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Abstract

This thesis studies an inventory-location problem faced by a large manufacturer and supplier
of small to medium sized aircraft and their spare parts. The sale of after market spare parts is a
major source of revenue for the company, but it is a complex industry with many unique chal-
lenges. The original problem is a multi-echelon network design problem, which is decomposed
into a facility location problem with consolidated shipping challenges, and a spare parts inven-
tory problem. The facility location problem is solved a number of times under different scenarios
to give the company’s leadership team access to a wide range of feasible solutions. The model it-
self is an important contribution to industry, allowing the company to solve a spare parts network
problem that will guide strategic decision-making for years. The chapter serves as case-study on
how to accurately model a large and complicated service parts supply chain through the use of
mathematical programming, part aggregation and scenarios.

The company used the scenario results to redesign its spare parts distribution network, open-
ing new hubs and consolidating existing service centres. The costs savings associated with this
project are estimated to be $4.4 Million USD annually. The proposed solution does increase the
burden of customer freight charges on the company’s customers compared to the current net-
work, but the operational savings are expected to more than outweigh the increase in customer
shipments costs. The project team thus recommended that the company consider subsidizing
customer freight costs to offset the expected cost increase the customers face, resulting in lower
costs for both the company and their customers. This solution could set a new standard for
aircraft spare parts suppliers to follow.

Considered next is an integrated inventory-location problem with service requirements based
on the first problem. Customer demand is Poisson distributed and the service levels are time-
based, leading to highly non-linear, stochastic service constraints and a nonlinear, mixed-integer
optimization problem. Unlike previous works in the literature that propose approximations for
the nonlinear constraints, this thesis presents an exact solution methodology using logic-based
Benders decomposition. The problem is decomposed to separate the location decisions in the
master problem from the inventory decisions in the subproblem. A new family of valid cuts is
proposed and the algorithm is shown to converge to optimality. This is the first attempt to solve
this type of problem exactly. Then, this thesis presents a new restrict-and-decompose scheme
to further decompose the Benders master problem by part. The approach is tested on industry
instances as well as random instances. The second algorithm is able to solve industry instances
with up to 60 parts within two hours of computation time, while the maximum number of parts
attempted in the literature is currently five.

Finally, this thesis studies a second integrated inventory-location problem under different
assumptions. While the previous model uses the backorder assumption for unfilled demand and
a strict time window, the third model uses the lost-sales assumption and a soft time window
for satisfying time sensitive customer demand. The restrict-and-decompose scheme is applied
with little modification, the main difference being the calculation of the Benders cut coefficients.
The algorithm is again guaranteed to converge to optimality. The results are compared against
previous work under the same assumptions. The results deliver better solutions and certificates
of optimality to a large set of test problems.
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Introduction
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1.1 Thesis Statement

Location and inventory problems for spare parts are important to the operations of many large

organizations, but they represent a very difficult class of problems that are challenging to solve

with existing methods in the research literature. This thesis argues that the existing techniques

are insufficient to solve problems of the scale encountered by companies such as spare parts

suppliers in the aerospace industry.

1.2 Motivation

The sale of after market service parts is a major source of revenue for aerospace companies, but

it is a complex industry with many unique challenges. Customers who operate aircraft around

the world discover failed parts during routine maintenance and may require replacement service

parts immediately. The unexpected failure of an aircraft part may result in a serious delay and

loss of revenue for the operator. Boeing estimates that an aircraft on ground (AOG) situation

costs the operators between U.S.$5,000 and U.S.$150,000 per hour (Boeing (2012)), depending

on the operator and model of aircraft.

To avoid these costly AOG situations, a service parts supplier tries to keep all inexpensive

parts in stock at most of its service centres. The cost to the customer of an AOG is not worth the

small amount of money that could be saved by trying to keep inventory levels low for inexpensive

parts. However, many aircraft parts are very expensive, with some parts having book values well

over U.S.$100,000. Furthermore, it is difficult to predict when a part will fail, so demand cannot

be accurately forecasted. The decision of whether to hold one more expensive part in inventory

is much more difficult for the service parts supplier.
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1.3 Introduction to the Aerospace Industry Problem

This thesis is motivated by a problem faced by Bombardier Aerospace, a manufacturer and dis-

tributor of aircraft and aircraft after-market spare parts. The company operates a service parts

logistics network to ensure that each customer has access to a service centre stocked with ser-

vice parts within a given amount of time. Ideally, they would like to deliver 100% of customer

orders within the time window, but there are two challenges. First, demand for service parts

is random and typically infrequent, so the company must consider the trade-off between carry-

ing more inventory and achieving higher service levels. Second, operating a dense network of

service centres that can deliver parts within a short time window leads to high inventory levels,

suggesting that locating service centres and assigning customers to those service centres should

be done in conjunction with inventory stocking decisions.

Service parts suppliers must also consider how long an aircraft operator is willing to wait

for a service part. When customers place emergency orders for aircraft service parts they need

the parts delivered as soon as possible, regardless of whether or not the parts are immediately

available. The service parts supplier may be required to enter into a contractual agreement with

aircraft operators to deliver parts within a certain time window, typically referred to as a time-

based service level. For example, aircraft operators expect to receive critical service parts within

24 hours of ordering them so that the grounded aircraft can return to service quickly, wherever

the aircraft is located around the world. A service parts supplier will then commit to meet this

target a certain percentage of the time as part of their supply contract. The actual performance

of the supplier is measured using fill rates, which are informally defined as the percentage of

customer orders that can be filled within the time window. Fill rates are compared to the target

service levels on a regular basis.
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1.4 Approaches to the Problem

The objectives of the service parts supplier when designing a Service Parts Logistics (SPL) sys-

tem are to locate service centres and determine inventory levels in order to balance operating,

transportation and inventory costs. The primary decisions in an SPL system are grouped into

two sets (Candas and Kutanoglu (2007)). The first set of decisions is where to locate service cen-

tres and which customer locations will be served by those service centres. These are Logistics

Network Design (LND) decisions, which encompass a broad class of facility location and alloca-

tion problems. The main trade-offs in LND decisions are between transportation, operating and

capital costs versus achieving fill rates that meet the service levels. The second set of decisions

is how to set inventory levels. The main trade-offs in the inventory level decisions are between

inventory holding costs and target service levels.

There are two approaches to designing an SPL system. One way is to first make the network

and service centre location decisions, and then set inventory levels to meet the desired service

levels. When solving the two problems sequentially, we first find an optimal network that min-

imizes facility and transportation costs (ignoring inventory considerations), and then find the

inventory levels for that distribution network. It is important to note that this sequential approach

may not give an optimal solution to the original problem.

The second approach is to design the SPL system by solving an integrated problem that

takes into account facility, transportation and inventory costs to find a distribution network that

minimizes the total system costs. This approach is designed to find the optimal total system cost,

and is the theoretically preferred option. However, designing an SPL system using an integrated

approach is a very difficult problem, requiring large amounts of computational power for even

small cases (see for instance Nozick and Turnquist (2001)). Furthermore, while the areas of

network design and service parts inventory management have been studied extensively, there is

very little previous work that tries to consider the two sets of decisions simultaneously.

The integrated approach was initially rejected for solving the aerospace inventory-location

problem, and a sequential approach is used throughout Chapter 3. However, we remain inter-
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ested in taking an integrated approach because it can result in cost savings when compared to

the more traditional approach of first designing the service parts distribution network and then

setting inventory levels. The savings tend to be significant when the inventory costs dominate,

for instance when inventory holding costs are large or service levels are high (see Candas and

Kutanoglu (2007) for experimental evidence). Unfortunately, the integrated problem is much

more difficult to model accurately and resulting models are difficult to solve to optimality.

1.5 Research Contributions

This thesis has contributions arising from two fundamentally different approaches to inventory-

location problems. The problem at the core of the aerospace company’s research project is an

inventory-location problem for spare parts, with time-based service levels. The primary contri-

bution in Chapter 3 is a case-study on how to accurately model a large and complicated service

parts supply chain through the use of mathematical programming, part aggregation and scenar-

ios. The model and results are also an important contribution to industry, allowing the company

to solve a spare parts network problem that will guide strategic decision-making for years.

The second approach presented in this thesis is a set of mathematical models that use an

integrated approach to designing an SPL system, making the service parts network design de-

cisions and setting inventory levels at the same time. The first contribution in this area is a

logic-based Benders decomposition model that allows us to find exact solutions to integrated

inventory-location problems. The various problems considered are still very difficult to solve

to optimality, so a powerful restrict-and-decompose scheme is developed that improves the con-

vergence time and finds very good solutions quickly and efficiently. This unique approach is

another significant contribution of the thesis that has the potential to be applied broadly to other

decomposable combinatorial problems.

The methodology in this thesis is then compared against other approaches proposed by Gzara

et al. (2013) and Jeet et al. (2009) for solving similar integrated network design and inventory

problems for spare parts. While their methodologies are approximate, the ones presented here

5



are exact, the first for solving this class of inventory-location problems. The comparison is

extended across problems of different size and difficulty to show the potential in the approach.

The computational results compare positively to the approximate methods, especially after the

introduction of the restrict-and-decompose scheme that improves the convergence of the lower

bound. Large-scale problems with a large number of parts (up to 60) are solved with the new

algorithm, representing a significant improvement over the number of parts studied in the existing

literature (up to five).

1.6 Thesis Outline

This thesis is organized as follows. In Chapter 2 a literature review is provided of both LND

and service parts inventory management, focusing on the integration of the two research areas.

In Chapter 3 a model is developed for the aerospace company’s service parts logistics system

and the techniques used to implement many of the real-world challenges faced by the company

are showcased. In Chapter 4 a simpler version of the company’s problem is introduced, and

an exact methodology is described to solve an integrated inventory-location problem arising

from the aerospace company’s problem. A restrict-and-decompose scheme is also developed to

improve the results. In Chapter 5 a second model and exact methodology are presented to solve

a similar problem under different assumptions. Finally, in Chapter 6 the results and conclusions

are summarized and directions for future research are proposed.
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Chapter 2

Literature Review
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2.1 Introduction

This chapter provides a broad review of Logistics Network Design (LND) and service parts in-

ventory research, with a focus on the intersection of the two areas (as shown in figure 2.1). As

network design models are some of the most widely studied models in operations research, this

chapter focuses on research relevant to the work in this thesis. The review of service parts in-

ventory management will be limited to multi-location problems with time-based service level

constraints. The review of inventory and network design problems covers both industry applica-

tions and approaches used to solve more abstract but computationally more difficult versions of

the problems.

Figure 2.1: Scope of Literature Review

This chapter also reviews previous work using logic-based Benders decomposition, and

briefly reviews other decomposition and branching techniques that have been applied to simi-

lar difficult problems.

2.1.1 Terminology

The terminology in facility location and inventory research is varied. This thesis uses distribu-

tion centre as a general term to refer to any location that can hold inventory. The distribution

centres are divided into two classes, (i) those that only service the customers, known as depots

by the aerospace company, or more generally service centres and (ii) those that resupply the de-

pots, known as hubs by the aerospace company. Hubs can also service the customers, and are

sometimes referred to as central distribution centres in the literature.

8



Figure 2.2: Sample Network Design

2.2 Logistics Network Design (LND) and the Uncapacitated

Facility Location (UFL) Problem

This thesis models the LND decisions as an Uncapacitated Facility Location (UFL) problem.

The UFL problem is well known and has many real world applications. In general, we are given

a set of customer demand points and a set of proposed service centre locations. Each service

centre has a fixed operating cost, and each transportation lane between service centre and demand

point has a shipping cost per unit of good supplied. When considering the UFL problem, it is

normally possible to have one service centre serve all customers. However, the transportation

costs to distant customers may not make it cost-efficient to only open one service centre. The

goal is to open certain service centres and assign all the customers to those service centres (hence

assigning all demand) in order to minimize the total service centre and transportation costs. The

service centres are assumed to have an infinite supply capacity for handling demand, in contrast

to the Capacitated Facility Location problem, where each service centre can only accommodate

a limited amount of demand.

The UFL is known to be NP-Hard (Megiddo and Tamir (1982)), as it can be reduced to
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an instance of the set covering problem. The set-covering problem involves partioning a set of

elements into subsets, where each subset has a known cost. The goal of the problem is find a

partition of all the elements into subsets with minimal total cost. To see how the UFL can be

thought of as an instance of a set-covering problem, consider the problem of assigning all the

customer locations to the service centres. The cost of assigning a specific subset of customers to

service centres is known: the total cost of operating the service centre plus the cost of transporting

the goods to that subset of customers. Thus the problem of dividing the customers into subsets

and assigning each subset to a service centre at minimum total cost is equivalent to the set-

covering problem. As the set-covering problem is known to be NP-Hard, so is the UFL.

The set-covering and UFL problems are difficult to solve because they contain an exponential

number of subsets of customers to consider. Work by Cornuéjols et al. (1990) provides a com-

prehensive treatment of models and solution techniques for the UFL. The first attempts at solving

general UFL problems were heuristic, using either greedy algorithms or modified greedy algo-

rithms to find good solutions quickly. The UFL problem can also be solved with general tech-

niques used for mixed integer programs, such as Benders decomposition or branch and bound

algorithms. There has also been some work in dual algorithms, including Lagrangian relaxation

and subgradient optimization (see, for example, Geoffrion (1974)). More recent work, for exam-

ple Shmoys et al. (1997), explore polynomial-time approximation algorithms and heuristics for

solving UFL problems.

Some time-based extensions to the UFL already exist: Goldberg and Paz (1991) extended the

UFL to handle time-based responsiveness for locating emergency vehicles bases in anticipation

of emergency calls. More recently, Ingolfsson et al. (2008) explicitly model the randomness in

ambulance response times as an extension to the problem of ambulance location. Nozick (2001)

extended the UFL to include distance-based coverage restrictions. Each customer had to be

located within a maximum distance of at least one distribution centre, which is similar to having

a time-based restriction.

While early work was focused on the UFL modeled under certainty, there are now many

papers that study the UFL under uncertain demand or unreliable facilities. For example, Snyder
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and Daskin (2005) consider the UFL where facilities are known to fail with some probability.

Facility failure could be analogous to having a facility have zero inventory of a particular part

when it is ordered, i.e. the facility has failed to have the part available.

The time-based UFL extensions are typically solved with heuristics based on knowledge

of the problem or a Lagrangian relaxation algorithm. For instance, Goldberg and Paz (1991)

use an interchange heuristic algorithm to explore new solutions based on similar existing solu-

tions. Snyder and Daskin (2005) solve their formulation using a Lagrangian relaxation algorithm

while Nozick (2001) uses a Lagrangian based heuristic. However, none of the work reviewed so

far explicitly consider inventory stocking levels in their time-based models. Inventory holding

costs and service levels provided to customers are an important aspect of the work in this thesis.

2.3 Service Parts Inventory Management

Service parts inventory management problems have also been studied extensively in the litera-

ture. The recent book by Muckstadt (2005) surveys much of the work and is now considered the

primary reference for service parts inventory management. Service parts, also known as spare

parts, can be divided into two major classes, those which are repairable and those which are not.

Repairable items (also known as rotable or reusable) are used by the customer, and then returned

to the supplier for repair. Unrepairable items (also known as expendables or consumables) are

used by the customer and then discarded and replaced. Research into inventory spare parts man-

agement often focuses on repairable items, whose replenishment lead-time is determined by the

repair time.

Service parts are typically ordered infrequently and sporadically, and are often referred to as

low-demand. We say parts are low-demand when the time between orders is large compared to

the replenishment lead time. That being the case, companies can often keep as little as one or

two parts of each type per stocking location.

The seminal work in service parts inventory management is Sherbrooke (1968) who intro-

duced the famous METRIC scheme for managing repairable spare part inventory levels in a

11



multi-echelon system. Later work by Graves (1985) improved on METRIC and provided a bet-

ter understanding of the distribution of inventory levels in a repairable spare parts supply chain

network. In particular, Graves found a closed form expression for the expectation and distribu-

tion of the number of backordered items at each service centre and hub, which has been used

frequently in subsequent research (see, for example, Caggiano et al. (2007)).

Unrepairable spare parts can be treated in a similar fashion, where the replenishment lead

time is used instead of the repair lead time. In both cases, a base stock inventory policy is

typically chosen for low-demand spare parts (see Song (1998) for justification). Applications of

spare parts inventory management can be found in a variety of industries, including automotive

(Cohen et al. (2000)), office hardware (Caggiano et al. (2007)), semiconductor (Sen et al. (2010))

and military logistics (Sherbrooke (1968)).

2.3.1 Customer Service Levels

A significant portion of the work in this thesis is setting spare part inventory levels to meet cus-

tomer service levels. Silver et al. (1998) extensively study different definitions of service levels.

Service levels are categorized in two broad classes: (i) measuring the frequency or magnitude of

a stock-out (referred to as type I or type II service levels, respectively), or (ii) measuring the time

it takes for customers to receive their orders (time-based service levels).

In service parts management, metrics such as fill rates or ready rates are typically used to

measure the actual execution of an inventory management system (Muckstadt (2005)). The fill

rate measures the long-term proportion of total demand that is delivered without delay from

stock on hand, while the ready rate measures the probability that all customer demand in a

period is delivered without delay. This thesis will use fill rates as its performance metric, which

are compared to the target service levels to determine whether the supply chain is operating

effectively.

It is important to decide at what aggregation level a fill rate will be measured. The easiest

aggregation level is the part-service centre level. That is, the target service level is set and the
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fill rate is measured individually for each part at each service centre. Other options are the part

level, where the fill rate is measured for each part across all service centres in the system; and the

service centre level, where the fill rate is measured at each service centre for all parts that service

centre stocks. Both these aggregation levels appear to be more difficult to model: while an exact

reformulation exists for the problem with part-service centre service levels (Gzara et al. (2013)),

no exact reformulation has been found for the other two aggregation levels.

2.3.2 Time-Based Service Levels

This thesis will consider a time-based service level that is measured in terms of the number of

orders filled within a time window as a percentage of the total number of orders. For example:

the target service level could be that 90% of orders are delivered within 24 hours of order receipt.

The remainder of this section is focused on research into low-demand spare parts and service

parts with time-based service levels.

When a customer order is received for a part that is not immediately available at the closest

service centre, it may still be delivered from another location within the time window. This

flexible strategy is often referred to as Emergency Lateral Transshipments (ELT), and the earlier

approaches to solving these problems are surveyed by Lee (1987). The models in this thesis

make the assumption that ELTs are not permitted. Instead, only customers that are assigned to

service centres within the time window contribute positively to the fill rate at that service centre.

The fill rates are then calculated by determining the long-term probability that a part will be

available at the assigned service centre immediately when it is ordered by a nearby customer.

Using this interpretation of a time-based service level, Caggiano et al. (2007) study gener-

alized time-based service levels and determine base stock levels for multiple parts in a multi-

location, multi-echelon spare parts distribution network. Their service levels are very general,

allowing for service contracts with multiple tiers (for example, 90% within 24 hours and 95%

within 3 days). They also generalize their model to consider part commonality, noting that the

customer is concerned with keeping a system operating. That is, if a failed system needs multiple
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parts, delivering all but one in time is insufficient. For a given stocking level, they derive exact

fill rates for each time-based service level. From this, they design a greedy algorithm to find

near-optimal solutions quickly.

The Caggiano et al. (2007) paper assumes that the distribution network is known a priori.

This important assumption allows them to focus their attention on calculating inventory stocking

levels under general time-based service levels. In contrast, the research in this thesis will deter-

mine simultaneously optimal inventory stocking levels and a distribution network to meet similar

time-based service levels.

2.4 Inventory and Network Design with Time-based Service

Level Constraints

The integrated approach to solving an inventory-location problem is likely to find a better solu-

tion compared to the sequential approach (Candas and Kutanoglu (2007)). There are a number

of integrated location-inventory models in the literature for high-demand parts that use heuris-

tics and approximations to solve the problems, see for example Daskin et al. (2002), Shen et al.

(2003), Teo and Shu (2004), and a survey paper by Shen (2007).

However, there is relatively little research into joint inventory-location models for service

parts, and we believe Candas and Kutanoglu (2007) are the first to give the topic a comprehen-

sive treatment. Their work includes experimental evidence that taking an integrated approach

can result in cost savings of over 80% for service parts compared to the sequential approach.

Other attempts include Jeet et al. (2009), who use approximate methods to solve larger problems

with a single part, and Sen et al. (2010) who designed a customized method for solving a prob-

lem with 50,000 parts at Applied Materials, a large company in the semiconductor industry. All

of the problems in this area can be modelled as mixed-integer non-linear problems (MINLPs),

where the non-linearity arises from the service level constraints. MINLPs cannot be solved easily

with off-the-shelf optimization software (Bussieck and Pruessner (2003)), so approximation or
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decomposition algorithms are typically used. A signficant contribution of this thesis is a decom-

position technique applied to two different inventory-location problems, which we believe is the

first time these problems have been solved exactly in a non-enumerative fashion. The rest of this

section will review the techniques that have been used in the literature to date to solve this class

of problems and show how the exact procedures presented in this thesis contribute to the field.

Inventory and network design problems are often referred to as multi-echelon inventory-

location problems. Graves (1985) notes that “a key component in the design of multi-echelon in-

ventory systems for recoverable items is the determination of the proper stockage levels of spare

parts inventory at each echelon”. This observation will be used to define a single-echelon prob-

lem versus a multi-echelon problem. If we make inventory decisions at one level (for example,

choosing stocking levels at the service centres) we will refer to the problem as a single-echelon

problem. Making inventory decisions at both the hub and service centre level will be referred to

as a two-echelon problem.

2.4.1 Two-Echelon Inventory-Location Problems for Spare Parts

This thesis analyzes complicated Service Parts Logistics (SPL) systems with multiple sets of

decisions. For instance, the largest problem comprises outside vendors who ship items to central

hubs, which redeploy parts to regional service centres, which in turn ship parts to customers. The

decisions include where to locate the hubs, where to locate the service centres, which service

centres to assign to which hubs, which customers to assign to which service centres, and then

how much inventory to stock at both the hubs and the service centres.

The two-echelon model considered in Chapter 3 not only has many sets of decisions, but is

also of a very large scale. The problem has approximately 20 potential locations, 200 customers,

and almost 100,000 parts. The model also has constraints that represent real world business

realities and challenges, including economies of scale in facility operating costs, consolidated

shipping charges, and piece-wise linear international shipping charges.

To the best of our knowledge, no models exist in the literature that have attempted to solve
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a large-scale problem with similar sets of decisions and constraints. The work by Sen et al.

(2010) reviews an industry problem with 50,000 parts with some special attention paid to the

cost of shipping parts in different weight classes, but inventory decisions are only made at one

echelon. Their work cannot be directly applied to a two-echelon problem because the addition of

a second echelon of inventory decisions introduces another source of non-linearity in the model:

the amount of inventory required at each service centre depends on the the allocated demand and

the lead time, which itself depends on the availability of parts at the hubs in the upper echelon.

There are a few papers that have attempted to solve the integrated two-echelon location and

spare parts inventory problem, most notably Mak and Shen (2009). Their model has stochastic

replenishment lead times, time-based service levels, and low volume, Poisson distributed spare

parts demand. Unfilled demand is backordered, with a backorder cost per unit time. The problem

is modelled as a MINLP to minimize total expected cost, including backorder costs. In contrast,

the problem we consider in Chapter 3 has target service levels instead of an explicit backorder

cost, leading to a substantially different model. Furthermore, the paper only considers up to 150

locations and customers, with only 1 part, so the work is not of comparable scale.

The lack of available research covering large-scale multi-echelon inventory location problems

for spare parts with time-based service level constraints led us to reject the integrated approach

in Chapter 3. The size and difficulty of the underlying problem combined with additional chal-

lenges faced by the company made the development of an integrated model impractical. Instead,

a sequential approach is used that will serve as a case-study for solving large-scale industry

problems, with a focus on using scenarios and part aggregation to make the problem tractable. In

subsequent chapters, models are developed to solve single-echelon inventory-location problems

with an integrated approach.

2.4.2 Single-Echelon Inventory-Location Problems for Spare Parts

There are only a few papers in the literature that study approaches for solving integrated inventory

and location problems for spare parts. The two models in Chapter 4 and Chapter 5 build on some
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previous studies of single-echelon problems with time-based service level constraints by Candas

and Kutanoglu (2007), Jeet et al. (2009) and Gzara et al. (2013). The papers all consider a single-

echelon inventory-location problem with constant replenishment lead times. The models are

designed for low-demand high-cost service parts with time-based service levels, so they assume

the spare parts demand is low volume, Poisson distributed, and that inventory levels are set using

a base stock policy. In contrast to the Caggiano et al. (2007) model, only the most restrictive

time-based service requirement (smallest time window) is considered, with the assumption that

the company can courier a part from a hub to meet the longer time window requirements.

Candas and Kutanoglu (2007) and Jeet et al. (2009) study a system-wide part service level

where fill rates at individual locations can vary (i.e. variable fill rates), so long as the system fill

rate meets the contracted service level. Gzara et al. (2013) consider two different service level

aggregations, one of which is the same system-wide part service level. The system-wide part

service level is also the focus of the models in Chapter 4 and 5, motivated by the demand of

global aircraft operators to have specific parts available wherever in the world they are needed,

and not solely at specific distribution centres.

Both Candas and Kutanoglu (2007) and Gzara et al. (2013) assume unfilled demand is back-

ordered, while Jeet et al. (2009) treat unfilled demand with the lost sales assumption. The two

assumptions require subtly different computations for evaluating the achieved service levels, and

should be considered as distinct problems. In the aerospace industry, both assumptions are re-

alistic depending on the specific part in question, but researchers typically assume all unfilled

demand is treated the same when solving an inventory-location problem. The model in Chap-

ter 4 assumes unfilled demand is backordered, as many large or expensive aerospace parts are

only available from a single supplier. The model in Chapter 5 assumes unfilled demand is lost,

as some parts can be replaced by emergency shipments from a special supplier.

Finally, Candas and Kutanoglu (2007) and Jeet et al. (2009) allow customers to be assigned

to service centres that lie outside of the service level time window, and thus cannot possibly

receive the spare part on time. This assumption is henceforth referred to as a soft time window.

This requires providing a higher level of service to customers that are within the time window
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Authors & Year Fill Rates Unfilled Demand Time-window
Candas and Kutanoglu (2007) Part Backordered Soft
Jeet et al. (2009) Part Lost Soft
Gzara et al. (2013) Part-Loc & Part Backordered Strict
Chapter 4 Part Backordered Strict
Chapter 5 Part Lost Soft

Table 2.1: Comparison of Assumptions in Inventory-Location Literature

to achieve the desired target service level. In contrast, Gzara et al. (2013) do not allow customer

demand to be assigned to a location outside of the time window. The model in Chapter 4 also

makes this assumption, based on the policy maintained by the aerospace partner. Due to this

strict time window assumption, that chapter can only make computational comparisons to the

work by Gzara et al. (2013). The model in Chapter 5 assumes a soft time window is used, so

that a direct comparison to the work by Jeet et al. (2009) is possible. Table 2.1 compares the key

assumptions of the three papers and two chapters from this thesis.

2.4.3 Approximate and Exact Methodologies

All of the problems studied by the authors listed in Table 2.1 are initially modelled as non-linear

MINLPs, where the non-linearity comes from the time-based service level constraints. Each

paper uses different techniques to address the non-linear constraints and find solutions to the

difficult problems.

When the service level is measured at the service centre-part level, Gzara et al. (2013) de-

velop a reformulation of the integrated model that finds an exact solution to the single-echelon

inventory-location problem. The reformulation precalculates threshold levels of demand that

each part-location combination can handle to meet the service level for any given level of in-

ventory. However, this technique can not be directly applied to other service level aggregations

(Gzara et al. (2013)).

When the service level is measured at the part level, no efficient exact methodologies are

known to exist. To make the problem tractable, Candas and Kutanoglu (2007) create piece-wise

linear step functions to linearize the fill rate constraints. This calculation can be done before
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solving the model, and the fill rate estimates become coefficients for new artificial variables. The

procedure relies on the low-demand nature of spare parts demand, as each stocking level requires

its own set of linearized constraints, and the number of constraints in each set depend on the level

of demand that can be assigned to each location. As the model is an approximation through lin-

earization, the model often either overestimates or underestimates inventory, sometimes resulting

in non-optimal or infeasible solutions. They introduce a post-processing step to adjust the inven-

tory to optimal values given the final network design, while noting that the adjusted solution may

not be optimal to the original problem.

The Jeet et al. (2009) model tries to achieve system wide service level targets by setting

inventory levels at individual service centres, treating the fill rates as decision variables with a

variable substitution scheme. An outer approximation scheme is developed to eliminate infea-

sible solutions found by solving the problem with the fill rate variables, and an algorithm that

refines the approximation through iterations is presented. Lower bounds are found by solving a

special and separate lower bounding problem, while upper bounds are found by solving a relaxed

model with higher service levels than required. Both approaches seem to be tailored specifically

to the problem at hand, making their suitability for use on other problems questionable.

Gzara et al. (2013) linearize the backorder fill rates in a novel way, allowing a solution

to choose an inventory stocking level for a part only if the assigned demand for that part falls

within a precomputed range. The approach uses many more discretization points (100) than the

comparable work by Candas and Kutanoglu (2007), who settle on 10 as an effective number.

The large number of discretization points does not increase the number of constraints, which

appears to be useful in solving smaller problems quickly. However, the work does not include

any attempts at finding lower bounds, so the quality of the solutions cannot be measured on new

problems.

All of the literature reviewed in this section thus far has used approximation techniques or

heuristics to solve the integrated inventory-location problem with service levels at the part level

in a reasonable amount of time. In contrast, this thesis presents an exact methodology to solve

the same problems, and provides lower bounds to measure the quality of the solution found if the

19



optimal solution is not found within a computational time limit.

2.4.4 Problem Size and Computational Results

The size of problems that can be solved by state of the art techniques is a major factor in deter-

mining which methodology to use to solve a given problem. The scale of the industry problem

considered in Chapter 3 precluded the use of any of the models reviewed in this section, as they

consider only one to five parts simultaneously, and only in a single-echelon. Nevertheless, we

remain interested in solving integrated problems with multiple parts because industry problems

considered by practitioners are likely to involve a larger number of parts. As computational

power increases, practitioners can expect to be able to solve large integrated problems if they use

models that are shown to scale well with the number of parts.

The work by Candas and Kutanoglu (2007) considers instances with at 16 facility locations,

134 customers, and one part for most of the analysis, increasing the scale to four parts as a final

computational test. The gap between the best lower bound and best feasible solution is reported

as an optimality gap, a reasonable measure of the quality of the approximation. For the one part

problems, the smallest gap found ranges from 0% and 3%, with computational times of up to

1420 seconds. The size of the gap depends problem to problem on the number of pieces in the

step function, suggesting that each problem will have to be solved multiple times to find the best

solution. For the four part problems, computation times are reported to average 216 seconds, with

an maximum runtime of 6462 seconds. No optimality gap is reported for these larger instances,

so the quality of the solution could not be analyzed.

The work by Jeet et al. (2009) considers random instances with 15 locations, 50 customers

and one part, and industry based instances with up to 24 locations, 158 customers and one part.

