
Signing with Codes

by

Zuzana Masárová

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2014

c© Zuzana Masárová 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144147147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis. This is a true
copy of the thesis, including any required final revisions, as accepted by my
examiners.

I understand that my thesis may be made electronically available to the
public.

iii

Abstract

Code-based cryptography is an area of classical cryptography in which cryp-
tographic primitives rely on hard problems and trapdoor functions related
to linear error-correcting codes. Since its inception in 1978, the area has
produced the McEliece and the Niederreiter cryptosystems, multiple digital
signature schemes, identification schemes and code-based hash functions.
All of these are believed to be resistant to attacks by quantum computers.
Hence, code-based cryptography represents a post-quantum alternative to
the widespread number-theoretic systems.

This thesis summarises recent developments in the field of code-based
cryptography, with a particular emphasis on code-based signature schemes.
After a brief introduction and analysis of the McEliece and the Niederreiter
cryptosystems, we discuss the currently unresolved issue of constructing
a practical, yet provably secure signature scheme. A detailed analysis is
provided for the Courtois, Finiasz and Sendrier signature scheme, along
with the mCFS and parallel CFS variations. Finally, we discuss a recent
proposal by Preetha et al. that attempts to solve the issue of provable
security, currently failing in the CFS scheme case, by randomizing the public
key construct. We conclude that, while the proposal is not yet practical, it
represents an important advancement in the search for an ideal code-based
signature scheme.

v

Acknowledgements

I would like to thank my academic advisor, Prof. Edlyn Teske-Wilson, for
a continuing support during my graduate studies and, in particular, for
choosing the topic of code-based cryptography, reading through my early
drafts and giving me useful hints and comments while writing. I would also
like to thank Prof. Alfred Menezes and Prof. David Jao for reading my
thesis and giving me very prompt and useful comments and suggestions.
Finally, I would like to thank Dalimil Mazáč for being able to occasionally
fight LATEX on my behalf.

vii

Table of Contents

Author’s Declaration iii

Abstract v

Acknowledgements vii

Table of Contents ix

1 Introduction 1

2 Some coding theory 5
2.1 Basic concepts . 5
2.2 Irreducible binary Goppa codes 8
2.3 Hard problems . 18

3 Code-based encryption 23
3.1 The McEliece and Niederreiter cryptosystems 25
3.2 Analysis of the cryptosystems 28

4 Code-based signing 35
4.1 Basic definitions and requirements 36
4.2 Difficulties with code-based signatures 37
4.3 CFS signature scheme . 39
4.4 CFS parameters and performance 43
4.5 CFS scheme: security analysis 49
4.6 A new public-key construction 58
4.7 Survey of code-based signature schemes 72

5 Conclusion 77

References 79

ix

Chapter 1

Introduction

Most of the cryptographic schemes deployed nowadays in practice are
number-theoretic in nature. RSA, ECC, ElGamal, and most of the other
popular choices are based on factorization or the discrete logarithm problem.
These schemes have been carefully designed and working well for the last
three decades. However, with the development of quantum computers
the situation may soon change, as the important problems behind the
schemes are vulnerable to quantum attacks. In 1994, Shor published a
quantum algorithm capable of solving both factorization and the discrete
logarithm problem in polynomial time. Such an achievement put into
practice could, potentially, ruin information security as we know it today.
Hence, in parallel with the research in quantum engineering, there runs
a cryptographic thread of research focusing on the development of new,
practical and quantum-resistant cryptographic schemes.

Code-based cryptography represents one such alternative. As a subfield
of classical cryptography to which none of the known quantum attacks
applies, it is viewed as a secure possibility for the post-quantum world.

The field was established in 1978 when McEliece [30] designed the
first code-based public-key cryptosystem and envisioned a wide use of
coding theory in cryptography. Since then, many code-based cryptographic
primitives have been proposed - another cryptosystem, digital signatures,
an identification scheme and hash functions (see [34, 16, 1, 11] for surveys).
A particularly active research period has been witnessed over the last 15
years, when the known schemes were modified for better efficiency and
security, new variants were proposed and a variety of new code families
tried out (see, e.g. [27, 34] for surveys).

Now, we start with a basic but frequent question: how does one apply
coding theory, which is otherwise independent, to cryptography? As always

1

with public-key cryptography, one identifies a hard problem and a suitable
trapdoor function allowing the entitled persons to solve the problem. The
trapdoor role is played by the linear error-correcting codes. These are
specially designed families of codes that, after transmission of a message,
can in polynomial time identify which bits have been transmitted incorrectly,
correct them and recover the original message (see, e.g. [29]). On the other
hand, there are random codes in which error correction turns out to be
NP-hard [5]. Then, roughly speaking, one builds a cryptographic scheme
by linking an error-correcting code and a random(-looking) code through
a secret function. A ciphertext is an element of the random(-looking)
code with some purposely added errors so that an eavesdropper cannot
correct them. A legitimate receiver, however, maps the ciphertext into the
error-correcting code and easily recovers the plaintext there. Specifying the
exact details of a scheme, the choice of a suitable error-correcting code, the
mapping function, etc. so that the resulting schemes are both efficient and
secure is a subject of ongoing research in code-based cryptography.

In general, code-based cryptography is not only post-quantum, but,
as compared to mainstream number-theoretic systems, it also offers other
advantages. Unlike in the case of factorization and the discrete logarithm,
the hard problems behind code-based schemes are provably hard. The
problem of correcting errors in a random code mentioned above has been
formalized via the General decoding problem 2.3.2, or, equivalently, the
Syndrome decoding problem 2.3.3. Both of these problems have been proven
NP-hard [5, 44]. Hence, if NP6=P, then the code-based systems promise
good security to start with.

Another advantage of the code-based schemes is the efficiency of en-
cryption (and equivalent operations, such as signature verification). These
usually consist of a simple matrix-vector multiplication and are, thus, several
orders of magnitude faster than the widespread RSA or ECC schemes.

On the other hand, there are some reasons for why code-based cryptog-
raphy is not nearly as popular as the number-theoretic schemes. At the
time of its inception in 1978, the public keys of the proposed cryptosystems
were too large to be practical. With the development of computing plat-
forms and fast networks over the years, this is a more manageable problem
nowadays, although the keys are still relatively big: a 100-bit security level
typically corresponds to public keys of size ∼ 100KB [43]. This is easily
manageable by desktop computers and there do exist some implementations
of code-based schemes on small devices, too (see [37, 41]). However, there is
still ongoing research trying to make the code-based public key parameters
comparable in size with their RSA and ECC counterparts.

2

Another issue has been the question of establishing an efficient and prov-
ably secure code-based signature scheme. Already McEliece [30] predicted
the difficulties with turning his public-key cryptosystem into a signature
scheme. The problem, in general, is that code-based cryptosystems are not
easily invertible: if one picks a random element of the random code, this
element is, highly probably, not decryptable. It took over two decades until
Courtois et al. [14] realised that one needs to modify the parameters of
the codes used in the cryptosystems to make them at least “practically
invertible.” Still, the signing time of the resulting signature scheme is
rather large and even small increases in the code parameters may render
the scheme impractical.

The aim of this thesis is to summarise recent developments in the field
of code-based cryptography, with a particular emphasis on code-based
signature schemes.

In Section 2, we review some coding theory. We prepare the background
for code-based cryptography by introducing error-correcting codes, and,
in particular, the binary irreducible Goppa codes with their polynomial-
time error correcting algorithm. We also discuss some hard coding theory
problems to which the security of the code-based schemes is usually reduced.
These are the Goppa code indistinguishability assumption 2.3.7, the General
decoding problem 2.3.2, the Syndrome decoding problem 2.3.3 and their
variations.

In Chapter 3, we give a brief overview of code-based cryptography
in general. We then introduce the two main cryptosystems, namely the
McEliece and the Niederreiter cryptosystem, both using the binary Goppa
codes. We discuss in detail their efficiency and security. In particular,
cryptosystems’ time and memory requirements are outlined and suitable
parameter choices cited. On the security side, we explain the reduction
of cryptosystems’ security to hard problems from Chapter 2 and discuss
the most efficient attacks against the cryptosystems - the information set
decoding techniques. Finally, we review the conversions for McEliece and
Niederreiter that are needed if the cryptosystems are to achieve IND-CCA2
security.

Chapter 4 addresses the main topic of the thesis: code-based signatures.
After giving a brief overview of the area and formally defining a digital
signature scheme with the desired security notions, we turn to the first
practical signature scheme, namely, the CFS scheme by Courtouis et al.
[14]. We explain the clever approach by which the authors managed to
“practically invert” the Niederreiter cryptosystem, as well as the reasons why
signing is not possible by inverting the McEliece cryptosystem. We discuss

3

the security of the CFS scheme by identifying the relevant hard problems
behind the scheme. Further, the main attacks on the scheme are discussed,
in particular, the Bleichenbacher attack (described in [20]) based on the
generalized birthday paradox. This attack neccesitated a slight increase
in the CFS originally proposed parameters [20], making the signing time
of the CFS scheme almost impractical. We discuss a remedy proposed by
Finiasz [19] who modifies the CFS scheme into a so-called CFS-Parallel
scheme, capable of securely using smaller parameters.

The memory and time requirements of the CFS signatures are discussed
and possible trade-offs in the performance outlined. We also compare
individual parameters of the CFS scheme to their counterparts in the
Niederreiter cryptosystem. In general, we find that verification and en-
cryption is equally fast and the size of public key is equally large in the
signature scheme as in the cryptosystem. However, the CFS scheme’s
signing times are much longer than are the corresponding decryption times
of the ciphertexts in the Niederreiter cryptosystem.

An open question of the field, namely, provable security of code-based
signatures is discussed. We describe a modification mCFS of the CFS scheme
by Dallot [15] that enables an EUF-CMA security proof in the random
oracle model, assuming the hardness of the Bounded syndrome decoding
problem 2.3.6 and Goppa code indistinguishability 2.3.7. Unfortunately,
due to recent developments in coding theory, namely, showing that the
Goppa code indistinguishability assumption does not hold for the code
parameters used in the signature scheme [17], the above security proof
has been invalidated. We discuss a very recent proposal of yet another
modification of the CFS scheme by Preetha et al. [38]. The authors of [38]
formulate a weaker indistinguishability assumption and modify the public
code of the signature scheme so that the distinguishing methods of [17] no
longer apply. The resulting signature scheme is claimed to be as efficient as
the original CFS scheme, while also provably secure [38].

Finally, we give a short survey of other schemes related to code-based
signing. In particular, we mention the KKS scheme, signatures obtained
from identification schemes, ring signatures, threshold ring signatures, blind
signatures and identity-based signatures.

Lastly, we round up the thesis with a brief conclusion in Chapter 5.

4

Chapter 2

Some coding theory

The main ingredients needed in code-based cryptography are linear error-
correcting codes and some code-related hard problems, based on which
code-based cryptosystems and signature schemes can be created.

This chapter therefore gives an overview of the relevant parts of coding
theory. In particular, we start by defining and discussing linear codes
and some related basic concepts. We then focus on a particular class of
linear codes, namely, binary Goppa codes, as these codes play an important
role in the schemes discussed in Chapters 3 and 4. Finally, we list some
code-related problems that are believed to be hard.

2.1 Basic concepts

In what follows, let Fq be a finite field with q elements, where q is a
prime power.

Definition 2.1.1. A q-ary linear code C is a subspace of a finite-dimensional
vector space V over Fq. If the dimension of V is n, then C ⊆ Fnq and we
say that the code C has length n. C is a k-dimensional code if the dimension
of C is k. The elements of C are called codewords.

Definition 2.1.2. A generator matrix G for the code C with dimension k
and length n is a k × n matrix whose rows form a basis for C. G is said to
be in a systematic form if G = (Ik|Q) where Ik is the k× k identity matrix.

Let C⊥ denote the (n− k)-dimensional subspace of V that is dual to C.
Then C⊥ is said to be the dual code to C. A parity-check matrix H for the
code C is an (n− k)× n matrix whose rows form a basis for C⊥. Finally,
given any vector v ∈ Fnq , the syndrome of v is the vector vHT ∈ Fn−kq and
Fn−kq is called the syndrome space.

5

Note that a parity-check matrix for the code C is a generator matrix for
C⊥ and vice versa. Also note that an important property of the parity-check
matrix H for C is that, for any v ∈ Fnq ,

v ∈ C iff HvT = 0,

and so the syndrome of v ∈ Fnq is zero if and only if v ∈ C. The point is
that with a parity-check matrix one can easily check whether a given vector
in Fnq is a codeword in the corresponding code.

Definition 2.1.3. The weight of a vector v ∈ Fnq , denoted wt(v), is the
number of non-zero components in v. A (Hamming) distance d(v, w) between
two vectors v, w ∈ Fnq is the number of components at which v and w differ.
The minimum distance dCmin of the code C is the smallest distance that there
is between two codewords in C. We denote a linear code C with length n,
dimension k and minimum distance d an [n, k, d]-code.

A nice property of linear codes is that the codewords are ‘evenly spaced’
in the vector space, meaning, that the minimum distance of the code is the
distance between 0 and a codeword with the smallest non-zero weight in C,
i.e.

dCmin = min
a∈C
a6=0

{wt(a)}.

Minimum distance greater than one gives code error-detecting and error-
correcting capabilities. The main idea is as follows. There is a word space
Fkq in which each x ∈ Fkq represents a valid word. A sender A wishes to
transmit a particular word x to a receiver B. If the transmission channel is
noisy, i.e. the components of x ∈ Fkq may not all be transmitted correctly,
B may receive a word y ∈ Fkq different from x. However, since y is also a
valid word, B has no means of finding out whether y is the word that was
originally sent or whether the corruption occured.

The problem is solved by bijectively mapping the word space into a
linear [n, k, d]-code C with d > 1. Let g : Fkq → Fnq be defined by g(a) = aG,
∀a ∈ Fkq , where G is the generator matrix of C. Now, instead of sending x, A
first encodes the word x to obtain a codeword xG and then sends xG along
the noisy channel. Assume that B receives a vector xG + e ∈ Fnq , where
e ∈ Fnq is the corresponding error vector, i.e. the component ei of e, for
1 ≤ i ≤ n, is zero if the ith component of xG was transmitted correctly, and
contains the respective error if (xG)i was corrupted. The received vector
xG+ e is distance wt(e) from the codeword xG. Notice that if wt(e) < d
then xG + e /∈ C and the receiver B immediately detects the corruption.

6

If, moreover, wt(e) < dd
2
e and there exists an efficient way of finding the

closest codeword in C, then B is able to correct the error and recover the
originally sent codeword xG by the principle below. Finally, B recovers the
word x ∈ Fkq by calculating g−1(xG).

The process of relating a codeword to a received Fnq -vector is referred to
as decoding.

The maximum likelihood decoding principle 2.1.4. For a code C ⊂
Fnq and a received vector v ∈ Fnq , decode v as a codeword c ∈ C, where

d(v, c) = min
a∈C
{d(v, a)}.

In other words, c is a closest codeword to v. We write c = DecDC (v), where
D is a specific decoding algorithm used.

The principle always yields a correct unique decoding of a vector v ∈ Fnq
if, for the number t of incorrectly transmitted components of a sent codeword
c ∈ C, we have

t <

⌈
dCmin

2

⌉
.

On the other hand, if t > bd
C
min

2
c, the principle, in general, fails to decode

correctly (although it may still work for vectors that are > bd
C
min

2
c away

from each codeword) and if t =
dCmin

2
, then the decoding is not unique. In

what follows, we always assume to use the Maximum likelihood decoding
principle and decode a received vector as a closest codeword in a given
code.

Now, the main issue that matters in the decoding process is the following:
given a vector v ∈ Fnq , how hard is it to find a codeword closest to v? It
turns out, and we will see in Section 2.3, that, in general, this is a hard
problem. But there do exist specifically designed families of error-correcting
codes that can find the closest codeword in polynomial time. In particular,
we say:

Definition 2.1.5. A code C ⊂ Fnq is t-error-correcting, if there exists a
polynomial-time decoding algorithm D such that for all pairs of a sent
codeword c ∈ C and received vector v ∈ Fnq , whenever d(c, v) ≤ t, then

DecDC (v) = c.

Note that a t-error-correcting code C must have the minimum distance
dCmin > 2t.

7

Known examples of error-correcting codes are the Hamming, Reed-
Muller, BCH, Reed-Solomon, algebraic geometry, LDPC, convolutional and
alternant codes with a subclass of binary Goppa codes, among others. For
a review of error-correcting codes see [29].

In Chapters 3 and 4 we study code-based cryptography in detail; for
now we only remark that the fact that the decoding process is hard in some
codes, but easy in others, lies at the very centre of code-based cryptography.
It is exactly this property of decoding that makes it possible to construct
cryptosystems and signature schemes.

We conclude the section by definitions needed later on.

Definition 2.1.6. Two [n, k, d]-codes C and C ′ are permutation equivalent
if there exists a permutation π of n elements such that

C ′ = {(cπ(1), . . . , cπ(n))|(c1, . . . , cn) ∈ C}.

Definition 2.1.7. The (information) rate of an [n, k, d]-code C is the ratio
k
n

; k is the number of information characters and n− k is the number of
parity check characters.

The rate says that in a codeword of length n, only k components carry
information. The rest of the components were added to enable the error-
correcting capabilities of the code. In general, there is a trade-off between
the rate and the number of errors that a code is able to correct.

2.2 Irreducible binary Goppa codes

We now introduce a specific class of linear error-correcting codes - the
Goppa codes. These codes were first defined by V. D. Goppa [22].

Definition 2.2.1. Fix a field Fqm. Pick a polynomial g(X) = g0 + g1X +
... + gtX

t ∈ Fqm [X] of degree t and a set of n pairwise distinct elements
L = {α1, ..., αn} ⊆ Fqm such that g(αi) 6= 0 for all 1 ≤ i ≤ n. The
degree-t (classical) Goppa code Γq(L, g) is defined to be the set of all
c = (c1, ..., cn) ∈ Fnq such that

n∑
i=1

ci
X − αi

≡ 0 mod g(X),

or, equivalently,
∑n

i=1
ci

X−αi
= 0 in Fqm [X]/g(X).

8

Note that in the ring Fqm [X]/g(X), the polynomial X−αi has an inverse
for all 1 ≤ i ≤ n, since X − αi is, by definition, coprime with g(X). Hence,
the Goppa code is well-defined.

In the above, the polynomial g(X) is called the Goppa polynomial and
the set L a support. In cryptographic applications, the support often consists
of all elements of Fqm that are not roots of g(X).

The code Γq(L, g) is q-ary, while L and the coefficients of g(X) are from
Fqm . The code has length n and it can also be shown to have dimension

k ≥ n−mt and minimum distance d
Γq(L,g)
min ≥ t+ 1. Notice that in order to

obtain the above length and to guarantee nonzero dimension, the parameters
of the code must satisfy n ≤ qm and n ≥ mt.

We now derive the parity-check matrix, mimicking the approach in [29]
and [16] with the notation above. A generator matrix for Γq(L, g) can then
be found by computing the orthogonal subspace by linear algebra. Notice
that in the ring Fqm [X]/g(X), for all i we have

−g(X)− g(αi)

g(αi)
≡ −g−1(αi) · g(X) + 1 ≡ 1 mod g(X).

Then for any vector c ∈ Fnq :

c ∈ Γq(L, g)

if and only if
n∑
i=1

ci
X − αi

≡ 0 mod g(X)

if and only if

−
n∑
i=1

ci
g(αi)

· g(X)− g(αi)

X − αi
≡ 0 mod g(X).

Definition 2.2.2. The expression −
∑n

i=1
ci

g(αi)
· g(X)−g(αi)

X−αi
∈ Fqm [X] is

known as the (Goppa) syndrome of a vector c ∈ Fnq , denoted Sc(X).

The terminology becomes clear once we see how the parity-check matrix
is created from the syndrome.

Proposition 2.2.3. For a Goppa code Γq(L, g) and any c ∈ Fnq , c ∈ Γq(L, g)
if and only if Sc(X) = 0 as a polynomial in Fqm [X].

9

Proof. For all 1 ≤ i ≤ n, αi is a root of both g(X) − g(αi) and X − αi.
Then, since the degree of g(X) is t, the degree of each term in Sc(X) is
t− 1. Hence, the degree of Sc(X) in Fqm [X] is ≤ t− 1. We saw above that
c ∈ Γq(L, g) iff Sc(X) ≡ 0 mod g(X). The latter holds if and only if Sc(X)
is a zero polynomial in Fqm [X].

Thus, a vector c is a codeword iff the coefficient of each ofX0, X1, . . . , X t−1

in Sc(X) is zero. After expanding

Sc(X) =
n∑
i=1

ci
g(αi)

g(X)− g(αi)

X − αi
=

=
n∑
i=1

ci
g(αi)

·{g1+g2(X+αi)+g3(X2+Xαi+α
2
i)+· · ·+gt(X t−1+· · ·+αt−1

i)},

we get the following conditions for the coefficients of Xj, 0 ≤ j ≤ t− 1:

n∑
i=1

ci
g(αi)

· (gj+1 + gj+2αi + gj+3α
2
i + · · ·+ gtα

t−1−j
i) = 0.

