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Abstract

The deployment of Renewable Energy (RE)-based generation has experienced a sus-
tained global growth in the recent decades, driven by many countries’ interest in reducing
greenhouse gas emissions and dependence on fossil fuel for electricity generation. This trend
is also observed in remote off-grid systems (isolated microgrids), where local communities,
in an attempt to reduce fossil fuel dependency and associated economic and environmental
costs, and to increase availability of electricity, are favouring the installation of RE-based
generation. This practice has posed several challenges to the operation of such systems,
due to the intermittent and hard-to-predict nature of RE sources. In particular, this thesis
addresses the problem of reliable and economic dispatch of isolated microgrids, also known
as the energy management problem, considering the uncertain nature of those RE sources,
as well as loads.

Isolated microgrids feature characteristics similar to those of distribution systems, in
terms of unbalanced power flows, significant voltage drops and high power losses. For this
reason, detailed three-phase mathematical models of the microgrid system and components
are presented here, in order to account for the impact of unbalanced system conditions on
the optimal operation of the microgrid. Also, simplified three-phase models of Distributed
Energy Resources (DERs) are developed to reduce the level of complexity in small units
that have limited impact on the optimal operation of the system, thus reducing the number
of equations and variables of the problem. The proposed mathematical models are then
used to formulate a novel energy management problem for isolated microgrids, as a de-
terministic, multi-period, Mixed-Integer Nonlinear Programming (MINLP) problem. The
multi-period formulation allows for a proper management of energy storage resources and
multi-period constraints associated with the commitment decisions of DERs.

In order to obtain solutions of the energy management problem in reasonable compu-
tational times for real-time, realistic applications, and to address the uncertainty issues,
the proposed MINLP formulation is decomposed into a Mixed-Integer Linear Program-
ming (MILP) problem, and a Nonlinear programming (NLP) problem, in the context of
a Model Predictive Control (MPC) approach. The MILP formulation determines the unit
commitment decisions of DERs using a simplified model of the network, whereas the NLP
formulation calculates the detailed three-phase dispatch of the units, knowing the commit-
ment status. A feedback signal is generated by the NLP if additional units are required
to correct reactive power problems in the microgrid, triggering a new calculation MINLP
problem. The proposed decomposition and calculation routines are used to design a new
deterministic Energy Management System (EMS) based on the MPC approach to handle
uncertainties; hence, the proposed deterministic EMS is able to handle multi-period con-
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straints, and account for the impact of future system conditions in the current operation
of the microgrid. In the proposed methodology, uncertainty associated with the load and
RE-based generation is indirectly considered in the EMS by continuously updating the op-
timal dispatch solution (with a given time-step), based on the most updated information
available from suitable forecasting systems.

For a more direct modelling of uncertainty in the problem formulation, the MILP part
of the energy management problem is re-formulated as a two-stage Stochastic Program-
ming (SP) problem. The proposed novel SP formulation considers that uncertainty can be
properly modelled using a finite set of scenarios, which are generated using both a statis-
tical ensembles scenario generation technique and historical data. Using the proposed SP
formulation of the MILP problem, the deterministic EMS design is adjusted to produce a
novel stochastic EMS.

The proposed EMS design is tested in a large, realistic, medium-voltage isolated mi-
crogrid test system. For the deterministic case, the results demonstrate the important
connection between the microgrid’s imbalance, reactive power requirements and optimal
dispatch, justifying the need for detailed three-phase models for EMS applications in iso-
lated microgrids. For the stochastic studies, the results show the advantages of using a
stochastic MILP formulation to account for uncertainties associated with RE sources, and
optimally accommodate system reserves. The computational times in all simulated cases
show the feasibility of applying the proposed techniques to real-time, autonomous dispatch
of isolated microgrids with variable RE sources.
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Chapter 1

Introduction

1.1 Research Motivation

The problem of reliable integration of intermittent energy sources into the power systems
has gained great importance over the last few decades, motivated by the rapidly-increasing
penetration of RE sources like wind and solar-Photovoltaic (PV). This trend is expected
to persist for the next decades as several countries, in an attempt to reduce their green-
house gas emissions, have developed ambitious plans to increase the levels of penetration
of renewable generation. To serve this purpose, different incentive policies have been de-
veloped, including feed-in tariffs, renewable portfolio standards, tradable green certificates,
investment tax credits and capital subsidies [1].

The use of modified feed-in tariff programs that cover off-grid systems (e.g., remote
communities without connection to the main grid) has also been proposed in order to en-
courage the installation of RE technologies in remote areas to help increase availability
of electricity, and reduce fossil fuel dependency, and its associated economical and envi-
ronmental costs [2, 3]. The latter takes more relevance when considering that, according
to estimates from the International Energy Agency, 1.3 billion people worldwide have no
access to electricity from the existing electric grids, but can potentially be electrified with
off-grid stand-alone systems that incorporate local RE sources [4]. In this context, micro-
grids provide a general framework to address the various technical and economical issues
that arise from the integration of RE sources in the form of distributed generation in
isolated networks [5].

A microgrid can be defined as a cluster of loads, Distributed Generation (DG) units and
ESSs operated in coordination to achieve common local goals [5]. Microgrids are capable
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of operating in grid-connected and stand-alone modes; however, a special case is identified
when microgrids operate permanently in stand-alone mode, known as isolated microgrids
(i.e., off-grid systems). From the technical viewpoint, the integration of RE sources in
isolated microgrids presents more significant challenges due to their low inertia, limited
number of controllable assets, and critical demand-supply balance [6]. The most relevant
challenges in the operation of isolated microgrids include:

• Bidirectional power flows : Since distribution feeders were initially designed for uni-
directional power flow, integration of DG units at low voltage levels that may cause
reverse power flows can lead to complications in protection coordination, undesirable
power flow patterns, fault current distribution, and voltage control.

• Stability issues : Local oscillations or other stability problems may emerge from the
interaction of the control systems of DG units, requiring a thorough stability analysis
classically performed only at a transmission system level.

• Low inertia: Unlike bulk power systems where high number of synchronous genera-
tors ensures a relatively large inertia, microgrids might show a low-inertia character-
istic, especially if there is a significant share of power electronic-interfaced DG units.
Although such an interface can enhance the system dynamic performance, the low
inertia in the system can lead to severe frequency deviations in stand-alone operation
if a proper control mechanism is not properly implemented.

• Uncertainty : The economical and reliable operation of microgrids requires a certain
level of coordination among different DERs. This coordination becomes more chal-
lenging in isolated microgrids, where the critical demand-supply balance and presence
of ESSs require solving a strongly coupled problem over an extended horizon, taking
into account the uncertainty of parameters such as load profile and weather forecast.
This uncertainty is more significant than those in bulk power systems, due to the
reduced number of loads, and highly correlated and proportionally large variations
of available energy resources.

The reliable integration of RE sources in isolated microgrids will only be possible if the
aforementioned challenges are successfully overcome, since these negatively affect the grid
operation if not properly addressed. For example, an inadequate handling of uncertainty in
RE generation may result in frequent deficits of energy supply, which may lead to expensive
load shedding measures or the need for more expensive generation, which may impact
negatively the perception of RE sources as a viable alternative for use in isolated microgrids.
In this context, this thesis concentrates on the issues of scheduling and dispatch of isolated
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microgrids in the presence of intermittent energy sources by designing an adequate EMS for
isolated microgrids. In the proposed EMS, the energy management problem is formulated
as a mathematical program to be solved with suitable optimization algorithms. Unique
traits of this research are the use of stochastic programming formulations of the energy
management problem to account for uncertainties associated with RE sources, the use of
a highly-detailed three-phase model of the microgrid to account for the effect of system
imbalance, and the implementation and testing of an EMS for real-time, autonomous,
practical applications in real microgrids.

1.2 Literature Review

The problem of energy management in microgrids consists of finding the optimal (or near
optimal) UC and dispatch of the available DERs so that certain selected objectives are
achieved. In particular, this problem gains more relevance with the presence of highly-
variable energy sources, where the update rate of the unit dispatch command should be
high enough to follow the sudden changes of load and non-dispatchable generators, and
uncertainty needs to be taken into account. Hence, in order to allow seamless deployment
of intermittent energy sources in stand-alone systems, proper EMSs and controls must be
designed to ensure reliable, secure and economical operation of isolated microgrids.

In general, to determine the dispatch and UC of the microgrid, three main options
can be identified: Real-time optimization, expert systems, and decentralized hierarchical
control [7]. With regard to the EMS architecture, two main approaches can be identified:
Centralized and Decentralized architectures. With these aspects in mind, an overview of
the state-of-the-art research on EMSs for isolated microgrids is presented next.

1.2.1 Centralized EMS Approach

A centralized EMS architecture consists of a central controller provided with the relevant
information of every DER unit and load within the microgrid, and the network itself
(e.g., cost functions, technical characteristics/limitations, network parameters and modes
of operation), as well as the information from forecasting systems (e.g., local load, wind
speed, solar irradiance) in order to determine an appropriate UC and dispatch of the
resources according to the selected objectives. The central controller can make decisions
using either on-line calculations of the optimal (or near optimal) operation, or pre-built
and continuously-updated databases with information of suitable operating conditions,
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Fig. 1.1: Centralized EMS approach for isolated microgrids.

from off-line calculations or other heuristic approaches. A practical application of this
approach is demonstrated in [8], and the general structure of a centralized EMS is shown
in Fig. 1.1, where the input variables/parameters may include: Forecasted power output
of the non-dispatchable generators for a pre-defined look-ahead window, forecasted local
load for a pre-defined look-ahead window, State-of-charge (SoC) of the ESSs, operational
limits of dispatchable generators and ESSs, and security and reliability constraints of the
microgrid.

Output variables of the secondary controller are the reference values of the primary
control system (e.g., output power and/or terminal voltage) for each dispatchable DER
unit, together with decision variables for controlling loads for load shifting or shedding.

In small microgrids with a low number of generation scenarios, the offline calculation of
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the optimal operation for all the possible scenarios may be the best alternative in terms of
cost and systems performance. In the approach presented in [9], all possible operation states
are analysed off-line and the optimal dispatch of the system for each scenario is calculated
and stored in a look-up table to be accessed in real-time operation. Although this approach
produces an instantaneous response of the system when the conditions change, the number
of possible scenarios can become an issue if changes in the topology of distribution system
are considered (faults or reconfiguration), or if time-coupling is considered in the operation
of the microgrid. In particular, the presence of ESS in the microgrid would introduce
time dependence in the calculation of the optimal dispatch, and a new dimension to the
look-up table, since the state-of-charge of an ESS at a given time-step will depend on
the state-of-charge and dispatch at the previous step; therefore, the optimal dispatch is
not solely determined by a particular demand scenario. A similar approach is presented
in [10], where a feed-forward Artificial Neural Network (ANN) with one hidden layer is
trained with results of the OPF for several feasible scenarios of the microgrid. One of the
advantages of this approach is that it allows a fast response of the centralized EMS even
for scenarios not included in the training set, although optimality, or even feasibility, are
not guaranteed in those cases. An on-line calculation of the OPF is performed with certain
frequency to evaluate the quality of the solutions provided by the ANN, and decide if a new
training with additional scenarios is needed. However, the use of significant ESS capacity
is not considered in this case, and its optimal management would require a multi-period
OPF calculation, which will greatly increase the number of scenarios to be considered in
the ANN training.

An alternative approach to the ones proposed in [9,10] is to obtain a new solution of the
optimal energy management problem for each operating condition on-line; however, in this
case, special attention needs to be given to the problem formulation, so that solutions can be
obtained in suitable computational times. In particular, the objective function may include
cost functions of second or higher order polynomial equations with some start-up/shut-
down decisions, as it is the case in [11]. Also, some complex constraints are needed to model
the operational limitations of some DG units and ESSs or to represent controllable loads
and commitment decisions. Furthermore, considering network constraints (load flow) adds
another degree of complexity to the microgrid optimal energy management problem due to
their non-linearity, as it is the case in [12]. In particular, the authors in [12] present a multi-
period Nonlinear Programming (NLP) formulation of the energy management problem
using a detailed, unbalanced, OPF model. Although the proposed model is designed for
grid-connected microgrids, the authors recognize the importance of detailed network and
device models on the energy management problem. The presented model is highly detailed
in terms of system modelling; however, it does not include UC decision variables and
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measures of uncertainty, which would greatly increase the complexity of the formulation.

Detailed formulations of the microgrid optimal energy management problem that in-
clude UC decisions fall into the category of Mixed-Integer Nonlinear Programming (MINLP)
problems. In order to handle and solve such complex problem formulations, heuristic
optimization techniques have been applied, including Genetic Algorithms (GA) [13, 14],
Particle Swarm Optimization (PSO) [15], and Ant Colony Optimization (ACO) [16]. How-
ever, MINLP formulations are impractical for dispatch applications, due to the lack of
reliable Mixed-Integer Linear Programming (MILP) solvers that are able to obtain “good”
solutions in reduced computational times. Also, simplified formulations that concentrate
exclusively on the active power dispatch have also been used in [11, 17–19], where power
flow equations have been replaced by a single demand-supply balance equation. While
such simplified approaches lead to linear or mixed-integer linear formulations that can be
readily solved with commercial MILP solvers, important operational constraints related to
voltage limits and reactive power flow are neglected.

To address the aforementioned system modelling issues, the authors in [20] present
a two-stage energy management process where the scheduling of units is performed in
a first stage neglecting the power flow equations and using a multi-period formulation,
whereas the final dispatch is refined by a second stage that includes balanced power flow
equations in the calculations, but uses only a single-step formulation. A cost function for
ESSs, which penalizes deviations from the dispatch determined by the first stage, is also
included in the second-stage problem. This sophisticated approach addresses several issues
relevant for EMSs in isolated microgrids; however, system imbalance is not considered, and
uncertainties associated with the forecasting system are not accounted for directly in the
problem formulation, requiring an arbitrary spinning reserve equation.

The minimization of total operating cost is the most commonly pursued objective in
EMSs for isolated microgrids; however, some approaches have also incorporated the re-
duction of Greenhouse gas (GHG) emissions as an additional objective for the microgrid
operation. In this case, the energy management problem is formulated as a multi-objective
optimization problem and solved with different techniques [21]. Pareto optimal solutions
are investigated in [15] and [16] by using PSO and ACO techniques, respectively, while a
weighted objective function that combines different individual objective functions, together
with heuristic optimization techniques, are used in [17, 22–24]. Nevertheless, there is no
clear criteria defined to establish the weight of each individual objective function in the
dispatch problem; therefore, the optimal solutions produced by these algorithms are highly
arbitrary.

In the most typical case of centralized EMS, the information about cost functions
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and operating limits of DGs is transferred to the microgrids central controller in order to
determine the appropriate system operation. However, it is possible to get a more active
participation of generators and customers by allowing them to bid their power production
and consumption, respectively, instead of simply communicating its cost functions and
availability [25]. Although this alternative allows different players to have participation in
the decision making, different players may need additional information and analysis skills
in order to determine appropriate bids, if a multi-period operation planning is required.

ESS Considerations

The deployment of ESSs can have an important effect on the optimal operation of mi-
crogrids. In addition to balancing the demand-supply equation when power shortage or
surplus are encountered, ESSs can be used to maintain dispatchable DG units operating at
their maximum efficiencies, and can prevent or reduce the use of expensive energy sources
during peak hours, also allowing the microgrid to defer investment on new capacity. After
the UC decisions have been made in a previous stage, the dispatch of units in a micro-
grid is typically a single-step problem, in the sense that the microgrids state will depend
exclusively on the demand and available power from non-dispatchable generators at that
particular moment (snapshot problem), and the previous states will have no influence.
However, in the presence of a long-term ESS, this is not the case, since future operating
conditions will have an impact on the present operation of the ESSs.

The authors in [24] propose a multi-objective single-step formulation, where ESS dis-
patch is managed by incorporating a penalty term in the objective function that discourages
the use of stored energy. This way, the proposed formulation prevents the use of all the
stored energy at once; however, it is not able to properly handle the effect of future de-
mand conditions in the present operation of the ESSs. To address this issue, multi-period
formulations of the dispatch problem have been proposed in the literature to appropriately
accommodate the storage resources in time [26–31].

In [26], a day-ahead Economic Load Dispatch (ELD) is performed for a microgrid
with intermittent DGs and an ESS; the programmed dispatch is then adjusted every 15
minutes to ensure that the voltages are kept within acceptable limits, trying to maintain
the dispatch of units as close to the predetermined values as possible . A more detailed
formulation is presented in [27] for a microgrid with wind turbines and a hydrogen-based
ESS, where the ELD is performed over several time steps, but only the results obtained
for the next time step are actually implemented in the microgrid, and then the ELD is
re-calculated for the following stages using an MPC technique. In [28], the benefits from
an optimal management of the ESS via multi-period optimization are estimated to be
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a reduction of 5% in the operation cost, although this result strongly depends on the
particular size and efficiency of the considered ESS, and the cost characteristics of the
microgrid generators. The importance of adequate ESS modeling for real-time microgrid’s
power generation optimization applications is highlighted in [32]; it is shown that several
practical complexities such as start-up conditions, impact of environmental conditions,
command delays, measurement errors, and standby losses could result in the violation
of storage-related constraints, and consequently, could render the microgrid optimization
problems infeasible.

