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Abstract 

The University of Waterloo Alternative Fuels Team (UWAFT) is a student team that designs 

and builds vehicles with advanced powertrains. UWAFT uses alternatives to fossil fuels 

because of their lower environmental impacts and the finite nature of oil resources. UWAFT 

participated in the EcoCAR Advanced Vehicle Technology Competition (AVTC) from 2008 

to 2011. The team designed and built a Hydrogen Fuel Cell Plug-In Hybrid Electric Vehicle 

(FC-PHEV) and placed 3
rd

 out of 16 universities from across North America. 

UWAFT design projects offer students a unique opportunity to advance and augment their 

core engineering knowledge with hands-on learning in a project-based environment. The 

design of thermal management systems for powertrain components is a case study for design 

engineering which requires solving open ended problems, and is a topic that is of growing 

importance in undergraduate engineering courses. Students participating in this design 

project learn to develop strategies to overcome uncertainty and to evaluate and execute 

designs that are not as straightforward as those in a textbook. Electrical and control system 

projects require students to introduce considerations for reliability and robustness into their 

design processes that typically only focus on performance and function, and to make 

decisions that balance these considerations in an environment where these criteria impact the 

successful outcome of the project. The consequences of a failure or unreliable design also 

have serious safety implications, particularly in the implementation of powertrain controls. 

Students integrate safety into every step of control system design, using tools to identify and 

link together component failures and vehicle faults, to design detection and mitigation 

strategies for safety-critical failures, and to validate these strategies in real-time simulations. 

Student teams have the opportunity to offer a rich learning environment for undergraduate 

engineering students. The design projects and resources that they provide can significantly 

advance student knowledge, experience, and skills in a way that complements the technical 

knowledge gained in the classroom. Finding ways to provide these experiences to more 

undergraduate students, either outside or within existing core courses, has the potential to 

enhance the value of program graduates. 
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Chapter 1 

Introduction 

Automotive powertrains are evolving at a rapid rate. While the efficiency and emissions of 

conventional gasoline and diesel powered vehicles continue to improve, consumers are now 

starting to see departures from the conventional combustion vehicle, with gasoline-electric 

hybrids and fully electric vehicles being offered by many original equipment manufacturers 

(OEMs). Hydrogen vehicles are also available in limited markets. Barriers to 

commercialization of hydrogen vehicles currently include their higher relative cost, level of 

reliability and refinement, public acceptance of hydrogen as a fuel, and the limited 

availability of hydrogen fuelling infrastructure [1].  Nevertheless, some original equipment 

manufacturers (OEMs) will have a commercial fuel cell vehicle in the market in 2015. 

OEMs are continuing to develop new ways to meet ever more stringent fuel economy 

standards while maintaining the overall experience that consumers have come to expect form 

car ownership. Vehicle performance, range, interior space, purchasing cost, maintenance 

costs, and long-term reliability are all considerations that factor heavily into a buyer’s 

decision making process. It can be challenging to meet buyers’ expectations in these areas 

when developing a vehicle powered by alternative fuels. 

The University of Waterloo Alternative Fuels Team (UWAFT) is a student organization that 

designs and builds vehicles powered by alternative fuels. The team aims to give engineering 

students practical experience in automotive engineering, with the unique opportunity to work 

with cutting-edge powertrain technology. The team builds its vehicles with the aim to 

demonstrate how current technology can provide alternative fuels powertrains that still meet 

the demands of automotive consumers. The team pushes the boundaries of current 

technology (sometimes developing its own in the process) to demonstrate to consumers the 

exciting new vehicles that await them in the coming years. Students are also able to learn 

about the business and consumer aspects of the automotive world, performing fundraising, 

outreach, and educational activities to raise the profile of emerging powertrains and help 

consumers better understand their workings, benefits, and limitations. 
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To enable these goals, the team has a history of participation in Advanced Vehicle 

Technology Competitions (AVTCs) run by Argonne National Laboratories (ANL) in the 

United States. These competitions involve a select group of universities from across North 

America, providing a framework that enables students to learn about, work with, and 

contribute to the latest powertrain technology. AVTCs are typically sponsored by a major 

OEM that provides each team with a vehicle to work on, some powertrain components, and 

engineering support. The competition also attracts several tier 1 and tier 2 suppliers that 

provide components and support at no cost or at a reduced price. With this support teams 

select their own powertrain architectures and spend three years designing, building, and 

testing their concepts. Yearly competitions are held where the teams and their vehicles gather 

to participate in events that measure each vehicle’s performance, fuel economy, 

environmental impact, and consumer acceptability. This is not an easy task, as teams must 

engineer their vehicles to not only exceed the original fuel economy and environmental 

ratings, but to meet and exceed the original vehicle’s safety, crash-worthiness, and consumer 

features.  

This unique student team experience provides an excellent opportunity to examine an 

alternative, more hands-on and project-driven method of engineering education, called 

project-based learning. Project-based education, or experiential learning, has been discussed 

by researchers and implemented by institutions looking to either replace or augment the 

widely-used lecture-based format of post-secondary professional studies, particularly in 

professions like engineering and medicine [2]. In project-based learning, education centers 

around the execution of projects or case studies, and through their execution students learn 

the desired technical concepts [3]. This approach has been suggested as a way to expose 

students to important engineering concepts required by industry, such as teamwork, resource 

management, and dealing with uncertainty in real-world problems [4]; essentially the ability 

to apply classroom theory in the project setting where real-world engineering takes place. 
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1.1 Thesis Objective 

This thesis describes the author’s two years of project-based education working as a lead 

member of the University of Waterloo Alternative Fuels Team (UWAFT). Using case studies 

from the author’s work on the UWAFT EcoCAR competition vehicle, this thesis documents 

the model-based design and construction of an advanced hydrogen powered plug-in hybrid 

vehicle (PHEV). This thesis also demonstrates how engineering principles are learned in a 

project-based environment and explores the benefits and drawbacks of this type of 

experiential education. 

The University of Waterloo Alternative Fuels Team (UWAFT) is an example of a pure 

project-based learning environment. Many students typically participate in UWAFT through 

the ME481 senior design course, however there are several students who become involved 

from their first year and who participate without specific academic credit. At UWAFT 

projects are the focal point of each student’s education. Individual students direct their own 

learning (with guidance from faculty and industry professionals) in order to achieve the goals 

of the project. This thesis will examine projects executed in that environment and how they 

offer teaching opportunities that complement the traditional lecture-based model.  

This thesis is an examination of the inter-related design projects involved in building an 

electric powertrain fuel cell vehicle, with some of the author’s select projects outlined in 

detail. The thesis highlights technical and non-technical problems that arise in a project-

based learning environment, how they are solved, and how these experiences are valuable 

contributions to engineering education. References are made to the undergraduate 

Mechanical Engineering curriculum at the University of Waterloo (of which the author is a 

graduate) when discussing how project-based learning compares with and sometimes draws 

from the traditional lecture-based format. The aim is to identify elements of the curriculum 

that enable the team to meet the technical requirements of the project, and to highlight unique 

elements of project-based learning that are not found in the classroom. This thesis can be 

used by future engineering educators and student design teams to better prepare students for 

the technical and non-technical challenges faced by today’s graduating engineers, and to 
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extract the most value from experiential learning opportunities in both student teams and 

lecture-based courses. 

1.2 Thesis Outline 

The thesis begins with an examination of the motivations driving research into alternative 

fuels, specifically the limited availability of oil resources [5], the environmental impacts of 

their use, and the role of the transportation sector [6] as contributor to urban air pollution. 

Next is a review of the literature on conventional and alternative automotive powertrains 

including hydrogen powered fuel cells. This is followed by a review of the current state of 

emissions and energy consumption evaluation procedures for conventional and emerging 

powertrains, including “dual-fuel” hybrid vehicles such as UWAFT’s EcoCAR vehicle. This 

review provides a technical background for understanding the design work that is described 

in the body of the thesis. Finally, a review of recent project-based and experiential learning 

literature, with a focus on modern engineering education, sets the stage for the exploration of 

the project-based learning environment at UWAFT. 

With a technical background in electrified vehicle powertrains, the UWAFT EcoCAR vehicle 

is introduced. The vehicle architecture is explained and the individual powertrain 

components are described. UWAFT’s project-based learning environment is also introduced 

at this point, along with the technical design projects that are the basis for discussion of 

project-based learning. Specifically, these are the design of the thermal management systems, 

the powertrain control system, and the vehicle safety control system. Each of these projects 

highlight some of the key features of project-based technical learning, including the analysis 

of safety, assessment of risk, considerations for reliability and robustness, and dealing with 

uncertainty. These are all considerations that go well beyond the solutions in the back of a 

textbook and yet are ever-present in any real-world engineering design task that involves an 

open-ended problem. Non-technical elements, such as management of time, materials, cost, 

teams, and tasks are also discussed. While engineering graduates may not encounter all of 

these directly upon graduation, all will certainly encounter some of them throughout their 

careers. 
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These ‘outcomes’ of an educational program are consistent with the Canadian Engineering 

Accreditation Board (CEAB) ‘outcome-based’ educational criteria [7]. These criteria, to 

quote from the CEAB accreditation guidelines, are: 

 “A knowledge base for engineering: Demonstrated competence in university level 

mathematics, natural sciences, engineering fundamentals, and specialized 

engineering knowledge appropriate to the program. 

 Problem analysis: An ability to use appropriate knowledge and skills to identify, 

formulate, analyze, and solve complex engineering problems in order to reach 

substantiated conclusions. 

 Investigation: An ability to conduct investigations of complex problems by methods 

that include appropriate experiments, analysis and interpretation of data, and 

synthesis of information in order to reach valid conclusions. 

 Design: An ability to design solutions for complex, open-ended engineering problems 

and to design systems, components or processes that meet specified needs with 

appropriate attention to health and safety risks, applicable standards, economic, 

environmental, cultural and societal considerations. 

 Use of engineering tools: An ability to create, select, apply, adapt, and extend 

appropriate techniques, resources, and modern engineering tools to a range of 

engineering activities, from simple to complex, with an understanding of the 

associated limitations. 

 Individual and team work: An ability to work effectively as a member and leader in 

teams, preferably in a multi-disciplinary setting. 

 Communication skills: An ability to communicate complex engineering concepts 

within the profession and with society at large. Such abilities include reading, 

writing, speaking and listening, and the ability to comprehend and write effective 

reports and design documentation, and to give and effectively respond to clear 

instructions. 
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 Professionalism: An understanding of the roles and responsibilities of the 

professional engineer in society, especially the primary role of protection of the 

public and the public interest. 

 Impact of engineering on society and the environment: An ability to analyse social 

and environmental aspects of engineering activities. Such abilities include an 

understanding of the interactions that engineering has with the economic, social, 

health, safety, legal, and cultural aspects of society; the uncertainties in the 

prediction of such interactions; and the concepts of sustainable design and 

development and environmental stewardship. 

 Ethics and equity: An ability to apply professional ethics, accountability, and equity. 

 Economics and project management: An ability to appropriately incorporate 

economics and business practices including project, risk and change management 

into the practice of engineering, and to understand their limitations. 

 Life-long learning: An ability to identify and to address their own educational needs 

in a changing world, sufficiently to maintain their competence and contribute to the 

advancement of knowledge.” 

This thesis ends with a review of the on-road evaluation of the UWAFT EcoCAR from the 

final year of competition. The vehicle’s performance in each category is discussed with 

reference to the design tasks, demonstrating how project-based learning culminated in the 

successful construction of a working vehicle. 
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Chapter 2 

Literature Review and Background 

2.1 Motivation for Alternative Fuels 

There are many reasons motivating the current research into alternative fuels for automotive 

powertrains. Oil, obtained using various methods ranging from drilling to the oil sands, is 

becoming increasingly expensive as resources are depleted.  As of 2011 the world’s proven 

(likely recoverable) oil reserves have been estimated  by various sources as 1,474 billion 

barrels [5], 1,523 billion barrels [8], and 1,654 billion barrels [9]. Oil consumption in that 

year was between 29 billion barrels [9] and 32 billion barrels [5]. That is, as of 2011 there 

was enough recoverable oil known to exist to enable 50 years of global oil consumption at 

2011 rates. The question of how long we can really continue to rely on oil for energy is, of 

course, much more complex. Economic growth, especially in developing countries like India 

and China, will drive increasing oil consumption rates, and new oil fields and new oil 

recovery technologies will almost certainly be discovered. More importantly, oil continues to 

be more difficult and more costly to exploit as easier reserves are depleted and we turn to 

“unconventional oil” like the Alberta oil sands or disruptive technologies such as ‘fracking’. 

Finally, the nature of estimating oil reserves leaves a great deal of uncertainty that makes 

prediction of future economic feasibility extremely difficult. The question of when oil-based 

energy will become economically infeasible is far beyond the scope of this thesis. While no 

one can be certain, the general conclusion appears to be that we must replace oil with other 

energy sources over the next century if we are to meet our future energy needs [10]. 

With this goal in mind we must examine where energy is consumed in our economy so that 

we can identify the most effective strategies to reduce our petroleum dependence. In Canada, 

the transportation sector accounted for just under 31% of the country’s total energy 

consumption in 2008 [6]. Further analysis of the data, shown in Figure 1, shows that road 

transportation alone accounted for 23.4% of the country’s total energy consumption, with the 

overwhelming majority of that energy being derived from gasoline and diesel fuel. In fact, 
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petroleum products account for 32% of Canada’s total energy consumption as of 2010, 

followed closely by natural gas at 22% [11]. Globally, it has been estimated that 14% of all 

energy consumption is attributable to road transportation [12]. 

 

 

Figure 1: Energy use in Canada in petajoules, 2008, breakdown by sector, generated using data from 

Natural Resources Canada’s Energy Use Handbook [6] 

Curbing the emission of the products of combustion is another motivator in the search for 

alternative energy sources. Greenhouse gases such as CO2 have been targeted as contributors 

to climate change, and tailpipe emissions resulting from internal combustion engines 

additionally contribute to smog and declining urban air quality. Additionally, human 

populations (especially in developing nations) are steadily concentrating in higher density 

urban environments and a higher percentage of the population owns vehicles [13] [14]. 

Urban environments have been shown to possess lower emissions per capita, due in part to 

the higher density of homes and businesses and the mass availability of public transit, both 

encouraging a reduction in automobile use [15]. However, while lower emissions per capita 

(and hence lower emissions overall) makes a positive argument for urbanization, the airborne 

concentration of pollutants and hence per capita exposure is higher in cities, leading to 

(sometimes severe) air quality concerns. 
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In Canada, the road transportation sector accounts for a higher portion of nationwide 

greenhouse gas emissions than it does nationwide energy consumption. Figure 2 shows that 

road transportation is responsible for 28.7% of all greenhouse gas emissions in Canada as of 

2008 [6]. In the United States the figures are similar with 32.6% of all GHG emissions 

attributed to the transportation sector as a whole [16]. 

 

 

Figure 2: GHG emissions in Canada in megatonnes of CO2 equivalent, 2008, breakdown by sector, 

generated using data from Natural Resources Canada’s Energy Use Handbook [6] 

Additional motivation comes in the form of energy security. For many countries the lack of 

domestic oil reserves and the consequent need to import this vital energy source from 

potentially volatile regions raises the issue of having an independent, secure energy supply. 

These factors are driving significant investments in research for advanced automotive 

powertrains that use alternative fuels. 

Compared to the industrial sector (the largest contributor to Canada’s energy requirements), 

transportation involves a relatively small set of technologies that evolve at a relatively rapid 

rate. For these reasons the transportation sector is an excellent target for advanced 

technologies that will provide alternatives to petroleum-based energy. 
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2.2 Electrification of the Automotive Powertrain 

The efficiency of the internal combustion engine (ICE) is limited by the principle of 

thermodynamic efficiency and cannot be significantly improved, though manufacturers are 

still finding incremental optimizations in engine and powertrain design. The internal 

combustion engine running on gasoline or diesel fuels cannot be sustained into the future as 

petroleum supplies become scarcer and/or more expensive. The greenhouse gases emitted by 

these engines are also harmful. Using electricity for automotive propulsion is being explored 

with increasing interest as a solution to these problems. 

Powertrains using some form of electricity for propulsion are rapidly becoming available to 

consumers at dealerships around the world. There are a wide variety of electrified powertrain 

architectures, each with specific advantages and disadvantages that make them best-suited for 

specific situations. With such variety of fundamental powertrains now available, the need to 

understand the specific application for a vehicle has become critical to maximizing the 

benefits offered by these new technologies. This section will examine the various electrified 

architectures that are currently employed in automotive powertrains, providing an 

understanding of their operation, their benefits, their drawbacks, and how they compare. 

2.2.1 Gasoline-Electric Hybrids 

Gasoline-electric hybrids combine a traditional gasoline engine with the ability to generate, 

store, and utilize electrical energy for propulsion. Batteries are often used to store electricity 

(though an ultra-capacitor can sometime be used as well), and one or more electric motors 

and generators are used to charge the batteries and drive the wheels. Many arrangements 

between these components and the ICE exist, and various “degrees of hybridization” can be 

achieved by varying the degree of electrification or the amount that the electrical part of the 

powertrain contributes to the overall propulsion of the vehicle. 

Common arrangements of a hybrid powertrain have typically been classified as series, 

parallel, and series-parallel [17]. A series hybrid, as its name implies, has only a single 

pathway for propulsion energy. The usual combustion engine is solely connected to a 

generator, which creates electricity. That electricity flows into an electric motor for 
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propulsion, and/or into a battery/capacitor for storage. This appears counter-intuitive, given 

that this arrangement adds two energy conversion steps to the conventional ICE-only 

powertrain (mechanical-to-electrical at the generator, and electrical-to-mechanical at the 

motor). The value in this arrangement is realized by the de-coupling of the vehicle load and 

engine load. The combustion engine is relatively inefficient when operating in the low power 

region. During low speed city driving steady-state driving, deceleration, and idling, the 

vehicle demand is not high enough for the engine to operate at peak efficiency, and fuel is 

consequently wasted. With the addition of an energy storage buffer such as a battery, the 

engine can operate at a higher power output than would otherwise be permitted by the 

instantaneous vehicle power requirement, thus using fuel more efficiently. The additional 

energy conversion steps at the electric generator and motor are more than justified by the 

increase in the engine efficiency. The electric motor can also act as a generator during 

deceleration, recovering some of the vehicle’s kinetic energy that is normally lost to friction 

braking. This is known as regenerative braking. When the vehicle is idle the engine can be 

shut off altogether without concern for the time required to re-start it, since the electric motor 

can run off battery energy for a short time. This saves significant fuel that is otherwise 

completely wasted. This is commonly referred to as ‘start-stop’ technology. An additional 

benefit of the series arrangement is that the electric motor is the sole source of traction 

power. Since electric motors can produce maximum torque at zero speed, the series hybrid 

provides superior acceleration performance compared to the combustion engine, which must 

spool up to several thousand RPM before maximum torque is produced. Finally, the size of 

the combustion engine can be reduced, as it no long needs to supply all of the power required 

for acceleration. The smaller engine will be more efficient at the lower power levels of a 

load-leveling energy source, and it will be easier to integrate into a vehicle that is now 

sharing physical space with several new components. 
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Figure 3: Series hybrid powertrain 

There are some drawbacks to the series hybrid arrangement. The series hybrid gains 

efficiency over its non-hybrid counterpart when the vehicle operates outside the engine’s 

optimal operating region, but the extra energy conversion steps that enable this gain, which 

are unavoidable given the single energy pathway, yield a net loss when the vehicle load falls 

inside the engine’s efficient operating region, where a conventional vehicle would thus 

operate more efficiently without the extra energy conversion steps (not to mention without 

the additional weight of the motor, generator, and batteries). Also, while the engine size can 

be reduced / optimized for the lower engine power demands of a series hybrid, the generator 

and motor must be large enough to support all of the vehicle’s power requirements, resulting 

in significant cost. 

A parallel hybrid uses a motor and batteries to augment the combustion engine, but the 

arrangement of these components is drastically different than in the series version. In a 

parallel hybrid there are multiple energy pathways leading from the power plants to the 

wheels. The engine and electric motor are connected in parallel; this connection can happen 

at multiple points along the powertrain, for example at the input or output of the 

transmission, or at the engine’s crankshaft as a belt-driven accessory. The battery is 

connected to the electric motor, in the same manner that the fuel tank is connected to the 

engine. The two power plants, connected in parallel, can interact in several ways. The engine 

and the electric motor can add their output torques to drive the wheels together. Either the 

engine or the motor can drive the wheels on their own, with the other either disconnected via 
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a clutch or spinning freely at the same speed. The engine can also drive the motor in this 

arrangement, which will then act as a generator and charge the battery. 

The parallel hybrid arrangement solves some of the disadvantages of the series hybrid. The 

electrical components do not solely fulfill the traction demands of the vehicle, and so they 

can be reduced in size, weight, and cost. The arrangement also permits the engine to drive the 

wheels, to charge the battery, or both. Unlike the series hybrid, if the vehicle load falls within 

the optimal efficiency region of the engine, the engine may simply drive the wheels directly, 

skipping the additional energy conversion steps that are required for a series hybrid. 

Regenerative braking and engine stop-start are also possible. Due to the mechanical 

connection between the electric motor, the engine, and the wheels, however, the parallel 

hybrid cannot operate the engine speed independently of the motor and vehicle speed. Also, 

the parallel hybrid typically does not have the instant-torque acceleration of the series 

arrangement, due to the smaller electric motor and the reliance on the engine for some 

traction power. In some vehicles, the “parallel” connection between the engine and the 

electric motor is achieved by placing one on the front axle and one on the rear. The road 

becomes and link between them, and the engine can charge the battery by putting torque on 

the front axle, which is consumed by the electric motor on the rear axle. This is known as 

“parallel through the road”. 

 

Figure 4: Parallel hybrid powertrain 

Parallel hybrids are further divided into full, mild, strong, and various other descriptions of 

the “degree of hybridization”. The combustion and electrical power plants operate in parallel 

to split the load, and the degree of this split varies depending on the objectives of the design. 
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Mild hybrids have a smaller motor and battery, which means that their ability to both capture 

braking energy and drive without the use of engine power is limited. Strong or full hybrid use 

larger components, adding cost and weight but enabling greater energy recovery and more 

engine-off operation, both yielding greater system efficiencies. 

It is clear that series and parallel hybrids each have distinct advantages and disadvantages. 

Some of these advantages (regenerative braking, stop-start) are common to both 

arrangements, as are some of the disadvantages (cost, complexity, weight). In other areas, 

such as efficiency during steady-state driving or efficiency during transient driving, these 

arrangements are polar opposites. The logical solution is to combine the benefits of both 

arrangements, which has been done in the form of a series-parallel hybrid. 

The series-parallel hybrid connects the engine, two electric motors/generators, and the 

wheels together in a planetary gear set. Depending on where the power is split within the 

transmission, this type of hybrid can be classified as input-split, output-split, or compound-

split. By controlling the speed of the electric motors the ratio of the traction power supplied 

by the internal combustion engine (ICE) and electric components can be varied infinitely. 

This is the parallel part of the architecture. The planetary gear set also allows the engine to 

operate independently of the wheels, giving the de-coupling capabilities of a series hybrid as 

well. Thus, the series-parallel is the most flexible and efficient hybrid arrangement, allowing 

for all the benefits of regenerative braking, optimized / downsized engine and 

motor/generator components, engine start-stop, and optimized energy pathway selection. 

This comes at the cost of increased complexity in the design of the series-parallel device and 

the additional electric motor that completes the triplicate of components controlling the 

planetary gear set. The series-parallel hybrid is the most common arrangement in 

commercially available vehicles, and the most popular of those is probably the Hybrid 

Synergy Drive in the Toyota Prius. General Motors also participated in the development and 

sale of the Two-Mode Hybrid.  
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Figure 5: Series-parallel hybrid powertrain 

It is important to note that all of the hybrids discussed thus far, despite using both gasoline 

and electricity, are actually single fuel vehicles. All on-board electricity, including the kinetic 

energy captured during regenerative braking, is originally generated by the combustion 

engine. 

A final category of gasoline-electric hybrids are plug-in hybrid electric vehicles (PHEVs). 

The PHEV can theoretically be based on any of the aforementioned hybrid architectures. It 

adds a battery charger that can source electricity from the grid to charge the battery, resulting 

in a true dual-fuel vehicle. The PHEV retains the advantages and disadvantages of the hybrid 

architecture that it is based on, with the additional advantage that grid electricity can, in some 

circumstances, be generated more efficiently and with less environmental impact than 

electricity generated by a hybrid powertrain. To extract the maximum benefit from a PHEV it 

is typically based on a full hybrid that has the battery capacity to store enough grid-sourced 

energy to provide a meaningful vehicle range (typically at least 40 to 60 km), and that has a 

large enough electric motor to propel the vehicle without the aid of the engine. 
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2.2.2 Battery Electric Vehicles (BEVs) 

If combustion engine vehicles lie at one extreme of the electrified powertrain spectrum (in 

that the electrification factor is zero), then battery electric vehicles lie on the opposite 

extreme, with the various types of hybrids discussed in section 2.2.1 lying in-between. Pure 

electric vehicles forego the combustion engine entirely. They rely solely on batteries charged 

from the grid for energy storage and on electric motor(s) for propulsion. In concept they are 

simple designs with few components. A few notable examples of pure electric vehicles are 

the Nissan Leaf, Mitsubishi i-MIEV, Ford Focus Electric, Chevrolet Spark Electric, and the 

Telsa Model S sedan. 

Battery electric vehicles are touted to have the advantage of absolutely zero emissions. While 

this is true at the vehicle level (point of use), emissions are simply shifted upstream to the 

electrical generating stations. In regions where the grid is supplied with a large percentage of 

“clean” electricity (e.g. hydro, solar, wind, nuclear) this shift results in an overall reduction in 

greenhouse gas emissions. In other regions that rely on coal, the shift can actually have a net 

negative impact, as discussed in section 2.4. 

Electric motors are a mature technology, and the recent interest in electrified vehicles has 

spawned a wide range of highly capable electric motors that are engineered for automotive 

applications and that offer performance comparable to a combustion engine. Battery 

technology, however, has not yet managed to meet the energy storage capabilities of fossil 

fuels. Lithium-ion (Li-ion) battery chemistries are the popular choice for automotive 

applications, due to their high energy and power density. Table 1 summarizes fuel energy 

density figures for hydrogen, gasoline, and one type of Li+ cell. While energy storage system 

packaging is not accounted for, Table 1 makes it clear that battery technology falls 

significantly short of the energy storage capability of fossil fuels. Thus, while electric 

vehicles have a significant advantage in energy conversion efficiency, they typically weigh 

more than conventional vehicles and have a significantly shorter range. 
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Table 1: Fuel energy density figures for EcoCAR competition energy storage [18], [19] 

FUEL 
DENSITY 

(kg·m-3
) 

MASS ENERGY 

DENSITY (kWh·kg
-1

) 

VOLUMETRIC ENERGY 

DENSITY (kWh·m-3
) 

Hydrogen (atm) 0.081 33.3 2.7 

Hydrogen (70 MPa) 39.2 33.3 1305 

Li+ (A123 LiFePO4) 1818 0.135 245 

E10 753 11.6 8742 

 

2.2.3 Fuel Cells 

Fuel cell vehicles are a type electric vehicle that stores energy in on-board hydrogen tanks. 

Hydrogen is fed into the fuel cell anode and air is fed to the fuel cell cathode. The hydrogen 

fuel and oxygen in the air are converted within the fuel cell into electricity and water. There 

are no greenhouse gas emissions at the vehicle level. The electricity generated by the fuel cell 

is used to power electric motor(s) for propulsion. A battery is often used in a fuel cell 

powertrain to provide the same de-coupling benefits (reduced power plant size, operation in 

optimal efficiency region, regenerative braking) that are found in gasoline-electric hybrids. 

