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Abstract

This dissertation is devoted to studying a fast and analytic approximation method, called

the variational Bayesian (VB) method, and aims to give insight into its general applicability

and usefulness, and explore its applications to various real-world problems. This work has

three main foci:

1. The general applicability and properties

2. Diagnostics for VB approximations

3. Variational applications

General applicability and properties

Generally, the variational inference has been developed in the context of the exponential

family, for example, see Beal (2003) and Wainwright and Jordan (2008). Their solutions

are open to further development. First, they usually consider the cases in the context of

the conjugate exponential family. Second, the variational inferences are developed only with

respect to natural parameters, which are often not the parameters of immediate interest.

Moreover, the full factorization, which assumes all terms to be independent of one another,

is the most commonly used scheme in the most of the variational applications.

We show that VB inferences can be extended to a more general situation. We propose

a special parameterization for a parametric family, and also propose a factorization scheme

with a more general dependency structure than is traditional in VB. Based on these new

frameworks, we develop a variational formalism, in which VB has a fast implementation,

and not be limited to the conjugate exponential setting. We also investigate its local conver-

gence property, the effects of choosing improper priors, and the effects of different choices of

factorization scheme.
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Diagnostics for VB approximations

The essence of the VB method relies on making simplifying assumptions about the poste-

rior dependence of a problem. By definition, the general posterior dependence structure is

distorted. In addition, in the various applications, we observe that the posterior variances

are often underestimated. MCMC methods are extensively used in the posterior simulations

and approximations. We may consider using the posterior samples as benchmarks to cali-

brate the VB approximations from all aspects. In general, although MCMC methods make

possible the computation of any posterior quantities, various practical issues are associated

with their implementation. We aim to develop diagnostics test to assess VB approximations,

and these methods are expected to be quick and easy to use, and to require no sophisticated

tuning expertise.

We propose three methods to compute the actual posterior covariance matrix by only

using the knowledge obtained from VB approximations: 1) To look at the joint posterior

distribution and attempt to find an optimal affine transformation that links the VB and true

posteriors; 2) Based on a marginal posterior density approximation proposed by Tierney et al.

(1989), to work in specific low dimensional directions to estimate true posterior variances

and correlations; 3) Based on a stepwise conditional approach, to construct and solve a set

of system of equations that lead to estimates of the true posterior variances and correlations.

A key computation in the above methods is to calculate a univariate marginal or condi-

tional variance. We propose a novel way to compute these quantities, called the VB Adjusted

Independent Metropolis-Hastings (VBAIMH) method. It uses an independent Metropolis-

Hastings (IMH) algorithm with proposal distributions configured by VB approximations.

The variance of the target distribution is obtained by monitoring the acceptance rate of the

converged chain.
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Variational applications

One major question associated with the VB method is how well the approximations can work.

We particularly study the mean structure approximations, and show how it is possible using

VB approximations to approach model selection tasks such as determining the dimensionality

of a model, or variable selection.

We also consider the variational application in Bayesian nonparametric modeling. The

Dirichlet process (DP), introduced by Ferguson (1973), provides a means to specify a proba-

bility measure P (dF ) over the space of all (discrete) probability measures, and thus greater

flexibility for modelling and inference. Variational Bayesian inference has recently been

applied to DP-based problems, for example in Blei and Jordan (2006), who strictly speak-

ing, use a mean-field method, rather than provide a full variational solution. Moreover, only

cases, in which the base distribution and the likelihood function are in conjugate exponential

families are considered.

We consider a non-conjugate setting for DP and present a full variational Bayesian solu-

tion, where the optimization is in terms of both the distributional family and the parameters

of the approximating distribution. Our solution uses a truncated stick-breaking represen-

tation of the DP. We propose an empirical method to determine the number of distinct

components in a finite dimensional DP. The posterior predictive distribution for DP is also

often not available in a closed form. We show how to use the variational “tricks” to approx-

imate this quantity.

As a concrete application study, we work through the VB method on regime-switching

lognormal models and present solutions to quantify both the uncertainty in the parameters

and model specification. Through a series numerical comparison studies with likelihood

based methods and MCMC methods on the simulated and real data sets, we show that the

VB method can recover exactly the model structure, gives the reasonable point estimates,

and is very computationally efficient.
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Chapter 1

Introduction

While, in principle, the calculation of the posterior distribution is mathematically straight-

forward, in practice the computation of many of its features, such as posterior densities,

normalizing constants and posterior moments, is a major challenge in Bayesian analysis.

Such computations typically involve high dimensional integrals which often have no ana-

lytical or tractable forms. The variational Bayes (VB) method was developed to generate

tractable approximations to these quantities. This method provides analytic approximations

to the posterior distribution by minimizing the Kullback-Leibler (KL) divergence from the

approximations to the actual posterior, and has been demonstrated to be computationally

very fast. This thesis is devoted to studying the VB method. Apart from VB there exist

two commonly used approximation techniques to deal with these calculations: the Laplace

approximation and sampling-based methods such as MCMC. However, as we shall see, all

these approximation methods have their own strengths and limitations.

This work has three main foci, which we describe briefly here. First, currently, VB is

mainly used in the context of the conjugate exponential family. The dissertation proposes

a new class of parametric family which can exhibit a particular parameterization. This

class is shown to have a fast VB implementation. We also propose a factorization scheme
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with a more general dependency structure than is traditional in VB. Based on this new

framework, variational inference can be extended to more general situations, and not be

limited to the conjugate exponential setting. The thesis also aims to give insight into its

general applicability and explore its theoretical properties.

Second, the essence of the VB method relies on making simplifying assumptions about

the posterior dependence of a problem, trading off accuracy of the posterior dependence

approximation with computational speed. Hence by definition, the general posterior de-

pendence structure is distorted. The dissertation investigates how well the approximation

represent the actual posterior distribution, especially their covariance structures. In partic-

ular, three methods are proposed to compute the actual posterior covariance matrix by only

using the knowledge obtained from VB approximations and by using new algorithms whose

computational speeds are of the order of the original VB algorithm.

Third, the dissertation is interested in various applications of VB in real-world examples.

In particular, it investigates VB’s mean structure approximations, and illustrate how it is

possible, using VB approximations, to approach model selection tasks. For example the

problem of finding the number of components in mixture models seems well suited for the

VB approach. Moreover, the dissertation looks at the variational inference for the Bayesian

nonparametric modelling.

The present chapter aims to provide a detailed literature review for VB. We first briefly

review the Laplace approximation and MCMC methods and examine their strengths and

limitations in applications in Section 1.1. We then elaborate the current development of

VB and its various applications in different disciplines and area in Section 1.2 and 1.3. The

main contributions of the dissertation are presented in Section 1.4 and 1.5. A technical

introduction of the method is given in Chapter 2.
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1.1 Posterior quantities

Bayesian analysis often requires the computation of posterior quantities. Typical examples

include posterior distributions, the marginal likelihood, posterior predictive distributions,

posterior moments, Bayesian credible intervals, Bayesian p-values, amongst others. In gen-

eral, for sophisticated models these quantities are intractable since they involve high dimen-

sional integrals. In practice, there are two types of approximation techniques which can be

used: analytical or numerical.

One of the most important analytical approximations is the Laplace method (Kass and

Raftery, 1995). It constructs a local normal approximation around a maximum a posteriori

(MAP) estimate. This method is essentially based on the fact that in the large sample

size limit, and given that some regularity conditions are satisfied, the posterior distribution

converges to a normal distribution around its mode. Beal and Ghahramani (2003) list some

limitations when applying this method: the Gaussian assumption can represent the posterior

poorly for small sample sizes, and it is also poorly suited to bounded, constrained, or positive

parameters. Further, the log-posterior may not be well approximated by a quadratic function

for likelihoods with hidden variables, such as mixture models. For high dimensional integrals,

when the dimension of the parameter vectors, d, may be thought of as increasing as the

sample size n increases (Shun and McCullagh, 1995), the correction term, ordinarily O(n−1)

for fixed dimension, can become O(1). This means, in practice, that the Laplace method may

not work well for large, or even medium size, d problems. Even when the required regularity

conditions hold, computing the inverse of Hessian matrix in high dimensional cases can also

be burdensome (Beal and Ghahramani, 2003).

Sampling-based approximations, especially Markov chain Monte Carlo (MCMC) are a

form of numerical approximation. MCMC methods provide a unifying framework within

which many complex problems can be analyzed. These methods are straightforward and

easy to implement without the requirements for sophisticated numerical analytic expertise
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and possibly specialist software (Gelfand and Smith, 1990), and the requirements on the

target distributions are quite minimal, which allows for settings where very little is known

about them (Robert and Casella, 2010). Moreover, the MCMC perspective leads to ef-

ficient decompositions of high-dimensional problems into a sequence of smaller problems

that are much easier to solve. Introductory material on MCMC methods can be found in

Robert and Casella (2010); Liu (2008); Chen et al. (2000). Well-known methods include

the Metropolis algorithm (Metropolis et al., 1953), the Gibbs sampler (Geman and Geman,

1984), the Metropolis-Hastings (M-H) algorithm (Hastings, 1970; Peskun, 1973) and its

various varieties including, the random walk Metropolis-Hastings (Roberts et al., 1997), the

independent Metropolis-Hastings algorithm (Tierney, 1994; Liu, 1996), the adaptive indepen-

dent Metropolis-Hastings (Holden et al., 2009), the slice sampler (Neal, 2003), the reversible

jump MCMC algorithm (Green, 1995), the birth-and-death MCMC algorithm (Stephens,

2000), the perfect sampling (Propp and Wilson, 1996). More detail can be found in Robert

and Casella (2010); Chen et al. (2000); Liu (2008).

Although MCMC methods make possible the computation of posterior quantities, various

practical issues are associated with their implementation. A primary concern is determining

that the generated chain has in fact “converged”. Although in theory, MCMC methods can

be shown to have a geometric convergence rate for quite general classes of target distribu-

tions (Rosenthal, 1995; Roberts and Tweedie, 1999; Roberts and Rosenthal, 1998, 2004), in

practice, many commonly used algorithms frequently fail to converge geometrically (Brooks,

1998). MCMC practitioners instead use convergence diagnostics to check if the sampled

Markov chain appears to be stable for long enough runs (Roberts and Rosenthal, 2004). In

the examples used in this proposal, for example, the M-H algorithm applied on the one-way

random-effects model (Chapter 3), a Gibbs sampler on the Ising model (Chapter 2), and

the reversible jump MCMC algorithm on a finite mixture model (Chapter 4), we had to use

large runs to ensure the convergence of the chains. The computational cost can also be a

concern, for example, posterior simulations for a 64 × 64 Ising model requires high storage
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resources, and a reversible jump MCMC on a finite mixture model takes several hours to

run. Other implementational issues include the difficulty of making a good choice of initial

point, the implementation of MCMC algorithm in one long chain or several shorter chains in

parallel, the tuning of M-H methods. Detailed discussions can be found in Brooks (1998).

This thesis is devoted to studying a fast and analytical approximation technique called

the variational Bayesian method. This method tries to provide an approximation, which we

call a variational approximation, of the posterior distribution by minimizing the Kullback-

Leibler (KL) divergence from the approximations to the actual posterior, while constraining

the VB solution to be “well-behaved”. In this work we shall often use a well designed and

calibrated MCMC method as a gold-standard to which we can compare the, hopefully much

faster, VB solution. This is used, in particular, in the cases where we look at diagnostics for

VB and for the application sections.

1.2 Variational methods

In Physics, variational free energy minimization (see Chapter 2) is a well-established principle

(Feynman, 1972), and mean-field theory is a special application of this principle (Parisi,

1988). In the mean-field approximation, we minimize the free energy functional with respect

to an approximating distribution of special forms; first the approximating distribution is fully

factorized, which means random variables are assumed to be independent of each other, and

secondly they are chosen from specified parametric families, with typically nice properties.

The early applications of mean-field approximation can be found in the context of Bayesian

neural networks (Hinton and Van Camp, 1993), belief networks (Saul et al., 1996), and

factorial hidden Markov models (Ghahramani and Jordan, 1997). Barber and Bishop (1998)

relaxed the first condition in the mean-field approximations, where the approximation is not

necessary to be fully factorized.
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Still in the context of Bayesian neural networks, MacKay (1995) considered the case where

there are no restrictions on the distributional family of the approximations. This could

be regarded as an early application of the general variational principle. Instead of using

variational calculus (see Chapter 2), MacKay used a method which we call the Kullback-

Leibler distance decomposition. Both methods will be reviewed in Chapter 2.

In the literature there also exists another approximating technique under the name of the

variational method, using the principle of convex duality. In convex analysis (Rockafellar,

1997), a concave function f(x) can be represented by f(x) = min
λ

{λx− f ∗(λ)}, where f ∗(λ)

is called the conjugate function of f(x). This implies that the function f(x) is bounded

above by a linear function. By using this principle, Jaakkola (1997), and Jaakkola and

Jordan (1999) introduced a variational method to approximate the conditional distribution

of a node in the context of graphical models. This approach is essentially a variational free

energy minimization with a fixed functional form.

Although the method is originated in Physics, and is developed mainly in computer sci-

ence, and widely applied in the domains such as machine learning, signal processing and the

analysis of neuroimaging data, an early application of variational principle in the statisti-

cal literature can be found in Haff (1991), where a Bayes estimator of model parameters is

obtained by minimizing a particular form of a Bayes risk function.

Theoretical properties of VB have been explored in recent years. For example, Neal

and Hinton (1998) explained how the classical Expectation-Maximization (EM) algorithm

(Dempster et al., 1977) can be considered in the framework of the variational method.

The ordinary EM iteration alternates between an expectation (E) step, which evaluates

the expected (complete) log-likelihood using the current estimate for the parameters, and a

maximization (M) step, which computes parameters maximizing the expected log-likelihood

found on the E step. The E step can be viewed as inferring the distribution over hidden

variables from the variational Bayesian perspective, and the M step can be viewed as infer-
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ring the distribution over model parameter, which is restricted to be a Dirac delta function.

Wang and Titterington (2004, 2006) studied the convergence properties of the VB approxi-

mations. They also showed that for some special cases the approximating distributions will

be asymptotically normally distributed.

Based on stochastic complexity (Watanabe, 2009), a different methodology is used to

study theoretical properties of the VB method. Suppose that y = {yi}ni=1 is a data set

from the true distribution f(y), and p(y|τ) is a hypothetic distribution of y with parameter

τ . Stochastic complexity of the data (Watanabe, 2009) is defined as F (Y ) = − log(Z(Y )),

where Z(Y ) =
∫
e−nH(τ)π(τ)dτ , and H(τ) = 1

n

n∑

i=1

log
f(yi)

p(yi|τ)
. Essentially, it can be viewed

as the negative log marginal likelihood. Hosino et al. (2005), Watanabe and Watanabe

(2005), and Watanabe and Watanabe (2007) studied the asymptotic bounds for the expected

stochastic complexity in the VB learning for some non-regular models (non-identifiable or

whose Fisher information is not positive definite, Watanabe, 2009). They show that the

expected stochastic complexity in the VB learning is smaller than those of regular models.

1.3 Application reviews

In this section we summarize some important applications of VB, and provide a flavour of

how VB is broadly used.

As mentioned in the previous section, Bayesian artificial neural networks are an early

application of the method where it is used in approximating the posterior distributions of

weights in a neural network. Important references include Hinton and Van Camp (1993);

Barber and Bishop (1998); MacKay (1995).

Another early application of the method can be found in the context of independent

component analysis (ICA) (Ans et al., 1985), which is a method to extract the hidden

independent components (sources) from a set of observations and has been broadly applied
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in imaging processing (neuro/biomedical-imaging, natural images), signal processing, and

the analysis of financial data. In short, an ICA problem can be formalised as yt = Ast + ǫt,

where yt is a L dimensional observable random vector at time t, and st is a I (I ≤ L)

dimensional unobservable random vector (the source components) which are assumed to be

independent of each other and at least one component is assumed non-Gaussian distributed

(often modelled by a mixture of Gaussians with parameter θ). This setting can be found

in Moulines et al. (1997); Attias (1999); Lappalainen (1999); Penny, and Roberts (2000).

The term A is called the mixing matrix which is unknown, and ǫt represents Gaussian noise

with zero mean and a unknown covariance matrix Λ. Lappalainen (1999); Miskin (2000);

Attias (1999); Penny, and Roberts (2000); Lawrence and Bishop (2000) use the VB method

to approximate the posteriors of A, Λ, and θ.

Factor analysis is a method used to describe variability among observed variables in

terms of low-dimensional unobserved variables called factors and is widely used in the social

sciences, marketing, and other applied sciences. The model can be expressed as (Johnson

and Wichern, 2002) yt = Ast + µ + ǫt, where yt is a d dimensional observable random

vector, and st is a k (k < d) dimensional unobservable random vector called, the common

factors, st ∼ MVN(0, I), A is called a factor loading matrix (considered unknown), and µ

is an unknown d dimensional constant vector, and ǫt represents Gaussian noise with zero

mean and a diagonal covariance matrix Λ which is unknown. Moreover, st and ǫt are also

assumed to be independent. Ghahramani and Beal (2000b); Zhao and Yu (2009) apply the

VB method to approximate the marginal likelihood and the posterior distributions of Λ and

A.

Applications of VB in directed graphical models or directed acyclic graphs (DAGs) have

been studied by many researchers. We classify these applications into two categories based on

the implementation of VB. One uses the variational calculus, the other uses convex duality.

The first type of application can be found in Attias (2000); Storkey (2000); Winn (2003);

8



Ghahramani and Beal (2000a); Beal and Ghahramani (2001, 2003, 2006). A common feature

of these applications is that these researchers focus on a special class of DAGs where the

nodes are split into a set of visible (observable) nodes, a set of hidden (unobservable) nodes

and model parameters. VB is used to approximate the conditional distributions of hidden

variables given the observed data and the conditional distributions of model parameters given

the observed data. In particular, Storkey (2000) studies the dynamic tree model (Williams

and Adams, 1999). Ghahramani and Beal (2000a); Beal and Ghahramani (2001, 2003, 2006)

study conjugate-exponential belief networks (Ghahramani and Beal, 2000a). Winn (2003)

also focuses on conjugate-exponential belief networks and summarized the VB learning in an

algorithm called variational message passing and implemented the algorithm in a software

package called VIBES. The second type of application can be found in Jaakkola and Jordan

(1999), where they approximate the conditional distributions of the diseases given a set of

observed findings in the QMR-DT database by using the principle of convex duality (The

QMR-DT database is a large-scale bipartite belief network consisting of approximately 600

significant diseases and 4000 associated findings)

In undirected graphical models, applications can be found in McGrory et al. (2009) and

Mohammad-Djafari and Ayasso (2009). McGrory et al. (2009) studies VB for a hidden

Potts model. Mohammad-Djafari and Ayasso (2009) uses VB to approximate the normal-

izing constant in a Markov random field model. Other applications of the VB method

also include, principal component analysis (Bishop, 1999), discrete hidden Markov models

(MacKay, 1997), and finite mixture models (Corduneanu and Bishop, 2001).

In recent years more and more VB applications in conventional statistical problems have

emerged. McGrory and Titterington (2007) use VB to calculate the deviance information

criterion (DIC, Spiegelhalter et al. (2002)). An application in Poisson mixed models can

be found in Hall et al. (2011). An application in generalized linear mixed models can be

found in Ormerod and Wand (2012), while applications in parametric and nonparametric
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regression models with missing data can be found in Faes et al. (2011).

1.4 Our examples

In this thesis we apply the VB method to a variety of models. Here we describe these

applications, and in which chapter they occur.

In Chapter 2, we use a Markov random field (MRF) model to illustrate the concept of

model simplification in Example 2.1. A Weibull model in Example 2.2 and Logistic regression

models in Example 2.3 are used in studying the functional forms of VB approximations.

In Chapter 3, a Normal random sample with unknown mean and variance is used in

Section 3.3 to illustrate the computational advantages of VB. The Ising model, linear regres-

sion models, and a finite mixture of normals are used in Section 3.3.2 to explore the mean

structure approximations under VB. The finite mixture of normals is also used to study the

local convergence property of VB in Section 3.4.1. The one-way random-effects model and

finite mixture models are used in Example 3.5 and Example 3.6 to demonstrate the effects

of choosing improper priors. They are also use in Example 3.7 and Example 3.8 to show the

effects of choosing different factorization schemes.

In Chapter 4, a multivariate normal, a normal random sample with unknown mean and

variance and finite mixtures of normals are used to demonstrate the proposed diagnostics

methods. The Dirichlet process (Chapter 5) and regime-switching lognormal models (Chapter

6) are studied in detail.

1.5 Main contribution

This thesis aims to give insight into the general applicability of the VB method, explore its

theoretical properties, and also apply it to a wide variety of problems.
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Generally, there are several limitations in the current development of variational infer-

ence. First, it is usual to consider only conjugate exponential settings. Second, variational

inferences are developed mostly with respect to natural parameters. Moreover, a full fac-

torization, which assume complete independence, imposes a too strong constraint on the

approximating distribution. We propose a particularly attractive parameterization for a

parametric family, and also propose a factorization scheme with a more general dependency

structure than is traditional in VB. These new frameworks provide greater modelling flexi-

bility, and are not limited to the conjugate exponential setting.

We investigate some properties of VB, for example: its local convergence property, the

effects of choosing different priors, and the effects of choosing different factorization scheme.

The essence of VB relies on making simplifying assumptions about the posterior depen-

dence of a problem. By definition, posterior covariance structures are distorted. We propose

three diagnostics methods to compute the actual posterior covariance matrix by looking at

joint, marginal and conditional aspects of VB approximations. We propose a novel way,

called the VB Adjusted Independent Metropolis-Hastings (VBAIMH) method, to compute

the important quantities.

We also study the mean structure of VB approximations, and show how it is possible using

VB approximations to approach model selection tasks such as determining the dimensionality

of a model, or variable selection.

We also consider the variational application approach in Bayesian nonparametric mod-

elling, especially for the Dirichlet process (DP). As an alternative to MCMC methods, which

has been extensively studied in DP based-models, this work presents a full variational so-

lution for DP with non-conjugate settings. We propose an empirical method to determine

the number of distinct components in a truncated DP. We show how to use the variational

techniques to approximate the posterior predictive distribution.

As a concrete application study, we work through the VB method on regime-switching

11



lognormal models and present solutions to quantify both the uncertainty in the parameters

and model specification. We show that VB can recover exactly the model structure, gives

the reasonable point estimates, and is very computationally efficient.

We also explore the asymptotic property of VB approximations.
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Chapter 2

The variational Bayesian method

This chapter serves two purposes. First, it is intended to provide the reader with a detailed

introduction to the Variational Bayes (VB) method and the techniques involved in its im-

plementation. Second, its introduces a new framework for the VB method to overcome some

limitations in its current development.

2.1 Motivation

Complex posterior dependence across model parameters is the main reason for the difficulty

of calculation of posterior quantities. The VB approximation makes simplifying assumptions

regarding this aspect of the problem with a full factorization into independent terms being

the most commonly used scheme in the literature. For example, most of the applications

reviewed in Chapter 1 use this form of factorization. However, a full factorization might

impose too strong constraints on the approximating distribution. In many situations, we

hope to capture the posterior dependence structure, or at least partial dependence structure,

while having tractable approximations.
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Generally, variational inference has been mainly investigated in the context of the ex-

ponential family. For example, Beal (2003) and Wainwright and Jordan (2008) provide a

general variational formalism, called Variational Bayesian EM (VBEM), for the conjugate

exponential family with latent variables. There are several limitations with these develop-

ments. First, they mainly consider the cases assuming conjugate priors. Second, the varia-

tional inferences are developed only with respect to natural parameters, which are often not

the parameters of immediate interests.

To overcome the limitations in the current development, we propose a conditional factor-

ization scheme which allows more general dependence structures than is traditional in VB.

Further, we propose a special parameterization for a parametric family, called the parameter

separation parameterization, which includes the distributions from both exponential family

and non-exponential family, and whose prior distributions are not limited to the conjugate

settings. The new framework provides greater modelling flexibility, and leads to greater

approximation accuracy. Based on this framework, we develop the variational formalism, to

which the VBEM is a special case.

The present chapter consists of two parts. We first provide the reader with a detailed

introduction to the VB method. Section 2.2 introduces the concept of model simplification,

Section 2.3 introduces two important ideas in the variational method, the Kullback-Leibler

divergence and a lower bound of the log marginal likelihood, which are both used to describe

the discrepancy between a posterior distribution and its VB approximation, Section 2.4 then

describes two techniques, the Kullback-Leibler divergence decomposition and variational

calculus, which are used to obtain the functional forms of the VB approximations. Our

new development is presented in Section 2.5, including: Section 2.5.1 discusses a conditional

factorization; Section 2.5.2 introduces the new parameter separation parameterization.
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2.2 Simplification

Broadly speaking, the main reason for the intractability associated with posterior quantities

derives from a complex posterior dependence structure. If we can reduce this complexity,

we might expect the possibility of tractable posterior integrals. A very simple motivating

example is that simplification can be achieved by assuming posterior independence between

certain random variables. This idea is illustrated by an example from image processing.

Example 2.1 Markov random fields (MRFs). In image analysis (Li, 2009), a site in a

lattice represents an image pixel. The interrelationship between a set of sites is modelled by

a neighborhood system. For example, Figure 2.1 (a) represents a second-order neighborhood

system described in the form of an undirected graph where neighboring sites are connected

by edges. Let Xij be the random variable which indicates the grey level for the ijth pixel and

let X = {Xij}n,mi=1,j=1. If we assume that the set of random variables X satisfies the Markov

property, then by the Hammersley-Clifford theorem (Hammersley and Clifford, 1971), the

joint probability of X can be expressed as,

p(X = x) =
1

Z(β)
e−βε(x), (2.1)

where ε(x) =
∑

c∈C Φc(x), and Φc(x) is a potential function (Li, 2009) defined over a clique

c, which is a subgraph such that any two vertices are connected by one and only one edge

(Diestel, 2010). Here C is the set of all possible cliques with respect to a neighborhood system.

One way to simplify the model given in Figure 2.1 (a) is to assume conditional inde-

pendence between every two nodes connected by a diagonal edge, which results in Figure

2.1 (b) which is referred to as the first-order neighborhood system (Li, 2009). We could

assume an even simpler model where every random variable is independent of all of other

random variables, which results in Figure 2.1 (c). In this example, the joint distribution
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Figure 2.1: A graphical illustration of the model simplification (a) a second-order neighbor-
hood system, (b) a first-order neighborhood system, and (c) a full factorization.

of the set of random variables X factors into a product of conditional distributions, whose

probability distribution can be written as q(x) =
∏

i qi(xi). Generally speaking, we refer to

such a simplifying procedure as a factorization. In the VB method, we consider q(x) as an

approximation of p(x) given in (2.1). This setting is similar to the mean-field approximation

(Parisi, 1988), where we explicitly specify a particular parametric family to q(x). In VB we

implicitly “choose” q(x) by some criteria, that will be discussed in next section.

2.3 Two criteria

The immediate gain from a simplified model is the possibility of tractable integrals, since

a set of low dimensional integrals might be expected to be more tractable than a single

high dimensional one. Of course there will be loss due to the simplification, and criteria are

required to assess the approximation accuracy.