Reformulating the conditions, it can easily be seen that c ∈ Γq(L, g) if and
only if HcT = 0, where

H =

gt

g(α1)
gt

g(α2)
· · · gt

g(αn)
gt−1+gtα1

g(α1)
gt−1+gtα2

g(α2)
· · · gt−1+gtαn

g(αn)
...

...
. . . · · ·

g1+g2α1+···+gtαt−1
1

g(α1)

g1+g2α2+···+gtαt−1
2

g(α2)
· · · g1+g2αn+···+gtαt−1

n

g(αn)

(2.1)

=

gt 0 0 · · · 0
gt−1 gt 0 · · · 0

...
...

...
. . .

...
g1 g2 g3 · · · gt

 ·

1 1 · · · 1
α1 α2 · · · αn
...

...
. . .

...
αt−1

1 αt−1
2 · · · αt−1

n

 ·

·

g−1(α1) 0 · · · 0

0 g−1(α2) · · · 0
...

...
. . .

...
0 0 · · · g−1(αn)

 =: XY Z.

Since X, Y and Z each have full rank, also H has full rank, and so, H
is a parity-check matrix for the code Γq(L, g). If we wish to write the

10

parity-check matrix in terms of elements of Fq, we express Fqm as an m-
dimensional vector space over Fq, i.e. each element of Fqm is an Fmq -vector,
and the parity-check matrix has dimension mt× n.

As further mentioned in [29], since X is non-singular, the rows of the
matrices H and Y Z generate, in fact, the same subspace of Fnq . Hence, Y Z
is another parity-check matrix for Γq(L, g). As a product of a Vandermonde
and a diagonal matrix, Y Z has the form of a parity-check matrix for
alternant codes (see [29] for the definition), showing that the Goppa codes
are a subclass of the alternant codes and that any decoding algorithm for
alternant codes can also be applied to Goppa codes. In practice, however, all
alternant code decoders perform on Goppa codes poorer than (the general
version of) the so-called Patterson algorithm devised especially for Goppa
codes.

Finally, let us remark that an important property of the Goppa codes,
as we see in Chapters 3 and 4, is that they resemble random linear codes
in many characteristics. For example, Faugere et. al. [17] state that both
Goppa and random codes have trivial permutation group, meet the so-called
Gilbert-Varshamov bound and, for most Goppa codes there is currently
no way of distinguishing their parity-check matrices from the matrices of
random codes. The general theory of Goppa codes is explained in detail in
[29, 35, 4].

We now restrict our attention to a subclass of Goppa codes that is of
the most interest to code-based cryptography. These are the irreducible
binary Goppa codes, i.e. the Goppa codes with q = 2 and with polynomial
g(X) irreducible in F2m [X].

While inheriting the properties discussed above, this subclass has some
notable advantages over the general family of Goppa codes (and other kinds
of codes as well). Not only it is better suited for computing, but, more
importantly, it has a very good error-correction capability while maintaining
a relatively high information rate [6].

The main aim of this section, is to prove that the irreducible binary
Goppa codes have minimum distance d

Γ2(L,g)
min ≥ 2t+1 and to show that there

exists an easily implementable version of Patterson decoding algorithm for
binary Goppa codes correcting the full t errors in polynomial time. The
proofs are adapted from [6, 16]. Finally, note also that the recent work of
Bernstein [6] develops a method that enables one to correct even more errors
than what the correcting capacity of the Goppa code is. This method, on
top of the Patterson algorithm, also necessitates introduction of decoding
lists containing multiple candidates for a decoding of a given vector and a

11

delicate handling of these candidates. Therefore, we do not describe this
method below. An interested reader is directed to [6].

Facts 2.2.4. In a field F2m, there is the Frobenius automorphism F2m →
F2m: x 7→ x2. Hence, every element of F2m has a unique square root.

Also, since F2m has characteristic 2, a polynomial f(X) ∈ F2m [X] is a
perfect square if and only if f(X) contains powers X i with i even only.

Proposition 2.2.5. For an irreducible binary Goppa code Γ2(L, g) with

deg(g(X)) = t, the minimum distance d
Γ2(L,g)
min of the code satisfies d

Γ2(L,g)
min ≥

2t+ 1.

Proof. Let c ∈ Γ2(L, g) be a nonzero codeword. Then

0 ≡
n∑
i=1

ci
X − αi

=
∑
i:ci=1

1

X − αi
=
σ′

σ
mod g(X)

where σ′ is a formal derivative of σ =
∏

i:ci=1(X − αi). Then σ′ ≡
0 mod g(X), i.e. g|σ′. Notice that σ′, being a derivative in character-
istic two, consists only of even powers of X, so by Fact 2.2.4, σ′ is a perfect
square. Since g(X) is an irreducible polynomial in a separable extension
(finite extension of a finite field), g(X) has no multiple roots. Thus, g|σ′
implies g2|σ′. Hence, wt(c) = deg(σ) ≥ deg(σ′) + 1 ≥ 2 deg(g) + 1 = 2t+ 1.

We now review an instance of the Euclidean algorithm for polynomials
in F2m [X], as this is needed in the Patterson error-correction algorithm for
irreducible binary Goppa codes. Consider the following problem.

Problem 2.2.6. Given polynomials g(X), τ(X) ∈ F2m [X] with deg(g(X)) =
t and deg(τ(X)) < t, find coprime polynomials γ(X), β(X) ∈ F2m [X] such
that

deg(γ(X)) ≤ t/2,

deg(β(X)) ≤ (t− 1)/2,

and

γ(X) ≡ β(X)τ(X) mod g(X).

Show that the solution is unique (up to multiplication of both polynomials
by the same unit in F2m).

12

Euclidean algorithm 2.2.7. Since F2m [X] is a Euclidean domain, we can
obtain finite sequences of polynomials r−1(X), r0(X), r1(X), r2(X), . . . , rk(X)
with

r−1(X) = g(X),

r0 = τ(X),

rk(X) = 0,

and q1(X), q2(X), . . . , qk(X), such that for all 1 ≤ i ≤ k,

ri(X) = ri−2(X)− qi(X)ri−1(X)

and deg(ri(X)) < deg(ri−1(X)).

Let β−1 = 0, β0 = 1, and for 1 ≤ i ≤ k, define βi(X) = βi−2(X) +
qi(X)βi−1(X). Let γi(X) = ri(X) for −1 ≤ i ≤ k.

Lemma 2.2.8. For −1 ≤ i ≤ k and the notation above,

γi(X) ≡ βi(X)τ(X) mod g(X).

Proof. By induction on i. We have γ−1 = r−1 = g ≡ 0 · τ = β−1τ mod g(X)
and γ0 = r0 = τ = 1 · τ = β0τ . When i ≥ 1,

γi = ri = ri−2 − qiri−1 ≡ βi−2τ − qiβi−1τ = (βi−2 + qiβi−1)τ = βiτ mod g

by definition of ri, βi and using the induction hypothesis and properties of
characteristic two.

Lemma 2.2.9. For −1 ≤ i ≤ k − 1 and the notation above, g(X) =
γi(X)βi+1(X) + γi+1(X)βi(X). Hence, in particular, since g(X) is irre-
ducible, γi(X) and βi(X) are coprime.

Proof. By induction on i. We have g(X) = g(X) · 1 + τ(X) · 0 =
γ−1(X)β0(X) + γ0(X)β−1(X). By using the definition of βi+1(X), the
(i + 1)th step in the Euclidean algorithm and the inductive hypothesis
for i ≥ 0, we obtain

γi(X)βi+1(X) + γi+1(X)βi(X)

= γi(X)(βi−1(X) + qi+1(X)βi(X)) + (γi−1(X)− qi+1(X)γi(X))βi(X)

= γi(X)βi−1(X) + γi−1(X)βi(X) = g(X).

13

Lemma 2.2.10. For 0 ≤ i ≤ k and the notation above, deg(g(X)) =
deg(γi−1(X)) + deg(βi(X)).

Proof. By induction on i. We have deg(γ−1) + deg(β0) = deg(g). For
1 ≤ i ≤ k, notice that deg(βi) = deg(q1 · · · · · qi) and consider the ith step
of the Euclidean algorithm:

ri = ri−2 − qiri−1.

Since deg(ri) < deg(ri−2), it follows that deg(qi) + deg(ri−1) = deg(ri−2).
By induction hypothesis, deg(ri−2) = deg(γi−2) = deg(g)− deg(βi−1).
Hence,

deg(g) = deg(qi) + deg(ri−1) + deg(βi−1) = deg(ri−1) + deg(q1 · · · · · qi)

= deg(γi−1) + deg(βi).

Lemma 2.2.11. There is I ≥ −1 such that the polynomials γI(X), βI(X)
produced by the Euclidean algorithm above satisfies deg(γI(X)) ≤ t/2 and
deg(βI(X)) ≤ (t− 1)/2.

Proof. In the Euclidean algorithm, the degree of ri, hence also of γi, de-
creases from t to 1 (since g(X) is irreducible) as i increases. Hence, by
the previous lemma, the degree of βi increases as i increases. Let I be
such that deg(γI) < (t + 1)/2 ≤ deg(γI−1). Then deg(γI) ≤ t/2 and
deg(βI) = deg(g)− deg(γI−1) ≤ t− (t+ 1)/2 = (t− 1)/2.

Theorem 2.2.12. The pair of polynomials γI(X), βI(X) found in Lemma
2.2.11 is the only solution to Problem 2.2.6 (up to multiplication by a unit).

Proof. Since γI(X) and βI(X) were found by the Euclidean algorithm, they
are coprime and γI(X) ≡ βI(X)τ(X) mod g(X) as guaranteed by Lemmas
2.2.9 and 2.2.8. By Lemma 2.2.11, they also satisfy the degree requirements
and hence, represent a solution to Problem 2.2.6.

Notice that any solution γ(X), β(X) ∈ F2m [X] to Problem 2.2.6 must
have β(X) 6= 0. Indeed, if β(X) = 0, then γ(X) ≡ 0 · τ(X) mod g(X).
Then, deg(γ(X)) ≤ t/2 forces γ(X) = 0, and so γ(X) and β(X) are not
coprime, which is a contradiction.

14

Assume that there exists a pair of polynomials γ′(X), β′(X) ∈ F2m [X],
possibly different from γI(X), βI(X), that represent a solution to Problem
2.2.6. Then,

γ′(X)

β′(X)
≡ τ(X) ≡ γI(X)

βI(X)
mod g(X),

or, equivalently,

γ′(X)βI(X) ≡ γI(X)β′(X) mod g(X).

Notice that deg(γ′(X)βI(X)) ≤ t/2 + (t − 1)/2 < t = deg(g(X)), and,
similarly, deg(γI(X)β′(X)) < t, and so the above holds as an equality

γ′(X)βI(X) = γI(X)β′(X)

in F2m [X]. Since γI(X) and βI(X) are coprime, it follows that γ′(X) =
γI(X) · η(X) and β′(X) = βI(X) · µ(X) for some η(X), µ(X) ∈ F2m [X]. If
γI(X) = 0, then γ′(X) = 0 = γI(X) ·µ(X), i.e. γ′(X) and β′(X) are a unit
multiple of γI(X) and βI(X), hence represent the same solution.

Assume γI(X) 6= 0. We have

γI(X)

βI(X)
=
γ′(X)

β′(X)
=
γI(X) · η(X)

βI(X) · µ(X)

and so η(X) = µ(X). Since we assumed that γ′(X) and β′(X) are coprime,
µ(X) must, in fact, be a unit. Hence, γ′(X), β′(X) represent the same
solution as γI(X), βI(X).

We now describe the most efficient known decoding algorithm for the
irreducible binary Goppa codes that is due to Patterson [35].

Assume that a codeword c ∈ Γ2(L, g) is sent and a vector v = c+ e is
received, where e ∈ Fn2 is an error vector with wt(e) ≤ t. To recover c, use
the following algorithm (adapted from [16]).

Patterson algorithm for irreducible binary Goppa codes 2.2.13.
Input: irreducible binary Goppa code Γ2(L, g) of degree t with support
L = {α1, α2, . . . , αn} and a received vector v ∈ Fn2 such that

∃c ∈ Γ2(L, g) : dΓ2(L,g)(v, c) ≤ t.

Output: codeword c ∈ Γ2(L, g).

15

Algorithm:

1. Calculate
√

(
∑n

i=1
vi

X−αi
)−1 −X mod g(X), and denote its lift to

F2m [X] by τ(X). If the calculation fails, output v.

2. Find coprime polynomials γ(X), β(X) ∈ F2m [X] with deg(γ(X)) ≤
t/2 and deg(β(X)) ≤ (t−1)/2 such that γ(X) ≡ β(X)τ(X) mod g(X).

3. Let σ(X) = γ2(X) +Xβ2(X). Find the roots of σ(X) in F2m.

4. Let ei = 1 if αi is a root of σ(X). Otherwise, ei = 0.

5. Let c = v + e.

6. Output c.

Why the algorithm works. Since g(X) is irreducible, F2m [X]/(g(X))
is a field. Hence, every nonzero element has an inverse and, by Fact 2.2.4,
every element has a unique square root. Thus, the calculation in 1. fails
if and only if

∑
vi

X−αi
≡ 0 mod g(X) which happens if and only if v is a

codeword, i.e. no error correction is needed and the algorithm outputs v.
Assume that v = c + e ∈ Fn2 with e 6= 0. Define the error locator

polynomial as

σ(X) =
∏
i:ei=1

(X − αi).

By assumption, wt(e) ≤ t, therefore deg(σ(X)) ≤ t.
Using the definition

∑n
i=1

ci
X−αi

≡ 0 mod g(X) of a codeword c, we have

0 6=
n∑
i=1

vi
X − αi

=
n∑
i=1

ci
X − αi

+
n∑
i=1

ei
X − αi

≡

≡
∑
i:ei=1

1

X − αi
=
σ′(X)

σ(X)
mod g(X)

where σ′(X) is a formal derivative of σ(X). Notice that σ′(X) is non-zero.
Express the error locator polynomial as a sum of squares and non-

squares, i.e. σ(X) = γ2(X)+X ·β2(X) and σ′(X) = β2(X) for polynomials
γ(X), β(X) ∈ F2m [X]. Notice that β(X) is non-zero and, since σ(X) has
no multiple roots, γ(X) and β(X) must be coprime.

16

The above identity becomes(
n∑
i=1

vi
X − αi

)−1

≡ γ2(X) +X · β2(X)

β2(X)
=

(
γ(X)

β(X)

)2

+X mod g(X).

Now,
(∑n

i=1
vi

X−αi

)−1

−X has a unique square root modulo g(X). Denote

its lift to F2m [X] by τ(X). We have

τ(X)β(X) ≡ γ(X) mod g(X).

Here deg(g(X)) = t, deg(τ(X)) < t and, since deg(σ(X)) ≤ t, we must
have deg(γ(X)) ≤ t/2 and deg(β(X)) ≤ (t − 1)/2. Hence, the unknown
polynomials γ(X) and β(X) represent a solution to Problem 2.2.6 which,
by Theorem 2.2.12, is guaranteed to be unique (up to multiplication by a
unit, but this does not change the roots of σ(X)). Finding this solution,
using the formula for σ(X) and recovering its roots then determines the
error vector e and hence, also the codeword c.

The expression
∑n

i=1
vi

X−αi
is usually computed as Hv mod g(X) where

H is the parity-check matrix (2.1) for Γ2(L, g). To calculate its inverse,
one uses the extended Euclidean algorithm. The square root is found by
applying the inverse Frobenius map and to recover γ(X), β(X), one follows
the version of the Euclidean algorithm described above.

In terms of complexity, the hardest part of the algorithm is to determine
the roots of σ(X). Strenzke [42] discussed several known approaches to
root finding, namely, a naive polynomial evaluation method, an evaluation
with division by known roots, the Berlekamp trace algorithm [3], a method
based on polynomial decomposition into so-called linearized polynomials
[18] and some combinations thereof. The algorithms were compared in
terms of their performance and security that they offer when implemented
within a code-based cryptosystem. It turns out that the first two methods
are too slow and the Berlekamp trace algorithm (that has already been
used in some implementations of McEliece cryptosystem, e.g. [8]) allows a
substantial message-aimed timing attack on the underlying cryptosystem.
All algorithms were, in fact, found to exhibit timing-attack vulnerabilities
to some extent; the one where the problems were the subtlest and only
related to recovering the support and not the message, is the decomposition
into linearized polynomials [42]. This method also turns out to be the
fastest of all algorithms when performed on Goppa codes with parameters
corresponding to cryptosystems with the smallest public keys – an issue

17

of paramount importance in code-based cryptography, as we see in later
chapters. Yet, as Strenzke concludes, there may be contexts in which the
other algorithms are more appropriate and so currently there is no definitive
answer as to which root-finding algorithm is the most suitable.

The performance of a root-finding algorithm depends on many factors,
such as the particular codes in use and the exact implementation of field
arithmetic. A rough estimate provided in [16] states that the complexity of
such an algorithm is O(ntm2) operations where t is the degree of g(X) and
m is the size of its coefficients.

Going back to the Patterson algorithm, we conclude that its overall
complexity is O(ntm2). Thus, we see that given a Goppa polynomial
g(X) of degree t with coefficients gi ∈ F2m and a corresponding support
L of cardinality n, there exists a fast and easily implementable algorithm
correcting the full t errors. In fact, notice that it’s enough to only know
some non-zero constant multiple of g(X) to be able to decode, since g(X)
and α · g(X), where α ∈ F2m\{0} generate the same Goppa code.

On the other hand, if (a constant multiple of) the polynomial g(X) is not
known, there is currently no known efficient way of decoding [16]. A question
may be, from what information can one learn g(X)? For example, Heyse et
al. [24] show that g(X) can usually be reconstructed from the knowledge of
the support L and a generator matrix for Γ2(g, L) in systematic form. Or,
as pointed out in [16], knowing the support L and the parity-check matrix
H in the form (2.1) enables one to compute g−1

t g(X), and therefore, also
efficiently decode.

These issues ultimately determine when a code-based cryptosystem
using Goppa codes can be regarded as secure and when not. Due to their
properties, the irreducible binary Goppa codes were the first codes used in
a code-based cryptosystem devised in 1978. After 30+ years, when other
code families have been tried out for this purpose, too, the binary Goppa
codes still remain pretty much the only unbroken and efficient type of code
used in code-based cryptography.

2.3 Hard problems

We now discuss some hard coding theory problems that are frequently
used in constructing, but also attacking, code-based cryptographic schemes.
Consider the following problems.

18

Problem 2.3.1 (The problem of finding weights). Given a binary linear
code C ⊂ Fn2 , find a non-zero codeword c ∈ C with the minimum weight.

Decisional version: Given a binary linear code C ⊂ Fn2 and w ∈ N, is
there a non-zero c ∈ C such that wt(c) ≤ w?

After being a conjecture of Berlekamp, McEliece and van Tilborg [5]
for almost 20 years, Problem 2.3.1 was shown to be NP-hard (and the
corresponding decision problem NP-complete) by Vardy [44].

Problem 2.3.2 (The general decoding problem). Given a binary linear code
C ⊂ Fn2 and a vector v ∈ Fn2 , find c ∈ C such that d(v, c) = mina∈C{d(v, a)}.

Decisional version: Given a binary linear code C ⊂ Fn2 , a vector v ∈ Fn2
and w ∈ N, is there c ∈ C such that d(v, c) ≤ w?

Problem 2.3.3 (The syndrome decoding problem). Given a binary linear
code C ⊂ Fn2 with an (n − k) × n parity-check matrix H and a syndrome
s ∈ Fn−k2 , find e ∈ Fn2 such that HeT = sT with wt(e) minimal.

Decisional version: Given a binary linear code C ⊂ Fn2 with an (n−k)×n
parity-check matrix H, a syndrome s ∈ Fn−k2 and a w ∈ N, is there e ∈ Fn2
with wt(e) ≤ w such that HeT = sT?

Proposition 2.3.4. Problems 2.3.2 and 2.3.3 are computationally equiva-
lent.

Proof. We prove the claim for the computational versions of the problems;
the proof for decisional versions is similar.

Assume that we have an oracle for solving Problem 2.3.3 and are given
v ∈ Fn2 and want to find a closest c ∈ C. Query the oracle with any
parity-check matrix H for C and sT = HvT . For the returned vector e,
HeT = HvT such that wt(e) is minimal, i.e. v + e is a codeword with
d(v, v + e) minimal.

Conversely, assume that we have an oracle for solving Problem 2.3.2 and
are given a parity-check matrix H and a syndrome s ∈ Fn−k2 . By solving
the system of n − k equations in n unknowns, we compute some z ∈ Fn2
satisfying HzT = sT . Then, for some e ∈ Fn2 , 0 = HzT +HeT = H(z + e)T ,
i.e. z+ e is a codeword if and only if HeT = sT . Moreover, z+ e is a closest
codeword to z if and only if HeT = sT and wt(e) is minimal. Thus, by
querying the oracle with z one obtains z + e, where e is a desired solution.

