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Abstract 

The rate of anaerobic digestion (AD) often depends on the rate-limiting hydrolysis step 

that makes organics available to microorganisms. To achieve efficient conversion of particulates 

to soluble materials and finally methane, the biomass in the digester must be provided with 

optimal operational conditions that will allow for biomass retention and substrate metabolism. 

Two approaches were employed in this study to improve the ultimate biodegradability of waste 

activated sludge (WAS) - Pre-treatment (PT) and operation using an Anaerobic Membrane 

Bioreactor (AnMBR). 

 

PT of WAS is one way of speeding up hydrolysis. It has been proposed that PT leads to 

the lysis of cells, which in turn causes the release and solubilisation, and thus availability of 

intracellular matter to microorganisms for microbial growth and metabolic activities.  This study 

compared the effect of thermal, sonication, and sonication + hydrogen peroxide PT on chemical 

oxygen demand (COD) solubilisation of WAS. Based on the soluble COD (SCOD) release, it 

was concluded that combined chemi-sonic treatment resulted in better WAS degradation rather 

than individual ultrasonic pre-treatment and thermal PT. The highest solubilisation rate was 

observed at a chemi-sonic PT of 50gH2O2/kgTS and sonication duration of 60 minutes. At this 

PT, a COD solubilisation of 40% was observed which was significantly different than PT 

involving only sonication and no pre-treatment (0.88%) at 95% confidence. Therefore a 

peroxide-sonic PT was chosen to treat WAS in this study as it was expected to result in the 

greatest improvement in WAS biodegradability. 

 

In addition to PT, biodegradability of WAS can also be improved by coupling PT with an 

AnMBR. AnMBRs prevent biomass washout by decoupling the solids retention time (SRT) from 

the hydraulic retention time (HRT). Thus, a long SRT can be used to provide sufficient duration 

for biological activities without increasing the volume of the reactor. In this study, a 4.5L 

AnMBR with an HRT and SRT of 3 and 20 days, respectively was used to treat raw and PT 

WAS. In order to compare the biodegradability of PT and raw WAS, the AnMBR was operated 

in three phases. Phase 1 was operated with raw WAS, Phase 2 was operated with WAS pre-

treated with 50 gH2O2/kgTS and 20 minutes ultrasound (US), and Phase 3 was operated with 

WAS pre-treated with 50 gH2O2/kgTS and 60 minutes US. The anaerobic biodegradability of 

WAS following a combination of ultrasonic pre-treatment and H2O2 addition was significantly 

improved, with Phase 3 resulting in the greatest improvement. The COD destruction for phases 

1, 2, and 3 were 49%, 58%, and 63%, respectively whereas the volatile suspended solids (VSS) 

destruction for phases 1, 2, and 3 were 46%, 71%, and 77% respectively. Organic Nitrogen (Org-

N) destruction increased from 44% to 52% for phases 1 and 2 respectively. A further increase of 

18% in Org-N destruction was observed in phase 3. This improvement in biodegradability of 

WAS was attributed to the high solubilisations of COD, VSS, and ON and conversion of non-

biodegradable materials to biodegradable fractions.    

In order to determine the effect of PT of WAS on membrane performance, the 

transmembrane pressure (TMP) and fouling rate were monitored throughout the operation of the 

AnMBR. Negligible variation in membrane performance was observed over all three phases. At 

a constant low flux of 2.75 litres/m
2
/hour (LMH), the TMP and the fouling rate remained low 

over the course of operation. In order to maintain the performance of the membrane, 

maintenance cleaning with 50 ml of 2g/L critic acid solution followed by 50 ml of 0.2 g/L 
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sodium hypochlorite was performed three times a week. In addition, a gas sparing rate of 2 

L/minute and a permeation cycle of 10 minutes with 8 minutes of operation followed by 2 

minutes of relaxation was employed. During phase 2 of this study, a new membrane was 

installed due to a faulty gas sparging pump. A slight decrease of TMP was observed with the 

installation of the new membrane; however the decrease was minimal. In addition critical flux 

for phases 2 and 3 were determined to be in the range of 6 to 12 LMH. 

 

In conclusion, the incorporation of H2O2-US PT with AD could allow treatment plants to 

substantially reduce the mass flow of solids and organics and thus result in a decrease in 

requirements for downstream sludge processing. With sufficient maintenance, steady operation 

could be achieved for a hollow fibre AnMBR with a total solids concentration range of 20-25 

g/L, an HRT of 3 days, and an SRT of 20 days.  It was found that PT could be successfully 

integrated with AnMBR to substantially reduce the HRT required for digestion when compared 

to conventional designs. 
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Chapter 1: Introduction 

1.1. Problem Statement 

Typically, there are two types of sludge that are generated at wastewater treatment plants 

(WWTPs) – Primary (PS) and Waste Activated Sludge (WAS).  Primary sludge is a product of 

the sedimentation of raw wastewaters while the activated sludge process is responsible for 

producing large quantities of waste activated sludge (WAS). A popular means of treating excess 

sludge is to stabilize the sludge by anaerobic digestion (AD). AD reduces the organic content and 

pathogenic population of WAS while producing methane as a renewable by-product. This 

process accomplishes stabilisation of sludge in 4 stages:  Hydrolysis, Acidogenesis, 

Acetogenesis, and Methanogenesis. It has been established that the rate of hydrolysis is often the 

rate limiting step (Bougrier et al., 2006). In order to accommodate this slow process, anaerobic 

digesters need to be operated at long solid retention times (SRT), which results in an increase in 

reactor volumes due to an increase in the hydraulic retention time (HRT). Several approaches 

have been introduced to improve the rate of hydrolysis, which may result in a decrease in reactor 

volumes and associated costs. 

Pre-treatment (PT) of sludge has been found to be one way of increasing the rate of 

hydrolysis (Shahriari et al., 2011). Pre-treatment causes the lysis of cells, thus making organics 

and nutrients readily available for microbial growth and metabolic activities. A wide range of 

WAS pre-treatments such as thermal (Bougrier et al., 2006; Climent et al., 2007; Bravo et al., 

2011; and Burger, 2012), chemical such as peroxidation (Grönroos et al., 2004; Dewil et al., 

2007; Eskicioglu et al., 2008; and Song et al., 2012), and mechanical such as sonication (Salsabil 

et al., 2009; Yan et al., 2010; Kim et al., 2010; Braguglia et al., 2011; and Yaqci et al., 2011) 

have been proven to be effective in pre-treating sludge. 
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Another method to enhance the process of anaerobic digestion is to incorporate a 

membrane into the design of the digester. With an anaerobic membrane bioreactor (AnMBR), 

the solids retention time (SRT) can be decoupled from the hydraulic residence time (HRT), thus 

allowing operation at higher loadings and producing digested sludge with higher solids 

concentrations while occupying less space in the WWTP. Although AnMBRs appear to provide 

considerable advantages over conventional digesters when bioreactor performance is considered, 

a potential challenge is the fouling of membranes due to the accumulation of microorganisms, 

colloids, solutes, and cell debris in or on membrane surfaces (Meng el al., 2009). Thus 

identification of foulants and fouling mechanisms and incorporation of fouling minimization 

techniques are required for successful AnMBR operation.  

Although AnMBRs may increase the rate of organics destruction the improvement in 

extent of biodegradation may be limited by the maximum biodegradability of the feed sludge. 

The integration of PT with AnMBRs may provide a solution by increasing the ultimate 

biodegradability of WAS. With a significant amount of particulates broken down due to PT, a 

high sludge age and the use of membranes to prevent biomass washout may result in an 

enhanced destruction of compounds.  

This study evaluated a combined PT-AnMBR system to improve the ultimate 

biodegradability of WAS. Thermal, ultrasound (US), and peroxide/US treatments were initially 

compared to determine the preferred method to enhance the biodegradability of the WAS used in 

this study. Once the preferred PT was determined, it was evaluated in tandem with AD in a 

submerged hollow fibre AnMBR to allow for a longer SRT while keeping the HRT at a 

minimum duration. 



 

3 
 

1.2. Objectives 

The objectives of this research were to: 

 Assess the impact of thermal, sonication, and sonication-peroxide pre-treatments on the 

physico-chemical properties of WAS. 

 Examine the biological performance (COD, solids, and organic nitrogen destruction) of a 

low pressure and low shear velocity hollow fibre anaerobic membrane bioreactor in 

combination with pre-treatment. 

 Examine the membrane performance (fouling, impact of colloids and inerts 

concentration, flux and transmembrane pressure) of a low pressure and low shear velocity 

hollow fibre anaerobic membrane bioreactor in combination with pre-treatment. 

1.3. Thesis Structure 

This thesis is organized into 6 chapters and 10 appendices. Chapter 1 provides a short 

introduction to current WAS stabilization processes, WAS pre-treatment procedures, advantages 

and limitations of AnMBRs and outlines the objectives of the study. Chapter 2 summarizes the 

literature on previous studies relevant to this study including those that evaluated the effect of PT 

on high solids waste streams, digestion of high solids waste streams via AnMBRs and the effect 

of high solids waste streams on membrane fouling.  Chapter 3 presents the methodology 

employed and the results of testing that evaluated the effect of PT on the physico-chemical 

properties of WAS and the biological performance of a combined PT-AnMBR system. Chapter 4 

presents the methodology employed and the results obtained in a study of the membrane 

performance of the AnMBR when treating raw and pre-treated WAS. Chapter 5 presents the 

significant conclusions of this study while Chapter 6 provides recommendations for future work.  
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Chapter 2: Literature Review 

2.1. Introduction 

Typically, there are two types of sludge that are generated at wastewater treatment plants 

(WWTPs) – Primary (PS) and Waste Activated Sludge (WAS).  Primary sludge is a product of 

the sedimentation of raw wastewaters while WAS is a product of biological processes such as the 

activated sludge process. With growing populations the amount of sludge to be treated at 

WWTPs is increasing. This poses a challenge to WWTP owners and operators since the costs 

associated with sludge processing may be as high as 50% of the total cost of wastewater 

treatment (Zhang et al., 2007). In this study, sludge stabilization by anaerobic digestion was 

evaluated. 

2.2. Anaerobic Digestion: 

Anaerobic digestion (AD) is a common sludge stabilization method employed in 

wastewater treatment plants that not only converts the organic matter into a renewable source of 

energy i.e. biogas, but also decreases the amount of solids while destroying a majority of the 

pathogens in the sludge (Abelleira et al., 2012). This complex biochemical process employs 

several groups of facultative and anaerobic microorganisms that work together to achieve 

stabilization and treatment of sludge in the absence of oxygen.  The advantages and 

disadvantages of AD are summarized in Table 2.1. 
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Table 2.1: Advantages and Disadvantages of Anaerobic Digestion 

Advantages Disadvantages 

 No oxygen required- lower energy 

required than aerobic digestion 

 Low biosolids produced than aerobic 

digestion – decrease in sludge 

processing and disposal costs 

 Methane produced as a by-product – 

renewable source of energy 

 High organic loading possible 

 Low nutrient requirements than aerobic 

digestion 

 

 Slower process than aerobic digestion – 

low growth rate of microorganisms 

 More sensitive to toxins than aerobic 

digestion 

 More susceptible to low temperatures 

than aerobic digestion 

 May require alkalinity addition 

 Produces odours 

Source: Maier et al., 2008 and Metcalf and Eddy, 2003 

2.3. Anaerobic Biological Treatment Process: 

Anaerobic processes decompose organic matter in 4 stages:  Hydrolysis, acidogenesis, 

acetogenesis, and methanogenesis. In hydrolysis, complex molecules such as insoluble organic 

matter and high molecular weight compounds are broken down into soluble monomers such as 

amino acids, sugars, and fatty acids by a variety of hydrolytic bacteria. Since this is a relatively 

slow process, it is typically the rate limiting step in anaerobic digestion of waste activated sludge 

(Bougrier et al., 2006). Hydrolysis is followed by acidogenesis that converts monomers into 

organic acids, alcohols, ketones, carbon-dioxide, and hydrogen by fermentative acidogenic 

bacteria.  Acidogenesis is followed by acetogenesis that involves the conversion of acids and 
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alcohols to acetate, carbon dioxide, and hydrogen by acetogenic bacteria. Slower growing 

methanogens then finally convert acetate, carbon-dioxide, and hydrogen into methane (Rittmann 

and McCarty, 2000).  There are two classes of methanogens that are responsible for producing 

methane namely: acetoclastic and hydrogen oxidizing methanogens.  Acetoclastic methanogens 

split acetic acid into methane and carbon dioxide while hydrogen oxidizing bacteria use 

hydrogen as an electron donor and carbon dioxide as an electron acceptor to produce methane 

(Appels et al., 2008). Figure 2.1 presents a simplified schematic of the anaerobic process as 

proposed by Gujer and Zehnder, (1983).  
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Figure 2.1: Biological Description of Anaerobic Digestion (Gujer and Zehnder, 1983) 
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2.4. Anaerobic Membrane Bioreactors 

As stated earlier, hydrolysis is often the rate limiting step in anaerobic digestion 

(Bougrier et al., 2006). In addition, due to the slow growth rates of methanogens, conventional 

anaerobic digesters need to be operated at long residence times (Dagnew, 2010). One major 

drawback of operating digesters at long residence times is that the volume of the reactors are 

large, which in turn increases the costs associated with the construction and maintenance of the 

digester. Collectively, these factors act to increase the cost of conventional digestion.  

One way to enhance the process of anaerobic digestion is to incorporate a membrane into 

the design of the digester (Pickel, 2010). With an anaerobic membrane bioreactor (AnMBR), the 

solids retention time (SRT) can be decoupled from the hydraulic residence time (HRT), thus 

resulting in the ability to treat high loadings and sludge with high solids concentrations and 

slowly biodegradable compounds while occupying less space in the WWTP. The membrane is 

able to retain the biomass and microorganisms in the digester also resulting in a waste effluent 

with high solids concentration. Moreover, the permeate that is collected as a result of the 

membrane installation is solids-free (Lew et al., 2009). Due to all these advantages, AnMBRs are 

gaining popularity in the waste water industry. 

2.5. Anaerobic Digestion of High Solids Waste using AnMBRs 

Table 2.2 presents a cross-section of research that has been conducted to evaluate 

treatment of high solids streams using AnMBRs. As it can be seen in the table, AnMBRs have 

been operated under a variety of different conditions. Conventional anaerobic digesters are 

usually operated at a minimum HRT and SRT of 15 days for sludges (Metcalf and Eddy, 2003). 

The AnMBR literature has made use of HRTs that have ranged from 1.2 to 30 days (Fuchs et al., 
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2003 and Takashima et al., 1991). However, when compared to the corresponding decoupled 

SRTs (range of 20 days to 365 days), it can be seen that the HRT values were considerably lower 

than the SRT, thus demonstrating a low reactor volume (Kim and Jung, 2007 and Ghyoot and 

Verstraete, 1997). Comparatively, long SRTs indicate that longer durations may be required to 

accomplish significant hydrolysis of high solids streams.  

Some studies have evaluated the influence of SRT on chemical oxygen demand (COD) 

and volatile suspended solids (VSS) destruction rates. For instance, Dagnew, (2010) investigated 

the effect of SRT on the performance of a submerged AnMBR treating WAS and found that as 

the SRT was increased from 15 to 30 days, the VSS and COD destruction rates increased from 

36 ± 1.5 % to 48.6 ± 3.1% and from 40.6 ± 1.8 % to 50.8 ± 3.8%, respectively. Trzcinski and 

Stuckey, (2010) also investigated the effect of SRT on COD removal rates of a  submerged 

AnMBR treating municipal solid waste leachate and found that as SRT increased from 30 to 300 

days, the fraction of removed COD also increased. It was seen that as the SRT increases, 

microorganisms are able to hydrolyze particulates and high molecular weight molecules into 

smaller and soluble substances more effectively.  Hence, microorganisms are able to degrade 

COD and VSS more effectively. Most of the studies discussed in Table 2.2 reported that 

decoupling SRT-HRT in AnMBRs kept the volume of the reactor low while accomplishing 

significant digestion of the high solids streams as shown by the high destructions.  

Another operational parameter that is commonly reported in the operation of anaerobic 

reactors is the organic loading rate (OLR). Puchajda and Oleszkiewicz, (2008) have shown that 

increasing the loading rate can enhance anaerobic digestion. However, in order to ensure 

successful anaerobic digestion, conventional digesters are usually operated at high SRTs (and 

thus HRTs), which may result in low OLRs. This was confirmed by Verstraete and Vandevivere 
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(1999) found that conventional anaerobic digesters are usually operated at low OLRs of < 1 

kgCOD/m
3
/d. On the other hand, due to the decoupling SRT-HRT characteristic of AnMBRs, 

these systems are expected to be able to handle high OLRs. The applied OLR for AnMBRs was 

higher than 1 kg COD/m
3
/d in the studies listed in Table 2.2, and in some cases higher than 

10 kg COD/m
3
/d, demonstrating the capacity of AnMBRs to handle high loadings (Fuchs et al., 

2003 and Trzcinski and Stuckey, 2009).  

However, despite the potential improvement in sustainability, using high loadings may 

negatively affect the AnMBR process. This is because high OLRs may require high cross flow 

velocities or sparging rates and more cleaning to prevent fouling of the membrane.  Some studies 

have reported a decline in digester performance at high OLRs (Brockmann and Seyfried, 1997; 

Hernandez et al., 2002; and Padmasiri et al., 2007). This deterioration in performance was 

attributed to a decline in microbial activity as a result of high shear rates and physical 

interruption of the syntrophic interaction of acetogenic and methanogenic organisms 

(Brockmann and Seyfried, 1997 and Hernandez et al., 2002). Therefore, shear rates that are 

adequate enough to accomplish scouring of membranes and do not affect the biological activity 

of microorganisms should be employed.  

Temperature is another factor that affects the activity of microorganisms. It should be 

noted that most of the studies reported in this review evaluated mesophilic reactors, with the 

exception of the study of Kang et al., (2002), where the AnMBR was operated at a thermophilic 

temperature of 55ºC. This shows that a broad range of temperatures can be employed in 

AnMBRs. From a biological point of view, microbial growth and decay rates have been reported 

to be linearly related to temperature (Dereli et al., 2012). The higher decay rate of thermophilic 

bacteria may lead to the formation of small particles such as extracellular polymeric substances 
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(EPS), decay products or cell debris (Dereli et al., 2012). The existence of such particles within 

the reactor may have a negative effect on the filtration properties of the membrane, a concern 

that will be addressed in Section 2.5.  

In some cases, similar removal efficiencies have been reported with thermophilic and 

mesophilic AnMBRs. For instance, Kang et al., (2002) reported a 99% COD removal efficiency 

at 55ºC, while Fuchs et al., (2003) observed a 90-96% removal efficiency by operating the 

reactor at only 30ºC.  However, both studies employed AnMBRs to treat different waste streams 

under different operational conditions. Kang et al., (2002) operated the AnMBR at an HRT of 13 

days and OLR of 2.95 kg COD/m
3
/d to treat an alcohol fermentation plant WW with an MLSS 

concentration of 2-2.5 g/L, while Fuchs et al., (2003) used an HRT of 1.2 days and OLR of 4.83-

16.75 kg COD/m
3
/d to treat 22 gMLSS/L chicken slaughter WW. Despite having a higher MLSS 

concentration and OLR, Kang et al., (2002) achieved a high removal rate, which was comparable 

to Fuchs et al., (2003). Therefore, in order to minimize costs of heating, one may operate 

AnMBRs at mesophilic temperatures and acquire high removal efficiencies that one would 

observe at thermophilic temperatures.  

In summary, the literature reveals that AnMBRs can be operated over a broad range of 

conditions; however the removal efficiency that can be maintained is a function of sludge 

characteristics, shear rate, and operational conditions. On the basis of the reviewed literature, the 

test apparatus employed in this study was designed to operate at a low HRT, a comparatively 

higher SRT, an OLR > 1 kgCOD/m
3
/d and a mesophilic temperature. This combination of 

operational conditions was chosen to accomplish a high removal rate while maintaining the costs 

at a minimum. 
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Table 2.2: Biological Performance of AnMBRs treating High Solids Streams 

Type of Feed 
Type of 

Reactor 

T 

(ºC) 

Volume 

(L) 

HRT 

(days) 

SRT 

(days) 

MLSS 

(g/L) 

OLR 

(kgCOD/m
3
-d) 

Feed 

COD 

(g/L) 

Feed 

TS 

(g/L) 

COD 

Removal 

Efficiency 

(%) 

Reference 

WAS CSTR 35 5 30 100 - - - 20.7 - 

Takashima 

el al., 

(1991) 

PS UASB 35 120 20 
No 

wasting 
50 2.01 40.2 44.4 

54                    

25-59
b
 

Ghyoot and 

Verstraete, 

(1997) 

Alcohol 

Fermentation 

Plant WW 

CSTR 55 5 13 - 2-2.5 2.95 38.4 - 99 
Kang et al., 

(2002) 

Chicken 

Slaughter 

WW 

CSTR 30 7 1.2 - 22 4.83-16.75 
5.8-

20.1 

2.4-

4.7 
90-96 

Fuchs et al., 

(2003) 

WAS CSTR 35 100 2 20 18-55 - 7
a
 

5.0-

30.0 
- 

Kim and 

Jung, 

(2007) 

Municipal 

Solid Waste 
CSTR 35 3 

1.6-

2.3 
- - 2.5-11.3 

4.0-

26.0 
30 > 90 

Trzcinski 

and 

Stuckey, 

(2009) 

WAS - 35 570 7, 15 15, 30 
17.2-

28.3 
0.73 -3.14 

17.4-

21.3 

15.9-

18.3 
40.6-50.8 

Dagnew, 

2010 

a 
Soluble COD ,  

b 
VSS Removal Efficiency 
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2.6. Membrane Performance of AnMBR systems treating High Solids Waste 

2.6.1. Fouling in AnMBR 

Although AnMBRs appear to provide considerable advantages over conventional 

digesters when bioreactor performance is considered, a potential challenge is the fouling of 

membranes due to the accumulation of microorganisms, colloids, solutes, and cell debris in or on 

membrane surfaces (Meng el al., 2009).  Fouling is an unavoidable drawback of using a 

membrane as it affects the long term stability and performance of the membrane.  Inefficient 

operation of membranes due to fouling will require elevated energy costs and may require 

frequent replacement of membranes, which in turn increases costs (Dereli et al., 2012).  

In order to study fouling it is desirable to have metrics that can be used to quantify its 

extent.  Two indicators of fouling have been reported in literature.  It has been described in terms 

of either an increase in transmembrane pressure (TMP) (at constant flux) or a decrease in flux (at 

constant TMP) (Hong et al., 2002). Most studies on membrane fouling have used a constant flux 

approach rather than a constant TMP approach (Choi, 2003). Defrance and Jaffrin, (1999) 

confirmed that it is preferable to operate the membrane at a constant flux rather than at a constant 

TMP. Hence, the AnMBR in this study was operated in a constant flux mode. 

2.6.2. Conceptual Model of Fouling Mechanisms 

Conceptual models of fouling mechanisms can be used to identify fouling mechanisms 

and to predict the flux decline over time. There are four classical mechanisms that can be used to 

define fouling, which are summarized in Table 2.3 (Hwang and Lin, 2002 and Jaffrin et al., 

1997).  



 

13 
 

 Complete pore blocking, in which particles of a larger diameter than the pore constrict the 

pore entrance and increase filtration resistance.  

 Intermediate pore blocking follows the same approach as complete blocking, but involves 

settling of particles on the existing particles blocking the pores. 

 Standard pore blocking, which assumes that particles accumulate on the pore walls, thus 

causing the volume of the pores to decrease.  

 Cake formation, which involves accumulation of particles on the membrane surface, thus 

resulting in a cake layer. 

Conceptual models are aimed to accomplish characterization of fouling mechanisms. 