The random instances appear to be more difficult to solve to optimality, as optimality gaps of

up to 11% are reported within the 900 seconds allowed for computation. The industry instances

are almost all solved to optimality (with a maximum gap of 3%), and all within the 900 seconds,

suggesting the problems themselves have an easier structure, likely based on the geographical lo-
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cation of facilities and customers. It is noteworthy that the models do not consider instances with

more than one part, and the difficulty of adding additional parts to the analysis is not addressed.

Finally, the work by Gzara et al. (2013) considers instances of three different sizes, with the

largest multi-part problems having 20 facility locations, 300 customer locations and five parts.

The computation time on these large problems averages five hours, but feasible solutions are

found where the comparable work by Candas and Kutanoglu (2007) fails by running out of

RAM when building the model. It is noteworthy that the model can find solutions to these large

problems, which are the largest considered by any comparable work, but without lower bounds

it is not possible to prove optimality or otherwise evaluate the quality of the solutions.

In contrast, the work presented in Chapter 4 considers problems with a similar number of

facility and customer locations, and up to 60 parts. Provably optimal solutions are found in many

instances, or small optimality gaps are reported. The ability of the model to scale with the number

of parts relies on a solution technique involving logic-based Benders decomposition, and a novel

restrict-and-decompose scheme that further decomposes the problem by part. Related techniques

are reviewed in the following section.

2.5 Logic-Based Benders Decomposition

Classic Benders decomposition requires that the problem can be partitioned into a mixed-integer

master problem and linear subproblem(s) (Benders (1962)). The master problem (a relaxation

of the original problem) is solved to optimality, and the subproblem(s) are used to determine

if the solution is feasible to the original problem. If not, Benders cuts are added sequentially

to the master problem to eliminate that solution from further consideration. The procedure is

guaranteed to converge to optimality.

More recently, logic-based Benders decomposition was introduced by Hooker (2000) and

further refined by Hooker and Ottosson (2003) as a generalization of classic Benders decompo-

sition. The principle is to decompose the problem into two sets of variables, x and y. The master

problem is solved once and the values of y in the solution are fixed. Subproblems are created
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based on the values of y that contain only the x variables. When these subproblems are solved,

an inference dual is used instead of the linear dual to generate cuts. These cuts are intended to

eliminate infeasible values of y and steer the master problem towards more promising values.

The Benders cut(s) are added to the master problem and the procedure is repeated iteratively. As

in traditional Benders decomposition, the algorithm is guaranteed to converge to optimality.

From this generalized procedure, Jain and Grossmann (2001) suggested an approach where

the cuts do not need to be generated with dual information. Instead, the Benders cuts have a

general structure, where knowledge of the underlying problem is used to make strong cuts. Chu

and Xia (2004) clearly define a valid cut as one that both eliminates the current master problem’s

solution (if it is infeasible to the original problem) and does not eliminate any solutions that

are feasible to the original problem. When using logic-based Benders decomposition, the valid

cuts cannot be generated from a template or by following a standard algorithm (Hooker (2007)).

Instead, the cuts must be tailored to the problem at hand, typically based on knowledge of the

underlying problem. Among other applications, logic-based Benders decomposition has been

used to solve problems in planning and scheduling (Jain and Grossmann (2001)), production

scheduling (Harjunkoski and Grossmann (2002)), transportation network design (Peterson and

Trick (2009)), and location and routing (Fazel-Zarandi and Beck (2011)).

When using logic-based Benders decomposition the subproblems also do not need to have a

specific form. The subproblems can be optimization problems (e.g. Jain and Grossmann (2001)),

constraint programming problems (e.g. Hooker (2005)), or simple feasibility problems (e.g Har-

junkoski and Grossmann (2002)). The form of the subproblem guides the creation of the cuts,

and when the subproblems are feasibility problems simple cuts exist (Hooker (2007)). In this

thesis, the initial decomposition creates inventory subproblems that are feasibility problems, so

simple feasibility cuts are proposed early in Chapter 4. However, practitioners must balance the

ease of computing cuts with their effectiveness (Fazel-Zarandi and Beck (2011)), and it is clear

the initial cuts proposed in Chapter 4 do no better than simple enumeration of the combinatorial

master problem. A significant contribution of this thesis is the design of valid and effective cuts

for two different integrated inventory and location problems, the first time logic-based Benders
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decomposition has been applied to this class of problems. The cuts are shown to be effective

by favourably comparing the logic-based Benders decomposition algorithms with the existing

approximate algorithms reviewed in the previous section.

The results from using logic-based Benders decomposition can be improved by including

subproblem relaxation constraints in the master problem (Bajestani and Beck (2011)). These

constrains are usually not found in the original model, but are instead added to the master prob-

lem in place of the constraints that were relaxed when initially decomposing the problem into a

master problem and one or more subproblems. In this thesis a useful set of subproblem relax-

ation constraints were found when solving the problem in Chapter 5 that improved the results

substantially. However, no useful constraints were found when solving the problem in Chapter 4.

Nevertheless, the computational results presented in that chapter are strong. Together these re-

sults suggest that some problems may benefit from finding subproblem relaxation constraints,

but that they are not always necessary when using logic-based Benders decomposition.

2.5.1 Multi-stage logic-based Benders decomposition

The performance of a logic-based Benders decomposition algorithm may depend on the relative

difficulty of the master problem and the subproblem(s) (Benini et al. (2008)). Research into

a multi-core processing scheduling problem led the team of Benini et al. (2008) to consider

multi-stage Benders decomposition. Their first attempt at decomposing the problem created a

relatively difficult master problem (allocating tasks to cores and allocating data to memory) and

relatively easy scheduling problems. The new approach described in the paper was to solve the

first allocation of tasks to cores as the master problem, with the data allocation and scheduling

problem combined acting as the subproblem. Once a candidate core assignment is found in the

master problem, they solve the subproblem by further decomposing it into a master memory

allocation problem and a scheduling subproblem. This approach is described as a recursive

logic-based Benders decomposition algorithm. Cuts created by solving the scheduling problem

are added to the data allocation problem, and the problems are solved iteratively until the optimal

solution is found for the particular task assignment. An optimality cut is then added to the core
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allocation problem to prohibit the current task assignment to cores, and the top level master

problem is solved again to find a new candidate assignment in a recursive fashion. To the best of

our knowledge, their work is the only attempt at multi-stage logic-based Benders decomposition

in the literature.

To improve the results of the logic-based Benders decomposition algorithm introduced in

Chapter 4, this thesis introduces a novel restrict-and-decompose scheme that is comparable to

the multi-stage Benders approach used by Benini et al. (2008), but substantially different. In our

case, the large and difficult master problem is relaxed further by relaxing integrality constraints

on the set of demand allocation variables. The relaxed master problem is first solved to find a

candidate location assignment, and then the candidate solution is used to restrict and decompose

the customer assignment and inventory subproblems. If any of the customer assignment subprob-

lems are found to be infeasible, a cut is added to the master problem to eliminate the location

configuration from consideration. If a solution to the customer allocation problem is found, the

third step is to check the feasibility of the inventory subproblems. After Benders cut(s) are added

to the customer allocation problem, a unique procedure is used to determine whether to return to

the top level and solve the relaxed master problem again, or return to the second level and resolve

a set of restricted problems. We believe this restrict-and-decompose scheme is a novel approach

to multi-stage decomposition with the potential for broad application on other decomposable

problems.
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Chapter 3

Industry Problem: Large Scale

Inventory-Location Problem
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3.1 Introduction to the Industry Problem

In this chapter we explore a large network design problem faced by a real aerospace company.

The problem involves locating service centres and hubs around the world to support the after mar-

ket spare parts business of Bombardier Aerospace (BBD). The service centres must be stocked

with thousands of different airplane parts to satisfy orders arising from regular maintenance and

emergency part failures. While Bombardier has an existing spare parts distribution network,

they are planning to expand in anticipation of growing global demand and want to use the op-

portunity to redesign the network if appropriate. This chapter describes the problem in detail,

the modelling approach used to solve it, and the financial impacts of redesigning the spare parts

network.

In 2009, the company launched a project to examine its spare parts distribution network

with the following goals: conduct an analysis of the existing spare parts distribution network;

analyze the costs and benefits of opening new hub and depot locations and whether existing

depots should continue to operate; examine the costs and benefits of opening new distribution

centres and hiring new inspection teams; determine inventory levels and associated customer

service levels for the distribution network noted above; and compare alternative network designs

on the basis of customer service levels, as well as global inventory, transportation and operating

costs. The project was managed by Bombardier’s Service Parts Logistics department.

This chapter contains some material that was submitted in an industry report to Bombardier

Aerospace in partial fulfillment of a research contract between the author and the company. This

chapter also shares some material with a manuscript that will be submitted to the academic

journal Interfaces.

3.2 The Distribution Network

Bombardier currently has two types of distribution centres, internally known as hubs and depots.

In 2009, there was only one hub in Bombardier’s spare parts supply chain, located in Chicago.
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Inspection teams working at the hub are responsible for certifying all parts as air-worthy and

saleable. For safety reasons, the aircraft spare parts industry is heavily regulated. Prior to being

delivered to a customer, every part must be inspected by a quality inspection team that is certified

by the federal aviation authorities. This inspection is required whether the part is manufactured

by the company, received from a supplier, or is repaired and put back into service. To meet

this requirement, the company currently routes all new or repaired parts through its main parts

distribution centre in Chicago, regardless of where in the world the part was sourced. Once

certified, parts are then shipped to customers or deployed to other distribution centres.

All other distribution centres are known as depots. Depots are locally operated by third

parties. They receive shipments from Chicago, hold spare parts inventory, and ship parts to

customers. They do not receive shipments from suppliers or process returns from customers nor

do they redeploy inventory to other depots. These functions are reserved for the Chicago hub.

Figure 3.1: Sample Distribution Network

Bombardier uses air freight as their main mode of transportation for the receipt and deliv-

ery of aircraft spare parts. See Figure 3.1 for a portion of the Bombardier distribution network.

Bombardier acquires many of its parts from suppliers that are located throughout the world.

Bombardier also produces many proprietary parts in North America and Europe. Bombardier
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suppliers range from small regional companies to massive international conglomerates. Bom-

bardier pays the freight charge for all inbound shipments from suppliers, providing an incentive

to locate hubs near supplier locations. Some suppliers also have repair facilities for cores (rota-

bles). After Bombardier receives a returned core at a hub, they send the core to a repair facility

at their own expense. This provides another incentive to locate hubs near supplier locations. If

Bombardier receives an emergency order from a customer and does not have inventory on hand,

Bombardier will contact the supplier and ask for an emergency part delivery. If the supplier has

inventory, the supplier will then send an expedited shipment directly to the customer, by-passing

the Bombardier distribution network.

Bombardier’s customers consist of commercial aviation companies and private aircraft op-

erators. Both commercial and private customers have operations in regions around the world.

Demand for aircraft and aircraft parts is expected to trend eastwards and grow faster in Europe,

the Middle-East, Asia and Africa than in North America over the next few decades. This chang-

ing customer demand is driving Bombardier’s desire to expand their international distribution

network. Customers typically pay for the delivery of parts from Bombardier’s hubs and depots

to the customer (or aircraft) location.

All aircraft need regular maintenance and part replacement. Aircraft parts are also known

to fail randomly, often requiring immediate replacement. Both commercial airlines and private

operators will place orders for parts they need after unexpected failure. Demand for aircraft

spare parts falls into two categories: regular replenishments, and critical orders to relieve an

aircraft on ground (AOG) situation. Some airline companies and customers keep their own stock

of spare parts, and will place replenishment orders with Bombardier when their inventory runs

low. These orders occur regularly in large batches and are typically for a small set of common

parts. These orders are also relatively easy to forecast and inventory is easier to manage. On

the other hand, critical orders for a single spare part are typically infrequent and sporadic. This

type of demand is naturally hard to forecast, but customers would like critical orders to be filled

promptly, ideally within hours of placing the order. Many customers have negotiated contracts

that determine the expected service level when they place critical orders. Bombardier also sets
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its own service levels, based on perceived industry standards.

3.3 Modelling and Assumptions

After testing some of the methods in the literature review and evaluating the possibility of includ-

ing complicated industry-specific assumptions, the integrated approach discussed in the literature

review was rejected. The scale of the Bombardier problem, in terms of number of facility loca-

tions, customers and parts, is substantially larger than any multi-echelon model found in the

literature. Furthermore, the prospect of finding a near optimal solution through the iterative use

of scenarios while solving a sequential model was promising.

To model the problem using a sequential approach, the problem was divided into two sets

of strategic decisions. The first set of decisions was the locations of hubs and depots, and the

assignment of customers to the distribution centres. These decisions were modelled as a multi-

echelon network design problem. The second set of decisions was the inventory stocking levels

to be maintained at each location. This chapter of the thesis focuses on the first set of decisions,

the facility location and customer assignment decisions. A secondary model was also designed

to optimize the inventory stocking levels to meet customer service targets for any given network.

However, the inventory model was only intended to give a rough estimate of inventory holding

costs, and did not replace the inventory planning tool in use at Bombardier. This hierarchi-

cal approach allowed Bombardier to make informed decisions as to which network design best

supports their strategic goals, and then decide later what inventory levels will provide the best

trade-off between inventory and customer service levels.

The scope of the project was the global service parts network for all Bombardier service

parts. Due to the broad scope and amount of data available to the project team, some simplifying

assumptions were made to make the problem tractable.
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3.3.1 Input Assumptions

Many of Bombardier’s current and proposed facility locations are required to meet customer

commitments or other strategic considerations. Chicago will remain the North American hub,

while the Frankfurt depot is expected to expand into a hub with an inspection team within a

few years. The leadership team made a strategic decision to open a hub in Asia-Pacific, even

if it is shown that it is cheaper to operate without one. Bombardier recognizes that many of

their customers either fly to or are located in the Asia-Pacific region (especially Australia, Japan,

China and India). Many of the scenarios the project team studied required a hub in the region to

support this goal.

In Bombardier’s current distribution network, approximately 90% of parts are sourced from

suppliers located in North America, and all parts are currently accepted into the network at the

hub in Chicago. If Bombardier opens new hubs with certified inspection teams, the new hubs

will also be available to accept inbound shipments. Some of Bombardier’s suppliers operate

distribution centres around the world, implying that there are multiple potential sources for the

same part. It is therefore possible that in the future Bombardier will realize freight savings

by having suppliers located in Europe or Asia ship directly to the new hubs. However, this

possibility was discounted in the model studied in this thesis. The project team did not have

enough data about the location of potential suppliers to consider the benefit appropriately. It was

assumed that all parts will continue to be provided by the current suppliers from their current

locations.

The company has a list of past customer orders, including the customer and location of the

order itself. Some of Bombardier’s customers operate their fleets around the world, and order

parts for aircraft wherever the part is needed. As a result, the project team chose to aggregate

demand geographically by country, instead of customer, in order to better position the depots.

For the remainder of this thesis, the term customer is synonymous with country, and the demand

point of a country was assumed to be located at the capital city of each country.

The leadership team wanted to ensure the service parts network would be able to support
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a growing and migrating fleet of customer aircraft. Many European and Asian customers are

buying new planes, or relocating planes to those regions. The fleet growth projections attempted

to forecast the spare parts demand in five years by country and by aircraft model, and some

scenarios were run with these enhanced demand forecasts. The final recommendations are based

on both current and future demand estimates.

There is a system-wide inventory holding cost in use at Bombardier, stated as an annual

percentage of the part’s value that represents the cost of insuring and storing inventory, and

managing obsolescence. This annual holding cost was adjusted at each potential location based

on the perceived stability of the economic region, risk of natural disasters, and political risk.

Certain depots are located in countries where bi-lateral trade agreements are not in place with

the United States, preventing free movement of parts. In extreme cases, Bombardier is not able

to export parts from depots once they have been imported without incurring large fees or customs

delays. The model has included these risks and time delays into two components of the model.

The first is the adjusted holding cost, as mentioned above. The second is to not allow customers

outside of these high-risk countries to be assigned to depots located inside of the country, due to

the risk the parts will not be shipped out in time to meet critical orders.

3.3.2 Problem Description

Consider a more formal problem description: we are given a set of parts, suppliers and customer

demand points with two sets of service level policies. We are also given a set of current and

potential sites for distribution centres (hubs and depots). The objective is to choose facility loca-

tions and inventory stocking levels for all parts that meet total customer demand in accordance

with service level targets, at a minimum total cost.

The chosen approach was to decompose the problem into two parts. The main problem

is a two-echelon network design problem, which involves choosing the optimal collection of

hubs and depots, and then assigning the customers to the distribution centres. The goal is to

minimize the cost of operating the distribution centres and transporting the parts to customers.
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The mathematical model is presented in the next section.

3.3.3 Optimization Model - Basic Network Design Problem

Bombardier’s spare parts supply chain is represented by a network of nodes and arcs. The nodes

represent locations in the distribution network, and the arcs represent transportation lanes be-

tween locations. Some of the arcs have associated costs and transit times, while some of the

nodes have associated fixed costs. Let I represent the set of suppliers, let J represent the set of

potential hub locations, let K represent the set of potential depot locations, let L represent the set

of customers and let P represent the set of parts. The set of hub and depot locations cover the

same set of locations, i.e. J = K. At any given location, only a hub or a depot may be opened,

not both. Inventory can be held at hub and depot sites. No inventory is held at either supplier or

customer locations.

Define five sets of arcs as follows:

• (i, j) representing inbound shipment lanes from suppliers to hubs for all i ∈ I, j ∈ J,

• ( j, j′) representing transshipment lanes from hubs to other hubs for all j ∈ J, j′ ∈ J, j 6= j′,

• ( j,k) representing transshipment lanes from hubs to depots for all j ∈ J,k ∈ K,

• ( j, l) representing transportation lanes from hubs to customers for all j ∈ J, l ∈ L,

• (k, l) representing transportation lanes from depots to customers for all k ∈ K, l ∈ L.

Flow on the arcs represents the movement of parts through the distribution network. Each

unit of flow for a part represents the movement of one base unit of measure (defined by part).

For each arc, let:

• ci jp represent the unit transportation cost from supplier i ∈ I to hub j ∈ J for part p ∈ P,

• c j j′p represent the unit transportation cost from hub j ∈ J to hub j′ ∈ J, j 6= j′ for part

p ∈ P,
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• c jkp represent the unit transportation cost from hub j ∈ J to depot k ∈ K for part p ∈ P.

Also let f j represent the annualized fixed cost of operating hub j ∈ J, and fk represent the

fixed cost of operating depot k∈K. There are no cost coefficients in the base model for shipments

to customers because customers pay for their own shipments.

Let τ jl represent the transportation time from hub j ∈ J to customer l ∈ L, and τkl represent

the transportation time from depot k ∈ K to customer l ∈ L. To meet the time-based service level

constraints, each customer l ∈ L must be serviced within a ωl hour window. As a pre-processing

step, all arcs ( j, l) such that τ jl > ωl and all arcs (k, l) such that τkl > ωl are deleted. This

ensures that hubs and depots are only assigned demand from customers they can service within

the service time window.

Finally, let dl p represent the monthly demand rate of part p∈P from customer l ∈ L, recorded

in base unit of measure per month. The demand rates were estimated using a 24-month historical

forecast provided by the spare parts forecasting team at Bombardier.

Define the following decision variables:

• y j = 1 if hub j ∈ J is open, 0 otherwise,

• yk = 1 if depot k ∈ K is open, 0 otherwise,

• xi jp to represent the monthly flow of part p ∈ P from supplier i ∈ I to hub j ∈ J,

• x′j1 j2 p to represent the monthly flow of part p ∈ P from hub j1 ∈ J to hub j2 ∈ J, j1 6= j2,

• x′′jkp to represent the monthly flow of part p ∈ P from hub j ∈ J to depot k ∈ K,

• x′′′jl p to represent the monthly flow of part p ∈ P from hub j ∈ J to customer l ∈ L,

• x′′′′kl p to represent the monthly of flow of part p ∈ P from depot k ∈ K to customer l ∈ L.

Now the basic model can be formulated as a linear cost minimization problem:
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[FLP] min
∑

i∈I, j∈J,p∈P

ci jpxi jp +
∑

j1∈J, j2∈J,p∈P

c j1 j2 px′j1 j2 p

+
∑

j∈J,k∈K,p∈P

c jkpx′′jkp +
∑
j∈J

f jy j +
∑
k∈K

fkyk (FLP)

s.t.
∑

j1∈J, ji 6= j

x′j j1 p +
∑
k∈K

x′′jkp +
∑
l∈L

x′′′jl p =

∑
i∈I

xi jp +
∑
j∈K

x′j1 jp j ∈ J, p ∈ P (3.3.1)

∑
j∈J

x′′jkp =
∑
l∈L

x′′′′kl p k ∈ K, p ∈ P (3.3.2)

∑
j∈J

x′′′jl p +
∑
k∈K

x′′′′kl p = dl p l ∈ L, p ∈ P (3.3.3)

M jy j ≥
∑

i∈I,p∈P

xi jp j ∈ J (3.3.4)

M jy j ≥
∑

j1∈J,p∈P

x′j1 jp j ∈ J (3.3.5)

Mkyk ≥
∑

l∈L,p∈P

x′′′′kl p k ∈ K (3.3.6)

y j + yk ≤ 1 j ∈ J,k ∈ K; j = k (3.3.7)

Yj ∈ {0,1} j ∈ J (3.3.8)

Yk ∈ {0,1} k ∈ K (3.3.9)

xi jp ≥ 0 i ∈ I, j ∈ J, p ∈ P (3.3.10)

x′j1 j2 p ≥ 0 j1, j2 ∈ J, p ∈ P (3.3.11)

x′′jkp ≥ 0 j ∈ J,k ∈ K, p ∈ P (3.3.12)

x′′′jl p ≥ 0 j ∈ J, l ∈ L, p ∈ P (3.3.13)

x′′′′kl p ≥ 0 k ∈ K, l ∈ L, p ∈ P (3.3.14)

The big-M constraints set M j or Mk equal to the largest total demand that can be assigned

to the relevant hub j ∈ J or depot k ∈ K. Constraints (3.3.1) and (3.3.2) are the hub and depot
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balance constraints. Constraints (3.3.3) ensure that demand is satisfied. Constraints (3.3.4),

(3.3.5) and (3.3.6) require that flow only pass through open hubs and depots. Constraints (3.3.7)

ensures that a hub and depot do not open in the same location.

3.3.4 Modelling Decisions and Extensions to Network Design Model

With the volume of available input data (86,000 SKUs) it is appropriate to aggregate parts into

families that have similar characteristics, such as source of supply, cost and weight, to reduce

the computational burden. The project team chose to group the parts in this way because it was

anticipated that these three factors would have the biggest impact on how parts are distributed

across the network. The country from which parts are sourced will largely determine which hub

receives inbound shipments from suppliers. The cost and weight of the part will influence the

most important transportation decision the model makes: whether to make direct or consolidated

shipments. Based on this aggregation, the model captures 178 different parts families rather than

86,000 unique SKUs.

The project team estimated future facility costs based on a two tier model. Smaller depots

that handle less than 36,000 lines a year (customer orders) are considerably cheaper than larger

depots that handle more then 36,000 lines a year. This model represents Bombardier’s plan to use

a third party logistics company to manage a small depot, but invest in purchasing and managing

their own distribution centre should they require a larger one. As a result, two smaller depots are

expected to be less expensive to operate than one larger one that manages 36,000 to 60,000 lines

a year.

To capture many of the factors affecting the Bombardier problem, the basic network design

model was enhanced. These enhancements involve the introduction of new decision variables

and constraints, which are examined in the following section. The complete model is comprised

of all of these extensions combined with the basic model presented in the previous section.
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Inventory Considerations and Consolidated Shipments

Consolidated shipping was a major factor in the analysis. Consolidated shipping occurs regularly

within the Bombardier network when the company makes transshipments from hubs to depots.

In the redesigned network with multiple hubs, Bombardier may reduce costs by shipping from a

supplier to a local hub and then sending a consolidated shipment to another hub versus shipping

directly from the supplier to the second hub. However, the option to use consolidated shipments

between hubs will require a higher inventory investment in both hubs. The first hub will accu-

mulate inventory as it prepares to send a consolidated shipment. The larger the shipment, the

cheaper the shipment will be per kilogram, but the more inventory will accumulate. The sec-

ond hub will also carry more inventory, as its effective part lead time is higher (the parts do not

arrive directly from a supplier, but instead wait for the consolidated shipment at the first hub).

This process could add days to the part lead time at the second hub, and necessarily increase the

inventory investment.

When using consolidated shipping, Bombardier must stage inventory in preparation for trans-

port. This inventory is not normally available to fill customer orders and could be physically sep-

arated from other inventory. Naturally, this staged inventory incurs holding cost just like regular

inventory. The amount of staged inventory depends on the frequency of shipments between dis-

tribution centres, so the total holding cost depends on the frequency of shipments. More frequent

shipments decrease part lead time and lead to lower holding costs for the staged inventory, but

incur higher shipping costs. The shipping costs are higher because the freight expediters have a

rate schedule with minimum fees and a graduated cost per kilogram. As a result, larger shipments

cost less per kilogram than smaller shipments and it is cheaper to ship a fixed quantity of parts as

one large shipment than over many smaller shipments. The mathematical model was enhanced

to consider different shipment frequency options. These details are found in Appendix A.1.
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Assigning Customers to the Closest Distribution Centre

In Bombardier’s current distribution model customers pay for all part shipments and there is no

direct monetary incentive for Bombardier to locate its depots close to customers. In the first

iteration of solving the network design problem, the project team discovered that the optimal so-

lutions only opened a minimal number of locations and avoided redeploying inventory to depots

close to customers. This result was not seen as desirable by the leadership team as customer

service is an important aspect of Bombardier’s service parts division. Locating depots close to

customers should provide fast response times to customers and lead to stronger customer rela-

tions. Hubs located close to customers could also allow for faster processing of returns (as returns

must pass through a hub) and a decrease in core repair turnaround time. In the balance, opening

more distribution centres close to customers may result in higher operating costs for Bombardier,

but the proximity is seen to be a competitive advantage. The details are in Appendix A.2.

Subsequent attempts to solve the problem also included the possibility of Bombardier paying

for customer shipments to see the effect on the optimal network. New cost coefficients are

required in the model to capture these shipping costs. Let c jl p represent the unit transportation

cost from hub j ∈ J to customer l ∈ L for part p ∈ P, and let ckl p represent the unit transportation

cost from depot k ∈ K to customer l ∈ L for part p ∈ P. Then we add the following customer

shipping costs to the objective function:

∑
j∈J,l∈L,p∈P

c jl px′′′jl p +
∑

k∈K,l∈L,p∈P

ckl px′′′′kl p (3.3.15)

if the total cost of transportation and shipping costs to customers is desired.

Black Hole Countries

Due to export or other customs restrictions, it can be expensive or time-consuming to ship foreign

parts out of a country after having previously imported them. In other words, once Bombardier

ships a part into a country with export restrictions, it cannot ship that part to a customer located
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in another country. These countries are colloquially referred to as black hole countries.

For Bombardier’s purposes, define Brazil, China, Russia and India as black hole countries.

This isn’t to say that every company will have difficulty exporting parts from these countries,

but Bombardier has found that the cost (in terms of time or money) of exporting a foreign part

from these countries is prohibitive. The black hole conditions are enforced with the following

constraints:

∑
l 6=Brazil

x′′′′SauPaulo,l p ≤ 0 (3.3.16)

∑
l 6=China

x′′′′Bei jing,l p + x′′′′Shanghai,l p + x′′′′Guangzhou,l p ≤ 0 (3.3.17)

Finally, the closest distribution centre assignment rule is relaxed for all black hole countries.

That is, for any pair of distribution centres that includes a depot located in a black hole country

or for any customer located in a black hole country, the constraints from the previous section are

removed.

Lead-time Demand and Single Sourcing

The concept of lead-time demand is important for calculating inventory levels: for any given

location, the lead-time demand of a part is the part lead time multiplied by the demand assigned

to that location. In other words, it is the actual order quantity of that part between the time a given

replenishment order is placed and the time the replenishment is received. Each depot requires

sufficient safety stock to meet the lead-time demand αkp% of the time in order to achieve an

αkp% service level.

The lead-time demand of a part at a given location depends on two factors:

1. the part demand assigned to that location from customers (and replenishment orders from

other locations)

2. the lead-time of that part for that location
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The decision of where to source a part is thus an important factor in determining the lead-time

demand of a part. Sourcing refers to the flow of parts through the network: a hub j ∈ J sources

part p ∈ P from supplier i ∈ I if and only if xi jp > 0. There are three main sourcing decisions

that add to the difficulty of the original problem:

1. For every hub j ∈ J and part p ∈ P, for which values of i ∈ I is xi jp > 0, and for which

values of j′ ∈ J is x′j j′p > 0?

2. For every depot k ∈ K and part p ∈ P, for which values of j ∈ J is x′′jkp > 0?

3. For every customer l ∈ L and part p ∈ P, for which values of j ∈ J is x′′′jl p > 0 or for which

values of k ∈ K is x′′′′kl p > 0?

The customer sourcing decision is actually the easiest one to manage. The model can handle the

assignment of customer demand to depots with linear constraints. That is, a customer could have

its demand assigned to multiple depots without adding significant computational burden to the

model.

To simplify the network design model, we assume that all hubs have a single supplier, and all

depots are automatically assigned to their regional hub if it is open, or the closest hub otherwise.

That is, assume that each depot k ∈ K sources part p ∈ P from a single source, namely a hub

j ∈ J. Similarly, assume each hub j ∈ J has a unique source for part p (either another hub j′ ∈ J,

or a supplier i ∈ I). The constraints that govern single sourcing are covered in Appendix A.3

Line Counts and Piece-wise linear Facility Costs

To accurately estimate facility costs, customer demand is translated into a number of order lines.

These lines are distinct from the marketing concept of product lines. Each order line represents

a certain quantity of one part, which may change from order to order. Each line appears as one

line on an invoice, hence the term line. For example, one order line may be for 500 rivets, or for

one engine nacelle. Lines are used as a measure of distribution centre workload, as each order

line is estimated to take a similar amount of time and effort to fill. Thus, the model must use

lines to accurately estimate total distribution centre costs.
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There are three classes of orders in the distribution network: supplier orders, transshipment

orders and customer orders. When Bombardier places a re-order with a supplier, this creates a

supplier order line (for each part ordered). When a hub or depot places a replenishment order

with a hub, this creates a transshipment order line. When a customer places an order, this creates

a customer order line. Each of these three classes of order lines is likely of a different size,

even for the same part. That is, Bombardier’s re-order quantity for part p is likely different than

the quantity ordered by any one customer. For example, Bombardier may order batches of 5000

rivets from its supplier. This means that one supplier order line for this part represents 5000 rivets.

Bombardier may send transshipments to a service centre in sizes of 1000 rivets to refill inventory

there. This means that a transshipment order line represents 1000 rivets. Finally, customers may

order rivets in batches of 200. This means that one customer order line represents 200 rivets.

The actual values are estimated using averages of many orders for the same parts. Using these

average order quantities, the number of lines moving through the distribution network can be

estimated.

The new variables and constraints required to manage line counts are introduced in Ap-

pendix A.4.