The Kullback–Leibler (KL) divergence, defined in (2.2) below, is a measure of the discrep-

ancy between two distributions. It is worth noting although it is intuitively interpreted as a

“distance”, the KL divergence is not a true distance, since the divergence from a probability

measure P to a probability measure Q is typically not equal to that from Q to P (Critchley
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et al., 1994).

Suppose, in a Bayesian inference problem, that we use q(τ ) to approximate the posterior

p(τ |y), where y is the data and τ = {τ1, · · · , τp} the model parameter vector. The KL

divergence between them is defined as,

KL [q(τ )||p(τ |y)] =

∫

q(τ ) log
q(τ )

p(τ |y)
dτ , (2.2)

provided the integral exists. We want to balance two things, having the discrepancy between

p and q small while keeping q tractable. Hence we want to seek q(τ ) which minimizes

(2.2) while keeping q(τ) in analytically tractable form. First, note that the evaluation of

(2.2) requires p(τ |y), which may be unavailable since in the general Bayesian problem its

normalizing constant is one of the main intractable integrals. However, we note that

KL [q(τ )||p(τ |y)] =

∫

q(τ ) log
q(τ )

p(τ |y)p(y)
dτ + log p(y)

= −
∫

q(τ ) log
p(τ ,y)

q(τ )
dτ + log p(y). (2.3)

Thus minimizing (2.2) is equivalent to maximizing the first term of the right-hand side of

(2.20). The key computational point is that often the term p(τ ,y) is available even when

the full posterior p(τ,y)
R

p(τ,y)dτ
is not.

Definition 2.1 (HZ)1 Let p(τ ,y) be the joint distribution of data y and model parameter

τ , and q(τ ) be a probability density function over τ . A real valued function F of q is defined

as

F (q) =

∫

q(τ ) log
p(τ ,y)

q(τ )
dτ , (2.4)

1For readers’ convenience, we will give the source for the referred definitions, theorems, and lemmas in
this dissertation, and use HZ (the initial of the dissertation’s author) to indicate the contribution of this
work.
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when the integral exists. The negative of the function F is known as the variational free

energy. The log marginal likelihood is defined as log p(y) = log
∫
p(τ ,y)dτ .

It is worth noting that the marginal likelihood has long been used for Bayesian model

checking and Bayesian model selection problems (Berger, 1985). The following lemma shows

that there exists a close relationship between the log marginal likelihood and the function

F .

Lemma 2.1 (HZ) Given any approximating distribution q, the log marginal likelihood is

bounded below by F (q).

Proof: This is a direct application of Jensen’s inequality (Jensen, 1906) and the concavity

of the log function, or alternatively the positivity of the KL divergence and the identity

(2.20).

2.4 An optimization problem

Definition 2.2 (HZ) Let

q̂ = arg max
q∈Q

F (q),

where Q is a set of probability density functions over the parameter space. Then q̂ is called the

variational approximation or variational posterior distribution, and parameters of q̂ (such

as its mean, variance, etc), are called variational parameters.

Some of the power of Definition 2.2 comes when we assume that all elements of Q have

tractable posterior quantities. In that case all variational parameters will then also be

tractable when the optimization can be achieved.
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Two techniques can be used to obtain q̂(τ ). For simplicity and clarity let us assume, at

least initially, that Q is the set of all densities which factorise as

q(τ ) =
d∏

i=1

qi(τi).

Note then, here we have the property of tractability across Q as described above.

The function F is then given by

F
(
q
)

=

∫ d∏

i=1

qi(τi) log
p(τ ,y)
d∏

i=1

qi(τi)

dτ , (2.5)

We want to maximize (2.5) over qi(τi), i = 1, · · · , d. By the method of Lagrange multipliers2,

we define the Lagrangian as

F̃
(
q1, · · · , qd

)
= F

(
q
)

+
d∑

i=1

λi

(∫

qi(τi)dτi − 1

)

. (2.6)

We take the functional derivative (Gelfand and Fomin, 1964) of (2.6) with respect to

each qi(τi) and equate the derivative to zero, obtaining, for i = 1, · · · , d

∂F̃ (q(τ ))

∂qi(τi)
= − (log qi(τi) + 1) +

∫ d∏

j 6=i
q̂j(τj) log p(τ ,y) dτ\i + λi = 0

⇒ q̂i(τi) =
1

Zi
exp

[
∫ d∏

j 6=i
q̂j(τj) log p(τ ,y) dτ\i

]

, (2.7)

where τ\i denotes the complement of τi in τ , and Zi is a normalization term. It is worth

2Note that the positivity constraints of qi require Karush-Kuhn-Tucker (KKT) multipliers (Kuhn and
Tucker, 1951; Karush, 1939) in a general nonlinear programming problem. However, in our problem the
solution using KKT multipliers for the constraint with the form of qi > 0 is in fact the same as the one given
by Lagrange multipliers. Therefore, for simplicity we use only the Lagrange multipliers.
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noting that the evaluation of the resultant integral in (2.7) requires all other q̂j for j 6= i, and

also the corresponding integral is not guaranteed to exist. We will discuss these problems in

detail in Section 2.5.1. The above derivation uses well-established results from the calculus

of variations (Gelfand and Fomin, 1964). The terminology “variational” Bayesian method

comes from the roots of this technique. Another method, which we call the Kullback–Leibler

divergence decomposition, can be used to obtain the same result. We can rewrite (2.20) for

any given i as

KL [q(τ )||p(τ |y)] =

∫

qi(τi) log qi(τi) dτi +
∑

j 6=i

∫

qj(τj) log qj(τj) dτj + log p(y)

−
∫

log

(

1

Zi
exp

[
∫ d∏

j 6=i
qj(τj) log p(τ ,y) dτ\i

])

qi(τi) dτi − logZi

= KL

(

qi(τi)||
1

Zi
exp

[
∫ d∏

j 6=i
qj(τj) log p(τ ,y) dτ\i

])

+K, (2.8)

where K =
∑

j 6=i

∫

qj(τj) log qj(τj) dτj − logZi + log p(y).

The first term on the right hand side of (2.8) is the only term which depends on qi(τi).

Then, the minimum value of KL [q(τ )||p(τ |y)] is achieved when the first term of the right-

hand side of (2.8) equals to zero. Thus, we obtained

q̂i(τi) =
1

Zi
exp

[
∫ d∏

j 6=i
q̂j(τj) log p(τ ,y) dτ\i

]

.

2.5 Variational Bayesian marginal approximations

A full factorization into independent terms is the most commonly used scheme in the lit-

erature. For example, most of the applications reviewed in Chapter 1 use this form of

factorization. We propose a factorization scheme in which more complex dependence struc-
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tures can be used, while keeping tractability. This will provide greater modelling flexibility

and approximation accuracy by the VB method.

2.5.1 A conditional factorization

Suppose τ I is a d dimension parameter vector, indexed by I = {1, · · · , d}. When there is

no chance of confusion we will write this as τ . We consider a VB approximation for the

posterior p(τ |y), which is factorized as,

q(τ ) =
K∏

i

q(τFi
) =

K∏

i

q(τ Ci
|τPi

)q(τPi
), (2.9)

where {Fi}Ki=1 is a partition of the index set I, for K ≤ d, Fi = Ci ∪ Pi and Ci 6= ∅ for

i = 1, · · · , K. If the set Pi is an empty set, then q(τ Ci
|τPi

) denotes the unconditional

density q(τ Ci
). The generic functional forms of q(τ Ci

|τPi
) and q(τPi

) are given as follows.

Theorem 2.1 (Variational Bayesian marginal approximations, HZ) Let p(y, τ ) be the joint

distribution of data y and model parameter τ . The variational approximations q(τ Ci
|τPi

)

and q(τPi
) in the decomposition (2.9) are given by

q(τ Ci
|τPi

) ∝ exp
(

Eq(τ \(Ci∪Pi)
)[log p(y, τ )]

)

, (2.10)

q(τPi
) ∝ exp

(

−Eq(τ Ci
|τPi

)[log q(τ Ci
|τPi

)]
)

exp
(

Eq(τ \Pi
)[log p(y, τ )]

)

, (2.11)

where q(τ \(Ci∪Pi)) and q(τ \Pi
) are defined as,

q(τ \(Ci∪Pi)) =
∏

j 6=i
q(τ Cj

|τPj
)q(τPj

), q(τ \Pi
) = q(τ Ci

|τPi
)
∏

j 6=i
q(τ Cj

|τPj
)q(τPj

).

Theorem 2.1 can be proved either by using the calculus of variations or by the Kullback-

Leibler divergence decomposition. The Appendix provides the proof by using the Kullback-
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Leibler divergence decomposition.

For Theorem 2.1, we have the following comments.

First, expressions (2.10) and (2.11) imply that the evaluation of q(τ Ci
|τPi

) and q(τPi
)

requires knowledge of all other q(τ Cj
|τPj

) and q(τPj
) for j 6= i. This structure leads to

considering an iterative updating scheme, described in Algorithm 1, where the convergence

of the function F is used to define the stopping rule.

Algorithm 1 Variational Bayesian algorithm

Initialize q(0)(τ Ci
|τPi

) and q(0)(τPi
) at step 0, for i = 1, · · · , K

Evaluate F
(
q(0)(τ ))

t⇐ 1
while F

(
q(t)(τ )) increases do

for i = 1 to K do
1. Infer q(t)(τ Ci

|τPi
) at step t by

q(t)(τ Ci
|τPi

) ∝ exp
(

Eq(τ \(Ci∪Pi)
)[log p(y, τ )]

)

where q(τ \(Ci∪Pi)) is given by

q(τ \(Ci∪Pi)) =

i−1∏

j=1

q(t)(τ Cj
|τPj

)q(t)(τPj
)

K∏

j=i+1

q(t−1)(τ Cj
|τPj

)q(t−1)(τPj
)

2. Infer q(t)(τPi
) at step t by

q(t)(τPi
) ∝ exp

(

Eq(t)(τ Ci
|τPi

)[log q(t)(τ Ci
|τPi

)]
)

exp
(

Eq(τ \Pi
)[log p(y, τ )]

)

where q(τ \Pi
) is given by,

q(τ \Pi
) = q(t)(τ Ci

|τPi
)
i−1∏

j=1

q(t)(τ Cj
|τPj

)q(t)(τPj
)

K∏

j=i+1

q(t−1)(τ Cj
|τPj

)q(t−1)(τPj
)

end for
t⇐ t+ 1

end while
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Second, this algorithm will be particularly useful when all the relevant integrals have

simple closed forms. Ways in which this can work include choosing exponential families or

by using conjugate priors.

Third, if we assume that the prior π(τ ) can be factorized in the same form as (2.9), then

we have the following result.

Corollary 2.1 (Variational Bayesian marginal approximations with factorized priors, HZ)

Let π(τ ) be the prior distribution which can be written in the form
K∏

i=1

π(τ Ci
|τPi

)π(τPi
).

Then, (2.10) and (2.11) in Theorem 2.1 are given by

q(τ Ci
|τPi

)∝π(τ Ci
|τPi

) exp
(

Eq(τ \Ci∪Pi
) [log (p(y|τ ))]

)

(2.12)

q(τPi
)∝π(τPi

) exp

(

Eq(τ Ci
|τPi

)

[

log
π(τ Ci

|τPi
)

q(τ Ci
|τPi

)

])

exp
(

Eq(τ \Pi
) [log (p(y|τ ))]

)

(2.13)

Proof: These are direct applications of the linearity of expectation.

It may be of interest to note that the results of (2.12) and (2.13) exhibit a pattern,

variational distribution ∝ prior distribution × “expected likelihood function”.

Fourth, as discussed above, although Equation (2.10) and (2.11) give generic functional

forms, it is not guaranteed that either Eq(τ \(Ci∪Pi)
)[log p(y, τ )] or Eq(τ \Pi

)[log p(y, τ )] have

closed-form representations as is illustrated in the following two examples.

Example 2.2 Weibull model. In a reliability study, we may assume the data yi is mod-

elled by a Weibull distribution with a densityfunction

f(y|α, β) ∝ αβyα−1e−βy
α

, where y > 0, α > 0, β > 0
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In a Bayesian setting, we can choose the prior distribution as π(α, β|γ, η) ∝ e−αβγ−1e−ηβ ,

where γ and η are hyper-parameters. The VB approximations are given by

q(β) ∝ βγ−1 exp(−ηβ)βn exp

(

−β
n∑

i=1

∫

q(α)xαi dα

)

,

q(α) ∝ exp(−α)αn exp

(

α

n∑

i=1

log xi −
n∑

i=1

(
∫

q(β)βdβ
)
xαi

)

.

We can see that q(α) is not in a form which gives easy evaluation of
∫
q(α)xαi dα. Thus,

although q(β) is a Gamma density function, it is hard to compute its shape parameter which

involves
∫
q(α)xαi dα.

Example 2.3 Logistic regression models. Suppose the observed data Yi ∼ Bin(mi, θi),

for i = 1, . . . , n, and there exist the associated explanatory variables xi = {xi1, . . . , xip}. The

parameters θi can be modelled by

log

(
θi

1 − θi

)

= xTi β.

In a Bayesian setting, we chose π(β) =
∏

i π(βi) as the prior. Thus, the posterior of β is

given by

p(β|y) ∝
n∏

i

[

ex
T
i β

]yi
[

1

1 + ex
T
i β

]mi

π(β).

Under a full factorization, the VB approximation of q(βj) is given by

q(βj) ∝ π(βj) exp

( n∑

i=1

yixijβj −
n∑

i=1

mi

∫
∏

k 6=j
q(βk) log(1 + ex

T
i β)dβ\j

)

,

and again tyically the term of
∫ ∏

k 6=j q(βk) log(1 + ex
T
i β)dβ\j has no closed-form.
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2.5.2 Parameter separation parameterization

Generally, variational inference has been mainly developed in the context of the exponential

family. For example, Beal (2003) and Wainwright and Jordan (2008) provide a general

variational formalism for the conjugate exponential family. There are several limitations

with these developments. First, they mainly consider the cases assuming conjugate priors.

Second, the variational inferences are developed only with respect to natural parameters,

which are often not the parameters of immediate interests. In the present section, we show

that VB inferences can be extended to a more general situation.

We consider a particular form of a parameterization for a parametric family, which we call

the parameter separation parameterization. We will show that with this parameterization the

distributional families of VB approximations are not changed during the iterative updates,

and the convergence of variational parameters can be used as the stopping rule of Algorithm

1.

Definition 2.3 (HZ) A parametric family {Pτ : τ ∈ Rd} is said to have a parameter

separation parameterization if and only if the logarithm of its density function can be written

as

log f(x) = h(x) +
C∑

c=1

(
d∏

i=1

gc,i(τi, x)

)

, (2.14)

where C is a positive integer, and h and gc,i are real-valued functions.

Example 2.4 The density function of a normal distribution is given as,

f(x;µ, σ2) =
1√
2πσ

e−
1

2σ2 (x−µ)2
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The logarithm of this density function is given as,

log f(x;µ, σ2) =






−1

2
log 2π

︸ ︷︷ ︸

h(x)







+






g11(σ2,x)
︷ ︸︸ ︷

− log σ

g12(µ,x)
︷︸︸︷

1




+







− 1

2σ2
︸ ︷︷ ︸

g21(σ2,x)

(x− µ)2

︸ ︷︷ ︸

g22(µ,x)







Many distributions can be written in the form of (2.14), for example, Gamma, Erlang,

Inverse Gaussian, Normal, Log-normal, Logit-normal, Pareto, Weibull, Laplace, von Mises,

and Multinomial (The form of the parameter separation parameterization for these distribu-

tions are given in the Appendix). These include both exponential family and non-exponential

family examples.

Lemma 2.2 (HZ) Suppose y = {yt}nt=1 are i.i.d. with a density function p(y; τ ) having a

parameter separation parameterization, where τ ∈ Rp. For any given parameter subset of

θ ⊆ τ , the likelihood function can be written as

p(y|τ ) = exp

(
n∑

t

(

h(yt) +

Cθ∑

c=1

gc(θ, yt)Kc + J

))

, (2.15)

where Kc and J are constant with respect to θ, and Cθ is the number of terms in the Expan-

sion (2.14) whose gc,i function is not a constant function with respect to θ.

The following result shows how the variational approximation behaves when we work on

these particular parameterization.

Theorem 2.2 (Variational Bayesian marginal approximations with parameter separation

parameterization, HZ) Suppose y = {yt}nt=1 are i.i.d. with a density function p(y; τ ) having

a parameter separation parameterization, where τ ∈ Rd. Then,

(i) For any given τFi
= τ Ci

∪τPi
defined in the decomposition (2.9), the likelihood function
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can be written as

p(y|τ ) = exp





n∑

t



h(yt) +

CFi∑

c=1

gc(τFi
, yt)KFi,c + JFi







 , (2.16)

where KFi,c and JFi
are constant with respect to τFi

. The variation distribution

q(τ Ci
|τPi

) is given by

q(τ Ci
|τPi

) ∝ π(τ Ci
|τPi

) exp





n∑

t



h(yt) +

CPi∑

c=1

gc(τFi
, yt)K

∗
Fi,c

+ J∗
Fi







 , (2.17)

where K∗
Fi,c

= Eq(τ \Ci∪Pi
) [KFi,c] and J∗

Fi
= Eq(τ \Ci∪Fi

) [JFi
].

(ii) For any given τPi
, defined in the decomposition (2.9), the likelihood function can be

written as

p(y|τ ) = exp





n∑

t



h(yt) +

CPi∑

c=1

gc(τPi
, yt)KPi,c + JPi







 , (2.18)

where KPi,c and JPi
are constant with respect to τPi

. The variation distribution q(τPi
)

is given by

q(τPi
) ∝ π(τPi

) exp

(

Eq(τ Ci
|τPi

)

[

log
π(τ Ci

|τPi
)

q(τ Ci
|τPi

)

])

exp





n∑

t



h(yt) +

CFi∑

c=1

gc(τPi
, yt)K

∗
Pi,c

+ J∗
Pi







 (2.19)

Where K∗
Pi,c

= Eq(τ \Pi
) [KPi,c] and J∗

Pi
= Eq(τ \Pi

) [JPi
].

Proof: The results of (2.16) and (2.18) are direct applications of Lemma 2.2. The results

of (2.17) and (2.19) are direct applications of the linearity of expectation.
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Theorem 2.2 implies two important properties of the VB method when it is applied to

a parametric family with a parameter separation parameterization. First, the distributional

families of VB approximations are not changed during the iterations of Algorithm 1. The

result of (2.16) gives a particular form of the likelihood function with respect to τ Ci
and τPi

.

The result of (2.17) gives the functional form of the variational distribution of q(τ Ci
|τPi

).

Comparing these two results, we see that these two expressions share the same set of functions

of {gc(τFi
, yi)}Ci

c=1. Up to prior distributions, the difference between these two results only

lies in the constant terms of {KFi,c}Ci

c=1 and {K∗
Fi,c

}Ci

c=1, and JFi
and J∗

Fi
.

Second, Theorem 2.2 implies that in practice we can use the convergence of variational

parameters as the stopping rule in Algorithm 1. This is because that at each iteration,

the dependence of q(τ Ci
|τPi

) on other q(τ Cj
|τPj

) and q(τPj
) for j 6= i is only through the

constants of {K∗
Fi,c

}Ci

c=1, which partially form the variational parameters. Therefore, iterative

updates to the whole approximating distributions are in fact turned to be the updates to the

variational parameters. The convergence of variational parameters in this thesis is measured

by specifying a threshold for the norm of the difference between the values of the variational

parameters in the last two iterations. We usually choose a threshold for example as 10−5 or

even small.

Due to the linearity property of expectation, Theorem 2.2 is easily extended to a hier-

archical setting, as long as at each layer or stage, the parametric family has a parameter

separation parameterization.

The variational Bayesian EM (VBEM) for conjugate-exponential models, discussed in

Beal (2003) and Wainwright and Jordan (2008), can be shown to be a special case of Theorem

2.2. Suppose the latent variable x and observable variable y are sampled from the natural

exponential family with parameter θ, having a conjugate prior to the complete likelihood. We

assume the variational approximation of q(x, θ) to p(x, θ|y) is factorized as q(x, θ) = q(x)q(θ).

Plugging q(x) and q(θ) into Equation (2.17), with the likelihood and the prior in the form

28



of the exponential family, we will obtain the formula for VBEM, given in Beal (2003) and

Wainwright and Jordan (2008).

2.6 Discussion

In this chapter, we first provide the reader with a detailed introduction to the VB method

and the techniques involved in its implementation. We then discuss the limitations in the

current development of the VB method. We show that VB inferences can be extended to

a more general situation by proposing a special parameterization for a parametric family,

the parameter separation parameterization, and a factorization scheme with a more general

dependency structure. Based on this new framework, we develop a variational formalism, in

which VB has particularly nice properties. This chapter mainly focuses on the mathematical

derivations. In the next chapter, we will see how we can use this development into real-world

problems.

2.7 Appendix

2.7.1 Proof of Theorem 2.1

Proof: : The Kullback-Leibler divergence from q(τ) to p(τ |y) can be written as

KL(q(τ)||p(τ |y)) = log p(y) −
∫

q(τ) log
p(τ, y)

q(τ)
dτ. (2.20)
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Plugging (2.9) into (2.20) and re-arrange the terms with respect to q(τCi
|τPi

), we can obtain

the following expression:

KL(q(τ)||p(τ |y)) =Eq(τPi
)

[

KL(q(τCi
|τPi

)|| 1
Z

exp(Eq(τ\Ci∪Pi)
[log p(y, τ)]))

]

+ log p(y) +K (2.21)

where Z is a normalization constant, and K is a constant with respect to q(τCi
|τPi

). The first

term on the right hand side of (2.21) is the only term which depends on q(τCi
|τPi

). Then,

the minimum value of KL[q(τ)||p(τ |y)] is achieved when the first term of the right-hand side

of (2.21) equals to zero. Thus, we obtained

q(τCi
|τPi

) =
1

Z
exp

(

Eq(τ\(Ci∪Pi)
)[log p(y, τ)]

)

.

Similar to (2.11).

2.7.2 Examples of the parameter separation parameterization

Gamma distribution:

f(x;α, β) = xα−1 e(−
x
β )

Γ(α) βα
;α > 0, β > 0, x > 0

log f(x;α, β) = − log Γ(α) − β logα+ (α− 1) log x− x

β

Erlang distribution:

f(x;α, β) =
βαxα−1e−βx

(α− 1)!
;α ∈ N, β > 0, x ≥ 0

log f(x;α, β) = α log β − log(α− 1)! + (α− 1) log x− βx
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Inverse Gaussian:

f(x;µ, λ) =

(
λ

2πx3

)1/2

exp

{−λ(x− µ)2

2µ2x

}

;µ > 0, λ > 0, x > 0

log f(x;µ, λ) =
1

2

λ

2πx3
− −λ(x− µ)2

2µ2x

Normal distribution:

f(x;µ, σ2) = 1√
2πσ2

e−
(x−µ)2

2σ2 ;µ ∈ R, σ2 > 0, x ∈ R

log f(x;µ, σ2) = −1

2
(log 2π + log σ2) − (x− µ)2

2σ2

Log-normal distribution:

f(x;µ, σ2) =
1

xσ
√

2π
exp

{

−(ln x− µ)2

2σ2

}

;µ ∈ R, σ2 > 0, x > 0

log f(x;µ, σ2) = − log x− 1

2
(log 2π + log σ2) − (ln x− µ)2

2σ2

Logit-normal distribution:

f(x;µ, σ2) =
1

σ
√

2π
exp

{

−(logit(x) − µ)2

2σ2

}
1

x(1 − x)
;µ ∈ R, σ2 > 0, x ∈ (0, 1)

log f(x;µ, σ2) = − log x(1 − x) − 1

2
(log 2π + log σ2) − (logit(x) − µ)2

2σ2

where logit(x) = log
(

x
1−x
)
.

Pareto distribution:

f(x;α, β) =
αβα

xα+1
;α > 0, x > β > 0,

log f(x;µ, σ2) = logα + α log β − (α + 1) log x
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Weibull distribution:

f(x;α, β) = αβxα−1e−βx
α

;α > 0, β > 0, x > 0

log f(x;α, β) = logα + log β + (α− 1) log x− βxα

Laplace distribution:

f(x;µ, β) =
1

2 β
exp

(

−|x− µ|
β

)

; µ ∈ R, β > 0, x >∈ R

log f(x;µ, β) = − log 2β − |x− µ|
β

von Mises distribution:

f(x;µ, κ) =
eκ cos(x−µ)

2πI0(κ)
; µ ∈ R, κ > 0, x ∈ [0, 2π)

log f(x;µ, κ) = − log 2πI0(κ) − κ cos(x− µ),

where I0(κ) is a modified Bessel function of order 0.

Multinomial distribution:

f(x1, . . . , xk;n, p1, . . . , pk) =
n!

x1! · · ·xk!
px1

1 · · · pxk

k ;

pi > 0,
∑

i

pi = 1, Xi ∈ {0, . . . , n},
∑

i

Xi = n

log f(x1, . . . , xk;n, p1, . . . , pk) = log
n!

x1! · · ·xk!
+
∑

i

xk log pk
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Chapter 3

Properties of the VB Method

In Chapter 2 we introduced the working principle of the VB method, describe its implemen-

tation, and proposed a new general formalism for the variational solutions. In this chapter

we aim to provide the reader with concrete examples and show how to apply the develop-

ments in Chapter 2 to these real problems. In addition, this chapter is intended to give

insight into the general applicability and properties of the VB method.

3.1 Motivation

One major question associated with the VB method is how accurate are the approximations

in a given situation? We are also interested in the advantages VB possesses over other ap-

proximation methods, as well its disadvantages. The present chapter applies the variational

method, especially the developments from Chapter 2, to a variety of models and problems.

Through these numerical studies we aim to obtain insights into its general applicability and

properties. The present chapter investigates the following models: a Normal random sample

with unknown mean and variance, one-way random-effects model, the Ising model, linear

regression models, and finite mixture models. This set of models was selected to give a broad
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range of problems which occur in applied statistics, but of course it is not comprehensive in

any sense.

For these models, we study the mean structure approximations using VB, and show how

it is possible using VB approximations to approach model selection tasks such as determining

the dimensionality of a model, or variable selection. For different models, we apply different

strategies. In the linear regression model, the regression setup was embedded in a hierarchical

framework where latent variables are used to identify subset choices. In the finite mixture

of normals model, the number of components are determined by the number of components

whose mixing proportions are non-zero.

The present chapter also looks at some problems with the VB method. In particular, we

show VB might only converge to a local optimal point, and we also look at the effects of

choosing improper priors, and the effects of different choices of factorization scheme.

The chapter is organized as follows. In Section 3.2, we work through three models with

the complete variational solutions. In Section 3.3 we discuss the advantages of the VB

method, and look at its mean structure approximations. In Section 3.4, we discuss potential

problems.