Prediction of fouling mechanisms, as a result of these models, can help prevent and analyze flux 

decline effectively.  The literature presents models that describe these fouling mechanisms 

individually and in combination with each other (Hermia, 1982; Field et al., 1995; Bowen et al., 

1995; Ho and Zydney, 2006; and Charfi et al., 2012). Most of these studies have adapted the 

models described by Hermia, (1982), which are summarized in Table 2.3. All the expressions in 

Table 2.3 are based on a mathematical model (Equation 2.1), which was presented by Hermia, 

(1982) and the flux decline expression (Equation 2.2). The constant m depends on the fouling 

mechanism involved in the process and can be found in Table 2.3, along with the definitions of 

other parameters. 
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Table 2.3: Classical Membrane Fouling Models  

 

(Adapted and Modified from Hermia, 1982; Bowen et al., 1995; and Charfi et al., 2012) 

 

Description Fouling Mechanism Flux Expression 

 

Complete Pore Blocking 

 (m=2) 

                

 
      

 
           

  

  

Intermediate Pore Blocking 

(m =1) 

 

  
  

        
 

 
       

 
          

 

 

Standard Pore Blocking 

(m = 3/2) 

 

  
   

      
        

 

 

          

    
    

 
 

   
 

 
 

 

Cake Formation 

(m=0) 

 

  
  

       
        

 

 
        

    
    

    
 

 
 

Where J is the permeate flux (m.s
-1

), J0 is the initial flux at t = 0 (m.s
-1

), t is the time (s), A is the 

membrane surface (m
2
), C is the suspended solids concentration (g.L

-1
), e is the active layer 

thickness (m), h is the deposit height (m), Kcf is the cake formation parameter (s.m
-2

), Kpc is the 

pore constriction parameter (s
-1/2

), Kib is the intermediate blocking parameter (m
-1

), Kcb is the 

complete blocking parameter (s
-1
), k is the kinetics parameter constant (unitless), α is the specific 

cake resistance (m.kg
-1

), µp is the permeate viscosity (Pa.s), and ρs is the sludge density (kg.m
-3

).  
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2.6.3. Prevention and Control of Fouling 

In order to determine the optimal operational flux of a system and control fouling, a 

critical flux test is often performed. The critical flux is defined as the flux below which minimal 

fouling takes place. The method of determining critical flux was introduced by Field et al., 

(1995) and this method was employed in this study. A critical flux test involves increasing the 

permeate flux in fixed increments for constant time periods and monitoring the TMP at each 

flux. A plot of this data reveals a linear relation between the TMP and flux within the sub-critical 

flux range and an exponential relation beyond the critical flux range. This exponential increase 

between the two parameters indicates rapid accumulation of foulants.  

Operating the membrane below the critical flux has been reported to result in minimal 

fouling (Jeison and van Lier, 2006a).  Fouling could still take place when operating under the 

critical flux; however the rate of fouling is lower below the critical flux (Fan et al., 2006). Thus, 

AnMBRs should be operated under the critical flux to minimize fouling.  

Fouling can also be minimized by incorporating a relaxation period within the permeation 

cycle of the membrane. A relaxed mode of operation involves a cyclic interruption of filtration 

by releasing the pressure and allowing the accumulated materials on the membrane surface to be 

removed by scouring (Dagnew, 2010). Integration of relaxation in the permeating cycle has been 

proven to be effective in controlling anaerobic membrane fouling (Jude, 2006).  For instance, 

Dagnew et al., (2012) compared the performance of a tubular membrane with continuous 

constant permeation for 30 minutes at a flux of 30 litres per m
2 

per hour (LMH) with a 

membrane incorporating a 5 minutes permeation followed by a 1 minute of relaxation cycle. 

They observed that relaxation extended the operation of the membrane by limiting the maximum 
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TMP to 30 kilopascals (kPa). However, in continuous operation, the TMP increased almost 

linearly to about 80 kPa, thus demonstrating increased fouling of the membrane. Therefore, in an 

attempt to minimize fouling, the membrane in this study was operated at a relaxed operation 

rather than a continuous operation. 

 A wide range of relaxation and permeation cycles have been used in the past. Pickel, 

(2010) achieved a constant flux of 14 LMH and a TMP of 0.079 kPa with no cleaning by 

incorporating  a 20 minute permeation followed by 5 hours and 40 minutes of relaxation cycle 

during a hollow fibre AnMBR filtration of WAS. On the other hand, Hulse et al., (2009) 

observed a flux of 4.6-11.8 LMH and a TMP of 1-1.74 kPa with cleaning at the end of operation 

by using a 9 minutes permeation and 1 minute relaxation cycle during a flat sheet AnMBR 

filtration of potato solid wastewater.  The duration of the relaxation period depends on the 

characteristics of the stream being treated, operational conditions such as flux, and the cleaning 

frequency. For instance, a more concentrated stream and a higher operational flux with no 

cleaning employed may require longer durations of relaxation, as seen with Pickel, (2010). A 

few studies have achieved successful operation of the membrane by incorporating relaxation 

periods as low as 1 minute with 5 minutes of permeation (Dagnew et al., 2012). This study will 

investigate the effect of incorporating a relaxation cycle of 2 minutes with 8 minutes of 

permeation on the behaviour of a hollow fibre membrane treating WAS. 

2.6.4. Studies on Membrane Performance of AnMBR Systems Treating High Solids Waste 

 Table 2.4 summarizes the membrane operating conditions that have been reported in 

previous AnMBR studies. From Table 2.4 it can be seen that AnMBRs have been operated over 

a broad range of fluxes when treating high solids streams. The range spans from that reported by 
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Saddoud and Sayadi, (2007) (less than 3 LMH) when treating slaughterhouse WW at an MLSS 

concentration less than 10 g/L to that of Pierkiel and Lanting, (2005) (146 and 66.7-83 LMH) 

when treating a combination of PS and WAS with an MLSS of 5 and 20 g/L. The relatively low 

flux reported by Saddoud and Sayadi, (2007) was accomplished with one cleaning cycle after 81 

days of operation while Pierkiel and Lanting, (2005) performed daily and monthly cleaning 

cycles to maintain higher fluxes.   

Although Saddoud and Sayadi, (2007) operated the AnMBR at a lower MLSS than 

Pierkiel and Lanting, (2005), they observed a flux decline from 20 to < 3 LMH after start-up. 

The low flux observed by Saddoud and Sayadi, (2007) was attributed to pore plugging and cake 

formation during filtration, which could have been prevented or controlled by performing regular 

maintenance cleaning. Thus, in order to maintain membrane performance, maintenance cleaning 

of the membrane may have to be performed in a timely fashion.  

High MLSS concentrations do not necessarily translate to a need for frequent cleaning. 

For instance, Padmasiri et al., (2007) operated a side stream AnMBR with MLSS concentrations 

of 27 and 49 g/L to treat swine manure with no cleaning employed during its operation. The long 

term performance of the membrane was attributed to the use of high cross-flow velocities that 

prevented deposition of foulants on or in the membrane. However, they also reported a decline in 

the biological activity of the micro-organisms due to the high velocities (Section 2.4).  

It has been proposed that extremely high shear rates may result in irreversible fouling of 

the membrane. If the cross flow velocity or gas sparging rate is too high, this may lead to the 

disintegration of biological flocs, thus resulting in finer colloids and extracellular polymeric 

substances (EPS) and eventually severe fouling (Chang et al., 2002). Thus, a balance must be 
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maintained between the shear velocity, membrane filtration, frequency of cleaning, and the 

biological performance of the reactor. 

It has been reported that biomass concentration can significantly affect membrane 

performance. As it can be seen from Table 2.4, previous AnMBR studies have been conducted at 

MLSS concentrations ranging from 1.8 to 55 g/L (Pillay et al., 1994 and Kim and Jung, 2007). 

Jeison and van Lier, (2006b) studied the effect of biomass concentration on the critical flux in a 

mesophilic AnMBR, and concluded that an increase in biomass concentration from 20 to 40 g/L 

led to a decrease in critical flux from 21 to 9 LMH. Zhang et al., (2007) also reported a similar 

observation. Hence, an increase in MLSS concentration reduces the flux range below which 

minimal fouling occurs. These reductions in flux are most likely due to the formation of a cake 

layer on the membrane surface, thus fouling the membrane and decreasing the resistance of the 

membrane.  

The impact of membrane type and material of construction on flux has been the subject 

of previous studies. Ghyoot and Verstraete, (1997) compared the operation of a ceramic 

microfiltration (MF) membrane with a polymer ultrafiltration (UF) membrane for PS treatment 

and reported that the ceramic membrane maintained an operational flux of 200-250 LMH and a 

TMP of 200 kPa while the flux and TMP for the polymer membrane was 25 LMH and 375 kPa, 

respectively. In other words, the polymeric membrane displayed higher resistance to filter a 

suspension with similar solids concentration than a ceramic membrane. Although inorganic 

membranes such as those made of ceramics offer greater chemical, thermal and hydraulic 

resistances, they are not usually preferred as they are not very cost effective (Judd et al., 2004). 

For instance, Ghyoot and Verstraete, (1997) estimated the cost of the ceramic MF membrane to 



 

19 
 

be almost twice the cost of the polymer UF membrane. In order to minimize costs, this study 

made use of an AnMBR with a polymeric membrane to accomplish permeate filtration. 

Operation of membranes at higher fluxes has been reported to cause more fouling of 

membranes when compared to lower fluxes. For instance, Lew et al., (2008) investigated the 

relationship between flux and the fouling rate of a hollow fibre, MF membrane in an AnMBR. In 

this study, fouling rate was defined as an increase in TMP over time. It was found that an 

increase in the flux from 3.75 to 11.25 LMH  resulted in an increase of the fouling rate from 0.99 

to 2.56%.This may be explained by the increase in the rate of mass transfer of sludge particles 

towards the membrane surface due to an increase in flux, which led to an increased fouling rate.  

Operating temperature has also been found to influence the flux and fouling rate of a 

membrane. Membranes have been operated under thermophilic as well as mesophilic conditions 

(Kang et al., 2002). Increasing the temperature has been reported to result in a reduced sludge 

viscosity which in turn, may increase the operating flux and improve the filtration performance 

of the membrane (Dereli et al., 2012). Jeison and van Lier (2006b) observed a higher critical flux 

range of 16-23 LMH in a thermophilic AnMBR treating sludge when compared to a mesophilic 

reactor, which had a critical flux range of 5-21 LMH. However, long term operation of the 

thermophilic reactor resulted in a decreased flux of 2-3 times that of the mesophilic AnMBR and 

irreversible fouling. As mentioned earlier, an increase in temperature can lead to an increase in 

microbial activity, thus resulting in increased EPS concentrations and smaller flocs. Finer sludge 

particles such as colloids may result in the formation of a compact and denser cake, which 

decreases the reversibility of flux loss in membranes, thus resulting in irreversible fouling (Jeison 

and van Lier, 2007).  
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In summary, the literature reveals that AnMBRs can be operated over a broad range of 

conditions; however the flux that can be maintained is a function of sludge characteristics, shear 

rate, and cleaning frequency. On the basis of the reviewed literature, the test apparatus employed 

in this study was designed to operate with a hollow fiber membrane, an MLSS concentration of 

20-25 g/L, a cleaning frequency of 3 times a week, gas sparging to generate shear, a relaxed 

mode of operation, and an operating flux that was below the critical flux. This design was 

developed to minimize the likelihood of excessive fouling in the experiments. 
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Type of Feed 
Type of 

Reactor 

Temperature 

(°C) 
Module 

Membrane 

Material 

Pore 

Size  

Surface 

Area 

(m
2
) 

TMP 

(kPa) 

Flux 

(LMH) 

MLSS 

(g/L) 
Reference 

PS CSTR 35 Tubular Woven Fibre - - 200 50 1.8 
Pillay et al., 

(1994) 

PS UASB 35 Tubular 
Ceramic, 

Polymer 
0.1 µm 0.05 

200, 

375 

200-

205,  

25 

50 

Ghyoot and 

Verstraete, 

(1997) 

Alcohol 

Fermentation 

Plant WW 

CSTR 55 - 

Hydrophobic 

PPE, Zirconia 

Inorganic 

0.2m, 

0.14 m 

0.0129, 

0.0113 
- - 2-2.5 

Kang et al., 

(2002) 

PS and WAS CSTR 35 

Tubular, 

plate and 

frame 

Titanium 

dioxide/stainless 

steel, polymeric 

teflon  

0.1, 

0.05 

µm 

1.4,1.6 

480-

550, 

345 

146, 

66.7-83 

10, 5-

20 

Pierkiel and 

Lanting, (2005) 

WAS CSTR 35 Tubular Stainless Steel 1 µm - - - 18-55 
Kim and Jung, 

(2007) 

Slaughterhouse 

WW 
CSTR 37 - - 

100000 

Da 
1 - <3 <10 

Saddoud and 

Sayadi, (2007) 

Swine Manure CSTR 37 Tubular 
Polyether 

Sulfone 

20000 

Da 
0.0377 20-70 5.0-10.0 27, 49 

Padmasiri et al., 

(2007) 

High Solids 

WW 
CSTR 30 Tubular  PSF Membrane - - - < 4 40 

Jeison et al., 

(2008) 

WAS - 35 Tubular PVDF 
0.02  

µm 
0.2 30 

29.2-

34.5 
19.8 Dagnew, (2010) 

Table 2.4: Membrane Performance of AnMBRs treating High Solids Streams  
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2.7. WAS Pre-treatment 

The performance of anaerobic digestion of WAS is often determined by the rate-limiting 

hydrolysis step that makes organics available to microorganisms (Bougrier et al., 2006). Pre-

treatment (PT) of sludge has been found to be one way of increasing the rate of hydrolysis 

(Shahriari et al., 2011). Pre-treatment can lead to the lysis of cells, which in turn causes the 

release, and thus availability of intracellular matter to the microorganisms (Bougrier et al., 2005). 

Hence, pre-treatment solubilises organics that are present in the form of suspended solids or 

adsorbed on their surface. Solubilisation of particulate matter has been found to cause changes in 

the physical and chemical properties of the sludge (such as suspended solids and chemical 

oxygen demand), thus making it readily available for microbial growth and metabolic activities 

(Pham et al., 2007). Since pre-treatment increases the rate of digestion, this may allow a 

treatment plant to reduce the retention time in digesters thereby making operation more 

economically favourable (Bougrier et al., 2005).  

There are a variety of pre-treatments that can be used prior to anaerobic digestion. They 

include mechanical technologies such as sonication, thermal technologies and chemical 

treatments such as peroxidation (Bougrier et al., 2006b). Due to the large quantities of chemical 

that are needed and thus high associated costs, individual PT of WAS with peroxide is not 

widely used. Furthermore, the cost of disintegrating sludge by chemical treatment tends to be 

more expensive than mechanical PT (Ruiz-Hernando et al., 2013). Therefore, to date, sonication 

or thermal PTs have been preferred over peroxidation of WAS. 

 Some studies have suggested that ultrasonic (US) treatment may be more effective in 

improving the biodegradability of WAS than thermal PT. For instance, Sahinkaya and Sevimli, 

(2013) observed that treatment at 1.0 W/ml of US density for 1 minute resulted in a 6.3% 
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increase in biogas production with respect to the control, while thermal PT at 80°C for one hour 

resulted in a 3.5% increase in biogas production compared to the control. In addition, Wang et 

al., (1995) showed that the order of pre-treatment efficiency in terms of improvement in methane 

generation after pre-treatment was ultrasonic lysis followed by thermal pre-treatment by 

autoclave followed by thermal pre-treatment by hot water, and lastly freezing. Therefore 

sonication has proved to be more effective in improving the characteristics of WAS than thermal 

or peroxide PT.  

 

2.8. Ultrasonic Pre-treatment: 

The term ultrasound refers to a sound wave propagating at a frequency higher than the 

audible hearing range of human beings (>20 kHz) (Kianmehr, 2010). When an ultrasound wave 

travels through a media such as water, it generates numerous cavitation bubbles in the water 

(Suslick 1988). Continuous oscillation of the wave causes the local pressure to drop below the 

evaporating pressure, which in turn causes these microscopic bubbles to explode (Wandzel et al., 

2011). This abrupt and intense collapse of such a large number of bubbles produces strong 

mechanical shear forces that can disintegrate bacterial cells, cells walls, and membranes (Khanal 

et al., 2007). The disruption of bacterial cells results in the release of intracellular organic 

substances and solubilisation of particulate organic matter (Takatani et al., 1981). It has been 

hypothesized that fragmentation of organics due to sonication aids the rate-limiting hydrolysis 

reaction in anaerobic digestion and hence can in turn be reflected by increased methane 

generation and reduced sludge volume (Show et al., 2007). 

Sonication has been reported to be a promising and effective pre-treatment method for 

sludge and has been widely researched in laboratory, pilot and recently even in full scale (Tiehm 

et al., 1997; Chu et al., 2001; Onyeche et al., 2002; Grönroos et al., 2004; Foladori et al., 2006; 
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Bougrier et al., 2006; Nickel and Neis, 2007; Pham et al., 2007; Zhang et al., 2007, Zhang et al., 

2008; Salsabil et al., 2009; Yan et al., 2010; Kim et al., 2010; Braguglia et al., 2011; and Yaqci 

et al., 2011). Table 2.5 provides a summary of some literature involving sonication including 

sonication characteristics, solubilisation extent, solids reduction, and biodegradability of WAS, 

all factors that are important to this study.   

Most of the existing literature assessed the effect of sonication on WAS by monitoring 

the soluble chemical oxygen demand (SCOD) release or solubilisation ratio. The solubilisation 

ratio is defined as the fraction of total chemical oxygen demand (COD) that is soluble.  Past 

research has demonstrated that a linear relationship exists between sonication duration and 

solubilisation ratio or SCOD concentration. For instance, Chu et al., (2001) concluded that as the 

treatment time was increased from 20 to 120 minutes, the fraction of SCOD/TCOD increased 

from 3 to 20%.  In another study, Kim et al., (2010) observed an increased solubilisation from 8 

to 50%, when the the energy supply was increased from 3750 to 45000 kJ/kgTS. Similarly, 

Zhang et al., (2007) noticed an SCOD increase of about 3000 mg COD/L after increasing the 

sonication duration from 0 to 30 minutes. In another study, Yaqci et al., (2011), reported a 36% 

SCOD increase after increasing the sonication duration from 0 to 30 minutes, thus verifying the 

linear relationship between sonication duration and SCOD concentration. Thus, most studies 

suggest that increasing the sonication duration increases the solubilisation ratio. 

Analogous to COD solubilisation, sonication has also been reported to result in increased 

solids solubilisation with an increase in sonication duration. For instance, Zhang et al., (2007) 

observed a decrease in TSS concentrations of up to 24% when the sonication duration increased 

from 0 to 30 minutes, thus demonstrating that sonication solubilizes suspended matter. Salsabil 

et al., (2009) also observed a linear relationship between TSS and VSS solubilisation and 
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treatment duration, with a maximum TSS and VSS reduction of 23.3 and 29.7% at a duration of 

4 hours. In another study, Bougrier et al., (2006) pre-treated WAS samples of 20 g/L TSS at 

specific energies of 6250 kJ/kg TS and 9350 kJ/kg TS. It was found that the VSS/TSS ratio 

decreased from 78 to 73% with the energy supplied indicating preferential solubilisation of 

organics. Sonication only slightly affected the inert solids, i.e. less than 10% of the inert solids 

were solubilized. Thus, sonication significantly affected the organic solids but not the inert 

fraction.  

Although sonication results in the transfer of materials from the particulate phase into the 

soluble phase, no studies discussed in Section 2.5 observed significant reductions in total COD. 

In other words, no significant destruction of organic matter took place. Thus, sonication did not 

diminish the available resource for methane generation. 

In addition to solids and COD solubilisation while conserving TCOD, sonication has also 

led to improvements in the biodegradability of WAS. The extent of solubilisation of COD 

fractions has been used to assess the impact of pre-treatment on the biodegradability of WAS 

(Kianmehr, 2010). For instance, Grönroos et al., 2004 studied the effect of sonication duration on 

SCOD increase and methane production from WAS. They noticed that as they increased the 

sonication duration from 0 to 10 minutes, the SCOD concentration and methane production 

increased from 620 to 4200 mg SCOD/L and from 3.22 to 8.09 m
3 
CH4/kg SCOD consumed in 

sample, respectively. In another study, Braguglia et al., (2008) observed that an increase in 

SCOD concentration was accompanied by an increase in VSS destruction from 2 to 5% and 

biogas volume from 26 to 29% via AD when the sonication duration was increased from 2 to 4 

minutes. Similarly, Nickel and Neis, (2007) also observed a biogas volume increase of 16% and 

a VSS destruction increase of 40% after increasing the sonication intensity from 5 to 18 W/cm
2
. 
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Therefore, PT can result in an increase in the extent of destruction by making soluble matter 

more readily available to microorganisms.  

As previously discussed, sonication of WAS results in the release of material from the 

particulate phase to the soluble phase. A considerable fraction of organic materials in WAS 

comprises of extra cellular polymeric substances (EPS) (Liu and Fang, 2002). It has been 

hypothesized that sonication of WAS results in the solubilisation of EPS, which results in 

smaller and finer particles such as colloids (Kianmehr, 2010). Some studies have reported an 

increase in colloidal COD (cCOD) with sonication. For this study, cCOD represents the fraction 

of COD that can pass through a 1.5 µm filter but not through a 0.45 µm filter. In one study, 

Musser, (2010) observed an increase in cCOD/TCOD fraction from 15 to 50% after increasing 

the ultrasound dose from 2 to 12 kJ/gTS.  Similarly, Kianmehr, (2010) also reported an increase 

in cCOD of up to 30% as the sonication duration was increased from 0 to 50 minutes.  Kianmehr, 

(2010) attributed this increase to the solubilisation of EPS, which resulted in an increase in 

cCOD concentration.  

In summary, sonication has been found to lead sludge disintegration, reduction in solids 

concentration, and increased biodegradability. In addition, it has been reported that sonication 

accomplishes all of the above without producing any odours and using any additional chemicals 

(Salsabil et al., 2009 and Pilli et al., 2011). Due to all these reasons, sonication is a popular 

method of pre-treating WAS. This study will evaluate the effect of sonication on WAS using 

existing literature sonication durations to determine if existing results can be replicated. 
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Type 

of 

Feed 

Sonication 

characteristics 

Total Solids (g/L)  
Solubilisation 

(%) 

Destruction 

Increase (%) 

Biogas Volume 

Increase (%) 
Reference 

Feed Samples 
Sonicated 

Samples 

WAS 

20 - 120 

minutes                             

(at 0.33 

W/mL) 

8.2 - 3.0 - 20.0 - - 

Chu et 

al., 

(2001) 

WAS 
0 – 10 

minutes 
- - 577 - 151 

Grönroos 

et al., 

2004 

WAS 
6250 kJ/kgTS                                                      

9350 kJ/kgTS 
20 18 20 - 

47                                                     

51  

Bougrier 

et al., 

(2006) 

WAS 0-30 minutes 9.95 0- 24% 30.1
f 

- - 

Zhang et 

al., 

(2007) 

WAS 
5.0 - 18.0 

W/cm
2
 

5.0 - 40 g/L - 20 40
b
 16 

Nickel 

and Neis, 

(2007) 

WAS 
2 minutes                                  

4 minutes 
23 - 

4
g
                                          

8
h
 

5
c 
                                            

2
d
 

26                                                       

29 

Braguglia 

et al., 

(2008) 

WAS 

0 – 4 hours       

0 - 108000 

kJ/kgTS 

17.81 
reduction of 

7.1-22.3 % 
10 2.4 - 7

e
 6.7-83 

Salsabil 

et al., 

(2009) 

WAS 
3750-45000 

kJ/kgTS 
37.1 - 8.0-50.0 - - 

Kim et 

al., 

(2010) 

WAS 1 - 30 minutes - 
reduction of 

26 %
a 35.5 - - 

Yaqci et 

al., 

(2011) 

Table 2.5: Summary of Literature on Sonication Effects on WAS 

a
VSS Reduction                                       

b, c, d
VSS Destruction                                         

e
 COD destruction                               

f, g, h 
Degree of Disintegration 
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2.9. Chemical Pre-treatment 
 

Like sonication, chemical treatment has been reported to break down complex organic 

compounds present in WAS and solubilise them.  Chemical pre-treatments that have been 

evaluated include hydrochloric acid (HCl), sulfuric acid (H2SO4), hydrogen peroxide (H2O2), 

Sodium Hydroxide (NaOH), potassium hydroxide (KOH), etc. Out of all of the above, H2O2 is 

gaining popularity due to its wide range of treatability. Hydrogen peroxide has been found to be 

able to degrade many kinds of organic compounds including those that are moderately and 

highly refractory with low biodegradability (Agustina et al., 2005). Moreover it has also been 

used to treat inorganics and other compounds such as sulfites, nitrites, hypochlorites, aromatics, 

biphenyls, pesticides, herbicides, etc. Thus, H2O2 is capable of degrading a wide variety of 

substances.  