Quality Assurance Costs

It is assumed that if Bombardier opens a hub, they must hire a quality inspection team of size

at least 4.35 full-time equivalent (FTE) staff (based on proprietary Bombardier calculations).

This minimum staff team can be expected to inspect approximately 50,000 lines a year, based

on current workload calculations at Chicago. It is also assumed that beyond the fixed cost of

hiring the minimum staff, there is a variable cost for inspecting each line above the 50,000 a year

threshold, representing the cost of hiring a larger staff. The details are in Appendix A.5
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3.3.5 Complete Location Problem Model

The complete Bombardier Location problem is presented in this section, enhanced with the con-

straints described in the previous sections. The objective function now includes the variable costs

of handling order lines at the distribution centres, and the cost of quality inspection. The con-

straints include the original demand and facility location constraints, as well as the constraints

required for consolidated shipping, the closest distribution centre rule, black holes, single ser-

vice, and line count management.

[FLP-2] min
∑

i∈I, j∈J,p∈P

ci jpxi jp +
∑

j1∈J, j2∈J,p∈P

c j1 j2 px′j1 j2 p

+
∑

j∈J,k∈K,p∈P

c jkpx′′jkp +
∑
j∈J

f jy j +
∑
k∈K

fkyk

+
∑
j∈J

8∑
b=1

m jbΛ
h
jb +

∑
k∈K

8∑
b=1

mkbΛ
d
kb +

∑
j∈J

0.4qa j(Lh
j −50000)+

s.t. (3.3.3)− (3.3.7)

(A.1.6)− (A.1.21)

(A.2.3)− (A.2.11)

(3.3.16)− (3.3.17)

(A.3.2),(A.3.4),(A.3.5)

(A.4.1)− (A.4.4),(A.4.7)− (A.4.12)

(3.3.8)− (3.3.14)

3.4 Scenarios and Solution Methodology

The multi-echelon network design problem [FLP-2] was solved several times with different sets

of constraints, which are referred to as scenarios. The scenarios were designed by Bombardier’s

leadership team to support strategic decisions relating to the design of the spare parts logistics
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network. Scenarios were defined by (a) restrictions on the number and location of potential hub

and depot sites, and (b) whether or not Bombardier’s customers pay for customer shipments.

Throughout the course of the project, over thirty different scenarios were modelled and solved.

Seeing the results of these scenarios gave Bombardier a range of solutions to choose from, which

could be evaluated based on qualitative considerations that are difficult to model.

The scenarios chosen for presentation to the executive team are shown in Table 3.2. All sce-

narios in this table required at least 3 hubs, one in each region identified in Table 3.1. Scenario

1 stands out as being the only scenario where the customer shipping cost (as paid by the cus-

tomers) is ignored by the objective function of the model. Scenarios 2-5 include the customer

shipment costs in the objective function. They are differentiated by a small list of depots which

are required to be open or closed as scenario inputs. For example, Scenario 3 requires that Narita

is closed, but Johannesburg and Ft. Lauderdale are open.

Each scenario was modelled as a Mixed Integer Program (MIP), implemented in GAMS1

and solved using CPLEX version 11. Each scenario had a similar structure and data inputs. In

this way, the project team was able to run a number of scenarios from the core model designed

to represent Bombardier’s distribution network.

The project team agreed to accept a distribution network solution with an optimality gap of

1%. Finding a better solution naturally requires a heavy computational burden, for a diminishing

rate of improvement in the quality of the solution.

3.4.1 Disaggregation and Inventory Stocking Levels

Once the multi-echelon network design problem is solved with part families, the next step is

to disaggregate the parts for accurate inventory calculation. Each aggregated set of parts is as-

signed a set of transportation routes by the multi-echelon network design solution, which is then

assigned to each individual part in the group. This way, each unique part inherits a transportation

route from its supplier through the network of hubs and depots to the customers that demand this

1the product name stands for General Algebraic Modeling Software
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Figure 3.2: Final Scenario Inputs
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part. This distribution network is used to calculate the required inventory levels for each part.

Without disaggregation, the final inventory estimates would be very inaccurate.

It should be noted that the combined costs to support the network and inventory levels is

likely not globally optimal. Recall the original multi-echelon network design and inventory

problem was a very large and intractable problem, which was decomposed in order to solve

in a reasonable amount of time. The price of decomposition is an optimality gap: when the

multi-echelon network design problem is solved first, followed by the calculation of the optimal

inventory levels, the total cost of inventory is ignored when determining the optimal network.

The result is a network that may require more inventory than the globally optimal network. In

particular, one might expect the optimal solution to the multi-echelon network design problem

to choose a network with low transportation costs, ignoring the effect of long lead times on

inventory.

That being said, it is expected that the supplier lead times will be correlated with their trans-

portation costs. That is, local suppliers will normally have both shorter transportation times and

lower transportation costs compared to suppliers located on a different continent. Note that only

a small portion of the supplier lead time is taken up by actual transportation time. Thus, it is

anticipated that the optimal solution to the multi-echelon network design problem will provide

a network with low inventory costs as well. Furthermore, the use of scenarios allows us to see

the optimal solutions arising from different network configurations, which may lead to finding a

better solution compared to just solving the problem once.

3.5 Inventory Stocking Problem

Bombardier sets minimum fill rates for each part at every location that meets their stocking

criteria. Some parts are ordered so infrequently that Bombardier does not keep them in stock;

the risk of not selling the part at all is too high to justify holding inventory. Other parts are

ordered more frequently, but not often enough to justify stocking in the regional depots. All parts

that meet the minimum demand level (depot stocking criteria) are stocked in depots wherever
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there is demand. Once it is decided that a part meets the stocking criteria, Bombardier enforces

a minimum availability rate for each part.

In addition to service level targets set by part, Bombardier sets service level targets at the

program-location level, where a program represents parts common to a class of aircraft. Bom-

bardier sets the program-location fill rate targets to be higher than most individual part fill rates.

As a consequence, the optimal inventory stocking levels for some parts will be higher than re-

quired by their individual part fill rates.

In order to solve the inventory model, the solution to the multi-echelon network design prob-

lem is required as an input. Service level targets for both parts and program-locations are also

required, as discussed above. Each hub and depot must maintain a minimum part availability

rate, while also meeting the service level targets. When these two conditions are combined, it

is assumed that the overall AOG fill rate will be close to the company target (allowing for some

misses due to delays in export, shipment and customs processing times).

Safety stock inventory formulae are used to calculate the required stocking levels of every

part at every location from the forecasted customer demand and the lead time determined by the

distribution network. The total inventory costs are then added to the network design costs to

determine the total system costs for the scenario.

3.5.1 Inputs

In order to formulate the inventory model, the solution to the network design problem is required

as an input. In this section, assume there are fixed values for (y j,yk,xi jp,x′j j′p,x
′′
jkp,x

′′′
jl p,x

′′′′
kl p) for

all i ∈ I, j, j′ ∈ J,k ∈ K, l ∈ L, p ∈ P.

Now consider the following lead-times as inputs:

• τi j : Transportation time from supplier i ∈ I to hub j ∈ J,

• τ j j′ : Transportation time from hub j ∈ J to hub j′ ∈ J, j 6= j′,

• τ jk : Transportation time from hub j ∈ J to depot k ∈ K.

45



The holding cost rates for stocking inventory are given:

• h jp : Holding cost in $ per unit per month for part p ∈ P at hub j ∈ J,

• hkp : Holding cost in $ per unit per month for part p ∈ P at depot k ∈ K.

Finally, service level targets are given as an input. For now, assume each part-hub combo

( j, p) must provide an α jp% availability rate, and each part-depot (k, p) combo must provide an

αkp% availability rate. That is, each hub (respectively depot) must be able to immediatley satisfy

α jp% (resp. αkp%) of customer orders assigned to it for each individual part. As well, to maintain

support for Aircraft on Ground (AOG) situations, Bombardier insists that every customer l ∈ L

is serviced by a hub depot less than ωl hours away. When these two conditions are combined, it

is assumed that the AOG fill rate will be close to α jp% (resp. αkp%).

The inventory stocking portion of the problem will determine how many units of each part to

stock at each location. Under the assumption of an (S,S−1) base stock ordering policy, define

the following integer variables:

• s jp : the quantity of part p ∈ P held as base stock in hub j ∈ J,

• skp : the quantity of part p ∈ P held as base stock in depot k ∈ K.

Volume-based Service Levels

Bombardier sets the service levels targets α jp and αkp based on the relative demand volumes

of the parts at each location. For each hub-part combination, all parts are ranked and only the

top 20% by volume are given the highest service level target. The next 40% are given a middle

service level target, and the lowest 40% are given the lowest service level. These rankings can be

calculated after solving the FLP but before solving the inventory problem. The values of α used

for service level targets are found in a proprietary table, and are fixed.
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3.5.2 Lead-time Demand

The depot sourcing decisions directly affect the amount of inventory being held in depot k. It was

assumed that x′′jkp > 0 for only one hub j ∈ J (in other words, that hub j is the unique supplier of

part p to depot k), so the lead time demand at each depot can be calculated exactly based on the

solution to the network design problem. The lead-time demand of part p ∈ P at depot k ∈ K is

defined as

λkp =
∑

j:x′′jkp>0

τ jk

∑
l∈L

x′′′′kl p (3.5.1)

If the only hub for which x′′jkp > 0 is denoted as j0 ∈ J, then the first summation of the equation

will only have one term: τ j0k.

Similarly for the hub sourcing decisions, given a hub j ∈ J and p ∈ P, we assumed that only

one of xi jp or x′j j′p is greater than 0 for all values of i ∈ I, j ∈ J, so the lead-time demand of part

p at hub j is defined as

λ jp =


τi j

(∑
k∈K

x′′jkp +
∑
l∈L

x′′′jl p

)
if xi jp > 0 for some pair (i, j)

τ j′ j

(∑
k∈K

x′′jkp +
∑
l∈L

x′′′jl p

)
if x′j′ jp > 0 for some pair ( j′, j)

(3.5.2)

After solving the network design problem in the previous section, the optimal solution (x∗,y∗)

determines λkp and λ jp explicitly. This makes solving the subsequent inventory problem much

simpler, as discussed below.

3.5.3 Service Level Constraints

Bombardier sets minimum fill rates for each part p∈P, at every location that meets their stocking

criteria. To enforce these minimum fills rates, service level constraints are required for each part

at each location. Bombardier uses two different assumptions for the distribution of spare parts

demand, depending on the forecasted volume of the part. If the lead-time demand for a part p is

less than 10 units at any given location (depot k or hub j), the planners assume that the demand
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is Poisson distributed with mean λkp and λ jp respectively.

Poisson Demand

Assuming demand is Poisson distributed, let λ̃kp represent the random variable corresponding to

the actual amount of demand experienced at depot k ∈ K during the lead-time demand for part

p ∈ P. Using an (S,S−1) base stock ordering policy, define the actual service level achieved as:

β
(
λkp,Skp

)
= Pr

(
λ̃kp ≤ Skp−1

)
∀k ∈ K, p ∈ P (3.5.3)

Naturally, β
(
λkp,Skp

)
≥ αkp is required to achieve the service level target at depot k for part

p. This can be enforced with the following constraints:

Pr
(

λ̃kp ≤ Skp−1
)
≥ αkp ∀k ∈ K, p ∈ P (3.5.4)

Similarly for hubs, let λ̃ jp represent the random variable corresponding to the actual amount

of demand experienced at hub j ∈ J during lead-time demand for part p ∈ P. Using an (S,S−1)

base stock ordering policy, define the actual service level achieved as:

β
(
λ jp,S jp

)
= Pr

(
λ̃ jp ≤ S jp−1

)
∀ j ∈ J, p ∈ P (3.5.5)

Again, β
(
λ jp,S jp

)
≥ α jp is required to achieve the service level target at hub j for part p, giving

the following constraints:

Pr
(

λ̃ jp ≤ S jp−1
)
≥ α jp ∀ j ∈ J, p ∈ P (3.5.6)

Normal Demand

On the other hand, if the lead-time demand for part p at any given location (depot k or hub j)

is greater than 10, the planners assume that demand is Normally distributed, with mean λkp and
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λ jp respectively. The standard deviation of demand for part p is denoted σp. Given a solution

(x∗,y∗) to the network design problem, the portions of σkp and σ jp of σp that are allocated to

each depot k ∈ K and hub j ∈ J can be determined in the same way that demand is allocated.

Note that: ∑
k∈K

σ
2
kp +

∑
j∈J

σ
2
jp = σ

2
p ∀p ∈ P (3.5.7)

Assuming demand is Normally distributed, let λ̃kp represent the random variable correspond-

ing to the actual amount of demand experienced at depot k ∈ K during the lead-time demand for

part p ∈ P. Let σLT
kp represent the allocated standard deviation of demand using lead time. Using

an (R,Q) ordering policy, define the reorder point or part p ∈ P at depot k ∈ K as Rkp. Then

define the actual service level achieved as:

β
(
λkp,Skp

)
= Pr

(
λ̃kp ≤ Rkp

)
∀k ∈ K, p ∈ P (3.5.8)

Again, β
(
λkp,Skp

)
≥ αkp is required to achieve the service level target at depot k for part p.

This requirement is enforced with the following constraints:

Pr
(

λ̃kp ≤ Rkp

)
≥ αkp ∀k ∈ K, p ∈ P (3.5.9)

Similarly for a hub j ∈ J, define the reorder point of part p ∈ P at hub j ∈ J as R jp. Define

the actual service level achieved as:

β
(
λ jp,S jp

)
= Pr

(
λ̃ jp ≤ R jp

)
∀ j ∈ J, p ∈ P (3.5.10)

and enforce the requirement that β
(
λ jp,S jp

)
≥ α jp with the constraints:

Pr
(

λ̃ jp ≤ R jp

)
≥ α jp ∀ j ∈ J, p ∈ P (3.5.11)

As constraints, unfortunately, the service level expressions are highly non-linear. The way
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in which the service level constraints are incorporated as linear constraints is detailed in Ap-

pendix B.

3.5.4 Minimum Hit Criteria

To save on inventory costs, Bombardier has a policy to not stock a part in any location that does

receive enough orders for that part. The company has decided that two order lines per year will

constitute the minimum hit criteria. If a part was not ordered more than twice per year at any

given hub or depot, then that location will not hold any inventory of that part.

Global Defaults

There is an exception to the minimum hit criteria rule. Every part that Bombardier deems ‘stock-

class’ (worthy to keep in inventory), must be kept in at least one hub. If a part has been ordered

once in the the last 2 years, it is likely to be considered stock-class. Any part that meets this

criterion will be held in inventory at a default location. For most aircraft types, the default hub is

Chicago. For one class of aircraft, the default stocking location is Frankfurt.

Let:

υ jp =


1 if the default location for part p is the hub j

0 otherwise
(3.5.12)

υkp =


1 if the default location for part p is the depot k

0 otherwise
(3.5.13)

The minimum hit criteria are enforced with a simple set of constraints:

∑
s∈S

sVjps = 0 ∀ j ∈ J, p ∈ P, if υ jp = 0;λ jp < 2 (3.5.14)

∑
s∈S

sVkps = 0 ∀k ∈ K, p ∈ P, if υkp = 0;λkp < 2 (3.5.15)
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3.5.5 Inventory Stocking Model

The objective function of the Inventory problem is the cost of holding inventory across all over

hubs and depots. Using the notation developed above, the objective function is:

∑
j∈J,p∈P

h jp
∑
s∈S

sVjps +
∑

k∈K,p∈P

hkp

∑
s∈S

sVkps (3.5.16)

The binary Inventory Stocking [IS] model is presented below:

[IS] min
∑

j∈J,p∈P

h jp
∑
s∈S

sVjps +
∑

k∈K,p∈P

hkp

∑
s∈S

sVkps

s.t. (B.1.2)− (B.1.5)

(B.1.6)− (B.1.7)

(3.5.14)− (3.5.15)

Vjps ∈ {0,1} ∀ j ∈ J, p ∈ P,s ∈ S (3.5.17)

Vkps ∈ {0,1} ∀k ∈ K, p ∈ P,s ∈ S (3.5.18)

Constraints (B.1.2) - (B.1.5) manage the parts with Poisson demand, constraints (B.1.6) -

(B.1.7) manage the parts with Normal demand, and constraints (3.5.14) - (3.5.15) enforce the

minimum hit requirements.

3.6 Qualitative and Financial Impact

For each scenario, the location problem described in section 3.3.3 is solved, followed by the

inventory problem described in the previous section. Together, the two problems give a feasible

(but not necessarily optimal) solution to the original inventory-location problem. In this section,

the results of the analysis are discussed, some insights that arise from studying the solutions are

examined, and some strategies for designing Bombardier’s service parts logistics network are
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proposed. The scenarios were solved using CPLEX version 11 until the optimality gap closed to

less than 1% or 8 hours of computing time elapsed.

3.6.1 Validation

To validate both the primary location model [FLP-2] and the secondary inventory model [IS],

a baseline scenario was solved. This scenario required that exactly those locations that are cur-

rently open would be used in the solution, and assigned customers to the location they ordered

from most frequently in the past. The total transportation costs were within 10% of actual trans-

poration costs supplied by the company, with the model underestimating the costs. We believe

this difference is explained by the solution using the consolidated shipping options to reduce

transporation costs whereever possible.

The baseline comparison between Bombardier’s inventory planning system and the inventory

model showed the total inventory levels were within 5% of Bombardier’s planning levels. The

baseline comparison was accepted by the executive team as evidence the combined model was

reasonably representative of Bombardier’s current spare parts distribution network. The differ-

ences were considered acceptable because the output of the model is to be used for strategic

purposes only. The baseline scenario is the model’s estimate of the operational costs of Bom-

bardier’s current spare parts distribution network. It only has one operational hub so should only

be compared to the other scenarios as a reference.

3.6.2 Computational Results

The solution to the scenario requiring at least one hub did not open any additional hubs, sug-

gesting that the optimal distribution network for Bombardier is a one hub system. However, this

option was rejected by the executive team for customer service reasons. With three hubs, the

minimum cost distribution network always had the least number of depots, based on scenario

requirements. Each additional depot forced open beyond the minimum required to meet the

AOG service window targets increased operational costs and inventory levels. Analysis of re-
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sults showed that inventory was kept close to points of entry (the hubs where inbound shipments

from suppliers are received), taking advantage of the 19-hour service window, instead of posi-

tioning inventory near customers. This effect can be seen by examining Scenario 1 in Tables 3.3

and 3.4. Scenario 1 has lower inventory, infrastructure and operating costs compared to the other

scenarios.

In Scenario 1, the model chooses to support Chinese demand via Singapore rather than Hong

Kong. Demand from Japanese customers is also supported through Singapore. Finally, due to

the high operating costs in Germany, Frankfurt has lower volumes than expected, with the model

opting to support some European demand via Montreal & Chicago, for any European customers

than can be reached within the time window.

In Scenarios 2 through 6, which try to also minimize the cost to customers, Frankfurt has

higher volumes and higher operational costs, but the result is lower shipping costs to customers.

Singapore continues to serve as an entry point for Asia-Pacific vendors, but has low volume

otherwise as many parts are shipped directly from Chicago to Hong Kong, Narita and Sydney,

bypassing the hub. Bombardier expects that if more Asia-Pacific vendors are used, then the line

volume in Singapore will rise accordingly. The same effect is expected for Frankfurt when more

European suppliers are used.

Of these scenarios, the one most favoured by the executive team for political and customer

service reasons is Scenario 3. This scenario allows the closing of the Japanese depot in Narita,

which is severely underused in the current network. The Japanese demand that was served

through Narita is now being served through Hong Kong, and the time window constraints can

still be satisfied.

3.6.3 Consolidated Shipment Analysis

In all scenarios requiring more than one hub, the optimal solution opened a hub in South-Eastern

Canada, presumably because of the large number of suppliers and two major Bombardier pro-

duction facilities in Canada. The transportation cost of an inbound domestic shipment from
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Figure 3.3: Total Cost Comparison
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Figure 3.4: Results Overview
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suppliers is significantly less than an inbound international shipment (including from a Cana-

dian supplier to the Chicago hub). The parts that would be received in the Canadian hub can

be shipped directly to customers, or redeployed through a consolidated shipment to Chicago,

Europe, or Asia.

The structure and costs of the original North American distribution network are depicted in

Figure 3.5. International shipments from Canadian suppliers and production sites to Chicago are

expensive. Reducing the volume of international shipments will be a major source of cost savings

in the future. The new proposed distribution network is depicted in Figure 3.6. This proposed

network deals with the same volume of parts, but results in fewer international shipments using

expensive delivery services.

Figure 3.5: Current Network Transportation Costs
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Figure 3.6: Transportation Costs with Canadian Hub
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Consider parts sourced in Canada that are ultimately destined for Canadian customers. In the

current network, these parts must be shipped internationally to the American hub, then shipped

back to the Canadian customer. In the proposed network, this large volume of parts can now be

sent via domestic shipments from Canadian suppliers and production sites to the Canadian hub,

and then to Canadian customers. It is estimated that the annual transportation cost to ship all

Canadian supplied parts to the Canadian hub will be $5.6 Million. While Bombardier does not

pay for the customer shipments, there are still significant savings here from making domestic

shipments from the suppliers to the hubs compared to the $19.7 Million for international ship-

ments in the current network. The Canadian hub will also have to forward shipments bound for

the U.S. to the American hub, at an estimated cost of $6 Million.

The new network does incur other transportation costs. The main cause of additional costs is

parts that are sourced in the U.S. and destined for Canadian customers. These parts will incur an

additional cost when they are sent by consolidated shipment from the U.S. hub to the Canadian

hub. This transportation cost is estimated to be $2.3 Million. In total Bombardier estimates these

consolidated shipping savings could amount to $5.8 Million USD annually.

The new Canadian hub will incur fixed infrastructure costs and annual operating costs. The

current estimate for the increase in operating costs is $1 Million annually. The annualized amor-

tization for opening the Canadian hub using Bombardier policies is $0.4 Million. There will be

some redistribution of inventory from the U.S hub to the Canadian hub, and likely a small in-

crease in total inventory. However, the proximity of the two hubs suggest that the total inventory

need not increase significantly to maintain service levels in North America. The additional cost

of holding inventory is considered negligible in this analysis. Thus, the total estimated savings

from opening the Canadian hub is estimated to be $4.4 Million annually.

As suggested above, Bombardier expects that most parts will be shipped from suppliers to

the nearest hub for quality inspection before being sent via consolidated shipment to other hubs

or depots for redeployment. This option will be cost effective for low cost parts (that incur

low holding costs during staging for consolidated shipping), and for heavy parts (consolidated

shipping per kilogram rates are cheaper than other forms of shipping).
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However, certain high cost, low weight parts can be shipped directly from suppliers to the

hub where they are required, bypassing the consolidated shipping step. For example, a North

American part may be shipped directly to Europe if demand is expected for that part in Europe.

The direct shipment will be more expensive than the consolidated shipment, but the company

may realize savings in other areas. The part will be handled by only one hub, instead of two,

saving handling costs. Since direct shipments are faster than consolidated shipments, the part

will also be in transport for substantially less time. This is particularly important for parts that

have very low stocking levels (common for low demand, high cost parts). If there is only one unit

of a particular part available in the distribution network when a critical order is received, Bom-

bardier does not want to discover that the unit is unavailable or in transit as part of a consolidated

shipment.

In the future, as part of ongoing operations, this consolidation decision can be made on a part-

by-part basis. This helps to illustrate how difficult the problem is: for each choice of distribution

centres and the associated logistics network, there are thousands of these individual trade-offs

to make that depend on the facility locations. Part aggregation allows the model to incorporate

this analysis by naturally grouping parts such that the trade-off decision made for one group

represents the decision that would have likely been made for all the parts in the group, had the

decisions been made individually.

3.7 Conclusion

This chapter describes the development of a large-scale model to solve a multi-echelon location-

inventory problem for spare parts with time-based service level constraints. The current research

literature was lacking any solution methodology to solve a similar problem of comparable scale,

so a new model was developed and solved using a sequential approach. The chapter should

serve as a case study on how to model difficult business constraints and subsequently solve a

large-scale problem by aggregating parts and using scenarios.

Analysis of the results reveals that the most cost-effective solution for Bombardier, Scenario

59



1, results in an estimated 100% larger customer freight charge over other proposed solutions.

However, the operational savings more than outweigh this increase in customer shipments costs.

It is recommended that Bombardier consider subsidizing customer freight costs to offset the

expected cost increase the customers face, resulting in cost savings for both Bombardier and

its customers. While Bombardier will be paying some customer freight costs, the net result is

less costly than the other scenarios. This solution should be perceived by the customers as very

appealing, and could set a new standard in the industry for aircraft spare parts suppliers to follow.
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Chapter 4

Benders Decomposition: Backorders and

Strict Time Windows
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4.1 Motivation

In the previous chapter, we solved a large-scale two-echelon inventory-location problem using

industry data. Due to the size of the problem and difficulty of the additional constraints, an

integrated approach to solving the problem was rejected, and instead a sequential approach was

used. This approach led to good but not necessarily optimal solutions, and did not provide a lower

bound to the optimal solution. This downside was mitigated by the use of scenarios to explore

different location configurations, providing visibility to a large number of feasible solutions.

In this chapter, we explore a methodology for solving a single-echelon inventory-location

problem with an integrated approach. As this is a single-echelon problem, there is no need to

differentiate between hubs and depots. From this point on, all of the facilities will be referred

to as service centres, to be consistent with the research literature. The methodology proposed

to solve the problem is exact and guaranteed to converge to optimality. The downside to this

approach is the time and computational effort required to find optimal solutions to large prob-

lems. Nevertheless, the methodology is competitive with existing approximate methods to solve

the same problem, either finding better solutions or providing certificates of optimality to known

solutions.

This chapter is based upon an academic paper that has been submitted to the academic journal

Omega, and is currently under review.

4.2 Modelling

The service parts logistics system under study is composed of a central warehouse which supplies

service parts to selected service centres among potential locations in set J. Customers in set

I place orders for parts in set K at the service centres. If there is not enough stock, a back-

ordering policy is used since most service parts are aircraft specific and are manufactured by the

company itself. For the same reason, the central warehouse has unlimited capacity and has a

fixed replenishment lead time t jk for service centre j ∈ J and part k ∈ K.
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There are three sets of binary decision variables. The location variable y j is binary, and takes

value 1 if service centre j ∈ J is open. The allocation variable xi jk is also binary, and takes value

1 if the demand of customer i ∈ I for part k ∈ K is assigned to service centre j ∈ J. The stock

variable Vjks is binary, and takes value 1 if the number of units of part k ∈ K kept at service

centre j ∈ J is equal to s ∈ S, where S = {0,1,2, ...,Smax} represents the set of possible stocking

levels. Also let S+ = {1,2, ...,Smax} represent the set of possible non-zero stocking levels. Define

s′jk = ∑
s∈S

sVjks as the integer stocking level of part k at service centre j. Throughout the thesis, s′jk

and ∑
s∈S

sVjks are used interchangeably to represent the stocking level of part k at service centre j.

For notational convenience, the text will use s′jk whenever possible.

Service parts for aircraft are expensive, may be valued at hundreds of thousands of dol-

lars, and experience low failure rates. Consequently, the use of a base-stock inventory policy

and the assumption of Poisson-distributed demand are appropriate, as justified by Song (1998)

and Muckstadt (2005). Customer i’s demand for part k follows a Poisson process with mean dik

over the replenishment lead time t jk. Due to the assumption of a constant replenishment lead

time, the lead time demand experienced by service centre j for part k is a random variable with

a Poisson distribution, denoted λ̃ jk, with mean

λ jk = ∑
i∈I:τi j≤ωi

dikxi jk j ∈ J,k ∈ K (4.2.1)

In setting the time-based service levels, the target service level αk is calculated at the part level.

Define τi j to be the time it takes each service centre j ∈ J to deliver a part to each customer i ∈ I.

Assume that customer i can only be assigned to a service centre that can deliver parts within the

target service time window ωi.

Under the backorder assumption, with Poisson demand, the fill rate achieved at service centre

j for part k is:

β (λ jk,s′jk) = Pr{λ̃ jk ≤ s′jk−1}= e−λ jk

s′jk−1

∑
r=0

λ r
jk

r!
λ jk ≥ 0, 0≤ s′jk ≤ SMAX (4.2.2)
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The fill rate constraint for part k ∈ K is the weighted-average of the fill rates achieved at each

of the service centres that stock part k, and must exceed the target service level αk:

∑
i∈I:τi j≤ωi

∑
j∈J

dikxi jkβ (λ jk,s′jk) ≥ αk ∑
i∈I

dik ∀k ∈ K (4.2.3)

There is a fixed cost f j for opening service centre j ∈ J, a transportation cost ci jk incurred for

shipping part k ∈ K from service centre j ∈ J to customer i ∈ I, and an annual holding cost h jk

incurred for holding part k ∈ K at service centre j ∈ J.

The inventory-location problem is modeled as a stochastic, nonlinear, mixed-integer program

[SM]:

[SM]: min ∑
j∈J

f jy j +∑
i∈I

∑
j∈J

∑
k∈K

ci jkdikxi jk +∑
j∈J

∑
k∈K

∑
s∈S

h jksVjks (4.2.4)

s.t. ∑
j∈J:τi j≤ωi

xi jk = 1 i ∈ I,k ∈ K (4.2.5)

xi jk ≤ y j i ∈ I, j ∈ J,k ∈ K (4.2.6)

∑
s∈S+

Vjks ≤ y j j ∈ J,k ∈ K (4.2.7)

xi jk ≤ ∑
s∈S+

Vjks i ∈ I, j ∈ J,k ∈ K (4.2.8)

∑
i∈I:τi j≤ωi

∑
j∈J

dikxi jkβ (λ jk,∑
s∈S

sVjks)≥ αk ∑
i∈I

dik ∀k ∈ K (4.2.9)

xi jk ∈ {0,1} i ∈ I, j ∈ J,k ∈ K (4.2.10)

y j ∈ {0,1} j ∈ J (4.2.11)

Vjks ∈ {0,1} j ∈ J,k ∈ K,s ∈ S (4.2.12)

The objective function (4.2.4) minimizes the total cost of opening service centres, transport-

ing customer demand, and holding stock. Constraint (4.2.5) ensures customers are assigned to a

service centre that can deliver parts within the time window ωi. Constraints (4.2.6) and (4.2.7)
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ensure customers are assigned to and stock is held at open service centres only. Constraint (4.2.8)

requires that at least one unit of stock of part k is held at service centre j if demand for that part

is assigned to the service centre. Constraint (4.2.9) enforces a system-wide part target service

level αk where the left-hand side of the fill rate constraint is the weighted sum of the fill rate

functions for part k at service centres where the part is held. A similar constraint is used in Gzara

et al. (2013). Constraints (4.2.10) are binary requirements on customer assignment variables and

enforce single-sourcing per part. In other words, a customer may be shipped parts from several

suppliers, but only one supplier per part. Constraints (4.2.11) are binary requirements on service

centre location variables, and constraints (4.2.12) are binary requirements on the stock variables

Vjks.

