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Abstract 

Nucleoside polyphosphates and their conjugates, such as nucleoside triphosphates, 

nucleoside tetraphosphates, sugar nucleotides, dinucleoside pyro- and higher order 

polyphosphates, 2’,3’-cyclic nucleoside monophosphates, and 2´-deoxynucleoside-5´-

tetraphosphates in which a fluorescent label is attached to the terminal phosphate have many 

biological roles and have been developed into drugs. However, their synthesis remains a 

challenge. Several novel and efficient approaches to the synthesis of nucleoside polyphosphates 

and their conjugates were developed.  In the first approach dinucleoside polyphosphates (NpnN’s 

where n = 2-4) are prepared via in situ trifluoroacetate protection and imidazolium activation of 

nucleoside 5’-monophosphates.  This methodology was also used to prepare a substrate-

intermediate analog of the reaction catalyzed by cytidine triphosphate synthase (CTPS) a 

recognized target for the development of antineoplastic, antiviral and antiprotozoal agents.  The 

second approach uses sulfonylimidazolium salts as key reagents for generating highly reactive 

nucleotide donors. The procedure is rapid, produces a wide variety of nucleoside polyphosphates 

and their conjugates in high yield, does not require protection and subsequent deprotection of the 

nucleotide donors or acceptors and can be used to activate nucleoside mono-, di-, and 

triphosphates and a wide variety of acceptors.  Finally an entirely new approach to the synthesis 

of nucleoside tetraphosphates (Np4’s), dinucleoside pentaphosphates (Np5N’s) and nucleoside 

tetraphosphates in which a fluorescent dye is attached to the terminal phosphate is described 

employing an activated form of cyclic trimetaphosphate as a novel phosphorylating agent.  

Attempts to prepare nucleoside triphosphates by subjecting unprotected ribonucleosides and 2’-

deoxyribonucleosides to activated cyclic trimetaphosphate failed.  Instead nucleoside 2’,3’-cyclic 
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phosphates were obtained in good yield with the ribonucleoside substrates.  This represents a 

new and convenient approach to the synthesis of this class of compounds.  
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Chapter 1 

Thesis Overview 

1.1 Nucleoside polyphosphates and their conjugates 

Nucleoside polyphosphates (pnN’s, where n = 2-5) and their conjugates (XpnN, where n = 

2-7 and X = nucleoside or other chemical entity) are ubiquitous in nature.  This class of 

compounds includes (amongst many others) such well-known chemical entities as nucleoside 

triphosphates (NTP’s), sugar nucleotides (sugar-pnN), and dinucleoside pyro- and higher order 

polyphosphates (NpnN, n = 2-6). Their biological roles are numerous. For example, NTP’s are 

the precursors to the building blocks of DNA and RNA, they initiate signaling pathways (ie. 

GTP), and ATP (Figure 1.1) is a key energy source in many living systems.  Sugar nucleotides 

act as glycosyl donors in the enzymatic synthesis of polysaccharides and some sugar nucleotides, 

such as 2’-deoxythymidinediphosphate-β-L-rhamnose (dTTP-β-L-rhamnose, Figure 1.1), are 

essential for the synthesis of bacterial cell walls.  Dinucleoside pyrophosphates (Np2N’s) such as 

flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide (NAD) (Figure 1.1) 

function as cofactors in enzyme-catalyzed reactions.  Higher order dinucleoside polyphosphates 

(NpnN’s where n = 3-7) such as ApnA’s (Figure 1.1) act as signaling molecules and have 

vasodilatory effects.  In addition to their natural biological roles, nucleoside polyphosphates and 

their conjugates have been widely used as inhibitors and probes of therapeutically significant 

enzymes.  A dinucleoside tetraphosphate, Up4U (Figure 1.1) has recently been approved as a 

drug for treating dry eye syndrome.
1,2

 Very recently, novel and rapid methods for sequencing 

DNA have been reported using nucleoside tetraphosphates -labeled with fluorogenic dyes 

(Figure 1.1).
3-7
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Figure 1.1.  Examples of nucleoside polyphosphates and their conjugates. 

1.2 Challenges in synthesising nucleoside polyphosphates and their conjugates 

In 1957, Sir Alexander Todd was awarded the Nobel prize for his pioneering work on the 

structure and synthesis of nucleotides, nucleosides, and nucleotide coenzymes.  In his Nobel 

prize speech he made the following statement: “we are thus still seeking an ideal method for 

unsymmetrical pyrophosphate synthesis”.  Although he was referring to the challenges of 

constructing a pyrophosphate linkage between two different nucleotide 5’-monophosphates, his 

statement would have applied equally well to the synthesis of almost any polyphosphorylated 

nucleoside or conjugate with the challenge being the introduction of the polyphosphate moiety or 

the coupling together of two phosphate groups.  Todd did not define what he meant by an “ideal 

method”.  Nevertheless, we can suggest what an ideal method should be for the 

polyphosphorylation of a nucleoside or for the coupling of two phosphates to give a nucleoside 

polyphosphate conjugate.  First and foremost, it should permit the synthesis of any nucleoside 

http://en.wikipedia.org/wiki/Nucleotide
http://en.wikipedia.org/wiki/Nucleoside
http://en.wikipedia.org/wiki/Coenzyme
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polyphosphate or nucleoside polyphosphate conjugate in good yield. A good yield implies that 

the reaction must be clean (form as few byproducts as possible) which should aid in the 

purification.  Purification is a key issue in the synthesis of these types of compounds.  The 

products are highly polar and usually insoluble in organic solvents. This means conventional 

normal-phase silica gel flash chromatography that is widely used to purify organic compounds is 

not an option here.  Reversed-phase or ion exchange media are usually required to purify these 

compounds.  Moreover, the substrates and impurities are usually phosphorylated or 

polyphosphorylated and so can be difficult to remove from the desired product unless preparative 

high pressure liquid chromatography (HPLC) is used and, even with HPLC, purification can still 

be challenging.  In order to obtain good yields the process should also be regio- and 

chemoselective.  The use of protecting groups in the nucleoside, nucleotide and other types of 

substrates should be kept to a minimum.  This is not just for reasons of atom economy and 

synthetic efficiency.  If protecting groups are present after the polyphosphorylation/coupling 

event then they must be removed to get the final product.  This can potentially reduce the overall 

yield as polyphosphate groups in polyphosphorylated nucleosides are often unstable to extremes 

of pH and, to some extent, nucleophiles, which can make the removal of protecting groups 

problematic.  Finally, it would be convenient if the polyphosphorylation reactions could be 

conducted in water.  Most of the substrates that are encountered during nucleoside polyphosphate 

syntheses are highly polar because they often contain one or more phosphate groups.  However, 

it is usually not practical to perform the reactions in water since at least one of the substrates has 

to be converted into a highly reactive form in order to get the reactions to proceed at a reasonable 

rate (if at all).  These activated forms of the substrates are usually unstable in water and so the 

reactions must be conducted in strictly anhydrous polar, aprotic organic solvents such as dry 
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DMF or acetonitrile.  However, in order for the substrates to be soluble in organic solvents their 

phosphate moieties first must be converted into the corresponding alkyl ammonium salts (e.g. 

tetrabutylammonium salts) and be kept absolutely dry.  It is time consuming to prepare these 

salts (they are usually not commercially available) and dry the organic solvents or it is expensive 

to purchase such solvents.  Hence it would be very convenient if the reaction could be done in 

aqueous solution.  This is a particularly difficult issue to overcome since it requires the 

development of activated substrates that are water stable. 

Due to their importance in many biological processes the synthesis of nucleoside 

polyphosphates and their conjugates has been the subject of intensive research for over 60 years; 

however, although it has been 56 years since Lord Todd’s Nobel prize, an ideal method for 

introducing polyphosphates into nucleosides has yet to be realized.  This is hardly surprising as 

the chemical properties of nucleosides, nucleoside analogs and the compounds to which they 

may be conjugated are very diverse.  It is possible that an ideal polyphosphorylation method may 

never be realized.  Indeed, for many polyphosphorylation reactions it is still challenging just to 

meet the first criterion mentioned above which is to obtain the products in good yield: poor to 

moderate yields are often still the norm for many polyphosphorylation reactions.   

1.3 Global Objective 

The global objective of this thesis was to develop new and improved methods for 

preparing nucleoside polyphosphates and their conjugates.  We do not claim to have developed 

an ideal method.  Our concern was mainly with the issues of yield, purity (or purification), regio- 

and chemoselectivity.  The issue of performing the reactions in aqueous solution was not tackled 

here.  Nevertheless, we believe that the work presented in this thesis represents a significant step 

forward in the development of polyphosphorylation methodology.   
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1.4 Scope of the Thesis. 

Chapter 2 focuses on the synthesis of dinucleoside polyphosphates (NpnN, where n = 2-

4).  We describe a new approach to the synthesis of these compounds which is based upon 

methodology developed by Bogachev for the synthesis of nucleoside 5’-triphosphates.
8
  We used 

this methodology to prepare a unique dinucleoside polyphosphate that is designed to inhibit the 

enzyme cytidine triphosphate synthase (CTPS) by acting as substrate-intermediate analog of the 

CTPS-catalyzed reaction.  As CTPS is a recognized target for the development of antineoplastic, 

antiviral and antiprotozoal agents it is anticipated that these studies may prove to be useful in 

developing compounds that can be used as leads for drug development. 

Chapter 3 describes a powerful new approach to synthesising a wide variety of 

nucleoside polyphosphates and their conjugates.  Key to this methodology is the use of a class of 

compounds called sulfonyl imidazolium salts as activating agents.  Using these reagents, it is 

possible to prepare nucleoside polyphosphates and their conjugates such as symmetrical and 

unsymmetrical dinucleoside polyphosphate, sugar nucleotides and nucleotide triphosphates in 

almost unprecedented yields. 

In chapter 4 we describe an entirely new approach to the synthesis of nucleoside tetra- 

(Np4’s) and dinucleoside pentaphosphates (Np5N’s).  This methodology employs an activated 

form of cyclic trimetaphosphate as a novel phosphorylating agent.  We then show that this 

methodology can be used to prepare nucleoside tetraphosphates in which the terminal phosphate 

is labelled with a fluorescent dye.  As mentioned in section 1.1, such compounds are important 

as they are currently being used by others as reagents for the high throughput sequencing of 

DNA.  The potential applications of this methodology goes beyond the synthesis of just 

nucleoside tetra- and pentaphosphates and their conjugates as it also suggests a direct approach 
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to the synthesis of nucleoside triphosphates directly from nonphosphorylated nucleoside 

precursors.  Although attempts to prepare nucleoside triphosphates by subjecting unprotected 

ribonucleosides and 2’-deoxyribonucleosides to activated cyclic trimetaphosphate failed, 

nucleoside 2’,3’-cyclic phosphates were obtained in good yield with the ribonucleoside 

substrates.  This represents a new and convenient approach to the synthesis of this class of 

compounds.   

A brief word about abbreviations.  Whenever we refer to nucleoside mono- (NMP), di- 

(NDP) or triphosphates (NTP) we are referring to nucleotides in which the phosphate group is 

attached to the 5’-OH of the nucleoside unless stated otherwise. For example, adenosine 5’-

mono-, di- and tri phosphate are abbreviated AMP, ADP and ATP respectively.  2’-

deoxynucleoside 5’-mono-, di-, or triphosphates are abbreviated dNMP, dNDP or dNTP 

respectively. 
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Chapter 2. 

Synthesis of Dinucleoside Polyphosphates via in situ Trifluoroacetate 

Protection and Imidazolium Activation 

2.1 Introduction 

2.1.1 Biological and pharmaceutical significance of dinucleoside polyphosphates. 

Dinucleoside 5’,5’-polyphosphates (Figure 2.1), commonly abbreviated as NpnN, 

comprise a group of compounds with two nucleosides linked by their 5’-OH’s to a variable 

number of phosphate groups. They have been shown to play key roles in various biological 

processes. The most well-studied and biologically significant NpnN’s are the diadenosine 

polyphosphates (ApnA, n = 2-7).  ApnA’s are released into the circulation from several cell types, 

including platelets, chromaffin cells of the adrenal glands, tubular cells, or from synaptic 

vesicles.  ApnA’s are important neurotransmitters in the nervous system.
9
  Ap2A, Ap3A, and 

Ap4A have vasodilatory effects.
10,11

  ApnA’s (n = 2-5), as well as Ap2G and GpnG (n = 2-6), 

cause vascular smooth muscle cell proliferation.
12-14

  ApnA’s are potent antagonists of ADP-

induced platelet aggregation, where Ap5A is the most potent of this series.
15  

The actions of 

ApnA’s can be attributed to the interaction of these compounds with ATP receptors.  These 

receptors, called the P2 receptor superfamily, are divided into two classes, P2X and P2Y, each 

having multiple receptor subtypes. The P2X subfamily, composed of ligand-gated cationic 

channels has seven subtypes, (P2X1-P2X7). The P2Y subfamily are G-protein coupled receptors 

has eight subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, P2Y14).
16
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Figure 2.1.  General structure of the NpnN’s.  n = 0-5, B, B’ represent bases, natural 

(purine and/ or pyrimidine bases, adenine, guanine, cytosine, and uridine) or unnatural. 

 

NpnN’s have also been shown to act as substrates for a variety of DNA polymerases and 

function as inhibitors of kinases, endonucleases, inosine monophosphate dehydrogenase, 

adenylosuccinate synthetase, and poly(ADP-ribose) polymerase.
17-24

  

NpnN’s such as diadenosine and diuridine polyphosphates, have been shown to possess 

beneficial properties in the treatment of some diseases such as chronic obstructive pulmonary 

disease.
25

  NpnN’s facilitate the clearance of mucus secretions from the lungs of mammals, 

including humans being treated for cystic fibrosis. They act through an agonistic effect on the 

P2Y2 receptors of the lung tissue leading to increased secretion of chloride and water, increased 

cilia beat frequency and increased mucin release.
26

  INS37217 [P
1
-(uridine 5’)-P

4
-(2’ 

deoxycytidine 5’) tetraphosphate tetrasodium salt 2-1 is considered as next-generation P2Y2 

receptor agonist for the treatment of cystic fibrosis (Figure 2.2).
27

 Dinucleoside 5’,5’-

polyphosphates, such as compound 2-2, have been developed as selective P2Y6 agonists.
28

  As 

mentioned in chapter 1 (section 1.1) Up4U (Figure 1.1) marketed as Diquas, has been approved 

in Japan as a drug for the treatment of dry eye syndrome.
1,2
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2.1.2 Inhibitors of cytidine 5’-triphosphate synthase. 

Our interest in the synthesis of NpnN’s began as a result of our desire to prepare 

inhibitors of cytidine 5’-triphosphate synthase (CTPS, EC 6.3.4.2).  CTPS catalyzes the ATP-

dependent synthesis of cytidine 5’-triphosphate (CTP) from uridine 5’-triphosphate (UTP) using 

either ammonia or L-glutamine as nitrogen source (Scheme 2.1).  The hydrolysis of glutamine to 

give ammonia occurs in the C-terminal glutamine amide transfer domain (GATase domain).  The 

resulting ammonia is transferred via an ammonia tunnel to the N-terminal kinase amino ligase 

domain (Alase) where all other chemistry occurs.  The currently accepted mechanism has CTPS 

performing its action by transferring the γ-phosphate from ATP to the oxygen at position 4 of 

UTP to form UTP-4-phosphate (UTP-4-P) as a reactive intermediate and forming adenosine 5’-

diphosphate (ADP). This step requires magnesium ions in the active site of the enzyme.  The 

ammonia then displaces the phosphate at position 4 of UTP-4-P to give CTP.
29-35
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Scheme 2.1.  The reaction catalyzed by CTPS. 

In solution, CTPS exists as a homotetramer in equilibrium with two identical dimers. 

UTP and ATP binding induce tetramerization of the inactive CTPS dimers to the active tetramer 

leading to positive cooperative behaviour at physiological enzyme concentrations (Figure 

2.3).
29,36,37

  The product, CTP, provides negative feedback inhibition by acting as a competitive 

inhibitor of the substrate UTP.
31 
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Figure 2.3.  Space-filling representation of the Escherichia coli CTPS (EcCTPS) 

tetramer of nearly identical subunits. kinase ammonia ligase (ALase) domain (saturated 

yellow and red) mediates tetramerization of A-A’ (red and blue) and B-B’ (yellow and 

green) dimers. The glutamine amidotransferase (GATase) domain (light yellow and red) 

catalyzes the GTP-activated glutamine hydrolysis. ATP, UTP, and CTP promote 

tetramerization by binding in the CTP synthesis active site at the tetramer interfaces 

(black arrows). Bound ADP and CTP ligands at the B-A interface are also indicated 

(black). (reprinted with permission from Endrizzi et. al. Biochemistry,2005, 44, 13491. 

Copyright 2005 American chemical society).  

 

Figure 2.4 shows the crystal structure of the active site of EcCTPS with the products 

ADP and CTP bound.
38

  UTP has been modelled into the active site.
38

  Although CTP acts as a 

negative feedback inhibitor by competing with UTP, it has been proposed, based upon the crystal 

structure shown in Figure 2.4, that only the triphosphate portions of CTP and UTP share 

common binding sites.
38,39

  



11 
 

 

Figure 2.4. UTP and CTP binding sites of EcCTPS. Ribbons indicate secondary structure 

for the A (red), B (yellow), and B’ (green) EcCTPS subunits. The CTP and ADP 

positions are enclosed by the electron density (black carbons). The hypothetical UTP 

positioning is also shown. UTP and CTP share the same binding site for their 5’-

triphosphate moieties. (reprinted with permission from Endrizzi et. al 

(Biochemistry,2005, 44, 13491. Copyright 2005 American chemical society).  

 

CTP plays an important role in the biosynthesis of nucleic acids, phospholipids
40,41

 and 

sialic acid
42

  Consequently, CTPS is a recognized target for the development of antineoplastic,
43

 

antiviral,
44

  and antiprotozoal
45-47 

 agents.  Surprisingly, very few studies have focused on the 

development of nucleotide analogues as inhibitors of this enzyme.
48,49

  Cyclopentenyl cytosine 

(CPEC) 5’-triphosphate (IC50 ~6 M)
50

  and 3-deazauridine 5’-triphosphate (3-DaU) (IC50 ~18 

M)
51

  are substrate and product analogues, respectively, that are the most studied. (Figure 2.5)  

These inhibitors lacked specificity which led to side effects in clinical trials and CTPS rapidly 

developed resistance mutations.
51-59

  Therefore, the development of new, potent, and selective 

CTPS inhibitors is required.  
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Figure 2.5.  Structures of CPEC and 3-DaU. 

Enzymes catalyze reactions by specifically binding and stabilizing high energy 

intermediates and transition states formed along a reaction pathway.  Hence it is not surprising 

that compounds that mimic the transitions states or intermediates formed during enzyme-

catalyzed reactions are often highly potent enzyme inhibitors.  Such inhibitors are called 

intermediate or transition state analogs.  It is this approach that the Taylor group has taken to 

develop inhibitors of CTPS.   

Two of the inhibitors designed in the Taylor group are compounds 2-4 and 2-5 (Figure 

2.6).  These compounds were designed to act as either an intermediate analog (compound 2-5) or 

as a substrate-intermediate analog (compound 2-4) of the CTPS-catalyzed reaction.  One of the 

components of 2-4 and 2-5, compound 2-3, had been previously prepared in the Taylor group;
60

 

however, no attempts have been made to convert it into 2-4 and 2-5.  The work described in this 

chapter focuses on the synthesis of compound 2-4 (which is a dinucleoside triphosphate or 

Np3N) and other NpnN’s.  A discussion of literature methods for preparing NpnN’s is given 

below. 
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Figure 2.6.  Structures of compounds 2-3 – 2-5. 

2.1.3 Synthesis of dinucleoside 5’, 5’-polyphosphates  

As a result of their importance in biological processes and their potential as 

pharmaceutical agents considerable effort has gone into developing both chemical and enzymatic 

routes to NpnN’s.  A discussion of the most common and effective approaches to these 

compounds is given below.  As we will see in later chapters in this thesis, many of the 

methodologies that have been developed for preparing NpnN’s have also been used to prepare 

other types of nucleoside polyphosphates and their conjugates. 

2.1.3.1 Early studies - Synthesis of dinucleoside 5’, 5’-diphosphates 

Early workers in this field were concerned mainly with the synthesis of dinucleoside 5’, 

5’-diphosphates (Np2N’s).  The methods that were developed were simply dimerization reactions 

conducted as one-pot reactions.  The intermediates were neither isolated nor identified by any 

means during the reaction course.  Early methods used either the free acid or the sodium salt 
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forms of the nucleoside 5’-monophosphates but more recent methods use the organic salt forms 

that are soluble in anhydrous organic solvents. 

Todd and coworkers were the first to prepare Np2N’s. They prepared Ap2A and Up2U in 

a 17% yield by reacting AMP or UMP with trifluoroacetic anhydride overnight and evaporating 

to dryness.
61

  Shortly thereafter Ap2A was synthesized by Khorana and coworkers from AMP as 

the free acid form using a very large excess of dicyclohexylcarbodiimide (DCC) as a coupling 

agent in aqueous pyridine with mechanical stirring at room temperature for 42 hours.
62

  In his 

attempt to reduce the amount of DCC used in the reaction and to use anhydrous reaction 

conditions, Khorana tried the use of various bases as solubilizers for AMP in anhydrous pyridine. 

Tri-n-butylamine and tri-n-octylamine were unsatisfactory for this purpose, but 4-morpholine-

N,N’-dicyclohexylcarboxamidine 2-6 (Figure 2.7) as a base allowed the dissolution of AMP in 

anhydrous pyridine and so only 3 equivalents of DCC gave exclusively Ap2A in an 80 % yield 

(Scheme 2.2).
63
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Figure 2.7.  Structure of 4-morpholine-N,N’-dicyclohexylcarbodiimide. 
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Scheme 2.2.  Khorana’s synthesis of Ap2A.  

Using Khorana’s methodology, Lord Todd and coworkers prepared Ap2U in a 25 % yield 

by subjecting a mixture of AMP and UMP to DCC in 90 % pyridine/10% water for 40 h.  These 



15 
 

coworkers also prepared Ap2U in a 17% yield by reacting AMP with UMP in water containing 

5% of pyridine in the presence of an excess of dimethylcyanamide at 92 
o
C for 13 hr.  In all 

instances Up2U and Ap2A were also formed in significant quantities.
64

  

Ng and Orgel later found that it is possible to perform the dimerization of AMP in an 

aqueous reaction medium by stirring the disodium salt form of AMP and 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide hydrochloride (EDC) in aq. HEPES buffer at 37
o
C for 2 

hours. The yield is highly dependent on the presence of magnesium ions, where in presence of 

magnesium ions in the reaction mixture the yield of Ap2A is 80% while in the absence of 

magnesium ion the yield drops to 19%.
65

    

More recently, Kim and Behrman have synthesized the symmetrical Np2N’s by reaction 

of TMP, CMP, UMP, and AMP in excellent yields with a variety of common acylating reagents. 

The nucleotides were converted to their tetrabutylammonium salts and then treated with the 

reagent in anhydrous DMF in the presence of pyridine.
66

  Among the reagents examined (Table 

2.1), tosyl chloride and p-nitrophenyl chloroformate gave the highest yields. 
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Table 2.1.  Dimerization of NMP’s using four different acylating agents. 

O
HO OH

O P

O

O-

O
O

OHHO

O P

O

O-

Base

O

OHOH

OPO-

O-

O
BaseBase

(Bu4N+)2

2.5 eq. Acylating agent

 Pyridine, DMF, 24 h

  

Base Reagent Product Yield (%) 

Uracil 

Benzoyl Chloride 

Up2U 

75 

Bis-(p-nitrophenyl)carbonate 80 

p-Nitrophenyl chloroformate 93 

Tosyl chloride 90 

Cytosine 

Benzoyl chloride 

Cp2C 

50 

Bis-(p-nitrophenyl)carbonate 45 

p-Nitrophenyl chloroformate 50 

Tosyl chloride 55 

Thymine 

Benzoyl chloride 

Tp2T 

75 

Bis-(p-nitrophenyl)carbonate 80 

p-Nitrophenyl chloroformate 90 

Tosyl chloride 90 

Adenine 

Benzoyl chloride Monobenzoylated Ap2A 50 

Bis-(p-nitrophenyl)carbonate 
Ap2A 

40 

p-Nitrophenyl chloroformate 60 

Tosyl chloride Monotosylated Ap2A  55 

 

2.1.3.2 Chemical synthesis of dinucleoside 5’,5’-polyphosphates using activated 

nucleotide intermediates. 

 

Most methods utilized today for the synthesis of unsymmetrical and symmetrical NpnN’s 

rely on initial activation of one of the nucleotides by attaching an activating group to the terminal 

phosphate group.  Once activated, this nucleotide acts as an electrophile or donor for the 

subsequent reaction with the second nucleotide which acts as the nucleophile or acceptor 
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(Scheme 2.3).  The activated electrophilic nucleotide donors can sometimes be isolated but this is 

usually not necessary and so they are often employed directly in the next step.  The activation of 

NTP donors usually results in the formation of a cyclic nucleoside 5’-trimetaphosphate 

intermediate 2-11 which undergoes a nucleophilic ring opening reaction with the acceptor 

nucleotide.  In general, these coupling reactions require anhydrous conditions.  Both the donor 

and the acceptor nucleotides usually have to be initially converted from their corresponding free 

acid or sodium or potassium salts into a form that is soluble in organic solvents such as 

acetonitrile, DMF, or DMSO.  Usually, nucleotides are converted into their corresponding 

trialkyl- or tetralkylammonium salts to dissolve in these solvents.  Below we discuss the most 

common and/or effective types of activated nucleotides that are used for NpnN syntheses. 
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Scheme 2.3.  General approach for the synthesis of symmetric and asymmetric 

dinucleoside NpnN’s, AG refers to activating group. 

 

2.1.3.2.1 Nucleoside 5’-phosphomorpholidates 

Nucleoside 5’-phosphomorpholidates as activated forms of nucleotides, compounds of 

type 2-13, were first introduced by Moffatt and Khorana (Figure 2.8).
67

  These compounds were 

prepared by adding a mixture of the free acid of NMP and morpholine in water to a boiling t-
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butanol-water mixture containing four equivalents of DCC and continue refluxing for 6 h. The 

isolated nucleoside 5’-phosphomorpholidates were purified by precipitation from a concentrated 

solution in methyl alcohol by addition of ether
68

  Reactions of morpholidates with a tri- or 

tetraalkylamommium salts of NMP’s usually gives Np2N’s in good yields though the reactions 

are often sluggish.  For example Ap2A has been prepared in 95% yield by reacting the 

morpholidate of AMP and the tributylammonium salt of AMP in anhydrous pyridine for 72 h.
69

  

Nucleoside 5’-phosphomorpholidates are still used today for the synthesis of both symmetrical 

and unsymmetrical Np2N’s often in high yield. 

O

OHOH

OPN

OH

O

O

2-13

B

 

Figure 2.8.  General structure of nucleoside 5’-phosphomorpholidates (2-13). 

 

The morpholidate methodology has been used to prepare higher order NpnN’s where n = 

3-4; however, it is not widely used for preparing these compounds as the yields tend to be low to 

moderate.  For example, Ap3U has been prepared in a 22 % yield by reacting the bis-tri-n-

butylammonium salt of UDP with the morpholidate of AMP in anhydrous pyridine in the 

presence of 1H-tetrazole at 50 
o
C for 24 h.

70
  Another example is the synthesis of the 

enantiomeric analogue of Up4U namely L-diuridine 5’,5’-tetraphosphate (L-Up4U, 2-16) as a 

metabolically more stable analogue of Up4U, (Scheme 2.4).  An excess of the 

phosphomorpholidate of L-UMP was reacted with the triethylammonium salt of pyrophosphate 

for 60 h which gave L-Up4U in a 3.8 % yield.  Unlike Up4U, L-Up4U was stable to the hydrolysis 

by both 5’-phosphodiesterase and acid phosphatase.
71
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Scheme 2.4.  Synthesis of L-Up4U via the phosphomorpholidate approach.  

 

2.1.3.2.2 S,S’-bis (4-Chlorophenyl) phosphorodithioate and O-8-(5-chloroquinolyl) S-

phenylphosphorothioate as activating agents 

S,S’-bis (4-Chlorophenyl) phosphorodithioate (2-17) has been used as an activating agent 

for the one-pot synthesis of symmetrical dinucleoside Np3N’s.  The reaction of 2-17 with 3 

equivalents of the free acid forms of AMP and GMP in HMPA/1-methylpyrrolidone (MPD) in 

the presence of 4 eq. AgNO3 and 3 eq. butyl amine afforded Ap3A and Gp3G in good yield 

(Scheme 2.5). The reaction is believed to proceed through the formation of the intermediate 2-18 

which is then reacted with more NMP in presence of silver ions to afford the Np3N’s in good 

yield.
72

  The drawback to this procedure is the use of toxic HMPA as solvent and compound 2-17 

is not commercially available. 
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Scheme 2.5.  Phosphorodithioate approach to the synthesis of symmetrical Np3N’s 2-19 

and 2-20. 

In a related synthesis, O-8-(5-chloroquinolyl) S-phenylphosphorothioate 2-21 (not 

commercially available) has been employed for the synthesis of Ap4A from AMP (Scheme 2.6).  

The free acid form of AMP was allowed to react with 2-21 in presence of silver nitrate to give 

the chloroquinolyl pyrophosphate intermediate 2-22. Addition of water hydrolyses some of 

compound 2-22 producing ADP. Subsequent reaction between ADP and 2-22 affords Ap4A in 
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54% yield.
73

  The chloroquinolyl pyrophosphates of guanosine and 7-methylguanosine have been 

isolated in 30 and 56% yield respectively and used to prepare capped mRNA.
74,75
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Scheme 2.6.  Synthesis of Ap4A using compound 2-21 as activating agent. 

2.1.3.2.3 Salicylphosphites and cycloSalphosphates 

2-Chloro-4H-1,3,2-benzodioxaphosphorin-4-one (salicylchlorophosphite, 2-24) has been 

used by Ludwig and Eckstein for the synthesis of dNTP’s from their protected 2’-

deoxynucleoside precursors (Scheme 2.7).  Reactions of protected nucleosides of type 2-23 with 

2-24 yields compounds of type 2-25 as a mixture of diastereomers.  Reaction of 2-25 with the tri-

n-butyl ammonium salt of inorganic pyrophosphate affords the cyclic derivative 2-26. Oxidation 

and hydrolysis of 2-26, followed by deprotection affords dNTP’s.
76

 Jones and coworkers have 

modified this approach and used it for the synthesis of Ap4A, Gp4G, Ap4G and Ap5A in moderate 

to good yields (Scheme 2.8). Their route begins with the Ludwig and Eckstein procedure for the 

preparation of triphosphate by phosphitylation of protected nucleosides 2-28 with 2-24 followed 

by reaction with inorganic pyrophosphate to give the cyclic derivatives 2-30. In the original 

Eckstein procedure oxidation and hydrolysis of this type of intermediate are concomitant.  Jones 

and coworkers found that careful oxidation of 2-30 under conditions that do not bring about 

hydrolysis affords the 5’-trimetaphosphate derivative 2-31 which then reacts with an NMP or 

NDP to afford the partially protected Np4N or Np5N 2-32. Deprotection of 2-32 afforded the 

NpnN’s.
77
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Scheme 2.7.  An example of the Ludwig and Eckstein’s approach to the synthesis of 2’-

deoxynucleoside 5’-triphosphates. 
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Scheme 2.8.  Jones and coworkers synthesis of Np4N’s and an Np5N. 

 

Warnecke and Meier used the protected cycloSal nucleotides as activated nucleotides for 

the synthesis of NpnN’s (Scheme 2.9).  For example, reaction of 5-nitrosalicyl alcohol 2-33 with 

phosphorus trichloride gives 5-nitro-cycloSal-phosphochloridite 2-34. Reaction of 3’-

acetylthymidine 2-35 with 2-34 and subsequent oxidation using Oxone provided 2-37 in 

excellent yield.  Reaction of 2-37 with the tetrabutylammonium salts of either UMP or ATP 
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provided Up2T (compound 2-38) and Ap4T (compound 2-39) in 60% and 52% yields 

respectively.
78,79 
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Scheme 2.9.  Warnecke and Meier’s synthesis
79

 of an unsymmetrical Np2N and an Np4N 

using the cycloSal approach. 

 

2.1.3.2.4 Nucleoside 5’-phosphoimidazolidates 

Nucleoside 5’-phosphoimidazolidates (ImpN’s, Figure 2.9) are the most widely used 

donors for phosphate coupling reactions.  They can be isolated or they can be reacted in situ with 

acceptors.  They were first synthesized by Cramer and coworkers.
80-82

   They isolated ImpA as its 

sodium salt in yields of 43-67% by treating the tri-n-butylammonium salt of AMP with 

carbonyldiimidazole (CDI) in trichloroacetonitrile or DMF followed by precipitation of the 

product in an anhydrous solution of NaClO4 in acetone and ether. They prepared FAD in 92% 

yield by reacting ImpA with flavin mononucleotide (FMN) in DMF/piperidine followed by 

precipitation of the product in an anhydrous solution of NaClO4 in acetone and ether.
82
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Figure 2.9.  General structure of nucleoside 5’-phosphoimidazolidates (ImpN’s) 

Mukaiyama and Hashimoto
83

 and later Lohrman and Orgel
84

 demonstrated that ImpA and 

ImpU could be isolated as their sodium salts in almost quantitative yields by reacting the 

triethylammonium salt of UMP or AMP with an excess of imidazole, triphenylphosphine and 

2,2’-dipyridyldisulfide in DMF at rt for 20 min to 1 h followed by precipitation of the 

imidazolidates in an anhydrous solution of NaClO4 in acetone and ether.  Mukaiyama and 

Hashimoto also reported the synthesis of adenosine 5’-phosphomorpholidate in quantitative yield 

using this procedure.
83

 

Hurly and coworkers found that when the free acids of NMP’s were subjected to 3 equiv 

of 2,2’-dipyridyldisufide and 3 equiv of triphenylphosphine in the presence of 20-fold excess of 

N-methylimidazole (NMI) in either DMF or DMSO rapid dimerization occurred and Np2N’s 

were produced in high yields (Scheme 2.10).
85
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Scheme 2.10.  Hurly et al. dimerization of NMP’s. 
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The proposed mechanism of this reaction is shown in Scheme 2.11. 
85

 Intermediates 2-41 

and 2-42 have been postulated by Mukaiyama and Hashimoto.
86,87

 The absence of significant 

amounts of Np2N’s in the presence of imidazole is a consequence of the low nucleophilic 

reactivity of nucleoside 5’-phosphoric acids compared to that of imidazole and 2-43 is only 

formed. When NMI is used instead of imidazole the formation of 2-44 was proposed which is 

strongly activated towards nucleophilic attack by the NMP to form 2-40.  
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Scheme 2.11.  Proposed mechanism for the Hurly et al. synthesis of symmetrical Np2N’s. 

ImpN’s can be reacted with other nucleotides/phosphates to give higher order NpnN’s 

(i.e. where n = 3-4).  For example, treatment of the tri-n-butylammonium salt of UMP (Scheme 

2.12) with carbonyl diimidazole (CDI) in DMF produces ImpU (2-45) as the activated nucleotide 

donor.  This was not isolated but was reacted in situ with the tri-n-butylammonium salts of either 

UMP, uridine 5’-diphosphate (UDP), or inorganic pyrophosphate in DMF to produce 

respectively Up2U, Up3U and Up4U in low to modest yields.
70,88
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Scheme 2.12.  Synthesis of Up2U, Up3U, and Up4U, starting from UMP via the UMP-

imidazolidate intermediate.  