Uncertainty Considerations

Uncertainty in the load and generation profiles has been mainly addressed indirectly in
the dispatch problem by using the MPC approach, which is an optimization-based control
strategy where an optimization problem is formulated and solved at each discrete time-
step. MPC strategies are quite appealing for energy management of isolated microgrids,
since they allow for the implementation of control actions that anticipate future events
such as variations in power outputs from non-dispatchable DER units and instantaneous
demand [11,27].

In MPC, at each time-step, the solution to the optimal control problem is solved over
a certain pre-defined horizon using the current state of the system as the initial state. The
optimization calculates a control sequence for the whole horizon such that the selected
objectives are minimized, but only the control action for the next time step is implemented.
A particular application of the MPC approach in a centralized EMSs is presented in [11],
where the dispatch of the microgrid is calculated every hour considering an optimization
horizon of 48 hours, in order to capture complete load and generation profile patterns;
however, the slow update-rate of the dispatch and simplified network models are weaknesses
of the proposed approach.

Despite its advantages, an MPC approach might not be enough to ensure the reliable
operation of isolated microgrids due to the critical demand-supply balance, and a more
detailed modelling of the uncertainty might be necessary. Techniques such as robust opti-
mization, stochastic optimization, and chance constrained optimization have been applied
to UC in bulk power grids [33–36]. These techniques in combination with the traditional
MPC approach offer advantages regarding the direct incorporation of uncertainty in the
optimization models, which might help to achieve a more reliable operation of isolated
microgrids.
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1.2.2 Decentralized EMS Approach

A decentralized EMS intends to solve the energy management problem of a microgrid while
providing the highest possible autonomy for different DERs and loads. Although this ap-
proach can still use a hierarchical structure for data exchange, decisions on the control
variables are made locally. The autonomy of isolated microgrids is achieved using a hierar-
chical structure with at least 2 levels: Microgrid Central Controller (MGCC) and LCs [25]
(a third level is considered in the case of grid-connected microgrids or inter-connected
microgrids). The MGCC coordinates the aggregated operation of the DERs and loads
within the microgrid, and is responsible for their reliable and economical operation, as
well as interaction with the main grid. The LCs control DER units within the microgrid,
or an aggregation of them, interacting with higher level controllers and trying to achieve
local and global objectives. In a decentralized architecture, an LC can communicate with
the MGCC and other LCs in order to share knowledge, request/offer a service, commu-
nicate expectations, and exchange any other information relevant to the operation of the
microgrid.

Given its characteristics, decentralized EMSs have been primarily addressed in the
literature by using the MAS framework. A MAS can be briefly described as a system
composed of multiple intelligent agents, provided with local information, that interact with
each other in order to achieve multiple global and local objectives. As can be expected,
the connectivity of the agents, the functionalities and responsibilities assigned to each
agent, and the characteristics of the information that agents can share, play an important
role in the performance of the system. Agents are entities that act on the environment
and have communication capability, some level of autonomy based on their own goals,
and a limited knowledge of the environment (e.g., terminal measurements) [37]. Although
communication between agents play an important role in the coordination of DERs, a large
part of control is based on their autonomy and is performed locally.

An EMS based on the MAS concept for microgrids is proposed in [38], as an alternative
for coordinated operation of microgrids in a competitive market environment and with
multiple generator owners. The relevant microgrid players are grouped and represented by
different agents that interact in a market environment in order to determine the operation
of the microgrid. In this way, consumers, generators, and ESSs participate in the market by
sending buying and selling bids to the MGCC based on their particular needs, availability,
cost functions, technical limitations, expectations and forecasts. The MGCC is responsible
for the settlement of the microgrid market by matching buying and selling bids maximizing
the social welfare, while ensuring the feasibility of the resulting dispatch. A similar MAS
approach is also proposed in [39], where power flow calculations are performed to verify
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that the dispatch obtained in the market complies with technical standards and other
operational constraints.

In [40], additional agents assigned to different tasks such as load shifting and load
curtailment, to allow demand side management and real power mismatches produced in
the real-time operation of the microgrid, are shared by the DG units in proportion to
their available unused capacity. In order to keep the design flexible, an external relational
database containing the scheduling procedures is considered, and a short-term battery-ESS
is also considered to balance fast changes in demand, with no participation in the market.

An EMS using a so-called gossip-based technique, which can be considered as a special
case of MAS, is proposed in [41]. According to the gossip-based control, different units
exchange information regarding their operation, such as mismatches between programmed
and actual power outputs, and marginal costs. To return the frequency and voltages to
its original values after a system disturbance, DG units exchange the mismatches between
their programmed and actual active and reactive power outputs, and calculate the average
mismatch for the whole microgrid. The average mismatch is then added to the droop
controllers’ references to counteract the initial shift. Several strong assumptions must be
made for the proposed approach to work properly, such as all droop controllers having
the same droop constants, and voltage control within the microgrid being carried out
from distant locations without considerable performance degradation. Optimality of the
operation is obtained by progressively averaging random pairs of DG units, converging to
a unique marginal cost.

Managing multi-period operation scheduling becomes a more challenging issue in decen-
tralized control schemes, since not all the necessary information regarding systems state,
data forecast and cost functions is available to all the agents. A MAS-based architec-
ture is proposed in [42] that includes additional agents that may enable a multi-period
operation scheduling of the microgrid. Service agents provide forecasting information and
database services to the LCs to allow a better management of the energy resources over a
more extended operating horizon; however, special protocols and procedures to handle the
information to achieve this desired feature are yet to be studied.

The architecture of a decentralized EMS with service agents and the internal structure
of an LC are shown in Figs. 1.2 and 1.3, respectively. A similar architecture is proposed
in [43], which considers only generation-side bids and a sequential negotiation process;
starting with the DG with lower full load average cost (FLAC), the active power mismatch
for the next period of operation is negotiated with each DG in the microgrid until it is
balanced.
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1.2.3 Discussion

Research on microgrid EMSs over the last 10 years has shown significant progress and
yielded important outcomes. Different levels of detail on components modeling, network
representation, and different EMS architectures and functionalities have been proposed;
however, many issues still remain unresolved or insufficiently discussed. Particularly, a uni-
fied approach that incorporates highly detailed models of the microgrid and its components,
and provides appropriate representation of time-coupling characteristics and uncertainty
has not yet been developed.

A clear distinction between centralized and decentralized EMS approaches can be iden-
tified. Centralized approaches allow high levels of coordination in the operation of DERs,
which are dispatched as a result of an optimization problem, at the cost of reduced au-
tonomy of DERs. On the other hand, decentralized methodologies allow higher levels of
autonomy in the operation of each DER, which is a disadvantage in microgrids that require
strong cooperation between different DERs. The latter is the case of isolated microgrids,
where the small number of generators and critical demand-supply balance demands high
levels of coordination in order to operate the system in a secure and reliable way. In this
context, the centralized method is more suitable for isolated microgrid applications [44],
and hence the EMS techniques proposed in this thesis are based on this approach.

1.3 Objectives

Based on the state-of-the-art on EMSs for isolated microgrids discussed above, the main
objectives pursued in this thesis are the following:

1. Propose detailed mathematical models for the microgrid system and components that
are able to properly represent the effects of power flow patterns, voltage limits, and
system imbalance for energy management applications in isolated microgrids.

2. Propose a deterministic formulation of the optimal energy management problem of
isolated microgrids that employs detailed mathematical models in order to determine
the optimal operation of DERs in time, given available forecasts for load and RE
generation.

3. Propose a centralized EMS architecture that employs the formulation of the optimal
energy management problem to obtain economical dispatch solutions that can be
implemented in the real-time operation of actual isolated microgrids.
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4. Investigate the impact of representing unbalanced system conditions on the optimal
dispatch of isolated microgrids, using the proposed EMS design.

5. Apply a stochastic optimization approach to the proposed formulation of the optimal
energy management problem, in order to account for the uncertainty associated with
the external forecasting systems directly in the problem formulation.

6. Investigate the effects of considering uncertainty on the optimal dispatch of isolated
microgrids, under different system conditions and EMS design parameters.

1.4 Thesis Outline

The rest of this thesis is structured as follows: Chapter 2 presents a background review of
the main concepts, models and tools used in this thesis. It describes the microgrid concept
in detail, existing models for the analysis of distribution systems, and the MPC approach.
The formulation of the OPF and UC problems is also discussed, followed by a brief review
of SP models.

Chapter 3 describes the proposed detailed mathematical models of the microgrid sys-
tem and components. The models include three-phase representations of the distribution
network, DGs units, ESSs, and loads, together with mathematical expressions that de-
scribe various operational constraints. Finally, the optimal energy management problem
is presented as an MINLP problem.

Chapter 4 presents a novel deterministic, centralized EMS approach for isolated micro-
grids. First, a decomposition of the energy management problem into separate UC and
OPF problems is discussed, which allows the problem to be solved in computational times
suitable for real-time applications. Then, an MPC-based architecture of the EMS is pre-
sented, followed by a discussion on the EMS implementation. Finally, simulation results
are presented, including a discussion on the effect of unbalanced system modelling.

Chapter 5 describes a novel stochastic, centralized EMS approach for isolated micro-
grids. In this chapter, a reformulation of the UC using stochastic programming is presented,
and the implications of this reformulation on the EMS architecture and implementation are
discussed. The chapter also includes simulation results for the proposed stochastic EMS
and a discussion on the effects of uncertainty on the optimal dispatch of the microgrid,
under different EMS parameters and system configurations.

Chapter 6 summarizes the main contents and contributions of this thesis, and suggests
directions for future research work. Finally, Appendices A and B present detailed data
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of the test system used for simulations, and the characteristics of the external forecasting
system, respectively.
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Chapter 2

Background Review

This chapter provides a general overview of the concepts, models, tools and techniques
used in the development of the research presented in this thesis.

2.1 AC Microgrids

The concept of microgrid is introduced in the technical literature as a solution for the
reliable integration of DERs, including ESSs, and controllable loads [45,46]. Such microgrid
would be perceived by the main grid as a single element responding to appropriate control
signals.

2.1.1 Microgrid Definitions

A detailed definition of microgrids is still under discussion in technical forums; however,
in general, a microgrid can be described as a cluster of loads, DG units and ESSs operated
in coordination to reliably supply electricity, connected to the host power system at the
distribution level at a single point of connection or Point of Common Coupling (PCC).
Microgrids with no connection to a host power system are referred to as isolated microgrids.
This is the case of remote sites (e.g., remote communities or remote industrial sites) where
an interconnection with the main grid is not feasible due to either technical and/or economic
constraints; therefore, isolated microgrids operate permanently in stand-alone mode.

In general, microgrids can have any arbitrary configuration, as illustrated in Fig. 2.1.
In cases where a strong coupling between the operation of different energy carrier systems
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Fig. 2.1: Schematic diagram of a generic multiple-DER microgrid.

(heating, hot water, etc.) exists, microgrids can integrate and operate all these energy
carriers in coordination. Being a concept still under development, different deployments
and research projects on microgrids around the world present different perspectives and
give emphasis to different aspects of the concept. These include microgrids of Bella Coola
and Hydro-Quebec in Canada [5, 8], Consortium for Electric Reliability Technology Solu-
tions (CERTS) in the United States [47], Microgrids and More Microgrids in Europe [48],
Huatacondo in Chile [11], and New Energy and Industrial Technology Development Orga-
nization (NEDO) in Japan [5].

A microgrid is capable of operating in grid-connected and stand-alone modes, and
handling the transitions between these two modes [49,50]. In the grid-connected mode, the
power deficit can be supplied by the main grid, and excess power generated in the microgrid
can be traded with the main grid and can provide ancillary services. The islanded mode
of operation represents a more critical case, where the real and reactive power generated
within the microgrid must be in balance with the demand of local loads.
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2.1.2 Control and Protection Requirements

Microgrids, and integration of DER units in general, introduce a number of operational
challenges that need to be addressed in the design of control and protection systems, in
order to ensure that the present levels of reliability are not significantly affected and the
potential benefits of DG are fully harnessed. The microgrid’s control system must be able
to ensure the reliable and economical operation of the microgrid, while overcoming the
aforementioned challenges. In particular, desirable features of the control system include:

• Output control : Output voltages and currents of the various DER units must track
their reference values and ensure oscillations are properly damped.

• Power balance: DER units in the microgrid must be able to accommodate sudden
active power imbalances, either excess or shortage, keeping frequency and voltage
deviations within acceptable ranges.

• Demand Side Management (DSM): Where applicable, proper DSM mechanisms must
be designed in order to incorporate the ability to control a portion of the load. Addi-
tionally, for the electrification of remote communities with abundant local renewable
resources, the active participation of the local community may be beneficial in order
to design cost-effective DSM strategies that enhance load-frequency control [51,52].

• Economic dispatch: An appropriate dispatch of DER units participating in the op-
eration of a microgrid can significantly reduce the operating costs, or increase the
profit. Reliability considerations must also be taken into account in the dispatch of
units, especially in stand-alone operation.

• Transition between modes of operation: A desirable feature of microgrids is the ability
to work in both grid-connected and stand-alone modes of operation, including a
smooth transition between them.

In the microgrid environment, characterized by frequent and multiple changes in topol-
ogy, robustness and adaptiveness of controllers are desirable traits. Availability of measure-
ments, communication, and high-speed computational facilities are additional challenges
for all of the above requirements; for this reason, an attempt should be made in order to
reduce the need for high-speed communications and computation in critical tasks.

Given the different time constants involved in the control tasks, ranging from fast dy-
namics in the output controls to slower dynamics in the economic dispatch, microgrids
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feature a hierarchical control structure. Complexity and sophistication of the solutions for
the control requirements of the microgrid will be very much dependent on whether it is de-
signed to primarily operate in stand-alone or grid-connected mode. While in grid-connected
mode of operation emphasis is put on the interaction with the main grid, reliability issues
are more significant in stand-alone mode of operation. A description of controlled variables
used in microgrid control and different types of DER units is presented next.

Controlled Variables

The main variables used to control the operation of a microgrid are voltage, frequency, and
active and reactive powers. In the grid-connected mode of operation, the frequency of the
microgrid and the voltage at the PCC are dominantly determined by the host grid. The
main role of the microgrid control in this case is to accommodate the active and reactive
powers generated by the DER units to supply the load demand. Reactive power injection
by a DER unit can be used for power factor correction, reactive power supply, or voltage
control at the corresponding Point of Connection (PC).

In stand-alone mode of operation, the microgrid operates as an independent entity.
This mode of operation is significantly more challenging than the grid connected mode,
because the critical demand-supply equilibrium requires the implementation of accurate
load sharing mechanisms to balance sudden active power mismatches. Voltages and fre-
quency of the microgrid are no longer supported by a host grid, and thus they must be
controlled by different DER units. LCs ensure power balance in the microgrid utilizing
local measurements, while power sharing can be determined either by properly calibrating
these LCs, or by a central controller that communicates appropriate set points to DER
units and controllable loads. The main objective of such a mechanism is to ensure that all
units contribute to supplying the load in a pre-specified manner. A minute mismatch in
the amplitude, phase angle or frequency of the output voltage of any unit in the group can
lead to a relatively high circulating current. One possible approach is to have one inverter
operate as a master unit that regulates the voltage of the microgrid [53], whereas the same
or different unit can set the system frequency. The remaining DER units, in this case, are
operated in PQ-mode [54].

Types of DER Units

The DER units present in a particular microgrid are very problem-specific and depend on a
variety of factors, including whether the microgrid is designed to operate in grid-connected

18



 

Communications 
Electricity grid 

Central 
Controller 

CI 

DC 
Source DC 

AC 

VSC-interfaced 
Generator AC 

AC 

DC 
AC ESS 

Directly-connected 
Generator 

AC 
AC VSC-interfaced  

Load 

Conventional 
Load 

VAr 
Support 

Fig. 2.2: Microgrid general components.

or stand-alone mode, the different generation technologies deployed, and the topology of
the system [55]. In general, the components that can be found in a microgrid are illustrated
in Fig. 2.2.

Microgrids are characterized by a single point of connection with the host grid. The
Connection Interface (CI) at the PCC can be realized using electro-mechanical circuit
breakers, solid state switches or even back-to-back converters. The connection of DC-type
energy sources such as PV panels, fuel cells and energy storage technologies (batteries
and ultracapacitors) requires the use of a DC-to-AC power converter interface. While
some conventional generators can be connected directly to the microgrid and operate at
50/60 Hz, variable-speed generators such as wind turbines using synchronous machines,
and high-speed microturbines require the use of AC-to-AC power converters to match the
constant frequency and voltage of the microgrid. Wind turbines can also be less flexible
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induction generators directly connected to the system, or more flexible doubly-fed induction
generator. Loads within the microgrid can be controlled using either a conventional circuit
breaker, or a more sophisticated AC-to-AC power electronic interface to allow more flexible
control. Reactive power support can be provided by capacitor banks, SVCs or STATCOMs.

DER units can also be categorized based on their dispatchability. Dispatchable units
(e.g., diesel generators) can be fully controlled; however, nondispatchable units cannot, and
are typically operated to extract the maximum possible power. DER units based on renew-
able energy sources (e.g., wind turbines or photovoltaic units) are generally intermittent
and their output is not fully controllable.

ESSs play a very important role in microgrids, because while renewable energy resources
are the microgrids main drivers of the microgrid technology, their generation cannot pro-
vide firm capacity if not accompanied by ESSs, and thus has to be duplicated by other
means of generation. Hence, ESSs can be combined with other nondispatchable DER units
such as wind and solar energy to turn them into dispatchable units. In order to fully utilize
the potential of ESSs in microgrids, appropriate control and management strategies are
necessary (e.g., peak shaving, seasonal storage, frequency regulation, voltage support and
reliability enhancement) [32]. Different ESS technologies include: Battery Energy Storage
System (BESS), Compressed Air Energy Storage (CAES) systems, flywheels, thermal en-
ergy storage, pumped hydro and Superconducting Magnetic Energy Storage (SMES) [56],
with each technology having different advantages and disadvantages depending on the in-
tended application. An extensive list of applications for energy storage in transmission,
distribution, and generation is presented in [57].