The problem [SM] is difficult to solve in the presence of the non-linear and stochastic service

level constraints (4.2.9). As discussed in Section 2.4.2 of the literature review, other researchers

(Candas and Kutanoglu (2007), Jeet et al. (2009), Gzara et al. (2013)) have considered similar

problems and have used various approximate techniques to deal with the service level constraints.

This thesis considers an alternative approach, decomposition, to solve this difficult optimization

problem exactly. When the location, assignment, and stock variables are fixed, it is easy to ver-

ify if the solution is feasible with respect to service level constraints, and calculate new feasible

stock levels in case of infeasibility. Such an approach may be accomplished through Benders

decomposition. However, the inventory subproblem that arises from the decomposition is not

linear so it is not possible to use classical Benders decomposition. Instead, a novel exact algo-

rithm is proposed based on logic-based Benders decomposition that allows for the subproblem

to be difficult. A major challenge in this methodology is to derive necessary valid cuts for it to

converge to optimality.

4.3 Logic-based Benders Decomposition

Consider the relaxed problem, denoted [MP], obtained when constraints (4.2.9) are dropped. The

relaxed problem finds a solution (x̄, ȳ, ∑
s∈S

sV jks) which may violate constraints (4.2.9). Recalling
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the definition of the stocking variables s′jk, define s̄′ = ∑
s∈S

sV jks. To check whether the solution

(x̄, ȳ, s̄′) violates constraints (4.2.9), the achieved service level for each part k is calculated as

∑
i∈I

∑
j∈J

dikx̄i jkβ (λ̄ jk, s̄′jk)

∑
i∈I

dik
(4.3.1)

where λ̄ jk = ∑
i∈I

dikx̄i jk. All of these quantities are derived from the solution (x̄, ȳ, s̄′) to [MP].

If the achieved service level exceeds the target αk for each part k ∈ K, then the solution

(x̄, ȳ, s̄′) is optimal for the original problem [SM] since it is optimal for the relaxed problem

and it is feasible for the relaxed constraints. However, this rarely happens. In fact when con-

straints (4.2.9) are dropped and no other constraints are added, the stocking levels will be either

0 or 1 since the only constraints on the stocking variables are (4.2.8). This observation suggests

that subproblem relaxation constraints may be useful to prevent the stocking levels from taking

on unrealistically low levels. No such constraints have been found yet for this problem, how-

ever very useful subproblem relaxation constraints are developed in Chapter 5 when solving the

problem with relaxed time windows.

If solution (x̄, ȳ, s̄′) is not feasible to [SM], cutting this solution from the feasible region of

the relaxed problem leads to a tighter relaxation. Hence the goal is to derive a valid cut that:

1. eliminates solution (x̄, ȳ, s̄′) from the feasible region of the relaxed problem; and

2. does not eliminate any feasible solution to [SM].

After adding valid cut(s) to the relaxed problem, the latter is solved again and the same

procedure repeats. The algorithm is guaranteed to converge to an optimal solution when the

valid cut(s) satisfies conditions 1 and 2, as shown by Chu and Xia (2004). The relaxed problem

[MP] is referred to as the Benders master problem, and the valid cuts are referred to as the

Benders cuts.
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4.3.1 Logic-based Benders cuts

This section details how the logic-based Benders cuts are derived. Consider a solution (x̄, ȳ, s̄′)

for [MP] that is infeasible to the original problem [SM], and let I jk = {i ∈ I : x̄i jk = 1} be the set

of customers whose demand for part k is assigned to service centre j, and Jk = { j ∈ J : s̄′jk > 0}

be the set of service centres that carry inventory for part k.

The idea of the cut (4.3.2) is to eliminate solution (x̄, ȳ, s̄′), either by forcing at least one of

the stock variables to be different for the same location and assignment variables (x̄, ȳ), or by

forcing customer demand reassignment for the same stock values s̄′. When customer demand is

reassigned, the cut is carefully constructed so that no feasible solutions are eliminated:

∑
j∈Jk

λ̄ jkβ (λ̄ jk, s̄′jk)

∑
i∈I

dik
+ ∑

j∈Jk

∑
i∈I jk

αk(1− xi jk)+ ∑
j∈J

∑
i/∈I jk

αkxi jk ≥ αk−αk ∑
j∈Jk

∑
s∈S:s 6=s̄′jk

Vjks (4.3.2)

To guarantee convergence to optimality, cut (4.3.2) must satisfy conditions 1 and 2. These

conditions are shown to hold in the following lemmas:

Lemma 1. The logic-based Benders cut (4.3.2) satisfies condition 1, i.e., eliminates the solution

(x̄, ȳ, s̄′) from the feasible region of the relaxed problem.

Proof. The cut (4.3.2) reduces exactly to the fill rate constraint for the current solution (x̄, ȳ, s̄′)

to [MP]:
∑

j∈Jk

λ̄ jkβ (λ̄ jk, s̄′jk)

∑
i∈I

dik
≥ αk (4.3.3)

Therefore, if the solution does not satisfy the fill rate constraint, it also violates the cut. This

proves the cut satisfies condition 1.

Lemma 2. The cut (4.3.2) satisfies condition 2, i.e., does not eliminate any feasible solutions to

the original problem [SM].
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Proof. Consider any change to the solution (x̄, ȳ, s̄′). If a y variable changes, some customers

must be reassigned, and thus at least one x variable must change in turn. If an x variable changes

value, the left-hand side will increase by at least αk, and the equation will hold trivially. Similarly,

if a V variable changes value, the right-hand side will decrease by at least αk, and the equation

will hold trivially. In fact, the constraint does not eliminate any solutions except (x̄, ȳ, s̄′).

Together, these two lemmas show that the cut (4.3.2) is valid. However, the cut is not very

effective. Because it only eliminates one solution at a time, it is likely no better than trying all

possible solutions through enumeration. Calculating tighter coefficients for the x variables in the

logic-based Benders cut will improve performance. For j ∈ Jk, let ∆i jk be the change in the fill

rate at service centre j either: when the demand of customer i for part k assigned to service centre

j (i.e., x̄i jk = 1) is reassigned to another service centre; or when the demand of customer i for

part k not assigned to service centre j (i.e., x̄i jk = 0) is reassigned to service centre j.

Consider a family of valid cuts that are tighter than (4.3.2):

∑
j∈Jk

λ̄ jkβ (λ̄ jk, s̄′jk)

∑
i∈I

dik
+ ∑

j∈Jk

∑
i∈I jk

∆i jk(1− xi jk)+ ∑
j∈J

∑
i/∈I jk

∆i jkxi jk ≥ αk−αk ∑
j∈Jk

∑
s∈S:s 6=s̄′jk

Vjks (4.3.4)

To guarantee convergence to optimality, the cut (4.3.4) must satisfy conditions 1 and 2. Con-

dition 1 holds by Lemma 1, while condition 2 will be shown to hold after discussing how to

calculate coefficients ∆i jk.

4.3.2 Methods to Calculate Cut Coefficients

Define the fill rate contribution function of service centre j to the fill rate of part k:

λ jkβ (λ jk,s′jk)

∑
i∈I

dik
(4.3.5)
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The cut coefficients ∆i jk are designed to capture the change in the fill rate contribution at service

centre j when demand for part k from customer i is reassigned. Suppose the demand for a given

part k from customer i is reassigned from service centre j1 to service centre j2. The effect on the

current solution is that now xi j1k = 0 and xi j2k = 1. If no other changes are made to the current

solution, the left-hand side of the cut simplifies to:

∑
j∈Jk

λ̄ jkβ (λ̄ jk, s̄′jk)

∑
i∈I

dik
+∆i j1k +∆i j2k (4.3.6)

If only customer i’s demand was reassigned, the two values of ∆i jk could be computed exactly by

finding the difference between the new and old fill rate contribution functions at service centres

j1 and j2 respectively:

∆i j1k =
(λ̄ j1k−dik)β (λ̄ j1k−dik, s̄′j1k)

∑
i∈I

dik
−

λ̄ j1kβ (λ̄ j1k, s̄′j1k)

∑
i∈I

dik
(4.3.7)

∆i j2k =
(λ̄ j2k +dik)β (λ̄ j2k +dik, s̄′j2k)

∑
i∈I

dik
−

λ̄ j2kβ (λ̄ j2k, s̄′j2k)

∑
i∈I

dik
(4.3.8)

However, the cut

∑
j∈Jk

λ̄ jkβ (λ̄ jk, s̄′jk)

∑
i∈I

dik
+∆i j1k +∆i j2k ≥ αk−αk ∑

j∈Jk

∑
s∈S:s 6=s̄′jk

Vjks (4.3.9)

is not valid in general for those values of ∆i j1k and ∆i j2k. If the demand from other customers

is reassigned as well, resulting in a different solution, the change in the fill rate contribution

function when reassigning customer i’s demand for part k could be greater than ∆i j1k or ∆i j2k at

either service centre. The cut could exclude a feasible solution.

This observation motivates an algorithm that considers the effect that reassigning other cus-

tomer demand may have on the change caused by reassigning customer i’s demand. One simple

option is to set ∆i jk by finding the worst-case (i.e. largest) change possible in the fill rate con-

tribution function. A sample fill rate contribution function is depicted in Figure 4.1 for stock
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Figure 4.1: Sample fill rate contribution function

Figure 4.2: Gradient of fill rate contribution function

level s′jk = 3, and total demand for part k denoted D = ∑
i

dik = 10. The gradient of the numerator

∂λβ (λ jk,s′jk)
∂λ

is β (λ ,s)+λβ ′(λ ,s) and is depicted in Figure 4.2 for the given sample values.

The largest positive and negative values of the gradient appear to be near where λ = 0 and λ =

s+1, respectively. They are shown to occur precisely at these values in Lemma 3. Depending on

whether customer i’s demand for part k is being reassigned from or to service centre j, ∆i jk can

be set to the product of dik and the appropriate extreme value of the gradient. In this way, ∆i jk

will represent on upper bound on the largest possible change in the fill rate contribution function

when reassigning the demand of customer i. This simple method will create valid cuts, but the

resulting cuts are not very tight. See Section 4.5.4 for the performance of this worst-case method

compared to the customer ordering procedure presented in the next section. We will not prove

the validity of these simple cuts, as the following section will present tighter cuts that are also

valid, complete with proof of validity.
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4.3.3 Calculating Valid and Tight Cut Coefficients

We present a method to calculate tight values of ∆i jk by first ordering the customers in increasing

order of demand for part k. Note that using a random ordering or any other ordering is possi-

ble, but numerical results are presented in Section 4.5.4 showing that cuts resulting from other

orderings are not as tight. For a given service centre j and then for each customer i in order of

increasing demand, the effect that reassigning all the customers with demand smaller than that

of i could have on the fill rate contribution function can be evaluated. There are two possibilities

to consider:

1. For a customer with smaller demand that is assigned to service centre j, the effect of

removing its demand from service centre j is analyzed.

2. For a customer with smaller demand that is not assigned to service centre j, the effect of

adding its demand to service centre j is analyzed.

For the purpose of this algorithm, ∆i jk is defined as the largest change in the fill rate con-

tribution function possible at service centre j when reassigning customer i’s demand for part

k, under all possible solution configurations of customers that precede i in the ordering. Com-

plete enumeration can be used to calculate ∆i jk exactly. The first customer in the ordering (with

smallest demand) has no preceding customers, so equations (4.3.7) and (4.3.8) can be used to

calculate ∆i jk. For the n-th customer in the ordering, one must consider all possible combina-

tions of changing or not changing the status (assigned or not assigned) of preceding customers to

service centre j. This results in 2n−1 different demand quantities. From each of these potential

solutions, one must then calculate the change in the fill rate contribution by changing the status

of the n-th customer at service centre j from each of these points (using a calculation similar to

equations (4.3.7) and (4.3.8), but starting from points other than λ̄ ). The largest value is cho-

sen for ∆i jk. This method is not discussed any further as it is not used in this thesis, due to the

exponential number of calculations required.

The methodology used to find effective ∆i jk is inspired by the exact method described in

the paragraph above but instead relies on an analysis of the gradient of the fill rate contribution
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function. The method described below quickly find values of ∆i jk that are equal to or slightly

larger than those found by the exact method, in much less time.

Intuitively, this customer ordering procedure works for the following reason. Consider the

change in the fill rate contribution function at a service centre j for part k between the current so-

lution (x̄, ȳ, s̄′) and a new solution (x′, ȳ, s̄′). This change can be calculated exactly by considering

all customer demand that is reassigned to or from service centre j to arrive at the new solution.

This calculation can be made all at once by considering the total change in the demand λ jk, or

processed sequentially by considering each customer in turn. If processed sequentially, the first

customer whose demand is reassigned will change the demand from λ̄ jk to a new point, resulting

in a specific change in the fill rate contribution. The second processed customer will change the

demand from that new point to a second new point, resulting in another change in the fill rate

contribution, and so forth. Note that the change caused by the first customer’s reassignment can

be calculated exactly, but the change caused by the second customer’s reassignment depends on

the first customer. This explains why the change caused by the first customer does not need to

consider other customers, and the customer ordering procedure relies on this intuition to compute

∆i jk for each customer in turn. A proper proof that the procedure is valid is given in Lemma 4.

When considering the effect of adding customer i’s demand for part k to service centre j, the

goal is to find the largest possible change in the fill rate contribution function. Starting from the

initial value of λ jk, this amounts to varying the value λ jk in search of the largest gradient of the

fill rate contribution function. The procedure need only search as far as the largest change in λ jk

possible due to the customers preceding i in the ordering.

Let d+
i j represent the largest increase in λ jk possible at service centre j ∈ J when considering

customer i ∈ I, i.e., the sum of the demand of all customers within the time window for service

centre j that precede i in the ordering that are not already assigned to service centre j:

d+
i j = ∑

i′≺i:x̄i jk=0,τi′ j≤ωi′

di′k i ∈ I, j ∈ J (4.3.10)
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Similarly, let d−i j represent the largest decrease in λ jk possible at service centre j when con-

sidering customer i∈ I, i.e., the sum of the demand of all customers that precede i in the ordering

that are also assigned to j:

d−i j = ∑
i′≺i:xi′ jk=1

di′k i ∈ I, j ∈ J (4.3.11)

Let g(λ1,λ2) be the change in the fill rate contribution function of service centre j to the fill

rate of part k for a given stock level s when the demand rate changes from λ1 to λ2

g(λ1,λ2) =
λ1β (λ1,s)−λ2β (λ2,s)

∑
i∈I

dik
(4.3.12)

For customer i /∈ I jk, the proposed method for calculating ∆i jk coefficients when adding cus-

tomer i is to set ∆i jk to the maximum of g( ¯λ jk, ¯λ jk +d+
i j ) and g( ¯λ jk, ¯λ jk−d−i j ).

Similarly, when considering the effect of removing customer i to service centre j, the goal

is to find the largest possible negative change in the fill rate contribution function. For customer

i ∈ I jk, set ∆i jk to the minimum of g( ¯λ jk, ¯λ jk + d>
i j ), g( ¯λ jk, ¯λ jk− d<

i j ), and
∂λ jkβ (s̄′jk+1,s̄′jk)

∂λ jk
. The

third term arises from analysis of the gradient of the fill rate contribution function.

The result of Lemma 3 gives a lower bound on the change in the fill rate contribution func-

tion, as the largest negative change occurs at λ jk = s jk + 1. This result provides a quick way to

calculate the extreme values of the gradient. The proof is given in Appendix C. Lemma 4 states

that the cut using ∆i jk calculated using the proposed sub-algorithm satisfies condition 2 and does

not eliminate any feasible solutions to [SM].

Lemma 3. The largest and smallest values of
∂λβ (λ jk,s′jk)

∂λ
are attained at λ jk = 0 and λ jk =

s jk +1, respectively.

Proof. See Appendix C.

Given solution (x̄, ȳ, s̄′), the Ordered Customer Gradient Analysis (OCGA) sub-algorithm

calculates ∆i jk for each (i, j,k). The steps of the sub-algorithm are detailed below.
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Ordered Customer Gradient Analysis (OCGA):
Order customers by increasing demand dik.
For service centre j ∈ J

For customer i ∈ I
- If x̄i jk = 0, ∆i jk = max{g(λ jk,λ jk +d>

i j , s̄
′
jk,k) , g(λ ,λ −d<

i j , s̄
′
jk,k)}.

- Else x̄i jk = 1, and

∆i jk = min{g(λ jk,λ jk +d>
i j , s̄
′
jk,k) , g(λ jk,λ jk−d<

i j , s̄
′
jk,k) ,

∂λβ (s̄′jk+1,s̄′jk)
∂λ

}.

Lemma 4. The fill rate cut (4.3.4) satisfies condition 2, i.e., it does not eliminate any feasible

solutions to the original problem [SM].

Proof. Let

fk(x,y,s′) =
∑
i∈I

∑
j∈J

dikxi jkβ ( ∑
j∈J

dikxi jk,s′jk)

∑
i∈I

dik
(4.3.13)

represent the achieved fill rate for part k ∈ K given a solution (x,y,s′).

Let

LHSk(x,y,s′) =
∑

j∈Jk

λ jkβ (λ jk,s′jk)

∑
i∈I

dik
+ ∑

j∈Jk

∑
i∈I jk

∆i jk(1− xi jk)+ ∑
j∈J

∑
i/∈I jk

∆i jkxi jk (4.3.14)

represent the left-hand side of the logic-based Benders cut created for part k ∈ K given a solution

(x,y,s′). The logic-based Benders cut can now be written

LHSk(x,y,s′)≥ αk−αk ∑
j∈Jk

∑
s∈S:s 6=s′jk

Vjks (4.3.15)

There are two steps to this proof. The first step is to show that

LHSk(x,y,s′)≥ fk(x,y,s′) ∀k ∈ K (4.3.16)

for any solution (x,y,s′). To see why this is required, consider a globally feasible solution (x̂, ŷ, ŝ′)

such that fk(x̂, ŷ, ŝ′)> αk for all k ∈K. If LHSk(x̂, ŷ, ŝ′)≥ αk and LHSk(x̂, ŷ, ŝ′)≥ fk(x̂, ŷ, ŝ′), then

the logic-based Benders cut does not eliminate the feasible solution (x̂, ŷ, ŝ′). The second step is

to show that if any of the inventory variables change, the right-hand side of (4.3.4) decreases to
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0 or less. Together, this proves that all solutions that meet the fill rate constraints in the original

problem also meet the fill rate cut for part k.

To prove that LHSk(x,y,s′)≥ fk(x,y,s′) for all solutions, we proceed by mathematical induc-

tion. The procedure for generating ∆i jk starts by ordering all customer demand for part k ∈ K in

an arbitrary way. Without loss of generality, suppose the smallest to largest demand ordering is

used.

Initial Step: Note that LHSk(x̄, ȳ, s̄′) = fk(x̄, ȳ, s̄′) for the initial solution (x̄, ȳ, s̄′). For the first

customer in the ordering, say i1, assume that its demand for part k is removed from its current

service centre, say j1, and added to an arbitrary service centre, say j2, creating a new solution

(x̄′, ȳ, s̄′). ∆i1 jk is simply the change in the fill rate contribution at each service centre j ∈ J when

customer i1’s demand for part k is added or removed, whichever is appropriate. Therefore

LHSk(x̄, ȳ, s̄′)+∆i1 j1k +∆i1 j2k = fk(x̄′, ȳ, s̄′) = LHSk(x̄′, ȳ, s̄′) (4.3.17)

implying that LHSk(x̄′, ȳ, s̄′)≥ fk(x̄′, ȳ, s̄′) for any rearranging of customer i1’s demand.

Inductive Step: For an arbitrary customer in the ordering, say in, assume that LHSk(x,y,s′)≥

fk(x,y,s′) for part k, given the current stocking levels s′jk for all j ∈ J.

Before customer in is considered, suppose the current solution is (x̆, y̆, s̆′). Now consider

reassigning the demand of customer in to create a new solution (x̆′, y̆, s̆′). Assume customer in’s

demand for part k is removed from its current service centre, say j1, and added to an arbitrary

service centre, say j2. Then

LHSk(x̆′, y̆, s̆′) = LHSk(x̆, y̆, s̆′)+∆in j1k +∆in j2k (4.3.18)

The value ∆in j1k is calculated to be (at least) the largest amount that the fill rate contribution at ser-

vice centre j1 could change, given any possible arrangement of the previous customers’ demand

for part k. The value ∆in j2k is calculated to be the largest amount that the fill rate contribution

at service centre j2 could change, given any possible arrangement of the previous customers’
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demand for part k. That is:

fk(x̆, y̆, s̆′)+∆in j1k +∆in j2k ≥ fk(x̆′, y̆, s̆′) (4.3.19)

Applying the inductive assumption:

LHSk(x̆, y̆, s̆′)+∆in j1k +∆in j2k ≥ fk(x̆′, y̆, s̆′) (4.3.20)

Therefore:

LHSk(x̆′, y̆, s̆′)≥ fk(x̆′, y̆, s̆′) (4.3.21)

By the principle of mathematical induction, LHSk(x,y,s′)≥ fk(x,y,s′) for any solution (x,y,s′).

To prove that the right-hand side will drop to 0 or less whenever a stocking level is changed,

observe that if any value of Vjks that is currently 0 changes to 1, corresponding to a change in

the stocking level s′jk, the right-hand side will decrease by at least αk. Therefore, if the stocking

levels change, the left-hand side, which is an upper bound on the fill rate, will always be greater

than the right-hand side.

4.3.4 Inventory Stocking Problem

The inventory stocking problem is used to find feasible solutions to the original problem and

provide an upper bound. Given a solution (x̄, ȳ, s̄′) to [MP], it is straightforward to calculate the

demand for part k faced by service centre j as λ̄ jk and the fill rate β (λ̄ jk,s′jk). For a part k for

which the service level constraint corresponding to s̄′ is violated, new stocking levels must be

determined such that the weighted average of the fill rates over service centres with nonzero λ̄ jk

meets the target service level and the holding cost is minimized. The inventory stocking problem

decomposes by part. For each part k ∈ K whose service level constraint is violated, the inventory

problem [SPk] should be solved:
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[SPk]: min ∑
j∈Jk

∑
s∈S

h jksVjks (4.3.22)

s.t. ∑
i∈I jk

∑
j∈Jk

∑
s∈S

dikx̄i jkβ (λ̄ jk,s)Vjks ≥ αk ∑
i∈I

dik (4.3.23)

∑
s∈S+

Vjks ≤ ȳ j j ∈ J (4.3.24)

Vjks ∈ {0,1} j ∈ J,s ∈ S (4.3.25)

In this problem, the only variables are the stocking variables Vjks. The values of β (λ̄ jk,s)

are calculated a priori for each value of s, a straightforward calculation since the values of λ̄ jk

are known. The objective is to minimize the total holding cost of the chosen stocking levels.

If the holding costs are constant across the service centres, then the problem is to minimize the

amount of stock. Constraint (4.3.23) ensures the stock levels across the service centres meet the

target fill rate. Constraint (4.3.24) ensures only one of the binary variables is chosen for each

open service centre. The inventory stocking problem always adds enough inventory to create

a feasible solution to the original problem. This solution is computed by updating the solution

(x̄, ȳ, s̄′) with the feasible stocking variables s′jk = ∑
s∈S

sVjks from the solved [SPk] problems.

4.3.5 Logic-based Benders Algorithm

The logic-based Benders algorithm, denoted BIL, is an iterative process alternating between

solving [MP] and calculating logic-based Benders cuts. During one iteration, the algorithm

solves [MP] and tests the feasibility of the solution. In the event the solution is feasible, the

algorithm terminates with an optimal solution. If the solution is not feasible, a Benders cut is

calculated for each part k ∈ K whose service level constraint is violated. These cuts are added

to [MP], and the process repeats. The best lower bound is always the most recent solution to the

Master Problem [MP], as it is a relaxation of the original problem [SM]. The upper bound is the

value of the best feasible solution found after solving the inventory problems [SPk].
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The complete BIL algorithm is presented below:

Logic-based Benders algorithm (BIL):
Initialization: UB = inf, LB = 0
While LB 6= UB
- Step 1. Solve [MP], obtain solution (x̄, ȳ, s̄′), update LB.
- Step 2. Test: if solution (x̄, ȳ, s̄′) is feasible with respect to (4.2.9), then UB = LB, Stop.
- Step 3. For k ∈ K such that the service level is not satisfied

- Calculate ∆i jk using OCGA, and form cut (4.3.4).
- Solve inventory stocking problems [SPk] and obtain feasible stock levels.

End For
- Step 4. Add cuts (4.3.4) to [MP], construct feasible solution, and update UB.

Theorem 1. The fill rate cut (4.3.4) is a valid cut for the original problem [SM], and thus the

Benders decomposition algorithm BIL converges to an optimal solution to [SM]

Proof. For the cuts to be valid, they must

1. not eliminate any feasible solutions to [SM]; and

2. eliminate the current solution to [MP] if it is not feasible to [SM].

In each iteration, a cut shown by Lemmas 1 and 4 to meet both conditions is added to [MP]. Chu

and Xia (2004) prove that if a valid cut satisfies both of these properties and the master problem

variables have finite domains, a logic-based Benders Decomposition algorithm has finite conver-

gence to optimality. The master problem variables are all binary, and therefore the algorithm BIL

converges to an optimal solution in finite time.

4.4 Restrict-and-Decompose Scheme

One of the drawbacks of the logic-based Benders algorithm is that [MP] becomes computation-

ally expensive to solve as more cuts are added. This results in an increased computational burden

and slower convergence time especially as problem size increases. To improve the execution of

the algorithm, we propose a restrict-and-decompose scheme that integrates branching and logic-

based Benders decomposition in a novel way. This procedure takes advantage of the structure
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of the original problem and the design of the Benders cuts. The modified algorithm is denoted

RDA.

The new procedure RDA fixes the location variables and solves a restricted problem that

decomposes by part into |K| smaller problems. The RDA algorithm uses elements of a branching

algorithm, but is different from classical branching in that the restricted problems are not solved

to optimality before branching again. Instead, the algorithm alternates between branching and

executing one iteration of BIL for the restricted problem with the smallest lower bound. This

approach aims to improve convergence of the lower bound.

To determine which service centres to fix, a linear relaxation of [MP] is solved where location

variable y j is binary but assignment variable xi jk and stock variables Vjks are continuous. This

relaxation is referred to as [MP-mip]. Given ŷ from the solution of [MP-mip], a node a is added

to the search tree defined by set of nodes A. At node a, the restricted master problem is defined

by fixing the location variables to ŷ in [MP]. The restricted master problem decomposes into |K|

single-part problems [MPk] since constraints (4.2.6) and (4.2.7) now have a fixed right-hand side.

[MPk]: min ∑
i∈I

∑
j∈J

ci jkdikxi jk + ∑
j∈J

∑
s∈S

sh jVjks (4.4.1)

s.t. (4.2.5),(4.2.8)

xi jk ≤ ŷ j i ∈ I, j ∈ J (4.4.2)

∑
s∈S+

Vjks ≤ ŷ j j ∈ J (4.4.3)

Cuts of type (4.3.4)

xi jk ∈ {0,1} i ∈ I, j ∈ J (4.4.4)

Vjks ∈ {0,1} j ∈ J,s ∈ S (4.4.5)

The objective function (4.4.1) and constraints (4.4.2) to (4.4.3) are similar to those in [MP]

except that they are defined for given ŷ, and for a single part k∈K. The solutions of [MPk], k∈K,

denoted by (xŷ,s′ŷ) together with ŷ form a feasible solution for [MP] and provide a temporary
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Figure 4.3: RDA Algorithm

lower bound Zŷ for the current node.

The methodology is depicted in Figure 4.3. The algorithm first solves the relaxed master

problem [MP-mip] to find a candidate location set ŷ. In the second stage, logic-based Benders

decomposition is used to solve each [MPk] as the master problem, with the appropriate [SPk]

as the subproblem. Solving [MPk] for all k ∈ K yields the solution (xŷ, ŷ,s′ŷ), whose feasibility

for the original problem is checked by testing whether it satisfies the relaxed fill rate cuts. In

the typical situation where the solution is not feasible, a logic-based Benders cut (labelled 1 in

Figure 4.3) is added to the appropriate [MPk]. A feasible solution to the original problem is

constructed by solving the inventory stocking problems [SPk].

If the solution (xŷ, ŷ,s′ŷ) is feasible for the original problem, the incumbent solution is updated

(this solution is feasible but not necessarily optimal to the original problem), and the node is

fathomed by adding the following service centre cut (labelled 2 in Figure 4.3) to [MP-mip]:

∑
i:ŷi=0

yi + ∑
i:ŷi=1

(1− yi)≥ 1 (4.4.6)

In either case, a feasible solution provides an upper bound UBa at node a. After the first
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iteration, the search tree has one node with lower bound LB and upper bound UBa.

Now, instead of running the logic-based Benders algorithm until the lower and upper bounds

converge, the algorithm proceeds by branching. A cut of type (4.4.6) is temporarily added to

[MP-mip] to generate another set of possible service centre locations to branch on. If the objec-

tive value of [MP-mip] is lower than Zŷ, a new search node is created and explored. Else, node a

is revisited. The RDA algorithm iterates between creating new search nodes or revisiting existing

nodes where the node with the smallest lower bound is selected next. Revisiting a node involves

solving each [MPk] once, and adding one logic-based Benders cut (labelled 1 in Figure 4.3) to

the appropriate [MPk].

There are three ways to fathom nodes. A node is fathomed when any of the [MPk] problems

is infeasible, as the set of fixed service centres cannot possibly lead to a feasible solution for the

original problem. A node a ∈ A is also fathomed when the constructed solution formed from all

[MPk] optimal solutions is feasible to [MP]. In this case, Za = Z f
a , and the optimal solution for

node aŷ is found. If it is the solution with the best objective value across all existing nodes, it is

stored as the best candidate solution to the original problem. Finally, a node a is fathomed when

the optimal value Za is higher than the value of the incumbent solution. In this case, there cannot

exist a better solution in node a, and the node is fathomed.

In summary, the entire procedure combines elements of logic-based Benders decomposition

with branching. The algorithm recursively solves a master problem with difficult subproblems,

then applies logic-based Benders decomposition to solve the restricted problems. In the lower

level, cuts of type (4.3.4) are added to the appropriate [MPk] problem with fixed ŷ. In the upper

level, cuts of type (4.4.6) are added to [MP-mip] to eliminate infeasible or fathomed ŷ candidates.

The branching subprocedure is designed to improve the convergence of the lower bound by

seeking out and targeting ŷ candidates with the smallest lower bounds. The complete algorithm

is summarized below:
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Restrict-and-Decompose Scheme (RDA):
Initialization: UB = inf, LB = 0, A = /0
While LB 6= UB
- Step 1. Solve [MP-mip].
- Step 2. If Zŷ < min

a∈A
{Za}, go to Step 3, else, go to Step 4.

- Step 3. Create a new search node aŷ, and add it to set A.
Add a service centre cut to [MP-mip].

- Step 4. Fix ŷ, corresponding to node aŷ.
- Step 5. For each k ∈ K, do:

- Solve [MPk] problem in node a.
- If part k’s service level constraint is satisfied, do nothing.
- Else, create Benders cut and add to [MPk].
End For

- Step 6. Solve subproblems [SPk].
- Step 7. Update node lower bound Za and upper bound Z f

a .
Update LB = min

a∈A
{Za,Zŷ}, UB = min

a∈A
{Z f

a}.