The decisional version of Problem 2.3.3 was shown to be NP-complete [5].
Since it can be reduced to the computational problem, it follows that the

19

computational version of Problem 2.3.3 is NP-hard. Similarly, by the claim,
the versions of Problem 2.3.2 are NP-complete, and NP-hard respectively.

Then, if NP 6=P, these coding problems are provably hard and therefore
building cryptographic schemes with security resting on these problems
would be a promising idea. Moreover, unlike in the case of factoring, there
is no known quantum algorithm that can solve these problems faster than
classical algorithms and schemes based on these problems are, therefore,
referred to as ‘post-quantum’.

We, however, remark that one still needs to be careful about judging the
exact level of security, since in reality most of the cryptographic schemes
rely on slight modifications of the above problems, such as the following.

Problem 2.3.5 (The bounded decoding problem). Given a binary linear

code C ⊂ Fn2 and a vector v ∈ Fn2 , find all c ∈ C such that d(v, c) ≤ bd
C
min−1

2
c.

Decisional version: Given a binary linear code C ⊂ Fn2 , a vector v ∈ Fn2
and w ≤ bd

C
min−1

2
c, is there c ∈ C such that d(v, c) ≤ w?

Problem 2.3.6 (The bounded syndrome decoding problem). Given a
binary linear code C ⊂ Fn2 , an (n− k)× n parity-check matrix H in which
every dCmin − 1 columns are linearly independent and a syndrome s ∈ Fn−k2 ,

find all e ∈ Fn2 such that HeT = sT and wt(e) ≤ bd
C
min−1

2
c .

Decisional version: Given a binary linear code C ⊂ Fn2 with an (n −
k)× n parity-check matrix H in which every dCmin − 1 columns are linearly

independent, a syndrome s ∈ Fn−k2 and a w ≤ bd
C
min−1

2
c, is there e ∈ Fn2 with

wt(e) ≤ w such that HeT = sT?

Note that the linear independence condition on columns of H in Problem
2.3.6 is equivalent to the requirement that the minimum distance of the
given code is at least dCmin.

Similarly as in Problem 2.3.4, the respective versions of Problems 2.3.5
and 2.3.6 can be shown to be computationally equivalent. It is conjectured
[44] that these problems are NP-hard, however, there is currently no actual
proof to confirm this.

For the purposes of later sections, notice the following: if the solution
set to Problem 2.3.6 is non-empty, then, in fact, it consists of exactly one
solution. Indeed, assume that there are two solutions e′, e′′ ∈ Fn2 . Then,

0 = H(e′)T −H(e′′)T = H(e′ − e′′)T ,

and so e′ − e′′ is a codeword with weight wt(e′ − e′′) ≤ wt(e′) + wt(e′′) ≤
2 · bd

C
min−1

2
c < dCmin. Therefore, e′ − e′′ = 0, i.e. e′ = e′′.

20

Finally, we discuss one last assumption needed in security considerations
of cryptosystems and signature schemes in Chapters 3 and 4.

Assumption 2.3.7 (The Goppa code indistinguishability). Let Goppa(k, n)
be the set of all k × n generator matrices of irreducible binary Goppa
codes and Random(k, n) the set of all k × n random matrices of full rank,
i.e. generator matrices for random linear codes. Pick a value b ∈ {0, 1}
uniformly at random. If b = 0, let G be a matrix randomly chosen from
Goppa(k, n), otherwise, pick G randomly from Random(k, n). Then, there
is no algorithm polynomial in n that can correctly decide whether G ∈
Goppa(k, n) with probability non-negligably larger than 1/2.

In other words, Assumption 2.3.7 asserts that there is no property
computable in polynomial time that behaves differently in the Goppa codes
and random codes, and so, these two classes of codes are, in polynomial
time, indistinguishable from each other.

This assumption was first brought up in [14]. It is needed if one wishes
to use Goppa codes in the cryptographic schemes, while at the same time,
one wants to base the schemes’ security on hardness of decoding a random
code (Problem 2.3.2 or 2.3.5).

However, little is actually known about the indistinguishability assump-
tion. It sounds plausible, since, as explained in Section 2.2, Goppa codes
resemble random codes in many aspects, but there does not exist any proof
of Assumption 2.3.7. In fact, Faugere et al. [17] disproved the indistin-
guishability assumption for codes with large information rate by showing
that in such codes a certain easily computable algebraic quantity in Goppa
codes differs from random codes.

For the remaining codes, however, Assumption 2.3.7 is generally assumed
to be true.

21

Chapter 3

Code-based encryption

Code-based cryptography is an area of active cryptographic research,
encompassing cryptosystems, digital signatures, code-based hash functions
and an identification scheme (see, for example, the surveys [34, 11, 16]). It
represents an alternative to today’s most widespread cryptographic schemes
that are based on factorization and discrete logarithm problem. Unlike them,
the code-based schemes do not seem to be vulnerable to Shor’s algorithm,
nor to any other quantum algorithm [36]. Hence, they are considered to be
classical schemes that are secure and suitable for the post-quantum world.

Another significant advantage of code-based systems over the widely
used schemes is a very efficient encryption and decryption that is several
orders of magnitude faster than in RSA or elliptic curves.

The first code-based cryptosystem was published in 1978 by R. McEliece
[30] and was designed to use the irreducible binary Goppa codes. In 1986,
Niederreiter published another code-based cryptosystem using generalised
Reed-Solomon codes [16]. Although this version of Niederreiter cryptosys-
tem turned out to be insecure [16], the Niederreiter system works well with
the Goppa codes and, in fact, the security of both McEliece and Niederreiter
systems using the irreducible binary Goppa codes was later shown to be
equivalent [28].

In 1994 Stern (see [16, 34]) proposed an identification scheme inspired
by the Niederreiter system and based on the difficulty of syndrome decoding.
In 1996, Fisher and Stern used the identification scheme and syndrome
decoding to construct a generator of pseudorandom numbers (see [34]) and,
in 2005, based on the same ideas, Augot et al. [1] came up with a family of
code-based cryptographic hash-functions. Finally, in 2001 Courtois et al.
[14] managed to construct the first practical code-based signature scheme.
Known as a CFS scheme, this signature scheme is based on inverting the

23

Niederreiter system and modifying the parameters of the underlying Goppa
code in a special way.

All in all, code-based cryptography has a long tradition. But, despite
the fact that it was established around the same time as RSA, it did not
become as popular. Why? The main two reasons are as follows.

Signature schemes. Originally, it was believed that construction of
a code-based signature scheme would not be possible from the known
cryptosystems. It took over two decades before the CFS scheme was
proposed and even today, there is no complete security proof for the scheme.
We describe the difficulties in this area in Chapter 4. The main part of
the thesis is concerned with the discussion of the amendments of the CFS
scheme as well as the new candidates for the signature schemes that have
recently appeared.

Key sizes. Code-based cryptosystems tend to have relatively large public
key sizes. As estimated in [43], for a 100-bit security level, the corresponding
McEliece public key has about 100KB. At the time of appearance of
the McEliece cryptosystem, this was a significant problem. Since then,
considerable efforts have been invested into research to make the keys
smaller.

One possibility is to try to use different codes in the McEliece/Niederreiter
scheme, especially ones that are over larger finite fields. Tillich et al. [27]
sums up that all the following codes have been used: quasi-cyclic and
quasi-dyadic Goppa codes, subcodes of generalised Reed-Soloman codes,
Reed-Muller codes, algebraic geometry codes, LDPC, MDPC and convo-
lutional codes. However, most of the new constructions were immediately
broken, since it was possible to find some specific characteristic of the
underlying secret code that distinguished the code from a random one and
enabled decoding [27].

Another branch of research concentrates on the original McEliece scheme
with irreducible binary Goppa codes. It has withstood all cryptographic
scrutiny over the years and is still unbroken today [16] (apart from when
used with Goppa codes with large rates that are distinguishable from
random code as shown above – but this danger is only relevant in case of
code-based signatures as we see in Chapter 4). Also, the key sizes are no
longer a substantial problem as they used to be 30 years ago. In large part
this is due to an increased memory space available on platforms nowadays,
but also due to clever implementation methods. For example, in [43] the

24

relevant information from the public key is processed straight as it is being
received, and so there is no need to keep the entire public key in memory
all at once.

We concentrate on the latter area of research. In this chapter, we
introduce and briefly analyze the McEliece and Niederreiter cryptosystems
using the irreducible binary Goppa codes. This prepares the background
for the main discussion of signature schemes in Chapter 4.

3.1 The McEliece and Niederreiter cryptosys-

tems

Code-based cryptography takes advantage of the existence of codes for
which an efficient error-correcting algorithm is known and of those in which
error-correction is known to be a hard problem.

Roughly speaking, one constructs a secret correspondence between a
private t-error-correcting code C and a public code C ′ with no efficient
error-correction (usually, a random linear code or a code indistinguishable
from random code). Alice, the sender, incorporates her message into a
codeword in C ′, purposely adds t errors to it and sends it to Bob. Since
decoding in C ′ is hard, Eve, if intercepting the transmission, cannot deduce
any information about the underlying message. Bob, on the other hand,
uses the secret correspondence between codes C and C ′, maps the received
vector to C and corrects it and extracts the message efficiently there.

The exact details may vary, for example, one can equally well take the
message to be an error vector and transmit the corresponding syndrome in
the public code C ′, but in all cases the trapdoor is the secret correspondence
between the codes C and C ′.

We now introduce the two most important code-based cryptosystems
formally.

Definition 3.1.1 (The McEliece cryptosystem). Pub-
Public parameters: Integers n, k, t such that there exists a t-error-
correcting, k-dimensional irreducible binary Goppa code of length n.

Setup: Select a generator matrix G in systematic form for a random
[n, k] irreducible binary Goppa code Γ2(L, g) of degree t, a random k × k
invertible matrix S and a random n× n permutation matrix P .

25

Private key: Goppa polynomial g(X) and support L, the parity-check
matrix H for Γ2(L, g) of the form (2.1), matrices S and P .

Public key: The k × n matrix Ĝ := SGP .

Plaintext space: Message m ∈ Fk2.

Ciphertext space: Ciphertext c ∈ Fn2 .

Encryption: Given a plaintext m ∈ Fk2, the corresponding ciphertext c is

c = mĜ+ e,

where e is an error vector of weight wt(e) = t chosen at random.

Decryption: Given a ciphertext c, compute cP−1 = mSG+ eP−1. Note
that wt(eP−1) = t and since S is invertible, SG is just another generator
matrix for the secret code Γ2(L, g). Hence, cP−1 ∈ Fn2 is distance t from a
codeword d in Γ2(L, g). Recover d by using the Patterson decoding algorithm
2.2.13. Finally, from d = mSG recover the plaintext m by linear algebra.

Definition 3.1.2 (The Niederreiter cryptosystem). Pub-
Public parameters: Integers n, k, t such that there exists a t-error-
correcting, k-dimensional irreducible binary Goppa code of length n.

Setup: Select a parity-check matrix H in systematic form for a random
[n, k] irreducible binary Goppa code Γ2(L, g) of degree t, a random (n −
k)× (n− k) invertible matrix M and a random n× n permutation matrix
P .

Private key: Goppa polynomial g(X) and support L, the parity-check
matrix H for Γ2(L, g) of the form (2.1), matrices M and P .

Public key: The (n− k)× n matrix Ĥ := MHP .

Plaintext space: Message m ∈ Fn2 and wt(m) = t.

Ciphertext space: Ciphertext c ∈ Fn−k2 .

26

Encryption: Given a plaintext m ∈ Fn2 with wt(m) = t, the corresponding
ciphertext c is

cT = ĤmT .

Decryption: Given a ciphertext c ∈ Fn−k2 , by using linear algebra, find
any z ∈ Fn2 such that ĤzT = cT . Note that since M is invertible, MH
is just another parity-check matrix for the secret code Γ2(L, g). Then
0 = cT − cT = ĤzT − ĤmT = MH(PzT − PmT), i.e. (PzT − PmT)T

is a codeword in Γ2(L, g). Compute zP T and note that wt(mP T) = t.
Hence, zP T ∈ Fn2 is a vector at distance t from the codeword zP T −mP T .
Patterson’s algorithm 2.2.13 applied to zP T recovers zP T −mP T . Hence,
we obtain mP T , and, subsequently, also m.

Remark. In the Niederreiter system, the condition wt(m) = t guarantees
an unambiguous decryption. Without it, there are multiple vectors z ∈ Fn2
satisfying the relation cT = ĤzT , for a given ciphertext c ∈ Fn−k2 , all of
which can easily be found by linear algebra.

Similarly, in the McEliece scheme, recovering the message m from a
known ciphertext c is equivalent to determining the error vector e: when
c− e is known, one easily computes m from c− e = mĜ by linear algebra.

Thus, in both cryptosystems, breaking the scheme essentially means
finding a low-weight error vector.

Li et al. [28] showed that the securities of the McEliece and Niederreiter
systems are equivalent. More precisely:

Theorem 3.1.3. Suppose we are given instances of McEliece and Niederre-
iter cryptosystems with the same secret code Γ2(L, g) and matrix P . Then,
an attacker can break the McEliece cryptosystem if and only if she can break
the Niederreiter cryptosystem.

Proof. Notice first that, since P is the same permutation in both cryptosys-
tems, GHT = 0 if and only if ĜĤT = 0. This means that whenever the
underlying secret Goppa code is the same, then also the public codes in
the two cryptosystems are the same, i.e. Ĝ = SGP is a generator matrix
and Ĥ = MHP is a parity-check matrix for the same linear code.

Assume that the attacker can break the McEliece cryptosystem and
is given a ciphertext c = ĤmT of the Niederreiter system. The attacker
finds any z ∈ Fn2 such that c = ĤzT . Then Ĥ(z −m)T = 0, i.e. z −m
is a codeword in the public code with the parity-check matrix Ĥ and

27

d(z, z −m) = wt(m) = t. Hence, z is a valid ciphertext in the McEliece
cryptosystem: z = m′Ĝ+m for some m′ ∈ Fk2. By breaking the McEliece
cryptosystem, one recovers m′ and m.

Conversely, assume that the attacker is given a McEliece ciphertext
c = mĜ+ e. Multiplying by ĤT , one obtains cĤT = mĜĤT + eĤT = eĤT

which is a valid Niederreiter ciphertext. By breaking the Niederreiter
scheme, the attacker recovers e, and hence, from c − e = mĜ she also
obtains m by linear algebra.

3.2 Analysis of the cryptosystems

We now analyze the McEliece and the Niederreiter cryptosystems in
greater detail. Notice that although the security of the McEliece and
Niederreiter systems is equivalent and both cryptosystems work with the
same private and public codes, there are differences between the two systems.
For example, encryption is randomized in the McEliece, but not in the
Niederreiter cryptosystem. Similarly, subtle differences appear below. In all
cases we refer to cryptosystems using a t-error-correcting [n, k] Goppa code
with m the degree of underlying field extension F2m . The summary of the
performance estimates for the McEliece and the Niederreiter cryptosystems
can be found in Table 3.1.

Key sizes. Engelbert et al. [16] compute the key sizes for both the
McEliece and the Niederreiter cryptosystems. The authors state that the
McEliece private key, as described in Definition 3.1.1, has size (n− k)n+
(n− k+ 1 + 2 log2 n) + k2 +n log2 n bits. This is O((n− k)2 + kn+n log2 n)
bits. The Niederreiter private key, as given in Definition 3.1.2, has size
(n−k+1+2 log2 n)+(n−k)2+n log2 n bits [16], which is O((n−k)2+n log2 n)
bits.

The public key in the McEliece cryptosystem requires publishing of all
k ·n entries of matrix Ĝ, while in the Niederreiter it is the (n−k) ·n entries
of matrix Ĥ. If one uses conversions (see below), the public matrices may
stay in the systematic form, which results in k · (n− k) bits needed to store
the public key in both the McEliece and Niederreiter systems [16].

The exact comparison of the key sizes presented here depends on the
choice of n and k. For the parameters recommended in [7] (see below),
the Niederreiter public key size is considerably larger than its private key
size. In the McEliece system the situation is less obvious but the private

28

key size is at least of the same order of magnitude as the public key size.
If no conversions are used, then with the recommended parameters the
McEliece public key is larger than the Niederreiter public key. Finally, the
McEliece private key size is of at least the same order of magnitude as the
Niederreiter private key size.

In general, more problematic are the public key sizes in the above
cryptosystems. The reasons for this are twofold. Firstly, the private key
estimates given here are rather generous and, if needed, may be decreased.
This can be done by omitting the parity-check matrix H from the private
keys, as H is only used to speed up the computation of the syndrome in
the Patterson decoding algorithm needed in the decryption process. On the
other hand, no further reduction in public key sizes is possible. Secondly,
public keys usually need to be transmitted to a sender via network, while
private keys are stored by the receiver. Hence, having small public keys is
more important.

Running time. For the cryptosystems as described in Section 3.1, En-
gelbert et al. [16] compute the following running times. Generating an
instance of McEliece and Niederreiter cryptosystem takes O(k2n + n2 +
t3(n− k) + (n− k)3) and O((n− k)2n+ n2 + t3(n− k)) binary operations,
respectively [16]. Encryption in McEliece takes O(k · n+ t+w) operations,
where w is the time to generate the error vector [16]. In Niederreiter, the
plaintext m is of length n with wt(m) = t� n, and so may be compressed
in different ways. This affects the encryption times in the cryptosystem
accordingly [16]. A rough estimate for the Niederreiter encryption time is
O((n− k) · t) operations, since the encryption basically consists of summing
up t columns of the public matrix Ĥ. Decryption in both cryptosystems
takes O(ntm2); see [16] for the proof.

McEliece system Niederreiter system
public key size kn (n− k)n
private key size (n− k)2 + kn+ nlog2n (n− k)2 + nlog2n
encryption operations kn+ t+ w (n− k)t
decryption operations ntm2 ntm2

Table 3.1: McEliece and Niederreiter cryptosystems summary. All data
represent the big-O values.

29

Proposed parameters. Suggestions for suitable parameters for code-
based cryptosystems resisting the best current attacks are given by, for
example, Bernstein et al. [7]. For 80-bit security level the authors propose to
use degree-t [n, k] irreducible binary Goppa codes where n = 2048, k = 1751
and t = 27. Apart from this “traditional” set in which n is a power of 2, and
no list decoding is performed, the authors also consider other possibilities
that minimize the size of the public key for a given security level. In
particular, they give new values of n and introduce more errors than what
the error-correcting capacity of the used Goppa codes is. The presence of
more errors increases the security level, or, equivalently, enables smaller
key sizes for the same security level [7]. The decoding algorithm is then
forced to contain list decoding techniques. The recommended parameter
sets are given in Table 3.2. These are suitable for both the McEliece as
well as the Niederreiter system [7].

security level n k t no. of errors
80-bit 1632 1269 33 34
128-bit 2960 2288 56 57
256-bit 6624 5129 115 117

Table 3.2: Recommended Goppa code parameters for the McEliece and
Niederreiter systems (taken from [7]).

Security considerations. We now look closer at the algorithm in 3.1.1
(similar considerations apply to algorithm 3.1.2). The private code is a t-
error-correcting [n, k] irreducible binary Goppa code Γ2(L, g) with generator
matrix G in systematic form. Multiplying by the invertible random matrix S
on the left does not change the code and only produces a random generator
matrix SG for Γ2(L, g). Multiplying by the random permutation matrix P
on the right, we see that the public code in the McEliece cryptosystem is
permutation equivalent to the private code. More precisely, one can easily
show that the public code is also a t-error-correcting irreducible binary
Goppa code, denote it Γ′2(L′, g′), with the same minimum distance and rate
as the secret code and Ĝ is a random generator matrix for Γ′2(L′, g′).

Hence, the system can actually be reduced to the following requirements:
publishing a random generator matrix for a Goppa code for which the Goppa
polynomial and support is (secretly) known to enable the decoding by a

30

legitimate recipient. If a conversion is used on top of the algorithm described
in 3.1.1, then, in fact, the public generator matrix can even be in systematic
form and the keys in the McEliece cryptosystem become

• private key: support L and a Goppa polynomial g(X) defining a
degree-t [n, k] irreducible binary Goppa code Γ2(L, g)

• public key: matrix Ĝ = (Ik|Q), where Ik is a k × k identity matrix,
Q is a k × (n− k) matrix and G is a generator matrix for Γ2(L, g)

as described in [43].
Now, what are the security assumptions in McEliece’s scheme? One can

define the following problem.

Problem 3.2.1 (The McEliece problem). Given a McEliece ciphertext
c = mĜ+ e, find m ∈ Fk2 such that d(c,mĜ) = wt(e).

Since the public code in the McEliece system is not a random, but a
Goppa code, hardness of the McEliece problem relies on two factors: on
hardness of the problem of decoding a random code (Problem 2.3.5) and on
indistinguishability of the Goppa codes from the random ones (Assumption
2.3.7).