3.2 Applications

In this section, we will work through three models: a normal random sample with unknown

mean and variance; a one-way random-effects model; a finite mixture model. These models

are well-established, but important and widely applicable. We first describe these models,

and then provide the variational solutions on them. The VB derivations are given step

by step, and we hope the ideas discussed in Chapter 2 are brought in gradually. These

applications will be repeated using as demonstrations and examples throughout the rest of

the dissertation.
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3.2.1 A normal random sample

Suppose that a set of observed data y = {yi}ni=1 are assumed to be independently and

identically normal distributed with unknown mean µ and variance σ2. We use L(y|µ, σ2)

to denote the likelihood function, and use π(µ) and π(σ2) to denote the priors. We choose

π(µ) = N(µ; γ, η2) and π(σ2) = IG(σ2;α, β) as the prior distributions, where γ, η2, α, and

β are hyper-parameters. This setting is referred to as a semi-conjugate prior (Gelman et al.,

1995). It is worth noting that the priors of π(µ) and π(σ2) are not conjugate to the likelihood

function in this setting.

In the VB learning, suppose that we choose a full factorization of q(µ, σ2) = q(µ)q(σ2).

Thus the function F of q(µ, σ2) is written as

F
(
q
)

=

∫

q(µ)q(σ2) log
L(y|µ, σ2)π(µ)π(σ2)

q(µ)q(σ2)
dµdσ2. (3.1)

The corresponding Lagrangian is given by

F̃
(
q(µ), q(σ2)

)
=

∫

q(µ)q(σ2) log
L(y|µ, σ2)π(µ)π(σ2)

q(µ)q(σ2)
dµdσ2

+λ1

(∫

q(µ)dµ− 1

)

+ λ2

(∫

q(σ2)dσ2 − 1

)

(3.2)

We then take the functional derivative of (3.2) with respect to q(µ) and equate to zero,

obtaining

∂F̃ (q(µ), q(σ2))

∂q(µ)
= log π(µ) − (log q(µ) + 1) +

∫

q(σ2) logL(y|µ, σ2)dσ2 + λ1 = 0

⇒ q̂(µ) =
1

Zµ
π(µ) exp

[∫

q̂(σ2) logL(y|µ, σ2)dσ2

]

, (3.3)
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where Zµ is the normalizing constant. The evaluation of (3.3) gives

q̂(µ) =
1

Zµ
exp

(

− 1

2η2
(µ− γ)2

)

exp

(

− n

2
(µ− ȳ)2Eq̂(σ2)[

1

σ2
]

)

,

= N(γvb, η
2
vb), γvb =

γ
η2

+ nȳEq̂(σ2)[
1
σ2 ]

1
η2

+ nEq̂(σ2)[
1
σ2 ]

, η2
vb =

1
1
η2

+ nEq̂(σ2)[
1
σ2 ]
, (3.4)

where ȳ is the sample mean. Similarly, we can obtain q̂(σ2) as

q̂(σ2) = IG(αvb, βvb), αvb = α +
n

2
, βvb = β +

S2

2
+
n

2
Eq̂(µ)[(µ− ȳ)2], (3.5)

where S2 is the total sum of squares of y. Note that computing q̂(µ) requires q̂(σ2) and

vice versa. Thus, iteration is needed to find a possible solution. A general algorithm for the

iterative update is discussed in Chapter 2.

This model will be used in this work in the following ways: in Section 3.3 to show the

computational advantages of VB; in Section 4.3.2 as a demonstration of our new diagnostics

methods.

3.2.2 The one-way random-effects model

In the one-way random-effects model, we consider J independent experiments, with experi-

ment j estimating the parameter θj from nj independent normally distributed data points,

yij, with a common unknown error variance σ2. We define yj as yj = (y1j, · · · , ynjj). Pa-

rameters θj are assumed independently drawn from a normal distribution with mean µ and

variance τ 2. The parameters of µ, τ 2 and σ2 are further treated as random variables. This
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model is given by

yij|θj , σ2 ∼ N(θj , σ
2),

θj |µ, τ 2 ∼ N(µ, τ 2),

σ2 ∼ π(σ2), µ ∼ π(µ), τ 2 ∼ π(τ 2) for i = 1, . . . , nj; j = 1, . . . , J, (3.6)

where π(σ2), π(µ), and π(τ 2) are prior distributions. To have these priors providing little

influence on the posterior distributions, we assign non-informative uniform priors for µ,

log(σ2), and τ 2. If we were to assign a uniform prior distribution for log(τ 2), the posterior

distribution would be improper. Thus, we get the prior distribution for µ, log(σ2), and

τ 2 is given by π(σ2, µ, τ 2) ∝ 1
σ2 . The joint distribution of y, θ1, · · · , θJ , σ2, µ, τ 2 is given as

follows:

p(y, θ, σ2, µ, τ 2) =

J∏

j=1

nj∏

i=1

φ(yij; θj , σ
2)

J∏

j=1

φ(θj;µ, τ
2)

1

σ2
, (3.7)

where φ(.) denotes the normal density function. We denote q(θ, σ2, µ, τ 2) as the VB approxi-

mation for the posterior distribution of p(θ, σ2, µ, τ 2|y). We assume q has a full factorization:

q(θ, σ2, µ, τ 2) =

J∏

j=1

q(θj)q(σ
2)q(µ)q(τ 2). (3.8)

It is straightforward to check that the distributions at each stage of model (3.7) all have a

parameter separate parameterization, and then Theorem 2.2 can be used. By plugging (3.7)
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into (2.17) or (2.19), we can obtain the following results:

q(θj) =N(gj, k
2
j ); gj = −

cnj

d
ȳ+j + a

b
e

a
b

+
cnj

d

, k2
j =

1
a
b

+
cnj

d

for j = 1, · · · , J

σ2 = IG(c, d); c =
n

2
, d =

1

2

(
J∑

j=1

nj∑

i=1

(yij − gj)
2 +

J∑

j=1

njk
2
j

)

q(µ) =N(e, f 2); e =
1

J

J∑

j=1

gj, f
2 =

b

aJ

q(τ 2) = IG(a, b); a =
J

2
, b =

1

2

J∑

j=1

((gj − e)2 + F 2) (3.9)

where IG denotes the gamma distribution. The VB algorithm requires an iterative updates

on the parameters of a, b, c, d, e, f 2, gj , k
2
j till they converge.

This model will be used in this work in the following ways: in Section 3.4.2 to demonstrate

the effects of choosing improper priors; in Section 3.4.3 to show the effects of choosing

different factorization schemes; in Chapter 5 for the Dirichlet process prior.

3.2.3 Finite mixture models

The density of a finite, K-component mixture of normals can be expressed as

f(xi|Ψ) =
K∑

j=1

πjφ(xi|µj, σ2
j ), (3.10)

where πj > 0,
∑K

j=1 πj = 1, φ is the normal density function, Ψ = (π, µ1, σ
2
1, · · · , µK , σ2

K).

By introducing a latent indicator variable zi = (zi1, · · · , ziK) ∼ Multinomial(1, π), (3.10)

can be written as

f(xi, zi|Ψ) =
K∏

j=1

{πjφ(x|µj, σ2
j )}zij . (3.11)
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Given a data set x = {xi}ni=1, the posterior distribution is given by

p(Ψ, z|x) ∝
n∏

i=1

f(xi, zi|Ψ)p(Ψ), (3.12)

where p(Ψ) is the prior distribution. Based on the conjugacy considerations, we choose the

priors as follows:

p(π) = Dir(π1, · · · , πK ; a1, · · · , aK), ai =
a0

K
, a0 > 0,

p(µj, σ
2
j ) = N

(

µj|σ2
j ; cj ,

σ2
j

d2
j

)

IG(σ2
j ; ej , fj) (3.13)

where a0, cj, d
2
j , ej, fj are hyper-parameters.

We choose a VB approximation of (3.12) which has a factorization of the form

q(Ψ, z) = q(π)
K∏

j=1

q(µj|σ2
j )q(σ

2
j )

n∏

i=1

q(zi).

The logarithm of the density function of f(xi, zi|Ψ) given in (3.11) can be written as

log f(xi, zi|Ψ) =
K∑

j=1

zij(log πj + logφ(x|µj, σ2
j )).

In addition, the logarithm of the density function of p(π) given in (3.13) can be written as

log p(π) ∝
K∑

i=1

(a0

K
− 1
)

log πi.

Then, it is straightforward to check that f(xi, zi|Ψ), p(π), and p(µj, σ
2
j ) all have a param-

eter seperation parameterization; and an application of Theorem 2.2 yields the following
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results,

q̂(z) =

n∏

i=1

multinomial(zi; 1, qi1, · · · , qiK),

qij =
exp

(
ψ(a′j) − ψ(

∑K
j=1 a

′
j) − 1

2
(log f

′

j − ψ(e
′

j)) − 1
2
(c

′

j − x
′

i)
2 e

′

j

f
′
j

− 1
2

1
d2j+

Pn
i=1 qij

)

∑K
j=1 exp

(
ψ(a′j) − ψ(

∑K
j=1 a

′
j) − 1

2
(log f

′

j − ψ(e
′

j)) − 1
2
(c

′

j − x
′

i)
2
e
′
j

f
′
j

− 1
2

1
d2j+

Pn
i=1 qij

,

q̂(π) = Dir(a
′

1, ..., a
′

K) ; a
′

j = aj +

n∑

i=1

qij ,

q̂(µj|σ2
j ) = N

(
c′j , d

′2
j

)
, c′j =

d2
jcj +

∑n
i=1 xiqij

d2
j +

∑n
i=1 qij

, d′2j =
σ2
j

d2
j +

∑n
i=1 qij

,

q̂(σ2
j ) = IG

(
e′j, f

′
j

)
, e′j = ej +

∑n
i=1 qij
2

, f ′
j = fj +

d2
j

2
(c′j − cj)

2 +
1

2

n∑

i=1

qij(c
′
j − xi)

2. (3.14)

VB again gives simple and conjugate approximations, and we can have the following obser-

vations on these variational parameters. The term
∑n

i=1 qij can be interpreted as the number

of times the state j being visited in the process. As n→ ∞, c′j converges to a sample average,

and the ratio of
f ′j
e′j

converges to a sample variance.

This model will be used in this work in the following ways: in Section 3.4.1 to study the

local convergence property of VB; in Section 3.4.3 to show the effects of choosing different

factorization schemes; in Section 3.3.2 to demonstrate how to use the VB to approach the

model selection problem; in Section 4.3.3 as a demonstration in the diagnostics methods.

3.3 The advantages

One major question associated with the VB method is how well the approximations work.

In this section, we particularly look at its approximation of the mean structure. In addition,

we compare its performance with MCMC methods through numerical studies.
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3.3.1 Tractability

A crucial computational advantage of the VB method lies in that it often provides analyti-

cally tractable marginal approximations. We demonstrate this by a simple example.

Let us revisit the model of a normal random sample with unknown mean and variance.

The exact conditional posterior distributions of p(µ|σ2, y) and the marginal posterior distri-

butions of p(σ2|y) are given by

p(µ|σ2, y) = N(γp, η
2
p), γp =

γ
η2

+ nȳ
σ2

1
η2

+ n
σ2

, η2
p =

1
1
η2

+ n
σ2

,

p(σ2|y) ∝ ηpφ(γp; γ, η
2)ϕ(σ2;α, β)

n∏

i=1

φ(yi; γp, σ
2),

where φ denotes the normal density function and ϕ denotes the inverse-gamma density

function. Despite the apparent simplicity of this model, the marginal posterior distribution

of p(σ2|y) has no simple conjugate form, and this density function is not easy to use, for

example computing moments. The marginal posterior distribution of p(µ|y) is also not easy

to evaluate. However, we can see that their variational approximation of q(µ) in (3.4) and

q(σ2) in (3.5) give very simple and conjugate forms.

For the one-way random-effects model, the finite mixtures of normal model, and most of

the models we present in this thesis, VB gives simple marginal distributions. One natural

question may be raised: how well these marginal approximations work? In the next section,

we will, in particular, look at the mean structure approximations by the VB method.

3.3.2 Mean structure approximations

Posterior means are commonly used point estimators in the Bayesian analysis, which mini-

mize the mean square error (MSE). In this section we are interested in variational approx-

imations for posterior means. We will study three different models; Ising, linear regression,
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and finite mixtures of normals. In the Bayesian setting, they present sufficiently complex

dependence structures where we can apply the variational principle. MCMC methods are

well-established with these models. Through a series of numerical studies, we will com-

pare VB with MCMC methods. These comparative studies will give the reader an initial

experience of how VB approximations can work. In addition, we will show how it is pos-

sible using VB approximations to approach model selection tasks such as determining the

dimensionality of a model, or variable selection.

The Ising model

We continue looking at the Example 2.1 and consider a special case of MRFs, an Ising

model. Graphically, an Ising model can be depicted by Figure 2.1 (b), where each xi ∈
χi = {−1,+1}, and ε(x) = −∑i

∑

j∼i xixj , where j ∼ i represents the neighbors of i but

not including i. In VB, we assume that the joint distribution p(x) is approximated by q(x)

which satisfies q(x) =
∏

i q(xi). The KL divergence is given by

KL(q(x)||p(x)) =
∑

i

∫

χi

q(xi) log q(xi)dq(xi)

−
∫

χ

∏

i

q(xi)(−βε(x) − log z(β))dq(x). (3.15)

Thus, q(xi) which minimizes (3.15), has the form,

q(xi) =
exp

{

β
∑

j∼i xiEq̂(xj)[xj ]
}

∑

xi
exp

{

β
∑

j∼i xiEq̂(xj)[xj ]
} ,

where we can see the expected values of the neighbors of i are used in the approximation.

This result is same as the mean-field approximation (Parisi, 1988). Again, each q(xi) requires

its neighboring q(xj) for j 6= i, hence a iterative update is needed.
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In our experiments, we consider a simple Ising model of size 64 × 64 with the value of

β = 0.1. Since the marginal distribution of p(xi) is intractable, we use a Gibbs sampler to

obtain samples from the true p(xi) and report the last sample. Meanwhile we draw samples

from the VB approximations directly. An examination of the graphical pattern presented

by these two sets of samples could provide us an intuitive comparison of q(x) and p(x).

We start the Gibbs sampler by setting the initial value of each xi randomly and indepen-

dently to be −1 or +1, referred to as a hot initial condition. A chain of size 106 is generated.

The program (in R) takes about 90 seconds on a MacBook computer (2 GHz Intel Core 2

Duo processor, 1 GB 667 MHz SDRAM, and Mac OS X 10.4.11). Figure 6.2(a) shows the

last sample simulation. In contrast, VB approximations take about 10 iterations (about 1.5

seconds) to converge. The convergence here refers to the convergence of the variational pa-

rameters, which is measured by specifying a threshold for the norm of the difference between

the values of the variational parameters in the last two iterations. We usually can choose

a threshold fox example as 10−4 Figure 6.2(b) displays the probability of xi being in state

+1 approximated by VB through a grey level on each site; black means Pr(xi = 1) = 0,

and white means Pr(xi = 1) = 1. Numerically the VB approximation on each xi reports

Pr(xi = 1) = 0.5±0.0001. Figure 6.2(c) shows samples drawn from the VB approximations.

We can see that the VB samples shown in Figure 6.2(a) and MCMC samples shown in Figure

6.2(c) exhibit similar patterns, where each xi is nearly randomly arranged.

Regression models

We consider the canonical regression setup,

Y |X, β, σ2 ∼MVN(Xβ, σ2In), (3.16)

where Y is n× 1, X is n× p, β = (β1, · · · , βp) and σ2 is a scalar.
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A Ising model with a cold initial : ! = 0.1

(a) The MCMC outputs

The grey levels indicate the probability of Prq(Xij = 1)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

the VB approximations at a cold initial for P(Xij = 1) when ! = 0.1

(b) The VB approx.

A Ising model, simulated from VB Approx. ! = 0.1

(c) The VB simulations

Figure 3.1: An Ising model with β = 0.1 and a hot initial

There exists extensive literature on finding strategies to approach the variable selection

problem in linear regression analysis. From a Bayesian perspective, one method is to consider

that each component of β is modelled as having come from one of two normal distributions

with different variances. By introducing a latent variable γi with a Bernoulli(wi) distribution,

we have

βi|γi ∼ (1 − γi)N(0, τ 2
i ) + γiN(0, c2i τ

2
i ), (3.17)

where ci and τi are hyper-parameters, and τ 2
i is chosen to be small and c2i large. When

γi = 0, βi is typically “close” to 0, while if γi = 1, βi would be more dispersed. Thus γi

can be regarded as an indicator of whether xi should be included in the model or not. This

setting can be found in the work of Mitchell and Beauchamp (1988); George and McCulloch

(1993); Chipman (1996); Brown et al. (1998); George and McCulloch (1997); Ntzoufras et al.

(2000). Given the data y, x and choices of ci and τi, we want to obtain the marginal posterior

of p(γ|y) and use it to decide about the model structure.

We choose the following prior distributions; π(γ) =
∏P

i w
γi

i (1 − wi)
1−γi and π(σ2) =

IG(a, b), where {wi}Pi=1, a, and b are hyper-parameters. Based on (3.16) and (3.17), the
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posterior distribution is given by

p(β, γ, σ2|y) ∝ f(y|β, σ2)f(β|γ)π(γ)π(σ2). (3.18)

We consider a VB approximation with factorization q(β, γ, σ2) =
∏p

i=1 q(βi)
∏p

i=1 q(γi)q(σ
2).

The logarithm of the density function of f(y|β, σ2) is given by

log f(y|β, σ2) ∝ −n log σ − 1

2σ2
(Y −Xβ)T (Y −Xβ),

which is a polynomial for each βi. In addition, the logarithm of the density for βi|γi in (3.17)

can be written as

(1 − γi) log φ(βi; 0, τ
2
i ) + γi log φ(βi; 0, c

2
i τ

2
i ).

Then the conditions for parameter seperation parameterization are satisfied. Applying The-

orem (2.2), we obtain,

q̂(βi) = N(µi, ν
2
i ), µi =

ei

li(
1−w′

i

τ2
i

+
w

′
i

c2i τ
2
i

+ 1
li
)
, ν2
i =

1
1−w′

i

τ2
i

+
w

′
i

c2i τ
2
i

+ 1
li

, i = 1, · · · , p,

ei =

∑n
t=1 ytxti −

∑n
t=1 xti

∑P
j 6=i xtjµj

∑n
t=1 x

2
ti

, li =
1

a′

b′

∑n
t=1 x

2
ti

q̂(σ2) = IG(a′, b′), a′ = a+
n

2
, b′ = b+

yTy − 2µTxTy + tr(xνxT + xµµTxT )

2
,

µ = (µ1, · · · , µP ), ν = diag(ν2
1 , · · · , ν2

P )

q̂(γi) = Bernoulli(w
′

i), w
′

i =
ek2iwi

ek2iwi + ek1i(1 − wi)
, i = 1, · · · , p,

k1i = − log ciτi −
1

2c2i τ
2
i

(µ2
i + ν2

i ), k2i = − log τi −
1

τ 2
i

(µ2
i + ν2

i ).

We see VB approximations are simple and well-recogonised distribution, in contrast, the

exact marginal posteriors of p(γ|y), p(β|y), and p(σ2|y) have no closed forms. We will use
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q(γi) to make inference on γi.

We consider two sets of simulated data and one real data set, which are used in George

and McCulloch (1993), where they used Gibbs samplers to obtain the posterior samples.

George and McCulloch proposed that after the chain has reached approximate stationarity,

the values of γi corresponding to the most promising subsets of xi will appear with the highest

frequency, because it is just those values which have largest probability under p(γ|y). Thus

a tabulation of the high-frequency values of γi can be used to identify the corresponding

subsets of predictors as potentially promising.

Example 3.1 Suppose there are p = 5 explanatory variables, and they follow X5×1 ∼
MVN(0, I5). We first generate 60 samples from X5×1, and then generate the dependent

variable according to the model

y = x4 + 1.2x5 + ǫ, (3.19)

where ǫ ∼ N(0, 1). We choose the values of the hyper-parameters of a = 2, b = 1 based on the

fact of Eπ(σ2)[σ
2] = b

a−1
, and set wi = 0.5 for which π(γ) turns to be a uniform distribution

on γ. The choices of τi and ci were discussed in detail in George and McCulloch (1993)

where the general principle is that “if βi ∼ N(0, τ 2
i ), then βi can be approximately replaced

by 0 since |βi| ≤ 3τi”, and if βi ∼ N(0, c2i τ
2
i ), “one would want to choose ci large enough

to give support to values of βi that are substantively different from 0, but not so large that

unrealistic values of βi are supported”. Here, we set τi = 0.1, ci = 30, for i = 1, · · · , p.

In experiments, we generate 200 data sets from model (3.19). For each data set, we

randomly generate initial values to start VB, and the VB method converges less than 10

iterations, and gives almost exactly same results. Table 3.1 gives the average value of the

probability of γi = 1 under the VB approximation for these 200 data sets, and the numbers

in parenthesis are the standard deviations. It clearly shows that VB suggests that x4 and x5
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should be included in the final model.

Table 3.1: The VB approximation of q(γ) in Example 3.1

β1 β2 β3 β4 β5

q(γi = 1) 0.047(0.0053) 0.048(0.0083) 0.047(0.0079) 1.000(0) 1.000(0)

Table 3.2: High Frequency Models in Example 3.1 (George and McCulloch, 1993)

Model predictors 5 4, 5 2, 5 2, 4, 5
Frequencies 0.258 0.242 0.070 0.055

Table 3.2 (cited from George and McCulloch (1993)) gives the four highest frequency

values of γ estimated by Gibbs samplers. The two most frequent models are y = f(x5) and

y = f(x4, x5). We can see that the predictor of x4 are often excluded, and there are non-

negligible probabilities for the models which include x2. Thus we may conclude that VB has

found the correct structure

Example 3.2 This example is similar to Example 3.1, except that x3 is replaced by x3 =

x5 + 0.15κ, κ ∼ N(0, 1), yielding a very high correlation between x3 and x5 (the corre-

lation coefficient is about 0.98). The response variable was generated according to y =

x4 + 1.2x5 + ǫ, ǫ ∼ N(0, 1). We still generate 200 data sets from this model. For each data

set, we randomly generate initial values to start VB, and the VB method converges within

10 iterations. Table 3.3 shows the result for one of the 200 data sets. For some of the data

sets, VB will pick up x3, while for the others, VB will choose x5. The different choice on x3

or x5 may be mainly due to the strong proxy of x3 for x5. However, the positive aspect is

that VB can always identify x4. Table 3.4 gives the most frequent models suggested by Gibbs

samplers. The Gibbs sampler seems to be more diluted by this proxy. The predictor of x4

can not be identified in the first two most frequent models.
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Table 3.3: The VB approximation of q(γ) in Example 3.2

β1 β2 β3 β4 β5

q(γi = 1) < 0.05 < 0.05 1.000 1.000 < 0.05

Table 3.4: High Frequency Models in Example 3.2 (George and McCulloch, 1993)

Model predictors 3 5 3,4 4, 5
Frequencies 0.146 0.123 0.098 0.086

Example 3.3 The Hald data (Draper and Smith, 1981), which has been used by various au-

thors to illustrate variable selection procedures, consists of n = 13 observations on a depen-

dent variable Y (which is the heat evolved during a chemical reaction) and p = 4 independent

variables. The inclusion of x1 and x2 is favored by conventional selection procedures (Draper

and Smith, 1981). We set wi = 0.5, a = 2, b = 1, and τi = 0.6, ci = 60, for i = 1, · · · , p.
The VB method converges after 253 iterations and only favors x1 being included (Table 3.5).

This result slightly differs from the conventional procedures since x2 is not favored by VB.

The most frequent models suggested by the Gibbs sampler is tabulated in Table 3.6

Table 3.5: The VB approximation of q(γ) for the Hald data

x1 x2 x3 x4

q(γi = 1) 0.92061674 0.09733090 0.03404244 0.02277744

Table 3.6: High Frequency Models for the Hald data (George and McCulloch, 1993)

Model predictors None 1 4 3 2 1,2 1,3 1,4
Frequencies 0.44 0.25 0.07 0.06 0.05 0.03 0.03 0.03
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Finite mixture models

The variational solution for a mixture of normals model has been derived in (3.14) in Sec-

tion 3.2.3. Again, VB gives simple and well-recogonised distributions for the marginal or

conditional marginal approximations. Making inference on the number of components is a

fundamental and challenging problem in the application of finite mixture models. A large

number of statistical methods have been proposed and investigated over the past a few

decades. In this section, we propose an empirical means to estimate the number of com-

ponents, which uses the marginal approximation for the mixing proportions. We compare

its performance with the sampling based method, in particular, the reversible jump MCMC

(RJMCMC), Green (1995).

Example 3.4 Since q(π) is a Dirichlet (see (3.14)), then we have E[πj ] =
a′j

PK
i=1 a

′
j

=

aj+
Pn

i=1 qij
a0+n

, where
∑n

i=1 qij can be interpreted as the number of observations from compo-

nent j. We usually choose aj to be small with respect to sample size n, then the zero value

of
∑n

i=1 qij will result in E[πj ] close to zero. We refer the component with E[πj ] close to zero

as an empty component. Our approach to the order selection problem is selecting the number

of the non-empty components.

In the numerical studies, we consider a three component mixtures of normals, and use

a simulated data. We generate a sample of size 400 (Figure 3.2) from the model of f(x) =

0.3φ(x; 0, 12) + 0.4φ(x; 2, 0.72) + 0.3φ(x; 4.5, 0.82). For the VB method, we will assume no

knowledge about the exact number of components, and, in fact, mis-specify it as 10. This

allows redundancy and potentially over-fitting. The hyper-parameters are chosen as follows:

we set a0 = 0.0001; we divide the data to 10 groups according an ascending order, and then

set cj equal to the mean of each group, and ej = 2, fj equal to the variance of each group (see

Section 3.2.3 for the definition of a0, cj, ej, and fj). The VB algorithm is given in Algorithm

2. The variational parameters are updated in the order of a
′

j first, then c
′

j, e
′

j, and f
′

j last.

To start the iterations, we set
∑n

i=1 qij = 400
10

= 40 for each j, and
∑n

i=1 xiqij = c×∑n
i=1 qij,
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where c is sampled from N(cj, fj).
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Figure 3.2: Simulated data for a 3 component normal mixture model

Algorithm 2 Variational Bayes algorithm for the mixtures of normal model

Initialization
while a

′

j , c
′

j , d
′2
j , e

′

j , and f
′

j do not converge do

According to the formula given in (3.14), computing a
′

j , c
′

j , d
′2
j , e

′

j , and f
′

j respectively.
end while

The convergence of the variational parameters is determined by specifying a threshold for

the Euclidean distance between the parameter estimates in the last two iterations. For this

particular data set (Figure 3.2), we set the threshold to be 10−4, it takes 283 iterations for

VB to converge. Table 3.7 gives the posterior means under the VB approximations for all

model parameters. We can see that, except for E[π1], E[π7] and E[π10], the expected value of

mixing proportions for the the rest of the components are very close to zero. This implies

that VB suggests 3 components for this data set. In fact the number of 1.25e-08 exactly

equals
aj

n+a0
, where aj = 0.00001, a0 = 0.0001 and n = 400. Moreover, we can see from Table

3.7 the mean values of µj and σ2
j of component of 1, 7, 10, are reasonably close to the actual
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model parameters.