4.5 Computational Results

In this section, the methodologies from Sections 3 and 4 are applied to solve instances of the

inventory-location problem with part service levels. The first set of problems are instances based

on data provided by the Service Parts Logistics Department of the aerospace company, and the

second set of instances are used in the work by Gzara et al. (2013).

The algorithms run on a 64-bit Windows 7 system with 12GB RAM and a 2.3GHz quad

core Intel processor with 8 threads, using Matlab version 8 and Gurobi 5.0.1. The time reported

is total CPU time, which can be much larger than clock time because part of Gurobi’s solver

algorithms can use all 8 threads. In other words, 2 hours of CPU time could correspond to as

little as 15 minutes of clock time.

Each instance is run until the algorithm converges to optimality (or an optimality gap of

0.1%), or 7200 seconds of CPU time elapse. If optimality is not found within 7200 seconds,

the results correspond to the best feasible solution found. The feasible solution found in the first

iteration of the algorithm by solving the master problem [MP] with no Benders cuts followed

by the inventory stocking problem [SPk] is referred to as the decoupled solution (DeC). It is

82



equivalent to solving the facility location problem and inventory stocking problems sequentially.

The final solution provided by the algorithm is compared to this initial solution as a measure of

the value of considering the location and inventory decisions together.

4.5.1 Aerospace Instances

This section presents results on instances created from real data provided by the aerospace com-

pany. The potential service centre locations are major cities around the world, and customer

demand points are located at world capitals. The time and distance between customer de-

mand points and potential service centre locations were calculated based on air travel times,

with buffers to accommodate order picking and delivery. The parts considered in this com-

putational study are the most valuable parts in the company’s portfolio, with asset values in

excess of $50,000 USD each, including, for example, avionics computers and aircraft engine

sub-assemblies. Customer demand is based on real world demand for expensive, low demand

parts, ranging from 0 to 4 orders per month, per demand point. The time window used for service

is 19, 25 and 31 hours, and is varied across the instances. The target service level is also varied

across the instances, with targets of 60, 70, 80 and 90% used to create 12 different instances (all

parts have the same target within an instance). Holding costs, fixed location service centre costs,

and transportation costs are all based on actual data received from the company. Typical holding

costs range from 5% to 25% of the part value, annually. Fixed service centre costs are amortized,

and are typically between $50,000 to $150,000 per month. The transportation costs are based on

the distance between transit points and the weight of the parts, and are typically between $1 and

$6 per kilogram. The parts range in weight from 10 to 300 kilograms.

Three sets of problems are considered, with 20, 40 and 60 of the most expensive parts in

inventory. The 60 part problem represents at least 10% of the company’s annual service parts

dollar volume. The results are listed in Table 4.2, with reference Table 4.1 for the headings.

The algorithm finds optimal or near-optimal solutions quickly when solving the industry

instances, problems that by current research standards are quite large. The number of parts in
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Gap Optimality gap: (UB−LB)/LB
y Number of service centres open in the best feasible solution
s Total stocking level in the best feasible solution

time Total CPU time to build and solve problem in seconds
iter Number of iterations processed
cuts Number of cuts added
DeC The percentage difference between the best feasible solution

and DeC’s solution: (DeC−UB)/UB
|A| Number of nodes explored during the execution of RDA

GND The percentage difference between the best feasible solution
and the solution in Gzara et al. (2013) (GND−UB)/UB

BIL The logic-based Benders decomposition algorithm
RDA The restrict-and-decompose scheme

Table 4.1: Guide to Table Headings

the instances is unprecedented for integrated inventory-location problems. The largest problem

considered in Jeet et al. (2009) is 24 service centres, 158 customers and one part, while the largest

considered in Gzara et al. (2013) is 20 service centres, 300 customers and five parts. The largest

industry instance on this section, for comparison, is 20 service centres, 121 customers and 60

parts.

The benefit of the restrict-and-decompose scheme is clear as the RDA algorithm converges to

a smaller gap, in substantially less time, than the BIL algorithm. For example, in solving the 20

part problems the BIL algorithm has an average optimality gap of 0.6%, with a maximum gap of

3.9%. In contrast, the RDA algorithm is able to solve all 12 instances to within a 0.1% optimality

gap. The average time used on the instances by BIL, capped at 7200 CPU seconds, is 3799

seconds. The average time used by RDA is only 593 seconds. This improvement extends into

the largest 60 part instances, where the BIL algorithm has an average gap of 0.6%, a maximum

gap of 3.3%, and an average execution time of 4032 seconds. The RDA algorithm achieves an

average gap of 0%, and an average execution time of 1427 seconds.

In the 20-part problem set, there are four instances with ω = 31 that have high decoupled

gaps, ranging from 14.7% up to 47.5%. Upon closer inspection, it appears that in these instances

the decoupled solution assigns all demand to a facility with a low fixed cost, but a high holding

cost. The optimal solution conversely assigns all demand to a facility with higher fixed cost,
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20 Parts
Params. BIL Results RDA Results
ω α Gap y s time iter cuts DeC Gap y s time iter cuts |A| DeC
19 60 0.1 5 102 26 5 5 0 0.1 5 102 31 9 11 3 0
19 70 0 5 103 360 25 28 0.3 0 5 103 40 27 34 3 0.3
19 80 0.6 5 109 7238 44 89 0.2 0.1 5 109 234 74 135 5 0.7
19 90 3.9 5 122 7483 14 154 2.7 0.1 5 122 4545 820 1829 25 3.8
25 60 0 2 45 4570 12 29 0.8 0 2 45 248 15 38 4 0.8
25 70 0.3 2 48 7427 10 29 0.7 0 2 48 328 20 50 4 0.7
25 80 0.5 2 55 7721 14 57 0.5 0.1 2 55 275 28 101 4 0.6
25 90 1.6 2 62 7826 13 95 0.6 0 2 61 673 37 180 6 1.4
31 60 0 1 31 77 6 18 14.7 0 1 31 197 9 27 3 14.7
31 70 0 1 34 70 6 23 19.2 0 1 34 205 9 35 3 19.2
31 80 0 1 37 82 7 26 23.9 0 1 37 169 10 40 3 23.9
31 90 0 1 50 2707 8 47 47.5 0 1 50 173 11 71 3 47.5
Average 0.6 3799 14 50 9.3 0 593 89 213 9.5

40 Parts
Params. BIL Results RDA Results
19 60 0 5 202 148 11 18 0.9 0.1 5 202 36 11 15 2 0.9
19 70 0.1 5 204 612 33 86 1.4 0.1 5 203 64 23 57 2 1.4
19 80 0.2 5 213 7203 72 201 2 0 5 212 385 131 266 4 2.2
19 90 3 5 235 8432 8 136 1.9 0.1 5 234 3776 574 1306 11 3
25 60 0 2 88 1044 10 28 0.7 0 2 88 789 11 38 2 0.7
25 70 0 2 92 3382 16 44 0.6 0 2 92 1004 16 49 2 0.6
25 80 0.2 2 100 7201 18 74 0.8 0.1 2 100 1041 21 90 2 0.8
25 90 3.6 2 123 10134 4 61 0.3 0 2 119 2227 30 169 3 1.7
31 60 0 1 55 151 5 15 0 0 1 55 76 7 25 2 0
31 70 0 1 61 143 5 21 0 0 1 61 96 7 35 2 0
31 80 0 1 72 166 6 32 0 0 1 72 102 8 52 2 0
31 90 0 1 90 253 8 82 0 0 1 90 613 11 93 3 0
Average 0.6 3239 16 67 0.7 0 851 71 183 0.9

60 Parts
Params. BIL Results RDA Results
19 60 0 5 303 590 19 35 0.9 0.1 5 304 82 13 26 2 0.9
19 70 0 5 305 1509 38 108 1.5 0.1 5 305 122 23 72 2 1.5
19 80 0.4 5 318 7281 51 230 2.1 0 5 317 718 127 439 2 2.4
19 90 2.3 5 347 10036 13 215 2.6 0.1 5 346 5874 561 1507 8 3.1
25 60 0.1 2 132 3537 14 54 0.7 0.1 2 132 2002 34 79 2 0.7
25 70 0 2 136 6365 17 54 0.9 0 2 136 2496 16 52 2 0.9
25 80 0.6 2 148 8115 14 89 0.7 0 2 148 2228 24 106 2 0.9
25 90 3.3 2 175 9695 5 83 0.2 0 2 171 2309 28 164 2 1.6
31 60 0 1 81 287 5 21 0 0 1 81 244 6 21 2 0
31 70 0 1 88 280 5 28 0 0 1 88 342 6 28 2 0
31 80 0 1 102 316 6 42 0 0 1 102 304 7 42 2 0
31 90 0 1 130 369 7 70 0 0 1 130 403 9 115 2 0
Average 0.6 4032 16 86 0.8 0 1427 71 221 1

Table 4.2: Industry Instances Results for (m = 20,n = 121)
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but low holding cost. There is enough high-value inventory held in the optimal solution that the

savings are significant, amounting to more than a 30% cost redution in the α = 90% instance.

These instances are crucial as they show that the integrated approach can deliver dramatic cost

savings over the decoupled approach, under the right circumstances.

In general, increasing the service level requirement α increases the difficulty of the problem.

Across all the instances in Table 4.2, the average gap for α = 60% is 0% for the two algorithms,

and the average execution time is 1159 seconds for BIL and 210 seconds for RDA. In contrast,

the average gap for α = 90% is 2% for both algorithms, and the average execution time is 6326

seconds for BIL and 2288 seconds for RDA. This trend can be observed in all subsequent tests

as well.

A small change in the input parameters can have a large impact on the optimal solution. For

instance, increasing the time window by 6 hours (from 19 to 25) reduces the number of service

centres required from five to two. This is accompanied by a significant decrease in the amount

of stock required throughout the network, over 50% less. The industry instances have high fixed

costs, so the total cost of a solution supporting a 25 hour time window is less than 50% of the

cost of the optimal solution with a 19 hour window. This effect is much larger than the cost

of increasing the target fill rate from 60% to 90%. These results suggest that promising a high

service level (say 90%) with a longer time window (say 31 hours) is more cost-effective than a

low service level (60%) with a shorter time window (19 hours), that is if customers can tolerate

the additional waiting time for critical service parts.

The next table, Table 4.3, shows some cost breakdowns for the 20 parts aerospace instances.

When the time window is smaller more service centres are required, and the associated fixed

costs are larger. Because of the high fixed cost of opening service centres, all instances choose

the minimum number of service centres. For the 19 hour window, there is one instance where

a different set of 5 service centres is chosen, resulting in a larger fixed cost but a smaller trans-

portation and holding cost. Due to the large amount of inventory held in this solution, the optimal

solution contains service centres with a lower holding rate and higher fixed costs. Of the 12 in-

stances considered in this table, this instance is also the one with the largest optimality gap, and
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thus presumably the most difficult to solve. We deduce this is because there are a number of

solutions that involve opening different subsets of service centres, and it is difficult to find the

most balanced combination of fixed costs and holding costs.

Transportation costs do not change much with respect to the target service level α because

the volume of part flow moving through the system depends on the demand, not on the stocking

levels. The transportation costs do increase when the time window is increased, as fewer service

centres are opened and the parts need to be shipped further between geographically disperse

service centres that remain open.

Inventory holding costs depend both on the target service level and the time window. As

the service level increases, so does the inventory required, and thus the holding costs. More

importantly, as the time window increases, the number of service centres required decreases.

The model does not allow parts to be shared using strategies such as emergency transshipments,

so a large benefit can be seen from inventory pooling with a smaller number of service centres.

Increasing the time window from 19 hours to 31 hours reduces the inventory holding costs by

81-89%, depending on the instance and on the target service level.

The twelfth instance, with the 31 hour time window and 90% service level target, has the

largest DeC gap. The DeC solution has a fixed cost of 50,000 and an inventory holding cost of

225,830. This is in contrast to the optimal solution, which has a fixed cost of 125,653 and an

inventory holding cost of 53,769. The large decoupled gap occurs because the decoupled solution

chooses a service centre with a small fixed cost, but is ignorant of the large holding cost that can

be associated with a small service centre cost. In practical terms, this could be a service centre

in a developing country with low salaries and government subsidies, but a high risk of damage,

obsolescence and government intervention. The optimal solution takes into account the cost of

inventory, and finds a significantly cheaper solution overall.

Table 4.4 contains results for more industry instances, with some input parameters from the

above instances replaced with random inputs. The fixed costs for each service centre, which

range from $50,000 to $150,000 in the above instances, were chosen uniformly at random from

the same interval. The holding costs are similarly chosen from the interval 5% to 25% of the
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Parameters Solution Values Costs
ω α y s Fixed Location Transportation Holding
19 60 5 102 454,833.2 18,472.9 304,708.5
19 70 5 103 454,833.2 18,849.4 305,557.6
19 80 5 109 454,833.2 18,501 316,205.6
19 90 5 122 519,715.3 18,041.8 290,492.8
25 60 2 45 210,665.3 19,704 62,993.9
25 70 2 48 210,665.3 19,737 65,882.2
25 80 2 55 210,665.3 19,763 72,261.2
25 90 2 62 210,665.3 19,757.2 81,107.2
31 60 1 31 125,653.1 21,585.3 32,215.3
31 70 1 34 125,653.1 21,585.3 34,863.6
31 80 1 37 125,653.1 21,585.3 37,751.9
31 90 1 50 125,653.1 21,585.3 53,769

Table 4.3: Industry Instances with Detailed Cost Breakdown for (m = 20,n = 121, p = 20)

part value. All other inputs are left unchanged, i.e., the service centre and customer locations,

customer demand, part values and transportation costs are the same. Three different random

problem sets are generated, denoted by seed 1, 2 and 3. These random number generator seeds

allow us to randomly generate the input data while being able to replicate the results in the

future. Again, the input paramters ω and α are varied to create 12 different instances within

each problem set.

While most of the instances have very small decoupled gaps, there are four more instances

in Table 4.4 with decoupled gaps ranging from 6.8% to 28.3%. This is a significant result that

demonstrates the importance of an integrated approach. If a problem is solved through a decou-

pled approach, the initial solution may turn out to be optimal or near-optimal. However, it is also

possible that there exists another solution with a 30% improvement in total cost.

Furthermore, the input parameters and decisions are interwoven in a complex manner, so

that it is very difficult to determine beforehand whether the problem will have an easy solution.

Even if the optimal solution to one instance is the initial decoupled solution, small changes to the

inputs may result in an instance where the optimal solution has a substantially lower cost than the

decoupled solution. For instance, with α = 90% and a time window of 19 hours, the decoupled

difference in the first random problem set is only 0.3%. Increasing the time window to 25 hours

creates a problem instance where the decoupled difference is now over 10%. Further increasing

the time window to 31 hours leads to a problem with a 28.3% gap.
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20 Parts - Seed 1
Params. BIL Results RDA Results
ω α Gap y s time iter cuts DeC Gap y s time iter cuts |A| DeC
19 60 0 5 102 20 5 8 0.4 0.1 5 102 16 7 10 2 0.4
19 70 0.1 5 104 62 10 22 0.4 0.1 5 104 34 13 24 2 0.4
19 80 0.1 5 109 514 24 72 0.3 0.1 5 109 250 27 94 5 0.3
19 90 0.7 5 122 7570 17 139 0.2 0.1 5 121 444 91 349 7 0.3
25 60 0 2 45 5950 12 16 0 0 2 45 39 12 16 2 0
25 70 0 2 48 5407 10 37 1.1 0 2 48 457 15 63 6 1.1
25 80 1.9 2 56 7371 10 66 1 0 2 55 633 32 154 6 1.3
25 90 4.7 2 65 7514 10 128 8.9 0.1 2 61 1217 83 356 9 10.3
31 60 0 1 31 1566 9 34 3.5 0 1 31 201 14 46 5 3.5
31 70 0 1 34 1662 9 44 6.8 0 1 34 180 14 60 5 6.8
31 80 0 1 37 2898 10 49 10.4 0 1 37 273 15 69 5 10.4
31 90 0 1 50 3050 11 98 28.3 0 1 50 426 17 143 6 28.3
Average 0.6 3632 11 59 5.1 0 348 28 115 5.3

20 Parts - Seed 2
Params. BIL Results RDA Results
19 60 0.1 5 102 102 20 20 0 0.1 5 102 30 30 33 2 0
19 70 0.1 5 103 737 53 83 1 0.1 5 103 60 54 82 2 1
19 80 0.1 5 108 4146 95 126 0.6 0.1 5 108 159 100 150 4 0.6
19 90 2.2 5 124 7369 18 185 0 0.1 5 120 1321 362 779 13 0.9
25 60 0 2 45 1548 21 42 1.9 0 2 45 43 23 45 2 1.8
25 70 0.5 2 48 7318 25 52 2.3 0.1 2 48 215 40 84 4 2.3
25 80 2.2 2 55 8573 13 66 0.4 0.1 2 55 634 69 181 6 0.5
25 90 5.4 2 65 7862 11 110 2.2 0.1 2 61 1471 80 313 10 4.5
31 60 0 1 31 1043 7 25 0 0 1 31 232 11 36 4 0
31 70 0 1 34 5635 9 44 0 0 1 34 358 14 60 5 0
31 80 0 1 37 4775 11 58 0 0 1 37 546 17 83 6 0
31 90 2.5 1 50 7904 12 124 0.4 12.4 1 50 7229 189 227 13 0.4
Average 1.1 4751 25 78 0.7 1.1 1025 82 173 1

20 Parts - Seed 3
Params. BIL Results RDA Results
19 60 0.1 5 102 37 8 8 0 0.1 5 102 30 13 13 3 0
19 70 0.1 5 104 158 19 32 0 0.1 5 104 90 32 57 3 0
19 80 0 5 107 3755 65 121 0.5 0 5 107 93 64 111 3 0.5
19 90 2.1 5 123 7355 21 191 0.1 0.1 5 121 1317 379 730 12 1
25 60 0 2 45 1685 9 18 0 0 2 45 169 10 15 2 0
25 70 0 2 48 2312 21 31 0 0 2 48 248 22 32 2 0
25 80 0.3 2 55 7231 34 74 0.5 0 2 55 166 40 73 2 0.5
25 90 0.8 2 61 7427 20 71 2.4 0 2 61 177 43 88 2 2.6
31 60 0 1 31 566 6 18 0 0 1 31 171 9 27 3 0
31 70 0 1 34 699 6 23 0 0 1 34 148 9 35 3 0
31 80 0 1 37 2314 8 40 0 0 1 37 309 12 55 4 0
31 90 5.2 1 50 7881 6 87 0 0 1 50 910 20 173 7 0
Average 0.7 3452 19 60 0.3 0 319 54 117 0.4

Table 4.4: (m = 20,n = 121, p = 20), Random Industry Instances
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fi : 500+1000∗U(0,1) Warehouse cost
dik : Poisson(U(0,1)) Annual demand in units per year
vk : 2000+1000∗U(0,1) Part value, used for holding cost

h jk : 0.125+0.25∗U(0,1)∗ vk Annual holding cost in $ per unit per year
τi j : 5∗disti j Travel Time in hours (between 0 and 5

√
2)

ci jk : ak +bkτi j Annual transportation cost between i and j for part k
ak : 10+20∗U(0,1) Minimum transportation cost (fixed component)
bk : 10+10∗U(0,1) Distance-based transportation cost
tik : 1 week lead time
w j : 4 hours delivery time window
αk : DU{0.5,0.6,0.7,0.8,0.9} part service level

Table 4.5: GND Input Parameters

The results clearly demonstrate that the integrated problem must be solved in order to guar-

antee the best solution is found. Relying on the decoupled approach could be a very expensive

decision.

4.5.2 GND Instances

The problems considered in this section use two problem sets from the work in Gzara et al.

(2013). The first set is small, with 5 service centres, 50 customers and 3 parts, while the second

set is medium-sized, with 10 service centres, 100 customers, and 3 parts. Random instances

are generated by constructing a unit square and randomly placing facilities and customers in

the square. The Euclidean distance between potential locations and customers, represented by

the parameter disti j, is used to find both the travel times and shipment costs. To generate these

instances, the input parameters shown in Table 4.5 are used.

Note that the customer demand rate of customer i for part k is Poisson with mean uniformly

distributed between 0 and 1. This results in annual customer demand rates that are typically less

than 1, but may be as high as 5 or more in rare cases.

The results for the 10 small instances with baseline parameters are listed in Table 4.6. After

2 hours of CPU time (but less than 30 minutes of clock time), all but one of the instances of the

small-sized base scenario converge to optimality. In fact, all but one instance solve to optimality

within 5 seconds. As expected, the algorithm BIL is slower than the approximate algorithm
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GND Small Instances: (m = 5,n = 50, |K|= 3)
BIL Results RDA Results

Gap y s time iter cuts DeC GND Gap y s time iter cuts |A| DeC GND
0 2 7 0 4 3 0 0 0 2 7 0 7 3 3 0 0
0 1 5 0 4 3 0 0 0 1 5 0 7 5 3 0 0
0 1 5 0 3 4 0 0 0 1 5 1 7 7 5 0 0

4.5 2 9 7269 97 194 4.6 -0.4 0 2 9 2568 1464 1759 10 5 0
0 2 6 0 1 0 0 0 0 2 6 0 1 0 1 0 0
0 1 6 0 3 6 0 0 0 1 6 1 7 6 5 0 0
0 1 4 0 2 1 0 0 0 1 4 0 4 3 3 0 0
0 2 4 3 13 12 2.2 0 0 2 4 0 9 6 4 2.2 0
0 2 9 0 5 7 2.7 0 0 2 9 1 9 14 6 2.7 0
0 2 8 5 16 15 4.8 6.5 0 2 8 1 19 18 3 4.8 6.5

0.5 728 15 25 1.4 0.6 0 257 153 182 1.5 0.7

GND Medium Instances: (m = 10,n = 100, |K|= 3)
BIL Results RDA Results

Gap y s time iter cuts DeC GND Gap y s time iter cuts |A| DeC GND
1.4 1 7 7201 41 82 0 -1 0 2 8 339 129 203 46 1.1 0.1
0 2 6 2 4 3 9.7 0 0 2 6 3 5 2 3 9.8 0.1

0.1 2 9 5613 48 71 0.4 0 0.1 2 9 298 93 137 47 0.4 0
0.1 2 7 3153 42 51 1.2 0 0.1 2 7 130 68 85 29 1.2 0
4.5 2 10 7772 27 54 2.9 -0.7 3.6 2 10 7211 1298 1383 70 3.3 -0.3
0 1 7 22 7 7 0 0 0 1 7 40 22 22 16 0 0
0 1 6 230 11 15 0 0 0 1 6 55 27 37 16 0 0
4 2 7 7271 126 126 0 4.1 2.7 2 7 7218 871 871 14 0 4.1
0 2 7 39 6 6 1.5 0 0 2 7 26 14 11 9 1.5 0
0 1 6 326 26 25 0 0 0 1 6 89 47 45 21 0 0
1 3163 34 44 1.6 0.2 0.7 1541 257 280 1.7 0.4

Table 4.6: GND Instances Results

studied in Gzara et al. (2013), but does deliver a certificate of optimality. In particular, BIL finds

a significantly better solution in instance 10, a difference of 6.5%. We believe that the tradeoff in

execution time is more than made up for in the demonstrated and theoretically desirable property

of guaranteed optimality.

The RDA algorithm is able to solve the troublesome instance 4 from the small set of problems

that the BIL algorithm is not able to solve to optimality, while demonstrating that the solution

found in Gzara et al. (2013) is optimal. In general, RDA solves the problems faster, in an average

257 seconds, compared to the original algorithm, which takes 728 seconds on average.

The results for the medium instances are in the second part of Table 4.6. When using RDA,

eight of the instances of the medium-sized base scenario also converge to optimality. Comparing

the final solution to the DeC solution, most of these problems have a decoupled solution that is the
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same or very close to the optimal solution. Nine of the instances are within 3.3% of the decoupled

solution, with an average of 1.7% difference. However, there is significant improvement in

instance 2, with a difference of 9.8%. This again justifies the use of an integrated approach to

solving these inventory-location problems.

In comparing RDA to the GND algorithm, note that in six instances of the medium-sized

problems, the solutions found are exactly the same. In one case, the GND solution is marginally

better by 0.3%, as the RDA algorithm was not able to converge to optimality within the time limit.

The lower bound provided by the algorithm is still smaller than the GND solution, suggesting

that given enough time, the RDA algorithm may find a better solution. Finally, in three instances

the algorithm finds a better solution, and in one instance this improvement was significant at

4.1%. The average improvement over the GND algorithm is 1.6%.

These results lead to a number of conclusions. In 90% of the instances, the approximate

method studied in Gzara et al. (2013) performs very well, finding the optimal solutions to these

difficult problems in a few minutes of CPU time. While the approximate methodology is not able

to prove optimality of the solutions, the exact methodology is able to provide the certificate of

optimality and demonstrate the practical effectiveness of the approximate method. In 10% of the

instances, the exact methodology delivers a better solution than the approximate method, further

justifying its use.

4.5.3 Improvements to the Logic-Based Benders Cut

In this section the use of ∆i jk is justified in the implementation of the logic-based Benders decom-

position algorithm. The test problems used are the series of 10 small-sized problems from Gzara

et al. (2013). The input parameters for these problems are described in Section 4.5.2. Recall the

original logic-based Benders cut, where ∆i jk = αk:

∑
j∈Jk

λ̄ jkβ (λ̄ jk, s̄′jk)

∑
i∈I

dik
+ ∑

j∈Jk

∑
i∈I jk

αk(1− xi jk)+ ∑
j∈J

∑
i/∈I jk

αkxi jk ≥ αk−αk ∑
j∈Jk

∑
s∈S:s 6=s̄′jk

Vjks (4.3.2)
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GND Small Instances: (m = 5,n = 50, |K|= 3)
BIL Results with cut (4.3.2)

Gap y s time iter cuts DeC GND
4.7 2 7 7148 2174 2174 0 0
0 1 5 0 4 3 0 0
0 1 5 1 3 4 0 0

15.1 2 9 6981 2363 4726 4.9 -0.1
0 2 6 0 1 0 0 0
0 1 6 4 3 6 0 0
0 1 4 0 2 1 0 0

1.7 1 4 7203 948 948 0 -2.1
14.1 2 9 7141 1234 2468 2.6 0
7.9 2 8 6941 4847 4847 4.8 6.5
4.4 3604 1158 1518 1.2 0.4

Table 4.7: GND Small Instances results, with original naı̈ve logic-based Benders cut

This cut is easy to compute, but as discussed in Section 4.3.1 it is rather weak. Table 4.7

summarizes the results of the BIL algorithm using the original cut (4.3.2). In the 5 instances

where more than 4 iterations were required, the algorithm failed to converge to optimality within

the time limit. This suggests that if the problem is difficult at all, then the original cut is not

effective. In comparing Table 4.7 to the upper-right section of Table 4.6, notice that the average

optimality gap has increased from 1% to 4.4%, the average execution time has increased from

728 seconds to 3604 seconds, and the number of unsolved problems has increased from 1 to 5.

These results on the small test problems from Gzara et al. (2013) demonstrate the usefulness of

the full BIL algorithm with the ∆i jk computations. The next section will justify the use of the

OCGA customer ordering procedure.

4.5.4 Customer Ordering Analysis

Finally, we present the experimental evidence for choosing to order the customers by demand for

part k ∈K, from smallest to largest. The test problems used are again the series of 10 small-sized

problems from Gzara et al. (2013). The analysis was conducted by running the BIL algorithm

with modified versions of the OCGA sub-algorithm. Each of the 10 problems was solved four

times, three times using a different version of the OCGA sub-algorithm, and once without using

the OCGA sub-algorithm at all. The BIL algorithm ran until it converged to optimality, or 7200
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Approach : Customer Ordering Gap time iter
Smallest to Largest Demand 0.5 % 728 sec. 15
Largest to Smallest Demand 0.7 % 732 sec. 41

Random Ordering 0.6 % 732 sec. 19
Worst-Case (no ordering) 3.6 % 3640 sec. 1760

Table 4.8: Use of customer ordering approach on 10 test problems

seconds elapsed.

The three variations of the OCGA sub-algorithm used include three different customer or-

derings. The three orderings used are smallest to largest customer demand, largest to smallest

customer demand, and a random ordering. The fourth execution of the BIL algorithm, without

the use of customer ordering, had to calculate the worst-case increase in the fill rate possible

while considering all possible customers. This version of BIL without customer ordering had an

average optimality gap of 3.6%, and took 3640 seconds and 1760 iterations on average to solve

the problems. In comparison, the best customer ordering procedure (smallest to largest demand)

had an average optimality gap of 0.5%, and took 728 seconds and 15 iterations on average to

solve the problems.

The trials suggest the smallest to largest demand ordering gives the strongest results, but the

improvement is not very significant over other customer orderings. See Table 4.8 for the average

results. The table clearly shows the benefit of using customer ordering and justifies the use of the

OCGA algorithm for calculating ∆i jk for a given part k ∈ K.
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Chapter 5

Benders Decomposition: Lost Sales and

Soft Time Windows
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5.1 Motivation

In this chapter, we revisit some assumptions made in the previous chapter. Instead of applying

a backordering policy when there is not enough stock, a lost-sales assumption is used. This

assumption is appropriate when there exists a supplier that can provide a substitute part, or when

a supplier can directly ship an emergency part to a customer, bypassing the main supply chain.

The calculation for service centre fill rates is different when using the lost-sales assumption.

The second assumption we reconsider is the strict time window. In this chapter a soft time

window is used, which means customers can be assigned to any service centre. Customers as-

signed to a service centre outside of the time window must have their demand satisfied, but do

not contribute to fill rate successes. Under the assumption that demand is handled using a first-

come first serve (FCFS) discipline, the proportion of orders that are from customers inside the

time window represents an upper bound on the fill rate that can be attained at a service centre.

For example, if 30% of customer demand assigned to a service centre is from customers outside

the time window, even a 100% service level provided to all customers will only result in 70% of

orders being satisfied within the time window. This motivates the fill rate calculation used in Jeet

et al. (2009), and the one that will be presented in this chapter.

5.2 Modelling

The model and algorithms used to solve the problem in this chapter are nearly identical to those

used in Chapter 4. As such, some sections contain repeated passages that are included for the

sake of completeness. Special attention is drawn to those areas where the model and solution

methodology differ.

The service parts logistics system under study is again composed of a central warehouse

which supplies service parts to selected service centres among potential locations in set J. Cus-

tomers in set I place orders for parts in set K at the service centres. If there is not enough stock,

this models assume that the sale is lost, e.g. a lost-sales policy. Assume the central warehouse
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has unlimited capacity and has a fixed replenishment lead time t jk for service centre j ∈ J and

part k ∈ K.