The latter condition is exactly the reason why the originally proposed
Niederreiter scheme with the generalised Reed-Solomon codes, as well as
many new suggested constructions of McEliece cryptosystem using other
than the Goppa codes, have been broken. In these alternative codes, one
was able to find a characteristic property of the code that enabled decoding
much more efficiently than any of the methods for decoding a generic
random linear code. Thus, in this respect, Goppa codes seem to indeed be
a very special class of codes, with some authors, such as in [42], leaning
towards the conviction that they represent the only known secure codes for
use in code-based schemes.

The general decoding problem can be rephrased into the problem of
finding weights as follows. Given a code Γ2(L, g) and a ciphertext c = mĜ+e
in the McEliece system, then instead of looking for the closest codeword
mĜ ∈ Γ2(L, g), one can search for a codeword with minimum weight in

a new code C ′ with generator matrix

(
Ĝ
c

)
(matrix Ĝ with appended

vector c in the last row). Indeed, by construction, the error vector e must
be a codeword with minimum weight in C ′ and so solving Problem 2.3.1 of
finding weights in C ′ is equivalent to solving the Bounded general decoding
problem 2.3.5 in Γ2(L, g).

31

Attacks. Attacks on the McEliece and Niederreiter systems have been
traditionally (starting in the original paper by McEliece [30]) divided into
structural attacks and direct attacks. The structural attacks try to recover
the secret code Γ2(L, g) of the cryptosystem, given a generator matrix Ĝ
of the public code Γ′2(L

′, g′). For example, one may try all possibilities
for a generator matrix G of Γ2(L, g) and test G and Ĝ for permutation
equivalence. Direct attacks, on the other hand, seek to decode the public
code Γ′2(L′, g′) directly. Of course, if we take a more abstract view of the
McEliece (or Niederreiter) cryptosystem such as presented in the Security
Considerations subsection, where Γ2(L, g) = Γ′2(L′, g′), then all attacks may
be regarded as direct.

Assuming the indistinguishability of Goppa codes, direct attacks basi-
cally mean direct decoding attacks on a random binary linear code.

McEliece [30] described a basic brute force direct attack: given a gener-
ator matrix Ĝ for a code C and a vector c = mĜ+ e, one searches through
all the codewords c′ ∈ C, checking whether d(c′, c) = wt(e).

Another possible method is statistical decoding due to Al Jabri (see
[16]). As summarized by Engelbert et al. [16], statistical decoding is based
on the observation that vectors belonging to a code dual to C which are
not orthogonal to the vector c = mĜ + e reveal information about the
error positions in e. This method is problematic because not much can, in
general, be derived about the properties of a code given just its dual. In
particular, finding dual vectors fitting the above description and having
small weights turns out to be tricky.

The best methods known for decoding random-looking linear codes are
based on information-set decoding.

As explained in [36, 1], given c = mĜ+ e, the main idea is to guess a
set of coordinates in c that are error-free and correspond to an invertible
submatrix of Ĝ. If the guess is correct, the attacker can multiply c by the
inverse of the submatrix and reveal the corresponding parts of the plaintext.

First described by Prange in 1962 (see, e.g. [36]), this method was also
mentioned in McEliece’s original paper [30]. Information-set decoding sub-
sequently received a lot of attention. Lee and Brickell offered a systematized
version from the general-decoding-problem point of view and Leon and Stern
and more recently Bernstein, Lange and Peters and Finiasz and Sendrier
substantially improved the method by providing algorithms to solve the
problem of finding weights (see, e.g. [16, 36, 34]). The attacks in the latter
thread of research searching for minimum weight codewords all have the
following pattern [16]: given a code C, one first searches for codewords of
a small weight within a restriction of C, generated by a submatrix of a

32

generator matrix for C. One then identifies the corresponding codewords
belonging to C and checks their weight. The algorithm is repeated until a
suitable codeword is found. For further details and information about the
information-set decoding attacks, see [36, 16, 34, 1].

Although the information-set decoding algorithms represent a substan-
tial improvement over exhaustive search or any other alternative method
for decoding a random code, the running time of these algorithms remains
exponential in the code length [1]. Hence, there are no known attacks on
McEliece or Niederreiter with subexponential complexity [16].

Conversions. Similarly as a naive implementation of RSA, neither the
implementations of McEliece and Niederreiter schemes as described in
3.1.1 and 3.1.2, respectively, attain the IND-CCA2 security. For example,
when resending the same plaintext m in McEliece twice, one obtains two
ciphertexts

c1 = mĜ+ e1

and

c2 = mĜ+ e2

from which one recovers much information about the low-weight error
vectors, namely, c1 + c2 = e1 + e2 [16]. As further discussed in [16], such
an implementation is also prone to malleability, since adding a linear
combination of rows from the generator matrix Ĝ to any ciphertext c
produces another valid ciphertext; and, prone to reaction attacks. In these,
a man in the middle finds error-free coordinates by swapping bits in a
captured ciphertext and observing whether the recipient is able to decrypt
the modified ciphertext (i.e. the changed position was erroneous) or asks
the ciphertext to be resent (i.e. the swapped bit added an extra error, and
hence made the ciphertext undecodable). To prevent the above kinds of
attacks, we need to destroy dependencies between the plaintexts and the
corresponding ciphertexts.

Conversions providing the IND-CCA2 security for the code-based cryp-
tosystems were reviewed by Kobara and Imai [26]. They discuss the,
so-called, Pointcheval and Fujisaki and Okamoto conversions as well as
three other new conversions for the use with the McEliece cryptosystems
(see [16, 26] for conversion reviews). Engelbert et al. [16] summarize that
“breaking indistinguishability in the CCA2 model using any of the conver-
sions presented [by Kobara and Imai], is as hard as breaking the original
McEliece public key system”. Also, the conversions do not cause significant

33

increase in the running time of the cryptosystem, and even reduce the
public key size.

34

Chapter 4

Code-based signing

Already in 1978, when publishing the cryptosystem (3.1.1), McEliece [30]
noted that the scheme may not be suitable for creating digital signatures.
His claim turned out to be reasonably justified. It took over a decade before
the first code-based signing scheme was proposed by Xinmei (see [16]).
However, the scheme was attacked and proven insecure just two years later
in 1992 ([16]). Other code-based constructions, such as an identification
scheme and a pseudorandom number generator were successfully developed
(see, e.g. [16, 34]), but there did not seem to be any advance in the field of
signatures. All proposals made in the 90’s were either broken or impractical
(see [16, 11, 34]).

Finally, in 2001, Courtois, Finiasz and Sendrier [14] designed the first
working code-based signature scheme known as CFS. The scheme is derived
from the Niederreiter cryptosystem and based on the syndrome decoding
problem. Its signature size is exceptionally small and verification time very
fast. On the other hand, the signature time and size of the public key
in CFS are relatively large and, even worse, exponential in the scheme’s
parameters. Bleichenbacher came up with an innovative attack on the CFS
scheme that was later published by Finiasz and Sendrier [20] in 2009. The
attack necessitated a moderate increase in parameters, but, due to the
exponential scaling, it made the CFS scheme almost impractical. In 2011,
Finiasz [19] suggested a remedy for this problem: a new version of the
signature scheme, called Parallel-CFS, which has similar costs and sizes as
the original CFS but which is resistant to the Bleichenbacher attack, so
that the original smaller parameters could securely be used again.

The main unresolved shortcoming of the CFS family of signatures has
been the lack of a formal security proof. In 2007, Dallot [15] modified
the original CFS scheme into a so-called mCFS scheme and proved that

35

in the random oracle model, the mCFS signature scheme is existentially
unforgeable under chosen message attack. Dallot’s proof rests on two
assumptions, namely, on the Goppa code indistinguishability problem 2.3.7
and the Bounded syndrome decoding problem 2.3.6 both being hard. In 2010,
Faugere et al. [17] built a distinguisher capable of distinguishing random
matrices from matrices corresponding to a Goppa code, provided that the
rate of the code is sufficiently high. Although no specific distinguishing
attack has been mounted against the original CFS, mCFS or Parallel-CFS
scheme versions, the existence of the distinguisher invalidated the security
proof and suggested that any provably secure CFS-like signature scheme
must use Goppa codes of lower rates. This, however, would dramatically
change the range of the allowed CFS parameter values and would render
the scheme impractical.

In this chapter, we describe in detail the above developments and
complications regarding the CFS family of signatures and add a discussion
of a very new CFS-altered construct published by Preetha et al. [38]. The
authors of [38] claim that their signature scheme is practical while at the
same time provably secure in the random oracle model.

Finally, we briefly review the non-CFS branches of code-based signatures’
research and proposed signature schemes with additional properties, such
as ring signatures or blind signatures.

4.1 Basic definitions and requirements

Definition 4.1.1. A (digital) signature scheme is a collection of algorithms
(G,S,V) where

G(1l) = (PubKey, PrivKey),

S(m,PrivKey) = τ,

V(m, τ, PubKey) =

{
true

false
.

More precisely,

• G is a randomised key-generation algorithm that, given a security
parameter l, outputs a pair of a public key and a corresponding private
key,

36

• S is a (possibly randomised) signing algorithm that, given the message
m to sign and a private key, outputs the corresponding signature τ ,
and

• V is a verification algorithm that, given the public key, message and
a signature to verify, outputs either true and accepts the signature as
valid, or false and declines the signature.

Moreover, every signature scheme must satisfy the following correctness re-
quirement: for all messages m and key pairs (PubKey, PrivKey) generated
by G, if S(m,PrivKey) = τ then V(m, τ, PubKey) = true.

Definition 4.1.2. A signature scheme is said to be ε-existentially unforge-
able under an adaptive chosen message attack, denoted ε-EUF-CMA, if
every polynomial-time algorithm A has a chance ≤ ε of winning in the
following game:

1. The challenger generates the key pair G(1l) = (PubKey, PrivKey).

2. PubKey is given to A, while PrivKey is kept secret.

3. A may finitely many times adaptively ask for a signature of a message
m of A’s choice and obtains a corresponding valid signature τ from
the challenger.

4. A produces a message-signature pair (m′, τ ′).

A wins the game if the pair (m′, τ ′) is different from all the pairs (m, τ)
obtained in Step 3 from the challenger and if V(m, τ, PubKey) = true.

Definition 4.1.3. A signature scheme is called ε-secure if it is ε-
existentially unforgeable under an adaptive chosen message attack.

4.2 Difficulties with code-based signatures

A usual way of creating a signature from a known public-key cryptosys-
tem is by using the so-called “hash-then-decrypt” paradigm [15, 14]. The
idea is as follows.

The given public-key cryptosystem may be seen as consisting of two
sets, P of plaintexts and C of ciphertexts and two functions, one private
and one public, where

fPUBLIC : P → C

37

and
fPRIVATE : C → P.

The public function fPUBLIC may be used by anyone, while fPRIVATE is kept
secret. In the cryptosystem, the (possibly hashed) messages are elements
of the set P , fPUBLIC carries out the encryption and fPRIVATE corresponds
to the decryption. The situation is depicted in Figure 4.1.

.

Figure 4.1: Hash-then-decrypt paradigm.

If, for all elements c ∈ C, we have

fPUBLIC(fPRIVATE(c)) = c,

we may reverse the application of the two functions and create a signature
scheme. In this case, the (hashed) message space is the set C. The signer
applies the secret fPRIVATE to the message, thus obtaining its signature,
an element τ := fPRIVATE(m) ∈ P . Finally, anyone can verify the validity
of the signature by applying fPUBLIC and accept the signature as valid if
fPUBLIC(τ) = m.

A textbook example of the process just described is the creation of FDH
RSA signature scheme from the RSA cryptosystem.

In the case of the Niederreiter cryptosystem with the parameters n, k,
t, and the public parity-check matrix Ĥ, we have

P = {m ∈ Fn2 |wt(m) = t},

C = {s ∈ Fn−k2 |s is a decodable syndrome},

fPUBLIC is the multiplication by the matrix Ĥ and fPRIVATE is the secret
process enabling syndrome decoding.

And here is the problem: for the Goppa codes, there does not exist an
efficient way of describing the set C [19]. The syndromes clearly are binary

38

vectors of length n− k, but given an s ∈ Fn−k2 at random, we do not know
whether it is decodable, i.e. whether there exists e ∈ Fn2 with wt(e) ≤ t
such that sT = ĤeT , unless we actually try to decode s and the process
fails.

This does not cause any problem in the cryptosystem, since, any element
of Fn−k2 hit by encryption is, by construction, decodable. However, if we
want to reverse the process to create a signature scheme and we pick a
syndrome s ∈ Fn−k2 at random, what is the probability that it is decodable,
i.e. that it lies in the domain of fPRIVATE?

Courtois et al. [14] compute the density of the decodable syndromes in a
t-error correcting binary irreducible Goppa code Γq(L, g) of length n = 2m

and dimension k = n− tm. The number Ndec of decodable syndromes is
equal to the number of words e ∈ Fn2 with wt(e) ≤ t and so we have

Ndec =
t∑
i=0

(
n

i

)
≈
(
n

t

)
≈
nt

t!
=

2tm

t!

since n � t. The number of all syndromes, on the other hand, is Ntot =
2n−k = 2tm. Hence, the probability that a randomly chosen syndrome is
decodable is

Ndec
Ntot

≈ 1

t!
.

A similar situation occurs when one starts with the McEliece cryptosys-
tem and considers the probability of a randomly chosen word w ∈ Fn2 to be
decodable to a codeword in Γq(L, g).

Now, with the proposed parameters for the McEliece/Niederreiter cryp-
tosystems (see Section 3.2) in which t ≥ 50, the average number of trials until
one hits a decodable syndrome/word at random would be ≥ 50! ' 3 · 1064.
This makes the signing time of a signature scheme infeasible.

4.3 CFS signature scheme

The authors of the first practical signature scheme, Courtois et al. [14],
notice the above problem and reconsider the parameter choices for the
underlying Goppa codes. They decide to pick a class of t-error correcting
binary irreducible Goppa codes with length n = 2m and dimension k =
n− tm1. A signature scheme is then parametrised by m and t. For a given

1This used to be a typical choice; Goppa codes of length other than 2m have started
to be used only recently.

39

pair (m, t), there exist about 2mt/t different Goppa codes satisfying the
above relations to choose from ([14]).

Courtois et al. [14] accept the fact that, on average, t! decoding attempts
must be made in order to successfully decode a random syndrome in Fn−k2 .
In order for the signing time to be practical, then, t must be chosen very
small. On the other hand, if the code is to achieve the same level of security
as the codes used in the McEliece/Niederreiter cryptosystems (where, e.g.
n = 1024 and t = 50), the code’s length n must be taken very large.
Courtois et al. propose the values (n, t) = (216, 9) or (n, t) = (215, 10).
Luckily, as we see later on, such a large n turns out to be compatible with a
practical signature scheme, and, although it affects the size of the signatures
public key, this size stays reasonable.

We now give a description of two basic versions of the CFS signature
scheme [14, 19].

Definition 4.3.1 (CFS signature scheme – counter version). Pub-
Public parameters: A public cryptographic hash function h : {0, 1}∗ →
Fn−k2 , from the message space {0, 1}∗ to the syndrome space Fn−k2 . Integers
m, t such that there is a t-error correcting binary irreducible Goppa code of
length n = 2m and dimension k = n− tm. Denote the set of all such codes
by S.

Setup: Select an (n− k)× k parity-check matrix H in systematic form
for a random Γ2(L, g) ∈ S. Select a random (n − k) × (n − k) invertible
matrix M and a random n× n permutation matrix P .

Private key: Goppa polynomial g(X) ∈ F2m [X] and support L ∈
Fn2m, the parity-check matrix H ∈ F(n−k)×n

2 for Γ2(L, g), matrices M ∈
F(n−k)×(n−k)

2 and P ∈ Fn×n2 .

Public key: The (n− k)× n matrix Ĥ := MHP .

Signing:

1. Given a message m ∈ {0, 1}∗, create a counter i, set i = 0 and, by
concatenating, create (m|i).

2. Compute h(m|i) ∈ Fn−k2 .

3. Apply the Niederreiter’s decryption algorithm from Definition 3.1.2
to h(m|i).

40

4. If Step 3 fails, set i = i+ 1 and go to Step 2. Otherwise, output the
signature τ = (i, e), where e ∈ Fn2 is the unique vector of weight ≤ t
with ĤeT = h(m|i)T that was found in Step 3.

Verification: Given a message m ∈ {0, 1}∗ and a signature τ = (i, e),
compute s1 = h(m|i) and sT2 = ĤeT . If s1 = s2, return true, otherwise,
return false.

In the given CFS description, the successive random choice of syndromes
in Fn−k2 is ensured by introducing a hash function h and appending an
increasing counter to the message so that the input to h changes with
every signing attempt and a new syndrome in Fn−k2 is picked uniformly at
random. The rest of the signature may be seen as the reversed Niederreiter
system, exactly following the “hash-then-decrypt” paradigm explained in
Section 4.2. We refer to the above version of the signature scheme as the
“CFS-counter version”.

Apart from this, Courtois et al. [14] also vaguely mention, and Finiasz
[19] explicitly discusses another version of the CFS, namely the “CFS-
complete decoding version”. As the name suggests, the idea is to extend
the decoding algorithm from Step 3 above so that (almost) any element of
Fn−k2 is decodable. One may then omit the counter and only hash a given
message. The authors find the smallest δ > 0 such that

(
n
t+δ

)
> 2n−k and

note that most of the syndromes in Fn−k2 must be decodable into vectors
in Fn2 of weight at most t + δ. The original decoding algorithm is then
combined with an exhaustive search for the extra δ non-zero positions. The
signature scheme becomes as follows (taken from [19]).

Definition 4.3.2 (CFS signature scheme – complete decoding version).
Public parameters: All parameters as in Scheme 4.3.1 and a δ > 0 such
that

(
n
t+δ

)
> 2n−k.

Setup: Same as in Scheme 4.3.1.

Signing:

1. Given a message m ∈ {0, 1}∗, compute h(m) ∈ Fn−k2 .

2. Pick a vector w ∈ Fn2 with wt(w) = δ.

3. Apply the Niederreiter’s decryption algorithm from 3.1.2 to h(m)T +
ĤwT .

41

4. If Step 3 fails, go to Step 2. Otherwise, output the signature τ =
(w + e), where e ∈ Fn2 is the unique vector of weight ≤ t with ĤeT =
h(m)T + ĤwT that was found in Step 3.

Verification: Given a message m ∈ {0, 1}∗ and a signature τ = (e+ w),
compute s1 = h(m) and sT2 = Ĥ(e+w)T . If s1 = s2, return true, otherwise,
return false.

Notice that, similarly to the counter version, the complete decoding
CFS requires, on average, t! decoding attempts. This is because in Step
3 we basically search through different syndromes in Fn−k2 looking for one
that is decodable into a vector of weight t.

The complete decoding CFS version has a slight disadvantage of not
being able to sign some small number of messages at all, as there is always
a very small probability that a given syndrome h(m) can only be decoded
into a vector of weight greater than t + δ. Finiasz [19] then suggests to
modify the message and try to sign it again.

To conclude this section, we sum up the main ideas of [14] making the
CFS the first successful signature scheme. The authors

• picked a new set of parameters for the underlying Goppa codes,

• came up with a way of sampling random syndromes in Fn−k2 (either
by introducing a counter or the complete decoding), and

• applied the “hash-then-decrypt” paradigm to the Niederreiter cryp-
tosystem.

Finally, Curtois et al. [14] remark that the CFS scheme is purposely based
on the Niederreiter cryptosystem, rather than on the McEliece variant. The
reason for this is that in the Niederreiter scheme an efficient signature size
compression is possible, while this is not the case in the McEliece system.
Notice that in the Schemes 4.3.1 and 4.3.2 the vector e has length n and
wt(e) ≤ t where n � t. Thus, as explained in [14], by indexing all the(
n
t

)
possibilities for e, one only needs about log2

(
n
t

)
� n bits to store e.

For the proposed values (n, t) = (216, 9), this translates into log2

(
n
t

)
≈ 126

bits. On the other hand, a hypothetical signature scheme created from
the McEliece system would have as part of the signature a binary word e
of length k = n− tm (so that for a public McEliece matrix Ĝ, eĜ would
be a codeword in the underlying Goppa code). Such a word contains no
redundancy and cannot be compressed. For the above parameters, e would
thus require about 216 − 9 · 16 = 65392 bits.

42

4.4 CFS parameters and performance

We now analyze the parameters and performance of the CFS scheme in
greater detail. We use the notation from Section 4.3. In particular, n = 2m

and k = n− tm.

Key sizes. The CFS scheme needs the same kind of information for
its public/private key as the Niederreiter cryptosystem. By using the
expressions for the keys given in Section 3.2 and substituting n = 2m and
k = n− tm, we obtain that the CFS private key has size O(t2m2 + 2mm) =
O((n − k)2 + nlog2n) bits. Note that this is a rather generous estimate,
since, similarly as in the Niederreiter’s scheme, the decoding process would
work also without the (mt× 2m) parity-check matrix H.

CFS’s public key consists of the (mt× 2m) matrix Ĥ and so O(2mmt) =
O((n− k)n) bits are needed to store the public key.