In the few studies that have been conducted to determine the effect of peroxide dosing on 

high solids waste streams it has been concluded that a linear relationship exists between peroxide 

dose and solids and COD solubilisation. For instance, Wang et al., (2009) reported that an 

increase in the ratio of H2O2/TCOD from 0 to 4.5 (w/w) resulted in an increase in SCOD 

concentration by 2000 mg/L. Similarly, they observed a reduction in the VSS/TSS ratio from 

0.73 to 0.58 with an increase in the H2O2/TCOD ratio, thus demonstrating solubilisation of 

organics. In another study, Eskicioglu et al., (2008) observed an increase in the solubilisation 

ratio from 3 to 18% when the peroxide dose increased 0 to 1 g H2O2/g TS of thickened WAS. 

Similarly, Dewil et al., (2007) reported an increase in SCOD concentrations from 787 to 2507 

mg/L after applying an H2O2 dose range of 5-50 gH2O2/kgDS. Although there has been an 

increase in SCOD in these studies, none of them reported an increase in cCOD, thus suggesting 

that the effect of H2O2 on cCOD was negligible.  
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A few studies have reported a loss of organic matter due to oxidation by H2O2. For 

instance, Eskicioglu et al., (2008) reported losses of 18, 11, 34, and 16% of TCOD, proteins, 

sugars, humic acids and total biopolymer concentrations, respectively after treating a 6.4% 

thickened WAS samples with 1 g H2O2/gTS. Similarly, Grönroos et al., (2004) observed a 10 % 

decrease in COD after treating sludge with 65.8 kgH2O2/tDS.   Therefore, treatment with H2O2 in 

both cases led to a loss of resource for methane generation.   

In addition to solids and COD solubilisation, some studies have observed an increase in 

biogas volume when digesting samples after H2O2 dosing. For instance, Song et al., (2012a) 

reported that an increase in H2O2 concentration from 3% to 4% improved the biodegradability of 

rice straw with a 4.5% TS concentration. The results demonstrated that treatment with 4% H2O2 

yielded the highest biogas production, with a biogas volume of 327.5 mL/gVS removed 

compared to a control volume of 125 mL/gVS removed.   In another study, Song et al., (2012b) 

observed an 88% increase in methane yield (compared to the control) by applying a H2O2 dose of 

2.68% (w/w TS). Therefore, peroxidation led to the solubilisation of particulates, which resulted 

in an improved biodegradability. 

In conclusion, pre-treatment of high solids streams with hydrogen peroxide alone has not 

been widely researched in literature. However, based on available literature, it can be established 

that peroxidation results in COD and solids solubilisation, and thus improved biodegradability.  

Peroxidation may also lead to a loss of organic matter, thus diminishing the available resources 

for methane generation. Therefore, low concentrations of peroxide addition may be necessary to 

avoid loss of biodegradation potential.  
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2.10. Combined Peroxide-Ultrasonic Pre-treatment 

Although H2O2 can be used in the treatment of a wide variety of inorganic and organic 

pollutants, treatment with H2O2 alone may not be enough to treat high concentrations of some 

refractory contaminants (Neyens et al., 2003).  Combining H2O2 with other forms of pre-

treatment such as metals like iron, ozone, microwave, and ultrasound has been found to lead to 

the generation of strong oxidants in the form of hydroxyl radicals (Eskicioglu et al., 2008). 

Hydroxyl radicals are known to be a stronger oxidant than H2O2 itself (Shen and Anastasio, 

2012).  This combination of pre-treatments known as an advanced oxidation treatment (AOT) 

may prove to be more efficient in terms of reducing peroxide doses and increasing the extent of 

solubilisation and biodegradability as compared to the individual treatments.  

The use of a combination of peroxide and ultrasound for pre-treatment of WAS has not 

been widely investigated; however a number of studies with peroxide-microwave, peroxide-

thermal, peroxide-ozone, and peroxide-iron treatments have been reported. The application of an 

H2O2/US AOP was evaluated by Grönroos et al., (2004). This study compared the increase in 

SCOD concentrations in sludges that were subjected to three types of PTs - sonication at a 

specific energy of 6300 kJ/kDS, treatment with 26.3 and 65.8 kgH2O2/tDS for 10 minutes 

individually, and treatment with a combination of peroxide and US. It was observed that 

individual treatment with US led to the greatest SCOD increase of about 1000 mg/L. Individual 

chemical PTs with 26.3 kgH2O2/tDS resulted in an insignificant SCOD increase of 150-200 

mg/L, whereas treatment with 65.8 kgH2O2/tDS resulted in a decrease in SCOD. Each AOP 

resulted in a higher SCOD concentration than individual chemical treatments but they were still 

lower than the US treatment by 11%. This was attributed to the extremely high peroxide doses, 
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which led to a loss of organic matter in the sludge, and thus an insignificant or undesirable 

change in SCOD concentrations. 

 Although the results from Grönroos et al., (2004) indicated that US PT resulted in 

improved COD solubilisation as compared to a combined AOP, other AOPs with H2O2 have 

shown conflicting results. For instance, Eskicioglu et al., (2008) compared the effects of 

microwave, chemical and combined microwave -chemical treatment on solubilisation and 

demonstrated that a 25% solubilisation was attained with a combined AOP with a 1 gH2O2/gTS 

dose and 120°C temperature. The SCOD/TCOD ratio obtained with individual peroxide and 

microwave PT were 14 and 18%, respectively. In another study, Yin et al., (2007) compared the 

use of H2O2, ozone, MW, H2O2-ozone, MW-H2O2, MW-ozone, or MW-H2O2-ozone for 

solubilisation of sewage sludge.  They subjected 90 mL of sludge to a MW temperature of 

100°C, peroxide dose of 3 mL, and an ozonation duration of 20 minutes. It was concluded that 

the MW-H2O2-ozone combination yielded the greatest COD solubilisation of 37%. Compared to 

Grönroos et al., (2004), these AOPs resulted in higher solubilisations than individual PTs. This 

may have been due to the significantly lower H2O2 doses as opposed to the ones used by 

Grönroos et al., (2004).   

As with the other pre-treatments discussed in this chapter, an increase in SCOD due to an 

AOP has been reported to result in an improvement in destruction in subsequent anaerobic 

digestion.  Rivero et al., (2012) observed that thermal PT at 90°C did not lead to any increase in 

solids destruction and peroxide PT at 2 gH2O2/gVSS resulted in a maximum VSS destruction 

increase of 15.2% via AD. However, a combined AOP resulted in an increase in VSS destruction 

of 29%. Thus, the combined AOP was more effective in improving the biodegradability of the 

WAS.  
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In conclusion, relatively little research has been done on evaluating the effect of an 

H2O2/US AOP on WAS. However some research has been performed with peroxide-microwave, 

peroxide-thermal, and peroxide-ozone AOPs. The dose of H2O2 is a significant factor in an AOP 

since high doses may lead to loss of organic matter, and thus reduced biodegradability. Using 

low peroxide doses in combination with other PTs may result in an increased solubilisation and 

biodegradability than individual treatments. 

2.11. Integration of Pre-treatment and AnMBRs 

As mentioned in Section 2.4, incorporating a membrane into an anaerobic digester can 

result in an improved biodegradability compared to conventional AD. However, the 

improvement in biodegradability may be limited due to the reactors inability to completely break 

down organics and a lengthy and time-consuming digestion process. Moreover, a drawback to 

using an AnMBR is membrane fouling, which can be challenging when treating high solids 

waste streams such as WAS (Section 2.5). In addition to the high solids concentrations of the 

feed, a high SRT/HRT ratio will result in a higher MLSS concentration in the reactor. This may 

lead to an increase in membrane fouling and thus high costs associated with cleaning and 

replacement of the membrane.  

Integration of PT with AnMBRs may provide a solution to increasing the ultimate 

biodegradability of WAS. As discussed in section 2.9, it is expected that an AOP using 

sonication and hydrogen peroxide will result in solubilisation of particulates thus resulting in an 

increased concentration of SCOD. With a significant amount of particulates broken down, a high 

sludge age that can be achieved through the use of membranes to prevent biomass washout may 

result in an enhanced destruction of compounds. Some studies have been performed to determine 
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the effect of coupling pre-treatment of WAS with AnMBRs. Pickel, (2010) studied the effect of 

combining microwave PT of 2% WAS at 67.5 °C with AnMBRs and concluded that this 

combination resulted in greater COD degradation of 48.2% than a PT + AD (32.8%) or no PT-

AD/AnMBR (32.2 and 44.4%, respectively) combination. The higher destruction of this 

combination indicated that the pre-treatment, presence of the membrane unit, and the decoupling 

of the HRT and SRT improved the biodegradation potential of WAS. 

Enhanced biodegradability as a result of this combination is expected to result in 

decreased fouling of the membrane. As mentioned in section 2.6, pre-treatment of WAS is 

expected to reduce the solids concentration of the WAS. This is a benefit not only because it 

contributes to high solids reduction but also decreases the solids loading on the membrane in 

AnMBRs. Decreased loadings may result in reduced membrane fouling. In addition, decreased 

solids concentrations may also lead to cost savings due to reduced shear rates and reduced 

requirements for cleaning agents. The literature has established successful operation of 

membranes with a PT-AnMBR combination. For instance, Pickel, (2010) achieved high 

destruction rates without any maintenance cleaning or replacement of the membrane, thus 

demonstrating successful operation of the AnMBR without any major fouling.   

As discussed earlier, with pre-treatment, the fraction of colloidal and soluble organic and 

inorganic materials in WAS is expected to increase. Hence with an increase in the SRT to HRT 

ratio and a membrane, accumulation of the non-and slowly biodegradable particulates may 

occur. Therefore it may be possible that an AnMBR treating pre-treated WAS high in cCOD 

fractions, long SRTs would cause an additional increase in colloidal fractions in the reactor and 

hence membrane performance would decline. In addition, non-biodegradable and inert fractions 

may also accumulate in the reactor due to PT and low sludge waste volumes as a result of long 
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sludge ages. However due to the lack of studies determining the impact of PT on fouling, the 

above explanations are uncertain and merely an assumption. Therefore, this study will contribute 

to filling the void in this area of research, and assess the impact of colloids and other inerts on 

membrane performance. 

2.12. Summary of Chapter 2 

In conclusion, there are a variety of factors affecting the efficiency of a peroxide-sonic 

pre-treatment. Most of the studies to date have studies the effect of ultrasound frequency, 

ultrasound duration, peroxide dose, and TS of sample on WAS solublization. This study will 

build on the previous studies that have assessed the effect of ultrasound duration and hydrogen 

peroxide dose on WAS solublization by examining the use of ultrasound durations and peroxide 

doses that have been reported in the literature. There have been many studies on the individual 

effect of sonication and a few on the effect of peroxide on WAS; however limited information on 

the synergistic benefits of peroxide-sonic effect is available. This study aims to determine the 

effect of a combined hydrogen peroxide and ultrasound PT system on WAS. A major difference 

between existing chemi-sonic treatments and this study is that this study uses a flow through 

system to accomplish combined PT of considerably larger volumes of WAS rather than treating 

WAS individually with each PT for small volumes. 

 In addition, this study will couple the PT system with a PVDF submerged hollow fibre 

AnMBR to improve biodegradability, a combination which has not been widely reported in 

existing literature.  In order to determine the effect of PT-AD on WAS biodegradability, a wide 

range of physical, chemical and biological parameters such as particle size, TS, VS, SCOD, NH3, 

STKN, heterotrophic count and biogas volume has been reported. This study will focus on COD, 
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solids, nitrogen fractions, and membrane performance to assess the process efficiency of PT and 

AnMBR. Membrane fouling will be assessed by monitoring TMP when operated at constant flux 

and through critical flux tests that will be conducted at steady state.  
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 Chapter 3: Pre-treatment of WAS  

3.1. Introduction 

There are usually two types of waste water sludge that are produced at wastewater 

treatment plants (WWTPs) – Primary (PS) and Secondary or Waste Activated Sludge (WAS).  

Primary sludge is the product of a mechanical process while WAS is the product of biological 

processes such as the activated sludge process. With growing populations the volume of sludge 

to be processed at WWTPs is generally increasing. This poses a challenge to plant owners and 

operators since the costs associated with sludge treatment/stabilization and disposal may be as 

high as 50% of the total cost of treating wastewater (Zhang et al., 2007).  

Anaerobic Digestion (AD) is a common sludge stabilization method employed at 

WWTPs that not only converts the organic matter into a renewable source of energy i.e. biogas, 

but also decreases the amount of solids while destroying a majority of the pathogens in the 

sludge (Abelleira et al., 2012). This complex biochemical process employs facultative and 

anaerobic microorganisms that work together to achieve stabilization and treatment of sludge in 

the absence of oxygen. AD decomposes organic matter in 4 stages:  Hydrolysis, Acidogenesis, 

Acetogenesis, and Methanogenesis.  The performance of anaerobic digestion of WAS is typically 

determined by the rate-limiting hydrolysis step since it makes organics available to 

microorganisms. This slow process thus requires digesters with long retention times, which 

results in an increase in the volume of the digester and associated costs. Numerous studies have 

examined methods to increase the rate of hydrolysis and hence reduce the volume needed for 

digesters in WWTPs. 

Pre-treatment (PT) of sludge has been found to be one way of increasing the rate of 

hydrolysis (Shahriari et al., 2011). Pre-treatment leads to the lysis of cells, which in turn causes 
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the release, and thus solubilisation and availability of intracellular matter to microorganisms 

(Bougrier et al., 2005). Solubilisation of particulate matter has been found to cause changes in 

the physical and chemical properties of a sludge (such as suspended solids and chemical oxygen 

demand), thus making it more readily available for microbial growth and metabolic activities 

(Pham et al., 2007). Since pre-treatment increases the rate of digestion, this may allow treatment 

plants to reduce the retention time in digesters thereby making operation more economically 

favourable (Bougrier et al., 2005). A variety of pre-treatments have been proposed for use prior 

to anaerobic digestion – mechanical such as sonication, chemical such as peroxidation, and 

thermal treatments. The following provide discussion provides a brief description of all three 

PTs. 

Sonication has been reported to be a promising and effective pre-treatment method to 

enhance the biodegradability of sludge and has been widely examined at laboratory, pilot and 

recently at full scale (Tiehm et al., 1997; Chu et al., 2001; Onyeche et al., 2002; Grönroos et al., 

2004; Odegaard, 2004; Foladori et al., 2006; Pham et al., 2007; Zhang et al., 2008; Salsabil et al., 

2009; Yan et al., 2010; and Braguglia et al., 2011). When an ultrasound (US) wave travels 

through a media such as water, it generates numerous cavitation bubbles in the water (Suslick 

1988). Continuous oscillation of the wave causes the local pressure to drop below the 

evaporating pressure, which in turn causes these microscopic bubbles to explode (Wandzel et al., 

2011). This abrupt and intense collapse of a large number of bubbles produces strong mechanical 

shear forces that can disintegrate bacterial cells, cells walls, and membranes (Khanal et al., 

2007). The disruption of bacterial cells results in the release of intracellular organic substances 

and solubilisation of particulate organic matter (Takatani et al., 1981). It has been hypothesized 

that fragmentation of organics due to sonication aids the rate-limiting hydrolysis reaction in 
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anaerobic digestion and hence can in turn be reflected by increased methane generation and 

reduced sludge volume (Show et al., 2007). 

Most reports in the literature describe the effect of sonication on WAS through soluble 

chemical oxygen demand (SCOD) release or the solubilisation ratio. The solubilisation ratio is 

defined as the fraction of total chemical oxygen demand (COD) that is soluble.  Previous studies 

have demonstrated a linear relationship between sonication duration and the solubilisation ratio 

or SCOD concentration. For instance, Chu et al., (2001) concluded that as the treatment time was 

increased from 20 to 120 minutes, the fraction of SCOD/TCOD increased from 3 to 20%.  

Similarly, Yaqci et al., (2011), reported a 36% SCOD increase after increasing the sonication 

duration from 0 to 30 minutes, thus verifying the linear relationship between sonication duration 

and SCOD concentration. 

Most studies have also demonstrated that an increase in SCOD concentration is an 

indicative of improvement in biodegradability of WAS. For instance, Pham et al., (2007) 

observed that sonication of 23 g/L WAS for 60 minutes yielded the highest solubilisation ratio of 

79% out of a test range of 20-60 minutes. This increase in SCOD/TCOD corresponded to an 

increase in solids destruction of 36.5% in aerobic digestion (Pham et al., 2007). In another study, 

Braguglia et al., (2008) observed a 3% increase in biogas volume after increasing the sonication 

duration from 2 to 4 minutes. Overall, sonication as a method of PT has been drawing a lot of 

attention recently since it can lead to improvements in sludge disintegration and 

biodegradability, without producing odours, and using chemicals (Salsabil et al., 2009 and Pilli 

et al., 2011).  

Thermal hydrolysis is another widely used technique which has been known to increase 

the solubilisation ratio, and thus increase destruction rates and biogas volumes (Kepp et al., 
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2000).  Prior studies on thermal pre-treatment of WAS have examined operation over a broad 

temperature range of 60 to 270ºC. Thermal PT at temperatures greater than 140ºC has been 

reported to be more effective than low temperature thermal PT since higher temperatures are 

more effective in breaking down cells (Gureiff et al., 2011). However, treatment above 180ºC 

has been discouraged due to the formation of non-biodegradable compounds at high 

temperatures (Donoso-Bravo et al., 2011).   

It has been found that treatment duration has less effect on sludge characteristics, when 

the treatment temperature is between 140 and 180°C (Bougrier et al., 2007; Climent et al., 2007; 

and Donoso-Bravo et al., 2011). Most high temperature pre-treatments use a duration of 30-60 

minutes (Burger, 2012). A number of studies have been conducted between 150 and 170ºC with 

a treatment duration of 30-60 minutes which have proven to improve the solubilisation and 

biodegradability or rate of digestion of WAS (Li and Noike., 1992; Bourgrier et al., 2006; 

Bougrier et al. 2008; Chauzy et al., 2007; Fdz-Polanco et al., 2008; Ramirez el al., 2009; and 

Burger, 2012). For instance, Burger, (2012) pre-treated WAS at 150°C for 30 minutes and 

observed a 56% SCOD increase and an increase in the rate of aerobic digestion. In another study, 

Li and Noike, (1992) subjected WAS to a heat treatment over a temperature range of 62 – 175°C 

and a duration of 15-120 minutes. They concluded that pre-treatment of WAS at 170°C for 60 

minutes resulted in the greatest solubilisation and gas production which was 2 times higher than 

the control in anaerobic digestion. Similarly, Chauzy et al., (2007) observed an increase in solids 

destruction from 25 to 45 % via AD with respect to a control, after pre-treating WAS at 160 °C 

for 30 minutes. Therefore, similar to sonication, thermal pre-treatment has been found to result in 

an increase and improvement in solubilisation and biodegradation or rate of digestion. 
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Like sonication and thermal PTs, chemical treatment can also break down complex 

organic compounds present in WAS, solubilise them and improve WAS biodegradability. 

Chemical pre-treatments that have been evaluated include hydrochloric acid (HCl), sulfuric acid 

(H2SO4), hydrogen peroxide (H2O2), sodium hydroxide (NaOH), potassium hydroxide (KOH), 

etc. Out of these, H2O2 is gaining popularity due to its wide range of treatability. Hydrogen 

peroxide has been found to be able to degrade many kinds of organic compounds including those 

that are moderately and highly refractory with low biodegradability (Agustina et al., 2005). 

Moreover it has also been used to treat inorganics and other compounds such as sulfites, nitrites, 

hypochlorites, aromatics, biphenyls, pesticides, herbicides, etc. Thus, H2O2 is capable of 

degrading a wide variety of substances.  

Literature has shown that a linear relationship exists between peroxide dose and SCOD 

concentrations and biodegradability of WAS.  For instance, Eskicioglu et al., (2008) observed an 

increase in the solubilisation ratio from 3 to 18% after applying a peroxide dose range of 0 to 1 

gH2O2/gTS to thickened WAS samples. Similarly, Dewil et al., (2007) reported an increase in 

SCOD release from 787 to 2507 mg/L after applying an H2O2 dose range of 5-50 gH2O2/kgDS. 

Song et al., (2012) reported that an increase in H2O2 concentration from 3% to 4% improved the 

solubilisation and biodegradability of rice straw with 4.5% TS concentration. The results 

demonstrated that treatment with 4% H2O2 yielded the highest biogas production, with a biogas 

volume of 327.5 mL/gVS removed compared to a control volume of 125 mL/gVS removed. 

Although H2O2 can be used in the treatment of a wide variety of inorganic and organic 

pollutants, treatment with H2O2 alone may not be feasible for treating high concentrations of 

some refractory contaminants (Neyens et al., 2003).  Combining H2O2 with other forms of pre-

treatment such as metals like iron, ozone, microwave, and ultrasound has been found to lead to 
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the generation of strong oxidants in the form of hydroxyl radicals (Eskicioglu et al., 2008). 

Hydroxyl radicals are known to be stronger oxidants than H2O2 itself (Shen and Anastasio, 

2012).  This combination of pre-treatments known as an advanced oxidation process (AOP) may 

prove to be more efficient in terms of reducing peroxide doses and increasing the extent of 

solubilisation and biodegradability as compared to the individual treatments.  

The use of a combination of peroxide and ultrasound for pre-treatment of WAS has not 

been widely researched; however a number of studies of peroxide-microwave, peroxide-thermal, 

peroxide-ozone, and peroxide-iron treatments have been reported.  Grönroos et al., (2004) 

compared the increase in SCOD concentrations among sludge samples that were sonicated at a 

specific energy of 6300 kJ/kgDS, treated with 26.3 and 65.8 kgH2O2/tDS for 10 minutes 

individually, and subjected to a combination of both peroxide doses and US. It was observed that 

individual treatment with US led to the greatest SCOD increase of about 1000 mg/L. Individual 

chemical PTs with 26.3 kgH2O2/tDS resulted in an insignificant SCOD increase of 150-200 

mg/L, whereas treatment with 65.8 kgH2O2/tDS resulted in a decrease in SCOD. Each AOP 

resulted in a higher SCOD concentration than the individual chemical treatments but they were 

still lower than the US treatment by 11%. This was attributed to the high peroxide doses, which 

led to a loss of organic matter in the sludge, and thus an insignificant or undesirable change in 

SCOD concentrations. 

Although the results from Grönroos et al., (2004) indicated that US PT resulted in greater 

COD solubilisation than the combined AOP, other AOPs with H2O2 have shown differing 

results. For instance, Eskicioglu et al., (2008) compared microwave, chemical and combined 

micro-chemical treatment and found 25% solubilisation was attained with a combined AOP with 

a 1 gH2O2/gTS dose and 120°C temperature. The SCOD/TCOD ratios obtained with individual 
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peroxide and microwave PT were 14 and 18%, respectively. In another study, Rivero et al., 

(2012) observed that thermal PT at 90°C did not lead to any solids destruction while peroxide PT 

at 2 gH2O2/gVSS resulted in a maximum VSS destruction of 15.2% via AD. However, a 

combined AOP resulted in increased VSS destruction of 29%. Compared to Grönroos et al., 

(2004), these AOPs resulted in higher solubilisations and destructions than individual PTs. This 

may have been due to the significantly lower H2O2 doses as compared to the ones used by 

Grönroos et al., (2004).   

As it can be seen from the literature review, ultrasound, thermal and peroxide treatments 

have been proven to be successful in improving the biodegradability of WAS. This study will 

contribute to the knowledge base of WAS pretreatment by comparing the effects of three pre-

treatments – thermal, sonication, and peroxide-sonic AOP on the physico-chemical 

characteristics and biodegradability of waste activated sludge. Full-scale installations of thermal 

PT have been successfully used for more than a decade (Tattersall et al., 2011).  Therefore the 

results with thermal pre-treatment provide a reference point to compare against more innovative 

pre-treatments such as peroxide-US AOPs. The sonication, thermal and chemical conditions used 

in this study were adapted from the literature discussed in this chapter.  In order to provide a 

comparison between thermal, sonication, and peroxide-sonic PTs in this study, the change in 

solubilisation ratios and fractionation of COD of WAS due to each PT was first determined. 

