
A Feature-Oriented Modelling Language

and a Feature-Interaction Taxonomy for

Product-Line Requirements

by

Pourya Shaker

A thesis
presented to the University of Waterloo

in ful�llment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2013

© Pourya Shaker 2013

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required �nal revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Many organizations specialize in the development of families of software systems, called
software product lines (SPLs), for one or more domains (e.g., automotive, telephony, health
care). SPLs are commonly developed as a shared set of assets representing the common
and variable aspects of an SPL, and individual products are constructed by assembling the
right combinations of assets. The feature-oriented software development (FOSD) paradigm
advocates the use of system features as the primary unit of commonality and variability
among the products of an SPL [2]. A feature represents a �coherent and identi�able bun-
dle of system functionality� [89], such as call waiting in telephony and cruise control in
an automobile. Furthermore, FOSD advocates feature-oriented artifacts (FOAs); that is,
software-development artifacts that explicate features, so that a clear mapping is estab-
lished between a feature and its representation in di�erent artifacts. The thesis �rst identi-
�es the problem of developing a suitable language for expressing feature-oriented models of
the functional requirements of an SPL, and then presents the feature-oriented requirements
modelling language (FORML) as a solution to this problem. FORML's notation is based
on standard software-engineering notations (e.g., UML class and state-machine models,
feature models) to ease adoption by practitioners, and has a precise syntax and semantics
to enable analysis.

The novelty of FORML is in adding feature-orientation to state-of-the-art require-
ments modelling approaches (e.g., KAOS [91]), and in the systematic treatment of mod-
elling evolutions of an SPL via enhancements to existing features. An existing feature can
be enhanced by extending or modifying its requirements. Enhancements that modify a
feature's requirements are called intended feature interactions. For example, the call wait-
ing feature in telephony intentionally overrides the basic call service feature's treatment
of incoming calls when the subscriber is already involved in a call. FORML prescribes
di�erent constructs for specifying di�erent types of enhancements in state-machine mod-
els of requirements. Furthermore, unlike some prominent approaches (e.g., AHEAD [11],
DFC [94]), FORML's constructs for modelling intended feature interactions do not depend
on the order in which features are composed; this can lead to savings in analysis costs,
since only one rather than (possibly) multiple composition orders need to be analyzed.

A well-known challenge in FOSD is managing feature interactions, which, informally
de�ned, are ways in which di�erent features can in�uence one another in de�ning the overall
properties and behaviours of their combination [93]. Some feature interactions are intended,
as described above, while other feature interactions are unintended : for example, the cruise
control and anti-lock braking system features of an automobile may have incompatible
a�ects on the automobile's acceleration, which would make their combination inconsistent.

iii

Unintended feature interactions should be detected and resolved. To detect unintended
interactions in models of feature behaviour, we must �rst de�ne a taxonomy of feature
interactions for the modelling language: that is, we must understand the di�erent ways
that feature interactions can manifest among features expressed in the language. The thesis
presents a taxonomy of feature interactions for FORML, which is an adaptation of existing
taxonomies for operational models of feature behaviour.

The novelty of the proposed taxonomy is that it presents a formal de�nition of behaviour
modi�cation; and it enables feature-interaction analyses that report only unintended inter-
actions, by excluding interactions caused by FORML's constructs for modelling intended
feature interactions.

iv

Acknowledgements

I cannot overstate my gratitude to my Ph.D. supervisor, Professor Joanne M. Atlee.
With exemplary integrity and professionalism, and always with a smile, she has generously
supported me throughout my Ph.D. with great ideas, great advice, constant encourage-
ment, and many opportunities for professional development. I have learned a great deal
from her, both professionally and personally, and feel very fortunate to have worked with
her.

I am grateful to Professor Nancy A. Day, Professor Krzysztof Czarnecki, and Professor
Derek Rayside for being on my Ph.D. committee. Their insightful feedback throughout
my Ph.D. has been crucial for the development of this work. I thank Professor Stefania
Gnesi for being the external examiner of my Ph.D. committee. Her valuable comments
have provided a fresh perspective for improving and continuing this work.

I thank Dr. Shige Wang and Dr. S. Ramesh, our collaborators from General Motors,
for their valuable feedback and for providing us with the knowledge and data needed to
apply our approach to the automotive domain.

I thank all of my friends in Waterloo for the good times. The Watform research lab has
been a perfect working environment for me and for this I have my Watform colleagues, past
and present, to thank. Special thanks goes to my good friends and o�cemates Shahram
Esmaeilsabzali and Vajih Montaghami, and to my friends and collaborators Sandy Beidu,
David Dietrich, and Ana Krulec. I thank the wonderful sta� of the Cheriton School of
Computer Science for always being so helpful. I especially thank Margaret Towell and
Wendy Rush for their constant support.

To my aunt, uncle, and cousins in Waterloo and Toronto, I thank you for your love and
support.

To Avin, I thank you for your encouragement, patience, and love, which helped me get
through the hard times and complete this work.

My greatest appreciation goes to my family. Your unconditional love and unwaivering
support �lls me with energy and hope. I dedicate this thesis to you.

v

To Mom, Dad, Ghazaleh, Ali

vi

Table of Contents

List of Tables xiii

List of Figures xv

Acronyms xx

1 Introduction 1

1.1 Background . 1

1.2 Feature-Oriented Modelling of Product-Line Requirements 3

1.3 Feature Interactions in Product-Line Requirements 5

1.4 Thesis Overview . 7

1.4.1 FORML . 8

1.4.2 Feature Interactions in FORML . 10

1.5 Chapter Summary . 11

2 Related Work 12

2.1 Requirements Modelling . 12

2.1.1 Software-Engineering Modelling Languages 12

2.1.2 Multi-View Requirements Modelling Languages 18

2.1.3 Discussion . 21

2.2 Feature-Oriented Artifacts . 21

vii

2.2.1 Compositional Approaches . 21

2.2.1.1 Feature-Oriented Programming 22

2.2.1.2 AHEAD-Based Approaches 22

2.2.1.3 Feature-Oriented ADORA 26

2.2.1.4 FOAs used for Feature-Interaction Management 26

2.2.1.5 Delta-Oriented Programming 30

2.2.2 Structural-Annotation Approaches 31

2.2.3 Variation-Mechanism Approaches 32

2.2.4 Discussion . 33

2.3 Feature-Interaction Taxonomies . 35

2.3.1 Discussion . 37

3 FORML 38

3.1 Running Examples . 39

3.1.1 TelSoft . 39

3.1.2 AutoSoft . 39

3.2 World Model . 39

3.2.1 Entities, Associations, and Compositions 41

3.2.2 SPL, Feature, and Message Concepts 45

3.2.3 Feature Model . 48

3.2.4 World States . 50

3.2.5 World Behaviours . 56

3.2.6 World-Model Constraints . 57

3.2.7 Comparison with UML Class Diagrams 61

3.3 Expression Language . 62

3.3.1 Set Expressions . 64

3.3.2 Integer Expressions . 66

3.3.3 Predicates . 67

viii

3.3.4 Unde�ned Set and Predicate Expressions 69

3.3.5 Parenthesized Expressions . 70

3.3.6 Macros . 70

3.3.7 @pre . 70

3.3.8 Precedence . 71

3.3.9 Comparison with Alloy and OCL 72

3.4 Behaviour Model . 73

3.4.1 FORML State Machines . 74

3.4.1.1 States . 76

3.4.1.2 Transitions . 79

3.4.1.3 Actions . 81

3.4.1.4 Referencing Machine Elements 84

3.4.2 Simple Big Step . 85

3.4.2.1 Updating the world state 86

3.4.2.2 Updating a machine's con�guration 87

3.4.2.3 Simplifying Assumptions 88

3.4.3 Compound Big Step . 89

3.4.3.1 Big step termination . 89

3.4.3.2 @curri expressions . 92

3.4.3.3 Updating the world state 92

3.4.4 Preemptive Transitions and Actions 96

3.4.4.1 Preemptive Transitions . 96

3.4.4.2 Preemptive Actions . 99

3.4.5 Comparison with UML State Machines 100

3.4.6 State-Machine Fragments . 101

3.4.6.1 Modelling the Addition of Requirements to Existing Features103

3.4.6.2 Modelling Intended Interactions 107

ix

3.4.6.3 Modelling Retrospective Intended Interactions 110

3.4.6.4 Modelling Enhancements of Enhancements 111

3.4.6.5 Examples . 115

3.5 Feature Composition . 119

3.5.1 Superimposition . 125

3.5.1.1 feature structure tree (FST)s of FORML Feature Modules 126

3.5.1.2 Merge Operation . 133

3.6 Simple Behaviour Model Semantics . 137

3.6.1 Semantic State-Transition System 138

3.6.2 Semantic States . 139

3.6.2.1 Initial Semantic States . 141

3.6.3 Semantics of Behaviour-Model Expressions 141

3.6.3.1 General Expressions . 142

3.6.3.2 Trigger expressions . 143

3.6.3.3 WCAs . 144

3.6.4 Semantic Transitions . 146

3.6.4.1 Computing the Label . 147

3.6.4.2 Computing the Destination State 152

3.7 Evaluation . 157

3.7.1 Examining FORML's Design . 157

3.7.2 Case Studies . 162

3.7.2.1 The Domains . 162

3.7.2.2 Evaluation of Expressiveness 166

3.7.2.3 Evaluation of Ease of Evolution 168

3.7.2.4 Threats to Validity . 171

3.8 Chapter Summary . 172

x

4 Feature Interactions in FORML 174

4.1 Nondeterminism Interactions . 176

4.1.1 Formal De�nition . 177

4.2 Con�ict Interactions . 178

4.2.1 Formal De�nition . 181

4.3 Modi�cation Interactions . 184

4.3.1 Formal De�nition . 187

4.3.2 Distinguishing Intended Interactions 191

4.3.2.1 Revised Modi�cation Interactions 192

4.3.3 Special Cases . 198

4.3.3.1 Looping Interactions . 199

4.3.3.2 Deadlock Interactions . 200

4.4 Chapter Summary . 202

5 Conclusion and Future Work 204

5.1 Summary of Thesis and Contributions . 204

5.1.1 FORML . 204

5.1.1.1 Contributions . 205

5.1.2 Feature-Interaction Taxonomy . 206

5.1.2.1 Contributions . 207

5.2 Future Work . 207

5.2.1 More Validation . 208

5.2.2 Extending FORML . 208

5.2.3 Feature-Interaction Analyses . 209

5.2.4 Tool Support . 209

APPENDICES 210

xi

A Case-Study Models 211

A.1 Telephony Case Study . 211

A.2 Automotive Case Study . 234

References 251

xii

List of Tables

3.1 World-model constraints speci�ed by concepts 59

3.2 World-model constraints speci�ed by a feature model 60

3.3 World-model constraints adopted as conventions 60

3.4 Atomic set expressions . 64

3.5 Navigation expressions . 65

3.6 Selection expressions . 66

3.7 Conditional expressions . 66

3.8 Basic set-operation expressions . 66

3.9 Integer expressions . 67

3.10 Basic set and integer predicates . 67

3.11 Set-cardinality predicates . 68

3.12 Basic logical-operation predicates . 68

3.13 Quanti�ed predicates . 69

3.14 Unde�ned set and predicate expressions . 69

3.15 Macros . 70

3.16 @pre expressions . 71

3.17 Default precedence order for expressions 72

3.18 Trigger expressions . 80

3.19 inState predicates . 80

3.20 World change actions . 82

xiii

3.21 Abbreviations for the FST node types used in Figures 3.45 to 3.51 127

3.22 The context and scope of object variables in the behaviour-model 141

3.23 The speci�cation of FORML's syntax and semantics 159

3.24 Summary of case studies . 167

xiv

List of Figures

1.1 Overview of a FORML model . 8

2.1 Partial problem diagram for a meeting-scheduling system 14

2.2 Partial conceptual model for a meeting-scheduling system 15

2.3 Partial goal diagram for a meeting-scheduling system 16

2.4 State machine fragment for a meeting-scheduling system 17

3.1 The world-model metamodel . 41

3.2 Entities . 41

3.3 Basic binary associations . 42

3.4 Binary associations with attributes or associations 43

3.5 Associations with more than two roles . 43

3.6 Compositions . 44

3.7 SPL, feature, and message concepts . 45

3.8 The feature-model metamodel . 48

3.9 The feature model notation . 49

3.10 A partial world model for TelSoft . 50

3.11 A possible world state of the world model shown in Figure 3.10 51

3.12 The world state shown in Figure 3.11 represented using sets and functions 55

3.13 A �nite world behaviour of the world model shown in Figure 3.13 56

3.14 An extension of the world state shown in Figure 3.11 63

xv

3.15 A partial behaviour-model metamodel . 73

3.16 The feature module for the basic call service (BCS) feature of TelSoft . . . 74

3.17 A world behaviour of the TelSoft world model shown in Figure 3.10 76

3.18 A world behaviour of the TelSoft world model shown in Figure 3.10 83

3.19 A desired world behaviour speci�ed by simple big steps of a set of machines 85

3.20 Machine con�gurations for the world behaviour shown in Figure 3.18 . . . 87

3.21 A world behaviour of the TelSoft world model shown in Figure 3.10 90

3.22 A desired world behaviour speci�ed by compound big steps of a set of machines 91

3.23 Machine executions for the world behaviour shown in Figure 3.21 93

3.24 A small step involving preemptive transitions 96

3.25 A transition involving preemptive actions 99

3.26 B feature module . 102

3.27 State-machine fragment to specify new regions 104

3.28 State-machine fragment to specify new transitions 105

3.29 State-machine fragment to specify new actions 107

3.30 State-machine fragment to specify weakening clauses 108

3.31 Strengthening clauses . 109

3.32 State-machine fragments to specify new target transitions and actions . . . 111

3.33 New regions, transitions, and (weakening and strengthening) that extend
existing fragments . 113

3.34 State-machine fragment to specify weakening clauses that extend existing
clauses . 114

3.35 State-machine fragment to specify strengthening clauses that extend existing
clauses . 114

3.36 Partial TelSoft world model . 115

3.37 BCS feature module (same as Figure 3.16) 116

3.38 call waiting (CW) feature module . 117

3.39 caller delivery (CD) feature module . 118

xvi

3.40 caller delivery blocking (CDB) feature module 118

3.41 The composition of the feature modules of the features B (Figure 3.26) and
F1 to F7 (Figures 3.27 to 3.33) . 119

3.42 The process composing feature modules into an SPL model 120

3.43 The composition of the feature modules of the TelSoft features BCS, CW ,
CD, and CDB . 122

3.44 Abstract syntax of feature-module FSTs 126

3.45 The feature modules and partial FSTs of features B and F1 128

3.46 The feature module and FST of feature F4 129

3.47 The feature module and FST of feature F8 130

3.48 The partial state machine and FST of a feature F 131

3.49 Merge operation for unordered FSTs . 134

3.50 Partial result of merging feature B's FST and feature F1's FST 135

3.51 Partial result of merging feature F4's FST and feature F8's FST 135

3.52 An execution of [m] . 137

3.53 The formal semantics of inState predicates 142

3.54 The formal semantics of @curri expressions 142

3.55 The formal semantics of trigger expressions 144

3.56 The formal semantics of world-change action (WCA) expressions 145

3.57 Partial evolution of the AutoSoft world model 169

3.58 Partial evolution of the TelSoft world model 170

4.1 Example of a nondeterminism interaction 176

4.2 Example of con�icting actions . 180

4.3 Example of con�icting destination states 180

4.4 Example of a modi�cation interaction . 185

4.5 Example of a modi�cation interaction due to prohibiting behaviour 187

4.6 Example of corresponding initial states . 189

xvii

4.7 Example of bisimilarity in the presence of intended interactions 196

4.8 Example of a looping interaction . 200

4.9 Example of a deadlock interaction . 202

A.1 The feature module of BCS . 212

A.2 The TelSoft world model as evolved by BCS 213

A.3 The feature module of CW . 214

A.4 The TelSoft world model as evolved by CW 215

A.5 The feature module of CD . 215

A.6 The TelSoft world model as evolved by CD 216

A.7 The feature module of CDB . 216

A.8 The TelSoft world model as evolved by CDB 217

A.9 The feature module of call forwarding on busy (CFB) 217

A.10 The TelSoft world model as evolved by CFB 218

A.11 The feature module of call transfer (CT) 219

A.12 The TelSoft world model as evolved by CT 220

A.13 The feature module of three-way calling (TWC) 221

A.14 The TelSoft world model as evolved by TWC 222

A.15 The feature module of group ringing (GR) 223

A.16 The TelSoft world model as evolved by GR 224

A.17 The feature module of ringback when free (RBF) 225

A.18 The TelSoft world model as evolved by RBF 226

A.19 The feature module of teen line (TL) . 227

A.20 The TelSoft world model as evolved by TL 228

A.21 The feature module of terminating-call screening (TCS) 228

A.22 The TelSoft world model as evolved by TCS 229

A.23 The feature module of voice mail (VM) . 230

A.24 The TelSoft world model as evolved by VM 231

xviii

A.25 The feature module of Billing . 231

A.26 The TelSoft world model as evolved by Billing 232

A.27 The feature module of reverse charging (RC) 232

A.28 The TelSoft world model as evolved by RC 233

A.29 The feature module of split billing (SB) . 233

A.30 The TelSoft world model as evolved by SB 234

A.31 The feature module of basic driving service (BDS) 235

A.32 The AutoSoft world model as evolved by BDS 235

A.33 The feature module of cruise control (CC) 236

A.34 The AutoSoft world model as evolved by CC 236

A.35 The feature module of headway control (HC) 237

A.36 The AutoSoft world model as evolved by HC 238

A.37 The feature module of lane change alert (LCA) 238

A.38 The AutoSoft world model as evolved by LCA 239

A.39 The feature module of forward collision alert (FCA) 239

A.40 The AutoSoft world model as evolved by FCA 240

A.41 The feature module of headway personalization (HP) 241

A.42 The AutoSoft world model as evolved by HP 242

A.43 The feature module of speed limit control (SLC) 242

A.44 The AutoSoft world model as evolved by SLC 243

A.45 The feature module of lane centring control (LCC) 244

A.46 The AutoSoft world model as evolved by LCC 245

A.47 The feature module of lane change control (LXC) 246

A.48 The AutoSoft world model as evolved by LXC 247

A.49 The feature module of road change alert (RCA) 248

A.50 The AutoSoft world model as evolved by RCA 249

A.51 The feature module of driver monitoring system (DMS) 250

A.52 The AutoSoft world model as evolved by DMS 250

xix

Acronyms

AHEAD algebraic hierarchical equations for application design. 22�26, 30, 32, 34, 36,
208

AOP aspect-oriented programming. 25, 26

BCS basic call service. xvi, xviii, 26�30, 33, 35, 36, 39, 46, 47, 51, 52, 57, 74, 75, 81, 87,
93, 95�97, 101, 102, 115�118, 123, 162, 163, 166, 168, 176, 186, 192, 199, 212, 213

BDS basic driving service. xix, 39, 49, 164�166, 168, 185, 186, 235

BSML big-step modelling language. 85

CBM composed behaviour model. 137�139, 146, 147, 154, 160, 161, 176�178, 196, 200,
201, 208

CC cruise control. xix, 39, 49, 118, 164�166, 168, 179, 186, 236

CD caller delivery. xvi, xviii, 39, 45, 101�103, 115, 117, 118, 123�125, 163, 215, 216

CDB caller delivery blocking. xvii, xviii, 39, 45, 101�103, 115, 118, 123�125, 163, 166,
172, 216, 217

CFB call forwarding on busy. xviii, 163, 166, 172, 173, 179, 199, 217, 218

CT call transfer. xviii, 163, 170, 171, 219, 220

CTL computation tree logic. 15

CVL common variability language. 31

CW call waiting. xvi, xviii, 39, 96, 101�103, 115�117, 121, 123, 125, 163, 164, 166, 168,
176, 177, 214, 215

xx

DFC distributed feature composition. 27, 28, 34, 36, 208

DMS driver monitoring system. xix, 165, 169, 171, 250

DOP delta-oriented programming. 30, 31, 35

EMTS extended modal transition system. 33

ER entity-relationship. 14, 15, 19, 20, 34, 40

FCA forward collision alert. xix, 164, 165, 239, 240

FOA feature-oriented artifact. iii, 21, 33�37, 175, 202

FODA feature-oriented domain analysis. 33, 34

FOL �rst-order logic. 14

FOP feature-oriented programming. 22, 23, 25, 34, 36

FORML feature-oriented requirements modelling language. iii, iv, ix�xi, xiv, xv, 7�11,
38, 40, 44, 46, 48, 51, 61, 62, 72�76, 79, 84, 85, 96, 98, 100�102, 111, 124, 126, 133,
136, 137, 157�166, 168, 171�175, 184, 187, 191, 195, 196, 199, 200, 202�209, 211, 234

FOSD feature-oriented software development. iii, 1�3, 8, 9, 11, 24, 133, 136, 174, 205,
206

FST feature structure tree. x, xiv, xvii, 24, 125�137, 159, 173, 205, 209

GEMTS generalized extended modal transition system. 33

GR group ringing. xviii, 163, 170, 171, 223, 224

HC headway control. xix, 39, 49, 164�166, 168�170, 179, 237, 238

HP headway personalization. xix, 164, 241, 242

LCA lane change alert. xix, 164, 165, 169, 170, 184�186, 238, 239

LCC lane centring control. xix, 164, 186, 244, 245

LSM layered state machines. 27, 28, 34, 36, 208

xxi

LTL linear temporal logic. 15

LXC lane change control. xix, 118, 164, 165, 184�186, 246, 247

MTS modal transition system. 33

OCL object constraint language. 14�16, 18

RBF ringback when free. xviii, 163, 225, 226

RC reverse charging. xix, 118, 163, 232, 233

RCA road change alert. xix, 165, 248, 249

RE requirements engineering. 2, 3, 7, 11�13, 18, 20, 34, 158

RSEB reuse-driven software-engineering business. 33

SB split billing. xix, 163, 233, 234

SLC speed limit control. xix, 164, 169, 171, 179, 243

SPL software product line. iii, xvii, 1�9, 11, 12, 21, 33�35, 38�40, 45�50, 54, 57, 73, 84,
101, 119�121, 123, 124, 137, 157, 158, 160�162, 168, 172, 173, 196, 201, 204�206, 211

TCS terminating-call screening. xviii, 163, 186, 192, 228, 229

TL teen line. xviii, 39, 46, 163, 179, 227, 228

TWC three-way calling. xviii, 163, 176, 177, 221, 222

UML uni�ed modelling language. 2, 3, 7, 8, 14, 15, 17�20, 24, 33, 40, 42�44, 46, 51, 75,
76, 158, 204, 205

VM voice mail. xviii, 39, 46, 47, 51�53, 163, 170, 171, 186, 230, 231

WCA world-change action. xvii, 81�84, 87, 94, 95, 100, 102, 133, 136, 141, 144�146, 150,
158, 162, 170, 171, 193

WCE world-change event. 79, 80, 100, 143

xxii

Chapter 1

Introduction

1.1 Background

Software product lines (SPLs): Many organizations specialize in developing software
systems for a few domains (e.g., automotive, telephony, health care). In such organizations,
each newly developed software system is often a variant of an already developed system in
the same domain; this results in a family of similar systems, called a software product line
(SPL), for each domain [36]. A common approach to SPL development advocates exploiting
the commonality among the members of an SPL (i.e., products), so as to improve the quality
and productivity of the development process. In this approach, an SPL is developed as
a shared set of assets representing the common and variable aspects of the SPL, and
individual products are constructed by assembling di�erent combinations of assets.

Feature-oriented software development (FOSD): The FOSD paradigm advocates
the use of system features as the primary criterion to identify separate concerns when
developing a single software system or an SPL [2]. A feature represents a �coherent and
identi�able bundle of system functionality� [89]1. Some prominent examples of features are
the call waiting, call forwarding, and voice mail features of a telephone service; and the
cruise control, anti-lock braking system, and four-wheel drive features of an automobile.

In FOSD, features are �rst-class entities throughout the software life cycle. Hence,
features can be used as a shared vocabulary among a diverse group of stakeholders (e.g.,

1A feature can also represent a nonfunctional property of a system or SPL. However, such features are
not considered in this thesis.

1

users, customers, developers) in all life-cycle phases. Two main aspects of FOSD are of
interest in this thesis: (1) FOSD aims to explicate features within software-development
artifacts, so that a clear mapping is established between a feature and its representation
artifacts. (2) In applying FOSD to SPL development, features are the primary unit of
commonality and variability among the products of an SPL; that is, a product is assembled
from a set of common features and a selection of variable features, which together constitute
the product's feature con�guration.

Feature interactions: A well-known challenge in FOSD is managing feature interac-
tions, which, informally de�ned, are ways in which di�erent features can in�uence one
another in determining the overall properties and behaviours of their combination [93].
Some feature interactions are intended : for example, the call waiting feature of a tele-
phone service is designed to override the basic call service feature's treatment of incoming
calls when the subscriber is busy. Some other feature interactions are unintended : for ex-
ample, the cruise control and anti-lock braking system features of an automobile may have
incompatible e�ects on the automobile's acceleration, which would make their combination
inconsistent in the absence of some method of resolution/coordination. Managing feature
interactions involves realizing intended interactions, detecting unintended interactions, and
resolving those unintended interactions that are undesired [93].

The process of managing feature interactions depends on the language in which the
features are described: The language is used to specify intended interactions and possibly
resolutions to unintended interactions. Furthermore, to detect unintended interactions, we
must �rst ascertain and de�ne the taxonomy of feature interactions for the language: that
is, we must understand the di�erent ways that feature interactions can manifest among
features expressed in the language.

Requirements modelling: The requirements engineering (RE) phase of the software-
development process culminates in a speci�cation of the software requirements. Require-
ments are often speci�ed in a natural language. Natural languages are very expressive and
can be easily understood by stakeholders. However, natural-language speci�cations can be
ambiguous, and are not amenable to automatic analyses for checking properties such as
consistency or, in the context of SPL development, detecting unintended feature interac-
tions. Requirements modelling approaches have emerged to address these limitations: such
approaches adapt and extend existing software-engineering modelling languages (e.g., the
uni�ed modelling language (UML) [71]) or propose new modelling languages (e.g., problem
diagrams [49]) for the purpose of specifying various types of requirements information. The

2

requirements models produced using such approaches vary in their degree of formality, and
hence, the degree to which they can be analyzed.

This thesis addresses two problems concerning the application of FOSD to the RE
phase of SPL development: (1) a suitable language for specifying feature-oriented models
of SPL requirements, and (2) the taxonomy of feature interactions for such a requirements
modelling language. The following gives a more detailed description of each problem,
together with descriptions of the limitations of existing work in addressing these problems.

1.2 Feature-Oriented Modelling of Product-Line Require-

ments

We argue that a feature-oriented language for modelling SPL requirements should have
the following properties:

Use of existing standards and best practices: First, any requirements modelling lan-
guage should be based on Jackson and Zave's widely-accepted reference model for RE [50].
This framework de�nes a system's requirements as desired properties and behaviours of
phenomena in a world � comprising the system, as a black box, and its environment � that
are to be brought about by the system and possibly other agents in the world (e.g., hu-
mans, other systems). Following this notion of requirements, a requirements model should
provide a model of the world, in terms of which the requirements are expressed.

Second, the language should adapt and extend standard software-engineering modelling
languages (e.g., UML, feature models [54]). This can ease adoption by practitioners, since
most practitioners are trained in the use of such languages.

Feature modularity: A feature-oriented requirements model should explicate features
by modelling each feature's requirements as a separate feature module. The alternative
approach for explicating features is to associate elements in an integrated model with
the features to which they pertain. Feature modularity enables tracing a feature to the
model of its requirements without tool support, and enables the independent development
of feature modules: authors of di�erent features need not coordinate access to a shared
integrated model, and need not concern themselves with naming con�icts among elements
introduced by di�erent features (each feature module speci�es a local namespace for the
elements within the module).

3

There are two forms of feature modularity: (1) simply localizing a feature's elements
into a feature module, and (2) the classical notion of modularity, in which a feature module
hides details of a feature's behaviour behind a well-de�ned interface. Information hiding
(the second approach) is critical when specifying feature behaviours at the implementation
level. However, at the requiements level, peering into the behaviours of other features is
necessary for understanding and developing feature-interaction requirements. As such, we
argue that the language should support the �rst (weaker) form of feature modularity.

Support for modelling feature enhancements as di�erences: A feature-oriented
SPL is primarily evolved by adding new features. Sometimes, the purpose of a new feature
is to enhance an existing feature. As an example from the automotive domain, various
advanced cruise-control features enhance traditional cruise control with additional criteria
for maintaining the vehicle's speed (e.g., distance from the vehicle ahead, the speed limit).
It is natural to model such enhancements in terms of di�erences from the features being
enhanced. In this approach, the model of the enhanced feature is reused as the context
for expressing the enhancement(s) of the new feature. In addition to the bene�ts of reuse,
this approach has the bene�t of making the task of modelling (at least some features)
smaller and more focused on the new feature's essential enhancements � thereby, easing
some modelling and evolution tasks.

Explicit modelling of intended feature interactions We advocate modelling in-
tended feature interactions explicitly, so that they are more apparent to the modeller and
the reviewer. Explicit models of intended interactions also enable analyses that auto-
matically distinguish between intended and unintended interactions, and report only the
unintended cases; otherwise, analysis results need to be inspected manually to distinguish
between intended and unintended interactions.

Support for multi-product requirements: Some SPLs have requirements associated
with the interaction between multiple products. For example, the requirements of an SPL
of telephone services involve interactions between two or more users' telephone services,
such as the processing of calls between users or the interactions between users' telephone
services and voice-mail services. The language should support the modelling of such multi-
product requirements.

Ease of evolution: Ideally, adding a new feature module to a requirements model should
prompt little to no changes to the existing feature modules.

4

Precision: The language should be precise so that the models are amenable to analyses,
for example, to detect unintended feature interactions.

Commutative and associative feature composition: With feature modularity, fea-
tures are modelled separately. However, the modeller will eventually want to visualize and
(manually or automatically) analyze feature combinations corresponding to products of the
SPL. Models of feature combinations are obtained by composing the corresponding feature
modules. The composition of feature modules should be commutative and associative,
so that the composition result is insensitive to the composition order. Commutative and
associative composition can lead to savings in analysis costs because only one, rather than
(possibly) many, composition order needs to be analyzed; it can ease evolution, because
adding a new feature will not require computing its appropriate position in the composition
order (more on this topic in Section 2.2.4).

There is a wealth of existing work on requirements modelling (e.g., [91, 46, 25, 62]) and
feature-oriented behaviour modelling (e.g., [44, 94, 11, 1, 42]). However, all such approaches
have limitations of varying degrees in satisfying the desired properties given above. For
example, there exist requirements modelling languages that are precise and that are based
on standards and best practices (e.g., KAOS [91] and SCR [46]), but they are not feature-
oriented. On the other hand, existing approaches for feature-oriented behaviour modelling
lack support for explicitly modelling intended feature interactions (e.g., DFC [94]) and a
non-commutative composition operator for feature modules (e.g., DFC and AHEAD [11]).
The non-commutativity of feature composition in existing approaches is typically due to
their use of composition order for realizing intended feature interactions as well as auto-
matically resolving unintended interactions that are unknown. A more detailed account of
existing work on requirements modelling and feature-oriented behaviour modelling, as well
their limitations, is given in Sections 2.1 and 2.2, respectively.

1.3 Feature Interactions in Product-Line Requirements

Feature interactions have been studied for years, and there is extensive work on de�ning
taxonomies of feature interactions. Some taxonomies are informal: for example, Cameron
et al. [21] informally de�ne functional ambiguity as a type of feature interaction that arises
when two features are designed to respond to the same situation in di�erent ways. Other
taxonomies provide formal de�nitions of unintended feature interactions to support analy-
ses for detecting such interactions. Such formal de�nitions naturally depend on the mod-
elling language used to express the features: for example, functional ambiguity as de�ned

5

by Cameron et al. can manifest as logical inconsistency in a logical model and as nonde-
terminism in an operational model. Informal taxonomies tend to be more comprehensive
due to their independence from particular modelling languages.

We argued above that a (feature-oriented) modelling language for SPL requirements
should be precise, so as to support analyses, including the detection of unintended feature
interactions. As such, the taxonomy of feature interactions for such a language should
also be precise. Furthermore, we argue that such a taxonomy should have the following
properties:

Generalized adaptation of existing taxonomies: The taxonomy should adapt ex-
isting taxonomies that are applicable to the modelling language. Speci�cally, it should be
based on taxonomies that were de�ned for languages of the same paradigm (e.g., opera-
tional, declarative) as the requirements modelling language. Furthermore, the taxonomy
should aim for brevity by grouping feature-interaction types into more general types where
possible.

Distinguishing intended feature interactions: Given a requirements modelling lan-
guage with constructs for explicitly modelling intended feature interactions, the taxonomy
should distinguish and exclude the feature interactions caused by these constructs. Such
a taxonomy enables analyses that report only unintended feature interactions.

The majority of existing (formal) taxonomies of feature interactions are associated with
modelling languages that do not support the explicit modelling of intended interactions.
Also, even though a feature interaction is generally considered to be any scenario in which
one feature modi�es the behaviour of another feature, existing taxonomies do not include a
precisely de�ned feature-interaction type that corresponds to this general case of behaviour
modi�cation. Instead, they include various feature-interaction types that are special cases
of behaviour modi�cation. There are two main reasons for this decision: (1) the taxonomies
are developed for analyzers that detect the special cases, and (2) the special cases tend
to be (with high probability) undesired interactions (e.g., looping), whereas the general
case is perhaps likely to include unintended interactions are are acceptable and that do not
need resolutions. A more detailed description of existing feature-interaction taxonomies is
given in Section 2.3.

6

1.4 Thesis Overview

This thesis introduces the feature-oriented requirements modelling language (FORML) for
specifying feature-oriented models of SPL requirements, as well as a feature-interaction
taxonomy for FORML to support the detection of unintended feature interactions at the
requirements level.

Thesis Statement: FORML is a novel language for specifying feature-oriented models
of SPL requirements that exhibits the desired properties described in Section 1.2:

� FORML is based on Jackson and Zave's reference model for RE, in that it provides
a model of the world, in terms of which the requirements are expressed.

� FORML adapts and extends standard software-engineering modelling languages such
as the UML and feature models, to ease adoption by practitioners.

� FORML supports feature modularity to enable the independent development of each
feature's requirements.

� FORML supports modelling a new feature's enhancements of existing features, in
terms of di�erences from the existing features.

� FORML supports the explicit modelling of intended feature interactions.

� FORML supports the modelling of requirements of interactions between multiple
products.

� The evolution of a FORML model is eased by the fact that adding a new feature
module to a FORML model normally prompts few changes to existing feature mod-
ules � even if it speci�es enhancements (including intended interactions) to existing
features.

� FORML has a precise syntax and semantics, which enables analyses, such as the
detection of unintended feature interactions.

� The composition of feature modules in FORML is commutative and associative.

FORML is accompanied by a formal taxonomy of feature interactions, which enables the
detection of unintended feature interactions at the requirements level. This taxonomy
exhibits the desired properties described in Section 1.3:

7

Figure 1.1: Overview of a FORML model (the shrunken models are not intended to be
readable)

� The taxonomy adapts existing taxonomies that are applicable to FORML (i.e., tax-
onomies for operational modelling languages).

� The taxonomy includes a formal de�nition for behaviour modi�cation. Behaviour
modi�cation covers several special cases of feature interactions in existing taxonomies.

� The taxonomy distinguishes and excludes feature interactions caused by FORML's
constructs for explicitly modelling intended feature interactions. This enables anal-
yses that only report unintended feature interactions.

1.4.1 FORML

FORML combines and adapts the best practices for requirements modelling with feature
modularity techniques from FOSD research, to support the feature-oriented modelling of
SPL requirements. A FORML model is decomposed into two views (see Figure 1.1):

� Aworld model is an ontology of concepts that describes a world comprising products
of an SPL � as black boxes � and the environment in which they will operate. The
concepts in the world model are expressed in the UML class-diagram notation.

8

� A behaviour model is a state-machine model that describes the requirements for
an SPL's products. The model's inputs are events and conditions over the world
model, and its outputs are actions over the world model. A behaviour model is
decomposed into feature modules, which separately describe the requirements for the
SPL's features. The syntax for the behaviour model is based on UML state machines.

Contributions: FORML is distinguished from existing requirements modelling and FOSD
approaches in the following ways:

� A FORML world model includes a feature-oriented representation of an SPL's prod-
ucts: FORML introduces SPL and feature concepts to represent products and
their feature con�gurations. Furthermore, a FORML world model includes a feature
model, which speci�es constraints on the valid feature con�gurations of products.

� FORML provides a systematic treatment of modelling feature enhancements as dif-
ferences from existing feature requirements. FORML distinguishes between di�erent
types of enhancements: enhancements that add new requirements in the context of
an existing feature's requirements (e.g., call waiting adds requirements for processing
a second call, in the context of the call-processing requirements of basic call service),
and enhancements that modify the requirements of existing features (e.g., call wait-
ing modi�es the usual busy-treatment of basic call service, by connecting a second
incoming call rather than rejecting it). The latter enhancements correspond to in-
tended feature interactions. Intended interactions are further distinguished based on
whether they trigger, prohibit, or override the requirements of existing features; or
specify an existing feature's priority over other (new or existing) features. In FORML,
an enhancement is modelled as a state-machine fragment that extends the feature
module of the existing feature being enhanced. FORML prescribes di�erent types
of fragments for modelling di�erent types of enhancements. In particular, FORML
introduces novel constructs for modelling requirements overrides in state-machine
models of feature requirements: namely, special transitions that override other tran-
sitions in the same or di�erent state machine, and special transition actions that
override other actions in the same transition.

� The composition of FORML feature modules is commutative and associative, de-
spite models of intended interactions. As is discussed in Section 2.2, existing FOSD
approaches typically sacri�ce commutativity for the sake of modelling intended in-
teractions.

9

Validation: Two case studies have been performed, one from the automotive domain
and one from the telephony domain, with the goals of (1) exploring the expressiveness of
FORML and (2) evaluating the impact of evolving a FORML model with new features.
The second goal is to evaluate the likelihood that a new feature module prompts changes
to existing feature modules and to measure the extents of such changes. The automotive
case study is adapted from GM Feature Technical Speci�cations for a set of 11 automotive
software features. The telephony case study is adapted from the Second Feature Interaction
Contest [59] and comprises 15 telephone-service features.

1.4.2 Feature Interactions in FORML

The proposed taxonomy of feature interactions for FORML is an adaptation of existing
taxonomies for operational models of feature behaviour. The taxonomy consists of the fol-
lowing feature interaction types, which are precisely de�ned to enable analyses for detecting
unintended feature interactions in FORML models:

� A nondeterminism interaction occurs when there is a nondeterministic choice be-
tween a set of concurrently enabled state-machine transitions from di�erent features.

� A con�ict interaction occurs when a set of features try to perform actions or
transitions with inconsistent e�ects.

� A modi�cation interaction occurs when one feature triggers, prohibits, or over-
rides transitions or actions of another feature in the same or in a di�erent product.

Contributions: The taxonomy of feature interactions for FORML makes the following
adaptations to existing taxonomies:

� The notion of a modi�cation interaction generalizes existing feature-interaction types
that are special cases of requirements modi�cation. For completeness, the proposed
taxonomy also includes feature-interaction types that correspond to two prominent
special cases: namely, deadlock interactions, which occur when one feature pre-
vents another feature from executing any transitions or actions in the future; and
looping, which occurs when two features mutually trigger one another's transitions
in an in�nite loop.

10

� FORML's constructs for modelling intended feature interactions cause modi�cation
interactions. To enable feature-interaction analyses that report only unintended mod-
i�cation interactions, the proposed de�nition of modi�cation interactions excludes the
cases caused by such constructs.

Validation: A set of seven examples have been developed of the di�erent feature-interaction
types in the proposed taxonomy: one example of nondeterminism interaction, two examples
of con�ict interaction, and four examples of modi�cation interaction. Six of the examples
are based on the FORML models of the telephony and automotive case studies; the re-
maining example is pedagogical and was created to illustrate deadlock interaction.

1.5 Chapter Summary

This thesis addresses two problems concerning the application of FOSD to the RE phase
of SPL development: (1) a suitable language for specifying feature-oriented models of
SPL requirements, and (2) the taxonomy of feature interactions for such a requirements
modelling language.

The remainder of this thesis is organized as follows. Chapter 2 describes related work
and their limitations in addressing the above problems. Chapter 3 addresses the �rst
problem by introducing the feature-oriented requirements modelling language (FORML)
for specifying feature-oriented models of SPL requirements. Chapter 4 addresses the second
problem by presenting a feature-interaction taxonomy for FORML. Chapter 5 concludes
the thesis and presents possible directions for future work.

An overview of FORML has been published [81] and a description of behaviour modi-
�cation interactions has been submitted for publication [80].

11

Chapter 2

Related Work

This chapter presents a summary of existing work in the related areas of requirements
modelling (Section 2.1), developing feature-oriented artifacts (Section 2.2), and taxonomies
of feature interactions (Section 2.3). The summary of each related area is followed by
a discussion of the limitations of existing work in that area in addressing the research
problems described in Sections 1.2 and 1.3.

2.1 Requirements Modelling

This section describes uses of di�erent software-engineering modelling languages for de-
scribing di�erent types of RE information (Section 2.1.1); followed by approaches that
combine di�erent such uses into a single multi-view language for requirements modelling
(Section 2.1.2). A discussion of the limitations of existing approaches in modelling SPL
requirements in discussed in Section 2.1.3.

2.1.1 Software-Engineering Modelling Languages

Di�erent software-engineering modelling languages support abstractions that are suited
to describing di�erent types of RE information. Such languages help alleviate some of
the problems raised by the use of natural language. First, they provide structure, which
facilitates understanding, navigation, and change. Second, they are semi-formal (i.e., only
part of the syntax may be formal and the language may not have a formal semantics) or
formal, which enables automated analyses ranging from checking that a referenced item is

12

declared to completeness checks and veri�cation of desired properties. On the downside,
software-engineering modelling languages are not as expressive as natural languages, and
understanding their models requires more expertise from stakeholders than do natural-
language descriptions. To address the latter concern, many such languages are graphical,
so as to facilitate communication with stakeholders. The following describes how di�erent
software-engineering modelling languages can be used to describe di�erent types of RE
information. A meeting-scheduling system adapted from [91] is used as a running example.
An objective of this system is to schedule meetings with maximum attendance by invited
persons. Towards meeting this objective, the scheduler is required to produce meeting
schedules that are convenient for all invited persons; that is, the time of a scheduled
meeting should satisfy the availability constraints of invited persons.

Problem Diagrams A problem diagram [49] shows a system in the context of its en-
vironment, as a set of related domains. A domain represents a set of related phenomena:
there is a system domain, shown as a rectangle with two vertical stripes, and a set of
environment domains, shown as simple rectangles. A relationship between two domains,
shown as a line between their rectangles, means that they have shared phenomena; i.e.,
phenomena that belong to both domains. The label of a domain relationship is of the
form D!P , which denotes that the domain D in the relationship controls the set of shared
phenomena P . Finally, a system requirement, shown as a natural-language statement in a
dotted oval, is related to the environment domains that include the environment phenom-
ena referred to and constrained by the requirement. Reference and constraint relationships
are shown as dotted lines and dotted arrows, respectively, between a requirement oval and
a environment-domain rectangle, and are labelled with the corresponding set of phenom-
ena. Figure 2.1 shows a partial problem diagram for the meeting-scheduling system: the
Scheduler, MeetingInfo, and Invitee domains represent the scheduler, information about
a meeting, and a person invited to a meeting, respectively; and the reqConstraints, con-
straints, and date phenomena represent a request from the scheduler to an invitee for his
or her availability constraints, an invitee's availability constraints, and the date of a sched-
uled meeting, respectively. The Scheduler domain controls the reqConstraints and date
phenomena shared with the Invitee and MeetingInfo domains, respectively. The scheduler
requirement refers to the constraints phenomena and constrains the date phenomena of
the Invitee and MeetingInfo domains, respectively.

Conceptual Models A conceptual modelling language can be used to specify a struc-
tural model of phenomena in a world comprising the system and its environment, called

13

 Scheduler Invitee

MeetingInfo

the date of a
scheduled meeting shall
satisfy the constraints of

all invited persons
 b

a

d

c

a: Schedular! {reqConstraints}
b: Scheduler! {date}

c: {constraints}
d: {date}

Figure 2.1: Partial problem diagram for a meeting-scheduling system

a world model. A conceptual world model consists of a set of concepts, each represent-
ing a type of object in the world. A popular instance of conceptual modelling is entity-
relationship (ER) modelling. The core constructs of an ER model [82] are entities, rela-
tionships, and attributes. Entities correspond to concepts. Relationships between entities
represent classes of relationships between entity instances. Each related entity has a par-
ticular role in the relationship. Entities and relationships can characterize their instances
by a set of attributes, where an attribute has a name and a range of values (i.e., a type).
ER models have been adapted into the UML as class models, which introduce additional
constructs such as generalization relationships between entities, and special relationships
such as aggregation and composition. Figure 2.2 shows a partial conceptual model for
the meeting-scheduling system, expressed in the UML class-diagram notation: The classes
Person, MeetingInfo, and Date represent persons that can be invited to meetings, meeting
information, and dates, respectively. Persons are related to the meetings to which they
have been invited (modelled as the Invitation association) and have availability constraints
for each such meeting (modelled as the Constraint association class). An availability con-
straint consists of a set of dates on which a person cannot attend a meeting (modelled as
the association between Constraint and Date). A scheduled meeting will have a date as
soon as all of the invitees have determined their constraints (modelled as the association
between Meeting and Date). An instance of a world model is called a world state. A world
state represents a snapshot of the world; as an example, a world state of an ER world model
consists of a particular set of objects, with particular attribute values and relationships.
An evolution of the world can be discretely represented by a sequence of world states.

Formal Constraints A formal constraint language can be used to declaratively specify
assumptions about the world, as well as the system's requirements. Flavours of classi-
cal logics such as �rst-order logic (FOL) [47] can be used to specify invariants about the
world. Examples of such FOL-based languages include the object constraint language

14

Person

name: String

MeetingInfo

Constraints

inv: self.date->notEmpty() implies
self.Constraints->forall(not avoidDates->includes(self.date))

Invitationinvitee

2..*

*

*

*

Date
avoidDates

*
 0..1

*

*

date

Figure 2.2: Partial conceptual model for a meeting-scheduling system

(OCL) [73] and Alloy [48] constraint languages, which are used to specify invariants over
UML class models and Alloy conceptual models, respectively. Both languages provide
mechanisms for navigating instances of conceptual models. The OCL invariant constraint
on the MeetingInfo class in Figure 2.2 speci�es the following scheduler requirement: the
date of a scheduled meeting (self.date) is not an element of the set of dates to be
avoided as per the constraints of any of the invitees (self.Constraints->forall(not
avoidDates->includes(self.date))). Also, in ER models (including UML class dia-
grams), each entity in a relationship can have a multiplicity, which is an invariant that
constrains the number of instances of the entity that can be related to some set of in-
stances of other entities in the relationship. For specifying constraints on world evolutions,
temporal logic variants can be used: linear temporal logic (LTL) and computation tree
logic (CTL) can be used to specify constraints over sequences and trees of world states,
respectively.

Goal Models A goal model [91] is an and/or tree that speci�es possible re�nements of
the system's high-level requirements. The term goal refers to a declarative speci�cation of
a system requirement. A node of a goal model is either a goal or a declarative speci�cation
of some world assumption. Non-leaf nodes correspond to goals pertaining to the system's
high-level requirements. Such goals cannot be satis�ed by the system alone and need to
be further re�ned. A non-leaf goal is and-re�ned into sub-goals and world assumptions
that should be consistent; taken together, the sub-goals and world assumptions should
satisfy the parent goal. A non-leaf goal may have alternative and-re�nements. A goal is
not further re�ned (i.e., it is a leaf node) if it is either achievable by the system alone or it
is expected to be achieved by some agent in the system's environment. Figure 2.3 shows

15

invited persons shall
attend a scheduled meeting
if it is convenient for them

a scheduled meeting shall
be conventient for all invited
persons

a scheduled meeting shall
have maximum attendance

AND

Figure 2.3: Partial goal diagram for a meeting-scheduling system

a partial goal diagram for the meeting-scheduling system. The diagram shows a possible
and-re�nement of the system's objective of maximizing attendance for scheduled meetings
into two sub-goals: (1) the scheduler requirement that scheduled meetings are convenient
for all invitees, and (2) the world assumption that invitees will actually attend a scheduled
meeting if it is convenient for them.

Operational Models It may be desirable to specify requirements, and possibly world
assumptions, operationally; that is, by explicitly specifying sequences of world states, where
each transition from one world state to the next results from changes to the world made
by the system or by environment agents. Such changes are called operations [25, 62, 91].
An operation can be speci�ed in terms of its name and parameters, and its pre- and post-
conditions on world states of a conceptual world model. If the post-condition comprises
multiple cases, the cases can be structured, such as in a decision table. To avoid the frame
problem [68], an operation's speci�cation may indicate the set of world-state elements that
it modi�es. Usually, an operation's speci�cation does not include its triggering conditions.
The main operation performed by a meeting-scheduling system is to determine the date
of a scheduled meeting. This operation, named determineDate, is speci�ed below. The
meeting information on which the operation is performed is speci�ed as parameter m.
The modi�es clause indicates that the operation will modify only the date of m. The
pre- and post-conditions of the operation are speci�ed in a mixture of English and OCL:
The precondition speci�es that all invitees have determined their constraints for m, and
the post-condition speci�es that the determined date satis�es all of these constraints (a
primed variable denotes an element of the world state after the operation is performed).