Signature cost. As already explained above, t! decoding attempts are
needed on average before one obtains a valid decoding of a syndrome
in Fn−k2 . The hardest part of the decoding algorithm, namely, testing
whether the error locator polynomial splits into linear factors, can be done
in about t2m3 binary operations [14], and so the overall signing time is
O(t!t2m3) = O(t!(n− k)2log2n) operations.

Signature length. Because of the average t! attempts needed for signing,
the CFS counter version with the signature τ = (i, e) typically has i ≈ t!.
As discussed in Section 4.3, log2

(
n
t

)
bits are needed to store e. Altogether,

therefore, the CFS counter version signature is aboutO
(
log2

(
n
t

)
+ log2 t!

)
=

O(log2(nt)) bits long.
The signature τ = (w + e) in the CFS with complete decoding consists

of a single vector of length n and weight t + δ. Hence, the signature has
O
(
log2

(
n
t+δ

))
bits.

Verification cost. Verification consists of summing up t columns of the
(mt× 2m) matrix Ĥ in the CFS counter version (or t+ δ columns in the
CFS complete decoding version), i.e. it takes about O(mt2) = O((n− k)t)
binary operations.

Table 4.1 summarizes the above performance estimates for the CFS
scheme and compares them to their counterparts in the Niederreiter cryp-
tosystem. Since the CFS scheme is, basically, an inverted Niederreiter

43

system, the respective values for the two schemes are almost identical. The
only difference occurs in the case of the decryption cost in the Niederreiter
system and the signing times in the CFS scheme. The latter contains a
multiple of t! since t! decoding attempts must be, on average, made in
the signing process. Moreover, the individual decoding attempts in the
CFS scheme also take less than in the case of the Niederreiter scheme
(O((n − k)2log2n) as opposed to O(n(n − k)log2n)). Courtois et al. [14]
explain that this is because in these attempts one does not have to explicitly
find the roots of the error locator polynomial, but only to check whether
the polynomial splits into linear factors.

Niederreiter CFS
public key size (n− k)n public key size (n− k)n
private key size (n− k)2 + nlog2n private key size (n− k)2 + nlog2n
encryption cost (n− k)t verification cost (n− k)t
decryption cost n(n− k)log2n signature cost t!(n− k)2log2n

signature length log2n
t

Table 4.1: Niederreiter and CFS scheme performance comparison. All data
represent the big-O values.

Proposed parameters. At the time of CFS’s creation, the counter
version was preferred and the proposed parameters were (n, t) = (216, 9) or
(215, 10), both corresponding at the time to a security level of about 80 bits
[14].

Taking into account the developing attacks, currently the so-called
“parallel” CFS version with complete decoding is recommended. In Section
4.5 we provide a detailed description of the parallel version of the CFS
as well as the cryptoanalysis explaining why this version is secure against
all known attacks. For now we only remark that the parallel CFS scheme
behaves, basically, as the simple CFS scheme with the exception that, when
signing, two or three signatures are produced in parallel. The signature
cost, length and the verification time then multiply accordingly.

Finiasz [19] provides a variety of up-to-date parameters (n, t, δ) together
with a required number i of parallel signatures that are suitable for the
use in the parallel CFS scheme and offer a roughly 80-bit security level. A
sample of these parameters is stated in Table 4.2. Table 4.3 then gives the
actual performance data of the CFS scheme for the parameter sets from
Table 4.2 [19].

44

security level n t δ i (no. of parallel signatures)
80-bit 217 10 2 2
83-bit 218 9 2 3
82-bit 220 8 2 3

Table 4.2: Some recommended parameters for the CFS scheme (taken from
[19]).

parameters (n, t, δ, i) (217, 10, 2, 2) (218, 9, 2, 3) (220, 8, 2, 3)
public key size in MB 2.7 5 20
private key size in MB 0.26 0.56 2.5
verification cost in binary op. 3400 4374 3840
signature cost in binary op. 223 220 217

signature length in bits 196 288 294

Table 4.3: Performance data for the CFS scheme with up-to-date parameters
offering 80-bit security levels (taken from [19]).

Finally, one may want to compare these data with the performance data
of the Niederreiter cryptosystem offering the same security level. Recall
from Section 3.2 that the suitable parameters for the 80-bit security level in
the Niederreiter system are (n, k, t) = (2048, 1751, 27) without list decoding
and (n, k, t) = (1632, 1269, 33) with list decoding [7]. Table 4.4 gives the
performance data for these parameters.

parameters (n, k, t) (2048, 1751, 27) (1632, 1269, 33)
public key size in KB 74 72
private key size in KB 13 18
encryption cost in binary op. 8019 11979
decryption cost in binary op. 223 221

Table 4.4: Performance data for the Niederreiter scheme with up-to-date
parameters offering 80-bit security levels.

We see that even though in Table 4.1 the performance of the Niederreiter
and the CFS scheme depends on the input parameters almost identically, the
actual performance data for the same security level differ. This is because
the two schemes use different parameter sets. For the 80-bit security level,
the public and the private keys in the Niederreiter cryptosystem are much
smaller than their counterparts in the CFS scheme. Indeed, while the latter
keys have sizes of order of magnitude in megabytes, the former keys only

45

have a couple of dozens of kilobytes. The encryption cost in the Niederreiter
system is about three times larger than the verification cost in the CFS
scheme. Finally, the Niederreiter decryption cost and CFS signature cost
are about the same.

Evaluation of the CFS scheme. The CFS scheme produces one of the
shortest digital signatures known [19]. It also has a very fast signature
verification. On the other hand, the signature time and the size of the keys
are all relatively large. The signing time does not scale well with t and is
only practical for Goppa codes with small error-correcting capability and
large length n, i.e. for codes whose information rate k

n
= 2m−tm

2m
is very

high. The key sizes are exponential in m. Hence, even a slight increase in
the CFS’s parameters m, t may be detrimental to the signature scheme.

Possible trade-offs in performance. Courtois et al. [14] describe two
ways of realizing a trade-off between the signature length and verification
time, enabling thus customization of the signature scheme to one’s needs.

Method 1 is to omit a small number of non-zero components from the
signature at the expense of an exhaustive search during the verification.
More precisely, instead of sending a vector e ∈ Fn2 of weight t (or t + δ),
one removes w many ones and sends a vector u ∈ Fn2 with wt(u) ≤ t− w
(or wt(u) ≤ t+ δ − w in the complete decoding version). When verifying,
the receiver computes sT = h(m|i)T + ĤuT (or sT = h(m)T + ĤuT) and
accepts the signature as valid if he is able to find w columns of Ĥ that sum
up to s.

Method 2 will be illustrated on the CFS counter version. Applying
it to the CFS with complete decoding mostly consists of exchanging t for
(t+ δ) in what follows.

We start with a notion of a punctured code.

Definition 4.4.1. Given a linear code C of length n and a vector v ∈ Fn2
with wt(v) = p for some integer 0 ≤ p ≤ n, the punctured code C on
positions of v is a linear code C ′ of length n−p created from C by removing
the coordinates corresponding to the non-zero components in v from each
codeword.

In accordance with Curtois et al. [14], we assume that the dimensions
of the punctured and the original code are equal.

46

Lemma 4.4.2. Let C ′ be a linear code obtained from an [n, k]-code C by
puncturing the first p positions. Let H be a parity-check matrix for C, I a
p× p identity matrix and U an (n− k)× (n− k) invertible matrix such that

UH =

(
I R
0 H ′

)
.

Then H ′ is a parity-check matrix for C ′.

Proof. Let G be a generator matrix for C. Then, the restriction of G to its
last (n− p) columns forms a generator matrix G′ for the punctured code
C ′. We write G = (F |G′). Using the identity GHT = 0, we obtain

0 = GHTUT = G(UH)T = (F |G′)
(

I 0
RT H ′T

)
=

(
F 0

G′RT G′H ′T

)
.

Hence, G′H ′T = 0. Since C ′ has dimension k and the rank of H ′ is n− k,
exactly the code C ′ is in the kernel of H ′T . Hence, H ′ is a parity-check
matrix for the code C ′.

Lemma 4.4.3. Assume the notation from Lemma 4.4.2 and let w < t be a
small integer. Then, the following two problems are equivalent.

1. For a given syndrome s ∈ Fn−k2 , find z ∈ Fn2 satisfying HzT = sTand
such that the first p coordinates of z contain at most t− w ones and
the last n− p coordinates of z contain at most w ones.

2. For given s′ ∈ Fn−k−p2 and s′′ ∈ Fp2, find z′ ∈ Fn−p2 and z′′ ∈ Fp2
satisfying wt(z′) ≤ w, H ′z′T = s′T and wt(z′′) = wt(Rz′T + s′′) ≤
t− w.

Proof. Assume that we can solve Problem 1 and are given some s′ ∈ Fn−k−p2

and s′′ ∈ Fp2. Let sT = U−1(s′′|s′)T and find z solving the Problem 1.
Let z′ ∈ Fn−p2 and z′′ ∈ Fp2 be such that z = (z′′|z′). Notice that by
the assumption on the positions of ones in z, we have wt(z′) ≤ w and
wt(z′′) ≤ t− w. Then,

(s′′|s′)T = UsT = UHzT =

(
I R
0 H ′

)
(z′′|z′)T =

(
z′′T +Rz′T

H ′z′T

)
.

Hence, H ′z′T = s′T and z′′T +Rz′T = s′′T , i.e. z′′ = Rz′T + s′′.
The converse is similar.

47

The idea of the Method 2 trade-off proposal in [14] is to use Lemma
4.4.3 and translate an instance of the syndrome decoding problem in the
[n, k]−code C into a problem involving syndrome decoding in the shorter
punctured code C ′. In other words, the signer can send the t − w errors
as before, but instead of the verifier searching for the remaining errors in
the code C, he may search for them in the shorter code C ′. In order to
cut down on the length of the code C ′ as much as possible and to make
thus the trade-off more advantageous, Courtois et al. [14] propose to split
the coordinates of the error vector e ∈ Fn2 obtained at the end of the CFS
signing process into n/l sets each of length l. The signature in Method
2 then consists of (t − w) of these sets each containing an error and the
counter i.

The verifier creates a code C ′ by puncturing the public [n, k]-code C in
the l ·(t−w) positions corresponding to the transmitted sets. He performs a
Gaussian elimination on the public key Ĥ to find a (n−k− l(t−w))× (n−
l(t− w)) parity-check matrix H ′ for C ′ and an invertible (n− k)× (n− k)
matrix U such that

UĤ =

(
I R
0 H ′

)
for some matrix R and an l(t−w)× l(t−w) identity matrix I. The verifier

lets s′ ∈ Fn−k−l(t−w)
2 and s′′ ∈ Fl(t−w)

2 such that, for the received message m,
counter i and the used hash function h,

U(h(m|i))T = (s′′|s′)T .

He then conducts an exhaustive search, solving an instance of a syndrome
decoding problem in C ′ for the syndrome s′. By Lemma 4.4.3, the signature
is valid if he can find a vector z′ ∈ Fn−l(t−w)

2 with wt(z′) ≤ w such that

s′T = H ′z′T

and

wt(Rz′T + s′′) ≤ t− w. (4.1)

The length of the signature in Method 2 is log2

((
n/l
t−w

)
t!
)

instead

of the original log2

((
n
t

)
t!
)
. The larger the value of l is, the shorter the

signature and also the code C ′ becomes, but the longer it takes to find the
z′ satisfying Inequality (4.1). As explained in [14], the best compromise
seems to take l = m (i.e. for the code parameters (n, t) = (217, 10) it would
be l = 17).

48

Courtois et al. [14] note that the cost of the extra Gaussian elimination
needed to compute matrices H ′ and U in the verification process is about
2m−1tm column operations. Finally, the authors find that the best overall
signature length/verification time trade-off, when using Method 2, is for
w = 3.

Based on the two methods of a trade-off just presented, the authors of
[14, 19] propose two options, both applicable to the CFS with the counter
as well as with the complete decoding. Namely:

• If aiming for fast verification, setting w = 1 and using Method 1 is
recommended.

• If aiming for short signatures, setting w = 3 and using Method 2 is
recommended.

4.5 CFS scheme: security analysis

Let us start the security analysis of the CFS signature scheme with a
minor remark made in [14]. Since the scheme’s signature is exceptionally
short, the reader may wonder whether a valid message-signature pair cannot
be generated by a simple birthday paradox attack. For a typical signature
scheme, mapping from a hashed message space M to a signature space S,
every element m ∈M has a valid corresponding signature s ∈ S (or more,
if the scheme is randomised). The birthday attack then usually runs in
the square root of |S|. In the case of the CFS scheme, however, only for
a fraction of syndromes m ∈ M there exists an element s ∈ S such that
the pair (m, s) is a valid message-signature pair. If there exists such an s,
it is unique. Altogether, there are |S| valid message-signature pairs and
|M ||S| possible pairs in total. The probability that a random pair (m, s)
is valid is thus 1/|M |. An attacker needs to generate |M | pairs to obtain,
on average, one valid message-signature pair. The birthday attack then
consists of generating a list of

√
|M | syndromes and of

√
|M | signatures

and combining them together. The complexity of the attack in the CFS
case is thus O(

√
|M |) and is independent of the signature length. For

parameters (n, t) = (217, 10), the syndrome space is F17·10
2 and the attack

would require about 285 binary operations.

We now consider the security of the CFS scheme more generally. What
are the problems that the scheme’s security relies on and what are the most
efficient attacks against the CFS?

49

Being constructed by, basically, inverting the Niederreiter cryptosys-
tem, much of the Niederreiter’s cryptoanalysis applies to the CFS as well.
Similarly as for the cryptosystem, also in the case of the CFS, some of
the literature (see e.g. [19]) divides the known attacks into structural and
decoding ones. The structural attacks consist of recovering the private key,
i.e. the secret underlying Goppa code, given the public code. The direct
decoding attacks, on the other hand, seek to produce signature forgeries. In
our analysis, we concentrate on the latter category of attacks. The reasons
for this are twofold. Firstly, even with the knowledge of a high-rate Goppa
code distinguisher (discussed later on in Section 4.5), no efficient structural
attacks against the CFS are currently known [19]. Secondly, the structural
attacks may be seen as a subcategory of the direct attacks, since, if an
attacker is able to recover the private key, he is also able to forge signatures.

Hard problems behind the CFS. The problem of forging a signature
in CFS is at least as hard as producing a corresponding plaintext for some
Niederreiter ciphertext. This, in turn, is equivalent to solving the McEliece
Problem 3.2.1 for an arbitrary ciphertext. The security of the CFS scheme
thus relies on the same assumptions as the McEliece problem. These are

• the hardness of the Bounded decoding problem 2.3.5 (or, equivalently,
of the Bounded syndrome decoding problem 2.3.6), and

• the Goppa code indistinguishability problem 2.3.7.

For a reference, see [14, 11, 16, 34].

Bleichenbacher attack. From the above discussion we see that the
securities of the Niederreiter/McEliece cryptosystem and the CFS scheme
are closely related - any attack on the underlying problems may be applied
to both. However, there does exist a class of attacks that is harmful to the
CFS scheme but not so much to the cryptosystems.

The original attack is due to Bleichenbacher, but it was never published
by him. It was first discussed by Finiasz and Sendrier [20]. The weakness
of the CFS springs from the fact that, when signing a message m, many
of the syndromes that may potentially be hit are decodable. Each of the
syndromes corresponds to a distinct error vector which, together with
a proper counter value, forms a distinct valid signature for m. Hence,
to successfully forge a CFS signature for a given message, one needs to
decode any syndrome out of several possible ones. Just for comparison,
this is not the case for the McEliece/Niederreiter cryptosystems. For a

50

given McEliece/Niederreiter ciphertext c, there always exists exactly one
corresponding error pattern and decrypting c translates into decoding one
particular syndrome. This is the reason why the Bleichenbacher attack is
not applicable to the McEliece/Niederreiter cryptosystems.

Consider now the following algorithm, adapted from [34] with the help
of [20].

Generalized birthday algorithm 4.5.1 (GBA). In-
Input: Integers a, r such that (a+ 1)|r and sets L0, . . . ,L2a−1 ⊆ Fr2, each
of cardinality 2

r
a+1 and picked uniformly at random.

Output: A set of 2a pairwise distinct vectors v0 ∈ L0, . . . , v2a−1 ∈ L2a−1

such that
∑

i vi = 0, or an error message.

Algorithm:

1. Set i = 1.

2. At ith repetition of this step, pairwise add the elements of lists L2j

and L2j+1 for 0 ≤ j < 2a−i, creating thus 2a−i lists L′0, . . . ,L′2a−i−1

containing sums of 2i vectors. In these lists, only keep vectors that
start with i · r

a+1
zeroes.

3. Increment i and repeat Step 2 until i = a− 1, i.e. until only two lists
L∗1, L∗2 remain. Both lists contain sums of 2a−1 vectors starting with
(a− 1) · r

a+1
zeroes.

4. If any two elements l1 ∈ L∗1 and l2 ∈ L∗2 sum into an r-bit zero vector,
output l1 + l2. Otherwise, output error message.

The main idea of the above algorithm is to concentrate on subsets of the
r bits and only carry out subsequent operations on the vectors for which a
match on the subsets was found [20].

For a better understanding of the algorithm, let us explain the choice
of particular values above, namely, the number of lists, their size and the
number of the required zero bits at each step.

Assume that we want to carry out the sequence of steps from 4.5.1 in
such a way that the expected number of r-bit zero vectors obtained in Step
4 is one. Additionally, require all lists encountered in the algorithm to have
equal size.

Since the number of lists is reduced by two at every step, it clearly is
desirable to start with 2a lists. Let k be the number of new bit positions

51

that are required to be zero at each new list merge. Then, assuming that
the elements in the lists are random vectors from S and merging two lists
L1 and L2, the expected size of the merged list is 2−k|L1||L2|. Since we
require the size of the lists constant throughout the process, we must have
2−k|L1|2 = |L1|. Thus, the size of each list, independent of the merges, is 2k.
Finally, the last two lists contain 2k vectors, each of which has r− (a− 1)k
possibly non-zero bits. In order to obtain, on average, one r-bit zero vector
at the end, we must have

2−(r−(a−1)k)2k2k = 1,

i.e. k = r
a+1

. Hence, we obtain exactly the values used in 4.5.1.
The algorithm thus performs, 2a − 1 merges and sorting of lists of size

2
r

a+1 . Its complexity is O(r
a
2a2

r
a+1) [20].

The GBA was first designed by Wagner in 2002 [40] but not specifically
for code-based cryptography. Bleichenbacher noticed that it could be
modified to solve the following syndrome decoding problem with multiples
instances.

Problem 4.5.2 (Bounded syndrome decoding with multiple instances).
Given a binary linear t-error correcting [n, k] code C ⊂ Fn2 , an (n− k)× n
parity-check matrix H for C and a set S ⊆ Fn−k2 of syndromes, find e ∈ Fn2
with wt(e) ≤ t such that HeT = sT for some s ∈ S.

Indeed, let the elements of the input sets L0, . . . ,L2a−1 in Algorithm
4.5.1 be chosen from the n columns of matrix H. In particular, we have
r = n − k. Solving Problem 4.5.2 means finding ≤ t columns of matrix
H that sum up to one of the elements in S. Let the list L0 consist of the
syndromes from S. Pick a so that 2a − 1 ≤ t and (a + 1)|r. Let the lists
L1, . . . ,L2a−1 each contain 2

r
a+1 sums of ti columns of H, for i = 1, . . . , 2a−1,

such that
∑

i ti = t. Running Algorithm 4.5.1 for this choice of lists then
produces a solution to Problem 4.5.2.

Clearly, this instance differs from the “ideal” algorithm version 4.5.1.
Are all the lists of equal size? How big is the given set S? And do there
at all exist 2

r
a+1 sums of ti columns of H, i.e. is 2

r
a+1 ≤

(
n
ti

)
true? Also,

how do we pick ti? All these choices influence the overall complexity of the
algorithm. A detailed analysis of all the possibilities is done by Sendrier
et al. [20, 40]. For our purpose we just note that a simple estimate on the
time complexity of the GBA applied to a syndrome decoding problem with
multiple instances is O(L log(L)), where L is the size of the largest list
manipulated [20]. Similarly, the memory complexity is O(M log(M)) for
M the largest list needed to be stored throughout the process [20].

52

In the Bleichenbacher attack [20, 34, 19] on the CFS signature scheme
with the original parameters (n, t) = (216, 9) or (215, 10), the attacker
generates a list L0 of possible syndromes S ⊆ Fmt2 by computing hashes
h(m|i) for a counter i and a given message m. He applies the attack with
a = 2, i.e. with four initial lists, one of which is L0 and the other three
consist of sums of ti ≈ t

3
columns of the CFS public matrix Ĥ. The lists

will contain about 2
r

a+1 = 2
mt
3 elements. The complexity of this existential

forgery attack on CFS is thus about O(mt
3
· 2mt

3) binary operations [19, 20].
The Bleichenbacher attack is the most powerful attack against the CFS

signature scheme [34, 19, 20]. The earlier attacks were all based on the
traditional information set decoding methods as applicable to cryptosys-
tems and described in 3.2. These attacks run in time O(2

mt
2) [19]. The

Bleichenbacher attack affected the security level of the originally proposed
parameters (n, t) = (216, 9) or (215, 10) and, in order to maintain a secu-
rity level of about 280 binary operations, new values for (n, t) in the CFS
scheme were suggested in [20]. These were (215, 12), (219, 11), (221, 10), and
others [11, 38, 20]. Although the parameter increase is relatively small,
it translates into huge public key sizes and long signing times (as these
are exponential in m and t) and makes the CFS signature scheme rather
impractical.