Skoblov et al. have prepared a wide variety of 2’-deoxy Np4N’s (d(Np4N’s)) by reacting 

the tri-n-butyl ammonium salt of NMPs with CDI for 1 h followed by the addition of the tri-n-

butylammonium salt of the corresponding NTP and stirring for 24 h.  Yields ranged for 46-70%.  

They also prepared dTp5A in 36 % yield by reacting the tri-n-butyl ammonium salt of dTDP with 

CDI for 1 h followed by the addition of the tri-n-butylammonium salt of ATP.
89

  

ImpN’s hydrolyse in aqueous media at neutral pH.  However, Sawai and coworkers 

demonstrated that in presence of some divalent cations, they can couple with nucleotide 

acceptors forming NpnN’s in aq. 0.25 M N-ethylmorpholine-HC1 buffer at pH 7.0 though the 

reactions are very slow (Table 2.2).
90,91

  The significance of this work is that the coupling were 

done in aqueous solution and, in some instances, reasonable yields were obtained (entries 1-6).  
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Table 2.2.  Divalent cation-catalyzed reaction of nucleotide imidazolidates in aqueous 

medium. 

 

O

OHOH

OP

O

O
-

N
N O XP

O

O
-

HO
M

2+ O
+

r.t., pH 7.0 O
HO OH

BB
O

OHOH

OP

O

O
-

OP

O

O
-

n

n = 1-3

B

 

Entry B X Product M
+2

 time (days) Yield (%) 

1 Adenine Adenosine Ap2A Cd
2+ 

8 41 

2 Adenine Adenosine Ap2A Mn
2+

 8 44 

3 Adenine AMP Ap3A Cd
2+

 4 59 

4 Adenine AMP Ap3A Mn
2+

 4 63 

5 Adenine ATP Ap4A Cd
2+ 

4 59 

6 Adenine ATP Ap4A Mn
2+ 

4 54 

7 Hypoxanthine Inosine Ip2I Cd
2+

 4 28 

8 Hypoxanthine Inosine Ip2I Mn
2+ 

4 15 

 

Imidazolides of nucleoside 5’-diphosphates (ImppN’s) are also used to prepare 

nucleoside polyphosphates.  Lowe and Sproat were the first to report the formation of such an 

imidazolide. They reacted the tri-n-butylammonium salt of -
18

O-labeled ADP with CDI in DMF 

to generate the imidazolide 2-49.  2-49 was not isolated (Scheme 2.13).  It was reacted with 

mono(tri-n-butylammonium) phosphate in DMF for 28 h which gave adenosine 5’-[-

l8
0]triphosphate in 53 % yield.

92
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Scheme 2.13.  Lowe and Sproat’s synthesis of 
18

O-labeled Imp2A and the synthesis of 

adenosine 5’-[-
l8

0,]triphosphate. 

ImppN’s are now widely used to prepare NpnN’s.  For example, reaction of UDP with 

CDI gives ImppU (2-51 in Scheme 2.14).  2-51 was not isolated.  It was reacted with UDP which 

gave Up4U (2-52) in a 25 % yield. Alternatively 2-52 was formed from cyclization of UTP using 

DCC.  The resultant cyclic uridine 5’-trimetaphosphate intermediate 2-53 was reacted with either 

UMP to produce 2-52 in a 32 % yield or with UDP to produce Up5U (2-54) in an 8 % yield 

(Scheme 2.14).
89

 It should be pointed out that the reaction of a cyclic nucleoside 5’-

trimetaphosphate intermediate with a NDP to give Np5N’s does not always proceed in such poor 

yields.  For example, reaction of the cyclic nucleoside 5’-trimetaphosphate of ATP, formed by 

the reaction of ATP with DCC in DMSO, with tris(tri-n-buty1ammonium)-ADP in DMF at 35 
o
C 

for 18 h gave Ap5A in a 54% yield.
21
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Scheme 2.14.  Synthesis of Up4U from UDP via ImppU (2-51). Synthesis of Up4U and 

Up5U via uridine 5’-trimetaphosphate 2-53. 

Sawai et al. reported that the imidazolide of NDP’s (ImppN’s) can be isolated.
93

  These 

workers reacted the triethylammonium salt of ADP or 7-methylguanosine diphosphate (7mGDP) 

with a 10-fold molar excess each of imidazole, di-2-pyridyldisulfide and triphenylphosphine in 

dry DMF containing triethylamine and tri-n-octylamine for 24 h at rt. The reaction mixture was 

poured into a solution containing dry acetone and dry ether saturated with NaClO4 and 

triethylamine which resulted in the precipitation of the sodium salts of ImppA and Impp7mG in 

82 and 71% yield respectively.
93

  Sawai’s procedure is now the most common procedure used for 

preparing and isolating ImppN’s.  Sawai demonstrated that these ImppN’s could be coupled to 

acceptors in aq. solution.  For example, the reaction of the 1 equiv of ImppA with 1 equiv of 

AMP in 0.2 M aq. N-ethylmorpholine buffer (pH 7.0) for 4 days in the presence of 1 equiv 

MnCl2 or CdCl2 at 30 
o
C gave Ap3A in 37-48% yield.  Reaction of the 5 equiv of Impp7mG with 

1 equiv of GMP in 0.2 M aq. N-ethylmorpholine buffer (pH 7.0) for 4 days in the presence of 5 
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equiv MnCl2 or CdCl2 at 30 
o
C gave Gp37mG in an impressive 67-77% yield (Table 2.3).  

Studies on the stability of ImppA revealed that it is more stable in aq. solution compared ImpA.
93

   

Table 2.3.  Synthesis of Np3N’s in aq. buffered solution via ImppN’s   

M
2+

+ r.t., aq. 
buffer (pH 7.0)

B
1

O

OHOH

OP

O

O
-

OP

O

O
-

NN

4 days

B
2

O

OHOH

OP

O

O
-

-
O

O
HO OH

O P

O

O
-

O
O

OHHO

O P

O

O
-

B
1

B
2

P

O

O
-

O

 

Entry B
1 

B
2 

Compound M
+
 Yield (%) 

1 A A Ap3A Cd
2+ 

37 

2 A A Ap3A Mn
2+ 

48 

3 7-mG G 7mGp3G Cd
2+ 

67 

4 7-mG G 7mGp3G Mn
2+ 

77 

 

2.1.3.2.5 Solid-phase synthesis of dinucleoside 5’,5’-polyphosphates   

Ahmadibini and Parang have developed a solid-phase synthesis suitable for making 

symmetric NpnN’s.  The trifunctional phosphitylating reagent 2-56 (Scheme 2.15) contains one 

chlorine group and two isopropylamino groups that are replaced after the attachment of the 

reagent to the polymer-bound linker and after coupling reactions with two unprotected 

nucleosides respectively. The steric bulkiness of 2-57 allowed sufficient steric hindrance for only 

the 5’-OH of the unprotected nucleosides to react.  The trivalent phosphite groups of compound 

2-58 were oxidized into phosphate groups using 
t
BuOOH, cyanoethyl groups were removed by 

DBU, followed by cleavage of the product from the polymer support using dichloromethane/ 

trifluoroacetic acid (TFA)/Water/ ethanedithiol (EDT) mixture. After cleavage and filtration, the 

crude products were further purified by reversed-phase HPLC. Yields range from 59-78%.
94

 We 
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do not think that this is a very practical approach to NpnN’s as it requires the multistep synthesis 

of a polymer with a unique linker and multistep syntheses of polyphosphites 2-56 prior to the 

solid phase chemistry, the products still require HPLC purification and the yields are not 

significantly better than what has been reported by other groups using solution phase 

methodologies. 
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Scheme 2.15.  Solid-phase synthesis of symmetric dinucleoside 5’,5’-polyphosphates, 

ROH= thymidine, adenosine, azidothymidine (AZT), cytidine, inosine.  
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2.1.3.2.6 Enzymatic methods for the synthesis of NpnN’s. 

The first in vitro enzymatic synthesis of an NpnN was reported by Zamecnik and 

Stephenson in 1966.
95

 They found that Ap4A can be formed by a reaction of aminoacyladenylate 

with ATP catalyzed by lysyl-tRNA synthetase. Since that time, several enzyme classes have 

been reported for the synthesis of NpnN. These enzymes differ mainly in their substrate-

selectivity and catalytic efficiency. 

The first class of enzymes is the aminoacyl-tRNA synthetases (aaRSs).  They synthesize 

Ap4N’s by catalyzing what is known as the “back-reaction” of an aminoacyladenylate, with an 

acceptor nucleotide.
96

 These enzymes catalyze the activation of an amino acid with ATP to form 

an enzyme-bound aminoacyladenylate and pyrophosphate (Scheme 2.16, equation 1). In the 

presence of tRNA, only aminoacyl-tRNA is produced (Scheme 2.16, equation 2). In the absence 

of tRNA, attack of aminoacyladenylate by ATP (or in some cases other NTP’s) produces Ap4A 

(or generally Ap4N) (Scheme 2.16, equation 3).
97-100

   

ATP + amino acid + E E-aminoacyl-AMP + PPi                      (1)

E-aminoacyl-AMP + NTP Ap4N + E + amino acid                     (3)

E-aminoacyl-AMP + tRNA E + AMP+  aminoacyl-tRNA              (2)

 

Scheme 2.16.  Synthesis of Ap4N’s catalyzed by aminoacyl-tRNA synthetases, E = 

enzyme, PPi = inorganic pyrophosphate.  Yields have not been reported. 

Firefly luciferase is another enzyme that is capable of making Ap4N’s.  The enzyme 

forms E-Luciferin-AMP (Scheme 2.17, equation 1) and, in the presence of oxygen, is responsible 

for light emission (Scheme 2.17, equation 2).  Although luciferase is classified as an 

oxidoreductase, it has molecular properties shared by ligases. When ATP (or other NTP’s) is 

available the E-Luciferin-AMP intermediate can react with these NTP’s to give Ap4N’s (Scheme 
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2.17, equation 3).  Divalent cations are important for Ap4N formation and the yield is greatly 

enhanced by pyrophosphatase that hydrolyses inorganic pyrophosphate (PPi) into organic 

monophosphates which prevents the reverse reaction.
101

 

Luciferin + ATP + E E-Luciferin-AMP + PPi                                    (1)

E-Luciferin-AMP + O2 E + CO2 + AMP + dehydroluciferin + light     (2)

E-Luciferin-AMP + NTP Ap4N + Luciferin + E                                   (3)  

Scheme 2.17.  Reactions catalyzed by firefly luciferase. E = enzyme. Yields have not 

been reported. 
 

A third class is the acyl-CoA synthetase. It catalyzes the synthesis of Ap4N’s through 

reactions (1) and (2) in Scheme 2.18. While the first step of this reaction is very specific to ATP 

substrate, the second step is not selective as any NTP, and inorganic tri- and tetraphosphates (iP3, 

iP4) can act as acceptor substrates. In case of iP3, iP4, adenosine 5’-tetraphosphate (Ap4) and 

adenosine 5’-pentaphospahate (Ap5) are formed instead of Ap4N. This enzyme can make 

diadenosine 5’,5’-hexaphosphate (Ap6A) by using ATP and iP4 and allowing more reaction time 

for the enzyme than that required for the synthesis of Ap5. In this case first makes Ap5 and then 

utilizes it as an acceptor for AMP from E-RCO-AMP intermediate. In the same way Ap5A could 

by synthesized by the enzyme from ATP and iP3.
105,106

 

E + RCOOH + ATP E-RCO-AMP + PPi               (1)

E-RCO-AMP + NTP AP4N + RCOOH + E         (2) 

Scheme 2.18.  Synthesis of NTP catalyzed by acyl-CoA synthetase. E = enzyme. Yields 

have not been reported. 

A fourth class of enzymes are ApnA phosphorylases.  Ap4A hydrolase hydrolyzes Ap4A 

in the presence of inorganic phosphate to ATP and ADP. Since the reaction is reversible, these 

enzymes can catalyze the reaction of ATP and ADP to give Ap4A.
107-109

  Human Fhit is an Ap3A 
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hydrolase that catalyzes the Mg
2+

-dependent hydrolysis of Ap3A into AMP and ADP (Scheme 

2.19, equations 1 and 2).  Mutation of His96 into glycine gives H96G-Fhit which catalyzes the 

reaction of ImpN’s with nucleoside di- and triphosphates to give Ap3A, Ap3N’s and some 

Ap4N’s in yields ranging from 63-75% (Scheme 2.19, equation 3).
110

   The enzyme is also 

capable of accepting the imidazolates of CMP and UMP which enabled the synthesis of Tp3U 

and Cp3U in yields of 69 and 71% respectively.  

E
Fhit

-His
96

 + MgAp3A                 E
Fhit

-His
96

-AMP + MgADP      (1)

E
Fhit

-His
96

-AMP + H2O               E
Fhit

-His
96

 + AMP                   (2)

E
H96G-Fhit.ImpA  +  MgApxN               E

H96G-Fhit
 + ApnN             (3)  

Scheme 2.19.  Hydrolysis of Ap3A by natural human Fhit and synthesis of ApnN’s by 

engineered human Fhit (E
Fhit

). x = 1, 2, n = 3, 4. 

 

Finally, T4DNA ligase can transfer AMP from the E-AMP complex to in organic 

triphosphate, ADP, ATP, GTP, or dATP producing adenosine tetraphosphate (Ap4), Ap3A, 

Ap4A, Ap4G, and dAp4G, respectively.
101,111,112

 GTP:GTP guanylyl transferase (Gp4G 

synthetase) catalyzes the conversion of two molecules of GTP to Gp4G and pyrophosphate.
113,114

   

Non-natural dinucleoside polyphosphate analogs where one of the bridging oxygens of 

the polyphosphate group is replaced with a chemically stable methylene group, such as 

NpCH2pppN’, have been widely used as inhibitors and probes of enzymatic reactions. By a 

mechanism similar to aminoacyl-tRNA synthetases, stress protein LysU can synthesize these 

analogs (Scheme 2.20).
115,116
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Scheme 2.20.  Synthesis of dinucleoside tetraphosphate analogs by stress protein LysU. 

A = adenosine, N = nucleoside analog, x,y = O or CH2, Pi = inorganic monophosphate. 

Although the enzymatic approach is used for NpnN syntheses, it suffers from limited 

substrate specificity and scalability.  

2.1.4 Approaches to the synthesis of compound 2-4 

After analyzing the different approaches to NpnN’s it was clear that there were two 

potential routes to the synthesis of compound 2-4 (Scheme 2.21).  One was to activate compound 

2-3 and then react it with ADP.  The other was to activate ADP and then react it with compound 

2-3.  The next issue was to decide what reagent should be used to activate 2-3 or ADP.  As the 

imidazolides (ImpN’s or ImppN’s) are the most widely used donors and tend to give the best 

yields we focussed our attention on these species.  ImppA has been isolated in good yield and 

used as a donor.
93

 However, reactions of ImppN’s with phosphate acceptors are slow and so we 

were concerned that the reaction of 2-3 with ImppA would be particularly slow as the two 

fluorines reduce the nucleophilicity of the phosphonate oxygens (pKa2 of an 

difluoromethylenephosphonate is 5.5 which is approximately 2 pKa units lower than the 

pKa2 of a typical phosphate group).  The other approach was to convert 2-3 to its imidazolide; 

however, it was found that the reaction of the tetrabutylammonium salt of 2-3 with CDI was very 

slow which was again probably due to the relatively low nucleophilicity of the phosphonate 

oxygens.  Consequently, we decided to examine an alternative procedure that had never before 

been used for preparing NpnN’s, but had found considerable success in preparing other types of 
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nucleoside polyphosphates and their conjugates.  This was a procedure developed by Bogachev 

for the preparation of NTP’s.
8,117 
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Scheme 2.21. Potential routes to the synthesis of compound 2-4. AG stands for activating 

group. 

 

2.1.5 Bogachev’s approach to the synthesis of nucleoside polyphosphates and their 

conjugates 

Bogachev demonstrated that anhydrides of strong carboxylic acids are useful 

intermediates in dNTP synthesis.  He showed that in the reaction of trifluoroacetic anhydride 

(TFAA) with the tri-n-butylammonium salts of dNMP’s in the presence of triethylamine (TEA) 



37 
 

and N,N-dimethylaniline (DMA) in acetonitrile, acylphosphates of type 2-69 are formed 

(Scheme 2.22) along with temporary protection of the nucleotide hydroxyl and amino groups.
117

 

Like most acylphosphates, they display acylating rather than phosphorylating properties.
118-120

 

However, after their treatment with nucleophilic catalysts like NMI or N,N-

dimethylaminopyridine (DMAP), the trifluoroacetyl containing acylphosphates are converted 

into nucleotide imidazolium zwitter ions (2-70, Scheme 2.22).  Reaction of 2-70 with the tri-n-

butylammonium salt of inorganic pyrophosphate (Scheme 2.22) provided nucleoside dNTP’s in 

89-92% yields. The reaction times do not exceed 10 minutes in any synthetic step.
8 
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Scheme 2.22.  Bogachev’s synthesis of dNTP’s (B = A, G, T, C). 

 

Bogachev’s procedure has been applied to the synthesis of NDP-sugars.  Marlow and 

Kiessling have applied Bogachev’s procedure to the synthesis of UDP-α-D-galactofuranose 

(Table 2-1 entry 1)
121

 The same procedure has been also used by Timmons and Jakeman for the 

synthesis of some other NDP-sugars (Table 2.4 entries 2-9).
122

 Although the reaction yields are 

low, the coupling reaction time has greatly reduced (2h) compared to other procedures that 

utilize imidazolates or morpholidates as donors.
123-126
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Table 2.4.  Synthesis of some NDP-sugars using Bogachev’s method. 
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+
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1.                 , CH3CN, 2h

2. aq. NH4OAc

B`=

B

2-72

1. (CF3CO)2O, DMA, Et3N, CH3CN,

      0
o
C-r.t., 10 min.

2. NMI, TEA, CH3CN, 0
 o

C, 10 min

B = A, U

 

Entry Sugar-1-phosphate
-
 NMP Product Yield (%) 

1 O

OH
O

HO

OH

OH

P

O

O-

O-

 

UMP UDP-α-D-

galactofuranose 

35 

2 
O

HO
HO

O
OH

OH

P

O

O-

O-

 

AMP ADP-α-D-glucose 48 

3 UMP UDP-α-D-glucose 35 

4 

O

O P

O

O-

O-

OH
HO

HO

 

AMP ADP-α-L-rhamnose 25 

5 UMP UDP-α-L-rhamnose 30 

6 

O

O P

O

O-

O-

HO
OH

OH

 

AMP ADP-β-L-fucose 28 

7 UMP UDP-β-L-fucose 26 

8 
O

OH

HO
O

OH

P

O

O-

O-

 

AMP ADP-α-L-arabinose 35 

9 UMP UDP-α-L-arabinose 32 

 

 

NMP’s are usually commercially available as either the free acid or sodium salt forms. 

These forms are not soluble in acetonitrile and possess water of crystallization (usually in the 

form of hydrates) so in the typical Bogachev procedure these nucleotides have been converted to 

their corresponding tri-n-butylammonium salts.  Jakeman and Mohamady have found that there 

is no need to convert these starting nucleotides from their commercially available forms to the 

corresponding tri-n-butylammonium salts if TFAA was used in larger excess, as the TFAA used 
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can act as solubilizing and sequestering agent in addition to the formation of the mixed 

anhydrides, thus eliminates the long time spent in conversion of the salt forms and drying of 

nucleotides. They also omitted DMA from the first step. This modification has been used in the 

synthesis of some NTP analogs (Scheme 2.23).
127
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Scheme 2.23.  Jakeman and Mohamady’s synthesis of NTP analogs. 

 

2.2 Objectives 

Although Bogachev’s procedure had never been used to prepare NpnN’s it was 

anticipated that it would be suitable for this purpose and particularly for the synthesis of 

compound 2-4.  TFAA is very reactive and so we anticipated that we could form intermediate 2-

74 readily in spite of the fluorines that are adjacent to the phosphonate group (Scheme 2.24).  

Reaction of 2-74 with ADP would give compound 2-4.  However, before applying this approach 

to the synthesis of compound 2-4 we thought it prudent to first determine if this procedure would 

work using more conventional, commercially available nucleotide substrates. Hence, the 

objectives of this work were: (1) to determine if Bogachev’s procedure can be used to prepare 

NpnN’s and, if successful, (2) use this procedure for preparing compound 2-4.  
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Scheme 2.24.  Proposed route to compound 2-4. 

 

2.3 Results and discussion 

Bogachev prepared deoxynucleoside 5’-monophosphate-N-methylimidazolium salt 

donors by first reacting tri-n-butylammonium salts of dNMP’s with a 5-fold excess of TFAA in 

acetonitrile in the presence of TEA and DMA and stirring for 10 min. This results in temporary 

protection of the hydroxyl and amino (if present) groups and formation of the mixed anhydride. 

These solutions are concentrated to remove volatiles and then treated with excess NMI in the 

presence of TEA in acetonitrile to give the highly reactive 5’-N-methylimidazolium salt donors.  

For the synthesis of the NpnN’s, we prepared these donors in a similar manner except we 

employed the modifications that Jakeman and Mohamady developed for the synthesis of 

nonhydrolyzable NTP analogs.
127

 These modifications consist of using commercially available 

sodium salts rather than the tri-n-butylammonium salts nucleotides and a considerable excess (16 

equiv) of TFAA and TEA.  In Bogachev’s original procedure, the tri-n-butylammonium salts of 

the nucleotide donor precursors were used and they had to be vigorously dried before reaction 

with TFAA.  By using a larger excess of TFAA, the commercial sodium salts, which are sold as 

hydrates, can be used without vigorous drying, as the water is removed by reacting with the 

excess of TFAA.   

This procedure was applied to the synthesis of NpnN’s where n = 2-4 (Table 2.5).  Yields 

ranging from 51-68% were obtained.  However, for the synthesis of Up4A (2-85), the sodium salt 



41 
 

of UMP gave a low yield (not shown) of the tetraphosphate product. Moreover, for compounds 

containing guanosine (compounds 2-77 and 2-82) using the sodium salt of GMP and large excess 

of TFAA resulted in complete decomposition of the nucleotide. Consequently, for compounds 2-

77, 2-82, and 2-85 we found that the best yields were obtained using predried tri-n-

butylammonium salts of UMP or GMP and reducing the equivalents of TFAA to five (for GMP) 

or eight (for UMP). For UMP, AMP, CMP, and GMP, 
31

P NMR analyses of the reaction 

mixtures indicated that the mixed anhydrides, appearing at approximately δp 2.0 ppm, were 

formed within a few minutes. 
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Table 2.5.  Yields of NpnN’s using the modified Bogachev procedure. 
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O

O
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O
O

B'B

OHHO
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O

O
-

O P

O

O
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O1. (CF3CO)2O, Et3N,

 CH3CN, 0
o
C-r.t., 10 min.

2. NMI, TEA, CH3CN, 0
o
C, 

    10 min

Z=

B = A, G, U, C

Z
n

n = 1-3, B' = U, A or G

n

n = 0,1,2

0
 o

C-rt, 1.5 h

 

Entry Donor precursor
a 

Acceptor
b 

Product Yield (%) 

1 UMP UMP B = B’ = U, n = 0 (2.75) 64 

2 AMP AMP B = B’ = A, n = 0 (2-76) 61 

3 GMP
b 

GMP B = B’ = G, n = 0 (2-77) 68 

4 UMP AMP B = U, B’ = A, n = 0 (2-78) 66 

5 CMP AMP B = C, B’ = A, n = 0 (2-79) 60 

6 CMP UMP B = C, B’ = U, n = 0 (2-80) 67 

7 AMP ADP B = B’ = A, n = 1 (2-81) 51 

8 GMP
b
 GDP B = B’ = G, n = 1 (2-82) 53 

9 UMP ADP B = U, B’ = A, n = 1 (2-83) 56 

10 CMP UDP B = C, B’ = U, n = 1 (2-84) 58 

11 UMP
b
 ATP B = U, B’ = A, n = 2 (2-85) 60 

a
 Employed as hydrates of the sodium salts or free acids. 

b
 Tri-n-butylammonium salt used. 

Formation of the N-methylimidazolium salts could also be followed by 
31

P NMR as these 

species exhibited chemical shifts at approximately δp -9 to -10 ppm.  In all cases the formation of 

N-methylimidazolium salts was complete within 10 min and the crude donor acetonitrile 

solutions could be used directly for the coupling reactions. Addition of the donor solutions to 
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solutions of the bis(tri-n-butylammonium) salts of the acceptors in acetonitrile resulted in the 

precipitation of the acceptors. However, this problem was eliminated by using a DMF solution of 

the acceptor. 

The reactions could be performed at 0 
o
C, as typical for the reaction of 5’-monophosphate 

–N-methylimidazolium salts with nucleophiles.
8,120,121,126

 However, it was found that performing 

the reaction at room temperature led to a reduction of reaction times without affecting the yields.  

It was previously reported by Bogachev that for phosphate couplings the reactions were 

enhanced by the addition of N,N-dimethylaniline (DMA).
8
 For most of the compounds we did 

not find DMA to be necessary, as did Mohamady and Jakeman,
127

 though for couplings 

involving guanosine the addition of DMA was found to be beneficial.  
31

P NMR analysis of the 

reaction mixture revealed that the reaction was usually complete within 1.5 h. Dimerized donor 

was often formed as a minor by-product for compounds 2-78 to 2-85. When the reaction was 

complete it was quenched by the addition of aq. ammonium acetate, and the resulting solution 

was washed with chloroform, freeze-dried, and purified by RP-HPLC. 

Having demonstrated that Bogachev’s procedure worked for synthesisizing NpnN’s, the 

method was then applied it to the synthesis of compound 2-4 (Scheme 2.25).  The formation of 

the mixed anhydride of compound 2-3 was considerably slower than with the above mentioned 

NMP’s, requiring 25 min as determined by 
31

P NMR with the starting triplet appearing at δp 2.5 

ppm and the mixed anhydride intermediate appearing at δp -1.62 ppm. The slower reaction with 

compound 2-3 is most likely due to the electron-withdrawing effect of the fluorines making the 

phosphonyl anion a much poorer nucleophile.  The N-methylimidazolium salt, 2-74, which had 

chemical shift of δp -4.0 ppm, formed readily. Reaction of 2-74 with ADP gave compound 2-4 in 

a 44 % yield.  
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Scheme 2.25.  Synthesis of compound 2-4. 

We also attempted the formation of the imidazolium salts of ADP under the same 

conditions used for activation of NMP’s but the reaction did not work and decomposition of the 

ADP occurred (Scheme 2.26, equation 1). The same thing happened with ATP, in that we did not 

get the 5’-adenosine trimetaphosphate 2-86 but we had decomposition of the ATP (Scheme 2.26, 

equation 2).    
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 CH3CN, 0
o
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o
C, 10 min

(1)

(2)

2-86

 

Scheme 2.26.  Attempted activation of ADP and ATP. 

2.4 Conclusions and future work. 

In this study, it has been demonstrated that Bogachev’s method for nucleoside 

polyphosphate synthesis can be applied to the synthesis of NpnN’s, where n = 2-4, as well as 

compound 2-4.  The yields obtained for symmetrical and unsymmetrical Np2N’s (Table 2.5, 
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entries 1-6) are greater than 60% which is reasonable; however, as shown in section 2.1.3, there 

are literature methods that produce these compounds in better yields though the method reported 

here is faster than most.  Moreover, symmetrical Np2N’s cannot be produced via one-pot 

dimerization of their NMP’s using this procedure. The yields of the Np3N’s and Np4N’s using 

this procedure (Table 2.5, entries 7-11) are comparable to the best chemical methods reported in 

the literature and the process is considerably faster.  Hence, this is a good approach to these 

compounds.  Attempts to prepare the activated forms of ADP’s and ATP’s led to decomposition 

of these nucleotides, hence the method is limited to a maximum of Np4N’s.  

Compound 2-4 was evaluated for its ability to inhibit CTPS in the laboratory of Prof. 

Stephen Bearne at Dalhousie University, who is an expert on CTPS and CTPS inhibitors.  

Unfortunately, this compound was a weak CTPS inhibitor with an IC50 of only 400 M.  One 

possible reason for this is that the compound does not have a triphosphate moiety at the 5’-

position of the “uridine” portion.  It has been shown that the triphosphate group in UTP is 

essential for UTP binding to CTPS.  Another possible reason for this is the lack of a nitrogen at 

the 3-position of the uracil ring.
128

 Compound 2-91 (Scheme 2.27) may prove to be a much more 

potent inhibitor.  A possible retrosynthetic route to compound 2-91, as well as compound 2-90, is 

shown in Scheme 2.27.  This route takes advantage of the differences in reactivity between the 

5’-phosphate group and fluorophosphonate group in 2-90.  A phosphate group will need to be 

introduced into the 5’-position of compound 2-87 and the resulting product deprotected to give 

2-88.
60

  Coupling Fmoc-protected pyrophosphate
129

 to 2-88 should occur much faster at the more 

reactive 5’-phosphate group to give 2-89 as the dominant product.  Deprotection of 2-89 would 

give 2-90.  Coupling of 2-89 to ADP followed by deprotection would give 2-91.  Should this 

approach prove successful and compounds 2-90 and/or 2-91 prove to be good CTPS inhibitors, 
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then the crystal structure of them bound to CTPS will be obtained by another collaborator, 

crystallographer Enoch Baldwin (UC Davis), who determined the structure of E.coli CTPS.
38,39

 

These studies will provide a wealth of information about the interactions that occur between 

CTPS and its substrates and intermediates. This information will be invaluable for future drug 

development. 
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Scheme 2.27.  Proposed route for the synthesis of compound 2-91. 
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2.5 Experimental  

2.5.1 General information 

All reagents and starting nucleotides were obtained from commercial sources unless 

stated otherwise. Before using the commercial sodium salts or free acids of the nucleotides, they 

were suspended in dry acetonitrile, the acetonitrile was removed by rotary evaporation, and the 

resulting residue was subjected to high vacuum for 3 h.  Acetonitrile and DMF were distilled 

from calcium hydride.  Triethylamine was distilled from sodium hydroxide. NMI was stored 

over 4 Å molecular sieves. TFAA (Aldrich Chemical Company) was used without distillation. 

All reactions were monitored by 
31

P-NMR and carried out under argon. All NMR spectra were 

recorded using deuterium oxide as solvent.  For 
1
H NMR, chemical shifts are reported in ppm 

relative to the solvent residual peak ( 4.79).  For proton-decoupled 
13

C NMR spectra chemical 

shifts are reported in ppm relative to CH3OH in D2O (49.5, external standard). For proton-

decoupled 
31

P-NMR chemical shifts are reported in ppm relative to aqueous 85% H3PO4 ( 0 

ppm, external standard). For proton-decoupled 
19

F-NMR, chemical shifts are reported in ppm 

relative to CFCl3 ( 0 ppm, external standard). Preparative HPLC was performed using a C-18 

reverse phase (250 x 20 mm) semipreparative column. 

2.5.2 Preparation of alkyl ammonium salts of nucleotides 

Tri-n-butylammonium salts of UMP and GMP.  These were prepared from UMP 

disodium salt dihydrate (110 mg, 0.27 mmol) and GMP disodium salt hydrate (54 mg, 0.1335 

mmol) by dissolving them in water (5 mL) and passing the resulting solutions through Dowex-

50-W (H
+
 form) into a flask containing 10 mL of ethanol and 0.5 mL of tri-n-butylamine. The 

resin was washed with water (3 x 5 mL). The resulting solutions were stirred for few minutes and 
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then concentrated by high vacuum rotary evaporation. Residual water was removed by 

coevaporation with toluene (3 x 2 mL). 

Tri-n-butylammonium salt of AMP.  This was prepared from AMP free acid 

monohydrate (100 mg, 0.27 mmol) by the addition of tri-n-butylamine (0.25 mL) in 1 mL of 

DMF, and the mixture was stirred over 4 Å molecular sieves under argon overnight. 

Trialkylammonium salts of ADP and GDP.  These were prepared by dissolving ADP 

disodium salt dehydrate (100 mg, 0.20 mmol)  and GDP disodium salt (97 mg, 0.20 mmol) in a 

few milliliters of water and passed through Dowex-50-W H
+
 form into a flask containing 10 mL 

of ethanol and 0.30 mL of tri-n-butylamine. The resin was washed with water (3 x 5 mL). the 

resultant solution was stirred for a few minutes and then concentrated by high vacuum rotary 

evaporation. Residual water was removed by coevaporation with toluene (3 x 2 mL). The residue 

was dissolved in dry DMF (0.75 mL). Triethylamine (0.10 mL) was added which resulted in the 

formation of a precipitate. A few 4 Å molecular sieves (beads) were added, and the resulting 

suspension was stirred under argon for 16 h whereby the initially formed precipitate dissolved. 

This solution was used directly for the coupling reactions. 

Triethylammonium salt of UDP.  This salt was prepared by reacting the N-

methylimidazolium salt of UMP (prepared using the general procedure described under 2.3.2) 

with the tetrabutylammonium salt of inorganic phosphate (3 equiv.) in dry acetonitrile at 0 
o
C for 

1.5 h. The reaction was quenched by the addition of pH 7 aqueous 250 mM ammonium acetate. 

The resulting solution was then washed with 10 mL water, and centrifuged and the supernatant 

was purified by RP-HPLC (C18 column) using 9% CH3CN-91% 100 mM triethylammonium 

acetate (pH 7) as eluent. This material was freeze-dried several times until 
1
H NMR showed 

disappearance of the acetate CH3 singlet at 1.78 ppm. 
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Tri-n-butylammonium salt of ATP.  Was prepared by dissolving ATP trisodium salt 

(126 mg, 0.2 mmol) in a few milliliters of water and passed through freshly prepared Dowex-50-

W (pyridinium) form into a flask containing 10 mL of ethanol and 0.3 mL of tri-n-butylamine. 

The resin was washed with water (3 x 5 mL). The resultant solution was stirred for a few minutes 

and then concentrated by high vacuum rotary evaporation. Residual water was removed by 

coevaporation with toluene (3 x 2 mL) and subjected to high vacuum overnight. The residue was 

then dissolved in 1.5 mL of dry DMF and 4 Å molecular sieves. 

2.5.3 General procedure for the preparation of NpnN’s 

 NMP (1 equiv.), as its free acid hydrate, disodium salt hydrate, or tri-n-butylammonium 

salt, was suspended in a mixture of acetonitrile (1 mL of CH3CN/100 mg of NMP) containing 

triethylamine (16.1 equiv. for all compounds except GMP, where 5 equiv. is used). When GMP 

was used, 3 equiv. of DMA was added. The mixture was cooled to 0 
o
C using an ice-bath and 

stirred under argon. Trifluoroacetic anhydride (16 equiv. for the sodium salts, 8 equiv. for the tri-

n-butylammonium salt of UMP, and 5 equiv. for the tri-n-butylammonium salt of GMP) was 

added dropwise over a period of 1 min. The mixture was stirred for 10 min at room temperature 

(25 min for compound 2-14) and then concentrated using a rotary evaporator (aspirator pressure). 

