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Abstract 

Agricultural intensification to increase food, feed, and fibre production has also resulted in 

environmental degradation, including poorer soil quality and high emissions of greenhouse 

gases (GHGs) like nitrous oxide (N2O).  Intercropping, an agroecosystem management 

practice where more than one crop is planted on the same plot of land at the same time, 

promotes the complementary use of soil nutrients, and may improve soil quality and increase 

the retention of inorganic nitrogen (N) in the soil, thereby reducing N2O emissions.  An 

experiment was conducted in Balcarce, Argentina to determine the impact of intercropping 

maize (Zea mays L.) and soybean (Glycine max (L.) Merr.), (either 1:2 or 2:3 rows of maize to 

soybean) on soil quality and soil N transformations after six cropping seasons.  It was found 

that intercropping significantly improved soil quality over a six year period, as indicated by the 

soil organic carbon (SOC), soil total nitrogen (TN), soil light fraction organic matter (LF), and 

soil microbial biomass carbon (SMB-C).  However, the soil quality also significantly improved 

in the sole crops over this time, and in 2012, only SMB-C was significantly (p<0.05) greater in 

the 2:3 intercrop than in the sole crops.  Intercropping resulted in higher rates of gross nitrogen 

(N) mineralization than the sole crops, and the 2:3 intercrop resulted in higher rates of gross N 

immobilization than in the other treatments.  However, the high rate of gross N mineralization 

resulted in a low relative NH4
+
 immobilization in both intercrops, signifying a lower potential 

for reducing soil NH4
+
 concentrations than in the sole crop treatments.  Net N immobilization 

occurred in all treatment plots, which was desired at the end of the fallow period to reduce N 

losses from the soil.  The 2:3 intercrop appeared to perform better than the 1:2 intercrop.  

However, further research needs to be conducted to determine the seasonal variations in N 

mineralization and immobilization, and to further examine the intercrop spatial arrangements 

to increase crop residue yield.  
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General introduction 

From the onset of the Green Revolution, agricultural intensification has occurred rapidly at a 

global scale to meet the needs of a growing population.  Modern, high-yielding crop varieties 

were developed to increase food production with only a limited increase in land area devoted 

to agriculture (Evenson and Gollin, 2003).  Although greater food production has resulted, 

agricultural intensification has also contributed to environmental degradation, including soil 

erosion, water overconsumption, biodiversity and ecosystem service loss, greenhouse gas 

(GHG) emissions, land-use change, and reliance on fossil fuels (Weis, 2010).   

In agriculture, nitrous oxide (N2O) is one of the primary GHGs of concern.  For example, in 

the United States, nearly 60% of agricultural GHG emissions came from N2O in 2005, and 

approximately 80% of all N2O emissions were from the agricultural sector (Snyder et al., 

2009), indicating that N2O is primarily associated with agriculture.  Although the global 

emissions of N2O are less than those of carbon dioxide (CO2), N2O has a global warming 

potential that is 296 times greater than that of CO2 (Snyder et al., 2009).  It is therefore 

important for the agricultural sector to take actions to mitigate N2O emissions where possible, 

to reduce the effects on, and from, climate change. 

Additionally, recent agricultural intensification has occurred at the expense of soil quality, 

negatively impacting soil biological and chemical characteristics such as soil organic carbon 

(SOC), nitrogen (N), soil microbial biomass (SMB), and organic matter light fraction (LF).  

SMB and LF are among the more sensitive indicators of soil conditions, and can act as signals 

for changes in land management practices and ecosystem integrity (Oelbermann and Echarte, 

2011).  As farmers attempt to improve land management practices, the temporal impacts of 
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these practices on soil characteristics should be monitored to determine whether the predicted 

and desired results are occurring. 

Intercropping occurs when more than one crop is planted on the same plot of land at the same 

time.  Intercropping a legume and a non-legume, such as soybean (Glycine max (L.) Merr.) and 

maize (Zea mays L.), can potentially reduce N2O emissions and increase soil quality as 

compared to sole crops of soybean and maize. The legume/cereal crop combination reduces 

fertilizer requirements, as the crops complement each other’s N resources, and increase carbon 

(C) and N retention in the soil.  However, there is still a lack of understanding of the impact of 

intercropping on soil quality and the processes which transform N and emit N2O in 

maize/soybean intercrops.  Therefore, a long-term research site was established to address 

these issues with a long-term goal to determine the processes of C stabilization and N 

transformations to minimize GHG emissions in complex agroecosystems, such as intercrops.  

The current study will help to meet this long-term goal through determining the impact of 

maize/soybean intercropping on soil quality and gross N mineralization and immobilization 

rates. 

 

Thesis Outline 

This thesis is arranged in five chapters, beginning with an introduction, literature review, and 

description of the study site.  The two experiments are covered in chapters 3 and 4, and chapter 

5 presents conclusions from the experiments as well as future research ideas. 



3 

Chapter 1: Introduces the literature relating to this thesis, including the effects of 

intercropping on soil quality and N mineralization and immobilization rates. 

Chapter 2: Presents a description of the study site, including the study design, soil and climate 

characteristics, and the historical and regional context of the site. 

Chapter 3: Examines the soil quality, as indicated by various biological and chemical 

characteristics, of the intercrops and sole crops after 6 years of intercropping. 

Chapter 4: Examines the impact of soybean-maize intercropping on gross N mineralization 

and immobilization rates. 

Chapter 5: Draws conclusions from the experiments described in chapters 3 and 4 and 

provides suggestions for further research. 
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Chapter 1: Literature review 

1.1 Land-use change 

Changes in land-use can have significant impacts on greenhouse gas (GHG) emissions, soil 

quality, and vegetation biomass.  The conversion of forest to agriculture, and vice versa, has 

been, and will continue to be, one of the most significant land-use changes (Christensen et al., 

2007).  Unfortunately, most land that is well suited to agriculture has already been converted 

(Christensen et al., 2007), and marginal lands will have to be converted to meet the increased 

future demand for agricultural products (Adviento-Borbe et al., 2007). 

Changing land-use modifies the properties associated with vegetation, soils, and water of the 

area, and hence can impact the local climate by changing radiation, cloudiness, and surface 

temperature (Denman et al., 2007).  Through climate teleconnection processes, local climate 

changes can impact broader climate processes extending past the area of land-use change 

(Christensen et al., 2007).  Not only do land-use transitions impact the climate through 

physical changes to the environment, but transitions to permanent agriculture contribute about 

7% of the global warming potential (GWP) of anthropogenic GHG emissions (Ponsioen and 

Blonk, 2012).  Deforestation has been the prime contributor to the CO2 flux associated with 

land-use change as forests are removed to make way for agriculture, and can also increase N2O 

and NO emissions by 30-250% (Denman et al., 2007).  In Argentina, the average land-use 

change GWP values for maize were 2.3 tonnes CO2 equivalent per ha, and for soybean were 

8.9 tonnes CO2 equivalent per ha (Ponsioen and Blonk, 2012).  Of the most important crops in 

Argentina, comprising soybean, wheat (Triticum aestivum L.), maize (Zea mays L.), and 

sunflower (Helianthus annuus L.), the GWP values for soybean were the greatest (Ponsioen 
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and Blonk, 2012), indicating that a land-use change to growing soybeans is one of Argentina’s 

more significant agricultural contributions to anthropogenic climate change. 

Land-use change from forest or grassland to agriculture can change land cover (Guo and 

Gifford, 2002), and hence decrease soil organic carbon (SOC) content (Guo and Gifford, 2002; 

Spohn and Giani, 2011); decrease soil aggregation (Spohn and Giani, 2011); increase soil bulk 

density and therefore change soil hydraulic properties such as hydraulic conductivity and soil 

water retention; and change the water budget of river catchments (Bormann et al., 2007).  In 

the course of transitioning land-use to agriculture, carbon (C) that was stored in the original 

vegetation is released by burning or decomposition (Guo and Gifford, 2002).  During 

agricultural production, most of the crop is harvested and little to no organic matter (OM) is 

returned to the soil, thereby reducing the SOC stocks (Guo and Gifford, 2002).  Based on a 

meta-analysis of 537 observations from 16 countries around the world, Guo and Gifford 

(2002) reported that land-use change from native forest to crop production reduced soil C by 

42%, and the conversion of pasture and grassland to crop production reduced soil C by 59%.  

They found that soil C loss was greatest 30-50 years after the land-use conversion from pasture 

and grassland to crops, indicating that the impacts of land-use change are very long-lasting.  

Additionally, Guo and Gifford (2002) reported that reverse land-use change from crops to 

grassland or forests rarely reaches original C stocks. 

To meet the food and fibre needs of a growing global population, further land-use change to 

agriculture will likely be required (Vermeulen et al., 2012).  Carreño et al. (2012) developed a 

series of criteria to assess land-use options through a trade-offs analysis of ecosystem and 

economic services provision.  According to the results of the assessment, it was determined 

that the Argentine Pampa demonstrated a low capacity to provide ecosystem services in 
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comparison to its ability to produce food and economic income.  This result was strengthened 

when compared to a region such as Brazilian forests which have a very high capacity to 

provide ecosystem services.  However, even in areas where there is a low capacity for 

ecosystem services, it is important for agricultural practices to minimize the negative aspects 

of land-use change (Carreño et al., 2012). 

 

1.2 Climate change 

Global climate patterns are based on solar energy and how the earth and atmosphere respond to 

it through reflection, absorption, and re-emission (Solomon et al., 2007).  Therefore, changes 

in the properties of the atmosphere and earth surface can result in changes in the global 

climate.  Since the Industrial Revolution, atmospheric concentrations of GHGs have increased 

significantly (Forster et al., 2007).  Many GHGs occur naturally in the atmosphere, but 

anthropogenic sources of these gases have caused the concentrations to rise rapidly over the 

previous 250 years, while other GHGs are entirely from human actions (Solomon et al., 2007).  

GHGs can increase the atmospheric absorption of both incoming (solar) and outgoing (earth) 

radiation (Solomon et al., 2007) and hence result in climatic changes. 

 

1.2.1 Greenhouse gas emissions  

Carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) comprise the three long-lived 

GHGs which can influence the climate over the long term (Solomon et al., 2007).  

Anthropogenic emissions of all three gases have increased significantly since the 1700s and 
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the Industrial Revolution (Solomon et al., 2007).  Emissions of CO2 are the highest among the 

GHGs and are increasing at a greater rate than the emissions of other GHGs (Solomon et al., 

2007).  In the 8000 years before industrialization, the concentration of CO2 in the atmosphere 

increased by 20 ppm, while in the previous 260 years, the concentration has increased by 

nearly 100 ppm (Solomon et al., 2007).  These increased CO2 emissions can primarily be 

attributed to fossil fuel use and deforestation from land-use change (Forster et al., 2007).  

Atmospheric CH4 concentrations have more than doubled since pre-industrial times (Solomon 

et al., 2007), although the growth rate of CH4 emissions has decreased to nearly zero since 

1999 (Forster et al., 2007).  Methane has a 100 year GWP 25 times greater than CO2 and an 

atmospheric lifetime of 12 years (Forster et al., 2007).  Primary sources for CH4 emissions 

include landfills, natural gas distribution, wetlands, and agriculture, particularly ruminant 

animals, rice cultivation, and the burning of biomass (Forster et al., 2007; Solomon et al., 

2007).   

Globally, 6% of GHG emissions are N2O, which has an atmospheric residence time of 120 

years and a GWP which is 298 times greater than CO2 (Frimpong et al., 2012).  Since 

preindustrial times, N2O emissions have increased by 40-50% due to anthropogenic activity 

(Snyder et al., 2009) and over half of the global anthropogenic N2O emissions come from 

agriculture (Frimpong et al., 2012).  Anthropogenic N2O emissions are primarily due to 

fertilizer use and fossil fuel burning (Forster et al., 2007). 

 



8 

1.2.2 Climate change impacts 

Already, impacts from climate change are observed around the world (Solomon et al., 2007).  

Not only has the global average surface temperature increased, but so have the temperature 

extremes (Trenberth et al., 2007).  Of the twelve warmest years recorded since 1850, eleven 

occurred in the twelve-year period between 1995 and 2006 (Trenberth et al., 2007).  In mid-

latitude regions, the number of frost-free days has increased, the number of warm extremes 

(the warmest 10% of days or nights) has increased, the number of cold extremes (the coldest 

10% of days or nights) has decreased, and heat waves have increased in duration (Solomon et 

al., 2007).  These higher temperatures have decreased snow cover, snowpack, the area of 

seasonally frozen ground, and the area covered by Arctic sea ice; river and lake ice are forming 

later and breaking up earlier; and glaciers and icecaps are experiencing unprecedented melting 

(Solomon et al., 2007). 

Precipitation is also impacted by climate change, showing a greater spatial and temporal 

variability.  Some parts of the world have experienced increased precipitation, whereas others 

have experienced drying (Solomon et al., 2007).  Droughts in the tropics and subtropics are 

longer and more intense since the 1970s, while in other areas the number of heavy 

precipitation events has increased (Trenberth et al., 2007). 

 

1.2.3 Climate change predictions 

Many models and scenarios are used to predict future climate change trends.  Future GHG 

emissions vary among these modelled scenarios, and different algorithms are used in each 

model to account for the complexity inherent in the climate.  These general circulation models 
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(GCMs) all therefore have inherent uncertainty in their predictions (Nelson et al., 2009; 

Osborne et al., 2012).  Nonetheless, it was predicted that if the global atmospheric GHG 

concentrations do not increase above those from the year 2000, by 2090-2099, the global mean 

temperature will increase by up to 0.9°C (Solomon et al., 2007).  Under a worst case scenario 

of increasing GHG emissions, the global mean temperature could increase by up to 6.4°C with 

an associated sea level rise of up to 0.59 m (Meehl et al., 2007).  Regardless of the extent of 

temperature rise, snow cover will decrease, thaw depth in permafrost areas will increase, year-

round ice cover in parts of the Arctic Ocean will cease, and the higher global temperatures will 

suppress the ability of the land and ocean to take up CO2 (Solomon et al., 2007). 

Regional predictions of climate change have been modeled based on the GCMs.  It is predicted 

that by 2080-2099, southern South America, including Argentina, will increase in temperature 

by 2.5°C to 5°C from the 1980-1999 average, depending on future GHG emissions 

(Christensen et al., 2007).  Precipitation changes are expected to be minimal, with a median 

annual increase of 3%, although extreme precipitation events are predicted to increase 

(Christensen et al., 2007). 

 

1.2.4 Climate change and agriculture 

Agriculture contributes to climate change through the emissions of CO2, CH4, and N2O, yet 

agroecosystems themselves are extremely vulnerable to climate change (Nelson et al., 2009).  

In 2005, agriculture accounted for 10-12% of anthropogenic GHG emissions and emitted 

approximately 17% more CH4 and N2O than in 1990 (Smith et al., 2007).  The higher 

temperatures and variable precipitation associated with climate change will make it more 
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difficult to maintain agricultural productivity.  Yields will be reduced, and weeds and pests 

will become more difficult to suppress (Nelson et al., 2009).  Lower yields will increase crop 

and meat prices, reducing calorie intake among more vulnerable populations, and increasing 

child malnutrition (Nelson et al., 2009). 

As the global population grows and becomes wealthier, the demand for food will increase.  It 

is therefore expected that agriculture will expand to meet this demand, and agricultural GHG 

emissions will increase as well (Smith et al., 2007).  However, mitigation of agricultural GHG 

emissions is possible.  Emissions can be reduced through more efficient nutrient management 

(Bouwman, 2001), and atmospheric C can be removed and stored in the soil organic matter 

(SOM) of agricultural ecosystems (Smith et al., 2007).  For example, it is estimated that by 

2030, the mitigation potential of agricultural C sequestration will be between 5500-6000 

MtCO2-eq/year (Smith et al., 2007).   

Soil N2O emissions constitute the most significant source of non-CO2 emissions from 

agriculture, at 38% (Smith et al., 2007).  It is predicted that by 2020, agricultural N2O 

emissions will increase by 50% compared to 1990 (Mosier and Kroeze, 2000).  Efforts have 

therefore been made to improve the understanding of N2O production and to determine how it 

can be reduced.  It has been frequently observed that additions of nitrogen (N) fertilizer result 

in immediate increases in soil N2O production (Adviento-Borbe et al., 2007; Frimpong et al., 

2012; McSwiney and Robertson, 2005).  The addition to soil of OM, particularly with high N 

content, also increases N2O emissions once the OM has decomposed and been mineralized to 

free inorganic N (Frimpong et al., 2012; Snyder et al., 2009).  This accumulation of inorganic 

N in the form of nitrate (NO3
-
) and ammonium (NH4

+
) increases the nitrification and 

denitrification rates, which are the primary processes which form N2O (Frimpong et al., 2012; 
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McSwiney and Robertson, 2005).  Other factors have been found to increase the rates of N2O 

production, such as soil moisture (Frimpong et al., 2012), soil temperature (Adviento-Borbe et 

al., 2007), soil compaction (Steinbach and Alvarez, 2006), and lack of competition for soil N 

resources (Adviento-Borbe et al., 2007; McSwiney and Robertson, 2005).   

Many of these drivers of N2O production can be influenced by soil management practices.  

Reducing the content of inorganic N in the soil, and hence N2O emissions, can be 

accomplished by including legumes in the crop rotation, applying precise quantities of N 

fertilizer to meet the crop requirements, only applying N fertilizer to the crop (Smith et al., 

2007), and coordinating the timing of fertilizer placement with the peak nutrient needs of the 

plants (Adviento-Borbe et al., 2007).  Returning higher quantities of crop residue to the soil 

can help increase C sequestration in the SOM.  This can occur by using high-yielding crop 

varieties, using crops with high below-ground biomass, and minimizing the use of unplanted 

fallow periods (Smith et al., 2007).  Since tillage accelerates soil C loss, no-till methods may 

help improve C sequestration (Abdalla et al., 2013). 

 

1.2.5 Soil nitrogen mineralization and immobilization 

The production of N2O is part of a larger cycle of N transformations that occurs in the soil 

(Figure 1.1).  N mineralization is the process by which organic N, such as proteins, amino 

acids and nucleic acids from dead organisms, or the excretions of urea and uric acid from 

living organisms, is degraded to ammonia (NH3) or NH4
+
 by saprophytic microorganisms 

(Philippot and Germon, 2005).  N mineralization is integral in determining the amount of 

inorganic soil N which is available for plant use or loss (Monaghan and Barraclough, 1997).  
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Once mineralized, the NH4
+
 can undergo other processes, such as fixation by clays; 

immobilization by SOM, plants, and microorganisms (Philippot and Germon, 2005; Trehan, 

1996); or nitrification and denitrification into NO3
-
, NO, N2O, or N2 (Philippot and Germon, 

2005).  Immobilization is the process by which inorganic N, as NH4
+
 and NO3

-
, is incorporated 

into organic forms (Myrold and Bottomley, 2008).  Although both mineralization and 

immobilization are primarily biologically mediated, physical and chemical reactions can also 

be involved (Myrold and Bottomley, 2008).  Together, N mineralization and immobilization 

determine soil N availability (Recous et al., 1999). 

 

Figure 1.1 – Soil nitrogen transformations (adapted from Philippot and Germon, 2005) 
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Both mineralization and immobilization occur simultaneously and continuously in the soil.  

Mineralization-immobilization turnover (MIT) is a term used to describe the continual N 

cycling through the processes of gross mineralization and gross immobilization.  Net 

mineralization (or net immobilization) is used to describe the difference between gross 

mineralization and gross immobilization (Andersen, 1999; Myrold and Bottomley, 2008).   

The C/N ratio of the soil or organic substrate significantly impacts the rates of mineralization 

and immobilization, and can be used to predict whether net mineralization or immobilization 

will occur (Recous et al., 1999).  Therefore, there is a strong connection between the MIT and 

the carbon cycle (Recous et al., 1999).  Generally, net mineralization occurs when the substrate 

C/N ratio is about 20-25:1 or lower; net immobilization occurs when this ratio is greater and 

microbial activity is stimulated by the high quantities of labile C (Frimpong et al., 2012; 

Myrold and Bottomley, 2008).  Net immobilization reduces N2O emissions (Frimpong et al., 

2012) since the N is not available for the processes of nitrification and denitrification until it 

has been mineralized.   