Based on these preliminary tests involving COD and solubilisation analysis, two pre-treatments 

were selected to perform detailed COD, SS, nitrogen, and biodegradation analysis to characterize 

the impact of PT resulted on COD, SS, and nitrogen destruction. The biodegradabilty of WAS 

was measured over an extended period of operation of an Anaerobic Membrane Bioreactor 
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(AnMBR). The methods of sample analysis and the operational conditions for the AnMBR used 

in this study are described in Section 3.2.  

3.2. Materials and Methods 

3.2.1. Waste Activated Sludge Characteristics 

Secondary sludge was obtained from the Waterloo WWTP located in Waterloo, ON, Canada, 

which has a daily operating capacity of 72.73 ML.  This plant makes use of a conventional 

wastewater treatment process and consists of preliminary, primary, and secondary treatment.  For 

this study, secondary sludge samples were concentrated by settling at 4˚C for not more than a 

day until a desired concentration of about 7.5 gTSS/L was reached.  Table 3.1 presents the 

characteristics of the thickened WAS that was employed in this study. 

Table 3.1: Characteristics of Thickened WAS 

Parameters Concentration 

pH 7.49 

TS (g/L) 7.06 ± 0.17 

Total COD (g/L) 7.55 ± 0.87 

Total TKN (gN/L) 0.66 ± 0.05 

Soluble COD (g/L) 0.08 ± 0.04 

Soluble TKN (gN/L) 0.03 ± 0.01 

Ammonia (gN/L) 0.02 ± 0.01 
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3.2.2. Pre-treatment Conditions 

The effects of sonication, peroxide-sonication, and thermal pre-treatments on WAS were 

compared in this study. As mentioned in Section 3.1, treatment durations for sonication and 

thermal PT as well as peroxide doses were adapted on the basis of results from prior studies. The 

following sections describe the conditions, equipment, and processes used for PT of sludge in 

this study. 

3.2.2.1. Sonication Pre-treatment 

Pre-treatment of WAS was conducted using a flow through continuous system that 

incorporated a UIP1000 ultrasonic processor from Hielscher Ultrasonics GmbH, Berlin, 

Germany. Figure 3.1 displays the flow through ultrasound unit setup used for this study. The 

apparatus had an operational frequency of 20 kHz and was operated at an amplitude of 250 μm. 

To avoid over heating of the apparatus due to continuous operation, tap water was recirculated 

around the stainless steel flow cell enclosing the sample. The sample was continuously stirred by 

a magnetic stirrer during the treatment. Sludge was recycled at a flow rate of 15 mL/minute and 

the sample remained in the cell for a retention time of 0.8 seconds. Table 3.2 summarizes the 

different sonication durations that were used. All sonication experiments were performed in 

duplicate. 
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Figure 3.1: Ultrasound Flow Through System Process Flow Diagram 

3.2.2.2. Pre-treatment with Hydrogen Peroxide/Ultrasound 

Pre-treatment with a combination of hydrogen peroxide and ultrasound was assessed 

using the ultrasound apparatus described in Section 3.2.2.1.  In this approach 1.6 L of WAS was 

placed in a beaker and a volume of a 35% solution of H2O2 was then added. Peroxide was 

allowed to contact with the sludge for 1 minute before sonication. Table 3.2 summarizes the 

different peroxide doses that were used in this study.  A similar approach was employed for 

sonication as described in Section 3.2.2.1.  

3.2.2.3. Thermal Pre-treatment 

Thermal pre-treatment of the WAS was performed using a Parr® Model 4563 Mini 

Pressure Reactor. Figure 3.2 summarizes the process used for thermal PT in this study. Batch 

experiments were carried out with 350 mL of WAS samples for 30 minutes at temperatures of 
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either 150ºC or 170ºC.  The sample was continuously stirred by a built in variable speed motor. 

To avoid over heating of the apparatus due to extended operation, tap water was recirculated 

around the vessel enclosing the sample.  

 

 

 

 

 

Figure 3.2: Thermal Pre-treatment Process Flow Diagram 

Table 3.2: PT Conditions 

Pre-treatment 
Sonication Duration 

(mins) 

Hydrogen Peroxide 

Dose (g H2O2/kg TS) 

Thermal PT 

Temperature (ºC) 

0 - - - 

1 10 - - 

2 10 5 - 

3 10 25 - 

4 10 50 - 

5 20 - - 

6 20 5 - 

7 20 25 - 

8 20 50 - 

9 30 50 - 

10 60 50 - 

11 - - 150 

12 - - 170 
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3.2.3.  Anaerobic Membrane Bioreactor (AnMBR) Digestion Operations  

The impact of PT on WAS biodegradability was assessed in long term tests that 

employed an AnMBR as the bioreactor.  A schematic depicting the experimental plan employed 

for the AnMBR studies is shown in Figure 3.3. As can be seen from the figure, this study was 

conducted in three phases. Phase 1 utilized raw thickened WAS as feed for the AnMBR while 

Phases 2 and 3 were carried out with pre-treated WAS. In Phase 2, the AnMBR was fed daily 

with thickened WAS pre-treated with 50 gH2O2/kgTS and 20 minutes US (PT 8) while in Phase 

3 the sonication duration was increased to 60 minutes while the peroxide dose was kept constant 

(PT 10). A 5 L ZeeWeed AnMBR, supplied by General Electric (GE), with a working volume of 

4.5 L was operated at an HRT and SRT of 3 and 20 days respectively to accomplish AD for all 

phases. In Phase 1 (P1) the AnMBR was fed with 1.5 L of thickened WAS daily using a 

peristaltic pump. The daily permeate volume was 1.275 L while the waste volume was 225 mL 

to maintain the target SRT/HRT values.  The operating conditions employed in Phases 2 (P2) 

and 3 (P3) were the same as that employed in Phase 1. 
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Figure 3.3: Overview of Experimental Plan 

Figure 3.4 displays the setup of the reactor used for this study.  A flux of 2.75 LMH was 

used for this study, which corresponded to approximately 3L permeate/day with a membrane 

surface area of 0.047 m
2
.  Thus, a recirculation point was installed in the permeate collection 

tank to maintain the HRT at the target value. The recirculation point ensured that only 1.275 L of 

permeate was collected every cycle, with the excess recycled back into the reactor. 

The AnMBR was maintained at a temperature of 37 °C using heat tracing cable that was 

wound around the reactor.   The heating cable was controlled by a Dyna-Sense digital 

temperature controller that was connected to an OMEGA® PR-20 RTD temperature probe which 

was inserted into the bioreactor through the reactor wall. The reactor and heat trace were 

wrapped with insulation to help maintain a constant temperature. 
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A 3 L Tedlar® gas sampling bag was connected between the gas exit port and the gas 

meter to buffer pressure changes in the reactor during sludge feeding, wasting, and permeating. 

The generated biogas for each of the digesters was measured by a gas flow meter that was 

manufactured at the University of Waterloo and described by Zamanzadeh, (2012). A gas 

sampling port similar to that described by Zamanzadeh, (2012) was installed into the gas line to 

facilitate sampling for gas composition. In order to accomplish mixing in the reactor, the 

generated biogas was recirculated through the reactor at a gas sparging rate of 2 L/min with the 

assistance of a peristaltic pump.  

 

 

 

 

 

 

 

 

 

 

Figure 3.4: AnMBR Process Flow Diagram 

3.2.4. Operation of AnMBR 

The operation of the AnMBR began in October of 2012 and ended in June of 2013. Table 

3.3 provides a timeline of the major components of the study with the operation times relative to 

the starting date. Steady state was reached after 100 days of operation for Phase 1, after which 
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the reactor was operated for 35 days during which intensive data collection was conducted 

according to the sampling plan listed in Section 3.2.5. The reactor was assumed to have reached 

steady state after it had attained constant COD, SS and nitrogen concentrations. A similar 

approach was followed with Phase 2 and Phase 3. 

Table 3.3: AnMBR Operation Timeline  

Operations Start Date End Date 

Sampling of WAS Day 0 Day 244 

Physical, Chemical 

and Biodegradation 

Analysis 

Day 0 Day 244 

Phase 1 Total 

Duration 
Day 0 Day 135 

Phase 1 Steady State 

Period 
Day 100 Day 135 

Phase 2 Total 

Duration 
Day 136 Day 208 

Phase 2 Steady State 

Period 
Day 167 Day 208 

Phase 3 Total 

Duration  
Day 210 Day 244 

Phase 3 Steady State 

Period 
Day 230 Day 244 

 

3.2.5. Sampling Protocol 

The thickened feed, pre-treated feed, and AnMBR samples were analyzed according to 

the sampling schedule detailed in Table 3.4. All samples were analyzed immediately according 

to the methods described in Section 3.2.6. Each sample was analyzed in duplicates. 

3.2.5.1. Feed Collection 

A volume of 40 L of WAS was sampled from the Waterloo WWTP once per week. Total 

suspended solids (TSS) measurements were conducted immediately to determine the extent of 
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thickening that was required to achieve the desired feed TSS concentration. WAS samples were 

then thickened accordingly by settling the WAS samples overnight until a TSS concentration of 

7.5 g/L was attained. COD, Total Kjeldahl Nitrogen (TKN), ammonia, and SS measurements 

were performed on the thickened feed (F) samples on the following day.  

3.2.5.2. PT of WAS 

A volume of 1.6 L of thickened feed samples was subjected to pre-treatment daily 

according to the protocol in Section 3.2.2. This ensured that fresh PT feed was fed to the reactor 

everyday. The pre-treated feed was sampled and analyzed for COD, TKN, ammonia, and SS 

once per week. 

3.2.5.3. AnMBR Monitoring 

The waste (W) and permeate (P) streams from the AnMBR were sampled and analyzed 

for COD, TKN, and ammonia twice a week.  The waste stream was sampled and analysed for 

TSS and VSS once a week.   The pH of the waste and permeate was measured daily. The biogas 

composition and volatile acids to alkalinity ratio (VFA/ALK) were monitored thrice a week.  
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Table 3.4: Sampling Schedule 

Parameter Mon Tues 

 

Wed 

 

Thurs 

 

Fri 

 

Sat/Sun 

TCOD, SCOD, ffCOD  P W  P W, F, PT  

TKN, sTKN, Ammonia P W  P W, F, PT  

TSS, VSS    W, F, PT    

pH X X X X X X 

VFA/ALK X  X  X  

Biogas Composition X  X  X  

Fresh WAS     X   

 

 

3.2.6. Sample Analysis 

COD analysis was employed to compare thermal, US, and H2O2+US PTs with each 

other. The fractionation of COD employed in this study is described in Figure 3.5. To evaluate 

and compare the effect of different PTs on WAS, total COD (TCOD), soluble COD (SCOD), and 

flocculated and filtered COD (ffCOD) were first measured for all PTs. Once they were 

determined, particulate COD (pCOD), and colloidal COD (cCOD) were calculated from the 

measured species for all PTs.  Other parameters such as ammonia (NH3-N), TKN, soluble total 

Kjeldahl nitrogen (STKN), TSS, and volatile suspended solids (VSS) were measured for selected 

PTs, which were chosen based on the COD analysis. In addition organic nitrogen (ON), soluble 

organic nitrogen (SON) and fixed/inert suspended solids (FSS/ISS) were calculated from the 

measured values for these samples.  

P: Permeate, W: Waste, F: Feed, PT: Pre-treated feed, X: Measured on 
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Figure 3.5: Fractionation of COD employed in this study 

3.2.6.1. Total COD 

COD analysis was conducted according to Standard Method 5220 D (APHA, 1998). To 

determine the TCOD of a sample, 50 mL of the sample was first homogenized for 30 seconds. A 

volume of 2.5 mL of the blended sample, after applying an appropriate dilution, was added to a 

COD vial containing1.5 mL of COD digestion solution and 3.5 mL of sulfuric acid reagent. The 

vial was then mixed by being inverted several times and placed in the preheated HACH COD 

reactor for 3 hours at 150ºC. Once the total COD samples were cooled to room temperature, they 

were measured at 600 nm using a HACH DR/2000 Spectrophotometer. Standards and blanks 

were also subjected to COD experimental procedures to produce a calibration curve.  

3.2.6.2. Soluble COD 

In order to determine the SCOD of a sample, 50 mL of the sample was centrifuged for 30 

minutes. The supernatant was then filtered through a Whatman Glass Microfibre filter (934-AH) 

with a pore size of 1.5 μm. Once sufficient volume of the filtrate was collected, it was subjected 
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to dilution and subsequent measurement as per as the protocol followed with TCOD in Section 

3.2.6.1. 

3.2.6.3. Flocculated and Filtered COD 

The flocculated-filtered COD (ffCOD) was considered to represent the truly soluble COD 

(Mamais et al., 1993). A volume of 2.5 mL of 100 mg/L alum stock solution was added to 25 mL 

of the sCOD filtrate and mixed vigorously for 30 seconds. This was followed by allowing the 

filtrate to settle for 10 minutes, after which it was subjected to 15 minutes of centrifugation. The 

supernatant obtained from this process was then filtered using a 0.45 μm pore size filter. Once 

sufficient volume of the filtrate was collected, it was subjected to dilution and subsequent 

measurement as per as the protocol followed with TCOD in Section 3.2.6.1. 

3.2.6.4. Ammonia 

The analytical method employed for ammonia was conducted according to Standard 

Method 4500 F (APHA, 1998). A Bran and Luebbe AutoAnalyzer 3 was used to colorimetrically 

measure the concentration of ammonia in samples.  A portion of the sample that was generated 

for SCOD analysis was used for this purpose after applying an adequate dilution factor. In the 

AutoAnalyzer the ammonia in a sample was reacted with sodium hypochlorite, a sodium 

hydroxide buffer solution, and phenol to produced indophenol. Sodium nitroprusside present in 

the buffer reagent intensified the colour prior to colorimetric analysis at 660 nm.   

3.2.6.5. Total Kjeldahl Nitrogen 

A portion of the sample that was generated for TCOD analysis was used for TKN 

analysis. The TKN analysis method employed in this study was developed in the Environment 

Canada Wastewater Technology Center in Burlington, Ontario. It involved adding 1.5 mL of a 

digestion solution to 1 mL of the homogenized sample in a digestion flask. The digestion 
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solution was prepared by first dissolving 40 g potassium sulfate and 2 mL selenium oxychloride 

in 250 mL sulfuric acid. This solution was then diluted by the addition of deionized water to 

reach a volume of 500 mL. After addition of the digestion solution the sample was digested in a 

Bran and Luebbe BD-40 block digester at 220ºC for 1.5 hours followed by digestion at 380ºC for 

2.5 hours. This digestion converted all the organic nitrogen to ammonia. The samples were 

allowed to cool down to room temperature overnight, diluted, and analysed the next day using 

the ammonia analysis described in Section 3.2.6.4. 

3.2.6.6. Soluble TKN 

A portion of the sample that was generated for measuring SCOD was used for measuring 

STKN. The same digestion procedure was followed as described in Section 3.2.6.5. The 

ammonia analyzer was used to measure the concentration of STKN. 

3.2.6.7. Nitrate 

Nitrate measurements were conducted as per HACH Method 8039 (HACH, 1997). A 

portion of the sample that was generated for measuring ffCOD was used to measure nitrate. One 

pouch of HACH NitraVER® 5 Nitrate Reagent power was added to 25 mL of the sample. The 

sample was mixed vigorously using a shaker for 1 minute and allowed to rest for 5 minutes. The 

sample was then analyzed at 400 nm using the HACH DR/200 Spectrophotometer. 

3.2.6.8. Suspended Solids 

The solids analysis in this study was based on Standard Methods 2540 D and E for total 

suspended solids and volatile suspended solids, respectively (APHA 1998). Total suspended 

solids were measured by filtering 5 mL of a sample through a 1.5 µm pore size filter that had 

been previously dried at 550ºC. The filter was then dried at 105ºC for at least one hour. The 

increase in mass was then employed to calculate the TSS. The same filter was then combusted at 
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550ºC for at least 45 minutes. The loss of mass due to ignition was then employed to calculate 

the VSS. The difference between TSS and VSS employed to estimate the fixed suspended solids 

(FSS). 

3.2.6.9. Volatile Fatty Acids to Alkalinity Ratio 

The VFA/Alk ratio was measured to monitor the stability of the AnMBR. A 4-point 

titration method was adapted from Buchauer, (1998) to determine the ratio for this study. A 

volume of 50 mL of permeate sample was titrated with 0.1 N sulfuric acid solution with constant 

mixing until pHs of 5, 4.3, and 4 were reached. The volume of titrant used to attain each pH end 

point was recorded and the alkalinity and VFA concentration were calculated according to the 

scheme and formulae provided by Buchauer, (1998). 

3.2.6.10. pH 

The pH of the permeate and waste samples from the AnMBR was measured daily using 

an Omega PHB-600R pH Benchtop Meter.  

3.3. Results and Discussion 

3.3.1. Preliminary Pre-treatment Tests 

Preliminary tests were conducted to compare the effect of thermal, ultrasonic, and 

peroxide-sonic pre-treatments on WAS. The primary response used in determining the preferred 

pre-treatment in this preliminary study was the COD solubilisation ratio. As discussed in Section 

3.1, the COD solubilisation ratio was defined as the fraction of total COD that was soluble after 

PT. Although the SCOD/TCOD ratio was the main parameter of interest for determining the 

preferred PT method, other factors such as loss of TCOD and increase in cCOD and ffCOD 

fractions were also taken into consideration when making the decision. All preliminary tests 

were performed in duplicate with fresh WAS from the Waterloo WWTP. 
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Figure 3.6 summarizes the COD fractionation that was observed after the various PTs to 

compare the changes in COD fractions as a result of all PTs. As can be seen from the figure, the 

ratio of soluble COD to total COD for the untreated thickened WAS was 0.88 ± 0.11%. This low 

SCOD/TCOD percentage is typical of fresh WAS. All pre-treatments resulted in an increase in 

the solubilisation ratio and differing values were obtained for different PTs.  Thermal treatment 

of WAS at 150ºC resulted in a 27 ± 2% increase in the solubilisation ratio whereas treatment at 

170ºC resulted in an additional 8% (with 2% deviation) increase. Sonication of WAS for 10 

minutes resulted in a 22 ± 0.1% increase in solubilisation while 20 minutes of sonication led to 

an additional 5% (with 1% deviation) of solubilisation. Thus, both thermal and sonication pre-

treatments led to an increase in SCOD concentrations. 

 Figure 3.6: Fractionation of COD for all PTs 

Solubilisation with the US-H2O2 combinations was compared to that of PT by sonication 

alone to determine if the addition of peroxide would improve solubilisation. As can be seen from 
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Figure 3.6, the peroxide-sonic PTs resulted in greater solubilisation than sonication alone. For 

instance, sonication at 20 minutes resulted in a solubilisation ratio of 27 ± 1%.  However the 

maximum solubilisation that was achieved with addition of peroxide to a sample sonicated for 20 

minutes at a maximum dosage of 50 gH2O2/kgTS was 32%.  By comparison, Grönroos et al., 

(2004) reported that the COD solubilisation ratio due to a peroxide-sonic PT of excess sludge 

was 11% lower than the solubilisation ratio due to sonication alone (Section 3.1). This was 

attributed to high peroxide doses that were employed in the previous study which led to a loss of 

organic matter in the sludge, and thus an insignificant or undesirable change in SCOD 

concentrations. Since the peroxide doses used in this study were much lower than those used by 

Grönroos et al., (2004), no significant loss of organic matter occurred due to peroxidation 

(Figure 3.6). The COD solubilisation results from this study thus followed those reported in other 

studies that used low doses of peroxide (Eskicioglu et al., 2008 and Rivero et al., 2012), i.e. a 

combined PT resulted in higher solubilisation than individual PT alone.  

Treatment with H2O2 in combination with sonication as an AOP was studied with a 2 x 4 

factorial design, with two US durations of 10 and 20 minutes and four H2O2 doses of 0, 5, 25, 

and 50 gH2O2/kgTS.  The resulting solubilisation ratios were assessed using an ANOVA to 

determine whether peroxide dose and sonication duration had significant impacts on 

solubilisation (Appendix A1). The statistical analysis revealed that US duration and the 

interaction term were significant factors affecting solubilisation the H2O2 dose effects were not 

statistically significant. 

The results from the factorial tests were further examined to quantify the relative 

contribution of the significant factors to COD solubilisation. As mentioned earlier and as can be 

seen in Figure 3.6, the peroxide-sonic PTs resulted in greater solubilisations than sonication 
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alone. However, the extent of increase in solubilisation varied between sonication durations and 

thus was dependent on the sonication duration. For instance, PT with 10 minutes of US led to a 

solubilisation ratio of 22 ± 0.1%. The combination of peroxide at doses of 5, 25, and 50 

gH2O2/kgTS with the same sonication duration led to a solubilisation ratio of 22.5-23%.  Hence, 

a peroxide-sonication AOP at the lower US duration resulted in a minimal increase in 

solubilisation. On the contrary, combining peroxide additions of upto 50 gH2O2/kgTS with WAS 

pre-treated with 20 minutes of US resulted in an increase in the SCOD/TCOD ratio from 27 ± 1 

to 32 ± 1%.  Therefore a peroxide-sonication AOP with a higher sonication duration (20 

minutes) resulted in a greater and significant increase in solubilisation than the lower sonication 

duration AOP(10 minutes). An important point to be taken into account is that the peroxide-

sonication AOP with 10 minutes of sonication still resulted in an improvement in solubilisation, 

just not as significant as the AOP with 20 minutes of sonication.  

As previously discussed, the results of the US/H2O2 tests indicated that the duration of 

sonication affected WAS solubilisation substantially and hence two additional sonication 

durations were tested to investigate whether increasing the duration beyond 20 minutes would 

further improve the solubilisation ratio. Hence, durations of 30 and 60 minutes that have been 

reported in the literature (Section 3.1) were tested with an H2O2 dosage of 50 gH2O2/kgTS.  The 

results of these tests (Figure 3.6) revealed SCOD/TCOD ratios of 36 ± 0.2% and 46 ± 0.5% for 

US durations of 30 and 60 minutes. Therefore the solubilisation of COD increased with 

sonication duration over a wide range of treatment conditions.  

As mentioned in Section 3.1, most studies have also demonstrated that an increase in 

SCOD concentration is an indicative of improvement in biodegradability of WAS. As evident 

from Figure 3.6, combined chemi-sonic PT with 50 gH2O2/ kgTS and 60 minutes of sonication 
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(PT 10) resulted in the largest conversion from pCOD to SCOD (of 46%). In addition, the TCOD 

loss due to this PT was small (about 7 ± 0.5%) demonstrating only a modest removal of organic 

matter. Therefore it was hypothesized that this PT might be effective in achieving the greatest 

improvement in biodegradability of the WAS. 

The impact of thermal PT at 170°C  was compared with that of chemi-sonic PT  using 50 

gH2O2/ kgTS and 60 minutes of US to provide for a comparison between a well-developed and 

widely used pre-treatment (thermal) and the AOP (peroxide + US).  The results of the testing 

revealed that the peroxide/US AOP resulted in a higher solubilisation ratio than thermal 

treatment at 170ºC. The peroxide/US AOP resulted in a 46 ± 1 % solubilisation ratio whereas 

thermal PT at 170ºC resulted in a 35 ± 2%. In addition, the thermal PT also demonstrated a high 

TCOD loss of 20 ± 3% (Figure 3.6).  The average TCOD of raw WAS and the WAS that was 

pre-treated thermally at 170 ºC was compared using a t-test at 95% confidence interval 

(Appendix A2) and the values were found to be significantly different. Therefore, unlike the 

chemi-sonic AOP, thermal PT at 170 ºC resulted in a significant loss of COD resource.  