16

waitConstraints when(constraints received) /
determinDate(m)

meetingScheduled

request for a meeting schedule m /
request constraints from invited persons

Figure 2.4: State machine fragment for a meeting-scheduling system

determineDate(m:MeetingInfo)

modifies:

m.date

precondition:

constraints received from m's invitees

postcondition:

let d = nearest future date such that

m.Constraints->forall(not excluded->includes(d)) in

m.date' = d

The order and triggering conditions of operation invocations can be expressed using
state-machine models that specify all sequences of world-state transitions that result from
requirements or world assumptions. A typical state-machine model consists of control
states and transitions between control states, where a transition has a triggering event,
a guard condition, and a set of actions that are performed when the transition �res. A
transition �res when its triggering event occurs provided that its guard condition is satis�ed
and the state machine is in the transition's source control state. The behaviour of a system
or environment agent is de�ned as a sequence of the model's transitions. When used for
requirements modelling, the trigger, guard, and actions of transitions express changes to
the world, conditions on the world, and operations on the world, respectively. Figure 2.4
shows a fragment of a state-machine model of the requirements of the meeting-scheduling
system, expressed in the UML state-machine notation. The fragment shows the triggering
conditions for invoking the determineDate operation that is modelled above: the operation
is invoked as soon as the invitees of a scheduled meeting determine their constraints for
the meeting, following a request for scheduling the meeting.

The SCR language [76] is designed to model system requirements. An SCR model con-
sists of a set of variables and a set of tables. There are three types of variables: monitored,
controlled, and mode variables. Monitored and controlled variables constitute a simple

17

world model: controlled variables can be changed by the system, whereas monitored vari-
ables can only be read by the system and are changed by environment agents. An input
event is a change in the value of a monitored variable, possibly conjoined with a guard con-
dition on current values of monitored variables. Each table is a function that describes how
the value of a single variable changes. There are three types of tables: mode-transition,
event, and condition tables. A mode-transition table speci�es how a mode variable V
changes, as a function from the current value of V and an input event, to the next value of
V . Changes to the value of a controlled variable V are speci�ed by either an event table, as
a function from the current values of mode variables and an input event to the next value
of V ; or by a condition table, as a function from the next values of mode and monitored
variables to the next value of V .

2.1.2 Multi-View Requirements Modelling Languages

Some software-engineering modelling languages support describing more than one type
of requirements-related information. For example, the UML (in conjunction with OCL)
and Alloy support specifying a world model, as well as invariants and operations over
world states. The UML also supports state-machine models of requirements or world as-
sumptions. The RE-speci�c languages described above each focus on a speci�c type of
requirements information1. RE methods have emerged that prescribe how to develop a
requirements model using a combination of modelling languages. An important considera-
tion in such methods is ensuring traceability and consistency among requirements model's
di�erent views, expressed in di�erent languages.

Perhaps the most detailed of such methods is KAOS as presented by van Lamsweerde
in [91]. Among software-engineering modelling languages designed for or applied to require-
ments modelling, the KAOS language comes the closest to satisfying the desired properties
described in Section 1.2. For this reason, the following describes some of the distinguishing
properties of KAOS models in relative detail.

A KAOS model is composed of the following interrelated models: an object model, a
goal model, an agent model, an operation model, and a behaviour model2.

1Technically, an SCR model has two views: a world model comprising a set of variables, and a model of
requirements. However, its world model is simplistic and lacks structure. Also, problem diagrams have a
simplistic representation of the world and a natural-language description of requirements. For this reason,
SCR and problem diagrams are not presented as multi-view languages.

2A KAOS model also includes an obstacle model to support risk analysis, where a risk is a condition
that can lead to the non-satisfaction of a system objective. Further detail on this model is not provided
because risk analysis is beyond the scope of this thesis.

18

The object model is an ER world model expressed in the UML class-diagram notation.
In the object model, concepts are grouped into four types: entity, agent, association, and
event concepts. An entity object is persistent (i.e., it exists for longer than an instant)
and has an independent existence. An agent object is like an entity object, except that
it can monitor or control other objects; it represents the system or an environment agent.
An association concept corresponds to a relationship in an ER model. An event object
is transient and represents a change in the world or a world message (e.g., a request or
noti�cation). The object model supports multiplicity constraints and invariant constraints
on world states.

The goal model is as described in Section 2.1.1, with the following additional properties.
The goal model classi�es goals as being behavioural or soft, which is orthogonal to being
functional and non-functional goals. The distinction is that it is possible to determine
conclusively whether a system satis�es a behavioural goal, but one can only determine
the extent to which a system satis�es a soft goal. Behavioural goals that are leaf nodes
in the goal model are assigned to agent objects for realization. A goal model also spec-
i�es potential con�icts between goals; that is, inconsistencies between goals under some
conditions.

The agent model augments the object model to specify properties of agent concepts,
such as their capabilities. A capability of an agent concept A is an attribute or association
X of some concept C that instances of A can monitor or control. Each object attribute
or association can be controlled by at most one agent instance; this is called the unique-
controller constraint.

The operation model describes operations performed by agent objects to realize their
assigned behavioural goals. An operation is speci�ed in terms of intrinsic pre- and post-
conditions, on world states, that hold for all occurrences of the operation. In addition,
an operation description may include goal-speci�c pre- and post-conditions or a trigger
condition � either of which further speci�es the operation in a speci�c context. While
preconditions specify the permission to apply the operation, trigger conditions specify an
obligation to perform it. When the trigger conditions are false, but the preconditions are
true, the operation may or may not be performed, which is a source of nondeterminism.
This nondeterminism can be resolved by a lazy or eager scheme, in which the operation
is or is not performed under such conditions, respectively. As a consistency rule, it is
required that when an operation's intrinsic precondition is true and at least one of its
goal-speci�c trigger conditions is true, then all of the associated goal-speci�c preconditions
must be true. Therefore, all sequences of world states that result from requirements or
world assumptions can be derived from the operation model.

19

A behaviour model includes a state-machine model of the behaviour of agent instances,
which can be derived from the operation model. Speci�cally, the behaviour of an arbitrary
instance of each agent concept A is modelled as a set of concurrent state machines, one
for each attribute or association controlled by the instances of A. Each state of a state
machine corresponds to a set of values of its corresponding attribute or association. The
behaviour model may also include sequence diagrams that show sequences of interactions
between particular agent instances, where an interaction is the synchronous generation and
observation of an event by the source and target of the interaction, respectively.

The goal, object, and operation models can be made formal by expressing world-state
constraints and operation pre-, post-, and trigger conditions using temporal logic.

Two other RE methods that prescribe multi-view languages for expressing require-
ments models are the object-oriented analysis method by Coleman et al., called the Fusion
method [25], and the methodology by Larman for using the UML at the requirements
level [62]; however, these two methods are much less detailed than KAOS. Both the Fusion
method and Larman's method prescribe an extended ER model of the world, and informal
descriptions of system operations over the world model. Fusion formally describes system
behaviours as traces of input and output events, where an input event corresponds to the
invocation of an operation by an external entity, and an output event corresponds to the
response of some system operation that sends a signal/information to external entities in
the world model. Larman uses �system sequence diagrams� to specify system behaviours,
where the interactions are invocations of system operations by actors. A formalization of
Fusion's ER and operation models using the language Z is given in [10].

Finally, Glinz et al. have developed the ADORA language for modelling system re-
quirements and architecture [38]. An ADORA model is an integration of several views:
a context view, which speci�es environment agents that interact with the system; a base
view, which is a hierarchical organization of system and environment objects; a user view,
which speci�es use cases associated with objects; a structural view, which speci�es objects
associations, the information �ow between objects, and relationships between environment
agents and use cases; a behaviour view, which speci�es object behaviours; and a functional
view, which speci�es object operations as pre- and post-conditions. ADORA models can
be semi-formal or formal, depending on whether their textual components are expressed
in a natural language or in a declarative formal language (e.g., predicate logic).

20

2.1.3 Discussion

Existing requirements modelling languages are not feature-oriented, although the KAOS
language comes close: KAOS supports abstractions for structuring system behaviours and
means for representing variability, other than features. The behaviour model in a KAOS
model structures system behaviours in terms of agents. One may consider decomposing a
system into sub-agents, and using the sub-agents to represent features. However, because
no world-state element can be controlled by more than one sub-agent instance (due to the
unique-controller constraint), the sub-agents can only represent features with no shared
context. This restriction is too strong for many domains, including the telephony and
automotive domains. Rather than supporting feature-oriented variability, KAOS models
support variation mechanisms including alternative goal re�nements and alternative as-
signments of goals to agents. In [91], it is explained how such variability mechanisms can
be used to model SPLs: each alternative is annotated with the name of the family member
that it pertains to.

2.2 Feature-Oriented Artifacts

This section describes existing approaches for developing feature-oriented artifacts (FOAs);
that is, approaches for making features explicit in software-development artifacts. Given a
feature selection that speci�es a product of an SPL, an FOA can be statically or dynamically
con�gured into a view that re�ects the product. In static con�guration, a model transfor-
mation is applied to the FOA, generating an artifact that represents the selected family
member. In dynamic con�guration, run-time mechanisms embedded in the (behavioural)
FOA restrict its behaviours to those of the selected family member.

Existing FOA approaches are grouped below into three categories: compositional (Sec-
tion 2.2.1), structural-annotation (Section 2.2.2), and variation-mechanism (Section 2.2.3)
approaches. A discussion of the limitations of existing approaches in developing feature-
oriented requirements models is given in Section 2.2.4.

2.2.1 Compositional Approaches

In most compositional approaches, each feature is speci�ed separately in a feature mod-
ule. These approaches are described in Sections 2.2.1.1 to 2.2.1.4. In an alternative com-
positional approach, each module can specify combinations of features: given a feature

21

selection, all of the modules that specify a subset of the selected features are statically
composed. This approach is described in Section 2.2.1.5.

2.2.1.1 Feature-Oriented Programming

Early work in this category is feature-oriented programming (FOP) [78]. FOP is an exten-
sion of object-oriented programming: rather than specifying �xed object types, a family
of related objects is speci�ed in terms of a set of object features. An object is constructed
by an ordered composition of its desired features; for example, new Fn(Fn-1...(F1)...)

creates an object by �rst adding feature F1, then F2, up to Fn. If feature A overrides
some behaviour of feature B then, when the features are selected together, B's behaviour
should be composed before that of A's. In [78], Prehofer presents an extension of Java
that provides two new constructs: feature and lifter modules. A feature module is a mixin
that speci�es the core behaviour of the feature as a set of attributes and methods. A lifter
module labelled �A lifts B� speci�es how A overrides B's behaviour, when they are selected
together, as a set of overrides of B's feature-module methods; not invoking super in such a
method override represents the suppression of B's behaviour by A. The semantics of these
extensions is given by two translations into Java: inheritance-based and delegation-based.
These translations can be viewed as static-con�guration techniques. Both translations
map each feature selection (i.e., an ordered composition of features) to a single Java class.
In the inheritance-based translation, the class representing the selection Fn(Fn-1...(Fi)...)
encapsulates the core behaviour of Fn (speci�ed in its feature module), as well as its be-
haviour overrides of any feature Fj, n− 1 ≤ j ≤ i (speci�ed in the lifter modules �Fn lifts
Fj�). These classes are arranged into inheritance hierarchies, such that a class representing
Fn(Fn-1...(Fi)...) inherits from the class representing Fn-1(Fn-2...(Fi)...). In delegation-
based translation, the core behaviour of each feature is encapsulated in a separate class.
The class representing a feature selection collects the methods of the selected feature mod-
ules and has a pointer to an instance of each selected feature's class. The implementation
of each collected method that is not overridden in the selection simply delegates to the
feature class's method. The implementation of an overridden method is a nesting of the
implementations of the corresponding lifters, which may nest a call to the corresponding
feature class's method.

2.2.1.2 AHEAD-Based Approaches

Another important body of research in this category is a class of incremental-software-
development (ISD) approaches based on the algebraic hierarchical equations for application

22

design (AHEAD) model [11]. AHEAD has its roots in the GenVoca model, in which a
program is constructed as a re�nement chain of feature modules.

GenVoca: In the GenVoca model, the root of a re�nement chain is a constant feature
module, which is a set of classes. Other elements in the re�nement chain are function
feature modules, which consist of classes and class re�nements. A class re�nement is a
mixin that can add attributes and methods to an existing class, and can also override the
class's existing methods. The composition of a function feature module with a program
results in a re�ned program that is extended with the feature's classes, and is re�ned with
the feature's class re�nements. As in FOP, if a feature module A includes a re�nement
of class C, it must be composed after the feature B that introduces class C. A method
override in this re�nement represents an override of B's behaviour by A. Again, not
invoking super in a method override represents the suppression of B's behaviour by A.

One implementation of the GenVoca model is the Jak language, which extends Java
with syntax for denoting class re�nements and for labelling classes and class re�nements
with the name of their feature module. Jak supports two kinds of static con�guration, given
an ordered composition of feature modules Fn(Fn-1...(Fi)...). In the �rst kind (provided by
the jampack tool), the resulting program comprises the union of the classes of the composed
features, where a class C of a feature Fj, n − 1 ≤ j ≤ i has been re�ned, in order, by
the corresponding class re�nements of features Fj−1 to Fn. The re�nement of a method
m with an overriding method results in replacing m's body with the overriding method's
body, with the invocation of super replaced with m's original body. In the second kind
(provided by the mixin tool), an inheritance hierarchy is generated for each class C of each
composed feature, where C is at the root of the hierarchy, and the last class re�nement
applied to C in the composition is at the bottom of the hierarchy.

AHEAD: AHEAD generalizes GenVoca, in that it applies to hierarchies of artifacts,
called collectives, instead of individual programs. Similarly to GenVoca, a collective is
constructed as a re�nement chain of feature modules. Each artifact in a collective has a
name and a type (e.g., an artifact �X� of type program). An artifact type may be desig-
nated as compound, in which case, it can have sub-artifacts (e.g., a package of programs).
An AHEAD constant feature module is a collective whose non-compound nodes are base
artifacts. A base artifact can be a GenVoca constant feature module, or any artifact whose
structure can be mapped to a set of classes. For example, a BNF grammar can be mapped
to a class by mapping tokens to attributes and productions to methods. An AHEAD
function feature module is a collective whose non-compound nodes are base artifacts and

23

artifact re�nements. Analogously to base artifacts, an artifact re�nement can be a Gen-
Voca function feature module, or any artifact whose structure can be mapped to a set of
classes and class re�nements. Because AHEAD feature modules are collectives, an AHEAD
re�nement chain is an ordered composition of collectives. Two collectives are composed
by superimposition: Starting with the root, a pair of nodes from the two hierarchies are
merged if they have matching names and types. Two compound nodes are merged by
recursively merging their children where possible, and adding any unmerged children to
the merged compound node3. Two non-compound nodes are merged either by a compo-
sition analogous to the jampack composition of Jak programs, which is applicable to any
AHEAD artifact; or by a composition speci�c to the artifact type of the nodes (e.g., mixin
composition for Jak programs). Apel et al. [6] have abstracted the ideas of AHEAD into an
FOSD algebra, in which feature modules are represented as feature structure trees (FSTs)
that are composed by superimposition. An FST is an abstraction of a collective, in which
base artifacts and artifact re�nements can themselves be designated as compound nodes
and be further decomposed. For example, a GenVoca program can be decomposed into its
constituent classes, which themselves can be decomposed into their constituent attributes
and methods.

Examples of the application of AHEAD and its abstraction [6] to non-code artifacts
can be found in [88] and [1]. In [88], Trujillo et al. report on a case study in which AHEAD
is used in the context of model-driven development [88]. In this work, the AHEAD model
of re�nement is used for both code (e.g., Jak and JPS code) and non-code (e.g., XML)
artifacts, in conjunction withmodel derivations that transform one model format to another
(e.g., one XML format to another, XML to Jak code, and XML to JSP code). In [1], Apel
et al. describe FST-based modelling and composition for UML class, state-machine, and
sequence diagrams. In this work, the non-compound elements of class and state-machine
diagrams (e.g., attributes, associations, and transitions) are merged by replacing existing
elements with re�nement elements. In sequence diagrams, interactions are ordered and
each have unique names, and are therefore composed by concatenation.

AHEAD extensions: AHEAD has been extended in several ways. Kuhleman et al. [60]
have investigated non-monotonic features and their composition. In addition to adding
members to classes and overriding methods, non-monotonic features can additionally re�ne
classes by renaming and deleting their members. Such features typically encapsulate object-
oriented refactorings. Liu et al. [66] proposed separating a feature's re�nement of an
optional feature into a derivative feature module. In this sense, a derivative is similar

3It is assumed that the root of all feature modules have the same name and type, which is compound.

24

to a lifter in FOP. However, derivatives di�er from lifters in that they are themselves
feature modules and are composed with other feature modules by superimposition. Also,
there exist higher-order derivatives that represent behaviour overrides due to more than
one feature. Rosenmuller et al. [79] have proposed a dynamic con�guration approach
for AHEAD-based FOP. In this approach, the re�nement chain of feature modules is
transformed into a set of decorator-pattern instances, one instance for each re�ned class.
The decorator pattern enables adding (removing) behaviour, encapsulated in a decorator
class, to (from) instances of the decorated class at run-time. In [79], the decorators are
re�nements of the decorated class.

Apel et al. [4] have investigated the relationship between AHEAD-based FOP and
aspect-oriented programming (AOP) [58]. AOP aims at modularizing crosscutting con-
cerns4. The idea is that the concern-space of a program is multi-dimensional. A program
is decomposed into modules based on the criteria of localizing the implementations of
concerns along some �main� dimension of the program's concern-space. As a side-e�ect
of this decomposition, the implementations of concerns along other dimensions get scat-
tered across the modules; in other words, they crosscut the module boundaries. AOP
introduces aspects as a unit of modularity for localizing crosscutting concerns relative to
a base program. An aspect can a�ect the base program at multiple join points by pieces
of code called advice. A join point is either a structural element of the base program (aka
a static join point), or a point in its execution (aka a dynamic join point). An advice
a�ects a static (resp. dynamic) join point by adding (resp. executing) the advice code
at the join point. The set of join points at which an advice is to be applied is speci�ed
by a pointcut. Apel et al. point out that features are often cross-cutting concerns; that
is, the implementation of a feature often crosscuts an object-oriented program. Feature
modules localize this implementation by grouping together classes and class re�nements
that realize the feature. It would appear that feature modules and aspects are competing
technologies. However, it is argued in [4] that they have complementary strengths and
weaknesses. First, feature modules are suited to localizing heterogeneous crosscuts, which
apply distinct advice (borrowing AOP terminology) at each join point. Aspects on the
other hand are suited to localizing homogeneous crosscuts, which apply the same advice at
several join points. On the �ip side, using feature modules for homogeneous crosscuts leads
to code replication, and using aspects for heterogeneous crosscuts hinders traceability from
each distinct advice to the a�ected join point. Second, feature modules have good support
for advising static join-points, but very limited support for advising dynamic join-points,

4A concern is some issue that is of interest to stakeholders. This de�nition is very close to that of a
feature. According to [4], �all features are concerns (possibly crosscutting concerns), but not all concerns
are features of a domain�.

25

in the form of method overrides. Aspects (as available in the popular AOP language As-
pectJ [57]), have rich support for advising dynamic joint-points, but limited support for
advising static join-points, in the form of inter-type declarations. To exploit the strengths
of both approaches, Apel et al. propose aspectual feature modules ; that is, feature modules
that include aspects as another artifact type. In this approach, aspects themselves can be
re�ned following the AHEAD model. This idea has been implemented in the FeatureC++
language [3].

2.2.1.3 Feature-Oriented ADORA

Meier et al. have proposed an extension of the ADORA requirements modelling language
(see Section 2.1.2) that enables crosscutting concerns to be localized as aspects [69]. With
respect to the behaviour view, an aspect can specify that a new state-machine transition
should apply before, after, or (unconditionally) instead of an existing state-machine tran-
sition. Stoiber et al. further extended the approach to associate each aspect with a feature
of a product line [83]. The ADORA model representing a particular feature selection is
obtained by statically composing the corresponding aspects with a core ADORA model.
Valid feature selections are speci�ed in a tabular representation of a feature model.

2.2.1.4 FOAs used for Feature-Interaction Management

Feature-interaction management (i.e., detecting unintended interactions, deciding whether
they are desired, and resolving undesired interactions) has been studied extensively for
years [15]. Research in this area has its roots in, and has primarily focused on, the do-
main of telephony systems. However, there exist approaches that are more general and are
not speci�c to the telephony domain (e.g., [61]). Most feature-interaction management ap-
proaches formally specify the behaviour of each feature in a feature module, and analyze the
composition of the feature modules (one exception is [19], which is a variation-mechanism
approach, discussed in Section 2.2.3). In the telephony domain, most features are optional,
incremental units of functionality [93] that are enhancements to the basic call service (BCS).
Many approaches specify BCS in a separate module (e.g., [94, 42, 16, 65, 44, 26, 87]),
whereas some embed BCS in each feature speci�cation (e.g., [37, 34]). In the latter ap-
proaches, a feature's suppression of BCS behaviour is speci�ed implicitly in the feature
module, which is an integrated model of the behaviour of both the feature and BCS. In the
former approaches, various mechanisms are used to model such behaviour suppressions, as
discussed below.

26

In [18], Calder et al. group feature-interaction management approaches into those
whose feature speci�cations are a set of declarative properties (e.g., [37, 34, 61]), those
whose speci�cations are operational models (e.g., [94, 42, 42, 16, 65, 44]), and those that
are both (e.g., [26, 87]). The composition of feature and BCS modules is mostly dynamic.
One exception is [42], where feature modules are merged statically. The following are a
few existing approaches for dynamically composing feature modules.

Architecture: One approach is to compose feature and BCS modules as �plug-ins� to an
architecture. Examples include distributed feature composition (DFC) [94] and layered
state machines (LSM) [16], which are both adaptations of the pipe-and-�lter architectural
style. Here, the �lters are feature or BCS module instances, which process events (e.g.,
telephony signals) in order of precedence along a pipe.

In DFC, upon a call request from one network address to another, instances of feature
and BCS modules (DFC boxes) are assembled dynamically into a usage graph by the DFC
router. A usage graph is typically a linear chain of DFC boxes, terminated at each end by
the BCS modules for the caller and callee. The nodes in this graph are DFC box instances,
and the edges are internal calls between these instances. An internal call comprises a
two-way FIFO signalling channel and some media channels. Each network address is
associated with a persistent BCS instance. A usage graph is assembled as follows: When
a call request is made from address A to B, the BCS instance of A sends an internal call
request, carrying the source and target of the call (in this case A and B) to the DFC router.
Based on the feature subscriptions of A and B and feature-precedence relationships, the
DFC router establishes an internal call to the next feature instance in the chain � the last
of which is the target BCS. As each feature instance is added to the usage, it can continue
the usage graph by sending its own internal call request to the DFC router. In doing
so, the feature instance can provide source or target values that di�er from those in its
received internal-call (this is called address translation). Alternatively, it can discontinue
the graph by tearing down its received internal call. This process continues until the usage
is completely assembled with the internal call to the target BCS instance. During a call,
a feature can act transparently by simply relaying signals between its internal calls with
neighboring boxes; or it can take autonomous actions such as consuming signals (rather
than propagating them along the chain) and generating new signals. The usage graph may
change during a call, due to box instances requesting new internal calls or tearing down
existing ones.

In LSM, a BCS or feature module is represented by one or more state machines. For
example, the BCS module is represented by an originating and a terminating state machine.

27

When a call is made, a call stack is created for each user in the call. At the bottom of each
stack is an instance of the originating or terminating state machine of the BCS module,
depending on the role of the user in the call. On top of these are state-machine instances
of features selected by the user, in order of precedence. Events travel up and down the call
stack and are processed by state-machine instances in order. As in DFC, a state-machine
instance can act transparently, or autonomously by consuming or generating events, or
performing actions such as asserting an invariant, establishing a connection, and giving
resources to users. Events can be to or from the network or users. Additionally, when a
state-machine instance wants to make a transition, it �rst sends a transition noti�cation
event through the call stack from the top; it takes the transition only if this event traverses
back to the state-machine instance (i.e., higher-priority features do not prohibit this event).

In DFC and LSM, a feature module's autonomous actions represent overrides of BCS
behaviour. In particular, consuming a signal sent by or aimed at a BCS instance repre-
sents a suppression of BCS behaviour. In DFC, an address translation also represents an
override of BCS behaviour: address translation e�ectively suppresses the BCS behaviour of
specifying the original source or target of the call, which in turn changes the planned usage
graph starting at the point of the address translation. In DFC, such overrides are speci�ed
by changing the signals to or from a BCS instance. However, in LSM, a feature can also
prevent a particular transition of the BCS state machine from executing by consuming the
corresponding transition-noti�cation event.

Custom composition operator: A second approach is to compose feature and (if ap-
plicable) BCS modules by a custom composition operator. Examples include [61] by Laney
et al., [44] by Hay and Atlee, and [42] by Hall, which adapt a composition operator pro-
vided by an existing formalism. In the approach by Laney et al., feature modules are
expressed as event-calculus properties (a form of explicit-time temporal properties) and
are composed by variants of logical conjunction. The variants behave di�erently from reg-
ular conjunction, and from each other, when one operand generates an event prohibited
by the other. The latter is a manifestation of an unintended feature interaction. The
variant �conjunctions� realize di�erent resolutions of the interaction including prohibiting
the event, ignoring the prohibition, or allowing any behaviour depending on the event and
on the relative priorities of the operand features. In Hay and Atlee's approach, feature
modules are expressed as state machines composed by a variant of parallel composition.
Similar to the Laney et al. approach, the operator semantics di�ers from parallel compo-
sition in the case of unintended feature interactions. Speci�cally, when two feature state
machines concurrently perform con�icting actions, only the action of the higher-priority
feature is allowed to execute; and when the action of one feature state machine violates

28

an assertion raised by another feature state machine, the action is disallowed, unless the
violating feature is of higher priority. The priority relationship between features is a pa-
rameter of the composition operator. A similar composition operator is de�ned by Hall,
between the feature state machine (which results from statically merging the selected fea-
ture state machines) and the BCS state machine, which gives priority to feature actions
when the feature and BCS state machines concurrently perform con�icting actions.

In the above approaches, the composition operator resolves unintended feature inter-
actions between a pair of features by suppressing the behaviour of one of the interacting
features. The choice of which feature's behaviour to suppress is based on the parameters
of the composition operator; for example, feature-priority relationships. Note that even
though suppressions of BCS behaviour by enhancement features are intended, the Hay-
Atlee and Hall approaches do not make this intention explicit; instead, such overrides are
treated as resolutions to unintended feature interactions. Also, such resolutions are coarse-
grained: any action of a higher-priority feature will override a con�icting action from a
lower-priority feature regardless of the action.

Existing composition operator: A third approach is to use composition operators
provided by the language in which the feature and (if applicable) BCS modules are ex-
pressed. Examples include [37] by Gammelgaard et al., [34] by Felty et al., [26] by Combes
et al., [87] by Thomas, and [90] by Turner et al. In the approaches by Gammelgaard et
al. and Felty et al., individual feature modules are expressed as the logical conjunction of
a set of �rst-order and temporal-logic properties, respectively. Two feature modules are
composed by logical conjunction. In the approach by Combes et al., a feature or BCS
module is expressed as an SDL process, and a set of temporal-logic properties. An execu-
tion of the model comprises one instance of each SDL process per subscriber. The process
instances are composed by parallel composition, and the feature instances (SDL processes)
of a subscriber can communicate with the corresponding BCS instance (another SDL pro-
cess) by asynchronous message passing. The temporal-logic properties are composed by
logical conjunction. The parallel composition of a subscriber's feature and BCS instances
should satisfy the logical composition of the corresponding temporal-logic properties. In
the approach by Thomas, a feature or BCS module is expressed as a LOTOS process and
a set of temporal-logic properties. There is one feature or BCS process per user; the pro-
cesses of a user are composed by the LOTOS choice operator, and they synchronize over
shared events and variables. As in the Combes et al. approach, the temporal-logic prop-
erties are composed by logical conjunction; and the composition of a user's feature and
BCS-processes should satisfy the composition of the corresponding temporal-logic proper-
ties. In the approach by Turner et al., telephony features are modelled using the Appel

29

language: Each feature is modelled as a set of rules, where a rule comprises a trigger, a
guard condition, and a set of actions. The rules of the same or di�erent features can be
composed using Appel's sequence, parallel, and choice composition operators. ter Beek
et al. [85] have built on this work by translating features expressed in Appel into UML
state machines to detect con�icts between the actions of di�erent features.

In the approaches by Gammelgaard et al. and Felty et al., a feature's suppression of
BCS behaviour is speci�ed implicitly in the feature module, which is an integrated model
of the behaviour of both the feature and BCS. The SDL and LOTOS languages do not
have direct support for suppressing the behaviour of a process (instance); therefore, the
Combes et al. and Thomas approaches specify a feature's suppression of BCS behaviour
indirectly. In the Combes et al. approach, behaviour suppression is speci�ed following the
AIN model [12]: between call-processing steps s1 and s2, a user's BCS-process instance b
invokes a feature-process instance f by sending it a message, and awaits a response from
f to resume execution. In its response, f can instruct b to resume execution at a call-
processing step other than s2, thereby suppressing b's default behaviour. In the Thomas
approach, the actions of each feature or BCS process are guarded by a condition over a
shared variable that denotes the enabledness of the process. A feature process can suppress
the behaviour of a BCS process by setting the enabledness variable of the BCS process
to false. In the Turner et al. approach, priorities between features can be expressed by
composing their rules in sequence.

2.2.1.5 Delta-Oriented Programming

Delta-oriented programming (DOP) was introduced as an alternative to AHEAD-based
approaches (see Section 2.2.1.2). A DOP module speci�es combinations of features, rather
than a single feature. Similar to AHEAD, a DOP program comprises a core module and
a set of delta modules that re�ne other (core or delta) modules. The core module lists
the set of features that it speci�es, which includes the mandatory features and can also
include optional features (the core module is not unique). A delta module declares the
feature combinations that it speci�es as an application condition, which is a propositional
constraint on possible feature selections.

In an instantiation of DOP for Java, called DeltaJava, the core module comprises
a set of classes and interfaces. A delta module can add classes and interfaces, and can
re�ne classes and interfaces introduced in other modules. A class can be re�ned by adding
new attributes and methods, changing the supertype and constructor, and removing and
renaming existing attributes and methods. The supertype and methods of an interface
can be similarly re�ned. Unlike Jak (an AHEAD-based approach), DeltaJava does not

30

support method overrides. Given a feature selection, the delta modules whose application
condition is satis�ed by the feature selection are composed with the core module in some
order. It is possible to have con�icts in composition: for example, a previously composed
delta module may rename or remove an element referenced by a subsequently composed
module. DeltaJava enables the modeller to resolve some con�icts by specifying a partial
order on delta modules. Furthermore, DeltaJava has an integrated analyzer for proving,
for a given program, that all composition orders that respect the partial order are con�ict
free.

DOP has also been applied in the context of model-based testing [67], where core
modules comprise labelled transition systems, and delta modules can re�ne other modules
by adding and removing states and transitions.

2.2.2 Structural-Annotation Approaches

In a structural-annotation approach, the structural elements of an artifact are annotated
with expressions over the feature selection. Static con�guration is performed by a model
transformation that is based on the evaluation of these expressions.

In the approach by Czarnecki et al. [28], the expressions are either presence conditions,
which annotate model elements (where the model is based on the meta-object facility or a
comparable formalism); or meta-expressions, which annotate attributes of model elements
(e.g., an element's name). Upon con�guration, the model transformation removes elements
whose presence conditions evaluate to false, and assigns to element attributes the evaluation
of their meta-expressions. Heidenreich et al. [45] and Pohl et al. [77] take a similar approach
by annotating the elements of a model with presence conditions; however, the presence
conditions are over single features. Classen et al. [23] annotate the transitions of a labelled
transition system with presence conditions (over single features), but also specify priority
relationships between transitions. Upon con�guration, in addition to removing transitions
whose presence condition evaluates to false, the model transformation removes transitions
for which the presence condition of a higher-priority transition evaluates to true. Finally, in
the common variability language (CVL) [27], an artifact is annotated with a speci�cation of
its variation points (e.g., the presence or absence of an element, the value assignment to an
element), and each variation point is bound to exactly one feature. Upon con�guration, the
model transformation resolves the variability based on the feature selection (e.g., removes
an element, assigns a particular value to an element). When applied to behaviour models,
structural-annotation approaches specify behaviour removal as the removal of the model's
structural elements (e.g., transitions, actions).

31

Kästner et al. have compared structural-annotation approaches to AHEAD-compositional
approaches for code artifacts [55]. Some of their �ndings are as follows:

� In terms of feature traceability (i.e., the ability to trace a feature to its representation
in an artifact), compositional approaches provide direct support: the realization of a
feature is localized in a feature module. In contrast, annotation approaches inherently
o�er poor feature traceability, especially for cross-cutting features. However, this
weakness can be alleviated through tool support.

� In terms of the granularity of possible class re�nements, the most �ne-grained re�ne-
ments possible using AHEAD-compositional approaches are method overrides. This
means that it is not possible to interleave statements of the overriding method with
those of the overridden method, without resorting to workarounds like hook methods.
In annotation approaches, such re�nements, and in general, �ner-grained re�nements
at the level of statements, parameters, or expressions are possible.

� In terms of the syntactic correctness of the con�gured artifact, both annotation and
AHEAD-compositional approaches pose similar challenges.

� In terms of language independence, annotation and AHEAD-compositional approaches
perform equally well.

� In terms of ease of adoption for an existing code base, refactoring the code into
feature modules requires more e�ort than annotating it.

Kästner et al. propose extending compositional approaches with annotations; that is,
annotating elements of feature modules to express �ne-grained re�nements that are not
possible with a compositional approach (without workarounds).

2.2.3 Variation-Mechanism Approaches

Some artifact description languages have built-in support for specifying variability (aka
variation mechanisms) [29]. Examples include transition guards in state machines for
specifying variant state-machine executions, alternative scenarios in use-case descriptions
for specifying variant actor-system interactions, and inheritance in class diagrams for spec-
ifying class variants (i.e., subclasses). Approaches in this category associate features with
variation mechanisms provided by the artifact description language. Some examples are
described below.

32

In a sample application of the feature-oriented domain analysis (FODA) method [54]
(brie�y described in Section 2.2.4), features are explicated in state machines using condi-
tions on the feature selection in transition guards. In a feature-interaction management
approach by Calder et al. [19], conditional statements are used to embed feature behaviour
into a Promela model of BCS behaviour; the conditions are over the feature selection
(encoded using global variables). In a similar approach, Gnesi et al. [39] introduce the
process algebra CL4SPL for modelling SPL behaviour, in which variability is encoded via
expressions that are conditional on the feature selection.

Fischbein et al. [35] proposed the use of modal transition systems (MTSs) [63] to specify
variability in SPL behaviours. An MTS is a labelled transition system that distinguishes
between mandatory and optional transitions; mandatory (optional) transitions can be nat-
urally associated with mandatory (optional) features. Fantechi et al. proposed two exten-
sions to MTSs to enable specifying constraints on the selection of optional transitions, and
hence optional features. The �rst, extended modal transition systems (EMTSs) [32], have
constructs for specifying that at most one, or at least one, of a set of optional transitions
leaving a given state must be selected. The second extension, generalized extended modal
transition systems (GEMTSs) [33], generalize these constructs to specify that at least, at
most, or exactly k of the optional transitions must be selected. Asirelli et al. [9] introduced
the temporal logic MHML as an alternative approach for specifying constraints on the
selection of optional transitions in MTSs.

Griss et al. have integrated feature modelling into the reuse-driven software-engineering
business (RSEB) method [51] resulting in FeatureRSEB [40]. The original RSEB is an
object-oriented software-development method with a focus on modelling variability. In
RSEB, the UML is extended with the notion of variation points in model elements (e.g.,
use cases), which are associated with corresponding variants using the model's variation
mechanisms (e.g., use-case extensions). In FeatureRSEB, variable features are mapped to
variants of the variation points. Bertolino et al. [13] introduced constructs for annotating
use cases with variability information, including making requirements conditional upon the
feature selection.

2.2.4 Discussion

Existing approaches for developing FOAs have limitations with respect to the desired
properties for a feature-oriented requirements modelling language (see Section 1.2):

33

Feature-oriented descriptions of SPL requirements: The idea of modelling the
common and variable requirements of an SPL's products as features was introduced in
Kang et al.'s FODA method [54]. FODA is best known for introducing feature models but
it also proposes describing an SPL's requirements using a combination of an ER model and
an integrated behavioural model parameterized by features. FODA does not prescribe a
particular behavioural modelling language, but [54] gives an example that uses statecharts.
However, the statechart and ER models in the example are not interrelated. In subse-
quent work, feature models have been integrated with several requirements-description
techniques, including use cases (in [22], [40]), and goals and scenarios (in [75]). However,
such approaches do not follow the Jackson and Zave RE reference model, do not result in
precise models, and do not support the explicit modelling of intended feature interactions.

In most feature-interaction management approaches, the FOAs used are formal, and in
some cases, are at the requirements-level. However, the purpose of the FOAs is not to serve
as requirements models, but as analysis models used for feature-interaction management.
Therefore, the FOAs generally do not employ RE abstractions (e.g., a world model). One
exception is the approach by Laney et al. [61], in which a problem diagram is used to
describe the world and event-calculus properties are used to describe world assumptions
and feature requirements. However, most software engineers are not trained in the use
of the event calculus, which can hinder adoption. In fact, in the Laney et al. approach,
event-calculus is not proposed as a requirements-modelling language to be used by software
engineers; rather, it is used as a tool to illustrate a feature-interaction resolution strategy.

In the feature-oriented extension of the ADORA requirements modelling language (see
Section 2.2.1.3), the composition of a set of features with a core ADORA model is not
commutative. Furthermore, the approach has limited support for explicitly representing
intended interactions: explicit models of conditional behaviour overrides and the triggering
of existing behaviours are not supported.

Feature-oriented behaviour modelling: Existing structural-annotation and variation-
mechanism approaches do not support feature modularity. On the other hand, existing
compositional approaches (which support feature modularity) have the following limita-
tions:

In FOP, AHEAD-based approaches, and architectural approaches (e.g., DFC, LSM),
intended feature interactions (e.g., behaviour overrides) and automatic resolutions to un-
known interactions are realized by an order-sensitive and hence non-commutative com-
position of features: here, the composition order speci�es a total priority order among
the features, such that a subsequently-composed feature can modify the behaviours of

34

previously-composed (lower priority) features. This approach has the bene�t of resolving
unknown con�icts between any pair of features through priority; however, such resolutions
are not explicit and may not be desired. It may therefore be necessary to analyse multiple
composition orders, to arrive at one that both realizes the intended feature interactions
and does not cause undesired resolutions � and to redo the analysis when a new feature
is added to the SPL and the new feature's position in the composition order needs to be
determined. Finally, in such approaches, intended interactions are speci�ed implicitly : in
the composition order.

Composition order also matters in DOP and can result in con�icts (e.g., a previously
composed delta module can remove an element referenced by a subsequently composed
module). In DOP, behaviour removal is explicitly modelled (e.g., by the removal of methods
in Java programs, or the removal of transitions in labelled transition systems); however,
DOP does not support the explicit modelling of behaviour overrides.

Other feature-interaction management approaches have limited support for explicitly
modelling intended feature interactions. The approaches by Hay and Atlee [44], Hall [42],
and Thomas [87] support modelling behaviour overrides via feature priorities; however,
such feature-level priorities are coarse-grained and do not enable specifying more speci�c
behaviour overrides (e.g., between particular feature transitions). The approach by Combes
et al. [26] provides a �ner-grained mechanism for specifying behaviour overrides using the
AIN model; however, this approach is speci�c to the telephony domain. In the approach
by Turner et al. [90], priorities between features can be expressed by composing their rules
in sequence. However, priorities cannot be applied to rules composed in parallel to resolve
con�icts between their actions; rather, resolution requires restructuring the composition of
the rules by changing the parallel composition into sequential composition.

2.3 Feature-Interaction Taxonomies

Unintended feature interactions are prevalent in the telephony domain: most telephony fea-
tures enhance BCS, thus the features are highly prone to unintended interactions due to
their small shared context. A research community was established for investigating feature-
interaction management in this domain and has made substantial progress. Whereas Sec-
tion 2.2 describes the aspects of modelling and FOAs in feature-interaction management
approaches (along with other FOA approaches), this section focuses on the types of feature
interactions de�ned by such approaches, for the purpose of detecting unintended interac-
tions. A discussion of the limitations of such de�nitions is given in Section 2.3.1.

35

An early taxonomy proposed by Cameron et al. [20] groups feature interactions in
telephony systems based on their nature and cause. The nature of a feature interaction is
de�ned by whether the features involved are customer (e.g., call waiting) or system (e.g.,
billing) features, and by the number of users and network components involved (single
or multiple). Cameron et al. identify several causes for feature interactions, such as the
violation of a feature's assumptions (e.g., features that override BCS behaviour violate
another feature's assumptions about BCS behaviour), network-support limitations (e.g.,
the limited set of signals used by many features), and resource contention between features
(e.g., contention over the use of a three-way bridge by call waiting and three-way calling).

Whereas the taxonomy by Cameron et al. is independent of a particular feature-
interaction management approach, each particular approach de�nes how feature interac-
tions are manifested in its FOAs (the di�erent types of FOAs used in such approaches
is discussed in Section 2.2.1.4). Nhlabatsi et al. [70], Calder et al. [18], and Bruns [17]
have proposed taxonomies that are based on surveys of feature-interaction management
approaches and on the manifestations of feature interactions in di�erent types of FOAs. A
combination of these taxonomies is presented below, following the structure of the Calder
et al. taxonomy.

� FOAs that include an operational model:

1. The composition of the feature modules results in undesired properties such as

(a) Nondeterminism

(b) Deadlock

(c) Two features modules performing concurrently con�icting actions

(d) Resource contention between two feature modules (e.g., contention over
access to a voice channel in DFC)

(e) An action in one feature module violating an assertion raised by another
feature module

(f) In�nite loops (e.g., two feature modules cyclically triggering one another's
behaviour)

2. An action in one feature module triggers or suppresses behaviour in another
feature module (e.g., in DFC, a feature instance generates or consumes a signal,
as part of its enhancement of the signal's destination BCS instance, that another
feature-instance in the route of the signal can react to).

3. In approaches where features are sequentially composed (e.g., DFC, LSM, FOP,
and AHEAD-compositional approaches), di�erent composition orders result in
di�erent behaviours.

36

� FOAs that include a set of properties: The properties of two features are logically
inconsistent.

� FOAs that include both an operational model and a set of properties: The opera-
tional models of two feature modules satisfy the properties in their modules, but
the composition of the operational models does not satisfy the conjunction of their
corresponding properties.

More recently, the study of feature interactions has been extended to the automotive
domain. For example, Juarez-Dominguez et al. [53] de�ne a feature interaction as two
automotive features either making con�icting requests to the same actuator of the vehicle
(e.g., con�icting requests to the vehicle's throttle); or making requests to di�erent actua-
tors, causing con�icting changes to the environment (e.g., requests to the vehicle's throttle
and brakes, causing con�icting changes to the vehicle's speed). The de�nition includes
both con�icting requests and changes that occur simultaneously (i.e., race conditions) as
well as those that occur within some time threshold of one another.

2.3.1 Discussion

The majority of existing (formal) taxonomies of feature interactions are associated with
modelling languages that do not support the explicit modelling of intended interactions,
and, as such, the associated taxonomies do not distinguish and exclude intended interac-
tions. Also, even though a feature interaction is often informally de�ned as one feature
modifying the behaviour of another feature, existing taxonomies rarely include a precisely
de�ned feature-interaction type that corresponds to the general case of behaviour modi-
�cation. Instead, they include various feature-interaction types that are special cases of
behaviour modi�cation.

37

Chapter 3

FORML

This chapter describes the FORML language that has been designed for modelling SPL
requirements:

� Section 3.1 describes two running examples used in the remainder of this chapter.

� Sections 3.2 to 3.4 describe the di�erent parts of a FORML model: Section 3.2
describes the world model, which is an ontology of concepts that describes a world
comprising the products of an SPL and the environment in which they will operate.
Section 3.3 describes FORML's language for writing expressions over the world model
(e.g., constraints over the world model). Section 3.4 describes the behaviour model,
which is a state-machine model of the SPL's requirements, decomposed into feature
modules.

� Section 3.5 describes the composition of feature modules into an integrated model of
the requirements of the entire SPL.

� Section 3.6 describes the execution semantics for FORML, with a few simplifying as-
sumptions made for ease of presentation; these assumptions are relaxed in Chapter 4.

� Section 3.7 describes an evaluation of FORML with respect to expressiveness and
the desired properties of a feature-oriented modelling language for SPL requirements
given in Section 1.2.

38

3.1 Running Examples

3.1.1 TelSoft

TelSoft is an SPL of telephone services with the following features:

� Basic call service (BCS): BCS responds to the subscriber's requests for starting,
accepting, and ending calls.

� CW: CW allows the subscriber to accept a second call and switch between the two
calls.

� Voice mail (VM): VM allows callers to leave messages for the subscriber when he or
she does not accept a call within some timeout period, and allows the subscriber to
check his or her messages.

� Teen line (TL): If the subscriber makes a call request within a designated curfew
period, TL requires authentication before starting the call.

� Caller delivery (CD): When the subscriber receives a call, CD delivers the caller's
identity to the subscriber.

� Caller delivery blocking (CDB): When the subscriber makes a call, CDB prevents
the delivery of the subscriber's identity to the callee, if the callee subscribes to CD.

3.1.2 AutoSoft

AutoSoft is an SPL of automotive software controllers with the following features:

� Basic driving service (BDS): BDS responds to the drivers's requests for turning the
vehicle's ignition on or o�, accelerating, decelerating, and steering.

� Cruise control (CC): CC maintains the vehicle's speed at some driver-speci�ed value.

� Headway control (HC): HC maintains the vehicle's headway distance from road ob-
jects ahead, at some driver-speci�ed distance.

3.2 World Model

The world of an SPL is a set of phenomena comprising the following:

39

� Relevant phenomena in the environment in which the SPL's products will operate:
that is, environment phenomena that are referenced or constrained by the SPL's
requirements

� The SPL's products, characterized in terms of their constituent features (i.e., their
feature con�guration)

� Product phenomena, which are phenomena introduced by the SPL's products that
are observable and possibly controllable by agents in the environment (e.g., messages
between products and their environment, feature data that is observable by users)

A world model is a conceptual model of an SPL's world: that is, a description of the
world in terms of a set of concepts and the relationships between them. A concept is
an abstraction that describes a category or type of phenomena in the world, in terms of
their shared properties and their shared relationships with other world phenomena. An
instance of a concept, often called an object, represents a particular world phenomenon of
the corresponding type. The appeal of conceptual modelling is that it corresponds to the
natural way in which we understand and characterize a set of phenomena.

In FORML, an SPL's requirements are decomposed into features, and one could think
about each feature having its own world. However, to ensure a consistent ontology relevant
to multiple features, a FORML world model is an integrated model of the features' worlds.
Consequently, authors of di�erent features will need to coordinate their changes to the
integrated world model. However, the changes to the world model, due to the addition of
new features, are less frequent and smaller than changes to the behaviour model.

A world model can be more precisely de�ned in terms of the metamodel shown in
Figure 3.1. The metamodel of Figure 3.1, as well as later metamodels in the thesis, are
MOF-based metamodels [72], with the following additional syntax introduced to improve
readability: a class with a dashed border represents a reference to a class that appears
elsewhere in the metamodel; and if such a class is shaded, it references a class in a di�erent
�gure.

De�nition 3.2.1. A world model comprises one or more concepts, a set of auxiliary con-
straints over the concepts, and a feature model.

Section 3.2.1 describes concept types adapted from UML class diagrams and ER mod-
els, whereas Section 3.2.2 describes concept types introduced by FORML. Feature models
are described in Section 3.2.3, and auxiliary world-model constraints are described in Sec-
tion 3.2.6. Section 3.2.7 summarizes what FORML borrows from, and how it extends and
adapts, UML class diagrams.

40

Concept

AttributedConcept

Entity

isAbstract

1 supertype

subtype*

Generalization/Specialization

Attribute

name

Enumeration

values

ParameterType

Message

type: {input, output, IO}
type

0..1 1..*

ParameterType

Association

Composition

Role

name
multiplicity

2..*

*

SPL Feature

SystemConcept

Parameter

name

type

0..1

*

**

SystemConcept

1*

introducedBytype

WorldModel

AuxiliaryConstraints

1..

FeatureModel

AttributedConcept
1

whole

*

1

AuxiliaryConstraints

0..1

*

Figure 3.1: The world-model metamodel. The metamodel for the referenced class Feature-
Model is presented in Figure 3.8.

name compartment

attribute compartment

entity name

enumerated attribute type

attribute name

generalization

abstract supertype

specialization

Figure 3.2: Entities

3.2.1 Entities, Associations, and Compositions

41

association name role name

role type
role multiplicity

Figure 3.3: Basic binary associations

Entities: An entity is a concept that represents a type of environment phenomenon with
an independent existence. An entity is characterized by a set of attributes and is shown as
a UML class. For example, in Figure 3.2, the environment of an AutoSoft product includes
the entity RoadObject with attributes velocity and acceleration. The type of an attribute
(i.e., the set of possible values for the attribute) can be left unde�ned or can be explicitly
speci�ed as an enumeration of values.

An entity can be a subtype of another entity (the supertype), as shown by a UML
generalization relationship; the subtype inherits the supertype's attributes, but can also
have additional attributes. For example, in Figure 3.2, a vehicle equipped with an AutoSoft
product is represented by the entity AutoSoftCar, which is a subtype of the RoadObject
entity, with additional attributes steerDirection and ignition. A supertype can be declared
as abstract by italicizing its name, which implies that the only objects of the supertype
are those of its subtypes. For example, in Figure 3.2, the abstract entity MapObject is an
abstract supertype de�ned to factor out the common attributes shape and position of Lane
(which models road-segment lanes) and RoadObject.

Associations: An association is a concept that represents a type of relationship that
can exist between the objects of other concepts. The instances of an association are called
links. A binary association relates two concepts and is shown as a UML association. An
association assigns a role to each related concept. For example, Figure 3.3 models the
relationship between an AutoSoft-equipped vehicle and its driver as a binary association
Drives that has a driver role of type Person and a car role of type AutoSoftCar. An
association role can have an optional multiplicity, which constrains the number of di�erent
objects that can (simultaneously) be linked to each object in the other role. A multiplicity
can take one of three forms: an exact number n, a range n1..n2 of numbers where n1 < n2,
or a range n..∗ of numbers greater than or equal to n. For example, in Figure 3.3, the
multiplicity of the driver role of Drives speci�es that each car has exactly one driver at a

42

attribute

association role with association type

Figure 3.4: Binary associations with attributes or associations

role name

role type

role multiplicity

association

role

Figure 3.5: Associations with more than two roles

time.