However, plants require inorganic N from the soil, and excessive N immobilization results in 

insufficient quantities of N to be available to meet the plant needs.  In fact, of the nutrient 

elements acquired by plants through the soil, N is most frequently limiting because it is 

continually lost (Philippot and Germon, 2005).  It is therefore important to understand the 

processes of immobilization and mineralization to ensure that sufficient inorganic N is in the 

soil to meet plant and microbial needs, but that it is not in excess and producing N2O or 

leaching out of the soil.  Several studies have been conducted to investigate different 

management practices which would immobilize N when not needed but result in sufficient N 

mineralization to meet the N requirements.  One method is to combine the residues of a cereal 
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and a legume to balance the C/N ratios of each.  Incorporation into the soil of leguminous 

residues such as pigeon pea (Cajanus cajan (L.) Millsp.) (Sakala et al., 2000), alfalfa 

(Medicago sativa L.) (Paré et al., 2000), and cow pea (Vigna unguiculata L.) (Frimpong et al., 

2012) were all found to result in net mineralization.  Incorporation of cereal residues, such as 

maize, resulted in immediate net immobilization (Frimpong et al., 2012; Paré et al., 2000; 

Sakala et al., 2000).  It was therefore hypothesized that combining the cereal and legume 

residues would moderate the MIT.   

Combining pigeon pea residue and maize residue and incorporating them into the soil resulted 

in net immobilization for 300 days, even if three times the weight of pigeon pea as maize 

residues were applied, although limited re-mineralization began occurring after four weeks 

(Sakala et al., 2000).  However, since Paré et al. (2000) found that residue mineralization 

occurred faster when there were plants growing, it is possible that the laboratory experiment of 

Sakala et al. (2000) overestimated the time required for net mineralization to occur.  

Kaewpradit et al. (2008) reported that combining rice (Oryza sativa L.) straw and groundnut 

(Arachis hypogaea L.) residues increased N immobilization during the fallow period, that N 

remineralization occurred at a rate sufficient to meet the rice N requirements, and that N2O 

emissions were reduced as a result.  However, CH4 emissions from the rice crop increased and 

the reduction in N2O emissions was not enough to counteract the increase in CH4 emissions, 

resulting in a greater GWP of the crop.  This would not be the case for all residue mixtures, as 

the anaerobic conditions of the rice production increased the CH4 emissions.  For example, 

Bavin et al. (2009) found that the oxidation or production of CH4 was negligible from either 

maize or soybean crops. 
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Although the C/N ratio of the applied residues is a significant factor in determining the MIT, 

other factors are also important, including the lignin and polyphenol contents of the residues 

(Kaewpradit et al., 2008), soil temperature, soil moisture, soil texture, native inorganic N 

availability, (Andersen, 1999), the microbial content and composition (Ledgard et al., 1998), 

and the presence of growing plants (Gill, 2009; Paré et al., 2000).  When describing residue 

quality, frequently only the C/N ratio is used, but it is important to look beyond this ratio to 

also examine the lignin and polyphenol content of the residue (Millar and Baggs, 2004).  

Residues may have a low C/N ratio, implying that the mineralization rate will be high, but if 

the lignin and polyphenol content is high, there may be little mineralization (Millar and Baggs, 

2004).  Lignin is a very recalcitrant substance and does not break down easily, and 

polyphenols can bind with proteins and immobilize N (Gentile et al., 2008).  Gentile et al. 

(2008) reported a maize residue content of 3.1% lignin and 1.1% polyphenol, and Nakhone 

and Tabatabai (2008) reported a soybean residue content of 6.07% lignin and 0.96% 

polyphenol.  Both residues have low lignin and polyphenol contents according to the criteria 

(<15% lignin; <4% polyphenol) outlined by Gentile et al. (2008), and hence these compounds 

will have little influence on the mineralization and immobilization of these residues.  

Higher soil temperatures generally result in greater mineralization of SOM N until a maximum 

temperature is reached, at which point the rate of mineralization decreases (Griffin, 2008).  

Although rates of mineralization decrease at lower temperatures, significant decomposition can 

still occur below temperatures of 5°C (Andersen and Jensen, 2001).  Andersen and Jensen 

(2001) found that immobilization was more sensitive to low temperatures than mineralization.  

Similarly, higher soil water content results in greater mineralization until a maximum water 
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content is reached (Griffin, 2008).  Mineralization is also greater in sandy soils than in clayey 

or silty soils, as there is generally less organic C or N present (Griffin, 2008). 

Although microbial immobilization of both NH4
+
 and NO3

-
 does occur, NH4

+
 immobilization 

occurs to a greater extent than NO3
-
 immobilization (Andersen, 1999; Recous et al., 1999; Rice 

and Tiedje, 1989).  Rice and Tiedje (1989) found that the presence of NH4
+
, even at such low 

concentrations as 0.1 µg N g
-1

 soil
-1

 would inhibit microbial NO3
-
 immobilization immediately.  

At higher concentrations, they found that NH4
+
 inhibited NO3

-
 immobilization by 80%.  

Similarly, Recous et al. (1999) found that NO3
-
 immobilization was only 30% of the total 

immobilization of NH4
+
 and NO3

-
.  Therefore, Rice and Tiedje (1989) concluded that 

microbial immobilization of NO3
-
 is likely to be unimportant, unless the soil NH4

+
 supply has 

been depleted such that there are NH4
+
-free microsites available in the soil. 

There is poor agreement between studies regarding the impact of growing plants on N 

mineralization and immobilization. Paré et al. (2000) reported that those studies which found 

that the presence of growing plants slowed mineralization credited it to plant and microbe 

competition for scarce N, and microbicides released by plant roots.  The studies which found 

that plant growth increased N mineralization attributed it to the ability of plant roots to supply 

energy to the microbes for N mineralization purposes.  The root systems of plants can also 

affect the MIT by stimulating or reducing residue decomposition through rhizodeposits, 

changing the root structure, or changing soil water availability (Gill, 2009; Myrold and 

Bottomley, 2008).  
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1.3 Soil quality 

Soil quality has long been vaguely conceptualized by the biomass produced by the soil, but a 

quantitative definition has been difficult to achieve (Lal, 2003).  Many definitions of soil 

quality have been proposed, and one which is widely accepted (Gil-Sotres et al., 2005) is that 

of Karlen et al. (1997), where soil quality is defined as: “the capacity of a specific kind of soil 

to function, within natural or managed ecosystem boundaries, to sustain plant and animal 

productivity, maintain or enhance water and air quality, and support human health and 

habitation.”  This definition recognizes that the characteristics of soil quality depend on the 

function provided by the soil.  Therefore, many researchers will adapt the term to encompass 

the soil function and characteristics being investigated through their specific research (Bastida 

et al., 2008).  In agriculture, the soil function is to support crop growth and maximize yield.  

Agricultural soil quality is therefore often measured indirectly by measuring the crop yield: 

higher yields are associated with higher soil quality (Lal, 2003).  To measure soil quality more 

directly, different fractions of OM are quantified, and a higher OM content is associated with 

higher soil quality (Bastida et al., 2008).  The more labile fractions of the OM, such as light 

fraction organic matter (LF) and soil microbial biomass (SMB) are more sensitive to changes 

within an agro-ecosystem, but measurements of the SOC and N are also representative of the 

SOM. 

SOM plays a very important role in the soil.  It provides nutrients for plants and soil 

organisms, improves soil structural stability, buffers against pollution, and sequesters CO2 

(Gosling et al., 2013).  The SOM content is affected by the quantity and quality of OM inputs 

to the soil, and the rate of break-down and mineralization of these inputs (Ryan et al., 2009).  
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The decomposition of OM is dependent on temperature, soil moisture content, soil texture, and 

tillage (Franzluebbers, 2002; Gosling et al., 2013).  

 

1.3.1 Soil organic carbon and soil total nitrogen 

Soil organic C contains the largest C stock in the world; it contains twice as much C as the 

atmosphere, and nearly thrice that of vegetation (Wang et al., 2011).  The C content of native 

soils is in a dynamic equilibrium between inputs and losses of OM (Barrios et al., 1996).  

However, when cultivated, the OM losses are typically greater than the inputs, and the SOC 

consequently decreases (Costantini et al., 2006).  The decrease in SOC varies according to soil 

management practices, but a global meta-analysis found that a loss of 20-50% of SOC within 

the top 20-30 cm of soil is typical in the first 30-50 years of cropping (Berhongaray et al., 

2013).  Even with best management practices, Studdert and Echeverría (2000) reported that 

agricultural soils can never achieve their original level of SOC, unless the original SOC level 

was very low.  Nonetheless, managing the soil to attain the highest possible SOC levels is 

integral to maintaining soil quality, as SOC can improve soil structure, increase microbial 

activity, and impact nutrient cycling (Bell et al., 2012).  

Soil organic C and soil total nitrogen (TN) are controlled by many factors influencing the 

addition and decomposition of OM (Jobbágy and Jackson, 2000).  Climate can affect the 

production of biomass, and hence the amount of OM added to the soil, as well as the rate of 

mineralization (Berhongaray et al., 2013).  Specific crop types and/or genotypes can be used to 

increase SOC, if chosen for their high biomass production and C/N ratio (Studdert and 

Echeverría, 2000).  Root distribution affects the deposition of SOC throughout the soil; limited 
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root distribution limits the SOC (Jobbágy and Jackson, 2000).  Tillage can decrease the SOC 

and TN, as the added aeration increases the rate of decomposition (Studdert and Echeverría, 

2000).  Nitrogen fertilization can increase crop biomass production, and if crop residue is 

returned to the soil, it can subsequently increase the SOC and TN (Diekow et al., 2005). 

 

1.3.2 Light fraction organic matter 

The LF is one of the more labile fractions of the SOM.  The LF is described as having a 

density between 1.3-1.8 g cm
-3

 (Gosling et al., 2013) and generally includes incompletely 

decomposed, recently added OM (Six et al., 2002) such as plant residues, seeds, fungal 

hyphae, and spores (Six et al., 2002; Wander, 2004).  The proportion of C in LF in mineral soil 

generally ranges from 2-30%, and N from 1.5-10% (Wander, 2004).  Similar to SOC, the 

quantity of LF depends on the processes which add OM and which result in its subsequent 

breakdown.  The addition of OM, such as manure, compost, or crop residues, increases the LF 

content of the soil (Gosling et al., 2013).  As the breakdown of OM is microbially mediated, 

the soil LF content is dependent on the climate (Wingeyer, 2007), with warmer climates 

decreasing the LF (Gosling et al., 2013).  Tillage increases the soil aeration and the rate of 

degradation, thus decreasing the amount of LF (Wander, 2004). 

The soil LF is one of one of the more sensitive indicators to changes in soil management 

(Heitkamp et al., 2011; Wander, 2004).  Because the LF is not protected from microbial 

degradation by processes such as mineral sorption, it responds quickly to management changes 

(Gosling et al., 2013).  For example, Matos et al. (2012) studied LF in plantations of black 

locust (Robinia pseudoacacia L.), and found that the LF-C in the top 3 cm of soil more than 
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doubled from year 2 to year 3, whereas the SOC only increased by approximately 10%.  After 

14 years, the LF-C was about 14 times greater and the SOC was about 7 times greater than in 

year 2.  Although the LF-C responded more strongly to the plantation growth over the entire 

experimental period, the SOC responded slowly at first, and increased its response with time.  

 

1.3.3 Soil microbial biomass 

The SMB, like the soil LF, is one of the labile pools of the SOM, forming 1-3% of the total 

SOM (Kaur et al., 2000).  The SMB is primarily composed of bacteria and fungi, but also 

includes microfauna and stored C and other nutrients (Wardle et al., 1992).  The bacteria and 

fungi of the SMB are important mediators of the various nutrient cycles taking place within the 

soil (Shi et al., 2013) and are the main sources of CH4 and N2O (Treseder, 2008).  This 

turnover of C and N is significant within the global carbon and nitrogen cycles, because the 

SMB contains approximately 1.4% and 2.8% of the global terrestrial soil C and N stocks, 

respectively (Wardle et al., 1992). 

Within the soil, the SMB acts as both a source and a sink of nutrients (Granatstein et al., 1987; 

Kaur et al., 2000; Leite et al., 2010).  By mediating biogeochemical transformations, the SMB 

determines the availability of key labile nutrients such as C, N, phosphorus (P), and sulphur 

(S) (Leite et al., 2010).  The availability of these nutrients influences crop growth (Granatstein 

et al., 1987), and the quality and quantity of the crop residues subsequently returned to the soil 

impacts the SMB (Kaur et al., 2000). 
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The addition of OM to the soil increases the SMB.  Because C is the limiting nutrient for 

microbial growth, the SMB is highly dependent on SOM (Kallenbach and Grandy, 2011).  

There are many management practices which can increase the SMB by influencing the SOM.  

Organic amendments such as manure or mulch biomass add both C and N, and increase the 

SMB significantly (Wardle et al., 1992) and rapidly (Jannoura et al., 2013).  After harvest, 

leaving the stubble on the soil results in a greater SMB than if the stubble was removed (Lou et 

al., 2011).  However, the greater microbial respiration from the higher SMB results in 

increased CO2 emissions (Jannoura et al., 2013).  Tillage immediately causes a large increase 

in microbial activity, but this is a temporary effect (Balota et al., 2003).  If N is added in the 

form of mineral fertilizer and no C is applied, the SMB is reduced.  Through a global meta-

analysis of 82 field studies, Treseder (2008) found that the addition of mineral N fertilizer 

reduced SMB by an average of 15%. 

Crop growth can increase the SMB through the process of rhizodeposition (Liang et al., 2011; 

Murphy et al., 2007).  Plant roots continually deposit C and N to the soil, which can then be 

used by the SMB (Wardle et al., 1992).  Approximately 17% of the photosynthate produced by 

a plant is released by the roots, and much of this is available to the microbial community 

(Mandal et al., 2007).  The different rhizodeposits from each plant species thus result in a 

varied SMB (Li et al., 2010). 
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1.4 Sustainable agriculture 

The goal of sustainability is to meet the needs of the present without compromising the ability 

of future generations to meet their own needs (Spiertz, 2010).  At present, sufficient food is 

produced to meet the needs of the global population of 7 billion people, although the 

distribution of this food is highly inequitable (Garnett, 2013).  However, by 2050, the world 

population is predicted to be 9 billion people (Spiertz, 2010) and per capita consumption will 

increase as incomes rise in the developing world (Vermeulen et al., 2012).  Agricultural 

production will therefore have to increase to meet this higher demand.  Currently, 

approximately 40-50% of the Earth’s land area is being used for agricultural purposes (Smith, 

2012), but land that is appropriate for agriculture is limited and can only be increased by about 

180 million ha (Spiertz, 2010).  Therefore, in order to meet future agricultural needs, further 

agricultural intensification will be needed (Vermeulen et al., 2012).  To achieve this in a 

sustainable way requires that it is economically profitable, ethically sound, and improves or 

maintains environmental quality (Spiertz, 2010).   

Conventional tillage practices violate the environmental quality premise of sustainable 

agriculture, as they reduce SOC and increase soil CO2 emissions (Abdalla et al., 2013).  In 

conventional tillage, any cultivation practices which leave less than 30% of crop residues on 

the soil surface such as the mouldboard plough, results in the inversion and redistribution of 

the top soil (0-20 cm) leading to oxidation and enhanced microbial activity.  However, 

conservation tillage, where more than 30% of the crop residues remain on the soil surface, 

reduces soil disturbance and oxidation (Abdalla et al., 2013).  Although conservation tillage 

reduces soil CO2 emissions and does not impact CH4 emissions, it increases N2O emissions 
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(Abdalla et al., 2013; Powlson et al., 2011).  By increasing the soil bulk density and water 

content, conservation tillage, including no-tillage, increases the rate of nitrification and hence 

the rate of N2O emissions (Abdalla et al., 2013).  Powlson et al. (2011) recommend further 

research to determine whether N2O emissions from conservation tillage can be reduced, as the 

benefits to the SOM are otherwise so substantial. 

Maintaining or increasing SOM not only improves soil quality, but it also has the largest 

potential for climate change mitigation in agriculture (Muller et al., 2012).  Soil organic matter 

can be increased by increasing OM input rates and reducing the rate of OM decomposition by 

practices such as moving SOM storage deeper in the soil, and protecting the SOM by intra-

aggregate or organomineral complexes (Guo and Gifford, 2002).  In addition, covering the soil 

with crop residues provides protection from water and wind erosion, reduces water loss, 

increases soil biodiversity, and improves soil aggregate stability (Verhulst et al., 2010; 

Vermeulen et al., 2012).  Because soils can store such large quantities of SOM, the potential 

for C sequestration is equally large, and practices which maintain SOM could therefore 

contribute significantly to climate change mitigation (Smith et al., 2007).  

Soil N is generally the limiting nutrient in food crop systems in temperate soils. Mineral N 

fertilizers were developed to meet this need, and their current use is seven times greater than it 

was in the 1960s (Spiertz, 2010).  Unfortunately, the use of N fertilizers is highly inefficient, 

and between 30-80% of N applied to soils leaches into groundwater, runs off into surface 

water, or is released into the atmosphere (Spiertz, 2010).  For example, Skinner et al. (2014) 

reported that excess soil N results in N2O emissions, however, reducing N application rates 

lowers emissions of N2O.  Therefore, it is important to develop sustainable practices which use 

N more efficiently.  If mineral N fertilizer is used, the quantity and timing of its application 
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should be appropriately managed (Powlson et al., 2011).  The timing of the fertilizer 

application needs to be synchronized with the crop N requirements and the quantity such that it 

is quickly immobilized in the soil (Powlson et al., 2011).  Organic N fertilizers, such as 

compost, manure, and crop residues are also used in sustainable agriculture.  Nitrogen can also 

be added to the soil through the incorporation of different crops in rotation, including legumes, 

green manures, and cover crops (Spiertz, 2010). 

 

1.4.1 Intercropping 

Intercropping is a sustainable agricultural practice which involves the simultaneous growth of 

more than one crop on the same plot of land (Pappa et al., 2011).  Intercropping can involve 

alternating rows of each crop across the field, the sowing of one crop under another as a 

groundcover, or planting crops in between rows of trees (tree-based intercropping).  

Competition is inherent in intercropping, and can occur in three ways: mutual inhibition, 

mutual cooperation, and compensation (Abaidoo and Van Kessel, 1989).  Ideally, 

compensation can be achieved, where both crops benefit.  Previous research has identified 

many benefits of intercropping, including greater soil productivity (Carruthers et al., 2000), 

higher yield (Abaidoo and Van Kessel, 1989; Hauggaard-Nielsen et al., 2001; Mbah et al., 

2007), pest and disease reduction (Martin et al., 1990; Muoneke et al., 2007), lower input costs 

and higher monetary returns (Abaidoo and Van Kessel, 1989; Mbah et al., 2007), efficient use 

of resources (Mbah et al., 2007), improvements in soil fertility (Abaidoo and Van Kessel, 

1989), and decreased soil erosion (Kolawole, 2012).   
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Investigating the impact of intercropping on crop yield was the most common, but results have 

not been uniform.  In Nepal, Clement et al. (1992) found that both soybean and maize yields 

were lower in an intercrop than in sole crops, whereas Gao et al. (2010) and Keswani et al. 

(1977) found in China and Tanzania, respectively, that maize yields were greater and soybean 

yields were lower in an intercrop than in sole crops.  However, comparing the land equivalent 

ratio (LER) rather than the yield presents a more conclusive outcome.  Ahmed and Rao (1982) 

define LER as “the sum of the relative land areas required by sole crops to produce the same 

yields as obtained from intercropping.”  Therefore, an LER greater than one indicates that an 

intercrop requires less land to produce the same yield as the sole crops of the components.  

Ahmed and Rao (1982), Carruthers et al. (2000), Clement et al. (1992), and Gao et al. (2010) 

all found LERs greater than one for intercropping, indicating more conclusively the benefits of 

intercrop on yield. 