2.1.3 Control Hierarchy in a Microgrid

Microgrids feature a hierarchical control structure consisting of three control levels: pri-
mary, secondary, and tertiary [58–61], as depicted in Fig. 2.3. These control levels differ
in their speed of response, the time frame in which they operate, and their infrastructure
requirements (e.g., communication and computation requirements). Tertiary control level
typically operates in the order of several minutes, providing signals to secondary level con-
trols at microgrids and other subsystems that form the full grid. Secondary controls, on the
other hand, coordinate internal primary controls within the microgrids and subsystems in
the span of a few minutes. Finally, primary controls are designed to operate independently
and react in predefined ways instantaneously to local events.
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Fig. 2.3: Hierarchical control levels: primary control, secondary control, and tertiary con-
trol.
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Primary Control

Primary control, also known as local control or internal control, is the first level in the
control hierarchy, featuring the fastest response. This control is based exclusively on local
measurements and does not rely on external communications. Given their speed require-
ments and reliance on local measurements, islanding detection, output control, and power
sharing control are included in this category [49,50,62].

In synchronous generators, output control and power sharing is performed by the
voltage regulator, governor, and the inertia of the machine itself. On the other hand,
Voltage-Source Inverter (VSI)-interfaced units require a specially designed control to simu-
late the inertia characteristic of synchronous generators and provide appropriate frequency
regulation. For this purpose, VSI controllers are composed of two stages: DG power
sharing controller and inverter output controller. Power sharing controllers are respon-
sible for the adequate share of active and reactive power mismatches in the microgrid,
whereas inverter output controllers should control and regulate the output voltages and
currents [49, 50, 53, 63, 64]. Inverter output control typically consists of an outer loop for
voltage control and an inner loop for current regulation, in a nested configuration. Power
sharing is performed by using active power-frequency and reactive power-voltage droop
controllers that emulate the droop characteristics of synchronous generators [65], although
several variations of this configuration have also been proposed.

Secondary Control

Secondary control, also referred to as the microgrid EMS, is responsible for the reliable, se-
cure and economical operation of microgrids in either grid-connected or stand-alone mode.
This task becomes particularly challenging in isolated microgrids with the presence of
highly-variable energy sources, where the update rate of the unit dispatch command should
be high enough to keep up with the changes of the load and non-dispatchable generator
profiles. The objective of the EMS consists of finding the optimal (or near optimal) UC
and dispatch of the available DER units, so that certain selected objectives are achieved
by providing set points for real and reactive power of DERs [66].

With respect to the EMS architecture, two main approaches can be identified: cen-
tralized and decentralized architectures. In a centralized approach, a central controller
is responsible for economic optimization of the microgrid, as well as maintaining reliable,
secure, and safe operation of the grid [67]. In a typical decentralized approach, the op-
timal operation is sought through the implementation of market-like techniques, where
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the individual DER units are controlled by local agents that exchange information with a
coordinating agent to determine a market settlement [38].

Secondary control is the highest hierarchical level in microgrids operating in stand-alone
mode, and operates on a slower time frame as compared to the primary control in order
to decouple their operation, reduce the communication bandwidth, and allow enough time
to perform complex calculations.

Tertiary Control

Tertiary control is the highest level of control, and sets long-term and typically “optimal”
set points depending on the requirements of the host power system. This tertiary control is
responsible for coordinating the operation of multiple microgrids interacting with one an-
other in the system, and communicating needs or requirements from the host grid (voltage
support, frequency regulation, etc.). For example, the overall reactive power management
of a grid that contains several microgrids could be accomplished by properly coordinat-
ing, through a tertiary control approach, the reactive power injection of generators and
microgrids at the PCC, based on a centralized loss minimization approach for the entire
grid.

2.2 Distribution System Modelling

The integration of DG units at a distribution system level has brought attention to the
issue of developing accurate models and tools for the analysis of distribution systems.
Such models cannot be directly extended from existing transmission system models, as
many assumptions typically made for transmission levels do not hold valid in distribution
systems (e.g., balanced loading conditions, equal phase impedances, and negligible line
resistances). This section presents a brief description of the models for distribution system
elements discussed in [68,69], which are used throughout this thesis. The models use phasor
representations of physical quantities, and are based on the assumption that neutral wires
are grounded at multiple points, and hence the voltage of the neutral wire is zero throughout
the distribution system.

2.2.1 Transmission Lines

In a transmission line segment, phase voltages and currents at each end can be related using
3-by-3 series-impedance and shunt-admittance matrices, which are calculated directly from
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Fig. 2.4: Transmission line segment model.

the type of conductor and geometry of the poles. Thus, for the four-wire grounded-neutral
line segment shown in Fig. 2.4, line voltages and currents at each end of the line can be
related as follows: 

V a
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V b
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s

Ias

Ibs

Ics


=
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C D





V a
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V b
r

V c
r

Iar

Ibr

Icr


(2.1)

where A, B, C and D are 3-by-3 matrices calculated from the series impedance matrix
Zabc and shunt admittance matrix Yabc of the line, as follows:

A = U +
1

2
ZabcYabc (2.2)
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B = Zabc (2.3)

C = Yabc +
1

4
YabcZabcYabc (2.4)

D = U +
1

2
ZabcYabc (2.5)

In (2.2) to (2.5), U is a 3-by-3 identity matrix. It is important to note that this general
model also allows the representation of single-phase and two-phase feeders, where the
differences will be reflected only on the entries of the impedance and admittance matrices
of the line.

2.2.2 Transformers

Three-phase transformers are series elements connecting two nodes, where phasor voltages
and currents at the source-side (s) are linear functions of phasor voltages and currents at
the load-side (r), and vice versa. Thus, similar to transmission lines, phasor quantities on
each side of the transformer can be related as follows:
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(2.6)

where At, Bt, Ct and Dt are 3-by-3 matrices that depend on the transformer parameters,
taps (considered fixed here), and winding connections [69]; voltages V a, V b and V c repre-
sent line-to-ground voltages per-phase in the case of grounded wye transformer connections,
and line-to-neutral voltages for ungrounded wye connections. For delta connections, the
voltages represent equivalent line-to-neutral voltages, which can be converted to line-to-line
voltages as follows:
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V ab

V bc

V ca
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1 −1 0

0 1 −1

−1 0 1



V a

V b

V c

 (2.7)

Finally, phasors Ia, Ib and Ic represent line currents, regardless of how winding are con-
nected in the transformer.

2.2.3 Loads

Loads in distribution systems can be modelled as constant-power, constant-impedance,
constant-current, or a combination of them. Regarding their connection, they can be either
wye- or delta-connected, and can feature an arbitrary level of unbalance. For consistency
with the models of other elements in distribution networks, load voltages and currents
are expressed here in terms of line-to-neutral voltages and line currents. In the case of
delta-connected loads, line-to-line and line-to-neutral voltages can be related using (2.7);
similarly, phase currents in delta connection and line currents can be related as follows:

Ia

Ib

Ic

 =


1 0 −1

−1 1 0

0 −1 1



Iab

Ibc

Ica

 (2.8)

Based on (2.7) and (2.8), the load equations can be expressed in a per-phase basis using
line currents and line-to-neutral voltages, regardless of the type of connection of the load.

2.3 Model Predictive Control

MPC, also known as Receding Horizon Control (RHC), is an optimization-based control
strategy in which a finite-horizon open-loop optimal control problem is formulated and
solved at each time-step [70]. System states at future time-steps are calculated as a function
of the control variables and initial system conditions, using a dynamic model of the system.
The optimization calculates a control sequence for the whole finite horizon such that a
selected objective function is minimized, but only the control action for the next time
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step is implemented; this process repeats itself every time-step. Specifically, consider a
discrete-time, time-invariant dynamic model of the system as follows:

xt+1 = F (xt, ut) (2.9)

subject to the constraints:

xt ∈ X, ut ∈ U (2.10)

where xt is the vector of state variables and ut the vector of control variables at time t.
Based on these model and constraints, a finite-horizon optimal control problem can be
formulated at time t as follows:

U(xt) =



min
ut|t . . . ut+T |t

t+T∑
t̂=t

Jt̂(xt̂|t, ut̂|t)

s.t. xt|t = xt

xt̂+1|t = F (xt̂|t, ut̂|t)
xt̂|t ∈ X
ut̂|t ∈ U

(2.11)

where xt is the current state of the system, and xt̂|t is the vector of state variables at time
t̂, based on the known state of the system at time t, predicted based on the system model;
similarly, ut̂|t is the vector of control variables at time t̂ based on the known state of the
system at time t. Function Jt̂(xt̂|t, ut̂|t) is the objective of the optimal control problem at
time t̂, which can be any measure of the control performance.

The solution of the optimal control problem U(xt) in (2.11) will produce a set of optimal
control actions {u∗t |t . . . u∗t+T |t}, given the initial state xt. Only the first control action u∗t |t
will be applied to the system, and the problem will be solved again at t+1 to obtain a new
set of solutions based on the state xt+1|t+1 [71,72]. The procedure is illustrated in Fig. 2.5.

In order to obtain the best possible results from the optimization problem, there is
an incentive for using larger optimization horizons T ; however, the resulting optimization
problem may be too big to be solved in reasonable computational times. Furthermore,
the accuracy and resolution of the prediction model typically decrease with larger horizons
due to the increase in number and depth of uncertainties, which limits the quality of the
obtained solutions.
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MPC Approach

Fig. 2.5: MPC approach.
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MPC strategies are quite appealing for energy management of microgrids, since they
allow for the implementation of control actions that anticipate future events such as vari-
ations in power outputs from non-dispatchable DGs and instantaneous demand.

2.4 Optimal Power Flow and Unit Commitment

OPF and UC are important tools in the operation of power systems, and correspond to sub-
problems that determine the overall economical steady-state operation of power systems.
Each problem focuses on different aspects of the operation, with the OPF solving the
instantaneous economical dispatch of available units, and the UC solving the economical
scheduling of generating units. Hence, in general, the OPF corresponds to an instantaneous
“snapshot” problem, and the UC corresponds to a multi-period problem.

2.4.1 OPF Formulation

The OPF problem was first formulated during the sixties as an extension of the conventional
ELD of power systems [73]. Unlike the ELD problem, the OPF includes a detailed model-
ing of the electricity network, allowing the incorporation of additional technical constraints
such as thermal limits of transmission lines and limits on voltages and phase angles. In
general, the OPF is formulated as a non-linear constrained optimization problem that de-
termines the instantaneous optimal steady-state of the power system, according to a defined
objective function, subject to specified operating and security requirements. The desired
optimal steady-state of the system is achieved by adjusting the control variables, which
typically include the active and reactive power outputs from generators, reactive power
injection from reactive compensation equipment (SVC, STATCOM, etc.), load shedding
commands, and transformer tap settings, to name a few. With regard to the objective
function, several alternatives have been considered for the OPF problem, including:

• Minimization of total cost of operation.

• Minimization of the deviation from pre-specified settings.

• Minimization of active power losses.

• Minimization of cost of load curtailment.
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• Minimization of cost of installation of new equipment (e.g., capacitors bank and
reactors).

• Minimization of total greenhouse gasses emissions.

In its general form, the OPF problem can be formulated as follows:

min
u

JOPF (x, u, p̃)

s.t. g(x, u, p̃) = 0

h(x, u, p̃) ≤ 0

(2.12)

where p̃ ∈ <l is a vector of parameters representing the system demand, equipment connec-
tion status, fuel prices, etc.; vector u ∈ <m represents the control variables (under control
of the operator); and vector x ∈ <n represents the state variables, such as voltages, phase
angles and frequency. The equality constraints represent the steady-state power balance of
the system, or load flow equations, while the inequality constraints represent the operating
limits, such as voltage and current limits.

The OPF formulation offers several advantages with respect to the conventional ELD
method. These include allowing calculation of locational marginal costs through the for-
mulation of bus-wise supply-demand balances; enabling representation of operational con-
straints associated with the transmission system; allowing improvements in the system
performance by using different objective functions; and enabling incorporation of more
control variables.

The original formulation of the OPF problem was modified in [74] by incorporating
additional security constraints in g(.) and/or h(.), which in general correspond to the N-
1 contingency criteria. This formulation, known as security-constrained OPF (SCOPF),
ensures proper operation of the system under pre- and post-contingency conditions for
a selected set of contingencies. Additional criteria have been implemented ever since,
including voltage stability, transient stability and small-signal stability constraints [75].

The most commonly-used objective function in the operation of power systems is the
minimization of the total cost of operation. Thus, based on a non-linear efficiency curve for
the generators, the heat-rate function, and consequently its cost function, can be modelled
as a monotonically increasing convex quadratic function [76]; therefore, the objective func-
tion for the OPF minimizing the total operating cost of Ng generators can be expressed
as:
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JOPF =

Ng∑
g=1

(
αgP

2
g + βgPg + γg

)
(2.13)

with αg, βg, and γg known constants.

Equality constraints corresponding to the power balance equations for a system of Nb

nodes can be written in a polar form as:

P inj
i = Vi

Nb∑
j=1

Vj [Gi,jcos(θi,j) +Bi,jsin(θi,j)] i = 1, . . . , Nb (2.14)

Qinj
i = Vi

Nb∑
j=1

Vj [Gi,jsin(θi,j)−Bi,jcos(θi,j)] i = 1, . . . , Nb (2.15)

where P inj
i = P gen

i − P load
i is the difference of generation and load active powers injected

to the system at node i; Qinj
i = Qgen

i − Qload
i is the net reactive power injected to the

system at node i; V ∠θi is the complex voltage at node i, represented in terms of its
magnitude and phase angle; θi,j is the phase angle between the voltages at nodes i and
j; and Yi,j = Gi,j + jBi,j is the ijth element of the Ybus (nodal admittance) matrix of the
system, which can be a function of other control variables in the OPF problem, such as
transformer tap settings, series compensation equipment, etc.

Security limits typically included in the OPF formulations are: voltage limits, bounds
on phase angles, and limits on active and reactive power generation. Additional technical
limits such as thermal limits on transmission lines, tap changer limits, and FACTS oper-
ation limits may also be included in the set of inequality constraints for a more detailed
formulation.

Several optimization techniques have been applied to solving the OPF problem over
the years. A review of the most important techniques reported in literature until 1993
is presented in [77] and [78], including non-linear programming, quadratic programming,
Newton-based methods, linear programming, mixed-integer programming and interior point
methods. A more recent review incorporates also optimization techniques based on Artificial
Intelligence (AI) [79].

2.4.2 UC Formulation

The UC can be formulated as a multi-period mixed-integer optimization problem as follows:
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min
u

T∑
t=1

JUC(xt, ut, p̃t) +G(wt)

s.t. g(xt, ut, wt, p̃t) = 0 ∀t
h(xt, ut, wt, p̃t) ≤ 0 ∀t

(2.16)

where p̃ ∈ <l is a vector of parameters representing the system demand, fuel prices, mini-
mum up-times and minimum down-times of generators, ramping limits, etc.; vector u ∈ <m

represents the continuous control variables (e.g., active power dispatch); vector x ∈ <n rep-
resents the state variables, such as voltages and phase angles; and w ∈ {0, 1} represents
the binary control variables associated with start-up and shut-down operations of the gen-
eration units.

The objective function in (2.16) is separated in two parts, where the fist term JUC(.)
represents, in a traditional formulation, the fuel costs of generators, and the second term
G(.) represents the costs associated with start-up and shut-down operations of generators,
together with the fixed operational costs when a generation unit is committed. Equality
constraints include the steady-state power balance of the system, or load flow equations,
and logic constraints associated with the binary decision variables. Inequality constraints
represent the operating limits of the units, including output power limits, ramping rate
limits, and minimum up- and minimum down-times.

A classical approach is to formulate the UC as an MILP problem. In this case, power
balance equations are simply represented by an active power demand-supply balance of
the system; voltages and currents throughout the system are not modelled in this approx-
imation. In this case, the problem can be solved using highly efficient commercial grade
MILP solvers, such as CPLEX.

In cases where scheduling of units is significantly constrained by the network condi-
tions, a network model is required; for example, UC formulations may include DC-power
flow models to account for flow limits in the transmission lines. If a high level of detail
is represented, the grid can be fully represented using equations (2.14) and (2.15), plus
additional security constraints, which would result in an MINLP formulation.

Given the relevance of the UC in the operation of power systems, a wealth of solution
techniques have been explored in the literature with the objective of obtaining adequate
solutions in reasonable computational times [80]. The most relevant techniques include
Dynamic Programming [81, 82], Branch-and-Bound [83, 84], Interior Point methods [85],
Lagrangian Relaxation [86,87] and AI-based techniques [88–90].
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2.5 Stochastic Programming

The formulation of deterministic optimization problems assume that problem entries, other
than the variables of the problem, are known fixed data. In most real-world problems this
assumption does not hold true, as many parameters correspond to inexact measurements or
statistical estimations (e.g., future power generation from RE sources). A general practice
in these cases is to fix the parameters to their statistical mean or best estimate; however,
depending on the problem structure, this practice may lead to very expensive or even
infeasible solutions of the real problem if parameters deviate from the values assumed
in the problem formulation. In order to avoid these problems, it is necessary to adopt
optimization methodologies that account for these variations, and provide a certain level
of “immunity” of the solutions against them. In this context, the SP approach provides an
appealing framework for dealing with parametric uncertainty in optimization problems.