In addition to SCOD and TCOD, cCOD and ffCOD fractions were assessed when 

comparing all the pre-treatments to determine the change in truly soluble and colloidal 

concentrations. cCOD represented the fraction of COD that could pass through a 1.5 µm filter, 

but not a 0.45 µm filter. Thus, for this study, cCOD was determined as the difference between 

the measured SCOD and ffCOD concentrations. As seen from Figure 3.6, thickened untreated 

WAS contained negligible concentrations of cCOD and ffCOD, which was expected due to the 

low SCOD concentrations of the raw WAS. However by comparison all PTs resulted in an 

increase in both colloidal and truly soluble matter, with the 60 minute US AOP resulting in the 

largest increase in both fractions (Figure 3.6). The 60 minute US AOP resulted in cCOD and 
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ffCOD  fractions of 25 ± 1 and 22 ± 2%, respectively.  This observation was in agreement with 

Kianmehr, (2010), who proposed that this increase due to pre-treatment may be due to the 

solubilisation of extra cellular polymeric substances (EPS).  Therefore, all PTs resulted in an 

increase in both cCOD and ffCOD fractions in WAS, with the 60 minute US AOP resulting in 

the greatest increase of both fractions, as was expected based on the SCOD/TCOD results.  

Also evident from Figure 3.6 is that the peroxide-sonication AOP (with 20-60 minutes 

US and 50 gH2O2/kgTS) resulted in high and similar colloidal matter. The colloidal fractions in 

WAS pre-treated with 20, 30, and 60 minutes of US (each with 50 gH2O2/kgTS) were 21, 24, 

and 25%, respectively. If WAS pre-treated with these AOPs were to be subjected to AnMBR 

digestion, significant membrane fouling may occur due to the high concentration of colloids, 

which will be discussed in detail in Chapter 4. Conversely, the ffCOD content due to the 3 AOPs 

were significantly different at 95% confidence interval. The truly soluble fractions in WAS pre-

treated with 20, 30, and 60 minutes of US (each with 50 gH2O2/kgTS) were 11, 12, and 22%, 

respectively. Therefore, WAS PT with 50 gH2O2/kgTS and 60 minutes of US was more effective 

in solubilising particulates into truly soluble COD than the other AOPs. On the basis of these 

results it was hypothesized that the AOP with 60 minutes of sonication may generate more 

readily biodegradable COD than the other AOPs as a result of the higher ffCOD concentration. 

The pre-treatment resulting in the greatest extent of solubilisation i.e. PT with 50 

gH2O2/kgTS + 60 minutes US was compared with thermal PT at 170°C with respect to the 

production of cCOD and ffCOD fractions to compare a well-developed and widely used pre-

treatment (thermal) and the AOP (peroxide + US) (Figure 3.6).  It can be seen from figure 3.6 

that the colloidal concentration as a result of the chemi-sonic AOP was higher than the thermal 

PT at 170°C by an increment of 5%. It can also be seen that the truly soluble content after the 
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chemi-sonic PT was higher than the thermal PT by an increment of 7%.  Hence, WAS that was 

pre-treated with the chemi-sonic AOP resulted in higher concentrations of truly soluble material 

as well as colloids than thermally PT WAS. Thus, according to the preliminary tests, it was 

hypothesized that a PT involving peroxidation and sonication, with the highest sonication 

duration and peroxide dose, may prove to be more effective in improving the biodegradability of 

WAS than the thermal and other PTs considered in this study. 

3.3.2. Detailed Pre-treatment Tests 

On the basis of the results discussed in Section 3.3.1, an AOP with sonication and H2O2 

was determined to be the preferred PT for this study. In order to assess the effects of sonication 

duration on the physic-chemico properties and biodegradability of WAS, two AOPs were 

selected from the preliminary tests for further study– one with a low sonication duration of 20 

minutes and another with a considerably higher treatment time of 60 minutes, each with a 

peroxide dose of 50 gH2O2/kgTS. In addition to COD analyses, additional responses including 

nitrogen and solids species were characterized to determine the effect of pre-treatment on the 

physico-chemical and biodegradation characteristics of WAS. All measurements were performed 

in duplicates. 

3.3.2.1. Impact of Peroxide-Sonic PT on Physico-chemical Characteristics of WAS 

3.3.2.1.1. COD Comparison 

COD fractions before and after each PT were monitored to assess the effect of sonication 

duration on COD fractions. Figure 3.7 presents the results of the COD analysis for PT conditions 

of 50 gH2O2/kgTS + 20 minutes US AOP and 50 gH2O2/kgTS + 60 minutes US AOP. As can be 

seen from the figure, the results of the detailed tests followed a trend similar to that observed in 

the preliminary tests (Section 3.3.1). The mean TCOD concentrations of the samples pre-treated 
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for 20 minutes US (with 50 gH2O2/kgTS) and the raw sludge samples differed by only 6%. A t-

test at a 95% confidence interval (Appendix A2) confirmed that the loss of TCOD due to PT was 

insignificant. Therefore, no significant loss of organic matter was observed due to the PT with 

the lower sonication duration. Similarly, the data collected from the PT with the higher 

sonication duration indicated a 4% loss of TCOD. A t-test at 95% confidence interval indicated 

that this was not a significant difference (Appendix A2). Thus, as was observed in the 

preliminary results and in 50 gH2O2/kgTS + 20 minutes US PT detailed tests, the 50 gH2O2/kgTS 

+ 60 minutes US PT did not significantly affect the TCOD concentration and thus did not result 

in a loss of the COD resource.  

 

Figure 3.7: Average COD Concentration in Raw and Pre-treated Samples (with error bars) 

In addition to TCOD loss, solubilisation ratios were compared between the two PTs to 

determine if the results of these detailed tests were consistent with the preliminary results 

discussed in Section 3.3.1. Pre-treatment substantially solubilized COD, with 50 gH2O2/kgTS + 

60 minutes PT resulting in a higher SCOD/TCOD ratio (40 ± 4.5%) than 50 gH2O2/kgTS + 20 
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minutes PT (33 ± 0.60 %). Hence the solubilisation ratios achieved with both PTs were similar to 

the results obtained in the preliminary tests.  

The colloidal and truly soluble COD fractions were also compared between the two PTs 

to determine if PT resulted in a change in these fractions. From Figure 3.7 it can be seen that 

both the cCOD and ffCOD concentrations increased due to PT. The cCOD fractions increased by 

21 and 24% for the 20 and 60 minute US AOPs, respectively. The ffCOD fractions increased by 

11 and 15% for the 20 and 60 minutes US AOPs, respectively. A t-test at 95% confidence 

interval (Appendix A2) indicated that ffCOD and cCOD concentrations generated in both PTs 

were significantly different from their respective feeds. This increase was in agreement with 

Kianmehr, (2010), as discussed in Section 3.3.1. Therefore, both PTs resulted in an increase in 

colloids and truly soluble materials as was expected based on the SCOD/TCOD results. 

Colloidal and truly soluble COD fractions were also compared between the two PTs to 

assess whether the level of PT affected the distribution of these fractions in WAS (Figure 3.7). 

From Figure 3.7 it can be seen that the ffCOD and cCOD concentrations resulting from the AOP 

with 60 minutes of sonication were greater than the AOP with 20 minutes of sonication. The 

average ffCOD/TCOD fractions for the sludges generated by the 20 minutes and 60 minutes US 

PT (each with 50 gH2O2/kgTS ) were 11.7 ± 0.7% and 16.0 ± 0.7%, respectively whereas the 

average cCOD/TCOD fractions were 21.4 ± 0.7% and 24 ± 4%, respectively.  In addition, the 

ffCOD/cCOD ratio increased from 55 ± 4% to 72 ± 14% with an increase in sonication duration. 

Therefore, the AOP with the 60 minutes of sonication was more effective in solubilising 

particulates into truly soluble COD. On the basis of these results it was hypothesized that the PT 

with 60 minutes of sonication may generate more readily biodegradable COD than the PT with 

20 minutes of sonication as a result of the higher ffCOD concentration.  
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Overall, the results of the detailed COD tests were consistent with the preliminary test 

results. Pre-treatment resulted in minimal TCOD losses and substantially higher concentrations 

of ffCOD, cCOD, and thus higher concentrations of truly soluble COD and colloids than the raw 

samples. In addition, PT with 60 minutes of sonication resulted in higher ffCOD and cCOD 

fractions than the AOP with 20 minutes of sonication. Finally, due to higher concentrations of 

truly soluble COD, PT with 50 gH2O2/kgTS + 60 minutes US may lead to a greater improvement 

in biodegradation compared to PT with 50 gH2O2/kgTS + 20 minutes US.  

3.3.2.1.2. Suspended Solids 

In order to determine the effect of PT on the physical characteristics of WAS, suspended 

solids measurements were carried out on the raw and pre-treated WAS for each PT and the 

results are shown in Figure 3.8. As can be seen in the figure, when PT with a 20 minute US 

duration was employed the average VSS concentrations before and after the AOP were 5388 ± 

94 mg/L and 4008 ± 133 mg/L, respectively. By contrast the FSS concentrations before and after 

the AOP were 1643 ± 83 mg/L and 1619 ± 246 mg/L, respectively. T-tests at a 95% confidence 

interval indicated that there was a significant decrease in VSS concentration, but not in FSS 

concentration. Thus the AOP with 20 minutes of US only solubilised organic solids but did not 

change the FSS concentration. 

When pre-treatment with 50 gH2O2/kgTS and 60 minutes of sonication was employed the 

average VSS concentrations before and after PT were 5258 ±131 mg/L and 2733 ± 94 mg/L, 

respectively (Figure 3.8).  The corresponding FSS concentrations were 1841 ± 109 mg/L and 

1364 ± 101 mg/L, respectively. T-tests at a 95% confidence interval showed significant 

differences in both the VSS and FSS concentrations for this AOP. Thus, the PT with 60 minutes 

of sonication was capable of solubilising inorganic and organic solids, while the PT with 20 
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minutes of sonication only solubilized the latter. This reduced mass flow of solids due to both 

PTs would lower the requirements for downstream sludge processing and disposal when 

compared against digestion of raw WAS. Since the AOP with 60 minutes of sonication resulted 

in higher solids solubilisation than the AOP with 20 minutes of sonication, the former AOP 

should result in higher reductions in mass flow of solids than the latter. 

VSS destruction due to PT was calculated for both PTs to compare the destruction of 

organics by the two AOPs. Equation 3.1 was used to calculate the VSS destruction. The average 

VSS destruction values achieved by the 50 gH2O2/kgTS + 20 minutes US PT and the 50 

gH2O2/kgTS + 60 minutes PT were 26 ± 2.6% and 48 ± 3%, respectively. Thus, the AOP with 60 

minutes of sonication achieved higher VSS destruction than the one with the 20 minutes of 

sonication. An important observation to be noted is that the VSS destructions were different than 

the destruction of pCOD by the two AOPs (Figure 3.7). Since pCOD and VSS both provide 

measurement of organics, this deviation may have been due to an analytical or measurement 

error in VSS determination.  

    destruction     
[     raw –      P  ]

     raw 
 100  

 

Figure 3.8: Suspended Solids Concentrations for Detailed AOP Testing (with error bars) 
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In conclusion, both PTs resulted in solubilisation of organics, however only the AOP 

with 60 minutes of sonication solubilized inorganics. Both PTs also resulted in high organics 

degradation, with the AOP with 60 minutes of US duration resulting in a significantly higher 

VSS destruction than the AOP with 20 minutes of US as a result of high solubilisations.   

3.3.2.1.3.  Nitrogen Species 

Nitrogen-bearing compounds such as proteins represent a substantial fraction of the 

organic matter that is present in sludge.  Hence, information on organic nitrogen can provide 

supporting information on the fate of organic matter through PT.  Further, the management of 

ammonia that is released from organic matter through sludge handling systems is an ongoing 

challenge.  Therefore, information on the fate of ammonia through PT was of interest.  Hence, 

total TKN, soluble TKN, ammonia, total organic nitrogen (tON), soluble organic nitrogen (sON), 

and particulate organic nitrogen (pON) concentrations were monitored before and after both PTs 

to determine the impact of PT on the nitrogen-containing species.  Total organic nitrogen was 

calculated as the difference between total TKN and ammonia. Soluble organic nitrogen was 

calculated as the difference between soluble TKN and ammonia. Particulate organic nitrogen 

was then calculated as the difference between total and soluble organic nitrogen.  The 

concentrations of these species are summarized in Figure 3.9.  

 

 

 

 

 

Figure 3.9: Nitrogen Species Concentration in Raw and Pre-treated WAS (with error bars) 
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TKN concentrations were compared before and after each PT to determine if PT resulted 

in any significant removal of TKN. T-tests that were conducted at 95% confidence interval 

(Appendix A2) revealed that pre-treatment with 20 minutes sonication and 50 gH2O2/kgTS did 

not significantly change the total TKN concentrations. However, pre-treatment at 60 minutes US 

and 50 gH2O2/kgTS resulted in a significant reduction of 11% in total TKN concentration.  

Therefore, unlike PT with the lower sonication duration (20 minutes), PT with 60 minutes of 

sonication led to a significant TKN removal. 

Ammonia concentrations before and after each PT were also monitored to determine if a 

chemi-sonic AOP was capable of degrading proteins to release ammonia. A t-test that was 

conducted at a 95% confidence interval (Appendix A2) revealed that there was a significant 

increase in ammonia concentrations due to both PTs. The ammonia concentrations increased 

from 19 ± 4 to 35 ± 2 gN/L for the 20 minute US AOP whereas the ammonia concentrations 

increased from 25 ± 4 to 46 ± 5 gN/L for the 60 minute AOP. Hence, it would appear that there 

was some mineralization of organic nitrogen to release ammonia. The breakdown of protein 

could result in the release of amino acids and finally ammonia. Therefore, a chemi-sonic AOP 

was capable of not only rupturing cell walls and releasing soluble materials but also breaking 

down compounds at a molecular level.  

Nitrate analysis was conducted on raw and 60 minutes US AOP samples in duplicate to 

determine if ammonia was oxidized to nitrate. The results of this analysis indicated that no 

increase in nitrate concentrations was detected. Thus, no oxidation of ammonia to nitrate took 

place during this PT. Hence, nitrate analysis was not conducted with the 20 minute US duration 

PT samples as it was a less intensive operation. 
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Analogous to COD solubilisation, ON solubilisation may be used to assess the impact of 

pre-treatment on the biodegradability of WAS (Kianmehr, 2010).  The solubilisation of organic 

nitrogen was calculated for both PTs according to equation 3.2. The results revealed that PT with 

20 minutes of sonication resulted in a 43 ± 5% organic nitrogen solubilisation while PT with 60 

minutes of sonication resulted in a 47 ± 10% organic nitrogen solubilisation. Thus in addition to 

COD and VSS solubilisation, both PTs resulted in ON solubilisation and an increase in US 

duration modestly increased the extent of this response. It was hypothesized that the observed 

ON solubilisation may result in the increase of biodegradable ON in WAS which may lead to an 

increase in WAS biodegradability. 

    olubilisation     
(sO   P  – sO   raw )

pO   raw 
  100   

The ratio of nitrogen to COD fractions was monitored to determine the impact of PT on 

the protein rich compounds in WAS and to support the assessment of the solubilisation result.  

Figure 3.10 presents the ON/COD ratio and sON/SCOD ratios for WAS pre-treated at 20 

minutes US (with 50 gH2O2/kgTS) and 60 minutes US (with 50 gH2O2/kgTS). From the figure it 

can be seen that the average tON/TCOD ratios for PTs with the 20 and 60 minutes sonication 

durations were 8.4 ± 0.9% and 7.8 ± 0.3 % respectively. These ratios are comparable with the 

7% nitrogen content of biomass which was reported by Henze et al., (1999).  However, the 

sON/SCOD ratios did not follow the tON/TCOD trend for both PTs. The average ratios for the 

PTs with 20 and 60 minute sonication durations were 11 ± 2% and 11 ± 0.2% respectively, 

which were significantly different from the reported ratio of 7%. These ratios demonstrated that 

both PTs preferentially solubilised protein-rich compounds over other types of organic matter. 

Eq. 3.2 
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Figure 3.10: Impact of 20 and 60 US minutes AOP on ON/COD ratios (with error bars) 
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degradation, causing an increase in ammonia concentration. Both PTs were more effective in 

solubilising TKN particulates than COD particulates. 

In summary, all pre-treatments of waste activated sludge examined in this study led to 

solubilisation of COD.  Further, all the AOPs employed in this study resulted in higher 

solubilisation than the individuals PT. Both AOPs employed in the detailed study significantly 

solubilised COD while conserving the TCOD, with the 60 minutes AOP resulting in the highest 

solubilisation. Moreover, the AOP with the lower sonication duration (20 minutes) preferentially 

solubilized organics while the AOP with the higher US duration (60 minutes) solubilized both 

organic and inorganic solids.  The 60 minute AOP resulted in higher VSS destruction than the 20 

minute AOP. T the PT with 60 minutes of US resulted in significant ON destruction, while the 

PT with 20 minutes of US did not. Both PTs solubilized ON and the solubilisation of this organic 

matter was greater than that of other types of organic matter. 

3.3.3. Anaerobic Membrane Bioreactor Operation 

This portion of the study is sought to assess the impact of two different levels of the AOP 

PT on the anaerobic biodegradability of WAS. Biodegradability of WAS was evaluated by 

treating the WAS in an AnMBR. This section presents the results of anaerobic digestion of raw 

and PT WAS in the AnMBR. The stability of the AnMBR was measured by monitoring the pH 

and the VFA/Alk ratio while the overall performance of the AnMBR was measured in terms of 

COD, VSS, and ON destruction. 

3.3.3.1. pH and VFA/Alk Ratio for AnMBR 

It was hypothesized that PT of the WAS would increase the biodegradability of the WAS 

and hence stability with respect to pH excursions was a potential operational concern. The pH of 

the waste and permeate streams was monitored for all phases of AnMBR operation to assess the 
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stability of the AnMBR. Figure 3.11 summarizes the pH of the reactor throughout its operation. 

The pH of the waste stream and permeate streams remained relatively constant throughout the 

operation of the AnMBR. For instance, the average values of the pH of the waste stream for 

Phases 1, 2, and 3 were 7.29 ± 0.11, 7.22 ± 0.02, and 7.27 ± 0.04, respectively. Similarly, the pH 

values of the permeate stream for Phases 1, 2, and 3 were 7.28 ± 0.13, 7.22 ± 0.06, and 7.18 ± 

0.06, respectively.  A t-test that was conducted at a 95% confidence interval revealed there was 

no significant difference between the pH of either streams for all phases. Thus the pH of the 

waste and permeate streams remained relatively constant in all phases, implying stable 

operations. 

 

 

Figure 3.11: pH in AnMBR throughout all Phases  
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of the digester than the pH since pH may take some time to respond to the accumulation of VFAs 

in a reactor (Goberna et al., 2010). As can be seen in figure 3.12 most of the VFA/Alk ratios 

were low (≤ 0.2) with the exception of the periods between Day 12 – Day 45 and Day 146 – Day 

151. During these periods, the VFA concentration was high, thus demonstrating an accumulation 

of acids and a decline of the alkalinity of the system. These results were associated with periods 

when the reactor was adjusting to a new feed and had not yet attained steady state.  The reactor 

was unsteady between Day 12 – Day 45 since it was adjusting to the Phase 1 feed (Raw WAS), 

while at Day 146 – Day 151, the reactor was adjusting to the Phase 2 feed (PT 8 feed). During 

both periods, the acidogens were producing acids that the methanogens were not able to 

immediately utilize, thus leading to high VFA concentration and unstable operations with respect 

to the VFA/Alk ratio. 

In order to increase the alkalinity of the system and improve the environmental 

conditions for the microorganisms during both these period, Sodium Bicarbonate (NaHCO3) and 

Potassium Bicarbonate (KHCO3) were added in a 1:1 mass ratio. Once steady state was reached 

for both phases, the  FA/Alk returned to values ≤ 0.2. After this ratio was attained, no 

bicarbonate addition was required.  Thus the VFA/Alk ratio was in the range (≤ 0.2) suggested 

by Goberna et al., (2010) for steady AD operation.  

An important observation noted during this analysis was that the VFA/Alk ratio did not 

increase after switching to the Phase 3 feed from the Phase 2 feed. In fact, the ratio declined from 

the Phase 1 and Phase 2 ratios of 0.076 ± 0.047 and 0.076 ± 0.027, respectively to 0.053 ± 

0.0367 for Phase 3.  This may be attributed to the acclimation of the microorganisms to the 

increased soluble material in the feed in Phase 2. Hence, Phase 3 did not take as much time as 

Phase 1 and 2 to reach steady state with respect to the VFA/Alk ratio. 
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Figure 3.12: pH in AnMBR throughout all Phases 

3.3.3.2. COD Destruction and Analysis 
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Figure 3.13: Total COD Destruction for Phase 1 Steady State 

COD destruction values were determined for each phase of the study to allow for a 

comparison of the biodegradability of the raw and PT WAS. Figure 3.14 summarizes the extent 

of COD destruction observed in each phase of this study. As discussed in Section 3.3.2., in 

Phases 2 and 3, COD was also destroyed during pre-treatment. Although minimal, the TCOD 

losses that occurred during both PTs contributed to the overall COD destruction in each phase.  
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As it can be seen from Figure 3.14, Phase 1 resulted in 49% COD destruction, while 

Phases 2 and 3 resulted in increased overall COD destruction values of 58 and 63%, respectively. 

Hence, when compared to operation without PT the overall performance improved from Phase 1 

to Phase 2 by an increment of 9% while Phase 3 resulted in an increase by 14% with respect to 

Phase 1.  In terms of digester performance, it is seen that the COD destruction increased from 49 

to 52% after switching the feed from raw to Phase 2 PT WAS. The COD destruction in the 

digester further improved by an increment of 7% after changing the PT conditions from Phase 2 

to Phase 3. It has been previously shown that anaerobic digestion at an SRT of 20 days will 

result in the destruction of the majority of the biodegradable fraction of sludge (Szeinbaum, 

2009). Hence, it appears that both PTs were able to convert some non-biodegradable COD to 

biodegradable COD, which resulted in an improvement in the ultimate biodegradability of WAS.  

Therefore pre-treatment of WAS by the AOPs increased the biodegradation of WAS, with the 

highest destruction observed with the AOP involving the greatest sonication duration and 

peroxide dose.     

The concentrations of pCOD, SCOD, ffCOD, and cCOD were monitored during the 

steady state operation of the AnMBR to obtain insight into the fate of these materials in the 

digester.  It was hypothesized that an improved understanding of the behaviour of these materials 

would provide insight into the biodegradability of the soluble and colloidal fractions that were 

generated in PT.  Figure 3.15 presents the concentrations of these COD species in the AnMBR 

waste stream for each phase. From Figure 3.15 it can be seen that the concentrations of all COD 

species decreased as the level of PT intensity increased (i.e. Phase 3<Phase 2< Phase 1). The 

average pCOD and SCOD concentrations were 15 and 23% lower in Phase 2 than Phase 1. These 

values were further decreased by 5% and 26% in Phase 3. ANOVA tests revealed that there was 
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significant difference between the Phase 1 and Phase 2 COD concentrations. The changing COD 

concentrations in each phase suggested differing biodegradabilities and hence a cumulative mass 

balance was conducted on each species assuming that there was no production of a species in the 

digester.   

 

   Figure 3.15: Average COD Concentrations in Phase 1, 2, and 3 AnMBR WAS (with error bars) 

Figure 3.16 presents the results of a steady state cumulative mass balance of COD species 

that occurred during all three phases and provides insights into COD fractionation, 

transformation and removal in each phase. This figure summarizes the cumulative COD masses 

in raw WAS, PT streams and the AnMBR streams (waste and permeate streams). As previously 

discussed (Section 3.3.2) and as can be seen in Figure 3.16, ffCOD and cCOD contributed 

relatively little to the cumulative TCOD of the raw WAS (5.1 and 0.9 g COD or feed TCOD 

fractions of 2.3 and 0.4% in Phase 1). However, the cumulative masses of ffCOD and cCOD in 

the AnMBR streams in Phase 1 were 8.2 and 18.8 g COD or feed TCOD fractions of 3.6 and 

8.44%, respectively. The cumulative masses of ffCOD and cCOD increased by 60 and over 100 

%, respectively after digestion when compared to the feed.  The increased ffCOD and cCOD 
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cumulative masses in the Phase 1 AnMBR streams were attributed to hydrolysis that resulted in 

the degradation of particulate COD (from 217.5 to 86.6 gCOD or 68 to 38% of feed COD) 

(Figure 3.16) to produce non-biodegradable soluble and colloidal COD species. Therefore, the 

remaining COD masses in the AnMBR streams represented the non-biodegradable fractions. 