The residue was cooled to 0 
o
C using an ice-bath and dissolved in dry acetonitrile (0.4 mL/100 

mg NMP) under an argon atmosphere. Triethylamine (10.6 equiv. for all compounds except 

GMP, where 3 equiv. was used) was added followed by N-methylimidazole (5.5 equiv.). The 

reaction was allowed to stir for 10 min at 0 
o
C, after which time a bright yellow solution was 

obtained. This solution was added over 1 min to a flask containing the tri-n-butylammonium or 

triethylammonium salt of nucleoside mono-, -di-, or –triphosphate acceptor (1.2-2 equiv.) in dry 

DMF (1-1.5 mL/100 mg acceptor) and 4 Å molecular sieves. The mixture was stirred for 1.5-2 h 
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under argon and then quenched with aqueous ammonium acetate (250 mM, pH 7, 6 mL/100 mg 

5’-NMP). The solution was washed with chloroform and freeze-dried. The resulting yellowish 

powder was diluted with water (6 mL/100 mg NMP) and centrifuged using a desktop 

microcentrifuge for a few minutes. The supernatant was subjected to RP-HPLC using a 

semipreparative C18 column and a gradient of acetonitrile and buffer (100 mM 

triethylammonium acetate, pH 7.0 or pH 9.0) at 6 mL/min and monitored at 255 and 280 nm. 

Fractions containing the desired product were pooled, concentrated by high vacuum rotary 

evaporation, and the residue was dissolved in water and repeatedly freeze-dried until the 
1
H 

NMR spectrum indicated that no residual buffer was present. The resulting white powder was 

converted to sodium salt using a Dowex-50-W ion-exchange resin in Na
+
 form.  

2.5.4 Characterization data 

P
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2
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UMP disodium salt hydrate (55 mg, 0.135 mmol) was used as the donor precursor. The 

tri-n-butylammonium salt of UMP was used as the acceptor. Pure 2-75 was obtained in 64% 

yield (58 mg) after purification by RP-HPLC [linear gradient of 100% buffer (pH 7.0) to 8% 

CH3CN-92% buffer over 35 min, tr = 29 min] followed by passage through a Dowex-50-W-Na
+
 

ion exchange column. 
1
H NMR (D2O, 300 MHz): δ 4.00-4.24 (m, 10H, H2’,3’,4’,5’), 5.81 (d, J = 

7.8 Hz, 2H, H5), 5.83 (s, 2H, H1’), 7.78 (d, J = 7.8 Hz, 2H, H6).  
13

C NMR (D2O, 75 MHz): δ 

64.8, 69.5, 73.7, 83.1 (t, J = 4.5 Hz), 88.3, 102.6, 141.5, 151.7, 166.10.  
31

P NMR (D2O, 121 
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MHz): δ -9.78 (s).  TOF MS ES-, m/z 629.05 [M-H]
-
, HRMS (TOF MS ES-) m/z = 629.0521, 

C18H23 N4O17P2 [M-H]
-
 requires 629.0533. 

P
1
, P

2
-Diadenosine-5`-diphosphate, disodium salt (2-76).      
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AMP free acid monohydrate (50 mg, 0.135 mmol) was used as the donor precursor. The 

tri-n-butylammonium salt of AMP (2 equiv.) was used as the acceptor. Pure 2-76 was obtained in 

61% yield (59 mg) after purification by RP-HPLC [linear gradient of 100% buffer (pH 7.0) to 

10% CH3CN-90% buffer over 45 min. and then a linear gradient to 20% CH3CN-80% buffer 

over 5 min, tr = 43 min] followed by passage through a Dowex-50-W-Na
+
 ion exchange column. 

1
H NMR (D2O, 300 MHz): δ 4.05-4.15 (m, 2H, H4`), 4.15-4.25 (m, 4H, H5`), 4.25-4.35 (m, 2H, 

H3`), 4.40-4.50 (m, 2H, H2`) 5.80 (two overlapping sinlglets, 2H, H1`), 7.9 (s, 2H, H2), 8.1 (s, 2H, 

H8).  
13

C NMR (D2O, 75 MHz): δ 65.0, 69.8, 74.5, 83.4 (t, J = 4.5 Hz), 87.1, 117.5, 139.6, 147.8, 

150.7, 153.5.  
31

P NMR (D2O, 121 MHz): δ -9.62 (s).  TOF MS ES+, m/z 677.12 [M+H]
+
, 

HRMS (TOF MS ES+) m/z = 677.1224, C20H27 N10O13P2 [M+H]
+
 requires 677.1234. 
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GMP disodium salt hydrate (54 mg, 0.135 mmol) was converted into its tri-n-

butylammonium salt and used as the donor precursor and acceptor (1.5 equiv.). Pure 2-77 was 

obtained in 68% yield (69 mg) after purification by RP-HPLC [linear gradient of 2% CH3CN-

98% buffer (pH 7.0) to 10% CH3CN-90% buffer over 50 min, tr = 40 min] followed by passage 

through a Dowex-50-W-Na
+
 ion exchange column. 

1
H NMR (D2O, 300 MHz): δ 4.06 (s, 2H, 

H4’), 4.15 (s, 4H, H5`), 4.29 (t, 2H, J = 4.7 Hz, H3`), 4.47 (t, 2H, J = 5.1 Hz, H2`), 5.63 (d, J = 5.0 

Hz (m, 2H, H1`), 7.79 (s, 2H, H8).  
13

C NMR (D2O, 75 MHz): δ 64.9, 69.9, 73.9, 83.1 (t, J = 4.4 

Hz), 87.2, 115.9, 151.1, 153.6, 158.5.  
31

P NMR (D2O, 121 MHz): δ -9.69 (s).  TOF MS ES-, m/z 

707.08 [M-H]
-
, HRMS (TOF MS ES-) m/z = 707.0983, C20H25N10O15P2, [M-H]

-
, requires 

707.0976. 

P
1
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2
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UMP disodium salt dihydrate (55 mg, 0.135 mmol) was used as the donor precursor. The 

tri-n-butylammonium salt of AMP (2 equiv.) was used as the acceptor. Pure 2-78 was obtained in 

66% yield (62 mg) after purification by RP-HPLC [linear gradient of 100% buffer (pH 7.0) to 

9% CH3CN-91% buffer over 55 min then a linear gradient to 20% CH3CN-80% buffer over 5 

min. tr = 42 min] followed by passage through a Dowex-50-W-Na
+
 ion exchange column. 

1
H 

NMR (D2O, 300 MHz): δ 3.95-4.20 (m, 7H, H2’U,3’U,4’U,5’U,5’A), 4.24 (bs, 1H, H4’A), 4.38 (bs, 1H, 

H3’A), 5.52 (d, J = 7.8 Hz, 1H, H5U), 5.66 (d, J = 3.9 Hz, 1H, H1’U), 5.92 (d, J = 5.9 Hz, 1H, 
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H1’A), 7.49 (d, J = 7.8 Hz, 1H, H6U), 8.02 (s, 1H, H2A), 8.28 (s, 1H, H8A).  
13

C NMR (D2O, 75 

MHz): δ 64.8, 65.2, 69.4, 70.3, 73.9, 74.1, 82.9, 83.7, 86.7, 88.2, 102.1, 118.3, 139.5, 140.8, 

148.9, 151.3, 152.7, 155.3. 165.6. 
31

P NMR (D2O, 121 MHz): δ – 9.71.  TOF MS ES-, m/z 

652.06 [M-H]
-
, HRMS (TOF MS ES-) m/z = 652.0788, C19H24N7O15P2 [M-H]

-
 requires 

652.0806. 

P
1
-Adenosine, P

2
-Cytidine-5`-diphosphate, disodium salt (2-79) 
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CMP disodium salt dihydrate (55 mg, 0.135 mmol) was used as the donor precursor. The 

tri-n-butylammonium salt of AMP (2 equiv.) was used as the acceptor. Pure 2-79 was obtained in 

60% yield (56 mg) after purification by RP-HPLC [linear gradient of 100% buffer (pH 9.0) to 

5% CH3CN-95% buffer over 55 min, tr = 34 min] followed by passage through a Dowex-50-W-

Na
+
 ion exchange column. 1H NMR (D2O, 300 MHz): δ 3.85-4.20 (m, 7H, H2’C,3’C,4’C5’C,5’A), 4.24 

(bs, 1H, H4’A), 4.35-4.42 (m, 1H, H3’A), 4.65 (m, 1H, H2’A), 5.60-5.73 (m, 2H, H1’C,5C), 5.88 (d, J 

= 5.6 Hz, 1H, H1’A), 7.54 (d, J = 7.8 Hz, 1H, H6C), 7.94 (s, 1H, H2A), 8.23 (s, 1H, H8A).  
13

C 

NMR (D2O, 75 MHz): δ 64.4, 65.2, 68.8, 70.3, 74.1, 74.3, 82.4 (t, J = 4.0 Hz), 83.7 (t, J = 3.5 

Hz), 86.8, 89.2, 118.1, 139.7, 141.3, 148.7, 151.9, 154.6, 154.7, 163.5.  
31

P NMR (D2O, 121 

MHz): δ – 9.66 (s).  TOF MS ES-, m/z 651.09 [M-H]
-
, HRMS (TOF MS ES-) m/z = 651.0955, 

C19H25 N8O14P2 [M-H]
-
 requires 651.0965. 
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P
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CMP disodium salt dihydrate (55 mg, 0.135 mmol) was used as the donor precursor. The 

tri-n-butylammonium salt of UMP (2 equiv.) was used as the acceptor. Pure 2-80 was obtained in 

67% yield (61 mg) after purification by RP-HPLC [linear gradient of 100% buffer (pH 7.0) to 

8% CH3CN-92% buffer over 45 min, tr = 33 min] followed by passage through a Dowex-50-W-

Na
+
 ion exchange column. 1H NMR (D2O, 300 MHz): δ 4.04 (m, 10 H, H2’,3’,4’,5), 5.77-5.88 (m, 

3H, H1’,5C), 5.94 (d,  J = 7.4 Hz, 1H, H5U), 7.87 (t,  J = 7.7 Hz, 2H, H6).  
13

C NMR (D2O, 75 

MHz): δ 64.5, 64.8, 69.1, 69.5, 73.7, 74.2, 82.4 (t, J = 4.0 Hz), 83.0 (t, J = 4.0 Hz), 88.3, 89.2, 

96.4, 102.53, 141.3, 141.4, 151.6, 157.3, 165.8, 165.9.  
31

P NMR (D2O, 121 MHz): δ -9.72 (s). 

TOF MS ES-, m/z 628.04 [M-H]
-
, HRMS (TOF MS ES-) m/z = 628.0681, C18H24 N5O16P2 [M-

H]
-
 requires 628.0693. 

P
1
, P

3
-Diadenosine-5`-triphosphate, trisodium salt (2-81) 

O
HO OH

O P

O

O-

O
O

OHHO

O P

O

O-

N

NN

N

NH2

2-81

3Na+

P

O

O-

O

N

N N

N

NH2

  



55 
 

AMP free acid monohydrate (50 mg, 0.135 mmol) was used as the donor precursor. The 

trialkylammonium salt of ADP (1.5 equiv.) was used as the acceptor. Pure 2-81 was obtained in 

51% yield (57 mg) after purification by RP-HPLC [linear gradient of 100% buffer (pH 7.0) to 

9% CH3CN-91% buffer over 45 min. then a linear gradient to 20% CH3CN-80% buffer over 5 

min, tr = 47 min] followed by passage through a Dowex-50-W-Na
+
 ion exchange column. 

1
H 

NMR (D2O, 300 MHz): δ 4.16-4.24 (m, 6H, H4’,5’), 4.30 (t, J = 4.4 Hz, 2H, H3’), 4.38 (t, J = 4.9 

Hz, 2H, H2’) 5.77 (d, J = 3.9 Hz, 2H, H1’), 7.80 (s, 2H, H2), 8.07 (s, 2H, H8). 
13

C NMR (D2O, 75 

MHz): δ 64.5, 64.6, 69.4, 74.7, 82.8, 82.9, 87.3, 117.5, 139.5, 147.9, 152.1, 154.4. 
31

P NMR 

(D2O, 121 MHz): δ -9.79 (d, J = 17.8 Hz), -21.02 (t, J = 17.8 Hz).  TOF MS ES-, m/z 755.03 [M-

H]
-
, HRMS (TOF MS ES-) m/z = 755.0748, C20H26 N10O16P3 [M-H]

-
 requires 755.0741. 

P
1
, P

3
-Diguanosine-5`-triphosphate, trisodium salt (2-82).      

O
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GMP disodium salt hydrate (54 mg, 0.135 mmol) was converted into its tri-n-

butylammonium salt and used as the donor precursor. The trialkylammonium salt of GDP (1.5 

equiv.) was used as the acceptor. Pure 2-82 was obtained in 53% yield (61 mg) after purification 

by RP-HPLC [linear gradient of 1% CH3CN-99% buffer (pH 7.0) to 8% CH3CN-92% buffer 

over 60 min then a linear gradient to 100% CH3CN over 10 min, tr = 55 min] followed by 

passage through a Dowex-50-W-Na
+
 ion exchange column. 

1
H NMR (D2O, 300 MHz): δ 4.11 

(m, 6H, H4’,5’), 4.32 (t, 2H, J = 4.7 Hz, H3`), 4.48 (t, 2H, J = 5.2 Hz, H2`), 5.66 (d, 2H, J = 5.2 Hz, 

H1`), 7.84 (s, 2H, H8).  
13

C NMR (D2O, 75 MHz): δ 64.68, 64.74, 69.8, 73.8, 83.2, 87.2, 115.8, 
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151.2, 153.6, 158.5.  
31

P NMR (D2O, 121 MHz): δ -10.77 (d, J = 18 Hz), -22.18 (t, J = 18 Hz).  

TOF MS ES-, m/z 787.14 [M-H]
-
, HRMS (TOF MS ES-) m/z = 787.0631, C20H26 N10O18P3, [M-

H]
-
, requires 787.0639. 

P
1
-Adenosine, P

3
-Uridine-5`-triphosphate, trisodium salt (2-83). 

O P

O

O-

O P

O

O-

2-83

3Na+

P

O

O-

O O
O

OHHO

NH

N

O

O

O
HO OH

N

N N

N

NH2

 

UMP disodium salt dihydrate (55 mg, 0.135 mmol) was used as the donor precursor. The 

trialkylammonium salt of ADP (1.2 equiv.) was used as the acceptor. Pure 2-83 was obtained in 

56% yield (61 mg) after purification by RP-HPLC [linear gradient of 100% buffer (pH 7.0) to 

8% CH3CN-92% buffer over 45 min then a linear gradient to 10% CH3CN-90% buffer over 10 

min. tr = 48 min] followed by passage through a Dowex-50-W-Na
+
 ion exchange column. 

1
H 

NMR (D2O, 300 MHz): δ 4.07-4.20 (m, 7H, H2’U,3’U,4’U,5’U,5’A), 4.25 (bs, 1H, H4’A), 4.40 (brt, J = 

3.9 Hz,1H, H3’A), 5.57 (d, J = 7.8 Hz, 1H, H5U), 5.68 (d, J = 3.9 Hz, 1H, H1’U), 5.92 (d, J = 5.4 

Hz, 1H, H1’A), 7.62 (d, J = 8.3 Hz, 1H, H6U), 8.00 (s, 1H, H2A), 8.32 (s, 1H, H8A). 13
C NMR 

(D2O, 75 MHz): δ 64.49 (d, J =  5.1 Hz), 65.2(d, J = 5.1 Hz), 69.1, 70.3, 73.9, 74.6, 82.7 (d, J = 

9.2 Hz), 83.6 (d., J = 8.6 Hz), 86.7, 88.3, 102.1, 118.2, 139.5, 140.9,  148.7, 151.3, 152.6, 155.1, 

165.6.  
31

P NMR (D2O, 121 MHz): δ -9.88 (d, J = 17.8 Hz), -21.46 (t, J = 17.8 Hz).    TOF MS 

ES-, m/z 732.03 [M-H]
-
, HRMS (TOF MS ES-) m/z = 732.0440, C19H25 N7O18P3 [M-H]

-
 requires 

732.0469. 
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P
1
-Cytidine, P

3
-Uridine-5`-triphosphate, trisodium salt (2-84). 
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CMP disodium salt dihydrate (55 mg, 0.135 mmol) was used as the donor precursor. The 

triethylammonium salt of UDP (1.5 equiv.) was used as the acceptor. Pure 2-84 was obtained in 

62% yield (64 mg) after purification by RP-HPLC [linear gradient of 100% buffer (pH 7.0) to 

10% CH3CN-90% buffer over 45 min, tr = 35 min] followed by passage through a Dowex-50-W-

Na
+
 ion exchange column.

 1
H NMR (D2O, 300 MHz): δ 4.13 (br, 10 H, H2’,3’,4’,5), 5.81 (d, J = 4.4 

Hz, 3H, H1’,5C), 6.03 (d,  J = 7.6 Hz, 1H, H5U), 7.80 (t,  J = 8.3 Hz, 1H, H6C). 7.89 (d, J = 7.5 Hz, 

1H, H6U).
 13

C NMR (D2O, 75 MHz): δ 64.4 (d, J = 5.1 Hz), 64.8 (d, J = 5.6 Hz), 69.0, 69.5, 73.8, 

74.3, 82.6 (d, J = 9.1 Hz), 83.1 (d, J = 9.1 Hz), 89.2, 96.1, 102.6, 141.5, 142.1, 151.7, 155.1, 

164.1, 166.0.  
31

P NMR (D2O, 121 MHz): δ -9.73 (d, J = 22.2 Hz), -21.30 (t, J = 17.8 Hz). TOF 

MS ES-, m/z 708.03 [M-H]
-
, HRMS (TOF MS ES-) m/z = 708.0367, C18H25 N5O19P3 [M-H]

-
 

requires 708.0357. 

P
1
-Adenosine, P

4
-Uridine-5`-tetraphosphate, tetrasodium salt (2-85). 

O
HO OH

O P

O

O-

O
O

OHHO

O P

O

O-

2-85

4Na+

NH

N

O

O

O P

O

O-

O P

O

O-

N

N N

N

NH2

 



58 
 

UMP disodium salt dihydrate (55 mg, 0.135 mmol) was used as the donor precursor. The 

tri-n-butylammonium salt of ATP (1.5 equiv.) was used as the acceptor. Pure 2-85 was obtained 

in 60% yield (73 mg) after purification by RP-HPLC [linear gradient of 100% buffer (pH 7.0) to 

10% CH3CN-90% buffer over 45 min then a linear gradient to 20% CH3CN-80% buffer over 10 

min. tr = 43 min] followed by passage through a Dowex-50-W-Na
+
 ion exchange column. 

1
H 

NMR (D2O, 300 MHz): δ 4.05-4.30 (m, 8H, H4’A, 5’A,2’U,3’U,4’U,5’U), 4.43 (t, J = 4.0 Hz,1H, H3’A), 

4.62 (d, J = 5.6 Hz, 1H, H2’A), 5.68 (d, J = 8.0 Hz, 1H, H6U), 5.75 (d, J = 4.9 Hz, 1H, H1’U), 5.94 

(d, J = 5.9 Hz, 1H, H1’A), 7.69 (d, J = 8.0 Hz, 1H, H6U), 8.00 (s, 1H, H2A), 8.37 (s, 1H, H8A). 13
C 

NMR (D2O, 75 MHz): δ 64.9 (d, J =  5.1 Hz), 65.2 (d, J = 5.1 Hz), 69.5, 70.4, 74.0, 74.3, 83.1 

(d, J = 8.6 Hz), 84.0 (d., J = 8.6 Hz), 86.6, 88.0, 102.4, 118.4, 140.0, 141.3,  148.9, 151.6, 152.0, 

154.9, 165.8.  
31

P NMR (D2O, 121 MHz): δ -9.68 (d, J = 17.8 Hz), -21.32 (d, J = 13.7 Hz).    

TOF MS ES-, m/z 812.02 [M-H]
-
, HRMS (TOF MS ES-) m/z = 812.0127, C19H26 N7O21P4 [M-

H]
-
 requires 812.0132. 

2.5.5 Synthesis of 5’-Adenosinyl, [3-Deaza, 4-deoxy-uridine-4-[difluoromethyl]-

phosphonyl]-diphosphate, trisodium salt (2-4) 

1

2

3 4
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3-Deaza-4-deoxyuridine-4-[difluoromethyl]phosphonic acid (40 mg, 0.1 mmol) was used 

as the donor precursor. The trialkylammonium salt of ADP (1.9 equiv.) was used as the acceptor. 
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Pure 2-4 was obtained in 44% yield (37 mg) after purification by RP-HPLC [linear gradient of 

100% buffer (pH 7.0) to 9% CH3CN-91% buffer over 55 min then a linear gradient to 20% 

CH3CN-80% buffer over 19 min. tr = 54 min] followed by passage through a Dowex-50-W-Na
+
 

ion exchange column.
 1

H NMR (D2O, 300 MHz): δ 3.72 (d, J = 12.7 Hz, 1H, H5’U), 3.8 (d, J = 

12. 7.0 Hz, 1H5’U’), 4.10 (m, 5H, H5’A,2’U’,3’U’,4’U’), 4.24 (s, 1H, H4’A), 4.41 (t, J = 4.2 Hz, 1H, 

H3’A), 5.92 (s, 1H, H1’U’), 5.95 (d, J = 5.9 Hz, 1H, H1’A), 6.46 (d, J = 7.3 Hz, 1H, H5’U’), 6.55 (s, 

1H, H4U’), 7.78 (d, J = 7.3 Hz, 1H, H6U’), 8.07 (s, 1H, H2A), 8.31 (s, 1H, H8A).  
13

C NMR (D2O, 

75 MHz): δ 60. 5, 65.3 (d, J = 5.5 Hz), 68.8, 70.2, 74.0, 74.8, 83.7 (d, J = 9.9 Hz), 86.9, 90.6, 

105.5, 116.7, 118.5, 133.5, 139.9, 147.5 (m) 148.9, 152.7, 155.4, 162.9.  
31

P NMR (D2O, 121 

MHz): δ -5.72 (td, J = 102.1 Hz, 26.7 Hz), -10.04 (d, J = 22.3). -22.00 (dd, J = 31.8 Hz, 18.5 

Hz).  
31

F NMR (D2O, 121 MHz): δ -112.38 (dd, J = 101.2, 12.1 Hz).  TOF MS ES-, m/z 765.01 

[M-H]
-
, HRMS (TOF MS ES-) m/z = 765.0511, C21H26 N6O17F2P3 [M-H]

-
 requires 765.0535. 
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Chapter 3 

Sulfonyl Imidazolium Salts as Reagents for the Rapid and Efficient Synthesis of Nucleoside 

Polyphosphates and Their Conjugates 

3.0 Introduction 

3.1 Sulfuryl and sulfonyl imidazolium salts as activating agents for the synthesis 

of nucleoside polyphosphates and their conjugates 

 

In chapter 2 a new method for preparing NpnN’s (n = 2-4) based on Bogachev’s approach 

to dNTP synthesis was presented.  Although it provided the desired compounds in reasonable 

yields it had its limitations.  First, the yields of symmetrical Np2N’s were modest compared to 

the best literature methods.  Although the yields of the Np3N’s and Np4N’s using this procedure 

were comparable to the best reported chemical methods, the yields were still modest (50-60%). 

Moreover, since this route could not be used to activate NDP’s and NTP’s the method cannot be 

used to prepare NpnN’s where n > 4.  Also other groups reported that this method gives sugar 

nucleotides in low to modest yields (chapter 2, section 2.1.5).  We wished to develop a more 

efficient route to not just NpnN’s but to other nucleoside polyphosphates and their conjugates as 

well.   

In Bogachev’s method the donor is a highly reactive phosphoryl imidazolium species.  

We wished to use this species as a donor but generate it without temporary protection of the 

hydroxyl or amino groups on the nucleoside donor which was accomplished in the Bogachev 

method by using an excess amount of TFAA which we believed was problematic when 

activating NDP’s or NTP’s.  We reasoned that this could be achieved by using a sulfonyl- or 

sulfurylimidazolium salt of type 3-1 (Scheme 3.1) as an activating agent.  The general approach 

would involve reacting a nucleoside mono-, di-, or triphosphate with a sulfonyl- or 
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sulfurylimidazolium salt of type 3-1 (Scheme 3.1).  This would initially produce mixed 

anhydride 3-2.  This could potentially act as a donor and react with a phosphorylated acceptor to 

give the desired nucleoside polyphosphates and their conjugates. Alternatively, the released NMI 

could react with 3-2 to produce a highly reactive imidazolium salt of type 3-3 which could also 

act as a donor and react with acceptors to give the desired products. If NMI is added to the 

reaction mixture then it is possible that the reaction would proceed entirely via intermediate 3-3.  
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Scheme 3.1.  General procedure for preparing nucleoside polyphosphates and their 

conjugates using a sulfonyl- or sulfurylimidazolium salt of type 3-1. 

 

Compounds of type 3-1, like sulfonyl chlorides, have been used as reagents for the 

sulfonation or sulfation of hydroxyl and amino groups.
130-132

 Sulfonyl chlorides readily sulfonate 

the hydroxyl groups of carbohydrates and the hydroxyl and amino groups of nucleosides and 

nucleotides.
133,134

 This suggests that imidazolium salts of type 3-1 might be problematic for the 

synthesis of nucleoside polyphosphates using unprotected substrates.  However, we reasoned that 

the reaction between the negatively charged phosphate moiety and the positively charged 

sulfonyl imidazolium salt would be much faster than the reaction between the salt and neutral 

hydroxyl and amino groups of the nucleoside substrate producing the intermediate 3-2 in high 
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yield.  We also expected that subsequent reaction between the charged donor and phosphate 

group of the acceptor would also be relatively rapid as was the case when using Bogachev’s 

procedure. 

3.2 Objectives 

 The objective of the work presented in this chapter was to determine if compounds of 

type 3-1 can be used as activating agents for the efficient (rapid and high yielding) synthesis of 

nucleoside polyphosphates and their conjugates.    

3.3. Results and discussion 

3.3.1 Preliminary investigations using sulfuryl imidazolium salts as activating 

agents 

 

We initially examined trichloroethyl (TCE) and trifluoroethyl (TFE) sulfurylimidazolium 

salts 3-4 and 3-5 as activating agents (Figure 3.1).  These compounds were chosen because they 

were already available in the Taylor group having been prepared and used by the Taylor group as 

reagents for introducing protected sulfates into carbohydrates.
131

    

S

O

O

O N
N+

Me
Me

R

TfO-

3-4,  R = CCl3 
3-5,  R = CF3  

Figure 3.1.  Structure of sulfurylimidazolium salts 3-4 and 3-5.  

We started our investigations by examining the one pot dimerization of NMP’s (Scheme 

3.2) using reagent 3-4 and UMP as a model nucleotide substrate.  The reaction was performed by 

adding 1.0 equiv of 3-4 to 2.0 equiv of the tri-n-butylammonium salt of UMP in DMF in the 

presence of 3 equiv of NMI at 0 
o
C (ice-bath) then allowing the reaction to stir at room 

temperature. The reaction was monitored by 
31

P NMR (Figure 3.2). The first spectrum, recorded 

10 minutes into the reaction, showed a peak at -9.9 ppm which corresponded to the desired 
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product, Up2U (2-75), along with peaks corresponding to unreacted 3-7 (-9.9 ppm) and UMP 

(2.0 ppm) and a small unidentified peak at -8.8 ppm.  After 40 minutes the reaction was 

essentially complete in that almost all of the imidazolium intermediate was consumed. The 

reaction was then cooled to 0 
o
C, diluted with aq. ammonium acetate, washed with chloroform to 

remove excess base and purified by RP-HPLC which gave 2-75 in an 86% yield.  Applying this 

procedure to the dimerization of AMP gave Ap2A (2.76) in an equally good yield (Scheme 3.2).  

The isolated yields were considerably higher than those obtained using the Bogachev method 

discussed in chapter 2. Moreover, the reaction time was considerably shorter than the Bogachev 

method for preparing Np2N’s (90 min) (see section 2.4.3).  This reduction in reaction time 

suggests that some of the mixed anhydride 3-6 might be reacting directly with the acceptor 

nucleotide.  No sulphated products were observed.   

 

Figure 3.2.  
31

P-NMR spectra of the dimerization reaction of UMP using 3-4. Spectra 

were recorded at 10, 20, 30, and 40 minutes (from bottom to top). Peaks at 2.0, -9.0 and -

9.9 ppm correspond to UMP, imidazolium intermediate 3-7 and, Up2U respectively. 

-12-10-8-6-4-28 6 4 2 0 ppm
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Scheme 3.2.  Proposed mechanism for the dimerization of UMP and AMP using 3-4 as 

an activating agent and in the presence excess NMI. 

 

To study the reaction in which the donor and acceptor were different we examined the 

synthesis of UDP from UMP and inorganic phosphate. The reaction was done in two steps.  The 

first step was the addition of 1.2 equiv of 3-4 or 3-5 to the tri-n-butylammonium salt of UMP and 

a base in DMF at 0 
o
C.  The solution was stirred for 5 min and then added to a stirred solution of 

tri-n-butylammonium salt of inorganic phosphate (Pi) and the reaction was stirred at room 

temperature and monitored by 
31

P NMR.  The results are shown in Table 3.1. The dimerized 

NMP was always formed as a by-product and with reagent 3-5 it was the dominant product.  So 

in the 5 minutes before the Pi is added some of the unreacted UMP reacts with the mixed 

anhydride intermediate or imidazolium intermediate to give dimer.  We hypothesized that if we 

could increase the rate of formation of the reactive intermediate(s) in comparison to the rate at 

which the intermediate(s) reacts with unreacted UMP then it might be possible to reduce the 

amount of dimer formed (since the UMP would be rapidly sequestered as the mixed anhydride 

intermediate or imidazolium intermediate) and increase the amount of UDP formed. This led us 

to the conclusion that the structure assigned to the sulfurylimidazolium salt had to be changed. 
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Table 3.1.  Attempted synthesis of UDP using sulfurylimdazolium salts 3-4 and 3-5. 

NH

N

O

O

O

OHOH

O
P

-O

O

O-

O

OHOH

O
P

O

O

O-

P
-O

O

-O

NH

N

O

O
O

O

O

CH3

N N+
S

CH3

R TfO-

O
P

O

O

O-
O

P

O

O-

O
OHOH

O

OHOH

NH

N

O

O

NH

N

O

O

++
1. 3 equiv base, DMF, 0oC, 5 min

2. 3 equiv PO4
-3 (Bu3NH+)3,

   r.t., 30 min1 equiv 1.2 equiv

R = CCl3, CF3
3-8 2-75

 
 

entry R Base Yield
a
 of 3-8 (%) Yield

a
 of 2-75 (%) 

1 CCl3 NMI 52 48 

2 CF3 NMI 10 90 

3 CCl3 2,6-Lutidine 72 27 

4 CF3 2,6-Lutidine 20 80 

a
Yields are calculated by integration of the 

31
P-NMR peaks. 

3.3.2 Preliminary investigations using sulfonylimidazolium salts as activating 

agents 

 

We focussed our attention on using phenylsulfonyl imidazolium salts 3-11 and 3-12 

(Scheme 3.3).  Our previous studies on the reactivity of sulfonyl and sulfuryl imidazolium salts 

with carbohydrates indicated that sulfonyl imidazolium salts, such as 3-11, were more reactive 

than sulfuryl imidazolium salts 3-4 and 3-5.
135

 The reasons for this are not entirely clear. 

Although sulfuryl imidazolium salts 3-4 and 3-5 have electron withdrawing TCE and TFE 

groups the ester oxygen can still donate electrons into the S=O by resonance and so perhaps 

making the sulfur atom less electrophilic in comparison to the sulfur atom in 3-11 (a benzene 

group is not considered to be highly electron donating (p = -0.01)).   There might also be some 

steric hindrance from the fluorines or chlorines in 3-4 and 3-5.  We also decided to examine the 

phenyl group simply because benzenesulfonyl chloride is inexpensive and readily available.   

Benzenesulfonyl chloride was reacted with imidazole or 2-methylimidazole to give 3-9 

and 3-10 in 96% and 99% yield respectively.  Compounds 3-9 and 3-10 were reacted with 
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methyl triflate in anhydrous ether at rt which results in the precipitation of compound 3-11 and 3-

12 as white powders.  Filtration of the reaction mixture gave 3-11 and 3-12 in quantitative yield 

and no further purification was necessary.  Compounds 3-11 and 3-12 can be stored under Ar or 

N2 at -20 
o
C for months without any detectable decomposition. Compound 3-12 exhibited 

slightly better solubility properties in organic solvents, such as DMF, than compound 3-11 

though both slowly decomposed when stored as solutions in organic solvents. 

S
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R
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CH2Cl2, 0oC-r.t., 6h MeOTf, Et2O, 0oC, 3h

3-9, R = H , 96%
3-10, R = CH3 99%

3-11, R = H, 99%
3-12, R = CH3, 99%  

Scheme 3.3.  Synthesis of sulfonyl imidazolium salts 3-11 and 3-12. 

The synthesis of UDP was attempted as before using compound 3-11 as the activating 

agent (Scheme 3.4).  In this case, we did not observe any dimerization of UMP and obtained 

almost complete conversion to UDP as judged by 
31

P NMR of the reaction mixture (Figure 3.3). 

After RP-HPLC purification 3-8 was obtained in 89% yield. The entire process took just 30 min. 
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Scheme 3.4.  Formation of UDP using reagent 3-11. 
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Figure 3.3.  
31

P-NMR spectra of the reaction mixture of UMP and inorganic phosphate 

recoreded at 5, 8, 15, 25 minutes (bottom to top) offset shows UMP-imidazolium 

intermediate. Inorganic phosphate appears at δp 3.5, UDP appears as two doublets at δp -

7.0 and -10.1.   

The dimerization of NMP’s using 3-11 and 3-12 was examined.  We also examined this 

reaction with two other salts, 3-13 and 3-14 (Figure 3.4), in which the triflate anion was replaced 

with a chloride ion as these two salts did not require the use of methyl triflate in their 

preparation.   

Ph S
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CH3
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3-13 3-14  

Figure 3.4.  Structures of salts 3-13 and 3-14.  

Salt 3-13 was prepared in one step by reacting benzenesulfonyl chloride with NMI in 

anhydrous ether.  3-13 precipitated out of solution and was collected by suction filtration in 

quantitative yield (Scheme 3.5). 3-13 was found to be somewhat unstable in that it could only be 

stored for only 1-2 weeks under argon at -20 
o
C before significant decomposition occurred. We 

attempted the preparation of 3-14, by reacting methanesulfonyl chloride with NMI in anhydrous 
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ether but the compound was found to be extremely unstable and could not be isolated and stored 

for any appreciable amount of time. 

Ph S

O

O

Cl
N

N CH3+ Ph S

O

O

N
N+

CH3

Cl-
ether, 00 C- rt

3-13  

Scheme 3.5.  Synthesis of 3-13. 

The dimerization of AMP was examined using the conditions described above for the 

dimerization of UMP.  Salts 3-11 and 3-12 both gave Ap2A (2-76) in excellent yields (Table 3.2, 

entries 1 and 2).  The yield of Ap2A using salt 3-13 was considerably lower (entry 3).  We also 

tried generating the salt 3-13 in situ by adding NMI to benzenesulfonyl chloride in DMF, stirring 

for 5 min and then this mixture was added to AMP in DMF but the yield was only marginally 

better (entry 4).  Since salt 3-14 could not be isolated we attempted the reaction by mixing 

methanesulfonyl chloride with NMI in DMF a separate flask, stirring for 5 min and then this 

mixture was added to solution of AMP in DMF; however, this gave none of the desired product. 