The battery is also needed to handle the rapid response times necessitated by the vehicle, as 

this is currently difficult for fuel cell technology [20]. Fuel cell powertrains are discussed in 

more depth in section 2.3. 

2.3 Fuel Cells in Automotive Applications 

2.3.1 Fuel Cell Technologies 

Fuel cell vehicles are fully electric vehicles that use a hydrogen fuel cell as the main power 

plant. The development and commercialization of fuel cell powertrains is driven by several 

inherent benefits of the technology. Fuel cells, emitting only water vapour as a by-product of 

the energy conversion process, have zero “tailpipe” emissions. Having no emissions at the 

vehicle level is highly beneficial in urban, densely populated environments where air quality 

is a major concern. Fuel cells are also able to achieve much higher energy conversion 

efficiencies as compared to internal combustion engines. Today, large scale production of 
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hydrogen fuel is typically done by reforming natural gas. However, fuel cells have the 

potential to run on hydrogen generated from renewable energy sources. In this scenario 

hydrogen gas is generated by renewable energy sources such as solar, wind, or tidal power 

though electrolysis of water. Hydrogen gas is then used as an “energy vector” with a much 

higher mass energy density than would otherwise be achieved from the best battery 

technology, and is re-converted into electricity by an on-board fuel cell system. 

While there are a number of fuel cell technologies in existence, automotive applications have 

typically focussed on the polymer electrolyte membrane (PEM) fuel cell. Table 14 in 

Appendix A summarizes key attributes, such as operating temperature, power density, and 

efficiency of the common fuel cell technologies; polymer electrolyte membrane (PEM), 

alkaline fuel cell (AFC), phosphoric acid fuel cell (PAFC), molten carbonate fuel cell 

(MCFC), and solid oxide fuel cell (SOFC). The tabulated format quickly illustrates the 

attractiveness of PEM technology in automotive applications. PEM fuel cells operate at 

relatively low temperatures, comparable to internal combustion engines, meaning that 

existing automotive thermal management systems can be adapted to them. By comparison, 

higher temperature fuel cells such as MCFC and SOFC would introduce significant 

challenges in materials selection and packaging of components near the stack, and are better 

suited to stationary applications where their higher temperatures (thus higher quality thermal 

waste energy) can be used as an advantage in combined heat and power cycles (CHP). The 

PEM cathode reaction is tolerant of non-oxygen gases in the atmosphere on the cathode side, 

allowing a PEM fuel cell to breathe the surrounding air instead of carrying compressed and 

purified oxygen. AFCs, on the other hand, are sensitive to CO2 in our atmosphere and are 

thus more suitable for space applications (where they have been common for decades). PEM 

fuel cells also have quick start-up times, good transient response, and relatively high 

efficiency and power density, all critical in automotive powertrains where weight must be 

minimized and operating conditions change constantly.  

PEM fuel cells convert hydrogen and oxygen into electricity via complementary oxidation 

and reduction reactions. The anode and cathode are physically separated by a membrane. 

Hydrogen fuel is fed to the anode of the cell, where a catalyst (usually a precious metal, such 
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as platinum or platinum alloy) initiates the separation of H2 molecules into two H
+
 ions and 

two electrons. Oxygen is made available at the cathode, usually via a compressor which 

simply directs ambient (filtered) air into the stack, much like a turbocharger in a combustion 

engine. The electrons generated at the anode create the electrical current used to power the 

load (e.g. electric motor). The H
+
 ions (protons) travel through the membrane to the cathode 

(hence the same proton exchange membrane), where they combine with available oxygen 

and the electrons flowing through the circuit to produce H2O. Due to mass transfer effects, 

the hydrogen concentration at the anode must typically exceed the requirements of the 

chemical reaction. This excess hydrogen can be recycled by the fuel supply system and re-

supplied to the anode. Air and water (usually a mix of liquid water and water vapour) exit the 

cathode and are simply exhausted into the atmosphere.  

The efficiency and cell potential of a hydrogen fuel cell is derived from an application of the 

first and second laws of thermodynamics to the fuel cell. The maximum thermodynamic or 

“reversible” efficiency and he corresponding maximum “reversible” cell voltage are 

described as: 

  
       

       
 Equation 1 

   
   

  
 Equation 2 

 

For the hydrogen fuel cell reaction with a liquid water product, given Enthalpy of Formation 

H = -285.8 kJ·mol
-1

 and Gibbs Free Energy G = -237.2 kJ·mol
-1

, the ideal efficiency for the 

               reaction is calculated below. 

  
              

             
     Equation 3 

   
          

          
        Equation 4 
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This maximum theoretical cell voltage is not achievable in practice, however.  Operation of 

the fuel cell leads to various losses that reduce the achievable cell voltage, and hence the 

achievable output power and overall efficiency. The main sources of loss in an operating fuel 

cell are the activation, ohmic, and concentration losses. Respectively, these losses dominate 

at low, medium, and high currents. A plot of voltage vs. current for the EcoCAR vehicle’s 

fuel cell can be found in Figure 28 of section 5.1.2. This plot is generally referred to as a 

“polarization curve”, and the behaviour it demonstrates has a significant impact on the design 

and operation of a fuel cell vehicle. 

The activation polarization refers to the losses associated with the charge transfer reaction 

that results in moving electrons from the electrode. Its effect is most pronounced at low 

currents, where it is the dominant loss type. Ohmic polarization results from the resistance to 

charge transfer within the fuel cell. The voltage loss due to ohmic polarization generally 

increases linearly with current, throughout the operating curve, according to Ohms law (V = 

IR), where the resistance to charge transfer (both negative electron charge transfer through 

current collection plates and positive H
+
 ion transfer through the membrane) all contribute to 

voltage loss in the cell. During fuel cell operation it is ohmic polarization that causes the 

“voltage sag” of the fuel cell system as current is increased. Concentration polarization 

becomes dominant at very high currents, as a result of the limitations of mass transfer within 

the fuel cell. It is the concentration polarization that quickly limits the overall reaction rate 

and thus governs the maximum current that the fuel cell can produce. The limited ability to 

move reactants within the fuel cell ultimately limits the reaction rate and hence the 

achievable output current. 

The polarization curve of a fuel cell has a significant influence on the electrical design and 

control of a fuel cell powertrain. It has already been established that fuel cells are typically 

paired with an electrical energy storage system (battery) in automotive powertrains. These 

batteries operate on similar electrochemical energy conversion principles, and hence 

demonstrate polarization effects similar to a fuel cell. During vehicle operation the fuel cell 

and battery power requirements will change significantly and rapidly, leading to large swings 

in voltage for the two energy sources. If these two components were simply connected 
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together the energy transfer between them would be uncontrolled and potentially damaging, 

with current flowing from the higher potential to the lower through very little resistance. This 

leads to the requirement of a DC-DC power converter, placed between the two sources, to 

bring control to this arrangement. The role of the DC-DC power converter and how it is 

involved in the control of a fuel cell powertrain is discussed extensively in section Chapter 5. 

2.3.2 Current State of the Automotive Fuel Cell Powertrain 

A typical fuel cell vehicle powertrain is shown in Figure 6. The fuel cell receives hydrogen 

from on-board storage tanks, and feeds it into the anode. Air from the vehicle’s surroundings 

is forced into the cathode by a compressor. The resulting electricity is fed through a power 

conditioning device, a DC/DC converter, which permits voltage matching with the hybrid 

battery. The DC-DC converter can also be placed at the battery instead of the fuel cell to 

provide voltage matching. The fuel cell supplies current to this main bus to drive the electric 

traction motor(s) and vehicle auxiliaries (e.g. air conditioning), together referred to as the 

vehicle load. The fuel cell can also be commanded to supply additional current, above the 

vehicle load, to charge the battery. This is desirable if the extra current, with consideration 

for the efficiency impact of charging and discharging the battery, causes the fuel cell system 

to operate in a more efficient region. This is identical to the concept of load de-coupling that 

is employed in ICE-based hybrid vehicles, as discussed in section 2.2.1. 

 

Figure 6: A fuel cell powertrain with DC-DC converter on the fuel cell side of the bus 

Being radically different than current vehicle architectures, fuel cell vehicles face significant 

barriers to commercialization. Some of the most significant barriers are the in-vehicle 

powertrain technologies. The materials required to construct a fuel cell are relatively 
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expensive. The catalyst at the anode is traditionally comprised of platinum alloy; reducing 

the required mass of this precious metal or substituting it altogether is the subject of much 

research [21] [22]. Ford has estimated that 40% of the cost of a fuel cell system comes from 

the platinum used in catalyst layers [23]. The PEM that enables cell operation is also actively 

researched to mitigate side reactions and humidification requirements [23]. Power electronics 

are needed throughout the powertrain to control the traction motor(s), manage voltage levels, 

and charge the high voltage battery; all of these components are new to the automotive 

environment and are undergoing significant research and development (R&D) to reduce size, 

weight, and cost. 

Another major obstacle to fuel cell vehicle commercialization is the lack of fuelling 

infrastructure. Electrified plug-in powertrains have been able to leverage the ubiquity of 

household electricity, workplaces, and public spaces requiring only the installation of a 

charging station to connect to the grid. Conversely there are practically no fuelling options 

for hydrogen vehicles today (except in limited markets such a California and the greater 

Vancouver region), aside from a very small number of stations maintained mostly by 

operators of small hydrogen vehicle fleets. Without hydrogen fuelling stations it will be 

difficult to market hydrogen vehicles, and without hydrogen vehicles there is little incentive 

to deploy a network of hydrogen fuelling stations. Close collaboration between vehicle 

manufacturers and potential fuelling companies is needed to resolve this issue, or vehicle 

manufacturers must invest in fuelling infrastructure.  

A final key barrier to fuel cell vehicle commercialization is consumer acceptance. Currently 

interior space must be sacrificed, even in hybrid and plug-in hybrid vehicles, in order to 

accommodate the additional powertrain components. Even with the huge storage pressures of 

the latest hydrogen fuel tanks (up to 10,000 psi or 70 MPa), a significant volume is required 

to integrate them with the vehicle. This also directly impacts range. While hydrogen vehicles 

do not pay the same weight penalty for energy storage as do electric vehicles, the volume 

penalty is significant even at high storage pressures (as shown in Table 1 of Chapter 3). 

Current generation hydrogen vehicles can achieve greater range than pure electrics, for 

example the Honda FCX Clarity can run up to 380 km [24], compared with 120 km for the 
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similarly classed Nissan Leaf [25]. While hydrogen powertrains are also more efficient, Ford 

has estimated that a 70 MPa hydrogen storage tank requires 5 times the volume of a gasoline 

tank to achieve the same vehicle range [23]. However this is still below the range of most 

passenger cars and fueling infrastructure remains non-existent. 

Consumers must also trust the safety of hydrogen vehicles. While compressed hydrogen gas 

can be dangerous, it is often forgotten that gasoline is also dangerous, and years of familiarity 

and design have mitigated the risk. Hydrogen is significantly easier to ignite, having a 

minimum ignition energy (MIE) of about 0.02 mJ, as compared to approximately 0.1 mJ for 

typical hydrocarbons [26]. Hydrogen is flammable in air at concentrations ranging from 4% 

to 74% again compared with 1.4% to 7.6% for gasoline [27]. Unlike gasoline, hydrogen leaks 

disperse quickly due to its buoyancy in air, reducing the likelihood of the gas pooling to a 

concentration that can be ignited. Consumer education on the characteristics of hydrogen gas 

and how they compare to gasoline, education on the safety systems designed into fuel cell 

vehicles, and proven safety records stemming from on-road trials and government testing 

specific to hydrogen fuels can alleviate consumer safety concerns. One study in Germany has 

shown that the general public actually has relatively little concern for the safety of hydrogen. 

The key requirement of acceptance for those consumers is that the hydrogen be sustainably 

sourced using environmentally-friendly methods [28]. 

2.4 Evaluating the Emissions and Energy Consumption of Electrified 

Powertrains 

It was previously stated that the key drivers of alternative fuels and advanced powertrains are 

the reduction of atmospheric emissions, increased energy efficiency, and a shift to renewable 

sources of energy, all contributing to the overall goal of a sustainable transportation 

infrastructure. How we evaluate these key metrics is then of great concern to both consumers 

buying these new vehicles, governments and regulatory bodies that set the evaluation 

methods and standards for such metrics (and sometimes subsidize vehicles who meet certain 

targets, or penalize others that miss them), and industry organizations developing these new 

technologies. The objective of this section is to review the current state of fuel economy and 
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emissions testing (with a focus on North America), to identify the strengths and weaknesses 

of current approaches, and how approaches are changing (and still require change) to respond 

to advanced powertrains driven by alternative fuels. It is notable that fuel economy and 

emissions were once simply correlated, due to the use of a common fuel source (gasoline) 

with common production (liquid oil wells) and consumption (internal combustion engine) 

methods. Today we have electrics, fuel cells, natural gas, and other automotive fuels that 

complicate this correlation. 

2.4.1 Fuel Economy Evaluation for Conventional Powertrains 

Fuel economy testing for conventional vehicles is complex, owing to the great number of 

variables that can affect the fuel consumption of a particular vehicle. The “drive cycle”, or 

vehicle speed as a function of time, is one of the key factors affecting fuel economy. It is well 

known that high acceleration rates, long idling times, and varying speed (e.g. stop-and-go) all 

contribute to poor fuel economy. A vehicle speed trace captures these factors, and 

standardizing such “drive cycles” across all vehicle fuel economy testing ensures consistent 

conditions. Cycles are driven in a controlled environment, usually inside a laboratory on a 

dynamometer that has been programmed to simulate the loads that the vehicle would 

experience on the road (air resistance and rolling resistance, which vary as a function of 

vehicle speed). The methodology, then, takes great care to ensure that the testing conditions 

across all vehicles are consistent and will reflect the fuel economy of the vehicle under the 

same conditions in the real world.  

One of the concerns with standardized fuel economy testing is that the “standard” cycles are 

not representative of the typical driving style. Thus, while they may be able to simulate the 

fuel consumption of the vehicle, they are not good at simulating the way people drive their 

vehicles. Standard cycles such as the Urban Dynamometer Drive Schedule (UDDS) (shown 

in Figure 7), the HWFET (Highway Fuel Economy Driving Schedule), and the US06 Driving 

Schedule, are examples of standard drive cycles used by the EPA to test vehicles [29]. These 

cycles are commonly criticized for being unrepresentative of the way that consumers drive 

their vehicles, having lower than average speeds and accelerations. Standard drive cycles 
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based purely on a vehicle speed trace also do not account for the effect of auxiliary loads 

(e.g. HVAC system) and the effect of “cold-start”, where the engine is less efficient if it is 

warming from ambient temperature. In northern climates, requiring a longer warm-up period 

before the engine reaches peak efficiency has a significant impact on fuel economy [30]. 

 

Figure 7: UDDS drive schedule driven by UWAFT EcoCAR at EPA National Vehicle & Fuel Emissions 

Laboratory 

To address these concerns, starting with the 2008 model year the EPA instituted a new 5-

cycle test procedure. The traditional city cycle is represented by the Federal Test Procedure 

(FTP), which runs the UDDS cycle from a cold start, then runs the first 505 seconds 

immediately afterwards (a hot start) to capture the effects of both cold and hot starting. 

Highway driving is still represented by the HWFET cycle. Attempting to account for the 

relatively higher aggressiveness of the typical driver, the US06 schedule has been added to 
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the test procedure, which features higher average speeds and accelerations. The Speed 

Correction Driving Schedule (SC03) is also used to account the impact of air conditioning 

use with hot (35°C) ambient temperatures. Finally, the effects of cold temperatures are 

evaluated by running the FTP schedule at -7 °C [31]. 

The change to the more realistic 5-cycle testing predictably lowered the fuel economy ratings 

of tested vehicles, bringing them closer to real world numbers. Even with the shift to a more 

representative test procedure, the EPA is careful to note that “your mileage may vary” due to 

the effect of acceleration, idling, speed, ambient temperature, trip duration, terrain (e.g. 

grade), cargo, and auxiliary loads [32]. In the end fuel economy is highly personal, and the 

EPA standardized testing can at best represent the average that the population as a whole can 

expect to get from each vehicle. 

2.4.2 The Impact of Electrified Powertrains 

While alternative fuels like natural gas and propane have been in use in the transportation 

sector for decades, their market penetration has been minimal and typically limited to 

commercial use. Hybrid-electric technology is the first great shift in powertrain design since 

the combustion engine, and has caused a re-think of conventional methods for evaluating fuel 

economy and emissions. 

For the purposes of fuel consumption measurement, plain hybrids without “plug-in” 

technology are well-served by the existing evaluation methods, at least as well as 

conventional vehicles. While electric energy is consumed by the powertrain, it is generated 

solely by the gasoline engine on-board, whether directly via a generator or in-directly 

through the recovery of kinetic energy in regenerative braking. As a result, only a single fuel 

source powers the vehicle and existing measurement methods capture this fuel use.  

An interesting consequence of hybrid technology, however, is the inversion of conventional 

wisdom on the relative efficiency of city and highway driving. As discussed in section 2.2.1, 

hybrids gain efficiency in transient driving scenarios by using engine load decoupling and 

regenerative braking to both optimize energy conversion efficiency and re-capture otherwise 

lost kinetic energy. This is well-represented by “stop-and-go” city driving cycles. On the 
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highway, however, a hybrid powertrain operates in a relatively steady state, thus engine load 

decoupling and regenerative braking offer less benefit, and in some cases could reduce 

efficiency due to the weight of the additional components relative to the non-hybrid version. 

As a result, fuel economy ratings for hybrid vehicles sometimes indicate that the vehicle is 

equally or more efficient in city driving than in highway, a reversal of the trend for 

conventional powertrains. For example, the 2013 Toyota Camry (base 2.5 L) is rated for 25 

MPG city / 35 MPG highway, while its hybrid counterpart is rated for 43 MPG city / 39 

MPG highway, according to published EPA fuel economy numbers [33]. While still more 

fuel efficient than the conventional powertrain, the gap closes significantly in highway 

driving, reducing the hybrid benefit and extending the payback period for its incremental 

cost. 

More recently, plug-in hybrid electric vehicles (PHEVs) have become available, resulting in 

electric “dual-fuel” vehicles that are powered both by gasoline converted through a 

combustion engine and electricity sourced from the grid. Plug-in hybrids, essentially hybrids 

with an on-board battery charger, offer the capability to use externally-sourced electricity 

(e.g. from the grid), with the potential benefit of displacing petroleum energy products 

(depending on the source of the electricity, of course). The addition of a second energy 

source created a few problems for the existing fuel economy test methods, however.  

First, a simple matter of inconsistent units existed, where electricity use is conventionally 

measured in kilowatt-hours and gasoline is usually measured by volume as litres or gallons. 

Consumers are used to thinking about their fuel consumption volumetrically, and so 

“equivalent litres” of electricity has become a common conversion.  

Second, the instantaneous efficiency and emissions of a plug-in powertrain depend on the 

ratio of the externally-sourced electricity and gasoline being used at that instant. In addition, 

there is only a relatively small amount of externally-sourced electricity stored on-board due 

to weight and volume restrictions, resulting in a limited operating range where this energy 

can be used. This leads to two distinct operating modes for a plug-in vehicle, and significant 

consequences for fuel economy testing. 
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2.4.3 Plug-In Powertrains, the Utility Factor, and New Testing Standards 

The two distinct operating modes of a PHEV are charge-depleting (CD) and charge-

sustaining (CS). In charge-depleting operation the externally-sourced electricity is drawn 

from the battery, and is either used alone (EV-only charge-depleting operation) or in 

combination with energy from the engine (blended charge-depleting operation). While short-

term operating conditions may see the battery SOC maintained or even increase (e.g. 

regenerative braking event), the long-term trend characteristic of charge-depleting operation 

is a steady consumption of the externally-sourced energy. 

Eventually (and in a relatively short period of time) the externally-sourced energy is nearly 

depleted. The PHEV then switches to charge-sustaining operation, where the battery SOC is 

maintained about a certain set-point. In this mode of operation the PHEV reverts to the 

functionality of an HEV, where the engine provides the sole source of energy and the 

electrification benefits are limited to engine load decoupling and regenerative braking. 

Again, short-term operating conditions will cause the SOC to fluctuate, but the long-term 

trend characteristic of charge-sustaining operation is an SOC maintained about a set-point, 

using (on average) zero externally-sourced electricity. This can be seen in a plot of data 

collected from the UWAFT vehicle during the EcoCAR competition, in Figure 53 of section 

7.3. 

With a focus on “fuel” economy, the hybrid electric vehicle fuel economy test standard, SAE 

J1711, was updated in 2010 to formally address the challenge of measuring and reporting 

(two very different concepts in a dual-fuel vehicle, as will be shown) the fuel economy of 

PHEVs [31]. While J1711 is a long and complex document, its core feature pertaining to fuel 

economy measurement is the simple recognition that the new charge-depleting operation 

mode exhibited by PHEVs has a unique fuel economy and a limited range. The 5-cycle tests 

remain the core driving schedules for fuel economy testing, but instead of a single test 

procedure (comprised of one run through each of the five cycles) there are two; the Charge-

Sustaining Test (CST) and the Full-Charge Test (FCT). 
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The CST and FCT are generally differentiated by the preparation of the vehicle. HEVs 

exhibit only charge-sustaining operation and therefore complete only the CST, which is 

comprised of the standard five driving schedules performed with a vehicle that has been 

carefully prepared according to the standard in an effort to ensure consistency across all 

vehicles tested. PHEVs have the additional requirement to complete the FCT. The FCT 

specifies the additional preparation of ensuring that the rechargeable battery has a full charge 

before each driving schedule is run. The energy required to perform this charge must be 

measured accurately, as the efficiency of the vehicle’s battery charger is included in the 

overall electrical efficiency of the powertrain; that is to say that electrical energy usage of a 

PHEV is measured at the input to the vehicle, not at the battery. For each driving schedule, 

the vehicle drives the cycle in a repeating loop until the charge depleting operation mode is 

complete and at least one full cycle of charge-sustaining operation is observed. This enables 

the FCT to capture both the fuel economy of the charge-depleting mode, and the duration that 

charge-depleting mode can be expected to last under each of the five schedules. With these 

measurements, PHEV fuel economy can be reported. 

In J1711 fuel economy reporting is not as straightforward as simply providing the fuel 

economy measurement. In the case of PHEVs, there are two fuel economy ratings, the 

charge-depleting and the charge-sustaining. Giving consumers both numbers could be 

confusing, so a way to combine them into a single, familiar number was required. For this the 

standard introduces the concept of the utility factor (UF). 

The UF is a weighting factor that can be used to combine the CD and CS fuel economy and 

emissions values into a single value, as described in Appendix A of J1711. While a UF can 

be derived to serve several purposes, the basic purpose is to have a number that represents 

the fraction of total driving distance that can be done in CD operation. For a given CD range, 

the UF curve shows the percentage of total vehicle distance driven in the sample data that 

would be accomplished in CD mode. A sample UF curve generated from the EcoCAR 

formula given in [18] is shown in Figure 8 to illustrate the point. If a vehicle has a CD range 

of 50 kilometers, according to Figure 8 over 50% of the sample population’s vehicle 

kilometers would be driven in CD mode. Thus, it could be said that the average fuel economy 
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of the population driving that vehicle would be 25% of the CD measurements and 75% of the 

CS measurements. That is exactly what J1711 prescribes; the measurements from each of the 

5 driving schedules, from the CST and FCT tests, are combined using the UF, where the 

measurements from CD operation are weighted by UF, and measurements from CS operation 

are weighted by (1 – UF). This method enables a single “utility-factor weighted fuel 

economy” to be calculated for a PHEV. 

 

Figure 8: Utility factor curve generated using EcoCAR competition formula given in [18] 

While this single weighted value appears simple (a desirable attribute for communicating to 

consumers), significant assumptions are in-built that would not be immediately obvious to 

the uninitiated. The statistical data for the UF is collected from the National Highway 

Transportation Survey (NHTS), and is used in SAE J2841 to calculate UFs for weighting CD 

and CS tests. It has already been established that, even for conventional vehicles, fuel 

economy is highly dependent on an individual’s driving style, and fuel economy testing can 

only capture an average over a range of styles / driving schedules. Hybrid technology 

introduced new variations to the effect of driving style on fuel economy, via regenerative 

braking and idle prevention (engine stop-start). PHEVs now add a new source of variability; 

the distances travelled by an individual between charging opportunities. For a vehicle with a 

CD of 10 miles, a driver with a daily commute to work of 8 miles each way, with charging 
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available in-between, would have an individual UF of 100% (all miles are travelled in CD 

mode). Another driver with the same vehicle may drive 15 miles each way, with no charging 

in-between, yielding a UF of only 33%. These drivers could exhibit the exact same driving 

style, even drive the same schedule, and receive very different fuel economies. The exact 

same process can be derived to average the AC electrical energy consumption over the 

vehicle miles of a population, yielding very different values depending on the intervals 

between charging. This is the pitfall of UF-weighted fuel economy. It uses the statistics of 

the population to provide a single average value for the fuel and electrical energy 

consumption of a PHEV deployed in that population, leading to a large “your mileage may 

vary” disclaimer for the individual. When only the fuel economy rating is considered 

(without the AC electric energy consumption), the fuel economy becomes even more 

misleading, rewarding the displacement of gasoline without consideration of the impact of 

the electrical consumption. The EPA reporting procedures have evolved to consider this, and 

fuel economy stickers for PHEVs report the CD and CS operation modes separately, 

allowing the consumer to consider the impact of these ratings on their individual driving 

habits. The UF-weighted fuel economy and its impact on the EcoCAR evaluation process is 

discussed in Chapter 7.  

The concept of UF-weighting is also equally applicable to evaluating vehicle emissions, both 

upstream and tailpipe. Emissions data collected during the FCT and CST test procedures are 

weighted according to the method describes above. The ability to run on grid-sourced 

electricity complicates evaluating the environmental impact (in EcoCAR measured via GHG 

and PEU produced per kilometer) of a vehicle because electricity is produced by a wide 

range of methods that vary geographically. For example, a plug-in hybrid or full electric 

vehicle charged in Canada (where much electricity is produced using hydro-electric, nuclear, 

and natural gas) would have a significantly different environmental impact than a vehicle 

charged in China (where coal plants are a primary electricity producer). The fact that these 

upstream emissions are the sole source of GHG and PEU for plug-in powertrains, and that 

they vary so widely, means that unlike combustion engines it is not straightforward to 

evaluate their environmental impact. 
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2.5 Project-Based Learning 

Researchers have found that employers are looking for more than technical competence from 

engineering graduates [4]. Engineering is a complex profession, involving multi-disciplinary 

teamwork, competing demands from various stakeholders, resource management, 

uncertainty, and incomplete data [4]. The field of engineering evolves quickly, and practicing 

engineers must keep skills up-to-date to be effective. It has been indicated that the traditional 

educational model does not provide the knowledge integration, practical application, 

teamwork and communication, or social, environmental, legal, and economic exposure that 

practicing engineers require [4]. Educators and education researchers have raised the concern 

that the current engineering education model, where knowledge is “transmitted” from teacher 

to student in a lecture format and tested in examinations, is unable to provide students with 

the aforementioned experiences. Alternative models of education, based around project- 

and/or problem-based learning, have been proposed as a solution. 

The traditional engineering education model, derived from experience in the Mechanical 

Engineering curriculum, is well-described by Perrenet [2]. In the traditional model students 

are directed to learn core technical concepts (e.g. math, physics, chemistry) in a lecture 

format. Students internalize this knowledge by practicing on closed-ended problems from the 

lecturer or a text book (assignments) and in directed tutorial sessions. Directed laboratory 

exercises are used to give students an opportunity to apply or observe the lecture material in a 

real-world situation. Student progress is largely assessed through written examinations, in 

addition to grading performance on the aforementioned assignments and labs. 