Intercrops have been used as a traditional agricultural practice, especially in the humid tropics 

(Ahmed and Rao, 1982).  Farmers in this region have appreciated the many benefits associated 

with intercrops, particularly the reduced risk of crop failure that comes from growing diverse 

crops (Ahmed and Rao, 1982).  In the temperate zone, a common intercrop has been the 

integration of corn and soybean, which have been commercially grown together in North 

America since the early 1900s (Martin et al., 1990).  Although agricultural development has 

replaced intercropping with sole cropping, this exchange has occurred less frequently than 

predicted due to the many benefits of intercropping (Ahmed and Rao, 1982).  Regardless, 

intercropping is much less common than it used to be, as the highly mechanized and fertilized 

modern agricultural paradigm has overtaken such traditional practices, which are viewed as 

irrelevant (Hauggaard-Nielsen et al., 2001). 
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Intercropping can be especially beneficial when a legume and non-legume, often a cereal, are 

planted together.  Because legumes can assimilate N, there is reduced competition for soil N, 

and the increased residual N is available for a subsequent crop (Searle et al., 1981).  Cereals 

tend to be more competitive than legumes for soil inorganic N, indicating that when cereals 

and legumes are intercropped, the cereal wins the soil N and forces the legume to rely more 

heavily on N2 fixation (Hauggaard-Nielsen et al., 2001).  

 

1.5 Historical and regional context of agriculture in Argentina 

Until the late 19th century, the 52 million ha Pampa region of Argentina (Austin et al., 2006) 

was primarily native grassland, until colonization programs resulted in a transition toward 

cereal and oil crops, and dryland cattle production (Viglizzo and Frank, 2006; Viglizzo et al., 

2003).  Unsuitable cultivation practices, low rainfall, and high wind speed and frequency 

created a dust bowl effect during the 1930s and 1940s leading to severe erosion, culminating in 

high migration away from farming in the Pampas (Viglizzo and Frank, 2006).  Reduced 

anthropogenic pressure on the environment and a return to normal precipitation and wind 

patterns enabled the lands to recover and hence prompted a return of grazing and cropland use 

in the 1960s (Viglizzo and Frank, 2006).  Currently, most of the Pampas are used for mixed 

grain crop-livestock production (Viglizzo et al., 2003) and only around 25% of the land is 

uncultivated (Viglizzo and Frank, 2006).  However, recent rapid agricultural expansion and 

intensification resulting in a greater national production of cereals and oil seed crops (Caviglia 

and Andrade, 2010) will continue to accelerate over the next 50 years (Austin et al., 2006).  
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Argentina, particularly the Pampas region, is now considered a major global agricultural 

region (Austin et al., 2006).  Predominant crops include soybean (Glycine max (L.) Merr.), 

wheat (Triticum aestivum L.), maize (Zea mays L.), and sunflower (Helianthus annuus L.) 

(Austin et al., 2006; Viglizzo et al., 2003).  However, the resurgence in agricultural activity is 

again deteriorating soil quality, increasing soil erosion and nutrient deficiency (Studdert and 

Echeverría, 2000) indicating that future agricultural practices must change in order to maintain 

high crop yields and reduce negative environmental impacts. 

 

1.6 Research objectives 

Currently intercropping is investigated in Argentina as a more sustainable agricultural practice, 

and includes intercrops of soybean with maize, sunflower, or wheat (e.g. Caviglia et al., 2010; 

Dyer et al., 2012; Echarte et al., 2011; Oelbermann and Echarte, 2011; Vachon and 

Oelbermann, 2011).  Few investigations of intercropping in temperate environments have been 

conducted (Hauggaard-Nielsen et al., 2001), and intercropping research in Argentina is still in 

its infancy (Oelbermann and Echarte, 2011).  Three seasons of intercropping maize and 

soybean resulted in increased carbon input to the soil (Dyer et al., 2012; Vachon and 

Oelbermann, 2011), decreased N mineralization (Vachon and Oelbermann, 2011), and 

decreased soil emissions of CO2 and N2O (Dyer et al., 2012) as compared to sole crops of 

maize and soybean.  However, a minimum period of five years is needed in the Argentine 

Pampa to determine measurable differences in SOC (Alvarez et al., 1998), which were not 

evident in these earlier short-term studies.  In addition, although intercropping decreased soil 

N2O emissions, there is still a lack of understanding of the soil N transformations which 
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caused this decrease.  This study will help to meet these knowledge gaps through answering 

the following research question: 

How does maize/soybean intercropping impact soil quality as indicated by the SOC, 

TN, LF, and SMB, and gross N mineralization and immobilization rates?   

The objectives therefore were: 

1. To quantify the temporal changes in soil quality, as indicated by the SOC, TN, LF, and 

SMB, after six years of maize/soybean intercropping. 

2. To quantify the soil gross N mineralization and immobilization rates from two 

maize/soybean intercropping systems, and two sole crop rotations of maize and 

soybean. 

It was hypothesized that: 

(1) The intercrops will demonstrate stronger positive changes in soil quality compared to 

the baseline data and the sole crops. 

H0: There will be no difference in soil quality between the intercrops, sole crops, and 

baseline data. 

 

(2) The rate of gross N mineralization will be greatest in the soybean sole crops, and least 

in the maize sole crops, and vice versa for gross N immobilization.  The rates of gross 

N mineralization and immobilization in the intercropping systems will fall in between 

those of sole soybean and maize.  
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H0: There will be no difference in N mineralization and immobilization rates between 

the intercrops and sole crops.  
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Chapter 2: Study site location and experimental design 

The research site was located at the Instituto Nacional de Tecnología Agropecuaria (INTA) in 

the rolling Pampas near Balcarce, Argentina (37°45’55’’S, 58°18’11’’W) at an elevation of 

130 m above sea level (Figure 2.1).  The Balcarce climate can be described by the Köpen 

classification as temperate humid without a dry season (Domínguez et al., 2009) or by the 

Thornthwaite classification as mesothermal subhumid-humid (Domínguez et al., 2009; 

Fabrizzi et al., 2003).  Average temperatures during the growing season are low, and there is 

only a frost-free period of approximately 150 days (Andrade, 1995).  About 80% of the annual 

precipitation occurs during the spring-summer growing season (Fabrizzi et al., 2003).  From 

1980-2010, annual precipitation was 960 mm and the mean air temperature was 13.9°C (Dyer, 

2010) and the annual median potential evapotranspiration was 894 mm (Domínguez et al., 

2009) (Figure 2.2). 

The soil is characterized by a mixture of fine, mixed, thermic Luvic Phaozems of the Mar del 

Plata series and a fine, mixed or illitic, thermic Chernozemic Loam of the Balcarce series 

(Domínguez et al., 2009; Studdert and Echeverría, 2000).  In the Petrocalcic Paleudoll soil, the 

petrocalcic horizon is below 0.7 m (Domínguez et al., 2009) which restricts root development 

(Coll et al., 2012). Both series have similar characteristics in the surface horizon, where the 

soil texture is loamy with approximately 41% sand, 36% silt, and 23% clay (Domínguez et al., 

2009).  The soil is moderately acid, has low available phosphorus, and a high content of 

organic carbon (Fabrizzi et al., 2003).  The slope is 2%, indicating little to no erosion 

(Domínguez et al., 2009; Studdert and Echeverría, 2000). 
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Figure 2.1 – Map of Argentina, showing location of study site at Balcarce. 

(http://www.mapsopensource.com/argentina-outline-map-black-and-white.html) 

 

 

Figure 2.2 – Mean monthly temperature and precipitation (1980-2010) at the Instituto 

Nacional de Tecnología Agropecuaria (INTA) (adapted from Dyer, 2010). 

 

The experimental plots were arranged in a randomized complete block design (RCBD) with 

three replicates of four treatments (Figure 2.3).  The four treatments included: two annual 

rotations of sole cropped maize and soybean, one begun with maize in 2007, and one begun 
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with soybean in 2007, 1:2 intercrop (1 row of maize and 2 rows of soybeans), and 2:3 intercrop 

(2 rows of maize and 3 rows of soybeans).  These intercrop configurations are typical of those 

used in the region.  The experimental plots were established in October 2007 on land that had 

previously been under sunflower (Helianthus annuus L.) production, and have been managed 

with conventional tillage.  Nitrogen fertilizer was applied only to the maize plants at 150 kg N 

ha
-1

, phosphorus (P) fertilizer was applied to all crops at 35 kg P ha
-1

, soybeans were 

inoculated with Bradyrhizobium japonicum, and weeds were managed by N-phosphonomethyl 

glycine (Glyphosate).  Maize was seeded in October and harvested in April, and soybeans 

were seeded in November and harvested in May.  The maize density was 4.3 plants m
-2

 in the 

1:2 intercrop, 5.3 plants m
-2

 in the 2:3 intercrop, and 8.0 plants m
-2

 in the maize sole crop.  In 

all treatments, the soybean density was 29 plants m
-2

.  Inter-row distance was 0.52 m in all 

treatments.  In the sole crops, the maize intra-row distance was 0.24 m and the soybean intra-

row distance was 0.065 m.  In the intercrops, the maize intra-row distance was 0.145 m and the 

soybean intra-row distance was 0.04 m. 
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Figure 2.3 – RCBD of the experimental plots, showing three replications of four 

treatments in the 2012-2013 cropping season. Ratios indicate rows of maize to rows of 

soybeans.  
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Chapter 3: Effects of intercropping on soil quality characteristics 

3.1 Introduction 

Soil is fundamental to plant growth, and therefore it is important to maintain high soil quality 

for the production of food, fibre, and fuel, the three primary traditional uses of soil (Lal, 2003).  

In agriculture, there are three primary components to soil quality, including physical, chemical, 

and biological characteristics (Lal, 2003).  Each component is impacted by a variety of 

attributes, or indicators (Table 3.1), many of which may be influenced by management 

practices.  It is not feasible to analyze the soil for each of these indicators, so a subset must be 

selected (Gil-Sotres et al., 2005).  This indicator subset should be composed of attributes 

which are highly sensitive to changes within the soil system, generally biological and 

biochemical attributes which respond to even minimal changes (Gil-Sotres et al., 2005).  

Various fractions of organic matter are used most frequently as indicators of soil quality, and 

soil microbial biomass carbon (SMB-C) is the most common of these (Bastida et al., 2008; 

Gil-Sotres et al., 2005; Lal, 2003).  Additional indicators of physical, chemical, and biological 

soil characteristics are also required (Gil-Sotres et al., 2005), as SMB-C may vary among soils 

of similar quality (Bastida et al., 2008). 

Conventional agriculture generally reduces soil quality (Lal, 2003).  In these systems, organic 

matter (OM) inputs are low because much of the crop biomass is removed and tillage practices 

increase OM decomposition due to higher soil temperatures and increased aeration 

(Berhongaray et al., 2013; Costantini et al., 2006).  This can result in losses of 30-50% of soil 

organic carbon (SOC) from the upper 20-30 cm of soil, whether in temperate or tropical 

ecosystems (Berhongaray et al., 2013).  Agriculture also reduces the microbial biomass due to 
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smaller carbon inputs and SOC content (Kallenbach and Grandy, 2011).  Agricultural soil 

quality can be improved, primarily through two mechanisms, as outlined by Lal (2003).  

Firstly, the degraded soil can be converted to a non-agricultural land use, such as forestry.  

Secondly, crop management practices, particularly those impacting the soil organic matter 

(SOM), can be improved to reduce erosion, improve the soil structure, increase SOC retention, 

and enhance nutrient cycling.  

Table 3.1 – Attributes of physical, chemical, and biological characteristics relating to soil 

quality (adapted from Lal, 2003). 

 
Attributes 

Physical 

Quality 

Texture, structure, porosity, and pore size distribution, available water 

holding capacity, infiltration capacity, internal drainage, effective rooting 

depth, and soil temperature 

Chemical 

Quality 

pH, cation exchange capacity (CEC)/anion exchange capacity (AEC), 

nutrient retention and availability, toxicity of some elements, and high 

concentration of soluble salts 

Biological 

Quality 

Soil organic carbon (SOC) and soil microbial biomass carbon (SMB) 

contents, soil respiration, microbial activity, and species diversity of soil 

fauna and flora 

 

Soil organic matter is one of the most important components of soil due to its many varying 

roles.  Soil organic matter provides nutrients for plants and soil organisms, promotes nutrient 

sorption, increases soil structural stability, buffers the soil from environmental pollution, and 

sequesters atmospheric CO2 (Gosling et al., 2013).  Organic matter inputs to the soil determine 

the makeup of the SOM (Ryan et al., 2009) which can include soil organisms, plant residues, 

animal fragments, and soluble compounds formed from microbially-mediated decay processes 

(Gosling et al., 2013).  The proportion of each of these SOM components varies according to 
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the soil and its management processes (Gosling et al., 2013).  Therefore, as each component of 

SOM performs a different role in the soil, management practices can change the relative 

importance of each of these components and ideally increase the soil quality. 

Each component of the SOM acts on a different time scale.  Since the active, or labile, SOM 

has a half-life of days to a few years (Wander, 2004), it is of the greatest importance in 

managing agroecosystems (Gosling et al., 2013).  The active SOM can include the soil 

microbial biomass (SMB), chloroform-labile SOM, and other labile substrates such as plant 

residues and nonaggregate protected particulate organic matter (POM) (Wander, 2004).  Slow 

SOM and recalcitrant SOM have half-lives ranging from a few years to centuries, and thus are 

less able to indicate changes in soil quality (Wander, 2004). 

Light fraction soil organic matter (LF) and particulate organic matter (POM) are components 

of the active SOM.  Soil LF and POM are conceptually similar, sharing similar characteristics 

as they both originate from recent, partly decomposed plant residues (Six et al., 2002).  The 

soil LF is distinguished by its density, and POM by its size, and both encompass larger, lighter 

particles (Gosling et al., 2013).  As they are derived from recent plant residues, they are among 

the fastest SOM fractions to respond to changes in soil management practices (Gosling et al., 

2013).  Due to these similarities, it is redundant to measure both LF and POM when studying 

agricultural soil quality; LF is typically measured when studying the impact of management 

practices on biologically available C or N (Wander, 2004). 

Soil microbial biomass (SMB) is another component of the active SOM which is highly 

sensitive to changes in soil management (Granatstein et al., 1987; Kallenbach and Grandy, 

2011).  Both a source and a sink for labile nutrients (Leite et al., 2010), SMB has a short 
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turnover time (Kallenbach and Grandy, 2011) which therefore promotes a fast response to 

changes in soil quality.  Soil microbial biomass is particularly important in its central role in 

the decomposition of OM, as it regulates nutrient cycling by immobilizing and then releasing 

labile nutrients, making them available to other soil biota (Wardle, 1998). 

Despite the negative impacts of agriculture, levels of SOM can be maintained or increased 

through a variety of management practices, such as: enhancing the quantities of crop residue 

returned to the soil, increasing the C/N ratio of these crop residues, adding organic or mineral 

fertilizers, and reducing tillage intensity (Studdert and Echeverría, 2000).  These practices can 

alter the balance between mineralization and immobilization rates, influencing levels of SOM.  

Intercropping is an agroecosystems management practice which may help to increase the level 

of SOM, and thus soil quality, by increasing the crop residue returned to the soil, and 

increasing the C/N ratio of these residues.  Due to a more efficient use of soil resources, 

intercropping can increase biomass production when compared to a sole crop (Baldé et al., 

2011).  Additionally, the combination of residues from a cereal (maize) and a legume 

(soybean) in an intercropping system will increase the C/N ratio as compared to a sole crop of 

soybean, although the C/N ratio in the intercrop will be lower than that of a sole crop of maize.  

Although intercropping may reduce the yield of each intercropped species as compared to the 

corresponding sole crops, the land equivalent ratio (LER) is generally used for a more 

thorough comparison (Muoneke et al., 2007).  The land equivalent ratio (LER) is a useful 

method for conceptualizing the land area that would be required by sole crops to obtain the 

same yield (i.e. grain yield, or plant biomass) as that obtained by an intercrop (Vandermeer, 

1989).  An LER greater than one indicates that the intercrop can result in higher yields than a 

comparable land area that is sole cropped by the same species.  All previous studies on 
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intercropping maize and soybean (Table 3.2) found an LER greater than 1, regardless of the 

study location, intercrop design, soil texture, or soil quality, indicating that biomass production 

in these intercrops has been consistently greater than in the corresponding sole crops.  These 

previous studies have focussed primarily on the impacts of intercropping on yield (e.g. 

Carruthers et al., 2000; Martin et al., 1998) and root dynamics (Bethlenfalvay et al., 1991; Gao 

et al., 2010; Keswani et al., 1977).  Of the surveyed studies, only Searle et al. (1981) 

investigated soil properties in a maize/soybean intercrop, and they only measured 

exchangeable soil nitrogen.  Therefore, there is a clear gap in the literature regarding the 

impact of maize and soybean intercropping on soil quality.  By using SOC, total nitrogen 

(TN), LF and SMB-C and N as indicators of soil quality, an experiment was carried out to 

determine the impact of maize and soybean intercropping on soil quality, as compared to a 

maize and soybean sole crop rotation.  The objectives of this research were: 

1. To quantify the LER and crop biomass production between the 1:2 and 2:3 

maize/soybean intercrops and the rotated maize and soybean sole crops. 

2. To quantify differences in SOC, TN, LF, and SMB-C between the 1:2 and 2:3 

maize/soybean intercrops and the rotated maize and soybean sole crops. 

3. To quantify and compare  changes in LER, SOC, TN, LF, and SMB-C that have 

occurred over a 6 year period (2007 – 2013) in the 1:2 and 2:3 maize/soybean 

intercrops and the rotated maize and soybean sole crops.  
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Table 3.2 – Intercrop layout and land equivalent ratio in previous intercropping systems 

of maize and soybean 

Source Intercrop 

ratio* 

Sole crop 

interrow 

spacing (cm) 

Intercrop 

interrow 

spacing 

(cm)** 

LER Study location 

Ahmed and 

Rao (1982) 

1:2 M – 100 

S – 50 

25 1.62 China, India, Philippines, 

Sri Lanka, Thailand, 

Hawaii (USA), Australia 

      

Carruthers 

et al. (2000) 

1:1 M – 75 

S – 37.5 

37.5 1.02 Quebec (Canada) 

1:2  1.04  

      

Clement et 

al. (1992) 

1:2 M – 80 

S – 40 

25 1.08 Nepal 

2:3 50 1.01  

      

Gao et al. 

(2010) 

1:3 M – 50 

S – 30 

30 1.31 China 

      

Kolawole 

(2012) 

2:2 M – 100 

S – 50 

25 1.78 Nigeria 

      

Martin et 

al. (1998) 

1:1 M – 76 

S – 38 

38 1.14 Nova Scotia, New 

Brunswick (Canada) 

      

Mbah et al. 

(2007) 

1:1 M – 75 

S – 75 

37.5 1.31 Nigeria 

      

Muoneke et 

al. (2007) 

1:1 M – 75 

S – 75 

37.5 1.32 Nigeria 

      

Searle et al. 

(1981) 

1:2 M – 100 

S – 50 

25 1.36 Australia 

      

Undie et al. 

(2012) 

1:1 M – 75 

S – 75 

37.5 1.45 Nigeria 

1:2 25 1.53  

2:2  37.5 1.58  

* Ratio of rows of maize (M) to rows of soybean (S) 

** Distance between nearest rows of maize and soybean 
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3.2 Materials and methods 

3.2.1 Experimental design 

Three random locations were chosen for sampling the soil profile from each replicate plot 

within each treatment.  Soil was collected from plots 8-12 on December 5, 2012, and from 

plots 1-7 on December 12, 2012 (Figure 2.3).  Soil was sampled from five depth increments: 0-

10 cm, 10-20 cm, 20-40 cm, 40-60 cm, and 60-80 cm.  Soil from each depth increment from 

the three sampling locations was combined to form one sample per depth per plot.  The 

samples were then air-dried and sieved (2mm). 