When the methanesulfonyl chloride was added directly to a cold mixture of AMP and 3 equiv 

NMI Ap2A was formed in a 64% yield (entry 5).   
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Table 3.2.  Synthesis of Ap2A using sulfonyl imidazolium salts 3-11 - 3-14. 

A

O

OHOH

O
P

-
O

O

O
-2 (n-Bu)3NH

+

O

R

O

R'

N N
+

S
CH3

X
-

O
P

O

O

O
-

O
P

O

O
-

O
OHOH

A A

O

OHOH

+
3 equiv base, DMF,

0
o
C-r.t., 10 min

2 equiv
3-11 - 3-14 2-76

1 equiv

 

Entry Salt Base Yield (%)
a
 

1 3-11 (R =Ph, R’ = H, X = TfO
-
) NMI 93 

2 3-12 (R =Ph, R’ = CH3, X = TfO
-
) 1,2-DMI 96 

3
 

3-13 (R =Ph, R’ = H, X = Cl
-
) NMI 55 

4
 

3-13 (R =Ph, R’ = H, X = Cl
-
) NMI 45 

5
 

3-14 (R =CH3, R’ = H, X = Cl
-
) NMI 64 

a
Yields are calculated by integration of 

31
P-NMR peaks. 

We observed that all of these coupling reactions were faster (in less than 10 min.) than 

the corresponding reactions done using sulfurylimidazolium salts (about 40 min).  The 
31

P-NMR 

spectra of the reactions did not show any intermediates. This suggests that with these salts the 

intermediate reacting with the acceptor nucleotide might be the mixed sulfonic-phosphoric 

anhydride which might have reacted very rapidly and consumed totally before recording the 
31

P-

NMR.  

3.3.3 Synthesis of symmetrical Np2N’s and Np4N’s using sulfonylimidazolium salts 

3-11 and 3-12 as activating agents 

 

The dimerization of AMP using reagents 3-11 and 3-12 was examined in more detail.  

We first determined if addition of NMI (or 1,2-DMI) was required to obtain high yields. 

Compound 3-11(0.6 equiv, a slight excess was used since compounds 3-11 and 3-12 decompose 

in DMF) was added to a solution of the tetrabutylammonium salt of AMP (the number of 

tetrabutylammonium ions per molecule of nucleotide was determined by 
1
H-NMR, see 



70 
 

experimental section for details) in DMF at 0 
o
C.  The cooling bath was removed and the 

reaction was followed by 
31

P NMR.  After 10 min no further reaction occurred and Ap2A was 

formed in a 67% yield as determined by 
31

P-NMR (Table 3.3, entry 1).  Performing the reaction 

in the presence of one equiv of NMI gave Ap2A in a 
31

P-NMR yield of 94 % (entry 2) indicating 

that the presence of NMI or perhaps just a base is required for good yields.  

As mentioned in chapter 2, the presence of divalent cations, such as Mg
+2

, often increases 

the yields of polyphosphorylation/phosphate-phosphate coupling reactions.  Performing this 

reaction in the presence of 0.5 equiv of MgCl2 gave Ap2A in a 99% yield by 
31

P-NMR (entry 3). 

After quenching this reaction with triethylammonium acetate (pH 7.0), extraction with CHCl3 to 

remove the tetrabutylammonium salt of phenylsulfonate and NMI, and purification by reversed-

phase HPLC, Ap2A was obtained in 93% yield.  No products resulting from sulfonation of the 

hydroxyl or amino groups were detected.  Salt 3-12 gave similar results (entries 4 and 5).  

Surprisingly, we found that it was not necessary to use anhydrous MgCl2 as the more economical 

and easily handled trihydrate form gave equally good results.   

The optimal conditions described above (2 equiv NMP, 0.6 equiv salt, 0.5 equiv MgCl2, 1 

equiv NMI) were applied to the synthesis of other symmetrical Np2N’s.  Gp2G and Up2U were 

obtained in excellent yields with either salt 3-11 or 3-12 (entries 9-11).  Cp2C was obtained in a 

70 % yield.  The effect of magnesium ions on the dimerization of CMP and GMP was more 

pronounced than on the dimerization of other NMP’s (compare entries 6 and 8 to entries 7 and 

9).  We do not know why this is the case. 
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Table 3.3.  Synthesis of symmetrical Np2N’s and Np4N’s using salts 3-11 and 3-12. 

B

O

OHOH

O
P

-O

O

O-

N N+
S CH3

O

Ph

O

R

TfO- O
P

O

O

O-
O

P

O

O-

O
OHOH

B B

O

OHOH

+
n

n

n = 1 or 3n = 1 or 2

(Bu4N+)x

0.6-0.75 equiv 3-11 or 3-12

1 or 3 equiv base,

0.5 equiv MgCl2

DMF, 0 oC-rt., 10-20 min

3-11 or 3-12  

Entry NMP R Base MgCl2 Product
c
 Yield (%)

a 
Yield (%)

b 

1 AMP H - - Ap2A (2-76) 67 - 

2 AMP H NMI - Ap2A (2-76) 94 - 

3 AMP H NMI Present Ap2A (2-76) 99 93 

4 AMP CH3 1,2-DMI - Ap2A (2-76) 96 - 

5 AMP CH3 1,2-DMI Present Ap2A (2-76) 99 93 

6 CMP CH3 1,2-DMI - Cp2C (3-15) 52 - 

7 CMP CH3 1,2-DMI Present Cp2C (3-15) 70 - 

8 GMP CH3 1,2-DMI - Gp2G (2-77) 45 - 

9 GMP CH3 1,2-DMI Present Gp2G (2-77) 100 94 

10 GMP H NMI Present Gp2G (2-77) 100 94 

11 UMP H NMI Present Up2U (2-75) 100 93 

12 GDP H NMI
 

Present Gp4G (3-16) 55 - 

13 GDP H NMI
c 

Present Gp4G (3-16)
d
 92 84 

14 UDP H NMI
c 

Present Up4U (3-17)
d
 88 81 

a
Yields calculated by integration of 

31
P-NMR peaks. 

b
Isolated yields. 

c
0.6 equiv of base and 10 min reaction times 

employed unless stated otherwise. 
d
0.75 equiv 3-11, 3 equiv of NMI, 20 min reaction time. 

 

To determine if NDP’s can also act as donors we examined the dimerization of GDP and 

UDP using the above conditions.  The reactions were slower and the symmetrical 

tetraphosphates were obtained in moderate yields by 
31

P NMR; however, by using 0.75 equiv of 

the coupling agent, 3 equiv of base, and a 20 min reaction time, Gp4G and Up4U were obtained 
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in excellent isolated yield (Table 3.3, entries 13 and 14).  The dimerization of ADP to Ap4A 

using these procedure gave Ap4A contaminated with about 30% Ap3A which was difficult to 

remove. This result suggests that upon activaton of ADP by 3-11 or 3-12, the resulting activating 

intermediate can be attacked at the -phosphorus by ADP to give Ap3A (Scheme 3.6).  This has 

been noted before by Ng and Orgel who found that the reaction of ADP with EDC in the 

presence of MgCl2 in aq. HEPES buffer at 37
o
C resulted in the formation of both Ap4A and 

Ap3A.
65

 We do not know why this occurs more readily with activated ADP than with other 

activated NDP’s.   
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Scheme 3.6.  Proposed mechanism for the formation of Ap3A. 

3.3.4. Synthesis of NDP’s and NTP’s and unsymmetric Np2N’s and Np4N’s using 

reagents 3-11 as activating agent 

Next we examined the synthesis of NDP’s and NTP’s using reagent 3-11. Reaction of the 

tetrabutylammonium salts of AMP and UMP with 1.2 equiv of 3-11 and 1 equiv NMI for 1 min 

at room temperature followed by reaction with 2 equiv of the bis-tetrabutylammonium salt of 

inorganic pyrophosphate (PPi) for 30 min gave ATP and UTP in excellent isolated yields after 

the usual workup and HPLC purification (Table 3.4, entries 1 and 2). The addition of MgCl2 did 

not significantly improve yields.  

When GMP was the substrate, the yield of GTP was low due to competing dimerization 

(Table 3.4, entry 3). This was also the case when we attempted the synthesis of GDP and CDP 
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using the bis-tetrabutylammonium salt of inorganic phosphate (Pi) as acceptor (entries 4 and 7).  

Switching the base to TEA did not prevent dimerization (entry 5); however, when using 

diisopropylethylamine (DIPEA) instead of NMI as the base the dimerization reaction was 

suppressed and CDP and GDP were obtained in good to high yields as determined by 
31

P-NMR 

(entries 6 and 8).  The suppression of dimerization by DIPEA may be due to the complete 

deprotonation of the donor precursors by the sterically hindered DIPEA thus increasing the rate 

of formation of activated intermediate. 

Table 3.4.  Synthesis of NTP’s and NDP’s using salt 3-11. 

B

O

OHOH

OP-O

O-

O B

O

OHOH

OPO

O-

O-

P

O

O-

-O

1. 1.2 equiv 3-11, Base, DMF,

     rt, 1 min

2. Inorganic phosphate or

    Inorganic pyrophosphate,

    DMF, 0 oC-rt, 30 min.

n

n = 0, 1
(Bu4N)1.7

+

 

entry Donor Base Acceptor Product Yield (%)
a
 Yield

 
(%)

b
 

1 AMP NMI PPi ATP (3-18) 93 85 

2 UMP NMI PPi UTP (3-19) 98 88 

3 GMP NMI PPi GTP/Gp2G 40/60 - 

4 GMP NMI Pi GDP/Gp2G 40/60 - 

5 GMP TEA Pi GDP/Gp2G 33/67 - 

6 GMP 
i
Pr2EtN Pi GDP 100 - 

7 CMP NMI Pi CDP/Cp2C 35/65 - 

8 CMP 
i
Pr2EtN Pi CDP 75 - 

a
Yields calculated from integration of 

31
P-NMR peaks.  

b
Isolated yields 

 

DIPEA could also be used as a base for the activation of AMP and UMP.  This optimized 

procedure was used for the synthesis of the four natural NTP’s and the analog 3-22 in excellent 

isolated yields (Table 3.5).  
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Table 3.5.  Synthesis of NTP’s and NTP analog 3-22 using salt 3-11 and DIPEA as base. 

B

O

OHOH

OP-O

O-

O B

O

OHOH

OPO

O-

O

P

O

O-

XP

O

O-

-O

P

-O
OH

X

O

P

O

HO

-O

Y2
+(Bu4N+)1.7

1. 1.2 equiv 3-11, 3 equiv iPr2EtN,

     DMF,  rt, 1 min

X = O, Y2
+ = (Bu4N+)2

X = CF2, Y2
+ = (Bu3NH+)2

X = O or CF2

DMF, 0 oC-rt, 30 min.

2. 2 equiv

 

Entry Base X Product Yield (%) 

1 A O ATP (3-18) 86 

2 U O UTP (3-19) 90 

3 G O GTP (3-20) 88 

4 C O CTP (3-21) 84 

5 A CF2 AppCF2p (3-22) 89 

 

31
P NMR of the reaction between AMP and 3-11 in presence of 3 equiv. of DIPEA 

showed rapid formation of an imidazolium salt 3-23 (Figure 3.5) by 
31

P NMR indicating that 

excess NMI was not required for imidazolium salt formation though the presence of DIPEA 

appears to promote its formation presumably by increasing the extent of deprotonation of the 

donor precursors.   
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A

O

OHOH

OPN

O-

O
N+

H3C

3-23  

 

Figure 3.5.  
31

P-NMR spectrum of a mixture of the tetrabutylammonium salt of AMP, 

1.2 equiv salt 3-11 and 3 equiv of DIPEA in DMF after 5 min.   

 Perhaps the best method for preparing NTP’s prior to this work was Bogachev’s which 

was discussed in detail in chapter 2 in section 2.1.5.   The yields of NTP’s reported by Bogachev 

were excellent (89-92%).  Although our yields of NTP’s are just slightly lower there are several 

advantages to using our procedure as opposed to Bogachev’s.  Our method uses a one-step one-

min. activation of NMP’s. Bogachev’s procedure requires two activation steps.  The first step is 

the addition of excess TFAA (5 eq.) which has to be completely removed by rotary evaporation 

before the next activation step with NMI. In our method after quenching the reaction and 

washing with chloroform we purify the reaction mixture directly by HPLC while in the 

Bogachev method, one needs to deprotect the product, which is achieved by hydrolysis with 

water followed by freeze drying. The only advantage of Bogachev’s method over ours is that his 

method uses commercially available reagents.  
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The procedure we developed for the synthesis of NTP’s also works very well for the 

construction of unsymmetrical Np2N’s and Np3N’s as demonstrated by the synthesis of Ap2C 

and Ap3U in very good yields starting from AMP or UMP and using CMP or ADP as acceptors 

(Scheme 3.7). Ap3U has been prepared in a 73% yield using an engineered diadenosine 

triphosphate hydrolase.
110

 We are not aware of any other chemical synthesis of this compound or 

any previous syntheses of Ap2C.  

B

O

OHOH

OP-O

O-

O
O

P
O

O

O-
O

P

O

O-

O
OHOH

A B

O

OHOH
n

(Bu4N+)1.7

B = A or U

1. 1.2 equiv 3-11, 3 equiv iPr2EtN,

    DMF, rt, 1 min.

2. 1.5 equiv CMP (Bu4N+)1.7, or

    1.5 equiv ADP (Bu4N+)2.1, 

    1.0 equiv MgCl2, 0 oC-rt, 30 min
2-79, n = 1, B = C (Ap2C, 83%)

2-83, n = 2, B = U (Ap3U, 84%) 

Scheme 3.7.  Synthesis of Ap2C and Ap3U. 

3.3.5. Synthesis of unsymmetrical Np4N’s and a symmetrical Np6N using reagent 3-

11 or 3-12 as activating agents 

ATP was used as a model substrate for preparation of unsymmetrical Np4N’s and 

symmetrical Np6N’s via activation of NTP’s. Adding 1.2 equiv of reagent 3-11 or 3-12 to the 

tetrabutylammonium salt of ATP in the presence of DIPEA in DMF resulted in the formation of 

cyclic adenosine trimetaphosphate 3-24 (Scheme 3.8) as determined by 
31

P NMR (Figure 3.6).
136

  

We found that this reaction was essentially quantitative within 2 min at 0 
o
C using reagent 3-12. 

Reagent 3-11 gave similar results except it is slightly less soluble in DMF at 0 
o
C resulting 

slightly longer reaction times. Treating 3-24 with a solution of the tetrabutylammonium salts of 

UMP or CMP and 1 equiv of MgCl2 in DMF and stirring for 30 min at room temperature gave 

Ap4U and Ap4C, in excellent isolated yields.  This procedure compared very favorably with 

literature methods.  Ap4U has been prepared in 73% yield using an engineered diadenosine 
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triphosphate hydrolase.
110

 Ap4C has been prepared in 63% yield using lysyl tRNA synthetase.
100

 

We are not aware of a chemical synthesis of this compound. 

A

O

OHOH
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O
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O
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O
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-O

A

O
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O
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O O-

O
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O

O

O-
O

P

O

O-

O
OHOH

B A

O

OHOH

O
P

O

O-

(Bu4N+)3.2

1.2 equiv 3-12, 

3 equiv iPr2EtN,

DMF, 0 oC, 2 min n

2 equiv CMP (Bu4N+)1.7 or

2 equiv UMP (Bu4N+)1.7 or

1 equiv ATP BU4N+)3.2,

1 equiv MgCl2, 30 min-3h

3-25, B = C, n = 2 (Ap4C, 83%)
2-85, B = U, n = 2 (Ap4U, 86%)
3-26, B = A, n = 4 (Ap6A, 80%)3-24  

Scheme 3.8.  Synthesis of Ap4C, Ap4U, and Ap6A from ATP using reagent 3-12. 

 

Figure 3.6.  
31

P-NMR of adenosine 5’-trimetaphosphate 3-24 formed from the reaction 

1.2 equiv. of reagent 3-12 with the tetrabutylammonium salt of ATP in the presence of 

DIPEA in DMF.  

 

Ap6A was obtained in an 80% yield by adding 0.6 equiv of 3-12 to a solution of ATP, 1 

equiv of MgCl2, and 3 equiv of DIPEA at 0 
o
C and then stirring for 3 h at room temperature. 

Ap6A, which exerts vasoconstrictive effects,
137

 has been prepared by Ng and Orgel in aq. 

solution by treating ATP with a 5-fold excess of EDC and MgCl2 in Hepes buffer at pH 6.5 for 2 

h at 37 
o
C.  The compound was purified by paper electrophoresis and each UV absorbing spot 
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was eluted from the chromatogram and the optical density was read at 259 nm. The reported 

yield, expressed as the percentage of the total absorbancy of all the material on the paper, was a 

remarkable 90% though they also reported that it was contaminated with a small amount of 

Ap5A which they could not remove.
65 

3.3.6 Synthesis of nucleoside 5’-diphosphate sugars (NDP-sugars) using reagent 3-

11 as activating agent 

The two most common approaches to NDP sugars are shown in Scheme 3.9. One is to 

react a sugar-1-phosphate acceptor with an activated nucleotide donor.  The other is to react an 

NDP acceptor with a glycosyl donor such as a glycosyl halide, a 2-(D-glycosyloxy)-3-

methoxypyridine (MOP glycoside) or triethylsilylated and benzylated epoxide derived from a 

glycal.
138-141

 (Scheme 3.9).  The glycosyl donor method
 
usually produces the NDP-sugars in 

lower yields than the corresponding reaction involving nucleotide imidazolate or morpholidate 

donors.
142

  On the other hand, these reactions usually don’t take as long and the glycosyl donors 

are sometimes easier to prepare than the glycosyl-1-phosphates though they sometimes require 

protecting groups on the donor which must be removed at the end of the synthesis.  Hence, the  

approach using activated nucleotide donors is by far the most common approach with 

imidazolates and, more often, morpholidates of NMP’s used as donors (see chapter 2, section 

2.1.3.2.1 and 2.1.3.2.4 for a discussion on morpholidate and imidazolate donors for NpnN 

syntheses).
143-148

 With the morpholidates the yields tend to be low to moderate (rarely exceeding 

70%) and the coupling reactions very sluggish often taking days (reaction times of 5 days are not 

unusual).  In some instances reasonable yields (i.e. 75%) have been reported using imidazolate 

donors and the reaction tend to be faster with these donors but still take 1-2 days.
142

 It has been 

reported that the addition of 3 equiv tetrazole to coupling reactions involving the morpholidate 

donors can sometimes increase the yield of the NDP-sugar products (in one case up to 91%) 
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though the reaction still takes 24-48 h.
149

; however, this approach does not appear to work any 

better, in terms of yields and reaction times, than when using imidazolate donors.
142

  Bogachev’s 

method (discussed in Chapter 2, section 2.1.5), which used nucleotide imidazolium donors, 

provides the NDP-sugars faster than the morpholidate or imidazolate donors but the yields are 

quite low.
121, 122
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Scheme 3.9.  Chemical approaches to NDP-sugars.  AG stands for activating group. 

In addition to the morpholidates and imidazolates, other donors have been developed but 

are not as widely used.  For example, Michelson reported the synthesis of a wide variety of 

NDP-sugars by reacting the tri-n-octylammonium salts of NMP’s with diphenyl 

chlorophophosphate in dioxane or DMF in the presence of tri-n-butylamine for 3 h to give a 

mixed anhydride 3-27 (Scheme 3.10) which was isolated in almost quantitative yield by 

precipitation in ether.  A solution of the tri-n-butylammonium salt of a sugar-1-phosphate in 

pyridine is added to a solution of 3-27 in dioxane and the mixture stirred overnight.  The product 

is precipitated in ether and then purified by ion exchange chromatography. Using this procedure 

Michelson reported the synthesis of a wide variety of NDP-sugars in 62-82% yield.  Michelson 

also used this approach to prepare NTP’s (from the mixed anhydride of NMP’s and the tri-n-

octylammonium salt of iPP) in yields ranging from 75-85% and FAD (from the mixed anhydride 
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of AMP and the tri-n-octylammonium salt of flavin mononucleotide) in 75% yield.  Surprisingly, 

this approach has not been widely adopted.
150

   

O

OHHO

O BP

O
-O

O-

O

OHHO

O BP

O

O

O-

P

O

PhO

PhO

HO

O O

B

O

O
P

O
O-

O
P

O-

O

OHOH

OH

HO

O
OPO3

-2

OH n-Bu3NH+

B = A, T, C, or G

62-82%

2(n-Oct3NH+)

diphenylchlorophosphate

dioxane or DMF, n-Bu3N

3h, rt

pyridine/dioxane
18-24 h

3-27

 

Scheme 3.10.  Michelson’s approach to NDP-sugars. 

More recently, Meier and coworkers have used their cycloSal approach (see Chapter 2, 

section 2.1.3.2.3 for a discussion of the cycloSal approach to NpnN’s) to prepare a large number 

of NDP-sugars (Scheme 3.11).
151

 There are drawbacks to this approach.  The cycloSal nucleoside 

substrates must be synthesized and the yields of these compounds tends to be low (around 30%).  

The substrates must be protected and the products deprotected.  Finally, the yield of NDP-sugar 

is highly variable (22-88%).  We do not anticipate that this procedure will be widely adopted. 
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+O
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Scheme 3.11.  Meier and coworkers cycloSal approach to NDP-sugars. 

Gold et al., have recently reported a method using phosphoramidite donors of type 3-28 

(Scheme 3.12).
152

 Although the yields of the NDP-sugars were fairly good the process requires 
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multistep syntheses of protected phosphoramidite donors and protected glycosylphosphate 

acceptors (3-29).  Deprotection of the coupled/oxidized product is required at the end of the 

synthesis.  We do not anticipate that this procedure will be widely adopted. 
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Scheme 3.12.  Gold et al.’s approach to the synthesis of NDP-sugars. 

The preparation of sugar nucleotides using enzymes (nucleotidyltransferases) is emerging 

as an alternative to chemical synthesis.
153-160

 However, substrate specificity and substrate 

inhibition is a limiting factor in this approach.
160-162
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To demonstrate that our procedure is a powerful approach to the synthesis of NDP-

sugars) we prepared compounds 3-30 - 3-33 using the same procedure employed for preparing 2-

79 and 2-83 (Scheme 3.13). These reactions proceeded well; however, we found that small 

amounts of unreacted NMP were time-consuming to remove.  This is a common issue when 

preparing NDP-sugars using activated NMPs as donors.
139,151

  This problem is usually dealt with 

by removing the contaminant with alkaline phosphatase.
139,151

  We also found this to be a good 

way to remove the unreacted NMP:  by treating the quenched reaction with a small amount of 

alkaline phosphatase for 16 h, the unreacted NMP was converted into a nucleoside and inorganic 

phosphate and the purification became straightforward.  Excellent yields were obtained for all 

four NDP-sugars including 3-32 and 3-33 which had been previously prepared in low yields by 

the cycloSal approach (22% for 3-32 and 34% for 3-33).
151

  The entire reaction time was less 

than 15 minutes. 

P

-O

O

OHOH

O-O

O

B

[(Bu)4N+]2
O

OH

OP(O)O2
-2

HO
R2

R1 OH

[(Bu)4N
+]2

O
P

O
O-

O
P

O-

O

OHOH
O O

B

O

OH
HO

R2

R1 OH

1. 1.2 eq. 3-11, 1 eq. iPr2EtN, 

     DMF,  r.t.,1 min

B = A, T or G

glucose (R1 = H, R2 = OH)

galactose (R1 = OH, R2 = H)

2. MgCl2, 10 min

3-30, B = T, R1 = H, R2 = OH (91%)

3-31, B = T, R1 = OH, R2 = H (91%)

3-32, B = G, R1 = H, R2 = OH (82%)

3-33, B = G, R1 = OH, R2 = H (82%)  

Scheme 3.13.  Synthesis of NDP-sugars using 3-11 as activating agent 

3.4  Conclusion and future work 

We have described a novel and broadly applicable procedure for preparing nucleoside 

polyphosphates and their conjugates. The procedure is rapid and high yielding, does not require 

prior protection and subsequent deprotection of the donors or acceptors, and can be used to 
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activate nucleoside 5’-mono-, di-, and triphosphates, and a wide variety of acceptors and donors 

can be used.
163,164

 

The methodology described in this chapter was rapidly adopted by others.  Just 2 months 

after our work was published on-line in Org. Lett.
163

 Kiessling and coworkers used it for the 

synthesis of uridine diphosphate-6-deoxy-6-fluoro-α-D-galactofuranose 3-34 and uridine 

diphosphate-5-deoxy-5-fluoro-α-D-galactofuranose 3-35 (Scheme 3.14).
165,166

 These compounds 

were used as chain terminating substrates for some glycosyl transferases in particular 

galactofuranosyl transferase (GlfT2) from m. tuberculosis which mediate the cell wall galactan 

production in m. tuberculosis.
166

    

OH
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O
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O

O-

O-

-O P

O

O-

NH

O

ON

O

OHOH

O

(Bu3NH+)2

1. 3-11, iPr2EtN, DNF,

    rt, 1min

 

 2.

MgCl2, DMF, 0-rt, 2h

OH

OH

O

O PR

R'

O

O-

O P

O

O-

NH

O

ON

O

OHOH

O

3-34, R = OH, R' = F
3-35, R = F , R' = OH

 

Scheme 3.14.  Kiessling synthesis of compounds 3-34 and 3-35 using salt 3-11. 

This method has been also used by Carell and coworkers for the synthesis of 5-formyl-2-

deoxycytidine 5’-triphosphate 3-36 (Scheme 3.15).
167

  

N

NH2

ON

O

OH

OPO

O-

O

P

O

O-

OP

O

O-

HO

H

O

3-36

N

NH2

ON

O

OH

OP-O

OH

O

H

O

+NHEt3

1. 3-11, Bu3N, DMF, 0 oC

2.

OHP

O

O-

OP

O

O-

HO

(Bu3NH+)2

, DMF, 0-rt, 3h, 70%  

Scheme 3.15.  Carell et al.’s synthesis of 3-36 using salt 3-11.  
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Future studies will involve the application of this methodology to the synthesis of 

compounds 2-90 and 2-91 (Scheme 3.16).  Reagent 3-11 (or 3-12) will be used to activate 

substrate 3-38 and ADP for the key coupling reactions. 
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Scheme 3.16.  Proposed route to compounds 2-90 and 2-92 using reagent 3-11. 
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3.5 Experimental   

3.5.1 General Information.  

All reagents and starting nucleotides were obtained from commercial sources unless 

stated otherwise. MgCl2 was obtained and used as its trihydrate. Alkaline phosphatase (Calf 

intestinal mucosa, 69 KDa, 10,000 U/mL) was obtained from Sigma-Aldrich Corp (St. Louis, 

MO, USA). Acetonitrile and DMF were distilled from calcium hydride. NMI and 1,2-

dimethylimidazole (DMI) were distilled from sodium hydroxide. Diethyl ether was distilled from 

sodium metal. For 
1
H-NMR spectra run in CDCl3, chemical shifts are reported in ppm relative to 

tetramethylsilane (external standard). For proton-decoupled 
13

C-NMR spectra run in CDCl3, 

chemical shifts are reported in ppm relative to the solvent residual peak (δ 77.0, central peak). 

For 
1
H-NMR and proton-decoupled 

13
C-NMR spectra run in acetone-d6, chemical shifts are 

reported in ppm relative to TMS. For 
1
H-NMR spectra run in D2O, chemical shifts are reported 

in ppm relative to the solvent residual peak (δ 4.79). For proton-decoupled 
13

C-NMR spectra run 

in D2O, chemical shifts are reported in ppm relative to CH3OH in D2O (δ 49.5, external 

standard). For proton-decoupled 
31

P-NMR, chemical shifts are reported in ppm relative to 

aqueous 85% H3PO4 (δ 0 ppm, external standard). For proton-decoupled 
19

F NMR, chemical 

shifts are reported in ppm relative to CFCl3 (δ 0 ppm, external standard). Preparative HPLC was 

performed using a C-18 reverse phase semipreparative column. 

3.5.2 Synthesis of salts 3-11 and 3-12 

Imidazole (0.47 mol, 31 g), or 2-methylimidazole (0.47 mol, 38.55 g) was suspended in 

dry dichloromethane (400 mL) and cooled to 0 
o
C in an ice bath.  Benzenesulfonyl chloride 

(0.157 mol, 27.64 g, 20 mL) was added dropwise via a syringe over 15 min. during the addition 
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all the imidazole dissolves and in the case of compound 3-9 a white precipitate starts to appear.  

The reaction mixture was stirred at room temperature for 5 hours.  For compound 3-9, the 

mixture was filtered and the filter cake was washed with dichloromethane.  The filtrate was 

washed with brine (2x) and water (1x).  In the case of compound 3-10, the 2-methylimidazolium 

hydrochloride by-product did not precipitate out during the reaction so the filtration step was 

omitted.  The organic layer was concentrated and the crude product recrystallized from ethyl 

acetate-hexane to give a white crystals.  Compound 3-9 was obtained in a 96% yield (31.4 g).  Its 

1
H-NMR was identical to that previously reported.

168
  

1-Benzenesulfonyl-2-methylimidazole (3-10) 

S

O

O

N
N

Me

3-10  

Compound 3-10 was obtained in a 99% yield (34.7 g). Mp = 47-48 
o
C. 

1
H-NMR (CDCl3, 300 

MHz): δ 2.47 (s, 3H, H2), 6.86 (s, 1H, H4), 7.38 (s, 1H, H5), 7.52 (t, 2H, J = 7 Hz, H3’,5’), 7.63 (t, 

1H, J = 7 Hz, H4’), 7.84 (d, 2 H, J = 7 Hz, H2’,6’). 
13

C-NMR (CDCl3, 75 MHz): δ 15.1, 119.3, 

127.2, 128.1, 129.7, 134.6, 137.9, 145.8. LRMS (ESI+): m/z = 222.14. 

Compound 3-9 (11.3 mmol, 2.35 g) or 3-10 (11.3 mmol, 2.5 g) was dissolved in dry ether (100 

mL), then methyl triflate (0.118 mole, 1.94 g, 1.3 mL) was added dropwise over 15 min via 

syringe at room temperature. A white precipitate rapidly appeared during the addition. The 

reaction mixture was stirred for 3 h, suction filtered, washed with dry ether (3 x 25 mL) and 

dried under vacuum.  
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1-Methyl-3-benzenesulfonylimidazolium triflate (3-11).  

S

O

O

N
N

Me

TfO-

3-11  

Yield = 4.16 g (99 %, white powder). 
1
H-NMR (acetone-d6, 300 MHz): δ 4.11 (s, 3H, H1), 7.77 

(t, J = 8 Hz, 2H, H3’,5’), 7.89-7.96 (m, 2H, H4’,5), 8.21 (d, J = 1.7 Hz, 1H, H4), 8.28 (dd, J = 8 Hz, 

1.1 Hz, 2H, H2’,6’), 9.81 (s, 1H, H2). 
13

C-NMR (acetone-d6, 75 MHz): δ 119.0, 123.3  (CF3, J = 

319 Hz), 120.2, 126.4, 129.2, 130.7, 134.5, 137.3, 138.5. 
19

F NMR (acetone-d6, 282 MHz): δ -

78.6. TOF MS ES+; m/z 223.02; HRMS (ESI+): m/z = 223.0539, C10H11N2O2S, [M
+
] requires 

223.0541. 

1,2-Dimethyl-3-benzenesulfonylimidazolium triflate (3-12). 

S

O

O

N
N

Me
Me

TfO-

3-12  

 Yield = 4.32 g (99 %, white powder) 
1
H-NMR (acetone-d6, 300 MHz): δ 2.97 (s, 3H, H2), 3.95 

(s, 3H, H1), 7.78 (m, 3H, H3’,5’,5), 7.96 (td, 1H, J = 7.7, 1.1 Hz, H4’), 8.15 (d, 1H, J = 2.3 Hz, H4), 

8.26 (dd, 2H, J = 7.5,1.1 Hz H2’,6’). 
13

CNMR (acetone-d6, 75 MHz): δ 10.9, 35.5, 119.8, 124.0, 

128.9, 130.7, 134.8, 137.1, 205.3. 
19

F NMR (acetone-d6, 282 MHz): δ -78.8. LRMS (ESI+): m/z 

= 237.06. HRMS (ESI+): m/z = 237.0691, C11H13N2O2S, [M
+
] requires 237.0698. 

3.5.3 Preparation of the tetrabutylammonium salts of NMP’s, NDP’s and NTP’s 

and Pi.  

The sodium salts of the nucleotides were converted into their free acids using a Dowex-

50W ion exchange column (H
+
 form) then titrated to pH 7.0 with a dilute solution of 
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tetrabutylammonium hydroxide then concentrated by high vacuum rotary evaporation to 

approximately one seventh the original volume and lyophilized.  The lyophilized powder was 

dried by dissolving it in acetonitrile, an equal amount of dry toluene was added and the solution 

concentrated by rotary evaporation to dryness (3x). The 
1
HNMR spectra of the residue indicated 

that there was 1.7 tetrabutylammonium ions per nucleoside monophosphate.  The residue was 

subjected to high vacuum for 1 h.  The flask was removed under Ar then dissolved in dry DMF 

in the presence of 4Å molecular sieves.  This solution was allowed to stand for at least one hour 

prior to the coupling reactions.   

The sodium salts of inorganic pyrophosphate and the nucleoside di- and triphosphates 

were converted into their pyridinium salts using a Dowex-50W ion exchange column 

(pyridinium form).  The resulting solution was titrated to pH 7.0 with a dilute solution of 

tetrabutylammonium hydroxide then concentrated by high vacuum rotary evaporation to 

approximately one-seventh the original volume then lyophilized. The lyophilized powder was 

dried by dissolving it in acetonitrile, an equal amount of dry toluene was added and the solution 

concentrated by rotary evaporation to dryness (3x).  The 
1
H-NMR spectra of the nucleoside di- 

and triphosphates revealed that there was 2.1 and 3.2 tetrabutylammonium ions per each 

molecule of nucleoside di- and triphosphate respectively.  The pyrophosphate was presumed to 

be the bis(tetrabutylammonium) salt.  The residue was subjected to high vacuum for 1 h.  The 

flask was removed under Ar then dissolved in dry DMF in the presence of 4Å molecular sieves.  

This solution was allowed to stand for at least one hour prior to the coupling reactions.  
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3.5.4. General procedure for preparation of symmetric nucleoside diphosphates 2-

75, 2-76, and 2-77.  

To a solution of NMP (Bu4N
+
)1.7 (0.27 mmol) in dry DMF (4 mL) was added NMI (0.27 

mmol, 22 µL) and magnesium chloride (0.135 mmol, 13 mg). The mixture was stirred at room 

temperature for 2 min. and then cooled to 0
 o

C using an ice-bath. Reagent 3-11 (0.16 mmol, 60 

mg) was added, the ice bath was removed and the reaction mixture was stirred at room 

temperature for 10 min. The mixture was cooled in an ice bath for 5 min then quenched with 50 

mM triethylammonium acetate buffer (5 mL, pH 7.0) and washed with chloroform (3 x 10 mL).  