Nonaka proposed a framework for considering the ways in which tacit and explicit 

knowledge is converted through the four modes of socialization, internalization, 

externalization, and combination [34]. The traditional learning model emphasizes 

internalization of explicit knowledge taught by the lecturer. Students practice lecture material 

in assignment problems, converting explicit to tacit knowledge which becomes personal to 

the student and applicable in broader situations. 
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The traditional format has the benefit of a controlled learning environment, where each 

student receives all of the desired material in the sequence that the lecturer has deemed 

necessary or preferable. This sequencing is considered to be important in engineering 

education, where the body of knowledge is hierarchical [2]. For example, machine design 

courses build on concepts learned in materials science, mechanics of deformable solids, and 

dynamics. However, this format only emphasizes technical competence and does not 

encourage or develop the other skills considered essential for working engineers. 

Problem and project-based learning methods reverse the traditional learning structure. In 

project-based learning, projects become the primary focal points of engineering courses and 

the vehicles for learning technical concepts [3]. These methods are distinguished from the 

traditional model by the focus of the learning experience (problems/projects as opposed to 

technical concepts) and by the changed roles of teachers and students. The traditional model, 

as previously discussed, is an experience directed by the teacher. Lecture material, 

assignments, tutorials, and lab exercises are all delivered in the format and sequence desired 

by the teacher, directing students to obtain the desired knowledge in the desired manner. In 

problem and project based learning, the students become the directors of the learning. Again, 

Perrenet provides a good overview [2]. Teachers will introduce a problem or project that 

requires a solution. Students must identify the concepts and knowledge that are needed to 

solve the problem, seek out appropriate resources, and apply the knowledge to solve the 

problem. In this model learning is student-directed, and teachers become facilitators of that 

learning. Teachers pose and answer questions to help students arrive at solutions on their 

own instead of giving the answers away, and they ensure that the desired knowledge is 

encountered by each student.  

Problem and project based learning are closely related concepts in the literature, and there are 

varied attempts to distinguish them. Savery indicates that in project based learning the 

teacher generates the problem to be solved and sets goal(s) in the form of an end product and 

specifications [35]. Students are asked to execute a project to meet the goal(s) set by the 

teacher. Learning is achieved through completing a procedure to generate the end product, 

and through the problem-solving that occurs along the way. Savery states that project-based 
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learning is distinguished from problem-based learning by the stronger role of the teacher in 

the learning process. Where teachers define the problem and the goal(s) in project-based 

learning, in problem-based learning the identification of the problem and goal-setting could 

be up to the student, which Savery states is a valuable skill that project-based learning does 

not provide. 

Perrenet et. al. have a different view on problem vs. project based learning [2]. They consider 

projects to be complex real-world entities that take long periods of time and which result in a 

concrete product. They define project based learning to be focused on the application of 

knowledge, and problem-based learning to be concerned with the acquisition of knowledge. 

They also identify that projects require time and resource management capabilities, as well as 

the ability to differentiate roles and tasks. In direct contrast to Savery, Perrenet et. al. 

consider project-based learning to be more self-directed and less controllable than problem-

based learning. 

Despite differences in definition and execution, project based learning has some common and 

important themes. It is learning through the execution of projects, where students acquire 

knowledge as it is needed to solve problems inherent in the project. It can be self-directed, 

where students seek out, acquire, and apply knowledge on their own. It is a process 

facilitated by teachers, who guide students towards the desired knowledge by answering 

student questions and posing their own. It is learning within a specific context. It is a process 

that exposes students to skills that are outside of the core technical knowledge taught in 

classrooms, skills like time and resource management, role and task differentiation (a part of 

teamwork), and self-directed learning. Its focus on complex and multi-faceted projects 

provides an opportunity for subject matter knowledge integration. The concept of solving an 

“ill-defined” problem is discussed in the problem-based learning literature, and it seems that 

retaining this element in project-based learning can ensure that Savery’s problem-definition 

skills are exercised. 

Project based learning can address some of the concerns surrounding engineering education 

that were raised at the beginning of this section. However, where project based learning has 
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an advantage over the traditional format outside of the acquisition of core technical skills, 

there are some potential disadvantages discussed in the literature. Hung et. al. pose that 

project-based learning, with a focus on a particular problem, may encourage too much depth 

at the expense of breadth [36]. In the less controlled environment of project-based learning it 

can be difficult for educators to ensure that the required concepts are learned by each student. 

The non-technical elements of projects, having significant time implications, can also make it 

challenging for students to devote enough time to the technical fundamentals. Linked to these 

concerns is the idea that the higher-order or top-level thinking emphasis in project-based 

learning will de-prioritize and reduce the acquisition of core technical knowledge [36]. 

Resistance from students and teachers is also discussed. Students are sometimes concerned 

about their ability to be self-directed and to learn the required concepts in a project-based 

environment, and teachers would be concerned with how to ensure delivery of all required 

material in the less controlled environment of project-based learning. Perrenet adds that the 

hierarchical nature of engineering knowledge makes a case for the more structured approach 

of traditional lecturing, and concurs that students may fail to construct the “right knowledge” 

in a project-based environment [2]. 

Some literature holds medicine as an example of a professional institution where education 

through problem-based learning has been widely and successfully adopted [4] [37]. 

However, while problem-based learning has not been shown to hinder success in that field, 

its benefit over the traditional lecture style has been questioned [38].  

Experiential learning theory is closely related to problem and project based learning. Kolb 

provides an overview of the background on experiential learning, drawing from the works of 

Lewin, Dewey, and Piaget [39]. The Lewinian model for learning emphasizes having 

concrete experiences, where individuals can reflect on those experiences, extract concepts, 

and test them in new situations in a continuing feedback loop. Dewey’s learning model also 

exists as a loop, where observation of an experience, combined with knowledge obtained 

from last experiences, observations, or advice, is combined to form a judgement of the 

consequences of subsequent action. Piaget considers that individuals develop from a concrete 

to abstract view of their environment, and from an active to reflective mode of learning. A 
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continuing balance of accommodation and assimilation of experiences is required for 

learning and growth. From these works, Kolb poses that the pairs of concrete experience and 

abstract conceptualization, and active experimentation and reflective observation, form four 

abilities of learning from experience that are in conflict. Kolb then goes on to describe four 

learning styles resulting from combining these opposing learning modes: diverging, 

assimilating, converging, and accommodating [40]. Assimilating (abstract conceptualization 

and reflective observation, the collection, organization, and generation of ideas and concepts) 

and converging (abstract conceptualization and active experimentation) are closely related 

and tend to represent the learning styles of scientists and engineers, respectively. Both 

require abstract conceptualization to learn new information, but the converging learning style 

is focused on practical application of that information, as opposed to reflecting on and 

expanding upon it. 

Bringing these learning models together, the University of Waterloo Alternative Fuels Team 

certainly qualifies as experiential and project-based learning, which often forms part of an 

engineering capstone project [41]. Students are given a design project to complete a piece of 

the vehicle design. They must manage their time and resources, as well as deal with 

significant uncertainty and incomplete data to complete the design on time and to the 

required specifications. The projects, as part of a larger vehicle design effort, tend to require 

a degree of teamwork across disciplines. The complexity of these projects usually demands 

an integration of skills and knowledge from various subjects taught in the engineering 

curriculum. Foremost, these projects are based around a real vehicle and offer enormous 

opportunities for practical, hands-on experience. Students engaging in this new environment 

move through the experiential learning processes described by Kolb. Students that are 

exposed to new experiences and who take the opportunity to reflect on those experiences 

gain new insights, knowledge, and skills that can be applied to new experiences. The self-

directed nature of student teams means that UWAFT students also influence the learning 

environment; higher levels of student engagement lead to stronger learning, more knowledge 

generation, and a more enriched environment from which others may learn. 
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The design tasks discussed in this thesis exemplify experiential and project-based education 

principles. Each one is discussed not only on its technical merits but also how they reflect an 

experiential learning experience, and how they fit within the larger vehicle design 

experience.  
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Chapter 3 

The EcoCAR Hydrogen Fuel Cell Plug-in Hybrid Electric Vehicle 

UWAFT’s entry into the EcoCAR competition is a Hydrogen Fuel Cell Plug-in Hybrid 

Electric Vehicle (FC-PHEV). The powertrain is contained in a 2009 Sport Utility Vehicle 

donated by competition sponsor General Motors, and is comprised of a hydrogen fuel cell, 

gaseous hydrogen storage system, lithium-ion battery pack, AC-DC battery charger, bi-

directional DC-DC power converter, and two AC electric motors with DC-AC power 

inverters. Several supporting electronics are also required, including a high voltage buck 

converter to generate 12 V for auxiliary systems, cooling pumps, fans, and radiators, power 

distribution and switching boxes for high and low voltage systems, and various electronic 

control units (ECUs). 

This complex and ambitious powertrain evolved significantly of the three years of the 

EcoCAR competition, adapting to the changing circumstances and uncertainty that are 

commonplace in a student team environment. This includes but is certainly not limited to the 

availability of team members, development of the required skills (which are typically learned 

via self-study by team members as they work towards their goals), and the painful realization 

that, despite the best efforts of everyone involved, that some design elements of the vehicle 

are not going to progress to the required level of performance and safety in time for the 

competition. This last issue was of particular importance in the third year of EcoCAR, where 

the team’s custom high voltage DC-DC power converter could not be completed in time. 

This led to a significant re-design of the powertrain architecture, and in the end to a 

successful performance by the team, but this re-design did impact the final efficiency and 

performance of the vehicle, which will be discussed in future sections. 

This chapter will describe the UWAFT EcoCAR vehicle, with a focus on the powertrain 

architecture and how it evolved into its final arrangement. The basic theory of operation for 

the powertrain and a high-level description of the vehicle’s control system hardware and 
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software are also presented. UWAFT’s project-based environment and the design projects 

that will be studied in further detail are also presented. 

3.1 Powertrain Architecture 

The final UWAFT EcoCAR powertrain architecture evolved significantly over the three 

years of the competition. In particular, a significant set of changes in the final months of the 

competition were required to get the vehicle operational. The design decisions that led to the 

final architecture shown in Figure 9 are discussed in Chapter 5. The integration of all 

powertrain components can be seen in the underbody vehicle view provided in Figure 54 of 

Appendix B. 

 

Figure 9: UWAFT EcoCAR year 2 powertrain architecture 

All the essential components for a fuel cell powertrain are present, namely the fuel cell stack 

and supporting balance of plant components (collectively the fuel cell system or FCS), 

hydrogen storage, batteries, a DC-DC power converter to control power transfer, and two 

electric motors for propulsion. Key specifications for each powertrain component are listed 

in Table 2. 
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Table 2: EcoCAR powertrain component specifications 

COMPONENT SPECIFICATIONS 

General Motors Hydrogen 

Fuel Cell System 

(FCS) 

Voltage Range: 240 – 400 V 

Maximum Output Power: 95 kW (375 A @ 250 V) 

Voltage Range (operating): 240 – 400 V 

Quantum Technologies 

Hydrogen Storage Tanks 

(HSS) 

Maximum Pressure: 70 MPa (10,000 psi) 

Tank Capacity: 4.2 kg 

Tank Volume: 114 L 

Brusa BDC412 DC-DC 

Power Converter 

(DC-DC) 

Voltage Range: 
125 – 425 V (high side) 

100 – 400 V (low side) 

Peak Current: 150A (37.5 kW @ 250 V) 

Continuous Current: 100A (25 kW @ 250 V) 

General Motors Permanent 

Magnet AC Electric Motor 

+ 

General Motors Power 

Inverter 

(ETS) 

Voltage Range: 240 – 450 V 

Peak Input Power: 130 kW (325 A @ 400 V) 

Continuous Input Power: 95 kW (235 A @ 400 V) 

Peak Output Power: 110 kW 

Continuous Output Power: 80 kW 

Peak Output Torque: 350 Nm 

Peak Output Speed: 12,000 RPM 

Gear Reduction: 9.76 (fixed) 

Ballard 312V67 AC 

Induction Motor 

+ 

Rinehart PM100 Power 

Inverter 

(RTS) 

Voltage Range: 260 – 360 V 

Peak Input Power: 80 kW (318 A @ 250 V) (est.) 

Continuous Input Power: 40 kW (159 A @ 250 V) (est.) 

Peak Output Power: 67 kW 

Continuous Output Power: 33 kW 

Peak Output Torque: 190 NM 

Peak Output Speed: 1250 RPM 

Gear Reduction: 11.58 (fixed) 
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3 x A123 25S2P Lithium-Ion 

Battery Energy Storage 

System 

(ESS) 

Voltage Range: 234 – 253 V (open-circuit) 

Peak Discharge Current: 400 A 

Continuous Discharge Current: 120 A 

Peak Charge Current: 200 A 

Continuous Charge Current: 40 A 

Capacity: 39 Ah 

Energy: 9.68 kWh 

Brusa NLG513-Sx Battery 

Charger 

Input Voltage Range (AC): 90 – 264 V 

Peak Output Power:  3.3 kW 

 

In total, the fuel cell and battery can generate up to 195 kW (260 hp) of electrical power. This 

power is made available to two electric motors, together capable of consuming up to 210 kW 

(280 hp) of electrical power and generating up to 540 Nm of combined rotor torque, or over 

5600 Nm of axle torque. A total of 150 kWh of energy is stored on-board. Each component 

and its role in the operation of the EcoCAR vehicle are described in the following sections. 

3.1.1 Fuel Cell System 

The fuel cell system (FCS) is a General Motors (GM) 4
th 

generation design. This system was 

produced in limited quantities to power a fleet of approximately 100 Fuel Cell Chevrolet 

Equinoxes for project ‘Driveway’. The fuel cell system is comprised of two hydrogen fuel 

cell stacks as well as supporting balance of plant equipment such as the hydrogen injectors 

that supply the anode, high-speed air compressor that supplies the cathode, a coolant pump 

for the stacks, and a power management and distribution module (PMD) that houses 

contactors, bus bars, fuses, control circuitry, a 12 V buck converter to supply the vehicle’s 

low voltage systems, and various switched high voltage outputs that provide power to high 

voltage auxiliary components such as the coolant pre-heater and fuel cell coolant pump. The 

fuel cell system is shown with key parts highlighted in Figure 10 and Figure 11. The 

supervisory controller interacts with the FCS controller over CAN (see Figure 18). 
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Figure 10: Fuel cell system, front view 

 

Figure 11: Fuel cell system, rear view 
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3.1.2 Hydrogen Storage System 

The hydrogen storage system (HSS) is also sourced from the GM Fuel Cell Equinox, a 

requirement of the donation agreement under which the fuel cell stack was procured. The 

HSS is comprised of three composite tanks capable of storing hydrogen at pressures of up to 

70 MPa (10,000 psi). The HSS also includes a hydrogen controller and the associated sensors 

and actuators needed to monitor the status of the hydrogen tanks (tank and line pressures and 

temperatures) and control the tank’s various valves. The HSS is pictured in Figure 12. The 

supervisory control system interacts with the hydrogen controller over CAN (see Figure 18). 

 

Figure 12: Hydrogen storage system in its delivery crate 

3.1.3 Front Electric Traction System 

The front electric traction system (ETS) is the third and final component sourced from the 

GM Fuel Cell Equinox. It is mechanically integrated with the FCS, as indicated in Figure 11. 

The ETS is comprised of a permanent magnet alternating current (PMAC) electric motor 

connected to an AC motor controller that is powered from the high side of the high voltage 

DC bus. The supervisory controller interacts with the ETS over CAN (see Figure 18) to 

command torque, set operational limits on speed and current, and to select the motor state. 
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The digital control signal “Torque Enable" is a secondary enable signal used as an 

emergency stop. The front traction system is pictured in Figure 13. 

 

Figure 13: Front electric motor 

3.1.4 Rear Electric Traction System 

The rear electric traction system (RTS) is assembled from a Ballard 312V67 AC induction 

motor and a Rinehart PM100 AC motor controller. The AC induction motor has an integrated 

differential, is lubricated by an internal electric oil pump, and is water-cooled. It is mounted 

directly on the rear axle and connects to the rear wheels directly through half-shafts. The 

Rinehart motor controller is connected to the low side of the high voltage DC bus and outputs 

3-phase AC power to drive the induction motor. The Rinehart is commanded by the 

supervisory controller via CAN (see Figure 18). Control signals are sent to command motor 

torque, to set limits on motor speed and current, and to set the state of the traction system 

(on/off, forward/reverse). The rear motor and inverter are shown in Figure 14. 
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Figure 14: Rear electric motor integrated into the rear sub-frame assembly 

3.1.5 Lithium-Ion Energy Storage System 

The energy storage system (ESS) is a lithium-ion battery pack, designed and built by 

UWAFT. The author was particularly responsible for the overall design, construction, and 

integration of the pack, and specifically contributed the final casing design, final structural 

support finite element analysis, the high voltage wiring design, the cooling system design 

(including custom-manufactured thermal plates), and the vehicle power and control system 

integration. The pack contains three 25S2P lithium-ion battery modules supplied by A123 

Systems. As the name implies, each module contains 2 parallel strings of 25 series lithium-

ion cells, for a nominal voltage of 83 V. In series, the three modules provide a pack with a 

nominal voltage of 250 V and a capacity of 9.68 kWh. The pack is water-cooled via custom 

cooling plates sandwiched between the modules. The battery pack is managed by an A123-

supplied controller. The battery controller is mainly responsible for the operational safety of 

the pack. It monitors cell temperatures, voltages, and currents, and will automatically 

disconnect the pack from the main DC bus in the event of a critical fault such as cell 
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over/under-voltage, cell over-temperature, etc. The battery controller actuates the contactors 

that connect the pack terminals to the main DC bus to ensure that the battery can be safely 

isolated in the event of a fault. The battery controller interfaces with the vehicle control 

system via CAN (see Figure 18). The battery pack (before removal of the fourth module), is 

shown in detailed CAD imaging in Figure 15. 

 

Figure 15: UWAFT designed and built lithium-ion battery pack, final CAD assembly with team-designed 

DC-DC (left) and installed in vehicle (right) 

3.1.6 DC-DC Power Converter 

In a fuel cell powertrain the DC-DC converter connects the two sides of the high voltage bus, 

providing a key, but limited, power transfer link to fulfill several critical functions that both 

hybridize the powertrain and enable it to satisfy several key requirements. The Brusa 

BDC412 bidirectional DC/DC converter acts as the bridge between the high and low sides of 

the DC bus, and performs the critical task of controlling the voltage (and hence power flow) 

on both sides of the high voltage system. The supervisory controls commands the DC-DC 

converter over CAN (see Figure 18). The BDC412 can convert up to 200 A of current bi-

directionally (from low-to-high or high-to-low). A key limitation of the BDC412 is that while 

it can convert current bi-directionally, the high and low sides of the bus cannot switch over. 

That is, the voltage on the high side of the BDC412 cannot fall below the voltage on the low 

side; if such a condition occurs irreparable damage to the converter can result. The converter 

has internal control logic to hold off this condition if bus conditions are driving towards it 

(e.g. driving additional current from low-to-high in an attempt to hold up the high side 
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voltage) however these measures can only handle brief transient events, so the vehicle bus 

must be designed and controlled to prevent a “voltage cross-over” from occurring. This 

requirement plays a key role in the hybrid control system discussed in Chapter 5. The Brusa 

BDC412 DC-DC power converter is shown installed in the vehicle in Figure 16. 

 

Figure 16: Brusa BDC412 DC-DC converter 

The DC-DC power converter was originally intended to be custom-designed by UWAFT. 

When the design could not be completed on time, the Brusa off-the-shelf commercial 

solution was sourced. This introduced a few significant changes in the powertrain layout and 

consequently had significant implications on the powertrain power and torque control 

algorithms. The changes are discussed in Chapter 5. 

3.1.7 Battery Charger 

The battery charger enables the vehicle to harness externally-sourced grid electricity. The 

charger used in this vehicle is a Brusa NLG513-Sx air-cooled device. It can run from a 120 V 

and 15 A (standard household) circuit, effectively supplying about 1 kW of charging power 

at a Level 1 charge rate. It can also connect to a 208 V (industrial high voltage) or 240 V 

(residential high voltage) circuit, allowing for peak 3.3 kW charging power at a Level 2 

DC-DC
Converter
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charge rate. The charger is controlled directly by the battery management system over CAN 

(see Figure 18), which allows the battery controller to limit the charging rate as a function of 

pack voltage. The NLG513-Sx battery charger is shown in Figure 17. 

 

Figure 17: Brusa NLG513-Sx battery charger 

3.1.8 Auxiliary Components 

There are a number of auxiliary components that play a key role in the operation of the fuel 

cell hybrid powertrain. The fuel cell system has numerous auxiliary components (known as 

the “balance of plant” or BOP) such as hydrogen fuel injectors, a high voltage coolant pump, 

and a high voltage coolant heater. A high-powered buck converter, connected to the high side 

of the DC bus, is also required to supply 12 V for vehicle auxiliaries (lights, radio, wipers, 

controller power, etc.) typically supplied by the alternator / lead acid battery system in a 

traditional vehicle. Various low-voltage cooling pumps and fans throughout the vehicle 

enable thermal management. Hydrogen sensors are located inside the cabin, at the fuel tanks, 

and in the engine bay to detect leaking hydrogen before the concentration becomes 

combustible. 
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3.2 Powertrain Control System 

3.2.1 Control System Hardware 

The vehicle’s control system hardware has previously been discussed in [42], and is divided 

into two groups: supervisory and component control. Component controllers are developed 

by the manufacturer of each powertrain component to regulate its function (e.g. fuel cell 

controller regulates hydrogen and air delivery to the anode and cathode, respectively). This 

level of control is largely untouched by UWAFT, with a few exceptions where tunable 

parameters exist. Supervisory control is entirely developed by UWAFT to control and 

receive feedback from individual component controllers, to coordinate the overall operation 

of the vehicle, and to ensure the safety of vehicle occupants. 

The supervisory control hardware consists of the main supervisor and a subordinate actuation 

controller. The main supervisor contains the vast majority of developed software and makes 

all powertrain operational decisions. The subordinate actuator acts as an extension of the 

main supervisor, receiving commands to drive various electrical circuits that are either not 

supported by the main supervisor or which are offloaded to the actuator unit for consistency. 

The actuator has very little decision making capability, and is basically an I/O extension for 

the main supervisor. 

The vehicle control hardware layout is shown in detail in Figure 18. The vehicle relies 

heavily on controller area network (CAN) bus networks for communication between the 

component controllers and the supervisor. The vehicle’s original high-speed GMLAN bus 

(hsGMLAN) and powertrain expansion bus (PTECAN) are retained for body systems 

control, power steering, and electronic brake control. A dedicated network is required for the 

interaction between the fuel cell controller, hydrogen storage controller, and the supervisor 

(FCPS CAN). The majority of the powertrain components (motor controllers, battery, some 

hydrogen safety sensors) exist on the H2CAN bus. A simple two-device CAN network links 

the rear motor controller and the supervisor due to interference that was experienced between 

the two motor controllers. There are also two data logging busses, FCPMi (dedicated to the 

fuel cell system) and LOG (EcoCAR’s standardized data logging network). 
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Figure 18: Vehicle-wide CAN bus topology 

Some supervisory control is implemented using discrete low voltage signal lines. Both 5 V 

and 12 V circuits are used. 12 V digital logic signals are typically used to manage the power 

state of component controllers (i.e. wake up signals) and 5 V analog signals are typically read 

from onboard sensors (e.g. accelerator pedal position). 

3.2.2 Control System Software 

The supervisory control software has previously been discussed in [42], is divided into a 

hierarchy, sub-dividing responsibility for various aspects of supervisory control into units 

with defined interactions. This system architecture is a continuation of the work done in the 

first two years of the project by the previous team leader Alex Koch [43], who originally 

defined some of the subsystems and interactions between the control strategy and component 

control units. This work is extended to define four units at the top-level of the supervisory 

control code: Sensors, Diagnostics, Control Strategy, and Control Algorithms. Each unit is 

sub-divided into smaller control blocks, as shown in Figure 19, that handle specific functions 

within the unit. Those functions may be comprised of one or more algorithms that 

accomplish the required function. This division of control responsibility is designed to 

organize the control code logically, simplify development by breaking the system down into 
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manageable and distributable pieces, and to enhance safety by separating the safe actuation 

of powertrain control signals from the optimization routines that calculate their desired 

values. In this way, optimization of the control strategy (typically with the aim to improve 

energy conversion efficiency or drivability) can be carried out without concern for the effect 

on the safety of the powertrain and the passengers, which is the responsibility of the Control 

Algorithms unit. 

 

Figure 19: UWAFT EcoCAR supervisory control schematic 

The sensors subsystem acquires CAN, digital, and analog signals and applies the appropriate 

scaling and offsets to convert them into engineering units. Sensor values are also filtered 

where necessary (e.g. to smooth a jittering signal). The diagnostic control subsystem is 

responsible for monitoring the status of the vehicle. It processes raw sensor data and creates 

flags (usually single bit variables) which are used by subsequent processes to determine if 

certain actions are allowed or if mitigating actions are necessary to maintain safety. 

Powertrain component diagnostics are of concern for safety and performance. The diagnostic 

subsystem monitors the fuel cell, high voltage battery, high voltage DC-DC converter, and 

both motors for both expected responses to actuation commands and specific fault flags sent 

by component controllers. Component diagnostics are used both to determine when actions 

can be taken (e.g. when is it allowed to send a start-up signal to the component) and to take 
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remedial actions to maintain safety. Examples of remedial actions include emergency fuel 

cell shutdown in the event of a hydrogen leak, disabling one of the electric motors when 

CAN communication is lost, and limiting torque output when the DC-DC converter is 

overloaded (overcurrent condition). 

High voltage bus safety in the diagnostic subsystem is mainly concerned with maximum and 

minimum voltage levels found on the high voltage busses. Voltage overloads can cause 

internal component shorts, and under-voltage conditions can have impacts ranging from 

reduced performance to catastrophic component damage. The diagnostic subsystem monitors 

multiple high voltage sensors and provides subsequent control units with status flags 

including “bus discharged” (confirms high voltage bus is dead after contactors open), and 

“high side under-voltage” (which tells the control strategy unit that there is not enough power 

on the high side to support the loads, and initiates a load reduction strategy). 

Torque security monitors the accelerator and brake pedals, the gear selector, communication 

health between the supervisor and each electric motor, and the actual torque output as 

compared to the commanded torque for each electric motor. Its purpose is to ensure that 

torque is only released to the motors when it is safe and expected by the driver, and to ensure 

that the released torque is the amount that the driver expects. The accelerator pedal has 

redundant sensors that are monitored to ensure that they are in agreement (health check on 

the sensors while in range) and to ensure that they are in a valid range (e.g. identifies shorts 

to power and ground). The gear selector is monitored to ensure that it is in the appropriate 

position for torque release (Reverse or Drive, and not Park and not Neutral). The estimated 

torque output is monitored via CAN communication with each motor, and compared to the 

requested torque. A mismatch can be detected and appropriate mitigating action taken. 

The control strategy unit contains the power split (hybrid control strategy), the torque split 

(traction control strategy), and the thermal control strategy. The power split strategy 

determines the desired fuel cell output power as a fraction of the overall instantaneous power 

demand, the torque split strategy computes the desired division of the overall driver 
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requested torque between the two electric motors, and the thermal control strategy 

determines the desired state of all pumps and fans as a function of component temperatures. 

The component control unit receives sensor, diagnostic, and control strategy inputs, and 

determines what control actuation is necessary to carry out the desired control within safe 

limits. It is comprised of subsystems that represent the state of each individual powertrain 

component and of the vehicle as a whole. Each subsystem is typically executed using state 

flow diagrams, which provide the exacting control over the order and timing of events that is 

crucial for coordination between components. 
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Chapter 4 

Thermal Management System Design 

Powertrain thermal management is a significant challenge in electrified vehicles. A major 

cause for this challenge is the power electronics and fuel cells that are involved. These 

components, while more efficient than internal combustion engines, tend to have much lower 

temperature requirements. The resulting waste heat, although lower in quantity than that 

emitted by a combustion engine, exists at a much lower quality and is therefore harder to 

dissipate to the ambient. Radiators with heat dissipation ratings much higher than those 

typically found in a combustion engine vehicle, along with higher air flow, are needed to 

reject the waste energy. The vehicle thermal management system is shown schematically in 

Figure 20. 