In SP, it is assumed that the probability distributions of the uncertain parameters are
known, or can be estimated with reasonable accuracy. Hence, the SP problem is formu-
lated so that the expected value of the objective function is optimized, subject to the
feasibility of the solution for any realization of the uncertainty (with a certain confidence
level) [91]. A particular, widely used, case of SP corresponds to the two-stage SP formula-
tion. Two-stage SP considers a separation of decision variables into 2 subsets: first-stage
and second-stage variables. First-stage variables need to be determined under uncertainty
before the realization of a random process, while second-stage variables are obtained af-
ter the uncertainty has been revealed. In this way, the two-stage SP solution produces
a unique set of first-stage decisions, and one set of second-stage decisions for each possi-
ble realization of the uncertainty. More specifically, consider the following deterministic
optimization problem:

min
z

J(z, ξ)

s.t. g(z, ξ) = 0

h(z, ξ) ≤ 0

(2.17)

where z ∈ <N is the vector of decision (state and control) variables in the problem, and
ξ ∈ <l corresponds to the vector of expected values of uncertain parameters ξ. Assuming
that z can be separated into first- and second-stage variables as z = [z1; z2]T , with z1 ∈ <p

and z2 ∈ <q, and that the probability distribution of ξ is known or can be estimated with
reasonable accuracy, the two-stage SP version of (2.17) can be formulated as follows:
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min
z1

E (J (z1, ξ)) (2.18)

where:

J (z1, ξ) =


min
z2

J(z1, z2, ξ)

s.t. g(z1, z2, ξ) = 0

h(z1, z2, ξ) ≤ 0

(2.19)

In cases where the probability distribution can be properly estimated using a finite set
of scenarios Ξ = {ξ1, ξ2, . . . , ξK}, with corresponding probabilities Π = {π1, π2, . . . , πK}, a
two-stage SP problem can be equivalently formulated as a large deterministic program [92],
as follows:

min
z1,z2,k

∑
k

πkJ(z1, z2,k, ξk)

s.t. g(z1, z2,k, ξk) = 0 k = 1, . . . , K

h(z1, z2,k, ξk) ≤ 0 k = 1, . . . , K

(2.20)

where z2,k represents the vector of second-stage variable for each realization of the uncer-
tainty ξk. This is known as the deterministic equivalent of a stochastic problem [91], and
allows the use of conventional commercial solvers for deterministic mathematical programs.
In linear stochastic programs, the deterministic equivalents feature a particular L-shaped
matrix structure, which facilitates the application of decomposition methods (e.g., benders
decomposition).

2.6 Summary

This chapter reviewed various concepts and tools used throughout this thesis. The micro-
grid concept was introduced first, providing an overview of its control requirements and
hierarchical control structure. The modelling of distribution systems was presented briefly,
discussing the general models for lines, transformers and loads. The MPC technique was
also introduced, including a discussion on implementation issues and the advantages of the
method in microgrid control applications. The UC and OPF problems were then presented,
together with some traditional problem formulations and solution methods. Finally, the
SP approach was presented as an alternative to account for uncertainties in the formulation
of optimization problems.
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Chapter 3

A Three-phase Model of the
Microgrid

Isolated microgrids are diesel-based radial distribution systems evolving to a more diver-
sified energy supply, including intermittent renewable sources, energy storage, and other
types of fuel. For this reason, these microgrids feature some of the same complexities of
conventional distribution systems, including high power losses, significant voltage drops
along the feeders, and considerable phase imbalance. Such complexities might have an
impact on the optimality and feasibility of the dispatch strategies, and therefore, need to
be properly accounted for in the design of the EMS.

This chapter presents a three-phase model of the microgrid. The proposed model uses
rectangular coordinates for phasor representation, and power flow equations are presented
using branch equations instead of the conventional formulation with nodal equations. This
formulation has the advantage of using node voltages and branch currents as variables,
which allows a more direct representation of current and voltage limits. For simplicity, the
time-step index kt has been omitted in equations that relate variables at a single time-step;
such equations apply to all time steps.

3.1 Lines, Transformers and Loads

Due to similarities, series elements (e.g., transmission/distribution lines, transformers) in
microgrids can be represented based on the same principles of distribution system mod-
elling. In this context, each series element can be represented using a generalized three-
phase ABCD parameter matrix, as illustrated in Fig. 3.1. Thus, as discussed in Chapter 2,
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Fig. 3.1: Generic series element.

phasor voltages and currents at sending and receiving ends are related using the three-phase
ABCD parameter matrix of the element as follows:V l,s

I l,s

 =

A B

C D

V l,r

I l,r

 ∀l (3.1)

As a convention, phasor voltages are expressed as line-to-ground quantities, and phasor
currents as line quantities. The calculation of the ABCD matrices for transmission lines
and transformers with different winding connections is described in [69].

Loads in a microgrid are modelled as a mix of constant-power and constant-impedance
components per phase. The relations between load voltages and currents in constant-power
loads and constant-impedance loads are given by (3.2) and (3.3), respectively:

V p
L I

p
L
∗ = Pp,L + jQp,L ∀p,∀L (3.2)

V p
L = Zp,LI

p
L ∀p,∀L (3.3)

In the case of delta-connected loads, equations (3.2) and (3.3) can be used to represent the
relation between line-to-line voltages and phase currents. Then, the line-to-line voltages
and phase currents can be related with line-to-neutral voltages and line currents using the
following relations:
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V ab

V bc

V ca

 =


1 −1 0

0 1 −1

−1 0 1



V a

V b

V c

 (3.4)


Ia

Ib

Ic

 =


1 0 −1

−1 1 0

0 −1 1



Iab

Ibc

Ica

 (3.5)

3.2 Generators

3.2.1 Directly-connected Synchronous Generators

Directly-connected synchronous generators are modelled as a special case of series ele-
ment connecting internal machine voltages and terminal voltages, as illustrated in Fig. 3.2.
Hence, internal and terminal machine voltages and currents can be related using an ABCD
matrix as follows: Egs

Igs

 =

Ags Bgs

Cgs Dgs

V gs

Igs

 ∀gs (3.6)

This matrix for synchronous generators is calculated from the phase-impedance matrix of
the machine as follows: Ags Bgs

Cgs Dgs

 =

U Zgs,abc

0 U

 ∀gs (3.7)

where the phase-impedance matrix of the machine can be estimated from the sequence-
frame impedance values, using the sequence-to-phase transformation matrix, as follows:

Zgs,abc = A Zseq,gs A−1 (3.8)
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Fig. 3.2: Synchronous generator model.

where:

Zgs,seq =


Z0,gs 0 0

0 Zpos,gs 0

0 0 Zneg,gs



A =


1 1 1

1 a2 a

a a a2



a = 1∠120◦

For simplicity, generator saliency and internal resistances are neglected in the model.
Thus, the positive sequence reactance of the machine can be estimated as:

38



xpos,gs = xd,gs

Negative- and zero-sequence reactances of the synchronous generator can be obtained from
the unsaturated direct- and quadrature-axis sub-trasient reactances, as follows [93]:

xneg,gs =
x′′d,gs + x′′q,gs

2

x0,gs =
xneg,gs

4
+ 3xgnd,gs

The internal synchronous machine voltage is produced by the rotor field winding rotat-
ing at homogeneous synchronous speed; therefore, in steady-state conditions, the internal
machine voltage is of positive sequence. Such condition can be represented using the fol-
lowing equations:

Ea
gs + Eb

gs + Ec
gs = 0 ∀gs (3.9)

|Ea
gs| = |E

b
gs| = |E

c
gs | ∀gs (3.10)

It is important to note that equations (3.9) and (3.10) are also valid for negative sequence
voltages; however, when used as constrains in an optimization problem, a reasonable start-
ing point in the solution algorithm will ensure convergence to a pure positive sequence
voltage.

3.2.2 Directly-connected SCIG

Directly-connected SCIGs are also modelled as a special case of series element, interfacing
the machine terminals with the negative resistance representing the mechanical power
input. Based on the sequence frame model of the induction machine [69], shown in Fig. 3.3,
it is possible to relate sequence quantities of the machine’s rotor and stator, for the positive
and negative sequences, as follows:

39



L’rr'r

Lm

Lsrs

r'r (1-s)/s
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≈ -r’r/2

(a) Positive sequence circuit

(b) Negative sequence circuit

(c) Zero sequence circuit

Fig. 3.3: Sequence-frame steady-state model of SCIGs.
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V x
st,gi

Ixst,gi

 =

aseq bseq

cseq dseq

V x
rt,gi

Ixrt,gi

 ∀gi (3.11)

where x ∈ {pos, neg}, and:

aseq bseq

cseq dseq

 =


1 +

rs + jxs
jxm

rs + r′r + j(xs + x′r)

+
(rs + jxs)(r

′
r + jx′r)

jxm

1

jxm
1 +

r′r + jx′r
jxm

 (3.12)

Being a 3-wire element, the induction machine’s zero sequence circuit is an open circuit;
however, the series element model of the induction generator can be assumed to be a short
circuit for zero sequence (see Fig. 3.3), which mathematically can be represented as follows:V 0

st,gi

I0
st,gi

 =

1 0

0 1

V 0
rt,gi

I0
rt,gi

 ∀gi (3.13)

Hence, sequence quantities at stator terminals and rotor of the induction machine are
related as follows: V seq

st,gi

I
seq

st,gi

 =

Aseq Bseq

Cseq Dseq

V seq

rt,gi

I
seq

rt,gi

 ∀gi (3.14)

where the ABCD matrix of the induction generator, in the sequence frame, can be defined
as follows:

41



Aseq =


1 0 0

0 aseq 0

0 0 aseq

 Bseq =


0 0 0

0 bseq 0

0 0 bseq



Cseq =


0 0 0

0 cseq 0

0 0 cseq

 Dseq =


1 0 0

0 dseq 0

0 0 dseq


(3.15)

Equation (3.15) can then be expressed in the natural abc frame, using the sequence-to-
phase transformation matrix, as follows:V gi

Igi

 =

V st,gi

Ist,gi

 =

Agi Bgi

Cgi Dgi

V rt,gi

Irt,gi

 ∀gi (3.16)

where: Agi Bgi

Cgi Dgi

 =

A 0

0 A

Aseq Bseq

Cseq Dseq

A−1 0

0 A−1

 (3.17)

Finally, the three-phase model of the induction generator is completed by the following
equation, which describes the relation between voltages across and currents through the
equivalent internal resistances of the machine:

[
Irt,gi

]
=

1

3

[(
δ

rr

)
Ã−

(
2

rr

)
ÃT

] [
V rt,gi

]
∀gi (3.18)

where:
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Ã =


1 a a2

a2 1 a

a a2 1



δ =
s

1− s

Equation (3.18) assumes that the negative-sequence rotor resistance can be approxi-
mated as:

rr(s− 1)

2− s
≈ −rr

2
(3.19)

In steady-state conditions, the induction generator’s slip is not expected to be higher
than 1% [94]; hence, in such conditions, the approximation in (3.19) would produce a
maximum error of approximately 0.5% in the value of the negative-sequence equivalent
rotor resistance.

3.2.3 Inverter-interfaced Units

In principle, inverter-interfaced DERs can feature a more flexible operation as compared
to synchronous and induction generators; however, such flexibility depends on the char-
acteristics of the output control [95]. In this work, inverter-interfaced DERs are mod-
elled as independent voltage sources per-phase, with current limits. In the case of 4-wire
Voltage-Source Converters (VSCs), the following additional equation is required to limit
the maximum neutral current:

|Iaginv
+ Ibginv

+ Icginv
| ≤ Imax

n,g ∀ginv (3.20)

This neutral current limit is set to zero in the case of a 3-wire VSCs. A VSC featuring
dq-voltage control will produce positive-sequence (balanced) output voltage, which can
be modelled using equations (3.9) and (3.10). If the VSC is also capable of controlling
negative-sequence components, such equations are not necessary and can be replaced by
the following equation, which forces the zero-sequence voltage to zero:
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Fig. 3.4: Conventional inverter output filters.

V a
ginv

+ V b
ginv

+ V c
ginv

= 0 ∀ginv (3.21)

Finally, if the VSC controls positive-sequence, negative-sequence, and zero-sequence in-
dependently, no additional equations are required, since in this case each phase can be
considered an independent voltage source.

Output Filters

The connection of VSC-interfaced DERs with the grid typically takes place via a low-pass
filter, in order to attenuate high-frequency harmonics produced by the switching process.
Such low-pass filters also have an effect at fundamental frequency, and therefore they need
to be properly modelled in the power flow equations.

The simplest low-pass filter topology corresponds to the first-order series inductor;
however, more sophisticated alternative topologies can also be used. Figure 3.4 shows 3
typical low-pass filters used in VSC applications [95,96].

Similar to transmission lines, low-pass filters can be modelled as additional series ele-
ments connecting VSCs with the grid, and relating three-phase voltage and current phasors
at each end using the corresponding ABCD matrix. In the case of the LCL third-order
low-pass filter, the ABCD matrix can be calculated as follows:
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Af =


af 0 0

0 af 0

0 0 af

 Bf =


bf 0 0

0 bf 0

0 0 bf



Cf =


cf 0 0

0 cf 0

0 0 cf

 Df =


df 0 0

0 df 0

0 0 df


(3.22)

where:

af bf

cf df

 =


1 +

Z1

Z2
Z1 + Z3 +

Z1Z3

Z2

1

Z2
1 +

Z3

Z2

 (3.23)

3.2.4 Simplified Generator Models

In microgrids with several DERs of different types and sizes, it might not be necessary
and/or desirable to model all units with the same level of detail. While a number of DERs
will play an important role in the optimal steady-state of the microgrid, others might have
little effect on the power flow patterns and operation cost. The latter is the case of small
DG units in the order of tens of kW in microgrids with total installed capacity in the order
of a few MW. Hence, in order to avoid unnecessarily increasing the number of equations
and variables in the mathematical model, this section introduces simplified, three-phase
generator models for small units in microgrids.

The simplified models consider equivalent DER units connected directly to the mi-
crogrid network without interface (low-pass filter and/or transformer), as illustrated in
Fig. 3.5. Thus, DERs are modelled as independent voltage sources per phase, subject
to additional constraints depending on the type of DER, and the characteristics of the
connection interface.

If the DER is only able to control the positive-sequence output voltages, as it is the
case with synchronous generators and some VSC-interfaced units, the positive-sequence
voltage at the terminals of the equivalent DER is assumed to be controlled, but negative-
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Fig. 3.5: Simplified three-phase DER model.

and zero-sequence components are determined by the conditions of the system and the
sequence impedances of the interface. Mathematically, this can be represented as follows: V 0

g∗

V neg
g∗

 = −

Z0,g∗ 0

0 Zneg,g∗

 I0
g∗

Inegg∗



=⇒

1 1 1

1 a2 a



V a
g∗

V b
g∗

V c
g∗

 =

Z0,g∗ 0

0 Zneg,g∗

1 1 1

1 a2 a



Iag∗

Ibg∗

Icg∗


(3.24)

where the sequence impedances Zneg,g∗ and Z0,g∗ correspond to the interface (low-pass filter
and/or transformer) negative- and zero-sequence impedances as seen from the microgrid;
hence:

Zneg,g∗ = Zneg,trf + Zneg,filter (3.25)

For Z0,g∗ , depending on the transformer winding connections, the following cases can be
identified:
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• For delta or ungrounded-wye connections on the microgrid’s side, or ungrounded-wye
on the DER’s side: Z0,g∗ =∞.

• For delta connection on the DER’s side, and grounded-wye on the microgrid’s side:
Z0,g∗ = Z0,trf + Z0,trf−gnd.

• For grounded-wye at both sides: Z0,g∗ = Z0,trf + Z0,filter.

In cases where the DER unit also controls negative-sequence components, only the zero-
sequence component in (3.24) is imposed. Finally, if the DER controls the three sequence
components, equation (3.24) is not required.

3.3 Energy Storage

As discussed in Chapters 1 and 2, ESSs play an important role in the deployment of RE
sources in microgrids, given their ability to re-shape daily load profiles by shifting power
consumption in time. Therefore, appropriate steady-state models of ESSs are necessary
for incorporation in the microgrid’s energy management problem. In this work, two ESS
technologies are modelled, namely, battery-ESS and fuel cell-electrolizer with hydrogen
storage; however, the models developed can be easily extended to other types of ESS by
simply adjusting efficiencies and conversion factors.

The evolution of the SoC of ESSs in time is modelled using an energy balance equation,
which considers different charging and discharging efficiencies. In the case of battery-ESS,
it is necessary to identify charging and discharging cycles separately in order to apply the
corresponding efficiencies; hence, two positive variables, P out

gb
(discharge) and P in

gb
(charge),

are introduced, as follows:

Pgb = P out
gb
− P in

gb
∀gb (3.26)

Thus, using a simplified book-keeping model for the SoC [97], the battery-ESS balance
constraints are the following:

SOCgb,kt+1 = SOCgb,kt +

(
P in
gb,kt

ηingb −
P out
gb,kt

ηoutgb

)
∆tkt ∀gb,∀kt (3.27)
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where, at each time-step in the ESS operation, the SoC cannot be higher than its upper
limit and lower than its lower limit:

SOCgb,kt ≤ SOCmax
gb

∀gb,∀kt (3.28)

SOCgb,kt ≥ SOCmin
gb

∀gb,∀kt (3.29)

Although the previous equations do not force only one of the variables P out
gb

or P in
gb

to
be non-zero at a time, this will always be the case in an optimal solution of the energy
management problem that minimizes cost. Thus, for example, if both P in

gb,kt
and P out

gb,kt
were

different from zero, with P in
gb,kt

> P out
gb,kt

, there would exist another combination of P in
gb,kt

and P out
gb,kt

such that P in
gb,kt
− P out

gb,kt
= P in

gb,kt
− P out

gb,kt
, with P out

gb,kt
= 0, that produces the same

power input of the battery-ESS with lower ESS losses (cheaper operation).