There are three sets of binary decision variables. The location variable y j is binary, and takes

value 1 if service centre j ∈ J is open. The allocation variable xi jk is also binary, and takes value

1 if the demand of customer i ∈ I for part k ∈ K is assigned to service centre j ∈ J. The stock

variable Vjks is binary, and takes value 1 if the number of units of part k ∈ K kept at service

centre j ∈ J is equal to s ∈ S, where S = {0,1,2, ...,Smax} represents the set of possible stocking

levels. Also let S+ = {1,2, ...,Smax} represent the set of possible non-zero stocking levels. Define

s′jk = ∑
s∈S

sVjks as the integer stocking level of part k at service centre j. Throughout the chapter,

s′jk and ∑
s∈S

sVjks are used interchangeably to represent the stocking level of part k at service centre

j. For notational convenience, the text will use s′jk whenever possible.

Recall that service parts for aircraft are expensive, may be valued at hundreds of thousands

of dollars, and experience low failure rates. Consequently, use of a base-stock inventory policy

and the assumption of Poisson-distributed demand are appropriate (Song (1998)). Customer i’s

demand for part k follows a Poisson process with mean dik over the replenishment lead time t jk.

Due to the assumption of a constant replenishment lead time, the lead time demand experienced

by service centre j for part k is a random variable with a Poisson distribution, denoted λ̃ jk, with

mean

λ jk = ∑
i∈I

dikxi jk j ∈ J,k ∈ K (5.2.1)

In setting the time-based service levels, the target service level αk is calculated at the part level.

We also assume that each service centre j ∈ J can deliver a part to each customer i ∈ I in τi j

time units, but that customer i can be assigned to any service centre, including those that cannot

deliver parts within the target service time window ωi.

The time-based service level used in this chapter is calculated with the lost-sales fill rate

and a soft time window. The lost-sales fill rate (Jeet et al. (2009)) under the Poisson demand

assumption for demand over lead time λ jk and stocking level s′jk is written
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L(λ jk,s′jk) = 1−
λ

s′jk/s′jk!
s′jk∑

n=0
λ n

jk/n!

λ jk ≥ 0,s′jk ∈ Z+ (5.2.2)

The service level constraint includes a second term for demand from close customers, those

assigned within the time window ωi. That demand quantity is represented by:

λ
c
jk =

∑
i∈I:τi j≤ωi

dikxi jk j ∈ J,k ∈ K (5.2.3)

The lost-sales fill rate is multiplied by the percentage of customer demand within the time

window to get the complete service level constraint:

∑
j∈J

λ c
jk∑

i∈I
dik

L(λ jk,s′jk)≥ αk k ∈ K (5.2.4)

Since the model assumes first-come first-served discipline, only customers located within

the time window will receive their order on time, even if the service centre has inventory. The

proportion of customers located within the time window is λ c
jk/
∑
i∈I

dik, and they will have their

orders filled in proportion to the service centre fill rate L(λ jk,s′jk). The resulting fill rate is the

product of these two terms. This is the same fill rate constraint used in Jeet et al. (2009).

There is a fixed cost f j for opening service centre j ∈ J, a transportation cost ci jk incurred for

shipping a part k ∈ K from service centre j ∈ J to customer i ∈ I, and an annual holding cost h jk

incurred for holding part k ∈ K at service centre j ∈ J.

The inventory-location problem is modeled as a stochastic, nonlinear, mixed-integer program

[SM-2]:
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[SM-2]: min
∑
j∈J

f jy j +
∑
i∈I

∑
j∈J

∑
k∈K

ci jkdikxi jk +
∑
j∈J

∑
k∈K

∑
s∈S

h jsVjks (5.2.5)

s.t.
∑
j∈J

xi jk = 1 i ∈ I,k ∈ K (5.2.6)

xi jk ≤ y j i ∈ I, j ∈ J,k ∈ K (5.2.7)∑
s∈S+

Vjks ≤ y j j ∈ J,k ∈ K (5.2.8)

xi jk ≤
∑
s∈S+

Vjks i ∈ I, j ∈ J,k ∈ K (5.2.9)

∑
j∈J

∑
i∈I

: τi j ≤ ωidikxi jkL(λ jk,
∑
s∈S

sVjks)≥ αk

∑
i∈I

dik k ∈ K (5.2.10)

xi jk ∈ {0,1} i ∈ I, j ∈ J,k ∈ K (5.2.11)

y j ∈ {0,1} j ∈ J (5.2.12)

Vjks ∈ {0,1} j ∈ J,k ∈ K,s ∈ S (5.2.13)

The objective function (5.2.5) minimizes the total cost of opening service centres, transport-

ing customer demand, and holding stock. Constraint (5.2.6) ensures that all customer demand

is assigned to a service centre. Constraints (5.2.7) and (5.2.8) ensure customers are assigned to,

and stock is held at, open service centres only. Constraint (5.2.9) requires that at least one unit

of stock of part k is held at service centre j if a customer demand for that part is assigned to

the service centre. Constraint (5.2.10) enforces a system-wide part target service level αk. The

left-hand side of the fill rate constraint is the weighted sum of the fill rate functions of part k at

service centres where the part is held. Constraints (5.2.11) are binary requirements on customer

assignment variables and enforce single-sourcing per part. Constraints (5.2.11) are binary re-

quirements on service centre location variables, and constraints (5.2.12) are integer requirements

on the stock variables.

The problem [SM-2] is difficult to solve in the presence of the non-linear and stochastic

service level constraints (4.2.9). Jeet et al. (2009) considered the same problem and have used a
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number of different approximation techniques to deal with the service level constraints. We again

consider an alternative approach, decomposition, to solve this difficult optimization problem

exactly. When the location, assignment, and stock variables are fixed, it is easy to verify if

the solution is feasible with respect to the service level constraints, and calculate feasible stock

levels in case of infeasibility. As in the previous chapter, such an approach may be accomplishe

through logic-based Benders decomposition. In this case, additional complexity arises from the

close customer term in the service level constraint.

5.3 Logic-Based Benders Decomposition

Consider the relaxed problem, denoted [MP-2], obtained when constraints (5.2.10) are dropped.

The relaxed problem finds a solution (x̄, ȳ,
∑
s∈S

sV jks) which may violate constraints (5.2.10). Re-

call that s̄′ =
∑
s∈S

sV jks. As in the previous chapter, let I jk = {i ∈ I : x̄i jk = 1} be the set of

customers whose demand for part k is assigned to service centre j, and Jk = { j ∈ J : s̄′jk > 0} be

the set of service centres that carry inventory for part k. To check whether the solution (x̄, ȳ, s̄′)

violates constraints (5.2.10), the achieved service level for each part k is calculated as

∑
j∈Jk

λ̄ c
jk∑

i∈I jk

dik
L(λ̄ jk, s̄′jk) (5.3.1)

where λ̄ c
jk =

∑
i∈I jk:τi j≤ωi

dikx̄i jk and λ̄ jk =
∑
i∈I

dikx̄i jk. All of these quantities are derived from the

solution (x̄, ȳ, s̄′) to [MP-2].

If the achieved service level meets or exceeds the target αk for each part k ∈ K, then the

solution (x̄, ȳ, s̄′) is optimal for the original problem [SM-2], since it is optimal for the relaxed

problem and it is feasible for the relaxed constraints. However, this rarely happens. When

constraints (5.2.10) are dropped and no other constraints are added, the stock variables s′jk will

be either 0 or 1 since the only constraints on s′jk are (5.2.9).
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5.3.1 Subproblem Relaxation Constraints

This observation again suggests that subproblem relaxation constraints could be useful. To im-

prove the performance of the algorithm, a new set of constraints are added to the master problem

based on some simple logic. Suppose every service centre has enough inventory and is able

to achieve a near 100% fill rate. A solution will still be feasible only if the total percent of

customer demand assigned to close service centres exceeds α . The following cut enforces this

requirement:

∑
j∈J

∑
i∈I:τi j≤ωi

dikxi jk∑
i∈I

dik
≥ αk (5.3.2)

This simple cut allows the Benders decomposition algorithm to start working at finding the

best solution much faster, saving hours of computational time. This cut is added to [MP-2] before

executing the solution algorithm.

5.3.2 Logic-based Benders Cuts

If solution (x̄, ȳ, s̄′) is not feasible to [SM-2], cutting this solution from the feasible region of the

relaxed problem leads to a tighter relaxation. Hence the goal is to derive a valid cut that:

1. eliminates solution (x̄, ȳ, s̄′) from the feasible region of the relaxed problem; and

2. does not eliminate any feasible solution to [SM-2].

After adding valid cut(s) to the relaxed problem, the latter is solved again and the same

procedure repeats. The algorithm is guaranteed to converge to an optimal solution when the

valid cut(s) satisfies conditions 1 and 2, as shown by Chu and Xia (2004). The relaxed problem

[MP-2] is referred to as the Benders master problem, and the valid cuts are referred to as Benders

cuts.

Given a solution to [MP-2], denoted (x̄, ȳ, s̄′), let I jk represent the set of customers whose

demand for part k ∈ K is assigned to service centre j ∈ J and let Jk represent the set of service
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centres that carry inventory for part k ∈ K. The logic-based Benders cut used in this chapter has

the same structure as the one used in the previous chapter:

∑
j∈Jk

λ̄ c
jkL(λ jk,s′jk)∑
i∈I jk

dik
+
∑
j∈Jk

∑
i∈I jk

αk(1− xi jk)+
∑
j∈J

∑
i/∈I jk

αkxi jk ≥ αk−αk

∑
j∈J

∑
s∈Q:s 6=s′jk

Vjks (5.3.3)

The idea of cut (5.3.3) is to eliminate solution (x̄, ȳ, s̄′), either by forcing at least one of

the stock variables to be different for the same location and assignment variables (x̄, ȳ), or by

forcing customer demand reassignment for the same stock values s̄′. To guarantee convergence

to optimality, cut (5.3.3) must satisfy conditions 1 and 2. These conditions are shown to hold in

the following lemmas:

Lemma 5. The logic-based Benders cut (5.3.3) satisfies condition 1, i.e., eliminates the solution

(x̄, ȳ, s̄′) from the feasible region of the relaxed problem.

Proof. As in the proof of Lemma 1, the cut (5.3.3) reduces exactly to a fill rate constraint in

[SM-2] when evaluated at the current solution (x̄, ȳ, s̄′). If the solution does not satisfy the fill

rate constraint, it also violates the cut. This proves the cut satisfies condition 1.

Lemma 6. The cut (5.3.3) satisfies condition 2, i.e., does not eliminate any feasible solutions to

the original problem [SM-2].

Proof. As in the proof of Lemma 2, consider any change to the solution (x̄, ȳ, s̄′). If any x or y

variable changes, the left-hand side will increase by at least αk. Similarly, if an inventory variable

changes value, the right-hand side will decrease by at least αk. In either case, the equation will

hold.

Together, these two lemmas show that the cut (5.3.3) is valid. Again, however, the cut is not

very effective. Calculating tighter coefficients for the x variables in the logic-based Benders cut

will improve performance. For j ∈ Jk, recall ∆i jk is the change in the fill rate at service centre
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j either: when the demand of customer i for part k assigned to service centre j (i.e., x̄i jk = 1) is

reassigned to another service centre; or when the demand of customer i for part k not assigned to

service centre j (i.e., x̄i jk = 0) is reassigned to service centre j.

Consider a family of valid cuts that are tighter than (5.3.3):

∑
j∈Jk

λ̄ c
jkL(λ jk,s′jk)∑
i∈I jk

dik
+
∑
j∈Jk

∑
i∈I jk

∆i jk(1− xi jk)+
∑
j∈J

∑
i/∈I jk

∆i jkxi jk ≥ αk−αk

∑
j∈J

∑
s∈Q:s 6=s′jk

Vjks (5.3.4)

To guarantee convergence to optimality, the cut (5.3.4) must satisfy conditions 1 and 2. Con-

dition 1 holds by Lemma 5, while condition 2 will be shown to hold after discussing how to

calculate coefficients ∆i jk.

5.3.3 Methods to Calculate Cut Coefficients

The cut (5.3.4) has the same structure as cut (4.3.4), but there is a significant difference in how

the ∆i jk are calculated because the fill rate function is different. For a given service centre j ∈ Jk

and customer i ∈ I jk, we say we are removing a customer if we are considering the effect of

changing xi jk = 1 to xi jk = 0. We say we are adding a customer i /∈ I jk if we are considering the

effect of changing xi jk = 0 to xi jk = 1. Customers are referred to as close if τi j ≤ ωi, and far

otherwise.

For this chapter, define the fill rate contribution function of service centre j to the fill rate of

part k:

∑
j∈Jk

λ c
jkL(λ jk,s′jk)∑
i∈I jk

dik
(5.3.5)

Note that the fill rate contribution now depends on the two distinct demand quantities. The

total assigned demand is the value λ jk used to calculate the fill rate experienced at the service
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Figure 5.1: Fill rate contribution function, s=3, D = 10

Figure 5.2: Fill rate contribution function, s=3, D = 10 (rotated)

centre. The percentage of this demand from close customers is referred to as close demand,

denoted λ c
jk and is calculated as

∑
i∈I jk:τi j≤ωi

dik/
∑

i∈I jk

dik. The two dimensional aspect of the fill rate

means that the fill rate contribution function is now a surface. A sample fill rate contribution

function is depicted in Figure 5.1 for stock level s′jk = 3, and total demand for part k denoted

D = ∑
i∈I

dik = 10.

Figure 5.2 is rotated so that (0,0) is in the upper left corner. The total assigned demand

λ jk runs along the y-axis. The close demand λ c
jk runs along the x-axis. Note that the vector

(1,0) corresponds to the direction where the close demand λ c
jk increases, while the vector (0,1)

corresponds to the direction where the total demand λ jk increases.

When calculating ∆i jk, there are four cases that could apply to customer i:

1. Adding a close customer’s demand for part k to service centre j;

2. Removing a close customer’s demand;
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3. Adding a far customer’s demand;

4. Removing a far customer’s demand.

Each of the four possibilities is equivalent to moving along the fill rate contribution surface

in a different direction. The cut coefficients ∆i jk are designed to capture the change in the fill rate

contribution at service centre j when demand for part k from customer i is reassigned. It would

be simple if we could calculate this change from the current solution, using the appropriate case

for customer i. For example, if only customer i’s demand was reassigned, the two values of ∆i jk

could be computed exactly by finding the difference between the new and old fill rate contribution

functions at service centres j1 and j2 respectively. Note that we assume that customer i is located

within the time window for both j1 and j2:

∆i j1k =
(λ̄ c

j1k−dik)L(λ̄ j1k−dik, s̄′j1k)

∑
i∈I

dik
−

λ̄ c
j1kL(λ̄ j1k, s̄′j1k)

∑
i∈I

dik
(5.3.6)

∆i j2k =
(λ̄ c

j2k +dik)L(λ̄ j2k +dik, s̄′j2k)

∑
i∈I

dik
−

λ̄ c
j2kL(λ̄ j2k, s̄′j2k)

∑
i∈I

dik
(5.3.7)

However, for the same reason that the customers could not be considered in isolation when

calculating ∆i jk in Chapter 4, they cannot be considered in isolation here either.

Consider a naı̈ve approach where the largest (worst-case) change in the fill rate contribution

function is used to set ∆i jk. In each of the four cases above, the appropriate directional derivative

can be used to find this value. For example, the directional derivative corresponding to adding a

close customer is depicted in Figure 5.3 with sample values s = 3 and D = 10.

However, this naı̈ve approach delivers weaker results compared to using a customer ordering

procedure. See Section 5.4.1 for a comparison and experimental results. The remainder of this

section will explore an advanced customer ordering procedure that creates tight valid Benders

cuts.
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Figure 5.3: Adding a Close Customer: Directional Derivative in the direction (1,1)

5.3.4 Calculating Valid Cut Coefficients

The calculation of tight, effective ∆i jk depends on a thorough analysis of the fill rate contribution

function and a customer ordering procedure. For a given service centre j and then for each

customer i in order of increasing demand, the effect that reassigning all the customers with

demand smaller than that of i could have on the fill rate contribution function is considered. The

four possibilities are:

1. For a customer with smaller demand that is assigned to service centre j and within the time

window, the effect of removing its demand from service centre j is analyzed.

2. For a customer with smaller demand that is not assigned to service centre j but is within

the time window, the effect of adding its demand to service centre j is analyzed.

3. For a customer with smaller demand that is assigned to service centre j but is not within

the time window, the effect of removing its demand from service centre j is analyzed.

4. For a customer with smaller demand that is not assigned to service centre j and is not

within the time window, the effect of adding its demand to service centre j is analyzed.

Only two of these possibilities are considered for each customer i′ ≺ i in the ordering, de-

pending on whether i′ is within the time window for delivery from service centre j or not. For the

purpose of the algorithm, ∆i jk is defined as the largest change in the fill rate contribution function

possible at service centre j when reassigning customer i’s demand for part k, under all possible

solution configurations of customers that precede i in the ordering.
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Complete enumeration can again be used to calculate ∆i jk exactly. The first customer in the

ordering (with smallest demand) has no preceding customers, so equations (5.3.6) and (5.3.7) can

be used to calculate ∆i jk. For the n-th customer in the ordering, one must consider all possible

combinations of changing or not changing the status (assigned or not assigned) of preceding

customers to service centre j. As the customers may or may not be located in the time window of

service centre j, this results in 2n−1 different demand quantity points on the fill rate contribution

surface. From each of these potential solutions, one must then calculate the change in the fill rate

contribution by changing the status of the n-th customer at service centre j from each of these

points (using a calculation similar to equations (5.3.6) and (5.3.7), but starting from points other

than (λ̄ c, λ̄ )). The largest value is chosen for ∆i jk. This method is not discussed any further as it

is not used in this thesis, due to the exponential number of calculations required. A more efficient

method is obviously desirable.

The method used to find ∆i jk is inspired by the exact method above, but instead relies on

an analysis of certain directional derivatives of the fill rate contribution function. The method

described below quickly find values of ∆i jk that are equal to or slightly larger than those found

by the exact method, in much less time. A proof is provided in Lemma 7. We design the

search algorithm to begin from the current solution point (λ c
jk,λ jk). All customers are ordered

by their demand for part k, from smallest to largest. Next, the algorithm consider how changes

to customers with demand less than customer i will affect the contribution function.

Consider a customer i′ ≺ i. The impact of adding or removing this customer from service

centre j will have on the fill rate depends on whether this customer is assigned to j or not, and

depends on whether this customer is within the time window around service centre j (whether

customer i′ is a close or far customer with respect to j). If customer i′ is a close customer that is

currently not assigned to j, adding this customer to service centre j corresponds to a movement

in the direction (1,1). A close customer i′≺ i that is assigned to service centre j could be removed

from service centre j, corresponding to a movement in the direction (-1,-1). A far customer that

is not assigned to service centre j could be added, corresponding to a movement in the direction

(0,1), while a far customer that is assigned to service centre j could be removed, corresponding
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to a movement in the direction (0,-1).

In summary, when trying to find the largest change in the contribution function for customer

i, the algorithm must consider all possible movements due to all customers preceding i in the

ordering. Since some customers may not change in a future solution, the possibility of not

moving must also be considered. Together, the sum of all chosen movements brings us to a new

point, from where we can calculate the change in the fill rate contribution exactly. This value

is set to ∆i jk, and as required, is the largest change in the fill rate contribution function possible

at service centre j when reassigning customer i’s demand for part k, under all possible solution

configurations of customers that precede i in the ordering.

The gradient search algorithm is bounded by the possible movements made by the customer

that precede the customer i currently under consideration. In each case, the algorithm determines

which of the four cases applies to customer i (adding/removing a close/far customer i). Then

the bounded gradient search algorithm considers all possible movements of the customers that

precede i. The details of the Ordered Customer Gradient Algorithm for Lost Sales (OCGA-LS)

algorithm are given in Appendix D. The following lemma proves that the procedure creates valid

cuts.

Lemma 7. The fill rate cut (5.3.4) satisfies condition 2, i.e., it does not eliminate any feasible

solutions to the original problem [SM-2].

Proof. Let

fk(x,y,s) =

∑
i∈I jk

∑
j∈Jk:τi j≤ωi

dikxi jkL( ∑
j∈Jk

dikxi jk,s′jk)

∑
i∈I

dik
(5.3.8)

in this chapter. As ∆i jk is the largest change in the fill rate contribution function possible at

service centre j when reassigning customer i’s demand for part k, under all possible solution

configurations of customers that precede i in the ordering, the proof of Lemma 4 applies here

without further modification.
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5.3.5 Inventory Stocking Problem

An inventory stocking problem is again used to find feasible solutions to the original problem

[SM-2] and provide an upper bound. Given a solution (x̄, ȳ, s̄′) to [MP-2], it is straightforward

to calculate the demand for part k faced by service centre j as λ̄ jk and the lost-sales fill rate

L(λ̄ jk, s̄′jk). For a part k for which the service level constraint corresponding to s̄′ is violated, new

stocking levels are determined such that the weighted average of the fill rates over service centres

with nonzero λ̄ jk meets the target service level and the holding cost is minimized. The inventory

stocking problem decomposes by part. For each part k ∈ K whose service level constraint is

violated, the inventory problem [SPk-2] is solved:

[SPk-2]: min ∑
j∈Jk

∑
s∈S

h jksVjks (5.3.9)

s.t. ∑
i∈I jk

∑
j∈Jk

∑
s∈S

dikx̄i jkL(λ̄ jk,s)Vjks ≥ αk ∑
i∈I

dik (5.3.10)

∑
s∈S+

Vjks ≤ ȳ j j ∈ Jk (5.3.11)

Vjks ∈ {0,1} j ∈ Jk,s ∈ S (5.3.12)

In this problem, the only variables are the stocking variables Vjks. The values of L(λ̄ jk,s) are

calculated a priori for each value of s, a straightforward calculation since the values of λ̄ jk are

known. The objective is to minimize the total holding cost of the chosen stocking levels. If the

holding costs are constant across the service centres, then the problem is to minimize the amount

of stock. Constraint (5.3.10) ensures the stock levels across the service centres meet the target

lost-sales fill rate. Constraint (5.3.11) ensures only one of the binary variables is chosen for each

open service centre. The inventory stocking problem always adds enough inventory to create

a feasible solution to the original problem. This solution is computed by updating the solution

(x̄, ȳ, s̄′) with the feasible stocking variables s′jk = ∑
s∈S

sVjks from the solved [SPk-2] problems.
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5.3.6 Restrict-and-Decompose scheme

Based on the success of using the restrict-and-decompose scheme in Chapter 4, the same method-

ology is applied immediately in this chapter. The general procedure can be applied to the lost

sales problem by simply replacing Chapter 4’s master problem [MP] with this chapter’s master

problem [MP-2], and replacing Chapter 4’s inventory problem [SPk] with this chapter’s inventory

problem [SPk-2]. The modified algorithm is denoted RDA-LS.

To begin, the RDA-LS algorithm fixes the location variables and solves a restricted problem

that decomposes by part into |K| smaller problems. To determine which service centres to fix, a

linear relaxation of [MP-2] is solved where location variable y j is binary but assignment variable

xi jk and stock variables Vjks are continuous. This relaxation is referred to as [MP-2-mip]. Given

ŷ from the solution of [MP-2-mip], a node a is added to the search tree defined by set of nodes

A. At node a, the restricted master problem is defined by fixing the location variables to ŷ in

[MP-2]. The restricted master problem decomposes into |K| single-part problems [MP-2k] since

constraints (5.2.7) and (5.2.8) now have a fixed right-hand-side.

[MPk-2]: min ∑
i∈I

∑
j∈J

ci jkdikxi jk + ∑
j∈J

∑
s∈S

sh jVjks (5.3.13)

s.t. (5.2.6),(5.2.9)

xi jk ≤ ŷ j i ∈ I, j ∈ J (5.3.14)

∑
s∈S+

Vjks ≤ ŷ j j ∈ J (5.3.15)

Cuts of type (5.3.4)

xi jk ∈ {0,1} i ∈ I, j ∈ J (5.3.16)

Vjks ∈ {0,1} j ∈ J,s ∈ S (5.3.17)

The objective function (5.3.13) and constraints (5.3.14) to (5.3.15) are similar to those in

[MP-2] except that they are defined for given ŷ, and for a single part k ∈ K. The solutions of
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[MPk-2], k∈K, denoted by (xŷ,s′ŷ) together with ŷ form a feasible solution to [MP-2] and provide

a temporary lower bound Zŷ for the current node. As in the previous chapter, the feasibility of

solution (xŷ, ŷ,s′ŷ) to the original problem is checked by testing whether it satisfies the relaxed

lost sales fill rate cuts. If the solution is not feasible, a Benders cut of type (5.3.4) is added to the

appropriate [MPk-2]. The remainder of the algorithm follows the branching procedure described

in Section 2.5.1, including the use of the service centre cut (4.4.6).

The best lower bound is always the most recent solution to the Master Problem [MP-2], as it

it a relaxation of the original problem [SM-2]. The upper bound is the value of the best feasible

solution found after solving the inventory problems [SPk-2]. The complete RDA-LS algorithm

is presented below:

Restrict-and-Decompose Scheme for Lost Sales(RDA-LS):
Initialization: UB = inf, LB = 0, A = /0
While LB 6= UB
- Step 1. Solve [MP-2-mip].
- Step 2. If Zŷ < min

a∈A
{Za}, go to Step 3, else, go to Step 4.

- Step 3. Create a new search node aŷ, and add it to set A.
Add a service centre cut to [MP-2-mip].

- Step 4. Fix ŷ, corresponding to node aŷ.
- Step 5. For each k ∈ K, do:

- Solve [MPk-2] problem in node a.
- If part k’s service level constraint is satisfied, do nothing.
- Else, create Benders cut and add to [MPk-2].
End For

- Step 6. Solve subproblems [SPk-2].
- Step 7. Update node lower bound Za and upper bound Z f

a .
Update LB = min

a∈A
{Za,Zŷ}, UB = min

a∈A
{Z f

a}.

Theorem 2. The fill rate cut (4.3.4) is a valid cut for the original problem [SM-2], and thus the

Benders decomposition algorithm RDA-LS converges to an optimal solution to [SM-2]

Proof. For the cuts to be valid, they must

1. not eliminate any feasible solutions to [SM-2]; and

2. eliminate the current solution to [MP-2] if it is not feasible to [SM-2].
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In each iteration, a cut shown by Lemmas 5 and 7 to meet both conditions is added to [MP-

2]. Chu and Xia (2004) prove that if a valid cut satisfies both of these properties and the master

problem variables have finite domains, a logic-based Benders Decomposition algorithm has fi-

nite convergence to optimality. The master problem variables are all binary, and therefore the

algorithm RDA-LS converges to an optimal solution in finite time.

5.4 Computational Results

In this section, the restrict-and-decompose scheme RDA-LS is applied to solve instances of the

inventory-location problem with part service levels, under the lost-sales assumption with a re-

laxed time window. The problems are instances used in the work by Jeet et al. (2009).

The algorithms run on the same system and with the same restrictions as in Chapter 4. The

feasible solution found in the first iteration of the algorithm by solving the master problem [MP-

2] with the subproblem relaxation constraints but no other Benders cuts followed by the inventory

stocking problems [SPk-2] is again referred to as the decoupled solution (DeC). The final solu-

tion provided by the algorithm is compared to this initial solution as a measure of the value of

considering the location and inventory decisions together.

The algorithm RDA-LS (BIL with lost-sales) is run on the 45 small instances from the work

by Jeet et al. (2009), with fixed facility costs f = 0 and then again with f = 1000. The results

are reported in Tables 5.1 and 5.2. The input column h denotes the holding cost per unit at

each service centre. The column αA shows the service level achieved by the feasible solution

found with lowest total cost. The problem being solved is the same as in Jeet et al. (2009), so

the results are directly comparable. We denote the approximate methodology used in Jeet et al.

(2009) as JKP. RDA-LS is an exact method that is guaranteed to converge to optimality. The final

column of the table, UB vs UB, compares the best feasible solutions found by JKP and RDA-

LS, calculated as (JKP-(RDA-LS))/(RDA-LS). If the number is positive, the RDA-LS algorithm

found a better feasible solution.

The f = 0 results show that many of the instances were trivial to solve, with optimal solutions
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Instance RDA-LS Results JKP Results UB vs
h α UB LB Gap Y S αA CPU t UB LB Gap Y S t UB

1 1 0.4 232 232 0 12 12 0.827 1 232 232 0 12 12 0 0
2 1 0.6 232 232 0 12 12 0.827 1 232 232 0 12 12 0 0
3 1 0.8 232 232 0 12 12 0.827 1 232 232 0 12 12 0 0
4 10 0.4 314 314 0 7 7 0.759 1 314 314 0 7 7 0 0.1
5 10 0.6 314 314 0 7 7 0.755 1 314 314 0 7 7 0 0.1
6 10 0.8 321 322 -0.3 8 9 0.813 316 321 321 0 9 9 12 0
7 20 0.4 369 369 0 5 5 0.697 1 369 369 0 5 5 0 0
8 20 0.6 369 369 0 5 5 0.697 1 369 369 0 5 5 0 0
9 20 0.8 410 398 3.1 6 8 0.803 7580 411 410 0.2 9 9 26 0.2

10 50 0.4 491 491 0 4 4 0.635 1 491 491 0 4 4 0 -0.1
11 50 0.6 491 491 0 4 4 0.635 1 519 491 5.3 5 5 18 5.6
12 50 0.8 659 571 15.6 5 8 0.843 7437 652 650 0.4 7 8 82 -1.1
13 100 0.4 659 659 0 3 3 0.508 3 665 659 0.8 3 3 140 0.9
14 100 0.6 691 691 0 4 4 0.634 30 769 691 10.1 5 5 58 11.2
15 100 0.8 1059 870 21.8 5 8 0.8 7577 1052 1050 0.2 7 8 127 -0.7
16 1 0.4 279 279 0 15 15 0.837 1 279 279 0 15 15 0 0
17 1 0.6 279 279 0 15 15 0.837 1 279 279 0 15 15 0 0
18 1 0.8 280 279 0.4 15 16 0.835 1 280 280 0 15 16 0 0
19 10 0.4 368 368 0 9 9 0.789 1 368 368 0 9 9 0 -0.1
20 10 0.6 368 368 0 9 9 0.789 1 368 368 0 9 9 0 -0.1
21 10 0.8 388 383 1.3 9 11 0.809 7899 388 385 0.8 9 11 15 -0.1
22 20 0.4 443 443 0 7 7 0.723 1 443 443 0 7 7 0 0
23 20 0.6 443 443 0 7 7 0.723 1 443 443 0 7 7 0 0
24 20 0.8 498 472 5.7 9 11 0.822 7886 490 489 0.2 8 10 30 -1.7
25 50 0.4 583 583 0 4 4 0.566 1 583 583 0 4 4 0 0
26 50 0.6 628 628 0 5 6 0.683 2479 629 626 0.4 6 6 45 0.2
27 50 0.8 813 683 19.1 7 10 0.801 7430 790 789 0.1 8 10 61 -2.8
28 100 0.4 783 783 0 3 4 0.563 221 783 740 5.5 4 4 47 0
29 100 0.6 965 871 10.8 4 6 0.63 7537 929 926 0.3 6 6 139 -3.7
30 100 0.8 1313 1031 27.4 6 10 0.818 7322 1290 1289 0.1 8 10 122 -1.7
31 1 0.4 290 290 0 11 11 0.763 1 290 290 0 11 11 0 -0.2
32 1 0.6 290 290 0 11 11 0.765 1 290 290 0 11 11 0 -0.2
33 1 0.8 297 294 1 11 18 0.812 7425 298 296 0.7 11 19 35 0.2
34 10 0.4 366 366 0 6 6 0.697 1 366 366 0 6 6 0 0
35 10 0.6 366 366 0 6 6 0.696 1 366 366 0 6 6 0 0
36 10 0.8 438 384 14.1 7 14 0.813 7257 438 427 2.5 7 14 159 0.1
37 20 0.4 416 416 0 5 5 0.653 1 416 416 0 5 5 0 0
38 20 0.6 426 427 -0.3 6 6 0.701 19 426 426 0 6 6 1 0
39 20 0.8 578 463 24.7 7 14 0.8 7224 579 556 3.9 7 14 224 0.2
40 50 0.4 533 533 -0.1 3 3 0.54 12 533 524 1.6 3 3 1 0
41 50 0.6 623 602 3.5 5 6 0.642 7283 606 588 2.9 6 6 35 -2.7
42 50 0.8 998 703 41.8 7 14 0.812 7314 999 916 8.3 7 14 269 0.1
43 100 0.4 683 683 0 3 3 0.54 43 683 674 1.3 3 3 9 0
44 100 0.6 916 847 8.2 4 6 0.703 7452 906 838 7.4 6 6 78 -1.1
45 100 0.8 1698 1103 53.8 7 14 0.827 7405 1699 1516 10.7 7 14 363 0.1

Table 5.1: (m = 15,n = 50, p = 1), JKP small with f = 0
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found within seconds. The RDA-LS algorithm has some difficulty with problems with α = 80%,

possibly because of the existence of many different solutions with very similar costs. This causes

the lower bound to increase very slowly. Nevertheless, the RDA-LS algorithm does find feasible

solutions that in many cases are better than the JKP solutions. For example, in instances 11 and

14, the RDA-LS algorithm was able to find better solutions and prove they were optimal. The

average improvement over the JKP solution in those two instances is 8.4%.