An association can also have attributes and participate in other associations. A binary
association with attributes or associations is shown as a UML association class. For exam-
ple, Figure 3.4 models a telephone call between two TelSoft users as a binary association
Call with a status attribute whose possible values represent the phases that a call goes
through: a call starts o� as a request, it gets connected if the callee is not busy, and a
voice connection is established when the callee answers the call. The Call association also
participates in a binary association with the entity CallRecorder ; this association relates
call-recording systems to the calls that they record.

Finally, an association can have more than two roles. Such an association is expressed
as a UML class with the stereotype �association�. Since there are more than two roles, role
names and multiplicities cannot be shown at the (two) ends of a UML association as before.

43

default composition name: RoadSegmentLane

whole role,
default multiplicity: 1

part role

Figure 3.6: Compositions

Instead, each role of the FORML association is depicted as a separate UML association
between the FORML association and the concept that is the role type; the role is labelled
with the stereotype �role� and a comma-separated sequence of the role name and the role
multiplicity (if any). For example, Figure 3.5 models a three-way call � established by
adding a third party to a basic call � by the ternary association ThreeWayCall, which has
the roles caller and callee as with Call, plus the role thirdParty of type User 1.

Compositions A composition is a special type of binary association, representing a
whole-part relationship between a composite object and its component objects. A FORML
composition is shown as a UML composition, with the whole role distinguished by a �lled
diamond. Three characteristics distinguish a composition from an ordinary binary associ-
ation: (1) a composite object, its component objects, and the links between them always
come into existence and disappear together; (2) there can be at most one composition link
between any pair of whole and part objects; and (3) a component object can be related
to only one composite object (i.e., the multiplicity of the whole role of a composition is
always 1). For example, in Figure 3.6, the whole-part relationship between road segments
and their lanes is modelled by a composition. A FORML composition need not be explic-
itly named: the implied name of a composition with the whole and part roles types Whole
and Part, respectively, is WholePart. For example, the implied name of the composition
in Figure 3.6 is RoadSegmentLane.

1The notion of multiplicities generalizes to associations with more than two roles: here, the multiplicity
of a role constrains the number of di�erent objects that can (simultaneously) be linked to each combina-
tion of objects in the other roles. For example, in Figure 3.5, the multiplicity of the thirdParty role of
ThreeWayCall speci�es that a caller and callee pair can add at most one thirdParty to their basic call.

44

SPL concept

feature concept

input message
 compartment

output message
 compartment

IO message
 compartment

product phenomena
as attribute

message name

parameter
name

parameter
type

product phenomena
as entity

product phenomena
as association

controlled
phenomena

Figure 3.7: SPL, feature, and message concepts

3.2.2 SPL, Feature, and Message Concepts

A world model includes an explicit representation of an SPL's products and their feature
con�gurations. Such a representation is needed for specifying requirements over multiple
products (e.g., a telephone call involving the TelSoft products of two or more users). In
such requirements, one product may refer to other products and their features (e.g., the
CDB feature of a caller's TelSoft product activates when a callee's TelSoft product has
CD).

Speci�cally, a world model includes an SPL concept and a set of feature concepts,
representing an SPL and its set of features, respectively. An instance of the SPL concept,
called a product object, represents a single product of the SPL. A product object is primarily
characterized by its relationship to a set of feature objects, which constitute the feature

45

con�guration of the corresponding product2. The SPL concept and each feature concept is
shown as a UML class with the stereotype �SPL� and �feature�, respectively. For example,
in Figure 3.7, the TelSoft SPL is represented by the SPL concept TelSoft, and its BCS, TL,
and VM features are represented by the feature concepts BCS, TL, and VM respectively3.

Product phenomena: An SPL's products introduce observable phenomena into the
world, called product phenomena. These include the messages that are exchanged between
products and their environment, such as the requests and noti�cations exchanged between
products and their users. Other product phenomena are more varied, such as relationships
involving products or features (e.g., the relationship between an AutoSoft product and its
containing vehicle), feature data that are observable by agents in the environment (e.g., the
voice messages stored by VM in a TelSoft product), and world phenomena whose existence
or values are controlled by the system (e.g., calls between TelSoft subscribers).

To link product phenomena with products, models of product phenomena can be related
to the SPL concept. However, it is often the case that some product phenomena are
speci�c to particular features of the products: in the above examples, voice messages are
speci�c to VM. In such cases, it is preferable to relate models of product phenomena to
the corresponding feature concepts, so as to aid model reviewers in identifying the product
phenomena speci�c to each feature.

Messages: A message is a concept that represents a type of communication exchanged
between an SPL product and its environment. Although a product can communicate with
its environment by reading or writing to shared world phenomena, messages are needed to
model directed communications between speci�c products and environmental phenomena
(e.g., a start-call request sent to a TelSoft product from its user). If a message repre-
sents feature-speci�c communications, it is related to the corresponding feature concept;
otherwise, it is related to the SPL concept.

A message exchanged with an environment agent is either an input message representing
a communication to an SPL product from an environment agent, or an output message

2Traditionally, a feature con�guration is simply a set of feature identi�ers. Although a feature object
carries more information than just the feature's identity (e.g., the feature's links and attribute values), it
is convenient to represent a product's feature con�guration as a set of related feature objects because it
enables navigating from a product or feature to related world phenomena.

3To simplify presentation, the thesis describes FORML models of single SPLs. To support models of
multiple SPLs, the world model should allow multiple SPL concepts and should explicate associations
between feature concepts and their corresponding SPL concepts. The description of FORML given in this
thesis can be generalized to support models of multiple SPLs.

46

representing a communication from an SPL product to an environment agent. An input
message object is related to its source product object, and an output message is related to
its target product object.

Products can also communicate with other products; for example, two telephone ser-
vices may communicate to establish calls. Such communications are modelled as IO (input
and output) messages. An IO message object is related to both its source and target
product objects.

A message has parameters that represent data carried by the communications, such as
the desired change in acceleration carried in an Accelerate message sent to an AutoSoft
product. As with attributes, the type of a parameter can be enumerated or left unde�ned.
In addition, a parameter's type can be another (non-message) concept.

A message is shown as a message signature in a message compartment of the SPL
or feature concept to which it is related. Input, output, and IO messages are listed in
separate message compartments denoted with the stereotypes �input�, �output�, and �IO�,
respectively. A message signature is of the form M(params), where M is the message
name and params is the optional comma-separated list of message parameters. The type
of a parameter (if any) is separated from the parameter name by a colon. For example, in
Figure 3.7, a start call request sent to a TelSoft product is modelled as an input message
StartCall in feature BCS (which is the feature responsible for call processing); the message
has a parameter target of type User that represents the target callee. Figure 3.7 also
models busy signals sent from a TelSoft product to its user as an output message Busy
in feature BCS. An IO message Available models noti�cations sent from a callee's TelSoft
product to a caller's TelSoft product, to signal whether the callee is available to participate
in a new call. Since all of the above communications are introduced by BCS, the messages
are related to the BCS feature concept.

Controlled phenomena: Some product phenomena can be controlled (changed) only
by SPL products, and are thus called controlled phenomena. Examples include all output
and IO communications of products, the relationships between TelSoft products and their
subscribers, calls between TelSoft subscribers, and the above example of voice messages
introduced by VM. Examples of product phenomena that are not controlled include all
input communications of products, which are only controllable by the environment, and
the physical containment relationship between AutoSoft products and vehicles. As is de-
scribed in Section 3.4.2, the controlled phenomena must be known in order to correctly
determine how the world can change in accordance with an SPL's requirements. Any en-
tity, association, composition, or attribute representing controlled phenomena is denoted

47

SPLNode FeatureNode
1..*

* child0..1parent

0..1

parent child

FeatureModel

1

SPL Feature
11 11

Figure 3.8: The feature-model metamodel. The referenced classes Feature and SPL are
de�ned in the world-model metamodel in Figure 3.1.

with the stereotype �ctrl� (e.g., VoiceMessage in Figure 3.7)4; an attribute only needs a
�ctrl� designation if its containing concept does not have one (e.g., the PIN attribute of
TL in Figure 3.7).

3.2.3 Feature Model

The number of di�erent products that can be derived from an SPL's set of features is
exponential in the number of features. However, the products of an SPL are usually
characterized by the subset of feature con�gurations that are valid, for various technical
(e.g., functional dependencies between features) and non-technical (e.g., business decisions
to sell certain feature together) reasons. A FORML world model includes a traditional
feature model [54] that constrains the relationships between product and feature objects,
so as to specify the valid feature con�gurations of an SPL.

A feature model can be described more precisely in terms of the metamodel shown in
Figure 3.8.

De�nition 3.2.2. A feature model is a tree whose root references an SPL concept and
every other tree node references a feature concept. A feature node topped with a �lled circle
denotes a mandatory feature, and a feature node topped with an empty circle denotes an
optional feature. An optional feature can be present in a product only if its parent feature
is present in the product.

4The �ctrl� designation is not needed for messages: output and IO messages always represent controlled
phenomena, and input messages always represent phenomena that are not controlled.

48

SPL node

feature nodes

mandatory
feature

optional
features

Figure 3.9: The feature model notation

For example, Figure 3.9 shows the feature model for a subset of AutoSoft 's features �
namely BDS, CC, and HC5.

5To support models of multiple SPLs, the world model would include a feature model for each SPL.

49

auxiliary world-model constraints

Figure 3.10: A partial world model for TelSoft

3.2.4 World States

A world model is e�ectively a concise description of all of the possible states that an SPL's
world can be in. Each world state comprises a particular set of instances (objects) of
the concepts in the world model, where each entity object, link, message object, product
object, and feature object has particular values. The product con�guration of a world state
comprises the particular set of product objects in the world state, each with a particular
feature con�guration (i.e., a particular set of related feature objects).

For example, consider the world model shown in Figure 3.10, which describes part of

50

attribute value

object name

link

object type message object

product object

feature object

feature-product object
relationship

role value

message-product object
relationship

entity object

Figure 3.11: A possible world state of the world model shown in Figure 3.10

TelSoft 's world. The concepts shown in Figure 3.10 are from the examples given in the
previous subsections, with the addition of the messages AcceptCall and EndCall (intro-
duced by BCS), which represent user requests to accept and end calls, respectively. The
feature model speci�es that BCS is mandatory in TelSoft products but VM is optional.
The UML note at the bottom of Figure 3.10 is explained later in Section 3.2.6.

One possible world state of the world model of Figure 3.10 is shown in Figure 3.11 as
a UML-like object diagram. The notation used in Figure 3.11 is not part of FORML6 and
is used here only for presentation purposes. The boxes and lines in Figure 3.11 represent
objects and their relationships rather than classes and their relationships, respectively.
Each object (including links) has a label of the form n: C, where n is the object's name
� assigned for ease of reference � and C is the object's type (e.g., c: Call). The value v of
an object's a attribute is expressed as a = v (e.g., status = voice for the Call link c). The
objects related by a link are given by the link's end points (e.g., User object u1 takes the
caller role of the Call link c). Finally, the special relationships between product objects and
their feature objects, and between message objects and their source/destination product
objects, are distinguished from links using the stereotypes �fc� (e.g., the relationship
between the product object ts1 and the BCS feature object bcs1) and �src�/�dest� (e.g.,
the relationship between the EndCall message object ec and its destination product object
ts1), respectively.

6FORML does not prescribe a notation for specifying individual world states.

51

Hence, the world state of Figure 3.11 represents the following state of TelSoft 's world:
There are two users (u1 and u2), each subscribed to a TelSoft product (ts1 and ts2),
where one user's product has only BCS (bcs1) and the other user's product has both BCS
and VM (bcs2 and vm). The user subscribed to VM can call a special voice-mail user
(vmu) to check his voice messages. vm currently has one voice message (vmsg). The two
users are in a voice-connected call (c), but u1 has just requested to end the call (ec).

More formally, a world model wm de�nes a collection of types (sets of objects or values),
and a collection of declarations of sets and functions over these types. A world state is a
value assignment to the sets and functions of wm.

De�nition 3.2.3. The set WSuniv of possible world states of wm is the set of possible
value assignments to the sets and functions declared by wm.

wm de�nes the following types:

� For each concept C in wm, the type TC is the in�nite set of all possible instances
(objects) of C.

� If C has an attribute or (if C is a message) a parameter x with an enumerated type,
TC.x is the enumerated type of x.

� Tund is the universal unde�ned type: it represents the type of any attribute or
parameter in wm whose type is not de�ned.

The following describes each declared set and function D of wm in terms of a map D(ws)
from a possible world state ws ∈WSuniv to a value assignment for D:

� For each concept C in wm, OC(ws) is the set of objects of type TC in ws:

OC(ws) ⊂ TC

� If C has attributes, then for each attribute a with type T (i.e., TC.a or Tund),
function

C.a(ws) : OC(ws) 7→ T

states the value of a for each C object in ws.

52

� If C is an association, then for each role r of C whose type is concept C ′, function

C.r(ws) : OC(ws) 7→ OC′(ws)

states the object that plays role r in each C link in ws.

� If C is an SPL concept, then for each feature concept F related to C, function

C.F (ws) : OC(ws) 7→ 2OF (ws)

relates each C product object p in ws to its corresponding F feature object (if any):
that is, C.F (ws)(p) returns a singleton set if product p has an F feature object,
and the empty set otherwise.

� If C is a message that has parameters, then for each parameter p with type T (i.e.,
TC.p or Tund or TC′ if the type of p is concept C ′), function

C.p(ws) : OC(ws) 7→ 2T

states the value of p (a subset of T 7) for each C message object in ws.

� If C is an input or IO message related to the SPL concept SPL, function

C.to(ws) : OC(ws) 7→ OSPL(ws)

relates each C message object in ws to the SPL product object that receives the
message object.

� Analogously, if C is an output or IO message related to SPL, function

C.from(ws) : OC(ws) 7→ OSPL(ws)

relates each C message object in ws to the SPL product object that generates the
message object.

A world state's product con�guration can be precisely de�ned based on the above sets and
functions:

7The value of a message parameter can be a set of objects. This provides a convenient way of modelling
cases where the data carried by a message object are references to a set of other objects (e.g., the VM
feature can send back a set of VoiceMessage objects back to the user).

53

De�nition 3.2.4. Let SPL and F1 . . . Fn be the SPL and feature concepts in the world
model, respectively. The product con�guration of world state ws is given by the function

PC(ws) = { (p, FC(ws,p)) | p ∈ OSPL(ws) }

where FC(ws,p) denotes the feature con�guration (i.e., set of feature objects) of product
p in world state ws:

FC(ws,p) =
⋃

1≤i≤n

SPL.Fi(ws)(p)

For example, let ws be the the world state shown in Figure 3.11 of the TelSoft world
model shown in Figure 3.10. ws can be represented by the sets and functions shown in
Figure 3.12. The product con�guration of ws is the set

PC(ws) = { (ts1,{bcs1}), (ts2,{bcs2, vm2}) }

Finally, to reduce the number of parentheses in expressions that evaluate a set or function
D with respect to a world state ws, in the remainder of this thesis, D(ws) is often
equivalently denoted as ws ::D.

54

OUser(ws) = {u1, u2}
OCall(ws) = {c}

Call.caller(ws) = {(c, u1)}
Call.callee(ws) = {(c, u2)}
Call.status(ws) = {(c, voice)}

OV oiceMailUser(ws) = {vmu}
OV oiceMessage(ws) = {vmsg}

OTelSoft(ws) = {ts1, ts2}
OBCS(ws) = {bcs1, bcs2}
OV M(ws) = {vm}

TelSoft.BCS(ws) = {(ts1, bcs1), (ts2, bcs2)}
TelSoft.V M(ws) = {(ts2, vm)}
OSubscription(ws) = {sub1, sub2}

Subscription.user(ws) = {(sub1, u1), (sub2, u2)}
Subscription.service(ws) = {(sub1, ts1), (sub2, ts2)}

OUV M(ws) = {uvm}
UV M.user(ws) = {(uvm,vmu)}
UV M.vm(ws) = {(uvm,vm)}
OMailBox(ws) = {mb}

MailBox.vm(ws) = {(mb,vm)}
MailBox.message(ws) = {(mb,vmsg)}

OStartCall(ws) = ∅
StartCall.to(ws) = ∅

StartCall.target(ws) = ∅
OAcceptCall(ws) = ∅

AcceptCall.to(ws) = ∅
OEndCall(ws) = {ec}

EndCall.to(ws) = {(ec, ts1)}
OBusy(ws) = ∅

Busy.from(ws) = ∅
OAvailable(ws) = ∅

Available.to(ws) = ∅
Available.from(ws) = ∅

Figure 3.12: The world state shown in Figure 3.11 represented using sets and functions

55

ws0

ws1

ws2

added to ws0

removed from ws1

Figure 3.13: A �nite world behaviour of the world model shown in Figure 3.13

3.2.5 World Behaviours

Less obviously, a world model provides a declarative description of the world's dynamics:
a world behaviour is a sequence of world states that represents an evolution of the world
starting from some initial world state. A transition from one world state to the next in
a world behaviour is called a world-state transition; it is the result of applying a set of
changes to the �rst world state, such as adding/removing objects and changing attribute
values. We refer to the last world state in an ongoing world behaviour as the current world
state.

56

For example, Figure 3.13 shows a short world behaviour comprising the sequence
ws0, ws1, ws2 of world states, shown in order from top to bottom. Initially there are two
users in a voice-connected call (world state ws0). Then, the caller makes a request to end
the call (the EndCall message object ec and its link are added to world state ws0, resulting
in world state ws1). Finally, in response to the caller's request, the call is ended (the Call
link c, as well as the transient EndCall message object ec and its link, are removed from
world state ws1, resulting in world state ws2).

More precisely, a world behaviour is an in�nite sequence over the setWSuniv of possible
world states. A world-state transition is a pair of consecutive world states in a world
behaviour.

De�nition 3.2.5. We de�ne WBuniv to be the set of all possible (valid and invalid) world
behaviours over WSuniv:

WBuniv = WSω
univ

where Aω denotes the set of in�nite sequences of the elements in A. Hence, a world be-
haviour wb ∈ WBuniv is an in�nite sequence wb[0],wb[1],wb[2], . . ., where wb[i] ∈
WSuniv for all i ≥ 0.

De�nition 3.2.6. We de�ne WSTuniv to be the set of all possible (valid and invalid)
world-state transitions over WSuniv:

WSTuniv = WSuniv ×WSuniv

Hence, a world-state transition in a world behaviour wb is a pair (wb[i− 1],wb[i]) for
some i ≥ 1.

3.2.6 World-Model Constraints

Some world states or world behaviours are invalid : that is, they represent states or changes
in the world that are either unrealistic, according to the modeller's knowledge about the
SPL's world, or undesired, according to the SPL's requirements. For example, a TelSoft
world state in which a user is the caller of two calls is undesired according to BCS's require-
ments, and a TelSoft world behaviour in which an end-call message persists is unrealistic.

A world model wm can specify constraints that valid world states and world behaviours
must satisfy. Formally, a world-model constraint is a predicate over either a single world
state or a pair of consecutive world states (i.e., a world-state transition).

57

De�nition 3.2.7. Let Con1 denote the set of world-model constraints over singleton world
states. We de�ne WS ⊂ WSuniv to be the set of valid world states of wm; that is, the
world states that satisfy the constraints in Con1:

WS = {ws ∈WSuniv | ∀con1 ∈ Con1 : con1(ws)}

De�nition 3.2.8. Let Con2 denote the set of world-model constraints over consecutive
world states. We de�ne WST ⊂ WSTuniv to be the set of valid world-state transitions
of wm; that is, the world-state transitions that satisfy the constraints in Con2:

WST = {(wsi−1,wsi) ∈WSTuniv | ∀con2 ∈ Con2 : con2(wsi−1,wsi)}

where i ≥ 1.

De�nition 3.2.9. We de�ne WB ⊂WBuniv to be the set of valid world behaviours of
wm; that is, in�nite sequences of valid world states, in which all world-state transitions
are valid:

WB = {wb ∈WBuniv | wb ∈WSω ∧ ∀i ≥ 1 : (wb[i− 1],wb[i]) ∈WST }

Several world-model constraints are speci�ed (explicitly or implicitly) by the world-
model constructs described in Sections 3.2.1 to 3.2.3. Tables 3.1 and 3.2 list the constraints
speci�ed by the concepts and the feature model in a world model, respectively. Table 3.3
lists two additional constraints, on world behaviours, that we adopt by convention. The
second constraint in Table 3.3 excludes from the scope of this thesis world behaviours in
which the product con�guration changes after the initial world state.

58

Construct Constraint

Entity Esub is a subtype
of Esup.

(1) All Esub objects in ws are also Esup objects:

ws ::OEsub ⊆ ws ::OEsup

Eabs is an abstract entity
with subtypes E1 . . . En.

(2) The set of Eabs objects in ws comprises the objects of Eabs's subtypes:

ws ::OEabs =
⋃

1≤i≤n

ws ::OEi

SPL is an SPL concept
and F is a feature con-
cept.

(3) An F feature object in ws belongs to exactly one SPL product object:

∀f ∈ ws ::OF : | {p ∈ ws ::OSPL | ws ::SPL.F (p) = {f}} | = 1

Role r of association
A has multiplicity mult
and type C, and A's
other roles r1 . . . rm are
of types C1 . . . Cm.

(4) Let r(o1,. . . ,om) denote the set of di�erent objects in ws that assume
role r in A links in which the other objects in the links are o1 . . . om in
roles r1 . . . rm, respectively:

r(o1, . . . ,on) = { o ∈ ws ::OC |
∃ a ∈ ws ::OA : ws ::A.r(a) = {o} ∧

∧
1≤i≤m

ws ::A.ri(a) = {oi} }

mult constrains the number of such objects, for all �xed sets of objects in
roles r1 . . . rm:

• If mult is a number n,

∀o1 ∈ ws ::OC1 , . . . ,om ∈ ws ::OCm : |r(o1, . . . ,on)| = n

• If mult is a range n1..n2,

∀o1 ∈ ws ::OC1 , . . . ,om ∈ ws ::OCm : n1 ≤ |r(o1, . . . ,on)| ≤ n2
• If mult is a range n..∗,
∀o1 ∈ ws ::OC1 , . . . ,om ∈ ws ::OCm : n ≤ |r(o1, . . . ,on)|

C is a composition with a
whole role wr of type W
and part role pr of type
P.

(5.1) A whole object, its part objects, and the C composition links between
them come into existence and disappear from existence together:

∀c ∈ wsi−1 ::OC −wsi ::OC :
(wsi−1 ::C.wr(c) /∈ wsi ::OW ∧ wsi−1 ::C.pr(c) /∈ wsi ::OP) ∧

∀c ∈ wsi ::OC −wsi−1 ::OC :
(wsi ::C.wr(c) /∈ wsi−1 ::OW ∧ wsi ::C.pr(c) /∈ wsi−1 ::OP)

(5.2) There can be at most one C composition link between a single pair of
whole and part objects1:

∀c1, c2 ∈ ws ::OC : (c1 6= c2 =⇒
(ws :: C.wr(c1) 6= ws :: C.wr(c2) ∨ ws :: C.pr(c1) 6= ws ::

C.pr(c2)))

M is a message. (6) M objects are transient:

wsi−1 ::OM ∩wsi ::OM = ∅
1 The constraint that a component object can be related to only one composite object is speci�ed by the
whole role's default multiplicity of 1.

Table 3.1: World-model constraints speci�ed by concepts. Constraints (1)-(5.a) are over a
single world state ws, and constraints (5.1) and (6) are over a pair of consecutive world
states (wsi−1,wsi). 59

Construct Constraint

F is a mandatory feature
node.

(1) All SPL products should have feature F :

∀p ∈ ws ::OSPL : ws ::SPL.F (p) 6= ∅
F1 is an optional feature
node whose parent is the
feature node F2.

(2) Any SPL product that has feature F1 should also have F2:

∀p ∈ ws ::OSPL :
(ws ::SPL.F1(p) 6= ∅) =⇒ (ws ::SPL.F2(p) 6= ∅)

Table 3.2: World-model constraints speci�ed by a feature model. SPL is an SPL concept,
and F , F1, and F2 are feature concepts, referenced by corresponding nodes in the feature
model. Both constraints are over a single world state ws.

Construct Constraint

An association A with
roles r1 . . . rn

(1) The objects related by an A link never change (instead, old links are
removed and new links are added):

∀a ∈ wsi−1 ::OA ∩ wsi ::OA :
∧

1≤j≤n

wsi−1 ::A.rj(a) = wsi ::A.rj(a)

The SPL and feature
concepts in the world
model

(2) The product con�guration (De�nition 3.2.4) is static:

PC(wsi−1) = PC(wsi)

Table 3.3: World-model constraints adopted as conventions. Both constraints are over a
pair of consecutive world states (wsi−1,wsi).

60

However, many properties of valid world states and world behaviours cannot be (con-
veniently) expressed using concepts and feature models, such as the following properties
related to TelSoft 's world:

1. A user cannot be in a voice-connected call with himself.

2. The special voice-mail user cannot initiate calls.

3. A call should end in response to an end-call request from the caller.

4. All users, except for voice-mail users, are subscribed to TelSoft products.

A world model includes auxiliary constraints written as predicates in FORML's expression
language, described below in Section 3.3. The FORML expression language can express a
wider range of constraints than the concepts and feature model in a world model can. For
example, the above properties can be expressed as follows:

1. no c: Calls | c.caller = c.callee

2. no c: Calls | c.caller in VoiceMailUsers

3. all c: Calls@pre |
(c.caller.Subscription.service in EndCalls.to)@pre implies not c in Calls

4. Subscriptions.user = (Users - VoiceMailUsers)

To improve readability, a world-model constraint can be associated with the concept to
which it is most relevant. For example, the �rst three constraints above can be associated
with the Call concept.

3.2.7 Comparison with UML Class Diagrams

FORML world models adopt the following constructs from UML class diagrams: entities
(UML classes), abstract entites, subtype relationships among entities, binary associations,
and compositions. In addition, FORML adapts UML class diagrams as follows:

� The �association� and �role� stereotypes over UML classs and associations, respec-
tively, are used to specify FORML associations with more than two roles.

61

� The �SPL� and �feature� stereotypes over UML classes are used to specify SPL and
feature concepts, respectively.

� UML operations are used to specify FORML messages; and the �input�, �output�,
and �IO� stereotypes over UML class compartments are used to denote input, out-
put, and IO messages, respectively.

� The �ctrl� stereotype over UML classes, associations, and attributes is used to specify
controlled phenomena.

� A FORML world model extends a UML class diagram with a traditional feature
model.

3.3 Expression Language

FORML has a language for writing world-model expressions, which are usually expressions
over the elements (objects, attribute values, etc.) of one world state or two consecutive
world states (i.e., a world-state transition)8. The expression language, which is based on
Alloy [48] and OCL [73], can be used to write queries to access world-state elements, as well
as to write predicates. The expression language is used not only for writing world-model
constraints (see Section 3.2.6), but also for writing expressions in the behaviour model, as
described in Section 3.4.

Sections 3.3.1 to 3.3.8 describe di�erent types of world-model expressions and Sec-
tion 3.3.9 compares these expression types to Alloy and OCL expressions. Three addi-
tional types of world-model expressions, which are used only in the behaviour model, are
described in Sections 3.4.1.2, 3.4.1.3, and 3.4.3.2. In the following, an expression is typeset
in san serif font (e.g., Calls), <...> denotes a placeholder to be replaced by the appropriate
type of expression (e.g., <S>), optional elements are denoted in gray, and list(x) denotes
a comma separated list of elements of the form x (e.g., list(<S>)).

The formal semantics of an expression e is given as a mathematical expression [e](s,
B) evaluated in a state s and a set B described below. s is a pair of consecutive world
states (wsi−1,wsi), where wsi and wsi−1 are the current and previous world states,
respectively9. Some types of expressions (e.g., selection expressions, quanti�ed predicates)

8The behaviour model can include expressions over three world states. Such expressions are described
later in Section 3.4.

9The state s will be expanded in Section 3.6 to account for the additional expression types that appear
in the behaviour model.

62

u1: User u2: User

vmu: VoiceMailUser

ts1: TelSoft

c: Call

status = voice

caller callee
ts2: TelSoft

service user

sub1: Subscription sub2: Subscription

serviceuser

bcs1: BCS

«fc»

ec: EndCall

«dest»

bcs2: BCS

vm: VM

«fc»

«fc»

uvm: UVM

vmuser

vmsg: VoiceMessage

mb: MailBox

vm

message

u3: Userts3: TelSoft
service user

sub3: Subscription

bcs3: BCS

«fc»

sc: StartCall

target = u1

«dest»

Figure 3.14: An extension of the world state shown in Figure 3.11

introduce object variables that are bound to objects in wsi or wsi−1; an object variable
can be referenced within subexpressions of its introducing expression. B is a set of bindings
of the object variables introduced by e's containing expressions. More precisely, a member
of B is a tuple (v, o) that binds object variable v to object o; B(v1) denotes the value of
variable v1 in B (if any):

B(v1) ≡ {o1 | (v1, o1) ∈ B}

and B ⊕ (v2, o2) denotes adding or replacing the binding of variable v2 in B, such that
v2 is bound to object o2 and all other bindings in B are unchanged:

B ⊕ (v2, o2) ≡ B − {(v2, o) | (v2, o) ∈ B} ∪ {(v2, o2)}

All of the examples in the following subsections are given with respect to the TelSoft world
model shown in Figure 3.10; its world state shown in Figure 3.14 (an extension of the world
state shown in Figure 3.11); and, in the case of @pre expressions (Section 3.3.7), its world
behaviour shown in Figure 3.13.

63

Expression Semantics

none ∅

val The literal constant val corresponding to an enumerated value

e.g., request evaluates to the value (set) {request} in the enumerated type of attribute
status of association Call

Cs The set of instances (objects) of concept C in wsi: wsi ::OC

e.g., Users evaluates to the set of User objects {u1, u2}, and Calls evaluates to the set
of Call objects {c}

v The value of object variable v : B(v)

Table 3.4: Atomic set expressions: The expressions are evaluated in state s = (wsi−1,wsi)
and set B.

3.3.1 Set Expressions

A set expression is a query over a world state that returns a set of objects or values10. A set
expression can be atomic or derived from subexpressions. An atomic expression is either
the empty set, a value of an enumerated type, or an object-variable reference (Table 3.4).
There are several types of derived set expressions:

Starting from a set of objects in a world state, a navigation expression derives related
sets of objects or values by navigating the relationships among world-state elements (Ta-
ble 3.5). A selection expression �lters a set of objects in a world state to derive the subset
of members that satisfy some condition (Table 3.6). A conditional expression returns one
of two sets of objects or values of the same type in a world state, depending on some
condition (Table 3.7). Finally, the basic operations of set union (+), intersection (&), and
di�erence (-) can be applied to two sets of objects or values of the same type (Table 3.8).

10To simplify the expression language, an individual object (value) is treated as a singleton set of objects
(values). In this manner, the modeller does not have to keep track of whether he is writing an expression
over an individual object (value) or over a set of objects (values).

64

Expression Semantics

<O>.a The set of values of attribute a in wsi for the objects [<O>](s, B):

{wsi ::C.a(o) | o ∈ [<O>](s,B)}
e.g., Calls.status evaluates to the value (set) {voice}, which is the set of the
values of the status attribute of all Call objects

<O>.A-r The set of A links in wsi that relate, in role r, the objects [<O>](s, B) to
other objects: {a ∈ wsi ::OA | ∃ o ∈ [<O>](s,B) : wsi ::A.r(a) = o}
e.g., Users.Call-caller evaluates to the Call link (set) {c}, which is the only
Call link that relates a User object (u1) in the caller role

<O>.A The set of A links inwsi that relate the objects [<O>](s, B) (in the implicit
role r) to other objects1: [<O>.A-r](s,B)

e.g., Users.Subscription evaluates to the set of Subscription links {sub1, sub2,
sub3} in which the User objects u1, u2, and u3 participate

<L>.r The set of objects in wsi that play role r in the links [<L>](s, B):

{wsi ::A.r(a) | a ∈ [<L>](s,B)}
e.g., Calls.caller evaluates to the User object (set) {u1}, which is the only
User object that plays the caller role in all Call links

<P>.F The set of F feature objects in wsi related to the product objects
[<P>](s, B): {wsi ::SPL.F (p) | p ∈ [<P>](s,B)}
e.g., TelSofts.BCS evaluates to the BCS feature object (set) {bcs1, bcs2, bcs3}
of the TelSoft product objects ts1, ts2, and ts3

<M>.from and <M>.to The set of product objects in wsi that the message objects [<M>](s, B)
originate from and are destined to, respectively:

{wsi ::M.from(m) | m ∈ [<M>](s,B)} and
{wsi ::M.to(m) | m ∈ [<M>](s,B)}
e.g., EndCalls.to evaluates to the TelSoft product object (set) {ts1}

<M>.p The set of values of parameter p in wsi for the message objects
[<M>](s, B): {wsi ::M.p(m) | m ∈ [<M>](s,B)}
e.g., StartCalls.target evaluates to the value (set) {u1} of the target parameter
of the StartCall message object sc

1 The expression is ambiguous if the objects [<O>](s, B) can participate in more than one role of
A (e.g., User objects can participate in both the caller and callee roles of Call). In such cases, the
expression <O>.A-r can be used.

Table 3.5: Navigation expressions: The expressions are evaluated in state s= (wsi−1,wsi)
and set B. <O>, <L>, <P>, and <M> are set expressions.

65

Expression Semantics

<O> [v | <P>] The subset of the objects [<O>](s, B) that satisfy the predicate <P>:

{o ∈ [<O>] | [<P>](s,B ⊕ (v, o))}
e.g., Users [u | some u.Calls-caller or some u.Calls-callee] evaluates to the subset {u1,
u2} of User objects that participate in one or more Call links

Table 3.6: Selection expressions: The expressions are evaluated in state s = (wsi−1,wsi)
and set B. <O> is a set expression, <P> is a predicate, and v is an object variable that
iterates over [<O>](s, B).

Expression Semantics

if <P> then <S1> else <S2> The set of objects [<S1>](s,B), if [<P>](s,B) is true, and otherwise,
the set of objects [<S2>](s, B):{

[<S1>](s,B) if [<P>](s,B),

[<S2>](s,B) if ¬[<P>](s,B)

e.g., if (Calls.callee in VoiceMailUsers) then none else Calls.callee evaluates
to the User object (set) {u1}, which is the normal (i.e., not a special
voice-mail user) callee of the Call link c

Table 3.7: Conditional expressions: The expressions are evaluated in state s =
(wsi−1,wsi) and set B. <P> is a predicate, and <S1> and <S2> are set expressions.

Expression Semantics

<S1> + <S2> [<S1>](s,B) ∪ [<S2>](s,B)

e.g., Calls.caller + Calls.callee evaluates to the set of User objects {u1, u2}

<S1> & <S2> [<S1>](s,B) ∩ [<S2>](s,B)

<S1> - <S2> [<S1>](s,B)− [<S2>](s,B)

Table 3.8: Basic set-operation expressions: The expressions are evaluated in state s =
(wsi−1,wsi) and set B. <S1> and <S2> are set expressions.

3.3.2 Integer Expressions

An integer expression returns either an integer constant, the cardinality of a set of objects
or values, or the result of adding or subtracting set cardinalities and constants (Table 3.9).
Integer expressions are used as subexpressions within predicates.

66

Expression Semantics

n The integer n

e.g., 2 evaluates to the integer 2

#<S> |[<S>](s, B)|

e.g., #Users evaluates to 3

<I1> + <I2> [<I1>](s,B) + [<I2>](s,B)

e.g., #Users + #Calls evaluates to 4

<I1> - <I2> [<I1>](s,B)− [<I2>](s,B)

Table 3.9: Integer expressions: The expressions are evaluated in state s = (wsi−1,wsi)
and set B. <S> is a set expression, and <I1> and <I2> are integer expressions.

Expression Semantics

<S1> = <S1> [<S1>](s,B) = [<S2>](s,B)

e.g., Calls.caller = Calls.callee evaluates to false

<S1> in <S1> [<S1>](s,B) ⊆ [<S2>](s,B)

e.g., VoiceMailUsers in Users evaluates to true

<I1> = <I2> [<I1>](s,B) = [<I2>](s,B)

e.g., #Users = #TelSofts evaluates to true

<I1> <> <I2> [<I1>](s,B) 6= [<I2>](s,B)

<I1> < <I2> [<I1>](s,B) < [<I2>](s,B)

<I1> > <I2> [<I1>](s,B) > [<I2>](s,B)

<I1> <= <I2> [<I1>](s,B) ≤ [<I2>](s,B)

<I1> >= <I2> [<I1>](s,B) ≥ [<I2>](s,B)

Table 3.10: Basic set and integer predicates: The expressions are evaluated in state s =
(wsi−1,wsi) and set B. <I1> and <I2> are integer expressions.

3.3.3 Predicates

A predicate is an expression over a world state that evaluates to either true or false. The
most basic types of predicates are the constants true or false with obvious meanings. The
other types of predicates are described below.

Predicates can be formed by checking the equality of sets, the inclusion of one set in

67

Expression Semantics

no <S> [<S>](s, B) has no elements: | [<S>](s,B) | = 0

e.g., no Calls evaluates to false, because the world state includes the Call link c

lone <S> [<S>](s, B) has zero or one element: 0 ≤ | [<S>](s,B) | ≤ 1

one <S> [<S>](s, B) has exactly one element: | [<S>](s,B) | = 1

some <S> [<S>](s, B) has one or more elements: | [<S>](s,B) | ≥ 1

Table 3.11: Set-cardinality predicates: The expressions are evaluated in state s =
(wsi−1,wsi) and set B. <S> stands for a set expression.

Expression Semantics

not <P> ¬[<P>](s,B)

e.g., not (#Calls = 0) evaluates to true

<P1> and <P2> [<P1>](s,B) ∧ [<P2>](s,B)

<P1> or <P2> [<P1>](s,B) ∨ [<P2>](s,B)

<P1> implies <P2> [<P1>](s,B) ⇒ [<P2>](s,B)

<P1> i� <P2> [<P1>](s,B) ⇔ [<P2>](s,B)

Table 3.12: Basic logical-operation predicates: The expressions are evaluated in state s =
(wsi−1,wsi) and set B. <P>, <P1>, and <P2> are predicates.

another, and integer comparisons involving set cardinalities (Table 3.10). Common pred-
icates about the cardinality of a set in the world state � namely, that a set contains zero
(no), zero or one (lone), one (one), or some elements (some) � can be expressed using set-
cardinality predicates (Table 3.11). A predicate can be formed by applying the negation,
conjunction, disjunction, implication, and equivalence logical operators to operand predi-
cates (Table 3.12). Finally, a quanti�ed predicate asserts that a predicate <P> is satis�ed
by some number of a set's members; that is, zero, zero or one, one, some, or all members
(Table 3.13).

68

Expression Semantics

no v: <S> | <P> No member of [<S>](s, B) satis�es <P>:

| {o ∈ [<S>](s,B) | [<P>](s,B ⊕ (v, o))} | = 0

e.g., no c: Calls | c.caller = c.callee evaluates to true

lone v: <S> | <P> At most one member of [<S>](s, B) satis�es <P>

0 ≤ | {o ∈ [<S>](s,B) | [<P>](s,B ⊕ (v, o))} | ≤ 1

one v: <S> | <P> Exactly one member of [<S>](s, B) satis�es <P>

| {o ∈ [<S>](s,B) | [<P>](s,B ⊕ (v, o))} | = 1

some v: <S> | <P> One or more members of [<S>](s, B) satisfy <P>

∃ o ∈ [<S>](s,B) : [<P>](s,B ⊕ (v, o))

all v: <S> | <P> All members of [<S>](s, B) satisfy <P>

∀ o ∈ [<S>](s,B) : [<P>](s,B ⊕ (v, o))

Table 3.13: Quanti�ed predicates: The expressions are evaluated in state s = (wsi−1,wsi)
and set B. <S> is a set expression, <P> is a predicate, and v is an object variable that
iterates over [<S>](s, B).

Expression Semantics

U(list(<S>)) The type T of an unde�ned expression U is determined by the context in which U is
used. U evaluates to a nondeterministically chosen value of type T .

e.g., in Calls[status = status()], status() evaluates to a nondeterministically chosen value
from the enumerated type {request, connected, voice} of the status attribute of the Call
association; and in if timeout() then Calls[status = request] else Calls[status = connected],
timeout() evaluates to a nondeterministically chosen truth value

Table 3.14: Unde�ned set and predicate expressions. <S> is a set expression.

3.3.4 Unde�ned Set and Predicate Expressions

An unde�ned set expression is an abstraction that represents a set of objects or values
resulting from an unde�ned computation over a world state. Analogously, an unde�ned
predicate represents an unde�ned condition over a world state. Such expressions are partic-
ularly useful for modelling computations and conditions involving world phenomena that
are abstracted away in the world model (e.g., time, the unde�ned types of some attributes).
An unde�ned set or predicate expression can (optionally) take as arguments one or more
sets of objects or values in the world state (see Table 3.14).

69

Macro Semantics

let m = <E> de�nes a macro m, which stands for expression <E>

e.g., using the macro de�ned by let callers = Calls.caller, the expression
Calls.caller.Subscription.service can be simpli�ed to callers.Subscription.service

Table 3.15: Macros: <E> is an expression.

3.3.5 Parenthesized Expressions

The subexpressions in an expression can be parenthesized to indicate a particular order
for evaluating the subexpressions. For example, over the world state shown in Figure 3.14

(#Calls = 2 and #Users = 3) or #TelSofts = 3

returns true (since and is evaluated before or), whereas

#Calls = 2 and (#Users = 3 or #TelSofts = 3)

returns false (since or is evaluated before and).

3.3.6 Macros

Amacro is an abbreviation de�ned for an expression, which enables simplifying occurrences
of the expression by using the macro instead (see Table 3.15).

3.3.7 @pre

The su�x @pre (borrowed from OCL [73]) can be applied to atomic set expressions of
the form Cs and to navigation expressions to indicate that the attributed expressions
are evaluated with respect to the previous world state (Table 3.16). Furthermore, @pre
can be applied to a parenthesized expression or macro (provided that the paranethesized
expression or macro does not have @pre subexpressions), in which case @pre distributes over
the subexpressions in the parenthesized expression or macro. For example, the expression

(c.caller.Subscription.service in EndCalls.to)@pre

is equivalent to the expression

c.caller@pre.Subscription@pre.service@pre in EndCalls@pre.to@pre

70

Expression Semantics

Cs@pre The set of instances (objects) of concept C in wsi−1:

wsi−1 ::OC

e.g., In world state ws2 in Figure 3.13, Calls@pre evaluates to the
Call object (set) {c}

<O>.a@pre The set of values of attribute a in wsi−1 for the objects [<O>](s,
B):

{wsi−1 ::C.a(o) | o ∈ [<O>](s,B)}

<O>.A-r@pre {a ∈ wsi−1 ::OA | ∃ o ∈ [<O>](s,B) : wsi−1 ::A.r(a) = o}

<O>.A@pre [<O>.A-r@pre](s,B)1

<L>.r@pre {wsi−1 ::A.r(a) | a ∈ [<L>](s,B)}

<P>.F@pre {wsi−1 ::SPL.F (p) | p ∈ [<P>](s,B)}

<M>.from@pre and <M>.to@pre {wsi−1 ::M.from(m) | m ∈ [<M>](s,B)} and
{wsi−1 ::M.to(m) | m ∈ [<M>](s,B)}

<M>.p@pre {wsi−1 ::M.p(m) | m ∈ [<M>](s,B)}
1 The expression is ambiguous if the objects [<O>](s, B) can participate in more than one role of A.
In such cases, the expression <O>.A-r can be used.

Table 3.16: @pre expressions: The expressions are evaluated in state s = (wsi−1,wsi)
and set B. <O>, <L>, <P>, and <M> are set expressions.

3.3.8 Precedence

Table 3.17 gives the default precedence order for evaluating expressions. Parentheses can
be used to override the default precedence order.

71

Set expressions

@pre and @curri (see Section 3.4.3.2) expressions

Navigation and selection expressions

Basic set-operation expressions
- set intersection (&)
- set union (+), set di�erence (-)

Integer expressions

Set cardinality expressions

Basic integer-operation expressions

Predicates

Basic set and integer predicates, and set cardinality predicates

Basic logical operations
- Negation (nor)
- Conjunction (and)
- Implication (implies), equivalence (i�)
- Disjunction (or)

Quanti�ed predicates

Table 3.17: Default precedence order for expressions: Expressions are listed in decreasing
order of precedence for each category (set, integer, predicate) of expressions. All binary
operators (i.e., basic set, integer, and logical operators) are left associative.

3.3.9 Comparison with Alloy and OCL

FORML's expression language adopts from Alloy most atomic expressions (see exception
below), conditional expressions, basic set-operation expressions, integer expressions, and
predicates; and adopts from OCL several navigation expressions (see exceptions below)
and @pre expressions. FORML extends and adapts OCL and Alloy as follows:

� FORML introduces atomic expressions of the form Cs to reference the set of objects
of a given type C in the current world state.

� FORML introduces the following navigations expressions: <O>.A-r expressions to
navigate links starting from a particular role; <P>.F expressions to navigate from
products to their features; and <M>.from, <M>.to, and <M>.p expressions to nav-
igate from message objects to their senders, receivers, and parameters, respectively.

� FORML introduces unde�ned set and predicate expressions.

72

BehaviourModel

FeatureModule

1..*

Feature
11

StateMachine

Fragment
1*

* 1

Figure 3.15: A partial behaviour-model metamodel. The referenced class Feature is de�ned
in Figure 3.1.

� FORML adapts selection expressions in OCL to use a more compact notation.

3.4 Behaviour Model

As explained in Section 3.2, some of the requirements of an SPL can be modelled declara-
tively as world-model constraints. However, the main view in a FORML model for describ-
ing an SPL's requirements is the behaviour model. The behaviour model is executable:
each execution step of the behaviour model speci�es desired changes to world phenom-
ena and the step-by-step changes over the course of an execution realize a desired world
behaviour (according to the SPL's requirements).

A behaviour model can be described more precisely in terms of the partial metamodel
shown in Figure 3.15.

De�nition 3.4.1. A behaviour model is structured in terms of features: the requirements of
each feature of an SPL are localized in a separate feature module. Requirements of a feature
that are independent of existing features are expressed as a set of parallel state machines.
If the feature enhances (i.e., extends or modi�es) existing features, the enhancements are
expressed as a set of state-machine fragments that extend existing feature modules.

This section describes the syntax of a behaviour model with an informal description of
the semantics. FORML state machines are described in Section 3.4.1, and state-machine
fragments are described in Section 3.4.6. The semantics of a behaviour model is formally
de�ned in Section 3.6.

73

basic state

superstate

region name

initial state of
sub state machine

initial state of
state machine

transition
transition label

unstable state

macros

state-machine name

action label
basic state

name

superstate name

region

region

priority
transition

Figure 3.16: The feature module for the BCS feature of TelSoft

3.4.1 FORML State Machines

De�nition 3.4.2. A FORML state machine is a tuple (n,M, S,R, SH , S0, L, T) where:

� n is the state-machine's name.

� M is a set of macro de�nitions. The macros de�ned in M are abbreviations of
FORML expressions that are used to simplify transition labels described below.

� S and R are �nite sets of states and orthogonal regions, respectively, organized into
a state hierarchy de�ned by the containment relation SH over states and regions.

� S0 ⊂ S is the set of initial states.

� L is a set of transition labels. A transition label speci�es the transition's name,
trigger, guard, and actions; and the transition's priorities relative to other transi-
tions.

74

� T is a set of transitions between states. A transition t ∈ T is a tuple (ssrc, l, sdst),
where ssrc ∈ S is the transition's source state, sdst ∈ S is the transition's destination
state, and l ∈ L is the transition's label.

A FORML state machine is expressed in a notation based heavily on that of UML
state machines [71]. Section 3.4.5 summarizes what FORML borrows from, and how it
extends and adapts, UML state machines. For example, TelSoft 's BCS feature module
is shown in Figure 3.16. The name of a state machine is speci�ed as a state-machine
declaration in a UML note (e.g., state machine main). The macros of a state machine
are also de�ned in a UML note (e.g., user). The state hierarchy of a state machine is
described in Section 3.4.1.1, and state-machine transitions and actions are described in
Sections 3.4.1.2, 3.4.1.3, and 3.4.4.

A state machine of a feature is instantiated for every product in the world to re�ect
the feature's contribution to that product's e�ects on the world. Each state-machine
instance is called a machine. A desired world behaviour is speci�ed by the execution of
all the products' features' machines. In each step of an execution, the machines execute a
set of concurrently enabled transitions. When a transition executes, it performs a set of
enabled actions that specify how the current world state should change. The enabledness
of a machine's transitions and actions depends on the current and past world states. For
example, the short world behaviour shown in Figure 3.17 is speci�ed by an execution of
two instances smi1 and smi2 of BCS's state machine main (Figure 3.16), corresponding to
two TelSoft product objects ts1 and ts2, respectively. Each state machine has an internal
object variable named myproduct that relates each of its instances to the corresponding
product object in the world state11. Thus, the values of the myproduct variables of smi1
and smi2 are ts1 and ts2, respectively. Sections 3.4.2 and 3.4.3 describe machine executions
in more detail.

11Themyproduct object variable is ubiquitous and, as such, is not explicitly declared in the state-machine
models.

75

ws0

ws1

ws2

Figure 3.17: A world behaviour of the TelSoft world model shown in Figure 3.10: Added
elements are coloured red, removed elements are coloured gray, and new attribute values
are shaded green.