 

Figure 20: Vehicle thermal management system 
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Four separate cooling loops were designed to meet the thermal needs of all powertrain 

components. The need for several separate loops was driven by several factors: 

1. The large number of powertrain components distributed throughout the vehicle, 

which if joined together into a single loop would require a great deal of pipe length 

incurring significant flow rate losses (or very high pumping power requirements). 

2. The greatly varied temperature requirements of the various components. Joining 

“hot” components like the fuel cell stack with relatively “cooler” components like the 

battery pack in a single loop would require a very high flow rate.  

3. It is easier to procure and integrate a larger number of small radiators than to try to 

use a single large radiator. The only location on the vehicle with enough space to 

house larger radiators is the engine bay, and it does not contain enough space to house 

a single or multiple radiators of sufficient size to dissipate all of the powertrain waste 

heat. 

4.1 System Design Process 

The thermal control system design project exemplifies several of the key attributes of 

project-based learning. First, the project is highly open-ended; there are no pre-determined 

set of components, arrangements, or design criteria to follow, only a set of thermal 

specifications for each component. The project involves incomplete data, with components 

often missing desired specifications like flow rate, and variables like total pipe length and 

equivalent pressure drop are difficult to determine exactly.  There is significant uncertainty, 

for example in the quality of the analysis that results from inexact data and consequent 

assumptions. The integration of knowledge from several subjects is required, including 

various topics in fluid mechanics and heat transfer as well as the ability to collect, organize, 

analyze, and visualize data, and to make recommendations from said analyses in the face of 

the aforementioned uncertainty. Finally, students must interact with industry to select 

components that meet the needs of their design. A gap in terminology and knowledge tends 

to exist between the classroom theory that students are familiar with and the methods of 

industry. 
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Fourth year Mechanical Engineering undergraduate students tend to take on the thermal 

control system design project (either in whole or part) for their fourth year design course. The 

project directly relates to core subject matter from the curriculum, and therefore appears to be 

a straightforward task. In fact the ME381 design course taken in the third year uses a heat 

sink optimization project as a vehicle for teaching the design process, and closely resembles 

UWAFT thermal design projects. However, after two years of observing many students 

tackle this project it became apparent that many students were not prepared to execute this 

level of project. Students, (the author included) initially have great difficulty handling the 

large and unstructured scope of the project. The number of possible ways to combine 

components, and loop arrangements proved to be a significant barrier to progress. Even when 

the project was broken down into single cooling loops with defined powertrain components, 

the incomplete and uncertain nature of the available data, combined with a lack of a clear 

“recipe” for the task of solving for a set of inter-related (and initially unknown) variables, 

made it impossible for most students to find a suitable starting point. 

In assisting students with the thermal design project, a design process for the vehicle cooling 

loops is developed to enable a structured and methodical approach. This process is applied to 

each of the four cooling loops, enabling rapid and accurate selection of pumps, fans, and 

radiators that meet the needs of the system. This design process is interesting for several 

reasons. First, it serves as a body of knowledge that can be used by the team in future thermal 

design projects. More importantly, development of the process itself is a valuable tool for 

students, helping them to deal with various types of uncertainty and to make the transition 

from analyzing engineering problems to designing in the real-world. 

 



 

57 

 

Figure 21: Thermal management system design process 

4.2 The Low-Temperature Front Cooling Loop 

The low-temperature front cooling loop is responsible for removing waste heat from the front 

motor power inverter (PIM), the front motor drive unit (DU), and the electronics inside the 

power management and distribution system (PMD). The thermal requirements for these 

components are outlined in Table 3. Subsequent sections will apply the thermal control 
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system design process to this design problem to demonstrate how it applies the principles of 

project-based learning and yields a beneficial learning experience. 

Table 3: Thermal management specifications for front loop components [44][45][46] 

COMPONENT 

MAX. COOLANT  

INLET 

TEMPERATURE (°C) 

MIN.COOLANT 

FLOW RATE  

(L·min
-1

) 

COOLANT 

PRESSURE DROP 

AT MIN. FLOW 

RATE (Pa) 

PEAK 

THERMAL  

POWER (W) 

PIM 65 13 10,000 3,942 

DU 69 13 15,000 11,158 

PMD 68 5 15,000 2,000 

 

4.3 Component Arrangement 

Generally, the components should be arranged in order from smallest to largest in terms of 

both maximum temperature and dissipated thermal power. The goal is to find the 

arrangement that maximizes the coolant temperature entering the radiator, which in turn 

maximizes heat transfer to the ambient air. This will permit the smallest possible radiator to 

be used, where a smaller heat transfer coefficient is needed to dissipate a given amount waste 

heat. 

Looking at Table 3, the temperature order is PIM, PMD, and DU. The thermal power order is 

PMD, PIM, and DU. The PIM and DU are physically co-located, so placing the PMD in-

between requires significant additional piping. The initial attempt at loop arrangement was 

driven mostly by finding the shortest physical piping path, resulting in the order of PIM, DU, 

and then PMD. 

4.4 Specify Conditions 

The ambient conditions, cooling fluid, pipe properties, and component specifications must all 

be determined before the system’s thermal-fluid equations can be solved. Coolant and pipe 

selection are arbitrary choices that should aim to maximize the effectiveness of the system 

and meet the requirements of the components and the environment. For example, water has a 

higher specific heat than the typical 50/50 mix of water and glycol, which enables the vehicle 



 

59 

to run cooler in the summer at the expense of the ability to run in sub-freezing temperatures. 

Additionally, some of the components in an electrified powertrain have strict requirements 

for the type of coolant and piping material that are used. The fuel cell stack, for example, is 

highly sensitive to conductive ions in the coolant. Certain materials used in conventional 

brazed radiators and metal piping can leach ions into the coolant, resulting in an increase in 

its electrical conductivity. If the coolant conductivity gets too high the isolation between the 

fuel cell high voltage system and the vehicle chassis is reduced to the point that the 

maximum permission leakage current is exceeded, and the vehicle must shut down for safety 

purposes. Fortunately, for the front loop components the material requirements are not strict, 

and traditional automotive brazed aluminium radiators and rubber heater hose are permitted. 

The ambient conditions and component thermal waste heat are a function of the environment 

that the vehicle will operate in, and the drive cycle(s) that will be encountered. Clearly, 

running the vehicle in a drag race at continuous wide open throttle generates more heat than a 

leisurely drive in a residential area. Additionally, the radiator will need a larger heat transfer 

coefficient to reject a given thermal power during summer in the Arizona desert than it would 

during winter in Toronto. 

The first iteration of the design process aims to reject the peak thermal load of all 

components in the most challenging environment that the team expects the vehicle to operate. 

This may not be a frequent or even likely scenario, but as the worst case it is a good starting 

point for the analysis. If these loads cannot be dissipated, or if optimization of the system is 

desired, then average thermal dissipation rates can be generated from the team’s Simulink 

powertrain simulations. The peak thermal loads are already listed in Table 3. The coolant 

specifications, pipe properties, and ambient conditions are listed in Table 4, Table 5, and 

Table 6 respectively. 

Table 4: Physical properties for water and ethylene glycol (50%) at 70°C [47] 

COOLANT DENSITY (kg·m-3
) SPECIFIC HEAT (J·kg

-1
·K

-1
) KINEMATIC VISCOSITY (m

2·s-1
) 

Water 977 4067 4.030E-07 

50/50 Glycol 1029 3398 1.039E-06 
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Table 5: Properties of pipe system at common diameters 

PIPE 

SIZE (in) 

INNER 

DIAMETER (m) 

ABSOLUTE 

ROUGHNESS (mm) 

PIPE 

LENGTH (m) 

NUMBER OF 

90° BENDS 

1/2" 0.0127 0.07 5 15 

3/4" 0.01905 0.07 5 15 

1" 0.0254 0.07 5 15 

 

Table 6: Properties of air at various temperatures [47] 

TEMPERATURE 

(°C) 

DENSITY  

(kg·m-3
) 

SPECIFIC HEAT  

(J·kg
-1·K-1

) 

KINEMATIC VISCOSITY 

(m
2·s-1

) 

30 1.1649 1006.5 1.604E-05 

40 1.1275 1006.9 1.698E-05 

 

The first iteration of the analysis assumes peak thermal loads for each component. The 

ambient air temperature is set to 40°C, which is representative of conditions at the General 

Motors test track in Arizona, where the year 2 competition is held. A pipe size of ¾” is 

selected as it fits most of the components without the need for adapters and is commonly 

available. 50/50 glycol is selected as the initial cooling fluid, as it enables year-round 

operation of the vehicle and hence simplifies maintenance requirements. These assumptions 

can be varied on further iterations if required. 

Of particular analytical importance is the assumption of the coolant temperature when 

specifying the density, viscosity, and specific heat. These properties are actually functions of 

temperature. The analysis can proceed by making an educated initial guess of the average 

system coolant temperature; however the loop coolant temperatures resulting from the 

analysis must be compared to the initial assumed value. If the properties of the assumed and 

solved fluid temperature are significantly different then the analysis must be repeated with 

new property values. Alternatively the coolant properties can be expressed as a function of 

temperature, and a computer program (e.g. MATLAB) can be used to iteratively solve the 
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thermal-fluid equations. Assuming initial values is valuable when learning to perform the 

analysis, however, because it allows the solution to be visualized concretely at each step. 

It is important to note that in setting up the problem to this point many assumptions have 

been made regarding materials, sizes, and operating conditions. Making assumptions 

regarding the configuration and conditions of the design is one of the important ways of 

dealing with uncertainty that students can use to help move the design forward. 

4.5 Component Pressure Drop Equations 

The fluid mechanics part of the analysis is concerned with solving for the pressure drop in 

the system. The pressure drop, as a function of flow rate, is dependent on the coolant 

properties (density, viscosity) and the flow restriction of the components and interconnecting 

pipes. The coolant properties, at the initial temperature assumption, are already known. The 

flow restriction of the piping and components are a function of the flow rate. For the piping, 

the pressure drop is determined by conventional correlations for the loss coefficients in 

straight (Darcy-Weisbach) and curved (K-factor) pipe. These equations are provided in Table 

18 of Appendix C. 

Losses in powertrain components are typically provided as a single value at the minimum 

recommended flow rate; full pressure drop curves are hard to come by. In this case it is ideal 

to experimentally determine the pressure drop in each component, but this is not always 

possible at the initial design stage. Thus, an assumption is required to move the analysis 

forward. Since pressure drop is typically a quadratic function of flow rate it is possible to 

extrapolate an estimate of the losses in each component as a function of flow rate by fitting a 

quadratic curve through the single provided data point and through zero. This is clearly an 

estimate, but in the absence of better data it is the best estimate that can be made and helps 

students move the design forward in the face of uncertain or unavailable data. The loss 

coefficient “K” for each component is calculated as Pa·LPM
-2

 from the provided data point. 

The pressure drop curve from each component is then simply P = K·Q2
. 
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The combination of the pressure drop equations for the components and piping results in the 

system pressure drop. Equations for the pressure drop within components and piping are 

provided in Table 18 of Appendix C. At this stage the radiator has not yet been selected, thus 

the total system pressure drop cannot be fully calculated. Suitable choices for the radiator are 

derived from the thermal analysis of section 4.6. The resulting radiator(s) are then used to 

complete the system pressure drop calculation. 

4.6 Loop Temperature Equations 

The objective of the loop temperature calculation is to find a radiator that can reject enough 

heat to ensure that the coolant temperature at each component that is below the maximum 

rated value. The temperature at each point in the loop is a function of the ambient conditions 

(air temperature), the coolant properties (density, specific heat capacity), the component 

operating conditions (waste heat load), and the radiator performance (heat transfer 

coefficient) that is a function of coolant flow rate. The ambient conditions, coolant properties 

(at the initial assumed temperature), and component waste heats are known at this stage. The 

radiator heat transfer coefficient “U” is obtained from manufacturer data sheets, and is a 

strong function of flow rate.  

The temperature of the coolant entering the radiator is derived from the radiator heat transfer 

equation. The temperature of the coolant at subsequent points in the loop is expressed from 

the heat gain of the coolant as it passed through each component. These equations are 

provided in Table 20 of Appendix C. 

Each equation has two unknowns, the inlet and outlet coolant temperatures, which link them 

together in order along the loop. Thus the equations are easily solved in an iterative fashion 

to arrive at the set of coolant temperatures at each point in the loop that result as a function of 

the third unknown, coolant flow rate.  

Radiator HX-260 is selected for the analysis. This radiator is manufactured by the Dana 

Manufacturing Corporation and is the only unit that fit within the physical constraints 

available in the engine bay. The heat transfer rate of the radiator is a function of the coolant 

flow rate, the air flow rate, and the temperature of the coolant and air as they enter the 
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radiator. The coolant flow rate and temperature are solved as a part of the analysis. The air 

temperature is simply that of the environment, which is also initially selected. The air flow 

rate, however, is extremely difficult to determine. Even with performance data for the 

radiator fan, the complex geometry within the engine bay makes it challenging to determine 

the resistance to air flow. One starting point is to use the air flow rate from a reference design 

of similar construction, which has an air flow rate of 2.4 kg·s-1
, or 4510 CFM at 40 °C. The 

HX-260 manufacturer provides cooling performance data at 4587 CFM, which will be used 

as a starting point for the analysis. 

With a radiator air flow rate, the thermal equations can be solved. The equations and 

tabulated calculations are provided in Appendix C, and the resulting coolant temperature at 

each point in the loop is plotted as a function of flow rate is shown in Figure 22. 

 

Figure 22: Coolant inlet temperature for each loop component as a function of flow rate 
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each component within specifications. The total waste heat and ambient environment are 

built into the analysis as conditions to be met. The maximum coolant temperature for each 

component is plotted in Figure 22 to illustrate how the flow rate is selected. The flow rate 

must be such that the temperature at each component is at or below the maximum value. 

Shaded areas on the plot highlight flow rates that are insufficient to meet the temperature 

requirements of one or more components. The minimum flow rate in this loop arrangement 

and under these conditions is 21.5 LPM.  

4.7 System Pressure Drop and Pump Selection 

With a known radiator and minimum required system flow rate, it is possible to plot the 

system pressure drop curve and select an appropriate pump. Given the HX-260 specifications 

and the previous pressure drop calculations outlined in section 4.5, the system pressure drop 

curve is calculated and shown in Figure 23. Also shown are the pump curves for two 

commonly available automotive electric water pumps, the Bosch PAD12V and PCA12V. 

 

Figure 23: System pressure drop and pump curves 
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It is evident that the required flow rate of 21.5 LPM cannot be achieved by either pump. This 

leads to iteration on some of the initial assumptions regarding configuration and conditions; 

several solutions are possible. A simple solution may be to retain all of the underlying 

assumptions of the analysis to this point, and simply connect additional pumps in series to 

boost the flow rate to the required value. Another solution lies in refining the thermal 

dissipation requirements of each component through simulations of the powertrain on 

expected drive cycles. Another possibility is to re-examine the loop configurations to see if a 

more optimal arrangement is possible. 

Further examination of the loop temperature calculations shows that the PMD drives the 

minimum required flow rate by a significant margin. The DU before it generates by far the 

greatest amount of waste heat and results in a significant temperature rise in the coolant. The 

flow rate must consequently be high enough to limit this temperature rise to meet the PMD’s 

temperature requirements.  

By re-arranging the loop so that the PMD precedes the PIM and DU, the DU’s temperature 

rise does not need to be limited. In fact a higher temperature is desired to maximize the 

effectiveness of the radiator. The loop temperature plot for this new arrangement is shown in 

Figure 24. 
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Figure 24: Loop temperature plot for PMD, PIM, DU arrangement 

The new minimum flow rate for the loop is driven by the DU at 11.7 LPM. The relatively 

small waste heat load of the PMD makes it more ideally suited at the beginning of the loop, 
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meet the system requirements. 

4.8 Sensitivity Analysis 
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radiator air flow rate cannot be determined given the available information. The reference 

design flow rate of 4510 CFM is one way to estimate the performance of the cooling system. 

To better understand the impact of air flow rate on the performance of the system a range of 

values should be run through the analysis. Thermal calculations for alternative air flow rates 

provided by the radiator manufacturer are tabulated in Table 20 of Appendix C. The coolant 

flow rates required to meet the initial design conditions are summarized in Table 7 for each 

air flow rate. For the PCA12V pump, which can achieve 15 LPM, an air flow rate of about 
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2000 CFM is required. This is less than half of that required in the reference design. Further 

analysis or experimentation is required to determine if this air flow rate can be achieved. 

Table 7: Minimum coolant flow rate at various radiator air flow rates 

AIR FLOW 

RATE (CFM) 

MIN. REQUIRED COOLANT 

FLOW RATE (LPM) 

694 ∞ 

2082 14.7 

3469 12.4 

4857 11.7 

6245 11.2 

 

4.9 Final Design Summary 

With all of the system components now specified, the actual performance of the loop can be 

calculated (Table 25); the results are summarized in Table 8 for the original radiator air flow 

rate of 4857 CFM.  

 

Table 8: Front loop final performance 

FLOW 

RATE (LPM) 

T,c,i,R 

(°C) 

Tc,i,PMD 

(°C) 

Tc,i,PIM 

(°C) 

Tc,i,DU 

(°C) 

PRESSURE 

DROP (Pa) 

11.7 85.4 60.2 63.2 69.0 36,872 

 

The front loop components are able to operate within their respective maximum temperature 

limits under full operating load within 40°C ambient conditions. The pressure drop within 

some of the components, the air flow rate over the radiator, and the properties of the coolant 

are assumptions that require validation. Other assumptions regarding configuration and 

conditions of the design include piping (size, layout, and length), ambient temperature, and 

the thermal load of each component. The design assumes a Dana Corporation HX-260 

radiator that fits within the physical space constraints of the engine bay. Given these 



 

68 

assumptions, a Bosch PCA12V pump meets the flow rate requirements of the system so long 

as a minimum 2000 CFM air flow rate is achieved at the radiator. 

It is evident that, given the available information, many assumptions were needed to advance 

the design to this point. These assumptions, so long as they are clearly stated and justified, 

and valid and necessary steps in the initial stages of a real-world design, yet they are difficult 

to for students to make when first starting a project at UWAFT. This often leads to 

procrastination for much of the term and a lost opportunity for students to advance their 

skills. Using this process encourages students to make and justify the assumptions needed to 

move the design forward, and gives them the confidence to address such problems in the 

future. Once the design is complete, students can then go back and iterate on multiple design 

configurations, operating conditions, and assumptions, and to visualize how all this affects 

system performance. For the author, this led to a better and more intuitive grasp of the 

material than had been previously gained from classroom instruction or labs. 

4.10 Thermal System Design in a Project-Based Learning Environment 

Uncertainty is common in engineering design projects, yet in the author’s experience student 

design projects tend to have well-defined inputs and outputs, and exist as the design-based 

equivalents of analysis-based textbook problems. Designing the thermal management system 

for the UWAFT EcoCAR is reminiscent of the third year ME380 design course in the 

University of Waterloo undergraduate curriculum, which teaches the engineering design 

process through a project to develop an optimal heat sink design. ME380 does do a good job 

of teaching a process that includes conceptualization, prototyping, analysis and optimization, 

experimentation, and refinement. ME380 also requires students to integrate knowledge from 

fluid mechanics, heat transfer, and computational analysis, with the objective of generating 

optimal values for a set of design parameters that yields minimal mass and volume and 

maximum thermal dissipation. The equations needed to compute these parameters are 

simultaneously taught in the curriculum. Therefore, the ME380 design process focuses on the 

iteration and refinement of a few design variables using a known analytical process to 

achieve a specific set of goals; essentially iterative analysis. 
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The design experience at UWAFT provides a similar experience but with additional 

challenges faced by practicing engineers. Additionally, students are given a much higher-

level design goal, such as “to design a cooling system for the powertrain components”. 

Students are then responsible for scoping the problem, which includes identifying and 

gathering the information, perhaps from previous projects, that is needed to perform the 

analysis. While support is always available from other students and faculty the onus is on the 

student to take the initiative, as is typical in project-based learning [2] [3]. This contrasts with 

ME380, where the scope of the problem is already defined. The ability to scope a design 

problem, that is to understand the goals that the design needs to achieve, has been identified 

as a key differentiator between students and practicing engineers [48]. Thus this form of 

uncertainty, not knowing the objectives of the design, is addressed in UWAFT projects.  

After the problem is scoped students must generate a strategy to execute the design. In the 

thermal design example students must identify the various elements of the design, including 

materials, sizes, environmental conditions, and thermal loads. Students must then synthesize 

system configurations and construct an analytical process to evaluate them. Students are 

already familiar with all of the variables and equations needed to complete the design, and if 

the task was to execute any one of those analyses (e.g. pressure loss calculation or heat 

transfer calculation) students generally have no issue tackling the problem. However, 

UWAFT design projects like the thermal management system challenge students to combine 

these various simple analyses into a greater and more complex analytical framework to 

achieve a higher-level design goal. This form of uncertainty comes from not knowing how 

the variables and equations combine to yield the final design. The process described in this 

Chapter is one way to help students learn to organize and execute a complex design. 

Finally, even with a well-understood design scope and a good formulation of the analytical 

process, there is often significant uncertainty in the value of variables being used or in how 

they are obtained. One example is the pressure drop within powertrain components. Due to a 

lack of detailed data and without having the components available for testing, some 

simplifying assumptions about the relationship between pressure drop and flow rate are made 

to permit the analysis to proceed. Other sources of this type of uncertainty exist in the length 
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of pipes, the ambient conditions that the vehicle will need to perform in, and the average and 

peak thermal loads that the cooling system will experience. 

Thermal and fluid analyses are well-taught at Waterloo and UWAFT students typically have 

a good understanding of how to perform them, but stumble when they are unable to compute 

the “exact” answer that would usually come from a textbook problem. For the individual, 

executing a thermal design project at UWAFT helps students learn to deal with various types 

of uncertainty by asking questions about the scope of the problem (much like practicing 

engineers must do), by making (justified and documented) assumptions where information is 

lacking, by using “what-if” scenarios and sensitivity analyses to understand the impact of the 

assumptions that have been made. 

The design experience described in this Chapter does more than yield a set of specifications, 

it yields a process that the team can carry forward as the design matures. For the team, 

having the design process laid out in this manner makes it easy to iterate the analysis to find 

the best solution to a single set of conditions and to make changes as conditions evolve. In 

the dynamic student team environment where members, requirements, and resources are 

constantly changing, process like this enable a knowledge transfer that can improve the 

team’s ability to execute designs over the years within and between competitions.  
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Chapter 5 

Powertrain Control System Design 

Controlling the unique powertrain described in Chapter 3 requires a detailed knowledge of 

the capabilities and limitations of the individual components, the range of operational 

conditions that the vehicle will experience, and how these factors combine to dictate the 

required flow of energy throughout the powertrain. This chapter will describe the electrical 

and control systems that were implemented to enable a safe, reliable, and predictable flow of 

power between vehicle components. 

The high voltage layout of the powertrain is reviewed and the equations of power flow are 

combined with operational requirements to yield the algorithms for the various powertrain 

operational modes. The powertrain moves through these distinct modes of operation during 

starting up and as condition change during a drive. These modes are described in terms of the 

power flow equations, and their implementation in software is discussed. 

Next, the algorithms governing control of the major powertrain components (fuel cell, 

battery, DC-DC, front and rear motor) are developed. These algorithms implement the 

control rules needed to achieve the various modes of operation by controlling the power flow 

through the high voltage system, following the power flow equations and enforcing the 

component limitations as needed to ensure reliability and safety. The two algorithms that will 

be discussed are the power control algorithm, which manages the power requests to the fuel 

cell, battery, and DC-DC, and the torque control algorithm, which manages the torque 

requests to the front and rear motors. 

Control system design for the EcoCAR vehicle requires knowledge and skills outside of the 

mechanical engineering curriculum, drawing on both unfamiliar core engineering concepts 

(e.g. electrical circuit design and protection, software design, algorithm development, system 

validation, safety analysis) and application-specific knowledge (e.g. powertrain component 

control). To execute this project a great deal of self-directed learning is required in areas such 

as electrical circuit protection (wire and fuse selection for high and low voltage systems), 
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processing digital and analog I/O in an embedded microcontroller, implementing modular 

and scalable software architectures, writing Simulink control diagrams for auto-code 

generation, and developing and validating control rules at the software, hardware, and 

vehicle level. These skills are not taught in the classroom, but are learned as needed to enable 

completion of the project design tasks; a key feature of project-based education. Having 

hands-on opportunities to identify and learn new skills provides significant motivation and 

offers the chance to see the tangible results of that learning. Learning new skills in a project-

based manner also helps turn what could be abstract concepts or theory (when taught in a 

classroom setting) into internal knowledge by providing a variety of experiences that can be 

used to engage the subject matter, in a more engaging manner than textbook problems.  

Real-world engineering problems also often require trade-offs between efficiency, 

performance, and reliability. In this Chapter the powertrain architecture, power control 

algorithm, and torque control algorithms demonstrate how these considerations impacted the 

final implementation of the powertrain control system. Learning engineering concepts 

through projects like these allows students to gain experience making these trade-offs during 

the design process. In several cases the control system must impose restrictions on the 

performance of the powertrain (power output) in order to maintain a high level of reliability. 

These trade-offs have a negative impact the performance of the vehicle during competition 

events (see Chapter 7 for a review of the vehicle’s on-road performance), but they ensure that 

the vehicle is able successfully complete them. This emphasis on safety and reliability is 

typical of real-world engineering projects. 

5.1 High Voltage Architecture 

It was previously stated that the team’s custom DC-DC power converter could not be 

completed on time. The shift to a commercially available and (in terms of technical 

specifications) less capable Brusa DC-DC power converter necessitated several changes to 

the powertrain layout. The focus of this section is to outline the impacts of the new DC-DC 

converter, describe how those impacts were mitigated through a re-design of the powertrain 
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layout, and identify how the control system would be modified to support the new 

arrangement. 

The original powertrain architecture used all of the same components, but the particulars of 

each component and how they were arranged within the powertrain were different. Figure 25 

shows the powertrain architecture (top left) and the final architecture for comparison (bottom 

right). A complete high voltage system schematic can be found in Appendix D. 

 

 

Figure 25: Transition from the year 2 to year 3 architecture 

The fuel cell and both motors were connected to the high side of the high voltage bus. Only 

the battery pack, which contained four A123 25S2P modules, was connected to the low side 

of the bus. The DC-DC power converter bridged the two sides. The DC-DC power converter 

was to be designed by UWAFT to be bi-directional buck-boost. That is, it could move 

current in both directions (bi-directional) and the high and low side could be swapped at any 

time (buck-boost).  The buck-boost mode switching requirement is further discussed in 
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section 5.1.2, and arises due to the overlapping operating voltage regions of the fuel cell and 

battery pack, caused by the polarization effect discussed in section 2.3.1.  

5.1.1 Bus Voltage Ratio 

The voltage ratio between the two high voltage sides of the DC-DC converter is defined as: 

  
            

             
 Equation 5 

This ratio is a critical metric for a fuel cell vehicle. Due to electro-chemical processes within 

the fuel cell and the battery, the original architecture allowed for the condition where either 

the fuel cell or the battery could be the “high side” of the high voltage system during 

operation, thus the voltage ratio could be either less than or greater than 1. The cross-over 

point where the two sides are at equal voltages (R = 1) could occur at a wide variety of 

operating points given the dependence of polarization on temperature, state of charge, and 

other factors. To operate the fuel cell through the full range of power outputs required a DC-

DC converter that could transfer current in both directions and which could switch between 

bucking and boosting in each direction, as shown in Figure 26. 