Parallel CFS. A remedy for the CFS signature scheme is suggested by
Finiasz [19]. The idea is to sign a given message m by producing several
CFS signatures. Finiasz proposes to use distinct hash functions h1 and h2

and to build the signature in such a way that an existential forgery attack
would need to decode a pair of linked syndromes.

Using the CFS-counter version 4.3.1 is, however, not possible for these
purposes [19]. The reason is that the syndromes h1(m|i1) and h2(m|i2) are
independent from each other due to the counters i1, i2. In other words,
an attacker, after decoding the syndrome h1(m|i1) may freely alter i2 and
choose to decode any of the resulting syndromes h2(m|i2). An existential
forgery then consists of simply repeating the Bleichenbacher attack twice.
Finiasz [19] notes that one may require the signature to use the same
counter value i. However, the signing time then increases from t! to (t!)2

and makes the signature scheme impractical.
We may try to use the CFS complete decoding version 4.3.2. We obtain

the following signature scheme [19].

Definition 4.5.3 (CFS-Parallel signature scheme). Pub-
Public parameters: All parameters as in Scheme 4.3.2, except that there

53

are two public hash functions h1, h2 : {0, 1}∗ → Fn−k2 .

Setup: Same as in Scheme 4.3.2.

Signing: Using the signing algorithm 4.3.2, sign a given message m ∈
{0, 1}∗ twice, once using the hash function h1 and once h2 (note that this,
in general, uses two different vectors w in Step 2 of the algorithm 4.3.2).
We obtain τ ′ and τ ′′ and the signature is τ = (τ ′, τ ′′).

Verification: Given a message m ∈ {0, 1}∗ and a signature τ = (τ ′, τ ′′),
check whether h1(m) = Ĥτ ′T and h2(m) = Ĥτ ′′T . If so, return true,
otherwise, return false.

The key sizes in the CFS-Parallel remain the same, and the signature
time and size, and the verification time are doubled as compared to the
standard CFS.

The CFS complete decoding version may be interpreted as decoding
any given syndrome in Fn−k2 into an error vector of weight ≤ t + δ. The
two syndromes that need to be decoded in order to forge a signature for
the CFS-Parallel are linked to each other and always come in pairs. Indeed,
if an attacker decides to forge a signature for message m and decodes the
syndrome h1(m), then, in order to carry out a successful forgery, he also
has to decode the syndrome h2(m).

An attacker now has to chain the Bleichenbacher attack. First, by
running multiple attacks, he collects many partial signatures τ ′i . These are
the decodings of syndromes h1(mi) for the hash function h1 and multiple
messages mi. He then computes a list L0 of the corresponding syndromes
h2(mi), for each i. One last Bleichenbacher attack is applied with the list L0,
producing a decoding of some syndrome h2(mI), and so a partial signature
τ ′′I for some mI . Then, τ = (τ ′I , τ

′′
I) is a valid forged CFS-Parallel signature.

The cost of this attack is 2L log(L) with L = 2
3
7
mt [19].

Alternatively, as discussed in [19], one may try to forge a parallel
CFS signature by considering it as a one single syndrome decoding prob-
lem: given a syndrome (h1(m)|h2(m)) ∈ F2(n−k)

2 , find (e1|e2) ∈ F2n
2 with

wt(e1), wt(e2) ≤ t+ δ such that(
Ĥ 0

0 Ĥ

)
(e1|e2)T = (h1(m)|h2(m))T .

This requires a single Bleichenbacher attack. However, all the parameters
are doubled and so the cost of the attack is O(L logL) with L = 2

2mt
3 [19].

54

Hence, the most efficient attack against a parallel CFS scheme has
complexity O(2

3mt
7). This is still smaller than a standard information set

decoding attack against a CFS scheme with complexity O(2
mt
2), but, at the

same time, it is a significant improvement compared to the Bleichenbacher
attack with complexity O(2

mt
3). Finiasz [19] concludes that the parallel

CFS may securely use parameters much smaller then the simple CFS. He
proposes to use (n, t, δ) = (17, 10, 2), (18, 9, 2), (20, 8, 2) and others [19].

Finally, notice that the parallel CFS scheme may, in general, be extended
to include j distinct hash functions and j parallel signatures. However,
Finiasz [19] points out that setting j > 3 produces too long signature times
and sizes to be advantageous.

Security proof and mCFS. In 2007, Dallot [15] realised that using a
counter in the CFS scheme provides an attacker with some information.
Indeed, if a received signature is τ = (i, e), then the attacker knows that for
all values 0 ≤ j < i the syndromes h(m|j) are not decodable. Dallot [15]
thus proposes yet another variant of the CFS scheme, the modified mCFS
signature scheme. From the simple CFS-counter algorithm 4.3.1, mCFS
only differs in the counter i. Instead of increasing the value of i from 0
gradually by one until a decodable syndrome h(m|i) is found, the mCFS
scheme picks i from the set {1, . . . , 2n−k} uniformly at random, again, until
a decodable syndrome h(m|i) is hit. The length of the mCFS signature
slightly increases since n−k instead of log2(t!) bits, on average, are required
to store the counter.

For the mCFS variant, Dallot [15] presents a formal security proof. As-
suming the hardness of the Bounded syndrome decoding problem 2.3.6 and
the Goppa code indistinguishability assumption 2.3.7, Dallot proves that,
in the random oracle model, the mCFS scheme is existentially unforgeable
under the chosen message attack. Unfortunately, it turns out that the
Goppa code indistinguishability assumption does not hold for Goppa codes
with parameters as used in the CFS [17]. This invalidates Dallot’s proof.

Distinguisher. Faugere et al. [17] published in 2010 a polynomial-time
distinguisher for Goppa (or, more generally, alternant) codes with sufficiently
high information rates. We now explain their construction.

For a t-error-correcting [n, k] binary linear code C with n = 2m and
k = n − mt, let G = (gij) = (Ik|P) ∈ Fk×n2 be its generator matrix in
systematic form, where we have an k × (n − k) matrix P = (pij) with
1 ≤ i ≤ k and k + 1 ≤ j ≤ n. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn2m

55

be vectors such that for a matrix

Vt(x, y) :=

y1 · · · yn
y1x1 · · · ynxn

...
. . .

...
y1x

t−1
1 · · · ynx

t−1
n

we have

Vt(x, y)GT = 0. (4.2)

In other words, we require Vt(x, y) to be a parity-check matrix for C. Recall
from Section 2.2 that in Equation (2.1) the matrix

Y Z =

g−1(α1) g−1(α2) · · · g−1(αn)

g−1(α1) · α1 g−1(α2) · α2 · · · g−1(αn) · αn
...

...
. . .

...
g−1(α1) · αt−1

1 g−1(α2) · αt−1
2 · · · g−1(αn) · αt−1

n

is a parity-check matrix for a binary Goppa code Γ2(L, g). Hence, for G a
generator matrix for a public code in the McEliece, Niederreiter or CFS
scheme, there always exist vectors x and y so that (4.2) holds.

Faugere et al. [17] translate (4.2) into a system of linear equations.
Equation (4.2) is equivalent to

{gi,1y1x
e
1 + · · ·+ gi,nynx

e
n = 0 for 1 ≤ i ≤ k and 0 ≤ e ≤ t− 1}

which may be rewritten as

{yixei =
n∑

j=k+1

pijyjx
e
j for 1 ≤ i ≤ k and 0 ≤ e ≤ t− 1}.

Next, Faugere et al. point out that, in particular, for 1 ≤ i ≤ k,

yi =
n∑

j=k+1

pijyj,

yixi =
n∑

j=k+1

pijyjxj,

yix
2
i =

n∑
j=k+1

pijyjx
2
j .

56

Using a trivial identity yi(yix
2
i) = (yixi)

2, for 1 ≤ i ≤ k, Faugere et al.
obtain (

n∑
j=k+1

pijyj

)(
n∑

j=k+1

pijyjx
2
j

)
=

(
n∑

j=k+1

pijyjxj

)2

which, after rearranging, becomes

n−1∑
j=k+1

n∑
j′>j

pijpij′
(
yjyj′x

2
j′ + yj′yjx

2
j

)
= 0.

Finally, Faugere et al. define new variables Zjj′ := yjyj′x
2
j′ + yj′yjx

2
j for

k + 1 ≤ j ≤ n− 1 and j < j′ ≤ n and a system LP of k linear equations

LP =

∑n−1

j=k+1

∑n
j′>j p1jp1j′Zjj′ = 0

...∑n−1
j=k+1

∑n
j′>j pkjpkj′Zjj′ = 0

 .

Let the number of variables Zjj′ in LP be denoted by N and the dimension
of the kernel of LP by D. Note that N =

(
mt
2

)
and that, by rank-nullity

theorem, we have D = N − rank(LP).
The main result of [17] is the observation that, for some code C parame-

ters, the value of D highly probably differs for G a generator matrix for a
Goppa code, general alternant code, and a random code.

The authors run experiments by fixing the code parameter m, gradually
increasing t from 3 to 50 and computing the values of D for the above
categories of linear codes.

Specifically, if G is a random Goppa (or alternant) code generator matrix,
Faugere et al. [17] experimentally find formulae for D which depend on m
and r and hold, with high probability, when N −D < k. Goppa code and,
in general, alternant code produce D > 0.

On the other hand, in case of G being a generator matrix for a random
code, we have rank(LP) = min(N, k) with high probability [17]. Hence, by
the rank-nullity, whenever k ≥ N , a random code highly probably produces
D = 0. For N > k but such that k > N − D, D is nonzero but smaller
than for the Goppa (alternant) code [17].

Hence, Faugere et al. [17] conclude that, for any t such that

k > N −D, (4.3)

we may distinguish a given Goppa code matrix from a random matrix by
computing D. Equation (4.3) holds when t is rather small, or, in other

57

words, when the information rate k
n

= 2m−mt
2m

of the code is very close to
one [17]. For example, when m = 15, we must have t < 34 and the rate
> 0.9845 in order for the code to be distinguishable.

All the parameters proposed for the CFS signature scheme have a
sufficiently small t and, therefore, these codes are distinguishable. On the
other hand, the method does not apply to most of the codes used in the
McEliece/Niederreiter cryptosystems, since these all have much smaller
rate [17].

Implications for the CFS scheme. Even though the codes used in
the CFS scheme are distinguishable, there has not been any concrete
distinguishing attack mounted against the parallel CFS signature scheme [17,
38] and this scheme with parameters (n, k, δ, i) = (217, 10, 2, 2), (218, 9, 2, 3),
(220, 8, 2, 3) as given in Table 4.2 and other parameters from [19] is considered
to be secure [38].

On the other hand, the Goppa code indistinguishability assumption
2.3.7 does not hold for high-rate Goppa codes. Hence, the security proof of
the CFS scheme by Dallot [15] that assumes the indistinguishability does
not hold. Therefore, if one hopes for a provably secure CFS scheme, the
proposed code parameters must change. In particular, Preetha et al. [38]
compute that, for n = 218 or 219, we would need t = 85 or 114. These values,
however, would make the CFS signing times take about 2220 operations, i.e.
impractically long.

4.6 A new public-key construction

Preetha et al. [38] recently published a new variant of the CFS signa-
ture scheme that is meant to securely use the original small Goppa code
parameters and yet be provably secure. The authors come up with an idea
to modify the public key of the signature scheme in such a way that the
distinguishing method [17] would no longer apply to it. This, in particular,
means that the public code in the scheme is no longer permutation equiva-
lent to the private code. For their scheme, Preetha et al. [38] also provide
a security proof.

We now describe the signature scheme as it is given in [38]. We refer to
this scheme as the “PVR scheme”.

Definition 4.6.1 (Preetha, Vasant and Rangan signature scheme). Pub-
Public parameters: Integers m, t such that there is a t-error correcting

58

binary irreducible Goppa code of length n = 2m and dimension k = n− tm.
Denote the set of all such codes by S. A public cryptographic hash function
h : Fn2×{0, 1}∗ → Fn′2 , where {0, 1}∗ is the message space and n′ = n−k+1.

Setup:

1. Select an (n− k)× n parity-check matrix H in systematic form for a
random Γ2(L, g) ∈ S. Select a random permutation matrix P ∈ Fn×n2 .

2. Pick random matrices H ′ ∈ F(n−k)×n′
2 and M ′ ∈ Fn

′×(n−k)
2 until the

matrix M := H ′M ′ ∈ F(n−k)×(n−k)
2 is invertible.

3. Pick a ∈ Fn′2 such that H ′aT = 0.

4. Pick b ∈ Fn2 such that the n′ × n matrix Ĥ := M ′HP + aTb has full
rank.

Private key: Goppa polynomial g(X) ∈ F2m [X] and support L ∈
Fn2m, the parity-check matrix H ∈ F(n−k)×n

2 for Γ2(L, g), matrices M ∈
F(n−k)×(n−k)

2 , H ′ ∈ F(n−k)×n′
2 and P ∈ Fn×n2 .

Public key: The n′ × n matrix Ĥ := M ′HP + aTb.

Signing:

1. Given a message m ∈ {0, 1}∗, pick a random r ∈ Fn2 and compute
w′ := h(r,m) ∈ Fn′2 .

2. Compute w = H ′w′T ∈ Fn−k2 .

3. Apply the Niederreiter’s decryption algorithm 3.1.2 to w ∈ Fn−k2 .

4. If Step 3 fails, go to Step 1. Otherwise, let s ∈ Fn2 be the unique vector
of weight ≤ t with MHPsT = wT that was found in Step 3.

5. Check whether w′ = ĤsT . If not, go to Step 1. Otherwise, output the
signature τ = (s, r).

59

Verification: Given a message m ∈ {0, 1}∗ and a signature τ = (s, r),
compute s1 = h(r,m) and s2 = ĤsT . If s1 = s2 and wt(s) ≤ t, return true,
otherwise, return false.

Notice that instead of the two codes in the CFS scheme, namely, the
public code with the parity-check matrix MHP and the private code with
the parity-check matrix H, there are four codes playing a role in the PVR
signature scheme. These are

• the public code with the parity-check matrix Ĥ,

• the Goppa code with the parity-check matrix MHP ,

• the Goppa code with the parity-check matrix H (this is the code
Γ2(L, g) from above), and

• a private code with the parity-check matrix H ′.

The vector w ∈ Fn−k2 is made to be a syndrome for both the MHP -
code and the H ′-code. The MHP -code has a secret decoding algorithm –
the Niederreiter’s decryption algorithm 3.1.2 – that rests on the signer’s
knowledge of matrices M , H, P , the Goppa polynomial g(X) and the
support L for the H-code.

Any s ∈ Fn2 produced in Step 3 thus satisfies

H ′M ′HPsT = MHPsT = wT = H ′w′T . (4.4)

A valid signature is, in addition, required to satisfy

M ′HPsT + aTbsT = ĤsT = w′T . (4.5)

The main idea is to require that s is both a decoding of w in the MHP -
code as well as a decoding of w′ in the Ĥ-code. Then, by applying the
decoding algorithm in the MHP -code on w, the signer finds a decoding of
w′ in the public and much less structured Ĥ-code.

We now elaborate on the relation between the above vectors w and
w′ (loosely taken from [38]). First, observe that since H ′ ∈ F(n−k)×n′

2 , the
H ′-code has dimension 1. Hence, there are exactly two vectors in the kernel
of H ′. Put differently, always exactly two distinct vectors w′1, w

′
2 ∈ Fn′2 map

to the same syndrome wT = H ′w′T1 = H ′w′T2 ∈ Fn−k2 .
Now, clearly, if a given syndrome w′ ∈ Fn′2 is decodable in the Ĥ-code

to a vector s, then the corresponding wT = H ′w′T is also decodable in the
MHP -code into the same syndrome s (simply multiply Equation (4.5) by H ′

60

to obtain Equation (4.4)). Equivalently, whenever the syndrome w ∈ Fn−k2

is not decodable in the MHP -code, neither of the two corresponding
syndromes w′1, w

′
2 ∈ Fn′2 such that wT = H ′w′T1 = H ′w′T2 is decodable in

the Ĥ-code. What we need to know, however, is what happens when the
syndrome w ∈ Fn−k2 is decodable in the MHP -code.

Lemma 4.6.2. If the syndrome w ∈ Fn−k2 is decodable in the MHP -code
and w′1, w

′
2 ∈ Fn′2 are the only two vectors with wT = H ′w′T1 = H ′w′T2 ,

then exactly one of w′1, w′2 is decodable in the Ĥ-code. Moreover, the two
decodings are equal.

Proof. First we show that at least one of w′1.w
′
2 is decodable. Assume that

there is an s ∈ Fn2 with wt(s) ≤ t such that MHPsT = wT . Further assume
that ĤsT 6= w′1. Then ĤsT is a vector in Fn′2 that, when multiplied by H ′,
gives w:

H ′ĤsT = MHPsT = wT .

The only such vectors are w′1 and w′2. Hence, we must have ĤsT = w′2.
Note that both w and w′2 are in their respective codes decoded into the
same vector s.

Second, not both w′1, w
′
2 can be decodable. If so, then in the MHP -code

w would be decodable into two different syndromes, both of weight ≤ t (to
see this, use Equation (4.5) and multiply it by H ′). This is impossible.

In what follows, we analyze the parameters and the security of the PVR
scheme.

Key sizes. The private PVR key is the same as the private key for the

CFS scheme, plus the matrix H ′ ∈ F(n−k)×n′
2 . Since H ′ has roughly the

same dimensions as the matrix M ∈ F(n−k)×(n−k)
2 , the private PVR key

requires O(t2m2 + 2mm) = O((n− k)2 + nlog2n) bits, exactly as the CFS
private key.

The public PVR key consists of the n′×n matrix Ĥ, and so O(2mmt) =
O((n− k)n) bits are needed to store the public key, as in the CFS scheme
case.

Signature cost. Lemma 4.6.2 shows that, when signing, whenever a
syndrome w ∈ Fn−k2 that is decodable in the MHP -code is found (Step 3 of
the signing algorithm), the corresponding w′ ∈ Fn′2 from Step 2 is decodable
in the Ĥ-code with probability 1/2. In other words, the probability that

61

the condition “w′ = ĤsT” in Step 5 of the PVR signing algorithm fails is
1/2.

Similarly as in the CFS scheme, also in the PVR variant one must try
to decode, on average, t! different syndromes before a decodable syndrome
in Step 3 is found.

Altogether then the signing time of the PVR signature scheme is twice
the signing time of the CFS. Hence, the signature time is O(t!t2m3) =
O(t!(n− k)2log2n) operations.

Signature length. In a PVR signature τ = (s, r), s needs log2

(
n
t

)
bits

and r needs n bits. Hence, the signature has O(log2

(
2n
(
n
t

))
) bits.

Verification cost. Verification consists of summing up t columns of the
(n′ × n) matrix Ĥ, where n′ = n− k + 1 = mt+ 1 and n = 2m. Hence, the
verification takes about O(mt2) = O((n− k)t) binary operations, same as
in the CFS scheme.

Niederreiter CFS scheme PVR scheme
public key (n− k)n (n− k)n (n− k)n
private key (n− k)2 + nlog2n (n− k)2 + nlog2n (n− k)2 + nlog2n
encr./verif. (n− k)t (n− k)t (n− k)t
decr./signing n(n− k)log2n t!(n− k)2log2n t!(n− k)2log2n
sign. length log2n

t log22n
(
n
t

)
Table 4.5: Niederreiter, CFS and PVR scheme performance comparison.
All data represent the big-O values.

Table 4.5 summarizes the performance dependancies of the PVR scheme
on the input parameters and compares them to the estimates for the
Niederreiter cryptosystem and the CFS signature. We see that these
estimates are, basically, same as for the CFS scheme.

It may also easily be noticed that all the trade-offs in the performance
for the CFS scheme described in Section 4.4 are also applicable to the PVR
signature scheme.

We sum up, that, in terms of the performance, the CFS and the PVR
schemes are almost identical.

Security. The only practical difference between the CFS and the PVR
schemes lies in the construction of the public key Ĥ and the security that
it offers. Similarly as in the CFS scheme, also in the PVR scheme the

62

hardness of forging a signature reduces to the hardness of the following two
problems:

• the Bounded decoding problem 2.3.5 (or, equivalently, the Bounded
syndrome decoding problem 2.3.6), and

• the problem of distinguishing the public matrix Ĥ from a matrix of a
random code.

In the CFS scheme, the second problem is simply the Goppa code indistin-
guishability problem 2.3.7. However, in the PVR scheme, due to a novel
construction of the public code Ĥ, the authors replace it with the following
assumption [38].