 

3.2.2 Crop biomass production and land equivalent ratio 

Shoot biomass was determined for each of the experiment plots at the time of harvest.  Three 1 

m
2
 areas were sampled in each replicate per treatment, and the above-ground crop residue was 

dried for one week at 60°C, weighed and averaged after removal of cobs and pods.  The LER 

was then calculated based on the dried relative shoot weights in the intercrops and sole crops: 

     
                       

                       
 

                         

                         
 

(Equation 3.1) 

3.2.3 Soil physical and chemical characteristics 

Equipment restrictions prevented the collection of soil for bulk density (BD) in December 

2012. Therefore, values of soil BD from soil samples collected between May 6-12, 2012 

within the same treatments and replications were used to quantify bulk density. Soil BD was 
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evaluated by extracting soil samples with a soil corer of 5 cm inner diameter.  The collected 

soil samples were oven-dried for 24 hours at 105°C and weighed.  Bulk density was calculated 

using the oven dry weight, the inner diameter of the corer, and the respective segment depth of 

each soil sample.  To prepare the air-dried and sieved (2 mm) soil samples for analysis of soil 

SOC and TN, carbonates were first removed by acid washing according to Dyer et al. (2012) 

and Midwood and Boutton (1998).  A 50 ml aliquot of 0.5 M HCl was added to 2 g of soil, and 

was shaken three times (Heidolph Unimax 1010 DT, Schwabach, Germany) at approximately 

350 rpm for 10 minutes each over 24 hours.  Once the soil settled, it was washed by pipetting 

the acid from the soil, and adding 50 ml ultrapure water.  The soil was washed daily for four 

days, at which point it was dried at 40°C for 2 days.  Once dry, the soil was ground in a ball 

mill (Retsch® ZM1, Haan, Germany) to 250 µm.  Subsamples of 12-20 mg were weighed into 

tin capsules (Costech, 5x9 mm), and analyzed for SOC and TN concentrations (%) using an 

elemental analyzer (Costech 4010, Cernusco, Italy).  From these results, the C/N ratio, SOC 

stock, and TN stock (g m
-2

) were calculated.  Soil organic carbon and TN stocks were 

calculated using the bulk density, SOC, or TN concentrations to a depth of 60 cm based on a 

10 cm depth increment. Prior to removal of soil carbonates, soil pH was quantified using a 1:1 

soil:water suspension (accumet AB15, Singapore). 

 

3.2.4 Soil light fraction carbon and nitrogen 

Soil organic matter light fraction (LF) was determined according to Gregorich and Beare 

(2008) for soil collected at 0-10 cm and 10-20 cm.  For each soil sample, 25 g of air-dried and 

sieved (2 mm) soil was shaken with 50 ml of NaI solution with a specific gravity of 1.7.  After 
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standing for 48 hours, the LF was vacuumed off the surface of the NaI, and rinsed with 75 ml 

of 0.01 M CaCl2 and 75 ml of distilled water to eliminate any NaI residue.  The recovered LF 

was dried at 60°C for 48 hours and ground in a ball mill (Retsch® ZM1, Haan, Germany) to 

250 µm.  Subsamples of approximately 5 mg were weighed into tin capsules (Costech, 5x9 

mm), and analyzed for SOC and TN concentration (%) using an elemental analyzer (Costech 

4010, Cernusco, Italy).  The total LF (mg LF/g soil), percent nitrogen in the LF (LF-N), 

percent carbon in the LF (LF-C), C/N ratio (LF-C/N), proportion of LF-C in the SOC (LF-

C/SOC), proportion of LF-N in the TN (LF-N/TN), the LF-C stock, and the LF-N stock (g m
-2

) 

were then calculated for the depth intervals of 0-10 cm and 10-20 cm. 

 

3.2.5 Soil microbial biomass carbon  

Soil microbial biomass-C was determined according to Voroney et al. (2008).  Air-dried and 

sieved (2mm) soil samples were incubated for 7 days at 25°C and 45% water-holding capacity.  

Approximately 25 g of the moist soil was weighed into a 100 ml glass bottle and placed in a 

desiccator containing 50 ml CHCL3 and boiling chips.  The desiccator was evacuated for 1-2 

minutes after the CHCl3 boiled vigorously, and was then sealed and stored in the dark for 24 

hours at room temperature.  Residual CHCl3 vapour was subsequently removed by three 

evacuations of 5 minutes each, and one evacuation of 20 minutes.  Once removed from the 

desiccator, 50 ml of 0.5 M K2SO4 was added to the sample and shaken for 1 hour (Heidolph 

Unimax 1010 DT, Schwabach, Germany) at approximately 350 rpm.  After shaking, the soil 

suspension was filtered through Whatman GF 934-AH filter paper.  The filtrate was then 

freeze-dried (Mandel ModulyoD-115, Ashville, NC), and 25-40 mg weighed into tin capsules 
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(Costech, 5x9 mm) for analysis using an elemental analyzer (Costech 4010, Cernusco, Italy).  

SMB-C was calculated as follows: 

    
                        

           
      

Equation 3.2 

     
               

      
 

Equation 3.3 

    
                                       

      
 

Equation 3.4 

                 
  

  
 

Equation 3.5 

      
     

   
 

Equation 3.6 

where WS is soil water content expressed on an oven-dry basis (%); soil weights are expressed 

in g; MS is the weight of the subsample taken for CFE labile C analysis (g); VS is the total 

volume of solution in the extracted soil (ml); CF is the total weight of extractable C in the 

fumigated sample (µg g
-1

 soil); CU is the total weight of extractable C in the unfumigated 

sample (µg g
-1

 soil); organic C is the content of C present in the soil extract (µg ml
-1

); KEC is 

the conversion factor, which for C was 0.35 (Voroney et al., 2008).   

Soil microbial biomass nitrogen (SMB-N) was similarly calculated in 2007, using nitrogen 

values and a conversion factor KEN of 0.5 (Voroney et al., 2008).  In 2012, SMB-N was unable 

to be calculated as only the NF values (total weight of extractable N in the fumigated sample in 

µg g
-1

 soil) were obtained.  The 2007 SMB-N and 2012 NF results are presented in Appendix 

B. 



44 

 

3.2.6 Statistical analysis 

Statistical analyses were carried out using Statistica (StatSoft, Inc.; v.8.0, 2007).  All data were 

examined for normal distribution using the Shapiro-Wilk (SW) test and for homogeneity of 

variance using the Levene test and the Hartley F-max, Cochran C, and Bartlett Chi-square 

tests.   To achieve normality and/or homogeneity of variance, the following data 

transformations were conducted: 

 Homogeneity of variance could not be achieved for BD, so BD was analyzed using 

nonparametric measures.  A Kruskal-Wallis (K-W) ANOVA was therefore used.  

 SOC and TN were found to be bimodally distributed.  The first population was from 

the 0-40 cm depth increments, and the second population from the 40-80 cm depth 

increments.  Within these populations, the data were normally distributed with 

homogeneity of variance.  

 C/N ratio was found to be bimodally distributed.  The first population was from the 0-

60 cm depth increments, and the second population from the 60-80 cm depth 

increments.  Within these populations, the data were normally distributed with 

homogeneity of variance. 

 SOC stock and N stock were normalized by being squared. 

A general linear model (two-way analysis of variance [ANOVA]) was run to compare 

differences between the different depths and treatments.  When significant main effects or 

interactions were identified from the ANOVA, a Tukey’s post-hoc multiple comparisons test 

was used to identify the differences with a p-value of 0.05. 
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3.2.7 Baseline data comparison 

The intercropping system was established in the spring of 2007 (October and November).  

Oelbermann and Echarte (2011) analyzed soil samples collected in October 2007 after the first 

growing season to establish a baseline data set with which to compare future soil analyses.  

Soil samples were analyzed from the depth intervals of 0-10 cm, 10-20 cm, 20-40 cm, and 40-

80 cm.  The 2012 results from the depth intervals of 40-60 cm and 60-80 cm were averaged to 

represent the depth interval of 40-80 cm to enable direct comparisons to the 2007 data.  To 

compare the 2007 and 2012 data, a two-way repeated measures ANOVA was run after 

examining the data for normal distribution using the Shapiro-Wilk (SW) test and for 

homogeneity of variance using the Levene test and the Hartley F-max, Cochran C, and Bartlett 

Chi-square tests.  To achieve normality and/or homogeneity of variance, the following data 

transformations were conducted: 

 Although 2007 BD was normally distributed with homogeneity of variance, 2012 BD 

was not.  Therefore, comparisons of the grand mean were made using Friedman’s 

ANOVA and Kendall’s Coefficient of Concordance. 

 As SOC, TN and C/N ratio were bimodally distributed in 2007 and 2012, they were 

separated into two populations of 0-40cm, and 40-80cm which were normally 

distributed with homogeneity of variance in both populations.   

 2007 C and N stock were bimodally distributed, while the 2012 C and N stock were 

negatively skewed.  To best achieve normality and homogeneity of variance, the C and 

N stock were divided into two populations, from 0-40 cm, and 40-80 cm.  Each 

population was normally distributed with homogeneity of variance.  



46 

 2007 and 2012 SMB-C were normalized by taking the square root. 

Following the repeated measures ANOVA, any significant main effects or interactions were 

further examined using a Tukey’s post-hoc multiple comparisons test with a p-value of 0.05. 

 

3.3 Results 

3.3.1 Soil quality from samples collected in 2012 

The shoot biomass was greatest in the sole crop maize plots and least in the sole crop soybean 

plots (Table 3.3).  However, as the sole crops were rotated annually, the average shoot biomass 

produced over the six cropping seasons was similar for each of the sole crops, and slightly 

higher in the 1:2 and 2:3 intercrops.  With the exception of the first cropping season (2007-

2008), the biomass produced was greater in the 2:3 intercrop than the 1:2 intercrop.  With the 

exception of 2011-2012, the biomass produced in each intercrop increased during the period 

from 2007 through 2013.  Nonetheless, the LER for both intercrops was low, ranging from 

0.82 in the 1:2 intercrop in 2012-2013 to a high of 1.22 in the 2:3 intercrop in 2009-2010 

(Table 3.3).   

Table 3.3 – Shoot biomass and land equivalent ratio of sole cropped and intercropped 

soybean and maize over six cropping seasons from 2007-2013. 

 

Year 
 Shoot Biomass (g m

-2
) LER 

 Soybean* Maize** 1:2 2:3 1:2 2:3 

2007-2008 2532 1104 2069 1993 1.04 1.02 

2008-2009 682 2187 1477 1674 0.85 0.94 

2009-2010 2405 569 1675 1783 1.17 1.22 

2010-2011 1189 2442 1766 1829 0.89 0.92 

2011-2012 1162 736 1229 1295 1.14 1.20 

2012-2013 665 2693 1914 2074 0.82 0.93 

Mean 1439 1622 1688 1775 0.99 1.04 
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* These treatment plots were planted with soybean in the 2012-2013 cropping season. 

** These treatment plots were planted with maize in the 2012-2013 cropping season. 

No significant differences were found between treatments for bulk density or pH (Table 3.4).  

Bulk density tended to increase with depth in each of the four treatments, but this increase was 

not significant.  Interaction effects of treatment by depth were not significant for either bulk 

density or pH.  The pH increased significantly with depth in all four treatments.  When 

considering the entire depth interval (0-80 cm), the pH was highest in the 2:3 intercrop and 

lowest in the soybean sole crop, although not significantly different. 

The SOC and soil TN stock were only quantified to a depth of 60 cm, as bulk density could not 

be measured at greater depths.  Interaction effects of treatment by depth were not significant 

for SOC or TN stock.  Although SOC and TN stock did not differ significantly between 

treatments, it was observed that both SOC and soil TN stocks were lowest in the maize sole 

crop and highest in the soybean sole crop (Table 3.6).  The SOC and soil TN stocks were both 

greater in the 2:3 intercrop than in the 1:2 intercrop.  SOC and N stock both increased slightly 

from 0-10 cm to 10-20 cm, and then decreased significantly with depth.  
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Table 3.4 – Soil bulk density and pH in maize and soybean sole crops and 1:2 and 2:3 

intercrops, 2012. Standard errors are given in parentheses. 

 Depth  

(cm) 

Treatment 

 
Soybean Maize 1:2 2:3 

Bulk 

Density  

(g cm
-3

) 

0-10 1.33 (0.05)
A,a

 1.27 (0.06)
 A,a

 1.33 (0.05)
 A,a

 1.27 (0.06)
 A,a

 

10-20 1.53 (0.03)
 A,a

 1.46 (0.04)
 A,a

 1.47 (0.04)
 A,a

 1.36 (0.05)
 A,a

 

20-40 1.48 (0.03) 
A,a

 1.44 (0.03)
 A,a

 1.53 (0.03)
 A,a

 1.53 (0.02)
 A,a

 

40-60 1.53 (0.03)
 A,a

 1.34 (0.05)
 A,a

 1.50 (0.04)
 A,a

 1.52 (0.03)
 A,a

 

0-60 mean 1.47 (0.02) 
A 

1.38 (0.02)
 A

 1.46 (0.02)
 A

 1.43 (0.02)
 A

 

      

pH 0-10 5.32 (0.12)
 A,a

 5.64 (0.12)
 A,a

 5.56 (0.12)
 A,a

 5.52 (0.12)
 A,a

 

10-20 5.55 (0.12) 
A,ab

 5.74 (0.12)
 A,ac

 5.70 (0.11)
 A,ab

 5.85 (0.11)
 A,ab

 

20-40 5.83 (0.12)
 A,abc

 5.86 (0.12)
 A,ac

 5.83 (0.12)
 A,abc

 5.92 (0.11)
 A,abc

 

40-60 6.21 (0.12)
 A,bc

 6.13 (0.12)
 A,ac

 6.23 (0.12)
 A,bc

 6.32 (0.12)
 A,bc

 

60-80 6.35 (0.12)
 A,c

 6.35 (0.12)
 A,bc

 6.35 (0.12)
 A,c

 6.46 (0.11)
 A,c

 

0-80 mean 5.85 (0.06)
 A

 5.94 (0.06)
 A

 5.94 (0.05)
 A

 6.01 (0.05)
 A

 

Values followed by the same lower case letters, comparing differences between depths within 

each treatment, are not significantly different at p<0.05. Values followed by the same upper 

case letters, comparing treatments within each depth, are not significantly different at p<0.05. 

 

Soil organic C and TN were found to be bi-modally distributed with depth, and hence were 

analyzed in two depth increments: 0-40 cm and 40-80 cm.  In both depth increments, 

interaction effects of treatment by depth were not significant. SOC and TN were significantly 

(p=0.0001) different between these two depth increments, although within each increment, no 

significant differences were found with depth or treatment (Table 3.5).  At both depth 

increments, the SOC and TN were slightly greater in the 2:3 intercrop than in the 1:2 intercrop.  

In general, SOC and TN declined with depth within each treatment.  The C/N ratio was also bi-

modally distributed, and was hence separated into two depth increments from 0-60 cm and 

from 60-80 cm (Table 3.5).  In both depth increments, interaction effects of treatment by depth 

were not significant.   The C/N ratio was significantly (p=0.0001) lower in the 60-80 cm 

increment than in the 0-60 cm depth increment.  
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Table 3.5 – SOC and TN concentrations (0-40 cm; 40-80 cm), and C/N ratio (0-60 cm; 60-

80 cm) in maize and soybean sole crops and 1:2 and 2:3 intercrops, 2012. Standard errors 

are given in parentheses. 

 
Depth  

(cm) 

Treatment 

 Soybean Maize 1:2 2:3 

SOC 

(%) 

0-10 3.29 (0.19)
 A,a

 3.06 (0.19)
 A,a

 3.09 (0.19)
 A,a

 3.19 (0.19)
 A,a

 

10-20 3.17 (0.19)
 A,a

 2.86 (0.19)
 A,a

 3.00 (0.17)
 A,a

 3.11 (0.17)
 A,a

 

20-40 2.70 (0.19)
 A,a

 2.44 (0.19)
 A,a

 2.54 (0.19)
 A,a

 2.67 (0.19)
 A,a

 

0-40 mean 3.05 (0.11)
 A

 2.79 (0.11)
 A

 2.88 (0.11)
 A

 2.99 (0.11)
 A

 

40-60 1.46 (0.19)
 A,b

 1.45 (0.19)
 A,b

 1.40 (0.19)
 A,b

 1.59 (0.16)
 A,b

 

60-80 1.07 (0.19)
 A,b

 0.90 (0.19)
 A,b

 0.88 (0.19)
 A,b

 1.04 (0.16)
 A,b

 

40-80 mean 1.26 (0.13)
 A

 1.18 (0.13)
 A

 1.14 (0.13)
 A

 1.31 (0.11)
 A

 

      

TN (%) 0-10 0.24 (0.01)
 A,a

 0.23 (0.01)
 A,a

 0.23 (0.01)
 A,a

 0.24 (0.01)
 A,a

 

 10-20 0.24 (0.01)
 A,a

 0.21 (0.01)
 A,a

 0.22 (0.01)
 A,a

 0.23 (0.01)
 A,a

 

 20-40 0.21 (0.01)
 A,a

 0.18 (0.01)
 A,a

 0.19 (0.01)
 A,a

 0.20 (0.01)
 A,a

 

 0-40 mean 0.23 (0.01)
 A

 0.21 (0.01)
 A

 0.21 (0.01)
 A

 0.22 (0.01)
 A

 

 40-60 0.12 (0.01)
 A,b

 0.11 (0.01)
 A,b

 0.11 (0.01)
 A,b

 0.13 (0.01)
 A,b

 

 60-80 0.09 (0.01)
 A,b

 0.08 (0.01)
 A,b

 0.08 (0.01)
 A,b

 0.09 (0.01)
 A,b

 

 40-80 mean 0.10 (0.01)
 A

 0.09 (0.01)
 A

 0.09 (0.01)
 A

 0.11 (0.01)
 A

 

      

C/N 

ratio 

0-10 13.55 (0.18)
 A,a

 13.16 (0.18)
 A,a

 13.31 (0.18)
 A,a

 13.31 (0.18)
 A,a

 

10-20 13.31 (0.18)
 A,a

 13.43 (0.18)
 A,a

 13.49 (0.16)
 A,a

 13.31 (0.16)
 A,a

 

20-40 13.07 (0.18)
 A,a

 13.60 (0.18)
 A,a

 13.41 (0.18)
 A,a

 13.25 (0.18)
 A,a

 

40-60 12.79 (0.22)
 A,a

 13.00 (0.31)
 A,a

 13.45 (0.31)
 A,a

 12.79 (0.18)
 A,a

 

0-60 mean 13.18 (0.09)
 A

 13.30 (0.11)
 A

 13.42 (0.11)
 A

 13.16 (0.09)
 A

 

60-80 mean 11.61 (0.57)
 A,b

 11.22 (0.57)
 A,b

 10.91 (0.57)
 A,b

 11.00 (0.49)
 A,b

 

Values followed by the same lower case letters, comparing differences between depths within 

each treatment, are not significantly different at p<0.05. Values followed by the same upper 

case letters, comparing treatments within each depth, are not significantly different at p<0.05. 
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Table 3.6 – SOC and TN stock (0-60 cm) in maize and soybean sole crops and 1:2 and 2:3 

intercrops, 2012. Standard errors are given in parentheses. 

 Depth 

(cm) 

Treatment 

 Soybean Maize 1:2 2:3 

SOC 

stock  

(g m
-2

) 

0-10 4336 (247)
 A,a

 3871 (277)
 A,ac

 4048 (265)
 A,ac

 4060 (264)
 A,ac

 

10-20 4825 (222)
 A,a

 4216 (254)
 A,a

 4408 (243)
 A,a

 4314 (215)
 A,a

 

20-40 4003 (189)
 A,a

 3684 (190)
 A,a

 3896 (213)
 A,ac

 4099 (185)
 A,a

 

40-60 2253 (476)
 A,b

 2008 (534)
 A,bc

 2347 (560)
 A,bc

 2541 (366)
 A,bc

 

0-60 mean 3974 (126)
 A

 3549 (140)
 A

 3758 (144)
 A

 3819 (122)
 A

 

      

TN stock 

(g m
-2

) 

0-10 320 (19)
 A,a

 294 (20)
 A,a

 304 (20)
 A,ac

 305 (20)
 A,ac

 

10-20 362 (17)
 A,a

 314 (19)
 A,a

 331 (18)
 A,a

 325 (16)
 A,a

 

20-40 306 (14)
 A,a

 273 (14)
 A,a

 292 (16)
 A,ac

 309 (14)
 A,a

 

40-60 180 (34)
 A,b

 147 (41)
 A,b

 169 (44)
 A,bc

 201 (26)
 A,bc

 

0-60 mean 300 (9)
 A

 265 (11)
 A

 281 (11)
 A

 289 (9)
 A

 

Values followed by the same lower case letters, comparing differences between depths within 

each treatment, are not significantly different at p<0.05. Values followed by the same upper 

case letters, comparing treatments within each depth, are not significantly different at p<0.05. 