 

Figure 26: DC-DC modes of operation 

The Brusa DC-DC converter requires that the high side and low sides of the high voltage 

system are fixed. Thus, the ratio R must always be either greater than 1 or less than 1 for the 

architecture. Crossing the point R = 1 causes uncontrolled current flow and can damage the 

converter. Physically, then, the Brusa BDC412 can only boost from the low side to the high 

side, and buck from the high side to the low side. Thus, the vehicle can be physically 
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configured to operate in only two of the four quadrants shown in Figure 26, depending on 

which of the battery and the fuel cell has the higher operating voltage. 

The Brusa DC-DC, while bi-directional, does not have the ability to change buck-boost 

modes. The high and low sides of the converter are fixed. The following sections describe 

how the powertrain changed to accommodate this restriction while still maintaining the 

original capability of the vehicle.  

5.1.2 Battery Pack Voltage Modification 

The open circuit voltage of the fuel cell and the battery are different. Further, due to 

polarization the voltage of the fuel cell and the battery decrease as current increases. The 

shape of the polarization curve is a function of the electro-chemical device and the operating 

conditions (e.g. temperature). 

The original UWAFT EcoCAR architecture used a 4 module, 330 V battery pack. Figure 27 

shows the region of potential battery operating voltage over the range of battery discharge 

power levels. This region is derived from A123 test data of individual Li-ion cells. Measured 

fuel cell voltages corresponding to fuel cell discharge power during a drive are also plotted. It 

is evident that in this configuration the fuel cell output voltage easily drops below the battery 

voltage at power levels as small as 10 kW fuel cell output. It is also evident that the cross-

over point is not easily predicted due to the large overlapping area of the two polarization 

regions. 
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Figure 27: UWAFT EcoCAR source polarization potential, 330 V battery configuration 

To accommodate the two-mode operation of the Brusa BDC412, this voltage crossover must 

be prevented. Three options were considered and have been previously discussed in [42]. 

1. Increase the battery voltage by installing a 5-module battery pack, so that the battery 

would be the high side of the high voltage bus at all times during operation. 

2. Decrease the battery voltage by installing a 3-module battery pack, so that the battery 

would be the low side of the high voltage bus at all times during operation. 

3. Retain the 4-module battery pack, adjust the control to operate the powertrain such 

that R < 1 at all times (i.e. control fuel cell such that its voltage is always greater than 

that of the battery). 

Option 1 required finding room to add a fifth battery module, plus integrating the additional 

wiring and re-designing the entire support structure and skin of the battery pack to support it. 

There was not enough time to support this option and so it was discarded. This option 

required no changes to the control system, but the mechanical challenges were too great. 
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Option 3 was the simplest mechanically, requiring no structural modifications. However, 

after much discussion internally and with GM experts the team concluded that the significant 

controls system complexity needed to ensure safe operation of the powertrain, the risk of 

damage to the converter due to inadvertent violation of the voltage ratio restrictions, the 

severely reduced power availability from the fuel cell leading to serious operational 

restrictions, all made this option infeasible. In short, this option was mechanically trivial but 

had significant control system implications. 

Option 2 was selected, sitting between the other two in terms of mechanical and control 

system modification effort. Removing a battery module was, mechanically, a relatively 

simple task. The only impact was a lower battery voltage, and hence a lower peak battery 

power output. This is more than compensated for by the gain in fuel cell power output, 

however. The battery and fuel cell polarization curves for the 250 V battery configuration are 

shown in Figure 28. Only a small possibility of violating the voltage ratio restriction exists, at 

low battery power outputs and simultaneously high fuel cell power outputs. Compared to the 

operational restrictions of Option 3, this is a relatively rare and easy situation to manage. By 

implementing option 2, only the top-right and bottom-left modes of operation (black 

background) described in Figure 26 allow the voltage ratio R < 1. 
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Figure 28: UWAFT EcoCAR source polarization potential, 250 V battery configuration 

5.1.3 Rear Motor Re-Location 

The smaller 38 kW DC-DC converter, if used in the original architecture, would have 

restricted motor access to roughly a third of the available battery power output, significantly 

limiting acceleration performance and practically negating the sought performance benefit of 

the rear motor altogether. To increase the useful battery power, the rear motor power inverter 

was re-located to the low side of the DC-DC converter. Thus, battery power can be used in 

full to operate the rear motor, without being limited by the DC-DC converter. In fact, given 

the component specifications listed in  

Table 2 the rear motor could be saturated at its maximum power input and there would still 

be nearly enough battery power in reserve to also saturate the DC-DC converter in boosting 

current to the high side of the bus. This change did not incur any significant drawbacks or re-

designs, only a few changes in how the power split control strategy calculated the net power 

production on each side of the high voltage bus. 
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5.1.4 Control System Implications 

The control system was impacted in several ways by this new component arrangement. The 

power and torque control algorithms, which aim to balance the production and consumption 

of power in the vehicle, had to be modified to account for the new energy paths. The DC-DC 

component control block also had to be completely changed. The original team-designed 

DC-DC converter was meant to be current-controlled, with the voltages on each side of the 

bus being automatically managed by the converter to meet the magnitude and direction of the 

current being requested. The DC-DC component control block was also originally required to 

command the DC-DC mode switch when the fuel cell and battery voltages crossed over. In 

the new architecture, the Brusa BDC412 is a voltage-controlled device, and its primary 

control point is the high side bus voltage. Current will be converted automatically by the DC-

DC to meet the voltage commanded on the high side. However, the operation of the power 

control algorithm relies on balancing electrical current (or power), not voltage, and Figure 28 

shows that it is not easy to predict the fuel cell voltage required to obtain a given power 

output due to variable polarization characteristics. This is primarily why the original DC-DC 

converter was designed to be current controlled. A closed-loop feedback control that varies 

the high side the voltage request until the desired fuel cell power is reached was a potential 

solution, but this complex control would require much time and testing to ensure its speed 

and stability. A faster and more robust solution was to use the built-in current limit 

commands for the BDC412, in combination with the primary high side voltage command, to 

generate the desired fuel cell output current. This is discussed in further detail in section 5.3. 

The final architecture is very similar to a split-axle hybrid, having an independent propulsion 

system on each axle, but with two distinctions. Instead of a combustion engine there is a fuel 

cell and electric motor on the front axle, complimenting the battery and electric motor on the 

rear axle. Additionally, the two powertrains are electrically coupled via the DC-DC 

converter, instead of purely through the road. 
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5.2 Powertrain Modes of Operation 

The placement of both energy sources and sinks on both sides of the DC-DC power converter 

yields a powertrain energy balance equation that is unique in current fuel cell architectures. 

The possible current pathways within the vehicle are shown in Figure 29. 

 

Figure 29: Current flow within the powertrain  

From the energy flow diagram, the powertrain high voltage energy balance is developed. As 

a convention, a production of electrical energy is considered positive current, and 

consumption is negative current. 
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This expression simply demonstrates that all power produced at one point in the powertrain 

must be consumed at another point. Additionally, the DC-DC power converter is responsible 

for moving power between the high and low sides of the high voltage system, and this power 

transfer is expressed in terms of the difference in power generated / consumed on each side 

of the high voltage bus. For convention, the DC-DC transferred power is positive when 

boosting from the low side to the high side, and negative when bucking from the high side to 

the low side. 

                  (                   
)             Equation 7 

The powertrain goes through various distinct modes of operation that are determined by 

where and how power must flow through the high voltage bus. The vehicle supervisory 

control software defines when each of these modes occurs and applies the appropriate power 

and torque control algorithms. 

5.2.1 High Voltage Bus Pre-Charge 

The only source of permanently energized on-board high voltage energy is the battery pack. 

The battery therefore must pre-charge the entire high voltage system before any high voltage 

components can operate. Thus, the DC-DC must be capable of being energized on the low 

side and subsequently energizing the high side from zero volts. Once a sufficient voltage is 

established on the high side, the start-up sequence for the fuel cell system can begin. 

5.2.2 Fuel Cell Stack Start 

The fuel cell system draws high voltage power from the battery pack to operate the balance 

of plant components (e.g. cathode air compressor) which enables the fuel cell stack to get to 

open circuit voltage in preparation to close its contactors and provide power to the vehicle. 

Up to 10 kW of power is required to start the fuel cell stack, which translates to 40 A at 250 

V nominal battery voltage. 

Additionally, the DC-DC converter must be able to “follow” the stack voltage during the 

start-up sequence. The fuel cell system requires that the high side bus voltage be within 25 V 

of the stack-side voltage before contactors are allowed to close. The final voltage of the stack 
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before contactors attempt to close is variable and depends on temperature, humidity, and 

other factors. Therefore the DC-DC must have the ability to control the high side voltage to a 

specific value (the stack-side voltage) as the high side component loads vary. Otherwise, 

failed starts may occur. 

5.2.3 Propulsion – Excess High-Side Power 

During normal propulsion there is a power balance which exists on each side of the high 

voltage system. An imbalance on either side is compensated for by transferring current 

through the DC-DC power converter to the other side. Every propulsion system component 

(with the exception of the fuel cell stack) can act as a source or a sink at any time. The 

system power balance is shown in terms of DC-DC power transfer below. All terms are 

signed positive when acting as a source and negative when acting as a sink. The DC-DC 

power term is positive when current is transferred to the low side. 

For normal propulsion the control system is concerned with the power balance on the high 

side of the high voltage system. This is due to a combination of factors, including the slower 

fuel cell electrical inertia (compared to the battery) and the fact that the battery can act as a 

source or sink as needed without any battery-level control (it is treated as an automatic 

energy buffer).  If, during normal propulsion the fuel cell power output exceeds the load of 

the front motor and the high voltage auxiliary loads, the DC-DC must be able to transfer the 

excess current to the low side (bucking mode), to be absorbed by the battery. This could be 

due to fuel cell inertia being too slow to respond to a reduction in the front motor load (heavy 

tip-out), which is shown in Figure 52 of section 7.1.  

5.2.4 Propulsion – Excess Low-Side Power 

If the fuel cell power output is insufficient to meet the loads of the high voltage auxiliaries 

and the front motor, current must be transferred to the high side (boost mode) from the 

battery. This typically occurs during heavy acceleration where the fuel cell cannot increase 

power output quickly enough to meet the motor demand. It may also occur during charge 

depleting operation, where the hybrid control strategy prefers a low fuel cell power output. 
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5.2.5 Regenerative Braking 

During regenerative braking, the fuel cell is commanded to zero power output, which 

maximizes the regenerative braking power that can be transferred through the DC-DC power 

converter. The fuel cell will internally generate the power required to satisfy all non-motor 

high side loads (auxiliaries). The DC-DC converter is commanded to maintain fuel cell open-

circuit voltage on the high side of the high voltage bus to accomplish this. Thus, maximum 

current generated by the front motor is transferred to the low side. 

5.3 Power Control Algorithm 

The power split strategy calculates the total instantaneous vehicle power demand and then 

determines how much power should come from the battery and how much should be 

provided by the fuel cell. The output of the power split strategy is the desired instantaneous 

power output of fuel cell power. It is implied that the battery will provide the balance of the 

power being consumed by the powertrain.  

The power command algorithm uses the desired fuel cell power output, together with 

information about the state of each powertrain component, to determine how closely the 

desired power split can be met. The fuel cell power set-point is modified as needed to meet 

operational or safety requirements. The algorithm then generates the required control signals 

for the fuel cell and the high voltage DC-DC converter to match, as closely as possible, the 

desired power split. This algorithm has previously been described in [42]. 

The power command algorithm translates the desired power split between the fuel cell and 

the battery into the component control commands required to achieve them. It also overrides 

the desired power split when it cannot be achieved based on the state of individual 

components, modifying the desired power output only as far as is needed to maintain safety, 

while also maximizing the total power output when it cannot be achieved. A flow chart 

illustrating the calculation process of the power command algorithm is shown in Figure 30. 
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Figure 30: Calculation flow for the power command algorithm 

The power command algorithm accepts the desired fuel cell power as a set-point command, 

and outputs a DC-DC current command and a fuel cell power request. It also receives the 

instantaneous battery current, DC-DC transfer current, front motor power requirement, fuel 

cell power availability, the voltage on both sides of the HV bus, and the regenerative braking 

system status. The top-level view of the algorithm is shown in Appendix E. In the first 

calculation, the power command algorithm computes the HCS_FCPM_PwrDesired variable, 

which is simply a reflection of the fuel cell power target for the power command algorithm 

(Figure 31). It is differentiated from the HCS_FCPM_PwrDesired variable by the desire to 

maximize the regenerative braking system efficiency. Since the fuel cell and the front motor 

must both use the DC-DC converter to sink any current produced in regenerative braking 

mode, it is desirable to idle the fuel cell system during regenerative braking events, thus 

maximizing the available throughput for regenerative braking current to charge the battery. 

Thus, if the RegenAtv variable is true, the HCS_FCPM_PwrDesired is zero, else it is the 

FCPM_PwrDesired. 
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Figure 31: Fuel cell power desired 

The next calculation step also works to maximize the use of available regenerative braking 

energy. Even during idle operation, the fuel cell system requires some power to maintain its 

balance of plant loads. Instead of allowing the fuel cell to produce this required electrical 

energy during a regenerative braking event, additional current can be commanded from the 

front motor. The fuel cell continually reports the required power for internal operation, which 

is translated into a current requirement by dividing by the voltage of the high side of the HV 

bus. This current requirement is stored in the variable FCPMCurrRq_Regen for later use 

whenever the RegenAtv variable is true (Figure 32). 

 

Figure 32: Fuel cell internal current requirement during regenerative braking 

The next calculation step computes the DC-DC current command required to achieve the 

desired power split as closely as possible, within the limits of the powertrain components. 

First, an energy balance is calculated for the high side of the HV bus, if the desired fuel cell 

power was to be implemented at the current system traction state (front motor power 

requirement). Any unbalanced power is output as a DC-DC power transfer requirement, 

converted to a current requirement with reference to the low side of the HV bus. If 

regenerative braking is active the FCPMCurrRq_Regen is subtracted from the DC-DC 

current requirement to supply some regenerative braking power to the fuel cell. The resulting 
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desired DC-DC current transfer is then dynamically saturated according to the instantaneous 

current limits reported by the battery (in charge and discharge) and the DC-DC converter. 

The minimum of these two component current limits is used to saturate the desired DC-DC 

current. 

 

Figure 33: Power control algorithm DC-DC current calculation 

The saturated DC-DC current request represents the best-case DC-DC transfer current 

available under the circumstances. The balance of the vehicle’s power requirements must be 

met by the fuel cell. The final fuel cell power request is simply the difference between the 

best-case DC-DC current transfer capability and the total vehicle power requirement (Figure 

34). Note that the rear motor power requirement is not part of the power control algorithm’s 

calculations. It is assumed that the fuel cell set-point calculated by the hybrid control strategy 

is sufficient to meet the needs of the powertrain. The function of the power control algorithm 

is to meet this set-point as closely as possible, within the operational limits of the powertrain 

components. This requires a high side power balance, as shown. The battery pack has 

sufficient power capability, even in the reduced 3-module form, to supply all of the rear 

motor power needs (80 kW per, as per Table 2). This power is drawn freely from the battery 

without control system intervention. Maintaining the appropriate SOC of the battery is one of 

the primary functions of the hybrid control strategy. As the rear motor draws power from the 

battery and the SOC falls, the hybrid control strategy requests more power from the fuel cell 

to replenish it. If it is advantageous for the fuel cell to supply current to the low side for rear 
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traction, the hybrid control strategy will request this power. Thus, the power control 

algorithm needs only to balance power on the high side of the bus to meet the fuel cell power 

set-point provided by the hybrid control strategy. 

 

Figure 34: Fuel cell power request calculation 

The DC-DC control block for the “driving” mode is shown in Appendix F. Depending on the 

sign of the DC-DC current transfer request (positive or negative) the DC-DC control code 

can infer the transfer direction (boost or buck, respectively). When boosting, the fuel cell 

voltage is forced to its maximum value, resulting in zero power output. When the front motor 

places a load on the high side the DC-DC converter maintains the maximum voltage set-point 

by boosting current from the battery, thus forcing the fuel cell to maintain zero power output. 

However, there is a boost current limit that can be sent to the converter, forcing it to saturate 

the DC-DC transfer current at the desired value. This current limit supersedes the voltage set-

point. Hence, once the transfer current limit is reached the converter no longer enforces the 

voltage set-point, allowing the fuel cell to meet the remaining front motor load while 

continuing to provide the requested DC-DC transfer current. A similar strategy is used during 

bucking, with the fuel cell voltage set to a minimum allowable value. In this way the 

powertrain controller can indirectly but accurately control the power split (and hence fuel cell 



 

88 

power output) by limiting the DC-DC converter to transfer only a particular fraction of the 

vehicle power requirement and allowing the fuel cell system to automatically provide the 

rest. The value of the fuel cell power output that will be achieved is calculated from a high 

side power balance that includes the DC-DC, front motor, high voltage auxiliaries, and the 

fuel cell stack, as shown previously. 

The benefit of this power control architecture is the de-coupling of the power split strategy, 

which is concerned with optimizing component and/or system efficiency, from the actual 

component control algorithm, which is concerned with safe and reliable actuation of the 

powertrain. Not only is it easier to develop these systems in parallel (they have only a single 

dependency, the fuel cell power set-point that is passed between them) but it also allows for 

rapid evaluation of various power split optimization strategies without potentially disturbing 

the low-level control of the powertrain itself. In more general software terms, this is 

analogous to writing a component “driver” (the power control algorithm) which is developed 

with intimate knowledge of the component being controlled, and exposing only a restricted 

interface to higher-level software layers that may not be aware of all the nuances of 

component control. 

The drawback to this method is that the optimization strategy does not necessarily know what 

the actual power split will be. It is possible that, knowing any operational and safety 

constraints, the power split strategy could generate a fuel cell power set-point that, while less 

optimal than in the unrestricted case, would be more optimal than that which is generated by 

the power command algorithm. The architecture does allow for this, of course, as all sensor 

data is available to the power split strategy for use. The power command algorithm would 

still have the final determination of what can be commanded at any given time. 

5.4 Torque Control Algorithm 

In an AWD traction system, the torque split strategy computes torque set-points for each 

motor controller, with the aim to achieve various control goals such as giving traction to 

wheels with more grip, or optimizing the overall power conversion efficiency of the traction 

system. Given the time constraints of this project a fixed torque split strategy was 
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implemented to give basic performance in the EcoCAR competition. This strategy applies 

torque distribution between the two motors as a fixed percentage of the overall torque 

demand requested by the driver via the accelerator pedal. The split was set to 70% front and 

30% rear, up to the saturation point of the front motor, with the reasoning that the more 

efficient front motor should deliver most of the traction demands. This gives basic AWD 

performance needed to compete, but it does not optimize for efficiency or provide intelligent 

traction control in slippery conditions. 

The torque control algorithm is the main focus of this section.  The torque control algorithm 

has several key functions that are needed, even with the most simplified torque split strategy, 

to ensure the performance, safety, and reliability of the traction system and the overall 

powertrain. These functions are: 

1. Moderating torque delivery to ensure that the high voltage bus stays within 

component limitations; 

2. Modifying the torque requests of the torque split strategy as needed to meet the 

instantaneous requirements / limitations of each motor system; and, 

3. Mitigating the effect of motor faults by shifting all torque to the remaining motor, 

without affecting the pedal mapping. 
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Figure 35: Torque control algorithm 

The need for moderating torque delivery based on high voltage bus considerations is a 

consequence of the maximum electrical power output of the powertrain being lower than the 

maximum possible combined electrical power demand of the traction motors. Section 2.3 

discusses the polarization effect of electro-chemical power sources, section 5.1.2 

demonstrates how this affects in the UWAFT EcoCAR powertrain, and section 5.3 shows 

how this impacts the power control algorithm. Section 3.1 provides a brief overview of 

powertrain component limitations, including the front motor power inverter DC voltage 

operating range. In the UWAFT EcoCAR powertrain the maximum combined current 

demand of the motor system at high speeds is capable of exceeding the current supply 

limitations of the powertrain. Without torque delivery (i.e. electrical current request) 

moderation, the motor power inverters will pull more current than the electro-chemical 

power sources can sustain at the required voltage. Figure 36 shows a plot of DC-DC high and 

low side voltages and currents taken from on-road vehicle testing when this exact situation 

occurred. The high side bus voltage falls to the point of the low side voltage at about 3400.78 

seconds, and the DC-DC converter attempts to drive 200 A (50 A above the maximum and 

commanded value) in an attempt to arrest the falling high side voltage. The converter is 

unable to sustain this condition and faults at about 3401.45 seconds. 



 

91 

 

Figure 36: Over current condition on DC bus leading to DCDC shutdown 

Not only does this under-voltage condition cause loss of functionality, it can be catastrophic 

for the DC-DC power converter. As discussed in section 5.1.1, the DC-DC power converter 

is a two-quadrant device, operating only in positive boost and negative buck modes and 

having a peak current limitation of 150 Amps in either mode. Violating the two-quadrant 

constraint by allowing the high voltage bus to enter a negative boost or positive buck mode 

(essentially allowing the high side voltage to fall below the low side voltage) can result in 

component damage, and the DC-DC power converter typically shuts down to protect itself. 

This in turn triggers the supervisory controller to orchestrate an emergency powertrain 

shutdown to mitigate the potential for cascading component damage. Consuming too much 

current with the front motor can quickly exhaust the current driving capability of the DC-DC 

converter, and then shortly thereafter the current output capability of the fuel cell. However, 

with the DC-DC power converter having a smaller current driving capability than the battery, 

there is still current available for transfer from the low side of the high voltage bus to meet 

the front motor current requirement. The DC-DC converter has both voltage and current 

driving set-points (commanded by the power control algorithm as discussed in section 5.3) 

that it tries to meet. Due to the two-quadrant limitation and potential for converter damage 
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when this aspect is violated, the DC-DC converter will drive itself above the 150 A limit, 

pumping more current into the high side of the bus in an attempt to hold up the high side 

voltage. This over-current condition is only sustained briefly (100 milliseconds in Figure 36) 

before the converter will eventually fault and cease to operate, removing one of the 

supervisory controller’s methods of regulating bus voltage. If current is still drawn on the 

front motor the high side voltage will fall as the bus capacitance discharges. Damage to the 

DCDC converter is possible if the powertrain is not safely shutdown before the fuel cell 

voltage crosses into the battery’s operational range (see vehicle polarization plot in Figure 

28). 

To avoid the aforementioned conditions, which at the minimum cause loss of vehicle control 

and at worst carry the potential for powertrain component damage, the torque requests of the 

torque split strategy must be moderated by the torque control algorithm to respond to the 

instantaneous operational limitations of the powertrain. This function is separated from the 

torque control strategy, with a defined inter-function interface linking them that permits 

multiple strategies to be implemented and tested simultaneously, without the risk of 

circumventing the safety limitations enforced by the torque control algorithm. 

In the event of a motor fault that is not cause for a system-wide shutdown, the torque control 

algorithm has the critical function of maintaining maximum vehicle control via the remaining 

motor, effectively providing one of the vehicle’s “limp-home modes”. The torque shifting 

algorithm is a sub-set of the torque control algorithm, and is the final filter for torque 

commands leaving the supervisory controller. The algorithm block diagram is shown in 

Figure 37. 
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Figure 37: Torque limit and shift algorithm 

The torque limit and shift algorithm receives the desired torque demand for each motor 

(calculated as a percentage of the overall vehicle torque demand, as determined by the torque 

control strategy), and the instantaneous peak torque capabilities of each motor, both positive 

(propulsion torque) and negative (regenerative torque). For each motor, the algorithm then 

compares the instantaneous torque demand with the instantaneous peak torque capability in 

both propulsion and regenerative operation. Given the sign of the torque demand, only one of 

these comparisons is valid (e.g. for a negative torque demand, only the comparison with the 

regenerative torque limit is valid). A switch (single condition if statement) uses the sign of 

the torque demand as a test to determine which comparison is valid, and the valid comparison 

is passed through as the smallest of either the torque demand or the applicable torque limit. 
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This step ensures that the outgoing torque demand does not exceed the applicable torque 

limit, needed to keep the high voltage bus within limits. 

Simultaneously, for each motor the algorithm computes the differences between the 

maximum allowable propulsion allowed and the allowable propulsion torque that is passed to 

the switch case. This difference represents the un-met torque demand that the algorithm can 

attempt to shift to the other motor. When the propulsion torque demand is less than the 

maximum allowable propulsion torque, these are the same value and the desired shift torque 

is zero. When the propulsion torque demand exceeds the maximum allowable propulsion 

torque, the difference is computed and added to the torque request of the other motor, as 

output from the switch case as being the maximum torque permissible for that motor. 

Finally, the combined allowable torque of each motor, plus any shift torque added from the 

other motor, is re-saturated based on the instantaneous torque limits for propulsion and 

regenerative operation. This ensures that the added shift torque does not push the torque 

demand for either motor above the limits imposed by previous calculations. Alternatively this 

could have also been accomplished by adding the shift torque to the incoming desired torque, 

before it is compared to the torque limits. 

This torque shifting algorithm provides the functionality to dynamically limit and shift torque 

in a multiple-motor powertrain, maximizing power delivery while also respecting torque 

limitations that can be externally calculated and fed to the algorithm to satisfy any required 

system constraint. While this implementation of the torque control algorithm is primarily 

concerned with high voltage bus voltage constraints the algorithm can be used in conjunction 

with multiple constraints respecting thermal or other operational limitations, where the most 

restrictive constraint is fed to the limit and shift algorithm. These additional constraints can 

be added in EcoCAR2 to expand the functionality of the algorithm and ensure stable 

operation over a wider range of conditions. 
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Figure 38: Torque shifting algorithm allows “limp home” on rear motor 

The torque control algorithm certainly has room for improvement. It currently does not 

account for some of the less critical (or at least less expected) operational restrictions, such as 

the temperature limits of the front and rear motors. These are less critical since the individual 

component controllers will shut themselves down if limits such as temperature are exceeded, 

but it is preferable to anticipate the limit and avoid it by reducing current.  

Another important improvement is to remove the fixed torque limitation and dynamically 

adjust current limits according to the state of the high voltage bus. This requires control code 

to track the voltage on each side of the bus and to predict when the voltage cross-over point 

will be reached. This can be accomplished via several means, including a PID controller or a 

state space controller.  

Dynamically adjusting the current limits of the torque control algorithm’s limit and shifting 

capability will improve performance while maintaining function and reliability under all 

operating conditions. Similarly, the torque split strategy can also improve efficiency by 

dynamically adjusting the motor torque split. This optimization of the split strategy would 
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rely on the efficiency maps of each motor, combined with either online calculations or an 

offline lookup table. 

5.5 Control System Design in Project-Based Learning Environment 

Control system design in UWAFT’s project-based learning environment expands on and 

sometimes complements the engineering design skills taught in the undergraduate 

curriculum. In undergraduate design courses primary consideration is given to how a design 

will perform in ideal or foreseeable conditions, often selected by the student. Designs are 

evaluated on technical accuracy and completeness within this scope. This is important but 

does not address the significant consideration that must be given to reliability and robustness 

in an engineering design. In the UWAFT environment significant consideration is given to 

reliability and robustness. Sometimes this consideration leads to trade-offs, sacrificing some 

level of performance or efficiency in order to achieve a certain level of reliability. This was 

evident in the torque limiting implemented in section 5.4. These considerations are inherent 

to project-based education and align with real-world engineering design experiences. In real-

world design projects the ultimate objective is to generate a working system that will be put 

into service. This means that reliability and safety must be considered and, where needed, 

take priority over efficiency and optimization. This is especially true where resources like 

time, budget, and manpower are limited. The UWAFT environment certainly fits this 

description, and participating students gain experience making decisions to move a design 

forward while grappling with these sometimes conflicting priorities. This has personally led 

to a significantly greater ability to execute projects successfully. 