Chelex resin (ca. 0.2 g) was added and the mixture stirred for 1 min then filtered through a cotton 

plug.  For Gp2G (2-77) the reaction was quenched with water to avoid precipitation of the 

product and the Chelex is added before the chloroform wash.  The filtrate was purified by RP-

HPLC using a semipreparative C18 column and a gradient of acetonitrile and buffer (50 mM 

triethylammonium acetate, pH 7) at 6 mL/min and monitored at 255 and 280 nm. Fractions 

containing the desired product were pooled, concentrated by high vacuum rotary evaporation, 

and the residue was dissolved in water and repeatedly freeze-dried until the 
1
H-NMR spectrum 

indicated that no residual buffer was present. The resulting white powder was converted to its 

sodium salt using a Dowex-50-W ion-exchange resin in Na
+
 form.  

3.5.5 General procedure for preparation of symmetric dinucleoside 

tetraphosphates 3-16 and 3-17. 

 

To a solution of NDP (Bu4N
+
)2.1 (0.27 mmol) in dry DMF (4 mL) was added NMI (0.81 

mmol, 65 µL) and magnesium chloride (0.135 mmol, 0.5 eq. 13 mg).  The mixture was stirred at 

room temperature for 2 min. and then cooled to 0
 o

C using an ice-bath. Reagent 3-11 (0.135 

mmol, 0.5 eq., 50 mg) was added, the ice bath was removed and the reaction mixture was then 

stirred at room temperature for 10 min. The mixture was cooled using an ice bath and another 
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portion of 3-11 (0.067 mmol, 25 mg) was added and the reaction mixture was kept stirring at 0 

o
C for another 10 min.  The reaction was quenched with 50 mM triethylammonium acetate buffer 

(5 mL, pH 7.0) and washed with chloroform (3 x 10 mL).  Chelex resin (ca. 0.2 g) was added 

and the mixture stirred for 1 min then filtered through a cotton plug.  The filtrate was purified by 

RP-HPLC using a semipreparative C18 column and a gradient of acetonitrile and buffer (50 mM 

triethylammonium acetate, pH 7) at 6 mL/min and monitored at 255 and 280 nm. Fractions 

containing the desired product were pooled, concentrated by high vacuum rotary evaporation, 

and the residue was dissolved in water and repeatedly freeze-dried until the 
1
H-NMR spectrum 

indicated that no residual buffer was present. The resulting white powder was converted to its 

sodium salt using a Dowex-50-W ion-exchange resin in Na
+
 form.  

3.5.6 General procedure for the synthesis of 3-18-3-22, 2-79, 2-83 and 3-31-3-34.   

To a solution of NMP (Bu4N
+
)1.7 (0.27 mmol) or NDP (Bu4N

+
)2.1 (0.27 mmol) in dry 

DMF (4 mL) was added diisopropylethylamine (0.81 mmol, 141 µL) followed by reagent 3-11 

(0.32 mmol, 120 mg) and the reaction mixture stirred at room temperature for 1 min.  This 

solution was added over 30 seconds to a solution of the acceptor (0.405 mmol for nucleoside 

mono- and diphosphates and sugar phosphates, 0.54 mmol for PPi and 

difluoromethylenebisphosphonate)
169

 and magnesium chloride (0.27 mmol, 26 mg, for 2-79, 2-

83, and 3-30-3-33) in dry DMF (4 mL) at 0 
o
C (ice bath).  The ice bath was removed and the 

reaction mixture stirred at room temperature for 30 min.  The mixture was cooled to 0 
o
C (ice 

bath) and quenched with 50 mM triethylammonium acetate buffer (5 mL, pH 7.0) and washed 

with chloroform (3 x 10 mL).  For reactions containing magnesium chloride, Chelex resin (ca. 

0.2) was added and the mixture was stirred for 1 min and filtered through a cotton plug.  For 

sugar nucleotides 3-30-3-33, alkaline phosphatase (10 µL, 40 units) was added after the Chelex 
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treatment and left at room temperature for 16 hours.  Purification was achieved by RP-HPLC 

using a semipreparative C18 column and a gradient of acetonitrile and buffer (50 mM 

triethylammonium acetate, pH 7) at 6 mL/min and monitored at 255 and 280 nm.  Fractions 

containing the desired product were pooled, concentrated by high vacuum rotary evaporation, 

and the residue was dissolved in water and repeatedly freeze-dried until the 
1
H-NMR spectrum 

indicated that no residual buffer was present. The resulting white powder was converted to its 

sodium salt using a Dowex-50-W ion-exchange resin in the Na
+
 or NH4

+
 form.  

3.5.7 General procedure for preparation of 2-85 and 3-25.   

To a solution of ATP (Bu4N
+
)2.3 (0.27 mmol) in dry DMF (4 mL) was added 

diisopropylethylamine (0.81 mmol, 141 µL) and the mixture cooled to 0 
o
C (ice bath).  Reagent 

3-12 was added (0.32 mmol, 125 mg) and the mixture stirred for 2 min at 0 
o
C.  A solution of 

NMP (Bu4N
+
)1.75 (0.54 mmol) in dry DMF (4 ml) was added followed by magnesium chloride 

(0.27 mmol, 26 mg). The mixture was stirred at room temperature for 30 min, cooled to 0 
o
C (ice 

bath) and quenched with 50 mM triethylammonium acetate buffer (5 mL, pH 7.0), washed with 

chloroform (3 x 10 mL).  Chelex resin (ca. 0.2 g) was added and the mixture stirred for 1 min 

then filtered through a cotton plug.  Purification was achieved by RP-HPLC using a (250 x 20 

mm) semipreparative C18 column and a gradient of acetonitrile and buffer (50 mM 

triethylammonium acetate, pH 7) at 6 mL/min and monitored at 255 and 280 nm. Fractions 

containing the desired product were pooled, concentrated by high vacuum rotary evaporation, 

and the residue was dissolved in water and repeatedly freeze-dried until the 
1
HNMR spectrum 

indicated that no residual buffer was present. The resulting white powder was converted to its 

sodium salt using a Dowex-50-W ion-exchange resin in Na
+
 form.  
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3.5.8 Characterization data for nucleoside polyphosphates and conjugates P1,P2-

Diuridine-5’-diphosphate (2-75). 

O
HO OH

O P

O

O-

O P

O

O

O- O
NN

HN NH

OHHO

OO

OO

2Na+

2-75  

Obtained in 93% yield as its disodium salt (84 mg) after purification by RP-HPLC [linear 

gradient of 100% buffer (pH 7.0) to 8% CH3CN-92% buffer over 35 min, tr = 29 min] followed 

by passage through a Dowex-50-W-Na
+
 ion exchange column. 

1
H-NMR (D2O, 300 MHz): δ 

4.01-4.21 (m, 10H, H2’,3’,4’,5’), 5.79 (two overlapping doublets, J = 7.9 Hz, 4H, H1’,5), 7.77 (d, J = 

8.1 Hz, 2H, H6). 
13

C-NMR (D2O, 75 MHz): δ 64.8, 69.5, 73.7, 83.1 (t, J = 4.5 Hz), 88.3, 102.6, 

141.5, 151.7, 166.1. 
31

P-NMR (D2O, 121 MHz): δ -9.78 (s). MS (ESI-): m/z = 629.16 [M-H]
- 

P1,P2-Diadenosine-5’-diphosphate (2-76).  

O
HO OH

O P

O

O-

O P

O

O

O- O
NN

OHHO

NN

N

NN

N

H2NNH2

2Na+

2-76  

Obtained in 93% yield as its disodium salt (90 mg) after purification by RP-HPLC [linear 

gradient of 100% buffer (pH 7.0) to 10% CH3CN-90% buffer over 45 min and then a linear 

gradient to 20% CH3CN-80% buffer over 5 min, tr = 43 min] followed by passage through a 

Dowex-50-W-Na
+
 ion exchange column.  

1
H-NMR (D2O, 300 MHz): δ 4.11-4.31 (m, 8H, H5’, 4’, 

3’), 4.42-4.45 (m, 2H, H2’) 5.80 (d, J = 4.8, 2H, H1’), 7.89 (s, 2H, H2), 8.07 (s, 2H, H8). 
13

C-NMR 
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(D2O, 75 MHz): δ 65.1, 69.9, 74.6, 83.4, 87.1, 117.6, 139.6, 147.9, 150.9, 153.7. 
31

P-NMR (D2O, 

121 MHz): δ -9.64 (s).  MS (ESI-): m/z = 675.23 [M - H]
-
. 

P1,P2-Diguanosine-5’-diphosphate (2-77).  

O
HO OH

O P

O

O-

O P

O

O

O- O
NN

OHHO

NN

N

NHHN

N

OO

NH2H2N

2Na+

2-77  

Obtained in 94% yield as its disodium salt (90 mg) after purification by RP-HPLC [linear 

gradient of 100% buffer (pH 7.0) to 10% CH3CN-90% buffer over 45 min, tr = 34 min] followed 

by passage through a Dowex-50-W-Na
+
 ion exchange column. 

1
H-NMR (D2O, 300 MHz): δ 

4.09 (br, 2H, H4’), 4.20 (br, 4H, H5’),4.32 (t, J = 4.7, 2H, H3’), 4.49 (m 2H, H2’), 5.68 (d, J = 5.0 

Hz, 2H, H1’), 7.94 (s, 2H, H8). 
13

C-NMR (D2O, 75 MHz): δ 64.9, 69.7, 74.0, 83.2, 87.4, 114.7, 

136.9, 150.8, 153.8, 157.9. 
31

P-NMR (D2O, 121 MHz): δ -9.72 (s). MS (ESI-): m/z = 707.21 [M-

H]
-
. 

P1,P4-Digauanosine-5’-tetraphosphate (3-16).
  

4Na+
O

HO OH

O P

O

O-

O P

O

O

O- O

OHHO

P

O

O

O-

P

O

O

O-

N

N
HN

N

O

H2N

N

N

N

NH

O

NH2

3-16  

Obtained in 84% yield as its tetrasodium salt (108 mg) after purification by RP-HPLC 

[linear gradient of 100% buffer (pH 7.0) to 12% CH3CN-88% buffer over 45 min, tr = 37 min] 
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followed by passage through a Dowex-50-W-Na
+
 ion exchange column. 

1
H-NMR (D2O, 300 

MHz): δ 4.11-4.18 (m, 6H, H4’,5’), 4.38 (s, 2H, H3’), 4.55 (t, J = 5.2, 2H, H2’), 5.68 (d, J = 5.6 Hz, 

2H, H1’), 7.78 (s, 2H, H8). 
13

C-NMR (D2O, 75 MHz): δ 65.0 (d, J = 5.2 Hz), 70.1, 73.7, 83.5 (d, J 

= 8.5), 86.8, 115.8, 137.3, 151.3, 153.5, 158.4. 
31

P-NMR (D2O, 121 MHz): δ -9.58 (d, J = 14.6 

Hz), -21.22 (d, J = 12.9 Hz). MS (ESI-): m/z = 867.11 [M-H]
-
. 

P1,P4-Diuridine-5’-tetraphosphate (3-17). 

4NH4
+

O
HO OH

O P

O

O-

O P

O

O

O- O

OHHO

P

O

O

O-

P

O

O

O-

N

NH

O

ON

NH

O

O

3-17  

Obtained in 81% yield as its tetraammonium salt (94 mg) after purification by RP-HPLC 

[linear gradient of 100% buffer (pH 7.0) to 7% CH3CN-93% buffer over 50 min, tr = 41 min] 

followed by passage through a Dowex-50-W-NH4
+
 ion exchange column. 

1
H-NMR (D2O, 300 

MHz): δ 4.09-4.11 (m, 6H, H4’,5’), 4.22 (m, 4H, H2’,3’), 5.82 (m, 4H, H1’,5), 7.79 (d, J = 8.5 Hz, 

2H, H6). 
13

C-NMR (D2O, 75 MHz): δ 64.9 (d, J = 5.3 Hz), 69.6, 73.7, 83.3 (d, J = 9 Hz), 88.0, 

102.6, 141.6, 151.8, 166.1. 
31

P-NMR (D2O, 121 MHz): δ -9.88 (d, J = 14.7 Hz), -21.65 (d, J = 

14.2 Hz). MS (ESI-): m/z = 789.12 [M-H]
-
. 
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Adenosine-5’-triphosphate disodium salt (3-18).  

1

2

34

5

6

5'

7

8

9

1'
2'3'

4'

3-18

O P

O

O-

O P

O

O

HO
O

N

OHHO

N

N

N

H2N

P

O

O-

HO

2Na+

 

Obtained in 86% yield as its disodium salt (129 mg) after purification by RP-HPLC 

[linear gradient of 100% buffer (pH 7.0) to 10% CH3CN-90% buffer over 45 min., tr = 32 min] 

followed by passage through a Dowex-50-W-Na
+
 ion exchange column. 

1
H-NMR (D2O, 300 

MHz): δ 4.12-4.22 (m, 3H, H4’,5’), 4.33 (t, J = 4.1, 1H, H3’), 4.45 (t, J = 4.8, 1H, H2’) 5.88 (d, J = 

4.8, 1H, H1’), 8.2 (s, 1H, H2), 8.37 (s, 1H, H8). 
13

C-NMR (D2O, 75 MHz): δ 65.0 (d, J = 5.1 Hz), 

69.9, 74.8, 83.8 (d, J = 8.9 Hz), 87.5, 117.8, 141.8, 145.2, 147.7, 149.6. 
31

P-NMR (D2O, 121 

MHz): δ -8.99 (d, J = 17.8 Hz), -9.57 (d, J = 18.4 Hz), -21.11 (overlapping dd, J = 17.8, 17.8 

Hz). MS (ESI-): m/z = 506.06 [M- H]
-
. 

Uridine-5’-triphosphate disodium salt (3-19).  

O P

O

O-

O P

O

O

HO
O

OHHO

P

O

O-

HO
N

NH

O

O

2Na+

3-19  

Obtained in 90% yield as its disodium salt (130 mg) after purification by RP-HPLC 

[linear gradient of 100% buffer (pH 7.0) to 5% CH3CN-95% buffer over 40 min., tr = 28 min] 

followed by passage through a Dowex-50-W-Na
+
 ion exchange column. 

1
H-NMR (D2O, 300 
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MHz): δ 3.87 (m, 2H, H5’), 4.14 (s, 1H, H4’), 4.23 (s, 1H, H3’), 4.28 (t, 1H, J = 4.9), 5.87 (m, 2H, 

H1’,5), 7.98 (d, J = 8.0 Hz, 1H, H6). 
13

C-NMR (D2O, 75 MHz): δ 63.1 (d, J = 4.4 Hz), 70.0, 73.9, 

84.1 (d, J = 8.7 Hz), 88.2, 102.6, 142.0, 152.0, 166.5. 
31

P-NMR (D2O, 121 MHz): δ -9.02 (d, J = 

19.6 Hz), -9.83 (d, J = 22.0 Hz), -21.60 (overlapping dd, J = 17.8, 17.8 Hz). MS (ESI-): m/z = 

483.04 [M-H]
-
.
 

Guanosine-5’-triphosphate diammonium salt (3-20).
 

2NH4
+

O P

O

O-

O P

O

O

HO
O

OHHO

P

O

O-

HO
N

N

N

NH

O

NH2

3-20  

Obtained in 88% yield as its diammonium salt (133 mg) after purification by RP-HPLC 

[linear gradient of 100% buffer (pH 7.0) to 5% CH3CN-95% buffer over 50 min., tr = 40 min] 

followed by passage through a Dowex-50-W-NH4
+
 ion exchange column.  

1
H-NMR (D2O, 300 

MHz): δ 3.82 (m, 2H, H5’), 4.15 (d, J = 2.4 Hz, 1 H, H4’), 4.33 (t, J = 4.6 Hz, 1H, H3’), 4.55 (t, J 

= 5.1, 1H, H2’), 5.73 (d, J = 5.1 Hz, 2H, H1’), 8.02 (s, 1H, H8). 
13

C-NMR (D2O, 75 MHz): δ 63.3 

(d, J = 4.5 Hz), 70.5, 74.0, 84.4 (d, J = 8.3 Hz), 86.6, 115.9, 151.5, 153.9, 158.9. 
31

P-NMR (D2O, 

121 MHz): δ -9.12 (d, J = 18.4 Hz), -9.65 (d, J = 21.1 Hz), -21.51 (overlapping dd, J = 19.5, 22.3 

Hz). MS (ESI-): m/z = 522.05 [M-H]
- 
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Cytosine-5’-triphosphate diammonium salt (3-21).
 

3-21

2NH4
+

O P

O

O-

O P

O

O

HO
O

OHHO

P

O

O-

HO
N

N

NH2

O

 

Obtained in 89% yield as its diammonium salt (125 mg) after purification by RP-HPLC 

[linear gradient of 100% buffer (pH 7.0) to 6% CH3CN-94% buffer over 40 min., tr = 28 min] 

followed by passage through a Dowex-50-W-NH4
+
 ion exchange column. 

1
H-NMR (D2O, 300 

MHz): δ 4.03-4.12 (m, 5H, H2’,3’,4’, 5’), 5.72 (s, 1H, H1’), 5.88 (d, J = 7.0 Hz, 1H, H5),7.71 (d, J = 

7.3 Hz, 1H, H6). 
13

C-NMR (D2O, 75 MHz): δ 64.5 (d, J = 5.3 Hz), 69.0, 74.0, 82.4 (d, J = 9 Hz), 

89.1, 96.2, 141.6, 156.1, 164.8. 
31

P-NMR (D2O, 121 MHz): δ -7.46 (d, J = 19.4 Hz), -9.71 (d, J = 

18.3 Hz), -21.05 (overlapping dd, J = 17.8, 17.8 Hz). M S  ( E S I - ) : :  m/z = 482.04 [M-

H]
- 

Adenosine 5’-β,γ-difluoromethylenetriphosphate disodium salt (3-22).  

C P

O

O-

O P

O

O

HO
O

N

OHHO

N

N

N

H2N

P

O

O-

HO

F

F

2Na+

3-22  

Obtained in 89% yield as its disodium salt (142 mg) after purification by RP-HPLC 

[linear gradient of 100% buffer (pH 7.0) to 6% CH3CN-94% buffer over 50 min., tr = 40 min] 

followed by passage through a Dowex-50-W-Na
+
 ion exchange column. 

1
H-NMR (D2O, 300 

MHz): δ 4.11 (s, 2H, H5’), 4.25 (t, J = 2.5 Hz, H4
,
), 4.40 (t, J = 3.7, 1H, H3’), 4.57 (t, J = 5.4, 1H, 
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H2’) 5.92 (d, J = 5.8, 1H, H1’), 8.00 (s, 1H, H2), 8.31 (s, 1H, H8). 
13

C-NMR (D2O, 75 MHz): δ 

65.0 (d, J = 5.3 Hz), 70.2, 74.3, 83.8 (d, J = 9.2 Hz), 86.8, 118.2, 139.9, 148.6, 151.5, 154.4. 
31

P-

NMR (D2O, 121 MHz): δ 2.78-5.13 (m), -2.77-4.46 (m), -9.76 (d, J = 30.7 Hz). 
19

F NMR (D2O, 

282 MHz): δ -120.25 (t, J = 85.4 Hz). M S  ( E S I - ) : :  m/z = 540.02 [M- H]
-
. 

P1-Adenosine-P2-cytidine-5’-diphosphate (2-79).   

2Na+
O

HO OH

O P

O

O-

O P

O

O

O- O
N

OHHO

N
N

N

NH2

N

N

NH2

O

2-79  

Obtained in 83% yield as its disodium salt  (156 mg) after purification by RP-HPLC 

[linear gradient of 100% buffer (pH 7.0) to 5% CH3CN-95% buffer over 55 min, tr = 34 min] 

followed by passage through a Dowex-50-W-Na
+
 ion exchange column. 

1
H-NMR (D2O, 300 

MHz): δ 4.01-4.19 (m, 7H, H3
,
A,4

,
A,4

,
C,5

,
C,5

,
A), 4.27 (s, 1H, H4

,
A), 4.39 (t, J = 4.0 Hz,1H,H3

,
A), 5.64 

(d, J = 7.6 Hz, 1H, H5C), 5.70 (d, J = 3.8 Hz, H1
,
A ), 5.96 (d, J = 5.8 Hz, 1H, H1

,
C), 7.49 (d, J = 

7.6 Hz, 1H, H6C), 8.07 (s, 1H,H2A), 8.30 (s, 1H, H8A). 
13

C-NMR (D2O, 75 MHz): δ 64.4, 65.2, 

68.8, 70.3, 74.1, 74.3, 82.3, 83.7, 86.7, 89.1, 95.6, 118.1,139.5, 141.0, 148.6, 152.1, 154.8, 155.3, 

164.1. 
31

P-NMR (D2O, 121 MHz): δ -9.66 (s). M S  ( E S I - ) : :  m/z = 651.21 [M – H]
-
.  

P1-Adenosine-P3-uridine-5’-triphosphate (2-83).
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3Na+

O
HO OH

O P

O

O
-

O P

O

O

O
- O

NN

OHHO

N
N

N

NH2

P

O

O

O
-

NH

O

O

2-83  

Obtained in 84% yield as its trisodium salt (181 mg) after purification by RP-HPLC 

[linear gradient of 100% buffer (pH 7.0) to 8% CH3CN-92% buffer over 45 min then a linear 

gradient to 10% CH3CN-90% buffer over 10 min, tr = 48 min] followed by passage through a 

Dowex-50-W Na
+
 ion exchange column. 

1
H-NMR (D2O, 300 MHz): δ 4.14-4.17 (m, 7H, 

H5
,
A,2

,
U,3

,
U,4

,
U,5

,
U), 4.25 (bs, 1H, H4

,
A), 4.42 (brt, J = 3.9 Hz, 1H, H3

,
A), 4.60 (brt, J = 4.9 Hz, 1H, 

H2
,
A), 5.60 (d, J = 8.0 Hz, 1H, H5U), 5.71 (d, J = 3.8 Hz, 1H, H1

,
U), 5.96 (d, J = 5.6 Hz, 1H, H1

,
A), 

7.65 (d, J = 8.6 Hz, 1H, H6U), 8.05 (s, 1H, H2A), 8.36 (s, 1H, H8A). 
13

C-NMR (D2O, 75 MHz): δ 

64.5 (d, J = 4.8 Hz), 65.1 (d, J = 5.0 Hz), 69.1, 70.3, 73.9, 74.6, 82.7 (d, J = 9.2 Hz), 83.6 (d, J = 

8.9 Hz), 86.7, 88.3, 102.1, 118.2, 139.5, 140.9, 148.7, 151.3, 152.6, 155.1, 165.6. 
31

P-NMR 

(D2O, 121 MHz): δ -9.80 (d, J = 19.5 Hz), -21.30 (t, J = 18.3 Hz). M S  ( E S I - ) :  m/z = 

732.17 [M - H]
-
. 

P1-Adenosine-P4-cytidine-5’-tetraphosphate (3-25).
 

4Na+
O

HO OH

O P

O

O-

O P

O

O

O- O

OHHO

P

O

O

O-

P

O

O

O-

N

N
N

N

NH2

N

N

NH2

O

3-25  

Obtained in 83% yield as its tetrasodium salt (201 mg) after purification by RP-HPLC 

[linear gradient of 100% buffer (pH 7.0) to 7% CH3CN-93% buffer over 55 min, tr = 42 min] 
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followed by passage through a DOWEX-50-W-Na
+
 ion exchange column. 

1
H-NMR (D2O, 300 

MHz): δ 3.99-4.16 (m, 9H, H3
,
A, 3

,
C 4

,
A,4

,
C,5

,
C,5

,
A), 4.45 (s, 1H, H2

,
A), 5.77 (d, J = 4.1 Hz, 1H, H1

,
C), 

5.87 (d, J = 7.6 1H, H5C), 5.97 (d, J = 6.1Hz, 1H, H1
,
A), 7.74 (d, J = 7.6 Hz, 1H, H6C), 8.09 (s, 

1H,H2A), 8.38 (s, 1H, H8A). 
13

C-NMR (D2O, 75 MHz): δ 64.5 (d, J = 5.1), 65.2 (d, J = 5.6 Hz), 

69.1, 70.4, 74.2, 74.3, 82.5 (d, J = 9.1 Hz), 84.0 (d, J = 9.4 Hz), 86.5, 89.0, 96.1, 118.4, 139.8, 

141.4, 148.9, 152.3, 155.0, 155.9, 164.6. 
31

P-NMR (D2O, 121 MHz): δ -9.63 (d, J = 14.1 Hz), 

21.24 (d, J = 10.1Hz). MS (ESI-), m/z 811.11 [M - H]
-
.  

P1-Adenosine-P4-uridine-5’-tetraphosphate (2-85).  

4Na+
O

HO OH

O P

O

O-

O P

O

O

O- O
N

OHHO

N
N

N

NH2

P

O

O

O-

P

O

O

O-

N

NH

O

O

2-85  

Obtained in 86% yield as its tetrasodium salt (209 mg) after purification by RP-HPLC 

[linear gradient of 100% buffer (pH 7.0) to 9% CH3CN-91% buffer over 60 min, tr = 47 min] 

followed by passage through a DOWEX-50-W-Na
+
 ion exchange column. 

1
H NMR (D2O, 300 

MHz): δ 4.12-4.29 (m, 8H, H4
,
A,5

,
A,2

,
U,3

,
U,4

,
U), 4.46 (t, J = 4.0 Hz,1H, H3

,
A), 5.72 (d, J = 8.1 Hz, 

1H, H6U), 5.78 (d, J = 4.9 Hz, 1H, H1
,
U), 5.97 (d, J = 5.9 Hz, 1H, H1

,
A), 7.73 (d, J = 8.0 Hz,  1H, 

H5U), 8.06 (s, 1H,H2A), 8.37 (s, 1H,H8A). 
13

CNMR (D2O, 75 MHz): δ 64.9 (d, J = 5.1 Hz), 

65.2,(d, J = 5.1 Hz), 69.5, 70.3, 73.7,74.4, 83.1 (d, J = 8.6 Hz), 83.9 (d, J = 8.6 Hz), 86.7, 88.1, 

102.4, 118.3, 139.9, 141.3, 148.8, 151.6, 152.0, 154.8, 165.8. 
31

P NMR (D2O, 121 MHz): δ -9.60, 

-21.03 (d, J = 9.9 Hz). MS (ESI-): m/z 812.16 [M - H]
-
. 
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β-D-glucose-thymidine-5’-diphosphate (3-30).  

2NH4
+

O P

O

O-

O P

O

O

O- O

HO

O

OH

HO
HO

OH

N

NH

O

O

Me

3-30  

The acceptor, β-D-glucose-1-phosphate was prepared using a procedure similar to that 

used by Binch et al. for the synthesis of β-L-galactose-1-phosphate.
170

 Obtained in 91% yield as 

its diammonium salt (150 mg) after purification by RP-HPLC [linear gradient of 0% CH3CN-

100% buffer (pH 7.0) to 6% CH3CN-94% buffer over 40 min then a linear gradient to 100% 

CH3CN over10 min, tr = 34 min] followed by passage through a Dowex-50-W-NH4
+
 ion 

exchange column.
 1

H-NMR (D2O, 300 MHz): δ 1.80 (s, 3H,Hmethyl), 2.25 (m, 2H, H2
,
),3.22-3.80 

(m, 6 H, H2glu,3glu,4glu,5glu,6glu), 4.06 (br, 3H, H4
,
,5

,
), 4.50 (br, 1 H, H3

,
), 4.88 (t, J = 7.8 Hz, 1H, 

H1glu), 6.22 (t, J = 7.2, 1H, H1
,
), 7.62 (s, 1H, H6). 

13
C-NMR (D2O, 75 MHz): δ 11.6, 38.5, 60.7, 

62.4, 65.4 (d, J = 5.3 Hz), 69.4, 71.0, 73.4, 73.5, 73.6, 75.1, 76.4, 84.9, 85.3 (d, J = 9 Hz), 97.7 

(d, J = 7.5 Hz), 111.7, 137.3, 151.7, 166.5. 
31

P-NMR (D2O, 121 MHz): δ-9.93 (d, J = 19.8 Hz),-

11.51 (d, J = 19.7 Hz). MS (ESI-): m/z  563.15[M - H]
-
.  

β-D-galactose-thymidine-5’-diphosphate (3-31).
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3-31

2NH4
+

O P

O

O-

O P

O

O

O- O

HO

O

OHOH

HO
OH

N

NH

O

O

Me

 

The acceptor, β-D-glalactose-1-phosphate was prepared using a procedure similar to that 

used by Binch et al for the synthesis of β-L-galactose-1-phosphate.
170

 Obtained in 91% yield as 

its diammonium salt (150 mg) after purification by RP-HPLC [linear gradient of 0% CH3CN-

100% buffer (pH 7.0) to 6% CH3CN-94% buffer over 40 min then a linear gradient to 100% 

CH3CN over10 min, tr = 32 min] followed by passage through a Dowex-50-W-NH4
+
 ion 

exchange column. 
 1

H-NMR (D2O, 300 MHz): δ 1.77 (s, 3H, Hmethyl), 2.25 (m, 2H, H2
,
), 3.08-

3.64 (m, 5H,  H2gal,3gal,5gal,6gal), 3.78 (d, J = 3.2, 1H, H4gal), 4.04 (br, 3H, H4
,
,5

,
), 4.53 (br, 1H, H3

,
), 

4.82 (t, J = 7.8 Hz, 1H, H1gal), 6.22 (t, J = 7.2, 1H, H1
,
), 7.62 (s, 1H, H6). 

13
C-NMR (D2O, 75 

MHz): δ 11.6, 38.5, 61.1, 62.4, 65.4 (d, J = 5.3 Hz), 68.5, 71.0, 71.1, 71.9, 72.2, 75.8, 84.9, 85.3 

(d, J = 9 Hz), 98.4 (d, J = 6 Hz), 111.7, 137.3, 151.7, 166.5. 
31

P-NMR (D2O, 121 MHz): δ-9.67 

(d, J = 18.9 Hz),-11.11 (d, J = 21.9 Hz). MS (ESI+): m/z = 565.06 [M + H]
+
.  

β-D-glucose-guanosine-5’-diphosphate (3-32). 

2NH4
+

O P

O

O-

O P

O

O

O- O

HO

O

OH

HO
HO

OH

N

N

N

NH

O

NH2

HO

3-32  

Obtained in 82% yield as its diammonium salt (141 mg) after purification by RP-HPLC 

[linear gradient of 0% CH3CN-100% buffer (pH 7.0) to 4% CH3CN-96% buffer over 45 min 
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then a linear gradient to 100% CH3CN over10 min, tr = 38 min] followed by passage through a 

Dowex-50-W-NH4
+
 ion exchange column.

 1
H-NMR (D2O, 300 MHz): δ 3.19 (m, 2H, H2glu,4glu), 

3.32-3.38 (m, 2H, H3glu,5glu), 3.50, 3.7 (AB system, 2H, J = 12 Hz, H6glu), 4.04 (s, 2H, H5
,
), 4.17 ( 

s, 1H, H4
,
), 4.34 (s, 1H, H3

,
), 4.57 (t, J = 5.6 Hz, 1H, H2

,
), 4.82 (t, J = 7.8 Hz, 1H, H1glu), 5.73 (d, 

J = 5.8, 1H, H1
,
), 7.95 (s, 1H, H8). 

13
C-NMR (D2O, 75 MHz): δ 60.6, 65.14 (d, J = 5.3 Hz), 69.3, 

70.3, 73.4, 73.5, 73.6, 75.0, 76.4, 83.6 (d, J = 7.5 Hz), 86.8, 97.7 (d, J = 6 Hz), 115.8, 137.4, 

151.5, 153.8, 158.6. 
31

P-NMR (D2O, 121 MHz): δ-9.60 (d, J = 18.7 Hz),-11.34 (d, J = 20.3 Hz). 

MS (ESI-): m/z = 604.17 [M - H]
-
.  

-D-galactose-guanosine-5’-diphosphate (3-33).  

2NH4
+

O P

O

O-

O P

O

O

O- O

HO

O

OHOH

HO
OH

N

N

N

NH

O

NH2

HO

3-33  

Obtained in 82% yield as its diammonium salt (141 mg) after purification by RP-HPLC 

[linear gradient of 0% CH3CN-100% buffer (pH 7.0) to 5% CH3CN-96% buffer over 40 min 

then a linear gradient to 100% CH3CN over10 min, tr = 28 min] followed by passage through a 

Dowex-50-W-NH4
+
 ion exchange column. 

1
H-NMR (D2O, 300 MHz): δ 3.44- 3.64 (m, 5H, 

H2gal,3gal,5gal,6gal), 3.72 (d, J = 3.0 Hz, H4gal), 4.05 (br, 2H, H5
,
), 4.18 (br, 1H, H4

,
), 4.35 (t, J = 3.5, 

1H, H3
,
), 4.58 (T, J = 5.6, 1H, H2

,
), 4.78 (t, J = 7.7 , 1H, H1gal), 5.74 (d, 1H, H1

,
), 7.95 (s, 1H, H8). 

13
C-NMR (D2O, 75 MHz): δ 61.2, 65.3 (d, J = 6 Hz), 68.6, 70.4, 71.2, 71.3, 72.3, 73.8, 75.8, 

83.7 (d, J = 9 Hz), 86.9, 98.5 (d, J = 6 Hz), 115.8, 137.4 151.6, 153.9, 158.7. 
31

P-NMR (D2O, 

121 MHz): δ-9.61 (d, J = 19.7 Hz),-11.28 (d, J = 19.1 Hz). MS (ESI-): m/z 604.16 [M - H]
-
.  
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3.5.9 Synthesis of P1,P6-diadenosine hexaphosphate (3-26). 

6Na+
O

HO OH

O P

O

O-

O P

O

O

O-

P

O

O

O-

P

O

O

O-

P

O

O-

O P

O

O-

O
O

N

OHHO

N

N

N

H2N

N

N
N

N

NH2

3-26  

To a solution of 5´-ATP (Bu4N
+
)3.2 (0.27 mmol) in dry DMF (4 mL) was added 

magnesium chloride (0.32 mmol, 26 mg) and the mixture was stirred for 2 min. until magnesium 

chloride dissolved.  Diisopropylethylamine (0.81 mmol, 141 µL) was added and the reaction 

mixture was cooled to 0 
o
C (ice bath).  Reagent 3-12 (0.16 mmol, 63 mg) was added, the ice bath 

was removed and the mixture was stirred at room temperature for 3 hours.  The mixture was 

cooled to 0 
o
C (ice bath) and quenched with 50 mM triethylammonium acetate buffer (5 mL, pH 

7.0), washed with chloroform (3 x 10 mL).  Chelex resin (ca. 0.2 g) was added and the mixture 

stirred for 1 min then filtered through a cotton plug.  Purification was achieved by RP-HPLC 

using a semipreparative C18 column and a gradient of acetonitrile and buffer (50 mM 

triethylammonium acetate, pH 7) at 6 mL/min and monitored at 255 and 280 nm with linear 

gradient of 100% buffer (pH 7.0) to 20% CH3CN-80% buffer over 55 min (tr = 40 min). 