 

Interaction effects of treatment by depth were not significant for any of the LF characteristics.   

No significant differences were noted between treatments for any of the LF characteristics 

(Table 3.7).  The quantity of LF was greatest in the soybean sole crop, and least in the maize 

sole crop, and tended to decrease with depth.  In the maize sole crop, the quantity of LF was 

significantly lower in the 10-20 cm increment than in the 0-10 cm increment.  The quantity of 

LF did not appear to be correlated to the quality of LF, as both LF-N and LF-C were greatest 

in the maize sole crop and least in the 2:3 intercrop.  The LF-C/N ratio was very similar in all 

the treatments, and tended to increase with depth.  The exception was the 1:2 intercrop, where 

the C/N ratio decreased with depth.  The LF-C/N ratio was greater than the soil C/N ratio 

(Table 3.5).  The proportion of LF-C in SOC (LF-C/SOC) and LF-N in TN (LF-N/TN), as well 

as the LF-C and LF-N stock decreased with depth in all treatments, although not significantly.  
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All were greatest in the soybean sole crop and least in the maize sole crop.  When comparing 

the two intercropping systems, the LF characteristics were all higher in the 1:2 intercrop than 

the 2:3 intercrop, with the exception of the LF-C/N ratio, although none of these differences 

were significant. 

Interaction effects of treatment by depth were not significant for SMB-C.  SMB-C was 

significantly lower in the maize sole crop than in the 2:3 intercrop in the 0-10 cm depth 

increment (Table 3.8).  In both the 1:2 and 2:3 intercrops, the SMB-C was significantly greater 

than in the maize sole crop.  Although the SMB-C tended to decrease with depth, this trend 

was only significant in the 2:3 intercrop.  
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Table 3.7 – LF characteristics (0-20 cm) in maize and soybean sole crops and 1:2 and 

2:3 intercrops, 2012. Standard errors are given in parentheses. 

 Depth 

(cm) 

Treatment 

 Soybean Maize 1:2 2:3 

LF  

(mg g
-1

) 

0-10 5.74 (0.60)
 A,a

 4.74 (0.49)
 A,a

 5.51 (0.49)
 A,a

 4.97 (0.49)
 A,a

 

10-20 3.43 (0.60)
 A,a

 1.95 (0.49)
 A,b

 2.90 (0.42)
 A,a

 3.12 (0.49)
 A,a

 

0-20 mean 4.59 (0.42)
 A

 3.34 (0.35)
 A

 4.20 (0.32)
 A

 4.04 (0.35)
 A

 

      

LF-N 

(%) 

0-10 1.40 (0.13)
 A,a

 1.36 (0.11)
 A,a

 1.30 (0.11)
 A,a

 1.32 (0.11)
 A,a

 

10-20 1.35 (0.13)
 A,a

 1.47 (0.11)
 A,a

 1.31 (0.09)
 A,a

 1.18 (0.11)
 A,a

 

0-20 mean 1.38 (0.09)
 A

 1.41 (0.08)
 A

 1.30 (0.07)
 A

 1.25 (0.08)
 A

 

      

LF-C 

(%) 

0-10 24.18 (1.91)
 A,a

 23.19 (1.56)
 A,a

 23.80 (1.56)
 A,a

 23.23 (1.56)
 A,a

 

10-20 25.16 (1.91)
 A,a

 27.03 (1.56)
 A,a

 22.97 (1.35)
 A,a

 22.19 (1.56)
 A,a

 

0-20 mean 24.67 (1.35)
 A

 25.11 (1.10)
 A

 23.39 (1.03)
 A

 22.71 (1.10)
 A

 

      

LF-C/N 

ratio 

0-10 17.25 (0.81)
 A,a

 17.23 (0.66)
 A,a

 18.37 (0.66)
 A,a

 17.67 (0.66)
 A,a

 

10-20 18.54 (0.81)
 A,a

 18.48 (0.66)
 A,a

 17.56 (0.57)
 A,a

 19.00 (0.66)
 A,a

 

0-20 mean 17.89 (0.57)
 A

 17.86 (0.47)
 A

 17.97 (0.44)
 A

 18.33 (0.47)
 A

 

      

LF-C/ 

SOC 

(%) 

0-10 4.07 (0.58)
 A,a

 3.73 (0.47)
 A,a

 4.21 (0.47)
 A,a

 3.64 (0.47)
 A,a

 

10-20 2.71 (0.58)
 A,a

 1.84 (0.47)
 A,a

 2.36 (0.41)
 A,a

 2.27 (0.47)
 A,a

 

0-20 mean 3.39 (0.41)
 A

 2.79 (0.33)
 A

 3.28 (0.31)
 A

 2.95 (0.33)
 A

 

      

LF-

N/TN 

(%) 

0-10 3.20 (0.51)
 A,a

 2.92 (0.41)
 A,a

 3.06 (0.41)
 A,a

 2.75 (0.41)
 A,a

 

10-20 1.93 (0.51)
 A,a

 1.33 (0.41)
 A,a

 1.81 (0.36)
 A,a

 1.65 (0.41)
 A,a

 

0-20 mean 2.56 (0.36)
 A

 2.12 (0.29)
 A

 2.44 (0.27)
 A

 2.20 (0.29)
 A

 

      

LF-C 

stock  

(g m
-2

) 

0-10 176.55 (19.42)
 A,a

 144.44 (15.86
 A,a

 170.47 (15.86)
 A,a

 145.52 (15.86)
 A,a

 

10-20 124.57 (19.42)
 A,a

 76.61 (15.86)
 A,a

 98.47 (13.73)
 A,a

 89.19 (15.86)
 A,a

 

0-20 mean 150.56 (13.73)
 A

 110.53 (11.21)
 A

 134.47 (10.49)
 A

 117.36 (11.21)
 A

 

      

LF-N 

stock  

(g m
-2

) 

0-10 10.24 (1.26)
 A,a

 8.52 (1.03)
 A,a

 9.32 (1.03)
 A,a

 8.26 (1.03)
 A,a

 

10-20 6.74 (1.26)
 A,a

 4.11 (1.03)
 A,a

 5.62 (0.89)
 A,a

 4.79 (1.03)
 A,a

 

0-20 mean 8.49 (0.89)
 A

 6.31 (0.73)
 A

 7.47 (0.68)
 A

 6.53 (0.73)
 A

 

Values followed by the same lower case letters, comparing differences between depths within 

each treatment, are not significantly different at p<0.05. Values followed by the same upper 

case letters, comparing treatments within each depth, are not significantly different at p<0.05. 
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Table 3.8 – SMB-C (0-80 cm) in maize and soybean sole crops and 1:2 and 2:3 intercrops, 2012. 

Standard errors are given in parentheses. 

  Depth (cm) 
Treatment 

Soybean Maize 1:2 2:3 

SMB-C  

(ug g
-1

) 

0-10 356.74 (35.80)
 AB,a

 217.16 (35.80)
 B,a

 380.27 (35.80)
 AB,a

 436.45 (43.84)
 a,a

 

10-20 355.58 (35.80)
 A,a

 274.79 (31.01)
 A,a

 303.73 (35.80)
 A,a

 355.31 (31.01)
 a,ac

 

20-40 213.63 (35.80)
 A,a

 197.72 (43.85)
 A,a

 197.86 (35.80)
 A,a

 353.54 (35.80)
 A,acd

 

40-60 185.54 (35.80)
 A,a

 137.16 (35.80)
 A,a

 255.20 (35.80)
 A,a

 218.68 (31.01)
 A,bc

 

60-80 193.38 (35.80)
 A,a

 181.56 (35.80)
 A,a

 221.33 (35.80)
 A,a

 188 49 (31.01)
 A,bd

 

0-80 mean 260.97 (16.01)
 AB

 201.68 (16.41)
 A

 271.68 (16.01)
 B

 310.49 (15.61)
 B

 

Values followed by the same lower case letters, comparing differences between depths within each 

treatment, are not significantly different at p<0.05. Values followed by the same upper case letters, 

comparing treatments within each depth, are not significantly different at p<0.05. 
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3.3.2 Comparison of soil quality between 2007 and 2012 

Since the bulk density was analyzed using non-parametric tests, only the means (0-80 cm) 

were compared from 2007 and 2012, and it was found that the mean BD increased 

significantly (p<0.05) in all treatments, with the greatest increases in 1:2 and 2:3 (Table 3.9).  

Interaction effects of treatment by year were significant for pH [F(3, 48) = 4.54, p = 0.007]. 

The mean pH (0-80 cm) decreased significantly from 2007 to 2012 in the soybean sole crop 

and the 1:2 intercrop (Table 3.9).  However, although insignificant, the greatest decreases in 

pH were found in the shallower depths, particularly in the soybean sole crop.  In the top two 

depth increments in the maize sole crop, the pH actually increased from 2007 to 2012. 

Interaction effects of treatment by depth or year were not significant for SOC, TN, and C/N 

ratio.  The mean SOC, TN, and C/N ratio increased significantly in the 0-40 cm depth 

increment from 2007 to 2012 in all treatments (Table 3.10).  With the exception of the 20-40 

cm depth increment in the maize sole crop, SOC increased significantly in all treatments and 

all depth increments within 0-40 cm.  SOC, TN, and C/N ratio increased in the 40-80 cm depth 

increment from 2007 to 2012, although not significantly. The greatest increase in SOC was in 

the 2:3 intercrop for the 0-40 cm depth increment, and in the soybean sole crop for the 40-80 

cm depth increment.  Within the 0-40 cm depth increment, TN only increased significantly in 

the 20-40 cm increment in the soybean sole crop and the 1:2 intercrop, and in the 10-20 cm 

increment in the 2:3 intercrop.  The increases in TN in the 40-80 cm depth interval were not 

significant in all four treatments.  The C/N ratio increased significantly in all three increments 

in the 0-40 cm depth increment.  Although the C/N ratio increased in the 40-80 cm depth 

increment, these increases were not significant.  
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Table 3.9 - Comparison of bulk density and pH (0-80 cm) between 2007 and 2012 in 

maize and soybean sole crops and 1:2 and 2:3 intercrops. Standard errors are given in 

parentheses. 

 
Year Depth (cm) 

Treatment 

 
Soybean Maize 1:2 2:3 

Bulk 

Density*  

(g cm
-3

) 

2007 0-10 1.21 (0.08)
 A,a 

1.11 (0.08)
 A,a

 1.17 (0.08)
 A,a

 1.13 (0.08)
 A,a

 

 10-20 1.24 (0.08)
 A,a

 1.24 (0.08)
 A,a

 1.18 (0.08)
 A,a

 1.15 (0.08)
 A,a

 

 20-40 1.25 (0.08)
 A,a

 1.27 (0.08)
 A,a

 1.16 (0.08)
 A,a

 1.24 (0.08)
 A,a

 

 40-80 1.32 (0.08)
 A,a

 1.25 (0.08)
 A,a

 1.25 (0.10)
 A,a

 1.19 (0.08)
 A,a

 

 0-80 mean 1.25 (0.04)
 A †

 1.24 (0.04)
 A †

 1.19 (0.04)
 A †

 1.18 (0.04)
 A †

 

2012 0-10 1.33 (0.05)
 A,a

 1.27 (0.06)
 A,a

 1.33 (0.05)
 A,a

 1.27 (0.06)
 A,a

 

 10-20 1.53 (0.03)
 A,a

 1.46 (0.04)
 A,b

 1.47 (0.04)
 A,a

 1.36 (0.05)
 A,a

 

 20-40 1.48 (0.03)
 A,a

 1.44 (0.03)
 A,ab

 1.53 (0.03)
 A,a

 1.53 (0.02)
 A,a

 

 40-80 1.53 (0.03)
 A,a

 1.34 (0.05)
 A,ab

 1.50 (0.04)
 A,a

 1.52 (0.03)
 A,a

 

 0-80 mean 1.47 (0.02)
 A †

 1.38 (0.02)
 A †

 1.46 (0.02)
 A †

 1.43 (0.02)
 A †

 

      

pH 2007 0-10 5.83 (0.20)
 A,a

 5.54 (0.20)
 A,a

 5.91 (0.20)
 A,a

 5.76 (0.20)
 A,a

 

 10-20 5.90 (0.20)
 A,a

 5.62 (0.20)
 A,a

 5.89 (0.20)
 A,a

 5.68 (0.20)
 A,a

 

 20-40 6.13 (0.20)
 A,a

 5.88 (0.20)
 A,a

 6.13 (0.20)
 A,a

 5.97 (0.20)
 A,a

 

 40-80 6.63 (0.20)
 A,a

 6.38 (0.20)
 A,a

 6.57 (0.20)
 A,a

 6.56 (0.20)
 A,a

 

 0-80 mean 6.12 (0.10)
 A †

 5.86 (0.10)
 A

 6.12 (0.10)
 A †

 5.99 (0.10)
 A

 

2012 0-10 5.32 (0.12)
 A,a

 5.64 (0.12)
 A,a

 5.56 (0.12)
 A,a

 5.52 (0.12)
 A,a

 

 10-20 5.55 (0.12)
 A,ac

 5.74 (0.12)
 A,a

 5.70 (0.11)
 A,a

 5.85 (0.11)
 A,ac

 

 20-40 5.83 (0.12)
 A,ac

 5.86 (0.12)
 A,a

 5.83 (0.12)
 A,a

 5.92 (0.11)
 A,ac

 

 40-80 6.28 (0.09)
 A,bc

 6.24 (0.09)
 A,a

 6.29 (0.09)
 A,a

 6.40 (0.08)
 A,bc

 

 0-80 mean 5.74 (0.06)
 A †

 5.87 (0.06)
 A

 5.85 (0.06)
 A †

 5.92 (0.05)
 A

 

A,a Values followed by the same upper case letters, comparing treatments within each depth, are 

not significantly different at p<0.05.  Values followed by the same lower case letters, 

comparing differences between depths within each treatment, are not significantly different at 

p<0.05. 

* 2007 and 2012 values of bulk density were only compared for the 0-80 mean. 

† indicates the values were significantly different between years.  

 

Interaction effects of treatment by depth or year were not significant for SOC stock or N stock.  

SOC stock increased significantly from 2007 to 2012 in all treatments and depth increments 

within the 0-40 cm depth increment (Table 3.11).  The greatest increases in SOC stock were 

observed in the 1:2 and 2:3 intercrops.  There were similar increases in the 40-80 cm depth 
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increment, but these increases were not found to be significant despite the increase being 

greater than 100% in the soybean sole crop and the 1:2 and 2:3 intercrops.  The mean N stock 

(0-40 cm) also increased significantly from 2007 to 2012, as did the N stock in most of the 

depth increments in each of the treatments, excepting soybean 0-10 cm and maize 20-40 cm.  

In the 40-80 cm depth increment, only the increase in TN stock in the 2:3 intercrop was 

significant; this increase was greater than 100%. 

Interaction effects of treatment by year were not significant in all LF characteristics.  In all 

treatments, all LF characteristics increased between 2007 and 2012 except for the LF quantity 

in the maize treatment, which decreased (Table 3.12).  The only significant increases were in 

LF-C in the maize sole crop and LF-C stock in the 1:2 intercrop.  All LF characteristics 

showed greater increases in the 1:2 intercrop than in the 2:3 intercrop. 

Interaction effects of treatment by year were significant for SMB-C [F(3,31) = 8.98, p = 

0.0002].  SMB-C increased from 2007 to 2012 in nearly all treatments and depths (Table 3.13).  

The exception was in the 0-10 cm depth increment in the maize sole crop treatment, which 

decreased over this time period.  These increases were significant in the 0-80 cm mean in the 

1:2 and 2:3 intercrops, as well as in the 40-80 cm depth increment in the 1:2 intercrop, and in 

the 0-10 cm, 10-20 cm, and 40-80 cm increments in the 2:3 intercrop.  The largest increases in 

SMB-C occurred in the 2:3 intercrop. 
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Table 3.10 – Comparison of SOC and TN concentrations and C/N ratio (0-40 cm; 40-80 

cm) between 2007 and 2012 in maize and soybean sole crops and 1:2 and 2:3 intercrops. 

Standard errors are given in parentheses. 

 
Year Depth (cm) 

Treatment 

 Soybean Maize 1:2 2:3 

SOC 

(%) 

2007 0-10 2.57 (0.12)
 A,a †

 2.48 (0.12)
 A,a †

 2.40 (0.12)
 A,a †

 2.39 (0.12)
 A,a †

 

 10-20 2.49 (0.12)
 A,a †

 2.22 (0.12)
 A,a †

 2.20 (0.12)
 A,a †

 2.27 (0.12)
 A,a †

 

 20-40 1.74 (0.12)
 A,a †

 1.92 (0.12)
 A,a

 1.79 (0.12)
 A,a †

 1.80 (0.12)
 A,a †

 

 0-40 mean 2.27 (0.07)
 A †

 2.21 (0.07)
 A †

 2.13 (0.07)
 A †

 2.15 (0.07)
 A †

 

 40-80 mean 0.80 (0.11)
 A,b

 0.89 (0.11)
 A,b

 0.79 (0.11)
 A,b

 0.87 (0.11)
 A,b

 

2012 0-10 3.29 (0.20)
 A,a †

 3.06 (0.20)
 A,a †

 3.09 (0.20)
 A,a †

 3.19 (0.20)
 A,a †

 

 10-20 3.17 (0.20)
 A,a †

 2.86 (0.20)
 A,a †

 2.98 (0.20)
 A,a †

 3.09 (0.20)
 A,a †

 

 20-40 2.70 (0.20)
 A,a †

 2.44 (0.20)
 A,a

 2.54 (0.20)
 A,a †

 2.67 (0.20)
 A,a †

 

 0-40 mean 3.05 (0.12)
 A †

 2.79 (0.12)
 A †

 2.87 (0.12)
 A †

 2.98 (0.12)
 A †

 

 40-80 mean 1.26 (0.18)
 A,b

 1.18 (0.18)
 A,b

 1.14 (0.18)
 A,b

 1.27 (0.18)
 A,b

 

       

TN 

(%) 

2007 0-10 0.22 (0.01)
 A,a

 0.21 (0.01)
 A,a

 0.20 (0.01)
 A,a

 0.20 (0.01)
 A,a

 

 10-20 0.21 (0.01)
 A,a

 0.19 (0.01)
 A,a

 0.19 (0.01)
 A,a

 0.19 (0.01)
 A,a †

 

 20-40 0.15 (0.01)
 A,a †

 0.16 (0.01)
 A,a

 0.15 (0.01)
 A,a †

 0.15 (0.01)
 A,a

 

 0-40 mean 0.19 (0.01)
 A †

 0.19 (0.01)
 A †

 0.18 (0.01)
 A †

 0.18 (0.01)
 A †

 

 40-80 mean 0.08 (0.01)
 A,b

 0.08 (0.01)
 A,b

 0.07 (0.01)
 A,b

 0.07 (0.01)
 A,b

 

2012 0-10 0.24 (0.01)
 A,a

 0.23 (0.01)
 A,a

 0.23 (0.01)
 A,a

 0.24 (0.01)
 A,a

 

 10-20 0.24 (0.01)
 A,a

 0.21 (0.01)
 A,a

 0.22 (0.01)
 A,a

 0.23 (0.01)
 A,a †

 

 20-40 0.21 (0.01)
 A,a †

 0.18 (0.01)
 A,a

 0.19 (0.01)
 A,a †

 0.20 (0.01)
 A,a

 

 0-40 mean 0.23 (0.01)
 A †

 0.21 (0.01)
 A †

 0.21 (0.01)
 A †

 0.22 (0.01)
 A †

 

 40-80 mean 0.10 (0.01)
 A,b

 0.09 (0.01)
 A,b

 0.09 (0.01)
 A,b

 0.11 (0.01)
 A,b

 

       

C/N 

ratio 

2007 0-10 11.77 (0.11)
 A,a †

 11.86 (0.14)
 A,a †

 11.93 (0.11)
 A,a †

 11.75 (0.11)
 A,a †

 

 10-20 11.80 (0.11)
 A,a †

 11.76 (0.11)
 A,a †

 11.78 (0.11)
 A,a †

 11.83 (0.11)
 A,a †

 

 20-40 12.03 (0.11) 
A,a †

 12.01 (0.11)
 A,a †

 12. 02 (0.11)
 A,a †

 12.04 (0.11)
 A,a †

 

 0-40 mean 11.87 (0.06)
 A †

 11.88 (0.07)
 A †

 11.91 (0.06)
 A †

 11.87 (0.06)
 A †

 

 40-80 mean 10.82 (0.35)
 A,b

 11.22 (0.35)
 A,b

 10.71 (0.35)
 A,b

 11.25 (0.35)
 A,b

 

2012 0-10 13.55 (0.17)
 A,a †

 13.07 (0.21)
 A,a †

 13.31 (0.17)
 A,a †

 13.31 (0.17)
 A,a †

 

 10-20 13.31 (0.17)
 A,a †

 13.43 (0.17)
 A,a †

 13. 42 (0.17)
 A,a †

 13.29 (0.17)
 A,a †

 

 20-40 13.07 (0.17)
 A,a †

 13.60 (0.17)
 A,a †

 13.41 (0.17)
 A,a †

 13.25 (0.17)
 A,a †

 

 0-40 mean 13.31 (0.10)
 A †

 13.37 (0.11)
 A †

 13.38 (0.10)
 A †

 13.28 (0.10)
 A †

 

 40-80 mean 12.03 (0.60)
 A,b

 12.25 (0.60)
 A,b

 11.99 (0.60)
 A,b

 11.57 (0.60)
 A,b

 

Values followed by the same upper case letters, compare treatments within each depth, are not 

significantly different at p<0.05.  Values followed by the same lower case letters, comparing 

differences between depths within each treatment, are not significantly different at p<0.05.  