Using a similar methodology, hydrogen storage SoC balance constraints depend on the
power generated by fuel cells and absorbed by electrolizers connected to each hydrogen
tank, as follows:

SOCHtank,kt+1 = SOCHtank,kt

+

 1

1 + lc

∑
gel→Htank

PHtank
gel,kt

ηgel

HHV
−

∑
gfc→Htank

PHtank
gfc,kt

HHV ηgfc

∆tkt ∀Htank,∀kt
(3.30)

SOCHtank,kt ≤ SOCmax
Htank

∀Htank,∀kt (3.31)

SOCHtank,kt ≥ SOCmin
Htank

∀Htank,∀kt (3.32)

where PHtank
gel,kt

and PHtank
gfc,kt

are the input power of the electrolizers connected to the hydrogen
tank Htank at time kt, and the output power of the fuel-cells connected to Htank at time kt,
respectively. Parameter lc represents the load of the hydrogen compressor, estimated as a
percentage of PHtank

gel,kt
. The equations assume that efficiencies of fuel cells and electrolizers

are calculated based on the Higher Heating Value (HHV) of hydrogen [98].
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3.4 Other Operational Constraints

In order to properly model the operation of the microgrid, the mathematical models of the
microgrid elements are complemented by a set of constraints to represent the connection
between elements and additional operational characteristics. Thus, Kirchhoff’s current law
at each node and phase of the microgrid are enforced using the following equations:

∑
l

Ipl,rn +
∑
g

Ipgn =
∑
l

Ipl,sn +
∑
L

IpLn
∀p, ∀n (3.33)

where Ipl,rn is the current injected by the receiving end of line l, which is connected to node
n, through phase p; Ipgn is the current injected to phase p of node n by generator gn; Ipl,sn
is the current absorbed from node n by the sending end of line l through phase p; and IpLn

is the current absorbed by load Ln, through phase p at node n.

Voltages of elements connected to the same node are forced to be equal, for each phase,
as follows:

V p
l,sn

= V p
l,rn

= V p
Ln

= V p
gn = V p

n ∀p,∀n (3.34)

The power generated by DERs at the point of connection with the microgrid, for each
phase, is calculated from the terminal phasor currents and voltages, as follows:

Pp,g + jQp,g = V p
g I

p
g
∗ ∀p,∀g (3.35)

The total power generated by directly-connected DERs is calculated as the sum of powers
generated the three phases. However, in the case of inverter-interfaced DERs, an estimation
of the VSC power losses need to be included in the calculation; this can be expressed
mathematically as follows:

Psource,g = Ploss,g +
∑
p

Pp,g ∀p,∀g (3.36)

In this work, VSC power losses are modelled as a function of the output current, using
the following quadratic term (resistive losses) plus a constant loss factor (when the VSC is
connected):
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Ploss,g =

 0 not-interfaced

Kloss,gwg +
∑

p |Ipg |2rloss,g VSC-interfaced
(3.37)

where wg represents the commitment status of unit g. The proposed estimation is not based
on a physical model of the VSC operation, but it is rather a practical approximation of
conventional efficiency curves provided by VSC manufacturers [99,100], which are presented
as a function of the active power output. Thus, the efficiency curve is expressed as a
function of the output currents, assuming a balanced operation, and rated power factor and
terminal voltages, from which the parameters Kloss,g and rloss,g can be readily calculated.

Each DER’s output power is limited by its maximum and minimum permitted values
when turned on, or forced to zero otherwise, using the following constraints:

Psource,g ≤ Pmax
g wg ∀g (3.38)

Psource,g ≥ Pmin
g wg ∀g (3.39)

Similarly, output currents for each phase are limited by their maximum values as follows:

Ipg ≤ Imax
g wg ∀g,∀p (3.40)

The maximum power outputs Pmax
g of RE sources (i.e., wind and solar) correspond to

their forecasted values, from available forecasting systems, as follows:

Pmax
grw = P̃grw ∀grw (3.41)

The following logic constraints are necessary to properly represent unit commitment
decisions at each time-step, and ensure that each DER unit is not turned-on and -off
simultaneously.

ug,kt − vg,kt = wg,kt − wg,kt−1 ∀g,∀kt (3.42)

ug,kt + vg,kt ≤ 1 ∀g,∀kt (3.43)
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where ug,kt and vg,kt correspond to the start-up and shut-down decisions for unit g at
time-step kt, respectively.

Minimum up-time and minimum down-time constraints of DER units are also consid-
ered using the following equations [101]: kt−1∑

k̂t: t
k̂t

=tkt−Mup,g

wg,k̂t
∆tk̂t

−Mup,g vg,kt ≥ 0 ∀g,∀kt (3.44)

Mdn,g (1− ug,kt)−

 kt−1∑
k̂t: t

k̂t
=tkt−Mdn,g

wg,k̂t
∆tk̂t

 ≥ 0 ∀g,∀kt (3.45)

These equations guarantee that, once turned-on, a particular unit g remains dispatched for
at least Mup,g hours. Similarly, if the unit is turned-off, it will remain off for no less than
Mdn,g hours. Ramping rate limits of DER units are enforced by the following constraints:

Psource,g,kt+1 − Psource,g,kt − ug,kt+1P
max
g

≤ Rup,g∆tkt ∀g,∀kt
(3.46)

Psource,g,kt − Psource,g,kt+1 − vg,kt+1P
max
g

≤ Rdn,g∆tkt ∀g,∀kt
(3.47)

The following reserve constraint ensures that enough generation is committed at each
time-step to compensate for sudden load/generation variations and/or account for contin-
gencies:

∑
gd

wgd

[
Pmax
gd
− Pgd

]
= Rsv

∑
g

Pg (3.48)

The microgrid’s multi-period operation cost, typically used as the objective function of
the energy management problem, considers both generators’ heat-rates and costs associated
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with start-up and shut-down operations. Thus, the total operation cost is calculated as
follows:

J =
∑
g,kt

[(
agP

2
source,g,kt + bgPsource,g,kt + cgwg,kt

)
∆tkt

+Csupug,kt + Csdnvg,kt ]

(3.49)

where the operation of DER units driven by RE sources and ESSs are assumed to be zero
cost. Hence, based on the proposed three-phase models, the energy management problem
of a microgrid is formulated as the minimization of the total operation cost J defined in
(3.49), subject to an applicable subset of the constraints (3.1)-(3.48). This formulation
corresponds to an MINLP problem.

3.5 Summary

This chapter presented the following three-phase phasor models of the microgrid network
and components, for use in the formulation of the microgrid’s energy management problem:

• Transmission lines and transformers were modelled using three-phase ABCD matrices
to relate voltages and currents at each end, and load models included constant-
impedance and constant-power loads.

• Directly-connected generators (Synchronous Generator (SG) and SCIG) were pre-
sented as a special case of a series element connecting an internal (rotor) bus with
the machine terminals; thus, equivalent three-phase ABCD matrices were derived for
each case.

• Inverter-interfaced units were modelled as an independent voltage source per phase,
subject to additional constraints depending on the VSC topology and control flexi-
bility.

• Simplified generator models that group generators and connection interfaces (i.e.,
filters and trasformer) in a single element were also introduced, in order to reduce
the number of variables and equations in the energy management problem.

• ESSs were modelled using book-keeping balance equations and SoC constraints.
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• Additional operational constraints for individual elements, and the microgrid as a
whole, were presented.

Finally, the energy management problem was defined using these three-phase models as
an MINLP formulation.
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Chapter 4

Deterministic EMS Approach

The formulation of the microgrid’s energy management problem is an important part in the
design of EMSs for isolated microgrids; however, it is also necessary to design appropriate
calculation and implementation methodologies for the application of the optimal dispatch
commands in the real-time operation of the system. In this context, this chapter discusses
the design and architecture of the proposed EMS for isolated microgrids, which is based
on the detailed mathematical models described in Chapter 3. Simulation results are also
presented to demonstrate the performance of the EMS in a realistic MV microgrid test
system, and to investigate the impact of unbalanced system conditions and modelling on
the optimal dispatch of isolated microgrids.

As discussed in Chapter 1, centralized EMS approaches present various advantages
over decentralized approaches for isolated microgrid applications, including higher levels
of coordination in the operation and the ability to handle multi-period constraints; thus,
the proposed EMS features a centralized architecture. Using this approach, all the rele-
vant information from the microgrid is assumed to be gathered at a single point (central
controller), which enables the calculation of dispatch commands by solving the energy
management problem using conventional optimization techniques, as discussed in detail
next.

4.1 Problem Decomposition

MINLP formulations are generally very hard to solve, and commercially available MINLP
solvers are seldom able to find solutions in reasonable computational times, even for small-
sized systems. In fact, for the microgrid test system described in Appendix B, the MINLP
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formulation was tested in GAMS [102] using BARON, BONMIN, and KNITRO MINLP
solvers, but none of them were able to converge to a solution after 3 hours of calculations.
Meta-heuristic methods have also been used to optimize this type of models; however, if
not properly customized for the specific problem, they also perform poorly in terms of
computational times. Hence, an MINLP problem formulation is not suitable for micro-
grid EMS real-time applications, and hence alternative problem formulations are required.
Thus, a decomposition of the original MINLP problem into an MILP and an NLP problem
is proposed here, as shown in Fig. 4.1. With this approach, solutions can be obtained in
real-time, allowing the implementation of optimal dispatch commands in the actual oper-
ation of the microgrid, with frequent updates using an MPC approach to adequately deal
with forecasts errors.

The separation of UC and OPF problems is a common practice in the operation of bulk
power systems. This separation is based on the fact that, in well-designed power systems,
UC decisions are mainly influenced by the demand-supply balance of active power, with
the effect of transmission constraints and reactive power requirements being modelled with
approximated/simplified models, while the actual dispatch needs to account for detailed
power flow constraints. Additionally, constraints in the UC and OPF problems respond
to different dynamics, and therefore require different update rates and resolutions. Using
a similar approach, a decomposition of the MINLP formulation into an MILP problem,
representing the UC of the microgrid, and an NLP problem, representing a multi-period
OPF, is proposed here in order to reduce solution times of the energy management problem
and enable their implementation in the real-time operation of isolated microgrids.

The MILP (UC) problem uses a single-node model of the microgrid, where all the
nonlinear power flow constraints are replaced by a single active-power demand-supply
balance equation. Other than the power flow constraints, the only nonlinear equation in
the system is the objective function (total cost of operation), which is incorporated in the
MILP formulation using a piece-wise linear approximation, as follows:

Juc =
∑
g,kt

[∑
h

(
bhgP

h
source,g,kt + chgw

h
g,kt

)
∆tkt + Csupug,kt + Csdnvg,kt

]
(4.1)

∑
h

wh
g,kt ≤ 1 ∀g,∀kt (4.2)

wg,kt =
∑
h

wh
g,kt ∀g,∀kt (4.3)
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Fig. 4.1: MINLP problem decomposition.

Psource,g,kt =
∑
h

P h
source,g,kt ∀g,∀kt (4.4)

Pmin,h
g wh

g,kt ≤ P h
source,g,kt ≤ Pmax,h

g wh
g,kt ∀g,∀kt (4.5)

where h is the index for linear segments used to approximate the nonlinear cost function,
Pmin,h
g and Pmax,h

g represent the power limits of the interval in which each linear approxima-
tion is defined, wh

g,kt
are binary variables to identify which linear segment is active (interval

commitment status), bhg and chg are linear and constant cost terms of each linear interval,
respectively. Depending on the sizes of diesel generators, a suitable linear approximation
can be obtained using 1 or 2 linear segments, specially when considering the reduced oper-
ating range used to avoid carbon build-up [103]. The complete MILP formulation of the
UC problem is provided in Appendix A. The NLP problem (multi-period OPF), on the
other hand, includes all the nonlinear equations presented in Chapter 3, using the binary
variable values obtained in the UC.

The UC and multi-period OPF problems are solved sequentially. Thus, the MILP
problem solves for the UC decision variables (binary variables), at each time-step, for
the entire optimization horizon. Once this binary variables have been fixed by the MILP
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Fig. 4.2: EMS internal structure.

problem, the actual dispatch strategy is re-calculated with a higher level of detail using the
NLP approximation. This refined dispatch is then used to determine the reference values
for the primary level control system of the microgrid, as depicted in Fig. 4.2.

In heavily-loaded systems, it is possible that the solution of the unit commitment
variables obtained by the MILP problem cannot be implemented in the microgrid because
of insufficient reactive power resources. This condition would lead to the infeasibility of the
NLP problem, and thus malfunctioning of the EMS. To correct this issue, an additional
positive variable Qaux

g,kt
is introduced in the model, which represents a positive, balanced,

extra reactive power injection of generator g at instant kt that is not subject to unit
commitment constraints and is penalised strongly in the objective function. Therefore, the
reactive injection of generator g is calculated as:

Qp,g,kt = Im{V p
g,kt
Ipg,kt

∗}+Qaux
g,kt ∀g,∀p,∀kt (4.6)
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If after the NLP problem is solved, there exist a non-zero Qaux
g,kt

, a feedback signal is sent
to the MILP problem to increase the available generation at the corresponding time-steps.
This mechanism repeats itself until all Qaux

g,kt
in the NLP solution are negligible, yielding a

feasible solution of the original multi-period OPF problem. This heuristic approach is able
to correct reactive power deficits in the microgrid by committing additional dispatchable
units; however, the proposed mechanism is expected to operate only a limited number
of times, since frequent operations would yield higher operation costs that may justify
investments in reactive power compensation.

It is possible that, after receiving the feedback signal from the NLP problem, the only
possibility is to turn on a DG unit that has been recently turned off, which may render the
MILP problem infeasible due of minimum down-time constraints. Although small fossil-
fuel based generators are quite flexible in terms of turn-on and -off operations, it is desirable
to limit these operations to reduce cost and frequency of maintenance; hence, minimum
down-time and minimum up-time constraints are not necessarily technical limits of the
devices, but rather desired operational conditions. In order to account for this condition
and avoid infeasibility of the MILP problem, a high-cost emergency turn-on and turn-off
operation is allowed by introducing auxiliary variables uemer

g,kt
and vemer

g,kt
. Therefore, the

minimum up-time and minimum down-time constraints are modified as follows: kt−1∑
k̂t: t

k̂t
=tkt−Mup,g

wg,k̂t
∆tk̂t

−Mup,g

(
vg,kt − vemer

g,kt

)
≥ 0 ∀g,∀kt (4.7)

Mdn,g

(
1−

(
ug,kt − uemer

g,kt

))
−

 kt−1∑
k̂t: t

k̂t
=tkt−Mdn,g

wg,k̂t
∆tk̂t

 ≥ 0 ∀g,∀kt (4.8)

The aforementioned considerations require a re-formulation of the total cost of operation,
defined in equation (3.49), as follows:

zuc =
∑
g,kt

[∑
h

(
bhgP

h
source,g,kt + chgw

h
g,kt

)
∆tkt + Csupug,kt + Csdnvg,kt

+KQauxQaux
g,kt

+Kemer(u
emer
g,kt

+ vemer
g,kt

)

] (4.9)
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The weight factor KQaux must be high enough to guarantee that all reactive power resources
from the available DGs are utilized first, and Qaux

g,kt
is used only as the last resort. Similarly,

a high value of Kemer guarantees that emergency turn-on and turn-off operations are only
used to avoid infeasibility.

4.2 Model Predictive Control Approach

The optimal multi-period dispatch of the microgrid can be obtained by solving the energy
management problem described in Chapter 2, where the results of this calculation are
based on known, fixed problem parameters (e.g., future load and generation from RE
sources). Based on this fact, for the dispatch commands to be meaningful, the actual
values of the parameters must not deviate much from those assumed in the formulation
of the energy management problem and, if that is not the case, a new calculation of
the energy management problem with more accurate/updated estimations of the value of
parameters is required. Hence, the solution of the energy management problem should
be updated to optimally accommodate load and forecasts variations, without interfering
with faster control mechanisms (primary control) [44]. These conditions require the EMS’s
update rate to be in the order of several seconds to few minutes. In this work, following
an MPC approach, an update rate of 5 minutes is chosen, which is consistent with the
fastest available wind/solar power forecasting systems and suitable for capturing typical
load fluctuations [104]. That is, every 5 minutes the EMS action is triggered, and the
decomposed energy management problem is solved. Hence, the EMS is provided with
updated load and renewable generation forecasts every 5 minutes, and is assumed to have
full autonomous control over the dispatch of every DG in the microgrid.

UC decision variables typically follow slower dynamics as compared to dispatch com-
mands since, while optimal dispatch commands are expected to change with slight changes
in the load, the optimal UC decisions respond to longer-term trends in load variations.
Thus, it is not necessary to obtain a new solution for the MILP problem with the same
frequency as in the NLP problem. However, the MILP problem is typically much easier and
faster to solve, and therefore there is no significant improvement in solving this problem
at a slower rate in terms of computational effort.