Table 3.7: The numerical results for the VB approximations in Example 3.3

E[π1] E[µ1] E[σ2
1 ] 0.297 -0.064 0.778

E[π2] E[µ2] E[σ2
2 ] 1.25e-08 -0.046 0.038

E[π3] E[µ3] E[σ2
3 ] 1.25e-08 0.765 0.065

E[π4] E[µ4] E[σ2
4 ] 1.25e-08 1.428 0.020

E[π5] E[µ5] E[σ2
5 ] 1.25e-08 1.813 0.011

E[π6] E[µ6] E[σ2
6 ] 1.25e-08 2.171 0.009

E[π7] E[µ7] E[σ2
7 ] 0.386 1.957 0.284

E[π8] E[µ8] E[σ2
8 ] 1.25e-08 3.609 0.055

E[π9] E[µ9] E[σ2
9 ] 1.25e-08 4.384 0.043

E[π10] E[µ10] E[σ2
10] 0.318 4.353 0.783

In RJMCMC method, the order of K is treated as a random variable. We use a discrete

uniform(1, · · · , Kmax) with Kmax = 15 as a prior. Each RJMCMC iteration contains an up-

date on {πj , µj, σ2
j}Kj=1 and {zi}ni=1 with an ordering constraint on µj, a splitting or combining

move, and a birth or death move. The pseudo-code for RJMCMC is given in Algorithm 3.

It obversely shows that in contrast to the simple arithmetic operations in the VB algorithm

(Algorithm 2), each iteration in the RJMCMC algorithm demands non-trivial computational

efforts. Furthermore, to ensure that the generated chain is indeed converged, we may have

to run a large number of iterations for RJMCMC, for example, 1× 106 iterations. However,

it only takes 283 iterations for VB to converge. Therefore, the computational advantage of

the VB method is clear.

For RJMCMC we run 2×106 iterations for this data set. The acceptance rates of splitting,

combining, birth, and death are 0.1083, 0.1659, 0.0877, and 0.9055 respectively. Figure 3.3(a)

shows that the MCMC algorithm mixes well over K. Histogram (Figure 3.3(b)) shows there

are several competing explanations of the data. The model with 3 components has the largest

posterior probability (Table 3.8). However, there are also large posterior probabilities for

other models, for example, 2,4,5, and 6 components. This can be explained as the effects
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Algorithm 3 RJMCMC algorithm for the mixtures of normal model

Initialization.
while t < the iteration number do

1. Given the current value of K, generating samples for µj, j = 1, · · · , K, and check-
ing the ordering constraints on µj. If ordering constraints are not satisfied, dis-
carding µj and using the values in previous iteration.

2. Given µj, generating samples for πj ,σ
2
j , for j = 1, · · · , K, and {zi}ni=1

3. Splitting one mixture component into two, or combining two into one
(a) making a random choice between splitting or combining
(b) For splitting

i. Randomly choosing one component
ii. Creating two new components based on the selected component.

Checking the adjacent condition for the newly created components.
If not satisfied, then the splitting is rejected

iii. Reallocating all those observations yi to the new components
iv. Computing µ∗

i , σ
∗
i
2, π∗

i , i = 1, 2 for the new components.
v. Computing the acceptance probability, and rejecting or accepting the

splitting
(c) For combining

i. Randomly choosing two adjacent components
ii. Merging two components to form a new one, and reallocating all those

observations yi to the new component
iii. Computing µ∗, σ∗

i
2, π∗ for the new component

iv. Computing the acceptance probability, and rejecting or accepting the
combining

4. The birth or death of an empty component
(a) making a random choice between birth or death
(b) For birth

i. Creating a new component with corresponding µ∗, σ∗2, π∗

ii. Rescaling the existing πj
iii. Computing the acceptance probability, and rejecting or accepting the

birth
(c) For death

i. Randomly choosing an empty component
ii. Rescaling the existing πj
iii. Computing the acceptance probability, and rejecting or accepting the

death
t⇐ t+ 1

end while
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of splitting moves and birth moves, mainly due to splitting moves since the acceptance rate

of splitting is about 11%. As the adjacent condition (see Algorithm 3), the newly created

components would surround the original split component, and they would tend to close to

each other in terms of their means.

Given K = 3, trace plots (Figure 3.4(a), 3.5(a), 3.6(a)) shows good mixing patterns

within a fixed number of K. Histograms (Figure 3.4(b), 3.5(b)) still shows evidence of label

switching, and therefore the moments computed by those samples might loses interpretability.

Table 3.8: The posterior distribution of K given by the RJMCMC method in Example 3.3

K = 1 2 3 4 5 6 7 8
p(K|y) 0.044 0.211 0.301 0.219 0.121 0.057 0.026 0.011
K = 9 10 11 12 13 14 15
p(K|y) 0.006 0.002 0.001 < 0.001 < 0.001 < 0.001 < 0.001

(a) A trace plot of K (b) Histogram of K, last 10% samples

Figure 3.3: Samples of K generated by the RJMCMC in Example 3.3
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(a) Trace plots of πj , K=3
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(b) Histograms of πj , K=3, last
10% samples

Figure 3.4: Samples of πj generated by the RJMCMC method, when K = 3, in Example 3.3

(a) Trace plots of µj , K=3
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10% samples

Figure 3.5: Samples of µj generated by the RJMCMC method, when K = 3, in Example 3.3
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(a) Trace plots of σ2

j , K=3
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Figure 3.6: Samples of σ2
j generated by the RJMCMC method, when K = 3, in Example 3.3

3.4 Some properties

In previous section, we have seen that VB can provide a good posterior mean structure

approximation, and we show how we can use the posterior mean to make inference on model

structures. In this section, we intend to discuss more its theoretical properties and give

insight into its general applicability.

3.4.1 Local optimization

The convergence of the VB algorithm may only be to a local maximum. We illustrate this

local convergence property by an example of a two component mixtures of normals problem,

for which the variances and mixing proportion of each component are assumed known. The

parameters of interests are the means of each component. For a demonstration purpose, we

have the following model,

f(x) = 0.3φ(x;µ1, 0.6) + 0.7φ(x;µ2, 1.5), (3.20)
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where µ1 and µ2 are parameters of interest. Suppose that 100 samples are generated from

(3.20) with µ1 = −2 and µ2 = 4 and this data set is shown in Fig 3.7.

Histogram of mixdata
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1
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0.
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4

Figure 3.7: The simulated data of a two component mixtures of normals model.

We choose N(cj , d
2
j) as the priors for µj, where cj and d2

j are hyper-parameters, for

j = 1, 2. As we have already derived in Section 3.2.3, the VB approximations of the posterior

distributions of µj are given by, qj(µj) = N(c′j , d
′2
j ). The function F is given by

F (q1, q2) = −1

2

2∑

j=1

(c′j − cj)
2

d
′2
j

+

100∑

i=1

log

( 2∑

j=1

e
−

(xi−c′j )2

2σ2
j

)

,

which is a function of c
′

j , j = 1, 2.

When choosing different starting points on the plane of (c′1, c
′
2), for example, (1,−4),

(9,−5.4), (7.5, 9), (2, 8.5), (−4,−4), the function F (Figure 3.8) converges to one of two

maxima, −180.92 at (4.23,−1.58) and −112.00 at (−2.16, 4.18).

3.4.2 Improper priors

Improper priors have been studied by many researchers (Jeffreys, 1961; Hartigan, 1964;

Berger, 1985; Box et al., 1978; Bernardo and Smith, 1994). When using them, one must
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Figure 3.8: The left panel is the function of (c′1, c
′
2). The right panel shows the different

convergence paths starting from different points.

always check the posteriors are in fact proper. The following two cases show an improper

prior can lead to an improper VB approximation.

Example 3.5 (Improper VB posteriors). Section 3.2.2 provides the variational solution

for the one-way random-effects model, where the VB approximation of q(τ 2) is given by

q(τ 2) =
π(τ 2)(τ 2)−

J
2 e−

b

τ2

∫
π(τ 2)(τ 2)−

J
2 e−

b

τ2 dτ 2

where π(τ 2) is the prior distribution on τ 2 and b > 0. If we assume there are only two exper-

iments, that is J = 2, and choose π(τ 2) ∝ (τ 2)2, then q(τ 2) is an improper densityfunction.

Example 3.6 (Failure to converge). We still consider the one-way random-effects model,

and apply this model to a real data set, the coagulation time data (Box et al., 1978) (Table

3.9), which contains coagulation time in seconds for blood drawn from 24 subjects randomly
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allocated to four different diets. As given in (3.9), under a full factorization, the VB approx-

Table 3.9: The coagulation time data (Box, Hunter and Hunter, 1978)

Diet Measurements

A 62, 60, 63, 59
B 63, 67, 71, 64, 65, 66
C 68, 66, 71, 67, 68, 68
D 56, 62, 60, 61, 63, 64, 63, 59

imations for p(τ 2|y) and p(µ|y) are given by

q(τ 2) = IG(a, b), a =
J

2
− 1, b =

1

2

J∑

j=1

((gj − e)2 + f 2)

q(µ) = N(e, f 2), e =

∑J
i gj
J

, f 2 =
b

aJ

(a) Using improper priors (b) Using informative priors

Figure 3.9: The convergence of parameters b and f 2

Figure 3.9(a) shows the values of variational parameter of b and f 2 during the 2000 iter-

ations, and the lack of convergence is obvious. We think the improper prior on µ causes the

convergence failure. To see this, we use an informative prior for µ and keep non-informative
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priors for τ 2 and log(σ2),

π(µ, τ 2, σ2) ∝ φ(µ; s, t2)
1

σ2
,

where is a normal density function. Thus, the VB approximation of q(τ 2) and q(µ) are given

by

q(τ 2) = IG(a, b), a =
J

2
− 1, b =

1

2

J∑

j=1

((gj − e)2 + f 2)

q(µ) = N(e, f 2), e =

∑J
i gj
J

, f 2 =
1

1
t2

+ aJ
b

.

Due to the term 1
t2

in f 2, both values of b and f 2 are converged after 18 iterations (see Figure

3.9(b)).

3.4.3 Factorization effects

On one hand, factorization makes possible tractable integrals. However this means that the

approximation is missing the actual posterior dependence, and there is a cost to this. We

call this a factorization effect. Consider then the following two examples

Example 3.7 (Example 3.5 continued). The convergence failure of variational param-

eters of b and f 2 in q(τ 2) and q(µ) in Example 3.5 can be interpreted alternatively as a

factorization effect caused by using a full factorization. To see this, still using improper

priors, a conditional factorization gives

q(τ 2) = IG(a, b); a =
J

2
, b =

1

2

J∑

j=1

((gj − e)2 + k2
j )

q(µ|τ 2) = N(e, f 2); e =
1

J

J∑

j=1

gj, f
2 =

τ 2

J
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The variational parameter b converges after 18 iterations (Figure 3.10) .

Figure 3.10: The convergence of parameters b

Example 3.8 Dependency. An obvious problem in VB approximations is some of depen-

dency intrinsic in posterior distributions would be lost due to factorization constraints. Let’s

revisit the finite mixture model introduced in Section 3.2.3, and consider a two component

mixture of normals model,

f(x|p, µ1, σ
2
1, µ2, σ

2
2) = pφ(x;µ1, σ

2
1) + (1 − p)φ(x;µ2, σ

2
2)

where p, µ1, σ
2
1 , µ2, σ

2
2 are parameters of interest. We simulate a sample of size 200 from the

model f(x) = 0.4φ(x; 1, 1) + 0.6φ(x; 3.5, 0.52), and the priors are chosen as,

π(p) = Beta(a, b), π(µi, σ
2
i ) = N(µi; ci, σ

2
i /d

2
i )IG(σ2

i ; ei, fi), for i = 1, 2,

where a, b, ci, d
2
i , ei, fi are hyper-parameters. The posterior is given by

p(p, µ1, σ
2
1, µ2, σ

2
2|x) ∝ π(p)

2∏

i=1

π(µi, σ
2
i )

n∏

j=1

f(xj|p, µ1, σ
2
1, µ2, σ

2
2). (3.21)
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The correlation matrix is given in Table 3.10. It is obvious that under a full factorization

the VB approximation of q(p, µ1, σ
2
1, µ2, σ

2
2) = q(p)q(µ1)q(σ

2
1)q(µ2)q(σ

2
2) can not capture these

correlation structures.

Table 3.10: The correlation matrix of simulated data, a two component mixtures of normals

p µ1 σ2
1 µ2 σ2

2

p 1 0.83 0.81 0.69 -0.60
µ1 0.83 1 0.94 0.84 -0.66
σ2

1 0.81 0.94 1 0.73 -0.76
µ2 0.69 0.84 0.73 1 -0.50
σ2

2 -0.60 -0.66 -0.76 -0.50 1

The loss of the correlation structure in VB approximations is an inevitable problem. It

will be an interesting topic if we can recover the true posterior covariance by only using VB

approximation. We propose three methods to achieve this goal. More details can be found

in Chapter 4

3.5 Discussion

The present chapter applies variational methods to a variety of models, including: a normal

random sample with unknown mean and variance, the one-way random-effects model, the

Ising model, linear regression models, and finite mixture models. Through a series of nu-

merical studies, we show that VB can provide good mean structure approximations; we also

show how it is possible, using VB approximations, to approach model selection tasks such

as determining the dimensionality of a model, or variable selection.

The chapter also explores general applicability and properties of VB. We show that

the convergence of VB may only be to a local maximum. Improper priors might result
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in improper approximations or convergence failures. Although factorization makes possible

tractable integrals, it comes with a cost. We show factorization might result in convergence

failures, and by definition, the dependence structure is distorted.

We are particularly interested in the last problem stated above. That is, how well the

approximations can represent the true posteriors, especially the covariance structure, and

whether we can estimate their actual covariance matrix by using only the information pro-

vided by the VB approximations. The next chapter will investigate these questions.
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Chapter 4

Diagnostics for the VB Method

In Chapter 3 we see that the VB method has shown itself to be a powerful approximation

method in many applications. This Chapter describes some diagnostics methods which can

assess how good the VB approximation to the true posterior is, particularly with regards to

its covariance structure. The methods proposed also allow us to generate simple corrections

when the approximation error is large. It looks at joint, marginal and conditional aspects of

the approximate posterior and shows how to apply these techniques in both simulated and

real data examples.

4.1 Motivation

The present chapter looks at diagnostics tests to evaluate the quality of VB solutions. As

is typical with diagnostic testing in statistics - think of diagnostic testing in regression

analysis for example - we look at necessary conditions for adequacy. A VB solution may be

inadequate from a number of perspectives. Here we list some of the most important. Firstly,

by definition the posterior covariance structure is distorted, so both posterior variances and

correlations can be wrong. Secondly, VB convergence is only local, hence it might miss other
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‘better’ solutions. In particular it might focus on a single mode of a multimodal solution.

Thirdly, there may be errors in higher order posterior moments, such as skewness or kurtosis.

A given diagnostic test is designed to detect a particular kind of error, and the key idea of

the present chapter is to make available a number of computationally fast diagnostics, with

a computation time of the order of the VB itself, which target particularly common forms

of inadequacy, specifically the first on the list above.

The essence of the VB method relies on making simplifying assumptions about the pos-

terior dependence of a problem. This results in a high dimension integral being decomposed

into a set of low dimensional ones which may be expected to be more tractable. The appli-

cations and examples shown in Chapter 3 have demonstrated that the VB method is very

computational efficiency with respect to sampling based methods, for example, reversible

jump MCMC (Green, 1995) may require many millions of iterations to obtain posterior

samples for a finite mixture of Normals, however, the VB approximations can need only a

few hundred. Moreover, in Section 3.3 we study the variational approximations to posterior

mean structures, and show that VB can give good approximations and is good at finding

overall structural features – such as the number of components in a mixture, and the variable

selection in regression problem.

However through various numerical studies we observe that sometimes the posterior

variance can be underestimated, and by definition the general posterior dependence structure

is distorted. This underestimation of the variance has also been reported by other researchers,

for example, Bishop (2006); Rue et al. (2009). This motivates the work in this Chapter to

develop diagnostics to see how well the VB approximations represent the actual posterior

distributions, and to some extent to provide corrections when these errors are large. We

emphasize that these tests are only designed for these forms of error and may not detect

errors of different kind.

We propose three diagnostics methods which only use the information obtained from VB
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approximations. The first method looks at the the joint posterior distribution and attempts

to find an optimal affine transformation which links the VB and true posteriors. The sec-

ond method is based on a marginal posterior density approximation technique proposed by

Tierney et al. (1989). Here we work in specific low dimensional directions to estimate true

posterior variances and correlations. The third method based on a stepwise conditional ap-

proach allowing us to construct and solve a set of system of equations which lead to estimates

of the true posterior variances and correlations.

We also proposes a novel method to calculate the variance of a marginal or conditional

distributions of the posterior. This method uses an independent Metropolis-Hastings algo-

rithm with the proposal kernel being given by the VB approximations. Instead of using

the sample moments, the variance of the target distribution is computed by reading the

acceptance probability of the generated MCMC chain.

This chapter is organized as follows. Section 2 presents the proposed methods in details.

The applications of the methods on the simulated data and real-world data are provided in

Section 3. Conclusions and discussions are available in section 4.

4.2 The three diagnostic methods

We consider the posterior distribution of a p−dimensional vector parameter θ = (θ1, · · · , θp),
with density function p(θ|x) where x is an independent and identically distributed random

sample. We denote the VB approximation by q(θ). We denote the true posterior mean by

µ = (µ1, · · · , µp), the covariance matrix by Σ with variance of σ2
i , i = 1, · · · , p and correlation

coefficients by {ρij}.
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4.2.1 Optimal affine transformations of joint distributions

We denote the random vector associated with a VB approximation by η. We search for an

optimal affine transformation of η (denoted by Aη + B,where A is a p× p matrix and B is

a p × 1 vector) to get close to θ, the random vector associated with the true posterior. To

find the values of A and B, we generate an independent random sample of size n from the

VB approximations, denoted as {ηi}ni=1. The values of A and B are obtained by maximizing

a likelihood function

Lik(A,B) :=
n∏

i=1

(p(θi|y;A,B)| det(A)|), (4.1)

where θi = Aηi+B, and det(A) is the determinant of A and the corresponding estimates are

denoted by Â and B̂. Sampling from q(η) is typically straightforward since q(η) usually has

a factorization form of q(η) =
∏p

i qi(ηi), and qi(ηi) often have a well-known distributional

form. The maximization of (4.1) with respect to A and B is possible because it does not

require the unknown normalizing constant of the posterior, p(θ|x).

For small or medium dimensional problems we only restrict the transformation matrix A

to be general lower triangular, with the positive diagonal elements for identification reasons.

For more complex problems sparser classes of matrices can be used, trading off the accuracy

of the test with speed.

4.2.2 Marginal approximations

This method considers a projection of the vector parameter θ in a direction α, denoted as

αTθ. The variance of αT θ is given by αTΣα, which is a function of {σ2
i }pi=1 and {ρij}. If we

have the projections in different directions, we can obtain a system of equations which can

be easily solved to obtain the values of {σ2
i }pi=1 and {ρij}.
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The key computation of this method is to calculate the value of the marginal variance. In

order to be computationally efficient and exploit the VB solution we propose the following

new method.

Suppose p(θ) is a target distribution and q is a proposal distribution. The independent

Metropolis-Hastings (IMH) algorithm will produce a transition from θ(t) to θ(t+1) described

in Algorithm 4. Theorem 4.1, proved in Appendix, establishes a connection between the

expected acceptance probability, or the expected acceptance rate (EAR) and the closeness of

the target distribution p(θ) and the proposal distribution q measured in Kullback-Leibler

(KL) divergence.

Theorem 4.1 If there exists a constant M such that p(θ) < Mq(θ), then KL(p||q) < log(M)

and the expected acceptance rate (EAR) is at least 1
M

when the chain is stationary.

Heuristically Theorem 4.1 states the closer the target and the proposal, the higher the

EAR. It is obvious that when p(θ) and q are identical, the optimal acceptance rate equals

to one. This result is different from other types of Metropolis-Hastings algorithms. For

examples, for random-walk Metropolis-Hastings algorithm the optimal acceptance rate is

close to 0.234 (Roberts et al., 1997); for Metropolis adjusted Langevin algorithms an overall

acceptance rate is close to 0.574 (Roberts and Rosenthal, 1998).

Algorithm 4 Independent Metropolis-Hastings (IMH) algorithm

Given θ(t)

Step 1 propose ηt ∼ q.

Step 2 Accept

θ(t+1) =

{

ηt with prob. min
{
p(ηt)q(θ(t))

p(θ(t))q(ηt)
, 1
}

;

θ(t) otherwise.

Motivated by this general result, first consider a special case in which the target distribu-

tion is a univariate normal with mean of µ and variance of σ2
t and the proposal distribution
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is a normal with the same mean and variance σ2
p (assume σ2

p > σ2
t ). It can be shown that

the EAR is monotone decreasing as the proposal variance of σ2
p increases. Conversely, it

says that given a fixed value of proposal variance of σ2
p, the value of the target variance σ2

p is

one-to-one correspondence to the value of EAR. This implies by monitoring the acceptance

probability, we can obtain the value of the target variance. A table of expected acceptance

rate versus the value of target variance is given in the Appendix.

After this motivation let us consider the method in practice. Consider two basics facts:

firstly posteriors approach to normality when sample size is large, and secondly VB provides

good mean structure approximations. Hence we propose a new method to compute the target

variance. We call it a VB Adjusted Independent Metropolis-Hastings method (VBAIMH).

The variance of the target distribution is obtained by checking the acceptance rate for a

standard normal kernel centred at the VB mean, being used as the proposal. In fact, the

idea of using acceptance rates to compute the target variances can be further extended to

using acceptance rates as a key diagnostic to how close the VB distribution is to the true

posterior. More discussion can be seen shortly.

The new approach above has several advantages. First it does not require any particular

tuning tricks to run the IMH algorithm. We only need the posterior mean values produced

by the VB approximation to configure the proposal kernel. This is a significant advantage

over other MCMC methods, for example, the ordinary Independent Metropolis-Hastings,

or random walk Metropolis-Hastings, in which the implementation issues are the major

concerns.

Secondly, this VB kernel allows the MCMC chain to locate the regions of high posterior

probability more efficiently, since the proposal kernel is around the posterior mode, at least

locally; then we only need a short chain to compute acceptance rates. This is another

significant advantage over the other MCMC methods, where the computational cost can be

a big concern. While the IMH algorithm is well known to perform poorly in high dimensions
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(Geweke, 1989), in this method we are sampling from a univariate distribution defined by

the projections.

Third, when an acceptance rate is low, the generated sample may not represent the target

distribution well, and the moments calculated upon these samples can be wrong. However,

a low acceptance rate on its own reflects a significant discrepancy between the target and

the proposal.

It is worth noting that when the projection is along the direction of a single parameter

of θi: that is, for example, we set α = (1, 0, · · · , 0), the VBAIMH can provide a possible

mechanism to calibrate the EAR as a diagnostic tool to measure inaccuracy in the marginal

approximations of VB, by using q(θi) directly as the proposal distribution. When the accep-

tance rate is low, it clearly indicates the approximation will be inaccurate. Thus it gives us

two uses: firstly a diagnostics tool in the general case and secondly it is possible to give a

correction to the VB approximation. More discussion can be found in Section 4.4.

The above idea can be further extended to more general situations, where the diagnostics

are targeted to more specific errors. For example, if only a subset of parameters is of

immediate concern, which is of particular usefulness in the high dimensional problems.

To run an IMH algorithm we also need to know the density function of αTθ, at least

proportional to a normalizing constant. Tierney et al. (1989) proposed an elegant marginal

approximation of this posterior distribution.

Suppose the parameter of interest is ω = g(θ), where g is a continuous real-valued function

on Rp. The posterior distribution of p(ω|x) can be approximated as follows

p(ω|x) ∝ p̂(ω|x)
|Rω|1/2(bTωR−1

ω bω)1/2
, (4.2)

where
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p̂(ω|x) = sup
θ:g(θ)=ω

p(θ|x), bω =
∂g(θ)

∂θ

∣
∣
∣
θ=θω

,

Rω =
∂2 log p(θ|x)

∂θθT

∣
∣
∣
θ=θω

,

and θω conditionally maximizes p(θ|x) with respect to θ for each given ω.

4.2.3 The conditional stepwise method

The unknown quantities in a true posterior covariance matrix Σ are {σ2
i }pi=1 and {ρij} and

the difference between these and the VB versions which we are using as our diagnostics. The

stepwise method looks at conditional distributions constructed from the true posterior and

compares them to ones based on the VB solution. Algorithm 5 gives a description on the

proposed method. The three steps can be explained as follows.

Step 1 uses a linear transformation of Y = Qθ to scale the variances of {σ2
i }pi=1 to be

the ratios of {σ2
i }pi=1 over their variational estimations, and uses a linear transformation of

Z = MY to further scale these ratios to be one, which only leaves {ρij} in Σ to be found.

Step 2 finds a series of conditional bivariate random vector Uij , to which the eigenvalues

of their covariance matrix can be computed numerically after a rotation.

Step 3 constructs a system of equations of fk({ρij}) by linking the analytical expression

of the correlation coefficient for the conditional bivariate Uij , obtained based on the posterior

normality (when sample size is large), to their numerical values of rk, obtained by using the

relationship between eigenvalues, and variances and correlation coefficients in a bivariate

covariance matrix. The values of {σ2
i }pi=1 can be obtained by reversing Step 1.

The key computations in Algorithm 5 involve computing the values of a univariate

conditional or marginal variances, that is m2
i , i = 1, · · · , p in Step 1 and λ2

k,1 and λ2
k,2,
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Algorithm 5 The stepwise method
Step 1

• Define Y = Qθ and µs = Qµ = (µs1, · · · , µsp), where Q =
(

1
varqi

(θi)

)

is a diagonal

matrix. Denote Yi|Y−i as the conditional Yi conditioning on Yj = µsj, j 6= i.

• Denote m2
i = var(Yi|Y−i). Obtain m2

i , i = 1, · · · , p, numerically.

• Define Z = MY , and µss = Mµs = (µss1 , · · · , µssp ), where M =
(

1
mi

)

is a diagonal

matrix. .

Step 2

• Denote Uij = Zij |Z−ij, i 6= j as the conditional bivariate (Zi, Zj) conditioning on
Zt = µsst , t 6= i, j.

• Let R =

(
cos(π

4
) − sin(π

4
)

sin(π
4
) cos(π

4
)

)

. Define Vk = (Vk,1, Vk,2) = RUij , where k =

1, · · · , p(p−1)
2

for all the pair of i 6= j. Denote λ2
k,1 = var(Vk,1) and λ2

k,2 = var(Vk,2).

• Obtain λ2
k,1 and λ2

k,2, k = 1, · · · , p(p−1)
2

, numerically.

Step 3

• Based on the posterior normality assumption, compute the correlation coefficient for
the conditional bivariate Uij, and denote it as fk({ρij}), where k = 1, · · · , p(p−1)

2
, for

all the pair of i 6= j.

• Compute rk =
(
λ2

k,1

λ2
k,2

− 1
)/(λ2

k,1

λ2
k,2

+ 1
)

, k = 1, · · · , p(p−1)
2

. Solve the system of equa-

tions of fk({ρij}) = rk to obtain the value of {ρij}.