The average optimality gap for the RDA-LS algorithm on the f = 0 instances was 6%. Con-

sidering only the 40% and 60% instances, the average gap was only 1%. In comparison, the

JKP algorithm has an average gap of 1.4% over all instances, and a gap of 1.2% over the 40%

and 60% instances. These metrics imply that the RDA-LS algorithm is weaker on instances with

high fill rates, but outperforms the JKP algoritm when the fill rate is lower.

The number of open service centres and total inventory levels are typically the same. In the

cases where the RDA-LS algorithm had a large optimality gap, it did not open as many service

centres as the JKP solution. This suggests that one weakness in the RDA-LS algorithm is that

it tries to open a minimum number of service centres, and then try different configurations of

customer assignments until it is satisfied it cannot find a strong solution. The algorithm may not

have time to find a solution with a large number of open service centres, when those solutions

are similar due to the fixed costs being 0. In the two instances where the RDA-LS algorithm did

find substantially better solutions, it was able to find solutions with one less open service centre,

and one less unit of inventory.

The best feasible solutions found by the RDA-LS algorithm open on average 7.3 service

centres for the f = 0 instances, compared to only 3.4 service centres for the f = 1000 results.

The large number of open service centres increases the number of possible customer assignments,

suggesting the problems are more difficult to solve. However, the instances with f = 0 are

unrealistic, as they ignore the costs associated with operating and managing service centres aside

from holding inventory. We conclude that these instances are difficult to solve, and the RDA-LS

algorithm is not always effective at solving them, but that this isn’t a problem in practice as real

companies are unlikely to face these types of problems.
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Instance RDA-LS Results JKP Results UB vs
h α UB LB Gap Y S αA CPU t UB LB Gap Y S t UB

1 1 0.4 2444 2441 0.1 2 5 0.409 1 2444 2443 0 2 5 35 0
2 1 0.6 3389 3386 0.1 3 6 0.688 1 3366 3365 0 3 7 59 -0.7
3 1 0.8 4299 4295 0.1 4 8 0.812 1 4300 4299 0 4 9 18 0
4 10 0.4 2489 2469 0.8 2 5 0.617 2 2489 2479 0.4 2 5 56 0
5 10 0.6 3425 3395 0.9 3 6 0.656 1 3435 3419 0.5 3 7 85 0.3
6 10 0.8 4371 4331 0.9 4 8 0.812 1 4381 4371 0.2 4 9 39 0.2
7 20 0.4 2539 2517 0.9 2 5 0.406 3 2539 2519 0.8 2 5 70 0
8 20 0.6 3485 3450 1 3 6 0.648 201 3505 3479 0.7 3 7 67 0.6
9 20 0.8 4451 4411 0.9 4 8 0.802 4 4471 4451 0.5 4 9 54 0.4

10 50 0.4 2683 2660 0.9 2 4 0.41 137 2689 2639 1.9 2 5 70 0.2
11 50 0.6 3665 3629 1 3 6 0.751 4048 3715 3659 1.5 3 7 55 1.4
12 50 0.8 4691 4649 0.9 4 8 0.858 4504 4741 4691 1.1 4 9 47 1.1
13 100 0.4 2883 2860 0.8 2 4 0.581 133 3024 2824 7.1 2 5 86 4.9
14 100 0.6 3965 3935 0.8 3 6 0.786 4065 4065 3959 2.7 3 7 161 2.5
15 100 0.8 5091 5002 1.8 4 8 0.833 8157 5191 5091 2 4 9 65 2
16 1 0.4 2535 2532 0.1 2 5 0.583 1 2535 2533 0.1 2 5 36 0
17 1 0.6 3449 3443 0.2 3 9 0.668 1 3449 3447 0.1 3 9 10 0
18 1 0.8 6341 6332 0.1 6 15 0.811 1 6342 6340 0 6 16 210 0
19 10 0.4 2580 2556 1 2 5 0.579 1 2580 2560 0.8 2 5 59 0
20 10 0.6 3530 3500 0.9 3 9 0.61 5 3530 3510 0.6 3 9 19 0
21 10 0.8 6476 6415 0.9 6 15 0.801 2 6464 6454 0.2 6 13 277 -0.2
22 20 0.4 2630 2609 0.8 2 5 0.561 25 2630 2590 1.5 2 5 64 0
23 20 0.6 3620 3591 0.8 3 9 0.804 207 3620 3580 1.1 3 9 28 0
24 20 0.8 6574 6510 1 6 11 0.805 56 6594 6574 0.3 6 12 806 0.3
25 50 0.4 2780 2753 1 2 5 0.577 300 2780 2680 3.7 2 5 80 0
26 50 0.6 3890 3853 0.9 3 9 0.707 1305 3890 3790 2.6 3 9 57 0
27 50 0.8 6904 6703 3 6 11 0.815 7738 6954 6934 0.3 6 12 422 0.7
28 100 0.4 3030 2971 2 2 5 0.737 8675 3030 2830 7.1 2 5 54 0
29 100 0.6 4256 4256 0 3 8 0.956 1149 4340 4140 4.8 3 9 74 2
30 100 0.8 7446 7046 5.7 6 11 0.822 7501 7554 7534 0.3 6 12 428 1.5
31 1 0.4 2464 2457 0.3 2 9 0.496 1 2462 2460 0.1 2 6 12 -0.1
32 1 0.6 3382 3377 0.1 3 8 0.639 1 3385 3383 0.1 3 11 8 0.1
33 1 0.8 6326 6316 0.2 6 16 0.826 1 6326 6325 0 6 16 40 0
34 10 0.4 2506 2486 0.8 2 5 0.59 2 2530 2496 1.4 2 5 23 0.9
35 10 0.6 3453 3423 0.9 3 7 0.68 2 3453 3443 0.3 3 7 12 0
36 10 0.8 6470 6410 0.9 6 16 0.849 10 6470 6460 0.2 6 16 87 0
37 20 0.4 2556 2535 0.9 2 5 0.745 7 2580 2536 1.7 2 5 23 0.9
38 20 0.6 3523 3494 0.8 3 7 0.785 33 3523 3503 0.6 3 7 11 0
39 20 0.8 6630 6514 1.8 6 16 0.859 7300 6630 6610 0.3 6 16 126 0
40 50 0.4 2706 2680 1 2 5 0.764 70 2730 2656 2.8 2 5 39 0.9
41 50 0.6 3733 3724 0.2 3 7 0.692 105 3733 3683 1.4 3 7 19 0
42 50 0.8 7110 6773 5 6 16 0.842 7491 7110 7060 0.7 6 16 139 0
43 100 0.4 2956 2928 1 2 5 0.759 165 2980 2856 4.3 2 5 40 0.8
44 100 0.6 4083 4074 0.2 3 7 0.678 117 4083 3983 2.5 3 7 30 0
45 100 0.8 7910 7219 9.6 6 16 0.804 7291 7910 7810 1.3 6 16 211 0

Table 5.2: (m = 15,n = 50, p = 1), JKP small with f = 1000
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On the other hand, the f = 1000 results are quite strong. In many instances the RDA-LS

algorithm found better solutions and smaller optimality gaps than the JKP procedure. Over all

45 instances, the RDA-LS solution was 0.5% less than the JKP solution. Furthermore, instances

27 and 30 have better integer solutions than the posted lower bound from Jeet et al. (2009).

This may draw into question the validity of the JKP lower-bounding approach, although the

improvement is less than 1% and may be explained by MIP solver tolerance.

The average gap for the RDA-LS algorithm on the f = 1000 instances was 1.2%. Considering

only the 40% and 60% instances, the average gap was only 0.7%. In comparison, the JKP

algorithm has an average gap of 1.3% over all instances, and a gap of 1.8% over the 40% and

60% instances. In these instances with more realistic service centre fixed costs, the RDA-LS

algorithm performs better with smaller gaps. The algorithm also outperforms the JKP algorithm

on average across all these instances.

The number of open service centres is always the same when comparing the optimal solutions

found by the two algorithms. The difference in solution quality arises from a different amount of

inventory and from different customer assignments. When the RDA-LS algorithm finds a better

solution, it is is usually able to find a solution with one less unit of inventory. This was the

situation in 18 out of the 45 instances.

The RDA-LS algorithm took an average of 1574 seconds of CPU time to solve the f =

1000 instances, with a 7200 second maximum. In comparison, the JKP algorithm averaged

98 seconds across the same instances. This difference was expected as the JKP algorithm is

approximate, while RDA-LS is an exact method. The RDA-LS algorithm should be preferred

since the extra time spent on solving the problems leads to improved gaps on average, and at

times better solutions.

5.4.1 Customer Ordering Analysis

Finally, we present the experimental evidence for choosing to order the customers by demand

for part k ∈ K, from smallest to largest. The test problems used to study the effect of customer
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Approach : Customer Ordering Gap time iter
Worst-Case (no ordering) 4.3 % 1980 sec. 111

Smallest to Largest Demand 2.7 % 1488 sec. 69

Table 5.3: Use of customer ordering approach on 15 test problems, using lost sales

ordering on the OCGA-LS algorithm are the first 15 of the f = 0 problems from Jeet et al.

(2009). The input parameters for these problems are described in the results section above. Each

of the 15 problems was solved twice, once with the algorithms as presented, and once by using a

modified version of the OCGA-LS sub-algorithms. The RDA-LS algorithm ran until it converged

to optimality, or 7200 seconds elapsed.

The second execution of the RDA-LS algorithm, without the use of customer ordering, had

to calculate the worst-case increase in the fill rate possible while considering all possible cus-

tomers. The algorithm set ∆i jk to the maximum value of the appropriate directional derivative.

This version of RDA-LS without customer ordering had an average optimality gap of 4.3%, and

took 1980 seconds and 111 iterations on average to solve the problems. In comparison, the cus-

tomer ordering procedure had an average optimality gap of 2.7%, and took 1488 seconds and 69

iterations on average to solve the problems.

See Table 5.3 for the average results. The table clearly shows the benefit of using customer

ordering and justifies the use of the OCGA-LS algorithm for calculating ∆i jk for a given part

k ∈ K.
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Chapter 6

Conclusions and Future Research
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6.1 Conclusions

This thesis was motivated by the inventory-location problem faced by Bombardier, a large aero-

space company that supplies after-market spare parts to its customers. A two-echelon model was

developed to represent Bombardier’s spare parts logistics network, and the problem was solved

sequentially using a MIP solver over a number of scenarios. This practical methodology was used

instead of an integrated approach due to the scale of Bombardier’s problem and the additional

constraints described in Chapter 3. The sequential approach enabled the model to incorporate

challenging business realities while still finding good solutions. Another important decision was

to use part aggregation to make the problem tractable, an important trade-off that we believe did

not significantly impact the quality of the solution. The work in this thesis recommends a hub

be opened in Canada, a possibility not originally considered by the company. Opening a hub in

Canada has the potential to save Bombardier $4.4 Million USD annually, primarily by reducing

the transportation costs associated with international shipping.

This thesis next considered a stochastic model for an inventory-location problem with ser-

vice levels at the part level. The problem is complicated with stochastic demand and time-based

service levels which translate into a stochastic and highly nonlinear mixed integer optimiza-

tion problem. Previous attempts at solving similar problems relied on approximate methods to

find feasible solutions and lower bounds. This thesis presents the first known exact solution

methodology for this class of inventory-location problems. The problem is first decomposed us-

ing logic-based Benders decomposition to isolate the inventory decisions from the location and

assignment decisions. The challenge is then to deal with the stochastic inventory decisions in the

subproblem which makes classical Benders decomposition not applicable. A family of valid cuts

is developed and the logic-based Benders algorithm is shown to converge to optimality.

This thesis argues that the techniques in the literature are insufficient to solve problems of the

scale encountered by companies such as spare parts suppliers in the aerospace industry. Com-

putational testing in Chapter 4 confirms that the logic-based Benders decomposition algorithm

finds better solutions on average with a smaller optimality gap compared to the approximate
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method proposed in Gzara et al. (2013). However, the benefit of guaranteed optimality comes at

the expense of high computational requirements. To address this limitation, we proposed a new

restrict-and-decompose scheme that alternates between restricting the solution space and calcu-

lating lower and upper bounds using the same valid cuts derived in the first logic-based Benders

decomposition algorithm. Our results represent an important breakthrough in terms of the num-

ber of parts that solvable problems may contain. The new algorithm shows promising results,

allowing the solution of instances with up to 60 parts. The highest number of parts documented

in the literature is currently five.

The decomposition technique presented in this thesis, specifically the use of logic-based Ben-

ders cuts based on a fill rate calculation, is widely applicable to similar inventory-location prob-

lems with any number of changes to the assumptions. Once the fill rate contribution function is

well understood, the cut coefficients can be efficiently calculated, resulting in effective and valid

Benders cuts. The strength of the approach was demonstrated by solving a second, more difficult

inventory-location problem with lost-sales and a soft time window. The restrict-and-decompose

scheme was applied with little modification, demonstrating the potential of the approach to be

broadly applied to other decomposable problems. The results were compared positively to previ-

ous work by Jeet et al. (2009) under the same assumptions. The results are particularly strong for

non-zero fixed costs, where our exact methodology found better solutions and smaller optimality

gaps on average compared to the approximate methodology.

6.2 Future Research Directions

A number of directions for future research are warranted. The first possibility is to further ex-

plore the use of subproblem relaxation constraints to improve the performance of the logic-based

Benders decomposition algorithm. The solution methodology in Chapter 4 did not use any such

constraints, so finding a good set of relaxation constraints may lead to immediate improvements

in the computational results. Similarly, the subproblem relaxation constraints used in Chapter 5

were derived with simple logic, and it is quite possible that tighter constraints exist. Another
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possibility is to use the previous research by Candas and Kutanoglu (2007), Jeet et al. (2009),

and Gzara et al. (2013) to create subproblem relaxation constraints for the relevant problems. A

hybrid approach of relaxing the master problem with their approximate methods and then adding

Benders cuts via the logic-based Benders decomposition algorithm may lead to the strongest

computational results yet.

The decomposition technique, specifically the use of logic-based Benders cuts based on a

fill rate calculation, is applicable to other stochastic inventory-location problems. Challenging

problems arise from changes to the service level aggregation (e.g. by service centre instead of by

part), using the lost-sales assumption instead of backorders, or allowing for other supply chain

strategies such as rationing and lateral transshipment. Each of these variations poses a challenge

on how to decompose the problem and on deriving valid cuts to guarantee optimality.

The use of a multi-stage logic-based Benders decomposition algorithm to improve upon the

results of a logic-based Benders decomposition algorithm is a newer idea that has only appeared

in the literature once (Benini et al. (2008)). The novel restrict-and-decompose scheme intro-

duced in this thesis combines elements of branching with logic-based Benders decomposition

to improve the convergence of the lower bound, and may be potentially applied to any existing

logic-based Benders decomposition algorithm, regardless of the structure of the underlying prob-

lem. An interesting direction for future research is to apply the methodology to other problems

with location decisions that have been solved by logic-based Benders decomposition, such as the

location-routing problem in Fazel-Zarandi and Beck (2011). This approach should also extend

to any other problems with binary location or facility variables that are amenable to Benders

decomposition, such as scheduling problems with discrete machines (Hooker (2007)).
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Appendix A

Details and Constraints for Extending the

Baseline Network Design Model

A.1 Consolidated Shipping

The transshipment holding costs can be incorporated by modifying the transportation costs of

hub to hub shipments. Larger consolidated shipments will have lower transportation costs but

higher inventory costs associated with a longer lead time. A piece-wise linear cost function

was developed to replace the parameters c j j′p and c jkp, based on the size and frequency of the

consolidated shipment. This required the introduction of binary decisions variables that represent

the frequency of shipments. The flow balance constraints were rewritten to accommodate the new

decision variables.

The cost of sending a consolidated shipment between hubs or from hubs to depots is based

on the weight of the shipment. While inbound shipments from suppliers to hubs are a flat rate

per kilogram, consolidated shipments become cheaper per kilogram for larger shipments. For

example, a consolidated shipment that weighs less than 45 kilograms may cost $ 3.00 /kg, while

a shipment that weighs more than 45 kilos but less than a 100 kilos may cost $ 2.00 /kg. The

freight company may have many of these stratifications, and may have one of two different rules

for managing the total cost of the shipment.
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The first option the freight company may employ is a piecewise linear cost function, where

the cost per kilo is given as a marginal rate. In the example, a consolidated shipment costs $

3.00 /kg for the first 45 kilos, and then $ 2.00 /kg for every kilo over 45 kilos. Thus, a 60 kilo

shipment would cost 45 ·3+(60−45) ·2 = $165. The resulting cost function is continuous and

convex, which can be modeled easily.

The second option is a stepwise linear cost function, which is not continuous. Instead, the

quoted cost per kilo is applied over the entire weight of the shipment. In the example, a consoli-

dated shipment over 45 kilos would cost $2.00 /kg. A 60 kilo shipment would cost 60 ·2 = $120.

The resulting cost function is not convex and is more difficult to incorporate into a linear model.

Furthermore, a shipment that is larger than 45 kilos may cost less to ship than a shipment weigh-

ing less than 45 kilos. In the example, a 60 kilo shipment costs less to ship than a 45 kilo

shipment. Most carriers manage this issue with a bumping clause (treating a 45 kilogram ship-

ment as if it was a 60 kilogram shipment). Since the majority of Bombardier’s carriers use the

bumping clause, for simplicity we assume that all of the freight companies use the piecewise

linear cost function.

The piecewise linear cost function can be modelled by considering the equations that define

the various components of the cost function. Assume a cost function to ship from hub j to depot

k is given that has nm weight stratifications in the set Nw = 1, . . . ,nm. Each linear piece has a

slope and an (implied) y-intercept.

Let wm represent the lower end of weight stratification m ∈ Nw. That is, a shipment is in

weight stratification m if it weights at least wm but less than wm+1.

Let s jkm represent the marginal cost (in $ per kilo) of shipping a part from hub j to depot

k, given that the total size of the shipment is in stratification m ∈ Nw. In the example above,

s jk1 = 3, while s jk2 = 2.

Let b jkm represent the y-intercept of the m-th line segment. Then the cost to send a shipment

that weighs z kilos (in the m-th weight stratification) is b jkm + z · s jkm. In the example, b jk1 = 0

and b jk2 = 45. For example, a 60 kilo shipment will cost 45+60 ·2 = $165.
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Now that the shipping cost function is modelled, the question of how frequently to send

consolidated shipments must also be addressed. If x′′jkp is the quantity of part p shipped from hub

j to depot k in a month, then
∑
p∈P

wpx′′jkp = w jk is the volumetric weight of the shipments from j

to k in a month. In other words, it is the total weight of all parts shipped from j to k in a month.

If it is known that a shipment of size w jk is in weight stratification m, then the cost of sending

one shipment per month from j to k is b jkm+w jks jkm. It is very convenient to note that since the

original piecewise linear function is convex,

min
m∈Nw
{b jkm +w jks jkm} (A.1.1)

is achieved when w jk is in weight stratification m. Then the cost of sending one shipment a month

from j to k is min
m∈Nw
{b jkm +w jks jkm}.

If the number of shipments is increased, the cost of each shipment decreases, but the total

cost of shipments almost certainly increases. In the example, two shipments of 30 kilos will each

cost $90, less than one shipment of 60 kilos ($165), but the total cost of two smaller shipments

($180) is greater than the single larger shipment. The cost of making n equal shipments of size
w jk
n (in weight stratification m) in a month is

n
(

b jkm +
w jk

n
s jkm

)
= nb jkm +w jks jkm (A.1.2)

As above, the cost of sending n shipments a month from j to k is:

min
m∈Nw
{nb jkm +w jks jkm} (A.1.3)

Noting that the cost of sending smaller, more frequent shipments is more expensive than

larger, less frequent shipments (unless b jkm = 0, which could only be the case for m = 1), there

may still be some benefit in sending more frequent shipments. The main driver of this benefit is

the effect of inventory when consolidating shipments. As discussed above, inventory increases

in both the shipping and receiving locations.
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Let vp represent the value of part p in dollars (the value used for inventory valuation), and

define v′jk =
∑
p∈P

vpx′′jkp as the volumetric value of shipments from j to k in a month. If there is

one shipment a month, the expected volumetric value of inventory waiting for the consolidated

shipment in the first hub j is
v′jk
2 . Similarly, if there are n shipments per month, the expected

value is
v′jk
2n . At a monthly holding cost of h j, the consolidated shipment results in a monthly cost

of inventory at the shipping hub j of
h jv′jk

2n .

Calculating the increase in inventory at the receiving location is a little more involved. The

increase in inventory at the receiving location is due to an increase in lead time, as the inventory

spends some time waiting for a consolidated shipment. Under the assumption of Poisson demand,

the increase in inventory is based on the current lead time, service level and monthly demand. If

the monthly demand is low, a small increase in lead time may not increase inventory at all, but

almost certainly won’t increase it by more than one unit. However, if the increase in lead time is

proportionally large (say, 50% or more), or the demand is already high (5 or more orders per lead

time) then an increase in lead time could lead to larger increases in inventory. Let δt represent the

increase in lead time due to a consolidated shipment (assume δt is in months). Over many parts

with different lead times and different monthly Poisson demand, the increase in the volumetric

value of inventory is approximated closely by v′jkδt . Assuming n shipments a month, then the

lead time of all parts is expected to increase by an average of 1
2n months, so δt =

1
2n . Then the

increase in monthly costs of inventory at the receiving location k is again
h jv′jk

2n .

Putting the two inventory effects together gives us
h jv′jk

n as the increased cost of inventory

when sending n shipments a month. Now the shipping and inventory cost of sending n consoli-

dated shipments of weight stratification m a month from hub j to k can be estimated as

min
m∈Nw
{nb jkm +w jks jkm +

h jv′jk
n
} (A.1.4)

In order to model this cost function in a linear fashion, suppose that Bombardier can choose

between nn different shipment frequencies from the set Ns = 1, . . . ,nn. Then Ns×Nw nodes are
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introduced between each potential consolidation route. Let

y′jknm =


1 if exactly n shipments a month are sent using weight stratification m

from hub j to depot k

0 otherwise

(A.1.5)

Requiring ∑
n,m

y′jknm ≤ 1 ∀ j ∈ J,k ∈ K (A.1.6)

ensures that at most one consolidation option is chosen when shipping from j to k. The cost of

using consolidation option (n,m) is represented by the cost function (A.1.4), which is a linear

function of the quantity of flow between j and k.

The network is updated with new arcs and nodes to capture the consolidation options. For

every pair of locations ( j,k), nodes δ jknm and arcs ( j,δ jknm) and (δ jknm,k) are added. New

decision variables are required to represent the flow of parts over these arcs. Let u jδ jknm p represent

the monthly flow of part p ∈ P from hub j ∈ J to node δ jknm. Let u′
δ jknmkp represent the monthly

flow of part p ∈ P from node δ jknm to depot k ∈ K. To ensure flow balance, the flow is equated

over these arcs with the following constraints:

u jδ jknm p = u′
δ jknmkp ∀ j ∈ J,k ∈ K, p ∈ P,m ∈ Nw (A.1.7)

To ensure flow only travels through the open distribution centre corresponding to the consolida-

tion option:

u jδ jknm p ≤Mpy′jknm ∀ j ∈ J,k ∈ K, p ∈ P,m ∈ Nw (A.1.8)

where Mp =
∑
l∈L

dl p.

These constrains ensure that the correct intermediate node is opened based on the weight of

the shipment:
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wmy′jknm ≤
∑
p∈P

u jδ jknm p ∀ j ∈ J,k ∈ K,n ∈ Ns,m ∈ Nw (A.1.9)

∑
p∈P

u jδ jknm p ≤ wm+1y′jknm ∀ j ∈ J,k ∈ K,n ∈ Ns,m ∈ Nw (A.1.10)

These constraints ensure that intermediate nodes are opened only if the appropriate distribu-

tion centres are open:

∑
n∈Ns,m∈Nw

y′jknm ≤ y j ∀ j ∈ J,k ∈ K (A.1.11)

∑
n∈Ns,m∈Nw

y′jknm ≤ yk ∀ j ∈ J,k ∈ K (A.1.12)

For hub to hub transshipments, let

y′′j j′nm =


1 if exactly n shipments a month are sent using weight stratification m

from hub j to hub j′

0 otherwise

(A.1.13)

Let u′′jδ j j′nm p represent the monthly flow of part p ∈ P from hub j ∈ J to node δ j j′nm. Let u′′′
δ j j′nm j′p

represent the monthly flow of part p ∈ P from node δ jknm to hub j′ ∈ J.

The following sets of constraints are for hub to hub transshipments and intermediate nodes:

u′′jδ j j′nm p = u′′′
δ j j′nm j′p ∀ j, j′ ∈ J, p ∈ P,n ∈ Ns,m ∈ Nw (A.1.14)

u′′jδ j j′nm p ≤Mpy′′j j′nm ∀ j, j′ ∈ J, p ∈ P,n ∈ Ns,m ∈ Nw (A.1.15)
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wmy′′j j′nm ≤
∑
p∈P

u′′jδ j j′nm p ∀ j, j′ ∈ J,n ∈ Ns,m ∈ Nw (A.1.16)

∑
p∈P

u′′jδ j j′nm p ≤ wm+1y′′j j′nm ∀ j, j′ ∈ J,n ∈ Ns,m ∈ Nw (A.1.17)

∑
n∈Ns,m∈Nw

y′′j j′nm ≤ y j ∀ j, j′ ∈ J (A.1.18)

∑
n∈Ns,m∈Nw

y′′j j′nm ≤ y′j ∀ j, j′ ∈ J (A.1.19)

Finally, the flow balanced constraints are updated using the new intermediate nodes at both

the hubs:

∑
i∈I

xi jp +
∑

j′∈J,n∈Ns,m∈Nw

u′′′
δ j′ jnm jp =

∑
j′∈J,n∈Ns,m∈Nw

u′′jδ j j′nm p +
∑

k∈K,n∈Ns,m∈Nw

u jδ jknm p +
∑
l∈L

x′′′jl p ∀ j ∈ J, p ∈ P (A.1.20)

and the depots:

∑
j∈J,n∈Ns,m∈Nw

u jδ jknm p =
∑
l∈L

x′′′′kl p ∀k ∈ K, p ∈ P (A.1.21)

A.2 Assigning Customers to the Closest Distribution Centre

In some scenarios, Bombardier would like to force every customer to be assigned to the closest

open hub or depot. The closest distribution centre is referred to as the customer-facing depot

(or hub). Using binary assignment variables and big-M constraints ensures that customers are

always assigned to the first open hub or depot in a particular order, based on the distance between

the customer and the location.
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Let

Ah
jl =


1 if customer l ∈ L is assigned to hub j ∈ J

0 otherwise
(A.2.1)

and let

Ad
kl =


1 if customer l ∈ L is assigned to depot k ∈ K

0 otherwise
(A.2.2)

These binary assignment variables ensure that all customer demand is assigned only to the

appropriate hub:

x′′′jl p ≤MpAh
jl ∀ j ∈ J, l ∈ L, p ∈ P (A.2.3)

and respectively depot:

x′′′′kl p ≤MpAd
kl ∀k ∈ K, l ∈ L, p ∈ P (A.2.4)

where Mp is the largest value that a single x variable can take on. Naturally, customer demand

can only be assigned to open distribution centres, so the following constraints are required:

Ah
jl ≤ y j ∀ j ∈ J, l ∈ L (A.2.5)

Ad
kl ≤ yk ∀k ∈ K, l ∈ L (A.2.6)

The following constraints ensure that each customer is assigned to only one distribution cen-

tre:

∑
j∈J

Ah
jl +
∑
k∈K

Ad
kl ≤ 1 ∀l ∈ L (A.2.7)
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Finally, constraints that ensure that each customer is assigned to the closest open distribution

centre are required. These constraints are a little more difficult to formulate, and require two sets

of big-M style constants. For every pair of of distribution centres, the following two constraints

are used (one hub j and one depot k are used as an example):

A′′(1− y j)+A′(τ jl− τkl)Ad
kl ≥ Ah

jl−1 ∀l ∈ L (A.2.8)

A′′(1− yk)+A′(τkl− τ jl)Ah
jl ≥ Ad

kl−1 ∀l ∈ L (A.2.9)

where A′ = 73690 and A′′ = 19797. In the source data, the transportation times between dis-

tribution centres and customers are rounded off to two decimal spots. This means the smallest

difference when comparing two times is 0.01 hours. This quantity is converted to months by

dividing by 24 and 30.4 and set A′ = 1/(.01/24/30.4) = 73690. The longest transportation time

is 196 hours, so the largest difference will also be 196 hours. This quantity is also converted to

months by dividing by 24 and 30.4 and setting A′′ = 196/24/30.4∗73690 = 19797.

Note that one pair of the above constraints is required for each pair of possible distribution

centres (including hub and hub pairs). For example, for hub pair ( j1, j2):

A′′(1− f j1)+A′(τ j1l− τ j2l)Ah
j2l ≥ Ah

j1l−1 ∀l ∈ L (A.2.10)

A′′(1− f j2)+A′(τ j2l− τ j1l)Ad
j1l ≥ Ad

j2l−1 ∀l ∈ L (A.2.11)

Similar equations exist for pairs of depots.