Not only are resources and design priorities a significant consideration in projects, they can 

be in constant flux. At UWAFT that means a high rate of turnover as terms change, new or 

revised competition rules or performance standards as the project develops, and unforeseen 

obstacles that arise simply due to the complex nature of the project and the (relative) 

inexperience of the participants. The ability to break down a problem into components (i.e. 

modularize the design), divide those components amongst individuals and/or teams, and re-

assemble them to produce the final design is critical. This experience of working in a larger 
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team, learning task and role differentiation and dividing work tasks into units, is a central 

theme of project-based learning and it is present in every design project at UWAFT, 

particularly the implementation of the supervisory control code discussed in this Chapter. 

Designs at UWAFT must also often go ahead without all the required information (like what 

components will be used), or must be changed at the last minute to accommodate changes in 

other parts of the design or in availability of components. This forces students to formulate 

the design problem around these barriers. This may mean producing a design process or 

framework (like that discussed in Chapter 4) that can adapt to changing needs, or it may 

mean modularizing the design with defined interfaces so that pieces can be tackled by 

multiple parties and substituted/changed with limited side-effects (as discussed in this 

Chapter). 

The experiences and design work detailed in this Chapter highlight some of the key 

advantages to working in a project-based learning environment, using examples from the 

design of the powertrain control system. These include the additional considerations given to 

reliability and robustness in addition to performance and optimization, the need to adapt to 

changing circumstances and resources, and the consequent strategies that students can learn 

and implement to cope with that uncertainty.   
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Chapter 6 

Safety Control System Design 

Fault detection and mitigation is a critical element of automotive controls. It is particularly 

important in the EcoCAR competition where teams are building on-road passenger vehicles. 

The motivation for implementing robust safety control systems is to protect vehicle 

operators, those around the vehicle, and the vehicle itself from harm cause by a failure in the 

vehicle control system. 

Appropriate safety analysis, leading to design and operational safety controls, are mandatory 

elements of real-world engineering design. While their importance and (sometimes) theory is 

touched upon in general introductory engineering courses, these skills are not often addressed 

nor practiced in the technical or design project courses of the undergraduate engineering 

curriculum. In the UWAFT project-based environment designs require safety analyses and 

validated fault detection and mitigation efforts in order to obtain any measure of success, as 

the vehicle is not permitted to run without them. Consequently, as they are mandatory 

elements, student motivation to research, learn, and apply safety-related design and 

operational controls is high, and safety becomes an embedded element of the core control 

system knowledge (e.g. signal acquisition and processing) being taught. 

This chapter discusses the general approaches to safety analysis and control in the UWAFT 

EcoCAR vehicle, particularly within the electrical and control systems of the vehicle. Torque 

security is used as an example of how a safety-critical system is analysed to identify safety 

risks, how these risks are prioritized, and how priority risks are then mitigated through design 

and operational controls. User feedback, especially when mitigating actions may cause 

vehicle behaviour deviating from user intent, is also emphasized. 

6.1 Frameworks for Safety Analysis 

Failure Modes and Effects Analysis (FMEA) and Fault Tree Analysis (FTA) are two 

frameworks commonly used in the automotive industry to analyse system safety. These tools 

are the starting point for system safety design, and are used to identify the safety-critical 
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elements of the vehicle’s real-time control system. FMEA and FTA are, respectively, used as 

bottom-up and top-down approaches to system analysis. Used together, they are 

complimentary processes that enable more complete coverage of a system than either process 

can achieve alone. 

FTA is a top-down approach to system safety analysis. System faults are identified through 

brainstorming sessions, which form the top-level entry for a fault tree [49]. For each fault, 

immediate causes or events are listed. Those causes or events are further caused by other, 

lower-level events or combinations thereof. A logical tree of events is thus constructed, 

leading from the top-level fault to the most basic system events. Thus, FTA is an analysis 

that begins with known system-level faults and works down through causal errors to reveal 

root-level component failure mechanisms. FTA serves as a brainstorming tool to generate a 

list of critical system faults, and also provides insight into how system behaviours lead to 

these faults. FTA is a good tool to aid in designing controls for safety-related faults for 

several reasons. FTA shows single and multiple points faults, so it can help designers identify 

weak points (i.e. single point failures) in the system. It also shows all the intermediary steps 

between a root (bottom-level) cause and the (top-level) effect, which helps designers identify 

points of detection and mitigation within a critical sub-system. 

FMEA is a bottom-up approach to system safety analysis. Systems are broken down into 

subsystems and components, and brainstorming sessions identify possible failure modes for 

each system component [50]. Once a list of failure modes is compiled for each component, 

the effect(s) of each failure are listed and quantified through a Severity Index (S). Next, the 

cause(s) of these effect(s) are listed, and quantified with an Occurrence Index (O). Design 

controls are identified next. In this implementation of FMEA, design controls are divided 

into two types. Prevention controls involve designing the system to reduce the occurrence of 

the causes of failure. Detection controls involve implementing methods that can be used to 

identify when failure causes occur. The ability of design controls to prevent or detect a 

failure is quantified using a Detection Index (D). The combination of Severity, Occurrence, 

and Detection indexes is used to rank and prioritize failure modes. FMEA is an analysis that 
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begins with known root-level component failure mechanisms and works up through the 

resulting errors to yield system-level faults. 

FTA and FMEA provide two independent methods of performing a system analysis. As a 

deductive method, FTA is a good starting point when effects of failure are known (e.g. from 

previous experience with the particular application, brainstorming, hazard analysis) but the 

particular causes in the current system design are unknown [49]. As an inductive method, 

FMEA is useful when the causes of failure are known (e.g. from experience with 

components) but the effects on the system are unknown [49]. For both methods it is critical 

that the right people are involved in the analysis and that an appropriate level of knowledge is 

available regarding the known causes or effects that serve as a starting point for FMEA and 

FTA, respectively. 

For example, in designing a vehicle control system unintended vehicle movement is a critical 

effect of a failure in part of the system. During the design process a FTA for unintended 

vehicle movement would be performed in an effort to understand how certain events within 

the components of the vehicle control system can lead to this effect. Thus, FTA is an 

analytical process that is best executed by experts at the system integration or application 

level. A good FTA session may be preceded a brainstorming session at the system or 

application level to generate the failure effects that serve as the top-level of the fault trees.  

Conversely, FMEA is useful when detailed knowledge of a component and its failure 

mechanisms are known. For example, in the same vehicle design project, a FMEA performed 

on a motor controller would identify an open or short on the torque control signal as possible 

causes of failure. This failure may lead to the effect of unintended vehicle movement. Thus, 

FMEA is a brainstorming process that lends itself to experts at the component or subsystem 

level. A good starting point for FMEA is a brainstorming session at the component level, to 

generate the failure modes that serve as bottom-level events for the analysis. 

By approaching system analysis from both ends, top-down and bottom-up, and by involving 

both system-level and component-level experts in the brainstorming process, the likelihood 

of identifying and linking all safety-critical causes and events is increased. These methods 
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are only the beginning of designing a safe control system, however. Once safety-related 

design elements are identified, they must be addressed with appropriate controls. Those 

controls may occur in the design phase to reduce the probability of failure causes, and / or 

they may be implemented within the production system to detect known failure effects and 

take appropriate action. The focus of this chapter is on the latter through examples related to 

one of the most safety-critical elements of vehicle controls: torque delivery. 

6.2 Fault Identification in the Torque Control System 

Vehicle torque security is accomplished by identifying those critical systems and signals 

which, if failed, could cause a loss of vehicle control or damage to one or more powertrain 

components. Those systems and signals are then monitored by software that is capable of 

detecting failure conditions and taking mitigating action to protect the vehicle and its 

occupants. 

The first step in this process, identifying critical systems and signals, is both the most 

difficult and the most critical. It is critical because, simply, in order to monitor and protect a 

safety-critical signal that signal must be known to need protection. It is difficult because 

identifying those systems and signals that are safety-critical is not easily done using kinds of 

the formal analytical frameworks that engineers, particularly new engineers, are so reliant on. 

The FTA and FMEA processes are applied to the torque control system in this section to 

reveal their respective strengths and weaknesses in performing systems analysis in the 

UWAFT EcoCAR project. 

The torque control system involves all of the components and interfaces that are responsible 

for translating driver inputs into vehicle motion. To facilitate the top-down FTA for 

unintended torque actuation, it is useful to generate a system-level schematic of the torque 

command path, as shown in Figure 39. 
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Figure 39:  Control path for torque actuation in the EcoCAR vehicle 

The control path for torque actuation in the EcoCAR vehicle starts with the driver’s input via 

the accelerator pedal position sensor (APS). This input is sensed by a linear potentiometer, 

translating the position of the pedal into an analog voltage signal. This voltage is sensed by 

the supervisor controller, and is converted into a torque request using a pedal map. The pedal 

map is simply a look-up table that maps pedal positions to torque requests. This map can be 

tuned for certain objectives. For example, a map that places most of the available torque at 

low pedal positions results in a vehicle that feels responsive, while distributing torque more 

evenly throughout the map or towards the end of pedal travel will result in a dull response. 

The distribution of torque throughout the pedal map is often one of the things that an ECU 
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modifies when switching between driving modes like “Eco” or “Sport”, where “Eco” mode 

may limit the torque requests or require a more aggressive pedal position to achieve full 

torque, with the aim to improve energy efficiency during normal driving.  

The desired torque indicated by the pedal map is split by the torque control strategy between 

the front and rear motors. The torque control algorithm then adjusts these torque requests as 

required to meet operational and safety limitations, resulting in torque commands for each 

motor. These torque commands are then sent to each motor controller via CAN bus 

messages. The motor controllers drive the electrical current required to meet the requested 

torque level (within the operating limits of the controller), and provide feedback indicating 

the amount of electrical power required to meet the torque request and the actual torque 

achieved. The hybrid control strategy uses the motor power requirements to determine the 

overall vehicle power requirement, splits this requirement between the fuel cell and battery 

pack, and generates a fuel cell power request. Like the torque control algorithm, the power 

control algorithm modifies the fuel cell power request to meet operational and safety 

requirements, and generates a fuel cell power command. Component control algorithms 

within the supervisory controller then generate CAN bus control signals. The DC-DC 

receives a voltage set-point and a current limit, and the fuel cell receives a power request. 

Current is sourced from the battery, fuel cell, and DC-DC converter to achieve the requested 

torque. The fuel cell controller uses the fuel cell power request to ensure adequate delivery of 

reactants to the anode and cathode via the hydrogen fuel injectors and air compressor, 

respectively. The DC-DC converter drives the indicated current in the direction required by 

the voltage set-point. 

6.2.1 Top-Down Safety Analysis: FTA 

The fault tree for unintended vehicle movement can be constructed by working backwards 

from the torque output of the motor controllers, through the various components and 

interfaces, to the root failure mechanisms. A FTA for unintended movement of the UWAFT 

EcoCAR is shown in Figure 40. The FTA for the supervisory controller’s is selectively 

expanded to the root causes associated with the accelerator pedal sensor (APS) in Figure 41. 
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Figure 40: Fault tree for unintended torque delivery 
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Figure 41: Fault tree for supervisory controller erroneous torque request 
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The fault tree follows the pattern of examining the direct cause of each event and moving 

backwards through the system. Starting from the motor controller that produces the torque, 

faults can arise in the controller itself (via hardware or software) or from the controller 

inputs. Focusing on the inputs, the motor torque request and motor direction request signals 

determine the magnitude and direction of the actuated torque. These signals are sent via the 

CAN bus by the supervisory controller on two separate messages. Focusing on the motor 

torque request signal, errors can occur due to either an erroneous value sent by the 

supervisory controller or an error on the physical CAN bus. These faults continue to be 

traced to the limit of the tree’s resolution. For this fault tree, this limit is defined as that point 

which exposes a cause which can be detected within the vehicle. For example, a conflicting 

message ID could be caused by any one of the other CAN-connected controllers, but this is 

irrelevant to the detection and mitigation of the fault within a production system (although 

furthering the tree to examine the root cause of a conflicting message ID is useful during the 

design stage). 

The framework for executing the FTA considers ECUs and their interfaces. ECU failures are 

categorized by input, processing (hardware and software), and output faults. Interface failures 

are examined within a framework appropriate for the type of interface. For example, an 

analog voltage interface (e.g. APS) can fail due to physical damage (e.g. wire damage), 

signal degradation (e.g. resistance along the path), or signal noise (e.g. external 

electromagnetic interference). A linear transducer (APS) can produce an unintended signal 

due to physical or electrical damage. By applying these structures to each element of the tree 

it is easier and quicker to obtain complete coverage of possible faults. It is still critical that 

systems-level experts participate in the FTA to ensure that each component’s role in the tree 

is explored. 

6.2.2 Bottom-Up Safety Analysis: FMEA 

A bottom up FMEA of each component involved in the torque control system is complex and 

beyond the scope of this work. An analysis of the supervisory controller serves as an example 

of how FMEA is applied to elements of the torque control system. For an FMEA analysis the 
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focus is on the various failure modes of the component. It has been noted that brainstorming 

with technical experts serves to generate the required failure modes, however as with the 

FTA it is important to place some structure around the discussion to ensure a complete 

coverage [51]. For an electronic control unit like the supervisory controller, the FMEA can 

be structured to examine the controller from the perspective of controller inputs, controller 

hardware, controller logic, and controller outputs. Hardware-related failure modes (inputs, 

outputs, and controller hardware) of various types (e.g. digital, analog, CAN) experience 

failure modes common to their type, and designers can draw on common approaches to 

identify, detect, and protect against their failure. The software that produces the control logic 

must be analysed in the particular context of the application, starting with the software 

outputs and working backwards through possible causes of output failure (essentially its own 

FTA). 

In order to demonstrate the FMEA, an analysis of the accelerator pedal is performed. The 

resulting table of failure modes is given in Appendix G. Failures are categorized by type (e.g. 

interface, sensor) and sub-type (e.g. physical, electrical) to assist with failure identification. 

Many of the failure modes identified in the FTA are covered in the FMEA, however in the 

FMEA they are documented with details on causes, effects, and detection methods. This 

additional detail is valuable for improving safety by addressing failure causes or improving 

detection methods. It is also a better form of design documentation. 

The FMEA, having a bottom-up perspective, also reveals additional possible effects that 

would not be identified in the top-down FTA (where effects must be known in advance). One 

of the effects of a short to power within the accelerator pedal system is a short circuit of the 

power supply and consequent brown-out. This brown-out, while not a root failure, can affect 

other sensors and/or systems supplied by the same hardware, for example the second 

accelerator pedal sensor in a redundant assembly. One outcome of this analysis would be the 

recommendation of dual redundancy of the accelerator pedal assembly that extends to 

include separate power supplies, both from each other and from other vehicle systems. This 

prevents the loss of a single power supply from causing the complete failure of the safety-

critical accelerator pedal assembly. 
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6.2.3 Top-Down vs. Bottom-Up 

This work demonstrates how FTA and FMEA are used together to produce a complete safety 

analysis of a control system. FTA is a useful engineering tool for tracking steps in a system-

wide process and where failures may occur. It shows the interdependence of components and 

interfaces, and events probabilities propagated along the tree permits a quantitative 

understanding of the probability of a top-level fault. This system-level information helps in 

the design and documentation of vehicle sub-systems. FMEA is a useful documentation tool 

for tracking details on individual failure mechanisms within a system, such as their severity, 

occurrence rate, detectability, and action items. It helps in the documentation of the overall 

safety of a system and serves as a repository of safety-related knowledge for components and 

systems. FMEA focuses on causes and action items for failure modes, where FTA simply 

demonstrates where failures may occur.  

Both the FTA and FMEA are conducted with a common framework to facilitate the 

brainstorming process and produce reliable coverage of potential failures from each method’s 

point of view. System-wide fault coverage is additionally ensured by performing the analysis 

from both top-down and bottom-up perspectives. While the methods certainly overlap, the 

differing perspectives of FMEA and FTA uncover, respectively, failures and faults that can 

be invisible to the other method. FMEA uses known failures (causes) to uncover unknown 

faults (effects), while FTA uses known faults (effects) to uncover unknown failures (causes). 

6.3 Fault Detection and Mitigation: Implementation and Validation Using 

HIL 

The FMEA and FTA safety analyses of the accelerator pedal yield important failure modes 

that cannot be completely designed out of the system. Given the severity of a failure in the 

torque command path, these failures must be detectable during operation, and actions must 

be taken to mitigate the failure. The FMEA analysis in Appendix G shows that the effects of 

various accelerator pedal malfunctions can be summarized as zero signal, saturated signal, 

and unpredictable erroneous signal. These effects are detectable in software by various 
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means. Again, as with the fault identification of the safety analysis, a structured approach to 

fault detection helps ensure complete coverage. 

The zero and saturated signals are predictable values. The malfunction of a single sensor 

resulting in these failure effects can be detected by classifying these values as invalid. 

Typically, some portion of the total electrical output of the sensor, both at the top and bottom 

of the sensor range, is excluded from normal sensor output. For example, in a 5 V linear 

transducer like the accelerator pedal, the “zero” mechanical position of the sensor will 

correspond to a 0.5 V output, and the “full” mechanical position will correspond to a 4.5 V 

output. An electrical malfunction resulting in a 0 V or 5 V signal is therefore easily detected 

by the supervisory control software. This is an example of defining valid signal 

characteristics that can be evaluated using only the sensor signal itself. 

Other failure modes can occur that will result in an unpredictable but still erroneous signal, 

which is more difficult to detect. In this case the sensor value itself is insufficient, however 

other sensor characteristics can be used. For example, the rate of change of the accelerator 

pedal signal is limited by the mechanical rate at which the pedal can be moved. Changes in 

the signal value outside of this limit, either immediately (instantaneous jump) or over time 

(signal noise) can be detected by the controller. This solution must be careful calibrated to 

ensure that false failures are not detected, and is limited in that it cannot detect sensor 

movement within these tolerances (e.g. a slower sensor drift). 

It is also possible to compare the signal to another (redundant) sensor value. If the deviation 

between the two sensors exceeds a particular threshold the supervisory controller will be able 

to determine that there is a failure in one of the sensors. This method provides protection for 

the sensor value across all signal characteristics, however the controller will not be able to 

determine which sensor value has failed unless one of the previously discussed signal 

characteristics also exceeds detection thresholds. 

The validity of the signal can also be determined by correlating it with the values of other 

control signals, which can be done in various ways. This amounts to a redundancy check of 

the sensor value by using related sensory information. For example, if a motor controller 
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reports a significant current draw when the accelerator pedal is at rest, then there is likely an 

error in the control system. This error may lie in the accelerator pedal, the motor controller, 

or the communications system. Using a model of the expected torque delivery as a function 

of the accelerator pedal position (i.e. the pedal map) provides another layer of signal integrity 

checking. Again, this type of modelling must be carefully calibrated to avoid flagging false 

failures. 

Some of these detection mechanisms are implemented for the EcoCAR vehicle’s accelerator 

pedal input, as shown in the Simulink sensor block of Figure 42. Dual redundant inputs are 

used to enhance fault detection. A redundancy check (shown in Figure 43) compares the 

values of each sensor to detect invalid but in-range signals. Out of range checks (shown in 

Figure 44) detect shorts to power and ground. 

 

Figure 42: Accelerator pedal sensor block for EcoCAR vehicle 

 

 

Figure 43: Accelerator pedal out of range checks 
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Figure 44: Accelerator pedal redundancy check 

When a fault is detected, appropriate mitigating actions are needed that are commensurate 

with the severity of the fault. In the case of protecting the accelerator pedal signal, the 

consequences of unintended torque actuation are high, necessitating a severe reaction such as 

limiting or shutting down the traction system. The out of range and redundancy checks 

combine to form the APS_OK signal, which is used as an input to the Traction_Allowed gate 

(Figure 45). This gate checks the value of several signals to ensure that it is safe to enable the 

torque control system. If the APS_OK signal is false, Traction_Allowed also becomes false 

and the torque output is zeroed via the torque control algorithm described in section 5.4. 

 

Figure 45: Traction_Allowed gate using APS_OK signal 
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6.4 Validation Using Hardware-in-the-Loop Testing 

Hardware-in-the-loop testing enables the design team to validate not only the control 

algorithms but also their implementation on the controller hardware, before the vehicle is 

available for testing. This enables more parallel development and decreases the time required 

to produce a verified control system. Hardware-in-the-loop testing involves connecting the 

production controller, running production control code, to a simulator. The simulator runs a 

model of the plant (in this case the UWAFT EcoCAR vehicle) in real-time and replicates the 

I/O that the controller would see in the actual application. The hardware-in-the-loop (HIL) 

setup used to validate the control code for the EcoCAR vehicle is shown in Figure 46, and 

the PC interface is shown in Figure 47. 

 

Figure 46: Simulator hardware connected to the supervisory controller and PC interface 
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Figure 47: PC interface for the EcoCAR HIL setup 

The general setup for the HIL simulator, including a plant model, some GUI elements, and 

some I/O, was already available in year 2 of the competition. It has been extended to include 

additional GUI elements and additional I/O handling (for example dual pedal sensors, 

PRNDL signals, more CAN messages) to replicate the parts of the vehicle that are involved 

in the torque command path. This allows the simulator to fully interact with the torque 

control pathways of the supervisory controller, and enables torque-related faults to be tested. 

The HIL simulator is useful for validating fault detection and mitigation code on production 

hardware before the vehicle is available for testing. To extend the case study of protecting the 

torque control system’s accelerator pedal signal, several faults are simulated in the HIL 

setup. The controller detects the faults and provides feedback within the simulator and on the 

vehicle’s user feedback LCD display, which is wired into the simulator. The HIL simulator is 

flexible, allowing for parts of the setup to be composed of physical hardware (e.g. 

supervisory controller, user feedback LCD, CAN bus) and other parts to be simulated (e.g. 
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accelerator and brake pedals, vehicle powertrain components). The PC interface to the 

simulator allows real-time interaction with the plant model. In this way the accelerator and 

brake pedal signals are input via the PC interface. They are then converted to an analog 

voltage by the HIL simulator and sent to the supervisory controller. The supervisory 

controller thus receives the same input as if it is connected to the actual vehicle. A driver 

model also runs as part of the plant simulation, which allows the simulator to follow a pre-

determined drive cycle. 

Over the course of a simulated drive cycle various failures are invoked both in hardware and 

via the PC interface. These include failures of the accelerator pedal control signal (short to 

ground, short to power, mismatch between redundant sensor values), the CAN bus (break of 

the CAN network wires, spurious torque request) and the motor controller (loss of torque). 

The result of shorting one of the accelerator pedal analog signals to supply power is shown in 

Figure 48. Accelerator pedal signal 2 is shorted to 5V, which is detected by the out of range 

checks. Torque is disabled and the user is given feedback on the LCD display. 

 

Figure 48: Simulation of a short to power for accelerator pedal signal 2 

The simulator is also used to verify the “brake pedal wins” logic that disables all torque 

actuation (ignores the accelerator pedal input) whenever the brake pedal is applied. One key 
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element learned from experience helps to ensure that this safety feature does not interfere 

with the driver’s intentions. The threshold for the brake pedal wins logic is set above the 

lower threshold for brake torque actuation. That is, the driver can depress the brake pedal 

slightly without causing the brake pedal wins logic to enable. This accomplishes two goals. 

First, it avoids the potential startle that will occur if the driver accidentally disturbs the brake 

pedal while driving. Second, it allows for tolerance in the default position of the brake pedal. 

Over time the brake pedal’s default position may shift due to electrical or physical drift. On 

another vehicle it has been observed that setting the brake pedal wins threshold too low 

caused the accelerator pedal to become disabled without any driver input, as the pedal return 

mechanism had deteriorated over time. This is a significant safety issue, especially as the 

driver was on an incline at the time. Additionally, without feedback the driver had no ability 

to correct the issue. In this case simply reporting the error, either with a simple indicator 

lamp or via text in the driver feedback display, would have allowed the driver to adjust the 

brake pedal and regain control. Figure 49 shows the results of a brake pedal input that 

exceeds the 15% application threshold set for the brake pedal wins logic. ETS and RTS 

torque are cut to zero even though the driver is applying 24% to the accelerator pedal. 

Additionally, the LCD informs the driver that the accelerator input is being ignored due to 

the brake pedal application. 
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Figure 49: Results of the brake pedal wins logic executing on the simulator 

6.5 When the Analysis Fails: Mishandling the ETS Torque Enable Signal 

Even with software- and hardware-in-the-loop testing, some errors can slip through 

undetected and become noticeable only when the right circumstances occur in the vehicle. As 

previously mentioned, fault identification methods like FMEA and FTA are only as good as 

the system- and component-level knowledge that drives them. An example occurred during a 

road test of the EcoCAR with only a week remaining until the final competition of year 3. 

The vehicle experienced a total loss of control during a full acceleration test. The vehicle 

could not be restarted and had to be towed back to the garage. A preliminary review of the 

CAN log data from the event showed that the ETS experienced a fault at the time of the 

failure. Further attempts to start the ETS were unsuccessful, and it was determined that the 

entire inverter had likely failed and needed to be replaced. It would be impossible to ship a 

new motor and inverter in time for replacement before the competition, so the team’s only 

choice was to attempt a replacement at the competition, before being able to enter events. 

However, GM was unable to provide a new ETS if the cause of the failure was unknown, as 
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it would likely fail again. The author undertook an extensive review of the vehicle systems 

and the event CAN log data in order to pinpoint the cause of the failure. 

The first indication of trouble was that the fuse linking the DC-DC converter to the fuel cell 

system had been opened. This pointed to an overcurrent condition through the DC-DC 

converter. The CAN log data showed, among other faults, an active flag for the fault code 

ETDiagHVOvrVltFlt, which is an over-voltage condition in the ETS. This led to a plot of the 

voltage measurement at the ETS in the time leading up to the failure event. This plot is 

reproduced in Figure 50 below. 

 

Figure 50: Powertrain voltage plots leading to ETS failure event 

During hard acceleration events the fuel cell delivers maximum power and the voltage sages 

due to polarization. As shown in Figure 28, at high enough fuel cell output power levels the 

voltages of the two buses can near the cross-over point. This was known to be a critical 

failure mechanism, and so detection for this condition was added to the diagnostic code 
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block. A mitigation action was required once the high to low side bus voltage ratio was 

detected to have reached 5% of unity, or 1.05. One of the mitigating actions for this condition 

was to disable the ETS “torque enable” signal. This signal is a physical control wire leading 

from the inverter to the supervisor. It is driven low by the supervisor when torque is allowed, 

and floats high to disable torque. This mitigating action was placed in the code as a back-stop 

measure to prevent potential damage the DC-DC converter. The primary means of protecting 

the DC-DC was to never reach this condition in the first place through calibration of the 

power control algorithm. Unfortunately, there were two major oversights when this code was 

added. First, the fault condition was not latched. That is, after disabling torque the high side 

voltage would rise, the fault condition would clear, the ETS torque would be re-enabled, the 

high side voltage would again fall (if the power demand was still sufficiently high), and the 

cycle would repeat. This caused a “bucking” sensation in the vehicle prior to failure. The 

second issue was with the control signal itself. The ETS torque enable signal is not simply a 

controller-to-controller request; it physically cuts off the switching capability of the power 

inverter and effectively opens the DC high voltage circuit within the inverter. This causes a 

build-up of voltage within the inverter. The effect is more clearly shown in Figure 51, where 

the time scale is reduced. When the green line (the ratio of high to low side voltage, R) 

reaches the critical threshold (purple line) of 1.05, the ETS torque enable signal (red line) 

goes to zero. The ETS inverter voltage simultaneously spikes due to the large inductance in 

the circuit. Figure 51 shows an acceleration event just prior to the actual failure. In this event 

the voltage spikes were not enough to cause component damage (although the driver recalls 

making a note to investigate the vehicle’s bucking motion after the test). 
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Figure 51: Effect of floating the ETS torque enable signal on bus high side voltage 

When the failure event occurs, the ETS torque enable line floats, and the voltage recorded by 

high-side components exceeds 600 V; the actual voltage reached inside the inverter is 

unknown as the event likely progressed faster than the CAN logging equipment could track. 