In order to capture slower load patterns that affect UC decisions, the MILP problem
requires a longer optimization horizon as compared to the NLP problem. Furthermore,
it is not computationally efficient to calculate unbalanced OPFs over extended horizons,
considering that future dispatches are very likely to change as forecasts are updated. In
this work, a horizon of 24 hours is used for the MILP problem, while a 2-hours horizon is
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Fig. 4.3: EMS operation in time: Time-steps and horizons.

selected for the NLP problem. Thus, the MILP problem is able to capture daily load and
renewable generation patterns, and provide boundary conditions for the SoC of ESSs in the
NLP problem; this boundary condition is necessary to make sure that the stored energy
is not depleted in the horizon of the NLP problem. The NLP problem then calculates
detailed dispatch strategies, and is able to detect power flow problems in a shorter term, as
illustrated in Fig. 4.2. Figure 4.3 illustrates the operation of the microgrid EMS in time,
where the MILP problem is solved with time step TMILP and a horizon HMILP , whereas
the NLP problem is solved with time step TNLP and horizon HNLP , with TMILP ≥ TNLP

and HMILP ≥ HNLP .

4.3 Implementation

The proposed EMS uses a moving horizon of 24 hours; however, it does not consider
a homogeneous time resolution over this time span. While the first few minutes can be
forecasted with high accuracy and resolution, resolution decreases as the forecasting horizon
is extended; this characteristic responds to limitations of existing forecasting systems, as
higher time resolutions are only meaningful for short-term forecast. This is also a desirable
trait, as more detailed information is required for operation scenarios in the near future
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(more certain scenarios) than for less certain scenarios in the far future. For this reason, 4
different time resolutions are used in the proposed EMS, as illustrated in Fig. 4.4. Hence,
the multi-period OPF problem uses a 2-hour horizon in 12 time-steps, whereas the UC
problem uses a 24-hour horizon in 37 time-steps.

4.4 Simulation Results

The performance of the EMS is tested for 24 hours of operation, with dispatch updates
every 5 minutes. The model is coded in the high-level optimization modelling language
GAMS [102], and MILP and NLP problems are solved using CPLEX [105] and COIN-
IPOPT [106] solvers, respectively. Simulations are performed in the EMSOL6 server,
which features an Intel Xeon CPU L7555 at 1.86 GHz (4 processors), and 64 GB of RAM,
running on Windows Server 2008 R2 Enterprise 64-bit.

4.4.1 Test System and Study Cases

The designed centralized EMS for isolated microgrids is tested on a CIGRE medium volt-
age network presented in [107], which is based on the European MV distribution network
benchmark. A single-line diagram of the 16-bus 12.47 kV test system is shown in Fig. 4.5,
based on the diagram provided in [107]. In this modified test system, a connection to
the main grid has been replaced by a bus with 3 diesel generator units, with a combined
capacity of 4,700 kW. The system features a total installed capacity of 8,760 kW, consid-
ering battery-ESS, fuel-cells, and intermittent renewable energy sources. Nominal ratings
of DGs are shown in Table 4.1, with typical values being assumed for technical parameters
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and heat-rates of DGs [108,109]. A detailed description of the test system and parameters
is provided in Appendix B.

The loads have been divided into 2 categories: residential and commercial, with dif-
ferent daily load profiles. Residential loads are assumed to be composed of 80% constant-
impedance load, and 20% constant-power load, whereas commercial loads are composed of
50% constant-impedance load and 50% constant-power load. Residential load, wind power
and solar power forecasts were obtained from real data generated by forecasting systems
used in a rural microgrid in Huatacondo, Chile [11]. Further characteristics of the fore-
casting system are provided in Appendix C. Nominal daily profiles for load and available
power from RE sources are illustrated in Fig. 4.6, in per unit of the nominal load and rated
capacity, respectively. The values KQaux= US$1/kVAr and Kemer= US$300 were used for
all the study cases.

Simplified models have been used to represent inverter-interfaced units of the test sys-
tem, where battery-ESS units (Units 08 and 18) and the microturbine (Unit-21) are consid-
ered to be connected to the system through a wye-grounded to wye-grounded transformer,
and are assumed to have full control (3 sequences) of the voltage on the microgrid’s side
of the transformer. The rest of the units are connected through a delta to wye-grounded
transformer, and are assumed to only have control over positive and negative sequences.

Base Case: Unbalanced Conditions

Many medium-voltage networks operate under unbalanced conditions due to single-phase
feeder connections, or uneven distribution of loads. For example, autonomous grids sup-
plying remote communities in Northern Canada present seasonal phase imbalance due to
different distribution of loads in summer and winter times. For this reason, loads in the
test system have been considered unevenly distributed among the 3 phases, with phase-a
feeding 30.1%, phase-b 35.7%, and phase-c a 34.2% of the total load. Single-phase feeders
have been represented as lumped single-phase passive loads.

The loading of the system is controlled using the parameter λ, which multiplies the load
at each node of the system. A value of λ = 1.4 is chosen as a base case, which produces a
combined peak load of approximately 5 MW. Lower and upper voltage limits at all nodes
of the microgrid are 0.93 p.u. and 1.07 p.u., respectively.
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Fig. 4.5: Microgrid MV test system.
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Table 4.1: Microgrid test system DERs ratings

No. Node DER type Pmax [kW ]

1 14 Diesel Generator 800
2 15 CHP diesel 310
3 14 Diesel Generator 1400
4 14 Diesel Generator 2500
5 3 Photovoltaic 80
6 4 Photovoltaic 80
7 5 Photovoltaic 120
8 5 Battery 600
9 5 Residential fuel cell 33
10 5 Electrolyzer 30
11 6 Photovoltaic 120
12 6 Electrolyzer 50
13 8 Photovoltaic 120
14 8 Electrolyzer 200
15 9 Photovoltaic 120
16 9 CHP fuel cell 212
17 10 Photovoltaic 160
18 10 Battery 200
19 10 Residential fuel cell 14
20 11 Photovoltaic 40
21 13 CHP Microturbine 500
22 7 Wind turbine (inverter-interfaced) 1000
23 16 Wind turbine (SCIG) 150
24 16 Wind turbine (SCIG) 150
25 16 Wind turbine (SCIG) 150
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Balanced Approximation

For comparison purposes, the optimal dispatch is calculated using a balanced microgrid
model approximation. In the balanced microgrid approximation the loads are assumed to
be evenly shared among the phases, and the rest of the parameters in the model remain
unchanged with respect to the base case (unbalanced model). This approximation repre-
sents a less critical scenario in terms of system losses, voltage drops, and reactive power
requirements as compared to the exact unbalanced network model. This can be illustrated
in an extreme example where the same power is distributed evenly among the phases,
versus the case where the load is concentrated in only one of the phases; in this case, it is
clear that the unbalanced case will yield higher system losses (active and reactive power)
and larger voltage drops.

4.4.2 System’s steady-state optimal conditions

Results of the optimal dispatch obtained by the EMS with unbalanced modelling are shown
in Fig. 4.7 using a stacked-area plot. The optimal dispatch of battery-ESSs has been plotted
in a way to properly show charging and discharging cycles; hence, negative areas in the
figure correspond to charging cycles of the batteries. Note that battery-ESS units charge
during off-peak hours 0 to 4 with the power available from Unit-04 (diesel) and Unit-21
(microturbine), and discharge during peak-hours 5 to 10, thus reducing the use of the
more expensive Unit-03 (diesel). A second charging cycle is observed between hours 11
and 15 due to a peak in wind-power generation. Given the low efficiency of fuel-cells and
electrolizers, these units are not significantly used by the EMS in the daily dispatch shown
in Fig. 4.7.

Reactive power dispatch of diesel generators is shown in Fig. 4.8. It can be observed, as
expected, that reactive power requirements are higher during the peak-load, approximately
between hours 6 and 15. System losses represent a 5.34% of the energy generated during
the 24 hours, with a peak of 8.57% during peak load hours.

Microgrid’s system imbalance is illustrated in Figs. 4.9, which shows the total power
generation profile in each phase. The level of imbalance in the microgrid and the phase
with the highest loading vary over the 24 hrs, which can be observed during peak-load
hours (hours 6 to 8), where phase-a replaces phase-b as the most loaded in the system.

Finally, the voltage profiles of phase-a at bus-1, and generation buses 14, 15 and 16 are
illustrated in Fig. 4.10. It is observed in the figure that voltages are raised during peak-
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hours (between hours 6 and 9) due to the increased reactive power generation to maintain
the voltage levels in the microgrid within limits.

The total simulation time of the EMS for 24 hours of operation is 6,632s for 286 it-
erations, thus yielding an average computational time of approximately 23s per iteration,
which is within the desired 5-minutes dispatch window, making it suitable for real-time
applications.

4.4.3 Balanced versus Unbalanced Modelling

The use of a balanced system approximation has an impact on calculations of the optimal
microgrid operation, as illustrated in Fig. 4.11. Note that the two cases have some simi-
larities on the dispatch over the 24-hour window; however, differences can be found in the
actual dispatch of the units, and more importantly, in the UC decisions. The differences
can be appreciated more clearly in Fig. 4.12, where only the dispatch of diesel generators
is shown. In particular, 3 time-windows of interest are identified in these figures:

• Window A1 : The same units are committed in both cases for this window; how-
ever, significant differences in the dispatch commands can be observed for Unit-02
(diesel), Unit-08 and Unit-18 (battery-ESS). After Unit-03 (diesel) is turned-on
around hour 6, battery-ESS units show a significantly higher dispatch in the bal-
anced approximation as compared to the unbalanced model. This can be attributed
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to an underestimation of future load requirements in the balanced approximation,
which translates into more power available for present use, and less reserves required
for future operation.

• Window A2 : After Unit-03 is turned-off (near hour 10), Unit-04 increases its dispatch
to supply the load in both models; however, near hour 11, the unbalanced model
detects reactive power problems that were overlooked by the balanced approximation,
and requests a new unit to be committed in a new calculation of the MILP. Unit-03
cannot be turned back on immediately due to minimum down-time and minimum
power output constraints, and instead, Unit-01 is turned-on to supply the deficit.
After Unit-01 is turned-on, the UC MILP problem generates turn-off signals for this
machine in the following time-steps, since this formulation does not consider reactive
power; however, Unit-01 is prevented from turning-off by the OPF NLP solution.
After 2 hours, Unit-01 can be turned-off and replaced by the more economical Unit-
03.

• Window A3 : Similar to Window A1, the same units are committed; however, dif-
ferences can be observed in the dispatch of battery-ESS units around hour 17, and
Unit-02 between hours 18 and 21.

It can be observed in Fig. 4.11 that there is an underestimation of the total load and
reactive power requirements by the balanced approximation, which is more critical during
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70



0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

P
o
w
er
 [
M
W
]

Time [hrs]

Unbalanced Model

Window	A2 Window	A3

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

P
o
w
er
 [
M
W
]

Time [hrs]

Balanced Approximation

01 ‐ Diesel 02 ‐ Diesel 03 ‐ Diesel 04 ‐ Diesel

Window	A1

Fig. 4.12: Unbalanced model versus balanced approximation for diesel generators.

71



peak-load hours (between hours 6 and 16). Thus, differences in the dispatch commands ob-
tained with balanced and unbalanced models are more significant in heavily-loaded systems,
while it may go unnoticed in lightly-loaded microgrids. In this context, dispatch commands
produced by EMSs based on balanced approximations of unbalanced microgrids may lead
to under-estimation of the active and reactive power requirements, or infeasible dispatch
solutions. The total load is underestimated by the balanced approximation in this case for
2 main reasons:

• The same load, supplied in an unbalanced configuration, will produce higher system
losses as compared to a balanced configuration, as previously explained.

• The power absorbed by impedance loads is voltage-dependent; therefore, in an un-
balanced network, higher voltages in one of the phases will lead to higher power.

Table 4.2 shows a summary of the simulation results. Note that a total of 35 warning
feedback signals of reactive power deficits are generated in the detailed unbalanced model,
while these problems are not detected by the balanced approximation. The new UC deci-
sions obtained by the MILP, after receiving the warning feedback signals from the NLP,
did not require emergency star-up or shut-down actions. Finally, observe that the peak
load is under-estimated by 3.65% by the balanced approximation.

Table 4.2: Summary of Simulation Results (λ = 1.4)

Unbalanced Balanced
Model Model

No. of iterations with uemer
g,kt

> 0 0 0
No. of iterations with vemer

g,kt
> 0 0 0

No. of iterations with Qaux
g,kt

> 0 35 0
Peak load 4.92 MW 4.74 MW

A more critical case is presented in Figs. 4.13 and 4.14, where the loading parameter λ
has been increased to 1.5. In this case, similar but more pronounced differences between the
balanced approximation and the unbalanced model can be observed. Thus, UC decisions
are different during longer periods of the operation (Windows B2 and B4), and more
significant dispatch differences are observed in Windows B1 and B3. System losses in the
unbalanced model show a modest increase with respect to the base case, reaching a 5.4%
of the energy generated during the 24 hours, with a peak of 8.64% during peak load hours.
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Fig. 4.13: Comparison of dispatch for unbalanced model and balanced approximation with
λ = 1.5.
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Table 4.3 shows a summary of the simulation results for the case with heavier loading
conditions (λ = 1.5). In this case, 94 warning feedback signals of reactive power deficits
are generated by the unbalanced NLP calculations, none of which was detected by the
balanced approximation. Also, no emergency start-up or shut-down actions are required,
and the peak load is under-estimated by 2.7% by the balanced approximation.

Table 4.3: Summary of Simulation Results (λ = 1.5)

Unbalanced Balanced
Model Model

No. of iterations with uemer
g,kt

> 0 0 0
No. of iterations with vemer

g,kt
> 0 0 0

No. of iterations with Qaux
g,kt

> 0 94 0
Peak load 5.2 MW 5.06 MW

4.5 Summary

This chapter presented the architecture and design of a centralized EMS for isolated mi-
crogrids using deterministic optimization. The proposed EMS used a formulation of the
energy management problem based on a three-phase model of the microgrid, which corre-
sponds to an MINLP problem. A decomposition of the original MINLP formulation into
an MILP (UC) problem and an NLP (multi-period OPF) problem was used to reduce
computational times and allow the implementation of solutions in the real-time operation
of microgrids. The proposed decomposition approach included novel heuristics to account
for the effect of reactive power requirements on the UC commitment decisions, introducing
auxiliary variables in the NLP formulation to detect reactive power deficits without ren-
dering the problem infeasible. Additional auxiliary variables allowed the use of emergency
start-up and shut-down actions.

In the proposed architecture, MILP and NLP formulations were solved sequentially at
each time-step of the EMS, with different look-ahead windows, using an MPC approach.
Hence, uncertainty associated with load and RE sources was indirectly accounted for by
making a close tracking of the optimal dispatch solutions, using the most updated/accurate
information available at each time.

The EMS was tested on a realistic MV microgrid test system with a variety of DER
units, and the results were compared with a case where a balanced approximation of the mi-
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crogrid was used (i.e., loads at each bus were assumed balanced). The comparison showed
that neglecting microgrid imbalance might lead to significant deviations in the optimal
dispatch of DER units, and most importantly, on the UC decisions. Such deviations were
shown to be more significant under heavy loading conditions, where the system imbalance
has a higher impact on the active and reactive power requirements of the microgrid.
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Chapter 5

Stochastic EMS Approach

Chapter 4 presented an EMS design based on a deterministic formulation of the energy
management problem, which considered uncertainty by performing a close tracking of the
optimal dispatch solutions with small time steps, using the most current information each
time, and including an explicit reserve requirement. Such approach to handle uncertainty is
a common trait in most of the EMS designs proposed so far in the technical literature, but
it does not offer a direct representation of the uncertainty, and relies on an arbitrary reserve
requirement, as discussed in Chapter 1. An alternative to address these limitations is to use
SP formulations of the energy management problem, where uncertainty is represented as a
finite set of possible realizations that can be readily included in the problem formulation.

This chapter presents modifications to the deterministic EMS design described in Chap-
ter 4, introducing a two-stage SP formulation of the UC problem and necessary changes
to the EMS architecture. This approach accounts for uncertainty directly in the problem
formulation, and combines the benefits of SP and MPC into a two-stage decision making
process. The performance of the proposed stochastic EMS approach under different con-
ditions is investigated in a slightly modified version of the test system used in Chapter
4.

5.1 Reformulation of the UC problem

The UC is re-formulated here as a fixed-recourse, two-stage SP problem, which is referred to
as the SUC hereafter. As discussed in Chapter 2, this formulation requires the separation
of variables into first and second stage (recourse) variables, where the solution of the
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SUC determines the value of first stage variables that minimize the expected cost of the
microgrid’s dispatch. The uncertainty can be represented as a finite set of discrete scenarios,
which enables the formulation of the deterministic equivalent of the SUC as an MILP
problem. Thus, the proposed approach features a discrete representation of uncertainty,
with scenarios generated using appropriate scenario generation techniques. The variables of
the original UC formulation are separated into first- and second-stage variables as follows:

• First-stage variables: UC decision variables z1,t = [ŵᵀ
t û

ᵀ
t v̂

ᵀ
t ]ᵀ, for all DER units at

each time-step in the optimization horizon, where ŵt, ût and v̂t are vectors containing
unit commitment variables for all DER units at time t.