• Based on the posterior normality assumption, compute the conditional variance of
var(Yi|Y−i), and denote it as gi(σ

2
i ), where i = 1, · · · , p. Solve the equation gi(σ

2
i ) =

m2
i to obtain the value of σ2

i .

71



k = 1, · · · , p(p−1)
2

in Step 2. These values can be computed by the VBAIMH method. The

definition of rk in Step 3 derives from the following fact. For a bivariate distribution, sup-

pose the variances are σ2
1 and σ2

2 and correlation is ρ. The eigenvalues of covariance matrix

are given as λ =
(σ2

1+σ2
2)±

√
(σ2

1−σ2
2)2+4ρ2σ2

1σ
2
2

2
. When σ2

1 = σ2
2 , the eigenvalues are given by

λ1 = (1 + ρ)σ2, and λ2 = (1 − ρ)σ2. Then it is easy to show that

ρ =

(
λ1

λ2
− 1

)
/
(
λ1

λ2
+ 1

)

. (4.3)

To illustrate the stepwise method, we give a three-dimension example, where the deriva-

tion is given step by step, and the ideas of the method is brought in gradually. The interested

readers can find the example in the Appendix.

4.3 Numerical studies

We will work through four models with simulated or real datasets to demonstrate the pro-

posed methods. For each model we compute its variational approximation, obtained by

minimizing the the Kullback-Leibler (KL) divergence. The distributional families of these

approximations range widely; for example in the cases considered here they are Normal, t,

Beta, Inverse Gamma, and Dirichlet.

We start with a very basic illustrative example: a large sample multivariate normal case

with simulated data. The second example looks at a Normal random sample with unknown

mean and variance with a real data set. In this case posterior normality is not assumed,

showing that normality is not needed for the methods to have power. We thirdly consider a

two-component mixture of Normals model. In addition, in Chapter 6, we apply the methods

to the regime-switching lognormal model, which can be considered a high-dimensional case

with six interest parameters, and 528 latent nuisance parameters. These models present a

wide range of complex dependence structures, and MCMC methods have been intensively
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studied with them; these models will provide good testimony for the proposed methods.

For the regime-switching lognormal model, we used the real data set of the TSX monthly

total return index in the period from January 1956 to December 1999, which contains 528

observations in total, see for discussion Hardy (2001, 2002); Hartman and Heaton (2011).

4.3.1 Multivariate normal distributions

We consider a 3-dimension vector parameter θ = (θ1, θ2, θ3), and the posterior distribution

of θ and its VB approximation are all assumed to be a multivariate Normal distribution, and

these two normal distributions have the same mean values. For the illustration purposes we

will arbitrarily choose the values of the covariance matrices for the true posterior and the

VB approximation. The following is an example; the actual variances are chosen to be 0.12,

1.32, and 42 with correlation 0.51 between θ1 and θ2, 0.37 between θ1 and θ3, and −0.3. In

the VB approximation, the variances are assumed to be 0.12

2.2
, 1.32

5.1
, and 42

6.9
, and all correlation

are assumed 0.

Our goal is that given the covariance of VB approximations and the density function of

the posterior distribution up to a normalizing constant we will compute the true covariance

structure, more precisely, to find the values of correlation coefficients of 0.51, 0.37, and −0.3

and the ratios of the posterior variances versus the VB variances, 2.2, 5.1, and 6.9.

We first apply the affine transformation method. A sample of size of 600 is generated

from the VB distribution. We restrict the transformation matrix A to be a lower triangular

matrix with positive diagonal elements. There are no constraints on the three parameters in

the translation vector B. Maximizing the posterior probability over these 9 parameters can

be done with the Newton’s method or standard search methods. The resulted Â and B̂ are
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given by

Â =








1.527 0.000 0.000

10.498 2.007 0.000

23.601 −3.627 1.918








; B̂ =








−0.004

−1.1089

1.758








Given Â and B̂, the estimated Σ̂p can be computed by Â Σv Â
T . Table 4.1 gives the the

actual and estimated variance ratios and correlation coefficients.

Table 4.1: 3 diagnostics methods for a multivariate Normal

Variance ratios Correlation coeff.
θ1 θ2 θ3 ρ1 ρ2 ρ3

The true values 2.2 5.1 6.9 0.51 0.37 −0.30
Affine transformations 2.33 5.54 6.65 0.52 0.41 -0.24
Marginal approximations 2.54 4.80 7.04 0.56 0.32 -0.30
Stepwise method 2.21 5.04 6.72 0.50 0.40 -0.28

Second, we use the method using marginal approximations. It requires 6 projections.

We denote a projection direction as α = (α1, α2, α3), and the marginal variance along the

projection direction as l. Thus, we can obtain a polynomial equation involving σ2
i and ρij

given by

α2
1σ

2
1 + α2

2σ
2
2 + α2

3σ
2
3 + 2α1α2ρ12σ

2
1σ

2
2 + 2α1α3ρ13σ

2
1σ

2
3 + 2α2α3ρ23σ

2
2σ

2
3 = l

For each direction we simulate a sample of size 6000, and we record the proportion of the

samples, which are accepted in each VBAIHM iteration for the last 3000 samples. We use

this proportion as an empirical acceptance rate, and then obtain the values of l (Table 4.2)

by checking the EAR table. Solving the 6 polynomial equations, we obtained the following

values; σ1 = 1.59, σ2 = 2.19, σ3 = 2.65, ρ12 = 0.56, ρ13 = 0.32, ρ23 = −0.30. The variance

ratios are given in the third column in Table 4.1.
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Table 4.2: The marginal approximation method for a multivariate normal

direction Acc. rate EAR reading: li
1
3
(1, 1, 1) 0.790 1.94

1
3
(1,−1, 1) 0.805 1.86

1
3
(1, 1,−1) 0.764 2.12

1
3
(1,−1,−1) 0.764 0.47

1
3
(1, 0.5, 1) 0.865 1.52

1
3
(0.5, 1.5, 1) 0.791 1.94

Finally, we work through the conditional stepwise method. The notation used here follow

that given in Algorithm 5. For Step 1 and 2, we simulate a sample of size 6000 and use the

last 50% sample points to calculate the acceptance rate, and the conditional variance is

obtained from EAR table readings. All numerical results are given in Table 4.3. Solving the

polynomial equations obtains the values for ρ12 = 0.50, ρ13 = 0.40 and ρ23 = −0.28 and the

variance ratios. These values are given in the fourth row in Table 4.1.

Table 4.3: The stepwise method for a multivariate Normal

Marginal variance Acceptance rate EAR table readings Eigenvalue ratio

Step 1
m2

1 0.989 0.97 -
m2

2 0.730 2.42 -
m2

3 0.620 3.6 -

Step 2
λ2

1,1, λ
2
1,2 0.832, 0.651 0.588, 3.220 -

λ2
2,1, λ

2
2,2 0.848, 0.681 0.602, 2.800 -

λ2
3,1, λ

2
3,2 0.718, 0.852 2.520, 0.625 -

Step 3
r1 - - 0.691
r2 - - 0.646
r3 - - -0.603
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4.3.2 Normal random sample

In this example, we consider a real dataset which contains 1033 records of weights for some

Major League Baseball (MLB) Players (Onge et al., 2008). Figure 4.1(a) is a histogram of

the dataset. This plot suggests that it may be reasonable to model the data by a normal

distribution with the mean µ and variance σ2. We are interested in making inferences on µ

and σ2. In a Bayesian setting, we consider the priors as µ ∼ N(γ, η2) and σ2 ∼ IG(α, β),

where IG denotes the inverse Gamma distribution. This setting has been discussed in Section

3.2.1. The joint posterior distribution for µ and σ2 is given by

p(µ, σ2|y) ∼
(

1

σ2

)−(n
2
+α+1)

exp

(

− 1

σ2

(
S2

2
+ β +

n(µ− ȳ)

2

)

− µ− γ

2η2

)

,

where ȳ is the sample mean and S2 is the total sum of squares of y. The values of hyper-

parameters are chosen to be α = 2, β = 440.64, γ = 221.86, and η2 = 1, where the values

for β and γ derives from the mean and variance of the dataset respectively. Figure 4.1(b) is

a contour plot for the posterior distribution up to the normalization constant. The contour

plot shows that a bivariate normal distribution may be reasonable as an approximation to

the actual posterior distribution.

The variational solution for the marginal distribution of µ and σ2 are given in (3.4) and

(3.5). VB converges after 14 iterations, taking about 0.05 seconds on a MacBook computer

(2 GHz Intel Core 2 Duo processor, 1 GB 667 MHz SDRAM, and Mac OS X 10.4.11).

The distributions for q(µ) and q(σ2) are given as follows;

Table 4.4: The marginal distributions of VB approximations

Parameter Distribution (VB)
µ N(208.09, 0.32)
σ2 IG(518.50, 249154.70)
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Figure 4.1: MLB player weights dataset and the posterior contour

Table 4.5: Posterior mean and covariance for the MLB player weights dataset

Posterior mean: (µ, σ2) Posterior covariance: (µ, σ2)

Gibbs samples (208.10, 481.79)

(
0.602 0.34 × 0.60 × 22.64

0.34 × 0.60 × 22.64 22.642

)

VB approx. (208.09, 481.46)

(
0.562 0

0 21.182

)

Ratios ( 1, 1) (1.13, 1.14)

As a standard comparison, we run a Gibbs sampler, and simulate a sample of size 105

from the posterior distribution. Table 4.5 gives a comparison on posterior mean and posterior

covariance estimated by the VB approximation and the MCMC sample moments. The third

row in Table 4.5 gives the ratios of posterior mean and the ratios of posterior variance.

We can see that the means estimated by both methods are almost identical. However the

variances approximated by VB are slightly underestimated, (as expected from our discussion

above) and it is obvious VB distorts the posterior dependence structure.

We applied the three proposed methods to this problem. All the setting and routines
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used here are very similar to the those used in the previous example. The numerical results

produced by each method are given in the Appendix. The final results for three methods

are given in Table 4.6. We see that all of the methods perform well.

Table 4.6: 3 diagnostics methods for the normal model with MLB Players weights data

Variance ratios Correlation coeff.
µ σ2 ρ

Gibbs 1.13 1.14 0.34
Affine 1.09 1.13 0.30
Marginal 1.08 1.20 0.35
Stepwise 1.13 1.14 0.35

For this normal random sample model, MCMC methods, for example, a Gibbs sampler,

may be easy to implement, and also can be computationally efficient. We use this model

only as an example to demonstrate the performance of the proposed diagnostics methods.

The advantages of the VB method will be more obvious when it is applied to models with

complex dependence structure.

4.3.3 Finite mixture models

Our last example considers a finite mixture model. Let’s revisit the example of a two-

component mixtures of normals given in Example 3.8. The VB method converges after 122

iterations. The approximation distributions are given in Table 4.7.

The posterior mean and posterior covariance estimated by the VB approximations and

by the MCMC sample moments are given in Table 4.8. The ratios of posterior means and the

ratios of posterior variancesare given in the last row in Table 4.8. These ratios indicate that

the means estimated by both methods are almost identical. However VB underestimated

the actual posterior variances, and again strongly distorts the correlation structure.
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Table 4.7: The marginal distributions of VB approximations

Parameter Distribution (VB)
π Beta(167.35, 232.67)

µ1|σ2
1 N(1.13, σ2

1/168.34)
σ2

1 IG(85.66, 76.56)
µ2|σ2

2 N(3.57, σ2
2/233.66)

σ2
2 IG(118.33, 50.31)

Table 4.8: Posterior means and covariance for the 2-component mixtures of Normals

Post. mean: (π, µ1, µ2, σ
2
1, σ

2
1) Post. covariance: (π, µ1, µ2, σ

2
1 , σ

2
1)

Gibbs
samples

(0.418, 1.126, 3.5661, 0.885, 0.430)

variance
(0.00208, 0.01902, 0.00349, 0.03696,

0.00431)
correlation coeff.

(0.83, 0.81, 0.94, 0.69, 0.84, 0.73, −0.60,
−0.66, −0.76, −0.50)

VB
approx.

(0.418, 1.131, 3.571, 0.904, 0.429)

variance
(0.00061, 0.00537, 0.00183, 0.00977,

0.00158)
correlation coeff.

(0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00 )

Ratios (1.000, 0.996, 0.999, 0.979, 1.003) (3.42, 3.54, 1.90, 3.78, 2.73)

The proposed methods are applied to this mixture problem. For the VBAIMH method,

we generate 4000 samples to compute acceptance rates. The sample size is much smaller

than is used in the Gibbs sampler, to which we use a large sample size to ensure the chain

has in fact converged.

In addition, we note that in this example we have targeted the most general form of

linear transformation to correct any inadequacy in posterior mean and variance. In fact
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a diagnostic test can be designed to be targeted at more special concerns. For example

the matrix A in the transformation might be restricted to be of a particular class such as

diagonal or banded. This would be particular useful in high dimensional problems where the

dimension of the space of A could become problematic.

All numerical results associated with each method are given in the Appendix. The final

results are given in Table 4.9.

Table 4.9: 3 diagnostics methods for the two-component mixtures of Normals

Variance ratios Correlation coeff.
π µ1 µ2 σ2

1 σ2
2 ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7 ρ8 ρ9 ρ10

Gibbs 3.42 3.54 1.90 3.78 2.73 0.83 0.81 0.94 0.69 0.84 0.73−0.60−0.66−0.76−0.50
Affine 3.64 4.51 3.53 3.35 2.62 0.76 0.68 0.71 0.66 0.73 0.59−0.61−0.61−0.63−0.50
Marginal 5.56 4.73 2.37 4.15 2.76 0.63 0.59 0.87 0.47 0.82 0.76−0.46−0.66−0.71−0.54
Stepwise 3.06 4.12 2.70 3.21 2.56 0.71 0.63 0.65 0.64 0.70 0.53−0.58−0.58−0.60−0.47

4.4 Discussion

The variational method essentially provides posterior marginal approximations, which can

be inaccurate in a number of ways. The present chapter aims to provide fast and easy-to-use

diagnostics, which mainly target on inadequacy in the covariance structure. From the above

numerical studies we can see all three methods can provide both diagnostics showing the

quality of the VB approximation and also, in these examples, good estimates on the actual

posterior variances and correlations. These methods are easy to use. They are free of any

sophisticated tuning techniques or special expertise, and fast compared with the traditional

sampling based methods.

This chapter introduces a novel way to use acceptance rates. The idea is that the accep-

tance rate can act as a key diagnostic to how close the VB distribution is to the true posterior.
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As discussed in Section 4.2.2, EAR could be calibrated as a diagnostics tool to measure the

inadequacy in marginal approximations by using VB approximations directly as the proposal

distributions in VBAIMH. For the situation when posteriors depart from normality, a low

acceptance rate still indicate an inaccurate approximation. However, to quantify a particu-

lar form of inaccuracy, a single value of EAR may be diluted by the confounding of many

factors: inadequate variance, inadequate skewness, inadequate tail behaviour. In the further

research, separating these confounding factors would be a necessary step toward measuring

a special form of inadequacy.

For high dimensional problems, the three proposed methods can be designed to target

more specific situations. For example, the covariance matrix might be sparse; a subset of

the parameters might be of immediate concern. As discussed in Section 4.2.2, Section 4.3.3,

the three methods can offer different strategies to address the special form of diagnostics.

In the affine method, the transformation matrix A might be restricted to be a particular

class. In the marginal method, the projections might be set to particular directions. In the

stepwise method, the steps might be applied to a subset of the parameters, conditioning on

other parameters.

For each individual method, we have some further comments. The affine transformation

based method relies on using approximate linear relationship between the VB approximation

and the actual posterior as a diagnostics and potentially a correction. In cases where, for

example, strong skewness is present in the posterior the correction will of course not be

exact, but it will still be a useful diagnostics tool.

As Leonard et al. (1989) point out, the marginal approximation of Tierney et al. (1989),

primarily justified by asymptotically n → ∞, might be insufficient for finite n; they also

show a number of examples in which the method of Tierney, Kass, and Kadane introduces

excessive skewness in the marginal approximations. We also find the inadequacy in the

method of Tierney, Kass, and Kadane in our numerical studies. For example: Table 4.10
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gives the values of 15 marginal variances along 15 directions in the mixture problem. The

first row is the analytical results calculated from the covariance matrix obtained from a

Gibbs samples. The second row is based on the posterior marginal approximation. We can

see some discrepancy between this two sets of numbers. Even though, the method based on

the marginal approximation still works well. Leonard et al. (1989) proposed a refinement on

the method of Tierney et al. (1989), that could be considered in future work.

Table 4.10: The marginal variances in the marginal approx. method for mixtures of Normal

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15
Gibbs 3.42 0.59 1.32 0.80 6.63 0.92 0.67 0.66 0.5 2.51 0.65 0.71 1.98 0.44 2.99
Approx. 3.70 1 1.85 1.31 4.82 1.39 1.05 0.91 0.79 3.38 0.92 1.13 2.48 0.64 2.96

Another potential concern when using the marginal approximation method is that we

need to perform a constrained maximization at each sampling step. The maximization

can often be completed in straightforward fashion such as the standard Newton’s method or

search methods. However a optimization at each sampling step may affect the computational

efficiency.

The VBAIMH provides a fast means to calculate the variance of the target distribution.

When using this approach two particular issues arise. First, as discussed previously when

the target variance of σ2
t is greater than the proposal variance of σ2

p , the EAR is monotone

decreasing as σ2
t increases. Similarly, when σ2

t < σ2
p the EAR is also monotone decreasing as

σ2
t decreases. This means that we need to determine if σ2

t < σ2
p or not, before determining

the value of σ2
t . In practice, we can assume σ2

t > σ2
p and pick a value of σ2

t from the EAR

table, and then use this new value as the proposal variance and run the IMH again. If the

new acceptance rate is close to one or increases, this means σ2
t > σ2

p otherwise σ2
t < σ2

p . If

σ2
t < σ2

p is the case, the true value of σ2
t is the reciprocal of the value read from the EAR

table.
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Second, if the approximate normality of posterior distributions does not hold well, for

example in the cases where strong skewness is present, the variance read from the EAR

table will confound these non-normality effects and will deviate from the true value. As

discussed above, when we pick a value of σ2
t from the EAR table and use this new value

as the proposal variance to run another IMH algorithm, if the new acceptance rate is not

close to one, this implies that the normality does not hold well, usually because of skewness.

When this happens, we need to adjust the value read from the EAR table. We usually scale

the readings as cσ2
t . Based on our various numerical studies, a reasonable choice on the scale

c is 0.85.

4.5 Appendix

4.5.1 Proof of Theorem 4.1

Proof: The expected acceptance rate is given by:

E[min

{
p(ηt)q(θ(t))

p(θ(t))q(ηt)
, 1

}

]=2

∫

I

(
p(η)q(θ)

p(θ)q(η)
> 1

)

p(θ)q(η)dθdη

>2

∫

I

(
p(η)q(θ)

p(θ)q(η)
> 1

)

p(θ)
p(η)

M
dθdη =

1

M

where I is the indicator function. Moreover, if p < Mq, it is straightforward to show

KL(p||q) < log(M).

4.5.2 Stepwise method: a 3-dimension example

All the notations used here are defined in Algorithm 5. We consider a vector parameter

θ = (θ1, θ2, θ3), and denote its posterior variance and correlation as σ2
1 , σ

2
2 and σ2

3 , and ρ1,

ρ2 and ρ3
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Step 1. Define s2
i = σ2

i /varqi(θi), i = 1, 2, 3. Then, by the linear transformation of Y =

Qθ, the variances of Y are given by s2
1, s

2
2, and s2

3 respectively, with the correlation coefficients

of ρ1, ρ2 and ρ3 unchanged. Based on the posterior normality conditions, the conditional

variance of var(Y1|Y2, Y3), var(Y2|Y1, Y3), and var(Y3|Y2, Y1) are given respectively

var(Y1|Y2, Y3) =

(

1 − ρ2
1 + ρ2

2 − 2ρ1ρ2ρ3

1 − ρ2
3

)

s2
1 = m2

1 (4.4)

var(Y2|Y1, Y3) =

(

1 − ρ2
1 + ρ2

3 − 2ρ1ρ2ρ3

1 − ρ2
2

)

s2
2 = m2

2 (4.5)

var(Y3|Y2, Y1) =

(

1 − ρ2
2 + ρ2

3 − 2ρ1ρ2ρ3

1 − ρ2
1

)

s2
3 = m2

3 (4.6)

The value of m2
1, m

2
2, and m2

3 can be obtained numerically by using the VBAIMH algorithm.

After linear transformation of Z = MY , the variance of Z1, Z2, and Z3 are given respectively

by

var(Z1) =
1 − ρ2

3

1 − (ρ2
1 + ρ2

2 + ρ2
3) − 2ρ1ρ2ρ3

,

var(Z2) =
1 − ρ2

2

1 − (ρ2
1 + ρ2

2 + ρ2
3) − 2ρ1ρ2ρ3

,

var(Z3) =
1 − ρ2

1

1 − (ρ2
1 + ρ2

2 + ρ2
3) − 2ρ1ρ2ρ3

,

where only ρ2
1, ρ

2
2, and ρ2

3 are involved.

Step 2. There are three bivariate random vectors in total in Z: U12 = (Z1, Z2|Z3),

U13 = (Z1, Z3|Z2), and U23 = (Z2, Z3|Z1). The two random variables in U12 have equal

variances, similar for U13, and U23. By the eigen-decomposition, the covariance matrix of

U12 can be expressed as var(U12) = RT

(

λ1 0

0 λ2

)

R, where R is the rotation matrix defined

in Algorithm 5, and λ1 and λ2 are the eigenvalues of var(U12). Thus, the covariance matrix

of V1 is diagonal with λ1 and λ2 as the entries. The values of λ1 and λ2 can be computed

numerically, by running the VBAIMH algorithm.
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Step 3. Based on the posterior normality conditions, the correlation coefficient r1 of U12,

r2 of U13, and r3 of U23 are given respectively by

r1 =
(ρ1 − ρ2ρ3)

√

(1 − ρ2
3)(1 − ρ2

1)
(4.7)

r2 =
(ρ2 − ρ1ρ3)

√

(1 − ρ2
3)(1 − ρ2

1)
(4.8)

r3 =
(ρ3 − ρ1ρ2)

√

(1 − ρ2
1)(1 − ρ2

1)
(4.9)

Given the values of λ1 and λ2 in Step 2, we can obtain the value of r1 by computing

r1 =
(
λ2
1

λ2
2
− 1
)/(λ2

1

λ2
2

+ 1
)

; similar to compute r2 and r3. Thus, we can obtain and solve a

system of three polynomial equations given in (4.7), (4.8), and (4.9) to obtain the values of

ρ1,ρ2, and ρ3; further, the value of s2
1, s

2
2, and s2

3 can be obtained by solving (4.4), (4.5), and

(4.6), and then the value of σ2
1, σ

2
2, and σ2

3.

4.5.3 Numerical results for the example of Normal random sample

For the affine transformation method, the resulted Â and B̂ is given by,

Â =




1.049 0.000

11.824 1.018



 ; B̂ =




−10.119

−2469.079



 .

For the marginal approximation method, the directional vectors with the corresponding

acceptance rates and EAR table readings are given in Table 4.11.

The numerical results for the stepwise method for each step are given in Table 4.12.

4.5.4 Numerical results for mixture of Normals model

For the affine transformation method, the estimated Â and B̂ is given by,
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Table 4.11: The marginal approximation method for MLB Players weights data

direction Acceptance rate EAR reading: li
1√
2
(1, 1) 0.861 1.55

1√
2
(1,−1) 0.901 0.74

1√
2
(1, 0.5) 0.966 0.893

Table 4.12: The stepwise method for MLB Players weights data

Marginal var Acc. rate EAR readings Eigenvalue ratio

Step 1
m2

1 0.991 1.03 -
m2

2 0.966 1.13 -
Step 2 l21,1, l

2
1,2 0.881, 0.889 0.694, 1.44 -

Step 3 r1 - - 2.075

Â =














1.907 0.000 0.000 0.000 0.000

4.822 1.372 0.000 0.000 0.000

2.227 0.329 1.255 0.000 0.000

4.867 0.862 0.235 1.210 0.000

−1.593 −0.190 −0.342 −0.011 1.177














; B̂ =














−0.368

−2.399

−2.199

−4.003

2.026














.

For the marginal approximation method, it requires 15 projections. The directional

vectors with the corresponding acceptance rates and EAR table readings are given in Table

4.13.