The internal damage led to a short-circuit condition inside the inverter. The ETS low voltage 

connector was inspected after the event and had melted, with the ground pin having burned 

and collapsed, indicating significant current had used this path to escape the inverter. This 

caused the DC-DC fuse and fuses inside the PMD to open, saving the vehicle from further 

damage. The supervisory control code detected the unexpected loss of several powertrain 

components and executed a “quick stop” of the powertrain. This was indicated to the driver 

(the author) via the LCD feedback display, and the vehicle was pulled to the side of the road. 

There were no outward signs of damage, but the supervisory controller could not re-start the 
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vehicle as the DC-DC circuit, essential to all modes of operation (EV and Hybrid), had been 

broken, meaning that the PMD could not be started. 

With the failure mechanism identified, the team was able to obtain a new ETS and replace it 

at the final competition, with enough time remaining to complete all competition events. The 

vehicle did not experience another fault after this event. The main cause of this event was a 

simple but fundamental misunderstanding of the function of the “ETS torque enable” signal. 

The team was aware of the potential consequences of opening a high current contact on an 

inductive device like the inverter, but was unaware that this was the function of the “torque 

enable” signal. This issue was resolved with better calibration of the power control algorithm 

to prevent the cross-over condition from being reached, by leaving the ETS torque enable 

signal “enabled” during all but the most critical events (treating it as an emergency stop), and 

by latching the disabled “torque enable” signal so that it would not fluctuate as it did in 

Figure 50. 

This event highlights two things relevant to safety in the vehicle control system. First, it 

reinforces the need to carefully separate the component control functions of the supervisory 

software from the more casually modified code (such as control strategies, vehicle state 

machines, etc.) that can change rapidly during development. The component control blocks 

are the last line of defense in ensuring safe operation of the powertrain and they must be 

controlled, documented, and tested by knowledgeable individuals to ensure reliability and 

safety. Second, an FMEA of the ETS could have revealed this failure mode if the effects of 

switching the torque enable signal were known. The author, while possessing the most 

knowledge of the ETS on the team at the time, did not have the required understanding to 

anticipate this failure. This highlights the critical need to have the right people with the right 

knowledge involved in FTA or FMEA analyses. In this case the switching was caused by an 

error in the supervisory control code, which could have been corrected. More generally it is 

possible that the signal wire for the torque enable line could become damaged or experience 

electrical noise that yields similar behaviour. Given the serious effects of this failure mode, 

additional safeties to tolerate this type of signal failure could be built into the ETS while still 

providing the supervisory controller with an emergency disable control signal for the ETS. 
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6.6 Design for Safety in a Project-Based Learning Environment 

The UWAFT project-based learning environment incorporates safety as an integral element 

of all design tasks, including the vehicle control system. This is a critical part of engineering 

practice that is not otherwise found in undergraduate education, at least in the author’s 

experience. Control system design at UWAFT includes FMEA and FTA analyses to map 

control system processes, identify failure modes and failure effects, qualify their criticality, 

and design detection and mitigation strategies to increase safety. These safety analyses and 

their outcomes (e.g. signal protection schemes) are embedded into the technical control 

system concepts that students learn at UWAFT (e.g. signal acquisition and processing) as 

mandatory elements as opposed to optional add-ons. Safety thus becomes an integral part of 

the subject matter and has a greater chance of being subsequently applied to future control 

system projects that students might encounter. The knowledge of how to perform safety 

analyses and design robust, fault-tolerant control systems has been critical to the author’s 

ability to successfully execute projects after leaving UWAFT.  

System validation is another core skill that follows naturally from learning in a project-based 

environment. In order to achieve a successful outcome the project must be functional, and 

that means it must be tested, in whole and in parts. The safety requirements of UWAFT 

vehicle projects demand that safety-critical subsystems and behaviours be tested prior to 

putting the vehicle into service. Again, validation is embedded into the project, closing the 

loop on the design process by verifying that the design-intent is being achieved. Validation is 

taught in the undergraduate engineering curriculum with the aim to verify the performance of 

a design, but not to verify its safety. 

The success of UWAFT’s project-based learning environment in teaching safety design skills 

is two-fold. First and more generally, student motivation to acquire new skills is typically 

high when those skills are being applied to real, implementable designs. Second and more 

specifically, by embedding safety analysis and validation processes into the control system 

“curriculum” safety becomes an integral part of that technical knowledge and gives students 

a significant advantage in future designs.  
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Chapter 7 

On-Road Vehicle Testing 

All of the design, simulation, testing, and construction culminated in on-road evaluations of 

the EcoCAR’s capabilities. These tests are designed to evaluate the vehicle’s dynamic 

performance (acceleration, braking, and cornering), energy efficiency, emissions (both 

generated by the vehicle and incurred by the processing of the fuel(s) upstream), and 

consumer acceptability (noise, vibration, harshness, consumer features). The acceleration, 

energy efficiency, and emissions performance are a direct consequence of the powertrain 

design and execution, and are reviewed here. The specifications evaluated by the on-road 

testing are outlined in Table 9, with values for the original vehicle, the targets for the re-

engineered vehicle, and the results of on-road evaluation. The assumed energy density, 

greenhouse gas, and petroleum energy use assumptions of the various competition fuels are 

shown in Table 10. Details from this discussion have been previously published in [52]. 

Table 9: Vehicle performance metrics evaluated during on-road testing 

METRIC REQUIREMENT 

EcoCAR 
Production 

VUE 
Competition Team VTS Year 3 Result 

Accel 0-60 (s) 10.6 s  14 s 10 s 9.30 s 

Accel 50-70 (s) 7.2 s  10 s 7 s 8.43 s 

Towing Capacity 

(kg, lb) 

680 kg  

(1,500 lb) 

≥680 kg @ 3.5% 

20 min @ 72 km·h-1
  

(45 mi·h-1
) 

680 kg  

(1,500 lb) 
PASS 

Cargo Capacity 

(m
3
, ft

3
) 

0.83 m
3
 

Height: 457 mm (18 in)  

Depth: 686 mm (27 in)  

Width: 762 mm (30 in) 

Height: 457 mm (18 in)  

Depth: 686 mm (27 in)  

Width: 762 mm (30 in) 

PASS 

Passenger 

Capacity 
5 ≥ 4 2 2 

Braking 60 – 0 

(m, ft) 

38 m – 43 m 

(123 – 140 ft) 

< 51.8 m 

(170 ft) 

45 m 

(147.6 ft) 

49.5 m  

(162.3 ft) 

Mass (kg, lb) 
1,758 kg  

(3,875 lb) 
 2,268 kg 

(5,000 lb) 

2,318 kg 

(5,111 lb) 

2,258 kg  

(4,979 lb) 

Starting Time (s)  2 s  15 s  15 s < 15 s 

Ground Clearance 

(mm, in) 

198 mm 

(7.8 in) 

≥ 178 mm 

(7.0 in) 

165.1 mm 

(6.5 in) 

158.8 mm  

(6.25 in)  
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Range (km, mi) 
> 580 km 

(360 mi) 

≥ 320 km 

(200 mi) 

350 km 

(220 mi) 

273 km  

(170 mi) 

Fuel 

Consumption, 

CAFE 

Unadjusted, 

Combined, Team: 

U.F. Weighted 

l/100 km 

8.3 L per 100km  

(28.3 mpgge) 

7.4 L per 100km 

(32 mpgge) 

3.2 L per 100km 

(73.5 mpgge) 

5.5 L per 100km  

(42.8 mpgge) 

Charge Depleting 

Fuel Consumption 

(l/km) 

N/A N/A 
0 l/100km 

(0 mpgge) 
N/A 

Charge Sustaining 

Fuel Consumption 

(l/km) 

N/A N/A 
4.9 l/100km 

(47.7 mpgge) 
N/A 

Charge Depleting 

Range (km) 
N/A N/A 

50 km  

(31.3 mi) 

21.7 km  

(13.5 mi) 

Petroleum Use 

(kWh/km) 
0.85 kWh·km

-1
 0.77 kWh·km

-1
 0.013 kWh·km

-1
 0.013 kWh·km

-1
 

Emissions Tier II Bin 5 Tier II Bin 5 N/A Tier II Bin 1 

WTW GHG 

Emissions (g/km) 
250 g·km

-1
 224 g·km

-1
 192 g·km

-1
 243 g·km

-1
 

 

Table 10: Competition fuel data 

FUEL 
ENERGY CONTENT 

(kWh·kg
-1

) 

GHG  

(gCO2eq ·kWh
-1

) 

PEU 

(kWhpetroleum·kWhfuel
-1

) 

Hydrogen 33.3 397.49 0.0147 

Electricity - 699.18 0.0785 

E10 11.61 63.33 0.0932 

E85 8.17 1.57 0.0832 

B20 11.59 1.99 0.0642 

 

7.1 Acceleration 

Vehicle acceleration from a standstill to 96 km·h-1
 was measured to be 9.30 seconds, while 

acceleration from 80 to 112 km·h-1
 was accomplished in 8.43 seconds. The 80-112 km·h-1

 run 

took longer than the team expected. These values could be reduced if the torque output 

limitations discussed in section 5.4 are optimized to dynamic adjust according to bus voltage 

conditions, as opposed to a fixed reduction.  
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The acceleration event shows the benefit of re-arranging the motor configuration to permit 

full power delivery despite the restrictions of the Brusa DC-DC converter. Figure 52 shows 

plots of vehicle speed, battery and fuel cell power, and front and rear motor torque during 

one of the 0 to 60 mph acceleration runs. The fuel cell outputs up to 95 kW of power and the 

front motor achieves up to 350 Nm of torque. The battery is able to provide up to 60 kW of 

power to support traction, which would not be possible if the DC-DC was located between 

the battery and the rear motor. The DC-DC plays another critical role in the acceleration 

event by automatically compensating for fuel cell inertia. When the driver first applies the 

accelerator pedal a full torque request is sent to both electric motors. For full acceleration the 

motor speed (and electrical power required) increases faster than the fuel cell can increase its 

power output. The DC-DC converter maintains the correct high side voltage by transferring 

current from the battery to the front motor during periods where the fuel cell output is 

insufficient, thus improving motor response. Similarly, when the driver reaches the desired 

speed and releases the accelerator the DC-DC converter automatically transfers current from 

the fuel cell system to the battery, compensating again for fuel cell system electrical inertia 

and preventing over-voltage of the high side. This effect is evident at 667 seconds in Figure 

52, where the torque request to the motors is reduced (but not negative, hence no 

regenerative braking) and a significant power transfer of roughly 30 kW is required to unload 

the high side of the bus. 

However care must still be taken to ensure that the instantaneous front motor electrical power 

requirement does not exceed the instantaneous maximum power available from both the fuel 

cell and the DC-DC converter. If this occurs the DC-DC converter, in an attempt to maintain 

high side voltage, will continue to increase the current transferred from the battery beyond its 

maximum capability, causing shutdown and the potential for damage. Thus the converter 

provides the ability to compensate for a lack of fuel cell power output to improve 

performance, but there is a limit on this ability that must be respected. 

While acceleration was close to the team’s target values, Figure 52 shows room for 

improvement. The peak battery power output was only 60 kW out of 100 kW available. The 

rear motor also peaked at 120 Nm out of a possible 160 Nm allowed by the control strategy. 
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This is due to a torque-limiting strategy that was implemented to address the issue of over-

current conditions in the DC-DC converter, which had been experienced several times during 

testing. Without sufficient time to develop and validate more complex controls the team 

implemented a general reduction in overall vehicle torque requests, experimentally adjusting 

the gain until the DC-DC converter current limits were not exceeded during full acceleration. 

 

Figure 52: Speed, power, and torque for 0-60 mph acceleration and braking test 
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7.2 Braking 

Braking performance was poorer than the team expected. Several mechanical reasons have 

been proposed for the high braking distance, mostly relating to tire and brake condition. The 

DC-DC converter also plays a role, however, due to regenerative braking. The DC-DC 

converter limits front motor regenerative braking to 38 kW, which is clearly evident in 

Figure 52 (observe the red battery power line during the regenerative braking event at 700 

seconds). This limits the maximum regenerative torque to a little over 100 Nm. The original, 

higher power converter would have allowed for the full 50 kW regenerative capability of the 

battery to be realized, reducing the braking distance. Simultaneously using the rear motor for 

regenerative braking would also make up for 12 kW shortfall, however this was not 

implemented in time for the competition. 

7.3 Energy Efficiency 

The energy consumption of the vehicle is evaluated in three separate trips, termed Schedule 

A, Schedule B, and Schedule C. These schedules have distances of 33 km, 66 km, and 166 

km, respectively. Each driving schedule is comprised of the same base drive cycles, 

representing city and highway driving. The schedules are therefore only differentiated by the 

number of times those cycles are repeated. The driving schedules are executed by trained 

drivers on a closed and planned course, with the aim to maximize the repeatability of the 

tests.  

Route statistics for all three schedules are shown in Table 11. Energy consumption figures 

for each schedule, for both electricity and hydrogen, are shown in Table 12. The UWAFT 

EcoCAR drive cycle from Schedule A is shown in Figure 53.  
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Figure 53: E&EC drive cycle, schedule A 

 

Table 11: Emissions and Energy Consumption Event - Drive Schedule Statistics 

DRIVE 

SCHEDULE 

DISTANCE 

(km) 

AVG. SPEED 

(km·h-1
) 

MAX. SPEED 

(km·h-1
) 

AVG. ACCELERATION 

(m·s-2
) 

A 32.7 36.3 106.9 0.183 

B 66.0 42.8 106.1 0.182 

C 166.0 44.7 107.4 0.191 

TOTAL 264.8 41.3 107.4 0.185 
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Table 12: Emissions and Energy Consumption Event – Vehicle Energy Use 

DRIVE 
H2 USED 

(kWh) 

AC ELECTRICITY  

USED (kWh) 

ENERGY USE 

(kWh·km
-1

) 

ENERGY USE 

(Leq per 100 km) 

FUEL ENERGY 

USE (Leq per 100 km) 

A 13.6 5.63 0.59 6.61 4.67 

B 30.6 7.12 0.57 6.41 5.20 

C 85.1 5.89 0.55 6.16 5.77 

TOTAL 3.88 18.6 0.56 6.28 5.49 

 

The vehicle achieved a utility factor weighted fuel consumption of 5.5 L per 100 km, which 

is 72% greater than the VTS target of 3.2 L per 100 km. There are several reasons why this 

target was not achieved. The utility factor weighted fuel economy is calculated according to 

Equation 8. 

        [(
       

    
)      (

       

    
)       ] Equation 8 

In this formula there are three contributions to the fuel consumption, the charge-depleting 

(CD) fuel consumption (L per 100 km), the charge-sustaining (CS) fuel consumption (L per 

100 km), and the utility factor. The constant “K” simply allows conversion between fuel 

consumption units. The CD and CS fuel consumption figures are the per kilometer hydrogen 

fuel use (typically in kilograms) consumed during the charge-depleting and charge-sustaining 

portions of the drive, respectively. They represent the energy efficiency of the vehicle in each 

of these modes from a hydrogen consumption perspective; however electrical energy from 

the grid (stored in the battery) is not counted in the fuel consumption calculation. Hence as 

the reliance on grid electricity increases (increasing the utility factor), the fuel consumption 

figure becomes increasingly separated from an indication of vehicle energy efficiency.  

The utility factor represents the fraction of the drive which is completed while discharging 

the battery pack, hence displacing fuel (here, hydrogen) with grid electricity. One 

contributing factor to the higher fuel consumption is the loss of battery capacity when the 

pack was reduced from 330 V to 250 V. This in turn reduced the charge-depleting range and 

hence the utility factor. Since the vehicle relies mostly on battery energy during charge-

depleting operation, and since battery electricity is not counted as “fuel”, a large utility factor 
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amplifies the weighting of the small fuel consumption in charge-depleting mode, and so it 

has a significant effect on the overall fuel economy. Utility factor is also highly non-linear, 

so a small loss in CD range has a significant effect on the utility factor at low ranges. 

The significance of the utility factor is evident in the VTS. The targeted 3.2 L per 100 km 

weighted fuel consumption and the 4.9 L per 100 km charge-sustaining fuel consumption are 

differentiated by the grid electricity which offsets hydrogen fuel use in the first part of the 

drive cycle. Thus the utility factor weighted fuel economy is not a clear measure of vehicle 

efficiency, unlike fuel economy in conventional powertrains.  

The charge-depleting fuel consumption was assumed to be zero during simulation and 

development of the VTS. The vehicle control strategy at that time included a pure battery 

electric mode. After powertrain component changes and control system testing the team 

decided to run the fuel cell during both charge-depleting and charge-sustaining operation, 

causing the fuel consumption in CD mode to be non-zero. This has the simultaneous effect of 

increasing kmCD and reducing FCCD. The net effect requires more analysis and comparison to 

the original powertrain simulations, however this may have contributed to the higher fuel 

consumption. 

One of the largest effects on the utility factor was that the state of charge of the battery was 

sustained at 50%, where original simulations called for 20-30%, and even lower was possible 

since battery longevity is not a significant concern in the competition. The maximum state of 

charge was also reduced from 100% to between 90% and 95% during competition. These set-

point changes were made to the control strategy to guarantee reliability in the absence of 

sufficient testing time. For example the team observed that the battery controller would 

sometimes skip from a low state of charge directly to zero, which would trigger an 

unexpected vehicle shutdown. The charge-sustaining limit was raised to prevent this from 

occurring during competition. 

Another significant error in the simulated efficiency was neglecting the efficiency of the 

battery charger. The efficiency of charging and discharging the cells of the battery pack (due 
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to polarization losses) was accounted for, but the auxiliary loads (e.g. pumps, fans, 

controllers) used during charging were not accounted for in the simulation. 

As discussed in Chapter 5, the torque split and hybrid power split control strategies can also 

be improved. For example, by disabling the rear motor until it is absolutely needed (and 

simultaneously solving the drivability issues resulting from enabling/disabling the rear motor 

during driving) the vehicle may be able to save power and reduce operation in inefficient 

low-torque regions. The hybrid control strategy could also be modified to reduce the amount 

of time the fuel cell operates below the 10 kW power level. Below this level fuel cell system 

efficiency drops quickly below 50%. 

7.4 Range 

Range is the product of energy efficiency, measured in kWh/km, and total useable energy, 

measured in kWh. The vehicle range is determined by dividing the vehicle energy efficiency 

(evaluated as described in section 7.3) by the vehicle’s energy storage capacity. This 

extrapolation only applies to the vehicle’s main fuel source (gasoline, diesel, hydrogen). 

Teams only receive credit for the amount of electric range that the vehicle actually 

demonstrates, as this is part of the vehicle control strategy being evaluated.  

The UWAFT EcoCAR achieved 85% of the competition range requirement and 78% of the 

team’s objective. Some of this shortfall is attributable to a several reductions in the vehicle’s 

usable energy in the final year of the competition, while the rest can be attributed to 

efficiency gaps. These reductions are summarized in Table 13, in kWh and as a fraction of 

the 150 kWh of usable energy that the team has originally expected to have on-board. 

Table 13: Vehicle usable energy reductions in year 3 

REDUCTION (kWh) (%) 

H2 Tank Loss 9.99 6.7% 

Battery Size Loss 1.94 1.3% 

Battery CS Loss 3.39 2.3% 

Battery Charge Loss 0.48 0.3% 
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The battery pack was the source of several losses in usable energy. The loss of battery 

capacity in moving to a 250 V pack (see section 5.1) had the obvious effect of reducing the 

total energy by 2.42 kWh, and usable energy by 1.94 kWh or 1.3%. Charge-sustaining at a 

higher state of charge than originally planned also reduced the total usable energy, costing an 

additional 3.39 kWh or 2.3%. Additionally, due to a programming error in the supervisory 

control code, the vehicle could not be started if the battery voltage was too high. This meant 

that the team could only charge to about 95%, incurring a loss of another (approximately) 0.5 

kWh or 0.3%.  

Another source of the range shortfall turned out to be an over-estimation of the usable 

hydrogen available to the vehicle in the original simulations. The hydrogen storage system 

has a minimum allowable pressure that was not accounted for in simulation. That is, the final 

0.3 kg of stored hydrogen cannot be used by the vehicle, resulting in a loss of 9.99 kWh or 

6.7%. This combination of factors led to a 10.5% reduction in the vehicle’s usable energy, 

accounting for some of the 22% range shortfall. The remaining 11.5% range loss is due to 

differences in the expected / simulated efficiency of the components, the vehicle chassis, and 

the control strategy, some of which are addressed in section 7.3. 

7.5 Petroleum Energy Use and Greenhouse Gas Emissions 

The petroleum energy use (PEU) and greenhouse gas emissions (GHG) results, compared to 

the simulated values, reflect the aforementioned differences in usable energy capacity and 

energy conversion efficiency for hydrogen and electricity.   

The petroleum energy use target was achieved; however greenhouse gas emissions were 

underestimated. Since GHG and PEU factors are a constant for each fuel throughout the 

competition the only variable is energy efficiency in kWh·km
-1

 for each fuel, weighted by the 

utility factor. Thus all of the factors discussed in section 7.3 directly impact PEU and GHG.  
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Chapter 8 

Conclusions and Recommendations 

8.1 Conclusions 

This thesis describes the development of the UWAFT EcoCAR vehicle which is a hydrogen 

fuel cell plug-in hybrid electric vehicle designed and built by students at the University of 

Waterloo. The vehicle uses a unique split high voltage bus architecture that places a power 

source and motor on each side of the DC-DC converter, allowing maximum utilization of 

each power source while using a small DC-DC unit. A total of 150 kWh of energy is carried 

on-board, split between 4.2 kg of hydrogen stored at 70 MPa and 9.68 kWh of lithium-ion 

batteries. The fuel cell and battery combine to deliver up to 195 kW of power to two electric 

motors that can together provide up to 540 Nm of (pre-gearbox) torque. A 150 A DC-DC 

converter links both sides of the powertrain. The vehicle successfully completed all dynamic 

evaluations at the EcoCAR competition, placing 3rd out of 16 North American universities. 

The thesis also describes UWAFT, which is a project-based learning environment where 

students gain core engineering technical knowledge and higher-level application-specific 

knowledge by executing design projects as a part of a vehicle development team. These 

design projects are highly inter-dependent and encourage teamwork within and across 

disciplines. They also expose students to essential elements of engineering design such as 

dealing with uncertainty, consideration for reliability and robustness, and safety analysis. 

These elements are not typically explored in the undergraduate engineering curriculum but 

are required of practicing engineers. 

The team’s successful competition performance is attributed to the choice of a highly 

efficient hydrogen powertrain, hard work by team members to integrate that powertrain, and 

good design processes to balance performance, reliability, and safety in the final 

implementation. The thermal, powertrain, and safety control system design projects 

demonstrate some of the processes that were followed and how they benefit both student 

learning and team outcomes. 
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The thermal control system design project discussed in Chapter 4 highlights several sources 

of uncertainty in real-world engineering design. While students are already familiar with the 

core engineering concepts needed to complete the design (fluid mechanics, heat transfer), 

these inherent uncertainties present new challenges that often halt the progress of new team 

members’ design projects. The design process discussed in Chapter 4 is used to help 

undergraduate students identify sources of uncertainty in design projects and to apply 

strategies to handle them. A lack of information with regards to coolant and air flow 

restrictions within the low temperature cooling system is handled by making (documented) 

assumptions about the pressure drop within components and performing the analysis over a 

range of air flow rates to demonstrate design feasibility under a variety of conditions. This 

process is not only a tool to help individual students, it also helps the team organize the 

design so that future students can refine it as conditions change or more information becomes 

available. Under full load conditions, and assuming 40°C ambient air with a flow rate of at 

least 2000 CFM, a Bosch PCA12V pump and Dana Thermal HX-260 radiator are selected to 

yield a coolant flow rate of 15 LPM and 17.1 kW of heat dissipation. Further study of the air 

and coolant flow restrictions will increase the certainty of the design performance. 

Engineering design also involves considerations that go far beyond function or performance. 

In safety-critical applications steps must be taken to minimize failures and ensure the 

reliability of a design. In case of failures or unexpected conditions a robust design should 

also continue to provide some level of functionality. This is important in EcoCAR, where the 

design must function through hundreds of kilometers of fault-free real-world driving. The 

design decisions described in Chapter 5 demonstrate how the final powertrain architecture 

control algorithms are impacted by these considerations. 

In the developed vehicle the rear motor is re-located to the low side of the high voltage bus to 

maintain current availability with a smaller DC-DC. Due to the loss of two DC-DC quadrants 

of operation the battery voltage is reduced from 330 V to 250 V. This maximizes reliability 

by simplifying the algorithms that control voltage and current on both sides of the powertrain 

high voltage bus. 
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The power control algorithm takes optimal control set points from the power split strategy 

and processes them to arrive at a commanded power split that attempts to meet the efficiency 

set point provided by the power split while also satisfying driver performance demands and 

component operational requirements (e.g. SOC targets and DC-DC current limit). Similarly, 

the torque control algorithm receives torque set points from the torque split strategy and 

processes them to ensure the reliability and robustness of the powertrain. Torque set points 

for each motor are limited to prevent voltage crossover between the high and low sides of the 

bus and to respect operational limitations reported by the motor controllers. Torque limited 

on one motor is shifted to the other motor if capacity exists, which in the extreme case of a 

motor fault provides a level of robustness to the design. These control projects give students 

the opportunity to add reliability and robustness considerations to their decision making 

process in an environment where success depends heavily on them. 

Vehicle design projects must incorporate safety analyses to ensure that passengers are 

protected from unexpected failures. FMEA and FTA analyses are applied to the torque 

control pathways, using top-down and bottom-up approaches to identify and link together 

component failures and vehicle faults. This is demonstrated by examining the torque control 

subsystem and the role of the accelerator pedal sensor. Analysis identifies specific failures 

that can lead to a vehicle level unintended acceleration fault, including invalid in-range and 

out-of-range sensor values, lost CAN bus communications, and concurrent application of the 

brake and accelerator pedal. These are detected by the supervisory controller and mitigating 

actions are taken to protect and warn the driver. These behaviours are validated on a 

hardware-in-the-loop simulator platform. Effective implementation of these safety analyses is 

aided by a structured approach that categorizes types of failures according to the type of 

sensor or controller being examined. It is also critically important that the brainstorming 

sessions that generate starting points for FTA and FMEA analyses involve a team of system-

level and component-level experts; the failure of the ETS torque enable signal is an example 

of the consequences of incomplete failure mode coverage. Students who learn control design 

within UWAFT learn to integrate safety considerations into every step of the design process, 
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from signal acquisition to algorithm design to system networking. This makes safety an 

inherent part of the core technical knowledge that students learn and apply in future projects. 

The competition on-road vehicle evaluation provides an opportunity to examine how design 

decisions impacted the vehicle’s performance. Vehicle acceleration is 9.3 seconds from 0 to 

102 km·h-1
 and 8.4 seconds for 80 to 112 km·h-1

. Torque reductions implemented to protect 

the new DC-DC converter from voltage crossover led to slower than expected vehicle 

acceleration at high power outputs (e.g. 80 to 112 km·h-1
). The vehicle achieved a range of 

273 km, 78% of the expected 350 km. Some of this loss is attributed to reductions in usable 

energy that were partly caused by decisions made to prioritize the potential reliability of the 

vehicle over performance, and partly by overestimating usable fuel capacity. In total, 134.2 

kWh or 89% of the expected 150 kWh was actually available during competition. 