3.4.1.1 States

A state of a FORML state machine is an abstraction that represents a class of past world
behaviours. For example, the inCall state in Figure 3.16 represents the set of world
behaviours that end in a (current) world state in which the TelSoft user participates in
a call. Following the UML, each state is either a superstate, which contains other states
(e.g., inCall), or a basic state, which contains no other states (e.g., idle). A superstate
contains one or more orthogonal regions (regions for short), where each region models

76

a concurrent sub-machine. For example, superstate inCall includes two regions process
and reject, which model the processing of a call and the rejection of additional incoming
calls, respectively. The containment relationship between states and regions de�nes a state
hierarchy, where

� The root of the state hierarchy represents the state machine. Its child nodes are the
top-level states : that is, the states that are not internal to any sub-machine.

� A superstate has one or more child regions.

� A region's child nodes are the states of its sub-machine.

� A basic state is a leaf node.

The remainder of this thesis makes use of the following de�nitions to access information
about a state hierarchy:

De�nition 3.4.3. The ancestors of a state or region x are all of the nodes along the path
from the root to x. The descendants of a node x are all of the states and regions in the
subtrees of x. The rank of a node x in the state hierarchy is the length of the path from the
root to x. The nearest common ancestor of a state or region x1 and a state or region x2 is
the maximum-rank node that has both x1 and x2 as descendants. A region r1 is orthogonal
to a region r2 if the nearest common ancestor of r1 and r2 is a state.

A state or region x of a state machine sm is uniquely identi�ed within its feature module
by its global name, which is the dot-separated list of node names along the path from the
root node of sm's state hierarchy to x's corresponding node. For example, in Figure 3.16,
the global name main.inCall.process.talking refers to state talking in region process in state
inCall of state machine main. x can also be identi�ed by its local name relative to some
containing state machine, superstate, or region y; the local name is derived from the path
from y's node in the state hierarchy to x's node. For example, the equivalent local name,
relative to state inCall, of the global name main.inCall.process.talking is process.talking.

One state of a state machine is designated as the initial state (e.g., idle); similarly, one
state of every sub-machine can (optionally) be designated as the initial state (e.g., waitCall
in region reject). The remainder of this thesis uses the following de�nition to identify all
regions and their initial states that are descendants of a given state:

De�nition 3.4.4. The initial descendants of state s are all of s's regions (if any), the
initial state of each of s's regions, and the initial descendants of each of those initial states.

77

Lastly, there is a distinction between basic states that are stable (e.g., idle) and those
that are unstable (e.g., issueReject). An unstable state is denoted by the stereotype �un-
stable�. Brie�y, the current world state is observable in a stable state, but is unobservable
in an unstable state.

De�nition 3.4.5. An unstable state is a basic state that marks an intermediate stage in
computing the next observable world state.

The distinction between stable and unstable states is described in more detail in Sec-
tion 3.4.3.

A state machine de�nes the set of possible con�gurations of its instances.

De�nition 3.4.6. A con�guration of a machine is the set of current states and regions of
its execution. More precisely, a con�guration c of a state-machine sm is a subset of the
states and regions in sm's state hierarchy that satis�es the following constraints:

� Exactly one child of the root is in c.

� If a superstate is in c, so are all of its children (regions).

� If a region is in c, so is exactly one of its children (a state).

� If a state is in c, so are all of its ancestors, except the root.

The set of sm's possible con�gurations is denoted by Configsm.

For example, the state machine main in Figure 3.16 has six possible con�gurations includ-
ing the following three con�gurations:

{idle}
{issueReject}
{inCall, process, reject, callerWaitConnect, waitCall}

The initial con�guration cinit of a state machine sm is the con�guration in which each sm
machine (instance) starts execution. The initial state of sm is in cinit, and if a region is in
cinit, so is its initial state. For example, the initial con�guration of the state machine in
Figure 3.16 is {idle}. Finally, a con�guration is stable if it includes only stable basic states
and is unstable if it includes one or more unstable basic states. The initial con�guration
of a state machine must be stable.

78

3.4.1.2 Transitions

A transition in a FORML state machine speci�es a change in the machine's con�guration
and a set of actions on the world. The most common type of transition is a non-preemptive
transition, which unlike preemptive transitions (see Section 3.4.4), does not have a higher
priority than other transitions. A non-preemptive transition has a label of the form

id : te [gc] / al1, . . . , aln

where id is the name of the transition, te is an optional trigger expression, gc is an optional
guard condition, and al1 . . . aln are labels (described in detail below) that specify a set of
concurrent actions. A non-preemptive transition t in machine smi is enabled for execution
if the con�guration of smi includes t 's source state and, as described below, t 's trigger and
guard evaluate to true.

As expected, transitions in di�erent concurrent regions can be concurrently enabled.
However, it is also possible for nonconcurrent transitions to (unexpectedly) be enabled
together.

De�nition 3.4.7. Two transitions t1 and t2 of state machine are nonconcurrent if either
they have the same source state, or the source state of one is a descendant of the other.

For example, in Figure 3.16, transitions t1 and t5, and transitions t2 and t9, are non-
concurrent. For now, we assume that nonconcurrent transitions cannot be concurrently
enabled; we relax this assumption in Section 4.1.

The trigger expression of a transition is a world-change event (WCE): a predicate over
two consecutive world states that identi�es a single primitive change in the world state.
There are three types of WCEs: (1) a new object in the world, (2) an object removed from
the world, and (3) a change in value of an object attribute (see Table 3.18). A trigger
expression is evaluated together with the transition's guard: a trigger evaluates to true
if its WCE occurs and the guard evaluates to true with respect to the (new, removed,
changed) object that raised the WCE. The guard refers to the object associated with a
WCE using the object variable introduced by the trigger. This object variable can also
be referenced by the transition's actions. If the trigger expression and guard are satis�ed
by more than one object's WCE (e.g., if multiple objects are added to the world at once),
one object is chosen nondeterministically, so that any transition actions that apply to the
trigger's object are applied to only one object in the world.

The guard of a transition is a predicate that is normally over the most recent world-
state transition. A guard condition is usually used to check a property about the current

79

Expression Semantics

C+(o) Some C object c was added to world state wsi−1, for which [<gc>](s, {(o, c)}) is true

e.g., over the consecutive world states ws0 and ws1 in Figure 3.17, where the transition
has no guard, EndCall+(o) evaluates to true for o = ec, where ec is only added EndCall
message object

C-(o) Some C object c was removed from world state wsi−1, for which [<gc>](s, {(o, c)}) is
true

e.g., over the consecutive world states ws1 and ws2 in Figure 3.17, where gc is the
predicate o.status@pre = connected, Call-(o) evaluates to true for o = c, where c is the
only removed Call link whose status attribute has the value connected

C.a∼(o) The a attribute of some C object c in world state wsi−1, for which [<gc>](s, {(o, c)})
is true, changed value

e.g., over the consecutive world states ws0 and ws1 in Figure 3.17, where the transition
has no guard, Call.status∼(o) evaluates to true for o = c, where c is the only Call link
whose status attribute changed value (from request in ws0 to connected in ws1).

Table 3.18: Trigger expressions: <gc> is the transition's guard condition, and o is an object
variable that refers to the (new, removed, changed) objects in the WCE. The expressions
are evaluated in a state s that includes a pair of consecutive world states (wsi−1,wsi)
(i ≥ 1).

Expression Semantics

<p>(sm).inState(s) The con�guration of the sm machine of product [<p>](s, B) includes state s.

sm.inState(s) The con�guration of the sm machine that belongs to the same product as this
machine (i.e., the machine for which the predicate is evaluated), includes state s.

inState(s) The con�guration of this machine includes state s.

Table 3.19: inState predicates: s is a state's local name within its state machine, and <p>
is a set expression that evaluates to a singleton set (if <p> does not evaluate to a singleton
set, the inState predicate evaluates to true). <p> is evaluated in a state s that includes
a pair of consecutive world states (wsi−1,wsi) (i ≥ 1), and in a set B of object-variable
bindings.

80

world state. However, there are cases where the desired behaviour depends on how the
world has changed (e.g., how a vehicle's speed has changed). Hence, the guard condition
is over both the current world state and the previous world state (i.e., the most recent
world-state transition) rather than just the current world state12. However, as with Harel
statecharts [43], the guard can also check whether a machine is in a particular state. Such
checks, used to synchronize the execution of di�erent machines, are expressed as inState
predicates (Table 3.19). For example, the expression inState(inCall.process.talking) checks
whether an instance of state machine main of BCS (Figure 3.16) is in state talking. The
syntax for referring to states (e.g., inCall.process.talking) and other machine elements are
described in Section 3.4.1.4.

3.4.1.3 Actions

An action speci�es a constraint on how the current world state should change (into the
next world state). Based on the usual interpretation of state-machine actions, the reader
may expect an action to be interpreted as a change to a single part of the world state (such
that the rest of the world state is left unchanged). In contrast, we interpret an action as a
constraint on how the current world state should change, allowing the unconstrained part
of the world state to change arbitrarily. In this manner, state-machine actions naturally
complement the world model's constraints on world-state transitions.

The most common type of action is a non-preemptive action, which unlike preemptive
actions (see Section 3.4.4), does not have a higher priority than other actions. A non-
preemptive action has a label of the form

id : [gc] a

where id is the name of the action; gc is an optional guard condition; and a is a WCA, de-
scribed below. A non-preemptive action is enabled as part of the execution of its containing
transition if its guard condition evaluates to true.

AWCA is a predicate over two consecutive world states that speci�es a primitive change
to the current world state. There are three types of WCAs: (1) a new entity object, link,
or output or IO message object is to be created and added to the world state; (2) a set
of objects are to be removed from the world state; (3) an object's attribute value is to be
set to a given value. Table 3.20 gives the syntax and informal semantics of WCAs. For
example, a WCA of the form

var =+A(list(r =<o>), list(a =<val>))

12Section 3.4.3 describes cases where guard conditions can refer to a third world state.

81

Expression Semantics

var = +E(list(a = <val>)) A new entity object of type E is to be added to world
state wsi, with each attribute a of the new object ini-
tialized to a corresponding value [<val>](s, B). E is
(optionally) referenced by object variable var.

var = +A(list(r = <o>) , list(a = <val>)) A new A link is to be added to world state wsi, with
each role r and attribute a of the new link initial-
ized to a corresponding object [<o>](s, B) and value
[<val>](s, B), respectively. A is (optionally) refer-
enced by object variable var.

+MO(from = <p> , list(param = <e>)) A new output message object of type MO is to be
added to world state wsi, with each parameter param
of the new message object set to a corresponding value
[<e>](s, B). The new message object is generated by
the product object [<p>](s, B).

+MIO(to = <p1>, from = <p2> , Analogous to the +MO WCA above, but for IO
list(param = <e>)) messages

-C(<O>) The C objects [<O>](s, B) are to be removed from
world state wsi. The objects to be removed cannot be
product or feature objects. E.g., the consecutive world
states ws1 and ws2 in Figure 3.17 satisfy the WCA
Call-(Calls).

<o>.a := <v> The value of attribute a of object [<o>](s, B) in world
state wsi is to be set to [<v>](s, B). E.g., the consec-
utive world states ws0 and ws1 in Figure 3.17 satisfy
the WCA Calls.status := connected.

Table 3.20: World change actions: <o>, <val>, and <p> are set expressions that return a
single object, value, and product object, respectively; <e> is a set expression that returns
a single object or value; <O> is a set expression that returns a set of objects. The
aforementioned expressions are evaluated in a state s that includes a pair of consecutive
world states (wsi−1,wsi) (i ≥ 1), and in a set B of object-variable bindings.

82

ws0

ws1

ws2

Figure 3.18: A world behaviour of the TelSoft world model shown in Figure 3.10: added
elements are coloured red and removed elements are coloured gray.

speci�es the creation of a new link of type A to be added to the world state. The object
that participates in each role r of the new link and the value of each attribute a of the
new link (if A has any attributes) are listed as name-value pairs in the WCA. Finally, a
reference to the new link can optionally be stored in an object variable var. As an example
of such a WCA,

Call+ (caller = StartCalls.to.Subscription.user, callee = StartCalls.target, status = request)

is satis�ed by the consecutive world states ws1 and ws2 in Figure 3.18, since the Call

83

link c between u1 and u2 is to be added to ws1 (as per the StartCall request made by
telephone user u1).

Note that as per the conventions described in Section 3.2.6, there are no WCA types for
adding or removing product and feature objects, for changing the relationships between
product and feature objects, or for changing the role values of links. Also, there is no
WCA type for adding new input message objects because the behaviour model speci�es
only an SPL's requirements, and the creation of input messages is solely controlled by the
environment.

3.4.1.4 Referencing Machine Elements

Several FORML constructs reference states, transitions, or actions of state-machine in-
stances (machines). For example, inState predicates (Table 3.19) reference states that are
in the same machine as the inState predicate, in another machine of the same product,
or in a machine of a di�erent product. Constructs that reference machine transitions and
actions are described in Section 3.4.4.

An element that is in the same machine as the expression being evaluated is referenced
simply by its name. In the case of a state, it can be referenced by its local name within its
state machine. When referencing a state or transition of another machine, a pre�x is used
to identify the machine13: the pre�x sm. identi�es the machine of type sm that is in the
same product as the predicate, and the pre�x <p>(sm). identi�es the machine of type sm
of product <p>14. When referencing a transition, the pre�x is applied to the transition
name. For example, <p>(sm).t references transition t in the sm machine of product <p>.
However, when referencing a state in an inState predicate, the pre�x is applied to the
predicate itself to improve readability (see Table 3.19).

To avoid ambiguity in expressions that reference machine elements, the following unique-
ness constraints apply to the names of such elements: a state machine's name should be
unique within its feature module, a state's name should be unique within its containing
state machine or region, a region's name should be unique within its containing state, a
transition's name should be unique within its state machine, and an actions's name should
be unique within its transition.

84

ws0 ws1 ws2

…

world-state transition

initial world state
with products p1 ... pn

c10 c11 c12

subsequent
configurations

enabled transition

… … …

cn0 cn1 cn2

… … …

…

…

…

sp
ecifies

desired world behaviour

…

execution of machine smi1

corresponding to product p1

execution of machine smin

corresponding to product pn

the small step
in a simple big step

subsequent
world states

initial
configuration

Figure 3.19: A desired world behaviour speci�ed by simple big steps of a set of machines

3.4.2 Simple Big Step

A desired world behaviour starts in some initial (valid) world state ws0 and is a�ected
by the execution of all products' features' machines. Recall that a world behaviour is a
sequence of world states. The world transitions from one world state to the next as speci�ed
by a big step in the machines' execution. In the simplest case, shown in Figure 3.19, a big
step comprises the execution of a single set of concurrently enabled transitions, called a
small step. The notion of big steps and small steps is adopted from the big-step modelling
language (BSML) framework for the semantics of behavioural modelling languages [30].
In more complex cases (described in Section 3.4.3), a world-state transition is speci�ed
by a big step comprising a sequence of two or more small steps. Big steps are described
informally in this chapter, and are formally described in Section 3.6 on semantics.

De�nition 3.4.8. A simple big step in the concurrent execution of a set of machines
comprises a single small step.

13The actions of other machines are never referenced in FORML
14Recall that there can only be at most one instance of any state machine in any product.

85

De�nition 3.4.9. A small step comprises the execution of a single set of concurrently
enabled transitions of the machines. The enabled actions of the transitions contribute to
the next world state, and the destination states of each machine's transitions determine the
machine's next con�guration.

We �rst describe the e�ects of actions on the world state. Next, we describe the e�ects
of transitions on machine con�gurations. In Section 3.4.4, we describe the more complex
e�ects of actions and transitions, due to action and transition priorities.

3.4.2.1 Updating the world state

Let a1 . . . an be the set of actions from the set of transitions enabled in the current world
state wsi

15. The next world state wsi+1 is obtained by changing wsi in a way that satis�es
the actions a1 . . . an. However, the next world state is usually not unique, as the actions
only partially constrain how wsi should change. The uncontrolled parts of wsi that are not
a�ected by the actions can change arbitrarily within the constraints of the world model. By
convention, changes to controlled phenomena (except for the removal of transient output
and IO message objects) are speci�ed only by actions in the behaviour model16. When
there are multiple possible next world states, one is chosen nondeterministically.

For example, consider in Figure 3.20 the execution of machines smi1 and smi2 whose
state machine is shown in Figure 3.16, starting in world state ws0 of Figure 3.18. Al-
though the machines do not react to ws0, uncontrolled phenomena can change (e.g., due
to environmental agents): in our example, User u1 initiates a call to User u2 by issuing a
StartCall message, resulting in world state ws1. smi2 does not react to the change from
ws0 to ws1; however, smi1's transition t1 is enabled:

� The con�guration of smi1 includes t1's source state idle.

� t1's trigger StartCall+(o) and guard o.to = myproduct are satis�ed by the added
StartCall object sc (bound to object variable o): looking at world state ws1 in
Figure 3.18, sc is sent to the TelSoft product ts1, whose machine is smi1.

15The �rst big step in an execution is in reaction to the initial world state, which has no previous world
state.

16A change to controlled phenomena is either the addition or removal of a controlled object or a change
in the value of a controlled attribute (e.g., the addition of a Call link, where Call is a controlled concept
in the TelSoft world model shown in Figure 3.10).

86

ws0 ws1 ws2

{idle}

execution of
machine smi1 {idle}

t1 (a1)

{inCall,
process, reject,
callerWaitConnect, waitCall}

{idle} {idle} {idle}

desired world behaviour

execution of
machine smi2

Figure 3.20: Machine executions for the world behaviour shown in Figure 3.18: smi1 and
smi2 are instances of the BCS state machine main (Figure 3.16), corresponding to the
TelSoft products ts1 and ts2 in Figure 3.18, respectively.

� smi1's reaction is to perform t1's action a1, which is enabled by default since the
action has no guard. Action a1's WCA

Call+ (caller = user, callee = o.target, status = request)

speci�es that a new Call link is to be added to ws1 : the caller is the User object who
subscribes to smi1's product (the macro user expands to myproduct.Subscription.user),
the callee is the target parameter of sc (bound to object variable o), and the status is
request. In our example, the value of world state ws2 is determined solely by applying
action a1 to world state ws1. The world-state transition from ws1 to ws2 could have
included additional changes (within the world-model constraints) to uncontrolled
phenomena, but no such changes occur in this example.

3.4.2.2 Updating a machine's con�guration

A machine's con�guration is updated in a small step as follows (the description below uses
the notions de�ned over a state-machine's state hierarchy in De�nitions 3.4.3 and 3.4.4):
for each transition t that is executed in the small step,

1. The source state src of t is exited (i.e., removed from the con�guration), along with
all of src's ancestors and descendants.

2. The destination state dst of t is entered (i.e., added to the con�guration), along with
all of dst 's ancestors (except the root) and initial descendants.

87

3. If the destination state of t is a child state of a region r, and there are regions
orthogonal to r that were not in the machine's con�guration before executing t, all
such regions and their initial descendants are entered17.

Consider the execution of machine smi1 in Figure 3.20. The initial con�guration is {idle}.
On execution of t1, the con�guration is updated as follows: (1) The source state idle of
t1 is exited. (2) t1 's destination state callerWaitConnect is entered, along with the state's
ancestors (i.e., the region process and its superstate inCall). (3) The orthogonal regions of
the newly entered region process and their initial descendants are entered (i.e., the region
reject and its initial state waitCall). Therefore, the con�guration of smi1 after executing
t1 is

{inCall, process, callerWaitConnect, reject, waitCall}

3.4.2.3 Simplifying Assumptions

For simplicity of presentation, the above description of a simple big step makes the following
assumptions:

� It is assumed that machines (state-machine instances) in the behaviour model are
deterministic. In order for a machine to be deterministic, it should not be possible for
two or more nonconcurrent transitions (De�nition 3.4.7) of the machine to be enabled
in the same small step. If multiple nonconcurrent transitions were simultaneously
enabled, we would need to select one for execution.

� It is assumed that the enabled actions in a big step are non-con�icting : that is, there
always exists a valid world-state transition from the current world state that satis�es
all of the actions.

� It is assumed that the enabled transitions in a big step have non-con�icting destina-
tion states : that is, updating the con�guration of each machine will always result in
a valid con�guration of the machine.

We relax the assumption of determinism in Section 4.1, and the assumptions of non-
con�icting actions and destination states in Section 4.2.

17The process for updating a machine's con�guration will fail if it requires computing the initial descen-
dants of a state that has one or more regions that have no initial states. Even though a region may not
strictly need an initial state � because none of its ancestor states have incoming transitions (e.g., region
process in Figure 3.16) � it is good practice to give each region an initial state anyway to accommodate
possible extensions of the region's state machine by new features (see Section 3.4.6).

88

3.4.3 Compound Big Step

There are situations where it is not possible to specify a desired world-state transition
in terms of a simple big step. For example, suppose that we want to specify the desired
TelSoft world behaviour wsi, wsi+1, wsi+2 shown in Figure 3.21 (ignore the world state
wsi+1,1 for now). This world behaviour represents the case where two users u1 and u3
make simultaneous call requests to a third user u2 (the world-state transition from wsi to
wsi+1), and the desired outcome is for one of these call requests to be connected and for the
other to be rejected. The coordination of these two reactions cannot be done concurrently
(the calls to be rejected are known only after selecting the call to be connected, or vice
versa). However, it is often possible to specify the desired world-state transition in terms
of a sequence of two or more intermediate world-state transitions that are unobservable
(i.e., they do not appear in the world behaviour). In the above example, we can �rst
nondeterministically connect one call request(s) (the transition from wsi+1 to the interme-
diate world state wsi+1,1) and subsequently reject the remaining call request (the transition
from wsi+1,1 to wsi+2). To accommodate such cases, a desired world-state transition can
be speci�ed as a compound big step:

De�nition 3.4.10. A compound big step in the execution of a set of machines comprises
a sequence of two or more small steps. Each small step in a compound big step speci�es
an intermediate world-state transition that (except for the last small step) results in an
intermediate world state that is the source state of the next small step. The end of an
intermediate small step in a compound big step is marked with one or more unstable states
(see De�nition 3.4.5).

Figure 3.22 shows an example of a compound big step.

3.4.3.1 Big step termination

A big step continues (with additional small steps) so long as any of the executing machines
are in an unstable con�guration (i.e., the con�guration contains one or more unstable
states); and a big step terminates when all of the machines arrive at a stable con�guration.
For example, in Figure 3.22, the big step terminates after m+1 small steps, because after
each of the �rst m small steps, at least one machine (smin) is in an unstable con�guration;
whereas, after the m+ 1th small step, all of the machines are in stable con�gurations. As
soon as a machine reaches a stable con�guration, it does not execute any more transitions
in the current big step. For example, in Figure 3.22, the machine smi1 does not execute any

89

wsi

wsi+1

wsi+1,1

wsi+2

Figure 3.21: A world behaviour of the TelSoft world model shown in Figure 3.10: Added
elements are coloured red, removed elements are coloured gray, and change attribute values
are shaded green.

90

ws1

…

c10 c10,1 c10,m

… …

…

…

desired world behaviour

execution of
machine smi1

compound big step

c11 = c10,m

…

c10,2

…

cn0 cn0,1 cn0,m

… … …
…

cn1

…

cn0,2

…

small step

sp
ecifies

ws0 ws0,1 ws0,2 ws0,m

…

stable configuration

intermediate
(unobservable)

world state

unstable configuration

intermediate
(unobservable)

world-state transition

sp
ecifies

observable
world-state transition

observable
world state

execution of
machine smin

Figure 3.22: A desired world behaviour speci�ed by compound big steps of a set of ma-
chines: unstable con�gurations and unobservable world states are shown in gray.

transitions in the m+ 1th small step of the big step, because it is in a stable con�guration
c10,m.

To ensure that a big step always terminates, each state machine sm in the behaviour
model should satisfy the following well-formedness conditions:

� The con�guration graph of sm should not contain a cycle of unstable con�gurations.
The con�guration graph of sm is a directed graph, whose nodes are the con�gurations
of sm. A directed edge from a con�guration c1 to a con�guration c2 denotes the exis-
tence of one or more transitions in sm whose execution will change the con�guration
of an sm instance from c1 to c2.

� Every unstable state should have an else transition that leads to another state. An
else transition has a label of the form

id : else / al1, . . . , aln

91

where id is the transition name, and a11 . . . a1n are action labels as described in
Section 3.4.1.3. An else transition t is enabled if the machine's con�guration includes
t's unstable source state and no other non-else transitions that emanate from t's
source state are enabled.

The above conditions ensure that a machine will never get stuck in an unstable con�g-
uration. Note that the unstable state issueReject in Figure 3.16 does not have an outgoing
else transition. This is because issueReject 's only outgoing transition t6 has no trigger or
guard, and thus is always enabled in the unstable con�guration {issueReject}; hence, a
main machine can never get stuck in this unstable con�guration.

3.4.3.2 @curri expressions

In a compound big step, expressions in each small step (e.g., trigger expressions, transition
guards, actions) are interpreted with respect to a state s that includes not just the most
recent world-state transition (wsi−1,wsi) (i ≥ 1), but also the current intermediate world
state wsi,j (j ≥ 1). We use the construct @curri for cases when a transition originating
from an unstable state has an expression that should be evaluated with respect to the
current intermediate world state. As with @pre expressions (Section 3.3.7), the syntax is
to a�x @curri to an atomic set expression of the form Cs, to a navigation expression, to a
parenthesized expression, or to a macro. For example, the expression

Calls@curri[c | c.status = connected]

evaluated in the intermediate world state wsi+1,1 in Figure 3.21 returns the Call link (set)
{c1}. However, the expression
Calls[c | c.status = connected]

returns the empty set when evaluated in wsi+1,1 because the most recent observable world
state wsi+1 contains no connected calls (only call requests).

3.4.3.3 Updating the world state

There are two cases for computing the next world state of a small step in a compound big
step: the �rst case applies to small steps that lead to intermediate world states; and the
second case applies to the last small step in the big step, leading to the next observable
world state.

92

wsi+1 wsi+1,1

execution of
machine smi1

desired world behaviour
wsi+2

callerWaitConnect
callerWaitConnect

callerWaitConnect

execution of
machine smi2 {issueReject}

t6 (a1)

{inCall, process,
calleeWaitAnswer,
reject, waitCall}

{idle}

t5 (a1)

execution of
machine smi3 callerWaitConnect

callerWaitConnect
callerWaitConnect

Figure 3.23: Machine executions for the world behaviour shown in Figure 3.21: smi1, smi2,
and smi3 are instances of the BCS state machine main (Figure 3.16), corresponding to
the TelSoft products ts1, ts2, and ts3 in Figure 3.18, respectively. callerWaitConnect is an
abbreviation for the con�guration {inCall, process, callerWaitConnect, reject, waitCall}.

Case 1: An intermediate small step in a compound big step Let wsc and wsp be
the current and previous observable world states, and let wsci be the current intermediate
world state that is the source of an intermediate small step in a compound big step. At
the start of a big step, the current intermediate world state wsci is equal to the current
observable world state wsc. Let a1 . . . an be the set of enabled actions that are performed
in the small step. The next intermediate world state wsni is obtained by changing wsci
exactly as prescribed by the actions a1 . . . an, and disallowing any further changes. Note
that the world state wsni obtained by this rule is not necessarily valid; however, invalid
intermediate world states are tolerated since they are unobservable.

For example, consider the execution in Figure 3.23 of the machines smi1, smi2, and
smi3 (instances of the BCS state machinemain in Figure 3.16) starting in world state wsi+1

of Figure 3.21. smi1 and smi3 do not react to the change from wsi to wsi+1; however,
smi2's transition t5 is enabled:

� The con�guration of smi2 includes t5's source state idle.

� t5's trigger Call+(o) and guard o.callee = user are satis�ed by two added Call links c1

93

and c2 (when bound to object variable o): looking at world state wsi+1 in Figure 3.21,
the callee of both c1 and c2 is the User object u2 (i.e., the User object that the
macro user = myproduct.Subscription.user evaluates to18).

� smi2's reaction is to perform t5's action a1, which is enabled by default since it has
no guard. Action a1's WCA

o.status = connected

speci�es that a Call link (c1 or c2, chosen nondeterministically and bound to object
variable o) is to be connected. In our example, c1 is connected.

Transition t5 updates smi2's con�guration to the unstable con�guration {issueReject},
which implies that the big step has not yet terminated. Hence, the change prescribed by
action a1 of t5 is the only change applied to the current intermediate world state (equal
to wsi+1), resulting in the next intermediate world state wsi+1,1.

Case 2: The last small step in a compound big step Let wsc and wsp be the current
and previous observable world states, and let wsci be the current intermediate world state.
Let a1 . . . an be the set of enabled actions that are performed in the small step. At �rst,
it may appear that the next world state wsn can be obtained by treating the last small
step as a simple big step (see Section 3.4.2) applied to wsci: that is, by making changes to
wsci that satisfy the actions a1 . . . an, including arbitrary changes to the uncontrolled parts
of wsci that are not a�ected by the actions. The problem with this approach is that the
arbitrary changes can counteract changes made by actions in previous small steps of the
compound big step. For example, an object added in previous small steps may be removed
as an arbitrary change in the last small step. To avoid this problem, the next observable
world state wsno is computed using a two-step process:

1. The net e�ects of all of the small steps in the big step are accumulated in a temporary
(and possibly invalid) world state wsn, obtained by changing the current intermediate
world state wsci exactly as prescribed by the actions a1 . . . an.

2. An implied set of actions a′1 . . . a
′
k is computed for the big step.

De�nition 3.4.11. An implied set of actions for a big step is a minimal set of actions
that, if applied to the current observable world state wsc, would result in a temporary
world state wsn that accumulates the net e�ects of all of the small steps in the big
step.

18The variable myproduct of smi2 evaluates to the TelSoft object ts2, which is related (in the world-
behaviour model in Figure 3.21) to the User object u2 via a Subscription link.

94

Finally, the next observable world state wsno is obtained as if a simple big step with
actions a′1 . . . a

′
k is applied to wsc: that is, the changes applied to wsc satisfy the

actions a′1 . . . a
′
k, and include arbitrary changes to the uncontrolled parts of wsc that

are not a�ected by the actions.

For example, after the �rst small step in Figure 3.23 (as part of the execution of
instances of the BCS state machine main in Figure 3.16), smi1 and smi3 once again have
no reactions; however, smi2's transition t6 is enabled:

� The con�guration of smi2 includes t6's unstable source state waitReject. t6 has no
other enabling conditions, since it has no trigger or guard expressions.

� smi2's reaction is to perform t6's action a1, which is enabled by default since the
action has no guard. Action a1's WCA

−Call(callRequests@curri)

speci�es that all remaining Call links whose status attribute has the value request
be removed.

Transition t6 updates smi2's con�guration to the stable con�guration

{inCall, process, calleeWaitAnswer, reject, waitCall}

which together with the fact that smi1 and smi3 are also in stable con�gurations, implies
that this is the last small step in the compound big step. Hence, the two-step process
is used to compute the next observable world state: (1) The change prescribed by a1 is
applied exactly to wsi+1,1 resulting in a temporary world state wsn. (2) An implied set
of actions is computed for the big step that, if applied to wsi+1, would result in wsn (see
De�nition 3.4.11):

{ c1.request = connected, −Call(c2) }

The world state wsi+2 is determined by applying the implied set of actions plus arbitrary
changes to uncontrolled phenomena in wsi+1. In our example in Figure 3.21, no additional
arbitrary changes are applied.

The simplifying assumptions about determinism and the absence of con�icts, stated in
Section 3.4.2 for simple big steps, apply also to the above description of small steps in a
compound big step.

95

a reaction of the machine(s)
corresponding to product p1

t11

t12

t21

t22

t23

t24

t25

a reaction of the machine(s)
corresponding to product p2

Figure 3.24: A small step involving preemptive transitions: a solid arrow denotes a non-
preemptive transition, a dotted arrow denotes a preemptive transition, a red arrow goes
from a preemptive transition to its target transition, and a gray arrow denotes a preempted
transition.

3.4.4 Preemptive Transitions and Actions

Priorities are often established among the requirements of features, either to indicate that
a new requirement overrides an existing requirement or to resolve a con�ict between two re-
quirements. For example, call waiting (CW) overrides BCS's busy-treatment requirement,
by connecting a second incoming call rather than rejecting it. As an example of using pri-
orities to resolve a requirements con�ict, consider the following: BCS requires that when
a callee answers a call, the call should have a voice connection; and when a caller ends a
call, the call should be removed from the world. However, these two requirements con�ict
when the caller and callee of the same connected call simultaneously answer and end the
call. One possible resolution is to favour the caller's request over the callee's request.

In FORML, requirements priorities are modelled as priorities between pairs of tran-
sitions and actions, using preemptive transitions and actions, respectively. This section
focuses on modelling requirements priorities within the same feature (in the same or di�er-
ent products). Section 3.4.6 addresses modelling requirements priorities between di�erent
features.

3.4.4.1 Preemptive Transitions

De�nition 3.4.12. A preemptive transition has a higher priority than one or more �
implicitly or explicitly speci�ed � other transitions called its target transitions.

96

As shown in Figure 3.24, when a preemptive transition (e.g., t22) is enabled together with
its target transition (t21) in the same small step, the target transition is preempted : that
is, it does not execute in the small step. It is possible for one transition to be preempted
by multiple preemptive transitions in a small step (e.g., t21 is preempted by both t22 and
t23). It is also possible for a preemptive transition to itself be preempted in a small step;
however, its target transitions are still preempted (e.g., even though t23 is preempted by t25,
it still preempts t21). Finally, the target transition of a preemptive transition may belong
to the same product or to di�erent products (e.g., t24 in product p2 preempts transition
t12 in product p1). To ensure that big steps always terminate (see Section 3.4.3.1), the
target of a preemptive transition cannot be an else transition. There are three basic types
of preemptive transitions that di�er in how they specify their target transitions or in their
enabling conditions.

Super transitions: A super transition is a transition whose source state is a superstate.
A super transition is an implicit preemptive transition that has priority over all of the
transitions whose source states are descendants of t's source state in the state hierarchy.
For example, in BCS's feature module (see Figure 3.16), t10 is a super transition whose
(implicit) target transitions are t3, t4, t7, and t8; the priority of t10 over t7, for example,
speci�es that if a callee simultaneously answers and ends a connected call, only the end-call
request should be processed. Note that the target transitions of a super transition belong
to the same machine as the super transition; hence, super transitions specify priorities only
among the requirements of a single product.

Priority transitions: A priority transition has a label of the form

id > list(idtarget) : te [gc] / al1, . . . , aln

where id is the name of the priority transition, and list(idtarget) is a comma-separated list
of references to the target transitions. Using the syntax described in Section 3.4.1.4, idtarget
can refer to a target transition in the same machine, in a di�erent machine of the same
product, or in a di�erent machine of a di�erent product. For example, in BCS's feature
module (see Figure 3.16), the priority transition t2 has a higher priority than transition t8
of the same machine (this priority resolves a con�ict between the destination states of the
concurrent transitions t2 and t8 when they are both enabled). As another example, given
two TelSoft products with BCS, one for the caller and one for the callee of the same call,
transition t10 of the caller's machine (which models the caller ending a call) has priority
over transition t7 of the callee's machine (which models the callee answering the call). The

97

label on priority transition t10 starts with

t10 > calleeTelSoft(main).t7

where the macro calleeTelSoft evaluates to the callee's TelSoft product. The rest of the
label of a priority transition, as well as its enabling conditions, are the same as those of a
non-preemptive transition.

Override transitions: An override transition has a label of the form

id : override(idtarget) [gc] / al1, . . . , aln

where idtarget refers to a unique target transition using the syntax described in Sec-
tion 3.4.1.4. The override transition id inherits the enabling conditions of its target tran-
sition and augments them with an optional guard condition gc. Thus, the id transition of
a machine m is enabled in a small step if m's con�guration includes id's source state, id's
target transition is enabled, and gc is satis�ed. Examples of override transitions are given
in Section 3.4.6, in the context of modelling the requirements of new features.

Override transitions do not add expressiveness to FORML: it is possible to represent
an override transition of the above form as a priority transition that replicates the enabling
conditions of the target transition idtarget:

id > idtarget : tetarget [srctarget ∧ gctarget ∧ gc] / al1, . . . , aln

where tetarget and gctarget are the trigger expression and guard condition of idtarget, re-
spectively; and srctarget is an inState predicate that checks if idtarget's source state is in
the corresponding machine's con�guration. However, there are two problems with this
representation: (1) the intent of overriding the target transition is left implicit; and (2)
replicating the target transition's enabling conditions hinders modi�ability: if the target
transition's enabling conditions change, the label of the priority transition would also have
to be changed. In contrast, override transitions explicate the intent of overriding the target
transition and inherit the target transition's enabling conditions.

Note that the above types of preemptive transitions are not mutually exclusive. For
example, a transition whose source state is a superstate and whose label is

id > list(id1target) : override(id2target) [gc] / al1, . . . , aln

is a super transition, a priority transition, and an override transition, all at the same time.

98

a transition in a
machine’s reaction

a1, a2, a3, a4

…

Figure 3.25: A transition involving preemptive actions: non-preemptive actions are not
in bold (e.g., a1), preemptive actions are in bold (a2, a3, a4), a red arrow goes from a
preemptive action to its target action, and a preempted action is in gray.

3.4.4.2 Preemptive Actions

De�nition 3.4.13. Analogously, a preemptive action speci�es a priority over one or more
other actions, called its target actions.

Preemptive actions specify priorities only among actions of the same transition � hence,
they a�ect the requirements of a single product. As shown in Figure 3.25, when a pre-
emptive action (e.g., a2) is enabled together with its target action (a1), the target action
is preempted: that is, it does not execute. It is possible for one action to be preempted by
multiple preemptive actions (e.g., a1 is preempted by both a2 and a3). It is also possible
for a preemptive action to itself be preempted, but its target actions are still preempted
(e.g., even though a3 is preempted by a4, it still preempts a1). There are two basic types
of preemptive actions that di�er in their enabling conditions.

Priority actions: A priority action has a label of the form

id > list(idtarget) : [gc] a

where id is the name of the priority action, and list(idtarget) is a comma-separated list of
the names of target actions. The rest of the label of a priority action, as well as its enabling
conditions, is the same as that of a non-preemptive action.

Override actions An override action has a label of the form

id : override(idtarget) [gc] a

where idtarget refers to a unique target action, and the rest of the label is the same as
that of a non-preemptive action. The override action id inherits the enabling conditions
of idtarget and possibly augments them with gc. Thus, the override action id is enabled

99

if action idtarget is enabled (i.e., id and idtarget's (common) transition is executing and
idtarget's enabling conditions hold) and gc is satis�ed.

Override actions do not add expressiveness to FORML and can be equivalently repre-
sented by priority actions (in a manner analogous to the representation of override transi-
tions by priority transitions). However, like override transitions, override actions have the
bene�ts of explicating the intent of overriding other actions and avoiding the replication
of the target actions' enabling conditions.

Examples of preemptive actions are given in Section 3.4.6, in the context of modelling
the requirements of new features. Finally, as with preemptive transitions, the types of
preemptive actions are not mutually exclusive. For example, an action whose label is

id > list(id1target) : override(id2target) [gc] a

is a priority action and an override action at the same time.

3.4.5 Comparison with UML State Machines

FORML state machines adopt from UML state machines the foundational constructs of
basic and hierarchical states, concurrent regions, and transitions. Syntactically, FORML
extends and adapts UML state machines as follows:

� FORML transitions and actions are named.

� FORML actions can have guard conditions.

� FORML introduces the language of world-change events (WCEs) and WCAs for
transition triggers and actions, respectively.

� FORML introduces priority and override transitions and actions.

� FORML uses named unstable states in place of UML pseudo states.

The semantics of FORML state machines is similar to that of UML state machines [84]
in that both simple and compound big steps are possible, and the termination criteria for
big steps is speci�ed syntactically (via stable states in FORML and non-psuedo states in
UML). However, there are several major di�erences:

100

� In UML, an arbitrary classi�er can have a state machine that is instantiated once per
instance (object) of the classi�er. In FORML, state machines are associated with a
particular classi�er, namely, the SPL concept; hence, state machines are instantiated
once per product.

� UML state-machine instances operate on the local data of their associated object
and synchronize via mechanisms such as signals and operation calls. FORML state-
machine instances all operate on global data (the world state) and synchronize via
changes to the global data.

� UML semantics includes the notion of an event pool that stores unprocessed signals
and operation calls; together with the local data of objects, the event pool is used
to determine transition enabledness. FORML semantics does not include an event
pool, because transition and action enabledness is determined solely by global data.

� In UML, an execution step processes a single event from the event pool, with the
choice of event being a variation point in UML semantics. In FORML, all events
(changes to global data) generated in one exection step are processed in the next
execution step.

3.4.6 State-Machine Fragments

An SPL is primarily evolved by adding new features. When a new feature is independent
of existing features, its requirements can be modelled as one or more new state machines
that execute in parallel with the existing features' machines. However, the purpose of a
new feature can (in part) be to enhance an existing feature's requirements. There are three
types of enhancements:

� A new feature can add new requirements in the context of an existing feature's
requirements. For example, caller delivery (CD) adds requirements for delivering a
caller's identity to the callee, in the context of the call-processing requirements of
basic call service (BCS).

� A new feature can modify the requirements of an existing feature. In other words,
a new feature can have intended interactions with an existing feature. For example,
call waiting (CW) modi�es the usual busy-treatment of BCS by connecting a second
incoming call rather than rejecting it. As another example, a caller's caller delivery
blocking (CDB) feature prevents the callee's CD feature from delivering the caller's
identity to the callee.

101

s1

s2

s1 s2

t3: <WCE3> [<P1>] / a1: [<P2>] <WCA1>

t4: <WCE4> [<P3>] / a1: [<P4>] <WCA2>

t1: <WCE1>

t2: <WCE2>

r

state machine main

Figure 3.26: B feature module: <WCE1-4>, <WCA1-2>, and <P1-4> are trigger expres-
sions, WCAs, and predicates respectively.

� A new feature Fnew can add a retrospective intended interaction to an existing feature
F : speci�cally, Fnew can specify that a requirement of F takes priority over a require-
ment of Fnew or another existing feature.19 For example, CW requires BCS to override
CW under the following conditions: when CW is active and the voice-connected call
is ended by one of the call's parties, CW establishes a voice-connection between the
subscriber and the waiting party. However, if the remote user of the waiting call uses
BCS to end the call at the same time, BCS overrides CW and the call is ended.

Note that it is possible to have enhancements of enhancements: in the above examples,
CDB enhances CD, which itself enhances BCS.

It is natural to model enhancements in terms of di�erences from the enhanced features'
requirements. In this approach, the model of the enhanced feature is reused as the context
for expressing the new feature. FORML supports modelling a new feature's enhancements
of existing features' requirements in terms of state-machine fragments (fragments for short)
that extend existing feature modules.

Specifying a fragment involves referencing elements in existing feature modules. A
fragment necessarily references the state-machine element that it extends, but can also
reference existing macros from within expressions; and reference existing state machines,
states, transitions, and actions from within inState predicates, and preemptive transitions
and actions. An element n in the feature module of an existing feature F can be referenced
by its quali�ed name F{n}; n is the element's global name within its feature module. The
global name of a state or region is described in Section 3.4.1.1. The global name of a

19We say that F has a (retrospective) intended interaction with Fnew (or another existing feature)
because it is F that is modifying the requirements of Fnew (by taking precedence over Fnew's requirements)
and not the other way around. The term retrospective re�ects the fact that the intended interaction is
added to the requirements of a feature introduced before Fnew.

102

transition t of a state machine sm is sm.t, and the global name of an action a of t is
sm.t.a. The global names of fragments are described in Section 3.4.6.4.

The following subsections give both pedagogical and real examples for the di�erent
types of fragments. The pedagogical examples are based on the abstract feature module
shown in Figure 3.26, which belongs to a �ctitious feature B and comprises a single state
machine main. As real examples, the models for CW, CD, and CDB are presented, and
references are given to additional TelSoft and AutoSoft models in Appendix A.

3.4.6.1 Modelling the Addition of Requirements to Existing Features

Recall that, fundamentally, an existing feature's requirements are speci�ed (in its feature
module) as transition actions that constrain changes to the world state, and as enabling
conditions of transitions and actions that constrain when the actions apply. A fragment
speci�es new behaviours by adding new actions to existing feature modules. There are
three types of fragments for adding requirements to existing features.

New regions A new region extends a stable state in an existing feature module. Fig-
ure 3.27a shows the syntax for specifying a new region. The new region is shown (using
the usual notation for regions) in the context of the superstate that is to be extended. The
superstate's name is a reference to the state being extended. For example, in Figure 3.27b,
a new feature F1 extends state s2 of state machine main in B's feature module (shown in
Figure 3.26) with a new region r. The state to be extended is referenced by the expression
B{main.s2}. The composition of the F1 and B feature modules, shown in Figure 3.27c,
illustrates the e�ect of the extension. Note how the name of each element in the composed
model is quali�ed with the name of the feature that introduced the element; for example,
state s1 in B's (F1's) feature module is named B{s1} (F1{s1}) in the composed model.
There is more to composing feature modules than what appears in this section's examples.
Feature-module composition is discussed in detail in Section 3.5.

103

sub state machine

new region reg

existing state

reference to existing state

(a) Syntax

sub state machine

new region reg

existing state

reference to existing state

(b) Example: F1 module

sub state machine

new region reg

existing state

reference to existing state

(c) F1 composed with B (the new region is coloured in red)

Figure 3.27: State-machine fragment to specify new regions

104

reference to
existing region or

state machine

new transition

new transition new state existing state

new
self transition new

transition
label

new or
existing state

existing region or
state machine

new state s

reference to
existing

state

reference to
existing

region or
state machine

name of existing
state in existing
region or state

machine

existing
region

or
state

machine

(a) Syntax for a new transition

reference to
existing region or

state machine

new transition

new transition new state existing state

new
self transition new

transition
label

new or
existing state

existing region or
state machine

new state s

reference to
existing

state

reference to
existing

region or
state machine

name of existing
state in existing
region or state

machine

existing
region

or
state

machine

(b) Syntax for the new source or desti-

nation state of a new transition

reference to
existing region or

state machine

new transition

new transition new state existing state

new
self transition new

transition
label

new or
existing state

existing region or
state machine

new state s

reference to
existing

state

reference to
existing

region or
state machine

name of existing
state in existing
region or state

machine

existing
region

or
state

machine

(c) Syntax for the existing source or

destination state of a new transition

reference to
existing region or

state machine

new transition

new transition new state existing state

new
self transition new

transition
label

new or
existing state

existing region or
state machine

new state s

reference to
existing

state

reference to
existing

region or
state machine

name of existing
state in existing
region or state

machine

existing
region

or
state

machine

(d) Example: F2 module

reference to
existing region or

state machine

new transition

new transition new state existing state

new
self transition new

transition
label

new or
existing state

existing region or
state machine

new state s

reference to
existing

state

reference to
existing

region or
state machine

name of existing
state in existing
region or state

machine

existing
region

or
state

machine

(e) F2 composed with B (the new states and transitions are coloured in red)

Figure 3.28: State-machine fragment to specify new transitions

105

New non-preemptive transitions A new transition extends a state machine in an
existing feature module. The source and destination states of a new transition can each be
either an existing state or a new state. Figure 3.28a shows the syntax for specifying a new
transition. The new transition is shown (as usual) as a labelled arrow between its source
and destination states.

Figure 3.28b shows the syntax for specifying a new (source or destination) state in the
context of the region or state machine that is being extended; the latter is represented by a
dotted box labelled (at its top-left corner) with a reference to the extended region or state
machine20. Figure 3.28c shows the syntax for specifying an existing (source or destination)
state. In the simplest case, an existing state can be shown as a basic state (regardless as to
whether the state is actually a basic state) whose name is a reference to the existing state.
When specifying multiple (new or existing) states within the same region or state machine,
it is convenient to show the states in the context of a single dotted box representing the
shared container.

For example, in Figure 3.28d, a new feature F2 extends state machine main in B's
feature module (shown in Figure 3.26) with three new transitions: (1) transition t1 from
state s2 in region B{main.s2.r} to a new state s1 in the same region, (2) transition t2 from
the top-level state s1 in main to a new top-level state s2 in main, and (3) a self transition
t3 from the new top-level state s2 in main. The composition of the feature modules for
F2 and B is shown in Figure 3.28e.

New non-preemptive actions A new action extends a transition in an existing feature
module. Figure 3.29a shows the syntax for specifying a set of new actions that extend the
same transition: a UML note that names the extended transition is followed by a comma-
separated list of action labels.

For example, in Figure 3.29b, a new feature F3 extends transition t1 of state machine
main in B's feature module (shown in Figure 3.26) with a new action a1. t1 is referenced
by the expression B{main.t1}. The composition of the feature modules for F3 and B is
shown in Figure 3.29c.

20Even though the new state is shown as a basic stable state in Figure 3.28b, the new state could also
be a basic unstable state or a superstate.

106

new action label

reference to existing
transition

(a) Syntax

new action label

reference to existing
transition

(b) Example: F3 module

new action label

reference to existing
transition

(c) F3 composed with B (the new action is coloured in red)

Figure 3.29: State-machine fragment to specify new actions

3.4.6.2 Modelling Intended Interactions

The following fragments can be used to model a new feature's modi�cations to the require-
ments of existing features, called the new feature's intended interactions with existing
features. A fragment speci�es an intended interaction by adding new enabling conditions or
removing conditions on existing transitions or actions; or by overriding existing transitions
(actions) with new transitions (actions).

Weakening and strengthening clauses A weakening clause is a predicate that ex-
tends, through disjunction, the guard condition of a transition or action in an existing
feature module. Weakening a guard adds a new condition under which the guarded tran-
sition or action is enabled for execution. Figure 3.30a shows the syntax for specifying a
weakening clause and how the clause is associated with an existing feature's transition or
action. A weakening clause is named to allow the clause to be referenced by future feature
modules for the purpose of weakening or strengthening the clause itself.

For example, in Figure 3.30b, a new feature F4 adds the weakening clause w1 to the
guard of transition B{t3}; and adds the weakening clause w2 to the guard of action a1
in transition B{t4}. The composition of the feature modules for F4 and B is shown

107

weakening clause

reference to existing transition

reference to
existing action

name of weakening clause

(a) Syntax

weakening clause

reference to existing transition

reference to
existing action

name of weakening clause

(b) Example: F4 module

weakening clause

reference to existing transition

reference to
existing action

name of weakening clause

(c) F4 composed with B (the weakening clause is coloured in red)

Figure 3.30: State-machine fragment to specify weakening clauses

in Figure 3.30c. The e�ect of w1 (respectively, w2) is to extend the guard condition of
transition B{t3} (respectively, action a1 in B{t4}) with a disjunctive clause, which extend
the set of circumstances under which transition B{t3} and action a1 in transition B{t4}
execute.