For the stepwise method. The numerical results for Step 1 and 2 are given in Table 4.14.
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Table 4.13: The marginal approximation method for mixtures of Normals
direction Acceptance rate the EAR table reading: li
1
3
(1, 1, 1, 1, 1) 0.582 4.120

1
3
(1,−1, 1, 1, 1) 0.901 0.735

1
3
(1, 1,−1, 1, 1) 0.815 1.800

1
3
(1, 1, 1,−1, 1) 0.906 1.340

1
3
(1, 1, 1, 1,−1) 0.477 6.500

1
3
(−1, 1, 1, 1, 1) 0.882 1.420

1
3
(−1,−1, 1, 1, 1) 0.923 1.280

1
3
(−1, 1,−1, 1, 1) 0.944 0.840

1
3
(−1, 1, 1,−1, 1) 0.876 0.676

1
3
(−1, 1, 1, 1,−1) 0.619 3.600

1
3
(1,−1,−1, 1, 1) 0.940 0.830

1
3
(1,−1, 1,−1, 1) 0.944 1.200

1
3
(1,−1, 1, 1,−1) 0.727 2.380

1
3
(1, 1,−1,−1, 1) 0.830 0.581

1
3
(1, 1,−1, 1,−1) 0.633 3.400

4.5.5 The EAR table

The EAR table, shown in Table 4.15, is composed as follows: the label for rows contains

the first two digits of the target variance; the label for columns contains the decimal of the

target variance; the values within the table are expected acceptance rates. For example: if

one obtains an acceptance rate of 0.5555, then one would look for the rows to find 4 and the

columns to 0.6 which yields the target variance is 4.6.
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Table 4.14: The stepwise method for mixtures of Normals

Marginal variance Acceptance rate EAR table readings Eigenvalue ratio

Step 1
m2

1 0.933 1.230 -
m2

2 0.885 1.428 -
m2

3 0.923 1.286 -
m2

4 0.817 1.512 -
m2

5 0.853 1.425 -
Step 2 λ2

1,1, λ
2
1,2 0.917, 0.879 0.776, 1.462 -

λ2
2,1, λ

2
2,2 0.935, 0.919 0.816, 1.282 -

λ2
3,1, λ

2
3,2 0.888, 0.848 0.803, 1.303 -

λ2
4,1, λ

2
4,2 0.885, 0.906 1.221, 0.827 -

λ2
5,1, λ

2
5,2 0.930, 0.911 0.802, 1.331 -

λ2
6,1, λ

2
6,2 0.857, 0.795 0.701, 1.660 -

λ2
7,1, λ

2
7,2 0.885, 0.921 1.174, 0.858 -

λ2
8,1, λ

2
8,2 0.906, 0.880 0.887, 1.090 -

λ2
9,1, λ

2
9,2 0.857, 0.890 1.356, 0.754 -

λ2
10,1, λ

2
10,2 0.978, 0.822 0.984, 0.934 -

Step 3 r1 - - 0.307
r2 - - 0.222
r3 - - 0.238
r4 - - -0.192
r5 - - 0.248
r6 - - 0.406
r7 - - -0.155
r8 - - 0.103
r9 - - -0.285
r10 - - -0.026
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Table 4.15: EAR table: variance versus expected acceptance rate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1 1.0000 0.9697 0.9422 0.9165 0.8936 0.8720 0.8517 0.8330 0.8157 0.7990
2 0.7833 0.7690 0.7553 0.7423 0.7299 0.7182 0.7067 0.6960 0.6860 0.6761
3 0.6671 0.6577 0.6492 0.6406 0.6325 0.6249 0.6175 0.6104 0.6034 0.5969
4 0.5903 0.5842 0.5782 0.5719 0.5664 0.5609 0.5555 0.5502 0.5450 0.5405
5 0.5354 0.5306 0.5261 0.5221 0.5174 0.5131 0.5089 0.5049 0.5011 0.4971

6 0.4937 0.4897 0.4861 0.4827 0.4791 0.4758 0.4725 0.4693 0.4660 0.4634
7 0.4602 0.4571 0.4542 0.4513 0.4485 0.4460 0.4431 0.4404 0.4376 0.4355
8 0.4325 0.4304 0.4279 0.4251 0.4232 0.4207 0.4184 0.4162 0.4139 0.4118
9 0.4098 0.4077 0.4056 0.4034 0.4013 0.3998 0.3975 0.3956 0.3936 0.3916
10 0.3900 0.3883 0.3864 0.3849 0.3829 0.3809 0.3794 0.3776 0.3759 0.3744

11 0.3728 0.3713 0.3698 0.3682 0.3664 0.3651 0.3638 0.3620 0.3608 0.3592
12 0.3581 0.3563 0.3550 0.3538 0.3520 0.3509 0.3497 0.3486 0.3474 0.3458
13 0.3444 0.3432 0.3419 0.3408 0.3396 0.3384 0.3370 0.3361 0.3346 0.3337
14 0.3325 0.3311 0.3302 0.3292 0.3277 0.3271 0.3257 0.3250 0.3235 0.3226
15 0.3217 0.3209 0.3196 0.3185 0.3177 0.3165 0.3157 0.3148 0.3137 0.3127

16 0.3121 0.3108 0.3100 0.3090 0.3082 0.3074 0.3064 0.3054 0.3047 0.3039
17 0.3030 0.3023 0.3013 0.3005 0.2993 0.2989 0.2979 0.2970 0.2964 0.2954
18 0.2947 0.2940 0.2930 0.2924 0.2915 0.2909 0.2901 0.2894 0.2886 0.2877
19 0.2870 0.2861 0.2854 0.2852 0.2844 0.2834 0.2827 0.2822 0.2814 0.2808
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Chapter 5

VB on Dirichlet process priors

This chapter shows how the VB method provides a computational efficient technique in the

context of hierarchical modelling using Dirichlet process priors. In particular, it shows how

the VB method can handle non-conjugacy in its prior specification, which extends to standard

approach to these models. It shows, using the parameter separation parameterization, we

are able to provide a full variational solution for the Dirichlet process. The numerical results

show that the method is very computationally efficient when compared to MCMC. We also

provide a VB approximation to the posterior predictive distribution and compare it with

results derived from two Markov chain Monte Carlo (MCMC) methods. For the truncated

DP, we propose an empirical method to determine the number of distinct components in a

finite dimensional DP.

5.1 Introduction

In Bayesian parametric modelling, the prior distribution is usually constructed by assuming

it has a particular parametric form. In many ways, though, it is more appealing that the

support of the prior is the class of all distribution functions. In particular, this allows greater
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flexibility for modelling and inference. The Dirichlet process, introduced by Ferguson (1973),

provides a means of specifying a probability measure P (dF ) over the space of all (discrete)

probability measures. Following this, the DP has become very popular when applied to

Bayesian non-parametric inference. Mixture models are among the important applications

of the DP, for example, Escobar (1994) and Escobar and West (1995). In particular the

clustering property exhibited by the generalized Polya urn representation (Blackwell and

MacQueen, 1973) makes the DP a natural choice for the prior distribution in the mixture

model.

Markov chain Monte Carlo (MCMC) methods, in the context of a DP prior, have been

extensively studied, for example, see Escobar (1994); Escobar and West (1995); West and

Escobar (1993); MacEachern (1994). A common aspect of these methods is that they inte-

grate over the random probability measures and use the generalized Polya urn representa-

tion of the DP. The Polya urn samplers are restricted to using conjugate base distributions

that allow analytic evaluation of the transition probabilities. When non-conjugate priors

are used, these methods require an often difficult numerical integration. MacEachern and

Müller (1998); Neal (2000) devised approaches for handling non-conjugacy by using a set of

auxiliary parameters.

The truncated stick-breaking representation of the DP has also been considered. For

example Ishwaran and Zarepour (2000) shows that with a moderate truncation, the finite

dimensional DP should be able to achieve an accurate approximation. Based on this repre-

sentation, Ishwaran and James (2001) proposed a Gibbs sampler to handle non-conjugacy

issue.

In recent years, variational Bayesian inference has been applied to DP based problems,

for example see Blei and Jordan (2006). Strictly speaking, they used the mean-field method

rather than a full variational solution, where the approximating distributional family is

specified, and the optimization is only over the variational parameters. In addition, they
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also only consider the case where the conjugate base distribution is an exponential family.

The hierarchical principle is a natural way to model dependence amongst model param-

eters. This chapter considers the one-way random-effects model which has been discussed

in previous chapters. This model is simple, but important, and is widely applicable, being

an important special case of the hierarchical linear model. However, as MacEachern (1994)

pointed out, restricting the prior to be a normal distribution severely constrains the esti-

mate of normal means, producing estimators that shrink each data value toward the same

point. Replacing the normal prior by a Dirichlet process has been considered by MacEachern

(1994), and Bush and MacEachern (1996) in an MCMC context.

This chapter considers non-conjugate settings for this model and presents a full varia-

tional Bayesian solution, where the optimization is in terms of both the distributional family

and the parameters of the approximating distribution. The core ingredient for the proposed

solution lies on the parameter separation parameterization, which is introduced in Chapter

2. In our solution, we use a truncated stick-breaking representation of the DP. A natural

question is raised by given a dataset how to estimate the truncation level for a finite dimen-

sional DP. We propose an empirical method to determine the number of distinct components

in a finite dimensional DP.

The posterior predictive distribution for this model is not available in a closed form. For

the VB method, even though we can obtain closed-formed posterior approximations and

use them to replace the unknown posterior densities in computing the posterior predictive

density, it is still not available in a closed form. In this chapter, we show how to use the

similar variational method to approximate this quantity.

The rest of the chapter is organized as follows. Section 2 presents the one-way random-

effects model with a Dirichlet process prior, and shows how to use Gibbs samplers to simulate

samples from the posterior distributions. Section 3 we provide a full variational solution for

the one-way random-effects model with Dirichlet process prior. Section 4 discusses how to
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approximate the posterior predictive distributions by the MCMCM methods and by the VB

method. Numerical studies are presented in Section 5. Conclusions are given in Section 6.

5.2 The one-way random effects model

In this section, we describe the one-way random-effects model which uses a DP prior in a

non-conjugate setting, and then show how we can adapt two MCMC methods introduced

by Neal (2000), and Ishwaran and James (2001) to obtain the posterior samples.

As shown in Section 3.2.2, the one-way random effects model can be expressed as follows:

yij|θj , σ2∼N(θj , σ
2),

θj |µ, τ 2∼N(µ, τ 2),

(σ2, µ, τ 2)∼π for i = 1, . . . , nj ; j = 1, . . . , J, (5.1)

where π is a prior distribution. When the normal distribution at the middle stage is replaced

by a DP, this gives the following model:

yij|θj , σ2 ∼ N(θj , σ
2),

θj |F ∼ F,

F |α, F0 ∼ DP(α, F0),

σ2 ∼ π for i = 1, . . . , nj ; j = 1, . . . , J, (5.2)

where α is a positive real-valued concentration parameter and F0 is a base distribution. We

consider F0 a normal distribution with mean µ and variance τ 2, both are further treated

as random variables. It is worth noting that in this setting F0 is not conjugate to the

likelihood. The realizations of the DP are discrete with probability one, thus the above
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model can be viewed as a countably infinite mixture (Ferguson, 1983). When integrating

over F in (5.2), we can obtain a representation, referred as the generalized Polya urn scheme,

of the prior distribution of θj in terms of successive conditional distributions of the following

form (Blackwell and MacQueen, 1973):

θj |θ1, · · · , θj−1 =







θl with probability 1
α+j−1

for each l ∈ {1, · · · , j − 1}
∼ F0 with probability α

α+j−1

This representation gives a clear view for the clustering or mixture effects of the DP prior,

and constitutes a fundamental ingredient for the Polya urn form of MCMC samplers.

Alternatively, Sethuraman (1994) provides a constructive definition of the random dis-

tribution F in the DP:

F =

T∑

j=1

vjδθj
,

where wi
iid∼ Beta(1, α), and vj is defined as v1 = w1, vj = wj

∏j−1
l=1 (1−wl), and θj

iid∼ F0, and

δθj
denotes a discrete measure concentrated at θj , and 1 ≤ T ≤ ∞. This is often referred

to as the “stick-breaking” representation. If T < ∞, this is referred to as a truncated DP

or finite dimensional DP (Ishwaran and Zarepour, 2000).

The exact computation of posterior quantities using model (5.2) is typically infeasible.

However, MCMC provides one means to approximate them. Due to the non-conjugate

property of model (5.2), we consider using the methods introduced in Neal (2000) and

Ishwaran and James (2001) to obtain posterior samples.

First, we consider the method proposed by Neal (2000) and similar to the “no gaps”

algorithm proposed earlier by MacEachern and Müller (1998). Let ζ = (ζ1, · · · , ζK) denote

the set of distinct θj , where j = 1, · · · , J and K ≤ J . Let c = (c1, · · · , cJ) denote a vector

of indicators defined by cj = k if and only if θj = ζk. The state of the Markov chain consist
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of c, ζ , µ, τ 2 and σ2. Each sampling scan consists of picking a new value for each cj from its

conditional distribution given y, ζ , and all the cl for l 6= j (written as c−j), and then picking

a new value for each ζk from its conditional distribution given y and c, and then picking a

new value for µ, τ 2 and σ2 respectively from their conditional distributions.

Algorithm 6 Polya-urn-type Gibbs sampler

Step 1. For j = 1, · · · , J , generate c
(t)
j from the distribution of cj |y, ζ, c−j, µ, τ 2, σ2.

• Let k− be the number of distinct cl for l 6= j, and let p = k− + s. Label cl with
values in {1, · · · , k−}.

• Draw values independently from F0(µ
(t−1), τ 2(t−1)

) for all the ζ
(t)
a for which k− +1 ≤

a ≤ p. If the value of c
(t−1)
j is a singleton (only associated with one yj), then ζk−

equals to ζ
(t−1)
cj , otherwise draw a new value for ζk− from F0(µ

(t−1), τ 2(t−1)
).

• Draw a value for c
(t)
j from {1, · · · , p} with the following probability

P (cj = a|c(t−1)
−j , y, σ2(t−1)

) ∝
{

m−j,af(yj; ζ
(t−1)
a , σ2(t−1)

), for 1 ≤ a ≤ k−

α
s
f(yj; ζ

(t)
a , σ2(t−1)

), for k− < a ≤ p

where m−j,a is the number of cl for l 6= j that are equal to c.

• Discard the ζa’s that are not now associated with any observation, and relabel ζk
and corresponding cj .

Step 2. For k = 1, · · · , |c|, generate ζ
(t)
k from the distribution of ζk|y, µ, τ 2, σ2, which is

give by

p(ζk|y, µ(t−1), τ 2(t−1)
, σ2(t−1)

) ∝
∏

j:cj=k

nj∏

i=1

φ(yij; ζk, σ
2(t−1)

)φ(ζk;µ
(t−1), τ 2(t−1)

),

where φ(.) denotes the normal density function.

The key feature to handle the issue of non-conjugacy lies that when cj is updated, a

set of size of s temporary auxiliary parameter variables that represent possible values for ζk

that are not associated with any other observations is introduced. Since the observations yj

are exchangeable, we can assume that we are updating cj for the last observation, and that
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Algorithm 7 Polya-urn-type Gibbs sampler (continued)

Step 3. Generate µ(t), τ 2(t)
, and σ2(t)

from the corresponding full conditional distribution,
that are given as follows:

p(σ2|y, ζ (t)
k )∝

|c|
∏

k=1

∏

j:cj=k

nj∏

i=1

φ(yij; ζ
(t)
k , σ2)π(σ2)

p(µ|y, ζ (t)
k , τ

2(t)
)∝

|c|
∏

k=1

φ(ζ
(t)
k ;µ, τ 2(t)

)π(µ)

p(τ 2|y, ζ (t)
k , µ

(t))∝
|c|
∏

k=1

φ(ζ
(t)
k ;µ(t), τ 2)π(τ 2),

where π(τ 2), π(σ2), and π(µ) are corresponding priors.

the cl for other observations have values in the set {1, · · · , k−}, where k− is the number of

distinct cl for l 6= j. By using the auxiliary variables, the possible values for a new cj lies in

{1, · · · , k−, k− + 1, · · · , k− + s}. Once a new value for cj has been chosen, all the ζ that are

not now associated with any observation will be discarded, and ζk and the corresponding

cj are relabeled to have the cj with values in {1, · · · , |c|}, where |c| denotes the number of

distinct number in c. This Gibbs updating for model (5.2) is summarized in Algorithm 6.

In addition to handling the issue of non-conjugacy, Neal (2000) suggests that this method

can improve the mixing of the chain and shorten the autocorrelation time to reduce the

sample size used to estimate the posterior quantities. However, it is clear that since F is

integrated over, this Polya-urn like sampler still restricts the inference for the posterior of

the random F to be based only on the posterior for ζk’s, that is, there no explicit inference

on F is possible. Ishwaran and James (2001) devised a, so called, blocked Gibbs sampler,

which uses the stick-breaking representation, to avoid the limitation imposed by the Polya

urn like samplers.

The key to the blocked Gibbs sampler lies that it is infeasible to work on an infinite

97



numbers of components in the stick-breaking representation, and it has to truncate the DP

at a curtain level, denoted as B, and discard the components of B+ 1, B+ 2, · · · . Ishwaran

and Zarepour (2000) shows that with a moderate truncation the marginal density under

a truncated DP prior is indistinguishable from the one based on the infinite DP prior. By

using a stick-breaking representation, the one-way random-effects model given in (5.2) under

a truncated DP can be written as follows:

yij|cj, ζ, σ2 ∼ N(ζcj , σ
2), for i = 1, . . . , nj ; j = 1, . . . , J,

cj|v ∼
B∑

b=1

vbδb; v1 = w1, vb = wb

b−1∏

l=1

(1 − wl),

wb ∼ Beta(1, α), for b = 1, · · · , B − 1, and wB =, 1

ζb ∼ N(µ, τ 2); for b = 1, . . . , B,

(σ2, µ, τ 2) ∼ π. (5.3)

In this model, the state of the Markov chain consist of c, ζ , v, µ, τ 2 and σ2. The blocked

Gibbs sampling for model (5.3) is summarized in Algorithm 8.

5.3 Variational method

As an alternative to MCMC methods, Blei and Jordan (2006) provides a the variational

solution on DP in the context of mixture models. There are several constraints in their

developments. First, it is the mean-field method rather than a full variational solution,

where the approximating distributional family is specified, and the optimization is only over

the variational parameters. In addition, they consider the cases of the base distribution

conjugate to the likelihood function, and both of the prior distribution and the likelihood

are considered in exponential families. Third, their variational formalism are developed

only with respect to natural parameters, which are often not the parameters of immediate
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Algorithm 8 Blocked Gibbs sampler

Step 1. For j = 1, · · · , J , generate c
(t)
j from the distribution of cj |y, ζ, v, σ2, that is given

by:

p(cj|y,ζ, v, σ2) =
B∑

b=1

pb,jδb, where pb,j ∝ v
(t−1)
b

nj∏

i=1

φ(yij; ζ
(t−1)
b , σ2(t−1))

Step 2. For b = 1, · · · , B, generate ζ
(t)
b as follows:

• When ζ
(t)
b is not associated with any yj, draw a new value from F0(µ

(t−1), τ 2(t−1)
).

• Otherwise, draw a new value from the following conditional distribution:

p(ζb|y, µ(t−1), τ 2(t−1)
, σ2(t−1)

) ∝
∏

j:cj=b

nj∏

i=1

φ(yij; ζb, σ
2(t−1)

)φ(ζb;µ
(t−1), τ 2(t−1)

),

Step 3. Generate v(t) from the following conditional distribution:

v
(t)
1 =w

(t)
1 , v

(t)
b = w

(t)
b

b−1∏

l=1

(1 − w
(t)
l ),

w
(t)
b ∼Beta(Mb, α +

B∑

l=b+1

Ml); Mb is the number of cj equals to b

Step 4. Generate µ(t), τ 2(t)
, and σ2(t)

from the corresponding full conditional distribution,
that are given as follows:

p(σ2|y, ζ (t)
b )∝

B∏

b=1

∏

j:cj=b

nj∏

i=1

φ(yij; ζ
(t)
b , σ2)π(σ2)

p(µ|y, ζ (t)
b , τ

2(t)
)∝

B∏

b=1

φ(ζ
(t)
b ;µ, τ 2(t)

)π(µ)

p(τ 2|y, ζ (t)
b , µ

(t))∝
B∏

b=1

φ(ζ
(t)
b ;µ(t), τ 2)π(τ 2),

where π(τ 2), π(σ2), and π(µ) are corresponding priors.
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interests.

In Section 2.5.2 we present a special parameterization for a parametric family, which we

call the parameter separation parameterization. An important feature of this representation

lies that it provides a factorized form, which is the key to make possible the construction of

the analytical form of the variational distributions. This parameterization is not constrained

to only be in exponential family. It can include the distributions from non-exponential

family. Theorem 2.2 in Section 2.5.2 provides a variational formularization on the parameter

separation parameterization.

Theorem 2.2 is ready to be used in developing the variational inference for the one-way

random-effects model with the DP prior. Here, we consider the stick-breaking representa-

tion given in (5.3). We define cj in (5.3) as cj = (cj1, · · · , cjB), where cjb is an indicator

variable with probability vb of equalling to one. This probability is given in (5.3). The joint

probability of y, c, v, ζ, σ2, µ, τ 2 is given as follows:

p(y, c, v, ζ, σ2, µ, τ 2) =
J∏

j=1

B∏

b=1

{

vb

nj∏

i=1

φ(yij; ζb, σ
2)

}cjb B∏

b=1

φ(ζb;µ, τ
2)

B−1∏

b=1

Beta(wb; 1, α)π(σ2)π(µ)π(τ 2), (5.4)

where π(σ2),π(µ), and π(τ 2) are the prior distributions. To have these priors providing

little influence on the posterior distributions, we assign non-informative uniform priors for

µ, log(σ2), and τ 2. If we were to assign a uniform prior distribution for log(τ 2), the posterior

distribution would be improper. Thus, we get the prior distribution for µ, log(σ2), and τ 2 is

given by π(σ2, µ, τ 2) ∝ 1
σ2

We denote q(c, v, ζ, σ2, µ, τ 2) as the VB approximation for the posterior distribution of

p(c, v, ζ, σ2, µ, τ 2|y). In contrast to the mean field approximation, we do not require any

distributional families to q, except for the independence assumption. We assume q has the
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following factorization form:

q(c, v, ζ, σ2, µ, τ 2) =

J∏

j=1

q(cj)

B∏

b=1

q(vb)

B∏

b=1

q(ζb)q(σ
2)q(µ|τ 2)q(τ 2). (5.5)

It is worth noting that using a full factorization with q(µ, τ 2) = q(µ)q(τ 2), results in that

the convergence of variational parameters fails in the iterative updates.

It is straightforward to check that the distributions at each stage of model (5.3) all have

a parameter separate parameterization, and then Theorem 2.2 is can be used. By plugging

(5.4) into (2.17) or (2.19), we can obtain the following results:

q(cj)= Multinomial(rj1, · · · , rjB)

rjb∝exp

{

−1

2

g

h

nj∑

i=1

(yij − ab)
2 − 1

2

g

h
b2bnj + ψ(cb) − ψ(cb + db) +

b−1∑

l=1

(ψ(cl) − ψ(cl + dl))

}

q(ζb)=N(ab, b
2
b); ab =

g
h

∑J
j=1 rjb(

∑nj

i=1 yij) + k
s
e

g
h

∑J
j=1 rjbnj + k

s

, b2b =
1

g
h

∑J
j=1 rjbnj + k

s

q(vb)=Beta(cb, db); cb =
J∑

j=1

rjb + 1, db =
B∑

l=b+1

J∑

j=1

rjb + α (for b < B), dB = α;

q(µ|τ 2)=N(e,
τ 2

f 2
); e =

∑B
b=1 ab
B

, f 2 = B

q(τ 2)=IG(k, s); k =
B

2
− 3

2
, s =

1

2

B∑

b=1

((ab − e)2 + b2b)

q(σ2)=IG(g, h); g =

∑J
j=1 nj

2
, h =

1

2

J∑

j=1

B∑

b=1

rjb

(
nj∑

i=1

(yij − ab)
2 + b2b

)

, (5.6)

where ψ denotes the digamma function, and IG denotes the gamma distribution. The above

approximations are well-recognised distributions, and they are easy to use to make further

inference on parameters. The VB algorithm requires an iterative updates on the parameters
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of rjb, ab, b
2
b , cb, db, e, f , g, h, k, and s till they converge.

5.4 The predictive distribution

The posterior predictive distribution provides a distribution for a new data point given

the observed data, in which it makes use of the entire posterior distribution. Suppose

y∗ = (y∗1, · · · , y∗n∗) is a new observation, then the posterior predictive distribution of y∗ given

y is defined as

p(y∗|y) =

∫

p(y∗|Θ)p(Θ|y)dΘ, (5.7)

where Θ refers the model parameters. For the one-way random-effects model with a DP

prior this quantity is intractable however MCMC methods provide a straightforward approx-

imation. Having a sample of T points from the posterior, we can estimate it by

p(y∗|y) =
1

T

T∑

t=1

p(y∗|Θ(t)), (5.8)

where Θ(t) is the sample drawn from the posterior distribution after the chain reaches its

stationary distribution. For Algorithm 6, p(y∗|Θ(t)) is given as follows:

p(y∗|Θ(t)) =

|c∗(t)|
∑

k=1

P (c∗(t) = k)f(y∗|ζ (t)
k , σ2(t)

)

where again |c∗(t)| denotes the number of values which c∗(t) takes. For Algorithm 8, it is

given as follows:

p(y∗|Θ(t)) =
B∑

b=1

v
(t)
b f(y∗|ζ (t)

b , σ2(t)
)
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For the VB method, it is natural to use the VB approximations to replace the unknown

posterior distributions in (5.7). Thus, we can have the following approximation for the

posterior predictive distribution:

p(y∗|y) ≈
∫
(

B∑

b=1

vbf(y∗|ζb, σ2)

)

dQ(v, ζ, σ2)

=

B∑

b=1

Eq(vb)[vb]

∫
(
f(y∗|ζb, σ2)

)
dQ(ζb)dQ(σ2) (5.9)

where Q is the VB approximation. Unfortunately, although we have obtained the simple

and well-recognised distributions for Q(ζb) and Q(σ2), the integrals in (5.9) are still not

available in a closed form. However, we can apply the variational principle again to obtain

a lower bounds on this quantity, and propose using this lower bound as an approximation

for the posterior predictive distribution.

We denote Lb as Lb =
∫

(f(y∗|ζb, σ2)) dQ(ζb)dQ(σ2). If we regard Q(ζb) and Q(σ2) as

prior distributions, then Lb can be regarded as a marginal likelihood, that can be approxi-

mated by the variational method. We denote v(ζb) and v(σ2) as the variational approxima-

tions which result from treating Q(ζb) and Q(σ2) as priors. Again, Theorem 2.2 can be used

to obtain the distributional forms for v(ζb) and v(σ2), and gives the following results:

v(ζb)=N(Ab, B
2
b ); Ab =

G
H

∑n∗

i=1 y
∗
i + ab

b2b
G
H
n∗ + 1

b2b

, B2
b =

1
G
H
n∗ + 1

b2b

v(σ2)=IG(G,H); G = g +
n∗

2
, H = h +

1

2
S∗ +

n∗

2
((Ab − ȳ∗)2 +B2

b ),

where n∗ is the number of observations in y∗, and ȳ∗ is the mean of y∗, and S∗ is the total

sum of squares of y∗, and ab, b
2
b , g, and h are given in (5.6).
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Once the variational parameters of Ab, B
2
b , G, and H converge, we can obtain a lower

bound of the logarithm of Lb, denoted as Fb, which is given as follows:

Fb=

∫
q(ζb)

v(ζb)
dV (ζb) +

∫
q(σ2)

v(σ2)
dV (σ2) +

∫

log(f(y∗|ζb, σ2))dV (ζb, σ
2)

=log

(
1

bb

)

− log

(
1

Bb

)

− 1

2b2b
((Ab − ab)

2 +B2
b )

+(G− g)(logH − ψ(G)) +G

(

1 − h

H

)

+ log
hg

Γ(g)
+ log

HG

Γ(G)

−n
∗

2
(log 2π + logH − ψ(G)) − 1

2

G

H

(
n∗
∑

i=1

(y∗i −Ab)
2 − n∗B2

b

)

,

where Γ(.) is the gamma function.

Once we obtain the values of each Fb for b = 1, · · · , B, we can obtain a lower bound for

(5.9)

B∑

b=1

Eq(vb)[vb]Lb ≥
B∑

b=1

Eq(vb)[vb] exp(Fb) ≡ F.

Thus, we propose to use F as an approximation for the posterior predictive distribution of

p(y∗|y).

5.5 Numerical studies

We examine the performance of the VB method by comparing it with the two MCMC

methods on simulated data. To generate the data, we set µ and τ 2 for the base distribution

in (5.2) to be µ = 0 and τ 2 = 16 and σ2 equal to 0.64. We use the truncated stick-breaking

representation to construct the random distribution F . For demonstration purposes, we

simply truncate F at level 5, shown in Table 5.1. A data set of 60 groups data are generated
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from F , and each group contains 80 data points. We use 50 groups as the observed data

and 10 groups as the future data.

Table 5.1: A random distribution F , truncated at level 5

ζb -2.22 -0.54 1.01 4.28 7.10
P (ζb) 0.35 0.14 0.13 0.13 0.26

In the VB learning, we assume we have no knowledge about the distribution F , and also

mis-specify the truncation level to 10. The algorithm converges after 19 iterations.