Fractions containing the desired product were pooled, concentrated by high vacuum rotary 

evaporation, and the residue was dissolved in water and repeatedly freeze-dried until the 
1
HNMR 
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spectrum indicated that no residual buffer was present. The resulting white powder was passed 

through a Dowex-50-W ion-exchange resin in Na
+
 form and then lyophilized which gave 121 mg 

of 3.35 as its hexasodium salt (80%).  
1
H-NMR (D2O, 300 MHz): δ 4.13 (br, 4H, H5’), 4.27 (br, 

2H, H4’), 4.46 (br, 2H, H3’), 5.92 (d, J = 5.8 Hz, 2H, H1’), 8.01 (s, 2H, H2), 8.33 (s, 2H, H8). 
13

C-

NMR (D2O, 75 MHz): δ 65.0 (d, J = 5.2 Hz), 70.4, 74.2, 84.0 (d, J = 49.2 Hz), 86.6, 118.1, 

140.0, 148.7, 151.8, 154.6. 
31

P-NMR (D2O, 121 MHz): δ -9.88 (d, J = 15.2 Hz), -21.6 (s).  

M S  ( E S - ) :  m/z 995.11 [M - H]
-
, HRMS (ESI-): m/z = 994.9750, C20H29N10O25P6 [M - 

H]
-
, requires 994.9731. 
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Chapter 4 

Activated Cyclic Trimetaphosphate as a Reagent for the Synthesis of Nucleoside 

Polyphosphates and their Conjugates 

4.1 Introduction 

4.1.1 Trimetaphosphate as a phosphorylating agent 

Trimetaphosphate (TriMP, 4-1) is a six-membered ring, cyclic triphosphate (Figure 4.1).  

It is commercially available as its trisodium salt and is very inexpensive ($33 for 500 g from 

Sigma-Aldrich).  It has been examined as a triphosphorylating agent (Scheme 4.1) since the 

1960’s.
172,174

  The use of TriMP as a triphosphorylating agent is very appealing because the 

triphosphate product can potentially be produced in one step as opposed to other 

triphosphorylating methodologies that are multistep processes such as Bogachev’s (see chapter 2, 

section 2.1.5) and Eckstein’s procedure (see chapter 2, section 2.1.3.2.3).
171

  In spite of this 

potential advantage only a few examples of the triphosphorylation of hydroxyl groups, on 

nucleosides or other types of OH-bearing compounds, have been reported using TriMP.  One of 

the reasons for this is that TriMP is not a potent electrophile.  Modest hydroxyl nucleophiles 

(alcohols and phenols) react extremely slowly with it.  For example, the reaction of a five-fold 

excess of phenol at pH 12 at rt with TriMP produces the triphosphorylated product 4-3 in a 67% 

yield after 11 days (Scheme 4.2).
172,173

  The rate of reaction increases with increasing pH (no 

reaction occurs at all at pH 7).  This is because the concentration of phenoxide nucleophile 

increases with increasing pH (pKa of phenol = 10).   At 70 
o
C after 2 h 4-3 was produced in a 

36% yield.  However, decomposition of the TriMp also occurred at the higher temperature.   
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Figure 4.1.  Structure of trisodium TriMP. 
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Scheme 4.1.  TriMP as a triphosphorylating agent. 
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Scheme 4.2.  Synthesis of triphosphate 4-3 using TriMP as a triphosphorylating agent. 

The first attempt to phosphorylate a nucleoside using TriMP was reported by Schwartz 

who found that refluxing an aq. alkaline (pH 12) solution of TriMP and adenosine for 5 h gave a 

mixture of adenosine 2’- and 3’-monophosphates 4-4 and 4-5 in 31% overall yield (Scheme 

4.3).
174

 No triphosphorylated product was produced.  
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Scheme 4.3.  Preparation of 4-4 and 4-5 using TriMP. 
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Saffhil found that by subjecting a mixture of the tri(tetramethyammonium) salt of TriMP 

and adenosine to aq. 1 M NaOH for 5 days at rt that adenosine 2’,3’-cyclic phosphate could be 

isolated in a 79% yield (Scheme 4.4).
175

  Yamagata et al
176

 reported that the reaction of TriMP 

with adenosine could occur at neutral conditions (pH 7, 41 
o
C, 1 day) in the presence of a cat. 

amount of Mg
+2

 to afford 4-7 in a 9% yield.    
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P
O O-
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Scheme 4.4.  Synthesis of 4-7 using TriMP. 

Kusuhara et al
177

 performed the triphosphorylation of cytarabine (Scheme 4.5) using a 

10-fold excess of 4-1 in aqueous solutions at pH 12 and room temperature for 25 days and 

obtained a 75% yield of a mixture of cytarabine 5’-triphosphate, cytarabine 3’-triphosphate, and 

cytarabine 2’-triphosphate. 
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75%

4-8

 

Scheme 4.5.  Triphosphorylation of cytarabine using TriMP. 

Although the triphosphorylation of nucleosides using TriMP has not been very 

successful, the triphosphorylation of certain other hydroxyl-bearing compounds has been 

achieved more successfully with this reagent.  For example, the reaction of glucose with a five-

fold excess of 4-1 at pH 12 for 3 days at room temperature gave mainly β-D-glucopyranosyl-1-

triphosphate in an HPLC yield of 47 % (Scheme 4.6).
178,179

 The phosphorylation of the 
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disaccharides cellobiose, lactose, and α,α-trehalose under the same conditions gave β-D-

glucopyransosyl-(1-4)-β-D-glucopyranosyl-1-triphosphate, β-D-galactopyransosyl-(1-4)-β-D-

glucopyranosyl-1-triphosphate, and 3-O-triphospho-α-D-glucopyranosyl (1-1)-α-D-

galactopyranoside with maximum yields of 28%, 35%, and 20% respectively.
180
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Scheme 4.6.  Triphosphorylation of glucose using TriMP. 

It appears that TriMP can phosphorylate the phosphate groups of nucleotides.  Lohrmann 

showed that when solutions of NMPs and TriMP are dried out on the surface of glass paper at 

ambient temperature over 24 h a mixture of mainly nucleoside-5’-tetraphosphates (Np4’s) and 

higher order nucleoside 5’-polyphosphates are formed (Scheme 4.7).  The reaction is catalyzed 

by magnesium ions. These compounds were never separated and isolated and yields of isolated 

products were not given.
181
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Scheme 4.7.  Reaction of TriMp with NMP’s to give Np4’s and higher order nucleoside 

5’-polyphosphates. 

 

As stated above, the problem with TriMP as a triphosphorylating agent of hydroxyl 

groups stems from its rather poor electrophilicity/reactivity.  One approach by which TriMP 

could be made more electrophilic is to react it with an activating species thus converting one of 
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the phosphoryl oxygens into a good leaving group (Scheme 4.8). Reaction of this activated 

species with a nucleoside could, in theory, produce intermediate 4-16.  Hydrolysis of 

intermediate 4-16 would give an NTP.  Besides acting as a triphosphorylating agent activated 

TriMP could, in theory, also be used for preparing higher order nucleoside polyphosphates and 

their conjugates.  For example, an activated form of TriMP could react with an NMP to give 

intermediate 4-17 which could then be reacted with nucleophiles such as NMP’s to give an 

Np5N’s, or with water to give Np4’s, or with a fluorescent dye to give Np4’s where the 

fluorescent tag is attached to the terminal phosphate group (Scheme 4.8).  As much of the work 

described in this chapter focusses on the synthesis of Np5N’s and Np4’s a discussion of their 

biological roles, applications and synthesis is given below. 
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Scheme 4.8.  Synthesis of NTP’s, Np4s’, fluorescently tagged Np4’s and Np5N’s via 

activated TriMP.  AG = activating group. 
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4.1.2. Biological roles, applications and synthesis of dinucleoside 5’,5’-

pentaphosphates (Np5N) and nucleoside 5’-tetraphosphates (Np4’s). 

 

Dinucleoside 5’,5’-pentaphosphates (Np5N’s) and nucleoside 5’-tetraphosphates (Np4’s) 

play important roles in biological systems, have potential as drugs and have been used as tools 

and reagents in biochemistry and biotechnology.  Ap5A in nanomolar concentrations is found to 

significantly stimulate the proliferation of vascular smooth muscle cells by interacting with P2Y 

receptors.
182

 AP5A is also a P2X receptor agonist. P2X receptors are a family of cation-

permeable ligand-gated ion channels that open in response to the binding of extracellular 

adenosine 5'-triphosphate.
182

 Ap5A is a specific adenylate kinase inhibitor in the hippocampus.
17

  

It decreases the rate of decomposition of ADP and the formation of ATP which influences the 

availability of purines in the central nervous system.  Ap5A, along with Ap5T, are potent 

inhibitors of other enzymes such as thymidine kinase, thymidylate kinase and ribonucleotide 

reductase.
17-24 

 The crystal structure of Aquifex aeolicus adenylate kinase complexed with Ap5A 

was used to determine how the enzyme achieves a catalytically competent state.
23

 Np5N’s can 

also be enzyme substrates  For example, Ap5A is a good substrate for Humulus lupulus adenylate 

isopentyltransferase exhibiting a higher affinity than AMP, ADP and ATP.
24

 Recently, 

considerable attention has also been directed towards Np4’s as these species have been shown to 

be selective agonists of the P2Y4 receptor.
183

 They are also used as synthons to prepare 2’-

deoxynucleoside-5’-tetraphosphates containing terminal fluorescent labels which, as a result of 

being excellent substrates of DNA polymerase, have found use in various applications in DNA 

sequencing and labeling.
4
  

Various approaches have been reported for the preparation of Np5N and Np4’s; however, 

for the most part, these procedures are either lacking in scope and/or do not produce the desired 

products in good yield.  For example, Ap5A has been prepared by: (1) reaction of tri-n-

http://en.wikipedia.org/wiki/Ligand-gated_ion_channel
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butylammonium pyrophosphate with adenosine 5´-phosphoromorpholidate (4% yield),
19

 (2) 

conversion of ATP to Ap4 followed by condensation of the latter with P
1
-(adenosine-5’)-P

2
,P

2
-

diphenyl pyrophosphate (AMP-P(O)(OPh)2) (10% yield),
184

 (3) condensation of ADP with P
1
-

(adenosine-5´)-P
4
,P

4
-diphenyl tetraphosphate (ATP-P(O)(OPh)2) (25% yield),

185
 (4) reaction of 

2,3-O-6-N-triacetyladenosine with salicylchlorophosphite followed by sequential reaction with 

the tri-n-butylammonium salts of inorganic pyrophosphate and ADP and then removal of the 

protecting groups (48% yield, see Chapter 2, section 2.1.3.2.3, Scheme 2.8)
77

 and, (5) treating 

ATP with DCC to give adenosine 5´-trimetaphosphate (3-24) and then reacting the tri-n-butyl 

ammonium salt of this compound with the tri-n-butyl ammonium salt of ADP.  This gave Ap5A 

in 52% yield which is the highest reported yield of this compound to date (Scheme 4.9).
21
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Scheme 4.9.  Synthesis of Ap5A through formation of adenosine trimetaphosphate 

followed by reaction with ADP. 

 

Up5U (2-54, chapter 2) has been obtained in 8% yield by cyclization of UTP with DCC 

followed by reaction of the resultant uridine 5’-cyclic trimetaphosphate with UDP (see Chapter 2 

section 2.1.3.2.4, Scheme 2.14).
88,186

 Ap5T has been obtained in 22% yield by reaction of ATP-

morpholidate with the bis(tri-n-octylammonium salt) of thymidine 5’-diphosphate.
22

 

Kumar et al. reported the synthesis of Np4’s by reaction of nucleoside 5’-

trimetaphosphates with orthophosphate though no yields or experimental details were provided.
4 

 

Ko et al. reported the synthesis of 5’-tetraphosphates of thiouridine derivatives in yields of less 

than 8% by reaction of the nucleosides with phosphorus oxychloride followed by the addition of 
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tri-n-butylammonium pyrophosphate.
187

 Gp4 has been prepared by Zuberek et al in 82% yield by 

the reaction of GDP-imidazolidate with triethylammonium salt of pyrophosphate.  Employing a 

similar procedure Skoblov et al prepared dTp4 in 49% yield. 
89,188

 Very recently new approaches 

to the synthesis of Np4’s have appeared in the literature. Strenkowska et al reported the synthesis 

of Ap4 in an 82% yield by reacting ATP with cyanoethylphosphoimdazolidate 4-19 under 

microwave irradiation followed by phosphate deprotection with DBU (Scheme 4.10).
189

 

Although this method provided Ap4 in good yield it requires the synthesis of 4-19, microwave 

radiation and a deprotection step at the end of the synthesis. 
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Scheme 4.10.  Synthesis of Ap4
 
by Strenkowska et al. 

Kore et al prepared dCp4 and Tp4 (Scheme 4.11) in yields of 62% and 53% respectively 

by coupling tris(tri-n-butylammonium) triphosphate with the isolated imidazolidates of dCMP 

and TMP.
190

  Shortly thereafter, the same group reported a one-pot synthesis of dCp4, dGp4, 

dAp4, and dTp4 in yields of 41-46% by reacting nucleosides with POCl3 followed by reaction of 

the resulting nucleoside dichlorophosphoridate 4-24 with tris(tri-n-butylammonium) triphosphate 

(Scheme 4.12).
190
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Scheme 4.11.  Kore et al. synthesis of dCP4 and Tp4 via imidazolate 4-22. 
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Scheme 4.12.  Kore et al synthesis of dCP4 and Tp4 via nucleoside dichlorophosphoridate 

4-22. 
 

 

Ap4 has been prepared using enzymes; however, this approach to Np4 synthesis is limited 

by scale and the substrate specificity of the enzymes.
116

  

4.1.3 Applications and synthesis of Np4’s containing a terminal fluorescent label 

Terminal phosphate-labelled nucleotides have been used as tools and probes in 

biochemistry and biotechnology for many years.
192-194

 Grachev and Zaychikov reported the 

synthesis of an analog of ATP containing aniline bound to the γ-phosphate via a phosphoamidate 

linkage (4-26 in Scheme 4.13) through cyclization of ATP using EDC to form cyclic adenosine 

trimetaphosphate followed by ring opening with aniline to afford ATP-γ-anilidate 4-26 which 

was found to be a good substrate for DNA-dependent RNA polymerase of E. Coli.
194

   

Yarbrough has prepared compound 4-27 which contains the fluorophore, 1-aminonaphthalene-5-

sulfonate, attached via a γ-phosphoamidate bond via the same route.  This analog is strongly 

fluorescent and is substrate for DNA-dependent RNA polymerase of E. Coli and wheat germ 

RNA polymerase II. Cleavage of the of the α-β phosphoryl bond as a result of RNA synthesis 

produces a shift in the fluorescence emission spectrum making 4-27 a useful compound for 

mechanistic studies of these enzymes.
193
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Scheme 4.13.  Synthesis of γ-labeled ATP analogs. 

 Very recently there has been considerable interest in 2´-deoxynucleoside 5´-

polyphosphates in which a fluorescent label is attached to the terminal phosphate.  Such 

nucleotides are used as key reagents in high-throughput DNA sequencing techniques and in 

single nucleotide polymorphism typing assays.
3-7

 Central to the success of these methodologies 

is the ability of the terminally-labeled nucleotides to as act as substrates for DNA polymerase.  

Nucleotides bearing more than three linear 5´-phosphates, such as δ-labeled nucleoside 5´-

tetraphosphates (general structure 4-28 in Scheme 4.14), are used as it has been shown that such 

nucleotides are much better substrates for DNA polymerases than the corresponding γ-labeled 

5´-triphosphates.
3
  Once the nucleotide is incorporated into a DNA template using DNA 

polymerase, a triphosphorylated dye (4-29) is released (Scheme 4.14). This is rapidly hydrolyzed 

by alkaline phosphatase to release the free dye anion which is strongly fluorescent. The dye 

selected for these assays must be able to change color or fluorescence when converted from an 

alcohol (-OH) form to phosphate ester form.  1,3-Dichloro-7-hydroxy-9,9-dimethylacridin-

2(9H)-one (4-30, DDAO), resorufin (4-31), ethylfluorescein (4-32), 7-hydroxy-4-

methylcoumarin (4-33) are some examples of compounds used dye labels (Scheme 4.14).  
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The synthesis of δ-labeled nucleoside 5´-tetraphosphates has been achieved by several 

routes (Scheme 4.15).  In one approach (route 1) a dNTP is reacted with CDI followed by 

reacting the resulting imidizolidate with a phosphorylated fluorescent dye.
7
  Alternatively, a 

phosphorylated dye is activated with CDI followed by reaction with a dNTP (route 2).
3 

 In 

another approach (route 3) a dNTP is reacted with DCC to give a cyclic trimetaphosphate 

nucleotide derivative which is ring opened with orthophosphate to give a nucleoside 5´-

tetraphosphates (Np4).
4
  This species is activated and then reacted with a dye. Specific yields for 

these routes were not reported. All of these approaches require expensive dNTP’s as substrates 

and, in the case of routes 1 and 2, the synthesis or purchase of expensive phosphorylated dyes. 
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Scheme 4.15.  Literature routes to nucleoside 5´-tetraphosphates bearing terminal 

fluorescent dyes. 

4.2  Objectives 

 The objective of the work presented in this chapter is to develop improved methods for 

preparing NTP’s, Np5N’s, Np4’s and fluorescent conjugates of Np4’s using activated TriMP as 

the key reagent as outlined in Scheme 4.8. 

4.3 Results and discussion 

4.3.1 Preparation of the tris(tetrabutylammonium) salt of TriMP 

It was expected that an activated form of TriMP would be sensitive to moisture and so 

would have to be made under anhydrous conditions in dry organic solvents. Moreover, all 

subsequent reactions involving the activated TriMP would also have to be conducted under 

anhydrous conditions in organic solvents.  The trisodium salt of TriMP, the commercially 

available form, is completely insoluble in polar aprotic solvents such as pyridine, acetonitrile or 

DMF. Hence before our studies could begin it was necessary to convert the trisodium salt into a 

tri- or tetraalkylammonium salt.  We first converted TriMP into its tris(triethylammonium) salt; 

however, we found that this form is not soluble in pyridine, DMF, or acetonitrile.  Therefore we 

decided to prepare the tris(tetrabutylammonium salt) of TriMP (compound 4-34).  Besecker et al. 

prepared 4-34 in 72% yield by passing the trisodium salt of TriMP through a cation exchange 
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resin in the tetrabutylammonium form followed by concentration of the effluent followed by a 

series of washing and filtering steps.
195

 We found that this procedure consumes a lot of 

expensive tetrabutylammonium hydroxide (TBAH) in conversion of the resin from its H
+
 form to 

its tetrabutylammonium form and so we examined other approaches to this compound.  Glonek 

et al prepared 4-34 in an unspecified yield by passing a solution TriMP through a cation 

exchange resin in H
+
 form followed by titration of the resulting solution with TBAH.

196
 When 

we used this procedure we found that some decomposition occurred as determined by the 
31

P-

NMR of the freeze dried material.  This probably occurred during its conversion to the free acid 

form.  Nevertheless, we found that we could prepare 4-34 in almost quantitative yield and free of 

decomposition products by first converting TriMP to its pyridinium form using an ion exchange 

column followed by titrating the eluent solution to pH 7 with a dilute solution of TBAH followed 

by freeze drying to a white powder (Scheme 4.16).  The 
31

P-NMR of 4-34 in D2O prepared in 

this manner exhibited a singlet at δ -19.2.  No pyridinium species were evident by 
1
H-NMR.  

Elemental analysis revealed that it was obtained in its tris(tetrabutylammonium) form.  4-34 was 

found to be soluble in pyridine, acetonitrile and DMF.  
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(pyridinium form) P
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3 (pyrH+)
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O
P

O

P
O

OO

O--O

O O-

3 (n-Bu)4N+)

add TBAH to
pH 7.0

4-34  

Scheme 4.16.  Preparation of the tris(tetrabutylammonium) salt of TriMP. 

4.3.2 Synthesis of Np4’s    

Given the success that we had with activating NMP’s, NDP’s and NTP’s with 

sulfonylimidazolium salts such as 3-11 we decided to use this salt to activate 4-34.   We also 
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decided to investigate benzenesulfonyl chloride (4-35) and mesitylene chloride (4-36), in 

combination with NMI, as activating agents as compounds 4-35 and 4-36, unlike reagent 3-11, 

are commercially available, relatively inexpensive and compound 4-36 in combination with NMI 

has been used as a coupling agent for phosphate ester bond formation (Figure 4.2).
197 
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Figure 4.2.  Agents examined for activating TriMP.  

Compound 3-11 was examined first as an activating agent for the preparation of Np4’s.  

Upon adding 1 equiv of 3-11 (Table 4.1 entry 1) to an acetonitrile solution of 1.0 equiv 4-34 in 

the presence of 5 equiv of NMI at room temperature, the reaction mixture became slightly turbid 

after about a minute.  
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Table 4.1.  Synthesis of Np4’s using 4-34 and 3-11 as activating agent. 

 

B

O

OHOH

OP

O

O-

OP

O

O-

OP

O

O-

OP

O

O-

HO

B

O

OHOH

OP

O-

O
P

O
P

O

P
O

OO

O
-O

O O-

P

O
P

O

P
O

OO

O--O

O O- H2O

4-34

1. 3-11, 5 equiv base 1,

    DMF, r.t, 25 min

2. 1 equiv NMP (Bu4N+)1.7,

     base 2, DMF, 0-r.t, 1-3h

4-37
4-38, B = A
4-39, B = C
4-40, B = G
4-41, B = U








 3 (n-Bu)4N+

 

 

Entry 

 

Solvent 

Equiv 

3-11 

Equiv 

4-34 

 

Base 1 

 

NMP 

 

Base 2 

Time 

(h) 

 

Product 

 

Yield
a 

 

Yield
b
 

1 CH3CN 1.0 1.0 NMI AMP TEA 3 Ap4 (4-38) - - 

2 DMF 1.0 1.0 NMI AMP TEA 1 Ap4 (4-38) 75 62 

3 DMF 1.0 1.0 DMAP AMP TEA 1 Ap4 (4-38) 75 - 

4 DMF 1.0 1.0 NMI AMP - 1 Ap4 (4-38) 75 - 

5 DMF 1.3 1.3 NMI AMP - 3 Ap4 (4-38) 90 - 

6 DMF 1.35 1. 5 NMI AMP - 3 Ap4 (4-38) 93 83 

7 DMF 1.35 1. 5 NMI CMP - 3 Cp4 (4-39) - 84 

8 DMF 1.35 1. 5 NMI GMP - 3 Gp4 (4-40) - 84 

9 DMF 1.35 1. 5 NMI UMP - 3 Up4 (4-41) - 84 
a
Yields calculated by integration of 

31
P-NMR peaks.  

b
Isolated yields. 

The mixture was allowed to stir for further 25 min. and then added to a cooled (ice bath) solution 

of 1 equiv AMP and 3 equiv TEA in CH3CN. A thick precipitate formed. The reaction mixture 

was allowed to stir at room temperature. After 3 h an aliquot was removed and quenched with 

100 mM triethylammonium acetate buffer.  The 
31

P NMR spectrum of this sample exhibited two 

singlets: one at 6.0 ppm which is characteristic of AMP and the other at -19.3 ppm for TriMP 

which means that the reaction did not work using these conditions.  On switching the solvent to 

DMF instead of acetonitrile (Table 4.1 entry 2) it was found that upon addition of 3-11 to 4-34 

there was still some turbidity but it rapidly disappeared upon addition to the flask containing the 

tetrabutylammonium salt of the nucleotide in DMF.  The 
31

P-NMR spectra of the reaction 

mixture at 15 min, 30 min, and 1.5 h are shown in Figures 4.3, 4.4, and 4.5 respectively. These 
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spectra showed no further change after 1.5 h. Since these spectra were run for the unquenched 

reaction mixture they allowed us to speculate about the intermediates formed during the reaction. 

The 
31

P NMR after 15 min (Figure 4.3) spectrum shows unreacted AMP (peak at δ 5.8), some 

remaining TriMP at δ -19.6, and what appeared to be a doublet at δ -22.0 and a triplet at δ -23.0.  

These two latter sets of peaks disappeared with time (see Figure 4.4 and 4.5) which indicated that 

they could be an activated form of trimetaphosphate.  In Figures 4.4 and 4.5 two doublets at 

approximately δ -11.3, δ -22.7, and one quartet at δ -32.6 are evident.   We assigned the doublet 

at δ -11.3 to the α-phosphorus atom of intermediate 4-37, the quartet at δ -32.6 to the β-

phosphorus of 4-37 if we assume it is an overlapping doublet of triplets and, the large doublet at 

δ -22.7 to the two γ-phosphorus atoms of 4-37.  No other significant peaks were seen in the 

spectrum in Figure 4.5, which suggested that the reactive trimetaphosphate intermediate 4-15 had 

been almost completely consumed.  

 

Figure 4.3.  
31

P-NMR spectrum of the reaction of 1 equiv AMP with a mixture of 1 equiv 

3-11 and 4-34 in the presence of 5 equiv NMI and 3 equiv TEA after 15 min. 
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Figure 4.4.  
31

P-NMR spectrum of the reaction of 1 equiv AMP with a mixture of 1 equiv 

3-11 and 4-34 in the presence of 5 equiv NMI and 3 equiv TEA after 30 min.   

 

 

Figure 4.5.  
31

P-NMR spectrum of the reaction of 1 equiv AMP with a mixture of 1 equiv 

3-11 and 4-34 in the presence of 5 equiv NMI and 3 equiv TEA after 90 min. 
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The reaction mixture was cooled to 0 
o
C and quenched with 100 mM triethylammonium 

acetate buffer, washed with chloroform to remove excess base and then allowed to stand at room 

temperature with concomitant monitoring by 
31

P NMR. The spectra kept changing with time and 

after 2 h it gave a spectrum shown in Figure 4.6 which shows peaks at δ -7.8, δ -9.4, δ -21.0 

suggesting the formation of Ap4 though the broad peaks made it difficult to interpret.  

Nevertheless, after subjecting the mixture to semi-preparative RP-HPLC Ap4 was isolated in a 

62% yield after freeze drying and conversion to ammonium salt. 

 

Figure 4.6.  
31

P-NMR spectrum of the reaction of 1 equiv AMP with a mixture of 1 equiv 

3-11 and 4-34 in the presence of 5 equiv NMI and 3 equiv TEA after 120 min followed 

by quenching with TEAA and stirring for 2 h.  

 

Further optimization studies were done.  Addition of triethylamine to the AMP solution 

was found to be unnecessary so it was omitted (Table 4.1, entry 4). Upon increasing the amount 

of activated TriMP, achieved by increasing the amount of both TriMP 4-34 and reagent 3-11 in 
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the activation step and, allowing the coupling reaction to run for 3 h, the 
31

P-NMR yield 

increased considerably (entries 5 and 6, and Figure 4.7). The best isolated yield of Ap4 (83%) 

was obtained using 1.5 equiv 4-34 and 1.35 equiv of 3-11 (entry 6). These optimized conditions 

were applied to the synthesis of other Np4’s and excellent yields were obtained in all cases 

(entries 7-9). 

 

Figure 4.7.  
31

P-NMR spectrum of the reaction of 1 equiv AMP with a mixture of 1.5 

equiv 4-34 and 1.35 equiv 3-11 and in the presence of 5 equiv NMI after 3 h. 

 

 

Being commercially available, arenesulfonyl chlorides are attractive alternatives to 

reagent 3-11 as activating agents.  We examined benzenesulfonyl chloride as an activating agent 

using the optimized condition developed above.  Complete consumption of starting NMP 

occurred after 3 h. However, owing to the presence of several byproducts, the purification was 

very difficult.  Using mesitylenesulfonyl chloride (4-36) as activating agent complete 

consumption of the NMP’s occurred but without the formation of significant amounts of 
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byproducts and so the purification by RP-HPLC was straightforward. Figure 4.8 shows the 

unquenched reaction mixture for the synthesis of Up4 after 3 h. Excellent yields of 4-38 – 4-41 

were obtained (Table 4.2, entries 3-6) 

 

Figure 4.8.  
31

P-NMR spectrum of the reaction mixture of activated 4-34 and UMP after 

3 h.  

 

Table 4.2.  Synthesis of Np4’s using arenesulfonyl chlorides. 
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OHOH
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O

O-
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O
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-O
P

O
P

O

P
O

OO

O--O

O O-

4-34
4-38 - 4-41

1. 1.8 equiv. ArSO2Cl, 5 equiv NMI, 

    DMF, r.t, 25 min

2. 1.0 equiv. NMP (Bu4N+)1.7, DMF,

    0-r.t, 3h

3. H2O
 (Bu4N+)3

 

Entry Ar NMP Product Yield (%) 

1 Ph UMP Up4 (4-41) - 

2 Ph GMP Gp4 (4-40) - 

3 2,4,6-Trimethylbenzene AMP Ap4 (4-38) 84 
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4 2,4,6-Trimethylbenzene CMP Cp4 (4-39) 86 

5 2,4,6-Trimethylbenzene GMP Gp4 (4-40) 84 

6 2,4,6-Trimethylbenzene UMP Up4 (4-41) 86 

 

 

It is interesting to note that Ng and Orgel reported that AMP was the major product when 

Ap4 was treated with EDC in HEPES buffer at pH 6.5.   They postulated an intermediate of type 

4-37 forming first followed by hydrolysis of 4-37 to give AMP.
65

 
31

P-NMR of the reaction 

mixture of activated 4-34 and AMP (Figure 4.9) and after addition of TEAA buffer followed by 

chloroform wash and standing for 2 h (Figure 4.10) indicated that only ~ 5% of 4-37 was 

hydrolyzed to AMP. 

 

 

Figure 4.9.  
31

P-NMR spectrum of the reaction mixture of activated 4-34 and AMP after 

2.5 hours. Peaks corresponding to the proposed intermediate 4-37 appear at δ -31.4 (q), -

21.1 (d) and -9.8 (d). Unreacted TriMP and AMP appear at δ 2.03 and δ -18.4 

respectively. 

-30-25-20-15-10-50 ppm

-3
1

.5
2
7

-3
1

.3
4
9

-3
1

.1
7
0

-2
2

.4
3
8

-2
1

.4
9
5

-2
1

.2
4
2

-2
1

.0
5
3

-2
0

.8
2
6

-2
0

.4
6
1

-2
0

.2
0
9

-2
0

.0
1
1

-1
9

.7
4
7

-1
9

.5
3
9

-1
8

.4
2
4

-1
5

.9
1
5

-1
4

.7
5
8

-1
0

.0
0
5

-9
.8

3
5

-9
.3

8
8

-8
.2

5
6

2
.0

2
3

1
.0

0
0

2
.1

6
5

1
.0

9
5

0
.0

4
7



127 
 

 

Figure 4.10.  
31

P-NMR spectrum of the reaction mixture after quenching of proposed 

intermediate 4-37 with TEAA, washing with CHCl3 and stirring the aq. layer for 2 h. 

Peaks corresponding to Ap4 appear at δ -8.1, -9.5 (d) and -21.1 AMP appears at δ 2.63. 

TriMP appears at  -19.7. 

 

 

4.3.3 The activated form of 4-34 

There are two possible activated forms of 4-34 that can be produced during the reaction.  

One is the mixed anhydride 4-43 and the other is the imidazolium species 4-44 formed via 

reaction of NMI with 4-43 (Scheme 4.17).  To determine if just 4-43 is formed or both are 

formed during the reaction and to determine which one (or both) is the species that reacts with 

the NMP to give 4-37 we reacted 4-34 with reagents 3-11, 4-36 and triisopropylbenzenesulfonyl 

chloride (4-42) (Scheme 4.17).  We reasoned the reactivity of intermediate 4-43 should decrease 

as the steric bulk on the benzene ring increased and that we would be able to detect it and its 

possible conversion to 4-44 by 
31

P-NMR. 
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Scheme 4.17.  Activation of trimetaphosphate with reagents 3-11, 4-36 and 4-42.   

Reagent 3-11, 4-36, or 4-42 (0.9 equiv) was added to a solution of 1.0 equiv of 4-34 and 

2.5 equiv NMI in DMF.  The reaction was followed by 
31

P-NMR.  With reagent 4-36 after 10 

min much of 4-34, which appears at approximately δ -19.0, was consumed and the 
31

P-NMR 

spectrum, in addition to a few very minor peaks, consisted of a relatively small triplet at δ -31.4, 

a doublet at δ -20.7 and a triplet at δ -21.5 (see Figure 4.11 A). After 30 minutes the triplet at δ -

31.4 had disappeared leaving the doublet at δ – 20.7 and the triplet at δ -21.5 though the relative 

peak heights within the triplet at δ -21.5 had changed (Figure 4-11 B). No further change 

occurred after 30 minutes.  We propose that these signals can be accounted for by a reaction 

between 4-34 and 4-36 to give mixed anhydride 4-43 which reacts relatively rapidly with NMI to 

give imidazolium intermediate 4-44 (Scheme 4.17). The triplet at δ -31.4 corresponds to the α-

phosphorus atom of 4-43. The doublet that should be associated with the two β-phosphorus 

atoms of 4-43 coincides with the central and right side peaks of the triplet that is due to the α-

phosphorus atom in compound 4-44 which appears at δ -21.5. The doublet at δ -20.7 is due to the 

two β-phosphorus atoms of 4-44. The α- and β-phosphorus atoms in 4-44 have vey similar 

chemical shifts and are strongly coupled to one another which results in the doublet at δ -20.7 

and triplet at δ -21.5 to be highly skewed towards one another. The relative simplicity of the 

spectra and the fact that some unreacted TriMP remained suggested that the formation of dimers 

or higher order oligomers is not readily occurring. 
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A

B

 

Figure 4.11.   
31

P-NMR spectra of the reaction of 0.9 equiv reagent 4-36 with 1 equiv 

compound 4-34 in the presence of 2.5 equiv NMI in DMF. (A): Spectrum recorded after 

10 minutes. (B): Spectrum recorded after 30 minutes. See the text for details. 
 

The above peak assignments are supported by the 
31

P-NMR spectra of the reactions of 

reagents 3-11 and 4-42 with 4-34.  The reaction of the more sterically hindered reagent 4-42 after 

10 min is shown in Figure 4.12.  As expected peaks corresponding to intermediate 4-43, such as 

the triplet at -31 ppm and doublet at -21.3 ppm are more intense than the corresponding peaks of 

intermediate 4-43 formed when using reagent 4-36.  This can be explained by the fact that the 

greater steric hindrance in 4-42 makes nucleophilic attack by NMI slower and so 4-43 converts 

more slowly to 4-44. It is worthy of note that it took 45 min of this particular intermediate to 

fully convert to 4-44 and a 
31

P-NMR spectrum similar to the one in Figure 4-11 B.  
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Figure 4.12.  
31

P-NMR spectrum of the reaction of 0.9 equiv reagent 4-42 with 1 equiv 

compound 4-34 in the presence of 2.5 equiv NMI in DMF after 10 minutes. 

 

The 
31

P-NMR of the reaction between reagent 3-11 and compound 4-34 after 10 min was 

almost identical to the 
31

P-NMR of the reaction between 4-36 and 4-34 after 30 min and the 

reaction of 4-42 and 4-34 after 45 min.  NMR spectra taken after 20 and 30 min. showed no 

change. No triplet at approximately δ -31 was evident in any of the spectra suggesting that the 

reaction between reagent 3-11 and compound 4-34 and the subsequent reaction of the mixed 

anhydride to give the intermediate imidazolium salt of type 4-44 is very fast possibly because the 

mixed anhydride formed with reagent 3-11 is less sterically hindered than the one formed with 

reagents 4-36 or 4-42.  To confirm this, the reaction between reagent 3-11 and compound 4-34 

was repeated in presence of 3 equiv diisopropylethylamine (DIPEA) instead of 2.5 equiv NMI. 