Project-based learning within UWAFT is shown to have significant potential benefits. 

Students gain skills to complement and extend the technical knowledge learned in the 

classroom, skills which are valuable in real-world engineering design projects. However, 

some challenges exist. One issue faced by UWAFT students is that an unstructured learning 

approach requires more motivation to apply self-directed learning. Design processes like the 

one discussed in Chapter 4 allows the team to provide help to students who need guidance as 

they navigate new design problems. Another commonly raised issue is that an unstructured 

and self-directed learning format may fail to teach the desired concepts. This can be 

mitigated by supporting project-based learning with tutorials and mentoring. The EcoCAR 

experience provides this support for a range of subject matter, including safety analyses and 

control system design, to provide students with guidance and assistance where needed.  

Student teams like UWAFT can offer a rich learning environment for undergraduate 

engineering students. The design projects and resources that they provide can significantly 

advance student knowledge, experience, and skills in a way that complements the technical 

knowledge gained in the classroom. Finding ways to provide these experiences to more 

undergraduate students, either outside or within existing core courses, has the potential to 

greatly enhance the value of graduates.  
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8.2 Recommendations 

Recommendations from each Chapter pertain to both technical execution of the vehicle 

design and project-based learning. These are summarized below. 

1. Further study of coolant and air flow rates for thermal management systems. 

One source of uncertainty in the thermal design project is the resistance to coolant and air 

flow within the system. Some assumptions and sensitivity analyses help to understand how 

these uncertain variables impact the final design when such information is lacking. It would 

be ideal to generate a test rig that can perform pressure drop experiments when components 

become available to refine the system model and improve the quality of future designs. 

2. Use design projects as an opportunity to enhance student approaches to uncertainty 

The design case study in Chapter 4 highlights opportunities for students to improve their 

ability to approach problems that lack the clarity and completeness of a textbook analysis. 

These conditions resemble those faced by practicing engineers and can help students get past 

a “one right answer” mentality, generating an analysis that considers a range of solutions 

based on assumptions and “what-if” or “worst-case” scenarios that can be refined and 

validated. It may be beneficial to examine how these skills can be explored in the curriculum. 

3. Explore efficiency impact of separating strategy from control 

The separation of strategy and control discussed in Chapter 5 has the benefit of simplifying 

parallel development of these two control units and also making rapid prototyping of new 

“optimizing” control strategies safer. However, by not considering any (or as many) of the 

instantaneous operational restrictions of powertrain components, the control strategies may 

generate the most efficient set points under ideal conditions but not that which is best for 

current conditions. Adding these considerations to the control strategies should be considered.  

4. Implement dynamic torque moderation in response to high voltage bus conditions 

Due to polarization electric vehicles must take care to limit voltage drop under load, typically 

at low battery SOC or temperature where polarization effects are greatest. The EcoCAR 

powertrain, with a split high voltage bus and limited two-quadrant DC-DC, is prone to this 

issue under all conditions. The simple torque reductions discussed in Chapter 5 should be 

expanded to dynamically set maximum torque set points as a function of the current and 
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predicted future bus voltage. This approach requires more validation effort to ensure 

reliability but will unlock additional vehicle performance. 

5. Offer tutorials and help sessions to enhance the value of project-based learning 

Self-directed student learning can require significantly more motivation and time than 

lecture-based instruction, especially when the material is unfamiliar. New UWAFT students 

would benefit from the kind of tutorials that are offered at AVTC competition workshops, 

where an overview of the theory behind various core vehicle design activities helps students 

to get familiar with the concepts they need to learn in order to complete their project. This 

does not have to be a complete lecture of all relevant material, simply a primer to get started. 

6. Consider the impact of operational requirements on usable energy and efficiency 

In predicting the efficiency and range of the vehicle one key mistake was neglecting to 

account for the operational requirements of the real vehicle. Things like not being able to use 

all the fuel in the hydrogen tanks, having to run auxiliary loads during charging, and limiting 

battery SOC contributed to reduced efficiency and range in competition. These factors can 

add together to have a significant impact on the final performance of the real vehicle. 

7. More integration of student teams and project-based learning in the curriculum 

Engineering student teams like UWAFT offer learning experiences and resources that are 

unmatched in the undergraduate engineering curriculum. The problems faced by teams add 

additional dimensions of uncertainty, reliability, robustness, and safety to the engineering 

design process. Using case studies like those in Chapters 4-6 as a basis for project-based 

learning opportunities in core undergraduate engineering courses can enhance students’ 

ability to apply core technical material in real-world engineering design problems. 
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Appendix A 

Tabulated Comparison of Fuel Cell Technologies 

Table 14: Comparison of fuel cell technologies [53] 
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Appendix B 

Underbody View of Final Vehicle Showing Powertrain Integration 

 

Figure 54: Vehicle underbody view showing powertrain integration 
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Appendix C 

Front Cooling Loop Thermal-Fluid Calculations 

Table 15: 50/50 ethylene glycol/water properties at 70°C [47] 

PROPERTY VALUE 

Density (kg·m-3
) 1029 

Dynamic Viscosity (kg·m-1·s-1
) 0.00107 

Kinematic Viscosity (m
2·s-1

) 1.0388E-06 

Specific Heat (J·kg
-1·K-1

) 3398 
 

Table 16: Pipe properties, friction factor from White [54] 

PROPERTY VALUE 

Pipe Diameter (m) 0.019 

Pipe Cross-Sectional Area (m) 0.000284 

Pipe Length (m) 5 

Pipe Roughness (mm) 0.01 

Relative Roughness 0.003684 

Number of 90° Bends 10 

90° Bend K-Factor 30*f 
 

 

Table 17: Low temperature cooling loop thermal and fluid specifications 

COMPONENT 

MAX. COOLANT 

INLET 

TEMPERATURE (°C) 

MIN.COOLANT 

FLOW RATE 

(L·min
-1

) 

PRESSURE DROP 

AT MIN. FLOW 

RATE (Pa) 

PEAK 

THERMAL 

POWER (W) 

PRESSURE 

DROP @ 21 

LPM (Pa) 

PRESSURE DROP 

COEFFICIENT 

(Pa·LPM
-2

) 

PIM 65 13 10,000 3,942 

55,000 125 DU 69 13 15,000 11,158 

PMD 68 5 15,000 2,000 
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Table 18: Pressure drop equations 

PARAMETER EQUATION 

Straight pipe pressure drop           
 

 
  (

 

 
)   Equation 9 

Straight pipe friction factor (Re > 4000)           {       [(
   

  
)  (

  ⁄

   
)
    

]}
  

 [54] Equation 10 

Straight pipe friction factor (Re < 2300)           
  

  
 Equation 11 

90° pipe pressure drop     
 

 
     

  Equation 12 

90° pipe loss coefficient                 for r/D = 10 [55] Equation 13 

Component / radiator pressure drop                
 

 
                

  Equation 14 

Loop pressure drop                                     Equation 15 

Reynolds number    
  

 
 Equation 16 

Flow velocity   
 

 
 Equation 17 

Pipe cross-sectional area    
  

 
 Equation 18 
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Table 19: Low temperature cooling loop pressure drop calculations  

Flow (Q)  

(L·min
-1

) 

Flow (Q) 

(m
3·s-1

) 

Flow Velocity 

(V) (m·s-1
) 

Re f 
K90 

(Pa·s
2·m-1

) 

Pipe drop 

(Pstraight) (Pa) 

Bend drop 

(P90) (Pa) 

Component drop 

(Pcomp) (Pa) 

Radiator drop 

(Pradiator) (Pa) 

Loop drop 

(Ploop) (Pa) 

1 1.667E-05 0.059 1075 0.060 1.786 28 3 125 0 156 

5 8.333E-05 0.294 5376 0.037 1.121 437 50 3,118 945 4,550 

6 1.000E-04 0.353 6451 0.035 1.064 598 68 4,490 1,246 6,402 

7 1.167E-04 0.411 7526 0.034 1.020 779 89 6,111 1,572 8,551 

8 1.333E-04 0.470 8601 0.033 0.984 982 112 7,982 1,922 10,998 

9 1.500E-04 0.529 9676 0.032 0.954 1,205 137 10,102 2,297 13,741 

10 1.667E-04 0.588 10752 0.031 0.929 1,448 165 12,472 2,696 16,781 

15 2.500E-04 0.882 16127 0.028 0.841 2,952 337 28,061 5,058 36,408 

20 3.333E-04 1.176 21503 0.026 0.789 4,920 561 49,887 8,032 63,399 

25 4.167E-04 1.470 26879 0.025 0.752 7,333 836 77,948 11,617 97,734 

30 5.000E-04 1.763 32255 0.024 0.725 10,183 1,161 112,245 15,814 139,402 

35 5.833E-04 2.057 37631 0.023 0.705 13,460 1,534 152,778 20,622 188,394 

40 6.667E-04 2.351 43006 0.023 0.688 17,160 1,956 199,546 26,041 244,703 

45 7.500E-04 2.645 48382 0.022 0.674 21,278 2,426 252,551 32,072 308,326 

50 8.333E-04 2.939 53758 0.022 0.662 25,810 2,942 311,791 38,715 379,259 

 

15.1 2.513E-04 0.886 16214 0.028 0.420 2,980 170 28,364 5,058 36,572 
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Table 20: Heat transfer equations 

PARAMETER EQUATION 

Radiator coolant heat transfer rate   ̇      (
 

  
) (             )     Equation 19 

Radiator coolant inlet temperature            
  ̇   

  (
 
  

)
            Equation 20 

Component coolant heat transfer rate   ̇     (
  

  )  ̇ (
  

 
)     (

 

     
) (             )     Equation 21 

Component coolant inlet temperature 
       

  ̇   

 (
  
  )  ̇ (

  

 
)     (

 
     

)
        

Equation 22 
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Table 21: Low temperature cooling loop temperature calculations for loop order FPIM, DU, PMD, radiator air flow rate 4857 [CFM] 

Flow (Q)  

(L·min
-1

) 

Flow (Q) 

(m
3·s-1

) 

R 

(W·C-1
) 

Tc,o,PMD (°C) 

Tc,i,R (°C) 

Tc,o,R (°C) 

Tc,i,FPIM (°C) 

Tc,o,FPIM (°C) 

Tc,i,DU (°C) 

Tc,o,DU (°C) 

Tc,i,PMD (°C) 

Tmax, 

FPIM 

(°C) 

Tmax, 

DU 

(°C) 

Tmax, 

PMD 

(°C) 

q  

(W) 

1 1.667E-05 39.9 468.4 175.4 242.9 434.1 65 69 68 17,100 

2 3.333E-05 78.2 258.6 112.1 145.9 241.5 65 69 68 17,100 

3 5.000E-05 115.0 188.7 91.1 113.6 177.3 65 69 68 17,100 

4 6.667E-05 150.2 153.8 80.6 97.5 145.3 65 69 68 17,100 

5 8.333E-05 184.0 132.9 74.3 87.8 126.1 65 69 68 17,100 

6 1.000E-04 216.5 119.0 70.2 81.4 113.3 65 69 68 17,100 

7 1.167E-04 247.6 109.1 67.2 76.9 104.2 65 69 68 17,100 

8 1.333E-04 277.4 101.6 65.0 73.5 97.4 65 69 68 17,100 

9 1.500E-04 306.0 95.9 63.3 70.8 92.1 65 69 68 17,100 

10 1.667E-04 333.4 91.3 62.0 68.7 87.9 65 69 68 17,100 

15 2.500E-04 454.5 77.6 58.1 62.6 75.3 65 69 68 17,100 

20 3.333E-04 552.7 70.9 56.3 59.7 69.2 65 69 68 17,100 

25 4.167E-04 632.4 67.0 55.3 58.0 65.7 65 69 68 17,100 

30 5.000E-04 697.4 64.5 54.8 57.0 63.4 65 69 68 17,100 

 

8.0 1.330E-04 276.9 101.8 65.0 73.5 97.5 65 69 68 17,100 

9.9 1.644E-04 329.8 91.9 62.1 69.0 88.4 65 69 68 17,100 

21.5 3.577E-04 577.8 69.6 55.9 59.1 68.0 65 69 68 17,100 
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Table 22: Low temperature cooling loop temperature calculations for loop order PMD, FPIM, DU, radiator air flow rate 694 [CFM] 

Flow (Q)  

(L·min
-1

) 

Flow (Q) 

(m
3·s-1

) 

R 

(W·C-1
) 

Tc,o,PMD (°C) 

Tc,i,R (°C) 

Tc,o,R (°C) 

Tc,i,FPIM (°C) 

Tc,o,FPIM (°C) 

Tc,i,DU (°C) 

Tc,o,DU (°C) 

Tc,i,PMD (°C) 

Tmax, 

FPIM 

(°C) 

Tmax, 

DU 

(°C) 

Tmax, 

PMD 

(°C) 

q  

(W) 

1 1.667E-05 32.0 574.3 280.9 315.2 382.9 65 69 68 17,100 

2 3.333E-05 61.7 317.3 170.6 187.7 221.6 65 69 68 17,100 

3 5.000E-05 89.1 231.9 134.1 145.5 168.1 65 69 68 17,100 

4 6.667E-05 114.5 189.4 116.0 124.6 141.5 65 69 68 17,100 

5 8.333E-05 137.9 164.0 105.3 112.2 125.7 65 69 68 17,100 

6 1.000E-04 159.4 147.3 98.4 104.1 115.4 65 69 68 17,100 

7 1.167E-04 179.2 135.4 93.5 98.4 108.1 65 69 68 17,100 

8 1.333E-04 197.4 126.6 90.0 94.2 102.7 65 69 68 17,100 

9 1.500E-04 214.0 119.9 87.3 91.1 98.6 65 69 68 17,100 

10 1.667E-04 229.2 114.6 85.3 88.7 95.5 65 69 68 17,100 

15 2.500E-04 286.7 99.7 80.1 82.4 86.9 65 69 68 17,100 

20 3.333E-04 320.3 93.4 78.7 80.4 83.8 65 69 68 17,100 

25 4.167E-04 338.1 90.6 78.8 80.2 82.9 65 69 68 17,100 

30 5.000E-04 346.0 89.4 79.6 80.8 83.0 65 69 68 17,100 

 

50.0 8.333E-04 346.5 89.4 83.5 84.2 85.5 65 69 68 17,100 

50.0 8.333E-04 346.5 89.4 83.5 84.2 85.5 65 69 68 17,100 

50.0 8.333E-04 346.5 89.4 83.5 84.2 85.5 65 69 68 17,100 
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Table 23: Low temperature cooling loop temperature calculations for loop order PMD, FPIM, DU, radiator air flow rate 2082 [CFM] 

Flow (Q)  

(L·min
-1

) 

Flow (Q) 

(m
3·s-1

) 

R 

(W·C-1
) 

Tc,o,PMD (°C) 

Tc,i,R (°C) 

Tc,o,R (°C) 

Tc,i,FPIM (°C) 

Tc,o,FPIM (°C) 

Tc,i,DU (°C) 

Tc,o,DU (°C) 

Tc,i,PMD (°C) 

Tmax, 

FPIM 

(°C) 

Tmax, 

DU 

(°C) 

Tmax, 

PMD 

(°C) 

q  

(W) 

1 1.667E-05 39.6 471.6 178.1 212.5 280.1 65 69 68 17,100 

2 3.333E-05 77.1 261.7 115.0 132.2 166.0 65 69 68 17,100 

3 5.000E-05 112.6 191.8 94.0 105.5 128.0 65 69 68 17,100 

4 6.667E-05 146.2 157.0 83.6 92.2 109.1 65 69 68 17,100 

5 8.333E-05 177.9 136.1 77.4 84.3 97.8 65 69 68 17,100 

6 1.000E-04 207.9 122.3 73.3 79.1 90.3 65 69 68 17,100 

7 1.167E-04 236.2 112.4 70.5 75.4 85.0 65 69 68 17,100 

8 1.333E-04 263.0 105.0 68.3 72.6 81.1 65 69 68 17,100 

9 1.500E-04 288.2 99.3 66.7 70.5 78.1 65 69 68 17,100 

10 1.667E-04 312.1 94.8 65.5 68.9 75.6 65 69 68 17,100 

15 2.500E-04 412.4 81.5 61.9 64.2 68.7 65 69 68 17,100 

20 3.333E-04 486.9 75.1 60.4 62.2 65.5 65 69 68 17,100 

25 4.167E-04 542.3 71.5 59.8 61.2 63.9 65 69 68 17,100 

30 5.000E-04 583.6 69.3 59.5 60.7 62.9 65 69 68 17,100 

 

8.2 1.365E-04 267.9 103.8 68.0 72.2 80.4 65 69 68 17,100 

13.8 2.292E-04 390.0 83.8 62.5 65.0 69.9 65 69 68 17,100 

14.7 2.445E-04 406.6 82.1 62.0 64.4 69.0 65 69 68 17,100 
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Table 24: Low temperature cooling loop temperature calculations for loop order PMD, FPIM, DU, radiator air flow rate 3469 [CFM] 

Flow (Q)  

(L·min
-1

) 

Flow (Q) 

(m
3·s-1

) 

R 

(W·C-1
) 

Tc,o,PMD (°C) 

Tc,i,R (°C) 

Tc,o,R (°C) 

Tc,i,FPIM (°C) 

Tc,o,FPIM (°C) 

Tc,i,DU (°C) 

Tc,o,DU (°C) 

Tc,i,PMD (°C) 

Tmax, 

FPIM 

(°C) 

Tmax, 

DU 

(°C) 

Tmax, 

PMD 

(°C) 

q  

(W) 

1 1.667E-05 39.9 468.1 174.6 208.9 276.6 65 69 68 17,100 

2 3.333E-05 78.1 259.0 112.2 129.4 163.2 65 69 68 17,100 

3 5.000E-05 114.5 189.3 91.5 102.9 125.5 65 69 68 17,100 

4 6.667E-05 149.3 154.5 81.2 89.8 106.7 65 69 68 17,100 

5 8.333E-05 182.5 133.7 75.0 81.9 95.4 65 69 68 17,100 

6 1.000E-04 214.2 119.8 70.9 76.7 87.9 65 69 68 17,100 

7 1.167E-04 244.4 110.0 68.0 73.0 82.6 65 69 68 17,100 

8 1.333E-04 273.2 102.6 65.9 70.2 78.6 65 69 68 17,100 

9 1.500E-04 300.8 96.9 64.3 68.1 75.6 65 69 68 17,100 

10 1.667E-04 327.0 92.3 63.0 66.4 73.1 65 69 68 17,100 

15 2.500E-04 441.1 78.8 59.2 61.5 66.0 65 69 68 17,100 

20 3.333E-04 531.2 72.2 57.5 59.2 62.6 65 69 68 17,100 

25 4.167E-04 602.4 68.4 56.6 58.0 60.7 65 69 68 17,100 

30 5.000E-04 659.1 65.9 56.2 57.3 59.6 65 69 68 17,100 

 

7.0 1.170E-04 245.0 109.8 68.0 72.9 82.5 65 69 68 17,100 

11.0 1.836E-04 352.4 88.5 61.9 65.0 71.1 65 69 68 17,100 

12.4 2.062E-04 384.5 84.5 60.8 63.5 69.0 65 69 68 17,100 
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Table 25: Low temperature cooling loop temperature calculations for loop order PMD, FPIM, DU, radiator air flow rate 4857 [CFM] 

Flow (Q)  

(L·min
-1

) 

Flow (Q) 

(m
3·s-1

) 

R 

(W·C-1
) 

Tc,o,PMD (°C) 

Tc,i,R (°C) 

Tc,o,R (°C) 

Tc,i,FPIM (°C) 

Tc,o,FPIM (°C) 

Tc,i,DU (°C) 

Tc,o,DU (°C) 

Tc,i,PMD (°C) 

Tmax, 

FPIM 

(°C) 

Tmax, 

DU 

(°C) 

Tmax, 

PMD 

(°C) 

q  

(W) 

1 1.667E-05 39.9 468.4 175.4 209.7 277.2 65 69 68 17,100 

2 3.333E-05 78.2 258.6 112.1 129.3 163.0 65 69 68 17,100 

3 5.000E-05 115.0 188.7 91.1 102.5 125.0 65 69 68 17,100 

4 6.667E-05 150.2 153.8 80.6 89.2 106.0 65 69 68 17,100 

5 8.333E-05 184.0 132.9 74.3 81.2 94.7 65 69 68 17,100 

6 1.000E-04 216.5 119.0 70.2 75.9 87.1 65 69 68 17,100 

7 1.167E-04 247.6 109.1 67.2 72.1 81.8 65 69 68 17,100 

8 1.333E-04 277.4 101.6 65.0 69.3 77.7 65 69 68 17,100 

9 1.500E-04 306.0 95.9 63.3 67.1 74.6 65 69 68 17,100 

10 1.667E-04 333.4 91.3 62.0 65.4 72.2 65 69 68 17,100 

15 2.500E-04 454.5 77.6 58.1 60.4 64.9 65 69 68 17,100 

20 3.333E-04 552.7 70.9 56.3 58.0 61.4 65 69 68 17,100 

25 4.167E-04 632.4 67.0 55.3 56.7 59.4 65 69 68 17,100 

30 5.000E-04 697.4 64.5 54.8 55.9 58.1 65 69 68 17,100 

 

6.7 1.117E-04 238.5 111.7 67.9 73.1 83.1 65 69 68 17,100 

10.3 1.713E-04 340.8 90.2 61.6 65.0 71.5 65 69 68 17,100 

11.7 1.946E-04 376.9 85.4 60.2 63.2 69.0 65 69 68 17,100 
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Table 26: Low temperature cooling loop temperature calculations for loop order PMD, FPIM, DU, radiator air flow rate 6245 [CFM] 

Flow (Q)  

(L·min
-1

) 

Flow (Q) 

(m
3·s-1

) 

R 

(W·C-1
) 

Tc,o,PMD (°C) 

Tc,i,R (°C) 

Tc,o,R (°C) 

Tc,i,FPIM (°C) 

Tc,o,FPIM (°C) 

Tc,i,DU (°C) 

Tc,o,DU (°C) 

Tc,i,PMD (°C) 

Tmax, 

FPIM 

(°C) 

Tmax, 

DU 

(°C) 

Tmax, 

PMD 

(°C) 

q  

(W) 

1 1.667E-05 40.0 467.8 174.3 208.7 276.3 65 69 68 17,100 

2 3.333E-05 78.4 258.0 111.3 128.4 162.3 65 69 68 17,100 

3 5.000E-05 115.5 188.1 90.3 101.7 124.3 65 69 68 17,100 

4 6.667E-05 151.1 153.2 79.8 88.4 105.3 65 69 68 17,100 

5 8.333E-05 185.3 132.3 73.6 80.4 94.0 65 69 68 17,100 

6 1.000E-04 218.3 118.3 69.4 75.1 86.4 65 69 68 17,100 

7 1.167E-04 250.0 108.4 66.5 71.4 81.0 65 69 68 17,100 

8 1.333E-04 280.5 101.0 64.3 68.6 77.0 65 69 68 17,100 

9 1.500E-04 309.9 95.2 62.6 66.4 73.9 65 69 68 17,100 

10 1.667E-04 338.1 90.6 61.2 64.7 71.4 65 69 68 17,100 

15 2.500E-04 463.9 76.9 57.3 59.6 64.1 65 69 68 17,100 

20 3.333E-04 567.6 70.1 55.5 57.2 60.6 65 69 68 17,100 

25 4.167E-04 653.2 66.2 54.4 55.8 58.5 65 69 68 17,100 

30 5.000E-04 724.1 63.6 53.8 55.0 57.2 65 69 68 17,100 

 

6.4 1.074E-04 232.5 113.5 68.0 73.3 83.8 65 69 68 17,100 

9.8 1.631E-04 332.2 91.5 61.5 65.0 71.9 65 69 68 17,100 

11.2 1.871E-04 371.3 86.1 59.9 63.0 69.0 65 69 68 17,100 
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Appendix D 

EcoCAR Powertrain High Voltage Schematic 

 

Figure 55: EcoCAR powertrain high voltage schematic 
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fuses and cable sizes. This diagram is NOT a complete 

layout of all HV systems, it shows only powertrain HV 

systems. General Motors HV systems within the fuel cell 

system are not shown.

FRONT POWER 

INVERTER

FRONT MOTOR

Champlain RADXLE

1AWG

DC Cables

AC Cables

NOTE: All fuses rated for 700V DC

UWAFT EcoCAR Y3 HV Powertrain Schematic

Cooper Bussmann

170M3013

125A rated

150A for 150s before 

crossing AA curve

Provided by 

General Motors, 

not modified
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Appendix E 

Power Control Algorithm Top-Level Overview 

 

Figure 56: Power control algorithm top-level view 
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Appendix F 

DC-DC Component Control Block for Driving Mode 

 

Figure 57: DC-DC component control block for "driving" mode
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Appendix G 

FMEA for Accelerator Pedal Sensor 

Table 27: FMEA of the accelerator pedal sensor 

 

COMPONENT FAILURE TYPE FAILURE MODE EFFECT OF FAILURE CAUSE OF FAILURE

DESIGN CONTROLS

PREVENTION

DESIGN CONTROLS

DETECTION RPN

Interface - 

Physical - Open
Power open circuit Zero signal

Detached connector

Poor connector pin crimp

Broken wire

Proper crimping process / tooling

Avoid routing wire(s) near hot or sharp objects

Conduit or loom to protect wire(s)

Define lower limit of valid range 

to be above zero signal

Interface - 

Physical - Open
Ground open circuit Zero signal

Detached connector

Poor connector pin crimp

Broken wire

Proper crimping process / tooling

Avoid routing wire(s) near hot or sharp objects

Conduit or loom to protect wire(s)

Define lower limit of valid range 

to be above zero signal

Interface - 

Physical - Open
Signal open circuit Zero signal

Detached connector

Poor connector pin crimp

Broken wire

Proper crimping process / tooling

Avoid routing wire(s) near hot or sharp objects

Conduit or loom to protect wire(s)

Define lower limit of valid range 

to be above zero signal

Interface - 

Physical - Short

Signal short to power

Saturated signal

Source brown-out (p)

Broken wires

Incorrect wire hookup

Avoid routing wire(s) near hot or sharp objects

Conduit or loom to protect wire(s)

Define upper limit of valid range 

to be below zero signal

Supply redundant sensor from 

independent power source

Interface - 

Physical - Short
Signal short to ground Zero signal

Broken wires

Sensor internal damage

Incorrect wire hookup

Avoid routing wire(s) near hot or sharp objects

Conduit or loom to protect wire(s)

Define lower limit of valid range 

to be above zero signal

Interface - 

Physical - Short

Power short to ground

Zero signal

Source brown-out

Broken wires

Sensor internal damage

Incorrect wire hookup

Avoid routing wire(s) near hot or sharp objects

Conduit or loom to protect wire(s)

Define lower limit of valid range 

to be above zero signal

Supply redundant sensor from 

independent power source

Interface - 

Electrical - 

Attenuation Signal attenuation

Erroneous signal, 

unknown value Signal path resistance too high

Proper crimping process / tooling

Select appropriate conductor gauge

Compare signal to redundant 

(backup) sensor

Interface - 

Electrical - 

Interference
Signal interference

Erroneous signal, 

unknown value

Electro-magnetic inteference

Ground point voltage drift

Power supply transient

Avoid routing near high current conductors

Avoid ground loops

Power supply with sufficient load capacity

Use appropriate power line filtering elements

Compare signal to redundant 

(backup) sensor

Signal gradient range checks

Sensor - 

Physical - 

Offset

Sensor mechanism stuck at 

non-zero position

Object behind pedal

Mechanical friction, sticking

Mounting bracket shifted Design for conditions

Sensor - 

Electrical - 

Offset

Sensor output drifts from 

zero position Sensor internal damage Design for conditions

Compare signal to redundant 

(backup) sensor

Accelerator 

Pedal Sensor