Table 5.2: The VB approximations for the random distribution F

E[v1] E[v2] E[v3] E[v4] E[v5] E[v6] E[v7] E[v8] E[v9] E[v10]
E[ζ1] E[ζ2] E[ζ3] E[ζ4] E[ζ5] E[ζ6] E[ζ7] E[ζ8] E[ζ9] E[ζ10]
0.167 0.16 0.12 0.12 0.01 0.01 0.01 0.13 0.13 0.11
-2.24 -2.24 -0.55 0.97 2.06 2.06 2.06 4.23 7.12 7.12

Table 5.2 gives the expected values for vb and ζb under the VB approximations. We

can see a clear pattern. The expected probability weights for the component 5, 6, and

7, are close to zero. This may suggest they can be ruled out from the true model. The

component 1 and 2 share the exact same value of −2.24, which is close to the value of

component 1 in Table 5.1, and the cumulated expected probability weight of 0.327 is also

close to 0.35 in Table 5.1. We can observe a similar situation for component 9 and 10. Thus,

by combining same components (with same values) and ruling out the empty components

(with very small probability weights), we can conclude that VB picks up 5 components for

the random distribution F .

For the Polya-urn type Gibbs sampler (Algorithm 6), we run 2 × 105 iterations. We use

the last 20% data, which we believe the chain has reached its stationary distribution. To

reduce the serial correlation effect, we pick the every 25th data point. The frequencies of the
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distinct number of ζb are given in Table 5.3. We see that the posterior probability favors 5,

6, or 7 components, and 6 components has the largest probability.

Table 5.3: Posterior probabilities for the number of ζ

# of ζ 5 6 7 8 9 10
P(# of ζ) 0.270 0.386 0.254 0.068 0.018 0.002

For the blocked Gibbs sampler (Algorithm 8), we run 2.5× 106 iterations. The last 20%

data is used. To reduce the serial correlation effect, we pick the every 25th data point. Even

with the order constraints on ζ , the chain still shows the signs of label switching. Thus, a

single value of vb or ζb may lose the interpretability.

Finally, we compare the posterior predictive distribution approximated by the three meth-

ods. We compute the log predictive likelihoods, shown in Table 5.4, for the 10 groups of

future data. For the Gibbs samplers, additional 2,500 samples are collected and used in the

computation. We see that the three methods give very similar values. The mean values are

given as −95.95, −97.30, −97.32 respectively. A t test, for the log predictive likelihoods

computing by Algorithm 8 and by VB, is performed, and it can not reject the hypothesis

that the true difference in means is equal to 0 at a p-value equal to 0.9923, and we also can

obtain a p-value equal to 0.5049 for Algorithm 8 versus Algorithm 6,

Table 5.4: Log predictive likelihood for 10 groups of future data

Polya-urn -96.19 -98.43 -89.45 -97.35 -104.31 -95.64 -90.36 -99.84 -92.86 -95.11
Blocked -97.40 -99.67 -90.59 -98.53 -105.84 -96.76 -91.50 -100.82 -95.53 -96.32

VB -97.29 -99.88 -90.46 -98.74 -105.90 -96.88 -91.37 -100.62 -95.47 -96.54
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5.6 Discussion

The variational Bayes method provides a computational efficient technique to approximate

certain posterior quantities in the context of hierarchical modelling using Dirichlet process

priors. To avoid the limitation in the existing variational formalism which relies on conjugate

exponential families, we consider VB in a new framework. The parameter separation param-

eterization (Section 2.5.2) gives a factorization which allows flexible dependence structures.

Based on this new framework, we provide a full variational solution for the Dirichlet process

with non-conjugate base prior. The numerical results show that the VB method is very com-

putationally efficient. Moreover, the comparison with two different MCMC methods shows

that VB provides accurate approximations for the posterior predictive distribution. Finally,

we propose an empirical method to estimate the truncation level for the truncated DP.
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Chapter 6

Variational Bayes for

Regime-switching Lognormal Models

This chapter describes how to apply the VB method to the regime-switching log-normal

model and how it provides a computationally fast solution to quantify the uncertainty in

the model specification and parameter specitication. The results show that the method can

recover exactly the model structure, gives the reasonable point estimates, and is very com-

putationally efficient. The potential problems of the method in quantifying the parameter

uncertainty are discussed. To remedy these problems, the methods proposed in Chapter 4

are used to compute the true posterior covariance matrix.

6.1 Introduction

Switching between different states or regimes is a common phenomenon in many time series,

and regime-switching models, originally proposed by Hamilton (1989), have been used to

model these switching processes. Of particular interest to this chapter is the regime-switching

lognormal model (RSLN) proposed by Hardy (2001). As demonstrated in Hardy (2002), the
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maximum likelihood estimate (MLE) does not give a simple method to deal with parameter

uncertainty. The asymptotic normality of maximum likelihood estimators may not apply

for sample sizes commonly found in practice. Hence, to understand parameter uncertainty

Hardy (2002) considered the RSLN model in a Bayesian framework using the Metropolis-

Hastings algorithm. Furthermore, model uncertainty, in particular selecting the correct

number of regimes, is a major issue. Hence, model selection criteria have to be used to

choose the best model. Hardy (2001) found that a two-regime RSLN model maximized the

Bayes information Criterion (BIC) (Schwarz, 1978) for both monthly TSE 300 total return

data and S&P 500 total return data, however, according to the Akaike Information Criterion

(AIC) (Akaike, 1974), a three regime model was the optimal on S&P data. To account for

the model uncertainty associated with the number of regimes, Hartman and Heaton (2011)

offered a dynamic estimation of the number of regimes using a Chinese restaurant process.

MCMC methods make possible the computation of all posterior quantities, however there

are a number of practical issues associated with their implementation. Detailed discussions

can be found in Chapter 1 in particular computational speed is one of the main advantages

of VB.

This chapter shows how to apply the VB method to the RSLN model and presents a

solution to investigate the model specification problem. In particular it looks at how to

find the appropriate number of regimes. While the simplification in the dependence gives

computation advantages it also comes at a cost. For example we also found that the posterior

variance may be underestimated, and the correlation structure is distorted. We will use the

techniques introduced in Chapter 4 to approximate the true posterior covariance matrix.

Moreover, through the numerical results, we can observe that the VB approximations

tend to present an approximately symmetric and bell shaped pattern. In this chapter, we

aim to explore the asymptotic properties of the VB method.

The chapter is organized as follows. Section 6.2 presents the VB method and its applica-
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tion in the RSLN model. Numerical studies on simulated data and real data are provided in

Section 6.3, where the VB method is compared with both the criterion-based model selection

procedure and the MCMC method. Section 6.4 uses the three method proposed in Chapter

4 to estimate the true posterior covariance matrix. Section 6.5 discusses the asymptotic

normality. Conclusions are available in the last section.

6.2 Variational Bayes

6.2.1 Variational Bayes for the RSLN model

A regime-switching lognormal (RSLN) model (Hardy, 2001) with a fixed finite number, K,

regimes can be described as a bivariate discrete time process with the observed data sequence

W1:T = {Wt}Tt=1, and the unobserved regime sequence S1:T = {St}Tt=1, where St ∈ {1, · · · , K}
and T is the number of observations. The logarithm of the observed data Wt, denoted as

Yt = logWt, is normally distributed with its mean µi and variance σ2
i dependent on an

unobserved regime St. The sequence of S1:T is assumed to follow a first order Markov chain

(Figure 6.1). In the most basic models the transition probabilities of the hidden regimes and

the model for Yt given St are assumed to be invariant over time.

Figure 6.1: A graphical representation of a RSLN model

The parameters in a RSLN model include the initial probabilities of the first regime,

π = (πi)
K
i=1, the transition probabilities of the hidden regimes, A = (aij), and the means and
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variances ζ = {(µi, σ2
i )}Ki=1 for the observed data conditionally on the state. We denote the

complete parameter vector by τ = (π,A, ζ). The joint distribution of Y1:T and S1:T given τ ,

also referred to as the complete likelihood function, is given by

P (Y1:T , S1:T |τ) = p(S1|π)

T−1∏

t=1

p(St+1|St;A)

T∏

t=1

p(Yt|St; ζ). (6.1)

By adopting an indicator variable St,i, where St,i = 1, if the process is in state i at time t,

and zero otherwise, the joint distribution of (6.1) can be written as

P (Y1:T , S1:T |τ) =

K∏

i=1

π
S1,i

i

T−1∏

t=1

K∏

i=1

K∏

j=1

a
St,i,St+1,j

ij

T∏

t=1

K∏

i=1

φi(yt;µi, σ
2
i )
St,i (6.2)

In the Bayesian framework, we choose the following prior distributions for π, A, ζ ,

p(π) = Dir(π1, · · · , πK ; uπ1 , · · · , uπK), uπi =
Cπ

K
,Cπ > 0,

p(A) =

K∏

i=1

p(ai) =

K∏

i=1

Dir(ai1, · · · , aiK ; uA1 , · · · , uAK), uAi =
CA

K
,CA > 0,

p(ζ) =
K∏

i

N(µi|σ2
i ; γ, η

2)IG(σ2
i ;α, β) (6.3)

where Cπ, CA, γ, η2, α, and β are hyper-parameters. These priors are chosen due to the

conjugacy considerations. To have these priors providing little influence on the posterior

distributions, we assign small numbers to Cπ and CA, for example, 0.1; we set γ equal to

data mean, β and η2 equal to data variance, and α equal to 2.

The joint posterior distribution of π,A, {µi, σ2
i }Ki=1, and S1:T can be obtained as,

P (π,A, {µi, σ2
i }Ki=1, S1:T |y1:T ) ∝

p(S1|π)

T−1∏

t=1

p(St+1|St;A)

T∏

t=1

p(yt|St; {µi, σ2
i }Ki=1)p(π)p(A)p({µi, σ2

i }Ki=1). (6.4)
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The following important marginal posterior distributions are then given by

p(τ, S1:T |Y1:T ) =
1

Z
P (Y1:T , S1:T |τ)p(τ), (6.5)

p(τ |Y1:T ) =
1

Z

∑

S1:T

p(Y1:T , S1:T |τ)p(τ), (6.6)

p(S1:T |Y1:T ) =

∫

p(S1:T |τ, Y1:T )p(τ |Y1:T ) dτ, (6.7)

where Z is the marginal likelihood, p(τ) is a prior distribution. All posteriors of (6.5), (6.6),

(6.7) are intractable in most practical cases, since the normalising factor Z involves sums

over exponentially large numbers of paths.

In VB, we consider an approximation which is factorized as:

q(τ, S1:T ) = q(π)
K∏

i=1

q(ai)
K∏

i

q(µi|σ2
i )q(σ

2
i )q(S1:T ),

where ai is the ith row vector of the transition probability matrix A.

Given that the likelihood can be expressed in (6.2), It is straightforward to check that

it follows a parameter separate parameterization. Then Applying Theorem 2.2 yields the

following results,

q̂(S1:T ) =

K∏

i=1

π
∗S1,i

i

T−1∏

t=1

K∏

i=1

K∏

j=1

a
∗St,i,St+1,j

ij

T∏

t=1

K∏

i=1

θ∗St,i

Z̃
, (6.8)

q̂(π) = Dir(π1, ..., πK ;wπ1 , ..., w
π
K) ;wπi = uπi + wsi , (6.9)

q̂(A) =

K∏

i

Dir(ai1, ..., aiK ;wAi1, ..., w
A
iK) ;wAij = uAj + vsij, (6.10)

q̂(µi|σ2
i ) = N

(
γ′i, η

′2
i

)
, γ′i =

η2γ + psi
η2 + qsi

, η′2i =
σ2
i

η2 + qsi
, (6.11)

q̂(σ2
i ) = IG (α′

i, β
′
i) , α

′
i = α +

qsi
2
, β ′

i = β +
rsi
2

+
η2

2

(qsi − γpsi )
2

(qsi + η2)2
(6.12)
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Where

π∗
i = eEq(π)[log πi] = exp

(
ψ(wπi ) − ψ(

∑

i

wπi )
)
, (6.13)

a∗ij = eEq(A)[log(aij )] = exp
(
ψ(wAij) − ψ(

∑

j=1

wAij)
)
, (6.14)

θ∗i,t = e
E

q(ζ)
[logφi(yt)]

= exp

(

− 1

2
log 2π − 1

2
(log β ′

i − ψ(α′
i)) −

1

2

(

(yt − γ′i)
2α

′
i

β ′
i

+
1

η2 + qsi

))

, (6.15)

wsi = Eq(S1:T )[S1,i], vsij =
T−1∑

t=1

Eq(S1:T ) [St,iSt+1,j ] , usi =
T−1∑

t=1

Eq(S1:T )[st,i]y
2
t ,

psi =

T−1∑

t=1

Eq(S1:T )[st,i]yt, qsi =

T−1∑

t=1

Eq(S1:T )[st,i], rsi =

T−1∑

t=1

(γ′i − yt)
2Eq(S1:T )[st,i](6.16)

6.2.2 Interpretation of results

First, all approximating distributions above turn out to lie in well-known parametric families.

The only unknown quantities are the parameters of these distributions. The evaluation of

parameters of q(π), q(A), q(µi|σ2
i ), and q(σ2

i ) requires the knowledge of q(S1:T ), and also the

evaluation of π∗
i , a

∗
ij and θ∗i,t requires the knowledge of q(π), q(A), q(µi|σ2

i ), and q(σ2
i ). This

structure leads to an iterative updating scheme, described in Algorithm 9.

The main computational effort in Algorithm 9 is computing Eq(S1:T )[St,i] and Eq(S1:T ) [St,iSt+1,j ]

which have no simple tractable forms. We note that the distributional form of q(S1:T )

given in (6.8) has a very similar structure as the conditional distribution of p(S1:T |Y1:T , τ)

for which the forward-backward algorithm (Baum et al., 1970) is commonly used to com-

pute Ep(S1:T |Y1:T ,τ)[St,i|Y1:T , τ ] and Ep(S1:T |Y1:T ,τ) [St,iSt+1,j |Y1:T , τ ]. Therefore, we also use the

forward-backward algorithm to compute Eq(S1:T )[St,i] and Eq(S1:T ) [St,iSt+1,j ].

The conditional distribution of q(µi|σ2
i ) is N

(

µi|σ2
i ; γ

′
i,
σ2

i

κi

)

, then the marginal distribution

of µi is the location-scale t distribution, denoted as t2α′
i

(

µi; γ
′
i,

κi

β′
i/α

′
i

)

, where the density
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Algorithm 9 Variational Bayes algorithm for the RSLN model

Initialize wsi
(0), psi

(0), qsi
(0), vsij

(0), and rsi
(0) at step 0

while wπi
(t−1), wAij

(t−1)
, γ′i

(t−1), α′
i
(t−1), β ′

i
(t−1), π∗

i
(t−1), a∗ij

(t−1), and θ∗i,t
(t−1) do not converge

do
1. Compute wπi

(t), wAij
(t)

, γ′i
(t), κi

(t), α′
i
(t), and β ′

i
(t)at step t by

wπi
(t) =

CK
π

K
+ wsi

(t−1), wAij
(t)

=
CA
π

K
+ vsij

(t−1), γ′i
(t)

=
η2γ + psi

(t−1)

η2 + qsi
(t−1)

,

κi
(t) = η2 + qsi

(t−1), α′
i
(t)

= α +
qsi

(t−1)

2
, β ′

i
(t)

= β +
rsi

(t−1)

2
+
η2

2
(γ

′

i

(t) − γ)2

2. Compute π∗
i
(t), θ∗i,t

(t) and a∗ij
(t) at step t by

π∗
i
(t) = exp

{

ψ(wπi
(t)) − ψ(

∑

i

wπi
(t))

}

, a∗ij
(t) = exp

{

ψ(wAij
(t)

) − ψ(
∑

j=1

wAij
(t)

)

}

θ∗i,t
(t) = exp

{

−1

2
log 2π − 1

2
(log β ′

i
(t) − ψ(α′

i
(t)

)) − 1

2

(

(yt − γ′i
(t)

)2α
′
i
(t)

β ′
i
(t)

+
1

κi(t)

)}

3. Compute wsi
(t), vsij

(t), psi
(t), qsi

(t), and rsi
(t) at step t by

wsi
(t) = Eq(t)(S1:T )[S1,i], v

s
ij

(t) =

T−1∑

t=1

Eq(t)(S1:T ) [St,iSt+1,j] , p
s
i
(t) =

T−1∑

t=1

Eq(t)(S1:T )[st,i]yt,

qsi
(t) =

T−1∑

t=1

Eq(t)(S1:T )[st,i], r
s
i
(t) =

T−1∑

t=1

(γ′i
(t) − yt)

2Eq(t)(S1:T )[st,i]

t⇐ t+ 1
end while
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function of tν(x;µ, λ) is defined as p(x|ν, µ, λ) =
Γ( ν+1

2
)

Γ( ν
2
)

(
λ
πν

) 1
2

[

1 + λ(x−µ)2

ν

]− ν+1
2

, for x, µ ∈
(−∞,+∞), and ν, λ > 0.

To start the Algorithm 9, we need initial values for wsi , p
s
i , q

s
i , v

s
ij, and rsi at step 0. In

general, we choose symmetric values for most of the parameters, and choose random values

for others. For example, one setting we use is assigning wsi = 1
K

, qsi = T
K

, psi = T
K
γ where γ

is the hyper-parameter (see (6.3)), and assign random numbers for vsij , and rsi .

6.3 Numerical studies

6.3.1 Simulated data

In this section we applied the VB solutions to four sets of simulated data, which are used in

Hartman and Heaton (2011). Through these simulated studies, we will test the performance

of VB on the detecting the number of regimes and compare it with those of the BIC and the

sticky HDP-HMM, described in Hartman and Heaton (2011).

To estimate the number of regimes, we construct a matrix, called the relative magnitude

matrix (RMM), defined as A′ =
(
â′ij
)

where â′ij =
wA

ij

wA
0
, wA0 =

∑K
i=1

∑K
j=1w

A
ij, and wAij is

the parameter of q(A) given in (6.10). Our model selection procedure is to fit a VB with a

large number of regimes and examine the rows and columns in the RMM. If the values of

the entries in the ith row and the ith column of A′ are all equal to CA/K
T−1+CA×K , then we will

declare the regime i nonexistent. This method is validated by the following observations. It

can shown that the parameter of vsij in wAij is equal to the number of times the process leaves

regime i and enters regime j. Therefore, for the ith regime, the values of zero for all of vsji

and vsij with j = 1, · · · , K indicate that there is no transition process entering or leaving

regime i.

Table 6.1 specifies the parameters for the four cases, and we generate 671 observations for
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each case (equal to the number of months from 1956 January to 2011 September). The pa-

rameters used in Case 1 are identical to the maximum likelihood estimates for TSX monthly

return data from 1956 to 1999 (Hardy, 2001). Case 2 only has one regime present. Case 3 is

similar to case 1, but the two regimes have the same mean. Case 4 adds a third regime. For

each case, we use MLE to fit a 1-regime, 2-regime, 3-regime, and 4-regime RSLN model and

report the corresponding BIC and log-likelihood scores. We then mis-specify the number of

regimes and run a 4-regime VB algorithm.

Table 6.1: Parameters of simulated data

Regime 1 Regime 2 Regime 3
Case (µi, σi) (µi, σi) (µi, σi) Transition probability

1 (0.012, 0.035) (-0.016, 0.078) -
(

0.963 0.037
0.210 0.790

)

2 (0.014, 0.050) - - -

3 (0.000, 0.035) (0.000, 0.078) -
(

0.963 0.037
0.210 0.790

)

4 (0.012, 0.035) (-0.016, 0.078) (0.04, 0.01)





0.953 0.037 0.01
0.210 0.780 0.01
0.80 0.190 0.01





Table 6.2 shows the number of iterations which VB takes to converge in each case. On

average, VB converges after a hundred iterations. The results of the BIC with the log-

likelihood (in parentheses), the relative magnitude matrices, and the posterior probabilities

for the models with the different number of regimes estimated by the sticky HDP-HMM

(cited from Hartman and Heaton, 2011) are given in Table 6.3. In Case 1, the BIC favors

the two-regime model. The posterior probability estimated by the sticky HDP-HMM for

the one-regime model is the largest, but there is still a large probability for the two regime

model. The relative magnitude matrix clearly shows there are only two regimes whose â′ij

are not negligible. This implies VB removes excess transition and emission processes, and
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discovers the exact number of hidden regimes. In Case 2 and Case 3, both VB and the BIC

can select the correct number of regimes, and the posterior probability for the one-regime

model estimated by the sticky HDP-HMM is still the largest. In Case 4, VB does not detect

the third regime. The transition probability to this regime is only 0.01, and the means and

standard deviations of regime 1 makes the rare data from regime 3 easily merged within the

data from regime 1. From Table 6.3, it is clear that for all the cases the log-likelihood always

increases as the number of regimes increase.

Table 6.2: Computational efficiency of VB

Case 1 Case 2 Case 3 Case 4
Iterations to converge 62 182 132 94

6.3.2 Real data

In this section, we apply the VB solution to the TSX monthly total return index in the period

from January 1956 to December 1999 (528 observations in total and studied in Hardy, 2001,

2002).

A four-regime VB is implemented first. VB converges after 100 iterations about 34.284

seconds (on a MacBook, 2 GHz Intel Core 2 Duo processor, 1 GB 667 MHz SDRAM, and

Mac OS X 10.4.11). The relative magnitude matrix, given in Table 6.4, clearly shows that

VB identifies two regimes. This matches both the BIC and AIC-based results (Hardy, 2001).

Based on this results, we then fit a two-regime VB which converges after 83 iterations in

about 14.241 seconds. Table 6.5 gives the marginal distributions for all the parameters.

Tabel 6.6 gives the maximum likelihood estimates (cited from Hardy, 2001) and mean

parameters computed by the MCMC method (cited from Hardy, 2002) and mean parameters

computed by VB. It clearly shows that the point estimates by VB are similar to those by
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Table 6.3: The estimated number of regimes by VB, BIC, and the sticky HDP-HMM

No. of MLE HDP-HMM VB
Case reg. BIC(log likehood) post. prob. relative magnitude matrix

1

1
2
3
4

1108.875(1115.384)
1158.227(1174.499)
1156.370(1182.405)
1153.150(1188.948)

0.647
0.214
0.088
< 0.052







0.14357 0.00004 0.00004 0.03153
0.00004 0.00004 0.00004 0.00004
0.00004 0.00004 0.00004 0.00004
0.03018 0.00004 0.00004 0.79428







2
1
2
3
4

1045.448(1051.957)
1038.360(1054.632)
1030.733(1056.768)
1026.882(1062.680)

0.864
0.109
0.020
< 0.006







0.99944 0.00004 0.00004 0.00004
0.00004 0.00004 0.00004 0.00004
0.00004 0.00004 0.00004 0.00004
0.00004 0.00004 0.00004 0.00004







3
1
2
3
4

1110.903(1117.411)
1139.214(1155.486)
1131.904(1157.719)
1121.921(1157.940)

0.629
0.221
0.098
< 0.052







0.11322 0.00004 0.00004 0.02647
0.00004 0.00004 0.00004 0.00004
0.00004 0.00004 0.00004 0.00004
0.02659 0.00004 0.00004 0.83327







4

1
2
3
4

1044.819(1051.328)
1092.610(1108.881)
1087.435(1113.470)
1080.240(1116.038)

0.641
0.203
0.094
< 0.06







0.22643 0.00004 0.00004 0.05518
0.00004 0.00004 0.00004 0.00004
0.00004 0.00004 0.00004 0.00004
0.05377 0.00004 0.00004 0.66417







119



Table 6.4: Estimations of the number of regimes for TSX data

Jan. 1956 - Dec. 1999

R. M. M.







0.11496 0.00005 0.00005 0.02803
0.00005 0.00005 0.00005 0.00005
0.00005 0.00005 0.00005 0.00005
0.02853 0.00005 0.00005 0.82791







Table 6.5: The marginal distributions of the parameters estimated by VB

Parameter Distribution Mean s.d. Transition
Probability

µ1 t454.61(0.0123, 370778.19) 0.0123 0.00165 -
σ2

1 IG(227.30, 0.28) 0.00122(0.0349) 0.00008 -
µ2 t80.39(−0.0161, 12987.55) -0.0161 0.00889 -
σ2

2 IG(40.20, 0.24) 0.00603(0.0777) 0.00098 -
p1,2

p2,1

Beta(15.21, 434.78)
Beta(15.00, 61.21)

0.0338
0.1969

0.00851
0.04525

(
0.9662 0.0338
0.1969 0.8031

)

MLE and MCMC. The numbers in parenthesis in Table 6.6 are the standard deviations

computed by the three methods respectively. It is worth to note that Hardy (2001, 2002)

reports the standard deviations for σ1 and σ2, rather than σ2
1 and σ2

2. Our derivations are

based on σ2
1 and σ2

2 . For a easy comparison, we transform the standard deviations for σ1 and

σ2 to the standard deviations for σ2
1 and σ2

2 by delta methods. The numbers in parenthesis

in Table 6.6 in the rows of σ1 and σ2 are the standard deviations for σ2
1 and σ2

2.

6.4 Diagnostics

The posterior variance and covariance estimated by the VB approximations and by the

MCMC sample moments (cited from Hardy, 2002) are given in Table 6.7, and the ratios of
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Table 6.6: The parameter estimates and their standard deviations given by VB, MLE and
MCMC

VB MLE MCMC
µ1 0.0123(0.00165) 0.0123(0.002) 0.0122(0.002)
σ1 0.0349(0.00008) 0.0347(0.00007) 0.0351(0.00014)
p1,2 0.0338(0.00851) 0.0371(0.012) 0.0334(0.012)
µ2 -0.0161(0.00889) -0.0157(0.010) -0.0164(0.010)
σ2 0.0777(0.00098) 0.0778(0.00140) 0.0804(0.00145)
p2,1 0.1969(0.04525) 0.2101(0.086) 0.2058(0.065)

the two sets of estimates are given in the last row in 6.7. These ratios indicate that VB

underestimated the actual posterior variances, and again strongly distorts the correlation

structure.

Table 6.7: Posterior variance and covariance estimated by VB and MCMC

Post. cov.: (µ1, σ1,p1,2, µ2, σ2,p2,1)

MCMC
samples

s.d.:
0.002, 0.00014, 0.012, 0.010, 0.00145, 0.065

correlation coeff.:
-0.16, 0.17, -0.34,-0.10, -0.11, 0.08, -0.17, 0.22,-0.25,-0.15, 0.06,-0.04,0.34,-0.14,0.12

VB
approx.

s.d.:
0.0017, 0.00008, 0.0085, 0.0089, 0.0010, 0.045

correlation coeff.:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0

Ratios 1.49, 2.95, 2.16, 1.43, 1.74, 2.13

The methods proposed in Chapter 4 can be used to reconstruct the true posterior covari-

ance matrix. For the optimal affine transformations, a random sample of size 600 is generated

from (6.10), (6.11) and (6.12). There are 27 parameters in total in the linear transformation.

Maximizing the posterior probability over these parameters can be done with the Newton’s

method or standard search methods. For the marginal and stepwise methods, we use 4000
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samples to compute the acceptance rates in VBAIMH, which significant improve the com-

putational efficiency, compared with other MCMC methods, for example, the random walk

Metropolis-Hastings.