Analogously, a strengthening clause is a predicate that extends, through conjunction,
the guard condition of a transition or action in an existing feature module. Unlike a
weakening clause, a strengthening clause can be applied to a transition or action that does
not have a guard: in this case, the strengthening clause becomes the guard of the transition
or action. Strengthening or adding a guard removes a condition under which the extended
transition or action is enabled for execution. Figure 3.31a shows the syntax for specifying
a strengthening clause, which is analogous to that of a weakening clause.

For example, in Figure 3.31b, a new feature F5 adds the strengthening clause s1 to
transition B{t1}; and adds the strengthening clause s2 to the guard of action a1 in transi-
tion B{t4}. The composition of the feature modules for F5 and B is shown in Figure 3.31c.
The e�ect of s1 is to add a guard condition to transition B{t1}, and the e�ect of s2 is
to add a conjunctive clause to the guard of action a1 in transition B{t4}, which reduce
the set of circumstances under which transition B{t1} and action a1 in transition B{t4}
execute.

108

strengthening clause

reference to existing transition

reference to
existing action

name of strengthening clause

(a) Syntax

strengthening clause

reference to existing transition

reference to
existing action

name of strengthening clause

(b) Example: F5 module

strengthening clause

reference to existing transition

reference to
existing action

name of strengthening clause

(c) F5 composed with B (the strengthening clause is coloured in red)

Figure 3.31: Strengthening clauses

New preemptive transitions and actions A fragment can add a new preemptive
transition to a state machine or a new preemptive action to a transition in an existing
feature module. A preemptive transition preempts the execution of its target transitions,
and a preemptive action preempts the execution of its target actions, when they are enabled
in the same small step. A new preemptive transition (action) is speci�ed like a new non-
preemptive transition (action), as described above.

Fragments that trigger or prohibit state change Triggering the entry (exit) of
an existing state s of a feature F causes an intended interaction with F : as a result of
entering (exiting) s, the transitions and actions of F whose enabledness is a�ected by s
execute under more (fewer) conditions. Examples of such transitions and actions include
transitions that are reachable from s (i.e., transitions whose source state can be reached
by zero or more transitions from s), override transitions with target transitions that are
reachable from s, and transitions and actions that are guarded by inState predicates that
check whether a machine is in state s. Conversely, prohibiting the entry (exit) of s causes
the transitions and actions of F whose enabledness is a�ected s to execute under fewer
(more) conditions.

De�nition 3.4.14. The following fragments intentionally trigger or prohibit the entry or

109

exit of an existing state: A new (preemptive or non-preemptive) transition to (from) an
existing state intentionally triggers the entry (exit) of the state; however, a state change
occurs only if the new transition is not a self-transition. Furthermore, a fragment that
triggers or prohibits an existing transition (i.e., a preemptive transition, or a weakening or
strengthening clause) intentionally triggers or prohibits the exit (and entry) of the existing
transitions' source (and destination) state, respectively; however, the state changes only if
the existing transition is not a self-transition.

3.4.6.3 Modelling Retrospective Intended Interactions

A new feature can add a retrospective intended interaction to an existing feature: speci�-
cally, a new feature can add priorities to an existing feature's requirements, such that the
existing feature F 's transition or action has priority over another (new or existing) feature
G's transition or action. Such new priorities can be modelled by specifying G transitions
as new target transitions of an existing F transition, or specifying G actions as new target
actions of an existing F action21. Adding targets to a non-preemptive transition (action) x
changes x into a priority transition (action). Figure 3.32a shows the syntax for specifying
new target transitions and actions for an existing transition and action, respectively. In
Figure 3.32b, a new feature F6 adds a new action a1 to transition B{t3} and adds the
new action F6{a1} as a target action to B's action a1 of the same transition. F6 also
adds F1's transition t1 (see Figure 3.27b) as a target transition to B's transition t1. The
composition of the feature modules for F6 and B is shown in Figure 3.32c.

21A target action added to an existing action a must belong to the same transition as a.

110

references to existing transitions

references to existing actions

(a) Syntax

action B{main.t3.a1} > a1
transition B{main.t1} > F1{t1}
B{main.t3}: / a1: ...

(b) Example: F6 module

B{s1}

B{s2}

B{s1} B{s2}B{t4}: <WCE4> [<P3>] / B{a1}: [<P4>] <WCA2>

B{r}

state machine B{main}

B{t2}: <WCE2>

, F6{a1}: ...
B{t1}: <WCE1>

B{a1} : [<P2>] <WCA1>> F6{a1}

F1{s1}
F1{t1}: <WCE5> [P5] /
F1{a1}: [P6] <WCA3>

F1{r}

: <WCE3> [<P1>] / > F1{t1}B{t3}

(c) F6 composed with B and F1 (the new targets and the transitions and actions that they

reference are coloured in red)

Figure 3.32: State-machine fragments to specify new target transitions and actions

3.4.6.4 Modelling Enhancements of Enhancements

In FORML, an enhancement of an enhancement can be modelled using fragments that
extend other fragments in existing feature modules. All of the fragments described above
can be applied to existing fragments: for example, a state introduced by one fragment can,
in a later fragment, serve as the source or destination of a new transition; a transition
introduced by one fragment can later be extended with a new action; and so on. The
syntax for fragments that extend existing fragments is the same as for fragments that
extend existing state machines. However, the referencing of a model element that was
introduced by a fragment is slightly di�erent.

A fragment (e.g., a new region) and its sub-elements (e.g., the states in a new region) are
referenced by their global names. The global name of a fragment is simply the fragment's
name. The global name of an action a of a new transition t is t.a. A new state or region
xnew introduces a sub state hierarchy rooted at xnew. Hence, the global name of a state

111

or region xdsc that is a descendant of xnew is the dot-separated list of node names along
the path in the state hierarchy from xnew's node to xdsc's node. To avoid ambiguity in
expressions that reference fragment elements, the following uniqueness constraints apply
to the names of such elements: the name of a fragment (i.e., a new region, transition,
state, action, or clause) should be unique in its feature module, and the names of the
sub-elements of fragments should follow the same uniqueness rules as in state machines
(see Section 3.4.1.4).

For example, in Figure 3.33a, a new feature F7 extends several elements introduced by
fragments in the feature modules of features F1, F2, and F3 (shown in Figures 3.27, 3.28,
and 3.29, respectively): In feature F1, F7 extends state F1{r.s1} with a new region named
r, adds a new transition t2 from F1's state s1 to a new state s2, and extends F1's transition
t1 with a new action a1. In feature F2, F7 adds a new transition t3 from F2's state s1
to a new state s3, strengthens F2's transition t2 with a strengthening clause s1, and
strengthens action a1 in F2's transition t3 (referenced by the expression F2{t3.a1}) with
a strengthening clause s2. In feature F3, F7 weakens F3's action a1 with a weakening
clause w1. The composition of F7's feature module with the feature modules for B, F1,
F2, and F3 is shown in Figure 3.33b.

As mentioned above, weakening and strengthening clauses can themselves be weak-
ened or strengthened. Figure 3.34a shows the syntax for specifying a weakening clause
that extends an existing strengthening or weakening clause. Such a weakening clause is
named (to allow further weakening or strengthening), and the extended clause is referenced
accordingly. For example, in Figure 3.34b, a new feature F8 weakens the strengthening
clause s2 in F5's feature module (shown in Figure 3.31b) with the weakening clause w1.
The extended clause s2 is referenced by the expression F5{s2}. The composition of F8's
feature module with the feature modules for B and F5 is shown in Figure 3.34c.

Figure 3.35a shows the syntax for specifying a strengthening clause that extends an
existing strengthening or weakening clause; the syntax is analogous to that described above
for a weakening clause. For example, in Figure 3.35b, a new feature F9 strengthens the
weakening clause w2 in F4's feature module (shown in Figure 3.30b) with the strengthening
clause s1. The composition of F9's feature module with the feature modules for B and F4
is shown in Figure 3.35c.

112

(a) Example: F7 module

(b) F7 composed with B, F1, F2, and F3 (fragments introduced by F1, F2, and F3 are coloured
in blue and the extensions introduced by F7 are coloured in red)

Figure 3.33: New regions, transitions, and (weakening and strengthening) that extend
existing fragments

113

weakening clause name of existing
clause

name of weakening clause

(a) Syntax

weakening clause name of existing
clause

name of weakening clause

(b) Example: F8 module

weakening clause name of existing
clause

name of weakening clause

(c) F8 composed with B and F5 (the extended clause is coloured in blue and the new weakening

clause introduced by F8 is coloured in red)

Figure 3.34: State-machine fragment to specify weakening clauses that extend existing
clauses

strengthening clause name of existing
clause

name of strengthening clause

(a) Syntax

strengthening clause name of existing
clause

name of strengthening clause

(b) Example: F9 module

strengthening clause name of existing
clause

name of strengthening clause

(c) F9 composed with B and F4 (F4's extended clause is coloured in blue and the new strength-

ening clause introduced by F9 is coloured in red)

Figure 3.35: State-machine fragment to specify strengthening clauses that extend existing
clauses

114

«SPL»
TelSoft

«feature»
CD

«output»
ID(caller: User)

User 1
service

1
user

«ctrl»
Call

status: {request, connected, voice}

caller
callee
0..1

BCS

CW

TelSoft

CD

«feature»
BCS

«input»
StartCall(target: User)
AcceptCall()
EndCall()

«output»
Busy()
Ring()

«feature»
CDB

«feature»
CW

«input»
ToggleHold()

CDB

 «ctrl»
Subscription

Figure 3.36: Partial TelSoft world model

3.4.6.5 Examples

This subsection presents the feature modules for the TelSoft features call waiting (CW),
caller delivery (CD), and caller delivery blocking (CDB). Features CW and CD enhance
BCS and are modelled as fragments that extend BCS's feature module; feature CDB
enhances CD and is modelled as a fragment that extends the fragment in CD's feature
module. The feature module for BCS (shown in Figure 3.16) is repeated in Figure 3.37 for
ease of reference. All of the feature modules are associated with the partial TelSoft world
model shown in Figure 3.36.

Call waiting: The feature module for CW is shown in Figure 3.38. An instance of
CW becomes active only when its subscriber is in a call that has progressed to a voice
connection. Thus, we model CW as a set of new behaviours (new transitions and states)

115

idle

callerWaitAnswer

calleeWaitAnswer

inCall

t5: Call+(o) [o.callee = user] /
a1: o.status = connected,
a2: +Ring(from = myproduct)

t7: AnswerCall+(o) [o.to = myproduct] /
a1: acceptedCall.voice := true

t1: StartCall+(o) [o.to = myproduct] /
a1: +Call(caller = user, callee = o.target, status = request)

process

reject

waitCall

state machine main

let user = myproduct.Subscription.user
let callerCall = Calls[c | c.caller = user]
let calleeCalls = Calls[c | c.callee = user]
let acceptedCall = (callerCall + calleeCalls)[c | not c.status = request]
let callRequests = calleeCalls[c | c.status = request]
let calleeTelSoft = acceptedCall.callee.Subscription.service

t6: / a1: -Call(callRequests@curri)

t8: Call+(o) [o.callee = user] / a1: -Call(callRequests)

«unstable»
issueReject

t4: Call.status~(o)
[o = callerCall and o.status = voice]

t10 > calleeTelSoft(main).t7:
EndCall+(o) [o.to = myproduct and not inState(inCall.callerWaitConnect)] /
a1: -Call(acceptedCall + callRequests)

callerWaitConnectt2 > t8: Call-(o) [o = callerCall@pre] /
a1: +Busy(from = myproduct), a2: -Call(callRequests)

t3: Call.status~(o)
[o = callerCall and o.status = connected]

talking

t9: Call-(o) [o = acceptedCall@pre] / a1: -Call(callRequests)

Figure 3.37: BCS feature module (same as Figure 3.16)

that emanate from BCS's talking state. The new transitions t1, t2, t4, t5, and t6 specify
the conditions for activating and deactivating CW; and the new transition t3 speci�es that
when CW is active, the subscriber can toggle the voice connection between the two calls.

CW has the following intended interactions with BCS in the subscriber's TelSoft prod-
uct: (1) CW overrides BCS's requirement of rejecting an incoming call when the subscriber
is already in a voice-connected call by connecting one such call (modelled by the override
transition t1, whose target is BCS's transition t8). (2) If the subscriber makes an end-call
request while CW is active, CW overrides BCS's requirement of ending all of the sub-
scriber's calls by ending only the voice-connected call and establishing a voice-connection
between the subscriber and the waiting party (modelled in CW by the override transition
t6, whose target is BCS's transition t10).

Furthermore, CW speci�es a retrospective intended interaction of BCS with CW in the
TelSoft product of another user: when CW is active and the voice-connected call is ended
by one of the call's parties, CW establishes a voice-connection between the subscriber and
the waiting party (modelled by transitions t5 and t6). However, if the remote user of the
waiting call ends the call (modelled by BCS's transition t10) at the same time, then BCS

116

BCS{talking}
callWaiting

t3: ToggleHold+(o) [o.to = myproduct] /
a1: active.status := connected, a2: waiting.status := voice

t4 > t3: Call-(o) [o in waiting@pre and one active]

let calls = Calls[c | c.caller = BCS{user} or c.callee = BCS{user}]
let active = calls[c | c.status = voice]
let waiting = calls[c | c.status = connected]
let acceptedCalls = active + waiting

let holder = if(waiting.caller = BCS{user}) then waiting.callee else waiting.caller
let holderTelSoft = holder.Subscription.service
transition BCS{t10} > holderTelSoft(BCS{main}).CW{t5}, holderTelSoft(BCS{main}).CW{t6}

BCS{main.inCall.process}

t6 > t3: override(BCS{t10}) /
a1: waiting.status := voice, a2: -Call(active)

t1: override(BCS{t8}) /
a1: o.status := connected «unstable»

issueReject

t2: / a1: -Call(BCS{callRequests}@curri)

t5 > t3: Call-(o) [o in active@pre and one waiting] /
a1: waiting.status := voice

Figure 3.38: CW feature module

overrides CW and the call is ended (modelled by adding CW's transitions t5 and t6 as
targets of BCS's transition t1022).

Caller Delivery: The feature module for CD is shown in Figure 3.39. When the sub-
scriber is a callee connected to a new call (modelled by BCS's transition t5), CD delivers

22Speci�cally, CW includes the fragment

transition BCS{t10} > holderTelSoft(BCS{main}).CW{t5}, holderTelSoft(BCS{main}).CW{t6}

which can be broken down as follows: Let ts1 be a TelSoft product that has been placed on hold by CW in
a remote TelSoft product ts2 (i.e., ts1 is in a connected call with ts2). In product ts1's BCS{main} ma-
chine, the macro holderTelSoft evaluates to ts2; hence, the expressions holderTelSoft(BCS{main}).CW{t5}
and holderTelSoft(BCS{main}).CW{t6} evaluate to transitions CW{t5} and CW{t6} in product ts2's
BCS{main} machine, respectively. As a result, the fragment states that transition BCS{t10} in ts1's
BCS{main} machine takes priority over transitions CW{t5} and CW{t6} in ts2's BCS{main} machine.

117

BCS{main.t5}: / a1: +ID(from = myproduct, caller = o.caller)

Figure 3.39: CD feature module

strengthen action CD{a1} with $s1: no (o.caller).Subscription.service.CDB

Figure 3.40: CDB feature module

the caller's identi�cation to the subscriber. This added requirement is modelled by a new
action a1 added to BCS's transition t5.

Caller Delivery Blocking: The feature module for CDB is shown in Figure 3.40. When
the subscriber is a caller initiating a new call, CDB prevents the subscriber's identi�cation
from being delivered to a callee who subscribes to CD. This intended interaction of CDB
with CD is modelled by strengthening the guard of CD's action a1 with a condition stating
that CD's behaviour applies only if the caller is not subscribed to CDB. Note that the
strengthening clause s1 in Figure 3.40 has a $ pre�x. The pre�x indicates that the clause
in not intended to prohibit behaviours in the subscriber's product, but rather to prohibit
behaviours in other related products: Speci�cally, s1 does not prohibit action CD{a1} in
the TelSoft product of the CDB subscriber, but in the TelSoft product of a remote CD
subscriber. The semantics of feature-module composition is a�ected by the $ pre�x, as
explained in Section 3.5.

Other examples Additional examples of TelSoft and AutoSoft features that are mod-
elled as fragments can be found in Appendix A. In particular, for an example of a new
region, see the model of the AutoSoft feature cruise control (CC); for an example of a
weakening condition, see the model of the AutoSoft feature lane change control (LXC);
and for an example of a preemptive action, see the model of the TelSoft feature reverse
charging (RC).

118

qualified state name

qualified
region name

qualified transition name
qualified action name

qualified clause name

presence condition as new guard

transition presence condition

action presence condition

strengthening clause presence condition

presence condition macros

qualified state-machine name

weakening clause presence condition

Figure 3.41: The composition of the feature modules of the features B (Figure 3.26) and
F1 to F7 (Figures 3.27 to 3.33)

3.5 Feature Composition

Although features are modelled as separate feature modules, the modeller will eventually
want to visualize and (manually or automatically) analyze feature combinations corre-
sponding to products of the SPL. To do so, the modeller must derive models of feature
combinations by composing feature modules using one of two approaches: (1) composing
a set of feature modules that correspond to a particular feature con�guration to obtain a
model of the requirements of a single product; or (2) composing all of the feature modules
to obtain a model of the whole SPL and all of its derivable products. This thesis focuses on
the second approach for the following reason: It has been shown that a model of the whole
SPL enables more e�cient analyses of the SPL's set of products, because the analysis can
exploit the commonalities among di�erent products [7, 24, 41, 86, 8]. In contrast, given
the �rst approach to feature composition, the requirements analyst would have to derive
and analyze each individual product.

The result of composing a set of feature modules is the feature modules' set of parallel
state machines that have been extended with the feature modules' set of fragments. For
example, Figure 3.41 shows the result of composing the feature modules of the feature B
(see Figure 3.26) and features F1 to F7 (see Figures 3.27 to 3.33) from Section 3.4.6. The

119

F1

Fn

Qualifying
and

Expanding
F1´

Fn´

Superimposition composed´
Adding

Presence
Conditions

Qualifying
and

Expanding

composed

composition

… …

fe
at

u
re

 m
o

d
u

le
s

behaviour model of
the whole SPL

Figure 3.42: The process composing feature modules into an SPL model (boxes with square
corners represent models and boxes with rounded corners represent processes)

composition process comprises the following phases (depicted graphically in Figure 3.42):

Qualifying and expanding: This phase preprocesses the feature modules for integra-
tion by qualifying element names and expanding fragment references in each feature mod-
ule. Many model elements have names, including names of state machines, states, tran-
sitions, actions, weakening or strengthening clauses, and macros. To avoid name clashes
between elements that are introduced by di�erent feature modules (e.g., features B and
F both introduce a region r in B's state s2), the name n of an element introduced by a
feature F is quali�ed with the feature's name, resulting in the name F{n}. For example,
in Figure 3.41, the state machine main and state s2 introduced by B are named B{main}
and B{s2}, respectively; F1's region r is named F1{r}; F2's action a1 is named F2{a1};
and F6's strengthening clause s1 is named F6{s1}23.

If an inState predicate, preemptive transition or action, or macro expression references
a machine element introduced by a state-machine fragment (the syntax for referencing
machine elements is given in Section 3.4.1.4), the reference is expanded into the element's
name in the composed model, with each component of the name quali�ed by the feature
that introduced the component. For example, suppose that feature F1 extends B's state
s2 with a region r, and suppose that an inState predicate inState(r.s1) refers to state s1

23Recall that a fragment's reference to a state-machine element in another feature module also takes
the form F{n} (see Section 3.4.6). However, in such a reference, n is the element's global name (e.g.,
B{main.s2} refers to state s2 in state machine main in B's feature module). In contrast, in the quali�ed
name of an element, n is simply the element's name (e.g., the quali�ed name of B's state s2 is simply
B{s2}).

120

in the new region; the predicate is expanded to inState(B{s2}.F1{r.s1}) in the composed
model24.

Example: In preprocessing CW's feature module (see Figure 3.38), the priority transition
t4's name is quali�ed to become CW{t4}, and t4's reference to its target transition t3 is
expanded to t3's quali�ed name CW{t3}.

Superimposition: This phase integrates the state machines and fragments of the fea-
ture modules being composed: the features' state machines are composed in parallel and
are extended with the features' fragments. Extending a state machine with fragments is
straightforward, with the following exception: if a set of weakening clauses w1 · · ·wn and a
set of strengthening clauses s1 · · · sm extend the same condition c, the result of composing
these extensions in the composed model is the condition

(c or w1 or · · · or wn) and s1 and · · · and sm

If the weakening and strengthening clauses are applied to a transition or action that has
no guard condition, the resulting guard condition is

(w1 or · · · or wn) and s1 and · · · and sm

For example, F5's strengthening clause s2 : <P13> and F4's weakening clause w2 : <P11>
both extend the guard condition <P4> of B's action a1 in transition t4; the result is the
following new guard condition:

(<P4> or F4{w2} : <P11>) and F5{s2} : <P13>

The rule for composing weakening and strengthening clauses actualizes a canonical guard
expression that does not depend on the order in which features are created, evolved, or
composed in the SPL. Moreover, the rule gives strengthening clauses priority over weaken-
ing clauses: strengthening clauses often model resolutions to undesired feature interactions
such as con�icts, whereas weakening clauses liberalize the enabling conditions of behaviours
in other features. We view resolutions to undesired interactions as being more critical than
liberalizing the enabling conditions of behaviours. As is explained in Section 3.5.1, the
proposed canonical composition rule for weakening and strengthening clauses helps to en-
sure the commutativity and associativity of superimposition. The superimposition phase
is described more formally in Section 3.5.1.

24Recall from Section 3.4.1.2 that in a predicate inState(n), n is a state's local name within its state
machine.

121

B
C

S
{id

le
}

B
C

S
{c

al
le

rW
ai

tA
ns

w
er

}

B
C

S
{c

al
le

eW
ai

tA
ns

w
er

}

B
C

S
{in

C
al

l}

B
C

S
{t

5}
: C

al
l+

(o
)

[o
.c

al
le

e
=

 B
C

S
{u

se
r}

] /

B
C

S
{a

1}
: o

.s
ta

tu
s

=
 c

on
ne

ct
ed

,
B

C
S

{a
2}

: +
R

in
g(

fr
om

 =
 m

yp
ro

du
ct

),
C

D
{a

1}
: [

C
D

 a
nd

 C
D

B
{s

}:
 n

o
(o

.c
al

le
r)

.S
ub

sc
rip

tio
n.

se
rv

ic
e.

C
D

B
]

+
ID

(f
ro

m
 =

 m
yp

ro
du

ct
, c

al
le

r
=

 o
.c

al
le

r)

B
C

S
{t

1}
: S

ta
rt

C
al

l+
(o

)
[o

.to
 =

 m
yp

ro
du

ct
] /

B

C
S

{a
1}

: +
C

al
l(c

al
le

r
=

 B
C

S
{u

se
r}

, c
al

le
e

=
 o

.ta
rg

et
, s

ta
tu

s
=

 r
eq

ue
st

)

B
C

S
{p

ro
ce

ss
}

B
C

S
{r

ej
ec

t}

B
C

S
{w

ai
tC

al
l}

st
at

e
m

ac
hi

ne
 B

C
S

{m
ai

n}
 le

t B
C

S
{u

se
r}

 =
 m

yp
ro

du
ct

.S
ub

sc
rip

tio
n.

us
er

le
t B

C
S

{c
al

le
rC

al
l}

=
 C

al
ls

[c
 |

c.
ca

lle
r

=
 B

C
S

{u
se

r}
]

le
t B

C
S

{c
al

le
eC

al
ls

}
=

 C
al

ls
[c

 |
c.

ca
lle

e
=

 B
C

S
{u

se
r}

]
le

t B
C

S
{a

cc
ep

te
dC

al
l}

=
 (

B
C

S
{c

al
le

rC
al

l}
+

 B
C

S
{c

al
le

eC
al

ls
})

[c
 |

no
t c

.s
ta

tu
s

=
 r

eq
ue

st
]

le
t B

C
S

{c
al

lR
eq

ue
st

s}
 =

 B
C

S
{c

al
le

eC
al

ls
}[

c
| c

.s
ta

tu
s

=
 r

eq
ue

st
]

le
t B

C
S

{c
al

le
eT

el
S

of
t}

 =
 B

C
S

{a
cc

ep
te

dC
al

l}.
ca

lle
e.

S
ub

sc
rip

tio
n.

se
rv

ic
e

 le
t C

W
{c

al
ls

}
=

 C
al

ls
[c

 |
c.

ca
lle

r
=

 B
C

S
{u

se
r}

 o
r

c.
ca

lle
e

=
 B

C
S

{u
se

r}
]

le
t C

W
{a

ct
iv

e}
 =

 c
al

ls
[c

 |
c.

st
at

us
 =

 v
oi

ce
]

le
t C

W
{w

ai
tin

g}
 =

 c
al

ls
[c

 |
c.

st
at

us
 =

 c
on

ne
ct

ed
]

le
t C

W
{a

cc
ep

te
dC

al
ls

}
=

 C
W

{a
ct

iv
e}

 +
 C

W
{w

ai
tin

g}
le

t C
W

{h
ol

de
r}

 =
 if

 (
C

W
{w

ai
tin

g}
.c

al
le

r
=

 B
C

S
{u

se
r}

)
th

en
 C

W
{w

ai
tin

g}
.c

al
le

e
el

se
 C

W
{w

ai
tin

g}
.c

al
le

r
le

t C
W

{h
ol

de
rT

el
S

of
t}

 =
 C

W
{h

ol
de

r}
.S

ub
sc

rib
es

.s
er

vi
ce

 le
t C

W
 =

 o
ne

 m
yp

ro
du

ct
.C

W
le

t C
D

 =
 o

ne
 m

yp
ro

du
ct

.C
D

B
C

S
{t

8}
: C

al
l+

(o
)

[o
.c

al
le

e
=

 B
C

S
{u

se
r}

] /
 B

C
S

{a
1}

: -
C

al
l(B

C
S

{c
al

lR
eq

ue
st

s}
)

«u
ns

ta
bl

e»
B

C
S

{is
su

eR
ej

ec
t}

B
C

S
{t

4}
: ~

C
al

l.s
ta

tu
s(

o)

[o
 =

 B
C

S
{c

al
le

rC
al

l}
an

d
o.

st
at

us
 =

 v
oi

ce
]

B
C

S
{t

10
}

>
 B

C
S

{c
al

le
eT

el
S

of
t}

(B
C

S
{m

ai
n}

).
B

C
S

{t
7}

,
C

W
{h

ol
de

rT
el

S
of

t}
(B

C
S

{m
ai

n}
).

C
W

{t
5}

, C
W

{h
ol

de
rT

el
S

of
t}

(B
C

S
{m

ai
n}

).
C

W
{t

6}
:

E
nd

C
al

l+
(o

)
[o

.to
 =

 m
yp

ro
du

ct
 a

nd
 n

ot
 in

S
ta

te
(B

C
S

{in
C

al
l.c

al
le

rW
ai

tC
on

ne
ct

})
] /

B

C
S

{a
1}

: -
C

al
l(B

C
S

{a
cc

ep
te

dC
al

l}
+

 B
C

S
{c

al
lR

eq
ue

st
s}

)

B
C

S
{c

al
le

rW
ai

tC
on

ne
ct

}
B

C
S

{t
2}

 >
 B

C
S

{t
8}

: C
al

l-(
o)

 [o
 =

 B
C

S
{c

al
le

rC
al

l}@
pr

e]
 /

B
C

S
{a

1}
: +

B
us

y(
fr

om
 =

 m
yp

ro
du

ct
),

 B
C

S
{a

2}
: -

C
al

l(B
C

S
{c

al
lR

eq
ue

st
s}

)

B
C

S
{t

3}
: ~

C
al

l.s
ta

tu
s(

o)

[o
 =

 B
C

S
{c

al
le

rC
al

l}
an

d
o.

st
at

us
 =

 c
on

ne
ct

ed
]

B
C

S
{t

al
ki

ng
}

B
C

S
{t

9}
: C

al
l-(

o)
 [o

 =
 B

C
S

{a
cc

ep
te

dC
al

l}@
pr

e]
 /

B
C

S
{a

1}
: -

C
al

l(B
C

S
{c

al
lR

eq
ue

st
s}

)

C
W

{c
al

lW
ai

tin
g}

C
W

{t
3}

: T
og

gl
eH

ol
d+

(o
)

[C
W

 a
nd

 o
.to

 =
 m

yp
ro

du
ct

] /

C
W

{a
1}

: C
W

{a
ct

iv
e}

.s
ta

tu
s

:=
 c

on
ne

ct
ed

, C
W

{a
2}

: C
W

{w
ai

tin
g}

.s
ta

tu
s

:=
 v

oi
ce

C
W

{t
5}

 >
 C

W
{t

3}
: C

al
l-(

o)

[C
W

 a
nd

 o
 in

 C
W

{a
ct

iv
e}

@
pr

e
an

d
on

e
C

W
{w

ai
tin

g}
] /

C

W
{a

1}
: C

W
{w

ai
tin

g}
.s

ta
tu

s
:=

 v
oi

ce

C
W

{t
6}

 >
 C

W
{t

3}
: o

ve
rr

id
e(

B
C

S
{t

10
})

 [C
W

] /
C

W
{a

1}
: C

W
{w

ai
tin

g}
.s

ta
tu

s
:=

 v
oi

ce
, C

W
{a

2}
: -

C
al

l(a
ct

iv
e)

C
W

{t
1}

: o
ve

rr
id

e(
B

C
S

{t
8}

)
[C

W
] /

C

W
{a

1}
: o

.s
ta

tu
s

:=
 c

on
ne

ct
ed

«u
ns

ta
bl

e»
C

W
{is

su
eR

ej
ec

t}

C
W

{t
2}

: [
C

W
] /

C

W
{a

1}
: -

C
al

l(B
C

S
{c

al
lR

eq
ue

st
s}

@
cu

rr
i)

C
W

{t
4}

 >
 C

W
{t

3}
: C

al
l-(

o)

[C
W

 a
nd

 o
 in

 C
W

{w
ai

tin
g}

@
pr

e
an

d
on

e
C

W
{a

ct
iv

e}
]

B
C

S
{t

6}
: /

B

C
S

{a
1}

: -
C

al
l(B

C
S

{c
al

lR
eq

ue
st

s}
@

cu
rr

i)

B
C

S
{t

7}
: A

ns
w

er
C

al
l+

(o
)

[o
.to

 =
 m

yp
ro

du
ct

] /
a1

: B
C

S
{a

cc
ep

te
dC

al
l}.

vo
ic

e
:=

 tr
ue

F
ig
u
re

3.
43
:
T
h
e
co
m
p
os
it
io
n
of

th
e
fe
at
u
re

m
o
d
u
le
s
of

th
e
T
el
S
of
t
fe
at
u
re
s
B
C
S
,
C
W
,
C
D
,
an
d
C
D
B

122

Example: The composition of the feature modules of the TelSoft features BCS (see Fig-
ure 3.37), CW (see Figure 3.38), CD (see Figure 3.39), and CDB (see Figure 3.40) is shown
in Figure 3.43. In this case, the result of the superimposition phase is a single machine
(from BCS) extended by fragments (from CW, CD, and CDB).

Adding presence conditions: Recall that a feature module is a schema to be instanti-
ated for each product, to re�ect the feature's contribution to that product's requirements.
After composing the feature modules, the resulting SPL model is a schema for a product
with all features � even if the feature model in the world model excludes such a product.
To enable specializing the SPL model for a particular product, we use presence conditions
that make each requirement conditional on whether the feature that introduced the re-
quirement is present in the product. A presence condition is introduced for each optional
feature.

De�nition 3.5.1. Each presence condition is a boolean variable that is named after its
corresponding feature.

The transitions, actions, and weakening and strengthening clauses that are introduced by
an optional feature are strengthened with the feature's presence condition.

� To augment a transition with a presence condition F , the presence condition is added
in conjunction to the transition's guard condition gc, resulting in a new guard F and
gc; if the transition has no guard condition, the presence condition becomes the
transition's new guard condition.

� An action is augmented with a presence condition if it is introduced as a fragment
that extends another feature's transition. An action that is introduced as part of a
transition is already strengthened with the transition's presence condition.

The augmentation of clauses with presence conditions is less obvious:

� A presence condition F augments a weakening clause w (a disjunct) by conjunction,
resulting in a new clause F and w; the new clause is false when F is false and is equal
to w when F is true.

� Analogously, F augments a strengthening clause s (a conjunct) by being added as
an antecedent to s, resulting in a new clause F implies s; the new clause is true when
F is false and is equal to s when F is true.

123

A unique presence condition F is instantiated for each F object of each product object
in the world; the values of the presence conditions associated with each product's feature
con�guration should conform to the feature model.

Consider the composed behaviour model in Figure 3.41. All of the features are assumed
to be optional features in the SPL, so all have presence conditions. For example, macro B =
one myproduct.B is the presence condition for feature B. The macro states that a machine's
product (referred to by the object variable myproduct) has exactly one B feature25. The
transitions, actions, and clauses of each feature are augmented with the feature's presence
condition; for example

� F1's presence condition strengthens the guard condition of F1's transition t1.

� F1's transition t1 includes an action F6{a1} that was introduced by feature F6; this
action is strengthened by F6's presence condition.

� F4's weakening clause w2 in the guard condition of action B{main.t4.a1} is strength-
ened by F4's presence condition.

� F7's strengthening clause s2 in the guard condition of action B{main}.F2{t3.a1} is
strengthened by F7's presence condition.

There are cases where an element (transition, action, or clause) introduced by an op-
tional feature constrains a di�erent product in the world. For example, the CDB feature
in a caller's TelSoft product overrides the e�ects of the CD feature in the callee's TelSoft
product. In this case, augmenting the CDB element with the feature's presence condi-
tion will erroneously constrain the feature's product and not to the intended product. In
FORML, an element's name can be prefaced with $ to indicate that the element should not
be augmented with a presence condition upon composition. For example, CDB's strength-
ening clause s1 (see Figure 3.40) is intended to override CD's action a1 (see Figure 3.39)
in the callee's TelSoft product. However, applying CDB's presence condition to s1 will
cause s1 to apply in the caller's TelSoft product. To avoid this error, s1 is prefaced with
$, so that no CDB presence condition is introduced. Instead, s1 realizes a unique form of
presence condition for CDB:

no(o.caller).Subscription.service.CDB

which relies on CD's presence condition to identify products that have CD, and states that
in such products, CD's action a1 should not be performed if the caller has CDB.

25The quanti�er one is needed, because myproduct.B evaluates to a set that is empty if myproduct has
no B feature and contains a single B feature object otherwise.

124

Weakening and strengthening clauses have a lower precedence than presence conditions.
Hence, if a presence condition F is applied to the same condition c as a set of weakening
clauses w1 · · ·wn and a set of strengthening clauses s1 · · · sm, the resulting conditions are

F and ((c or w1 or · · · or wn) and s1 and · · · and sm)

or

F and ((w1 or · · · or wn) and s1 and · · · and sm)

if c is a guard condition or weakening clause and

F implies ((c or w1 or · · · or wn) and s1 and · · · and sm)

if c is a strengthening clause.

Example: In the composed TelSoft state machine shown in Figure 3.43, CW's transitions
(e.g., CW{t3}) and CD's action a1 in transition BCS{t5} are augmented with the presence
conditions of CW and CD, respectively. However, note how CDB's strengthening clause
s1, applied to CD's action a1, is not augmented with CDB's presence condition, since s1
is prefaced with $ in CDB's module.

3.5.1 Superimposition

This section gives a precise semantics for the main operation in composing a set of feature
modules: the superimposition of the feature modules' state machines and fragments, result-
ing in an integrated set of parallel state machines that have been extended with fragments.
The superimposition of a set of (quali�ed and expanded) feature modules F ′1 . . . F ′n is
denoted by the expression

F ′1 • . . . • F ′n

where • denotes the superimposition operator, which takes two feature modules as operands,
and returns a composed feature module as a result. As is shown later in this section, the
superimposition operator is commutative, which means that the order in which feature
modules are superimposed does not a�ect the result; superimposition is also associative,
which means that all parenthesizations of the above expression have the same result.

Superimposition takes as input an abstract-syntax-tree representation of the feature
modules, called feature structure trees (FSTs) [6]. The following describes the FSTs of

125

behaviour-model ::= state-machine+ macro*

state-machine ::= state* initial-state? transition*

state ::= region*

region ::= state+ initial-state?

transition ::= source? destination? (trigger | override-spec)? targets* condition? action*

action ::= override-spec? targets* condition? WCA?

condition ::= predicate? clause*

clause ::= predicate? clause-type? clause*

Figure 3.44: Abstract syntax of feature-module FSTs: nonterminal and terminal symbols
are denoted with di�erent fonts. + denotes one or more, * denotes zero or more, and ?
denotes zero or one repetitions of the preceding syntactic element.

FORML feature modules and presents an implementation of the superimposition operator
• as a merge operation over FST nodes. Our merge operation is a simpli�ed version of
Apel et al.'s generic merge operation [6]. The simpli�cations that we made to the merge
operation ensure that the merge operation is commutative and associative.

3.5.1.1 FSTs of FORML Feature Modules

The FST of a FORML feature module is an abstract syntax tree of the feature module,
based on the grammar shown in Figure 3.44. In the grammar, nonterminal and terminal
symbols are denoted with di�erent fonts and symbol multiplicities are speci�ed as follows:
+ denotes one or more, ∗ denotes zero or more, and ? denotes zero or one repetitions
of the preceding syntactic element. For example, a behaviour-model nonterminal expands
to one or more state-machine terminals and zero or more macro terminals; and a region
nonterminal expands to one or more state terminals and zero or one initial-state terminal26.
Each node in an FST speci�es the type of the element that it represents (which corresponds
to a terminal or nonterminal symbol in the grammar), the element's quali�ed name (if the
element is named), and its content. For example, Figures 3.45a, 3.45b, 3.46, and 3.47
show the feature modules and corresponding FSTs of the features B, F1, F4, and F8
from Section 3.4.6, respectively. To illustrate FST nodes for element types not present in
these features (e.g., macros, override speci�cations), Figure 3.48 gives another pedagogical

26Note that some mandatory state-machine elements are represented by optional FST nodes (e.g. the
mandatory source state of a transition is represented by an optional source node). This is because FSTs
represent not only complete state machines, but also fragments of state machines. For example, feature
F4's FST shown in Figure 3.46 contains a transition node B{t4} : tran without a source node, which
represents the transition extended by a weakening clause in F4's feature module.

126

Abbreviation Node Type

bm behaviour-model

sm state-machine

init initial-state

st state

tran transition

src source

dst destination

trig trigger

over override-spec

cond condition

pred predicate

act action

Table 3.21: Abbreviations for the FST node types used in Figures 3.45 to 3.51

example of a feature F . Table 3.21 gives abbreviations for node types that are used in the
�gures and in the remainder of this thesis.

In an FST, a terminal node represents a model element that cannot be extended by
feature fragments (e.g., the initial-state designation of a state machine, a macro). The
content of a terminal node is a string literal that appears directly below the node. For
example, in Figure 3.45a, node B{main} :sm has a terminal child node init whose content
designates B{s1} as the initial state of B's state machine main. A nonterminal node
represents either a compound element (e.g., a state machine, region, transition) or an
atomic element that can be extended (e.g., a basic state, which could be extended by
a future feature to include regions and sub machines). The content of a nonterminal
node comprises the node's FST subtrees. For example, in Figure 3.45a, the content of
B{main} :sm are the FST subtrees representing the state hierarchy and transitions of B's
state machine main.

All feature modules have the same root node: an unnamed bm node representing the
behaviour model. The subtrees of a bm node represent the state machines, fragments
(represented as partial state machines), and macros in the corresponding feature module.
The representations of state machines and fragments are described below.

127

: bm

B{main}: sm

B{s2}: st

B{r}: reg

B{s1}: st B{s2}: st

: src

B{t1}: tran

: dst : trig

"B{s2}" "<WCE1>"

B{t2}: tran

: src

B{t3}: tran

: dst : trig

"B{s2.r.s1}" "<WCE3>""B{s2.r.s2}"

: cond

: pred

"<P1>"

B{a1}: act

: WCA

"<WCA1>"

: cond

: pred

"<P2>"

...

B{t4}: tran

...: init

"B{s1}"

: init

"B{s1}"

B{s1}: st

"B{s1}"

s1

s2

s1 s2

t3: <WCE3> [<P1>] / a1: [<P2>] <WCA1>

t4: <WCE4> [<P3>] / a1: [<P4>] <WCA2>

t1: <WCE1>

t2: <WCE2>

r

state machine main

: cond

: pred

"true"

non-terminal node

terminal node

content of
terminal node

element name element type

(a) B

: bm

B{main}: sm

B{s2}: st

F1{r}: reg

F1{s1}: st

: src

F1{t1}: tran

: dst : trig

"B{s2}.F1{r.s1}" "<WCE5>"

: cond

: pred

"<P5>"

F1{a1}: act

: WCA

"<WCA3>"

: cond

: pred

"<P6>"

: init

"F1{s1}"

"B{s2}.F1{r.s1}"

B{main.s2}

r

s1
t1: <WCE5> [P5] /
a1: [P6] <WCA3>

(b) F1 (the path to the extended element is coloured blue)

Figure 3.45: The feature modules and partial FSTs of features B and F1 (terminal nodes
are shaded in gray)

128

: bm

B{main}: sm

B{t3}: tran

: pred

"<P10>"

: cond

F4{w1}: cond

: clause-type

"weakening"

B{t4}: tran

B{a1}: act

: pred

"<P11>"

: cond

F4{w2}: clause

: clause-type

"weakening"

weaken transition B{main.t3} with w1: <P10>
weaken action B{main.t4.a1} with w2: <P11>

Figure 3.46: The feature module and FST of feature F4 (terminal nodes are shaded in
gray, and the paths to the extended element is coloured blue)

129

: bm

B{main}: sm

B{t4}: tran

B{a1}: act

: pred

"<P15>"

: cond

F4{w2}: clause

: clause-type

"strengthening"

F8{s1}: clause

strengthen clause F4{w2} with s1: <P15>

Figure 3.47: The feature module and FST of feature F8 (terminal nodes are shaded in
gray, and the path to the extended element is coloured blue)

130

: bm

F{main}: sm

: src

F{t1}: tran

: dst : over

F{s2} "T3"

F{m}: macro

"E"

F{s1}

s2
t1 > T1, T2: override(T3) ...

state machine main

let m = E

F: targets

"T1, T2"

s1

...

...F{s1}: st F{s2}: st

Figure 3.48: The partial state machine and FST of a feature F

131

Representing state machines in FSTs There is a straight-forward correspondence
between the nodes in an sm subtree and the elements in the corresponding state machine:
In Figure 3.45a, each state of B's state machine main is represented by a subtree of
B{main} : sm that is rooted at an st node. The descendants of an st node represent a
state's regions and their sub machines. Similarly, each transition of B's state machine
main is represented by a subtree of B{main} : sm that is rooted at a tran node. The
subtrees of a tran node correspond to a transition's components; for example, the subtrees
: cond and B{a1} :act of B{t3} : tran represents the guard condition and action a1 of B's
transition t3, respectively. The actual predicate that de�nes a transition or action's guard
condition is represented (atomically) by a terminal child node : pred of a : cond node27;
for example, the predicate <P1> of the guard condition of B's transition t3 is represented
by the : pred child node of the : cond child node of B{t3} : tran. If a transition or action
does not have a guard condition, the FST transition or action has an implicit guard of true
(e.g., see the transition subtree for B{t1}).

Representing fragments in FSTs A fragment is represented in the FST of the feature
that de�nes the fragment; the feature being extended is represented by a separate FST.
The context of a fragment is mirrored in the fragment feature's FST as the path from the
FST root to the root of the fragment. For example, in Figure 3.45b, the context of F1's
region r1 (i.e., B{main.s2}) is represented by the nodes B{main} : sm and B{s2} : st
along the path from the FST's root to r1's root F1{r} :reg.

The representations of weakening and strengthening clauses require special attention,
since unlike other fragments (i.e., new states, transitions), weakening and strengthening
clauses are not native elements of state machines. A (weakening or strengthening) clause
is represented by a clause subtree of the cond node (clause node) of the guard condition
(clause) that it extends. A clause node has a pred child node, and a clause-type child
node that represents the type of the clause: weakening or strengthening. For example, in
Figure 3.46, F4's weakening clause w2 is speci�ed by the node F4{w2} : clause, which has
a (weakening) clause-type child node. Because w2 weakens the guard condition of action a1
in B's transition t4, the node F4{w2} : clause is a child of the cond node representing the
action's guard condition. As another example, in Figure 3.47, F8's strengthening clause
s1 is speci�ed by the node F8{s1} : clause, which has a (strengthening) clause-type child
node. Because s1 strengthens the weakening clause w2 of F4, F8{s1} : clause is a child
of the node F4{w2} : clause.

27Since a guard condition's predicate is represented atomically, the FST grammar in Figure 3.44 does
not include predicate-logic operations.

132

3.5.1.2 Merge Operation

Our merge operation is adapted from the generic merge operation de�ned in the FOSD
algebra [6]). The operands of the merge operation are unordered FSTs, meaning that the
children of each nonterminal node form a set (not a sequence).

Proposition 3.5.1. The FST of a FORML feature module is unordered.

Proof: The children of a nonterminal node represent a set of sub-elements of a composite
element:

� The children of a bm node represent the union of the set of parallel state machines,
set of fragments, and set of macros in a feature module.

� The children of an sm node represent the union of the set of top-level states, set of
transitions, and the initial-state designation in a state machine.

� The children of a reg node represent the union of the set of child states and the
initial-state designation in a region.

� The children of a tran node represent the union of a transition's source, destination,
trigger or (in the case of an override transition) override speci�cation, guard condi-
tion, set of actions, and (in the case of a priority transition) set of target transitions.

� The children of an act node represent the union of an action's guard condition, WCA,
(in the case of an override action) override speci�cation, and (in the case of a priority
action) set of target actions.

� The children of a cond or clause node represent the union of a (guard condition's or
clause's) predicate, and the set of weakening and strengthening clauses that extend
the guard condition or clause, respectively. The components of an extended guard
condition or clause form a set because the rule for combining them is insensitive to
their order28.

Note that although some feature-module elements are ordered in the feature module's graph-
ical representation (e.g., the trigger, guard, and actions of a transition), this order is ar-
bitrary and does re�ect a semantic order among the elements. Also, although preemptive

28Recall that extending a guard condition or clause with a set of weakening and strengthening clauses
results in the conjunction of the strengthening clauses, with an additional conjunct that is the disjunction
of weakening clauses and the original guard condition or clause.

133

1: procedure Merge(Node n1, Node n2)
2: result← new Node(name = n1.name, type = n1.type, children = ∅)
3: Mergable← { (c1, c2) ∈ n1.Children× n2.Children |

c1.name = c2.name ∧ c1.type = c2.type }
4: result.Children← result.Children ∪ { Merge(c1, c2) | (c1, c2) ∈Mergable }
5: Unmergable← { c1 ∈ n1.Children | @c2 ∈ n2.Children : (c1, c2) ∈Mergable } ∪

{ c2 ∈ n2.Children | @c1 ∈ n1.Children : (c1, c2) ∈Mergable }
6: result.Children← result.Children ∪ Unmergable
7: return result
8: end procedure

Figure 3.49: Merge operation for unordered FSTs

transitions (actions) impose a priority order on transitions (actions), this priority ordering
is speci�ed in the transitions' (actions') labels and not by the ordering of the corresponding
tran (act) FST nodes.

The merge operation is shown in Figure 3.49. An unordered FST is represented by a
linked structure of Node objects. Node is a recursive structure that represents an FST
node including its name (name's value is null if the element is unnamed), FST node type,
Children nodes, and the content of terminal nodes. The merge operation superimposes its
operand FSTs (arguments n1 and n2 of theMerge operation in Figure 3.49) by recursively
merging their common nodes, starting with their root nodes. Two nodes are merged if they
have the same name and type. The root nodes of the operand FSTs are always merged
because they are of the same type (bm) and are both unnamed. When two nodes are
merged, so are their child nodes, where possible (lines 2 to 4 in Figure 3.49). The merged
and unmerged child nodes (including terminal child nodes) are all added as children of the
merged parent node (lines 3-7).

For example, Figure 3.50 shows the partial result of merging feature B's FST (see
Figure 3.45a) and feature F1's FST (see Figure 3.45b). As another example, Figure 3.51
shows the partial result of merging feature F4's FST (see Figure 3.46) and feature F8's
FST (see Figure 3.47).

134

: bm

B{main}: sm

B{s2}: st

B{r}: reg

B{t1}: tran B{t2}: tran B{t3}: tran

...

B{t4}: tran

...

: init

"B{s1}"

B{s1}: st

F1{r}: reg

... ...

F1{t1}: tran

...

... ...

Figure 3.50: Partial result of merging feature B's FST (see Figure 3.45a) and feature F1's
FST (see Figure 3.45b): the merged nodes are coloured red.

: bm

B{main}: sm

B{t3}: tran B{t4}: tran

B{a1}: act

: pred

"<P11>"

: cond

F4{w2}: clause

: clause-type

"weakening"

F8{s1}: clause

...

...

Figure 3.51: Partial result of merging feature F4's FST (see Figure 3.46) and feature F8's
FST (see Figure 3.47): the merged nodes are coloured red.

135

The merge operation described above simpli�es the generic merge operation de�ned in
the FOSD algebra by excluding the case of merging common terminal nodes.

Proposition 3.5.2. Well-formed FORML feature modules do not have common terminal
child nodes of common nonterminal nodes.

Proof:

� macro child nodes of the bm node in di�erent feature modules have di�erent quali�ed
names.

� To avoid common target nodes in di�erent feature modules specifying targets for the
same priority transition or action, each feature's targets nodes are named after the
feature29. A feature has at most one targets node per transition, which speci�es either
the (priority) transition's original targets or the targets added to the transition by a
retrospective intended interaction30. Hence, the targets child nodes of a tran node
have di�erent names in di�erent feature modules.

