craswell, and Stephen Robertson. Expected
browsing utility for web search evaluation. In Proceedings of the 19th ACM interna-
tional conference on Information and knowledge management, pages 1561–1564. ACM,
2010.

59

	List of Tables
	List of Figures
	Introduction
	Research Approach
	Organization of the Thesis

	Related Work
	Text REtrieval Conference (TREC)
	Evaluating Recommender Systems
	Evaluating IR Systems
	Precision at rank k
	Reciprocal rank
	Discounted cumulative gain
	Rank-biased precision
	Expected reciprocal rank
	Time-biased gain

	Experimental Design
	Profiles
	Sample Attractions
	Developing Profiles
	User Quality

	Forming Contexts
	Results
	Data Collections
	Example Submission Excerpt
	Judging Returned Suggestions
	Profile Relevance
	Context Relevance

	Evaluation of Runs: P@5 and MRR

	Evaluation Metric Design
	Motivation
	Time-biased Gain
	Gain
	Time

	Results
	P@5 and MRR
	TBG Results
	Baseline runs
	2012 Baseline runs
	2013 Baseline runs

	System and Metric Comparisons
	Participant Approaches
	2012 Participant Approaches
	2013 Participant Approaches
	Leading Approaches

	Conclusions & Future Work
	Conclusion
	Future Work
	Crowdsourcing
	Practicality of TBG
	Sub-collection Building

	References