Conversely, the pre-treated feeds contained high concentrations of ffCOD and hence 

Phase 2 PT and Phase 3 PT resulted in cumulative ffCOD feed masses of 14.1 and 31.9 g COD 

or feed TCOD fractions of 8 and 16%, respectively (Figure 3.16).  The pre-treated feeds also had 

high cumulative masses of cCOD in Phase 2 and 3 and the cumulative cCOD masses were 45.9 

and 45.0 gCOD or feed COD fractions of 24 and 23%, respectively. (Figure 3.16)  However the 

cumulative ffCOD masses in the AnMBR streams in Phases 2 and 3 after digestion were 6.4 and 

5.5 gCOD or feed COD fractions of 3.4 and 2.8%, respectively. Similarly the cumulative cCOD 

masses in the AnMBR streams in Phase 2 and Phase 3 were 12.6 and 8.6 gCOD or feed COD 

fractions of 6.7 and 4.3 %, respectively. Thus, after digestion of PT WAS in Phase 2 and Phase 

3, the ffCOD fractions decreased by 4.1 and 13.2%, respectively and the cCOD fractions 

decreased by 17.3 and 18.7%, respectively with respect to the feed. Hence, a significant fraction 

of the feed ffCOD and cCOD was consumed during digestion in both PT phases, with Phase 3 

resulting in the highest removal. In addition the decrease of the cumulative mass of pCOD from 

127 to 71 gCOD (or feed COD fractions of 68 to 38%) for Phase 2 and from 120 to 66 gCOD (or 

feed COD fractions of 61 to 33%) for Phase 3 suggested degradation and transformation of 

pCOD into cCOD and ffCOD for substrate consumption during digestion. 

From Figure 3.16 it can be seen that although the pre-treated feed contained significantly 

higher cumulative ffCOD masses than the Phase 1 feed, Phase 2 and Phase 3 AnMBR streams 

contained lower ffCOD masses than the Phase 1 AnMBR streams. In addition, despite the higher 
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cumulative colloidal COD masses of both pre-treated feeds, the cumulative masses of cCOD in 

the PT AnMBR streams were lower than Phase 1. As mentioned earlier Phase 1 resulted in an 

increase in ffCOD and cCOD masses by 60 and over 100% with respect to the Phase 1 feed. 

However, in the case of Phase 2, the ffCOD and cCOD masses in the AnMBR streams decreased 

by 55 and 72%, respectively with respect to the feed. Similarly, the mass of ffCOD and cCOD in 

the AnMBR streams decreased by 83 and 81%, respectively in Phase 3 when compared to the 

feed.   Therefore, compared to Phase 1, Phases 2 and 3 resulted in higher fragmentation of fines 

and colloids and consumption of truly soluble material, with Phase 3 resulting in the highest 

consumption.  This suggests that PT improved the biodegradation of WAS by converting non-

biodegradable COD to biodegradable COD and reduced the mass of non-biodegradable soluble 

and colloidal COD remaining in the AnMBR streams. It is hypothesized that this reduction in 

mass of colloids with each phase due to improved biodegradability may result in reduction in 

membrane fouling, a concern that will be addressed in detail in Chapter 4. 

  

Figure 3.16: Cumulative Mass Balance of COD Species through PT and AD 
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Permeate ffCOD concentrations were also monitored during the operation of the AnMBR 

to determine permeate quality that might impact upon downstream operations in a wastewater 

treatment plant.  Figure 3.17 summarizes the permeate ffCOD concentrations for Phases 1, 2, and 

3. From this figure it can be seen that low and comparable ffCOD concentrations of 151-166 

mg/L were observed for all phases. The permeate concentrations were compared and found to be 

not statistically indifferent.  Therefore PT did not result in any significant change in permeate 

quality.  

    

Figure 3.17: Average Permeate ffCOD Concentrations for all Phases (with error bars) 

3.3.3.3. Solids Destruction 

The behaviour of suspended solids was examined as an additional indicator of the 

performance of the AnMBR.  For each phase, VSS destruction was calculated by comparing the 

cumulative mass of VSS in the feed and outgoing streams. Since the permeate was solids-free, 

only the waste stream was used in the cumulative analysis.  Once the cumulative VSS mass 

loading in the streams were calculated, they were plotted versus time and the difference between 

the incoming and outgoing stream slopes was employed to calculate the VSS destruction 
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Figure 3.18 it can be seen that the cumulative responses were linear in nature and this confirmed 

the assumption that the concentrations of solids in the various streams were not varying with 

time. 

 

 

 

 

 

 

Figure 3.16: Total VSS destruction for Phase 1 Steady State 

 

Figure 3.18: Total VSS Destruction for Phase 1 Steady State 

 The VSS destruction values observed in each phase were compared to determine if PT 

resulted in higher VSS removal. Figure 3.19 summarizes the VSS destruction efficiencies 

observed in all phases of the study. As discussed in Section 3.3.2., in Phases 2 and 3 VSS 

destruction occurred during the pre-treatment stage, and this contributed to the overall VSS 

destruction in each phase. As can be seen in figure 3.19, Phase 1 resulted in a 46% VSS 

destruction, while Phases 2 and 3 resulted in overall VSS destructions of 71 and 77%, 

respectively. Therefore, the results of this study were consistent with the results of Pham et al. 

(2007) and Braguglia et al. |(2008) that demonstrated AOPs can result in high solubilisation 

ratios, and thus greater destructions. When only the AnMBR was examined, the VSS removals in 

Phase 2 and 3 were observed to be lower than in Phase 1. The lower VSS removals in Phase 2 

and Phase 3 were likely due to the fact that the PT substantially destroyed VSS in these Phases. 
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However when PT and digestion were considered collectively the overall VSS destruction 

improved, suggesting that PT improved overall VSS degradation. 

  

            Figure 3.19: VSS Destruction Rates for Phase 1, 2, and 3 (with error bars) 
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anticipated as a result of reduced mass loading on the membrane, a concern that will be 

addressed in detail in Chapter 4. 

 In addition to TSS and VSS, FSS concentrations were monitored throughout the 

operation of the AnMBR to determine if PT impacted on the fate of inorganic particulates 

through the system. In Figure 3.20 it can be observed that changing the AnMBR feed from raw 

WAS to PT WAS in the Phase 2 feed did not alter the FSS concentration in the AnMBR. The 

average FSS concentrations in Phase 1 and Phase 2 AnMBR WAS were 8623 ± 552 and 8550 ± 

584 mg/L, respectively. Statistical analysis at 95% confidence level revealed no significant 

difference between the two concentrations. However, a significant FSS decrease of 13% was 

observed between Phase 1 and Phase 3. This was in agreement with the previously discussed PT 

results that demonstrated no solubilisation of FSS with a PT duration of 20 minutes but partial 

solubilisation with 60 minutes of PT.  The reduction in the concentration of these solids will 

lower the requirements for downstream sludge processing and disposal when compared against 

digestion of untreated raw WAS.   

Furthermore, the FSS concentrations in the feed and the AnMBR waste were compared 

for all phases to determine if accumulation of inerts took place in the AnMBR. It was observed 

that the FSS concentrations in the digester were significantly higher than that present in the feed 

for all phases, which suggested accumulation of inerts. The ratios of AnMBR to feed FSS 

concentrations were determined to be somewhat less (5.3-5.6) than the SRT/HRT ratio (6) for all 

phases. This indicated that some of the feed FSS was dissolved during digestion and the FSS in 

the AnMBR did not accumulate at the same ratio as that of the SRT/HRT. 
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Figure 3.20: Average SS Concentrations in Phase 1, 2, and 3 AnMBR WAS (with error bars) 

3.3.3.4. Organic Nitrogen Destruction and Analysis 

Organic Nitrogen (ON) destruction can be employed as an alternative indication of the 

performance of the AnMBR and thus was monitored throughout the AnMBR operation. Organic 

nitrogen was calculated as the difference between TKN and Ammonia. For each phase, ON 

destruction was calculated by comparing the cumulative mass of ON in the feed and outgoing 

streams.  Once the cumulative ON mass loadings in each stream was calculated, they were 

graphed and the percent loss between the incoming and outgoing stream slopes yielded the ON 

destruction rate.  Figure 3.21 provides a sample ON destruction graph along with corresponding 

calculations for Phase 1.  From Figure 3.21 it can be seen that cumulative mass lines followed a 

linear pattern and hence this demonstrates that steady state had been achieved during this 

analysis. ON data for all other phases can be found in Appendix A8. 
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Figure 3.21: Total ON destruction for Phase 1 Steady State 

The calculated ON destruction values were compared between phases to determine if PT 

impacted on the biodegradability of ON compounds. Figure 3.22 summarizes the ON destruction 

that was observed in each phase of this study. As discussed in Section 3.3.2., in Phases 2 and 3, 

ON destruction occurred during the pre-treatment stage, which contributed to the overall ON 

destruction in each phase. As can be seen from Figure 3.22, Phase 1 resulted in a 44% ON 

destruction, while Phases 2 and 3 resulted in increased overall ON destruction values of 52 and 

70%, respectively. When ON removal in the AnMBR was considered by itself, it was observed 

to increase by 2% in Phase 2 when compared to Phase 1 while Phase 3 resulted in an additional 

10% improvement over that observed in Phase 2. Overall, Phase 3 achieved the greatest 

degradation of ON, indicating that pre-treatment of WAS improved the biodegradation in the 
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AnMBR. This was expected as PT solubilized organic nitrogen (with Phase 3 PT resulting in the 

highest solubilisation), thus making organics biodegradable and available for microorganisms to 

consume and degrade. 

   

Figure 3.22: ON Destruction Rates for Phase 1, 2, and 3 (with error bars) 

The ON destruction was compared with the COD destruction in each phase to determine 

if PT resulted in greater ON destruction than COD destruction. The COD destruction in Phases 
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a greater extent than COD species. A potential explanation for this observed ON destruction in 

Phase 2 despite higher ON solubilisation may have been due to the formation of non-

biodegradable nitrogen species due to Phase 2 PT.  In the case of Phase 3, however, it is seen that 
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than COD species, which is in agreement with the result obtained in Section 3.3.2.1.3. Thus it 

appears that Phase 3 PT generated higher nitrogen containing biodegradable species, which 

resulted in higher ON destructions. 

The average concentrations of TKN, sTKN, NH3, sON, and pON were monitored during 

the steady state operation of the AnMBR as their presence in the permeate and waste streams 

may impact upon downstream operations in a wastewater treatment plant. Figure 3.23 presents a 

plot of the nitrogen species in the AnMBR WAS throughout its operation. From this figure it can 

be observed that with the exception of pON the concentrations of the nitrogen species decreased 

as the level of pre-treatment increased.  This decrease with each phase may reduce the 

requirements for downstream processing when compared against digestion of untreated raw 

WAS.   

The ammonia fractions were monitored in the feed and AnMBR streams to monitor 

protein degradation as a result of hydrolysis in the AnMBR and to determine if ammonia 

concentrations in the AnMBR may be inhibitory to the activity of microorganisms. Although the 

feed contained low concentrations of ammonia in all phases, the AnMBR WAS had elevated 

concentrations of ammonia. The feed ammonia concentrations for Phases 1, 2, and 3 were 36 ± 

5, 35 ± 2, and 47 ± 5 mg/L, respectively while the corresponding AnMBR WAS ammonia 

concentrations for the three phases were 378 ± 30, 306 ± 34, and 252 ± 14 mg/L, respectively. 

This increase was as a result of the long SRT and digestion, which lead to the de-amination of 

proteins and the subsequent release of ammonia. In addition, although AnMBR WAS ammonia 

concentrations were higher than the feed, they were considerably lower than the inhibitory 

concentration of 3000 mg/L proposed by Rittmann and McCarty, (2000). Thus it is hypothesized 

that the ammonia concentrations in the AnMBR did not inhibit the activity of microorganisms. 
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Also observed from this discussion is that the PT phases had lower ammonia concentrations than 

the control reactor. This observation will be discussed in the upcoming paragraphs. 

 

Figure 3.23: Average Nitrogen Concentrations in Phase 1, 2, and 3 AnMBR WAS (with error 

bars) 

A cumulative mass balance was conducted on TKN in all three phases to monitor the 

conservation of nitrogen species in this study. Figure 3.24 presents a cumulative mass balance of 

TKN observed throughout this study. As can be seen from the figure, TKN masses remained 

essentially constant in Phase 1 feed and AnMBR (waste and permeate streams). The cumulative 

mass of TKN in the Phase 1 feed was 20.3 g N while the cumulative mass of TKN in the Phase 1 

AnMBR (waste and permeate streams) was 19.5 gN.  The small difference of 4% between the 

Phase 1 TKN masses demonstrated that there was no significant lack of mass balance closure, 

and thus was indicate of good data quality. In Phase 2 and Phase 3 differences of 12% and 18% 

respectively were observed between the feed and AnMBR (permeate and waste streams) masses . 

These differences were significantly different than the Phase 1 difference and thus there was a 

lack of mass balance closure in Phases 2 and 3. 
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 As established earlier that a lack of mass balance closure was encountered with both the 

PT phases. This can be explained by the fact that ammonia concentrations decreased with each 

phase despite the higher destructions, as observed earlier. Since PT solubilizes organic nitrogen 

and higher ON destructions were observed with both PT reactors than the control phase, it was 

expected that the ammonia concentration would be greater in the pre-treated reactors than the 

control reactor. These low ammonia concentrations in the PT phases may be a result of struvite 

precipitation during anaerobic digestion of PT WAS, which resulted in a high deviation in mass 

balance closure. As stated earlier, PT solubilises species and increases the rate of hydrolysis. 

This increase in the rate of hydrolysis is expected to result in a greater degradation of complex 

molecules into magnesium, ammonium and phosphate (Ariyanto et al., 2013) than the control 

reactor. In addition, the pH remained around 7.2 during the operation of the AnMBR in this 

study, which falls within the pH conditions (7-11) required for struvite precipitation (Nelson et 

al., 2003). Under these conditions, an increase in magnesium, ammonium and phosphate 

concentrations due to PT may have led to an increase in struvite precipitation. Since Phase 3 PT 

resulted in higher solubilisations then Phase 2 PT, it is expected that struvite precipitation in 

Phase 3 would be higher than Phase 2, which led to lower ammonia concentrations.  It is 

recommended for future work to measure struvite concentrations in the AnMBR to determine the 

definite cause of ammonia loss in the AnMBR.    
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Figure 3.24: Cumulative TKN Mass Balance in Phases 1, 2, and 3 

The concentrations of ammonia in the permeate was also monitored to determine the 

quality of the permeate that might impact upon downstream operations in a wastewater treatment 

plant. Figure 3.25 summarizes the permeate ammonia species concentrations. As expected 

permeate ammonia concentrations for all phases were higher than the feed and consistent with 

the AnMBR WAS ammonia concentrations. To reduce the concentrations of ammonia and 

further improve the permeate quality, the permeate could be subjected to nutrient recovery 

process before it is discharged. 

 

Figure 3.25: Average Ammonia Concentrations in Phase 1, 2, and 3 Permeate (with error bars) 
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3.3.3.5. COD Decay Tests – Estimation of Biodegradable COD 

COD decays tests were performed to determine the impact of pre-treatment on the 

readily biodegradable fraction of COD in the WAS.  It was hypothesized that PT would increase 

the readily biodegradable fraction and that this fraction could be quantified by monitoring COD 

removal during the period between feed cycles. These tests were performed for Phases 2 and 3, 

once both phases had reached steady state. These tests were duplicated for both phases and the 

procedure outlined below was followed. 

In these tests, the concentrations of TCOD and SCOD in the system (AnMBR + 

permeate holding tank) were measured every 5 hours by withdrawing 37.5 mL of AnMBR WAS. 

To avoid complications with permeate withdrawal, the COD of the permeate was estimated by 

measuring the SCOD of the AnMBR.  The mass of TCOD and SCOD in the system was then 

calculated by multiplying the volumes in the reactor and the permeate holding tank by their 

respective COD concentrations at each sampling time. In order to determine the volume of 

sludge remaining in the reactor, the volume of permeate collected at every withdrawal period 

was subtracted from the working volume of the reactor. The masses of COD in the reactor and 

the permeate holding tank were then added to determine the mass of COD in the system, which 

was then plotted against time to produce a mass decay plot.  

The COD decay plots for both phases are summarized in Figure 3.26 to compare the 

COD consumption in the two PT phases. As mentioned earlier, this test was duplicated for each 

phase and the error bars represent the variation between the duplicated tests. Each plot 

corresponded to one reaction cycle, which was 24 hours for this study. As can be seen from the 

figure, the highest COD concentration in the system was observed at the beginning of each cycle, 

following WAS addition to the AnMBR. It can also be seen in the plot that the mass of COD in 
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the system became effectively constant at the end of each reaction period (except for t=10 hours 

in Phase 2), thus demonstrating that the biodegradable COD had been consumed by the end of 

the cycle. The mass of COD in the system at t =10 hours in Phase 2 was lower than expected and 

may have been a result of analytical error, thus resulting in a deviation from the true mass of 

COD in the reactor at that time. Therefore, an estimated decay curve was generated for Phase 2 

(Figure 3.26).  

   To compare the change in biodegradability between the two phases, the difference 

between the mass of COD in reactor at the beginning and the end of the cycle in each phase was 

assessed using Equation 3.3. 

               
                 

         
       

The average COD changes for Phase 2 and Phase 3 were 18 ± 1.3 % and 24 ± 0.1%, 

respectively. A t-test at 95% confidence interval revealed that the extent of COD reduction was 

significant different between the two phases. Therefore, PT in Phase 3 increased the fraction of 

COD that could be degraded in the AnMBR as compared to Phase 2. The results from these tests 

were thus in agreement with the COD destruction results in the previous section. 

The rate of COD decline in the reactor was also monitored to estimate the amount of 

readily biodegradable in both PT phases. As can be seen from Figure 3.26, the mass of COD in 

the reactor declined more rapidly with Phase 3 compared to the Phase 2 pre-treated feed. In 

Phase 2 the mass of COD declined from 85 to 70 gCOD after 10 hours of digestion, after which 

the mass of COD in the system remained constant. By contrast In Phase 3 the mass of COD was 

reduced from 81 to 61 g COD in 5 hours, after which the mass of COD in the system remained 

constant. Hence, the results indicate that the Phase 3 pre-treated feed had a greater readily 

biodegradable COD content than the Phase 2 pre-treated feed. Therefore PT of WAS with a 

Eq. 3.3 
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higher sonication duration (60 minutes) resulted in a greater improvement in readily 

biodegradable content, thus resulting in higher COD destruction as summarized in Section 

3.3.3.3. 

 

Figure 3.26: COD Decay Results for Phase 2 and Phase 3 (with error bars) 

3.3.4. Comparison of  Phases  

This section provides a brief summary of all the responses characterized in each phase to 

provide an overall assessment of the effect of PT on WAS biodegradability. Compared to the 

control AnMBR, both pre-treatments resulted in an overall increase in COD, VSS, and ON 

destruction. Figure 3.27 summarizes the destructions observed throughout the operation of the 

AnMBR.  As can be seen from the figure, Phase 1 resulted in 49%, 44%, and 46% COD, ON 

and VSS destruction.  Operation with PT in Phase 2 resulted in an increase in overall destruction 

for all parameters. The COD, ON, and VSS destruction in Phase 2 were 58, 52 and 71% 

respectively. Increasing the sonication duration from 20 to 60 minutes further improved COD, 

ON and VSS destruction. The COD, ON, and VSS destruction in Phase 3 were 63, 70 and 77% 

respectively. Thus, solubilisation of COD, ON, and VSS as a result of PT led to the increase in 

availability of substrate to microorganisms and conversion of non-biodegradable  into 

biodegradable materials, thus resulting in greater COD, ON, and VSS destructions. 
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Figure 3.27: Total COD, VSS, and ON Destruction Rates for all Phases (with error bars) 

3.4. Conclusion 

In conclusion, all pre-treatments of waste activated sludge involving thermal, sonication 

and peroxide addition led to solubilisation of COD, with the peroxide-sonic PT with 50 

gH2O2/kgTS and 60 minutes of US resulting in the greatest SCOD/TCOD ratio. All the AOPs 

employed in this study resulted in higher solubilisation than the individuals PT. Both the AOPs 

employed in the detailed study (20 and 60 minutes US each with 50 gH2O2/kgTS)  significantly 

solubilised COD while conserving the TCOD, with the 60 minutes AOP resulting in the highest 

solubilisation. Moreover, the AOP with the lower sonication duration (20 minutes) preferentially 

solubilized organics while the AOP with the higher US duration (60 minutes) solubilized both 

organic and inorganic solids. The 60 minute AOP resulted in higher VSS destruction than the 20 

minutes AOP. Both PTs solubilised ON and the PT with 60 minutes of US resulting in 

significant ON destruction, while the PT with 20 minutes of US did not.  

Pre-treatment with both AOPs enhanced the biodegradation of WAS used in this study. 

Pre-treatment with 50 gH2O2/kgTS followed by 60 minutes of US resulted in higher COD, VSS, 
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and ON destructions than pre-treatment with 50 gH2O2/kgTS followed by 20 minutes of US. 

This was attributed to solubilisation and an increase in the biodegradable fraction in the Phase 3 

PT.   Some accumulation of colloids and inerts was observed in the AnMBR reactor. PT resulted 

in a reduction in the mass flow of solids and organics. Thus a PT-AnMBR system may reduce 

the requirements for downstream processing when compared with digestion of untreated raw 

WAS.     
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Chapter 4: Membrane Performance of AnMBR treating Raw and Pre-treated WAS 

4.1. Introduction 

Anaerobic digestion (AD) is a common sludge stabilization method employed in 

wastewater treatment plants that not only converts the organic matter into a renewable source of 

energy i.e. biogas, but also decreases the amount of solids while destroying a majority of the 

pathogens in the sludge (Abelleira et al., 2012). However conventional anaerobic processes 

typically need to be operated at long hydraulic residence times and require large bioreactor 

volumes to accommodate the rate limiting hydrolysis process and the slow growth rates of 

methanogens (Bougrier et al., 2006). The incorporation of membranes into the design of 

anaerobic digesters has the potential to considerably reduce bioreactor volumes by decoupling 

the HRT from the SRT (Dagnew, 2010). The operation of the bioreactors at relatively shorter 

HRTs and longer SRTs can reduce the bioreactor volume, while accomplishing higher organic 

loading and destruction rates. 

Although AnMBRs appear to provide considerable advantages over conventional 

digesters when bioreactor performance is considered, a potential challenge is the fouling of 

membranes due to the accumulation of microorganisms, colloids, solutes, and cell debris in or on 

membrane surfaces (Meng el al., 2009). Membrane fouling results in an increased filtration 

resistance, thus reducing the permeate flux (Judd, 2008) or conversely, the TMP increases if 

operated in constant flux mode. The inefficient operation of membranes due to fouling will 

require elevated maintenance and energy costs and may require frequent replacement of 

membranes, which in turn increases costs. Therefore, characterization of fouling is desirable as it 

will facilitate the development of strategies that might be employed to reduce these costs. 
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The potential for membrane fouling is elevated when treating high solids waste streams 

such as WAS. In this application, the high solids concentrations of the feed stream, and the 

amplification of non-biodegradable suspended solids concentrations in the MLSS due to the ratio 

of SRT/HRT can lead to high MLSS concentrations that may lead to membrane fouling.  The 

MLSS concentrations may be reduced through the use of sludge pretreatment (PT) technologies.  

PT technologies are growing in popularity as they promise to increase WAS biodegradability.  

However, PT has been shown to produce colloidal solids that may accumulate in AnMBRs if 

they are not biodegraded. The presence of colloids has been identified as a significant factor in 

membrane fouling when treating sludge (Wu et al., 2009 and Fan et al., 2006). Operation at 

extended SRTs has also been found to result in colloid generation due to hydrolysis of 

particulates. Hence, operation at long SRTs in combination with pre-treatment (PT) may lead to 

a higher concentration of colloids than untreated WAS due to the solubilising effect of PT.  

There is however little evidence in the literature to indicate whether the increase in colloid 

concentrations with PT would offset the benefits that might be achieved with lower MLSS.  