� The init child node of an sm or region node is present only in the feature module
that introduces the corresponding state machine or region. (A fragment cannot add
an initial state to an existing state machine or region.)

� The src, dst, trig, override-spec, and priority-list child nodes of a tran node are
present only in the feature module that introduces the corresponding transition. (A
fragment cannot add a source state, destination state, trigger, or override speci�cation
to an existing transition.)

� The override-spec, priority-list, and WCA child nodes of an act node are present only
in the feature module that introduces the corresponding action. (A fragment cannot
add an override speci�cation, target action, or WCAs to an existing action.)

� The pred and clause-type child nodes of a cond or clause node are present only
in the feature module that introduces the corresponding guard condition or clause.
(A fragment can add weakening and strengthening clauses only to an existing guard
condition or clause (which corresponds to adding cond child nodes to a cond node),
and cannot change the original predicate or clause type of the extended guard condition
or clause.)

29For example, in Figure 3.48, the set of target transitions {T1, T2} of feature F 's priority transition t1
is represented in F 's FST by the child F : targets of the node F{t1} : tran.

30If a feature has multiple fragments that add targets to the same transition, the feature's targets node
speci�es the union of the fragments' added targets.

136

ws2

c1,1 c1,1.1

… …

…

c1,2

…
c1,1.2

…

cn,1 cn,1.1 cn,1.m

… … … …
cn,2

…
cn,1.2

…

ws1 ws1.1 ws1.2 ws1.m

…

comprises

…

c1,1.m c1,0

…

ws0

cn,0

…

s2 s1 s1.1 s1.2 s1.m

…
s0

l0 l1 l1.1 l1.2 l1.m

comprises comprises

references executing
transitions and actions

…

…

state

execution of machines
 smi1 to smin

(instances of state machine sm)
corresponding to products

p1 to pn

desired
world behaviour

with products
p1 to pn

〚m〛
execution

transition
transition

label

Figure 3.52: An execution of [m]

Proposition 3.5.3. The merge operation in Figure 3.49 is commutative and associative.

Proof: The merge operation essentially takes the union of the merged and unmerged chil-
dren of the argument nodes. Set union is associative and commutative, and hence, so is
the merge operation.

Proposition 3.5.3, in conjunction with Proposition 3.5.1 above, imply that the superim-
position operator is commutative and associative. Assuming syntactically correct feature
modules, the result of superimposing all of the feature modules of an SPL is an FST rep-
resenting a set of parallel state machines; that is, the FST does not include any fragments.

3.6 Simple Behaviour Model Semantics

Let m be a FORML model of an SPL's requirements, comprising a world model wm
and a composed behaviour model (CBM) cbm obtained from composing all of the feature
modules into a model of the whole SPL. The semantics of cbm is the set REQ ⊆WB of

137

desired world behaviours described by cbm, where WB is the set of possible valid world
behaviours described by wm (see De�nition 3.2.9). REQ is formally de�ned in terms
of the executions of a state-transition system [m] derived from cbm. [m] is described in
detail in Sections 3.6.1 to 3.6.4.

As an overview, [m] describes the set of desired world behaviours for every possible
product con�guration. Figure 3.52 shows that an execution of [m] represents the concur-
rent execution of a set of machines (instances of the state machines in cbm) for a particular
product con�guration, and the e�ects of the machines' transitions on the world behaviour.
The particular product con�guration is determined by the set of products, each with a par-
ticular feature con�guration, in m's world model. Thus, Figure 3.52 shows an execution of
[m] involving n instances of the same state machine sm, corresponding to n products. In
general, [m] comprises multiple (possibly diverse) products, each modelled as multiple par-
allel machines. Each transition of [m] represents a small step in the machines' execution,
and is labelled with references to the transitions and actions of the machines that execute
in the small step. Each state of [m] encapsulates the information needed to compute the
next small step: that is, the current con�gurations of the machines (e.g., in Figure 3.52,
s0 includes c1,0 to cn,0), the current observable world state (e.g., s1.2 includes ws1), and
two other world states that are explained below.

3.6.1 Semantic State-Transition System

We now formally de�ne the semantic state-transition system [m] derived from a CBM
cbm.

De�nition 3.6.1. [m] is a tuple (S,S0,L,T) where

� S is a set of states.

� S0 ⊆ S is a set of initial states.

� L ⊆ 2Tuniv × 2Auniv is a set of labels, where Tuniv and Auniv are the unions of the
sets of transitions and actions, respectively, of all instances of the state machines in
cbm. A label l ∈ L is a tuple of the form (T ,A), where T and A are references
to the transitions and actions of a set of executing machines, respectively, and each
action in A belongs to some transition in T .

� T ⊆ S×L×S is a transition relation. A member (ssrc, l, sdst) of T is a transition from

state ssrc to state sdst that is labelled l, and can be graphically shown as ssrc
l−→ sdst.

138

De�nition 3.6.2. Let [m] be a semantic state machine derived from a CBM cbm. An
execution of [m] is an in�nite sequence of transitions of [m] of the form

(s0, l0, s1), (s1, l1, s2), (s2, l2, s3), . . .

where the source state s0 of the �rst transition is an initial state of [m], and the source state
of every other transition is the destination state of the previous transition. The execution
above can be graphically shown as

s0
l0−→ s1

l1−→ s2
l2−→ s3 . . .

The elements of [m] are described in detail below.

Note: To avoid confusing the states and transitions of [m] with those of its cbm, in the
following, the unquali�ed terms �state� and �transition� are used refer to the states and
transitions of the cbm, respectively; and the terms are quali�ed when referring to the states
and transitions of [m] (e.g., states of [m], an [m] transition).

3.6.2 Semantic States

De�nition 3.6.3. In a given execution of [m], a state s of [m] is a tuple

s = (mode,wsc,wsp,wsci)

where

� mode represents the set of state-machine instances (machines) that are executing
and their current con�gurations. More precisely, mode assigns values to the follow-
ing sets and functions:

� For each state machine sm in cmb, Ism is the set of instances of sm in mode.

� Let P be the static set of product objects in the execution31. For each state
machine sm in cbm, a bijective function

sm.product : Ism 7→ P

states the product object in P that corresponds to each sm machine in mode.

31The set of products in the initial world state remains static throughout an execution.

139

� For each state machine sm in cbm, the function

sm.config : Ism 7→ Configsm

states the con�guration of each sm machine in mode, where Configsm de-
notes sm's set of possible con�gurations (De�nition 3.4.6). s is unstable if any
machine in mode is in an unstable con�guration and is stable otherwise.

� wsc ∈ WS represents the current observable world state, where WS is the set of
valid world states speci�ed by the world model (see De�nition 3.2.7).

� wsp ∈ WS represents the previous observable world state (except for initial states
of [m], as described below).

� If s is unstable, wsci ∈WS represents the current intermediate world state.

In the remainder of this thesis, mode's value assignments to the above sets and functions
are referenced using the pre�x mode :: (e.g., mode ::sm.product).

For example, in Figure 3.52, the unstable [m] state s1.2 is de�ned by the following
elements:

mode ::Ism = {smi1, . . . , smin}
mode ::sm.product = {(smi1, p1), . . . , (smin, pn)}
mode ::sm.config = {(smi1, c1,1.2), . . . , (smin, cn,1.2)}

wsc = ws1

wsp = ws0

wsci = ws1.2

and the stable [m] state s2 is de�ned by the following elements:

mode ::Ism = {smi1, . . . , smin}
mode ::sm.product = {(smi1, p1), . . . , (smin, pn)}
mode ::sm.config = {(smi1, c1,2), . . . , (smin, cn,2)}

wsc = ws2

wsp = ws1

wsci = ws2

In a stable [m] state, it is always the case that wsci = wsc.

140

Context Scope

Selection expressions: <P>
v in <O> [v | <P>]

Quanti�ed predicates: <S> and <P>
e.g., v in no v: <S> | <P>

Trigger expressions: The whole transition, and the whole of override transitions
e.g., o in C+(o) that target the transition

WCAs that add objects: Other WCAs in the same transition
e.g., var in var = +E(list(a = <val>))

Table 3.22: The context and scope of object variables in the behaviour-model

3.6.2.1 Initial Semantic States

De�nition 3.6.4. For each valid world state ws0 ∈WS, [m] has exactly one initial state
s0 ∈ S0: s0 ::wsc = s0 ::wsp = s0 ::wsci = ws0. All machines in s0 ::mode are in their
initial con�gurations.

[m] has a unique initial state s0 for each world state ws0 for the following reasons: The
current world state s0 ::wsc is de�ned to be ws0, the �rst world state of a world behaviour.
Furthermore, s0 ::wsp = s0 ::wsc, because there is no previous observable world state at
the start of a world behaviour; and s0 ::wsci = s0 ::wsc, because the initial con�gura-
tions of the machines in s0 :: mode are stable. Finally, a machine has a unique initial
con�guration; hence, s0 ::mode is unique.

3.6.3 Semantics of Behaviour-Model Expressions

This section presents the formal semantics of expressions that are used in the behaviour
model, including trigger expressions, guard conditions, and expressions that appear in
actions. We revisit the expression types described in Section 3.3 (e.g., set expressions,
predicates) and interpret them with respect to a semantic state of [m]. We also discuss
four expression types that are speci�c to the behaviour model: inState predicates, @curri
expressions, trigger expressions, and WCAs.

141

[inState(st)](s,B) ≡ st ∈mode ::smthis.config(this)

[sm.inState(st)](s,B) ≡ st ∈mode ::sm.config(mode ::sm.product−1(pthis))

[<p>(sm).inState(st)](s,B) ≡ st ∈mode ::sm.config(mode ::sm.product−1([<p>](s,B)))

Figure 3.53: The formal semantics of inState predicates: this denotes the machine
in which the predicate appears, smthis denotes the type of this, pthis = mode ::
smthis.product(this) stands for the product of this, and mode :: sm.product−1

is the inverse of mode ::sm.product.

[Cs@curri](s,B) ≡ wsci ::OC

[<O>.a@curri](s,B) ≡ {wsci ::C.a(o) | o ∈ [<O>](s,B)}
[<O>.A-r@curri](s,B) ≡ {a ∈ wsci ::OA | ∃ o ∈ [<O>](s,B) : wsci ::A.r(a) = o}
[<O>.A@curri](s,B) ≡ [<O>.A-r](s,B)1

[<L>.r@curri](s,B) ≡ {wsci ::A.r(a) | a ∈ [<L>](s,B)}
[<P>.F@curri](s,B) ≡ {wsci ::SPL.F (p) | p ∈ [<P>](s,B)}

[<M>.to@curri](s,B) ≡ {wsci ::M.to(m) | m ∈ [<M>](s,B)}
[<M>.from@curri](s,B) ≡ {wsci ::M.from(m) | m ∈ [<M>](s,B)}

[<M>.p@curri](s,B) ≡ {wsci ::M.p(m) | m ∈ [<M>](s,B)}

1 This expression is well-formed only if the objects [<O>](B) participate only in role r of A. Hence, the
role r for which the navigation expression [<O>.A@curri] should be evaluated can be inferred.

Figure 3.54: The formal semantics of @curri expressions: <O>, <L>, <P>, and <M> are
set expressions.

3.6.3.1 General Expressions

This section gives the formal semantics for general expressions that appear within guard
conditions and actions: there are the expression types in Section 3.3, inState predi-
cates, and @curri expressions. The formal semantics of a general expression e is given
as a mathematical expression [e](s, B) that is evaluated with respect to a state s =
(mode,wsc,wsp,wsci) of [m] and a set B of value bindings for object variables. The
object variables in B are introduced by expressions and have limited scopes. Table 3.22
summarizes the di�erent types and scopes of object variables that can be introduced by

142

behaviour-model expressions. For example, a selection expression (Section 3.3.1) intro-
duces an object variable whose scope is limited to the selection predicate. The formal
semantics of set, predicate, integer, and @pre expressions in the behaviour model are as
described in Section 3.3, with a minor adaptation: In Section 3.3, the state s is assumed to
be a pair of consecutive world states (wsi−1,wsi), where wsi and wsi−1 are the current
and previous world states, respectively. In this section, wsi and wsi−1 are referred to
as wsc and wsp, respectively; furthermore, s is expanded with the additional elements
mode and wsci, which are used to evaluate inState predicates and @curri expressions,
respectively.

The inState predicate is used to check whether a machine's con�guration includes a
particular state st (see the semantic de�nition in Figure 3.53). The three versions of
the predicate apply to the con�guration of this machine (i.e., the machine in which the
predicate appears), a di�erent machine in the same product as this, and a machine in a
di�erent product, respectively.

An @curri expression is used in cases when a transition originating from an unstable
state has an expression that should be evaluated with respect to the current intermediate
world state (see the semantic de�nition in Figure 3.54). For example, the semantics of
<O>.a@curri is the set of values of attribute a in wsci for the objects <O>.

3.6.3.2 Trigger expressions

Recall from Section 3.4.1.2 that a transition's trigger expression te is evaluated together
with the transition's guard condition gc: te evaluates to true if its WCE occurs and gc
evaluates to true with respect to the (added, removed, changed) object that raised the
WCE. To simplify the presentation of the formal semantics of te, gc is assumed to be the
predicate true if the transition does not have a guard condition. The formal semantics of te
has two components (the subscripts P and B stand for predicate and binding, respectively):

� A predicate [te, gc]P (s) corresponding to whether te together with gc evaluates to
true in [m] state s. The predicate is true if a WCE of the type speci�ed by te occurs
in the world-state transition from wsp to wsc, and gc evaluates to true with respect
to s and the WCE's object. There may be more than one instance of the WCE that
satis�es both te and gc. For example, suppose that multiple C objects with value
v for attribute a are concurrently added in the world-state transition from wsp to
wsc. In this case, [C+(o), o.a = v]P (s) evaluates to true for all such objects.

143

[C+(o), <gc>]P (s) ≡ OC+(s,<gc>) 6= ∅ and
[C+(o), <gc>]B(s) ≡ { (o, some OC+(s,<gc>)) } where

OC+(s,<gc>) = { c ∈ wsc ::OC | c /∈ wsp ::OC ∧ [<gc>](s, {(o, c)}) }
[C-(o), <gc>]P (s) ≡ OC−(s,<gc>) 6= ∅ and
[C-(o), <gc>]B(s) ≡ { (o, some OC−(s,<gc>)) } where

OC−(s,<gc>) = { c ∈ wsp ::OC | c /∈ wsc ::OC ∧ [<gc>](s, {(o, c)}) }
[C.a∼(o), <gc>]P (s) ≡ OC∼(s,<gc>) 6= ∅ and
[C.a∼(o), <gc>]B(s) ≡ { (o, some OC∼(s,<gc>)) } where

OC∼(s,<gc>) = { c ∈ wsc ::OC ∩ wsp ::OC |
wsc ::C.a(c) 6= wsp ::C.a(c) ∧ [<gc>](s, {(o, c)}) }

Figure 3.55: The formal semantics of trigger expressions: some S denotes a nondetermin-
istically chosen member of the set S.

� A singleton set [te, gc]B(s) that binds te's object variable to a particular object that
satis�es the predicate [te, gc]P (s). If multiple objects satisfy the predicate, one such
object (chosen nondeterministically) is bound to te's object variable.

Figure 3.55 gives the formal semantics for the di�erent types of trigger expressions.

3.6.3.3 WCAs

The formal semantics of a WCA wca has two components:

� A predicate [wca]P (s,B,ws′) that speci�es the e�ect of wca as a (partial32) con-
straint on how the current (observable or intermediate) world state should change,
where s is an [m] state, B is a set of value bindings for object variables, and ws′ is
the next (observable or intermediate) world state

� A set [wca]B that, if wca adds an object to the world and de�nes an object variable
var to refer to the new object, binds variable var to the added object; otherwise, the
set is empty.

32Recall from Section 3.4 that, in some small steps, the uncontrolled parts of the current world state
that are not a�ected by the small step's actions can change arbitrarily within the constraints of the world
model.

144

[var = +E(list(a = <val>))]P (s,B,ws′) ≡

newE ∈ ws′ ::OE ∧
∧

list(a=<val>)

ws′ ::E.a(newE) = [<val>](s,B)

[var = +E(list(a = <val>))]B ≡ { (var,newE) }
[var = +A(list(r = <o>) , list(a = <val>))]P (s,B,ws′) ≡

newA ∈ ws′ ::OA ∧∧
list(r=<o>)

ws′ ::A.r(newA) = [<o>](s,B) ∧
∧

list(a=<val>)

ws′ ::A.a(newA) = [<val>](s,B)

[var = +A(list(r = <o>) , list(a = <val>))]B ≡ { (var,newA) }
[+MO(from = <p> , list(pr = <e>))]P (s,B,ws′) ≡

newMO ∈ ws′ ::OMO ∧ ws′ ::MO.from(newMO) = [<p>](s,B) ∧∧
list(pr=<e>)

ws′ ::MO.pr(newMO) = [<e>](s,B)

[+MIO(to = <p1>, from = <p2> , list(pr = <e>))]P (s,B,ws′) ≡
newMIO ∈ ws′ ::OMIO ∧
ws′ ::MIO.to(newMIO) = [<p1>](s,B) ∧ ws′ ::MIO.from(newMIO) = [<p2>](s,B) ∧∧
list(pr=<e>)

ws′ ::MIO.pr(newMIO) = [<e>](s,B)

[-C(<O>)]P (s,B,ws′) ≡ [<O>](s,B) ∩ ws′ ::OC = ∅
[<o>.a := <v>]P (s,B,ws′) ≡ [<o>](s,B) ∈ ws′ ::OC ⇒ ws′ ::C.a(<o>) = [<v>](s,B)

where [<o>](s,B) evaluates to a C object.

Figure 3.56: The formal semantics of WCA expressions: E is an entity, A is an association,
MO is an output message, MIO is an IO message, and C is a general concept. newC

denotes a new object of type C that has never appeared in past world states in the current
world behaviour.

Figure 3.56 gives the above components for the di�erent types of WCAs. For example, the
semantics of the WCA var = +E(list(a = <val>)) has a predicate

[var = +E(list(a = <val>))]P (s,B,ws′)

which speci�es that a new E object newE should appear in the next world state ws′

newE ∈ ws′ ::OE

145

and that each attribute a of the new object should be initialized to a corresponding value
<val> ∧

list(a=<val>)

ws′ ::E.a(newE) = [<val>](s,B)

The set

[var = +E(list(a = <val>))]B

binds the new object to the object variable var. The variable var can then be referenced in
other WCAs of the same transition, for example, to link the new object to another object.

3.6.4 Semantic Transitions

An [m] transition represents a small step in the concurrent execution of a set of machines.

De�nition 3.6.5. A transition of [m] is a tuple (s, l, s′) where

� s = (mode,wsc,wsp,wsci) is the source state of the [m] transition.

� l = (T,A) is the label of the [m] transition, which references the transitions T and
actions A of the machines in mode that are enabled with respect to s and are not
preempted by other enabled transitions and actions. The execution of these transitions
and actions constitutes a small step in the machines' execution.

� s
′ = (mode′,ws′c,ws′p,ws′ci) is the destination state of the [m] transition, which
results from executing the transitions and actions in l, starting from s.

Caveat: For simplicity of presentation, the above de�nition assumes that the CBM is
deterministic. In order for the CBM to be deterministic, it must not be possible for two or
more unpreempted nonconcurrent transitions (De�nition 3.4.7) to be enabled in the same
[m] state (i.e., T is unique in s). We relax the assumption of determinism in Section 4.1.

For example, in Figure 3.52, the [m] transition (s1, l1, s1.1) represents a small step in
the execution of the machines smi1 . . . smin: the transitions and actions in l1 update the
machines' con�gurations from c1,1 . . . cn,1 in s1 to c1,1.1 . . . cn,1.1 in s1.1; and update the
current observable, previous observable, and current intermediate world states from ws1,
ws0, and ws1 in s1 to ws1, ws0, and ws1.1 in s1.1, respectively.

The following describes how the label of an [m] transition is computed from its source
state, and how its destination state is computed from its label and source state.

146

3.6.4.1 Computing the Label

Let s = (mode,wsc,wsp,wsci) be the source state of an [m] transition. The label l of
the [m] transition is the tuple (Texe(s), Aexe(s)), where Texe(s) and Aexe(s) � described in
detail below � are the sets of enabled transitions and actions, respectively, of the machines
in mode that are not preempted by other enabled transitions and actions.

Computing Texe(s): Let T (s) be the set of transitions of the machines in mode. Let
Ten(s) ⊆ T (s) be the subset of transitions in T (s) that are enabled with respect to s. Ten(s)
is computed in four steps: (1) The set of enabled non-override and non-else transitions
is computed; in the following, such transitions are called independent transitions, since
their enabling conditions do not depend on the enabledness of other transitions. (2) The
set of enabled override transitions is computed based on the set of enabled independent
transitions. (3) The set of enabled else transitions is computed based on the sets of enabled
independent and override transitions. (4) Finally, Ten(s) is computed as the union of the
sets of enabled independent, override, and else transitions.

(1) Recall from Section 3.4 that an independent transition is enabled when its source state is
in the corresponding machine's con�guration, and its trigger expression (if any) and guard
condition (if any) are satis�ed. Also, recall from Section 3.4.3.1 that as soon as a machine
reaches a stable con�guration, it does not execute any more transitions in the current big
step. More precisely, except at the start of a big step where s is stable, a transition with
a stable source state cannot be enabled. Hence, the set Ten−ind(s) of enabled independent
transitions can be de�ned more precisely as follows:

De�nition 3.6.6.

Ten−ind(s) = { t ∈ Tind(s) | src(t) ∈mode ::sm(t).config(smi(t)) ∧
[te(t), gc(t)]P (s) ∧
(stable(s) ∨ unstable(src(t))) }

where Tind(s) ⊆ T (s) is the subset of independent transitions in T (s); for a machine
transition t, smi(t), sm(t), src(t), dst(t), te(t), and gc(t), represent t's machine,
machine type (i.e., the state machine in the CBM of which t's machine is an instance),
source state, destination state, triggering event, and guard condition; stable(s) means that
s is a stable semantic state; and unstable(s) means that s is an unstable machine state.

147

If gc(t) does not exist, it is assumed to be true. If te(t) does not exist,

Ten−ind(s) = { t ∈ Tind(s) | src(t) ∈mode ::sm(t).config(smi(t)) ∧
[gc(t)](s, ∅) ∧
(stable(s) ∨ unstable(src(t))) }

(2) Recall from Section 3.4, that an override transition is enabled when its source state is
in the corresponding machine's con�guration, its guard condition (if any) is satis�ed, and
its target transition is enabled. Also, recall from Section 3.4.3.1 that, except at the start
of a big step where s is stable, a transition with a stable source state cannot be enabled.
Hence, the set Ten−ov(s) of enabled override transitions can be de�ned more precisely as
the set of enabled transitions that override enabled independent transitions, the enabled
transitions that override those transitions, and so on. To do so, we �rst de�ne the set of
enabled override transitions that override a speci�c set of enabled transitions Ttarg:

De�nition 3.6.7. Let Tov(s) ⊆ T (s) be the subset of override transitions in T (s) and let
Ttarg be a set of enabled transitions in T (s).

Ten−ov(s, Ttarg) = { t ∈ Tov(s) | src(t) ∈mode ::sm(t).config(smi(t)) ∧
[gc(t)](s,Btarg) ∧
(stable(s) ∨ unstable(src(t))) ∧
∃ ttarg ∈ Ttarg : t overrides ttarg }

where Btarg is the set of object-variable bindings introduced by t's target transition ttarg;
that is,

Btarg = [te(ttarg), gc(ttarg)]B(s)

if te(ttarg) exists (if gc(ttarg) does not exist, it is assumed to be true); otherwise, Btarg

is the empty set.

Tov(s) can now be de�ned as follows:

De�nition 3.6.8. Ten−ov(s) is the least �xpoint of the function

λ s, Ttarg : Ten−ov(s, Ten−ind(s)) ∪ Ten−ov(s, Ttarg)

That is, Ten−ov(s) is the limit of the sequence T
0
targ, T

1
targ, T

2
targ, . . . where

T 0
targ = Ten−ov(s, Ten−ind(s)), and

T i+1
targ = T i

targ ∪ Ten−ov(s, T
i
targ)

148

(3) Recall from Section 3.4 that an else transition is enabled when its source state is in the
corresponding machine's con�guration, and no non-else transitions from its source state are
enabled. Hence, the set Ten−els(s) of enabled else transitions can be de�ned more precisely
as follows:

De�nition 3.6.9.

Ten−els(s) = { t ∈ Telse(s) | src(t) ∈mode ::sm(t).config(smi(t)) ∧
@ tnel ∈ Ten−ind(s) ∪ Ten−ov(s) : src(tnel) = src(t) }

where Telse(s) ⊆ T (s) is the subset of else transitions in T (s)33.

(4) Finally, Ten(s) can be de�ned as follows:

De�nition 3.6.10.

Ten(s) = Ten−ind(s) ∪ Ten−ov(s) ∪ Ten−els(s)

Given the above de�nition for Ten(s), Texe(s) is the subset of transitions in Ten(s) that are
not preempted by other transitions in Ten(s)

34:

De�nition 3.6.11.

Texe(s) = { t1 ∈ Ten(s) | @ t2 ∈ Ten(s) : (t2, t1) ∈ Preemptstran(s) }

where Preemptstran(s) (de�ned below) is the relation between preemptive transitions and
their target transitions.

De�nition 3.6.12.

Preemptstran(s) = { (tpre, t) ∈ T (s)× T (s) | t is a target transition of tpre }
33Note that preempting the enabled non-else transitions from an unstable state does not enable the

state's else transition. This semantic decision helps to ensure that preemptive transitions are side-e�ect
free (so as to avoid unintended side e�ects).

34Note that a preemptive transition t's target is preempted, even if t is itself preempted. This helps to
ensure that preemptive transitions are side-e�ect free.

149

Computing Aexe(s): Let A(s) be the set of actions of the machines in mode, and
A(Texe(s)) ⊆ A(s) be the set of actions of the transitions in Texe(s). Let Aen(s) ⊆
A(Texe(s)) be the subset of actions in A(Texe(s)) that are enabled with respect to s. Aen(s)
is computed in three steps: (1) The set of enabled non-override actions is computed. (2)
The set of enabled override actions is computed based on the set of enabled non-override
actions. (3) Finally, Aen(s) is computed as the union of the sets of enabled non-override
and override actions.

(1) Recall from Section 3.4 that a non-override action is enabled if its guard condition (if
any) is satis�ed. Hence, the set Aen−nov(s) of enabled non-override actions can be de�ned
more precisely as follows:

De�nition 3.6.13.

Aen−nov(s) = { a ∈ Anov(s) | [gc(a)](s, B(s,a)) }

where Anov(s) ⊆ A(Texe(s)) is the subset of non-override actions in A(Texe(s)), gc(a)
represents the guard condition of action a, and B(s,a) (de�ned below) is the set of value
bindings for the object variables whose scope includes a.

De�nition 3.6.14. Let a be an action of a machine transition t. The object-variable
bindings that a�ect a (i.e., a�ect expressions in a's guard condition and WCA) come from
two sources: (1) t's trigger expression, if any; (2) if t is an override transition, the trigger
expression, if any, of t's target transition ttarg; and (3) the other actions of t that add
objects, if any (see Table 3.22). Let Aother be the actions of t other than a. If t has a
trigger expression te(t) and a guard condition gc(t) (assume gc(t) = true if t does not have
a guard condition)

B(s,a) = [te(t), gc(t)]B(s) ∪ Btarg ∪
⋃

aother ∈ Aother

[aother]B

where Btarg is the set of object-variable bindings introduced by ttarg (see De�nition 3.6.16).
If t does not have a trigger

B(s,a) = Btarg ∪
⋃

aother ∈ Aother

[aother]B

A problem arises if a refers to an object added by an action in Aother that is not enabled.
To avoid this problem, we require that actions that add objects have no guard conditions so
that they are always enabled.

150

(2) Recall from Section 3.4 that an override action is enabled when its guard condition
(if any) is satis�ed and its target action is enabled. Hence, the set Aen−ov(s) of enabled
override actions can be de�ned more precisely as the set of enabled actions that override
enabled non-override actions, the enabled actions that override those actions, and so on.
To do so, we �rst de�ne the set of enabled override actions that override a speci�c set of
enabled actions Atarg:

De�nition 3.6.15. Let Aov(s) ⊆ A(Texe(s)) be the subset of override actions in A(Texe(s))
and let Atarg be a set of enabled actions in A(Texe(s)).

Aen−ov(s, Atarg) = { a ∈ Aov(s) | [gc(a)](s, B(s,a)) ∧
∃ atarg ∈ Atarg : a overrides atarg }

Aen−ov(s) can now be de�ned as follows:

De�nition 3.6.16. Aen−ov(s) is the least �xpoint of the function

λ s, Atarg : Aen−ov(s, Aen−nov(s)) ∪ Aen−ov(s, Atarg)

That is, Aen−ov(s) is the limit of the sequence A
0
targ, A

1
targ, A

2
targ, . . . where

A0
targ = Aen−ov(s, Aen−nov(s)), and

Ai+1
targ = Ai

targ ∪ Aen−ov(s, A
i
targ)

(3) Finally, Aen(s) can be de�ned as

De�nition 3.6.17.

Aen(s) = Aen−nov(s) ∪ Aen−ov(s)

Given the above de�nition for Aen(s), Aexe(s) is the subset of actions in Aen(s) that are
not preempted by other actions in Aen(s):

De�nition 3.6.18.

Aexe(s) = { a1 ∈ Aen(s) | @ a2 ∈ Aen(s) : (a2, a1) ∈ Preemptsact(s) }

where Preemptsact(s) (de�ned below) is the relation between preemptive actions and their
target actions.

De�nition 3.6.19.

Preemptsact(s) = { (apre, a) ∈ A(s)× A(s) | a is a target action of apre }

151

3.6.4.2 Computing the Destination State

Let s = (mode,wsc,wsp,wsci) and l = (T,A) be the source state and label of an
[m] transition, respectively. The destination state s

′ of the [m] transition is the tuple
(mode′,ws′c,ws′p,ws′ci) that results from executing the transitions T and actions A in
l, starting from s. The components of s′ are computed from l and s as described below.

Computing mode′: mode′ is the result of updating the con�gurations of the machines
in mode based on the destination states of the transitions T . Let smi be a machine of
type sm in mode.

De�nition 3.6.20. The function for computing the new con�guration of smi, an sm
machine in mode, upon executing the transitions T is de�ned as

nextConfig(mode,T , smi) =

(mode ::sm.config(smi)−
⋃

t ∈ T (smi)

Exited(t)) ∪
⋃

t ∈ T (smi)

Entered(t,mode, smi)

where

� T (smi) denotes smi's transitions in T .

� Exited(t) returns the states and regions that are exited (i.e., removed from smi's
con�guration) upon executing a transition t ∈ T (smi):

Exited(t) = {src(t)} ∪ Anc(src(t)) ∪ Des(src(t))

where Anc(s) and Des(s) denote the ancestors and descendants of state s of smi.

� Entered(t,mode, smi) returns the states and regions that are entered (i.e., added
to smi's con�guration) upon executing a transition t ∈ T (smi):

Entered(t,mode, smi) =

{dst(t)} ∪ (Anc(dst(t))− { root }) ∪ initDes(dst(t)) ∪
orthogonal(t,mode, smi)

In addition to dst(t) and its ancestors Anc(dst(t)) (except for the root), the
following states should be entered:

152

� If dst(t) is a superstate, all sub machines within dst(t) should be initialized.
More precisely, the initial descendants of dst(t) in sm's state hierarchy should
be entered. initDes(s) denotes the set of initial descendants of state s of smi.
initDes(s) is empty if s is basic state and is otherwise given by

children(s) ∪
⋃

r∈children(s)

({init(r)} ∪ initDes(init(r)))

where children(s) denotes s's children (set of regions), and init(r) denotes
the initial state of a region r.

� If dst(t) is the child state of a region r, and there are regions orthogonal to
r (not necessarily siblings of r as explained below and in De�nition 3.4.3) that
were not in smi's con�guration before executing t, the sub machines in those
regions should be entered and their sub machines initialized. More precisely, let
orthReg be the regions of smi that are orthogonal to r and that were not in
smi's con�guration before executing t:

orthReg = { reg ∈ (Regions(smi)−mode ::sm.config(smi)) |
reg 6= r ∧ isOrth(reg, r) }

where Regions(smi) denotes the regions of smi. Two regions r1 and r2 are
orthogonal, denoted isOrth(r1, r2), if neither is an ancestor of the other, and
their nearest common ancestor (i.e., the common ancestor with the maximum
rank) is a state:

isOrth(r1, r2) =r1 /∈ Anc(r2) ∧ r2 /∈ Anc(r1) ∧
maxRank(Anc(r1) ∩ Anc(r2)) ∈ States(smi)

where States(smi) denotes the states of smi and maxRank(S) denotes the
state in set S with the highest rank (De�nition 3.4.3). orthogonal(t,mode, smi)
returns the set of states and regions that are entered upon entering the regions
in orthReg and initializing their sub machines:⋃

reg ∈ orthReg

({reg} ∪ {init(reg)} ∪ initDes(init(reg)))

If orthReg is empty, then orthogonal(t,mode, smi) is the empty set.

153

We can now specify mode′ more formally as the result of updating the con�gurations of
the machines in mode. For each state machine sm in the CBM

mode′ ::Ism = mode ::Ism ∧
mode′ ::sm.product = mode ::sm.product ∧
mode′ ::sm.config = {(smi, nextConfig(mode,T , smi)) | smi ∈mode ::Ism}

Caveat: For simplicity of presentation, the above de�nition of nextConfig(mode,T , smi)
assumes that the transitions in T (smi) have non-con�icting destination states, and thus
their execution results in a valid con�guration of sm:

nextConfig(mode,T , smi) ∈ Configsm
Con�icting destination states cannot be realized simultaneously in a valid con�guration
(e.g., destination states that are children of the same region). We relax this assumption in
Section 4.2.

Computing ws′c, ws′p, and ws′ci: The world states ws′c, ws′p, and ws′ci result from
applying changes to wsc or wsci, based on the actions A in the [m] transition's label. As
explained in Section 3.4, the changes and the world state that they are applied to depend
on whether the [m] transition represents (1) a simple big step, (2) an intermediate small
step in a compound step, or (3) the last small step in a compound big step. The following
describes the computation of ws′c, ws′p, and ws′ci, for each of these three cases.

Case 1: The [m] transition represents a simple big step if both its source state s and

destination state s′ are stable (e.g., transition s0
l0−→ s1 in Figure 3.52). In this case, the

next observable world state ws′c is obtained by applying changes to the current observable
world state wsc, with the following conditions:

� The changes applied to wsc are a combination of the actions A in the [m] transi-
tions' label and arbitrary changes to uncontrolled phenomena (within the constraints
imposed by the world model). Hence, the changes do not normally result in a unique
next world state (due to the arbitrary changes), but rather a set of possible next
world states denoted by nextWSobs(s,A):

De�nition 3.6.21.

nextWSobs(s,A) =

{ wsnext ∈WS | (wsc,wsnext) ∈WST ∧
∀ a ∈ A | [a]P (s, B(s,a),wsnext) }

154

where WS and WST denote the set of valid world states (see De�nition 3.2.7)
and valid world-state transitions (see De�nition 3.2.8), respectively; and B(s,a) de-
notes the set of object-variable bindings whose scope includes action a (see De�ni-
tion 3.6.14).

� The only changes to the controlled phenomena (see Section 3.2.2) in wsc
35 are those

speci�ed by the actions A. De�nition 3.6.21 ensures that a possible next world
state includes the changes to controlled phenomena speci�ed by A; however, the
de�nition also allows additional arbitrary changes to controlled phenomena (within
the constraints imposed by the world model). To omit the additional changes, we
limit the set of possible next world states to those world states that have a minimal
di�erence from wsc with respect to controlled phenomena.

De�nition 3.6.22. Let D1 . . . Dn be the sets and functions declared in the world
model (e.g., object sets, attribute-value functions � see Section 3.2.4) that correspond
to controlled phenomena. The di�erence between two world states ws1 and ws2 with
respect to controlled phenomena is the di�erence in their values of D1 . . . Dn:∑

1≤i≤n

(|ws1 ::Di −ws2 ::Di|+ |ws2 ::Di −ws1 ::Di|)

Thus, the (limited) set of possible next world states, denoted nextWSobs−ctrl(s,A),
is de�ned as follows:

De�nition 3.6.23. nextWSobs−ctrl(s,A) ⊆ nextWSobs(s,A) is the set of possible
next world states that have a minimal di�erence from wsc with respect to controlled
phenomena (see De�nition 3.6.22).

Hence, ws′c is some nondeterministically chosen world state in nextWSobs−ctrl(s,A)36, ws′p
records the previously current observable world state (wsc), and since s′ is stable, ws′ci is
set to ws′c:

ws′c = some nextWSobs−ctrl(s,A)

ws′p = wsc

ws′ci = ws′c

35A change to controlled phenomena in wsc is either the addition or removal of a controlled object to or
from wsc, respectively � except for the removal of transient output and IO message objects; or a change
to the value of a controlled attribute, from its value in wsc.

36Other behaviours of [m] in which an [m] transition with actions A executes in [m] state s will result
in other nondeterministically chosen next world states ws′c ∈ nextWSobs−ctrl(s,A).

155

where some S denotes a nondeterministically chosen member of the set S.

Case 2: The [m] transition represents an intermediate step in a compound big step if

the transition's destination state s′ is unstable (e.g., transition s1
l1−→ s1.1 in Figure 3.52).

Recall from Section 3.4.3 that, in this case, the next intermediate world state ws′ci is
obtained by applying to the current intermediate world state wsci the changes speci�ed
by the actions A; the result need not satisfy the world-model constraints. ws′ci can be
speci�ed more precisely in two steps. First, let nextWSint(s,A) be the set of possible
next (intermediate) world states that result from applying changes to wscurri that include
those required by the actions A:

De�nition 3.6.24.

nextWSint(s,A) =

{ wsnext ∈WSuniv | (wsci,wsnext) ∈WSTuniv ∧
∀ a ∈ A | [a]P (s, B(s,a),wsnext) }

where WSuniv and WSTuniv denote the set of possible (valid or invalid) world states (see
De�nition 3.2.3) and world-state transitions (see De�nition 3.2.6), respectively.

Next, ws′ci can be speci�ed as a world state wsint ∈ nextWSint(s,A) that is obtained by
applying to wsci only the changes speci�ed by the actions A37. In this case, the current
observable world state is left unchanged:

ws′c = wsc

ws′p = wsp

ws′ci = wsint

Case 3: The [m] transition represents the last small step in a compound big step if s

is unstable and the transition's destination state s′ is stable (e.g., transition s1.m
l1.m−→ s2 in

Figure 3.52). Recall from Section 3.4.2 that, in this case, the next observable world state
ws′c is obtained in a two-step process:

37The changes required by a set of actions � without regard for world-model constraints � are determin-
istic, with two exceptions: (1) In the case of a C+ action, the particular new C object that gets added to
the world state is selected nondeterministically. (2) If the arguments of an action include unde�ned ex-
pressions, the result of the action depends on the nondeterministic evaluation of the unde�ned expressions
(see Section 3.3.4).

156

� Only the changes speci�ed by the actions A are applied to the current intermediate
world state wsci. The result of this is a temporary (and possibly invalid) world state
wsn that accumulates the net e�ect of all of the small steps in the compound big
step.

� An implied set of actions A′ is computed for the big step that, if applied directly to
wsc, would result inwsn (see De�nition 3.4.11). Finally, ws′c is chosen nondetermin-
istically from nextWSobs−ctrl(s,A

′). ws′p records the previously current observable
world state (wsc), and since s′ is stable, ws′ci is set to ws′c:

ws′c = some nextWSobs−ctrl(s,A
′)

ws′p = wsc

ws′ci = ws′c

Caveat: For simplicity of presentation, the above de�nitions of nextWSobs(s,A) (and
nextWSint(s,A)) assume that the actions in A are non-con�icting. That is, there always
exists a world-state transition from the current world state (wsc or wsci) that satis�es all
of the actions' expectations. We relax this assumption in Section 4.2.

3.7 Evaluation

This section describes an evaluation of FORML, with respect to the desired properties for
a feature-oriented language for modelling SPL requirements that we listed in Section 1.2;
as well as for expressiveness. As explained in Section 3.7.1, FORML's satisfaction of
most of these properties � all except for ease of evolution and expressiveness � is achieved
by design. The properties of expressiveness and ease of evolution have been evaluated
by performing two case studies from the automotive and telephony domains, which are
described in Section 3.7.2.

3.7.1 Examining FORML's Design

The following desired properties for a feature-oriented language for modelling SPL require-
ments (see Section 1.2) are achieved in FORML by design:

157

Using existing standards and best practices: FORML is based on Jackson and
Zave's widely-accepted reference model for RE [50]. Recall that this framework de�nes
a system's requirements as desired properties and behaviours of a world comprising the
system � as a black box � and its environment. The requirements are to be realized about by
the system and possibly other agents in the world (e.g., humans, other systems). Following
this notion of requirements, a FORML model includes a model of an SPL's world, as well
as a model of the SPL's requirements that is expressed in terms of world phenomena.
Some requirements are speci�ed as world-model constraints. Most requirements, however,
are speci�ed as a behaviour model: a state-machine model whose inputs are events and
conditions over the world model, and whose outputs are actions over the world model.

Second, FORML is based on two standard software-engineering notations: the UML
and feature models. This can ease adoption by practitioners, since most practitioners
are trained in the use of such languages. Of course, practitioners will still need to learn
about di�erences between FORML and the UML, including additional constructs (e.g.,
fragments, overrides) and di�erences in the expression language (e.g., trigger expressions,
WCAs) and execution semantics (e.g., compound big steps).

Feature modularity: FORML's primary model of an SPL's requirements (i.e., the be-
haviour model) is decomposed into feature modules. A feature module separately speci�es a
feature's stand-alone requirements as state machines (Section 3.4.1), and its enhancements
of other features' requirements as state-machine fragments that extend other feature mod-
ules (Section 3.4.6). Such a decomposition eases the task of tracing a feature to the model
of its requirements, and enables independent development of feature modules.

Support for modelling feature enhancements as di�erences: Sometimes, the pur-
pose of a new feature is to enhance an existing feature: that is, to add new requirements in
the context of an existing feature's requirements, to modify an existing feature's require-
ments (an intended feature interaction), or to specify that an existing feature's requirements
take precedence over the requirements of a new feature or another existing feature (a ret-
rospective intended interaction). It is natural to model such enhancements in terms of
di�erences from the enhanced features, where the model of the enhanced feature is reused
as the context for expressing the enhancement. In FORML, a new feature's enhancements
of existing features' requirements can be modelled as state-machine fragments that extend
existing feature modules (Section 3.4.6). FORML prescribes di�erent types of fragments
for modelling di�erent types of enhancements:

� New requirements are modelled as new regions, actions, and transitions.

158

Construct Syntax Semantics

Concepts and feature model Metamodel for abstract syntax,
and exhaustive examples for
concrete syntax (Sections 3.2.1
to 3.2.3)

Sets, relations, and expressions
over sets and relations over domain
elements (Sections 3.2.4 to 3.2.6)

State machines FSTs for abstract syntax (Sec-
tion 3.5.1.1), and exhaustive ex-
amples for concrete syntax (Sec-
tion 3.4.1)

State-transition system (Sec-
tions 3.6, 4.1, and 4.2)

Expressions Grammar (Tables 3.4 to 3.17 in
Section 3.3 and Tables 3.18 to 3.20
in Section 3.4.1)

Expressions over sets and relations
over domain elements (Sections 3.3
and 3.6.3)

Fragments FSTs for abstract syntax (Sec-
tion 3.5.1.1), and exhaustive ex-
amples for concrete syntax (Sec-
tion 3.4.6)

FST superimposition (Section 3.5)

Composition Not applicable FST superimposition, and pre- and
post-superimposition model trans-
formations (Section 3.5)

Table 3.23: The speci�cation of FORML's syntax and semantics

� Intended interactions are modelled as weakening and strengthening clauses, new pre-
emptive transitions and actions, and new (preemptive or non-preemptive) transitions
that enter or exit existing states.

� Retrospective intended interactions are modelled as new transition and action prior-
ities.

Furthermore, enhancements of enhancements can be modelled by extending fragments in
existing feature modules.

Explicit modelling of intended feature interactions: As described above, FORML
prescribes certain fragment types for modelling intended interactions. The prescription
makes intended interactions more apparent to the modeller and the reviewer. Further-
more, Section 4.3.2 illustrates the utility of making intended interactions explicit in en-
abling analyses that automatically distinguish between intended and unintended cases of
interactions, such that the analyzer reports only the unintended interactions.

159

Precision: FORML has a precise syntax and semantics, which makes FORML models
amenable to analysis. Table 3.23 summarizes the way in which the syntax and semantics
of various FORML constructs are speci�ed in this thesis38.

Support for multi-product requirements: Some SPLs have requirements associated
with the interaction between multiple products. For example, an SPL of telephone services
has requirements on interactions that take place between two or more telephone-service
products, where each subscriber has his or her own product and feature subscriptions.
FORML supports the modelling of such multi-product requirements as follows: A world
state can include multiple product objects (each of which is an instance of the SPL con-
cept in the world model). Each state machine in the composed behaviour model (CBM)
is instantiated once for every product object in the world state. Each machine's execution
speci�es the corresponding product's requirements in terms of changes to the world, in
reaction to events and conditions in the world. Interactions between products are repre-
sented by synchronizations in the executions of their corresponding machines: two ma-
chines can synchronize indirectly by reacting to one another's changes in the world, or
directly by observing one another's control state (using inState predicates, as described
in Section 3.4.1.1) or preempting one another's transitions or actions (using override and
priority transitions or actions, as described in Section 3.4.4).

Commutative and associative feature composition: Although features are mod-
elled as separate feature modules, the modeller will eventually want to visualize and (man-
ually or automatically) analyze feature combinations that correspond to products of the
SPL. In FORML, all of the feature modules in a behaviour model are composed to obtain
a model of the whole SPL (i.e., all possible products). The composition of feature modules
comprises three steps (see Section 3.5): (1) a preprocessing step that is applied separately
to each feature module, (2) a superimposition step that is applied to the set of preprocessed
feature modules, (3) and a postprocessing step that adds feature-presence conditions to the
superimposed model. Section 3.5.1 shows that the superimposition of the set of prepro-
cessed feature modules is commutative and associative. Hence, the composition of feature
modules is commutative and associative.

The composition of feature modules in FORML can lead to savings in analysis costs
in two ways: (1) Analyzing the CBM (of the whole SPL) is a cost-e�ective means of ana-

38In some cases, precise descriptions of semantics are given using a combination of natural language
and examples (e.g., model transformations that precede and follow the superimposition phase of feature
composition).

160

lyzing an SPL's set of products [7, 24, 41, 86, 8]. (2) Because composition is commutative
and associative, only one rather than (possibly) multiple composition orders need to be
analyzed.

Ease of evolution: FORML's design partially satis�es the property of ease of evolution
in three ways: (1) The addition of a new feature is achieved through localized changes to
the behaviour model; speci�cally, all changes, including intended interactions, are grouped
together in a new feature module. (2) A new feature's requirements are is always modelled
as additions to the model. That is, a new feature adds state machines that model new
requirements that are independent of the requirements of existing features; and adds to
existing feature modules extensions (in the form of state-machine fragments) that model
its enhancements of existing features39. Hence, a new feature never changes or removes
behaviour-model elements. This eases evolution, because dangling references to changed
or removed elements are avoided. (3) Adding a new feature requires re-composing the
CBM for analysis. The new CBM can be computed automatically by (1) preprocessing
the new feature module, (2) superimposing the extended set of feature modules, and (3)
adding presence conditions to the new superimposed model. We can save on step (2) if
the superimposed model of the current set of feature modules is cached from their latest
composition: in this case, step (2) simply involves superimposing the new (preprocessed)
feature module with the cached superimposed model. Because composition is commutative,
we can compose features in the order in which they are developed rather than worry about
composing features in a particular order to achieve a particular composed behaviour (e.g.,
due to feature overrides).

However, because a FORML world model is shared by all of the behaviour model's
feature modules, changes to the world model may have an impact on the behaviour model.
Possible changes to the world model include new attributes, new concepts, new message
parameters, and refactorings (explained below). A change to the world model may syn-
tactically invalidate world-model expressions in existing feature modules. A refactoring
operation can cause the removal or renaming of world-model elements (e.g., concepts, at-
tributes, message parameters), resulting in dangling references to the removed (renamed)
elements in expressions. For example, renaming a concept Driver in an AutoSoft world
model to Person (to account for passengers) would create a dangling reference in the ex-

39To recap from Section 3.4.6, a new feature module can include the following types of fragments: new
regions that extend existing states, new transitions that extend existing state machines; new states that
extend existing regions or state machines; new weakening or strengthening clauses that extend existing
conditions by disjunction or conjunction, respectively; and new transition (action) priorities that extend
the target lists of existing priority transitions (actions).

161

pression Drivers. Also, changing the type of an association role, message parameter, or
message might create type errors in expressions. For example, changing the type of a
message M from an input message to an output message, would invalidate the expression
o.to where o is a reference to an M object. Extending the world model with new ele-
ments usually does not a�ect the syntactic correctness of expressions, with the following
exceptions:

� A WCA that adds an object to a world state lists the values of the new object's
attributes, roles, or parameters. Hence, if an attribute, role, or parameter is added
to an existing concept C in the world model, then any existing WCA of the type +C
will be missing references to the added element. For example, adding an attribute
startT ime to the Call association in Figure 3.36 creates a missing value assignment
to startT ime in the WCA

+Call(caller = user, callee = o.target, status = request)

in transition t1 of BCS.

� Making an existing concept C1 a subtype of a new or existing concept C2 e�ectively
adds the attributes of the supertype (C2) to the subtype (C1). Hence, the addition
of the subtype relationship will likely create missing references in existing WCAs of
type +C1 as described above.