• Second-stage variables: Active power dispatch and slack variables, i.e., load shedding
and power curtailment, z2,t = [P̂ ᵀ

t Pshed,t Pcurt,t]
ᵀ, at each time-step in the optimiza-

tion horizon, where P̂t is the vector of power generation of all DER units, and Pshed,t

and Pcurt,t are scalars representing load shedding and power curtailment, at time t.

Power curtailment and load shedding variables are particularly important in the second
stage of an SUC formulation, since it might happen that there is no solution of the first-
stage variables that produce feasible demand-supply balances for all the possible realiza-
tions of the uncertainty.

For simplicity, the uncertainty is assumed to be associated with the RE-based gener-
ation only; however, the formulation can be easily adapted to also include uncertainty in
load. Each scenario is defined by the pair {(P̃ ω

grw)t, πω}, where (P̃ ω
grw)t is a sequence of

vectors P̃grw,t representing the generation of RE-based units at time t for scenario ω, and
πω is its probability. Since the time-steps of the SUC and multi-period OPF are not nec-
essarily the same, index t is used to represent time-steps in the SUC problem, while kt is
reserved for the multi-period OPF. Thus, the two-stage, fixed-recourse SUC is formulated
as follows:

min
T∑
t=1

[
cᵀucz1,t +

∑
ω∈Ω

πω

(
dᵀpP̂

ω
t − dcP ω

curt,t + dsP
ω
shed,t

)]
(5.1a)

s.t. A1z1,t ≤ 0 ∀t (5.1b)
t∑

t=t−Mtime

At
2z1,t ≤ a1 ∀t (5.1c)

b1P̂
ω
t + P ω

shed,t − P ω
curt,t = b2,t ∀t ∀ω (5.1d)

P̂ ω
t+1 −B2P̂

ω
t ≤ b3 ∀t ∀ω (5.1e)
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A3z1,t + P̂ ω
t ≤ 0 ∀t ∀ω (5.1f)

IrwP̂
ω
t = P̃ ω

grw,t ∀t ∀ω (5.1g)

The cost function (5.1a) has the following parts: the commitment cost and, for each sce-
nario, the linearized generation cost function for every unit, and penalties for load shedding
and power curtailment. The constraint (5.1b) corresponds to restrictions relevant to the
binary variables, such as start-up and shut-down logic, and constraint (5.1c) corresponds
minimum up-time and minimum down-time limits of generators, where Mtime represents
the maximum of all minimum up- and down-times of all generators. Constraints (5.1d)-
(5.1f) correspond to all the restrictions relevant to the dispatch variables that are subject
to uncertainties. In particular, (5.1d) represents the power balance constraint, where b1 is
a row vector of ones used to add up all the generation from the units to perform power
balance; (5.1e) represents ramping rates and ESSs energy balance equations; and (5.1f)
represents max-min limits of the units. Finally, (5.1g) forces the generation from RE
sources to be equal to their expected values, for each scenario, where Irw is a matrix used
to extract the RE-based units from P̂ ω

t . The reserve requirement is eliminated from the
SUC, as this is inherently considered by the stochastic nature of the formulation. Recourse
matrices A1, At

2, A3, B1, and B2 are fixed, i.e., not affected by the outcomes of the random
variables.

Formulation (5.1) produces a different solution of the second-stage variables for each
possible scenario, where the load shedding and power curtailment can be used to asses the
adequacy of the dispatch. The proposed SUC formulation is significantly larger than the
deterministic UC, with the size of the instance being determined by the number of scenarios
considered. This imposes constraints on the time-step and resolution of the algorithm that
need to be considered in the architecture and implementation of the EMS.

5.2 Stochastic-EMS architecture

Similar to the architecture described in Chapter 4, the proposed algorithm features a
two-stage decision making process, where the SUC is used to determine the commitment,
and the multi-period OPF performs the final dispatch. To accommodate different time
resolutions and allow enough time to perform the SUC calculations, different time-step are
used for each problem; thus, a 1-hour step (t) is used for the SUC and a 5-minute step
(kt) is used for the multi-period OPF. The architecture of the stochastic EMS is shown in
Fig. 5.1, where a forecasting engine provides updated load and RE generation forecasts for
multi-step OPF every 5 minutes, and the scenario generation engine provides a number of
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Fig. 5.1: Stochastic EMS internal structure.

possible future scenarios for the SUC routine every 1 hour. As shown in the figure, the
scenario generation technique can be based on historical data, or use real-time results of
the forecasting engine.

Different look-ahead windows are used for each problem, with a 24-hour window for
the SUC, and a 75-minute window for the multi-period OPF. Given its larger look-ahead
window, the SUC provides a boundary condition for the SoC of ESSs for the multi-period
OPF, in addition to the UC status. The boundary condition for SoC is calculated every
1 hour, and thus it is not updated with every new calculation of the multi-period OPF;
therefore, the multi-period OPF considers a shrinking look-ahead window in order to main-
tain the same boundary conditions, as illustrated in Fig. 5.2. Thus, the operation of the
EMS in time can be described as follows:

1. The SUC is solved for time t with a look-ahead window HSUC , in order to obtain the
commitment decisions and the SoC of the storage for time t+ TSUC , which serves as
a boundary condition for the multi-period OPF. The solution is issued to the OPF
with a lead time of Tlead to the corresponding time t.
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Fig. 5.2: Stochastic EMS operation in time: Time-steps and horizons.

2. Based on the SUC solution, a multi-period OPF is executed a time Tlead before
the time t, providing sufficient time for calculations and corrections of the SUC if
required. Thus, it starts with an initial look-ahead window H1

NLP = TSUC +Tlead, and
this window shrinks by TNLP per time-step in order to maintain the same boundary
condition, until it reaches a minimum of Hn

NLP = Tlead, as shown in Fig. 5.2. The
multi-period OPF calculates the final dispatch with a time-step TNLP , and requests
corrective actions in case reactive power shortages are detected within its look-ahead
window, following the same procedure explained in Chapter 4.

Since the SUC calculates a different SoC of the ESSs for each scenario, the following
additional constraint needs to be included to make the SoC of each ESS at t∗ = t+ TSUC

equal for all possible scenarios, thus defining a unique boundary condition:

SOCω
gb,t∗

= SOCgb,t∗ ∀ω (5.2)
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which is equivalent to defining the SoC of ESSs at t∗ as a first stage variable. The same
condition can be imposed using the ESSs’ power injections at time t, as follows:

P ω
gb,t

= P gb,t ∀ω (5.3)

5.3 Implementation

The proposed stochastic EMS considers constant time resolutions for the SUC and multi-
period OPF formulations, in order to facilitate the coordination of both processes; hence,
the multi-period OPF problem uses a 75-minute shrinking horizon with initially 15 steps
of 5 minutes, whereas the SUC problem uses a 24-hour horizon in 24 steps of 1 hour. Each
solution of the SUC is calculated with a Tlead of 15 minutes to the corresponding time t.

In this work, the uncertainty is assumed to be associated with the wind power forecast
only, since the load and solar power forecasts have narrow uncertainty bounds, and hence
have little impact on the resulting dispatches, which are dominated by the wind uncertainty;
thus, scenarios are generated only for wind power profiles. However, the models developed
are general and can incorporate several sources of uncertainty simultaneously.

5.3.1 Scenario Generation

The quality of the decision making process from SP is highly dependent on the charac-
terization of the probability space of the uncertainty. In particular, the proposed SUC
formulation requires a discrete set of scenarios to be generated at each time-step of the al-
gorithm, for a discrete representation of uncertainty; hence, the generation of scenarios has
to be carefully done. In general, some techniques to generate credible RE power scenarios
are:

• Moment matching techniques, where a number of discrete scenarios is generated
based on predefined statistical properties [110].

• Internal sampling, which corresponds to a form of Monte Carlo scenario genera-
tion [111].

• Statistic ensembles, which uses the information from the confidence intervals within
a prediction to generate credible scenarios [112].
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In particular, the statistic ensembles technique is quite appealing for real-time dispatch
applications, since it intrinsically considers the accuracy of the forecasting algorithm, and
produces equally probable scenarios respecting the temporal correlation of forecast er-
rors [113]. Furthermore, this technique is not computationally expensive; thus, once a
forecast is issued, it can be immediately applied. For these reasons, the statistic ensem-
bles is used here to produce scenarios of wind power generation. The statistic ensembles
technique can be summarized as follows:

1. Obtain prediction quantiles and realizations of wind power generation of the last 24
hours.

2. Build an empirical Cumulative Distribution Function (CDF) for each look-ahead time
based on the prediction quantiles, and using a linear interpolation.

3. Obtain a measure of the past performance of the forecasting system by assigning the
realization wind power generation to its corresponding prediction quantile using the
empirical CDF, which yields an uniformly distributed random variable.

4. Apply the Probit Function (inverse of the Gaussian CDF) to the quantiles obtained
in step 3 to produce a set of normally distributed random variables representing
prediction errors.

5. Calculate the correlation matrix of the set obtained in step 4.

6. Generate Ns sequences of random numbers that follow the correlation matrix calcu-
lated in step 5.

7. Obtain Ns sequences of quantiles by applying the Inverse Probit Function to each
sequence of random numbers.

8. Obtain Ns sequences of wind power generation (scenarios) by applying the inverse
empirical CDF, for each look-ahead time.

In case a forecasting system for RE power is not available, or if it is not possible to
produce scenarios, the EMS can be provided with historical data. This approach is a
heuristic method that may yield conservative results as demonstrated later in this chapter.
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5.4 Simulation Results

The performance of the stochastic EMS is tested for 24 hours of operation, with multi-
period OPF calculations every 5 minutes, and SUC calculations every 1 hour. CPLEX and
COIN-IPOPT solvers are used for SUC and multi-period OPF, respectively. Simulations
are performed in the EMSOL6 server, which features an Intel Xeon CPU L7555 at 1.86
GHz (4 processors), and 64 GB of RAM, running on Windows Server 2008 R2 Enterprise
64-bit.

5.4.1 Test System and Study Cases

The stochastic EMS is tested on a slightly modified version of the test system presented
in Appendix B, where the maximum power output from Unit-04 (diesel) is reduced to 2
MW, and Unit-03 (diesel) has been removed; however, the numbering of the units is not
changed. These modifications yield a tighter, less flexible, operation of the system, which
makes the comparisons of study cases and discussions more meaningful. As an example,
observe the optimal operation of the original system using the stochastic EMS approach
and a deterministic EMS approach in Figs. 5.3 and 5.4, respectively. In this case, even
though the management of ESS units is noticeably different, both approaches yield very
similar dispatches for diesel units given the slackness provided by Unit-03 and Unit-04. For
example, note that even with a stochastic modelling, Unit-04 provides sufficient reserve
levels for adequate operation. A wind power profile with more variability is used here, as
illustrated in Fig. 5.5, which represents a more challenging condition for the operation of
the stochastic EMS.

A number of study cases are presented here in order to analyse the performance of the
proposed stochastic EMS under different system conditions. These study cases address
important aspects that may impact the performance of the system, i.e., available storage
capacity, scenario generation approach, and length of the optimization window (horizon) of
the SUC. Costs of US$5/kWh for load shedding and US$3/kWh for generation curtailment
were used in all the study cases.

Base Case

The Base Case corresponds to the modified test system described above. For the SUC, 100
scenarios are generated at each time-step (each hour) based on the given 24-hour forecast
using the statistic ensembles technique. The scenarios obtained with this technique are
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Fig. 5.3: Optimal dispatch of the original test system with a stochastic EMS approach.
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Fig. 5.4: Optimal dispatch of the original test system with a deterministic EMS approach.
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Fig. 5.5: Test system wind power profile.

depicted in Fig. 5.6. The SUC horizon is set to HSUC = 24 hours in order to capture
complete cycles of the load, solar and wind profiles. The multi-period OPF uses a varying
optimization horizon, ranging from 75 minutes to 15 minutes, with 5-minutes time-steps.

Deterministic Approach

The use of a deterministic EMS approach without an explicit reserve requirement would
produce a highly unreliable dispatch of the microgrid, which are very likely to produce
load shedding and/or power curtailment events. To investigate this characteristic, a study
case using a deterministic UC formulation is analysed (Det.Case), using the same system
and parameters as the Base Case. This is accomplished by using only 1 scenario of future
wind power generation in the SUC, corresponding to the output of the forecasting system.

Scenarios based on Historical Data

The approach used for generation of scenarios may have an impact on the determina-
tion of system reserve and operational cost. Scenarios based on unfiltered historical data
(Hist.Data) typically corresponds to a pessimistic approach, as they do not take into ac-
count the goodness of the forecasting system. In this case, scenarios are given by the
realization of wind power generation of the 26 previous days of operation.
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Fig. 5.6: Wind power scenarios for the SUC generated using statistic ensembles.

ESS Capacity

A higher ESS capacity is expected to positively impact the operational costs of the mi-
crogrid, due to the higher operational flexibility, and it will also have an effect on the
allocation of system reserves. Thus, 2 scenarios with different additional ESS capacities
are analyzed: 250 kW–1,250 kWh (B250 ) and 500 kW–2,500 kWh (B500 ), which repre-
sent a total battery-ESS capacity of 1050 kW and 1300 kW, respectively. In each case, the
additional capacity is included as a single battery-ESS unit located at Bus-1.

SUC Optimization Window

The solution of the SUC using extended optimization horizons can be expensive in terms
of computation times. An alternative to reduce the solution times is to reduce the horizon
considered in the optimization; however, this alternative may negatively impact the unit
commitment decisions and proper management of energy storage resources leading to more
expensive solutions. To analyse this effect, 2 study cases with different SUC horizons are
presented: HSUC = 8 hours (Var8 ), and HSUC = 12 hours (Var12 ).
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Fig. 5.7: Optimal dispatch obtained by the EMS for Base Case.

5.4.2 Steady-state Optimal Conditions

This section presents the steady-state optimal conditions for 3 study cases: Base Case,
Det.Case, and Hist.Data. The analysis concentrates on these 3 study cases due to their clear
differences in the representation of uncertainty, yielding different levels of conservatism in
the dispatch solutions.

Results of the optimal dispatch of all the units for the Base Case scenario are shown
in Fig. 5.7, and Fig. 5.8 shows the dispatch of a reduced number of units that are more
representative of the different dispatch strategies, namely, diesel units (Units 01, 02 and
04), battery-ESSs (Units 08 and 18), and microturbine (Unit-21). Similarly, the optimal
dispatch for Det.Case is shown in Figs. 5.9 and 5.10, and the optimal dispatch for Hist.Data
is shown in Figs. 5.11 and 5.12.

It is observed from Fig. 5.8 that in the Base Case units 02 and 04 are dispatched during
the 24 hours of operation, while Unit-01 is used between hours 5 and 11, and in hours 13
to 16. This represents a more robust dispatch compared to Det.Case, where Unit-02 is
used only 17 hours, and Unit-01 is used exclusively in peak-load between hours 5 and 9,
as can be observed in Figs. 5.9 and 5.10. A more conservative dispatch is produced by
Hist.Data, with Unit-02 used for 24 hours, and Unit-01 used for 15 hours, as shown in
Figs. 5.11 and 5.12.

With respect to the management of storage resources, it is observed that Det.Case
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Fig. 5.8: Optimal dispatch of selected units obtained by the EMS for Base Case.
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Fig. 5.9: Optimal dispatch obtained by the EMS for Det.Case.
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Fig. 5.10: Optimal dispatch of selected units obtained by the EMS for Det.Case.
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Fig. 5.11: Optimal dispatch obtained by the EMS for Hist.Data.
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Fig. 5.12: Optimal dispatch of selected units obtained by the EMS for Hist.Data.

produces a more dynamic operation of the battery-ESS units due to a changing perception
of future system conditions, which is adjusted with every update of the forecasting system.
This can be observed near hours 9, 12 and 16, in Fig. 5.10. On the other hand, Base Case
and Hist.Data produce more stable (smooth) charging and discharging patterns, since given
the large number of scenarios considered at each iteration of the SUC, the perception of
future system conditions is unlikely to change abruptly.

The total simulation time of the stochastic EMS for 24 hours of operation for the Base
Case was 5,228s. The average computational times were approximately 11s per iteration of
the NLP problem (multi-period OPF), and 93s per iteration of the MILP problem (SUC),
which are within the proposed dispatch and UC windows, making the algorithm suitable
for real-time applications.

5.4.3 Effects of EMS parameters and system configuration

Daily-average reserves, minimum instantaneous reserves, and reserves at peak-load for
each study case are shown in Fig. 5.13. Reserve levels have been calculated based on the
unused capacity of committed diesel generators and micro-turbine, which corresponds to
the classical notion of spinning reserves, without including available ESS capacity. The
operational cost of the microgrid for each study case, defined as the total cost of fuel plus
the cost of load shedding, is presented in Table 5.1.
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Fig. 5.13: System Reserves for Different Scenarios

It can be observed from Table 5.1 that the proposed stochastic formulation (Base
Case) outperforms the deterministic case (Det.Case) in terms of operation cost, due to the
fragile dispatch conditions calculated by the deterministic case without an explicit reserve
requirement. From the reserves point of view, Det.Case is not able to commit enough
reserves to compensate for variations in the instantaneous wind power with respect to the
forecast, which results in the need to use expensive load shedding. The Hist.Data case
shows the effect of a more pessimistic representation of the uncertainty, yielding more
conservative results, as can be seen from the high levels of reserve in Fig. 5.13. This also
yields higher operation costs as compared to the Base Case, although this difference is not
significant given the particular cost characteristics of the units in the test system.