† indicates the values were significantly different between years.  
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Table 3.11 – Comparison of SOC and TN stock (0-40 cm; 40-80 cm) between 2007 and 

2012 in maize and soybean sole crops and 1:2 and 2:3 intercrops. Standard errors are 

given in parentheses. 

 
Year Depth (cm) 

Treatment 

 Soybean Maize 1:2 2:3 

SOC 

stock  

(g m
-2

) 

2007 0-10 3094 (263)
 A,a †

 2723 (263)
 A,a †

 2791 (263)
 A,a †

 2684 (263)
 A,a †

 

 10-20 3099 (263)
 A,a †

 2772 (263)
 A,a †

 2626 (263)
 A,a †

 2627 (263)
 A,a †

 

 20-40 2228 (263)
 A,a †

 2448 (263)
 A,a †

 2088 (263)
 A,a †

 2237 (263)
 A,a †

 

 0-40 mean 2807 (152)
 A †

 2648 (152)
 A †

 2502 (152)
 A †

 2516 (152)
 A †

 

 40-80 mean 1060 (275)
 A,b

 1208 (275)
 A,b

 1156 (336)
 A,b

 1020 (275)
 A,b

 

2012 0-10 4335 (281)
 A,a †

 3871 (281)
 A,a †

 4043 (281)
 A,a †

 4044 (281)
 A,a †

 

 10-20 4811 (281)
 A,a †

 4194 (281)
 A,a †

 4387 (281)
 A,a †

 4156 (281)
 A,a †

 

 20-40 3983 (281)
 A,a †

 3515 (281)
 A,a †

 3874 (281)
 A,a †

 4074 (281)
 A,a †

 

 0-40 mean 4376 (162)
 A †

 3860 (162)
 A †

 4102 (162)
 A †

 4091 (162)
 A †

 

 40-80 mean 2227 (336)
 A,b

 1945 (336)
 A,b

 2347 (412)
 A,b

 2341 (336)
 A,b

 

       

TN 

stock  

(g m
-2

) 

2007 0-10 265 (24)
 A,a

 230 (24)
 A,a †

 237 (24)
 A,a †

 228 (24)
 A,a †

 

 10-20 257 (24)
 A,a †

 233 (24)
 A,a †

 223 (24)
 A,a †

 220 (24)
 A,a †

 

 20-40 188 (24)
 A,a †

 204 (24)
 A,a

 175 (24)
 A,a †

 197 (24)
 A,a †

 

 0-40 mean 237 (13)
 A †

 223 (13)
 A †

 212 (13)
 A †

 212 (13)
 A †

 

 40-80 mean 102 (24)
 A,b

 108 (24)
 A,b

 100 (30)
 A,b

 86 (24)
 A,b †

 

2012 0-10 320 (24)
 A,a

 294 (24)
 A,a †

 304 (24)
 A,a †

 304 (24)
 A,a †

 

 10-20 361 (24)
 A,a †

 312 (24)
 A,a †

 330 (24)
 A,a †

 313 (24)
 A,a †

 

 20-40 305 (24)
 A,a †

 259 (24)
 A,a

 289 (24)
 A,a †

 307 (24)
 A,a †

 

 0-40 mean 329 (12)
 A

 289 (12)
 A †

 307 (12)
 A †

 308 (12)
 A †

 

 40-80 mean 178 (24)
 A,b

 144 (24)
 A,b

 168 (30)
 A,b

 189 (24)
 A,b †

 

Values followed by the same upper case letters, comparing treatments within each depth, are 

not significantly different at p<0.05.  Values followed by the same lower case letters, 

comparing differences between depths within each treatment, are not significantly different at 

p<0.05.  

† indicates the values were significantly different between years. 
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Table 3.12 – Comparison of LF characteristics (averaged over 0-20 cm) in maize and 

soybean sole crops and 1:2 and 2:3 intercrops in Balcarce, Argentina between 2007 and 

2012. Standard errors are given in parentheses. 

 
Year 

Treatment 

 Soybean Maize 1:2 2:3 

LF (mg g
-1

) 2007 4.40 (0.39) 
A 

3.95 (0.32) 
A
 3.63 (0.32) 

A
 3.62 (0.32) 

A
 

2012 4.59 (0.49) 
A
 3.35 (0.40) 

A
 4.24 (0.40) 

A
 4.04 (0.40) 

A
 

      

LF-C (%) 2007 17.13 (1.21) 
A
 16.72 (0.99) 

A †
 16.66 (0.99) 

A
 17.35 (0.99) 

A
 

2012 24.67 (1.49) 
A
 25.11 (1.22) 

A †
 23.51 (1.22) 

A
 22.71 (1.22) 

A
 

      

LF N (%) 2007 1.14 (0.01) 
A
 1.06 (0.01) 

A
 0.99 (0.01) 

A
 0.97 (0.01) 

A
 

2012 1.38 (0.09) 
A
 1.41 (0.08) 

A
 1.31 (0.08) 

A
 1.25 (0.08) 

A
 

      LF-C/N  2007 15.07 (1.06) 
A
 15.74 (0.87) 

A
 16.87 (0.87) 

A
 17.91 (0.87) 

A
 

2012 17.89 (0.55) 
A
 17.86 (0.45) 

A
 17.96 (0.45) 

A
 18.33 (0.45) 

A
 

      LF-C/SOC 

(%) 

2007 3.03 (0.29) 
A
 2.83 (0.24) 

A
 2.62 (0.24) 

A
 2.69 (0.24) 

A
 

2012 3.39 (0.46) 
A
 2.79 (0.38) 

A
 3.31 (0.38) 

A
 2.95 (0.38) 

A
 

      LF-N/TN 

(%) 

2007 2.40 (0.27) 
A
 2.09 (0.22) 

A
 1.82 (0.22) 

A
 1.77 (0.22) 

A
 

2012 2.56 (0.40) 
A
 2.12 (0.33) 

A
 2.46 (0.33) 

A
 2.20 (0.33) 

A
 

      LF-C stock 

(g m
-2

) 

2007 90.94 (10.54) 
A
 77.90 (8.60) 

A
 71.63 (8.60) 

A †
 71.79 (8.60) 

A
 

2012 154.13 (13.67) 
A
 115.77 (11.16) 

A
 138.27 (11.16) 

A †
 118.14 (11.16) 

A
 

      LF-N stock 

(g m
-2

) 

2007 6.10 (0.65) 
A
 4.95 (0.53) 

A
 4.23 (0.53) 

A
 4.02 (0.53) 

A
 

2012 8.62 (0.89) 
A
 6.54 (0.73) 

A
 7.72 (0.73) 

A
 6.53 (0.73) 

A
 

Values followed by the same upper case letters, comparing treatments within each depth, are 

not significantly different at p<0.05.  Values followed by † are significantly different between 

years. 
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Table 3.13 – Comparison of SMB-C (0-80 cm) between 2007 and 2012 in maize and soybean sole crops and 1:2 

and 2:3 intercrops. Standard errors are given in parentheses. 

  Year Depth (cm) 
Treatment 

Soybean Maize 1:2 2:3 

SMB-C 

(ug g
-1

) 

2007 0-10 294.26 (30.46)
 A,a

 241.16 (27.58)
 A,a

 340.71 (32.78)
 A,a

 259.40 (28.60)
 A,a †

 

 10-20 266.75 (29.00)
 A,ab

 247.65 (27.94)
 A,a

 276.14 (29.51)
 A,ac

 180.47 (23.86)
 A,ab †

 

 20-40 174.38 (23.45)
 A,ab

 136.13 (22.93)
 A,ab

 130.15 (20.26)
 A,bc

 177.87 (23.68)
 A,ab

 

 40-80 124.57 (19.82)
 A,b

 103.43 (18.06)
 A,b

 92.19 (17.05)
 A,b †

 77.08 (15.59)
 A,b †

 

 0-80 mean 209.18 (18.16)
 AB

 176.25 (17.17)
 AB

 196.60 (17.61)
 A †

 166.77 (16.22)
 B †

 

      

2012 0-10 354.60 (38.68)
 AB,a

 210.55 (29.80)
 B,a

 378.63 (39.96)
 AB,a

 469.04 (44.48)
 A,a †

 

 10-20 355.08 (38.70)
 A,a

 276.31 (34.14)
 A,a

 298.49 (35.48)
 A,ab

 282.53 (40.17)
 A,ba †

 

 20-40 212.87 (29.97)
 A,a

 197.67 (31.96)
 A,a

 197.28 (28.85)
 A,b

 347.18 (38.27)
 A,ab

 

 40-80 187.89 (28.15)
 A,a

 156.17 (25.67)
 A,a

 238.24 (31.70)
 A,ab †

 213.55 (30.01)
 A,b †

 

  0-80 mean 272.02 (23.95)
 A

 208.00 (21.57)
 A

 274.03 (24.04)
 A †

 346.53 (27.04)
 B †

 

Values followed by the same upper case letters, comparing treatments within each depth, are not significantly different 

at p<0.05.  Values followed by the same lower case letters, comparing differences between depths within each 

treatment, are not significantly different at p<0.05.  

† indicates the values were significantly different between years. 
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3.4 Discussion 

3.4.1 Crop biomass production and land equivalent ratio 

Biomass residue returned to the soil is the primary factor impacting the levels of SOC, and 

thus soil quality (Studdert and Echeverría, 2000).  The shoot biomass produced by the 1:2 and 

2:3 intercrops was not significantly different from that produced by the maize and soybean 

sole crops (Table 3.3).  The shoot biomass was used to calculate the LER for each of the 

intercrops, and it was found that during the six seasons of intercropping maize and soybeans in 

Balcarce, Argentina, the LER for both the 1:2 and 2:3 intercrops was below 1 for three 

growing seasons (Table 3.3).  Therefore, intercropping did not appear to have a consistent 

impact on the quantity of biomass residue returned to the soil, the most important factor 

influencing soil quality.  Previous studies demonstrated a clear benefit to crop yield and 

biomass production from intercropping maize and soybean (Table 3.2), findings that were not 

supported by the present study.  The studies outlined in Table 3.2 varied by location, climate, 

soil texture, and soil quality, and yet they all found an LER greater than 1.  The primary 

differences between these previous investigations and the current investigation were in the 

intercrop design: the inter-row spacing (the distance between the nearest maize and soybean 

rows) and the time of planting.  In the intercropping systems described in Table 3.2, the inter-

row distance was generally 25 cm or 37.5 cm; in the current study, it was 52 cm. Additionally, 

in the these previous investigations, the inter-row spacing in the intercrops was always less 

than the intercrop spacing in the sole crop, whereas in the current study, the inter-row spacing 

was the same in the intercrops and sole crops.  In the previous investigations, the maize and 

soybean were planted at the same time, whereas in the current study, the maize was sown one 
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month prior to the soybean in both the intercrops and the sole crops.  The staggered planting 

time and large inter-row spacing likely reduced the beneficial interactions between the maize 

and soybean.  

Clement et al. (1992) conducted one experiment in a 2:3 intercrop, where the row spacing 

between maize and soybean was 50 cm.  However, the two maize rows in this intercrop were 

30 cm apart from each other and the soybean rows were 35 cm apart, still allowing for a 

greater plant density.  This differed from the present study, where the inter-row distance of 52 

cm was maintained in between all rows, and the plant density therefore remained low.  

Clement et al. (1992) still obtained an LER greater than 1, although it was less than the LER 

found from a 1:2 intercrop with 25 cm inter-row spacing.  Carruthers et al. (2000) examined 

the impact of delaying soybean seeding by three weeks in a temperate climate and found that 

simultaneous seeding of maize and soybean resulted in a higher LER than delayed seeding.  

Clement et al. (1992) found that closer associations between the intercropped species resulted 

in higher yields because the maize was able to make better use of available N.  Closer 

proximity of the maize and soybean allows for beneficial root interactions (Hinsinger et al., 

2011).  Due to competition for soil nutrients and water, the roots may spread farther and 

eventually encompass a greater volume of soil, enabling greater uptake of N, P, and K in maize 

intercrops (Kolawole, 2012).  In addition, the nitrogenous excretions from soybean roots could 

be taken up by nearby maize roots, allowing for better maize plant nutrition (Kolawole, 2012).  

However, if the soybeans are planted a month after the maize, the maximum soybean root 

exudations won’t occur until after the maize has flowered, which is past the time of peak 

demand from the maize (Coll et al., 2012; Liang et al., 2011).  Therefore, in the current study, 
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the soybeans were likely planted too late to provide these beneficial root exudations to maize.  

Based on the typical growing season in the Argentine Pampa (Coll et al., 2012), the maize 

would likely have already passed its peak nutrient demand by the time the soybean root 

exudations reached their maximum.  

 

3.4.2 Soil quality 

3.4.2.1 Soil pH 

The pH values are in general agreement with previous studies at nearby sites to that of the 

current study area, where a range in surficial pH from 5.3 to 6.0 was reported (Studert and 

Echeverría, 2000; Domínguez et al., 2009; Oelbermann and Echarte, 2011).  Urea, applied as a 

nitrogen fertilizer, increases soil acidity over the long term.  Urea was applied to the maize 

sole crops and the intercrops at a rate of 150 kg N ha
-2

, likely decreasing the pH in all 

treatments, but significantly in the soybean and 1:2 treatments.  The increase in maize pH in 

the 0-20 cm depth intervals was likely a short term increase, as soybean was the most recent 

crop, and thus not fertilized.  It is likely the pH will decrease in the following field season, 

when urea will again be applied to maize.  In general, the pH increased with depth in all four 

treatments, as the urea was applied to the surface and little of it would reach the lower depths.  

Additionally, carbonate accumulations with depth and the presence of a petrocalcic horizon 

below depths of 0.7 m (Domínguez et al., 2009) would buffer the influence of the urea, and 

maintain a higher pH. 
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3.4.2.2 Soil organic carbon and soil total nitrogen 

In all four treatments, SOC and TN were greatest at the surface (0-10 cm), and declined with 

depth.  In a global meta-analysis, Jobbágy and Jackson (2000) reported that this is a typical 

SOC distribution, showing that of the carbon within the top meter of soil, 42% was found 

within the top 20 cm, 22% from 20-40 cm, 16% from 40-60 cm, 11% from 60-80 cm, and 9% 

from 80-100 cm.  The SOC distribution can be attributed to root distribution within the soil, 

and carbon inputs from the surface (Berhongaray et al., 2013).  

Although the quantity of residues returned to the soils is the most important contributor to 

SOC, it can also be impacted by the residue quality (Dick and Gregorich, 2004).  Different 

organic compounds in the residue, such as cellulose, hemicellulose, lignin, and protein, all 

impact the recalcitrance of the plant residues (Dick and Gregorich, 2004).  For example, lignin 

is decomposed more slowly than cellulose and hemicellulose, so residues with high lignin 

content would result in higher SOC levels (Dick and Gregorich, 2004).  Soybean residues are 

higher in lignin and lower in cellulose and hemicellulose than corn residues (Johnson et al., 

2007).  However, as the lignin concentration in both soybean and maize residues is relatively 

low, it does not play a large role in determining the rate to decomposition of these residues 

(Gentile et al., 2008).  The low C/N ratio of the soybean, similar to other legumes, will result 

in faster decomposition than maize residues.  For example, when investigating the impact of 

intercropping maize with either lablab (Lablab purpureus L.) or pigeon pea over a period of 17 

years in Brazil, Diekow et al. (2005) found that both the maize/lablab and maize/pigeon pea 

intercrops resulted in significantly higher SOC and TN concentrations in the top 7.5 cm of soil 

than in the corresponding maize crop.  It was therefore expected that similar results would be 

found in the current study, and that the presence of soybean in the intercrops would increase 
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the soil SOC and TN above the sole crops.  However, significant increases in SOC and TN 

were observed in both the intercropping and sole cropping systems, with no significant 

difference between any of the treatments.  This may be due to the maize and soybean rotation 

in the sole crops providing a similar quality of crop residues as the intercrops. 

Typically, the establishment of crops reduces SOC stocks, particularly when conventional 

tillage is used (Batlle-Bayer et al., 2010).  However, cropping systems that include a legume in 

the crop rotation or intercrop have been found to meet or surpass the native C and N stocks 

(Diekow et al., 2005), although this is not possible if conventional tillage is maintained 

(Studdert and Echeverría, 2000).  Since the establishment of the current experiment, both C 

and N stocks have increased significantly in all treatments.  It is anticipated that with 

continued return of both maize and soybean residues to the soil, the SOC and TN, and hence 

the C and N stocks, will continue to increase in all treatments, although they may not reach the 

grassland levels if the conventional mouldboard plowing continues. 

 

3.4.2.3 Light fraction carbon and nitrogen 

Although the quantity of LF did not change significantly with time, the LF-C and LF-N in the 

1:2 and maize treatments did increase significantly from 2007 to 2012.  Similarly, in southern 

Africa, Beedy et al. (2010) found that intercropping maize with Gliricidia (Gliricidia sepium), 

a leguminous tree, increased LF-C and LF-N by 62% and 86%, respectively, over the sole 

maize plot after 14 years of intercropping.  Although the increases in LF-C and LF-N were not 

so high in the present study, the time scale in Beedy et al. (2010) was over twice that of this 

study.  However, significant changes in LF have typically been seen within four years, whether 
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in temperate or tropical climates (Barrios et al., 1996; Matos et al., 2012).  When comparing a 

maize sole crop, maize and pigeon pea rotations, and maize and pigeon pea intercropping in 

Kenya, Barrios et al. (1996) found that LF-C and LF-N were greatest in the rotation, followed 

by the intercrop, and least in the maize sole crop.  This finding is comparable to the present 

study, where the greatest LF-C and LF-N values were found in the soybean and maize 

rotations, followed by the 1:2 and 2:3 intercrops. 

The LF-C/N ratio is highly dependent on the quality of crop residues returned to the soil. If the 

crop is primarily a grain crop and no manure is added or legumes included in a rotation, the 

LF-C/N ratio will be higher (Wander, 2004).  For example, Beedy et al. (2010) found that the 

LF-C/N ratio decreased 14% from sole maize if the legume Gliricidia was intercropped with 

the maize.  However, no significant differences in the LF-C/N ratios were noted in the present 

study.  The LF-C/N ratios from each of the four treatments were very similar, ranging from 

17.86 in the maize treatment to 18.33 in the 2:3 intercrop.  Previously, Vachon and 

Oelbermann (2011) found that the above-ground crop residue C/N ratio of the maize sole crop, 

1:2, and 2:3 intercrops was not significantly different, ranging from 56 in the 1:2 intercrop to 

66 in the maize sole crop, while it was 31 in the soybean sole crop.  It is therefore likely that 

the more recalcitrant maize residue dominated the LF, as the presence of different quantities of 

soybean residue did not significantly reduce the LF-C/N ratio. 