While PT may reduce fouling when digesting WAS it is prudent to ensure that membrane 

flux is maximized through implementation of strategies that are known to minimize fouling.  A 

number of strategies to minimize and control fouling have been reported in prior studies. For 

instance, operating the membrane below the critical flux has been reported to result in minimal 

fouling (Jeison and van Lier, 2006a).  Another method to control fouling is to integrate a period 

of relaxation into the membrane operation rather than operating with continuous permeation 

(Jude, 2006). For instance, Dagnew et al., (2012) compared the performance of a tubular 

membrane with continuous permeation at a flux of 30 litres per m
2 

per hour (LMH) with that of a 

membrane operating on a cycle with 5 minutes of permeation followed by 1 minute of relaxation. 
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They observed that relaxation extended the operation of the membrane by limiting the maximum 

transmembrane pressure (TMP) to 30 kilopascals (kPa) while continuous operation led to a TMP 

of 80 kPa, thus demonstrating increased fouling of the membrane.  

In addition to a relaxed mode of operation and operation below critical flux, regular 

maintenance cleaning can also ensure reduced fouling and long term operation of membranes 

despite high solids concentrations and operating flux. For instance, Pierkiel and Lanting, (2005) 

attributed the long term successful performance of an AnMBR treating a combination of PS and 

WAS with an MLSS of 5-20 g/L and flux of 146 and 66.7-83 LMH to daily and monthly 

maintenance cleaning with a combination of phosphoric acid and sodium hydroxide. In addition 

to a phosphoric acid and sodium hydroxide combination, a variety of chemical agents have been 

successfully used to perform maintenance cleaning of membranes.  For instance, Lee et al., 

(2001) achieved a flux recovery of up to 86% of the initial membrane flux for an AnMBR 

treating swine manure by subjecting the membrane to a cleaning by an alkaline solution followed 

by an acidic agent. In another study, Kang et al., (2002) observed that the permeate flux 

increased by two times after performing acidic cleaning. The cleaning efficiency has also been 

observed to be dependent on the sequence of cleaning. For instance, Dagnew, (2010) observed 

that cleaning with NaOH followed by citric acid caused further fouling of the membrane due to 

the precipitation of inorganic materials that were present on the cake layer as a result of the 

increase in pH. However when the cleaning order was reversed, almost 100% of the flux was 

recovered. Therefore, in addition to regular maintenance cleaning, it is essential to determine the 

ideal cleaning sequence when using a combination of chemicals to maintain membrane 

performance.  
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Operation with high MLSS concentration does not necessarily translate to a need for 

frequent cleaning. In some cases, membrane performance can be maintained by applying gas 

sparging or cross flow velocities to scour foulants that are deposited on or in the membrane.  For 

instance, Padmasiri et al., (2007) operated a side stream AnMBR with MLSS concentrations of 

27 and 49 g/L to treat swine manure with no cleaning employed during its operation. The long 

term performance of the membrane was attributed to the use of high cross-flow velocities that 

prevented deposition of foulants on or in the membrane. However, a decline in the biological 

activity of the micro-organisms was also reported, which may be attributed to an interruption of 

the syntrophic interaction of acetogenic and methanogenic organisms as a result of high 

velocities (Brockmann and Seyfried, 1997 and Hernandez et al., 2002). Hence strategies to 

minimize the decline in flux without excessive shear rates need to be explored. 

In conclusion, relatively few studies have evaluated membrane fouling in the digestion of 

high solids streams in AnMBRs. In addition, there is little information available on the impact of 

an integrated PT-AnMBR system on membrane fouling. This study aimed to determine the 

feasibility of anaerobic digestion of WAS that was pre-treated with a peroxide+sonic AOP in an 

AnMBR. In order to determine if such a system can be successfully applied, this study monitored 

the effect of changing biomass characteristics due to PT on membrane fouling and critical flux. 

In addition, this study examined if operation of a hollow fibre membrane with a fouling 

minimizing strategy that involved maintenance cleaning, gas sparging, a relaxed mode of 

operation, and an operational flux below the critical flux is feasible.  
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4.2. Materials and Methods 

This portion of the study examined the impact of WAS PT on membrane performance in 

a bench scale AnMBR system. Relaxed operation, maintenance cleaning, and operation below 

critical flux were implemented to maintain the performance of the hollow fibre membrane. The 

following sections present, in detail, the experimental set-up and operational parameters as well 

as the approaches used for determining critical flux, maintenance cleaning and sample analysis. 

4.2.1. Experimental Set-up 

A submerged 5 L AnMBR was operated for nearly 250 days as per the set-up discussed 

in Section 3.2.3.  A ZeeWeed hollow fibre PVDF membrane with a nominal pore size of 0.04 

µm and a nominal membrane surface area of 0.047 m
2
 was employed in the apparatus (supplied 

by GE, Canada). The operational temperature was controlled at 37 °C by a Dyna-Sense digital 

temperature controller linked to an OMEGA® PR-20 RTD probe that was inserted in the 

bioreactor. TMP was monitored via a mechanical pressure gauge for the first 70 days of 

operation. The mechanical gauge did not provide continuous monitoring and accurate data, and 

hence an OMEGA® DPG4000 digital pressure gauge and logger was integrated into the 

permeate line after 70 days of operation.  The operating flux was maintained at 2.75 LMH using 

a peristaltic pump.  Mixing and membrane sparging was achieved by recycling biogas at 2 L/min 

using a peristaltic pump.  The membrane was operated in a relaxed mode of operation with 8 

minutes of permeation followed by 2 minutes of relaxation. The temperature, flux, relaxation and 

permeation duration were maintained throughout the operation of the AnMBR to ensure constant 

conditions. 
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4.2.2. Operational Conditions 

Table 4.1 summarizes the steady state operating conditions that were relevant to 

membrane operation throughout this study. As described in Chapter 3, the AnMBR was operated 

in 3 phases to facilitate an assessment of the bioreactor and membrane performance when 

digesting raw and pre-treated WAS. Phase 1 was operated with raw thickened WAS while in 

Phases 2 and 3 the reactor was fed PT WAS. All phases were operated at an SRT of 20 days and 

an HRT of 3 days and made use of WAS that was collected from the Waterloo WWTP which 

was adjusted through settling to a TSS of approximately 7.5 g/L as discussed in Section 3.2.1. 

Table 4.1: Steady State Operational Conditions Relevant for Membrane Performance 

Phase Feed 
SRT/HRT 

(days) 

Reactor 

TSS (g/L) 

Reactor 

SCOD 

(g/L) 

Reactor 

ffCOD 

(g/L) 

Reactor 

cCOD 

(g/L) 

1 WAS 20/3 25 ± 2.5 4.2 ± 0.4 0.7 ± 0.2 3.6 ± 0.5 

2 

WAS pre-treated with 

50 gH2O2/kgTS + 20 

minutes US 

20/3 23 ± 1.5 3.3 ± 0.6 0.3 ± 0.1 2.9 ± 0.6 

3 

WAS pre-treated with 

50 gH2O2/kgTS + 60 

minutes US 

20/3 20 ± 0.2 2.4 ± 0.1 0.4± 0.1 2.0 ± 0.2 

 

4.2.3. Maintenance Cleaning Procedure 

Maintenance cleaning was performed three times a week. A combination of 50 mL 

of 2 g/L citric acid and 50 mL of 0.2 g/L sodium hypochlorite was used to clean the membrane. 

The cleaning process was initiated by switching off the permeation pump with continuous gas 

sparging for 10 minutes, after which gas sparging was stopped for 1 minute. This was followed 
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by backwashing with each chemical for 40 seconds of backpulse and 4 minutes of relaxation. 

This cleaning cycle was repeated until 50 mL of each chemical was used. After backwashing, the 

gas sparging pump was switched on for 5 minutes, after which regular permeation of the 

membrane was commenced.  

4.2.4. Critical Flux Determination 

Critical flux tests were conducted using the method introduced by Field et al., (1995). 

The critical flux test involved increasing the permeate flux in fixed increments for constant time 

periods and monitoring the TMP at each flux. A plot of this data reveals a linear relation between 

the TMP and flux within the sub-critical flux range and an exponential relation beyond the 

critical flux range. The exponential increase in TMP indicates rapid accumulation of foulants. 

Critical flux tests were conducted at steady state in Phase 2 and Phase 3. For each flux step, the 

increment in flux was 6 LMH. The duration of each step was 10 min and this was followed by a 

2 min relaxation time to prevent accumulation of foulants before the next flux value was 

implemented. Critical flux tests were duplicated in each phase to determine if this test was 

reproducible.  

4.2.5. Sample Analysis 

Sample analyses were performed according to the methods described in Section 3.2.6. 

COD and solids analyses were conducted to characterize the biomass and determine its effect on 

membrane fouling. All measurements were carried out in duplicate. 
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4.3. Results 

The following sections will discuss the impact of operating the bench scale AnMBR with 

raw and PT WAS as a feed on the performance of the hollow fibre membrane. Apart from 

monitoring the overall performance and fouling rate of the membrane throughout AnMBR 

operation, this study examined trends between solids and colloidal concentrations and membrane 

fouling. Lastly, the results of critical flux tests that were conducted to attain additional insight 

into the potential operating flux under differing PT conditions will be assessed. Throughout these 

analyses, the efficiency of the fouling minimizing strategy adopted for this study was monitored. 

4.3.1. Overall Membrane Performance 

As mentioned in Chapter 3, the AnMBR was manually fed with WAS once a day and was 

then operated with continuous permeation for the remainder of the daily cycle. In this operation, 

the volume of sludge in the reactor was at its highest level immediately after feeding and then 

decreased until the daily permeate volume was collected. Since the TMP was affected by the 

head pressure between the TMP gauge and the liquid level, this fluctuation in liquid level in the 

reactor resulted in a daily fluctuation in TMP. Hence, two TMP patterns were observed in each 

cycle; one when the liquid level in the reactor was descending (daily permeate volume of 1.275 

L not collected) and the other when the daily permeate volume had already been collected. For 

the purposes of this study, the TMP values for the period spanning from the beginning of the 

daily AnMBR operation cycle until the daily permeate volume was collected will be referred to 

as the low range TMPs, while the TMPs after the permeate volume has been collected will be 

referred to as high range TMPs. 



 

104 
 

The high and low range TMPs were monitored to obtain insight into membrane 

performance over the range of feed compositions to the AnMBR. Figure 4.1 summarizes the 

TMP observed throughout the operation of the AnMBR. From the figure it is seen that the 

operation of the membrane was steady over the length of the study until the membrane was 

replaced during Phase 2 operation. The membrane was replaced because the TMP rose to 60 kPa 

after feeding the reactor for 2 consecutive days. The increase in TMP was later found to be due 

to a fault in the head of the gas sparging pump, which led to a decline in the sparging rate. This 

result was consistent with that of Padmasiri et al., (2007), where the long term performance of 

the membrane was attributed to the use of high cross-flow velocities that prevented deposition of 

foulants on or in the membrane. Therefore, an effective sparging rate was required to minimize 

membrane fouling and maintain the performance of the membrane. 

The TMP values that were recorded prior to and after membrane replacement were 

compared to determine if any fouling had occurred before the replacement of the membrane. As 

can be seen in Figure 4.1, both ranges of TMP reduced slightly after replacing the membrane. 

The higher TMP range decreased from approximately 4.2 to 3.6 kPa and the lower TMP range 

decreased from 3.3 to 3.2 kPa when the membrane was replaced (Day 140). This decrease 

suggested that some fouling had occurred in Phase 1 and Phase 2 before the replacement of the 

membrane.  

The initial TMP observed with the second membrane was compared with the early Phase 

1 TMP values to determine if both the membranes exhibited similar initial TMPs after start-up. 

From Figure 4.1, it can be seen that the high range TMP after 1 month of start-up was low (3.6 

kPa) and similar to the initial TMP of the second membrane (3.7 kPa). Since TMP was only 

monitored from Day 30 of AnMBR operation, the behaviour of the first membrane during the 
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first month of operation was not available. However from the TMP around Day 35, it can be 

assumed that the initial behaviour of the first membrane was the same as the second membrane.  

The increase in TMP during operation with the first membrane was monitored to 

determine the time period over which fouling might take place. From Figure 4.1 it can be seen 

that the high range TMP values increased to approximately 4.4 kPa after 30 days of operation. 

Therefore it appears that some fouling of the first membrane took place when the reactor was 

adjusting to the Phase 1 feed. This may have been due to fouling that resulted from the 

accumulation of solids and inerts as evidenced by the elevated reactor solids concentrations of 36 

g/L (Figure 4.3) that was observed during this transient period.   

Figure 4.1: Overall Membrane Performance of Digested Sludge  

The membrane performance was assessed in terms of the fouling rate (Equation 4.1) as 

this was believed to provide a more well-defined evaluation of membrane fouling. The 

replacement of the membrane made it difficult to compare fouling between phases on the basis 

of absolute TMP. The fouling rate values were considered to be more independent of the 
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membrane replacement and hence could be used to compare the fouling between phases. Since 

calculation of the fouling rate required two values of TMP for each day only the data collected 

using the data logger was used to calculate the fouling rates (after Day 70). Fouling rates were 

calculated using Equation 4.1 for the high and low range TMP values, from Day 70 until Day 

244, to determine the effect of fresh feed and digester WAS on membrane fouling. 

             
               

                 
 

Where TMPstart = initial high/low range TMP (kPa), TMPend = final high/low range TMP (kPa), 

Timestart = time which corresponds to the initial low/high range TMP (hour), Timeend= time 

which corresponds to the final low/high range TMP (hour). 

Fouling rates were determined for each phase to evaluate if the change in feed 

characteristics affected membrane fouling in each phase. Since maintenance cleaning was 

performed 3 times a week throughout AnMBR operation, it was difficult to compare the effect of 

changing feed characteristics on membrane fouling based on the overall fouling rate due to the 

day-to-day variability in the fouling rate. Therefore the fouling rates that were determined for the 

days without maintenance cleaning were compared between phases. Figure 4.2 summarizes these 

fouling rates for both TMP ranges throughout the operation of the AnMBR. As can be seen from 

the figure, the low range average steady state fouling rates in Phases 1, 2, and 3 were 0.006 ± 

0.001, 0.006 ± 0.001, and 0.005 ± 0.002 kPa/hour, respectively. Similarly, the high range 

average steady state fouling rates in Phases 1, 2, and 3 were 0.012 ± 0.003, 0.012± 0.004, and 

0.012 ± 0.005 kPa/hour, respectively. An ANOVA test that compared these values indicated that 

there was no significant difference between the steady state fouling rates. Therefore the 

installation of a fresh membrane and the reduction in solids loading on the membrane in Phase 2 

Eq. 4.1 



 

107 
 

(from Phase 1) did not significantly reduce the fouling rate.  Hence, the results suggest that the 

changing biomass characteristics due to PT (i.e. solids and colloid concentrations) in Phase 2 did 

Phase 3 did not affect membrane fouling. However, the membrane was operated at a very low 

flux of 2.75 LMH, and hence it is likely that this low operational flux did not induce significant 

deposition of foulants on or in the membrane. The relatively consistent fouling rate over the 

course of the operation indicated good membrane operations at this low flux. 

 

Figure 4.2: Fouling Rates Observed Throughout Membrane Operation 

4.3.2. Impact of Solids Fractions on Membrane Performance 

The relationship between solids concentrations and membrane fouling was evaluated to 

determine if the changes in the feed composition due to PT affected membrane performance. 

Figure 4.3 summarizes the TSS, VSS, and FSS concentrations observed in the AnMBR 

throughout the study along with the corresponding high and low range fouling rates associated 

with the TMPs. As can be seen in Figure 4.3, no apparent relationship existed between the 

fouling rate and solids concentration throughout the operation of the AnMBR. Therefore the 
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decrease in solids loading on the membrane did not result in any significant reduction in 

membrane fouling. In addition, accumulation of inerts in all three phases (Chapter 3) did not 

significantly affect the fouling rate. Overall there appeared to be little relationship between these 

solids concentration and membrane fouling. This may have been due to the combination of the 

high cleaning frequency of 3 times a week, the high gas sparging rate of 2 L/min, the low 

operational flux of 2.75 LMH and a relaxed permeation cycle. Therefore, the operational design 

was successful in minimizing the likelihood of excessive fouling despite high solids 

concentrations.   

 

Figure 4.3: Effect of Solids Loading on Membrane Fouling 

4.3.3. Impact of COD Fractions on Membrane Performance 

The impact of colloid concentrations on membrane performance was assessed since 

colloids have been identified as a significant foulant in AnMBRs in other studies (Wu et al., 

2009 and Fan et al., 2006). For this study, colloidal COD (cCOD) was determined as the 

difference between the SCOD and ffCOD filtrate values. Figure 4.4 summarizes the average 
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TCOD and cCOD concentrations along with the low and high range fouling rates. As seen in 

Figure 4.4, no apparent relationship existed between COD and the fouling rate. Therefore, 

analogous to solids concentration, the reduction in total and colloidal COD loading on the 

membrane with PT did not result in any significant reduction in membrane fouling.  Overall 

there was little relationship between either TCOD or cCOD concentrations and membrane 

fouling.  

 

            Figure 4.4: Effect of Colloidal COD on Membrane Fouling 

4.3.4. Critical Flux Tests 

Critical flux tests were conducted during Phase 2 and Phase 3 steady state operation to 

determine the effect of PTs on potential fouling over a larger range of flux values.  Figure 4.5 

presents the flux steps employed and the average TMP responses at each step for the duplicated 

tests in both phases.  Duplicate tests were carried out on two consecutive days for each phase 

without employing any maintenance cleaning of the membrane during these two days to 

determine if exposure of the membrane to high fluxes led to significant membrane fouling. As 

evident from Figure 4.5, the duplicate experiments in each phase did not show much variation in 
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the results. The deviations between the TMPs of each flux step in the duplicated tests for both 

phases were below 1 kPa (Figure 4.5), thus demonstrating that the results were reproducible.  

From Figure 4.5, it can be seen that with the exception of the flux step from 12 to 6 LMH there 

was little difference in the TMP responses between phases. Even in this step the difference 

between the TMP responses was modest (approx. 10% of absolute value).  Hence, the results of 

the critical flux tests indicated that the differences in the AnMBR contents (TSS, VSS, COD 

species) between Phases 2 and 3 that were previously documented (Section 3.3.2.1) did not 

significantly impact on membrane fouling over a wider range of flux values.   

 

Figure 4.5: Critical Flux Test Results (with error bars) 

The critical flux range for both phases was determined to establish the optimal operational 

flux range where minimal fouling takes place. As seen in Figure 4.6, the relationship between 

TMP and flux was essentially linear up to a flux of 6 LMH for duplicate trials for both phases, 

indicating no significant fouling in this flux range. This relationship increased rapidly from 6 to 
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12 LMH for both phases, thus demonstrating that the critical flux was within a flux range of 6-12 

LMH for both phases. At fluxes higher than 6 LMH, the resistance due to cake layer formation 

likely increased, thus resulting in the high TMPs. In order to minimize fouling, operation below 

the critical flux range is recommended. Operation at fluxes higher than 6 LMH may result in 

significant membrane fouling.  

 

Figure 4.6: Critical Flux Range for Phase 2 and Phase 3 

4.4.  Conclusion 

In conclusion, successful membrane performance was observed in AnMBR operation 

with raw and PT WAS. Fouling did not increase over the period of operation of the hollow fibre 

membrane despite high solids and colloidal concentrations in the AnMBR. The minimal fouling 

was attributed to the use of a relaxed mode of operation, an operational flux below the critical 

flux, a cleaning frequency of 3 times a week, and a gas sparging rate of 2 L/min.  The 

implementation of PT did not affect membrane fouling as evidenced by insignificant impacts on 
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the fouling rates and through the critical flux tests.  The critical flux range for Phase 2 and 3 was 

determined to be 6 to 12 LMH and these values appeared to be independent of the biomass 

concentrations in the AnMBR.  Thus the results of this study demonstrate that a hollow fibre 

membrane can be applied to filter anaerobically digested sludges that have undergone PT which 

generates high concentrations of colloids and inerts.     
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Chapter 5: Conclusions  

This chapter provides a summary of significant conclusions related to this study. The 

chapter commences with conclusions that were drawn from a comparison of thermal, sonication, 

and peroxide-sonic PT that was based on COD analyses. This study compared thermal PT at 150 

and 170°C for 30 minutes, sonication at 10 and 20 minutes and a peroxide-sonic AOP with 

hydrogen peroxide doses of 5, 25, and 50 gH2O2/kgTS and US durations of 10, 20, 30, and 60 

minutes. This section is followed by conclusions that were derived from a detailed study that 

examined COD, nitrogen, and solids responses in PT and subsequent AnMBR digestion when 

PTs that consisted of 50 gH2O2/kgTS followed by 20 minutes of US and 50 gH2O2/kgTS 

followed by 60 minutes of US were examined. Finally, this chapter provides conclusions related 

to membrane performance that were developed after observing operation during digestion of raw 

and PT WAS with an AnMBR.  

5.1. Comparison of Pre-treatments – Preliminary Tests 

 All PTs resulted in an increase in the solubilisation ratio, thus resulting in high colloidal 

and soluble COD concentrations.  

 Pre-treatment with 50 gH2O2/kgTS and 60 minutes of US resulted in the highest fraction 

of soluble COD of 46% and in an insignificant loss in TCOD (about 7%), implying no 

loss in substrate for potential biogas production.  

 The 50 gH2O2/kgTS + 60 minutes US AOP  and the other AOPs (with 20-30 minutes US 

and 50 gH2O2/kgTS) resulted in similar fractions of cCOD 25 and 21-24%, respectively. 

However the ffCOD fraction of the 60 minute US AOP (22%) was higher than the other 

AOPs (11-12%), thus implying that the 60 minutes US AOP was more effective in 

solubilising particulates into soluble COD than the other AOPs.  
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 The results from this study demonstrated that a sonication + peroxide AOP resulted in 

higher solubilisation than individual sonication PT. 

 In terms of the hydrogen peroxide and sonication AOP, sonication duration and the 

interaction term (sonication + peroxide) were determined to have a greater impact on 

sludge solubilisation than hydrogen peroxide dose. This was attributed to the low doses 

of peroxide.  

5.2. Comparison of the 20 and 60 minutes US AOP– Detailed Tests 

In order to assess the effects of sonication duration on the physico-chemical properties 

and biodegradability of WAS, two AOPs were selected from the preliminary tests for further 

study– one with a low sonication duration of 20 minutes and another with a considerably higher 

treatment time of 60 minutes, each with a peroxide dose of 50 gH2O2/kgTS.  

5.2.1. Physico-chemical Comparison of the 20 and 60 minutes US AOP 

 Both pre-treatments resulted in minimal TCOD losses (of 4-6%) and substantially higher 

ratios of SCOD/TCOD (33% for the 20 minutes AOP and 40% for the 60 minutes AOP), 

and thus higher concentrations of truly soluble COD and colloids than the raw samples. 

 PT with 60 minutes of sonication resulted in higher ffCOD and cCOD fractions (16 and 

24%) than the AOP with 20 minutes of sonication (12 and 21%).  

 The 60 minute AOP solubilised both VSS and FSS but the 20 minutes AOP solubilised 

only VSS.   

 Both PTs resulted in VSS solids degradation, with the AOP with 60 minutes of US 

duration resulting in a significantly higher VSS destruction (46%) than the AOP with 20 

minutes of US (26%) as a result of high solubilisations.   
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 Both PTs resulted in ON solubilisation, with the AOP with 60 minutes of sonication 

resulting in a higher solubilisation (47%). In addition, the AOP with 60 minutes 

sonication resulted in some TKN removal (11%), whereas the AOP with 20 minutes of 

sonication did not lead to any significant removal.  

 The chemi-sonic AOPs resulted in protein degradation, causing an increase in ammonia 

concentration thereby indicating not only rupture of cell walls to release soluble materials 

but also breaking down of compounds at the molecular level 

5.2.2. Biodegradability Comparison of the 20 and 60 minutes US AOP 

 Pre-treatment of WAS resulted in higher COD, solids, and ON destruction than raw WAS 

in anaerobic digestion. Using raw WAS as the feed to an AnMBR (Phase 1) resulted in 

COD, ON, and VSS destructions of 49, 44, and 46%, respectively.  The COD, ON, and 

VSS destructions achieved in with the 20 minute AOP were 58, 52, and 71%, while the 

destructions with the 60 minute AOP were 63, 70, and 77%, respectively.  