Assumption 4.6.3 (Weak indistinguishability). Let S be the set of all
possible n′ × n public key matrices in the PVR signature scheme 4.6.1.
Let R be the set of all n′ × n random matrices of full rank. Pick a value
b ∈ {0, 1} uniformly at random. If b = 0, let H be a matrix randomly
chosen from S, otherwise, pick H randomly from R. Then, there is no
algorithm polynomial in n that can correctly decide whether H ∈ S with
probability non-negligably larger than 1/2.

Preetha et al. [38] check that the distinguishing method by Faugere et al.
[17] does not apply and neither can be extended in any simple way to the
public PVR code Ĥ. Hence, the authors argue that the Assumption 4.6.3
is weaker than the original Goppa code indistinguishability assumption
2.3.7. Further, to evaluate the hardness of 4.6.3, Preetha et al. [38] note
that if a distinguisher D capable of solving the problem in 4.6.3 with
non-negligable probability exists, then this distinguisher can also solve the
following problem.

Problem 4.6.4. Given a full-rank n′ × n matrix Ĥ. Decide whether there

exist matrices H ′ ∈ F(n−k)×n′
2 , an invertible matrix M ∈ F(n−k)×(n−k)

2 , a

Goppa code parity-check matrix H ∈ F(n−k)×n
2 and a permutation matrix

P ∈ Fn×n2 such that H ′Ĥ = MHP .

The authors claim that the Problem 4.6.4 is an instance of a, so-called,
Equivalent punctured codes problem that has been proven NP-complete (see
[38]). Although this specific instance contains a Goppa code parity-check
matrix H (and not a random matrix), the authors assume that Problem
4.6.4 is still hard to solve. Finally, they conclude that it is unlikely that
the distinguisher D exists and the Assumption 4.6.3 is reasonable [38].

Preetha et al. [38] then show that, provided that the above two assump-
tions hold, the PVR scheme is provably secure. More precisely:

63

Theorem 4.6.5. If the Bounded syndrome decoding problem 2.3.6 is hard
and the Weak indistinguishability assumption 4.6.3 holds, then, in the
random oracle model, the PVR signature scheme 4.6.1 is ε-EUF-CMA with
ε→ 0 as n→∞.

We now present a proof roughly as it is given in [38]. The proof is
similar to Dallot’s proof [15] for the mCFS and, equally, is based on the
methodology of Shoup (see [15]). The idea is to produce a sequence of
“games” such that the first game is the standard EUF-CMA scenario 4.1.2,
the last game is an oracle for solving the Bounded syndrome decoding
problem 2.3.6 and the differences between the successive games are easily
quantifiable. Then, one can relate the probabilities of winning in the
EUF-CMA game and of solving the syndrome decoding problem.

Proof. We consider a sequence of games as explained above. In particular,
the last game attempts to solve the Bounded syndrome decoding problem
2.3.6 for a random matrix R ∈ F(n−k)×n

2 of full rank and a random syndrome
v ∈ Fn−k2 .

We have a challenger, who sets up each game and a forger A, a
polynomial-time algorithm that attempts to win in the individual games.
The challenger is responsible for providing the oracles needed in the games.
In particular, an EUF-CMA game gives A access to a signing oracle Σ
producing valid signatures for messages of A’s choice. Further, since we
are in the random oracle model, A also has to be given access to the hash
function h : Fn2 × {0, 1}∗ → Fn′2 used in the PVR scheme.

In each game, we maintain three lists: Λ, Λh, ΛΣ. The first list, Λ,
is indexed by the possible messages m ∈ {0, 1}∗. For a given message m,
Λ(m) stores an index r ∈ Fn2 for which the challenger, when simulating
the oracles, is able to produce a t-weight decoding of h(r,m) ∈ Fn′2 in the
Ĥ-code, i.e. the signature for m. During the game, Λ(m) can take different
values.

The second list, Λh, is indexed by an index-message pair (r,m). For a
given pair (r,m), Λh(r,m) stores a triplet ((w′, s), s1) where, w′ ∈ Fn′2 is the
syndrome assigned to (r,m) under the hash function h, s1 ∈ Fn2 is a vector,
of any weight, such that ĤsT1 = w′. Finally, s ∈ Fn2 is a ‘marker’ which
is set according to whether the challenger simulating the oracles knows a
t-weight decoding of w′ or not. In the former case, s is set equal to s1, in
the latter case s remains empty.

The last list, ΛΣ is indexed by the possible messages m ∈ {0, 1}∗. For
each message m, ΛΣ(m) stores valid signatures (s, r) ∈ Fn2 ×Fn2 as produced
by the signing oracle.

64

All lists start empty at the beginning of each game. If, for a queried
value, there is no corresponding value in a list, we denote the output by ⊥.
Let qh, qΣ be the maximum number of A’s queries to the hash oracle and
the signing oracle, respectively. The signing oracle is given access to the
hash oracle and may query h during the game. Let q′h be the maximum
number of A’s hash queries that has not been queried before (either by
A itself or via the signing oracle). Finally, denote the probability of A
winning Game i by Pr(Wi).

Game 0. Here the challenger plays with the forger A the EUF-CMA game
as described in 4.1.2. In particular, the challenger runs the key generation
algorithm for the PVR signature scheme 4.6.1, gives the public key Ĥ to A
and keeps everything else secret. A is also given access to the hash oracle h.
When A asks to obtain a valid signature for some message, the challenger
runs the signing algorithm from 4.6.1 and gives the corresponding signature
to A.

Game 1. In this game, the original hash oracle h is replaced by the
following simulation h′ [38].

Hash oracle simulator h′.
Input: (r,m) ∈ (Fn2 × {0, 1}∗).
Output: w′ ∈ Fn′2 .

Algorithm:

((w′, s), s1)← Λh′(r,m);
if r 6= Λ(m) then

if w′ =⊥ then

s1
R← Fn2;

w′ ← ĤsT1 ;
s←⊥;
Λh′(r,m)← ((w′, s), s1);

end

return w′;

else

if w′ =⊥ then

s1
R← Fn2 such that wt(s1) = t;

w′ ← ĤsT1 ;

65

s← s1;

Λh′(r,m)← ((w′, s), s1);

end

return w′;

end

There are two main cases in h′: either r 6= Λ(m) or r = Λ(m). In the former,
h′ behaves as a random oracle and picks the vector w′ ∈ Fn′2 at random (by
choosing a random s1 ∈ Fn2 and multiplying it by Ĥ). In the latter case, h′

constructs w′ from a t-weight vector s1. Here s is set to equal s1, indicating
that s1 is a valid signature on (r,m) when h′(r,m) = w′. In both cases,
the values of w′, s and s1 are stored in the list Λh′ , guaranteeing that h′

produces the same output for any given input, if queried multiple times.
The rest of the game is played exactly as in Game 0. Since the list Λ

remains empty, the case r = Λ(m) is never visited and all values produced
by h′ in this game are random. Hence, for the probabilities of A winning
the Game 0 and Game 1, we have

Pr(W1) = Pr(W0). (4.6)

Game 2. In this game, the signing oracle Σ (using the signing algorithm
from 4.6.1) is replaced by the following signing simulator Σ′ [38].

Signing oracle simulator Σ′.
Input: m ∈ {0, 1}∗.
Output: (s, r) ∈ (Fn2)2

.

Algorithm:

r
R← Fn2;

Λ(m)← r;
run h′(Λ(m),m);
((w′, s), s1)← Λh(Λ(m),m);
if s =⊥ then

ABORT

else

Λ(m)←⊥;

end

return (s, r);

66

When signing a message m, Σ′ first randomly selects an index Λ(m) ∈ Fn2 ,
with which a signature on m will be created. Then the hash oracle h′

is called with (r,m) = (Λ(m),m). Provided that h′ has not been called
with the pair (Λ(m),m) before, h′ produces a syndrome w′ with t-weight
decoding s1 ∈ Fn2 and sets s = s1. This ensures that the signature output
by Σ′ will be valid. Finally, Σ′ empties Λ(m). This guarantees that different
attempts to sign the same message produce different signatures. Also, it
ensures that, unless being in the process of signing m, Λ(m) =⊥ for all
m. Hence, the case r = Λ(m) in the simulator h′ is only ever visited if Σ′

is signing m. In particular, this means that, if A forges a valid signature
and wins the game, the forged signature must have used a syndrome w′

produced by the “random” case r 6= Λ(m) of h′.
The only case when something goes wrong in this game is if a pair (r,m)

is first queried at h′ on its own, meaning that h′ sets Λh′ = ((w′, s), s1) with
s =⊥. If later Σ′ is asked to sign m and it happens that in this process Λ(m)
is chosen to be r, h′ does not produce the signature but, stays consistent
with its earlier output where w′ is random and s =⊥. The simulator Σ′

then aborts the game, since it is not able to produce a valid signature. This
situation happens with probability ≤ qΣ

2n
[38]. Also, this is the only case

when A is able to distinguish Game 2 from Game 1. Therefore,

|Pr(W1)− Pr(W2)| ≤ qΣ

2n
. (4.7)

Game 3. Our hash and signing simulators h′ and Σ′ no longer need the
keys generated in the PVR scheme 4.6.1. In this game we therefore cancel
the PVR key generation phase. Instead, we consider the random matrix
R ∈ F(n−k)×n

2 for which we want to solve the Bounded syndrome decoding

problem 2.3.6. As the “public key”, we give A the matrix R′ =

(
R
z

)
where z ∈ Fn2 is a randomly chosen vector. A is able to distinguish
Game 3 from Game 2 only when it can distinguish the random matrix
R′ from a parity-check matrix of the PVR scheme. According to the
Weak indistinguishability assumption 4.6.3, this happens with negligable
probability. Denote this probability by neglDist(n, k). Then,

|Pr(W2)− Pr(W3)| ≤ neglDist(n, k). (4.8)

Game 4. In this game, we alter the winning condition. At the beginning
of the game, the challenger picks a random c ∈ {1, . . . , q′h}. A wins the
game if, for the forgery output (m′, (s′, r′)), in addition to the conditions in

67

the previous game, the pair (r′,m′) ∈ (Fn2 × {0, 1}∗) was queried as the c-th
distinct input by A to h′. This happens with probability 1

q′h
, independent

of any choices of A. Therefore,

Pr(W4) =
Pr(W3)

q′h
. (4.9)

Game 5. In this game, we alter the output of h′ to the c-th distinct query
by A. Given the syndrome v ∈ Fn−k2 for which the syndrome decoding
problem needs to be solved, pick a random bit vran. We make the simulator
h′ output the syndrome (v|vran)T ∈ Fn′2 to the above c-th query. We have

Pr(W5) = Pr(W4). (4.10)

If A’s forgery (m′, (s′, r′)) at the end of the game is valid, we obtain s′ ∈ Fn2
with wt(s′) ≤ t such that(

R
z

)
s′T = (v|vran)T .

Then, in particular, Rs′T = vT and s′ is the solution of the Bounded
syndrome decoding problem 2.3.6 for the matrix R ∈ F(n−k)×n

2 and the
syndrome v ∈ Fn−k2 . By the assumption, the Bounded syndrome decoding
problem is hard and the probability of solving it is negligable. Denote this
probability by neglDec(n, k). Hence, we must have

Pr(W5) ≤ neglDec(n, k). (4.11)

We now combine the above probabilities as in [38]. By triangle inequality,
we have

|Pr(W0)− Pr(W3)| ≤
≤ |Pr(W0)− Pr(W1)|+ |Pr(W1)− Pr(W2)|+ |Pr(W2)− Pr(W3)|.

Also,

|Pr(W0)− Pr(W3)| = |Pr(W0)− q′h Pr(W4)| = |Pr(W0)− q′h Pr(W5)|

by (4.9) and (4.10) and

|Pr(W0)− Pr(W1)|+ |Pr(W1)− Pr(W2)|+ |Pr(W2)− Pr(W3)| ≤

≤ qΣ

2n
+ neglDist(n, k)

68

by (4.6), (4.7) and (4.8). Hence,

|Pr(W0)− q′h Pr(W5)| ≤ qΣ

2n
+ neglDist(n, k).

Finally, rearranging and using (4.11), we obtain

Pr(W0) ≤ qΣ

2n
+ neglDist(n, k) + q′h · neglDec(n, k).

We may conclude that, under our assumptions on the Bounded syndrome
decoding problem 2.3.6 and the Weak indistinguishability 4.6.3, the PVR
signature scheme is

(
qΣ
2n

+ negl(n, k, q′h)
)
-existentially unforgeable under the

chosen message attack, where negl(n, k, q′h) is a negligable value dependent
on the parameters n, k and q′h.

Attacks. Although the public code in the PVR signature scheme can no
longer be distinguished from the random code and the scheme is provably
secure, all the attacks solving the syndrome decoding problem described
in Section 4.5 still apply to the PVR scheme unchanged. In particular,
the Bleichenbacher attack is the most efficient known attack against the
PVR signature scheme [38]. Its parameters and running times for the PVR
scheme are the same as for the CFS-counter version and can be found in
Section 4.5.

Proposed parameters. Since the best known attack on the PVR scheme
is the same as on the CFS-counter version scheme and has the same
performance in both cases, parameter sets correspond to the same security
level in both schemes. In particular, Preetha et al. [38] take the proposed
parameters from Finiasz and Sendrier [20] who list parameters for the CFS
counter version as a response to the Bleichenbacher attack. A sample of
suitable parameters for the PVR scheme corresponding to an 80-bit security
level is given in Table 4.6. As expected, these parameters are larger than
the parameters for the same security level in the CFS-Parallel scheme.

security level n t
81-bit 215 12
83-bit 219 11

Table 4.6: Some recommended parameters for the PVR scheme.

69

In Table 4.7 we calculate the PVR scheme performance data for the
parameter values from Table 4.6. For a convenient comparison, we also
include a copy of Table 4.3 stating the corresponding performance data for
the CFS-Parallel scheme.

parameters (n, t) (215, 12) (219, 11)
public key size in MB 0.7 13
private key size in MB 0.05 1.18
verification cost in binary op. 2160 2299
signature cost in binary op. 248 245

signature length in KB 4 64

Table 4.7: Performance data for the PVR scheme with up-to-date parame-
ters offering 80-bit security levels.

parameters (n, t, δ, i) (217, 10, 2, 2) (218, 9, 2, 3) (220, 8, 2, 3)
public key size in MB 2.7 5 20
private key size in MB 0.26 0.56 2.5
verification cost in binary op. 3400 4374 3840
signature cost in binary op. 223 220 217

signature length in bits 196 288 294

Table 4.8: Performance data for the CFS-Parallel scheme with up-to-date
parameters offering 80-bit security levels (taken from [19]).

We see that, similarly as the CFS-counter version, due to the Bleichen-
bacher attack, the PVR signature scheme as given in Definition 4.6.1 is
hardly practical. The PVR signing times are infeasible and the public key
sizes and signature lengths are also rather large.

Possible improvements. As future work with no particular details
stated, Preetha et al. [38] propose that to thwart the Bleichenbacher attack,
one can consider a parallel PVR scheme. Similarly as in the CFS-Parallel
version, we suggest that the signer would create two linked signatures on a
given message m using a pair of hash functions h1 and h2. The version of
the PVR signature scheme, as it is given in 4.6.1, is, however, not suitable
for this purpose. This is because of the presence of the random index r
as the argument in the hash function. As in the CFS scheme, therefore,
simply generating two signatures with h1 and h2 would not produce linked
signatures. Alternatively, requiring that the r used is the same with both

70

h1 and h2 would, on the other hand, significantly increase the signing times
and make the scheme totally impractical. Similarly as was done in the CFS
scheme case, we therefore suggest to first reformulate the PVR scheme into
a complete decoding version and, only afterwards, introduce the two hash
functions h1 and h2 and a PVR-Parallel scheme. Such a scheme could then
use the same parameters as the parallel CFS scheme for the same levels of
security.

Summary. The main contribution of the PVR scheme is the attempt to
randomize the public key construct. Although the PVR public code is not
entirely random, Preetha et al. [38] manage to formulate a weaker code
indistinguishability assumption that seems to hold for the PVR public key,
and at the same time allows a security proof for the PVR scheme. Since
the Weak indistinguishability 4.6.3 is a new assumption, more reasearch is
desirable to confirm its soundness.

As we have seen, regarding the performance and possible attacks, the
PVR and the CFS-counter version schemes are almost identical. Hence,
also the recommended parameter values, possible trade-offs in performance
as well as remedies for the attacks apply to both of these two schemes. The
PVR scheme as given in [38] suffers, similarly as the CFS-counter version,
from very large signing times and as such is hardly practical. However, it is
possible to construct a PVR-Parallel scheme which could securely use the
same parameter sets as the CFS-Parallel scheme. It could thus represent
the long awaited practical yet provably secure code-based signature scheme.

The remaining shortcomings of the PVR scheme, inherited from the
CFS scheme, are the large signing times and public key sizes that, moreover,
scale exponentially with the PVR parameters. Even a small increase in
parameter values may thus anytime render the PVR(-Parallel) scheme
totally impractical. Preetha et al. [38] suggest that a possible solution
to this problem may lie in the use of other code families, instead of the
binary Goppa codes. Attempts to use the McEliece/Niederreiter cryptosys-
tems with alternative codes in the past have mostly failed because of the
distinguishability of these codes from the random ones (see, e.g. [27]).
However, Preetha et al. [38] point out that these families may work well
if the structure is hidden by randomizing the public key. Thus, even if
the PVR signature scheme as such did not become popular, the work of
Preetha et al. [38] may play an important role, if the randomized public-key
constructs are studied in future.

71

4.7 Survey of code-based signature schemes

Before closing up, we give a brief survey of alternative code-based
constructions related to signing. As for the McEliece/Niederreiter cryp-
tosystems, also in the case of signature schemes, other linear codes have
been tried out in place of the Goppa codes. In order to decrease the size of
the public key, the use of chained BCH codes is proposed in [23]. Similarly,
the so-called double circulant and quasi-dyadic codes are discussed in [11].
Finally, quasi-cyclic matrices are used in the signature schemes in [12, 21].
These matrices have a compact representation, since they are completely
determined by their first row [12].

Apart from the CFS signature that, basically, inverts the Niederreiter
system, two significantly different ways of constructing a signing primitive
have been proposed. These are building a signature scheme from an
identification scheme and the KKS construction.

As described in Section 3, Stern proposed in 1994 the first practical code-
based identification scheme based on the syndrome decoding problem [16,
34]. Using the Fiat-Shamir method (see, for example, [31] for description), it
is possible to convert Stern’s scheme into a signature scheme [11, 12, 21, 13].
In this construction, however, the resulting signature length depends on
the number of rounds in the identification scheme [13] and traditionally
produces signatures of large size – having about 120 Kbits [11, 31].

The KKS signature scheme was published by Kabatianskii, Krouk and
Smeets in 1997 [25]. The scheme works with an arbitrary error-correcting
code, and, in particular, also with codes for which no efficient decoding
algorithm is known. This is because the KKS scheme does not have to
perform decoding in order to sign a message (see [25, 12]). The drawbacks
of the KKS scheme are a relatively large size of the public key and the
fact that the KKS scheme is only a few-times signature scheme [21], as
explained below.

The main idea in the scheme is to use a subset of decodable syndromes
for a given code that forms a linear subspace of a relatively large dimension.
Such a subspace exists for every linear code [25]. One then builds a public
matrix with which one is able to decode any syndrome corresponding to a
sum of matrix’ columns [21]. A detailed description of the scheme is given
in [25].

Every signature produced by the KKS scheme gives away some informa-
tion about the private parameters [11]. After intercepting a few signatures
(about 20, but the number depends on the exact choice of parameters), an
attacker is able to reconstruct the private key [25, 12, 32].

72

The most powerful known attack on the KKS scheme is given in [32]. If
the parameters are poorly chosen, this attack is able to recover the private
key from public parameters even if no signature is kown. The attack is based
on an observation that from a pair of public KKS matrices, it is possible
to define a linear code in which many low-weight codewords give valid
signatures [32]. Stern’s low-weight codeword finding algorithm (see Section
3 or, e.g., [16]) is then applied to recover such a signature. This reveals
some partial information about the private key which is, in turn, used to
produce another valid message-signature pair. The process is repeated,
until the entire private key is revealed [32]. The attack works well on all
KKS-type schemes published before 2011 [32]. The authors explain that
Stern’s algorithm turns out to perform in these instances much better than
in a general case and conclude that this is because the rates of the pair of
codes used are too similar [32]. The attack may be prevented by choosing
different parameters [32].

A “noisy” variation of the KKS scheme has been proposed by Barreto
et al. (see [32]’s discussion of [2]). Having an additional hash function
and an error vector, this one-time signature scheme has been proven to be
EUF-1CMA secure in the random oracle model [32]. Similarly as in the
KKS case, also this scheme can use arbitrary linear codes and its security
stems from the syndrome decoding problem [2].

One-time signature schemes can usually be transformed into multi-times
signature schemes via a Merkle tree construction [21]. From a couple of
one-time public keys placed at the leaves of a binary tree, one computes
a (small) public key at the root that can be securely used a predefined
number of times [21]. For a detailed description of a Merkle tree, see [12].

Using a Merkle tree, the authors of [12] extend the KKS signature
scheme into a secure multi-time signature. However, problematic is the
signature length which is, unfortunately, too large [12].