The 
13

P-NMR spectrum (Figure 4-13) shows a triplet at δ -31.0 and doublet at δ -22.4 that 

corresponds to proposed intermediate 4-43.  We propose that, in this case, since only a limited 

amount of NMI is present during the reaction (only that produced from the release of NMI upon 
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reaction of 3-11) the reaction between NMI and the mixed anhydride 4-43 is slow and so we are 

able to detect the triplet at δ -31.0 and a doublet at δ -21.4 corresponding to 4-43.      

 

Figure 4.13.  31
P-NMR spectrum of the reaction of 1.8 equiv reagent 3-11 with 2 equiv 

compound 4-34 in the presence of 3 equiv DIPEA in DMF. Spectrum recorded after 10 minutes 

 

4.3.4 Synthesis of Np5N’s 

Np5N’s were synthesized by first preparing intermediate 4-37 as described above. Instead 

of quenching intermediate 4-37 with buffer, 2.0 equiv of the tetrabutylammonium salt of NMP in 

DMF and 1.1 equiv anhydrous MgCl2 were added.  
31

P-NMR analysis of the mixture indicated 

the reactions were complete after 3 days. Quenching with 100 mM TEAA buffer followed by 

washing with chloroform, purification by RP-HPLC then ion exchange chromatography gave 
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Np5N’s as their ammonium salts in very good yield using either reagent 3-11 or 4-36 (Table 4.3). 

The reaction was extremely slow in the absence of magnesium ions. We also found that 

unsymmetrical Np5N can be produced using this procedure (Table 4.3, entry 5). 

Table 4.3.  Synthesis of Np5N’s via activated 4-34. 
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4-34 (2.0 equiv)

1. 1.8 equive 3-11, or 4-36, 

     NMI (5 equiv), DMF, r.t, 25 min

2. 1.0 equiv. NMP (Bu4N+)1.7, 

    DMF, 0-r.t, 3h

4-37

2.0 equiv. NMP,
1.1 equiv MgCl2

DMF, 0-r.t, 72 h 3

4-18, B = B' = A
4-45, B = B' = C
4-46, B = B' = G
2-54, B = B' = U
4-47, B = U, B' = G

 3(n-Bu)4N+

 

entry Product Yield
a
(%) Yield

b
(%) 

1 Ap5A (4-18) 85 81 

2 Cp5C (4-45) 82 84 

3 Gp5G (4-46) 85 84 

4 Up5U (2-54) 80 84 

5 Up5G (4-47) - 77 
a
Isolated yields using reagent 3-11. 

b
Isolated yields using reagent 4-36. 

 

4.3.5 Synthesis of Np4’s containing a terminal fluorescent label using activated 

TriMP 

7-Hydroxy-4-methylcoumarin (HMC, Scheme 4.18) was chosen as a model fluorescent 

dye as it is relatively inexpensive and readily available.  We initially attempted to prepare the 

adenosine derivative 4-49 by reacting intermediate 4-48, prepared using our previously reported 

procedure (section 4.3.2) with HMC in the presence of MgCl2 (Scheme 4.18)  This did not result 

in consumption of the HMC as determined by TLC.  However, when an excess of 1,4-

diazabicyclo[2.2.2]octane (DABCO) was present the coumarin was consumed and the formation 

of 4-49 was evident by 
31

P-NMR (Figure 4.14, characteristic peaks: -9.1 ppm (d), -15.0 ppm (d) 
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and two apparent triplets at approximately -20.0 - -20.6 ppm) along with other unidentified 

impurities.  Optimal conditions were developed which consisted of 1.3 equiv HMC, 4 equiv 

DABCO and 1.1 equiv MgCl2.  No more consumption of HMC was observed after about 5 h.  

After quenching with TEAA and purification by reversed-phase column chromatography, 

compound 6 was obtained in a 45% yield. 
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Scheme 4.18.  Synthesis of compound 4-49 via intermediate 4-48. 
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Figure 4.14.  
31

P-NMR spectrum 5 h after the addition of HMC and magnesium chloride 

to a reaction mixture containing proposed intermediate 4-48 (Scheme 4.18).  The reaction 

was quenched with TEAA buffer (pH 7.0) and magnesium ions were removed with 

Chelex resin prior to obtaining the spectrum.  Peaks corresponding to product appear at -

9.1 ppm (d), -15.0 ppm (d) and two apparent triplets at approximately -20.0 - -20.6 ppm.  

The singlet at -19.5 ppm is TriMP. Other unidentified impurities at -3.1 ppm (m), -8.3 

(d), -9.0 (s), -9.4 (d), -16.6 (d), -18.8 (t), and -22.2 (s). 

 

The modest yield obtained with the approach outlined in Scheme 4.18 prompted us to 

examine the reverse procedure in which the coumarin is reacted with activated TriMP followed 

by the addition of NMP (Scheme 4.19).  To ensure complete phosphorylation of the OH group of 

HMC and to prevent formation of the dicoumarin triphosphate we employed a 1.8-fold excess of 

activated trimetaphosphate.  Hence, 1.8 equiv mesitylene chloride was added to a solution of 2.0 

equiv trimetaphosphate (4-34) and 6 equiv DABCO and the mixture stirred for 1 min and then 

1.0 equiv of HMC was added.  The reaction turns from a clear solution to a white turbid mixture 

after about 45 minutes.  All of the coumarin was consumed in about 2 h as determined by TLC.  

No reaction occurred in the absence of DABCO and it was found that NMI was not necessary for 
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reaction to occur.  This mixture was then added dropwise to a cooled (ice bath) solution of 1.6 

equiv MgCl2 and 2.5 equiv of 5´-AMP as its tetrabutylammonium salt in DMF.  The ice bath was 

removed and the progress of the reaction was monitored by withdrawing samples, quenching 

them with a 5 % solution of EDTA in triethylammonium acetate buffer (pH 7.0) and then 

analyzing them by 
31

P-NMR.  Peaks corresponding to 4-49 were clearly evident.  After 3 h peaks 

corresponding to 4-49 no longer increased in intensity and 4-49 was the dominant product.  The 

reaction was quenched with TEAA buffer (pH 7.0) and the resulting solution washed with 

chloroform and magnesium ions were removed by Chelex resin.  The 
31

P-NMR of the crude 

material exhibited peaks corresponding to product as well as peaks corresponding to 

trimetaphosphate, unreacted 5´-AMP and minor peaks which we attributed to Ap5A
 
(for example 

see Figure 4.15).  With the activated trimetaphosphate and AMP being in considerable excess to 

HMC it was expected that a considerable amount of Ap5A byproduct to have been produced and 

little or no unreacted AMP or TriMP to be present.  Since this was not the case, we suggest that 

the reaction of the AMP with any activated trimetaphosphate intermediates that might be formed 

during the reaction (vide infra) is slower than the reaction of AMP with intermediate 4-50 in the 

absence of NMI and/or in the presence of DABCO.  Compound 4-49 was obtained in an 80% 

yield after purification by reversed-phase chromatography using tributylammonium acetate 

(TBAA) buffer in methanol/water and conversion to its tetraammonium salt using Dowex 50W 

resin (NH4
+
 form).  It is worthy of note that the Ap5A byproduct exhibited a very different 

retention time from 4-49 and so was easily removed.  This procedure was then applied to the four 

common deoxynucleotides which gave the labelled products 4-51 – 4-54 in yields of 80-82%.  

Purification of these compounds was equally straightforward.  
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Scheme 4.19.  Synthesis of -labeled nucleoside 5´-tetraphosphates via intermediate 4-

50. 

 

 

Figure 4.15.  
31

P-NMR spectrum 3 h after the addition of a solution of proposed 

intermediate 4-50 to a solution of AMP (Scheme 4.19).  The reaction was quenched with 

TEAA buffer (pH 7.0) and magnesium ions were removed with Chelex resin prior to 

obtaining the spectrum.  Peaks corresponding to product appear at -9.3 ppm (d), -15.2 

ppm (d) and two apparent triplets at approximately -20.0 - -20.3 ppm.  The singlet at -

19.5 ppm is trimetaphosphate and the singlet at 5.8 ppm is AMP.  The small broad 

doublet at -9.5 ppm and the broad singlet at -21.2 ppm are attributed to Ap5A. 

 

31
P-NMR data suggests that intermediate 4-50 is indeed formed during the reaction.  The 

31
P-NMR spectrum of a mixture of HMC, trimetaphosphate, mesitylenesulfonyl chloride and 

DABCO (approximately 1:1.3:1.3:4) in CH3CN after 2 h showed mainly a doublet at -20.7 ppm 

and a triplet at -24 ppm (Figure 4.16).  The 
31

P-NMR spectrum of this mixture after having been 

quenched with water showed doublets at -4.0 and -14.5 ppm and a triplet at -20 ppm (see Figure 
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4.17) and these peaks can be attributed to compound 4-55 formed by hydrolysis of intermediate 

4-50 (Scheme 4.20).
173 

 

Figure 4.16.  The 
31

P-NMR spectrum of a mixture of HMC, trimetaphosphate, 

mesitylenesulfonyl chloride and DABCO (app. 1:1.3:1.3:4) in CH3CN after 2 h.  The 

peak at -18.6 ppm is TriMP. 

 

 

Figure 4.17.  The 
31

P-NMR spectrum of a mixture of HMC, trimetaphosphate, 

mesitylenesulfonyl chloride and DABCO (app. 1:1.3:1.3:4) after 2 h and quenching with 

water.  The singlet at -19.4 ppm is TriMP. 
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Scheme 4.20.  Formation of triphosphate 4-55 by hydrolysis of intermediate 4-50. 

Although we believe that the reaction proceeds via intermediate 4-50 the route by which 

this intermediate is formed is not clear.  The 
31

P-NMR spectrum of a mixture of TriMP, DABCO 

and 4-36 (1:3:0.9) in acetonitrile after 5 min shows a doublet at -6.3 ppm and a triplet at -20.6 

ppm (see Figure 4.18).  However, after about one hour these peaks are no longer present.  The 

mixture becomes turbid and the 
31

P-NMR spectrum shows a triplet at -31 ppm and a multiplet at 

around -20 ppm possibly consisting of overlapping doublets and triplets (see Figure 4.19).  Since 

it takes 2 h for the coumarin to be completely consumed this data suggests that intermediate 4-50 

might be formed by HMC reacting with more than one intermediate.  It is possible that the 

initially formed mixed anhydride 4-43
198

 reacts rapidly with DABCO to give intermediate 4-56 

and this species may react with HMC to give intermediate 4-50 (Scheme 4.21).  Moreover, 

dimeric or higher order polyphosphates might be formed and these species may also be capable 

of reacting with HMC to somehow give intermediate 4-50. In an attempt to isolate and identify 

the white precipitate formed during the reaction, the same experiment was repeated in absence of 

HMC (2 equiv 4-34, 1.8 equiv 4-36 and 6 equiv. DABCO).  In this case the reaction mixture was 

stirred only for 1 min and was then left undisturbed for 24 h, precipitate started forming after 

about 1h. This precipitate was collected by suction filtration and dried. This precipitate was 

soluble in water with concomitant hydrolysis to TriMP. Its’ 
31

P-NMR spectrum in D2O shows 

only a singlet at -19.6 characteristic of TriMP.  Its 
1
H-NMR shows only a singlet 3.25 ppm 
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proton peaks characteristic of DABCO. This result indicates that this white precipitate consists of 

TriMP and DABCO but does not confirm its exact structure.   

 

Figure 4.18.  The 
31

P-NMR spectrum of a mixture of TriMP, DABCO and 4-36 (1:3:0.9) 

in acetonitrile after 5 min. 

 

 

Figure 4.19.  The 
31

P-NMR spectrum of a mixture of TriMP, DABCO and 4-36 (1:3:0.9) 

in acetonitrile after 1 h. 
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Scheme 4.21.  A possible pathway for the formation of intermediate 4-50. 

 

4.3.6 Attempted synthesis of NTP’s using activated TriMP. 

One of the most widely used approaches to the synthesis of NTP’s involves the 

disconnection shown in Scheme 4.22.  In this approach pyrophosphate reacts with an activated 

NMP donor.  Many activated NMP’s have been used for this purpose some of which have 

already been described in Chapter 2.  Some activated NMP’s (Figure 4.20) such as 

phosphoramidates (4-57),
199

 phosphomorpholidates (4-58),
67

 2,2,2-

tribromoethylphosphomorpholidates (4-59),
200

 phosphoimidazolidates (4-60),
201

 and 

phosphoimidazolium salts (4-61)
8
 and the method that we developed in Chapter 3, section 3.3.4, 

do not require protection of the 2’,3’-OH’s or other nucleophilic groups.
8,163

 Some others do 

require protection of 2’,3’-OH’s such as the cycloSal-nucleotides (4-62),
79

 nucleoside 5`-H-

phosphonates (4-63)
202,203 

and phosphopiperidates (4-64).
204

 In all of the approaches described 

above initial phosphorylation or phosphitylation of the nucleoside is required.   
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Scheme 4.22.  A common disconnection used for the synthesis of NTPs. AG stands for 

activating group. 
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Figure 4.20.  Structures of activated NMP’s used for the synthesis of NTP’s. 

Sometimes the activated NMP donor can be prepared in situ such as in Ludwig and 

Eckstein’s approach (see Chapter 2, section 2.1.3.2.3, Scheme 2.7).
76

  However, their route uses 

protected nucleosides.  Very recently, Huang and coworkers reported an interesting modification 

of Ludwig’s and Eckstein’s procedure (Scheme 4.23).  These workers reacted reagent 2-24 with 

PPi to give intermediate 4-65.  Reaction of 4-65 with an unprotected deoxynucleoside gives 

intermediate 4-66 which is then oxidized and then hydrolyzed to give NTPs in 19-46% yields.  

To maintain the high regioselectivity of 5’-cyclic triphosphite intermediates the reactions 

between intermediate 4-65 and unprotected nucleosides were allowed to run to only 70% 

completion which may, in part, account for the rather low yields.
205 
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One of the most widely used approaches to NTP syntheses, a “one-pot, three-step” route 

developed by Ludwig in 1981,
206

 involves the generation of nucleoside dichlorophosphoridate 4-

67
207

 followed by reaction with tri-n-butylammonium pyrophosphate to give nucleoside 5’-

trimetaphosphate 4-68 which upon hydrolysis yields NTP’s (Scheme 4.24).  Although this 

procedure is widely used the yields are often low because of the formation of various byproducts 

such as nucleoside 3’-triphosphates, nucleoside 5’-monophosphates, 2’,3’-cyclophosphate-5’-

triphosphates, and TriMP.
208-210

 By making some minor modifications to Ludwig’s procedure, 

Kore et al. very recently reported the synthesis of dATP, dGTP, dCTP, dTTP in 65-70% 

yields.
211 
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Scheme 4.24.  Ludwig’s synthesis of NTPs. 

To the best of our knowledge, a regioselective (5’-position), one-step triphosphorylation 

of nucleosides has not been reported in the literature.  Our strategy, as outlined in Scheme 4.8, 

relies on the direct triphosphorylation of nucleosides using an activated form of TriMP followed 

by hydrolysis of the resultant nucleoside 5’-trimetaphosphate.  In our initial trials we used 3,5-

dimethoxybenzyl alcohol (DMBA) as a model substrate because it has a single 1
o
 alcohol group 

and its disappearance could be conveniently followed by TLC.   Reagent 3-11 was added to a 

mixture of TriMP and NMI in DMF and stirred at room temperature for 15 min followed by the 
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addition of DMBA. No reaction occurred even after 72 h (Table 4.4).  The addition of 3 equiv 

DMAP and performing the reaction at 45 
o
C did not help.  Cytidine and adenosine were later 

examined as substrates but again no reaction occurred even when 3 equiv of TEA was added as 

determined by 
31

P-NMR of the reaction mixtures. 

Table 4.4.  Attempted triphosphorylations using activated TriMP. 

O

P
O

P

O
P

-O

O
O-

O

-O

O

P
O

P

O
P

-O

O
N+

O

-O N

3 (n-Bu4)N+

3 equiv 3-11, 5 equiv NMI

DMF, r.t., 15 min. 0 or 3 equiv base
Product

alcohol = DMBA, cytidine,
               adenosine,

3 equiv

1 equiv alcohol

O O

 

Entry R-OH Base Temp (
o
C) Time (h) Product 

1 DMBA - r.t 5 - 

2 DMBA - r.t 24 - 

3 DMBA - r.t 72 - 

4 DMBA DMAP 45 72 - 

5 cytidine - r.t 72 - 

6 cytidine DMAP 45 72 - 

7 cytidine DMAP 70 24 - 

8 cytidine TEA 45 24 - 

9 adenosine - - 45 - 

 

We decided to change the reaction solvent to acetonitrile and use a stronger base such as 

1,8-diazabicyclo[5.4.0]undec-7-ene (DBU).   3 equiv 4-34 was added to a solution of 3 equiv 

TriMP and 3 equiv NMI in acetonitrile and stirred for 15 min at r.t.  A white suspension 

developed in about 3 min.  DMBA was added followed by 5 equiv DBU. The white turbidity 

rapidly dissolved upon addition of the DBU.  The reaction mixture was stirred at room 
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temperature and monitored by TLC.  The DMBA was consumed very slowly under these 

conditions.  

The reaction was repeated except then 3 equiv 4-nitroimidazole was added after the first 

step followed by 5 equiv DBU.  The white precipitate dissolved.  Then DMBA was added and 

the reaction was left stirring at room temperature overnight.  TLC showed complete consumption 

of DMBA after 24 h.  Doubling the amount of 4-nitroimidazole increased the rate of the reaction 

and reduced the time for consumption of DMBA to 10 h.   However, the 
31

P-NMR of the 

reaction mixture was complex (Figure 4.21) and it was difficult to tell if the product was indeed 

formed.  

 

Figure 4.21. 
 31

P-NMR of the crude reaction mixture of 3 equiv 4-34, 3 equiv 4-36, 5 

equiv NMI, 3 equiv 4-nitroimidazole, 5 equiv DBU and 1 equiv DMBA reaction was 

stirred at r.t for 24h and was quenched with TEAA  
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4-Nitroimidazole was used in an attempt to produce intermediate 4-69 (Scheme 4.25) 

which we hoped would be more reactive towards nucleophiles.   We attempted to determine if a 

new intermediate is indeed formed by repeating the reaction but without the addition of the 

DMBA and recording the 
31

P-NMR spectrum of the mixture after 10 min.  Although the 

spectrum, which is shown in Figure 4.22, is different from those seen for either the mixed 

anhydride (4-43) or imidazolium-trimetaphosphate (4-44) (see Figures 4.11 and 4.12) we could 

not tell if the multiplet at approximately 21 ppm corresponded to intermediate 4-69. 

Nevertheless, this result suggests that a new intermediate is indeed formed. 
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Scheme 4.25.  Formation of proposed intermediate 4-69. 
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Figure 4.22.  
31

P-NMR spectrum of a mixture of 3 equiv 4-36, 3 equiv TriMP and 3 

equiv NMI which was stirred for 15 min at room temperature.   3 Equiv 4-nitroimidazole 

was added followed by 5 equiv DBU and the spectrum was recorded 10 minutes later. 

 

We applied the above conditions to nucleosides.  The amount of activated TriMP that was 

generated was reduced to 1.5 equiv because of the presence of more than one hydroxyl groups.  

The reactions were performed by adding 1.5 equiv 4-36 to a mixture of 1.5 equiv 4-34 and 5 

equiv NMI in acetonitrile.  A white suspension is formed immediately after the addition of 4-36. 

The mixture was then left stirring at room temperature for 15 min.  4-Nitroimidazole (3 equiv) 

followed by 6 equiv DBU were added and the solution turned clear yellow.  The nucleoside (1 

equiv) was added to this mixture and the reaction mixture stirred at room temperature until the 

nucleoside dissolves (takes approximately 1 h).  Anhydrous magnesium chloride (1.5 equiv) was 

added and the reaction was stirred for 24 hours. A white precipitate appeared after a few minutes 

and increased with time (only in case of using acetonitrile as solvent).  The reaction was 

monitored by 
31

P-NMR by taking a100 µL aliquots of the reaction mixture quenched with 5% 

EDTA in 100 mM ammonium acetate buffer. Surprisingly, the dominant peak in the 
31

P-NMR 
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spectra was at approximately 22 ppm.  This is characteristic of 2’,3’-cyclic nucleoside 

monophosphates.  The reaction mixture was then cooled to 0
o
C in an ice bath and quenched with 

500 mM ammonium acetate, washed with chloroform and purified by reversed phase column 

chromatography using tri-n-butylammonium acetate-methanol and a Biotage purification system.  

Fractions containing the desired product were pooled together and freeze dried.  Conversion into 

the corresponding ammonium salts using a Dowex -50 W NH4
+ 

column afforded 2’,3’-cyclic 

nucleoside monophosphates 4-7 and 4-70 – 4-72 (Scheme 4.26) as ammonium salts in 64-74% 

yields.   
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3.  1.5 equiv MgCl2, 24 h.

B = Adenine, Guanine,
      Uracil, Cytosine 4-7, B = Adenine, 72%

4-70, B = Guanine 74%
4-71, B = Uracil 70 %
4-72, B = Cytosine 64% 

Scheme 4.26.  Synthesis of 2’,3’-cyclic nucleoside monophosphates. 

 

The reaction can be performed in DMF but in this case the reaction time is longer (about 

48 h). We observed that no precipitation occurs after addition of the anhydrous magnesium 

chloride when DMF is the solvent.  Although the reaction can proceed without anhydrous 

magnesium chloride its presence increases the yield of the reaction (yield for 4-71 without 

MgCl2 is 48% as compared to 70% in case of MgCl2).  3-Nitrotriazole was also tried but found to 

be less effective than 4-nitroimidazole (4-71, 60% as compared to 70% in case of 4-

nitroimidazole).  Low yields are obtained in the absence of any nitroimidazole (less than 10 % 

for 4-71) of product.  A relatively strong organic base such as DBU was found to be necessary.  

It probably deprotonates the hydroxyl groups (partially) of the nucleoside and the 4-

nitroimidazole making them more nucleophilic.  The reaction will proceed with triethylamine in 



148 
 

place of DBU without nitroimidazole in which case a moderate yield of 4-71 was obtained 

(Scheme 4.27).  
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1. 3 equiv TriMP, 5 equiv NMI, 
    3 equiv 4-36, CH3CN, r.t, 5 min.,
2. 6 equiv TEA, 3 equiv MgCl2, 24 h.

4-71 (40%) 

Scheme 4.27.  Formation of 2’,3’-cyclic UMP using TEA as base. 

Compound 4-7 has been previously made by Saffhil using trisodium trimetaphosphate 

and adenosine (see Scheme 4.4).
175

  The proposed mechanism is straightforward: attack of the 

2’-OH or 3’-OH on the TriMP to give triphosphate 4-73 followed by cyclization to give product 

(Scheme 4.28).  Such a mechanism has been proposed by Inoue et al. for the phosphorylation of 

catechol with sodium TriMP.
173
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Scheme 4.28.  Proposed mechanism of formation 2’,3’-cyclic-NMP’s using TriMP. 

 

When using activated triMP the mechanism is not so straightforward.  One can envisage 

an attack of the 2’-OH on the activated TriMP to give 4-74 followed by cyclization and ring 

opening to give 4-75 (Scheme 4.29).  
31

P-NMR of the reaction mixture indicates that the product 

is formed before quenching of the reaction with water.  Perhaps 4-nitroimidazole attacks the 

central phosphorus of 4-75 to give product.  However, one might argue that the 4-nitroimidazole 
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is more likely to attack the ring phosphorus as this ring is highly stained.
212

  More studies will be 

necessary to elucidate the mechanism of this reaction. 
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Scheme 4.29. Proposed mechanism of formation 2’,3’-cyclic-NMP’s using activated TriMP. 

 

To determine what products would be formed using a 2’-deoxynucleoside as substrate we 

reacted 2’-deoxycytidine under the same conditions (adding 1.5 equiv 4-36 to a mixture of 1.5 

equiv 4-34 and 5 equiv NMI in acetonitrile. The mixture was then left stirring at room 

temperature for 15 min.  3 equiv 4-nitroimidazole followed by 6 equiv DBU were added 

followed by 1 equiv of the nucleoside, the mixture was stirred for 1 h followed by adding 1.5 

equiv MgCl2); however, this failed to produce a triphosphorylated product or 3’,5’-cyclic 

cytidine monophosphate, as evidenced by the absence of characteristic 
31

P-NMR signals in the 

quenched crude reaction mixture (Figure 4.23).  We were unable to determine what was being 

formed from this NMR spectrum.  Surprisingly, an attempt to purifiy product(s) from this 

reaction by HPLC resulted only in isolation of a significant amount of deoxycytidine.  
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Figure 4.23.  
31

P-NMR spectrum of the reaction of 1.5 equiv 4-36 to a mixture of 1.5 

equiv 4-34 and 5 equiv NMI in acetonitrile.  The mixture was then left stirring at room 

temperature for 15 min.  3 equiv 4-nitroimidazole followed by 6 equiv DBU were added 

followed by 1 equiv of the 2-deoxycytidine, the mixture was left stirring at room 

temperature for 1 h then 1.5 equiv MgCl2 were added and the reaction was left stirring for 

24 h at r.t. 
31

P-NMR taken for the quenched reaction mixture.  

 

It is difficult to rationalize why no phosphorylated product was isolated from the reaction 

with the deoxycytidine.  The 5’-OH group of a nucleoside should be the most reactive hydroxyl 

group based on sterics.  However, with ribonucleosides, under basic conditions, electrophiles 

often preferentially react at the 2’-OH or 3’-OH rather than at the 5’-OH unless the electrophile 

is very sterically hindered.
213,214

  This may be because there is a higher concentration of the 

conjugate base of the 2’-OH or 3’-OH group compared to that of the 5’-OH group as the pKa of 

the 2’-OH or 3’-OH group is app. 12.5
215,216 

 which is about 2.5-3 pKa units lower than that of the 

5’-OH.
217

  This lower pKa is mainly due to intramolecular H-bonding interactions and inductive 

effects.
216 

 The 2’-OH group is generally more reactive than the 3’-OH group though the reasons 

for this are not very well understood.  It may be that the 5’-OH of the deoxycytidine is not 

nucleophilic enough for reaction with activated TriMP to occur.  Perhaps the activated TriMP 
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reacted with the amino group and this product slowly hydrolyzed back to deoxycytidine upon 

quenching of the reaction with buffer.   

Although we have not yet been able to obtain the NTP’s using activated TriMP we have 

developed a new approach to nucleoside 2’-3’cyclic phosphates.  These compounds are of 

interest as they have been shown to be intermediates during the enzymatic and non-enzymatic 

hydrolysis of RNA.  Although this method is similar to that outlined in section 4.1.1 (see Scheme 

4.4) it is considerably faster (1 day versus 5 days).  Other methods for preparing these types of 

compounds have been developed.  Holy et al. reacted ribonucleosides with triethyl phosphite to 

give the corresponding ribonucleoside phosphites.  These were hydrolyzed to a mixture of 2'- 

and 3'-phosphites and then oxidized to give the corresponding 2',3'-cyclic phosphates in 57-70% 

yields.  The preparation procedure involved two purification steps with DEAE cellulose column 

chromatography.218  Perhaps the most widely used approach to these compounds is that of Chen 

et al.  These workers reacted unprotected ribonucleosides with oxyphosphorane 4-77 (Scheme 

4.30).  This intermediate is hydrolyzed to give the desired cyclic phosphate products in good 

yield after purification by ion exchange chromatography.   The only drawback to this method is 

that phosphorane 4-77 is not commercially available.
219 
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Scheme 4.30.  Synthesis of nucleoside 2’-3’cyclic phosphates by Chen et al. 
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4.4. Conclusions and future work 

In summary, a novel approach to the synthesis of nucleoside 5’-tetraphosphates and 

dinucleoside 5’,5’-pentaphosphates via activation of cyclic trimetaphosphate has been 

reported.
220

 This procedure has several advantages over current methods. Unlike some 

procedures,
88,189

 it does not require protection of the nucleoside or phosphate groups or special 

conditions (i.e. microwaves). Readily available and inexpensive mesitylenesulfonyl 

chloride/NMI can be used as activating agent. It utilizes very inexpensive sodium 

trimetaphosphate as a substrate which is easily converted into its tetrabutylammonium salt in 

almost quantitative yields. It employs NMP’s which are considerably less expensive or easier to 

prepare than nucleoside 5’-di- or triphosphates. The products are relatively easy to purify by RP-

HPLC. Most significantly, the products are produced in excellent yield.  

This study has led to a novel and efficient approach to the synthesis of -labeled 

nucleoside 5´-tetraphosphates in which the terminal phosphate is labelled with a fluorescent dye.  

The procedure is more rapid than previously reported methods, it utilizes relatively inexpensive 

or easily prepared NMP’s as opposed to more expensive NTP’s and the target compounds are 

obtained in excellent yields.   

Finally, although it was not possible to develop a one-step synthesis of NTP’s from 

nucleosides, a new route to nucleoside 2’-3’cyclic phosphates was developed.  The yields are 

comparable to the best literature methods and this approach uses commercially available reagents 

and substrates. 
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Future work in this area should focus on developing a one-step synthesis of NTP’s and 

dNTPs from nucleosides as outlined in Scheme 4.8; however, it looks like we will have to use 

protected nucleosides as substrates (Scheme 4.30).   
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Scheme 4.30.  Proposed route to NTP’s using activated TriMP and protected nucleosides. 

4.5. Experimental 

4.5.1 General Information.  

All reagents and starting nucleotides were obtained from commercial sources unless 

stated otherwise. Strictly anhydrous conditions were found to be essential for obtaining the 

reported yields. Acetonitrile and DMF were distilled from calcium hydride. NMI was distilled 

from sodium hydroxide and stored over 4Å molecular sieves. All reactions were conducted under 

an inert atmosphere of Ar. All NMR spectra were recorded using D2O as solvent. For 
1
H-NMR 

spectra, chemical shifts are reported in ppm relative to the solvent residual peak (δ 4.79). For 

proton-decoupled 
13

C-NMR spectra, chemical shifts are reported in ppm relative to CH3OH in 

D2O (δ 49.5, external standard). For proton-decoupled 
31

P-NMR, chemical shifts are reported in 

ppm relative to aqueous 85% H3PO4 (δ 0 ppm, external standard).  Preparative reversed phase 

chromatography was performed using a Biotage Isolera One Flash purification system equipped 
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with a C-18 reverse phase preparative Biotage 30 g column (used for compounds 4-7, 4-49 – 4-

54, and 4-70 – 4-72.  RP-HPLC was used for the other compounds).  Negative ion high 

resolution electrospray mass spectra were obtained using a high resolution, accurate mass 

Thermo Scientific Q-exactive Orbitrap mass spectrometer.   

4.5.2 Preparation of the tetrabutylammonium salts of NMP’s 

The sodium salts of the nucleotides were converted into their free acids using a Dowex-

50W ion exchange column (H
+
 form) column then titrated to pH 7.0 with a dilute solution of 

tetrabutylammonium hydroxide then concentrated by high vacuum rotary evaporation to 

approximately one seventh the original volume and lyophilized.  The lyophilized powder was 

dried by dissolving it in acetonitrile, an equal amount of dry toluene was added and the solution 

concentrated by rotary evaporation to dryness (3x). The 
1
H NMR spectra of the residue indicated 

that there were 1.7 tetrabutylammonium ions per nucleoside monophosphate.  The residue was 

subjected to high vacuum for 1 h.  The flask was removed under Ar then dissolved in dry DMF 

in the presence of 4Å molecular sieves.  This solution was allowed to stand for at least one hour 

prior to the coupling reactions.   

4.5.3 Preparation of the tris(tetrabutylammonium) trimetaphosphate (4-34). 

P

O
P

O

P
O

OO

O--O

O O-

 (Bu4N+)3

4-34  

The trisodium salt of trimetaphosphate was converted into its pyridinium salt using a 

Dowex-50W ion exchange column (pyridinium form).  Fractions containing the desired 
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pyridinium salt were pooled and then a dilute solution of tetrabutylammonium hydroxide was 

added with stirring until pH 7.0 was reached.  The solution was concentrated by high vacuum 

rotary evaporation to approximately one-seventh the original volume then lyophilized. The 

lyophilized powder was dried by dissolving it in acetonitrile, an equal amount of dry toluene was 

added and the solution concentrated by rotary evaporation to dryness (3x).  The residue was 

subjected to high vacuum for 1 h.  The flask was removed under Ar then dissolved in dry DMF 

in the presence of 4Å molecular sieves.  This solution was allowed to stand for at least one hour 

prior to the coupling reactions. 
31

P-NMR (D2O, 121 MHz): δ -19.16. 

4.5.4 General method for the synthesis of nucleoside-5’-tetraphosphates (4-38 – 4-

41). 

 

Method A: To a solution of 4-34 (195 mg, 0.21 mmol, 2 equiv) in dry DMF (2.5 mL) 

was added NMI (55 mg, 54µL, 0.68 mmol., 5.0 equiv) and mesitylenesulfonyl chloride (reagent 

4-36, 40 mg, 0.18 mmol, 1.8 equiv).  The mixture was stirred at room temperature for 25 min 

then added dropwise with stirring over a period of 30 seconds into a cooled flask (ice bath) 

containing a tetrabutylammonium salt of a nucleoside-5’-monophosphate (0.135 mmol, 1.0 

equiv) in dry DMF (1.5 mL). The ice-bath was removed and the mixture was stirred at room 

temperature for 3h.  The reaction was cooled to 0
o
C (ice-bath) and quenched with 100 mM 

triethylammonium acetate buffer (4 mL, pH 7). The resulting solution was washed with 

chloroform (3 x 10 mL) then left to stand at room temperature for 2 hours. The desired product 

was purified by RP-HPLC using a semipreparative C18 column and a gradient of acetonitrile and 

buffer (50 mM triethylammonium acetate, pH 7) at 6 mL/min and monitored at 265 and 280 nm. 

Fractions containing the desired product were pooled, concentrated by high vacuum rotary 

evaporation, the residue was dissolved in water and repeatedly freeze-dried until the 
1
H-NMR 
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spectrum indicated that no residual buffer was present. The resulting white powders were 

converted into their ammonium salts using a Dowex-50-W ion-exchange resin in NH4
+
 form.   

Method B: The same as method A except 1-benzenesulfonyl-3-methyl-imidazolium 

triflate (reagent 3-11, 68 mg, 0.18 mmol, 1.8 equiv) was used instead of reagent 4-36. 

4.5.5 Characterization data of nucleoside-5’-tetraphosphates (4-38 – 4-41). 

Adenosine-5’-tetraphosphate, tetraammonium salt (4-38).  

4-38

N

N

N

NH2

N

O

OHOH

OP

O

O-

OP

O

O-

OP

O

O-

OP

O

O-

HO

4NH4
+

 

Obtained in 85% yield (75 mg) using method A and in 84% yield (74 mg) using method 

B after purification by RP-HPLC (linear gradient of 100% buffer (pH 7.0) to 9% CH3CN-90% 

buffer over 45 min., tr = 40 min) followed by passage through a Dowex-50-W-NH4
+
 ion 

exchange column. 
1
H-NMR (D2O, 300 MHz): δ 4.07 (s, 2H, H5’), 4.22 (s, 1H, H4’ ), 4.39 (s, 1H, 

H3’), 5.89 (s, 1H, H1’), 7.93 (s, 1H, H2), 8.29 (s, 1H, H8). 
13

C-NMR (D2O, 75 MHz): δ 65.1 (d, J 

= 5.3 Hz), 70.2, 74.1, 83.8, 86.6, 139.7, 152.3, 155.1. 
31

P-NMR (D2O, 121 MHz): δ -5.2, -9.0, -

20.4. TOF MS ES-,  m/z = 585.95 [M - H]
-
. HRMS (ESI-): m/z = 585.9545, C10H16N5O16P4, [M-

H]
-
 requires 585.9543. 
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Cytosine-5’-tetraphosphate, tetraammonium salt (4-39). 