 

3.4.2.4 Soil microbial biomass carbon 

Soil microbial biomass-C values found in this study were similar to previously reported values 

from the Argentine Pampa, and followed a similar trend of decreasing with depth (Alvarez et 
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al., 1998).  No significant differences were found in SMB-C between the soybean and maize 

sole crops, and the 1:2 intercrop, but the SMB-C was significantly higher in the 2:3 intercrop 

than in the other treatments in 2012.  Similarly, Balota et al. (2003) found no difference in 

SMB-C of the surface soils between maize and soybean planted in rotation.  Although maize 

produces more biomass, which is the most important factor influencing SMB (Kallenbach and 

Grandy, 2011), the lower C/N ratio of soybean is preferential for microbial growth (Balota et 

al., 2003).  In an experiment of intercropping maize and faba bean (Vicia faba L.), Song et al. 

(2007) found significant differences in SMB-C in the third season of a maize/faba bean 

intercrop.  SMB-C was greatest in the faba bean sole crop, followed by the intercrop, and least 

in the maize sole crop.  In the present study, SMB-C was found to be the greatest in the 2:3 

intercrop, and that the maize and soybean sole crops were both low.  This difference is likely 

due to the rotation of maize and soybean in sole crops in the current study (Balota et al., 2003).  

The significantly higher SMB-C in the 2:3 intercrop was likely due to the different soil 

microbiological context that would have emerged in the intercrop rhizosphere (Song et al., 

2007).  Anderson and Domsch (1989) reported that organic matter that is more heterogeneous 

results in more complex microbial communities which can more effectively decompose SOC.  

It can thus be deduced that the spatial arrangement of the 2:3 intercrop increased the 

complexity of the microbial community, and hence resulted in a higher SMB-C. 

3.5 Conclusions 

Based on the analysis of SMB-C, intercropping in a 2:3 ratio of maize to soybean improved 

soil quality to a greater extent than the sole crops or the 1:2 intercrop in the period from 2007 

to 2012.  The other indicators of soil quality, including SOC, TN and LF, did not indicate that 

intercropping improved soil quality more than the sole crops.  The soil quality, as indicated by 
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SOC, TN, LF, and SMB-C, did improve significantly in all four treatments from 2007 to 2012, 

and C sequestration clearly occurred as evidenced by the greater SOC stocks.  However, the 

large inter-row distance in the intercrops combined with the delayed planting of the soybean 

one month after the maize likely reduced the many previously reported benefits of 

intercropping.  The quantity of biomass returned to the soil did not differ between the 

intercrops and the sole crop maize, and it is the increased quantity and quality of biomass that 

typically improves soil quality in an intercropping system. 
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Chapter 4: Effects of intercropping on soil nitrogen mineralization 

and immobilization 

4.1 Introduction 

Soil inorganic nitrogen (N), generally in the form of ammonium (NH4
+
) or nitrate (NO3

-
), is a 

requirement for crop growth, but is also a significant contributor to agricultural pollution 

(Frimpong et al., 2012).  Although NH4
+
 is relatively immobile, NO3

-
 is highly mobile and can 

leach or run off from crops, resulting in excessively high levels of NO3
-
 in rivers, lakes, and 

groundwater (Philippot and Germon, 2005).  Ammonium can be nitrified to NO3
-
, which can 

then undergo denitrification and form nitrous oxide (N2O), a potent greenhouse gas (GHG) 

(Figure 1.1).  In order to minimize the environmental contamination associated with these N 

losses from the soil system, accumulation and leaching of NO3
-
 and NH4

+
 must be avoided. 

Given the current reality of climate change, understanding N2O emissions from agriculture is 

particularly important.  Due to anthropogenic activity, global N2O emissions have increased by 

40-50% since preindustrial times (Snyder et al., 2009).  Nitrous oxide has a global warming 

potential (GWP) which is 296 times greater than carbon dioxide (CO2) (Snyder et al., 2009).  

Over half of global anthropogenic N2O emissions come from agriculture (Frimpong et al., 

2012), so it is therefore important for the agricultural sector to take actions to mitigate N2O 

emissions where possible.  Although there are many factors which influence N2O emissions, 

one of the primary factors is a lack of competition for soil N resources (Adviento-Borbe et al., 

2007; McSwiney and Robertson, 2005).  When plants are more successful than soil 

microorganisms in the competition for N resources, there is a low N2O flux until the plant 

demand is reduced, at which time the microbes can become more active and N2O emissions 

increase (McSwiney and Robertson, 2005).  N2O emissions are also impacted by temperature, 
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moisture, pH, and the concentration of C and N (Adviento-Borbe et al., 2007).  External 

sources of N which are applied to the soil, especially mineral N fertilizers, increase N2O 

emissions (Frimpong et al., 2012).  McSwiney and Robertson (2005) found that at low levels 

of N fertilizer application, soil N2O emissions were correspondingly low.  However, once the 

N additions reached a threshold value (101 kg N ha
-1

), there was a sharp increase in N2O 

emissions, suggesting that the competition for N maintained low N2O emissions until inorganic 

N was in excess in the soil and the micro-organisms were able to use it.  

The concentration of free inorganic N in the soil is regulated by the mineralization-

immobilization turnover (MIT).  Gross N mineralization is the process of forming NH4
+
 during 

the decomposition of soil organic matter (SOM) (Murphy et al., 2003), generally released by 

microorganisms (Andersen, 1999).  The reverse process, gross N immobilization, is the 

assimilation of NH4
+
 and NO3

-
 by soil microorganisms (Andersen, 1999).  Both processes 

occur simultaneously and continuously in the soil, and the resulting equilibrium is the MIT.  

The rate of the MIT is impacted by the forms and quantity of N and C which are available in 

the soil; less complex, easily oxidizable C increases the rate of the MIT, whereas more 

complex sources of C slow it down (Gill, 2009).  The MIT is also impacted by soil 

temperature, moisture, texture, and pH; the size of the soil microbial biomass (SMB); and the 

availability of inorganic N (Andersen, 1999).  If the MIT can be synchronized with the crop 

demand for N, free inorganic N can be reduced along with the negative environmental 

consequences associated with it (Hauggaard-Nielsen et al., 2003).  Ideally, net immobilization 

would then occur during the fallow period, and the immobilized N would then be mineralized 

in springtime to meet the nutrient needs of the new crop (McSwiney et al., 2010). 
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The C/N ratio of the soil and any added organic matter is frequently used to predict whether 

net mineralization or immobilization will occur in the soil.  If the C/N ratio is below 

approximately 20-25:1, net mineralization will likely occur; higher ratios promote net 

immobilization (Myrold and Bottomley, 2008).  Although it has been reported that maize, a 

high C/N ratio material, delays N mineralization (Frimpong et al., 2012), it is also argued that 

merely considering the C/N ratio is too simplistic (Haugaard-Nielsen et al., 2003).  Lignin and 

polyphenol contribute to residue recalcitrance to decomposition regardless of the C/N ratio 

(Andersen, 1999; Kaewpradit et al., 2008), and must also be considered when predicting net N 

mineralization or immobilization.  However, since both maize and soybean have low lignin 

and polyphenol contents (<15% lignin; <4% polyphenol), these compounds will have little 

influence on the mineralization and immobilization of these residues (Gentile et al., 2008; 

Nakhone and Tabatabai, 2008). 

Combining crop residues and returning them to the soil results in organic matter of a different 

quantity and quality than if the residues had not been combined.  This combination of crop 

residues can occur in an intercropping system, and particularly if a cereal and legume are 

intercropped together.  Higher rates of mineralization and N2O emissions are reported from 

leguminous sole crops (Pappa et al., 2011), whereas with sole cropped cereals like rice (Oryza 

sativa L.) and maize (Zea mays L.), net immobilization is more likely to occur (Kaewpradit et 

al., 2008; Sakala et al., 2000).  If cereal and legume residues are combined, immediate net N 

immobilization delays the onset of net mineralization (Frimpong et al., 2012).  For example, 

Pappa et al. (2011) found that intercropping spring barley (Hordeum vulgare cv. Westminster) 

and spring pea (Pisum sativum cv. Zero 4) in Scotland reduced N2O emissions and NO3
-
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leaching.  Similarly, combining rice straw and groundnut (Arachis hypogaea L.) residues 

reduced N2O emissions in Thailand (Kaewpradit et al., 2008).  

Gross N mineralization and immobilization rates are generally measured using the 
15

N pool 

dilution technique, the calculations for which were developed by Kirkham and Bartholomew 

(1954).  In this method, 
15

N, a tracer isotope, is added to the soil, and the change in the soil 

isotope pool is measured over a period of time as mineralization adds 
14

N to the NH4
+
 pool and 

immobilization removes both 
14

N and 
15

N (Schimel, 1996).  In 
15

N studies, the terms gross 

mineralization and immobilization are used to describe the production and consumption of 

NH4
+
 (Murphy et al., 2003; Myrold and Bottomley, 2008).  Immobilization, as measured using 

the Kirkham and Bartholomew (1954) equations, also includes nitrification and volatilization 

(Andersen, 1999).  However, when the soil pH is below 7, it can be assumed that volatilization 

is negligible (Sorensen, 2001), and Shammas (1986) reported that nitrification stops at a pH 

between 5-5.5.  In the current study, the pH in the top 10 cm of all four treatments ranged from 

5.32-5.64 (Table 3.4), indicating that the rates of volatilization and nitrification can also be 

assumed to be negligible.  Therefore, the term immobilization will continue to be used, as it is 

by far the most significant contributor to NH4
+
 consumption. 

Several other assumptions are made in the isotope pool dilution technique.  It is assumed that 

14
N and 

15
N isotopes are equally used in all soil N transformation processes (Murphy et al., 

2003; Schimel, 1996).  However, if the incubation time is short (i.e., within 5 days), isotopic 

discrimination can be assumed to be negligible (Murphy et al., 2003).  Similarly, it is assumed 

that the applied and the indigenous N pools are treated equally in all soil N transformation 

processes (Murphy et al., 2003).  The first time point for sampling the soil should therefore be 
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24 h after applying the isotope tracer to allow the applied N pool to begin to equilibrate with 

the indigenous pool (Hood et al., 2003).  It is also assumed that when the 
15

N is applied to the 

soil, it is uniformly distributed throughout the soil column (Murphy et al., 2003; Schimel, 

1996).  If using a multiple injection system to distribute the isotope tracer through the soil 

column, Luxhøi et al. (2004) found that the measured rate of mineralization was not 

significantly different from the true mineralization rate.  Since NH4
+
 is preferentially 

immobilized over NO3
-
 (Rice and Tiedje, 1989), it can be assumed that nitrate immobilization 

is negligible (Sorensen, 2001).  Finally, it is assumed that the rates of mineralization and 

immobilization are constant over the course of the experiment, which is a true assumption if 

the first sample is taken 24 h after the tracer application and the second sample is taken 72 

hours later (Hood et al., 2003). 

Little research has been conducted on how intercropping a cereal and a legume, such as maize 

and soybean, impacts the rates of gross N mineralization and immobilization.  An experiment 

was therefore carried out to determine the impact of maize and soybean intercropping on gross 

N mineralization and immobilization, as compared to maize and soybean sole crops.  The 

objectives of this research were: 

1. To quantify differences in gross N mineralization and immobilization between the 1:2 

and 2:3 maize/soybean intercrops and the rotated maize and soybean sole crops. 

2. To quantify the changes in gross N mineralization and immobilization that have 

occurred over six cropping seasons in the 1:2 and 2:3 maize/soybean intercrops and the 

rotated maize and soybean sole crops. 
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4.2 Materials and methods 

4.2.1 Experimental protocol 

Gross N mineralization and immobilization rates were quantified using the isotope pool 

dilution technique, a method which minimizes soil disturbance (Davidson et al., 1991).  The 

experiment was first conducted in November 2007 and repeated in November 2012 to compare 

gross mineralization and immobilization rates before the intercropping agroecosystems were 

established (2007), and after six years of intercropping (2012).  The experiments were carried 

out in November, just prior to the delayed sowing maize, to minimize the differential impacts 

of the plants on the mineralization and immobilization rates.  In 2007, four PVC cylinders 

were inserted in each treatment plot of the maize and soybean sole crops and the 2:3 intercrop.  

In 2012, six PVC cylinders were randomly inserted in each treatment plot of the maize and 

soybean sole crops and the 1:2 and 2:3 intercrops.  Only two replicates per treatment were used 

in 2007 due to financial limitations.  The cylinders were white PVC with an inner diameter of 

6 cm and a length of 13 cm.  The cylinders extended 12 cm into the soil, with 1 cm remaining 

above the soil.  Ammonium sulphate ((NH4)2SO4) fertilizer labelled with a % excess 
15

N of 

10% was applied to the soil within the PVC cylinders.  A multi-injection system based on 

Monaghan (1995) was used to apply the 
15

N as uniformly as possible throughout the soil 

within the PVC cylinder.  Seven needles on the multi-injection system were inserted in the soil 

to a depth of 8 cm. Soil was prevented from entering the needles by the positioning of wires 

inside the needles (Figure 4.1).  The wires were removed and the syringes were attached to the 

needles (Figure 4.2).  A solution of (
15

NH4
+
)2SO4 (~350 µg N ml

-1
, 10% 

15
N) was injected at a 

rate of approximately 10 µg N per g of dry soil.  The volume of solution to be injected was 
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dependent on the soil moisture content, and was adjusted to not increase the soil moisture 

content by more than 20-25% (Monaghan, 1995).  The injection system was pulled up as the 

syringes were depressed, allowing for columns of solution to remain in the soil. 

  

Figure 4.1 – Needles of the multi-injection 

system with wires partially inserted. 

  

Figure 4.2 – Multi-injection system 

containing the (
15

NH4
+
)2SO4 solution 

immediately prior to injection. 

 

After 24 hours, the soil from half of the cylinders (two in 2007, three in 2012) was removed 

from each treatment plot and processed.  After 96 hours, the soil from the remaining cylinders 

was removed and processed.  The first samples were taken after 24 hours to ensure that the 

initial immobilization flux that follows N application had finished (Hood et al., 2003).  The 

second time point, at 96 hours, was chosen to ensure sufficient time for N transformations to 

occur, but before re-mineralization began (Hood et al., 2003). The soil from each cylinder was 

placed in a plastic bag, crumbled, and thoroughly mixed.  In the laboratory, a subsample of 
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about 20 g of soil was taken from the bag and extracted with 100 ml of 2 M KCl.  The solution 

of soil and KCl was shaken on an oscillating shaker at about 70 rev min
-1

 for 1 hour, and then 

gravity filtered (Whatman ashless grade 42).  The soil extracts from 2007 were then frozen 

until 2012, at which time they were analyzed with the samples collected in 2012. 

A diffusion process was used to determine the 
15

NH4
+
 concentration in each soil extract 

solution (Brooks et al., 1989; Chen and Dittert, 2008; Goerges and Dittert, 1998; Kirkham and 

Bartholomew, 1954).  A 20 ml aliquot of the soil extract solution was pipetted into a clean 100 

ml plastic urine sample jar.  A folded piece of Teflon® tape (2 cm x 20 cm) enclosing a 7 mm 

diameter filter paper disc (Whatman GF/D) previously acidified with 10 µL of 5 M H2SO4 was 

laid across the top of the sample jar (Figure 4.3).  Approximately 0.2 g MgO heavy powder 

was added to the jar, and the lid immediately screwed in place (Figure 4.4).  The jar was 

slowly swirled to ensure full mixing of the MgO powder and the soil extract solution, and then 

shaken in the dark at 30°C on an oscillating shaker for 72 hours at about 50 rev min
-1

 

(Mulvaney et al., 1997).  After shaking, the discs were dried overnight in a desiccator over 

silica gel and 50 ml concentrated H2SO4.  Once dry, the discs were stored in an Elisa plate 

until immediately prior to analysis, at which point they were weighed into tin capsules 

(Costech, 5x9 mm).  The 
15

N content of the discs was measured by direct combustion on a 

Costech ECS4010 elemental analyzer coupled to a Delta V mass spectrometer equipped with a 

Conflo IV interface at the Stable Isotopes Laboratory at the University of Saskatchewan. 
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Figure 4.3 – Teflon® tape 

enclosing the acidified filter disc 

and laid across the top of the 

diffusion container. 

 

Figure 4.4 – Diffusion container set-up immediately 

prior to capping. 

 

To verify and validate the process, a known quantity of 
15

NH4
+
 was dissolved in distilled water 

and processed as above to gauge the 
15

N and NH4
+
 recovery by the discs.  Acidified filter paper 

discs were processed as above, using KCl solution in the diffusion process, to gauge N 

contamination during the analysis period.  In between uses, all equipment was immersed 

overnight in 10% HCl and rinsed with DI water. 

The gross N mineralization and immobilization rates were calculated using the following 

formulae based on Kirkham and Bartholomew (1954): 

   
         

  
 

         ⁄  

          ⁄  
  

(Equation 4.1) 

   
         

  
  

                      ⁄

           ⁄
 

(Equation 4.2) 

Teflon® tape 

 

Acidified filter disc 

 
 

KCl extractant 

 

MgO 
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where m is the gross N mineralization rate (µg N g
-1

 soil d
-1

); i is the gross N immobilization 

rate (µg N g
-1

 soil d
-1

); AT is the total soil ammonium content (µg N g
-1

 soil);    is the related 

time interval (days); AL is the 
15

N abundance within the ammonium pool (at % exc.); and the 

subscripts indicate the two time points (1 = 1 day, 2 = 4 days).  The net rate of immobilization 

was calculated by subtracting the gross rate of mineralization from the gross rate of 

immobilization.  The relative NH4
+
 immobilization was calculated by dividing the gross rate of 

N immobilization by the gross rate of N mineralization. 

 

4.2.2 Statistical analysis 

Statistical analyses were carried out using Statistica (StatSoft, Inc.; v.8.0, 2007).  All data were 

examined for normal distribution using the Shapiro-Wilk (SW) test and for homogeneity of 

variance using the Levene test.  Outliers were identified and removed using an outlier 

coefficient of 1.5.  A repeated measures analysis of variance (ANOVA) was run to compare 

differences between the different treatments and to determine how the gross mineralization and 

immobilization rates changed between 2007 and 2012.  Significant differences were further 

examined using Tukey’s test with a p-value of 0.05. 

 

4.3 Results 

In 2007, no significant differences were found between treatments for gross N mineralization 

or immobilization rates (Table 4.1).  In 2012, the gross N mineralization rate was significantly 

(p<0.05) greater in the 2:3 intercrop compared to the other treatments. The gross N 
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immobilization rate was significantly greater in the 2:3 intercrop than in the soybean and 1:2 

treatments in 2012.  Although the 2012 gross N immobilization rate was greater in the 2:3 

intercrop than the maize sole crop, this difference was not found to be significant.  The gross N 

immobilization rate increased significantly (p<0.05) from 2007 to 2012 in the soybean sole 

crop and 2:3 intercrop.  The gross N mineralization rate increased (p=0.052) from 2007 to 

2012 in the 2:3 intercrop.  

Table 4.1 – Soil nitrogen transformations in maize and soybean sole crops and 1:2 and 

2:3 intercrops, 2012. Standard errors are given in parentheses. 

 Year 
Treatment 

Maize Soybean 1:2 intercrop 2:3 intercrop 

Gross 

mineralization 

(µg N g
-1

 soil d
-1

) 

2007 0.65 (0.09)
 A

 0.63 (0.09)
 A

 -- 0.38 (0.13)
 A

 

2012 0.89 (0.11)
 A

 0.79 (0.08)
 A

 0.97 (0.08)
 A

 1.42 (0.08)
 B

 

      

Gross 

immobilization 

(µg N g
-1

 soil d
-1

) 

2007 1.96 (0.29)
 A

 1.48 (0.29)
 A †

 -- 1.48 (0.41)
 A †

 

2012 2.92 (0.24)
 BC

 2.46 (0.18)
 AC †

 2.63 (0.18)
 AC

 3.38 (0.19)
 B †

 

      

Net 

immobilization 

(µg N g
-1

 soil d
-1

) 

2007 0.86 (0.19)
 A

 1.99 (0.19)
 B

 -- 1.23 (0.24)
 AB

 

2012 1.45 (0.10)
 A

 2.03 (0.13)
 BC

 1.66 (0.10)
 AC

 1.96 (0.10)
 BC

 

      

Relative NH4
+
 

immobilization 

2007 2.23 (0.28)
 A

 3.66 (0.33)
 B

 -- 2.26 (0.56)
 AB

 

2012 2.87 (0.10)
 AC

 3.07 (0.14)
 AC

 2.72 (0.10)
 BC

 2.45 (0.09)
 B

 

Values followed by the same upper case letters, comparing treatments, are not significantly 

different at p<0.05.   