The final results are given in Table 6.8, where the upper part of the table gives the

ratios of the variances estimated by MCMC, the affine transformation, the marginal method

and the stepwise method versus those estimated by VB; the lower part of the table gives

correlation coefficients estimated by MCMC, the affine transformation, the marginal method

and the stepwise method. The fact that all variance ratios are greater than one indicates

that VB underestimates the actual posterior variances.

In this example, we work through a complete cycle of the stepwise method to obtain

the exact estimations on variances and correlation coefficients, which provide a quantitative

correction on VB approximations. In fact, each step of the stepwise method can provide

a qualitative diagnostics. Table 6.10 gives all numerical results in the stepwise method.

The values of mi in Step 1 are all greater than 1, which indicates that the VB variances

are smaller than the true ones, since a conditional variance always penalizes the marginal

variance. In Step 2, the values of the pair of λk,1 and λk,2 provide possible information about

the sign of the correlation.

6.5 Normality

The variational approximations for µi, σ
2
i , and pij (or ai in the general notation given in

(6.10)) are given in Table 6.5, where we can see that the approximation for µi results in a

t distribution, for σ2
i it is an inverse Gamma, and for pij it is a Beta. However, the density

functions plotted in Figure 6.2 show that all the figures present an approximately symmetric

and bell shaped pattern.

In this section, we aim to explain this phenomenon through exploring the asymptotic
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Table 6.8: 3 diagnostics methods

MCMC Affine Marginal Stepwise
Variance ratios (over VB variances)

µ1 1.49 1.44 1.97 1.22
σ2

1 2.95 1.60 1.76 1.63
p1,2 2.16 2.81 1.41 2.21
µ2 1.43 1.20 1.82 1.34
σ2

2 1.74 1.57 2.00 1.49
p2,1 2.13 2.34 2.15 1.97

Correlation coefficients
ρ12 -0.1630 -0.1217 -0.1175 -0.1266
ρ13 0.1681 0.2228 0.1220 0.1367
ρ23 -0.3438 -0.2970 -0.3831 -0.3388
ρ14 -0.1043 -0.1294 -0.1874 -0.1275
ρ24 -0.1094 -0.0903 -0.0649 -0.0865
ρ34 0.0796 0.0221 0.0856 0.0507
ρ15 -0.1678 -0.1856 -0.1061 -0.1328
ρ25 0.2235 0.1793 0.1008 0.1390
ρ35 -0.2517 -0.1604 -0.2890 -0.2160
ρ45 -0.1476 -0.0747 -0.0116 -0.0231
ρ16 0.0552 0.0528 0.0942 0.0640
ρ26 -0.0374 -0.0690 0.0461 -0.0772
ρ36 0.3385 0.3985 0.5947 0.3518
ρ46 -0.1433 -0.1154 -0.1664 -0.0989
ρ56 0.1238 0.1291 0.1434 0.1023
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Figure 6.2: The VB marginal distributions of the parameters

behavior of the VB approximations. Theorem 6.1 provided in Chen (1985) will be our main

tool.

Theorem 6.1 (Chen, 1985) Let {fT (θ), T = 1...} be a sequence of probability density func-

tion defined on the parameter space Ω. It is assumed that, for each T , there exists a strictly

local maximum, mT , of fT , and let ΣT = (−L′′

T (mT ))−1, where LT = log(fT ). Then, the fol-

lowing three conditions of (C1), (C2), and (C3) are the necessary and sufficient conditions

for the standardized ZT , defined as

ZT = Σ
−1/2
T (θ −mT ),

to converge in distribution to the standard normal distribution:

(C1) σ2
T → 0, as n → ∞, where σ2

T is the largest eigenvalue of ΣT

(C2) For any ǫ > 0, there exists an N and δ > 0, such that, for any n > N and θ ∈
Ω and |θ−mT | < δ, L

′′

T exists and satisfies I −A(ǫ) ≤ L
′′

T (θ)(L
′′

T (mT ))−1 ≤ I +A(ǫ), where

I is the identity matrix and A(ǫ) is a a positive semidefinite symmetric matrix whose largest

eigenvalue tends to zero as ǫ→ 0.

(C3) For any δ > 0, there exists an S, and two positive numbers c and p, for any T > S
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and θ ∈ Ω and |θ −mT | < δ, LT (θ) − LT (mT ) < −c((θ −mT )TΣ−1
T (θ −mT ))p.

In the applications to variational approximations of the above general results, fT (θ) ≡
q(θ), where q(θ) is the VB density of θ, dependent implicitly on the relevant data yT . As the

original author points out, the asymptotic results given in Theorem 6.1 are non-probabilistic

in nature; the data yT are not regarded as random due to sampling plans, but simply form

a well-defined deterministic sequence, and hence the other quantities related to the data yT .

We would like to make it clear that the investigation in this section is explorational to

explain the symmetric and bell shapes in Figure 6.2, rather than rigorous proofs, as the

reasons stated above. Based on certain assumptions, we can show that q(σ2
i ), q(ai), and

q(µi) in RSLN models satisfy the three conditions given in Theorem 6.1. The following

several identities will be used in the derivations. Given the definitions in (6.16), qsi can be

interpreted as the number of times the process in regime i. Given the model (the number of

total regimes) is correct, qsi is proportional to the total number of observations T . Therefore,

we consider qsi = O(T ). By the similar argument, we consider vsij = O(T ) as well.

First, we consider q(σ2
i ). Since q(σ2

i ) = IG (α′
i, β

′
i), it can be shown that mT =

β′
i

α′
i+1

and

(L
′′

T (mT ))−1 =
β′

i
2

(α′
i+1)3

. It is obvious that α′
i = O(T ). We define c = max

t
(γ′i − yt)

2, and

then we can obtain β ′
i ≤ O(1) + O(1) + c

2
qsi = O(T ), and

β′
i
2

(α′
i+1)3

→ 0, as T → ∞. For

condition 2, we have L
′′

T (θ)(L
′′

T (mT ))−1 = 1. In fact, the probability density function of

the inverse gamma distribution is strictly concave in terms of σ2
i , then LT (σ2

i ) − LT (mT ) =

L
′

T (ξ)(σ2
i −mT ) < −L

′

T (ξ)

2
|σ2
i −mT | = −c((σ2

i −mT

ΣT
)2)1/2, ξ ∈ (σ2

i , mT ) and c =
L
′

T (ξ)ΣT

2

Second, we consider q(ai). Since q(ai) = Dir(ai;w
A
i1, ..., w

A
iK), it can be shown that

mT =

(

wA
i1−1

PK
j=1 w

A
ij−K

, · · · , wA
iK−1

PK
j=1 w

A
ij−K

)

and ΣT is a diagonal matrix with the jjth entry of

wA
ij−1

(
PK

j=1 w
A
ij−K)2

. Since wAij = O(T ) for all j = 1, · · · , K, it is obvious that the largest eigen-

value of Σt goes to zero as T → ∞. For condition 2, we have L
′′

T (θ)(L
′′

T (mT ))−1 = IK .

In fact, (log(q(ai)))
′′

is a diagonal matrix with the jjth entry of −wA
ij−1

a2ij
. When T is large,
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(log(q(ai)))
′′

is negative definite. Thus, q(ai) is a strictly concave function. By the similar

argument above, condition 3 is satisfied.

Last, as discussed above, q(µj) is t2α′
i

(

µi; γ
′
i,

κi

β′
i/α

′
i

)

. The degree of the t distribution is

2α′
j = O(T ). As T becomes large, it approaches a normal distribution.

6.6 Conclusions

The variational Bayes method provides a new framework to approximate the posterior quan-

tities. We applied this method to the regime-switching log-normal model and provide so-

lutions to account for both model uncertainty and parameter uncertainty. The numerical

results show that our method can recover exactly the number of regimes and gives the rea-

sonable point estimates. The VB method is also demonstrated to be very computationally

efficient.

The application on the TSX monthly total return index data in the period from January

1956 through December 1999 confirms the similar results in the literature in finding the

number of regimes. Finally, we address the potential problem of the method in estimating

the posterior covariance structure, and use the three methods proposed in Chapter 4 to

compute the covariance matrix.
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6.7 Appendix

For the affine transformation method, the estimated Â and B̂ is given by,

Â =

















1.200

−0.008 1.257

1.864 −45.563 1.570

−0.722 −11.953 0.026 1.076

−0.156 2.657 −0.014 −0.013 1.208

2.195 −52.512 3.292 −1.028 11.013 1.361

















; B̂ =

















−0.002

0.000

0.017

0.024

−0.002

−0.220

















.

For the marginal approximation method, it requires 21 projections. The directional

vectors with the corresponding acceptance rates and EAR table readings are given in Table

6.9.

For the stepwise method. The numerical results for Step 1 and 2 are given in Table 6.10.

127



Table 6.9: The marginal approximation method for the regime-switching lognormal model

direction Acceptance rate EAR reading: li
1
3
(1, 1, 1, 1, 1, 1) 0.852 1.6

1
3
(1,−1, 1, 1, 1, 1) 0.811 1.84

1
3
(1, 1,−1, 1, 1, 1) 0.843 1.66

1
3
(1, 1, 1,−1, 1, 1) 0.867 1.50

1
3
(1, 1, 1, 1,−1, 1) 0.755 2.16

1
3
(1, 1, 1, 1, 1,−1) 0.845 0.62

1
3
(−1, 1, 1, 1, 1, 1) 0.873 1.48

1
3
(−1,−1, 1, 1, 1, 1) 0.897 1.36

1
3
(−1, 1,−1, 1, 1, 1) 0.877 1.48

1
3
(−1, 1, 1,−1, 1, 1) 0.884 1.44

1
3
(−1, 1, 1, 1,−1, 1) 0.873 1.48

1
3
(−1, 1, 1, 1, 1,−1) 0.849 0.64

1
3
(1,−1,−1, 1, 1, 1) 0.817 0.56

1
3
(1,−1, 1,−1, 1, 1) 0.841 1.60

1
3
(1,−1, 1, 1,−1, 1) 0.819 1.76

1
3
(1,−1, 1, 1, 1,−1) 0.890 0.73

1
3
(1, 1,−1,−1, 1, 1) 0.802 1.52

1
3
(1, 1,−1, 1,−1, 1) 0.865 0.65

1
3
(1, 1,−1, 1, 1,−1) 0.854 1.62

1
3
(1, 1, 1,−1,−1, 1) 0.768 2.08

1
3
(1, 1, 1,−1, 1,−1) 0.865 0.65
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Table 6.10: The stepwise method for the regime-switching lognormal model

Variance Acceptance rate EAR readings Ratio

Step 1

m2
1 0.951 1.15 -

m2
2 0.862 1.42 -

m2
3 0.817 1.61 -

m2
4 0.928 1.28 -

m2
5 0.807 1.35 -

m2
6 0.831 1.63 -

Step 2

λ2
1,1, λ

2
1,2 0.929, 0.936 1.29, 0.91 -

λ2
2,1, λ

2
2,2 0.949, 0.931 0.97, 1.30 -

λ2
3,1, λ

2
3,2 0.950, 0.960 1.18, 0.89 -

λ2
4,1, λ

2
4,2 0.844, 0.875 1.61, 0.90 -

λ2
5,1, λ

2
5,2 0.966, 0.962 0.98, 1.14 -

λ2
6,1, λ

2
6,2 0.871, 0.873 1.51, 0.77 -

λ2
7,1, λ

2
7,2 0.921, 0.943 1.27, 0.91 -

λ2
8,1, λ

2
8,2 0.921, 0.774 0.88, 2.09 -

λ2
9,1, λ

2
9,2 0.952, 0.907 0.99, 1.04 -

λ2
10,1, λ

2
10,2 0.926, 0.930 0.94, 1.29 -

λ2
10,1, λ

2
11,2 0.858, 0.819 1.53, 0.77 -

λ2
11,1, λ

2
12,2 0.917, 0.783 0.76, 2.00 -

λ2
13,1, λ

2
13,2 0.866, 0.884 0.96, 0.96 -

λ2
14,1, λ

2
14,2 0.930, 0.961 1.19, 0.94 -

λ2
15,1, λ

2
15,2 0.889, 0.810 0.82, 1.22 -

Step 3

r1 - - -0.127
r2 - - 0.137
r3 - - -0.338
r4 - - -0.128
r5 - - -0.087
r6 - - 0.057
r7 - - -0.133
r8 - - 0.139
r9 - - -0.216
r10 - - -0.023
r11 - - 0.064
r12 - - -0.077
r13 - - 0.352
r14 - - -0.099
r15 - - 0.102
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Chapter 7

Future Work

In this chapter, we will summarize what has been achieved in the thesis. We also outline a

number of future research problems.

7.1 Summary of the thesis

This thesis aims to give insight into the general applicability and usefulness of the VB method

and also study its applications to various real-world problems. The work is split between

theoretical and applied work, and mainly includes the following aspects:

1. Its general applicability and properties

2. Diagnostics for VB approximations

3. Variational applications

In Chapter 2, we discuss the working principle of variational methods and introduce

the important issue of variational learning. Two techniques, which are used to obtain the
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VB approximations, are described. To overcome the limitations in the current variational

development, we proposed a factorization scheme with a more general dependency structure

than is traditional in VB, and propose a special parameterization for a parametric family

called the parameter separation parameterization. We provide the variational formulation

based on these new frameworks.

In Chapter 3, we mainly address the question: how good is the VB approximation in

any given example. In particular, we study the mean structure approximations by the VB

method, and show how it is possible using VB approximations to approach model selection

tasks such as determining the dimensionality of a model, or variable selection. We also

studied the local convergence properties of the method, the effects of choosing improper

priors, and the effects of different choices of factorization schemes.

In Chapter 4, we mainly address the question: how well the approximations represent

the actual posterior distributions, in particular how good is the approximation to the co-

variance structure, and how can it be improved. We propose three methods to diagnose

VB approximations. These methods are quick and easy to use, and require no sophisticated

tuning expertise. In numerical studies, we work through a series of statistical problems or

models to examine these methods.

In Chapter 5, we consider VB in Bayesian non-parametric problems. We shows how

the VB method provides a computationally efficient technique in the context of hierarchical

modelling using a Dirichlet process priors, in particular, handling non-conjugacy in its prior

specification. It shows, by using the parameter separation parameterization, that we are

able to provide a full variational solution for the Dirichlet process. We also provide a VB

approximation to the posterior predictive distribution and compare it with results derived

from two Markov chain Monte Carlo methods. For the truncated DP, we propose an empirical

method to determine the number of distinct components in a finite dimensional DP.
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In Chapter 6, as a concrete application study, we work through the VB method on

regime-switching lognormal models and present solutions to quantify both the uncertainty

in the parameters and model specification. Through a series numerical comparison studies

with likelihood based methods and MCMC methods on the simulated and real data sets,

we show that the VB method can recover exactly the model structure, gives the reasonable

point estimates, and is very fast. We also use the methods of Chapter 4 to improved the

variance estimation.

In the next a few sections, we present some research problems which are the natural

extensions to the development of what have been achieved so far.

7.2 Asymptotic normality

In this thesis, we have studied various statistical models, for example, the Normal ran-

dom sample with unknown mean and variance, one-way random-effect models, mixtures of

normal models, regime-switching lognormal models, and hierarchical regression models. The

numerical results showed that we often found that these approximations tend to be normally

distributed, at least to a good order of approximation. In particular, in Chapter 6 Section

6.5, we examine the special case, the RSLN model, and the VB approximations satisfy the

normality conditions of Chen (1985).

In the classical Bayesian theory, it is well established that under regularity conditions,

the posterior distribution of I
1/2
n (θ − θ̂n) converges to N(0, I) with probability one under

the true model for the data, where θ̂n is the maximum likelihood estimate and In is the

Fisher information matrix evaluated at θ̂n. This result can be found in Le Cam (1952,

1986); Walker (1969); Chen (1985). A more recent result about the asymptotic property of

the variational application can be found in Hall et al. (2011). They studied the asymptotic

distributional behavior of Gaussian variational approximate estimators of the parameters in
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a single predictor Poisson mixed model. We believe that under certain regularity conditions,

this asymptotic result will hold for general VB approximations.

This asymptotic result has practical meanings and will provide theoretical grounds for

our development of the VB method. For example, in our proposed VBAIMH method, the

choice of a normal as the proposal distribution is motivated by this asymptotic normality

observation. Moreover, this result can help us to have a better understanding about the

function F . It can be shown under normality conditions the function F turns out to be the

BIC.

In this section, we will give one more demonstration to explore the asymptotic behavior

of the VB approximations, and we will look at a two-component mixtures of Normal model.

Recall the VB approximations for this model are given by

q̂(z) =
∏n

i=1 multinomial(zi; 1, qi1, qi2),

where qij =
exp

 

ψ(a′j )−ψ(
PK
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j)− 1
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q̂(π) = Beta(a
′

1, a
′

2) ; a
′

j = aj +
∑n

i=1 qij ,

q̂(µj|σ2
j ) = N

(
c′j, d

′2
j

)
, c′j =

d2j cj+
Pn

i=1 xiqij

d2j+
Pn

i=1 qij
, d′2j =

σ2
j

d2j+
Pn

i=1 qij
,

q̂(σ2
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(
e′j , f

′
j

)
, e′j = ej +

Pn
i=1 qij
2

, f ′
j = fj +

d2j
2
(c′j − cj)

2 + 1
2

∑n
i=1 qij(c

′
j − xi)

2.

We still check the normality conditions described in Theorem 6.1 for q(π), q(σ2
j ), and

q(µj). First, we consider q(σ2
j ). Since q(σ2

j ) = IG
(
e′j, f

′
j

)
, it can be shown thatmn =

f ′j
e′j+1

and

(L
′′

n(mn))
−1 =

f ′j
2

(e′j+1)3
. As the similar argument in Section 6.5, we consider

∑n
i=1 qij = O(n),

then we have e′j = O(n). We define c = max
i

(c′j −xi)
2, then f ′

j ≤ O(1)+O(1)+ c
2

∑n
i=1 qij =

O(n). Then
f ′j

2

(e′j+1)3
→ 0, as n → 0. For condition 2, we have L

′′

n(θ)(L
′′

n(mn))
−1 = 1. In fact,

the probability density function of the inverse gamma distribution is strictly concave, then

Ln(σ
2
j ) − Ln(mn) = L

′

n(ξ)(σ
2
j −mn) < −L

′
n(ξ)
2

|σ2
j −mn| = −c

((
σ2

j−mn

Σn

)2
)1/2

, ξ ∈ (σ2
j , mn)

and c = L
′
n(ξ)Σn

2
.

134



Second, we consider q(π). Since q(π) = Beta(a
′

1, a
′

2), it can be shown that mn =
a
′

1−1

a
′
1+a

′
2−2

and (L
′′

n(mn))
−1 =

(a
′

1−1)(a
′

2−1)

(a
′
1+a

′
2−2)3

. Since a
′

1 = O(n) and a
′

2 = O(n), it is obvious that

(L
′′

n(mn))
−1 → 0. For condition 2, we have L

′′

n(θ)(L
′′

n(mn))
−1 = 1. In fact, q

′′
(π) =

−(
a
′

1−1

π2 +
a
′

2−1

(1−π)2
). When n is large, q

′′
(π) < 0 strictly. Thus, q(π) is a strictly concave

function. By the similar argument above, condition 3 is satisfied.

Last, we consider q(µ). The conditional distribution of q(µj|σ2
j ) is given by N

(
c′j , d

′2
j

)
,

where c′j =
d2j cj+

Pn
i=1 xiqij

d2j+
Pn

i=1 qij
, d′2j =

σ2
j

d2j+
Pn

i=1 qij
. The marginal distribution of q(µ) is a location-

scale t distribution, given by t2e′j

(

c′j ,
d2j+

Pn
i=1 qij

f ′j/e
′
j

)

. The degree of the t distribution is 2e′j =

O(n), then as n becomes large, it approaches a normal distribution.

7.3 Consistence of variational estimators

In this thesis, we have seen that the mean structure approximations using the VB method

are impressive. A natural question raised here is why VB works very well? In the classical

Bayesian theory, it is well-known, for example, see Bickel and Yahav (1969); Ibragimov and

Khas’ minskii (1973), that under regularity conditions, the Bayes estimator, under mean

square error (MSE) risk is asymptotically unbiased and it converges in distribution to the

normal distribution:
√
n(δn − θ0) → N

(

0, 1
I(θ0)

)

, where I(θ0) is the fisher information of

θ0. It follows that the Bayes estimator under MSE is asymptotically efficient. It is also

well-known that the maximum likelihood estimator (MLE) is asymptotically normal and

efficient. Moreover, White (1982) shows that when the true distribution is unknown, the

MLE is still a consistent estimator for the parameters, which minimize the Kullback-Leibler

from the true distribution to the hypothetic distribution.

Through the various applications in this thesis, we observe that there exist a close rela-

tionship between the maximum likelihood and Bayes estimators under variational approx-
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imations. We can show it in the following simple example. Recall that the variational

approximation for µ, in the normal random sample with unknown mean and variance, is

given as

q(µ) = N(γvb, η
2
vb), γvb =

γ
η2

+ nȳEq̂(σ2)[
1
σ2 ]

1
η2

+ nEq̂(σ2)[
1
σ2 ]

, η2
vb =

1
1
η2

+ nEq̂(σ2)[
1
σ2 ]
,

where ȳ is the sample mean. The Bayes estimator under MSE is

Eq(µ)[µ] = γvb =

γ
η2

+ nȳEq(σ2)[
1
σ2 ]

1
η2

+ nEq(σ2)[
1
σ2 ]

,

where γ and η2 are hyper-parameters. The MLE is ȳ. Therefore we can get

Eq(µ)[µ] =

γ
η2

1
η2

+ nEq(σ2)[
1
σ2 ]

+
nEq(σ2)[

1
σ2 ]

1
η2

+ nEq(σ2)[
1
σ2 ]
ȳ,

The last equation implies that, for n → ∞, the Bayes estimator is close to the MLE.

Motivated by these observations, we believe that the Bayes estimators under variational

approximations is also asymptotically consistent.

7.4 Overfitted models

In this thesis we showed how it is possible using VB approximations to approach model

selection tasks such as determining the dimensionality, or selections of variables. We apply

different methods for the different models. In the finite mixture of normals model, the mixing

proportions are used to decide the number of components. In the truncated Dirichlet process,

the probability weights are used to decide truncation level. In regime-switching models, a

relative magnitude matrix, that was constructed based on the posterior distribution of the

transition probability matrix, is used to remove excess transition processes. In the linear
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regression model, the regression setup was embedded in a hierarchical framework where

latent variables are used to identify subset choices.

A common feature of these methods lies in that we use a larger model, whose dimension

or numbers of components are greater than the true model, referred as to a overfitted model.

From the numerical results on the above applications, we have seen that the VB approxi-

mations tend to empty the extra components, in the sense that either mixing proportions or

probability weights or transition probability tend to zero.

Rousseau and Mengersen (2011) proved that for a mixture model, the posterior distri-

bution of the overfitted model will concentrate on a subset of parameters so that the extra

components have weight zero. It would be very interesting if this theoretical result can be

extended to a broader class of models, for example, the models we have already studied

above. If this result can further be verified for the VB method, we will obtain an important

theoretical framework for our numerical studies.

7.5 Diagnostics for VB

The variational approximations may be inadequate from a number of perspectives. In Chap-

ter 4 we list some of the most important: 1) By definition the posterior covariance structure

is distorted; 2) VB might only converge to a local optimal, and hence it might focus on a

single mode of a multimodal solution; 3) They may be inaccurate in higher order posterior

moments. Chapter 4 particularly targets on the diagnostics of the covariance structure. In

the future research, we are interested in designing other diagnostic tests to detect the other

types of inadequacy, for examples, the possible multimodalily, and the errors in higher order

moments.

Chapter 4 also discusses how it is possible to apply the proposed methods in the high-

dimensional problems. The marginal method has special advantages to target more specific

137



errors by designing the project on to particular directions.

In the affine transformation method, currently, we have targeted the most general form of

linear transformation to correct any inadequacy in posterior mean and variance, by specifying

the transformation matrix A to be a lower triangular. The dimension of the space of A could

be problematic in high dimensional problems. One possible solution could be to restrict the

matrix A to be of a particular class, such as diagonal or more sparse.

In fact, we have applied a diagonal transformation matrix to the example of the 3-

dimension Multivariate normal distributions, given in Section 4.3.1. Our reasoning is that by

specifying a diagonal transformation matrix we may be able to obtain the posterior marginal

variance estimates, while ignoring the estimation of the correlation structures. However, the

numerical results show that the recovered marginal variances are only close to the actual

conditional variances. This result is interesting. In the future work, we will investigate how

to design the transformation matrix to target more specific forms of the diagnostics.

Chapter 4 introduces a novel way to use acceptance rates to estimate posterior variances.

As discussed in Chapter 4, we are also interested in further calibrating EAR as a diagnostics

tool to measure the inadequacy in marginal approximations, by using VB approximations

directly as the proposal distributions in VBAIMH. A key problem lies in when posterior

normality is not satisfied well, a single value of EAR may be diluted by the confounding of

many errors: wrong variance, wrong skewness, wrong tail behaviour. In the further research,

we will investigate how to separate these confounding factors to have EAR targeted on a

special form of inadequacy.

The three methods proposed in Chapter 4 mainly considers the most commonly used sit-

uation, where VB is fully factorized. If in the cases VB can offer partial correlation structure,

our methods should be able to use these additional information. The affine transformation

method can adapt the additional information directly. For the marginal and stepwise meth-

ods, our current development only uses the knowledge from mean and variance estimates.
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Our future work will be interested in how to design the marginal and stepwise methods to

adapt additional information.

7.6 Open questions

The numerical results in Chapter 5 show that for Dirichlet processes the posterior predictive

likelihoods approximated by VB are very close to those computed by MCMC methods.

There are many questions associated with the numerical observations. For example, whether

this result is true in general for other models? Under what conditions will VB provide

good approximations on posterior predictive distributions? Whether we can have a general

formalization on the variational approximation of posterior predictive likelihoods?

Theorem 2.1 provides a general framework for the factorization scheme which contains

more general dependency structures. This factorization scheme has been used for many

applications in the thesis. We will look for more cases of non-trivial posterior dependence

in the models which we can build into the variational model. We will also be interested in

other simplification techniques, other than the simplification on model dependency structure,

where we can apply the variational principle.

Another interesting question is how we would decide to use VB or MCMC in real-world

problems? Currently, we can list a number of advantages of VB over MCMC methods. First,

it is the computational advantage. As we have seen throughout the dissertation, VB is not

only fast, but also free from many implementation issues. For example, the convergence is

straightforward in VB, but it is a major concern for MCMC methods. Given initial values,

iterative update in VB is straightforward, but MCMC methods might require many tuning

expertise. Second, VB can provide good mean structure approximation. However, VB has

several limitations with respect to MCMC methods. As we have already seen in Chapter

4, VB may distort the posterior dependence structure; VB may only converge to a local

139



optimal in a multimodal solution; VB may be inaccurate in higher order posterior moments.

Essentially, VB is a trade-off of learning accuracy to gain the computation efficiency. For

‘real-world’ problems we need to carefully balance the advantages brought by reduced model

complexity against the disadvantages.
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