A.3 Single-Sourcing

Assume that each part p ∈ P is available from a unique supplier i ∈ I.
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νp j =


1 if part p ∈ P is available from supplier i ∈ I

0 otherwise
(A.3.1)

Then the unique supplier condition is enforced with the following constraint:

∑
j∈J

xi jp ≤Mpνp j ∀i ∈ I, p ∈ P (A.3.2)

In order to reduce ordering costs when sourcing parts from suppliers, Bombardier has decided

to have each part p ∈ P shipped to a single hub j ∈ J. Since it is already known that each part

comes from a unique supplier i ∈ I, the following binary variable can be introduced:

Vp j =


1 if part p is shipped to hub j

0 otherwise
(A.3.3)

These constraints ensure only open hubs are assigned parts:

Vp j ≤ y j ∀ j ∈ J, p ∈ P (A.3.4)

The following constraints enforce the single sourcing requirement by forcing all volume of

each part p, represented by Mp, to be shipped from one supplier i to one hub j:

xi jp = Mpνp jVp j ∀i ∈ I, j ∈ J, p ∈ P (A.3.5)

For each part p, xi jp > 0 for exactly one supplier i and hub j. All other xi jp are 0.

A.4 Line Counts and Facility Costs

• Let OQs
p represent the average re-order quantity for part p ∈ P,
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• OQt
p represent the average transshipment quantity for part p ∈ P,

• Let OQc
p represent the average customer order quantity for part p ∈ P.

Using these average order quantities, the number of lines moving through the distribution

network can be estimated.

• Let L+
j represent the number of lines arriving into hub j ∈ J from suppliers,

• Let L−j represent the number of lines leaving hub j ∈ J for any destination.

By convention at Bombardier, when counting lines only transshipments leaving a hub are

counted for cost purposes. All incoming transshipments at hubs are ignored when counting

lines.

• Let Lh
j represent the total number of lines processed at hub j ∈ J (ignoring inbound trans-

shipments).

Then

Lh
j = L+

j +L−j ∀ j ∈ J (A.4.1)

To count depot lines:

• Let Ld
k represent the total number of lines processed at depot k ∈ K.

When counting lines shipped to customers, Bombardier acknowledges that many of those

parts are not actively stocked. These parts may be obsolete or out of production, and are called

non-stock class. Let NSF represent a multiplier used to increase the number of lines shipped to

customers, proportional to the number of non-stock class parts in inventory. Since Bombardier

estimates this proportion to be 20%, assume NSF = 1.25.

133



The lines counts in the model are computed with the following sets of constraints:

∑
s∈S,p∈P

xi jp

OQs
p
= L+

j ∀ j ∈ J (A.4.2)

∑
p∈P

∑
j2∈J

x′j1 j2 p

OQt
p
+
∑
k∈K

x′′j1kp

OQt
p
+NSF

∑
l∈L,p∈P

x′′′j1l p

OQc
p
= L−j1 ∀ j1 ∈ J (A.4.3)

∑
p∈P

∑
j∈J

x′′jkp

OQt
p
+NSF

∑
l∈L,p∈P

x′′′′kl p

OQc
p
= Ld

k ∀k ∈ K (A.4.4)

The historical relationship between lines handled at a Bombardier distribution centre and the

annual operating cost is not simple. Extensive analysis concluded that smaller depots (handling at

most 36,000 lines per year) obey one cost curve with efficiencies of scale, while larger depots and

hubs obey a second cost curve, also with efficiencies of scale. Smaller depots have historically

been operated by third party logistics providers (3PLs), while large depots and hubs are owned

and at least partially operated by Bombardier. Notably, there is a significant increase in cost

associated with a large depot or hub, requiring many more lines per year before the efficiencies

of scale are realized. This phenomenon can be seen in Figure A.1, which shows the variable cost

curve used at one of the hubs in the model. The marginal cost of processing 40,000 - 60,000

order lines per year is greater than that of processing only 36,000 order lines per year.

Figure A.1: Economies of Scale for a Sample Hub

This non-convex cost function requires a piece-wise linear approximation to keep the model
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linear. Analysis suggests 8 break points are needed in the linear approximation, located at

{ 200; 900; 2000; 36,000; 60,000; 150,000; 300,000; 5,000,000} (A.4.5)

lines per year. These break points were established heuristically to help approximate the actual

operating cost function for existing distribution centres. The smaller break points are depicted in

Figure A.1. The binary variables introduced next are used to manage the breakpoint constraints.

There is also an associated variable cost per line of each segment, which is used to modify the

cost function of the distribution centres.

• Let Bb represent the b-th break point, for b = 1 . . .8,

• Let B0 = 0 by convention.

To manage the line counts with respect to the break points, more line count variables are

required:

• Let Λ
+
jb represent the number of lines arriving into hub j ∈ J from suppliers more than

Bb−1 but less than Bb,

• Let Λ
−
jb represent the number of lines leaving hub j ∈ J for any destination more than Bb−1

but less than Bb,

• Let Λh
jb represent the total number of lines processed at hub j ∈ J (ignoring inbound trans-

shipments) more than Bb−1 but less than Bb,

• Let Λd
kb represent the total number of lines processed at depot k ∈ K more than Bb−1 but

less than Bb.

Note that the maximum value for any of these variables is the width of the corresponding

interval. These new breakpoint line count variables are associated with the existing total line

135



count variables:

8∑
b=1

Λ
+
jb = L+

j ∀ j ∈ J (A.4.6)

8∑
b=1

Λ
−
jb = L−j ∀ j ∈ J (A.4.7)

8∑
b=1

Λ
h
jb = Lh

j ∀ j ∈ J (A.4.8)

8∑
b=1

Λ
d
kb = Ld

k ∀ j ∈ J (A.4.9)

To properly set the breakpoint line count variables, auxiliary binary variables must be intro-

duced. These binary variables are used to manage the breakpoint constraints presented soon.

• Let Γ
+
jb =


1 if hub j ∈ J handles at least Bb inbound lines

0 otherwise

• Let Γ
−
jb =


1 if hub j ∈ J handles at least Bb outbound lines

0 otherwise

• Let Γh
jb =


1 if hub j ∈ J handles at least Bb lines

0 otherwise

• Let Γd
kb =


1 if depot k ∈ K handles at least Bb lines

0 otherwise

The constraints used to manage the breakpoint line count variables (using only the set of

constraints for total hub lines as an example) are:

Γ
h
jbBb ≤ Λ

h
jb ∀ j ∈ J,b = 1 . . .8 (A.4.10)

Λ
h
jb ≤ BbΓ j(b−1) ∀ j ∈ J,b = 2 . . .8 (A.4.11)

Λ j1 ≤ B1 ∀ j ∈ J (A.4.12)
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Constraints (A.4.10) force the b-th line count variable to its upper bound if the hub handles

at least Bb lines. Constraints (A.4.11) force the (b− 1)-th auxiliary variable to 1 if the b-th

line count variable is greater than 0 (which in turn causes (A.4.10) to be binding). Constraints

(A.4.12) handle the special case of the first break point. The model has 3 more sets of the

equations, for each of hub lines in, hub lines out, and depots.

Assume that variable cost per line of each segment is given:

• Let m jb represent the marginal cost per line in the b-th line segment handled at hub j ∈ J,

• Let mkb represent the marginal cost per line in the b-th line segment handled at depot k∈K.

Using the exact method above for counting the number of lines and determining in which

segment of the of the linear approximation the line count is located and the variable cost per line,

the cost of handling Lh
j lines at hub j ∈ J can be calculated as

∑
j∈J

8∑
b=1

m jbΛ
h
jb (A.4.13)

and the cost of handling Ld
k lines at depot k ∈ K is

∑
k∈K

8∑
b=1

mkbΛ
d
kb (A.4.14)

These terms are added to the objective function of the model.

A.5 Quality Assurance

Let qa j represent the marginal cost per line of inspection, over the 50,000 a year threshold.

It is assumed that only 40% of lines require a full inspection, the remainder require only a

cursory inspection and do not incur the marginal cost. Then the marginal cost of inspeciton is
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∑
j∈J

0.4qa j(Lh
j −50000)+ (A.5.1)
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Appendix B

Details of the Industry Inventory Stocking

Problem

B.1 Service Level Constraints Treatment

B.1.1 Treatment of Poisson Demand Constraints

The following treatment was suggested by Gzara et al. (2013): assume that there is a set of

stocking levels S, and maximum safety stock level Smax, and replace the variable S jp with binary

variables Vjps (for s∈ S, j ∈ J, p∈ P), where Vjps = 1 if and only if S jp = s, and 0 otherwise. That

is, exactly one of the binary variables is equal to 1 for each hub j ∈ J and part p ∈ P. Similarly,

define binary variables Vkps for the stock levels at all depots k ∈ K. Defined the set S+ as the set

of non-zero stocking levels.

As a pre-processing step, one can solve the equations β (λ ,s) = α , where β (λ ,s) can be

evaluated exactly for any given lead-time demand λ and safety stock level s. With the assumption

of Poisson demand:

β (λ ,s) = e−λ

s−1∑
r=0

λ r

r!
, ∀λ ≥ 0,∀s ∈ Z+ (B.1.1)
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For a given service level α and safety stock level s, this equation has a unique solution λs(α),

which is the highest lead time demand a distribution centre with s units of safety stock can be

assigned and still provide an α% service level. That is, β (λ ,s)≥ α if λ ≤ λs(α).

Recall that λkp and λ jp are determined by the solution to the network design problem. Then

the following linear constraints can be included in an inventory linear program model:

λ jp ≤ λs(α jp)Vjps ∀ j ∈ J, p ∈ P,s ∈ S (B.1.2)

λkp ≤ λs(αkp)Vkps ∀k ∈ K, p ∈ P,s ∈ S (B.1.3)

∑
s∈S+

Vjps ≤ y j ∀ j ∈ J, p ∈ P (B.1.4)

∑
s∈S+

Vkps ≤ yk ∀k ∈ K, p ∈ P (B.1.5)

The last two sets of equations ensure that inventory is only held in open hubs and depots.

B.1.2 Treatment of Normal Demand Constraints

In order to ensure an α% service level for part p ∈ P at depot k ∈ K under the Normal demand

assumption, set Skp ≥ Rkp. Since R = λkp +σLT
kp Zαkp , where Zαkp is the safety stock factor, the

following constraints should be added to the inventory model:

∑
s∈S

sVkps ≥ λkp +σ
LT
kp Zαkp ∀k ∈ K, p ∈ P (B.1.6)

∑
s∈S

sVkps ≥ λ jp +σ
LT
jp Zα jp ∀ j ∈ J, p ∈ P (B.1.7)
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Appendix C

Proof of Lemma 3

Lemma 3: The largest and smallest values of ∂λβ (λ jk,s jk)

∂λ
are attained at λ jk = 0 and λ jk = s jk+1,

respectively.

Proof. For notational convenience, without loss of generality we consider an arbitrary service

centre j ∈ J and part k ∈ K, and suppress the subscripts of λ jk and s jk for the remainder of this

proof.

The largest and smallest values of this gradient are attained at the critical points, which are

found by setting the derivative of the gradient equal to 0. Recall

β (λ ,s) = e−λ
s−1

∑
r=0

λ r

r!
λ ≥ 0, 0≤ s≤ SMAX (C.0.1)

so that

β
′(λ ,s) =

∂β (λ ,s)
∂λ

=−e−λ λ s

s!
(C.0.2)
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and

β
′′(λ ,s) =

∂ 2β (λ ,s)
∂λ

(C.0.3)

=− 1
(s−1)!

(−e−λ
λ

s−1 +(s−1)e−λ
λ

s−2) (C.0.4)

=
e−λ λ s−2(λ − (s−1))

(s−1)!
(C.0.5)

=−β ′(λ ,s)
λ

(λ − (s−1)) (C.0.6)

Applying the product rule, the gradient of the fill rate contribution numerator is:

∂λβ (λ ,s)
∂λ

= β (λ ,s)+λβ
′(λ ,s) (C.0.7)

Again applying the product rule:

∂ 2λβ (λ ,s)
∂λ

= β
′(λ ,s)+β

′(λ ,s)+λβ
′′(λ ,s) (C.0.8)

= 2β
′(λ ,s)−β

′(λ ,s)(λ − (s−1)) (C.0.9)

= β
′(λ ,s)(2−λ +(s−1)) (C.0.10)

The second derivative is equal to 0 when β ′(λ ,s) = 0 or when λ = s+1. The first only occurs

when λ = 0. The only critical points of this function occur at λ = 0 and λ = s+1, as required.

Furthermore, the gradient is positive when λ = ε > 0, and negative when λ = s+ 1, for all

integer values of s. Together, these results prove that the largest and smallest values of ∂λβ (λ ,s)
∂λ

are attained at λ = 0 and λ = s+1, respectively.
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Appendix D

Details of the Ordered Customer Gradient

Algorithm for Lost Sales

The Ordered Customer Gradient Algorithm for Lost Sales (OCGA-LS) is made up of four sub-

algorithms that each consider a different case. They are explained in detail in the following

sections.

D.1 Adding a Close Customer

Adding a close customer i∈ I jk to a service centre j ∈ Jk with τi j ≤ωi corresponds to a movement

in the direction (1,1) on the surface of the fill rate contribution function. The directional derivative

(1,1) is always positive, as can be seen in Figure 5.3. This effect holds for all values of s. This

implies that adding a close customer always increases the contribution function at that service

centre.

When adding a close customer to service centre j, the total assigned demand and close de-

mand both increase, moving along the surface in the direction (1,1). On the rotated figures

(Figure 5.2 and Figure D.1), this is in lower right direction. Since the contribution function al-

ways increases, the goal is to find the largest possible change in the fill rate in order to find tight,

effective values for ∆i jk.
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Figure D.1: Adding a Close Customer: Directional Derivative in the direction (1,1) (rotated)

An effective search algorithm will move to the point where the directional derivative is the

largest, which will correspond to the largest increase for adding customer i to service centre

j. Recall that that gradient search algorithm is bounded by the customers that precede i in the

ordering. To find this point, the gradient search algorithm will consider each customer i′ ≺ i

in turn, and see whether adding or removing that customer from j will move to a point on the

surface where the directional derivative (1,1) is larger than before.

It is clear that removing a customer i′, corresponding to a movement in the direction (-1,-1),

will increase the directional derivative. This is because adding a customer i to a service centre

with low demand will lead to a larger change in the contribution function compared to adding

customer i to a service centre with high demand. This claim can be observed in Figures 5.3

and D.1.

However, careful analysis of the directional derivative reveals that it does not always increase

when moving in the direction (0,1) or (0,-1), corresponding to adding or removing a far customer.

There is a ridge in the directional derivative for larger λ c
jk, and its location depends on the stock

level s. For example, with s = 3, the ridge appears for λ c
jk ≥ 3.6. The ridge is very subtle and

difficult to see in the figures, but its existence requires us to take extra care when designing the

search algorithm to ensure the cuts remain valid. The way in which we have chosen to deal with

this ridge is as follows: if by removing all close customers from service centre j that precede

customer i in the ordering the total close demand λ c
jk is still greater than the point where the ridge

exists, the largest directional derivative from the crest of the ridge is used to estimate the change
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s λ̂ c
jk(s) glMAX

1 1.2 0.0218
2 2.4 0.0228
3 3.6 0.0229
4 4.8 0.0227
5 6 0.0225

Table D.1: Location of moving ridge

in the contribution function.

To illustrate this approach, Table D.1 lists the possible values of s, the value of λ c
jk above

which the ridge is found to exist (denoted λ̂ c
jk(s)), and the largest directional derivative found

on the crest of the ridge. The largest directional derivative glMAX (listed in the third column) is

the largest value the (1,1) directional derivative attains for any value of λ c
jk greater than λ̂ c

jk(s)

(the value in the second column), and any value of λ jk. The value of glMAX is scaled so that is

represents a change of 1 in the value of λ jk and λ c
jk in the direction (1,1). To guarantee validity

of the cut, the algorithm sets ∆i jk = dik ∗glMAX if no larger value is found.

The Ordered Customer Gradient Analysis for Lost-Sales when adding a close customer al-

gorithm (OCGA-L1) tries to find the largest change in the contribution function by removing all

close customers h that precede i and are assigned to service centre j, equivalent to accepting all

(-1,-1) moves. If the resulting λ c
jk is still larger than the value in the second column of Table D.1,

then ∆i jk = dik ∗ glMAX . Otherwise, the algorithm also removes all far customers i′ that precede

i and are assigned to service centre j, equivalent to accepting all (0,-1) moves. The algorithm

then calculates the contribution change using the change in the lost-sales contribution function

for adding customer i to service centre j. The details for executing the OCGA-L1 algorithm are

given below.

Let gl(λ1,λ
c
1 ,λ2,λ

c
2 ) be the change in the lost-sales contribution function of service centre j

to the fill rate of part k for a given stock level s when the demand rate changes from λ1 to λ2, and

the close demand changes from λ c
1 to λ c

2 :

gl(λ1,λ
c
1 ,λ2,λ

c
2 ) =

λ c
1 L(λ1,s)−λ c

2 L(λ2,s)
∑
i∈I

dik
(D.1.1)
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Let d−c
i j represent the largest decrease in λ c and λ possible at service centre j when consider-

ing customer i ∈ I and close customers that precede i in the ordering, i.e., the sum of the demand

of all close customers that precede i in the ordering that are also assigned to j:

d−c
i j = ∑

i′≺i:xi′ jk=1,τi′ j≤ω jk

di′k i ∈ I, j ∈ J (D.1.2)

The value d−c
i j also represents the furthest the search algorithm can move in the direction (-1,-1).

Similarly, let d−>i j represent the largest decrease in λ possible at service centre j when con-

sidering customer i ∈ I and far customers that precede i in the ordering, i.e., the sum of the

demand of all far customers that precede i in the ordering that are also assigned to j:

d−>i j = ∑
i′≺i:xi′ jk=1,τi′ j>ω jk

di′k i ∈ I, j ∈ J (D.1.3)

The value d−>i j also represents the furthest the search algorithm can move in the direction (0,-1).

If ∆i jk is not already determined by the glMAX step, the OCGA-L1 algorithm sets λ1 = λ jk−

d−>i j −d−c
i j and λ c

1 = λ jk−d−c
i j . To tightly overestimate the change in the contribution function

by adding close customer i, the algorithm finally calculates:

∆i jk = gl(λ1,λ
c
1 ,λ1 +dik,λ

c
1 +dik) (D.1.4)

To summarize, for service centre j and each customer i the search algorithm OCGA-L1 seeks

out the largest value of the directional derivative that can be reached from the initial solution’s

(λ c
jk,λ jk) point by removing customers that precede i in the ordering. Once this point is found,

the change in the contribution function is calculated by adding customer i’s demand to service

centre j. This methodology ensures that the ∆i jk represents an upper bound on the change in the

contribution function when adding a close customer.
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D.2 Removing a Close Customer

Removing a close customer i from a service centre j always decreases the fill rate, just as adding

a close customer always increases it. The directional derivative (-1,-1) is just the negative of the

directional derivative (1,1) pictured in Figures 5.3 and Figure D.1. As the directional derivative

(1,1) is always positive, the directional derivative (-1,-1) is always negative. Again, the goal is to

find the largest change in the contribution function, so to properly set ∆i jk the search algorithm

must seek out the value of the change that is closest to 0.

The search algorithm for the largest change when removing a close customer i to service

centre j begins from the point (λ c
jk,λ jk). We order all customers by their demand for part k, and

then consider how changes to those customers i′ with demand less than customer i will affect the

contribution function.

The values of the directional derivative (-1,-1) that are closest to 0 are located in the direction

(1,1), where λ jk and λ c
jk are maximized. For a fixed value of λ c

jk that is less than λ̂ c
jk(s) (the

second column of the moving ridge table, Table D.1), any increase in λ jk increases the value of

the directional derivative (-1,-1). For a fixed value of λ c
jk greater than λ̂ c

jk(s), the largest values of

the directional derivative (-1,-1) lie at the extremes, i.e. when λ jk = λ c
jk or when λ jk is as large

as possible.

These observations help guide the search algorithm. The Ordered Customer Gradient Analy-

sis for Lost-Sales when removing a close customer algorithm (OCGA-L2) tries to find the largest

change in the contribution function by adding all close customers i′ that precede i and are not

assigned to service centre j, equivalent to accepting all movements in the (1,1) direction. To

accommodate the possibility that the largest change could then be at either extreme in the (0,1)

or (0,-1) directions, the algorithm will also calculate two candidate values for comparison.

Let d+c
i j represent the largest increase in λ c

jk and λ jk possible at service centre j when con-

sidering customer i ∈ I and close customers that precede i in the ordering, i.e., the sum of the
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demand of all close customers that precede i in the ordering that are also assigned to j:

d+c
i j = ∑

i′≺i:xi′ jk=1,τi′ j≤ω jk

di′k i ∈ I, j ∈ J (D.2.1)

The value d+c
i j also represents the furthest the search algorithm can move in the direction (1,1).

When considering customer i ∈ I, let d+>
i j represent the largest increase in λ possible from

far customers i′ ≺ i at service centre j ∈ J , i.e., the sum of the demand of all far customers for

service centre j that precede i in the ordering and that are not already assigned to service centre

j:

d+>
i j = ∑

i′≺i:x̄i jk=0,τi′ j>ωi′

di′k i ∈ I, j ∈ J (D.2.2)

The value d+>
i j also represents the furthest the search algorithm can move in the direction (0,1).

Similarly, the algorithm calculates d−>i j using equation (D.1.3), the furthest the search algo-

rithm can move in the direction (0,-1). We only consider far customers when calculating these

values because the algorithm has already dealt with adding or keeping every close customer.

The algorithm sets λ c
1 = λ c

jk + d+c
i j and λ1 = λ jk + d+c

i j . From this new point, it moves as

far as possible in the direction (0,-1) and as far as possible in the direction (0,1) to find the two

candidate points. The first candidate point (λ c
2 ,λ2) is located at (λ c

1 ,λ1 + d−>i j ). The second

candidate point (λ c
3 ,λ3) is located at (λ c

1 ,λ1+d+>
i j ). Then to set ∆i jk as the largest change when

removing a close customer:

∆i jk = max{gl(λ2,λ
c
2 ,λ2−dik,λ

c
2 −dik),

gl(λ3,λ
c
3 ,λ3−dik,λ

c
3 −dik)} (D.2.3)

D.3 Adding a Far Customer

Adding a far customer i ∈ I to a service centre j ∈ J always decreases the contribution function,

as it decreases the fill rate at the service centre without changing λ c
jk. This behaviour is observed
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Figure D.2: Adding a Far Customer: Directional Derivative in the direction (0,1)

Figure D.3: Adding a Far Customer: Directional Derivative in the direction (0,1) (rotated)

in the directional derivative (0,1) depicted in Figure D.2 and Figure D.3, with sample values

s = 3 and D = 10. Again, the goal is to find the largest change in the contribution function, so to

properly set ∆i jk the search algorithm must seek out the value of the change that is closest to 0.

As before, the search algorithm for the largest change when removing a close customer i to

service centre j begins from the point (λ c
jk,λ jk). We order all customers by their demand for part

k, and then consider how changes to those customers i′ with demand less than customer i will

affect the contribution function.

The values of the directional derivative (0,1) that are closest to 0 are located in two areas.

The global maximum lies along the line where λ c
jk = 0, i.e. the far left of Figure D.3. There is

also a local maximum in the direction (1,1).

These observations will guide the search algorithm. In this case, the search is straightforward.

The largest change will lie at one of three points: as far as possible in the direction (1,1) and (0,1),
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as far as possible in the direction (-1,-1), or as far as possible in the direction (-1,-1) and (0,1). The

search algorithm will determine how far to move in each of those directions, and then calculate

the change in the contribution function from all three candidate points. The largest change will

be used to set ∆i jk.

The Ordered Customer Gradient Analysis for Lost-Sales when adding a far customer algo-

rithm (OCGA-L3) proceeds by finding three candidate points. The first candidate point (λ c
1 ,λ1)

is located at (λ c
jk + d+c

i j ,λ jk + d+c
i j + d+>

i j ). The second candidate point (λ c
2 ,λ2) is located at

(λ c
jk− d−c

i j ,λ jk− d−c
i j ). The third candidate point (λ c

3 ,λ3) is located at (λ c
jk− d−c

i j ,λ jk− d−c
i j +

d+>
i j ). Then to set ∆i jk as the largest change when adding a far customer:

∆i jk = max{gl(λ1,λ
c
1 ,λ1 +dik,λ

c
1 ),

gl(λ2,λ
c
2 ,λ2 +dik,λ

c
2 ),

gl(λ3,λ
c
3 ,λ3 +dik,λ

c
3 )} (D.3.1)

D.4 Removing a Far Customer

Removing a far customer i∈ I to a service centre j∈ J always increases the contribution function,

as it increases the fill rate at the service centre without changing λ c
jk. The directional derivative

(0,-1) is the negative of the derivative depicted in Figure D.2 and Figure D.3. Again, the goal is

to find the largest change in the contribution function, so to properly set ∆i jk the search algorithm

must seek out the largest possible value of the change in the fill rate contribution function.

The search algorithm for the largest change when removing a close customer i to service

centre j begins from the point (λ c
jk,λ jk). We order all customers by their demand for part k, and

then consider how changes to those customers i′ with demand less than customer i will affect the

contribution function.

The value of the directional derivative (0,-1) that is largest is clearly located in the centre of
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s λ̆ c
jk(s) gvMAX

1 1.1 0.02381
2 2.4 0.03148
3 3.6 0.03597
4 4.9 0.03913
5 6.2 0.04156

Table D.2: Location of deep valley

s ~λ jk(s) g fMAX
1 n/a n/a
2 0.8 -0.01748
3 1.7 -0.02454
4 2.7 -0.02932
5 3.7 -0.03242

Table D.3: Location of fall-line

Figure D.3, where λ c = λ . When s = 3, this maximum appears to be located where λ ≈ 3.6. We

refer to this region as the deep valley, as it is the lowest point in Figure D.3. The ultimate goal

of the search algorithm will be to move into the deep valley. Once the deep valley is found, the

maximum gradient in the deep valley, gvMAX , can be used to set ∆i jk. The location of the deep

valley λ̆ c
jk(s), and the maximum gradient in the valley, is shown in Table D.2 for various values

of s.

If, however, the algorithm is considering a customer i that comes early in the ordering, the

search algorithm may not be able to make enough movements to find the deep valley. In this

case, the analysis of the directional derivative is more complicated. There is another feature of

the directional derivative that we denote the fall-line. It runs horizontally in the figures, and

for s = 3 (as in Figure D.3) appears at λ ≈ 1.7. The location of the fall-line~λ jk(s) is listed in

Table D.3 for various values of s.

The search algorithm has to move in different directions, depending on where it begins,

relative to the fall-line and the deep valley. If the initial point (λ c
jk,λ jk) is located above the fall-

line, i.e., λ jk <~λ jk(s) , then the search algorithm will move in the directions (0,1) and (1,1). If the

initial point is located below the fall-line (λ jk >~λ jk(s)) and to the lower left of the deep valley

(λ c
jk < λ̆ c

jk(s)), the search algorithm will move in the directions (0,-1) and (1,1). If the initial
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point is located to the lower right of the deep valley (λ c
jk > λ̆ c

jk(s)), then the search algorithm

will move in the direction (-1,-1). The search algorithm also needs to take special care around

the fall-line, as it is not always clear where the largest change is located near the fall-line.

The Ordered Customer Gradient Analysis for Lost-Sales when removing a far customer al-

gorithm (OCGA-L4) first determines where the initial point is located.

Case 1: If λ jk <~λ jk(s), then the search algorithm will accept all movements in the direction

(1,1). Now, the value λ jk +d+c
i j will be located in one of three regions: still less than the fall-line

~λ jk(s), between the fall-line ~λ jk(s) and the deep valley λ̆ c
jk(s), or greater than the deep valley

λ̆ c
jk(s). These cases will be considered in turn.

Case 1a: If λ jk +d+c
i j <~λ jk(s), then the search algorithm will move in the (0,1) direction

to try to reach the fall-line. If λ jk +d+c
i j +d+>

i j <~λ jk(s), the search has found the largest change

and sets λ1 = λ jk +d+c
i j +d+>

i j , λ c
1 = λ jk +d+c

i j and finally

∆i jk = gl(λ1,λ
c
1 ,λ1−dik,λ

c
1 ) (D.4.1)

On the other hand, if λ jk +d+c
i j +d+>

i j ≥~λ jk(s), the algorithm uses the worst case value g fMAX

from Table D.3. This value is the value of the gradient where λ jk = λ c
jk, at the right-most edge

of the fall-line. To get around the difficulty of finding the largest change around the fall-line, the

algorithm simply sets ∆i jk = dik ∗g fMAX .

Case 1b: If~λ jk(s)< λ jk+d+c
i j < λ̆ c

jk(s), the algorithm next tries to move as far as possible

in the direction (0,-1). It sets λ c
2 = λ jk +d+c

i j and λ2 = λ jk +d+c
i j −d−>i j , then sets

∆i jk = gl(λ2,λ
c
2 ,λ2−dik,λ

c
2 ) (D.4.2)

Case 1c: If λ jk + d+c
i j > λ̆ c

jk(s), the search algorithm has found the deep valley. In this

case, the algorithm sets

∆i jk = dik ∗gvMAX (D.4.3)

Case 2: If λ jk >~λ jk(s), but λ c
jk < λ̆ c

jk(s), the initial point is to the lower left of the deep
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valley. The search algorithm will accept all movements in the direction (1,1). This movement

will bring the search algorithm to a point to the lower left or lower right of the deep valley.

Case 2a: If λ c
jk+d+>

i j < λ̆ c
jk(s), then the search algorithm will accept all movements in the

(0,-1) direction. If this brings it to a point above the fall-line, it will use the worst-case directional

derivative for the fall-line, g fMAX , and set

∆i jk = dik ∗g fMAX (D.4.4)

Otherwise, the algorithm sets λ c
3 = λ jk +d+c

i j and λ3 = λ jk +d+c
i j −d−>i j , then sets

∆i jk = gl(λ3,λ
c
3 ,λ3−dik,λ

c
3 ) (D.4.5)

Case 2b: If λ c
jk +d+>

i j > λ̆ c
jk(s), the search algorithm is now to the lower left of the deep

valley. In this special case, instead of trying to find the exact location of the valley, the algorithm

just uses a worst case value for the directional derivative in the deep-valley. It sets

∆i jk = dik ∗gvMAX (D.4.6)

Case 3: If λ c
jk > λ̆ c

jk(s), the initial point is to the lower left of the deep valley. In this

case, the search algorithm will accept all movements in the direction (-1,-1). If the new point

λ c
jk− d−c

i j > λ̆ c
jk(s) then the algorithm has not reached the deep valley, and will also accept all

movements in the (0,-1) direction. It sets λ c
4 = λ jk−d−c

i j and λ3 = λ jk−d−c
i j −d−>i j , then sets

∆i jk = gl(λ4,λ
c
4 ,λ4−dik,λ

c
4 ) (D.4.7)

Otherwise, if λ c
jk−d−c

i j ≤ λ̆ c
jk(s), the search algorithm is now close enough that it just sets

∆i jk = dik ∗gvMAX (D.4.8)
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These cases cover all possibilities for the OCGA-L4 algorithm when calculating ∆i jk for

removing a far customer.
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