† indicates the values were significantly different (p<0.05) between years. 
15

N and NH4
+
 values used to calculate the above rates are presented in Appendix B. 

 

In both years and in all four treatments, net N immobilization occurred (Table 4.1).  In 2007 

and 2012, the rate of net immobilization was significantly lower in the maize sole crop than in 

the soybean and 2:3 treatment plots.  In both years, net immobilization was greatest in the 
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maize sole crop, although not significantly greater than in the intercrops.  Although not 

significant, the rate of net N immobilization increased from 2007 to 2012 in all treatment plots.  

Similarly, the relative NH4
+
 immobilization was greatest in the soybean sole crop.  In 2007, it 

was significantly greater in the soybean sole crop than in the maize sole crop.  In 2012, the 

relative NH4
+
 immobilization was significantly lower in the 2:3 intercrop than in the maize and 

soybean sole crops.  The percent recovery of 
15

NH4
+
 by the acidified discs was 86.6%.  The 

measured atom percent of the 
15

N recovered was 9.60%, only slightly lower than the actual 

10%. 

 

4.4 Discussion 

Net immobilization was measured in all treatments in 2007 and 2012 (Table 4.1), which 

generally occurs when the C/N ratio of the residue is above 20-25 (Myrold and Bottomley, 

2008).  As the lignin and polyphenol contents of maize and soybean residues are low (Gentile 

et al., 2008; Nakhone and Tabatabai, 2008), these compounds likely had little influence on the 

mineralization and immobilization of these residues (Gentile et al., 2008).  Therefore, the C/N 

ratio of the residue could be used to predict net mineralization and immobilization rates 

without excessive oversimplification (Haugaard-Nielsen et al., 2003).  At the current study site 

in 2011, the measured C/N ratio for soybean residue was 32.0 and for maize residue was 63.9 

(Bichel, 2012), both of which are above the threshold for net immobilization.  Based on these 

C/N ratios, it would be expected that the gross mineralization rate would be lowest in the 

maize treatments and highest in the soybean treatments.   
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In 2007, the experimental plots were just established, and the intercropping treatments likely 

had not yet had a chance to impact the rates of mineralization and immobilization.  However, 

in 2012 the gross mineralization rate was significantly higher in the 2:3 intercrop compared to 

the other treatments, and was lowest in the soybean sole crop.  Similarly, it would be expected 

that the gross immobilization rate would be highest in the sole crop maize treatments and 

lowest in the sole crop soybean treatments.  In 2012 the highest gross immobilization rate was 

from the 2:3 intercrop, although it was not significantly different from that of the maize sole 

crop, and lowest in the soybean sole crop.  It is likely that the rotation of maize and soybean in 

the sole crop treatment plots resulted in greater rates of mineralization than in sole cropped 

maize, and lower rates of mineralization than in sole cropped soybean, as was found by Barrios 

et al. (1996), who reported that the gross rate of mineralization was slightly greater in a maize 

and cow pea (Vigna unguiculata L.) rotation than in a maize sole crop.   

As the soil samples were collected in November at planting time, in 2012 maize residues had 

most recently been applied to the soybean sole crop plots, and soybean residues had most 

recently been applied to the maize plots.  Ehaliotis et al. (1998) report that in temperate 

regions, approximately 30% of legume residues are not decomposed during one cropping 

season; this increases to 50-85% for poorer quality residues like maize.  In a previous study at 

the current study site, Vachon (2008) found that 312 days after applying crop residues, about 

33% of residues remained in the soybean sole crop, 40% remained in both intercrops, and 55% 

remained in the maize sole crop.  Therefore, both maize and soybean residues were present at 

different ratios in the maize and soybean sole crops, and likely interacted in complex ways to 

modify the gross mineralization and immobilization rates (Barrios et al., 1996).   
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The quantity of maize and soybean residues returned to the soil may have impacted gross N 

mineralization and immobilization rates.  Due to the different C/N ratios of maize and 

soybean, the quantity of each residue applied to the soil contributed to the varying gross N 

mineralization and immobilization rates.  The much greater C/N ratio of maize residues 

prompted a higher rate of immobilization than that of the soybean residues.  For example, 

Sakala et al. (2000) found that in a laboratory experiment simulating an intercrop system 

where maize stover was applied at three times the weight of pigeon pea (Cajanus cajan L.) 

leaves, net N immobilization occurred over the entire 500 days of the study.  If twice the 

weight of pigeon pea leaves than maize stover was applied to the soil, net immobilization only 

occurred for 300 days, indicating that a very large quantity of legume residue must be applied 

to the soil in order for net mineralization to occur (Sakala et al., 2000).  In the present study, 

when crop residue was returned to the soil at the end of the 2011-2012 growing season, 

biomass input from maize residues was 6.3 times greater than that from soybean residues in 

the 2:3 intercrop, and 6.6 times greater in the 1:2 intercrop (Table 3.3).  Although pigeon pea 

residues contain more lignin than soybean residues (Gentile et al., 2008; Sakala et al., 2000), 

and hence have a lower mineralization rate, it is still likely that the greater biomass input from 

maize residues may contribute to long-term immobilization in the intercropping systems. 

Not only does crop residue contribute to the rates of gross N mineralization and 

immobilization, but the light fraction (LF) does as well.  Compton and Boone (2002) proposed 

that LF and crop residues have similar mineralization and immobilization dynamics, indicating 

that the quantity and quality of LF are influential to these processes.  In the current study, the 

C/N ratio of the LF ranged from 17.86 in the soybean sole crop to 18.33 in the 2:3 intercrop 

(Table 3.7).  These ratios indicated the potential for net mineralization to occur, as they are 
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lower than the threshold of 20-25 (Myrold and Bottomley, 2008).  However the quantity of 

crop residue applied to the soil was much greater than the quantity of LF, the C/N ratio of the 

residue was dominant over that of the LF, and net immobilization occurred.   

The size of the SMB impacts the rates of gross N mineralization and immobilization 

(Andersen, 1999).  The greatest SMB-C was found in the 2:3 intercrop (Table 3.8), as were the 

highest rates of gross N mineralization and immobilization, and the second highest rate of net 

N immobilization (Table 4.1).  Similarly, Tracy and Frank (1998) found a significant 

correlation (r
2
 = 0.85) between the rate of net N mineralization and SMB-C in a grassland 

study in Wyoming, and Zaman et al. (1999) found a significant correlation (r
2
 = 0.23) between 

the rate of gross N mineralization and the SMB-C in a fertilization study in New Zealand. 

Very few studies have been published investigating the impact of intercropping on N 

mineralization and immobilization rates.  Frimpong et al. (2012) and Sakala et al. (2000) 

simulated intercrops by combining different quantities of maize and legume residues to 

evaluate the impact of intercropping maize and a legume on net mineralization rates.  Both 

studies found that net mineralization occurred when sole legume residues were added to soil, 

and net immobilization occurred when sole maize residues were added to the soil.  However, 

Frimpong et al. (2012) found that net mineralization occurred when equal quantities of legume 

and maize residues were added, whereas Sakala et al. (2000) found that net immobilization 

occurred when equal quantities were added.  This is different from the current study, where net 

immobilization was found in the maize and soybean sole crops, as well as in both intercrops.  

However, the sole crops in this study were rotations of maize and soybean instead of 
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monocropped as in the study by Sakala et al. (2000) and Frimpong et al. (2012), suggesting 

that the maize residues likely caused the net immobilization. 

It is expected that the rates of gross N mineralization and immobilization will not be constant 

throughout the year.  For example, Recous et al. (1999) found that the rate of gross N 

immobilization was highest in the autumn when straw residues were applied, and this rate 

decreased until spring, at which point it began to increase again.  In the same study, gross 

mineralization followed a similar pattern, although it decreased less over the winter than the 

gross immobilization rate, meaning that net mineralization occurred from late autumn until late 

summer (Recous et al., 1999).  Therefore, although it is useful to know the pattern of 

mineralization and immobilization at the time of crop planting, as in the current study, it is also 

necessary to determine the seasonal fluctuation in mineralization and immobilization rates.   

The relative NH4
+
 immobilization is also referred to as the immobilization/mineralization ratio.  

In both 2007 and 2012, it was found to be greatest in the soybean sole crop and least in the 2:3 

intercrop, indicating that there was a larger difference between the gross immobilization and 

mineralization rates in the soybean sole crop compared to the other treatments.  The relative 

NH4
+
 immobilization was lowest in the intercrops, due to a more equal quantity of maize and 

soybean residues, as compared to the sole crops which were primarily either maize or soybean.  

Nonetheless, since the relative NH4
+
 immobilization values were greater than 1 in all four 

treatments, each had a high potential for decreasing the NH4
+
 pool (Vervaet et al., 2004), 

although this was least in the 2:3 intercrop. 

From 2007 to 2012, gross mineralization, gross immobilization, net immobilization, and 

relative NH4
+
 immobilization increased in all treatments, except for the relative NH4

+
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immobilization in the soybean sole crop, which decreased during this time.  Given that 

mineralization and immobilization were not quantified in the 1:2 intercrop in 2007, a 

comparison to the 2012 data was not possible.  These changes were only significant for the 

gross immobilization rate in the soybean sole crop and 2:3 intercrop.  However, the increase 

does indicate a more active microbial population in 2012 (Accoe et al., 2004), and hence a 

reduced potential for inorganic N loss. 

 

4.5 Conclusions 

Each of the sole crops and intercrops generally resulted in higher gross mineralization rates, 

gross immobilization rates, net immobilization rates, and relative NH4
+
 immobilization during 

the experimental time period in 2007 and 2012.  Only in the soybean sole crop did the relative 

NH4
+
 immobilization decrease, signifying the increased importance of mineralization as 

compared to immobilization.  Net N immobilization occurred in all four treatment plots, at 

significantly higher rates in the soybean sole crop and the 2:3 intercrop, which is desired 

during the crop fallow period.  
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Chapter 5: Conclusions and recommendations 

5.1 Summary and conclusions 

In order to meet increasing population demand for food, feed, and fibre, agricultural 

intensification has been occurring at a global scale.  However, agricultural intensification has 

also resulted in environmental degradation, including poorer soil quality and high emissions of 

greenhouse gases (GHGs) like nitrous oxide (N2O).  Sustainable agroecosystem management 

practices such as intercropping, where more than one crop is planted on the same plot of land 

at the same time, promotes the complementary use of soil nutrients particularly when a legume 

and cereal are intercropped.  It was therefore hypothesized that intercropping maize and 

soybean would improve soil quality and increase inorganic nitrogen (N) retention in the soil, 

thereby reducing N2O emissions.  The objectives of the experiment were therefore to quantify 

the soil gross N mineralization and immobilization rates, and the temporal changes in soil 

biological and chemical characteristics after six years of maize/soybean intercropping. 

It was found that intercropping significantly improved soil quality from 2008 to 2012, as 

indicated by the soil organic C (SOC), total nitrogen (TN), light fraction organic matter (LF), 

and soil microbial biomass carbon (SMB-C).  However, only SMB-C showed that 

intercropping was significantly better than the control sole crop treatments of rotated maize 

and soybean, which also increased the soil quality over the same time period.  The other 

indicators, including SOC, TN, and LF, demonstrated improved soil quality in the intercrops 

which was comparable to the improvements seen in the control plots.  This lack of significant 

differences between treatments was likely due to the fact that the quantity of biomass produced 

by the intercrops was similar to the quantity produced by the sole crops.  Previous 
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intercropping experiments found that intercrops produced more biomass than the 

corresponding sole crops, a finding which did not occur in the present study.  The large inter-

row spacing and delayed planting of soybean likely meant that the full yield benefits of 

intercropping could not be observed in the present study. 

Intercropping in the 1:2 and 2:3 intercrops resulted in higher rates of gross mineralization than 

the sole crops, and the 2:3 intercrop resulted in higher rates of gross immobilization than in the 

other treatments.  However, the high rate of gross mineralization resulted in a low relative 

NH4
+
 immobilization in both intercrops, signifying a lower potential for reducing soil NH4

+
 

concentrations than in the sole crop treatments.  Net N immobilization occurred in all 

treatment plots, which was desired at the end of the fallow period to reduce N losses from the 

soil.  Based on the desire for high net N immobilization during the fallow period, the 2:3 

intercrop appeared to perform better than the 1:2 intercrop. 

 

5.2 Recommendations for future research 

The spatial and temporal design of planting the maize and soybean was different in this 

experiment from those of most other intercropping experiments.  The inter-row spacing was 

greater than average, and the soybean was planted a month after the maize.  Previous studies 

have nearly all identified a positive impact of intercropping on crop yield and residue biomass; 

however this was not observed over the six years of intercropping in Balcarce, Argentina.  It is 

speculated that the inter-row spacing and the staggered planting time impacted the crop yield 

and biomass production, and hence soil quality and the ability for C sequestration.  It is 

therefore recommended to investigate the impact of row spacing and staggered planting time 
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on biomass production, soil quality, and C sequestration.  The optimal inter-row spacing and 

time of planting could then be determined in order to maximize the biomass production, and 

hence the land equivalent ratio (LER).  Greater quantities of crop residue returned to the soil 

would likely result in greater benefits from intercropping on soil quality. 

Although this study determined the gross rates of N mineralization and immobilization at the 

time of planting in 2007 and 2012, these data only characterize soil N transformations at one 

time in the seasonal cycle.  In 2012, the soil N transformations were only determined at one 

time point to enable an initial comparison between 2007 and 2012.  Net N immobilization was 

found in all four cropping systems in November 2007 and 2012; however it is unknown 

whether net N immobilization occurred throughout the preceding fallow period, or whether the 

rate of gross N mineralization increased during the subsequent growing season to result in net 

mineralization.  It is therefore recommended that the gross mineralization and immobilization 

rates be studied throughout the year to allow for a more thorough understanding of the impact 

of intercropping on soil N transformations. 
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Appendix A – SMB-N (2007) and NF (2012) results  
 

Table A.1 - SMB-N (µg g
-1

 soil) in maize and soybean sole crops and 1:2 and 2:3 

intercrops, 2007. Standard errors are given in parentheses. 

Depth (cm) 
Treatment 

Soybean Maize 1:2 2:3 

0-10 40.12 (13.90) A,a 50.10 (17.36) A,a 36.71 (12.72) A,a 52.93 (18.34) A,a 

10-20 41.26 (14.29) A,a 33.63 (11.65) A,a 29.46 (10.21) A,a 72.07 (24.97) A,a 

20-40 52.42 (18.16) A,a 49.98 (21.21) A,a 21.18 (7.34) A,a 42.22 (17.91) A,a 

40-80 21.42 (7.42) A,a 16.42 (5.69) A,a 32.93 (19.76) A,a 16.39 (5.68) A,a 

0-80 mean 36.92 (6.40) A 34.29 (6.30) A 29.47 (6.25) A 40.31 (7.41) A 
 Values followed by the same upper case letters, comparing treatments within each depth, are 

not significantly different at p<0.05.  Values followed by the same lower case letters, 

comparing differences between depths within each treatment, are not significantly different at 

p<0.05. 

 

 

Table A.2 – NF (µg g
-1

 soil) in maize and soybean sole crops and 1:2 and 2:3 intercrops, 

2012. Standard errors are given in parentheses. 

Depth (cm) 
Treatment 

Soybean Maize 1:2 2:3 

0-10 58.38 (9.09) A,a 68.76 (9.87) A,a 49.34 (8.36) A,a 59.51 (10.16) A,a 

10-20 54.65 (8.80) A,a 45.25 (8.00) A,ab 49.89 (7.82) A,a 47.91 (7.66) A,a 

20-40 36.24 (7.16) A,ac 31.03 (6.63) A,b 34.94 (7.78) A,ac 36.29 (7.17) A,ac 

40-60 22.21 (5.61) A,bc 20.87 (5.44) A,bc 22.25 (5.61) A,bc 21.90 (5.18) A,bc 

60-80 14.95 (4.60) A,b 12.68 (4.24) A,c 17.35 (4.96) A,bc 13.62 (4.09) A,b 

0-80 mean 35.13 (4.72) A 32.99 (4.57) A 33.36 (4.65) A 33.71 (4.56) A 

NF = total weight of extractable N in the fumigated sample. 

Values followed by the same upper case letters, comparing treatments within each depth, are 

not significantly different at p<0.05.  Values followed by the same lower case letters, 

comparing differences between depths within each treatment, are not significantly different at 

p<0.05. 
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Appendix B – 
15

N and NH4
+
 results used to calculate nitrogen 

transformation rates 
 

Table B.1 – NH4
+
 concentration and 

15
N (% exc.) measured in isotope pool dilution 

experiment, 2007. 

Plot Crop 
NH4

+
 (g kg

-1
) 

15
N (% exc. NH4

+
) 

t = 1 day t = 4 days t = 1 day t = 4 days 

1 Soybean 4.338 4.301 5.341 4.515 

  17.821 4.617 7.141 4.231 

2 Maize 6.272 9.973 5.615 1.795 

  7.271 4.374 5.508 4.814 

3 2:3 12.027 10.642 5.058 2.932 

  12.895 6.239 5.234 5.741 

6 2:3 11.515 5.784 5.836 6.138 

  12.043 12.765 6.522 6.504 

7 Soybean 6.998 3.363 4.983 3.488 

  7.337 5.918 5.477 5.563 

8 Maize 10.611 5.752 6.901 5.007 

  10.009 3.004 6.672 4.667 

9 Maize 7.147 9.192 6.604 1.748 

  7.375 5.775 6.864 4.631 

10 Soybean 9.193 5.077 6.319 4.895 

  8.215 5.721 6.295 4.203 

12 2:3 8.936 6.287 7.267 5.492 

  8.550 6.920 5.744 5.947 
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Table B.2 – NH4
+
 concentration and 

15
N (% exc.) measured in isotope pool dilution 

experiment, 2012. 

Plot* Crop 
NH4

+
 (g kg

-1
) 

15
N (% exc. NH4

+
) 

t = 1 day t = 4 days t = 1 day t = 4 days 

1 Soybean 5.733 1.581 5.211 1.489 

  6.108 3.843 5.544 4.233 

  5.839 3.216 5.178 3.862 

2 Maize 8.791 0.736 5.456 1.654 

  7.019 2.036 4.598 3.564 

  7.386 1.107 6.215 1.583 

3 2:3 5.145 0.531 5.099 0.856 

  5.766 1.435 5.375 1.501 

  9.038 2.000 6.095 1.943 

4 1:2 5.237 0.890 5.879 1.147 

  5.453 0.553 3.705 1.953 

  6.365 2.552 9.366 4.119 

5 1:2 5.580 1.704 4.947 2.172 

  6.331 0.927 5.710 1.577 

  6.172 1.370 5.103 1.969 

6 2:3 6.953 5.127 5.793 0.523 

  6.636 0.844 4.638 0.715 

  7.540 2.088 5.948 1.719 

7 Soybean 7.040 1.997 6.060 3.297 

  6.343 0.377 5.930 0.795 

  7.735 0.954 5.356 2.293 

9 Maize 7.408 1.723 5.356 3.231 

  9.189 3.730 5.524 4.288 

  8.203 12.119 6.101 1.348 

10 Soybean 14.270 3.349 2.775 4.487 

  5.210 1.001 4.534 1.802 

  6.188 0.913 5.359 2.463 

11 1:2 5.487 0.593 4.981 1.550 

  9.483 0.624 6.311 1.658 

  6.749 2.847 5.671 3.885 

12 2:3 6.401 1.377 4.924 2.544 

  9.813 0.991 6.221 1.865 

  6.839 0.692 5.189 1.350 

* Plot 8 results were not included, as an error occurred in the analysis. 

 