The above discusses possible ways in which adding a feature to the FORML model of
an SPL impacts existing parts of the model. However, it is not obvious how often in
practice the addition of a new feature will impact the model or how often a change to the
world model will syntactically invalidate existing feature modules. The impact of evolving a
FORML model with new features was evaluated by case studies, described in Section 3.7.2.

3.7.2 Case Studies

We have performed two case studies, one from the automotive domain and one from the
telephony domain, with the goals of (1) assessing the expressiveness of FORML and (2)
evaluating the impact of evolving a FORML world model with new features.

3.7.2.1 The Domains

Telephony: The telephony case study is an extension of TelSoft and is adapted from the
Second Feature Interaction Contest [59]. In addition to the six features (basic call service

162

(BCS), call waiting (CW), caller delivery (CD), caller delivery blocking (CDB), voice mail
(VM), teen line (TL)) described in Section 3.1, the case study includes nine additional
features:

� Call forwarding on busy (CFB): CFB reacts to calls received while the subscriber is
in a call and forwards the calls to a designated user.

� Call transfer (CT): CT enables the subscriber to put the remote party of a call on
hold, establish a second call with another user, and �nally perform a call transfer
by establishing a call between the remote party of the �rst call and the callee of the
second call.

� Three-way calling (TWC): TWC allows the subscriber to put the remote party of a
call on hold; establish a second call with another user; and �nally establish a three-
way call between the subscriber, the remote party of the �rst call, and the callee of
the second call.

� Group ringing (GR): GR reacts to a call to the subscriber by establishing additional
calls from the caller to two designated users. As soon as the subscriber or either of
the designated users accepts his or her call, the remaining two calls are terminated.

� Ringback when free (RBF): RBF remembers the caller of the �rst call received while
the subscriber is in a call, and calls that user when the subscriber ends his/her current
call.

� Terminating-call screening (TCS): TCS blocks calls to the subscriber from designated
users.

� Billing: For every call, billing charges the caller's account, based on the designated
billing rate and the duration of the call.

� Reverse charging (RC): RC charges the subscriber for incoming calls.

� Split billing (SB): SB splits the charge between the subscriber and his or her callers
based on a designated percentage.

The telephony case study makes the following adaptations to the original feature descrip-
tions in [59]:

� The original description of BCS includes billing requirements. To better exercise
FORML, Billing is modelled as a separate feature in the case study.

163

� In the original descriptions, the telephone services of the users involved in a call
synchronize via message passing over a network. The case study abstracts away from
the network and models product synchronization in terms of products monitoring
one another's changes to a shared context (e.g., the callee's TelSoft product reacting
to a call created by the caller's TelSoft product).

� The case-study models simplify the original descriptions by omitting several output
messages sent by telephone services to their users (e.g., CW sending a special tone
to a waiting user). The inclusion of such messages would not further exercise the
expressiveness of FORML.

Automotive: The automotive case study is an extension of AutoSoft and is adapted
from GM Feature Technical Speci�cations for a family of automotive software features. In
addition to the three features (basic driving service (BDS), cruise control (CC), headway
control (HC)) described in Chapter 3, the case study includes eight additional features:

� Lane change alert (LCA): LCA issues an alert if the driver tries to change lanes when
the conditions are not safe for a lane change.

� Forward collision alert (FCA): FCA issues an alert whenever there is danger of a
collision with an object ahead, and stops the alert when the danger passes. The alert
level can be set by the driver.

� Headway personalization (HP): HP saves the last cruise-headway setting of a driver,
and automatically recalls this setting the next time the driver uses the car.

� Speed limit control (SLC): SLC overrides CC's computation of the car's acceleration,
whenever the set cruising speed is greater than the speed limit of the road segment
that the car is on.

� Lane centring control (LCC): LCC periodically adjusts the car's orientation to centre
the vehicle in its current lane. To avoid skidding during lane centring, LCC overrides
CC's computation of the car's acceleration, whenever the set cruising speed is greater
than the computed safe speed for lane centring.

� Lane change control (LXC): LXC automatically changes the vehicle's lane to a driver-
selected lane, provided the conditions are safe. Once the car enters the destination
lane, LXC delegates to LCC to centre the car in the destination lane. If the conditions
become unsafe during a lane change, LXC delegates to LCC to centre the car in the

164

original lane, if it is safe to do so. If it is not safe to return to the original lane, LXC
issues a message to request that the driver take control of the steering. In order to
avoid skidding during a lane change, LXC overrides CC's computation of the car's
acceleration, whenever the set cruising speed is greater than the computed safe speed
for a lane change. In the presence of LXC, FCA issues forward-collision alerts under
additional conditions that are speci�c to lane changes. Finally, the activation and
deactivation of LXC automatically engages and disengages LCA.

� Road change alert (RCA): RCA issues an alert when the shape of the car's current
lane changes, or, in the case of a lane change, when the shape of the destination lane
changes. The alert includes the type of the road change.

� Driver monitoring system (DMS): DMS issues an alert whenever the driver is not
attentive, and continues to issue alerts periodically so long as the driver remains
unattentive.

The automotive case study makes the following adaptations to the original feature descrip-
tions:

� The case study abstracts away from detailed environment phenomena referenced
in the original description, such as detailed properties of vehicles (e.g., longitudinal
acceleration) and roads (e.g., curvature). The abstractions manifest in the case study
as missing elements or unde�ned attribute types in the world model, and as unde�ned
set and predicate expressions in the behaviour model. For example, in LXC's original
requirements, the vehicle's longitudinal acceleration is used to determine whether a
lane change is safe. In the corresponding FORML model, LXC's condition for a safe
lane change is abstractly modelled as an unde�ned predicate named safeLX (see
Figure A.47).

� The case study abstracts away from interface devices in the original description, such
as the gap switch used by the driver to set the desired headway distance for HC.
The inputs and outputs of such devices are abstractly represented as messages in the
world model.

� In the original description, features often synchronize via message passing over the
vehicle's internal network. The case study abstracts away from the network, and
models feature synchronization in terms of features monitoring one another's changes
to a shared context (e.g., LCA reacting to BDS's change of the vehicle's steering
direction).

165

� The case study omits some behaviours that are of the same nature as other be-
haviours that were modelled; the omitted behaviours would not further exercise the
expressiveness of FORML. For example, the original description of CC includes a
delayed disengagement behaviour that is not (but could be) modelled in the case
study: when CC's disengagement condition is not due to driver actions, CC disen-
gages after a timeout period (FORML does not have timing constructs; however, a
timeout period can be modelled as an unde�ned predicate). Also, the case study
omits behaviours that reference features described in other GM documents (e.g.,
traction control).

In the case studies, each feature was modelled twice: once to evaluate expressiveness,
and again (at a later time) to evaluate ease of evolution40; the purpose of the second study
was to assess the impact of evolving a FORML world model with new features.

3.7.2.2 Evaluation of Expressiveness

The case studies were performed in exploratory and con�rmatory phases. In the exploratory
phase, the language was re�ned as needed to specify completely a small subset of the case
studies' features (speci�cally, the BCS, CW, and CFB features in the telephony case study
and the BDS, CC, and HC features in the automotive case study). In the con�rmatory
phase, the re�ned language was applied to the rest of the features to assess expressiveness.
The modelling of the CDB feature in the con�rmatory phase led to the development of
the $ construct (see Section 3.5)41. Otherwise, the language features developed during
the exploratory phase were su�ciently expressive for modelling the con�rmatory-phase
features.

The con�rmatory phase resulted in several language re�nements to improve usability.
Most such re�nements were simply changes to the syntax of existing fragment types, with
the goal of making fragments easier to read and write (e.g. changing the syntax for spec-
ifying clauses, making references to extended elements more concise). The exception was
a re�nement that added a new fragment type to the language for modelling retrospective
intended interactions (see Section 3.4.6.3): that is, new target transitions and actions (see
Section 3.4.6.3), which aim to ease the task of specifying that an existing transition (action)
has priority over a new transition (action)42.

40Ease of evolution was chosen as an evaluation goal after the �rst round of modelling to evaluate
expressiveness.

41Upon revisiting the exploratory-phase models, it was discovered that the $ construct is needed also in
the model for the CFB feature.

42This new fragment type does not change the expressiveness of FORML. It is possible to specify that

166

feature
use of fragments for

added requirements

use of fragments for

interaction interactions

number of

$ constructs

number of

undefined

expressions

evolution of

the world model

automotive

BDS (sm) 3

CC 1r (BDS) 1sc (BDS) 4 3m

HC 1r (CC) 1pt(CC) 2 1e, 1sub, 1a, 1m, ref

LCA 1r (BDS) 1 3e, 1a, 2sub, 3m, ref

FCA 1r (CC) 1 3m

HP 2a (HC) 1t (HC) 1e, 2a

SLC 1r (CC) 1pt (CC) 2 1at, 2m

LCC 1a (BDS), 1r (CC) 1pt (CC) 4 2m

LXC 1ss, 1bs, 2t (LCC) 1wc, 1sc (FCA), 2t

(LCA), 1pt, 9t (LCC)

 5 3m

RCA 1r (LCC),

1r (LXC)

 2 1m

DMS 1r (LCC) 1 1at, 1m

telephony

BCS (sm)

CW 1bs, 2t (BCS) 4pt, 2tt (BCS) 1m

CD 1a (BCS) 1m

CDB 1sc (CD) 1

CFB 1r (BCS) 1sc (BCS) 1 1a

CT 1bs, 1ss, 5t (BCS) 2sc, 4pt, 2t (BCS) 1 1a, 1m, 1ref

TWC 3bs, 1ss, 8t (BCS) 1sc, 3pt, 2t, 2tt (BCS) 4 2a, 2m

GR 4a (BCS) 3t, 2wc (BCS) 4 4a, 1ref

RBF 1a (BCS) 1pt (BCS) 1a

TL 1bs, 2t (BCS) 1pt (BCS) 2 1a, 2m

TCS 1sc (BCS) 1a

VM 2a (BCS) 1sc, 2pt, 1t (BCS) 4 1 2e, 2a, 1sub, 1m

Billing (sm) 3 1e, 2a

RC 1pa (Billing) 1

SB 1pt (Billing) 1 2

add and interaction columns:

Table entries list numbers of extensions to feature (F):

r: region, bs: basic state, ss: super state, t: non-preemptive transition, a: non-preemptive action,

pa: preemptive action , pt: preemptive transition, tt: transition target, wc: weakening clause,

sc: strengthening clause

world model column:

Table entries list numbers of changes to the world model:

e: entity, a: association, m: message, at: attribute, sub: subtype,

ref: refactoring operation

Table 3.24: Summary of case studies

an existing transition (action) x has priority over a new transition (action) y, without adding y as a target
of x: one could add a transition (action) z that (1) overrides x; (2) has priority over y; and (3) has the

167

Table 3.24 summarizes (in the �rst �ve columns) the degrees to which di�erent FORML
constructs are used in the case-study models43. The requirements for BDS, BCS, and
billing are each modelled as a single state machine, as denoted in the table by the post�x
(sm). The other features' requirements are modelled as fragments; the second and third
columns report the numbers and types of fragments used to specify each feature's added
requirements and intended interactions, respectively, in the context of an existing feature's
requirements. The fourth column states the number of uses of the $ construct in each
feature module, and the �fth column gives the number of unde�ned expressions that were
introduced to abstractly represent data logic and constants. For example, CW (Figure 3.38)
from the telephony case study adds one basic state (1bs), two non-preemptive transitions
(2t), four preemptive transitions (4pt), and two target transitions (2tt) to BCS's feature
module (Figure 3.37). CW's feature module does not use the $ construct, and does not
introduce any unde�ned expressions. The complete set of models is given in Appendix A.

3.7.2.3 Evaluation of Ease of Evolution

In each case study, the SPL's requirements were modelled incrementally by adding fea-
tures one at a time. The features were modelled in the order in which they are listed
in Table 3.24. The order was constrained by enhancement relationships between feature
types (e.g., HC enhances CC), but was otherwise random44. The world model column in
Table 3.24 indicates how the world model changed with the addition of each feature, to
re�ect new concepts, attributes, associations, and so on � excluding new feature concepts
and changes to the feature model. For example, feature HC from the automotive case
study adds one entity (1e), one subtype relationship (1sub), one association (1a), and one
message (1m); and performs a refactoring operation (ref), which is described below. The
evolution of the world model (with the addition of each feature) is shown in Appendix A
for each case study.

Most features from the case studies merely extended the world model with new concepts
and therefore did not syntactically invalidate existing feature modules. The following fea-

same source state, destination state, and actions as x. However, this approach does not clearly re�ect the
intent of prioritizing x over y.

43The data corresponds to the most recent version of the models: that is, the models produced in the
case studies to evaluate ease of evolution.

44Here, we refer to the order of modelling features and not the order of composing features. It is realistic
to order the modelling of features according to their enhancement relationships (e.g., in reality, HC is
introduced and modelled after CC). However, as described in Section 3.5, the order of composing the
features (regardless of their enhancement relationships) does not a�ect the result.

168

AutoSoftCar

ignition: {on, off}
steerDirection
velocity
acceleration

driver
1

car
1

Drives
Person

(a) Partial AutoSoft world model

AutoSoftCar

ignition: {on, off}
steerDirection

RoadObject

velocity
acceleration

ahead
0..1

Following

distance

behind
0..1

driver
1

car
1

Drives
Person

(b) Partial evolution with HC

AutoSoftCar

ignition: {on, off}
steerDirection

RoadObject

velocity
acceleration

MapObject

shape
position

Lane

driver
1

car
1

Drives
Person

road

lane
1..*

RoadSegment

(c) Partial evolution with LCA

AutoSoftCar

ignition: {on, off}
steerDirection

RoadObject

velocity
acceleration

MapObject

shape
position

Lane
RoadSegment

speedLimit
road

lane
1..*

driver
1

car
1

Drives
Person

(d) Partial evolution with SLC

AutoSoftCar

ignition: {on, off}
steerDirection

RoadObject

velocity
acceleration

MapObject

shape
position

Lane
RoadSegment

speedLimit
road

lane
1..*

driver
1

car
1

DrivesPerson

status = {attentive, unattentive}

(e) Partial evolution with DMS

Figure 3.57: Partial evolution of the AutoSoft world model

tures additionally made other types of changes to the world model; however, for the reasons
described below, the changes did not syntactically invalidate existing feature modules.

� As shown in Figure 3.57b, the introduction of the feature HC lead to a refactor-

169

User

«ctrl»
Call

status: {request, connected, voice}

caller
callee
0..1

(a) Partial TelSoft world model

User

«ctrl»
Call

status: {request, connected, voice}

caller
callee
0..2

(b) Partial evolution with CT

User

«ctrl»
Call

status: {request, connected, voice}

caller
callee
0..3

(c) Partial evolution with GR

User

«ctrl»
Call

status: {request, connected, voice}

caller
callee
0..3

«ctrl»
VoiceMailUser

(d) Partial evolution with VM

Figure 3.58: Partial evolution of the TelSoft world model

ing of the world model in which AutoSoftCar becomes a subtype of a new entity
RoadObject, and the velocity and acceleration attributes of AutoSoftCar are moved
to its supertype RoadObject. These changes did not invalidate existing feature mod-
ules, because RoadObject did not introduce new attributes (which would have lead to
missing references in existing +AutoSoftCar WCAs, had the existing feature modules
included any +AutoSoftCar WCAs).

� As shown in Figure 3.57c, the introduction of the feature LCA lead to a refactoring of
the world model in which the association Following is removed, and the entity Road-
Object and a new entity Lane become subtypes of a new entity MapObject. These
changes did not invalidate existing feature modules, because (1) there were no ex-
isting references to the removed association Following (computations over distances
between vehicles are abstracted away by the unde�ned predicate slowRoadObjectA-
head introduced by HC); (2) there were no existing +AutoSoftCar or +RoadObject

170

WCAs to be invalidated by missing references to the new attributes that RoadOb-
ject and AutoSoftCar inherited from MapObject ; and (3) there were (obviously) no
existing references to the new subtype Lane of MapObject.

� As shown in Figures 3.57d and 3.57e, the introduction of the features SLC and
DMS lead to the addition of the attributes speedLimit and status to the entities
RoadSegment and Person, respectively. These changes did not invalidate existing
feature modules, because there were no existing +RoadSegment and +Person WCAs
to be invalidated by missing references to the added attributes.

� As shown in Figures 3.58b and 3.58c, the introduction of the features CT and GR
lead to changes to the multiplicity of the callee role of the Call association, from 0..1
to 0..2 and from 0..2 to 0..3, respectively. These changes did not invalidate existing
feature modules because, in general, weakening multiplicities does not syntactically
impact world-model expressions.

� As shown in Figure 3.58d, the introduction of the feature VM lead to the addition
a new entity VoiceMailUser as a subtype of User. These changes did not invalidate
existing feature modules, because there were (obviously) no existing references to the
new subtype VoiceMailUser of User.

In general, we believe that the impact due to evolving the world model is small: refactoring
operations are not likely to occur frequently, and the invalidation of existing WCAs can be
avoided by assigning default values to new attributes, roles, and parameters. Furthermore,
it is relatively simple to develop analyses that automatically detect syntax errors that are
introduced in feature modules by a refactoring operation on the world model.

3.7.2.4 Threats to Validity

The following are threats to the internal and external validity of the results of evaluating
FORML with respect to expressiveness and ease of evolution.

Internal validity:

� The case study models were produced by the developer of the FORML language,
which can bias the evaluation results. We tried to mitigate this threat by using
case studies that originated from external sources (the Second Feature Interaction
Contest [59] and GM Feature Technical Speci�cations). The use of external sources
reduces the risk of formulating the case studies in favour of FORML.

171

� Modelling errors could e�ect the evaluation results in FORML's favour. For example,
the exploratory phase did not reveal the need for the $ construct because of an error in
modelling CFB (the need for the $ construct was later revealed in modelling CDB in
the con�rmatory phase). We tried to mitigate this threat through careful modelling.

� The order in which the features were modelled in evaluating ease of evolution could
e�ect the results. We tried to mitigate this threat by choosing an arbitrary order
(within the realistic constraint of modelling an enhanced feature before its enhance-
ments).

� Ease of evolution and expressiveness were evaluated with respect to the same set
of features and by the same modeller. The modeller's experience in modelling the
features during the �rst study could a�ect his choices in re-modelling the features
during the second study. The modeller tried to mitigate this threat by modelling
each feature without thinking about the features not yet modelled (the fact that at
least �ve months had elapsed between the two studies helped this cause).

� As explained in Section 3.7.2.1, the automotive case study omits some behaviours
from the original feature descriptions. The omitted behaviours were deemed similar
enough to already-modelled behaviours, so as not to a�ect the evaluation results. It is
possible, of course, that some omitted behaviours would indeed a�ect the evaluation
results despite our assessment to the contrary.

External validity: The evaluation results are based on the modelling of two case studies
from only two domains: the telephony and automotive domains. The e�ect of this threat
is somewhat mitigated by the fact that the two domains are quite diverse: For example,
the telephony world consists mostly of controlled phenomena (e.g., calls), whereas the
automotive world consists mostly of phenomena that can be controlled by both products
and the environment (e.g., the vehicle's acceleration). Also, most telephony requirements
involve interactions between products, whereas automotive requirements typically concern
single products.

3.8 Chapter Summary

This chapter presents FORML, a feature-oriented language for modelling the behavioural
requirements of an SPL. A FORML model of an SPL's requirements comprises two main
views: (1) a world model, which is an ontology of concepts that describe the SPL's products
and the environment in which they will operate; and (2) a behaviour model, which is a

172

state-machine model of the SPL's requirements. The behaviour model is decomposed into
feature modules. FORML enables specifying a feature's enhancements (i.e., extensions
or modi�cations) of other features as state-machine fragments that extend other feature
modules. In particular, some fragments explicitly model intended features interactions,
where one feature modi�es the behaviours of another feature by design.

To obtain a view of the requirements of feature combinations, all of the feature modules
are composed into a model of the whole SPL; that is, the composed model represents all
derivable products. Such a model enables more e�cient analyses of the SPL's set of
products [7, 24, 41, 86, 8]. At the heart of composition is the integration of the feature
modules' fragments and state machines. This step of the composition is formalized as
the superimposition of the feature modules' abstract syntax trees, called feature structure
trees (FSTs). FORML FSTs have properties (e.g., being unordered, not having common
terminal nodes) that ensure that their superimposition is commutative and associative.
The commutativity and associativity of superimposition (and hence composition) can lead
to savings in analysis costs, since only one rather than (possibly) multiple composition
orders need to be analyzed.

We performed two case studies from the automotive and telephony domains, the results
of which indicate good expressiveness for FORML (a minor adjustment to FORML � the
introduction of the $ construct � was needed to improve expressiveness in modelling 20
new features45), and low impact of adding new features to a FORML model (adding new
features did not result in changes to existing feature modules).

45Had the need for the $ construct been identi�ed in modelling CFB during the exploratory phase, then
no improvements to expressiveness would be needed in the con�rmatory phase. However, note that the
con�rmatory phase did introduce several language re�nements to improve usability (e.g., changes to the
syntax of existing fragment types).

173

Chapter 4

Feature Interactions in FORML

As stated in Chapter 1, an important challenge in FOSD is detecting unintended feature
interactions : that is, cases where di�erent features unexpectedly in�uence one another
in de�ning the overall properties and behaviours of their combination [93]. To enable
detecting unintended feature interactions, we must de�ne the di�erent ways that feature
interactions can manifest in a given description of the features' combination.

This chapter describes a taxonomy of feature interactions for FORML models, com-
prising the following types of feature interactions. Each type of feature interaction is
informally described and illustrated by an example, and is then formally de�ned in terms
of the semantic state-transition system described in Section 3.6.

� A nondeterminism interaction occurs when there is a nondeterministic choice in
the set of enabled transitions that can execute in a small step (see Section 4.1).

� A con�ict interaction occurs when the set of actions that execute in a small step
are inconsistent with one another or with the world model, or when the set of tran-
sitions that execute in a step have mutually inconsistent destination states (e.g., the
destination states are di�erent child states in the same region; see Section 4.2).

� A modi�cation interaction occurs when one feature modi�es the behaviours of
another feature (see Section 4.3). The notion of a modi�cation interaction general-
izes a number of existing feature-interaction types that are special cases of behaviour
modi�cation. For completeness, the proposed taxonomy includes two types of feature
interactions that are prominent special cases of modi�cation interactions: deadlock
interaction, which occurs when a feature causes a deadlock that prohibits another

174

feature's behaviours; and looping interaction, which occurs when two features trig-
ger one another's behaviours in an in�nite loop. FORML's constructs for modelling
intended feature interactions (see Section 3.4.6.2) cause modi�cation interactions. To
enable feature-interaction analyses that report only unintended modi�cation interac-
tions, the proposed de�nition of modi�cation interactions excludes the cases caused
by such constructs.

Our proposed feature-interaction taxonomy can be compared to existing taxonomies de-
�ned for feature-oriented artifacts (FOAs) expressed as operational models (see Section 2.3):

� Nondeterminism, deadlock, and con�ict interactions adapt corresponding feature-
interaction types in existing taxonomies (i.e., items 1a, 1b, and 1c in Section 2.3's
feature-interaction list, respectively). Resource contentions (item 1d in Section 2.3)
can be viewed as con�ict interactions caused by inconsistent changes to resources
represented in the world model. Similarly, an action in one feature module violat-
ing an assertion raised by another feature (item 1e in Section 2.3) can be viewed
as a con�ict interaction, where the violated assertion is speci�ed as a world-model
constraint. Con�icting actuator requests [53] correspond to our notion of con�ict
interactions. We do not consider con�icts that occur within a time threshold [53],
because FORML does not explicitly model time.

� Looping interactions formalize informal notions of in�nite loops in existing tax-
onomies (item 1f in Section 2.3).

� Modi�cation interactions formalize the notion of a feature's actions triggering or pro-
hibiting behaviours of another feature (item 2 in Section 2.3). Furthermore, modi�ca-
tion interactions generalize looping and deadlock interactions, and exclude intended
interactions.

� Because FORML's feature composition is commutative and associative, we do not
consider feature interactions that manifest as sensitivity to composition order (item 3
in Section 2.3).

Before proceeding to the feature-interaction de�nitions, it is important to emphasize
that feature interactions occur between instances of features in products. Thus, our de�ni-
tions of feature interactions specify properties of the executions of machines (state-machine
instances) associated with products, and refer to associations between machines and fea-
ture objects, so as to identify the feature instances involved in an interaction. For example,
con�ict interactions refer to inconsistencies between the actions of di�erent features objects
in the same or di�erent machines. The association between feature objects and elements

175

BCS{talking}

CW{t1}: override(BCS{t8}) [CW] /
a1: o.status := connected «unstable»

CW{waitReject}

TWC{t1}:
ToggleHoldTWC+(o) [TWC and o.to = myproduct] /
a1: firstCall.status = connected

TWC{waitStartCall}

Figure 4.1: Example of a nondeterminism interaction

in a state-machine instance corresponds to the association between feature concepts and
elements in a state-machine model. For example, if an action a of a state machine sm is
introduced by a feature F , then the a action of an sm machine (instance) corresponding
to a product p is associated with the F feature object in p.

4.1 Nondeterminism Interactions

Recall that Sections 3.4 and 3.6 describe the semantics of a composed behaviour model
(CBM) assuming that it comprises deterministic state machines. This section relaxes
this assumption and considers the case where the CBM includes nondeterministic state
machines; that is, it is possible for two or more nonconcurrent, unpreempted transitions
to be enabled in the same small step. From each set of such nonconcurrent transitions,
at most one transition is nondeterministically chosen for execution. Nondeterminism in a
CBM may be introduced by a single feature; that is, nonconcurrent transitions of the same
feature that are enabled at the same time. When nonconcurrent, unpreempted transitions
from di�erent features are enabled in the same small step, we say that a nondeterminism
interaction has occurred between those features.

Example: Figure 4.1 shows a fragment of the composed TelSoft model, which includes
two transitions CW{t1} and TWC{t1} introduced by features CW and TWC, respectively.
The transitions have the same source state BCS{talking} introduced by BCS. CW{t1}
models the activation of CW, which occurs when the subscriber receives a second call while
he or she is already in a voice call. TWC{t1} models the activation of TWC, which occurs
when the subscriber requests to put an established voice call on hold, so as to set up a
three-way call that adds a third user to the original call. It is possible for both features

176

to be simultaneously activated, in which case both transitions are simultaneously enabled,
and a nondeterminism interaction between CW and TWC occurs.

4.1.1 Formal De�nition

This section �rst revises the de�nition of the state-transition system [m], introduced in
Section 3.6, to account for nondeterminism. Then, nondeterminism interactions are for-
mally de�ned in the context of the revised de�nition.

Revised semantics: To account for nondeterministic CBMs, we must revise the de�-
nition of Texe(s), introduced in De�nition 3.6.11 as the subset of enabled transitions to
be executed in an [m] transition (s, l, s′). The revision a�ects the value of the label l;
however, the de�nition of how the destination state s′ is computed is unchanged.

Speci�cally, the revised de�nition partitions the set of enabled transitions computed
in De�nition 3.6.11 into subsets of nonconcurrent transitions. Each partition represents
a nondeterministic choice to be made: thus, the revised de�nition nondeterministically
selects one transition for execution from each partition.

De�nition 4.1.1. Let Ten−np(s) denote the set of enabled transitions in an [m] transition
(s, l, s′) that are not preempted by another enabled transition (De�nition 3.6.11 revisited):

Ten−np(s) = { t1 ∈ Ten(s) | @ t2 ∈ Ten(s) : (t2, t1) ∈ Preemptstran(s) }

where Ten(s) denotes the set of enabled transitions (De�nition 3.6.10) and Preemptstran(s)
denotes the preemption relation between transitions (De�nition 3.6.12).

Let the sets Tnc1(s), . . . , Tnck(s) denote a partitioning of Ten−np(s), where two transitions
are in a partition if and only if they are nonconcurrent (De�nition 3.4.7). We can now
provide a revised de�nition, denoted T n

exe(s)
1, of the set of transitions to be executed in an

[m] transition:

T n
exe(s) =

⋃
1 ≤ j ≤ k

{some Tncj(s)}

Note that if the CBM is deterministic, there will be a singleton partition for each transition
in Ten−np(s) and therefore T n

exe(s) = Ten−np(s).

A nondeterminism interaction occurs when an [m] transition requires a nondetermin-
istic choice between transitions that belong to di�erent features.

1The superscript n denotes versions of de�nitions that apply to nondeterministic models.

177

De�nition 4.1.2. Let Ten−np(s) denote the set of enabled transitions in an [m] transi-
tion (s, l, s′) that are not preempted by another enabled transition (De�nition 4.1.1). A
nondeterminism interaction occurs when

� Some partition Tncj(s) of Ten−np(s) contains more than one transition

� The transitions in Tncj(s) belong to a set F of two or more features

In this case, we say that there is a nondeterminism interaction between the features in F .

4.2 Con�ict Interactions

This section relaxes the assumption in Sections 3.4 and 3.6, that a small step of a CBM
never results in a con�ict. A small step results in a con�ict under either of the following
conditions:

� The small step includes transitions with con�icting destination states : that is, the
transitions' destination states cannot be realized simultaneously in a valid con�gu-
ration of some state-machine instance.

� The small step results in con�icting actions :

� If the small step forms a simple big step, con�icting actions mean that there
is no valid world-state transition that leads to a next observable world state in
which the small step's actions are all satis�ed.

� If the small step occurs within (but not at the end of) a compound big step,
con�icting actions mean that there is no (valid or invalid) world-state transition
that leads to a next (intermediate) world state in which the small step's actions
are all satis�ed.

� Finally, if the small step is the last one in a compound big step, con�icting
actions mean that (1) there is no (valid or invalid) world-state transition that
leads to a temporary world state wsn in which the small step's actions are
all satis�ed; or (2) there is no valid world-state transition that leads to a next
observable world state in which the implied set of actions computed for the big
step (see De�nition 3.4.11) are all satis�ed.

178

As with nondeterminism, con�icts may be caused by transitions or actions that are speci�ed
by the same single feature or by di�erent features. The latter case gives rise to con�ict
interactions : in the case of con�icting destination states, the transitions involved come from
di�erent features; and in the case of con�icting actions, the actions belong to di�erent
features2. Note that con�icting actions from di�erent features can belong to the same
transition (when the actions are fragments introduced by di�erent features that extend
the transition), to di�erent transitions of the same feature, or to di�erent transitions of
di�erent features.

Example: Figure 4.2 shows a fragment of the composed AutoSoft model, which includes
a transition CC{t6} of CC, a transitionHC{t2} of HC that overrides CC{t6} when there is
a slower road object ahead, and a transition SLC{t3} of SLC that overrides CC{t6} when
the speed limit is exceeded. Suppose that HC{t2} and SLC{t3} are concurrently enabled
(i.e., there is a slower road object ahead and simultaneously the speed limit is exceeded).
The actions HC{a1} of HC{t2} and SLC{a1} of SLC{t3} may simultaneously try to
reduce the vehicle's acceleration by di�erent amounts, so as to maintain a desired headway
distance from the vehicle ahead and to align the vehicle's speed with the speed limit,
respectively. In this case, a con�ict interaction occurs between features HC and SLC.

As another example, Figure 4.3 shows a fragment of the composed TelSoft model,
which includes two concurrent transitions: transition TL{t2}, which is enabled when
the subscriber enters an invalid PIN; and transition CFB{t1}, which is enabled when
a second call arrives while the subscriber is in a call. When TL{t2} and CFB{t1}
are simultaneously enabled, a con�ict interaction occurs between the TL and CFB fea-
tures because TL{t2} and CFB{t1} have con�icting destination states: BCS{idle} and
BCS{inCall}.CFB{main.waitCall}, respectively.

2Note that in general, the computed actions of a compound big step cannot be associated with feature
objects; hence, if the computed actions con�ict, it may not be possible to exactly determine the features
involved in the interaction.

179

CC{engaged}

CC{active}

CC{main}

CC{t6}: [CC and timeout()] /
CC{a1}: BDS{car}.acceleration := accelerationCC(BDS{car}), ...

...

HC{active}

HC{t2}: override(CC{t6}) [HC and slowRoadObjectAhead(BDS{car})] /
HC{a1}: BDS{car}.acceleration := accelerationHC(BDS{car}), ...

HC{main}

...

SLC{active}

SLC{t3}: override(CC{t6}) [SLC and dspeedLimitViolation(BDS{car})] /
SLC{a1}: BDS{car}.acceleration := accelerationSLC(BDS{car}), ...

...

SLC{main}

Figure 4.2: Example of con�icting actions

BCS{idle}

BCS{inCall}

...

TL{waitPIN}

TL{t2}: MyPIN+(o)
[TL and not validPIN(o.PIN)]

BCS{process}

waitCall

CFB{t1}: Call+(o) [CFB and o.callee = user] /
CFB{a1}: +Call(caller = o.caller, callee = myproduct.CFB.Forwardee.user, status = request)

CFB{main}

...

Figure 4.3: Example of con�icting destination states

180

4.2.1 Formal De�nition

This section �rst revises the de�nition of the state-transition system [m], introduced in
Section 3.6, to account for con�icts. Then, con�ict interactions are formally de�ned in the
context of the revised de�nition.

Revised semantics: To account for con�icts, we must revise the de�nition of [m] in the
following ways: First, we formally represent a con�ict as the special state conflict ∈ S,
where S is the set of states of [m]. An [m] transition that results in a con�ict is of the
form

s
l−→ conflict

where s and l are the source and label3 of the [m] transition, respectively. Next, we revise
the function for computing the destination state of an [m] transition to include the case
in which an [m] transition results in a con�ict. Consider an [m] transition with source
state s = (mode,wsc,wsp,wsci) and label l = (T,A).

De�nition 4.2.1. An [m] transition results in a con�ict if for some machine smi of type
sm in mode, the subset of smi's transitions in T have con�icting destination states, such
that executing these transitions does not result in a possible con�guration of smi:

nextConfig(mode,T , smi) /∈ Configsm
where Configsm is the set of possible con�gurations of sm; and nextConfig(mode,T , smi)
denotes the new con�guration of smi, after executing smi's transitions in T , starting from
its con�guration in mode (De�nition 3.6.20).

De�nition 4.2.2. An [m] transition results in a con�ict if the actions A are in con�ict,
such that a next world state cannot be computed:

� If the [m] transition executes as a simple big step (i.e., s is stable, and executing
T results in stable con�gurations for all of the machine in mode), then the actions
A con�ict if there is no valid world-state transition from wsc that leads to a next
observable world state in which the actions A are satis�ed:

nextWSobs(s,A) = ∅

where nextWSobs(s,A) denotes the set of possible next observable world states (Def-
inition 3.6.21).

3The computation of the label l is assumed to have taken nondeterminism into account, as described
in Section 4.1.

181

� If the [m] transition executes as an intermediate step within a compound big step (i.e.,
executing T would result in unstable con�gurations for some machine in mode), then
the actions A con�ict if there is no (valid or invalid) world-state transition from wsci
that leads to a next (intermediate) world state in which the actions A are satis�ed:

nextWSint(s,A) = ∅

where nextWSint(s,A) denotes the set of possible next intermediate world states
(De�nition 3.6.24).

� If the [m] transition executes as the last small step in a compound big step (i.e.,
s is unstable, and executing T would result in stable con�gurations for all of the
machines in mode), then the actions A con�ict if either (1) there is no (valid or
invalid) world-state transition from wsci that leads to a next (temporary) world state
wsn (computed in the same way as the next intermediate world state) in which the
actions A are satis�ed:

nextWSint(s,A) = ∅

or (2) there is no valid world-state transition from wsc that leads to a next observable
world state in which the implied set of actions A′ computed for the big step (see
De�nition 3.4.11) are satis�ed:

nextWSobs(s,A
′) = ∅

An execution of [m] ends when it reaches the conflict state. To re�ect this behaviour,
we stipulate that the conflict state cannot be the source of an [m] transition:

T
c ⊆ (S− {conflict})× L× S

where Tc denotes [m]'s transition relation with con�icts taken into account, and S and L

denote [m]'s set of states and possible labels, respectively (De�nition 3.6.1).

Next, we de�ne con�ict interactions starting with the special cases and concluding with
the general case. Consider an [m] transition

s
l−→ conflict

with source state s = (mode,wsc,wsp,wsci) and label l = (T,A).

182

De�nition 4.2.3. A con�icting-destination-states interaction occurs in an [m] transition
if for some machine smi in mode, there exists a minimal subset Tc of smi's transitions
T (smi), such that

� The transitions in Tc have con�icting destination states (see De�nition 4.2.1).

� Removing any transition from Tc results in a subset that no longer con�icts.

� The transitions in Tc belong to a set F of two or more features.

In this case, we say that there is a con�ict interaction between the features in F . The
minimality condition avoids reporting spurious con�ict interactions in cases where the
transitions in T (smi) con�ict and belong to multiple features, but the core transitions
that cause the con�ict belong to a single feature. Note that there may be multiple minimal
con�ict subsets of T (smi), each leading to a di�erent con�ict interaction.

De�nition 4.2.4. A con�icting-actions interaction occurs in an [m] transition if there
exists a minimal subset Ac ⊆ A, such that

� The actions in Ac con�ict (see De�nition 4.2.2).

� Removing any action from Ac results in a subset that no longer con�icts.

� The actions in Ac belong to a set F of two or more features.

In this case, we say that there is a con�ict interaction between the features in F 4.

De�nition 4.2.5. A con�ict interaction occurs in an [m] transition if either a con�icting-
destination-states (see De�nition 4.2.3) or a con�icting-actions (see De�nition 4.2.2) in-
teraction occurs in the [m] transition.

In an alternative approach taken by Juarez-Dominguez et al. [52], con�icts are de�ned
as inconsistent requests to change some value (e.g., a vehicle's throttle) as opposed to
inconsistent changes to the value. In their approach, con�icting requests are modelled as
distinct output events with con�icting parameter values; hence, con�icts do not result in
invalid (con�ict) states as with our approach. Thus, their approach enables analysis that
can detect multiple con�icts along an execution path.

4Note that the notion of feature interactions is not de�ned for the case of con�icts among the implied
set of actions computed for a compound big step (see De�nition 3.4.11) because implied actions cannot be
associated with features.

183

4.3 Modi�cation Interactions

An important type of feature interaction arises because new features are generally non-
monotonic extensions of products [92]: that is, a new feature added to a product p can
modify the behaviours of p's existing features, or even the features of other products that
operate in p's environment. This can occur, for example, if a new feature y's behaviours
create conditions that trigger or prohibit the behaviours of an existing feature x (e.g., lane
change control (LXC) triggers lane change alert (LCA) by changing the vehicle's lane).
When y modi�es the behaviours of x, we say that y has a modi�cation interaction with
x. Note that modi�cation interactions are de�ned for pairs of features; in contrast, nonde-
terminism and con�ict interactions are de�ned for arbitrary sets of features. Furthermore,
nondeterminism and con�ict interactions are generally unintended5, whereas modi�cation
interactions can be both intended and unintended. Intended modi�cation interactions are
explicitly modelled in FORML, using the constructs described in Section 3.4.6.

In Section 4.3.2, we revise the formal de�nition of modi�cation interactions � given in
Section 4.3.1 � to exclude intended cases: intended cases are distinguished by the use of
FORML constructs for expressing intended interactions. Distinguishing intended interac-
tions enables feature-interaction analyses that report only unintended interactions. For
completeness, Section 4.3.3 de�nes two special cases of modi�cation interactions, namely
deadlock and looping interactions, that are prominent in the literature [70, 20, 56].

Throughout this section, we assume that FORML models may be nondeterministic
and have con�icts, as described in De�nitions 4.1.1 to 4.2.5. Modi�cation interactions
manifest in FORML models as follows. Consider a particular product con�guration P
(De�nition 3.2.4), comprising a particular set of products each with a particular feature
con�guration, operating in a shared environment. Suppose that a feature y is added to
some product p in P . Note that adding y to p may require adding to p a set of other
features that y depends on to ensure that p's feature con�guration remains valid; the
result is product p′ and the extended product con�guration P ′. To determine whether y
has a modi�cation interaction with an existing feature x in p′ or in some other product in
P ′, we compare the executions of products in P and P ′. The set of features that y depends
on is not always unique; hence, there may be multiple product con�guations P ′ to compare
against.

De�nition 4.3.1. Let P be a product con�guration that includes feature x and let P ′ be
the product con�guration that results from adding to P feature y and a complete set F of

5At the requirements level, nondeterminism may be desirable for deferring design decisions, but is
generally undesirable when specifying behavioural requirements, especially for safety-critical systems.

184

BDS{on}

BDS{waitSteer}

BDS{t5}: Steer+(o) [o.to = myproduct] /
BDS{a1}: BDS{car}.steerDirection := steerDirection(BDS{car},o.angle)

BDS{steering}

...

LCA{engaged}

LCA{t3}: AutoSoftCar.steerDirection~(o)
[LCA and o = BDS{car} and alertConditions(BDS{car})] /
LCA{a1}: +LCA(from = myproduct)

LCA{main}

CC{main.enabled.main.engaged}.LCC{main.engaged.centerCar}.LXC{engaged.changeLane}

LXC{active}

LXC{t7}: [LXC and timeoutLXC2()] /
LXC{a1}: BDS{car}.steerDirection := steerDirectionLXC(BDS{car})

Figure 4.4: Example of a modi�cation interaction

features that y depends on (complete in the sense that excluding any feature from F results
in an invalid product con�guration P ′). Informally, y is said to have a modi�cation inter-
action with x in P ′ if the set of possible x transitions and actions di�er in corresponding
points in the executions of P and P ′.

A formal de�nition of this manifestation is given below in Section 4.3.1.

Example: Figure 4.4 shows a fragment of the composed AutoSoft model, which includes
the following transitions: transition BDS{t5} of the basic driving service (BDS), which
changes the vehicle's steering direction based on a steer command from the driver; transi-
tion LCA{t3} of LCA, which alerts the driver if a change in the vehicle's steering direction
results in a lane change; and transition LXC{t7} of LXC, which changes the vehicle's
steering direction in response to a lane-change request from the driver. In a vehicle that

185

has BDS and LCA, the steering direction can be changed only by feature BDS and, there-
fore, transition LCA{t3} is always triggered only by the actions of transition BDS{t5}.
Now suppose that we add to the vehicle the feature LXC and the features that it depends
on (i.e., CC and LCC): now, the vehicle's steering direction can additionally be changed
by the feature LXC; and the transition LCA{t3} can be triggered by the actions of either
LXC{t7} or BDS{t5}. In other words, LCA's transition t3 is triggered by LXC. Thus,
feature LXC has a modi�cation interaction with feature LCA.

As another example, Figure 4.5 shows a fragment of the composed TelSoft model, which
includes the following elements:

� The transition BCS{t5} of the basic call service (BCS) connects one incoming call.

� The transition BCS{t6} of BCS rejects all other simultaneous incoming calls.

� The transition VM{t1} of the voice mail (VM) feature connects a caller to the voice-
mail service of the callee, if a call request is not answered after some timeout period.

� The strengthening clause TCS{s1} of TCS (intentionally) prohibits the connection
of an incoming call, if the caller is on a screening list associated with TCS.

In a telephone service that includes features BCS and VM, transitions BCS{t5} and
BCS{t6} execute in sequence when an idle subscriber receives a call; if the subscriber
does not answer the call in time, transition VM{t1} will execute. However, in a telephone
service that includes all three features BCS, VM, and TCS, the sequence of transitions
BCS{t5}, BCS{t6}, and VM{t1} do not execute when a call request comes from a caller
on TCS's screening list, because the strengthening clause TCS{s1} disables the �rst tran-
sition in the sequence. In other words, BCS's and VM's transitions are prohibited by TCS.
Thus, feature TCS has a modi�cation interaction with features BCS and VM.

186

BCS{idle} calleeWaitAnswer

BDS{inCall}

BCS{t5}: Call+(o)
[o.callee = user and (TCS implies TCS{s1}: not o.caller in myproduct.TCS.Screen.user)] /
BCS{a1}: o.status = connected

BDS{process}

BCS{t6}: /
BCS{a1}: -Call(BCS{callRequests}@curri)«unstable»

BCS{waitReject} ...

VM{t1} > BCS{callerTelSoft}.(BCS{main}).BCS{t10}: [VM and timeout()] /
a1: -Call(BCS{acceptedCall}),
a2: +Call(caller = BCS{acceptedCall}.caller, callee = myproduct.VM.UVM.user, status = voice)

...

Figure 4.5: Example of a modi�cation interaction due to prohibiting behaviour

4.3.1 Formal De�nition

To formalize the notion of a modi�cation interaction, we �rst formally de�ne machine exe-
cutions that correspond to a particular product con�guration. In the following, a product
con�guration is formally represented by a set of tuples of the form (p, F), one tuple for
each product p, where F is p's set of features (De�nition 3.2.4). For example

{ (p1,{f1}), (p2,{f2, f3}) }

represents a product con�guration comprising a product p1 with a single feature f1 and
product p2 with the two features f2 and f3. The notation πJ(K) is used to denote a
projection over a concept K based on a projection criterion J ; informally, the projection
represents a part of K that is selected based on criterion J .

De�nition 4.3.2. Let [m] = (S,S0,L,T) be the state-transition system for a FORML
model m. Projection πP ([m]) denotes a state-transition system whose executions corre-
spond to product con�guration P : it is the subset of [m] executions whose initial states
have product con�guration P :

πP ([m]) = (S, πP (S0),L,T)

where πP (S0) denotes the subset of [m]'s initial states that correspond to P 6:

πP (S0) = { (mode,wsc,wsp,wsci) ∈ S0 | PC(wsc) = P }

where PC(ws) denotes the product con�guration of world state ws (De�nition 3.2.4).

6Recall from Section 3.6.2 that in an initial state (mode,wsc,wsp,wsci) of [m], wsc = wsp = wsci.

187

Feature interaction: Let P + y denote the product con�guration that results from
adding feature y and a complete set F of additional features that y depends on to an
arbitrary product in an arbitrary product con�guration P 7.

To determine whether y has a modi�cation interaction with a feature x in P + y, we
compare the executions of πP ([m]) with those of πP+y([m]) with respect to the transitions
and actions of x. The comparison is formally expressed as a bisimilarity check between
πP ([m]) and πP+y([m]) over x. Bisimilarity is a widely used notion of behavioural equiv-
alence for state-transition systems [74]. The following de�nition of bisimilarity between
πP ([m]) and πP+y([m]) over x is an adaptation of Lee and Seshia's de�nition of strong
bisimilarity [64]. We make two adaptations to Lee and Sehsia's de�nition: (1) we weaken
their de�nition to compare πP ([m]) and πP+y([m]) only with respect to the transitions
and actions of x; and (2) we adjust their de�nition, which assumes that a state-transition
system has a single initial state, to account for the multiple initial states of πP ([m]) and
πP+y([m]).

In the following, we use the superscripts P and P + y to distinguish the elements of
πP ([m]) from the elements of πP+y([m]). Hence, we assume

πP ([m]) = (SP ,SP
0 ,L

P ,TP), and

πP+y([m]) = (SP+y,SP+y
0 ,LP+y,TP+y)

We use the same convention to refer to individual states and transition labels in the two
transition systems (e.g., sPi denotes the ith state in an execution of πP ([m])).

Bisimilarity Whether πP ([m]) is bisimilar to πP+y([m]) over x is determined by playing
a set of matching games. A game is played for each pair of corresponding initial states that
the two transition systems can start in.

De�nition 4.3.3. Let

s
P
0 = (modeP

0 ,wsP0 ,wsP0 ,wsP0) ∈ S
P
0 , and

s
P+y
0 = (modeP+y

0 ,wsP+y
0 ,wsP+y

0 ,wsP+y
0) ∈ S

P+y
0

s
P
0 corresponds to sP+y

0 , denoted correspond(sP0 , s
P+y
0), if and only if (1) the nodes modeP

0

and modeP+y
0 are identical, and (2) the di�erences between the world states wsP0 and

wsP+y
0 are minimal: that is, the only di�erences are that wsP+y

0 includes feature y and
any other feature that y depends on, and includes world objects that y depends on (as per
the world-model constraints).

7The set of additional features that y depends on is not always unique.

188

F1

F2

SPL

«feature»
F2

«feature»
F1

«SPL»
SPL

E1

E2

1 1

r1 r2

A

(a) World model

p: SPL

f1: F1

«fc»

(b) wsP1
0

p: SPL

f1: F1

«fc»

«fc»
f2: F2 e1: E1

r2

a: A

r1

(c) wsP1+f2
0

p: SPL

f1: F1

«fc»

«fc»
f2: F2 e1: E1

r2

a: A

r1

e2: E2

(d) ws′P1+f2
0

Figure 4.6: Example of corresponding initial states

Example: As an example of the notion of minimally di�erent world states, consider the
world model and world states shown in Figure 4.6. The world state wsP1

0 (Figure 4.6b) has
a product con�guration P1 comprising a product p with a feature f1; and the world states
wsP1+f2

0 (Figure 4.6c) and ws′P1+f2
0 (Figure 4.6c) each have a product con�guration

P1 + f2 obtained by adding feature f2 to product p in P1. Besides the added feature
f2, wsP1+f2

0 's only di�erence from wsP1
0 is the link a between f2 and the object e1;

this di�erence is required by the one-to-one association A between F2 and E1. Hence,
wsP1+f2

0 is minimally di�erent from wsP1
0 . On the other hand, ws′P1+f2

0 is additionally
di�erent from wsP1

0 in the presence of the new object e2. This new object of type E2 is
not strictly required by the world-model constraints. Hence, ws′P1+f2

0 is not minimally
di�erent from wsP1

0 .

In each round of a game, either transition system can take a semantic transition repre-
senting a big step. In the following, a semantic transition taken in a round of a matching
game is called a move. For all possible next moves in either system, there must exist a
matching move � with respect to x � in the other system.