Cases with increased ESS capacity (B250 and B500 ) show a reduction of costs as
compared with the Base Case, without affecting the levels of reserve, which is attributed
to a reduction in the use of more expensive diesel units due to a more flexible operation
of the system. Nevertheless, note that the reduction of cost due to increased ESS capacity
is not directly proportional, since it depends on several other factors such as the level of
penetration of intermittent sources, its correlation with the load profile, the differences in
operation costs of units, and the accuracy of the forecasting system. Study cases with
reduced SUC look-ahead windows (Var8 and Var12 ) show poor performance in terms of
operation costs; however, they do not yield actual load shedding. The higher costs of these
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Table 5.1: Operation Costs

Diesel Cost Load Shedding Total

US$/day US$/day US$/day
Base Case 13,097.1 0.0 13,097.1
Det.Case 13,555.0 1,283.4 14,838.3
Hist.Data 13,176.4 0.0 13,176.4
B250 12,980.3 0.0 12,980.3
B500 12,944.1 0.0 12,944.1
Var8 13,285.4 0.0 13,285.4
Var12 13,232.9 0.0 13,232.9

study cases are associated with their limited ability to foresee future system conditions,
which hinders a proper management of energy storage resources and commitment of units.

In order to evaluate the performance of the proposed EMS in terms of robustness, two
indices are defined: eLOLE and eLOEE. These indices are obtained from the solution of
the SUC, and represent estimations of the Loss of Load Expectation (LOLE) and Loss of
Energy Expectation (LOEE) [114], respectively. The indices are defined as follows:

• eLOLE: Number of hours in all the scenarios for which the SUC produces load
shedding at the 1-hour interval t = 1, for the whole simulation period of 24 hours,
divided by the total number of scenarios.

• eLOEE: Total energy shed in all the scenarios at the 1-hour interval t = 1, for the
whole simulation period of 24 hours, divided by the total number of scenarios.

Note that by using a receding horizon approach in the SUC, each hour of the simulated
day corresponds to t = 1 of one of the iterations of the SUC; hence, the indices only consider
the dispatch commands that are actually implemented in the system at each time-step of
the SUC. Also, these indices assume that the uncertainty is properly represented by the
scenarios utilized; therefore, the indices are only comparable if they are based on the
same scenarios. In this context, indices for study cases Hist.Data and Det.Case cannot be
directly compared with the rest of the study cases, since they use different scenarios.

Indices eLOLE and eLOEE for each scenario, together with the actual loss of load
over the 24-hour simulation, are presented in Table 5.2. It is observed from the table that
higher levels of ESS capacity yield not only lower operation costs but also lower eLOLE
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and eLOEE indices, improving the adequacy of the system. Also, observe that study cases
with reduced look-ahead windows, although more expensive, do not necessarily improve
the system adequacy.

Table 5.2: Estimated Adequacy Indices

eLOLE eLOEE Loss of Load

[hours/day] [kWh/day] [hours/day]
Base Case 0.93 131.7 0
B250 0.35 9.8 0
B500 0.02 0.5 0
Var8 1.57 272.5 0
Var12 0.84 129.1 0
Hist.Data N/A N/A 0
Det.Case N/A N/A 1.1

5.5 Summary

This chapter presented the architecture and design of a centralized EMS for isolated mi-
crogrids using stochastic optimization. The proposed stochastic EMS was based on the
deterministic EMS design presented in Chapter 4, where the original UC (MILP) problem
was re-formulated as a two-stage SP problem. Hence, the proposed stochastic approach
combined the advantages of SP formulations and close tracking of variations (MPC). The
EMS design was adapted to allow more time for the calculation of SUC solutions, and use
different time resolutions in each problem (SUC and multi-period OPF), without changing
the main structure of the EMS.

The performance of proposed stochastic EMS design was studied using a slightly mod-
ified version of the MV microgrid test system for different study cases, including different
energy storage capacities, look-ahead windows, and scenario generation techniques. A set
of estimated adequacy indices was defined to support the comparison of study cases, and
the results demonstrated the advantages of the proposed stochastic approach for dealing
with uncertainty and assigning appropriate levels of reserve in the system.
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Chapter 6

Conclusions, Contributions and
Future Work

6.1 Summary and Conclusions

This thesis has concentrated on the design of a centralized Energy Management Sys-
tem (EMS) for isolated microgrids, considering the uncertainty associated with estimation
of load and Renewable Energy (RE)-based generation. A detailed three-phase model of
the microgrid was developed based on the principles of distribution system modelling, thus
allowing the representation of unbalanced system conditions. The proposed model was
then used to formulate the microgrid energy management problem as an Mixed-Integer
Nonlinear Programming (MINLP) problem. A decomposition of the MINLP problem
into Mixed-Integer Linear Programming (MILP) (UC) and Nonlinear Programming (NLP)
(multi-period OPF) problems, together with a heuristic to preserve the interrelation of the
problems, were developed to reduce solution times and enable their implementation in the
real-time operation of isolated microgrids.

A novel centralized and deterministic EMS design was presented, incorporating the
formulation of the energy management problem using an Model Predictive Control (MPC)
approach. Hence, uncertainty was indirectly considered by closely tracking the optimal
solutions with updated information provided by suitable forecasting systems. The results
of the proposed deterministic EMS were compared with a balanced implementation of
the EMS, using a realistic isolated microgrid model with multiple Distributed Energy
Resources (DERs).
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An improvement to the EMS design was proposed with the formulation of the UC
problem as a two-stage Stochastic Programming (SP) problem, where uncertainty was
directly accounted for in the optimization process by defining a set of possible scenarios
using available scenario generation techniques. Finally, the performance of the stochastic
approach was tested and evaluated under different conditions based on a proposed set of
estimated adequacy indices, utilizing a realistic MV microgrid test system under different
conditions, including cases with different energy storage capacities, look-ahead windows,
and scenario generation techniques.

The main conclusions of this thesis can be summarized as follows:

• The results showed that neglecting system imbalance leads to deviations in the op-
timal dispatch commands, and may lead to infeasible UC solutions due to unmet
reactive power requirements; such condition was more apparent in heavy loading
conditions. Thus, system imbalance needs to be properly considered in the dispatch
of isolated microgrids.

• The results demonstrated the advantages of the proposed stochastic approach for
dealing with uncertainty and assigning appropriate levels of reserve in the system.
This approach yields dispatch with higher adequacy levels, and reduces long-run
operation costs by design.

• For both proposed EMS designs, the feasibility of a realistic real-time, autonomous
implementation was demonstrated, since the computational times associated with
the corresponding implementations were well within the proposed dispatch update
rates.

6.2 Contributions

The main contributions of the thesis are the following:

1. A novel, highly detailed formulation of the energy management problem for isolated
microgrids has been proposed, featuring a three-phase representation of the system.
The formulation includes new steady-state models for Synchronous Generators (SGs)
and Squirrel-Cage Induction Generators (SCIGs), which are represented as series
elements in the abc frame. The problem has been formulated as a deterministic,
multi-period MINLP problem that allows for an appropriate management of energy
storage resournces and UC multi-period constraints, while considering power flow
constraints and system imbalance.
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2. A new deterministic EMS for isolated microgrids has been designed based on the pro-
posed formulation of the energy management problem and using an MPC approach.
The proposed EMS design is able to preserve a high level of modelling detail at re-
duced computational times, using a decomposition approach and novel heuristics to
solve the MINLP formulation.

3. A novel stochastic EMS design has been proposed, accounting for the uncertainty
associated with RE sources directly in the formulation of the energy management
problem by re-formulating the UC as a two-stage SP problem. The treatment of
Energy Storage Systems (ESSs) in the SP formulation and the coordination of UC
and multi-period OPF solutions are particularly novel.

4. The suitability of the proposed EMS designs for real-time dispatch applications was
considered as a criterion in the development of models and calculation algorithms.
Thus, by design, the two proposed EMSs are able to produce optimal dispatch so-
lutions in computational times that allow their implementation in the real-time,
autonomous operation of isolated microgrid.

Part of the work presented this thesis has been published in a conference proceeding [44],
and reported in 2 papers currently under review for publication in IEEE journals [6, 115].
A third journal paper has been prepared and is ready for submission [116], pending autho-
rization by industry research partners.

6.3 Future Work

Based on the work presented in this thesis, further research may be pursued on the following
subjects:

• Investigate the performance of the proposed EMS designs under a larger number of
conditions, including higher levels of penetration of RE sources and different sys-
tem topologies, and evaluate the interaction/integration of the EMS with demand
response mechanisms.

• Study the performance of the proposed EMS designs in conjunction with state-of-
the-art primary controls in an experimental microgrid setup. This testing stage
is of up-most importance before the EMS designs can be deemed appropriate for
actual implementation in real microgrids. The testing results may reveal important
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operational restrictions imposed by primary controllers that should be included as
constraints in the proposed mathematical programs.

• Study the implementation of unbalanced optimal dispatch commands as reference
values for the primary DER controllers, since the proposed EMS approaches have
the ability to determine the three-phase optimal dispatch of inverter-interfaced DER
units, which, in principle, can be independent for each phase.

• Investigate the application and performance of alternative optimization formulations
to account for uncertainty, such as Robust Optimization and Chance-Constrained
Optimization.

• Analyse the impacts of the proposed, and other, energy management strategies on
the optimal design and planning of isolated microgrids. In particular, investigate how
the warning signals for reactive power problems can be used to determine required
investment in reactive power compensation, and how the proposed adequacy indices
can used to account for reliability considerations in microgrids’ planning.
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Appendix A

MILP Formulation of the
Deterministic UC Problem
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ug,kt − vg,kt = wg,kt − wg,kt−1 ∀g,∀kt (A.6)
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Appendix B

Modified CIGRE Medium-Voltage
Test System Data

The test system data presented in Tables B.2 and B.3 correspond to the CIGRE MV
benchmark system presented in [107]. Table B.1 contains additional data associated with
transformers interfacing additional generators included in the particular test system used
in for this work. Tables B.4, B.5 and B.6 contain technical parameters of DERs based on
synchronous generators, inverter-interfaced, and squirrel-cage induction generators, respec-
tively, obtained from multiple sources. Table B.7 contains minimum up-time, minimum
down-time and ramping limits for all the generating units. Finally, Table B.8 contains
data associated with operating costs of fuel-driven DGs.

Table B.1: Transformers Parameters

TF Node X
Type

V from V to Srated

No from-to [pu] [kV] [kV] [kVA]

1 14-1 0.05 ∆− Yg 0.48 12.47 5,000
2 15-9 0.05 ∆− Yg 0.48 12.47 500
3 16-7 0.05 ∆− Yg 0.48 12.47 700
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Table B.2: Line Parameters

Line Node Rph Xph Bph R0 X0 B0

No from-to [Ω] [Ω] [µS] [Ω] [Ω] [µS]

1 1-2 0.208 0.518 4.596 0.421 2.160 1.884
2 2-3 0.173 0.432 3.830 0.351 1.800 1.570
3 3-4 0.106 0.264 2.336 0.214 1.098 0.958
4 4-5 0.097 0.242 2.145 0.197 1.008 0.879
5 5-6 0.266 0.665 5.898 0.541 2.772 2.418
6 6-7 0.042 0.104 0.919 0.084 0.432 0.377
7 7-8 0.289 0.721 6.396 0.586 3.006 2.622
8 8-9 0.055 0.138 1.226 0.112 0.576 0.502
9 9-10 0.133 0.333 2.949 0.270 1.386 1.209
10 10-11 0.057 0.143 1.264 0.116 0.594 0.518
11 11-4 0.085 0.212 1.877 0.172 0.882 0.769
12 3-8 0.225 0.562 4.979 0.456 2.340 2.041
13 1-12 0.846 2.112 18.729 1.716 8.802 7.677
14 12-13 0.517 1.292 11.452 1.049 5.382 4.694
15 13-8 0.346 0.864 7.660 0.702 3.600 3.140

Table B.3: Load Parameters

Node

Apparent Power [kVA]
Power Factor

Phase A Phase B Phase C
Res ComRes Com Res Com Res Com

1 344.00 80.00 172.00 180.00 200.00 180.00 0.90 0.80
2 100.00 200.00 50.00 200.00 0.00 200.00 0.95 0.85
3 0.00 80.00 200.00 80.00 50.00 80.00 0.90 0.80
4 200.00 0.00 100.00 0.00 100.00 0.00 0.90 1.00
5 200.00 50.00 172.00 200.00 0.00 50.00 0.95 0.85
6 50.00 0.00 100.00 0.00 172.00 0.00 0.95 1.00
7 0.00 100.00 100.00 100.00 0.00 100.00 0.95 0.95
8 100.00 0.00 150.00 0.00 0.00 200.00 0.90 0.90
9 100.00 0.00 150.00 0.00 100.00 0.00 0.95 1.00
10 150.00 0.00 100.00 0.00 250.00 0.00 0.90 1.00
11 50.00 150.00 50.00 150.00 0.00 150.00 0.95 0.85
12 0.00 145.00 0.00 145.00 0.00 145.00 0.95 0.85
13 0.00 90.00 0.00 90.00 172.00 90.00 0.90 0.90
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Table B.4: Directly-Connected Synchronous Generators Parameters

Unit Sbase Vbase Pmax Pmin xd x′′d x′′q x0

No. [kVA] [kV] [kW] [kW] [pu] [pu] [pu] [pu]

1 1000 0.48 800 350 3.05 0.134 0.153 0.051
2 390 0.48 310 60 3.5 0.142 0.166 0.038
3 1750 0.48 1400 600 3.05 0.134 0.153 0.051
4 3125 0.48 2500 1000 3.05 0.134 0.153 0.051

Table B.5: Inverter-interfaced DERs Parameters

DER Inverter

Unit Pmax Pmin Eff in Eff out Smax Eff |Pmax Eff |20%Pmax

No. [kW] [kW] [%] [%] [kVA] [%] [%]
5 20 0 - - 250 91% 95%
6 20 0 - - 250 91% 95%
7 30 0 - - 375 91% 95%
8 600 0 95% 95% 750 91% 95%
9 33 6 - 60% 42 91% 95%

10 30 6 60% - 38 91% 95%
11 30 0 - - 38 91% 95%
12 50 10 60% - 63 91% 95%
13 30 0 - - 38 91% 95%
14 200 40 60% - 250 91% 95%
15 30 0 - - 38 91% 95%
16 212 50 - 60% 265 91% 95%
17 40 0 - - 50 91% 95%
18 200 0 95% 95% 250 91% 95%
19 14 0 - 60% 18 91% 95%
20 10 0 - - 13 91% 95%
21 500 100 - - 625 91% 95%
22 1000 0 - - 1250 91% 95%
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Table B.6: Directly-connected SCIG Parameters

Unit Sbase Vbase Pmax Pmin rs xs r′r x′r xm

No. [kVA] [kV] [kW] [kW] [pu] [pu] [pu] [pu] [pu]
23 190 0.48 150 0 0.007 0.15 0.0072 0.15 2.95
24 190 0.48 150 0 0.007 0.15 0.0072 0.15 2.95
25 190 0.48 150 0 0.007 0.15 0.0072 0.15 2.95

Table B.7: Minimum Up-time, Down-time and Ramping Limits

Unit Rup Rdn Mup Mdn

No. [kW/min] [kW/min] [hr] [hr]
1 16 16 2 1
2 6.2 6.2 3 2
3 28 28 2 1
4 50 50 3 2
5 4 4 0 0
6 4 4 0 0
7 6 6 0 0
8 120 120 0 0
9 6.6 6.6 1 1

10 6 6 1 1
11 6 6 0 0
12 10 10 1 1
13 6 6 0 0
14 40 40 1 1
15 6 6 0 0
16 42.4 42.4 1 1
17 8 8 0 0
18 40 40 0 0
19 2.8 2.8 1 1
20 2 2 0 0
21 10 10 2 2
22 200 200 0 0
23 30 30 0 0
24 30 30 0 0
25 30 30 0 0
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Table B.8: Cost Functions, Start-up and Shut-down Costs of Generators

Unit a b c CSup CSdn

No. [US$/kWh2] [US$/kWh] [US$] [US$] [US$]
1 0 0.2881 7.5 15 5.3
2 0 0.2876 0 7.35 1.44
3 0 0.2571 25.5 45 8.3
4 0.00001 0.224 45.5 95 15.3

21 0 0.053 3.1 3 0.5

*Cost functions are based on a diesel price of US$3.78/gal and a gas
price of US$5/MBTu
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Appendix C

Forecasting System Characteristics

Time series for load, wind power, and solar power forecasting systems used in this thesis
have been obtained from a real forecasting system implemented in a remote microgrid in
Huatacondo, Chile [11]. These forecasting systems are based on fuzzy confidence interval
models [117], where Takagi & Sugeno fuzzy models are defined for the expected values, and
the upper and lower bounds of confidence intervals of each variable (load, wind power and
solar power). Thus, output values of the forecasting systems at each time-step are defined
by a linear combination of a number of linear autoregressive models representing different
operating points of the system, with different degrees of activation (weights). Forecasting
systems for load, wind power and solar power were applied to the particular conditions of
Huatacondo, producing the performance indices shown in Table C.1.

Table C.1: Forecasting errors

15-min ahead 24-hour ahead

Wind Power
RMSE [p.u.] 0.1221 0.1429

σ [p.u.] 0.0224 0.0703

Solar Power
RMSE [p.u.] 0.0810 0.0960

σ [p.u.] 0.0074 0.0110

Load
RMSE [p.u.] 0.0740 0.0875

σ [p.u.] 0.0070 0.0088
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