N

NH2

ON

O

OHOH

OP

O

O-

OP

O

O-

OP

O

O-

OP

O

O-

HO

4NH4
+

4-39  

Obtained in 87% yield (74 mg) using method A and 85 % yield (72 mg) using method B 

after purification by RP-HPLC (linear gradient of 100% buffer (pH 7.0) to 6% CH3CN-94% 

buffer over 45 min., tr = 32 min) followed by passage through a Dowex-50-W-NH4
+
 ion 

exchange column. 
1
H-NMR (D2O, 300 MHz): δ 4.10-4.21 (m, 5H, H2’,3’,4’, 5’), 5.80 (d, J = 4.1 Hz 

1H, H1’), 5.99 (d, J = 6.5 Hz, 1H, H5),7.79 (d, J = 7.5 Hz, 1H, H6). 
13

C-NMR (D2O, 75 MHz): δ 

64.6 (d, J = 5.3 Hz), 69.1, 74.0, 82.6 (d, J = 9 Hz), 89.0, 96.2, 141.7, 155.6, 164.4. 
31

P-NMR 

(D2O, 121 MHz): δ -8.12, -9.06 (d, J = 15.3 Hz), -20.72. TOF MS ES-,  m/z = 561.90 [M-H]
-
. 

HRMS (ESI-): m/z = 561.9430, C9H16N3O17P4, [M-H]
-
 requires 561.9430. 

Guanosine-5’-tetraphosphate, tetraammonium salt (4-40).  

NH

N

N

O

NH2
N

O

OHOH
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O

O-
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O

O-
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O

O-
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O

O-

HO

4NH4
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4-40  

Obtained in 84% yield (77 mg) using method A and 84 % yield (77 mg) using method B 

after purification by RP-HPLC (linear gradient of 100% buffer (pH 7.0) to 6% CH3CN over 50 
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min., tr = 41 min) followed by passage through a Dowex-50-W-NH4
+
 ion exchange column.  

1
H-

NMR (D2O, 300 MHz): δ 4.10 (br, 2H, H5’), 4.20 (s, 1 H, H4’), 4.41 (t, J = 4.6 Hz, 1H, H3’), 5.76 

(d, J = 5.9 Hz, 1H, H1’), 7.97 (s, 1H, H8). 
13

C-NMR (D2O, 75 MHz): δ 65.2 (d, J = 5.5 Hz), 70.2, 

73.5, 83.6 (d, J = 9 Hz), 86.6, 116.0, 137.4, 151.5, 153.7, 158.7. 
31

P-NMR (D2O, 121 MHz): δ -

6.87, -9.16 (d, J = 15.7 Hz), -20.61. TOF MS ES-,  m/z = 601.89 [M-H]
- 
. HRMS (ESI-): m/z = 

601.9487, C10H16N5O17P4, [M-H]
-
 requires 601.9492. 

Uridine-5’-tetraphosphate, tetraammonium salt (4-41). 

O

OHOH

OP

O

O-

OP

O

O-

OP

O

O-

OP

O

O-

HO

4NH4
+

NH

N

O

O

4-41  

Obtained in 86% yield (74 mg) using method A and 84 % yield (72 mg) using method B 

after purification by RP-HPLC (linear gradient of 100% buffer (pH 7.0) to 7% CH3CN-95% 

buffer over 45 min., tr = 33 min) followed by passage through a Dowex-50-W-NH4
+
 ion 

exchange column. 
1
H-NMR (D2O, 300 MHz): δ 4.07-4.12 (m, 3H, H5’,4’), 4.22-4.23 (br, 2H, 

H2’,3’), 5.81 (m, 2H, H1’,5), 7.76 (d, J = 8.0 Hz, 1H, H6). 
13

C-NMR (D2O, 75 MHz): δ 64.9 (d, J = 

5.2 Hz), 69.5, 73.5, 83.1 (d, J = 9.0 Hz), 88.1, 102.5, 141.5, 151.7, 166.0. 
31

P-NMR (D2O, 121 

MHz): δ -7.89, -8.92, -20.51. TOF MS ES-,  m/z = 562.89 [M-H]
-
. HRMS (ESI-): m/z = 

562.9273, C9H15N2O18P4, [M-H]
-
 requires 562.9270. 
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4.5.6 General method for the synthesis of dinucleoside-5’,5’-pentaphosphates (2-

54, 4-18, 4-21, and 4-45 - 4-47).  

 

Method A: To a solution of 4-34 in (195 mg, 0.21 mmol, 2 equiv) in dry DMF (2.5 mL) 

was added NMI (55 mg, 54µL, 0.68 mmol., 5 equiv) and mesitylene chloride (reagent 4-36, 40 

mg, 0.18 mmol, 1.8 equiv).  The mixture was stirred at room temperature for 25 min then added 

dropwise with stirring over a period of 30 seconds into a cooled flask (ice bath) containing a 

tetrabutylammonium salt of a nucleoside-5’-monophosphate (0.135 mmol, 0.64 equiv) in dry 

DMF (1.5 mL). The ice-bath was then removed and the reaction mixture was stirred at room 

temperature for 3 h.  A solution of a tetrabutylammonium salt of a nucleoside-5’-monophosphate 

(0.27 mmol, 2 equiv) in dry DMF (3 mL) was added dropwise into the reaction mixture followed 

by the addition of anhydrous magnesium chloride (14 mg, 0.15 mmol, 0.7 equiv).  The mixture 

was then stirred at room temperature for 72 h, cooled to 0
o
C (ice-bath) and quenched by the 

addition of 100 mM triethylammonium acetate buffer (pH 7, 6 mL) containing EDTA disodium 

salt (60 mg, 0.16 mmol, 1.2 equiv).  The resulting solution was washed with chloroform (3 x 10 

mL), then purified by RP-HPLC using a semipreparative C18 column and a gradient of 

acetonitrile and buffer (50 mM triethylammonium acetate, pH 7) at 6 mL/min and monitored at 

255 and 280 nm. Fractions containing the desired product were pooled, concentrated by high 

vacuum rotary evaporation, and the residue was dissolved in water and repeatedly freeze-dried 

until the 
1
H-NMR spectrum indicated that no residual buffer was present. The resulting white 

powder was converted to its ammonium salt using a Dowex-50-W ion-exchange resin in NH4
+
 

form.   

Method B: The same as method A except reagent 3-11 (68 mg, 0.18 mmol, 1.8 equiv) 

was used in place of reagent 4-36. 
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4.5.7 Characterization data of dinucleoside-5’,5’-pentaphosphates (2-54, 4-18, 4-21, 

and 4-45 - 4-47) 

 

P1,P5-diadenosine pentaphosphate, pentaammonium salt (4-18). 

O
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O

O-

O P

O

O-

O P
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5 NH4
+

4-18  

Obtained in 81% yield (110 mg) using method A and 85 % yield (116 mg) using method 

B after purification by RP-HPLC (linear gradient of 100% buffer (pH 7.0) to 12% CH3CN over 

50 min., tr = 43 min) followed by passage through a Dowex-50-W-NH4
+
 ion exchange column.  

1
H-NMR (D2O, 300 MHz): δ 4.15 (br, 4H, H5’), 4.24 (br, 2H, H4’), 4.39 (br, 2H, H3’), 4.50 (d, J 

= 4.8 Hz  5.82 (d, J = 5.4 Hz, 2H, H1’), 7.96 (s, 2H, H2), 8.27 (s, 2H, H8). 
13

C-NMR (D2O, 75 

MHz): δ 65.2 (d, J = 5.0 Hz), 70.1, 74.4, 83.7 (d, J = 9.0 Hz), 86.9, 117.7, 140.2, 148.1, 150.2, 

153.1. 
31

P-NMR (D2O, 121 MHz): δ -8.88, -20.60. TOF MS ES-, m/z 914.95 [M - H]
-
, HRMS 

(ESI-): m/z = 915.0077, C20H28N10O22P5 [M - H]
-
, requires 915.0068. 

P1,P5-Dicytidine-5’-pentaphosphate, pentaammonium salt (4-45). 
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Obtained in 84% yield (108 mg) using method A and 82 % yield (106 mg) using method 

B after purification by RP-HPLC (linear gradient of 100% buffer (pH 7.0) to 10% CH3CN-94% 

buffer over 45 min., tr = 35 min) followed by passage through a Dowex-50-W-NH4
+
 ion 

exchange column. 
1
H-NMR (D2O, 300 MHz): δ 4.15-4.24 (m, 10H, H2’,3’,4’, 5’), 5.82 (s, 2H, H1’), 

6.12 (d, J = 7.1 Hz, 2H, H5), 7.92 (d, J = 7.4 Hz, 2H, H6). 
13

C-NMR (D2O, 75 MHz): δ 64.5 (d, J 

= 4.8 Hz), 69.2, 74.3, 83.0 (d, J = 9.2 Hz), 89.1, 96.0, 142.6, 152.9, 162.3. 
31

P-NMR (D2O, 121 

MHz): δ -8.70 (d, J = 12.4 Hz), -20.2.  TOF MS ES-, m/z 866.95 [M - H]
-
, HRMS (ESI-): m/z = 

866.9838, C18H28N6O24P5 [M - H]
-
, requires 866.9843. 

P1,P5-Diguanosine-5’-pentaphosphate, pentaammonium salt (4-46). 

NH
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O
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4-46  

Obtained in 85% yield (118 mg) using method A and 86 % yield (119 mg) using method 

B after purification by RP-HPLC (linear gradient of 100% buffer (pH 7.0) to 10% CH3CN over 

50 min., tr = 42 min) followed by passage through a Dowex-50-W-NH4
+
 ion exchange column.  

1
H-NMR (D2O, 300 MHz): δ 4.16 (br, 4H, H5’), 4.22 (br, 2H, H4’),4.41 (br, 2H, H3’), 4.50 (br, 

2H, H2’), 5.73 (d, J = 4.8 Hz, 2H, H1’), 8.16 (s, 2H, H8). 
13

C-NMR (D2O, 75 MHz): δ 64.9, 69.8, 

74.0, 83.5 (d, J = 9.0 Hz) , 87.4, 113.8, 136.9, 150.7, 153.8, 157.4. 
31

P-NMR (D2O, 121 MHz): δ 

-9.45 (d, J = 15.2 Hz), -21.3(d, J = 16.9 Hz) . TOF MS ES-, m/z 946.97 [M - H]
-
, HRMS (ESI-): 

m/z = 946.9948, C20H28N10O24P5 [M - H]
-
, requires 946.9966. 
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P1,P5-Diuridine-5’-pentaphosphate, pentaammonium salt (2-54). 

5 NH4
+

O
HO OH
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2-54  

Obtained in 84% yield (109 mg) using method A and 80 % yield (104 mg) using method 

B after purification by RP-HPLC (linear gradient of 100% buffer (pH 7.0) to 9% CH3CN over 45 

min., tr = 39 min) followed by passage through a Dowex-50-W-NH4
+
 ion exchange column. 

1
H-

NMR (D2O, 300 MHz): δ 4.10-4.15 (m, 6H, H4’,5’), 4.22-4.27 (m, 4H, H2’,3’), 5.83 (m, 4H, H1’,5), 

7.79 (d, J = 8.1 Hz, 2H, H6). 
13

C-NMR (D2O, 75 MHz): δ 64.9 (d, J = 5.5 Hz), 69.6, 73.6, 83.3 

(d, J = 9 Hz), 88.0, 102.5, 141.5, 151.7, 166.0. 
31

P-NMR (D2O, 121 MHz): δ -9.88 (d, J = 14.6 

Hz), -21.21. TOF MS ES-, m/z 868.92 [M - H]
-
, HRMS (ESI-): m/z = 868.9528, C18H26N4O26P5 

[M - H]
-
, requires 868.9523. 

P1-Uridine-P5-guanosine-5’-pentaphosphate, pentaammonium salt (4-47).  
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4-47  

Obtained in 77% yield (104 mg) using method B as its pentaammonium salt after 

purification by RP-HPLC (linear gradient of 100% buffer (pH 7.0) to 8% CH3CN over 50 min., tr 
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= 43 min) followed by passage through a Dowex-50-W-NH4
+
 ion exchange column. 

1
H NMR 

(D2O, 300 MHz): δ 4.12-4.29 (br, 5H, H5
,
G,5

,
U,3

,
U), 4.26-4.28 (m, 3H, H3

,
G,4

,
G,4

,
U ) 4.41 (br, 1H, 

H3
,
U), 5.73 -5.83 (m, 3H, H1

,
G, H1

,
U, H5U), 7.73 (d, J = 7.9 Hz, 1H, H6U), 8.03 (s, 1H, H8G). 

13
C 

NMR (D2O, 75 MHz): δ 64.9 (d, J = 5.6 Hz), 65.2,(d, J = 5.2 Hz), 69.5, 70.1, 73.6, 83.2 (d, J = 

9.1 Hz), 83.7 (d, J = 9.0 Hz), 86.7, 88.0, 102.4, 115.6, 137.4, 141.4, 151.6, 153.8, 158.5, 165.9. 

31
P NMR (D2O, 121 MHz): δ -8.91, -20.67 (d, J = 9.9 Hz). TOF MS ES-, m/z 907.93 [M - H]

-
, 

HRMS (ESI-): m/z = 907.9745, C19H27N7O25P5 [M - H]
-
, requires 907.9745 

4.5.8 Preparation of the tetrabutylammonium salts of 5´-AMP, 5´-dAMP, 5´-

dTMP and 5´-dCMP. 

 

The free acids or free acid monohydrates of 5´-AMP, 5´-dAMP, 5´-dTMP and 5´-dCMP 

(0.5 g) were dissolved in distilled deionized water (50 mL) and titrated to pH 7.0 with a dilute 

solution of tetrabutylammonium hydroxide.
221 The solutions were concentrated by high vacuum 

rotary evaporation to approximately one seventh the original volume and lyophilized.  The 

lyophilized powders were stored in the freezer.  An equal amount of dry acetonitrile and dry 

toluene was added to round bottom flasks containing 0.675 mmol (519 mg of AMP, 508 mg of 

2´-dAMP, 502 mg 5´-dTMP and 492 mg of 5´-dCMP) of these nucleotides and the solutions 

concentrated by rotary evaporation to dryness. This was repeated two more times.  The 
1
H-NMR 

spectra of these nucleotides indicated that there was 1.7 tetrabutylammonium ions per nucleoside 

monophosphate.  The nucleotides were subjected to high vacuum for 3 h.  The flasks were 

removed under Ar, the nucleotides dissolved in dry DMF and 4Å molecular sieves were added.  

These solutions were allowed to stand for at least 3 h hour prior to the coupling reactions.   
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4.5.9 Preparation of the tri-n-butylammonium salt of 2´-dGMP. 

 Using the above procedure to prepare the tetrabutylammonium salt of 2´-dGMP from 

commercially available 2´-dGMP disodium salt dihydrate resulted in its decomposition upon 

conversion to its free acid and titration with tetrabutylammonium hydroxide.  Hence the tri-n-

butylammonium salt was prepared using a procedure similar to that developed by Gibson and 

Leonard.
222

  An aqueous solution of 2´-dGMP disodium salt dihydrate (0.5 g in 20 mL distilled 

deionized water ) was applied to a Dowex-50-W column (8-10 grams) in its pyridinium form.  

The eluate was collected in a flask containing 20 mL of ethanol and 1.0 mL of tributylamine.  

The column was washed with water (3 x 30 mL) while collecting the eluate in the above-

mentioned flask.  The resulting solution was stirred for 10 minutes and then concentrated by high 

vacuum rotary evaporation to about one seventh the original volume and then lyophilized. The 

lyophilized powder was stored in the freezer.  An equal amount of dry acetonitrile and dry 

toluene was added to a round bottom flask containing 0.675 mmol (396 mg) of the 

tributylammonium salt and the solution concentrated by rotary evaporation to dryness. This was 

repeated two more times.  The 
1
H-NMR spectrum of the residue indicated that there were 1.3 

tributylammonium ions per nucleoside monophosphate.  The nucleotide was subjected to high 

vacuum for 3 h.  The flask was removed under Ar, the nucleotide dissolved in dry DMF and 4Å 

molecular sieves were added.  This solution was allowed to stand for at least 3 h hour prior to the 

coupling reaction. 
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4.5.10 Preparation of δ-(4-methyl-7-coumarinyl) adenosine 5’-tetraphosphate 

tetraammonium salt (4-49) via intermediate 4-48 (Scheme 4.18). 

 

N

NN

N

NH2

O

OH

OPO

O-

O

P

O

O-

OP

O

O-

OP

O

O-

O
OO

CH3
4NH4

+ OH

4-49  

To a mixture of 4-34 (0.405 mmol, 390 mg) in acetonitrile (4.5 mL) and N-

methylimidazole (0.12 mmol, 97 µL) was added mesitylene chloride (0.36 mmol, 80 mg) at 

room temperature, and the reaction mixture was stirred for 15 min. This solution was withdrawn 

via syringe and injected dropwise over 1 min into a cooled flask (ice bath) containing 

tetrabutylammonium salt of AMP (0.27 mmol, 206 mg) in DMF (3 mL). 7-Hydroxy-4-

methylcoumarin (0.351 mmol, 62.0 mg) and DABCO (0.81 mmol, 91 mg) were added to the 

reaction flask followed by anhydrous magnesium chloride (0.315 mmol, 30 mg). The ice bath 

was then removed and the reaction mixture was stirred at room temperature for 5 h. The reaction 

mixture was then cooled in ice and quenched with 100 mM triethylammonium acetate buffer (pH 

7.0, 6 mL) then washed with chloroform (3 x 10 mL). Chelex resin (ca. 0.1 g) was added and the 

mixture stirred for 1 min then filtered through a cotton plug.  The filtrate was purified by 

reversed-phase column chromatography using a gradient of 100% buffer A (10 mM 

tributylamine-30 mM acetic acid), 0% Buffer B ( methanol, 15 mM tributylamine) to 40% buffer 

A, 60% buffer B over 55 min.  The flow rate was 25 mL/min and monitored at 265 and 280 nm 

(tr = 40 CV). Fractions containing the desired product were pooled, concentrated by high vacuum 

rotary evaporation, and the residue was dissolved in water and repeatedly freeze-dried until the 

1
H-NMR spectrum indicated that no residual buffer was present (four times). The resulting white 
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powder was converted to its ammonium salt using a Dowex-50-W ion-exchange resin in NH4
+
 

form to afford after lyophilization, 99 mg (45%) of the tetraammonium salt of compound 4-49.  

1
H-NMR (D2O, 300 MHz): δ 2.10 (s, 3H, CH3), 4.14 (s, 2H), 4.19 (s, 1H),4.35 (s, 1H),4.46 (t, J 

= 4.5 Hz, 1H), 5.75 (d, J = 4.3 Hz, 1H), 5.89 (s, 1H), 6.8 (s, 1H), 6.92 (d, J = 8.6 Hz, 1H), 7.27 

(d, J = 8.6 Hz, 1H), 7.88 (s, 1H), 8.15 (s, 1H).
 13

C-NMR (D2O, 75 MHz): δ 17.8, 65.0 (d, J = 5.2 

Hz), 70.1, 74.5, 83.5 (d, J = 9.2 Hz), 86.9, 107.9, 108.0, 111.5, 115.6, 117.4 (d, J = 4.5 Hz), 

117.6, 125.9, 140.0, 147.8, 149.8, 152.8, 154.3 (d, J = 6.6 Hz), 155.5, 163.7. 
31

P-NMR (D2O, 

121 MHz): δ -9.02 (d, J = 16.5 Hz), -14.52 (d, J = 14.4 Hz), -21.02 (m). HRMS (ESI-): m/z = 

743.99319, C20H22 N5O18P4 [M - H]
-
, requires 743.99158. 

4.5.11 General method for the preparation of δ-(4-methyl-7-coumarinyl) nucleoside 

5´-tetraphosphate tetraammonium salts (4-49, and 4-51 – 4-54) via 

intermediate 4-50 (Scheme 4.19). 

 

To a mixture of 4-34 (0.54 mmol, 520 mg) and DABCO (1.62 mmol, 180 mg) in dry 

acetonitrile (6 mL) was added mesitylenesulfonyl chloride (0.48 mmol, 106 mg).  The mixture 

was stirred at room temperature for one minute then 7-hydroxy-4-methylcoumarin (HMC, 0.27 

mmol, 48 mg) was added and the reaction mixture was allowed to stir at room temperature for 2 

h.  A white turbidity appears after about 45 min. The reaction mixture was then withdrawn by a 

syringe and injected dropwise over one min into a cooled (ice bath) solution of NMP or 2´-

dNMP (0.675 mmol) and anhydrous magnesium chloride (0.42 mmol, 40 mg) in DMF (7.5 mL).  

The ice bath was removed and the reaction mixture was allowed to stir at room temperature for 3 

h.  The turbidity disappears except in the case of 2´-dCMP or 2´-dGMP.  The reaction mixture 

was then cooled in an ice bath and quenched by adding triethylammonium acetate buffer (pH 

7.0, 8 mL).  The solution was washed with chloroform (3 x 10 mL). Chelex resin (ca. 0.1 g) was 

added and the mixture stirred for 1 min then filtered through a cotton plug.  The filtrate was 
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purified by reversed-phase chromatography using a linear gradient of 100% buffer A (10 mM 

tributylamine-30 mM acetic acid), 0% Buffer B (15 mM tributylamine in MeOH) to 40% buffer 

A, 60% buffer B over 55 min.  The flow rate was 25 mL/min and eluate was monitored at 265 

and 280 nm.  Fractions containing the desired product were pooled, concentrated by high 

vacuum rotary evaporation, and the residue was dissolved in water and repeatedly freeze-dried 

until the 
1
H-NMR spectrum indicated that no residual buffer was present (four times). The 

resulting white powder was converted to its ammonium salt using a Dowex-50-W ion-exchange 

resin in NH4
+
 form.  

4.5.12 Characterization data for δ-(4-methyl-7-coumarinyl) nucleoside 5´-

tetraphosphates 4-49 and 4-51 – 4-54. 

 

δ-(4-methyl-7-coumarinyl) adenosine 5´-tetraphosphate, tetraammonium salt (4-49).   

Compound 4-49 was obtained in 80% yield as its tetraammonium salt (176 mg). 

Characterization data were identical to that reported above when prepared via intermediate 4-48. 

δ-(4-methyl-7-coumarinyl) 2´-deoxyadenosine 5´-tetraphosphate, tetraammonium salt (4-

51).  
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+

4-51  

Compound 4-51 was obtained in 80% (172 mg) yield as its tetraammonium salt.  tr = 32 

min. 
1
H-NMR (D2O, 300 MHz): δ 2.05 (s, 3H), 2.31-2.51 (m, 2H), 4.01-4.08 (m, 3H), 4.56 (s, 

1H), 5.83 (s, 1H), 6.05 (t, J = 6.8 Hz, 1H), 6.82 (s, 1H), 6.94 (dd, J = 9.0, 1.8 Hz, 1H), 7.25 (d, J 
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= 9.0 Hz, 1H),7.79 (s, 1H), 8.07 (s, 1H).
 13

C-NMR (D2O, 75 MHz): δ 17.8, 39.2, 65.3 (d, J = 5.4 

Hz), 71.0, 83.5, 85.4 (d, J = 8.9 Hz), 107. 8, 107.9, 111.4, 115.5, 117.4 (d, J = 4.5 Hz), 125.9, 

139.6, 147.4, 150.5, 152.6, 153.4, 154.2 (d, J = 6.8 Hz), 155.3, 163.5. 
31

P-NMR (D2O, 121 

MHz): δ -9.06 (d, J = 15.7 Hz), -14.77 (d, J = 12.8 Hz), -21.02 (s). HRMS (ESI-): m/z = 

727.99745, C20H22N5 O17P4 [M - H]
-
, requires 727.99666. 

δ-(4-methyl-7-coumarinyl) 2´-deoxy-cytosine 5´-tetraphosphate, tetraammonium´ salt (4-

52).   

O

OH

OPO

O-

O

P

O

O-

OP

O

O-

OP

O

O-

O
OO

CH3
4NH4

+

N

N

NH2

O

4-52  

Compound 4-52 was obtained in 81% (169 mg) yield as its tetraammonium salt.  tr = 31 

min. 
1
H-NMR (D2O, 300 MHz): δ 2.01 (m, 1H), 2.18 (m, 1H), 2.24 (s, 3H), 3.98 (br, 3H), 4.38 

(s, 1H), 5.88 (br, 2H),  6.06 (s, 1H), 7.06 (br, 2H), 7.52 (d, J = 7.6 Hz, 1H), 7.70 (d, J = 6.0 Hz, 

1H).
 13

C-NMR (D2O, 75 MHz): δ 17.9, 39.4, 65.1 (d, J = 5.2 Hz), 70.5, 85.6 (d, J = 9.3 Hz), 

86.0, 95.4, 108.2 (d, J = 5.1 Hz), 111.8, 116.1, 117.6 (d, J = 5.0 Hz), 126.4, 142.8, 150.6, 153.2, 

154.6 (d, J = 6.8 Hz), 155.8, 160.6, 164.0. 
31

P-NMR (D2O, 121 MHz): δ -8.96 (d, J = 9.8 Hz), -

14.77 (d, J = 10.6 Hz), -20.94 (s). HRMS (ESI-): m/z = 703.98597, C19H22N3 O18P4 [M - H]
-
, 

requires 703.98543. 
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δ-(4-methyl-7-coumarinyl) 2´-deoxythymidine 5´-tetraphosphate, tetraammonium salt (4-

53). 
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5-53  

Compound 5-53 was obtained in 82% (174 mg) yield as its tetraammonium salt.  tr = 34 

min.  
1
H-NMR (D2O, 300 MHz): δ 1.64 (s, 3H), 2.07-2.13 (m, 2H), 2.27 (s, 3H), 3.96 (s, 1H), 

4.04 (brs, 2H), 4.43 (brs, 1H), 6.01 (t, 1H),  6.09 (s, 1H), 7.12 (br, 2H), 7.38 (s, 1H), 7.55 (d, J = 

6.0 Hz, 1H).
 13

C-NMR (D2O, 75 MHz): δ 11.5, 17.8, 39.5, 65.3 (d, J = 5.5 Hz), 70.7, 84.6 85.0 

(d, J = 9.2 Hz), 108.1 (d, J = 5.2 Hz), 111.2, 111.7, 116.0, 117.6 (d, J = 5.0 Hz), 126.3, 136.8, 

151.1, 153.2, 154.6 (d, J = 6.9 Hz), 155.8, 163.9, 165.8. 
31

P-NMR (D2O, 121 MHz): δ -9.26 (d, J 

= 15.9 Hz), -14.78 (d, J = 16.3 Hz), -21.09 (s). HRMS (ESI-): m/z = 718.98522, C20H23N2 O19P4 

[M - H]
-
, requires 718.98510. 

δ-(4-methyl-7-coumarinyl) 2´-deoxy-guanosine 5´-tetraphosphate tetraammonium salt (4-

54) 
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4-54  



170 
 

Compound 4-54 was obtained in 82% (180 mg) yield as its tetraammonium salt.  tr = 36 

min. 
1
H-NMR (D2O, 300 MHz): δ 2.10 (s, 3H), 2.34 (m, 1H),  2.42 (m, 1H), 4.06 (m, 3H), 4.54 

(s, 1H), 5.90 (brs, 2H), 6.90 (s, 1H), 7.00 (d, J = 8.6, 1H), 7.33 (d, J = 8.6 Hz, 1H), 7.99 (s, 1H).
 

13
C-NMR (D2O, 75 MHz): δ 17.7, 39.0, 65.2 (d, J = 5.4 Hz), 70.8, 83.9, 85.4 (d, J = 9.0 Hz), 

107. 8 (d, J = 5.5 Hz), 111.4, 113.0, 117.3 (d, J = 4.5 Hz), 126.0, 136.3, 149.7, 152.8, 153.5, 

154.3 (d, J = 6.8 Hz), 155.4, 156.6, 163.5. 
31

P-NMR (D2O, 121 MHz): δ -9.05 (d, J = 15.3 Hz), -

14.77 (d, J = 13.9 Hz), -21.03 (s). HRMS (ESI-): m/z = 743.99260, C20H22N5 O18P4 [M - H]
-
, 

requires 743.99158. 

4.5.13 General procedure for the synthesis of 2’,3’-cyclic nucleoside monophosphates (4-7 

and 4-70 – 4-72) 

 

To a mixture of 4-34 (0.405 mmol, 390 mg) and NMI (1.35 mmol, 108 µL) in 4.5 mL 

acetonitrile added mesitylenesulfonyl chloride (0.405 mmol, 88 mg) at room temperature. White 

turbidity appears after ~2 min. The mixture was stirred at room temperature for 15 min. then 4-

nitroimidazole (0.81 mmol, 92 mg was added followed by DBU (1.62 mmol, 240 µL) added 

dropwise over 2 min. the solution become clear yellowish. Nucleoside (0.27 mmol) was added 

and the reaction mixture was stirred for further 1-2 h where the nucleoside dissolves. Anhydrous 

magnesium chloride (0.405 mmol, 38 mg) was then added to the stirring reaction mixture where 

a white turbidity starts appearing and increased by time. The reaction mixture was allowed to 

stand for 24 h. The reaction mixture was cooled in ice-bath and quenched with 6 mL 500 mM 

ammonium acetate buffer (pH 7.0), washed with chloroform (3 x 10 mL) and filtered through 

cotton and purified by RP-Biotage 12 g column at flow rate of 12 mL per min. using a gradient 

of buffer A (10 mM tributylamine-30 mM acetic acid in ddH2O) and buffer B (15 mM 

tributylamine in methanol). Fractions were monitored under uv at 265 and 280 nm. Fractions 

containing the desired compound were pooled and, concentrated by high vacuum rotary 
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evaporation, and the residue was dissolved in water and repeatedly freeze-dried until the 
1
H-

NMR spectrum indicated that no residual buffer was present (four times). The resulting white 

powder was converted to its ammonium salt using a Dowex-50-W ion-exchange resin in NH4
+
 

form.  

2’,3’-cyclic adenosine monophosphate ammonium salt (4-7) 

N

NN

N

NH2

O

OO

HO

P
O O- NH4

+

4-7  

Compound 4-7 was obtained in 72% yield as ammonium salt (67 mg) using a gradient of 

100 Buffer A to 60% Buffer A and 40% Buffer B over 30 min, tr = 15 min.
 1

H-NMR (D2O, 300 

MHz): δ 3.73-3.77 (m, 2H, H5’), 4.32 (d, 1H, J = 3.3 Hz, H4’), 4.99 (m, 1H, H3’), 5.26 (m, 2H, 

H2’), 6.10 (d, J = 3.9 Hz, H1’), 8.04 (s, 1H, H2), 8.16 (s, 1H, H8). 
13

C NMR (D2O, 75 MHz): δ 

60.9, 77.3, 80.3, 85.1 (d, J = 3.9 Hz), 89.2 (d, J = 3.5 Hz), 118.3, 140.9, 147.7, 150.4, 153.6.
 31

P 

NMR (D2O, 121 MHz): δ 22.92 (s). HRMS (ESI-): m/z = 328.04554, C10H11N5 O6P [M - H]
-
, 

requires 328.04524. 

2’,3’-cyclic guanosine monophosphate ammonium salt (4-70) 
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O

OO

HO

P
O O- NH4

+

4-70

NH

NN

N

O

NH2

 

Compound 4-70 was obtained in 74% yield as ammonium salt (72 mg) using a gradient 

of 100 Buffer A to 65% Buffer A and 35% Buffer B over 30 min, tr = 12 min.
 1

H-NMR (D2O, 

300 MHz): δ 3.70-3.74 (m, 2H, H5’), 4.26 (brd, 1H, J = 4.4 Hz, H4’), 4.97 (m, 1H, H3’), 5.24 (m, 

2H, H2’), 5.95 (d, J = 3.5 Hz, H1’), 7.86 (s, 1H, H8). 
13

C NMR (D2O, 75 MHz): δ 60.8, 77.3, 80.3 

(d, J = 1.8 Hz), 85.0 (d, J = 3.1 Hz), 88.7 (d, J = 4.6 Hz), 116.2, 138.0, 150.9, 153.5, 158.6.
 31

P 

NMR (D2O, 121 MHz): δ 22.47 (s). HRMS (ESI-): m/z = 344.04040, C10H11N5 O7P [M - H]
-
, 

requires 344.04016. 

2’,3’-cyclic uridine monophosphate ammonium salt (4-71) 

O

OO

HO

P
O O- NH4

+

4-71

NH

N

O

O

 

Compound 4-71 was obtained in 70% yield as ammonium salt (61 mg) using a gradient 

of 100 Buffer A to 90% Buffer A and 10% Buffer B over 20 min, tr = 16 min.
 1

H-NMR (D2O, 

300 MHz): δ 3.67-3.80 (m,  2H, H5’), 4.16 (brd, 1H, J = 4.1 Hz, H4’), 4.76 (m, 1H, H3’), 5.00 (m, 
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2H, H2’), 5.71 (d, J = 8.0 Hz, H5),  5.76 (d, J = 2.1 Hz, H1’), 7.57 (d, J = 8.0 Hz, H6). 
13

C NMR 

(D2O, 75 MHz): δ 60.7, 76.9, 80.4 (d, J = 2.2 Hz), 84.9 (d, J = 2.0 Hz), 92.5 (d, J = 6.0 Hz), 

101.9, 143.6, 151.0, 166.1.
 31

P NMR (D2O, 121 MHz): δ 22.54 (s). HRMS (ESI-): m/z = 

305.01827, C9H10N2 O8P [M - H]
-
, requires 305.01802. 

 

 

2’,3’-cyclic cytosine monophosphate ammonium salt (4-72) 

O

OO

HO

P
O O- NH4

+

4-72

N

N

NH2

O

 

Compound 4-72 was obtained in 64% yield as ammonium salt (56 mg) using a gradient 

of 100 Buffer A to 95% Buffer A and 5% Buffer B over 20 min, tr = 10 min.
 1

H-NMR (D2O, 300 

MHz): δ 3.72-3.79 (m,  2H, H5’), 4.22 (brd, 1H, J = 3.0 Hz, H4’), 4.82 (m, 1H, H3’), 5.02 (m, 2H, 

H2’), 5.76 (d, J = 2.0 Hz, H1’), 5.98 (d, J = 8.0 Hz, H5),  7.68 (d, J = 8.0 Hz, H6). 
13

C NMR (D2O, 

75 MHz): δ 60.8, 77.1, 80.8 (d, J = 2.3 Hz), 85.3 (d, J = 2.0 Hz), 93.6 (d, J = 6.0 Hz), 144.7, 

152.9, 163.2.
 31

P NMR (D2O, 121 MHz): δ 22.53 (s). HRMS (ESI-): m/z = 304.03421, C9H11N3 

O7P [M - H]
-
, requires 304.03401. 
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