Another one-time signature that can be turned into a multi-time signa-
ture via the Merkle tree is proposed by Gaborit and Schrek in [21]. The
authors present the scheme as a good compromise between the existing
signature schemes. While the scheme is based on the KKS construction, it
only uses codes with a large automorphism group. The aim is to decrease
the resulting public key sizes. The basic idea is the following: from a given
syndrome and with the help of a so-called syndrome compatible group, one
constructs a set of many other decodable syndromes which can be described
in a compact way. In particular, the scheme uses cyclic shifts or the action
of the group PSL2(p). Apart from the smaller public key sizes as compared
to the KKS scheme, the authors conclude that another advantage of this

73

scheme is the fact that the set of decodable syndromes is not linear as in
the KKS which limits the number of potential attacks on the scheme [21].

Other existing constructions related to code-based signing include the
so-called ring signatures and threshold ring signatures.

The concept of ring signatures originates from 2001 and is due to Rivest
et al. (see [13]’s discussion of [39]). Ring signatures enable a person to sign
a message on behalf of a group of people. The signer uses his private key
and the public keys of other members of the group without needing consent
from anyone. As in the case of group signatures, also here the identity of
the signer remains unknown – apart from the fact that the signer must
be a member of the group. Unlike in the group signatures, however, the
anonymity of the signer is not revocable and ring signatures do not need a
group manager, a setup procedure or any coordination [45]. A review of
ring signature schemes is given in [31].

The first code-based ring signature scheme was proposed by Zheng et
al. [45]. The scheme extends the CFS signature construction. As such,
it is also based on the syndrome decoding problem and inherits the short
signature lengths. Unfortunately, it also inherits the large signature times
[45] making this ring signature scheme not to be very practical [45].

In 2002, Bresson et al. (see [13]) further extended the notion of ring
signatures into threshold ring signature scheme. These work similarly as the
ring signatures with the exception that, in a group of N members, at least
l of them must collaborate in order to be able to produce a valid signature
[11]. One such a threshold ring signature scheme has been proposed by
Bresson et al. (see [13]).

As for the code-based signature schemes, three threshold ring signature
proposals have been made.

The first code-based threshold ring signature scheme is due to Aguilar et
al. [31]. Their construction generalizes the Stern’s identification scheme and
subsequently transforms it into a threshold signature via the Fiat-Shamir
method [31]. The scheme guarantees unconditional anonymity and is proven
to be existentially unforgeable under a chosen message attack in the random
oracle model, assuming the hardness of the minimum distance problem
(see [31]). The scheme suffers from a relatively large public key size and
signature length [13]. On the other hand, the signing time is linear in the
size of the group N and is independent of the number l of the required
collaborating signers. With the overall complexity of O(N), the scheme is
the fastest known threshold ring signatures, beating other number-theoretic
candidates [31].

The second code-based threshold ring signature scheme is due to Dallot

74

et al. (see [11, 13]). As Cayrel and Meziani [11] sum up, the authors
combine the generic construction of Bresson et al. with the CFS scheme
(see [11]). The scheme is existentially unforgeable under a chosen message
attack in the random oracle model and provides unconditional anonymity
[13]. The scheme inherits from the CFS scheme short signatures, but also
large signing costs and public key sizes [13].

The last code-based threshold ring signature scheme has been proposed
by Cayrel et al. [13]. The authors extend the so called q-SD identification
scheme previously published by Cayrel et al. (see [13]) into a threshold ring
identification scheme which, in turn, is transformed into a threshold ring
signature scheme via the Fiat-Shamir method [13]. The scheme uses random
linear codes over Fq and is proven secure in the random oracle model [13].
As compared to the Aguilar et al. scheme above, the construction of Cayrel
et al. offers shorter signaturs, smaller public key sizes and faster signature
generation [13].

Yet another possible code-based construction are the blind signatures.
In such a scheme, the message is disguised before signing so that the signer
does not see the original message. However, the validity of the signature can
be checked against the original message. These schemes ensure blindness
and untracebility of the signed messages [11] and are used in systems where
the privacy of the author of the message is needed, for example, in electronic
voting [33].

The first non-number-theoretic and no third-party-requiring blind signa-
ture is the code-based scheme proposed by Overbeck [33]. The construction
is based on the CFS scheme but, as the author explains, may also be applied
to lattice-based schemes [33]. The scheme is provably secure assuming the
hardness of the so-called permuted kernels problem (see [11, 33]). The
drawbacks of the scheme are its large signature sizes and signing times.
The scheme is claimed to be rather impractical [33].

Finally, the last code-based constructions that we mention are the
identity-based signatures. These are signatures in which the public key is
linked to signer’s identity, meaning, that there is no need to authenticate the
public keys anymore. The first such scheme was proposed in 2001 by Boneh
and Franklin (see [10]’s discussion of [9]). The only identity-based signature
that does not use elliptic curves or number theory is the code-based scheme
proposed by Cayrel et al. [10]. The authors invert a certain syndrome
decoding problem which subsequently enables them to relate a private key
to any random (identity-based) public value [10]. These public-private
values are then used in conjunction with the Stern’s signature scheme [10],
creating thus a novel scheme. The security of the construction relies on

75

the syndrome decoding problem [10]. The scheme is secure against passive
impersonation attacks (see [10]). Finally, its drawbacks are large public key
and signature sizes.

As we can see from the survey, a variety of code-based schemes related
to signing have been devised. Cayrel and Meziani [11] conclude that, among
the possibilities, the Stern’s scheme offers the smallest public key sizes, the
CFS scheme the shortest signatures and the KKS scheme “a good balance
of public key and signature size at the expense of security” [11]. On top
of these, signature schemes offering additional functionality, such as ring
signatures, threshold ring signatures, blind signatures and identity-based
signatures have also been proposed. Although some of these signature
schemes are not yet practical, they represent an important milestone: this
research contributes to create, in general, alternatives to number-theoretic
systems, and, in particular, shows that code-based cryptography has a much
wider potential than has been thought some 15 years ago.

76

Chapter 5

Conclusion

In this thesis, we have given a review of the field of code-based cryp-
tography in general, and of code-based digital signatures in particular.
We showed that code-based cryptography is an active research area that
has produced a wide variety of practical cryptographic schemes over the
past two decades: code-based public-key cryptosystems, digital signature
schemes, an identification scheme and hash functions. We have in detail
introduced and discussed the McEliece and the Niederreiter cryptosystems
and variations of the CFS signature scheme. Although all versions of the
cryptographic schemes mentioned in this thesis use the binary Goppa codes,
the reader is reminded that many other code families have, in fact, been
tried out with the above schemes (see, e.g. [27]). Binary Goppa codes,
however, produce systems that have, unlike most of the other families,
withstood a long cryptoanalytic scrutiny and are thus considered to be one
of the most secure options (see, e.g. [42]).

One of the biggest drawbacks of code-based cryptography is the large
sizes of the public keys used in cryptosystems and signature schemes.
Although some implementations on small devices exist (see [37, 41]), as
well as methods in which the public keys do not have to be stored directly
on the platform [43], more research in this direction is needed. A solution
may eventually be found in using one of the new code families.

The main shortcoming regarding code-based signatures has until recently
been the lack of a provably secure, yet efficient signature scheme. We
discussed the development of the CFS scheme [14], the first practical code-
based signature scheme, that has been in the last decade modified into the,
so-called, CFS-Parallel [19] and mCFS [15] schemes. At the moment, the
CFS-Parallel scheme is widely considered as secure since there are no known
attacks that could break the scheme in less than fully exponential time [19].

77

However, at the same time, there does not exist a security proof for the
CFS scheme, since the high-rate Goppa codes employed are distinguishable
from random codes [17].

We discussed a recent proposal by Preetha et al. [38] that can, po-
tentially, solve this issue. The authors published yet another variant of
the CFS scheme in which they randomize the scheme’s public code. This
modification then enables a security proof [38] under weaker assumptions
than the original proof for mCFS [15] did.

What remains to be considered are the relatively large public key sizes
(inherited from the cryptosystems) and long signing times in the signature
schemes – both the CFS-Parallel as well as the PVR(-Parallel) variant by
Preetha et al. [38]. The danger remains that, if, for whatever reason, the
parameters of the signature schemes were forced to increase, the schemes
may become impractical. This is due to the fact that the public key size
and the signing time are exponential in the schemes’ parameters.

To conclude, there certainly is a need for more research regarding the
above mentioned issues in code-based cryptography. All in all, however,
thanks to the active work of many researchers, this field is prepared for
being put into practice better than ever before. Especially with the need
for quantum-resistant systems, code-based cryptography may be a leading
alternative for the post-quantum world.

78

References

The numbers following each entry indicate the pages on which it is cited.

[1] D. Augot, M. Finiasz, and N. Sendrier. A family of fast syndrome
based cryptographic hash functions. In E. Dawson and S. Vaudenay,
editors, Progress in Cryptology Mycrypt 2005, volume 3715 of Lecture
Notes in Computer Science, pages 64–83. Springer Berlin Heidelberg,
2005. 1, 23, 32, 33

[2] P.S.L.M. Barreto, R. Misoczki, and M.A. Simplicio Jr. One-time
signature scheme from syndrome decoding over generic error-correcting
codes. Journal of Systems and Software, 84(2):198–204, 2011. 73

[3] E. Berlekamp. Factoring polynomials over large finite fields. Mathe-
matics of Computation, 24(111):713–735, 1970. 17

[4] E. Berlekamp. Goppa codes. Information Theory, IEEE Transactions
on, 19(5):590–592, 1973. 11

[5] E. Berlekamp, R.J. McEliece, and H. Van Tilborg. On the inherent in-
tractability of certain coding problems (corresp.). Information Theory,
IEEE Transactions on, 24(3):384–386, 1978. 2, 19

[6] D.J. Bernstein. List decoding for binary Goppa codes. In Y.M. Chee,
Z. Guo, S. Ling, F. Shao, Y. Tang, H. Wang, and C. Xing, editors,
Coding and Cryptology, volume 6639 of Lecture Notes in Computer
Science, pages 62–80. Springer Berlin Heidelberg, 2011. 11, 12

[7] D.J. Bernstein, T. Lange, and C. Peters. Attacking and defending the
McEliece cryptosystem. In J. Buchmann and J. Ding, editors, Post-
Quantum Cryptography, volume 5299 of Lecture Notes in Computer
Science, pages 31–46. Springer Berlin Heidelberg, 2008. 28, 30, 45

79

[8] B. Biswas and N. Sendrier. Hymes-an open source implementa-
tion of the McEliece cryptosystem (2008) http://www-rocq. inria.
fr/secret/cbcrypto/index. php. 17

[9] D. Boneh and M. Franklin. Identity-based encryption from the Weil
pairing. In J. Kilian, editor, Advances in Cryptology – CRYPTO 2001,
volume 2139 of Lecture Notes in Computer Science, pages 213–229.
Springer Berlin Heidelberg, 2001. 75

[10] P.-L. Cayrel, P. Gaborit, and M. Girault. Identity-based identification
and signature schemes using correcting codes. In D. Augot, N. Sendrier,
and J.-P. Tillich, editors, International Workshop on Coding and
Cryptography, WCC, pages 69–78, 2007. 75, 76

[11] P.-L. Cayrel and M. Meziani. Post-quantum cryptography: Code-based
signatures. In T.-H. Kim and H. Adeli, editors, Advances in Computer
Science and Information Technology, volume 6059 of Lecture Notes in
Computer Science, pages 82–99. Springer Berlin Heidelberg, 2010. 1,
23, 35, 50, 53, 72, 74, 75, 76

[12] P.-L. Cayrel, A. Otmani, and D. Vergnaud. On Kabatianskii-Krouk-
Smeets signatures. In C. Carlet and B. Sunar, editors, Arithmetic
of Finite Fields, volume 4547 of Lecture Notes in Computer Science,
pages 237–251. Springer Berlin Heidelberg, 2007. 72, 73

[13] P.-L. Cayrel, A. S. Yousfi, G. Hoffmann, and P. Vron. An improved
threshold ring signature scheme based on error correcting codes. In
F. Ozbudak and F. Rodriguez-Henriquez, editors, Arithmetic of Finite
Fields, volume 7369 of Lecture Notes in Computer Science, pages 45–63.
Springer Berlin Heidelberg, 2012. 72, 74, 75

[14] N.T. Courtois, M. Finiasz, and N. Sendrier. How to achieve a McEliece-
based digital signature scheme. In C. Boyd, editor, Advances in Cryp-
tology ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer
Science, pages 157–174. Springer Berlin Heidelberg, 2001. 3, 21, 23,
35, 37, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 77

[15] L. Dallot. Towards a concrete security proof of Courtois, Finiasz and
Sendrier signature scheme. In S. Lucks, A.-R. Sadeghi, and C. Wolf,
editors, Research in Cryptology, volume 4945 of Lecture Notes in
Computer Science, pages 65–77. Springer Berlin Heidelberg, 2008. 4,
35, 37, 55, 58, 64, 77, 78

80

[16] D. Engelbert, R. Overbeck, and A. Schmidt. A summary of McEliece-
type cryptosystems and their security. Journal of Mathematical Cryp-
tology, 1(2):151–199, 2007. 1, 9, 11, 15, 18, 23, 24, 28, 29, 32, 33, 35,
50, 72, 73

[17] J.-C. Faugere, V. Gauthier-Umana, A. Otmani, L. Perret, and J. Tillich.
A distinguisher for high rate McEliece cryptosystems. In Information
Theory Workshop (ITW), 2011 IEEE, pages 282–286, 2011. 4, 11, 21,
36, 55, 56, 57, 58, 63, 78

[18] S.V. Fedorenko and P.V. Trifonov. Finding roots of polynomials over
finite fields. Communications, IEEE Transactions on, 50(11):1709–
1711, 2002. 17

[19] M. Finiasz. Parallel-CFS. In A. Biryukov, G. Gong, and D.R. Stinson,
editors, Selected Areas in Cryptography, volume 6544 of Lecture Notes
in Computer Science, pages 159–170. Springer Berlin Heidelberg, 2011.
4, 35, 38, 40, 41, 42, 44, 45, 46, 49, 50, 53, 54, 55, 58, 70, 77

[20] M. Finiasz and N. Sendrier. Security bounds for the design of code-
based cryptosystems. In M. Matsui, editor, Advances in Cryptology
ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Science,
pages 88–105. Springer Berlin Heidelberg, 2009. 4, 35, 50, 51, 52, 53,
69

[21] P. Gaborit and J. Schrek. Efficient code-based one-time signature from
automorphism groups with syndrome compatibility. In Information
Theory Proceedings (ISIT), 2012 IEEE International Symposium on,
pages 1982–1986, 2012. 72, 73, 74

[22] V.D. Goppa. A new class of linear correcting codes. Problemy Peredachi
Informatsii, 6(3):24–30, 1970. 8

[23] O. Hamdi, S. Harari, and A. Bouallegue. Secure and fast digital signa-
tures using BCH codes. International Journal of Computer Science
and Network Security, 6(10):220–226, 2006. 72

[24] S. Heyse, A. Moradi, and C. Paar. Practical power analysis attacks on
software implementations of McEliece. In N. Sendrier, editor, Post-
Quantum Cryptography, volume 6061 of Lecture Notes in Computer
Science, pages 108–125. Springer Berlin Heidelberg, 2010. 18

81

[25] G. Kabatianskii, E. Krouk, and B. Smeets. A digital signature scheme
based on random error-correcting codes. In M. Darnell, editor, Crytog-
raphy and Coding, volume 1355 of Lecture Notes in Computer Science,
pages 161–167. Springer Berlin Heidelberg, 1997. 72

[26] K. Kobara and H. Imai. Semantically secure McEliece public-key
cryptosystems – conversions for McEliece PKC. In K. Kim, editor,
Public Key Cryptography, volume 1992 of Lecture Notes in Computer
Science, pages 19–35. Springer Berlin Heidelberg, 2001. 33

[27] G. Landais and J.-P. Tillich. An efficient attack of a McEliece cryp-
tosystem variant based on convolutional codes. In P. Gaborit, editor,
Post-Quantum Cryptography, volume 7932 of Lecture Notes in Com-
puter Science, pages 102–117. Springer Berlin Heidelberg, 2013. 1, 24,
71, 77

[28] Y.X. Li, R.H. Deng, and X.M. Wang. On the equivalence of McEliece’s
and Niederreiter’s public-key cryptosystems. Information Theory,
IEEE Transactions on, 40(1):271–273, 1994. 23, 27

[29] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-correcting
Codes: Part 2, volume 16. Elsevier, 1977. 2, 8, 9, 11

[30] R.J. McEliece. A public-key cryptosystem based on algebraic coding
theory. DSN progress report, 42(44):114–116, 1978. 1, 3, 23, 32, 35

[31] C.A. Melchor, P. Cayrel, P. Gaborit, and F. Laguillaumie. A new
efficient threshold ring signature scheme based on coding theory. In-
formation Theory, IEEE Transactions on, 57(7):4833–4842, 2011. 72,
74

[32] A. Otmani and J.-P. Tillich. An efficient attack on all concrete KKS
proposals. In B.-Y. Yang, editor, Post-Quantum Cryptography, volume
7071 of Lecture Notes in Computer Science, pages 98–116. Springer
Berlin Heidelberg, 2011. 72, 73

[33] R. Overbeck. A step towards QC blind signatures. Technical report,
IACR Cryptology ePrint Archive, Report 2009/102, 2009. 75

[34] R. Overbeck and N. Sendrier. Code-based cryptography. In D.J.
Bernstein, J. Buchmann, and E. Dahmen, editors, Post-Quantum
Cryptography, pages 95–145. Springer Berlin Heidelberg, 2009. 1, 23,
32, 33, 35, 50, 51, 53, 72

82

[35] N. Patterson. The algebraic decoding of Goppa codes. Information
Theory, IEEE Transactions on, 21(2):203–207, 1975. 11, 15

[36] C. Peters. Information-set decoding for linear codes over Fq. In
N. Sendrier, editor, Post-Quantum Cryptography, volume 6061 of Lec-
ture Notes in Computer Science, pages 81–94. Springer Berlin Heidel-
berg, 2010. 23, 32, 33

[37] C. Peters. Curves, Codes, and Cryptography. PhD thesis, Technische
Universiteit Eindhoven, the Netherlands, 2011. 2, 77

[38] M.K. Preetha, S. Vasant, and C.P. Rangan. On provably secure code-
based signature and signcryption scheme. Technical report, Cryptology
ePrint Archive, Report 2012/585, 2012. 4, 36, 53, 58, 60, 63, 64, 65,
66, 67, 68, 69, 70, 71, 78

[39] R.L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret: Theory
and applications of ring signatures. In O. Goldreich, A.L. Rosenberg,
and A.L. Selman, editors, Theoretical Computer Science, volume 3895
of Lecture Notes in Computer Science, pages 164–186. Springer Berlin
Heidelberg, 2006. 74

[40] N. Sendrier. Decoding one out of many. In B.-Y. Yang, editor, Post-
Quantum Cryptography, volume 7071 of Lecture Notes in Computer
Science, pages 51–67. Springer Berlin Heidelberg, 2011. 52

[41] F. Strenzke. A smart card implementation of the McEliece PKC.
In P. Samarati, M. Tunstall, J. Posegga, K. Markantonakis, and
D. Sauveron, editors, Information Security Theory and Practices. Se-
curity and Privacy of Pervasive Systems and Smart Devices, volume
6033 of Lecture Notes in Computer Science, pages 47–59. Springer
Berlin Heidelberg, 2010. 2, 77

[42] F. Strenzke. Fast and secure root finding for code-based cryptosystems.
In J. Pieprzyk, A.-R. Sadeghi, and M. Manulis, editors, Cryptology and
Network Security, volume 7712 of Lecture Notes in Computer Science,
pages 232–246. Springer Berlin Heidelberg, 2012. 17, 31, 77

[43] F. Strenzke. Solutions for the storage problem of McEliece public and
private keys on memory-constrained platforms. In D. Gollmann and
F.C. Freiling, editors, Information Security, volume 7483 of Lecture
Notes in Computer Science, pages 120–135. Springer Berlin Heidelberg,
2012. 2, 24, 31, 77

83

[44] A. Vardy. The intractability of computing the minimum distance of a
code. Information Theory, IEEE Transactions on, 43(6):1757–1766,
1997. 2, 19, 20

[45] D. Zheng, X. Li, and K. Chen. Code-based ring signature scheme.
International Journal of Network Security, 5(2):154–157, 2007. 74

84

	Front matter
	Author's Declaration
	Abstract
	Acknowledgements
	Table of Contents
	Introduction
	Some coding theory
	Basic concepts
	Irreducible binary Goppa codes
	Hard problems

	Code-based encryption
	The McEliece and Niederreiter cryptosystems
	Analysis of the cryptosystems

	Code-based signing
	Basic definitions and requirements
	Difficulties with code-based signatures
	CFS signature scheme
	CFS parameters and performance
	CFS scheme: security analysis
	A new public-key construction
	Survey of code-based signature schemes

	Conclusion
	References