 COD decay tests demonstrated that the 60 minute US AOP resulted in a greater readily 

biodegradable content then the 20 minute US AOP,. 

 A cumulative COD mass balance demonstrated an improvement in the biodegradability 

of WAS with an increase in sonication duration 

 Ammonia concentrations were observed to decrease as PT intensity increased despite 

higher ON solubilisations and destruction with PT. It was hypothesized that this was due 

to an increase in struvite precipitation with PT as it was likely that magnesium, and 

phosphate release would also have increased with PT.  

 Analysis of the fixed suspended solids revealed an accumulation of inerts within the 

AnMBR in all three phases. The ratios of AnMBR to feed FSS concentrations were 
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determined to be somewhat less (5.3-5.6) than the SRT/HRT ratio (6) for all phases. This 

indicated that some of the feed FSS was dissolved during digestion and the FSS in the 

AnMBR did not accumulate at the same ratio as that of the SRT/HRT.  

5.3. Membrane Performance of AnMBR  

 Successful membrane performance was observed in AnMBR operation with raw and PT 

WAS.  

 Fouling did not increase over the period of operation of the hollow fibre membrane 

despite high solids and colloidal concentrations in the AnMBR. The minimal fouling was 

attributed to the use of a relaxed mode of operation (with 8 minutes permeation and 2 

minutes relaxation), an operational flux below the critical flux (2.75 LMH), a cleaning 

frequency of 3 times a week, and a gas sparging rate of 2 L/min.   

 The critical flux range for Phase 2 and 3 was determined to be 6 to 12 LMH and these 

values appeared to be independent of the biomass concentrations in the AnMBR.   

In conclusion, PT enhanced the biodegradability of WAS.  The application of a long 

SRT, membrane installation, and an effective fouling minimizing system allowed for a high 

loading rate while maintaining improved biodegradation. Due to a reduced mass flow of solids 

and organics, a PT-AnMBR system may reduce the requirements for downstream processing 

when compared with digestion of untreated raw WAS. Therefore, a PT-AnMBR system can be 

successfully used to treat high solids waste streams. 
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Chapter 6: Recommendations 

This chapter provides recommendations for future work involving a PT-AnMBR system. 

This section will focus on suggestions on pre-treatment, AnMBR biodegradation, and membrane 

operations. 

6.1. Pre-treatment and AnMBR Biodegradation Operations 

 In order to avoid solubilisation of particulates due to storage of WAS for extended 

durations, it is recommended to sample fresh WAS from the WWTP every day rather 

than on a weekly basis. This will ensure that the AnMBR is being fed with WAS of 

similar concentrations every day.  

 Operation of the AnMBR at further reduced HRTs and increased SRTs and the 

application of more rigorous PT is recommended to determine if biodegradability of 

WAS and operational costs can be further improved. 

 The hypothesized struvite precipitation mechanism should be examined in more detail. 

 Biogas production and pathogen concentrations may be monitored in the future to 

provide a comprehensive characterization of the effect of a PT-AnMBR system on 

biodegradability and quality of WAS. 

6.2. Membrane Operations 

The following are some recommendations to further improve the approach and 

characterization of the impact of the physico-chemical characteristics of raw and PT WAS on 

membrane performance.  

 In addition to solids and colloids measurements, analysis of inorganic foulants such as 

struvite should be performed in future studies to better characterize membrane fouling. 
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 To avoid a broad range of TMPs (and fouling rates), continuous feeding instead of 

manual feeding is recommended for future studies. 
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Appendix A: Physio-Chemical, Biodegradation and Membrane Operations Data 

A1: Factorial Design for US + H2O2 AOP 

Table A1.1: 2 x 4 Factorial Design for US + H2O2 PT 

US Duration 

(minutes) 

H2O2 Dose (gH2O2/kg TS) 
Row Sum 

0 5 25 50 

10 

0.2207 0.2243 0.21558 0.2313 
  

0.2221 0.2261 0.23626 0.22138 

0.4428 0.4504 0.45183 0.45268 1.79771 

20 

0.2832 0.24836 0.29125 0.30527 
  

0.26982 0.3047 0.32123 0.31642 

0.55302 0.55306 0.61249 0.62168 2.34025 

Column Sum 0.99582 1.00346 1.06432 1.07436 8.27591 

 

SC = 4.28066                                        SD = 3.18753                                              SH2O2 = 1.47624 

SUS = 3.19209                                       ST = 3.18999                                               SI = 3.21135 

ANOVA: 

Source SS df MS F 

H2O2 1.47624 3 0.49208 200.032 

US 3.19209 1 3.19209 1297.597 

Interaction 3.21135 3 1.07045 435.142 

Treatment 3.18999 7 -  

Error 0.00246 1 0.00246  

Total 12.80514 15   

 

F1, 3, 0.05 = 215.71                        F1, 1, 0.05 = 161.45 

Fobs > Fcritical for US and interaction term  US and interaction factors are significant. 
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A2: Statistical Analysis t-tests 

T-test for Thermal PT at 170ºC 

X1 = 14735 mg/L                                                               X2 = 11602.5 

n1 = 2                                                                                n2 = 2 

v = 2, tobs = 15.533 

 tcritical = t0.025, 2 = 4.30 

tobs > tcritical  There is significant difference between the two means. 

T-test for PT 8 TCOD loss 

X1 = 7657.083, S1 = 1139.612                                        X2 = 7122.5, S2 = 595.643 

n1 = 6                                                                                n2 = 6 

v = 8, tobs = 1.0183 

 tcritical = t0.025, 8 = 2.31 

tobs < tcritical  There is no significant difference between the two means. 

T-test for PT 10 TCOD loss 

X1 = 7420 mg/L, S1 = 332.27 mg/L                                 X2 = 7096 mg/L, S2 = 218.96 mg/L 

n1 = 6                                                                                 n2 = 6 

v = 9, tobs = 1.99 

 tcritical = t0.025, 9 = 2.26 

tobs <tcritical  There is  no significant difference between the two means. 

T-test for PT 8 ffCOD increase 

X1 = 42.08 mg/L, S1 = 36.2 mg/L                                 X2 = 895.83 mg/L, S2 = 140.15 mg/L 

n1 = 6                                                                                 n2 = 6 

v = 6, tobs = 14.45 
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 tcritical = t0.025, 6 = 2.45 

tobs >tcritical  There is a significant difference between the two means. 

T-test for PT 10 ffCOD increase 

X1 = 85 mg/L, S1 = 25.06 mg/L                                 X2 = 1160.42 mg/L, S2 = 104.62 mg/L 

n1 = 6                                                                                 n2 = 6 

v = 6, tobs = 24.5 

 tcritical = t0.025, 6 = 2.45 

tobs >tcritical  There is a significant difference between the two means. 

T-test for PT 8 cCOD increase 

X1 = 9.16 mg/L, S1 = 8.55 mg/L                                       X2 = 1642.92 mg/L, S2 = 292.21 mg/L 

n1 = 6                                                                                 n2 = 6 

v = 5, tobs = 13.7 

 tcritical = t0.025, 5 = 2.57 

tobs >tcritical  There is a significant difference between the two means. 

T-test for PT 10 cCOD increase 

X1 = 22.92 mg/L, S1 = 9.26 mg/L                                     X2 = 1667.5 mg/L, S2 = 356.83 mg/L 

n1 = 6                                                                                 n2 = 6 

v = 5, tobs = 11.3 

 tcritical = t0.025, 5 = 2.57 

tobs >tcritical  There is a significant difference between the two means. 

T-test for PT 8 VSS decrease 

X1 = 5388.33 mg/L, S1 = 93.86 mg/L                               X2 = 4008.33 mg/L, S2 = 133.33 mg/L 

n1 = 9                                                                                 n2 = 9 
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v = 14, tobs = 25.4 

 tcritical = t0.025, 14 = 2.14 

tobs >tcritical  There is a significant difference between the two means. 

T-test for PT 8 FSS decrease 

X1 = 1642.78 mg/L, S1 = 83.83 mg/L                               X2 = 1619.44 mg/L, S2 = 246.02 mg/L 

n1 = 9                                                                                 n2 = 9 

v = 10, tobs = 0.27 

 tcritical = t0.025, 10 = 2.23 

tobs <tcritical  There is no significant difference between the two means. 

T-test for PT 10 VSS decrease 

X1 = 5258.33 mg/L, S1 = 131.23 mg/L                            X2 = 2733.33 mg/L, S2 = 94.29 mg/L 

n1 = 9                                                                                 n2 = 9 

v = 14, tobs = 46.88 

 tcritical = t0.025, 14 = 2.14 

tobs >tcritical  There is a significant difference between the two means. 

T-test for PT 10 FSS decrease 

X1 = 1841.67 mg/L, S1 = 108.65 mg/L                            X2 = 1363.89 mg/L, S2 = 100.77 mg/L 

n1 = 9                                                                                 n2 = 9 

v = 16, tobs = 9.67 

 tcritical = t0.025, 16 = 2.12 

tobs >tcritical  There is a significant difference between the two means. 
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T-test for PT 8 VSS/TSS decrease 

X1 = 77%, S1 = 0.71%                                                      X2 = 71%, S2 = 2.6% 

n1 = 9                                                                                 n2 = 9 

v = 9, tobs = 6.68 

 tcritical = t0.025, 9 = 2.26 

tobs >tcritical  There is a significant difference between the two means. 

T-test for PT 10 VSS/TSS decrease 

X1 = 74%, S1 = 1.2%                                                        X2 = 67%, S2 = 2.1% 

n1 = 9                                                                                 n2 = 9 

v = 13, tobs = 8.68 

 tcritical = t0.025, 13 = 2.16 

tobs >tcritical  There is a significant difference between the two means. 

T-test for PT 8 TKN decrease 

X1 = 651.98 mg/L, S1 = 51.91 mg/L                                    X2 = 629 mg/L, S2 = 20.8 mg/L 

n1 = 6                                                                                   n2 = 6 

v = 6, tobs = 1.00 

 tcritical = t0.025, 6 = 2.45 

tobs <tcritical  There is no significant difference between the two means. 

T-test for PT 10 TKN decrease 

X1 = 673.8 mg/L, S1 = 50.52 mg/L                                    X2 = 599.71 mg/L, S2 = 42.17 mg/L 

n1 = 6                                                                                   n2 = 6 

v = 10, tobs = 2.76 

 tcritical = t0.025, 10 = 2.23 
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tobs >tcritical  There is a significant difference between the two means. 

T-test for PT 8 Ammonia Increase 

X1 = 18.93 mg/L, S1 = 3.94 mg/L                                    X2 = 34.82 mg/L, S2 = 1.92 mg/L 

n1 = 6                                                                                   n2 = 6 

v = 7, tobs = 8.88 

 tcritical = t0.025, 7 = 2.36 

tobs >tcritical  There is a significant difference between the two means. 

T-test for PT 10 Ammonia increase 

X1 = 25.10 mg/L, S1 = 3.96 mg/L                                    X2 = 46.74 mg/L, S2 = 5.22 mg/L 

n1 = 6                                                                                   n2 = 6 

v = 9, tobs = 8.09 

 tcritical = t0.025, 9 = 2.26 

tobs >tcritical  There is a significant difference between the two means. 

T-test for PT 8 ON decrease 

X1 = 633.06 mg/L, S1 = 35.76 mg/L                                 X2 = 594.31 mg/L, S2 = 19.72 mg/L 

n1 = 6                                                                                   n2 = 6 

v = 7, tobs = 1.81 

 tcritical = t0.025, 7 = 2.36 

tobs <tcritical  There is no significant difference between the two means. 

T-test for PT 10 ON decrease 

X1 = 648.69 mg/L, S1 = 52.935 mg/L                                    X2 = 552.96 mg/L, S2 = 34.918 mg/L 

n1 = 6                                                                                   n2 = 6 

v = 9, tobs = 3.69 
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 tcritical = t0.025, 9 = 2.26 

tobs >tcritical  There is a significant difference between the two means. 
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A3: Preliminary PT Tests 

 

Table A3.1: Preliminary PT Results 

Pre-

treatment 

cCOD/TCOD (%) 
ffCOD/TCOD 

(%) 

pCOD/TCOD 

(%) 

sCOD/TCOD 

(%) TCOD loss (%) 

SUM 

Average SD (%) Average 
SD 

(%) 
Average 

SD 

(%) 
Average 

SD 

(%) 
Average 

SD 

(%) 

0 0.32 1.12 0.57 1.94 99.11 0.11 0.89 0.11 0.00 0.00 100.00 

1 9.75 0.41 12.39 2.27 72.31 0.92 22.14 0.10 5.55 0.18 100.00 

2 8.81 0.17 14.81 0.13 72.51 3.19 22.52 0.13 3.86 0.70 98.89 

3 8.51 1.31 14.01 0.34 75.20 0.80 22.59 1.46 2.29 0.80 100.07 

4 8.52 2.15 14.08 0.49 75.67 1.20 23.63 0.70 1.74 0.46 101.04 

5 10.57 0.38 17.08 1.33 66.19 1.44 27.65 0.95 6.15 0.21 100.00 

6 11.30 0.51 15.68 0.51 70.02 0.94 26.98 3.98 2.99 1.43 100.00 

7 13.09 0.20 17.52 0.72 66.01 2.28 30.61 2.12 3.38 0.43 100.00 

8 20.53 0.34 10.55 0.70 63.75 2.06 31.08 0.78 5.17 1.17 100.00 

9 24.13 2.11 12.17 2.44 56.80 0.38 36.30 0.16 6.90 1.31 100.00 

10 24.91 0.95 21.53 1.84 46.62 1.63 46.44 0.49 6.94 0.44 100.00 

11 13.07 0.72 13.81 1.05 66.47 0.05 26.88 1.51 6.65 0.13 100.00 

12 20.28 1.94 14.50 0.10 43.39 0.71 34.35 1.53 21.26 2.45 98.99 
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A4: Detailed PT 8 Tests 

 

Table A4.1: Detailed Tests for PT 8 RAW 

DAYS 

RAW  

TCOD 

(mg/L) 

SCOD 

(mg/L) 

ffCOD 

(mg/L) 

tTKN 

(mg/L) 

sTKN 

(mg/L) 

NH3 

(mg/L) 

1 9266.25 111.25 90.00 579.74 24.31 13.54 

5 9266.25 111.25 90.00 579.74 24.31 13.54 

8 6772.50 33.75 37.50 699.36 40.20 20.41 

12 6777.50 33.75 37.50 699.36 40.20 20.41 

16 6930.00 5.00 2.50 676.87 41.82 22.86 

19 6930.00 5.00 2.50 676.87 41.82 22.86 

Average 7657.08 50.00 43.33 651.99 35.44 18.93 

SD 1139.61 44.87 35.96 51.91 7.90 3.94 

 

 

 

Table A4.2: Detailed Tests for PT 8 WAS 

DAYS 

PT 8 WAS 

TCOD 

(mg/L) 

SCOD 

(mg/L) 

ffCOD 

(mg/L) 

tTKN 

(mg/L) 

sTKN 

(mg/L) 

NH3 

(mg/L) 

1 7953.75 3138.75 1087.5 600.0001 322.2557 32.931 

5 7953.75 3138.75 1087.5 600.0001 322.2557 32.931 

8 6588.75 2227.5 843.75 647.2137 302.6608 34.083 

12 6588.75 2227.5 843.75 647.2137 302.6608 34.083 

16 6825 2250 756.25 640.192 320.0949 37.4445 

19 6825 2250 756.25 640.192 320.0949 37.4445 

Average 7122.50 2538.75 895.83 629.14 315.00 34.82 

SD 595.64 424.36 140.16 20.80 8.77 1.91 
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Table A4.3: Detailed Solids Tests for PT 8 WAS 

Date DAYS 

RAW PT 8 

TSS 

(mg/L) 

VSS 

(mg/L) 

FSS 

(mg/L) 
VSS/TSS TSS 

(mg/L) 

VSS 

(mg/L) 

FSS 

(mg/L) 
VSS/TSS 

Apr-12 1 6850 5300 1550 0.773723 5525 4075 1450 0.737557 

Apr-14 3 6850 5300 1550 0.773723 5525 4075 1450 0.737557 

Apr-16 5 6850 5300 1550 0.773723 5525 4075 1450 0.737557 

Apr-18 7 6850 5300 1550 0.773723 5525 4075 1450 0.737557 

Apr-19 8 7150 5425 1725 0.758741 5500 3875 1625 0.704545 

Apr-21 10 7150 5425 1725 0.758741 5500 3875 1625 0.704545 

Apr-23 12 7150 5425 1725 0.758741 5500 3875 1625 0.704545 

Apr-25 14 7150 5425 1725 0.758741 5500 3875 1625 0.704545 

Apr-26 15 7280 5595 1685 0.768544 6550 4275 2275 0.652672 

Average 7031.1111 5388.333 1642.778 0.766489 5627.778 4008.333 1619.444 0.713453 

SD 166.56293 93.86752 83.83552 0.0071 326.2677 133.3333 246.0177 0.026532 
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A5: Detailed PT 10 Tests 

 

Table A5.1: Detailed Tests for PT 10 RAW 

 

DAYS 

RAW  

TCOD 

(mg/L) 

SCOD 

(mg/L) 

ffCOD 

(mg/L) 

tTKN 

(mg/L) 

sTKN 

(mg/L) 

NH3 

(mg/L) 

1 7428.75 86.25 58.75 741.32 35.80 22.82 

6 7428.75 86.25 58.75 741.32 35.80 22.82 

8 7008.75 87.50 77.50 619.82 21.11 21.81 

12 7008.75 87.50 77.50 619.82 21.11 21.81 

15 7822.50 150.00 118.75 660.27 24.17 30.68 

19 7822.50 150.00 118.75 660.27 24.17 30.68 

Average 7420.00 107.92 85.00 673.80 27.03 25.10 

SD 332.27 29.76 25.06 50.52 6.33 3.96 

 

 

 

Table A5.2: Detailed Tests for PT 10 WAS 

DAYS 

PT 10 WAS 

TCOD 

(mg/L) 

SCOD 

(mg/L) 

ffCOD 

(mg/L) 

tTKN 

(mg/L) 

sTKN 

(mg/L) 

NH3 

(mg/L) 

1 6903.75 2433.75 1162.50 571.19 293.39 42.80 

6 6903.75 2433.75 1162.50 571.19 293.39 42.80 

8 6982.50 2626.25 1031.25 568.61 322.32 43.30 

12 6982.50 2626.25 1031.25 568.61 322.32 43.30 

15 7402.50 3423.75 1287.50 659.33 425.84 54.13 

19 7402.50 3423.75 1287.50 659.33 425.84 54.13 

Average 7096.25 2827.92 1160.42 599.71 347.19 46.74 

SD 218.92 428.58 104.62 42.17 56.86 5.22 
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Table A5.3: Detailed Solids Tests for PT 10  

Date DAYS 

RAW PT 10 

TSS 

(mg/L) 

VSS 

(mg/L) 

FSS 

(mg/L) 
VSS/TSS TSS 

(mg/L) 

VSS 

(mg/L) 

FSS 

(mg/L) 
VSS/TSS 

Jun-07 1 7025 5100 1925 0.725979 4225 2825 1400 0.668639 

Jun-09 3 7025 5100 1925 0.725979 4225 2825 1400 0.668639 

Jun-12 6 7025 5100 1925 0.725979 4225 2825 1400 0.668639 

Jun-13 7 7050 5300 1750 0.751773 4000 2725 1275 0.68125 

Jun-14 8 7050 5300 1750 0.751773 4000 2725 1275 0.68125 

Jun-16 10 7050 5300 1750 0.751773 4000 2725 1275 0.68125 

Jun-18 12 7050 5300 1750 0.751773 4000 2725 1275 0.68125 

Jun-19 13 7050 5300 1750 0.751773 4100 2500 1600 0.609756 

Jun-21 15 7575 5525 2050 0.729373 4100 2500 1600 0.609756 

Average 7100 5258.333 1841.667 0.740686 4097.222 2708.333 1388.889 0.661159 

SD 168.32508 131.2335 108.6534 0.012434 98.20928 119.6058 125.339 0.028022 
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A6: COD Destruction Results 

 

 

Figure A6.1: Phase 2 COD Destruction 

 

 

Figure A6.2: Phase 3 COD Destruction 
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Influent mass loading = 2.7519 gCOD/d 

Outgoing mass loading = 1.2543+ 0.0816 = 

1.3359 gCOD/d 

 COD Destruction = [(2.5719-

1.3359)/2.5719]*100%  

= 52 % Destruction 

 

Influent mass loading = 2.9755 gCOD/d 

Outgoing mass loading = 1.1525 + 0.0705 = 

1.223 gCOD/d 

 COD Destruction = [(2.9755-

1.223)/2.9755]*100%  

= 59 % Destruction 
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A7: Solids Destruction Results 

 

 

Figure A7.1: Phase 2 Solids Destruction 

 

 

Figure A7.2: Phase 2 Solids Destruction 
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Influent mass loading = 2.4046 gVSS/d 

Outgoing mass loading = 1.7098 gVSS/d 

 VSS Destruction = [2.4046-1.7098)/2.4046]*100%  

= 29 % Destruction 
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A8: ON Destruction Results 

 

Figure A8.1: ON Destruction for Phase 2 

 

 

Figure A8.2: ON Destruction for Phase 3 
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ON (Feed) = 0.2551-0.0141 = 0.241 gN/d 

ON (Waste) = 0.1043-0.0185 = 0.0858 gN/d 

ON (Permeate) = 0.13 – 0.0988 =  0.0312 gN/d 

ON Destruction = [[0.241 – 

(0.0858+0.0312)]/0.241] *100            

 = 46% 

 

ON (Feed) = 0.2516-0.0197 = 0.2319 gN/d 

ON (Waste) = 0.1013-0.0167 = 0.0846 gN/d 

ON (Permeate) = 0.0948-0.0763 = 0.0185 

gN/d 

ON Destruction = [[0.2319 – 

(0.0846+0.0185)]/0.2319] *100            

 = 56% 
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A9: COD Decay Tests for Phase 2 and Phase 3 

 

Table A9.1: COD Decay Data for Phase 2 

Time (hr) T1 T2 Phase 3 Avg SD 

0 82.305 79.863 81.084 1.221 

5 65.305 62.324 63.8145 1.4905 

10 63.163 58.992 61.0775 2.0855 

15 62.945 60.196 61.5705 1.3745 

20 62.566 60.59 61.578 0.988 

24 64.131 62.441 63.286 0.845 

COD Change 0.2208128 0.2181486 0.219480705 0.0013321 

 

 

Table A9.2: COD Decay Data for Phase 3 

Time (hr) T1 T2 Phase 2 Avg SD 

0 88.408 82.653 85.5305 2.8775 

5 76.105 70.07 73.0875 3.0175 

10 66.171 63 64.5855 1.5855 

15 73.989 67.26 70.6245 3.3645 

20 73.732 68.44 71.086 2.646 

24 72.954 70.283 71.6185 1.3355 

COD Change 0.1748032 0.1496618 0.162232512 0.0125707 
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A10: Critical Flux Tests for Phase 2 and Phase 3 

 

Table A10.1: Critical Flux Test for Phase 2 

Time (mins) 

Flux 

(LMH) 

Average 

TMP SD 

10 2.75 3.979 0.089 

22 5.99 8.315 0.115 

34 11.99 74.3535 0.3665 

46 17.99 82.29 0.06 

58 23.98 85.0885 0.2285 

70 17.99 83.9625 0.3625 

82 11.99 79.555 0.055 

94 5.99 46.85 1 

106 2.75 4.675 0.075 

 

 

Table A10.2: Critical Flux Test for Phase 3 

Time (mins) Flux (LMH) Average TMP SD 

10 2.75 4.84 0.08 

22 5.99 10.495 0.395 

34 11.99 81 0.2 

46 17.99 85.75 0.15 

58 23.98 87.88 0.19 

70 17.99 86.25 0.35 

82 11.99 83.05 0.65 

94 5.99 52.5 1 

106 2.75 11.15 0.35 

 

 

 

 