De�nition 4.3.4. Let sP
lP−→ s

′P and s
P+y lP+y

−→ s
′P+y be semantic transitions (moves) of

189

πP ([m]) and πP+y([m]), respectively. The moves match with respect to x if

πx(lP) = πx(lP+y)

where πx(l) is a projection comprising the transitions and actions in a label l = (T,A)
that belong to feature x:

πx(l) = (πx(T), πx(A))

where

πx(T) = {t ∈ T | t belongs to x} and
πx(A) = {a ∈ A | a belongs to x}

A matching game is a winning game if the two transition systems can match each
other's moves in all rounds of the matching game. πP ([m]) is bisimilar to πP+y([m]) over
x if all possible matching games between the two transition systems (i.e., one game for
each pair of corresponding initial states of the two transition systems) are winning games.
A winning game can be succinctly speci�ed in terms of the pairs of states in which the two
transition systems reside, in each round of the game. Using such a speci�cation, we can
provide a more formal de�nition for bisimulation:

De�nition 4.3.5. πP ([m]) is bisimilar to πP+y([m]) over x if and only if there exists a
bisimulation relation BSR ⊆ S

P × S
P+y that speci�es a winning game for every possible

start to a game:

1. Every pair of corresponding initial states of the two transition systems is a pair in
BSR (i.e., the set of possible starting points):

{ (sP0 , s
P+y
0) ∈ S

P
0 × S

P+y
0 | correspond(sP0 , s

P+y
0) } ⊆ BSR

2. Every move of πP ([m]) is matched by a move of πP+y([m]) with respect to x:

if (sP , sP+y) ∈ BSR, then

for all sP
lP−→ s

′P ∈ T
P :

there is a s
P+y lP+y

−→ s
′P+y ∈ T

P+y such that:

(a) πx(lP) = πx(lP+y), and

190

(b) (s′P , s′P+y) ∈ BSR

3. Every move of πP+y([m]) is matched by a move of πP ([m]) with respect to x:

if (sP , sP+y) ∈ BSR, then

for all sP+y lP+y

−→ s
′P+y ∈ T

P+y:

there is a s
P lP−→ s

′P ∈ T
P such that:

(a) πx(lP) = πx(lP+y), and

(b) (s′P , s′P+y) ∈ BSR

4.3.2 Distinguishing Intended Interactions

In FORML, a feature y's intended (modi�cation) interactions with another feature x can
be modelled explicitly by the following constructs (as described in Section 3.4.6.2):

� Preemptive transitions and actions : feature y introduces a preemptive transition (or
action) that preempts speci�c transitions (or actions) of feature x.

� Weakening and strengthening clauses : feature y introduces a weakening or strength-
ening clause in the guard condition of one of feature x's transitions or actions, which
causes that transition or action to execute under more or fewer conditions, respec-
tively.

� Fragments that trigger or prohibit state changes : feature y intentionally triggers or
prohibits the entry or exit of a state sx introduced by x causing a state change (Def-
inition 3.4.14). Speci�cally, if some behaviour of y intentionally triggers a transition
that enters (or exits) state sx, then the transitions and actions of x whose enabled-
ness depends on state sx will execute under more (or fewer) conditions. Conversely,
if some behaviour of y intentionally prohibits a transition that enters (or exits) state
sx, then the transitions and actions of sx whose enabledness depends on state sx will
execute under fewer (or more) conditions.

The general de�nition of a modi�cation interaction given in Section 4.3 includes all types
of modi�cation interactions, including those caused by the above constructs for modelling
intended interactions. In the following, we revise the de�nition to exclude intended inter-
actions, so as to support analyses that report only unintended interactions.

191

Example: Recall that TCS has a modi�cation interaction with BCS, as shown in Fig-
ure 4.5. Ideally, this interaction would not be reported because it is intended: Transition
BCS{t5} of BCS does not execute because of TCS's strengthening clause TCS{s1}. Fur-
thermore, the preemption of BCS{t5} prohibits the entry of state BCS{waitReject} of
BCS, which prevents transition BCS{t6} of BCS from executing.

4.3.2.1 Revised Modi�cation Interactions

Suppose that a feature y is added to a product con�guration P , resulting in the product
con�guration P + y. Recall that in the general de�nition given in Section 4.3, y has a
modi�cation interaction with a feature x in P if the projections πP ([m]) and πP+y([m])
of [m] cannot match one another's moves (transitions) in all rounds of all of the possible
matching games that they can play. In the general de�nition, respective moves in the two
systems are considered to be a match if they perform the same transitions and actions of
x. However, two respective moves may fail to match by design because there are intended
interactions in y that trigger or prohibit the transitions and actions of x in the current or
future moves of πP+y([m]):

� A transition xt or action xa of x does not execute in the current πP+y([m]) move
because of a preemptive transition, a preemptive action, or strengthening clause of
y. In this case, the transition xt or action xa does not appear in the label of the
πP+y([m]) move, but does appear in a respective πP ([m]) move. Analogously, a
transition xt or action xa of x executes in the current πP+y([m]) move only because
of a weakening clause of y. In this second case, the transition xt or action xa appears
in the label of the πP+y([m]) move but not in the label of any respective πP ([m])
move. In order to ignore such intended interactions, we weaken the notion of a match
between moves to allow di�erences caused by preemptive transitions and actions, and
by weakening and strengthening clauses.

� A transition xt or action xa of x does not execute in a future πP+y([m])move, because
of a transition or clause of y in the current πP+y([m]) move that intentionally triggers
the exit or prohibits the entry of an x state (causing a state change) on which xt's or
xa's enabledness depends. If the y transition or clause intentionally triggers the exit
or prohibits the entry of the x state, then transition xt or action xa may appear in
the label of a πP ([m]) move, but not appear in the label of any respective πP+y([m])
move. Analogously, if the y transition or clause intentionally triggers the entry or
prohibits the exit of the x state, the transition xt or action xa may appear in the label
of a future πP+y([m]) move but not in the label of any respective πP ([m]) move.

192

In order to ignore such intended interactions, we weaken the notion of a winning
game as follows: if in the course of a matching game πP+y([m]) performs a move
that intentionally triggers or prohibits the entry or exit of an x state (causing a state
change) via a y transition or clause (as described above), any future mismatches
between the moves of πP ([m]) and πP+y([m]) are tolerated.

The weakened notion of a winning game correctly excludes intended future mismatches
between the moves of πP ([m]) and πP+y([m]): that is, future mismatches that are initiated
by an intended entry or exit of an x state in the current πP+y([m]) move. However, it
may also exclude unintended future mismatches, which are not caused by the state change.
The unintended future mismatches might be caught in other moves of the matching game
in which the state change does not occur in the current πP+y([m]) move. For example,
suppose that the current πP+y([m]) move includes two y transitions ty1 and ty2, where ty1
intentionally triggers the entry of an x state (causing a state change) and ty2 performs a
WCA that unintentionally disables an x transtion tx in the next πP+y([m]) move. In this
πP+y([m]) move, the game is won because of ty1; thus, the unintended disabling of tx in
the next πP+y([m]) move is not reported. However, if there exists an alternative current
πP+y([m]) move that includes ty2 and does not include ty1, the game is not won and the
unintended disabling of tx in the next πP+y([m]) move is reported.

De�nition 4.3.6 below, describes the weakened notion of a match, called an intended
match, in more detail. Following that, De�nition 4.3.7 presents a revised de�nition of
bisimilarity that uses the notion of an intended match and encodes the weakened notion
of a winning game.

De�nition 4.3.6. Let sP
lP−→ s

′P and sP+y lP+y

−→ s
′P+y be moves of πP ([m]) and πP+y([m]),

respectively, where l
P = (T P ,AP) and l

P+y = (T P+y,AP+y). The moves intentionally
match with respect to x if and only if

πx(lP) ≈ πx(lP+y)

which denotes the following conditions:

� Any transition or action of x that is in l
P but not in l

P+y is either (1) preempted
in the move of πP+y([m]) by transitions or actions belonging to y, or (2) disabled
in the move of πP+y([m]) because of a strengthening clause introduced by y. More
precisely, for each transition tx ∈ πx(T P − T P+y) of feature x, one of the following
conditions hold:

193

1. ∃ ty ∈ πy(Ten(s
P+y)) : (ty, tx) ∈ Preemptstran(sP+y)

where πy(Ten(s
P+y)) is the set of y transitions that are enabled in s

P+y, and
Preemptstran(s

P+y) is the preemption relation between the transitions in s
P+y

(De�nition 3.6.12).

2. tx /∈ Ten(sP+y) only because tx's guard is false due to a strengthening clause scy

from feature y, such that if scy evaluated to true (or, equivalently, if scy were
omitted from the guard), then tx ∈ Ten(sP+y).

Analogously, for every action ax ∈ πx(AP −AP+y) of feature x, one of the following
conditions hold:

1. ∃ ay ∈ πy(Aen(s
P+y)) : (ay,ax) ∈ Preemptsact(sP+y)

where πy(Aen(s
P+y)) is the set of y actions that are enabled in s

P+y, and
Preemptsact(s

P+y) is the preemption relation between the actions in s
P+y (Def-

inition 3.6.19).

2. ax /∈ Aen(s
P+y) only because ax's guard is false due to a strengthening clause

scy from feature y, such that if scy evaluated to true (or, equivalently, if scy

were omitted from the guard), then ax ∈ Aen(s
P+y).

� Any transition of x that is in l
P+y but not in l

P is enabled in the move of πP+y([m])
because of a weakening clause of y. More precisely, for every tx ∈ πx(T P+y − T P),
the transition is enabled only because it includes a weakening clause wcy from feature
y, such that if wcy evaluated to false (or, equivalently, if wcy were omitted from the
transition's guard), then the transition would not be enabled.

Analogously, any action of x that is in l
P+y but not in l

P is enabled in the move
of πP+y([m]) because of a weakening clause of y. More precisely, for every action
ax ∈ πx(AP+y −AP), the guard of ax is true only because it includes a weakening
clause wcy from feature y, such that if wcy evaluated to false (or, equivalently, if
wcy were omitted from the guard), then the guard would be false.

We now provide a new de�nition for bisimilarity, which revises clauses 2(a) and 3(a)
to use the notion of an intended match between the moves of πP ([m]) and πP+y([m])
as de�ned above; and revises clauses 2(b) and 3(b) to encode the weakened notion of a
matching game described above. The original clauses 2(b) and 3(b) are augmented with
a precondition of the form if ¬c then, where c is the condition under which the following
moves in a matching game need not be matched for the game to be won. The revised
clauses are shown in red.

194

De�nition 4.3.7. πP ([m]) is intentionally bisimilar to πP+y([m]) over x if and only if
there exists a bisimulation relation BSR ⊆ S

P × S
P+y such that:

1. Every pair of corresponding initial states of the two transition systems is a pair in
BSR (i.e., the set of possible starting points):

{ (sP0 , s
P+y
0) ∈ S

P
0 × S

P+y
0 | correspond(sP0 , s

P+y
0) } ⊆ BSR

2. Every move of πP ([m]) is matched by a move of πP+y([m]) with respect to x:

if (sP , sP+y) ∈ BSR, then

for all sP
lP−→ s

′P ∈ T
P :

there is a s
P+y lP+y

−→ s
′P+y ∈ T

P+y such that:

(a) πx(lP) ≈ πx(lP+y), and

(b) if lP+y includes no y transition or clause that intentionally triggers or
prohibits the entry or exit of an x state (causing a state change), then
(s′P , s′P+y) ∈ BSR

3. Every move of πP+y([m]) is matched by a move of πP ([m]) with respect to x:

if (sP , sP+y) ∈ BSR, then

for all sP+y lP+y

−→ s
′P+y ∈ T

P+y:

there is a s
P lP−→ s

′P ∈ T
P such that:

(a) πx(lP) ≈ πx(lP+y), and

(b) if lP+y includes no y transition or clause that intentionally triggers or
prohibits the entry or exit of an x state (causing a state change), then
(s′P , s′P+y) ∈ BSR

The revised de�nition of De�nition 4.3.7 is sound in that it excludes all cases of modi�ca-
tion interactions caused by FORML's constructs for modelling intended interactions: The
revised clauses 2(a) and 3(b) use the notion of an intended match to exclude the e�ect of
feature y's preemptive transitions and actions, and weakening and strengthening clauses,
on feature x's transitions and actions in the current move of a game. The revised clauses
2(b) and 3(b) use the weakened notion of a winning game to exclude the e�ect of feature y's

195

«SPL»
SPL

«feature»
F1

«feature»
F2 F1

F2

SPL

(a) World model

F1{s1} F1{s2}

F1{t1}

F1{t2}

state machine F1{main}

let F2 = one myproduct.F2

F2{s1}

F2{t1} > F1{t1}: [F2]

F2{t2}: [F2]

(b) Composed behaviour model

p: SPL f1: F1
«fc»

(c) wsP1

p: SPL f1: F1
«fc»«fc»

f2: F2

(d) wsP1+f2

s0
P1 s1

P1

l0
P1 = ({smi::F1{t1}}, Ø)

l1
P1 = ({smi::F1{t2}}, Ø)

πf1(l0
P1) = ({smi::F1{t1}}, Ø)

πf1(l1
P1) = ({smi::F1{t2}}, Ø)

(e) πP1([m])

s0
P1+f2 s1

P1+f2

l0
P1+f2 = ({smi::F2{t1}}, Ø)

l1
P1+f2 = ({smi::F2{t2}}, Ø)

πf1(l0
P1+f2) = (Ø, Ø)

πf1(l1
P1+f2) = (Ø, Ø)

(f) πP1+f2([m])

Figure 4.7: Example of bisimilarity in the presence of intended interactions

state changes (via transitions or clauses) on x's transitions and actions in the future moves
of a game. However, the revised de�nition is not complete because, as explained above,
the weakened notion of a winning game may also exclude some unintended mistmaches in
future moves that are not caused by y's state changes.

The following gives a simple pedagogical example of bisimilarity in the presence of
intended feature interactions. Let m be the FORML model of an SPL with a mandatory
feature F1 and an optional feature F2. To keep the example simple, the only concepts
in m's world model (Figure 4.7a) are the SPL and feature concepts. F2 has an intended
interaction with F1, as modelled by transition F2{t2} in m's CBM (Figure 4.7b), which
takes priority over transition F1{t1}. Let P1 be a product con�guration comprising a
product with an F1 feature f1, and the let P1+f2 be the product con�guration comprising

196

a product with both an F1 feature f1 and an F2 feature f2. We prove that πP1([m])
is bisimilar to πP1+f2([m]) over f1 by constructing a bisimulation relation BSR that
conforms to De�nition 4.3.7.

πP1([m]) and πP1+f2([m]) are shown graphically in Figures 4.7e and 4.7f, respectively.
πP1([m])'s states are de�ned as

s
P1
0 = (modeF1{s1},wsP1,wsP1,wsP1)

s
P1
1 = (modeF1{s2},wsP1,wsP1,wsP1)

where modes denotes the mode comprising an instance of state machine F1{main} (Fig-
ure 4.7b) in con�guration s, and wsP1 denotes the (only) world state with product con-
�guration P18 (Figure 4.7c). sP1

0 is the initial state. πP1([m]) transitions from s
P1
0 to sP1

1

and vice versa by executing the transitions F1{t1} and F1{t2} of smi, as speci�ed by the
semantic transition labels lP1

0 and l
P1+f2
0 , respectively. Transition F2{t1} is not enabled

in s
P1
0 because product p has no F2 feature. F1{t1} and F1{t2} have no actions and

therefore do not change the world state. Note that because πP1([m])'s transitions perform
only f1 transitions,

πf1(lP1
0) = l

P1
0

πf1(lP1
1) = l

P1
1

Analogously, πP1+f2([m])'s states are de�ned as

s
P1+f2
0 = (modeF1{s1},wsP1+f2,wsP1+f2,wsP1+f2)

s
P1+f2
1 = (modeF2{s1},wsP1+f2,wsP1+f2,wsP1+f2)

where wsP1+f2 denotes the (only) world state with product con�guration P1 + f2 (Fig-
ure 4.7d). πP1+f2([m]) transitions from the initial state s

P1+f2
0 to state s

P1+f2
1 and vice

versa by executing the transitions F2{t1} and F2{t2} of smi, as speci�ed by the semantic
transition labels lP1+f2

0 and l
P1+f2
0 , respectively. Transition F1{t1} is enabled in s

P1+f2
0 ,

but is preempted by transition F2{t1}. F2{t1} and F2{t2} have no actions and there-
fore do not change the world state. Note that since neither of πP1+f2([m])'s transitions
performs any f1 transitions,

πf1(lP1+f2
0) = πf1(lP1+f2

1) = (∅, ∅)
8A world state of m is uniquely identi�ed by its product con�guration, since the only concepts in m's

world model (Figure 4.7a) are the SPL and feature concepts. Because product con�gurations are static
(Section 3.2.6) the world state of m is static.

197

The bisimulation relation BSR for πP1([m]) and πP1+f2([m]) can be constructed as
follows:

� πP1([m])'s initial state sP1
0 corresponds to πP1+f2([m])'s initial state sP1+f2

0 , because
their modes are identical (modeF1{s1}), and the world state wsP1+f2 di�ers from
the world state wsP1 in only the presence of feature f2. Hence, we initialize BSR
to

BSR = { (sP1
0 , sP1+f2

0) }

� πP1([m])'s only move in s
P1
0 is to take the transition s

P1
0

lP1
0−→ s

P1
1 . This move is

intentionally matched by πP1+f2([m])'s move of taking the transition s
P1+f2
0

l
P1+f2
0−→

s
P1+f2
1 . πf1(lP1

0) ≈ πf1(lP1+f2
0) because the f1 transition F1{t1} in l

P1
0 is preempted

by the f2 transition F2{t1} in lP1+f2
0 . Furthermore, since the f2 transition F2{t1} in

l
P1+f2
0 prohibits entry to the f1 state F1{s2} (the destination state of the preempted
f1 transition F2{t1}), the matching game need not continue with further moves; that
is, we need not add (sP1

1 , sP1+f2
1) to BSR.

� Conversely, πP1+f2([m])'s only move in s
P1+f2
0 is to take the transition s

P1+f2
0

l
P1+f2
0−→

s
P1+f2
1 . This move is intentionally matched by πP1([m])'s move of taking the tran-

sition s
P1
0

lP1
0−→ s

P1
1 , since πf1(lP1

0) ≈ πf1(lP1+f2
0), as shown above. Furthermore, as

with the case above, we need not add (sP1
1 , sP1+f2

1) to BSR.

Hence, we conclude that πP1([m]) is bisimilar to πP1+f2([m]), due to the existence of the
bisimulation relation

BSR = { (sP1
0 , sP1+f2

0) }

which conforms to De�nition 4.3.7.

4.3.3 Special Cases

Our notion of a modi�cation interaction generalizes existing feature-interaction types that
are special cases of behaviour modi�cation. For completeness, this section de�nes two
prominent special cases: looping and deadlock interactions.

198

4.3.3.1 Looping Interactions

To de�ne a looping interaction, we must �rst de�ne the notion of looping in the context of
FORML.

Looping: An execution of [m] includes an in�nite loop between a transition or action x1

and another transition or action x2, if after some execution state si, each pair of consecutive
labels li+2k and li+2k+1 (k ≥ 0) includes x1 but not x2, and x2 but not x1, respectively;
that is, li includes x1 (but not x2) and li+1 includes x2 (but not x1), li+2 includes x1 (but
not x2) and li+3 includes x2 (but not x1), and so on.

Feature interaction: We can now de�ne a looping interaction as follows: Let x be
a feature in a product con�guration P , and let be P + y be the product con�guration
that results from adding y (and the features that it depends on) to P . y has a looping
interaction with x, if there is an in�nite loop between a transition or action of x and a
transition or action of y in some execution of πP+y([m]). In this case, the transition or
action of y triggers the transition or action of x and vice versa; hence looping interactions
are instances of modi�cation interactions.

Looping interactions are de�ned informally in the literature (e.g., [70, 20]). Our formal
de�nition covers only minimal loops between a pair of transitions or actions x1 and x2:
that is, loops comprising only two [m] transitions, where each [m] transition includes
only one of x1 or x2. This de�nition enables e�cient analyses to detect minimal loops at
the expense of excluding interactions with larger loops. However, larger loops can still be
detected using (more expensive) analyses to detect general modi�cation interactions.

Example: Figure 4.8 shows a fragment of the composed TelSoft model, which includes
two transitions: transition BCS{t1} of BCS, which models the initiation of a call by a
user; and transition CFB{t1} of CFB, which models the forwarding of an incoming call
to a designated user, when the callee is already in a call. Consider a product con�guration
comprised of the three TelSoft products ts1, ts2, and ts3, where (1) all three products
have feature BCS; (2) ts2 includes feature CFB, which forwards calls to ts1's user; and (3)
ts1 includes feature CFB, which forwards calls to ts2's user. This can result in a looping
interaction between the CFB features of ts1 and ts2: Suppose that ts1's user calls ts2's
user, who is already in a call with ts3's user. This scenario is modelled by the execution
of transition ts1 :: BCS{t1} of ts1's machine, which triggers the execution of transition
ts2 :: CFB{t1} of ts2's machine, since ts2's user is in a call with ts3. The execution of

199

BCS{inCall}

CFB{waitCall}

CFB{t1}: Call+(o) [CFB and o.callee = user] /
CFB{a1}: +Call(caller = o.caller, callee = myproduct.CFB.Forwardee.user, status = request)

...

BCS{callerWaitConnect}BCS{idle}

BCS{t1}: StartCall+(o) [o.to = myproduct] /
BCS{a1}: +Call(caller = user, callee = o.target, status = request)

CFB{main}

BCS{reject}

BCS{process}

...

Figure 4.8: Example of a looping interaction

transition ts2 ::CFB{t1} triggers the execution of transition ts1 ::CFB{t1}, because ts2
forwards the call to ts1's user. Analogously, transition ts1 :: CFB{t1}, in turn, triggers
the execution of ts2 ::CFB{t1}, starting an in�nite loop between between the CFB{t1}
transitions of products ts1 and ts2.

4.3.3.2 Deadlock Interactions

To de�ne a deadlock interaction, we must �rst de�ne the notion of deadlock in the context
of FORML.

Deadlock: A machine smi (i.e., an instance of a state machine sm in the composed
behaviour model (CBM)) is said to deadlock in its execution if it arrives at an execution
state after which none of smi's transitions can execute.

More precisely, consider an [m] execution corresponding to the concurrent execution
of a set of machines, including smi. The [m] execution causes smi to deadlock if there is
exists an [m] state si in the execution, such that for any execution e of [m] with a su�x

(si, li, si+1), (si+1, li+1, si+2), . . .

none of the labels li, li+1, . . . in e include any transitions of smi.

Feature interaction: We can now de�ne a deadlock interaction as follows: Let x be
a feature in a product con�guration P , and let be P + y be the product con�guration
that results from adding y (and the features that it depends on) to P . y has a deadlock

200

interaction with x if a machine smi that includes transitions or actions of x is deadlock-
free in executions of πP ([m]) but not in executions of πP+y([m]). In this case, y has
prohibited some transitions and actions of x; hence, deadlock interactions are instances of
modi�cation interactions.

Example: Our case studies do not appear to include instances of deadlock interactions.
However, to demonstrate the idea, an pedagogical example is given below. Figure 4.9 shows
the CBM of an SPL comprising three optional features F1, F2, and F3. Consider a product
con�guration comprising two products p1 with feature F1 and product p2 with feature F2.
The two products in this product con�guration execute in a loop: The F2{sm} machine
executes transition F2{t1}, which adds a C object to the world state. The added C object
triggers transition F1{t1} of the F1{sm} machine and, concurrently, the F2{sm} machine
executes transition F2{t2}, which removes a C object from the world state. The removed
C object triggers transition F1{t2} of the F1{sm} machine and, concurrently, the F2{sm}
machine executes transition F2{t1}, and so on. Now suppose that feature F3 is added to
p2. This leads to a deadlock interaction between F3 and F1 in p1: Transition F3{t1} always
preempts transition F2{t2}, which (assuming that C is a controlled concept) permanently
removes the enabling condition of transition F1{t2}; hence, the F1{sm} machine gets
stuck in state F1{s2} and a deadlock occurs.

201

F1{s1} F1{s2}

F1{t1}: C+(o) [F1]

state machine F1{sm}

let F1 = one myproduct.F1

F1{t2}: C-(o) [F1]

F3{t1}: override(F2{t2}) [F3]

F2{s1} F2{s2}

F2{t1}: [F2] / C+(...)

state machine F2{sm}

let F2 = one myproduct.F2
let F3 = one myproduct.F3

F2{t2}: [F2] / C-(...)

Figure 4.9: Example of a deadlock interaction

4.4 Chapter Summary

This chapter presents a formal taxonomy of feature interactions for FORML. Our pro-
posed taxonomy adapts existing taxonomies de�ned for feature-oriented artifacts (FOAs)
expressed as operational models (see Section 2.3) and comprises the following feature-
interaction types: Nondeterminism interactions occur when there is a nondeterministic
choice among the enabled transitions of multiple features. Con�ict interactions occur
when the enabled transitions or actions of multiple features have inconsistent destination
states or e�ects on the world, respectively. Modi�cation interactions occur when the be-
haviours of one feature trigger or prohibit the behaviours of another feature. Finally, we
consider two special cases of modi�cation interactions: deadlock interactions occur when
one feature causes a deadlock to occur, which in turn prohibits behaviours of another fea-
ture; and looping interactions occur when two features trigger one another's behaviours in
an in�nite loop.

Our main adaptation to existing taxonomies is in our notion of modi�cation interac-
tions. Modi�cation interactions formalize the informal notion of behaviour modi�cation
in existing taxonomies by checking whether two transition systems are bisimilar. The two
transition systems represent the behaviours of a feature x in two product con�gurations

202

that di�er in the presence of a feature y and its dependent features; the bisimilarity check
reveals whether y modi�es the behaviours of x. Furthermore, our notion of modi�cation in-
teractions excludes behaviour modi�cations caused by FORML's constructs for modelling
intended interactions. By excluding intended interactions, the de�nition enables analyses
that report only unintended feature interactions.

203

Chapter 5

Conclusion and Future Work

This chapter presents a summary of this thesis and its contributions, as well as possible
directions for future work.

5.1 Summary of Thesis and Contributions

This thesis introduces the feature-oriented requirements modelling language (FORML) for
specifying feature-oriented models of a software product line (SPL)'s requirements, as well
as a taxonomy of feature interactions for FORML to support the detection of unintended
feature interactions at the requirements level.

5.1.1 FORML

A FORML model of an SPL's requirements is comprised of two main views:

� A world model is an ontology of concepts that describes a world comprising the
SPL's products and the environment in which they will operate. The concepts in
the world model are expressed in the UML class-diagram notation. The world model
also includes auxiliary validity constraints over single instances of the world model,
called world states, as well as pairs of consecutive world states. The world-model
constraints are expressed in FORML's expression language.

204

� A behaviour model is a state-machine model that describes the requirements for an
SPL's products. The model's inputs are events and conditions over the world model,
and its outputs are actions over the world model. A behaviour model is structured
in terms of features: that is, the requirements of each feature of an SPL are localized
in a separate feature module. Those requirements of a feature that are independent
of existing features are expressed as a set of parallel state machines. If the feature
enhances (i.e., extends or modi�es) existing features, the enhancements are expressed
as a set of state-machine fragments that extend existing feature modules. The graph-
ical syntax for the behaviour model is based on the UML state-machine notation.
The inputs and outputs of the behaviour model are expressed in FORML's expression
language. To obtain a view of the requirements of feature combinations, all of the
feature modules are composed into a model of the whole SPL (i.e., all possible prod-
ucts). At the heart of composition is the integration of the feature modules' fragments
and state machines. This step of composition is formalized as the superimposition
of the feature module's abstract syntax trees, called feature structure trees (FSTs).
FORML FSTs have properties (e.g., being unordered, not having common termi-
nal nodes) that ensure that their superimposition is commutative and associative.
The commutativity and associativity of superimposition (and hence composition)
can lead to savings in analysis costs, since only one rather than (possibly) multiple
composition orders need to be analyzed.

Two case studies have been performed, one from the automotive domain and one from
the telephony domain, with the goals of (1) exploring the expressiveness of FORML and
(2) evaluating the impact of evolving a FORML model with new features. The second
goal was to evaluate the likelihood that a new feature module prompts changes to existing
feature modules and to measure the extents of such changes. The automotive case study
was adapted from GM Feature Technical Speci�cations for a set of 11 automotive software
features. The telephony case study was adapted from the Second Feature Interaction
Contest [59] and comprises 15 telephone-service features. The results of the case studies
indicate good expressiveness for FORML (a minor adjustment to FORML was needed
to improve expressiveness in modelling 20 new features), and low impact of adding new
features to a FORML model (adding new features did not result in changes to existing
feature modules).

5.1.1.1 Contributions

FORML combines and adapts the best practices for requirements modelling with feature
modularity techniques from FOSD research. FORML is distinguished from existing re-

205

quirements modelling and FOSD approaches in the following ways:

� A FORML world model includes a feature-oriented representation of an SPL's prod-
ucts: FORML introduces SPL and feature concepts to represent products and their
feature con�gurations. Feature concepts can also be used to group product phenom-
ena (i.e., observable phenomena introduced by products) based on the features to
which they pertain. Furthermore, a FORML world model includes a feature model,
which speci�es constraints on the valid feature con�gurations of products.

� FORML provides a systematic treatment of modelling feature enhancements in state-
machine models of feature requirements. FORML distinguishes between di�erent
types of enhancements: enhancements that add new requirements in the context of
an existing feature's requirements, and enhancements that modify the requirements
of existing features (i.e., intended feature interactions). Intended interactions are
further distinguished based on whether they trigger, prohibit, or override the re-
quirements of existing features; or specify an existing feature's priority over other
(new or existing) features (i.e., retrospective intended interactions). FORML pre-
scribes di�erent types of fragments for modelling di�erent types of enhancements.
In particular, FORML introduces novel constructs for modelling requirements over-
rides in state-machine models of feature requirements: namely, special transitions
that override other transitions in the same or di�erent state machine, and special
transition actions that override other actions in the same transition.

� The composition of FORML feature modules is commutative and associative, de-
spite models of intended interactions. As is discussed in Section 2.2, existing FOSD
approaches typically sacri�ce commutativity for the sake of modelling intended in-
teractions.

5.1.2 Feature-Interaction Taxonomy

This thesis presents a taxonomy of feature interactions for FORML that is an adaptation
of existing taxonomies for operational models of feature behaviour. The taxonomy consists
of the following feature-interaction types, which are precisely de�ned to enable analyses
for detecting unintended feature interactions in FORML models:

� A nondeterminism interaction occurs when there is a nondeterministic choice in the
set of enabled transitions that can execute in an execution step.

206

� A con�ict interaction occurs when the set of actions that execute in an execution
step are inconsistent with one another or with the world model, or when the set of
transitions that execute in a step have mutually inconsistent destination states (e.g.,
the destination states are di�erent child states in the same region).

� Amodi�cation interaction occurs when one feature modi�es the behaviours of another
feature. The notion of a modi�cation interaction generalizes a number of existing
feature-interaction types that are special cases of behaviour modi�cation. For com-
pleteness, the proposed taxonomy includes two types of feature interactions that are
prominent special cases of modi�cation interactions: deadlock interaction, which oc-
curs when a feature causes a deadlock that prohibits another feature's behaviours;
and looping interaction, whichs occur when two features trigger one another's be-
haviours in an in�nite loop.

A set of seven examples have been developed of the di�erent feature-interaction types
in the proposed taxonomy: one example of nondeterminism interaction, two examples of
con�ict interaction, and four examples of modi�cation interaction. Six of the examples are
based on the FORML models of the telephony and automotive case studies; the remaining
example is pedagogical and was created to illustrate deadlock interaction.

5.1.2.1 Contributions

The taxonomy of feature interactions for FORML makes the following adaptations to
existing taxonomies:

� The taxonomy includes a formal de�nition for behaviour modi�cation. Behaviour
modi�cation covers several special cases of feature interactions in existing taxonomies.

� FORML's constructs for modelling intended feature interactions cause modi�cation
interactions. To enable feature-interaction analyses that only report unintended mod-
i�cation interactions, the proposed de�nition of modi�cation interactions excludes the
cases caused by such constructs.

5.2 Future Work

The following are possible directions for extending the work presented in this thesis.

207

5.2.1 More Validation

More case studies (from the automotive and telephony domains, as well as other domains
such as banking, email, and smart homes) should be performed to evaluate the expres-
siveness of FORML, as well as the ease of evolving FORML models with new features.
Furthermore, the utility of the feature-interaction taxonomy should be further evaluated
by (manually or automatically) detecting all instances of the taxonomy's feature interac-
tions in the case-study models. Finally, user studies should be performed to (1) evaluate the
ease of reading and writing FORML models, and (2) to compare the common approach
of realizing behaviour overrides by ordered composition (e.g., AHEAD [11], DFC [94],
LSM [16]) with FORML's approach of modelling behaviour overrides using transition and
action priorities.

5.2.2 Extending FORML

FORML can be extended in several ways:

� FORML can be extended from supporting purely discrete behaviour models to sup-
porting hybrid behaviour models that specify both discrete and continuous behaviours.
This extension would enable more complete models of cyber-physical systems such
as automobile software controllers.

� FORML's expression language can be extended to support temporal logic for speci-
fying world-model constraints.

� Currently, the state machines in the composed behaviour model (CBM) are instan-
tiated once per product. FORML can be extended to support custom instantiation
criteria for state machines to allow more �exibility in specifying behaviours. For
example, to support feature cardinalities that allow a product to have more than
one instance of a feature, it could be speci�ed that a state machine is instantiated
once per feature instance. However, if state machines are instantiated per feature
instance, specifying the common case of intended interactions between the features
of the same product will require references to elements in other features' machines;
in contrast, if state machines are instantiated per product (our current approach),
such interactions can be speci�ed using simpler references to elements in the same
machine.

� FORML can be extended to support timing requirements.

208

5.2.3 Feature-Interaction Analyses

Automating the detection of the proposed taxonomy's feature-interaction types is an ob-
vious direction for future work. There is already ongoing work in our group for using
model checking to detect con�ict interactions: this work involves automatically composing
FORML feature modules using the FeatureHouse framework [5] for superimposing FSTs,
translating FORML models into SMV using a semantically-con�gurable translator [31],
and automatically generating con�ict-detection properties from FORML models. Model
checking can also be used to detect nondeterminism interactions, deadlock interactions, and
looping interactions. However, bisimulation analyses should be investigated for detecting
the general case of modi�cation interactions.

An important consideration in analysing FORML models is dealing with the (generally)
in�nite space of valid world states. One way to address this issue is to perform bounded
analysis: that is, to either to scope the types de�ned by the world model to a �nite set
of elements (similar to how Alloy models are analyzed[48]), or to place a bound on the
length of the execution paths considered in the analysis (e.g., to perform bounded model
checking [14]). Another consideration is dealing with dynamic product con�gurations:
that is, cases where a product con�guration changes in the course of an execution (e.g.,
the features of a particular product change). Addressing this issue will require modifying
the semantics of FORML, which currently assumes static product con�gurations.

5.2.4 Tool Support

FORML can bene�t from tool support both for the purpose of automating analysis as de-
scribed above, and also for creating and editing FORML models. Our group has developed
a textual syntax for FORML that is currently being used as input to the feature composer.
However, a graphical editor for FORML models is yet to be produced.

209

APPENDICES

210

Appendix A

Case-Study Models

This appendix shows the evolution of FORML models for a telephony SPL called TelSoft
(Section A.1), and an automotive case study called AutoSoft (Section A.2). Each evolution
step corresponds to the addition of a new feature and is shown as the new feature's feature
module in the behaviour model, followed by the world model as evolved by the new feature.

A.1 Telephony Case Study

Figures A.1 to A.30 show, in order, the evolution steps of a FORML model of TelSoft .

211

idle

callerWaitAnswer

calleeWaitAnswer

inCall

t5: Call+(o) [o.callee = user] /
a1: o.status = connected,
a2: +Ring(from = myproduct)

t7: AnswerCall+(o) [o.to = myproduct] /
a1: acceptedCall.voice := true

t1: StartCall+(o) [o.to = myproduct] /
a1: +Call(caller = user, callee = o.target, status = request)

process

reject

waitCall

state machine main

let user = myproduct.Subscription.user
let callerCall = Calls[c | c.caller = user]
let calleeCalls = Calls[c | c.callee = user]
let acceptedCall = (callerCall + calleeCalls)[c | not c.status = request]
let callRequests = calleeCalls[c | c.status = request]
let calleeTelSoft = acceptedCall.callee.Subscription.service

t6: / a1: -Call(callRequests@curri)

t8: Call+(o) [o.callee = user] / a1: -Call(callRequests)

«unstable»
issueReject

t4: Call.status~(o)
[o = callerCall and o.status = voice]

t10 > calleeTelSoft(main).t7:
EndCall+(o) [o.to = myproduct and not inState(inCall.callerWaitConnect)] /
a1: -Call(acceptedCall + callRequests)

callerWaitConnectt2 > t8: Call-(o) [o = callerCall@pre] /
a1: +Busy(from = myproduct), a2: -Call(callRequests)

t3: Call.status~(o)
[o = callerCall and o.status = connected]

talking

t9: Call-(o) [o = acceptedCall@pre] / a1: -Call(callRequests)

Figure A.1: The feature module of BCS

212

«SPL»
TelSoft

«feature»
BCS

«input»
StartCall(target: User)
AcceptCall()
EndCall()

«output»
Busy()
Ring()

User

 «ctrl»
Subscription 1

service
1
user

«ctrl»
Call

status: {request, connected, voice}

caller
callee
0..1

BCS

TelSoft

no c: Calls | c.caller = c.callee
Users = Users@pre

Figure A.2: The TelSoft world model as evolved by BCS

213

BCS{talking}
callWaiting

t3: ToggleHold+(o) [o.to = myproduct] /
a1: active.status := connected, a2: waiting.status := voice

t4 > t3: Call-(o) [o in waiting@pre and one active]

let calls = Calls[c | c.caller = BCS{user} or c.callee = BCS{user}]
let active = calls[c | c.status = voice]
let waiting = calls[c | c.status = connected]
let acceptedCalls = active + waiting

let holder = if(waiting.caller = BCS{user}) then waiting.callee else waiting.caller
let holderTelSoft = holder.Subscription.service
transition BCS{t10} > holderTelSoft(BCS{main}).CW{t5}, holderTelSoft(BCS{main}).CW{t6}

BCS{main.inCall.process}

t6 > t3: override(BCS{t10}) /
a1: waiting.status := voice, a2: -Call(active)

t1: override(BCS{t8}) /
a1: o.status := connected «unstable»

issueReject

t2: / a1: -Call(BCS{callRequests}@curri)

t5 > t3: Call-(o) [o in active@pre and one waiting] /
a1: waiting.status := voice

Figure A.3: The feature module of CW

214

«SPL»
TelSoft

User

 «ctrl»
Subscription 1

service
1
user

«ctrl»
Call

status: {request, connected, voice}

caller
callee
0..1

BCS

CW

TelSoft
«feature»

BCS

«input»
StartCall(target: User)
AcceptCall()
EndCall()

«output»
Busy()
Ring()

«feature»
CW

«input»
ToggleHold()

no c: Calls | c.caller = c.callee
Users = Users@pre

Figure A.4: The TelSoft world model as evolved by CW

BCS{main.t5}: / a1: +ID(from = myproduct, caller = o.caller)

Figure A.5: The feature module of CD

215

«SPL»
TelSoft

User

 «ctrl»
Subscription 1

service
1
user

«ctrl»
Call

status: {request, connected, voice}

caller
callee
0..1

BCS

CW

TelSoft
«feature»

BCS

«input»
StartCall(target: User)
AcceptCall()
EndCall()

«output»
Busy()
Ring()

«feature»
CW

«input»
ToggleHold()

no c: Calls | c.caller = c.callee
Users = Users@pre

CD

«feature»
CD

«output»
ID(caller: User)

Figure A.6: The TelSoft world model as evolved by CD

strengthen action CD{a1} with $s1: no (o.caller).Subscription.service.CDB

Figure A.7: The feature module of CDB

216

«SPL»
TelSoft

«feature»
CD

«output»
ID(caller: User)

User

 «ctrl»
Subscription 1

service
1
user

«ctrl»
Call

status: {request, connected, voice}

caller
callee
0..1

BCS

CW

TelSoft

CD

«feature»
BCS

«input»
StartCall(target: User)
AcceptCall()
EndCall()

«output»
Busy()
Ring()

«feature»
CDB

«feature»
CW

«input»
ToggleHold()

CDB

no c: Calls | c.caller = c.callee
Users = Users@pre

Figure A.8: The TelSoft world model as evolved by CDB

strengthen transition BCS{main.t2} with $s1: no BCS{callerCall}

BCS{inCall}

waitCall

t1: Call+(o) [o.callee = user] /
a1: +Call(caller = o.caller, callee = myproduct.CFB.Forwardee.user, status = request)

main

Figure A.9: The feature module of CFB

217

«SPL»
TelSoft

«feature»
CD

«output»
ID(caller: User)

User

 «ctrl»
Forwardee 1

service
1
user

«ctrl»
Call

status: {request, connected, voice}

caller
callee
0..1

BCS

CW

TelSoft

CD

«feature»
BCS

«input»
StartCall(target: User)
AcceptCall()
EndCall()

«output»
Busy()
Ring()

«feature»
CDB

«feature»
CW

«input»
ToggleHold()

CDB

no c: Calls | c.caller = c.callee
Users = Users@pre

CFB

«feature»
CFB

 «ctrl»
Subscription

cfb

 1
 user

Figure A.10: The TelSoft world model as evolved by CFB

218

BCS{main.inCall.process}

BCS{talking}

waitStartCall

t1 > firstTelSoft(main).t10: ToggleHoldCT+(o) [o.to = myproduct] /
a1: firstCall.status = connected

t2 > firstTelSoft(main).t10: ToggleHoldCT+(o) [o.to = myproduct] /
a1: firstCall.status = voice

transferring

t3: StartCall+(o) [o.to = myproduct] /
a1: c = +Call(caller = BCS{user}, callee = o.target, status = request),
a2: +Transfer(call = c, ct = myproduct.CT)

let transferCall = myproduct.CT.Transfer.call
let firstCall = BCS{acceptedCall} - transferCall
let firstRemote = if firstCall.caller = BCS{user} then firstCall.callee else firstCall.caller
let firstTelSoft = firstRemote.Subscription.service
let transferTelSoft = transferCall.callee.Subscription.service

strengthen transition BCS{main.t9} with $s1: no BCS{acceptedCall}
strengthen transition BCS{main.t10} with s1: not inState(transferring.waitConnect)

waitConnect

waitAnswer

t4: Call.status~(o)
[o = transferCall and o.status = connected]

talking

t5: Call.status~(o)
[o = transferCall and o.status = voice]

t11 > firstTelSoft(main).t10, transferTelSoft(main).t10:
override(BCS{main.t10}) /
a1: -Call(firstCall + transferCall + BCS{callRequests}),
a2: +Call(caller = firstRemote, callee = transferCall.callee, status = voice)

t10: Call-(o) [o = firstCall@pre and one transferCall] /
a1: -Transfer(myproduct.CT.Transfer)

t8: Call-(o) [o = transferCall@pre and one firstCall] /
a1: firstCall.voice = true

BCS{callerWaitAnswer}

BCS{callerWaitConnect}

t6: Call-(o) [o = firstCall@pre and one transferCall] /
a1: -Transfer(myproduct.CT.Transfer)

t7: Call-(o) [o = firstCall@pre and one transferCall] /
a1: -Transfer(myproduct.CT.Transfer)

BCS{main.idle}

t9 > firstTelSoft(main).t10, transferTelSoft(main).t10, transferTelSoft(main).t7:
override(BCS{main.t10}) /
a1: -Call(transferCall), a2: firstCall.voice = true

Figure A.11: The feature module of CT

219

«SPL»
TelSoft

«feature»
CD

«output»
ID(caller: User)

User

 «ctrl»
Forwardee 1

service
1
user

«ctrl»
Call

status: {request, connected, voice}

caller
callee
0..2

BCS

CW

TelSoft

CD

«feature»
BCS

«input»
StartCall(target: User)
AcceptCall()
EndCall()

«output»
Busy()
Ring()

«feature»
CDB

«feature»
CW

«input»
ToggleHold()

CDB

no c: Calls | c.caller = c.callee
Users = Users@pre

CFB

«feature»
CFB

 «ctrl»
Subscription

cfb

 1
 user

CT

«feature»
CT

«input»
ToggleHoldCT()

 «ctrl»
Transfer0..1

call
0..1
call

Figure A.12: The TelSoft world model as evolved by CT

220

BCS{main.inCall.process}

BCS{talking}

waitStartCall

t1: ToggleHoldTWC+(o) [o.to = myproduct] / a1: firstCall.status = connected

t2: ToggleHoldTWC+(o) [o.to = myproduct] / a1: firstCall.status = voice

linking

t3: StartCall+(o) [o.to = myproduct] /
a1: c = +Call(caller = BCS{user}, callee = o.target, status = request),
a2: +Link(call = c, ct = myproduct.TWC)

let linkCall = myproduct.TWC.Link.call
let firstCall = BCS{acceptedCall} - linkCall
let firstRemote = if firstCall.caller = BCS{user} then firstCall.callee else firstCall.caller
let firstTelSoft = firstRemote.Subscription.service
let linkTelSoft = linkCall.callee.Subscription.service
let threeWayCall = ThreeWayCalls[c | c.caller = BCS{user} or c.callee = BCS{user} or c.thirdParty = BCS{user}]

strengthen transition BCS{main.t10} with s1: not inState(linking.waitConnect)
transition BCS{t10} > firstTelSoft(BCS{main}).TCS{t1}, firstTelSoft(BCS{main}).TCS{t2}

waitConnect

waitAnswer

t4: Call.status~(o)
[o = linkCall and o.status = connected]

talking

t5: Call.status~(o)
[o = linkCall and o.status = voice]

t11 > firstTelSoft(main).t10, linkTelSoft(main).t10:
LinkCalls+(o) [o.to = myproduct] /
a1: -Call(firstCall + linkCall + BCS{callRequests}),
a2: +ThreeWayCall(caller = BCS{user}, callee = firstRemote, thirdParty = linkCall.callee)

t10: Call-(o) [o = firstCall@pre and one linkCall] /
a1: -Link(myproduct.TWC.Link)

t8: Call-(o) [o = linkCall@pre and one firstCall] /
a1: firstCall.voice = true

BCS{callerWaitAnswer}

BCS{callerWaitConnect}

t6: Call-(o) [o = firstCall@pre and one linkCall] /
a1: -Link(myproduct.TWC.Link)

t7: Call-(o) [o = firstCall@pre and one linkCall] /
a1: -Link(myproduct.TWC.Link)

BCS{idle}

t9 > firstTelSoft(main).t10, linkTelSoft(main).t10, linkTelSoft(main).t7:
override(BCS{main.t10}) /
a1: -Call(linkCall), a2: firstCall.voice = true

BCS{main}

inThreeWayCall

$t13: Call+(o) [o.callee = BCS{user}] /
a1: -Call(BCS{callRequests})

$t12 > BCS{main.t10}, BCS{main.t9}:
ThreeWayCall+(o) [o.callee = BCS{user} or o.thirdParty = BCS{user}] /
a1: -Call(BCS{callRequests})

$t14: EndCall+(o) [o.to = myproduct] /
a1: -ThreeWayCall(threeWayCall), a2: -Call(BCS{callRequests})

$t15: ThreeWayCall-(o) [o = threeWayCall@pre] /
a1: -Call(callRequests)

Figure A.13: The feature module of TWC

221

«SPL»
TelSoft

«feature»
CD

«output»
ID(caller: User)

User

 «ctrl»
Forwardee 1

service
1
user

«ctrl»
Call

status: {request, connected, voice}

caller
callee
0..2

BCS

CW

TelSoft

CD

«feature»
BCS

«input»
StartCall(target: User)
AcceptCall()
EndCall()

«output»
Busy()
Ring()

«feature»
CDB

«feature»
CW

«input»
ToggleHold() CDB

no c: Calls | c.caller = c.callee
Users = Users@pre

CFB

«feature»
CFB

 «ctrl»
Subscription

cfb

 1
 user

CT

«feature»
CT

«inputs»
ToggleHoldCT()

 «ctrl»
Transfer 0..1

 ct
0..1
call

TWC

«feature»
TWC

«inputs»
ToggleHoldTWC()
LinkCalls()

«ctrl»
 Link0..1

twc
0..1
call

«ctrl»
«association»
ThreeWayCall

«role»
caller, 0..1

«role»
callee, 0..1

«role»
thirdParty, 0..1

Figure A.14: The TelSoft world model as evolved by TWC

222

let user1 = myproduct.GR.Member1.user
let user1 = myproduct.GR.Member2.user
let call1 = myproduct.GR.Call1.call
let call2 = myproduct.GR.Call2.call
let user1TelSoft = user1.Subscription.service
let user2TelSoft = user2.Subscription.service

let sub1 = TelSofts[p | p.GR = BCS{acceptedCall}.Call1.gr].Subscription.user
let user21 = BCS{acceptedCall}.Call1.gr.Member2.user
let callSub1 = Calls[c | (c.caller = sub1 or c.callee = sub1) and not c.status = request]
let call21 = BCS{acceptedCall}.Call1.gr.Call2.call
let user21TelSoft = user21.Subscription.service

let sub2 = TelSofts[p | p.GR = BCS{acceptedCall}.Call2.gr].Subscription.user
let user12 = BCS{acceptedCall}.Call2.gr.Member1.user
let callSub2 = Calls[c | (c.caller = sub2 or c.callee = sub2) and not c.status = request]
let call12 = BCS{acceptedCall}.Call2.gr.Call1.call

BCS{main.t5}:
/ a1: c1 = +Call(caller = o.caller, callee = user1, status = request),
 a2: c2 = +Call(caller = o.caller, callee = user2, status = request),
 a3: +Call1(gr = myproduct.GR, call = c1),
 a4: +Call2(gr = myproduct.GR, call = c2)

weaken transition BCS{main.t2} with $w1: no BCS{callerCall@pre}
weaken transition BCS{main.t9} with $w2: no BCS{acceptedCall@pre}

BCS{inCall.process.calleeWaitAnswer} BCS{inCall.process.talking}

$t3:
override(BCS{main.t7}) [one BCS{acceptedCall}.Call2] /
a1: BCS{acceptedCall}.voice := true,
a2: -Call(callSub2 + call12)

t1 > user1TelSoft(BCS{main}).BCS{t7}, user2TelSoft(BCS{main}).BCS{t7}, user1TelSoft(BCS{main}).BCS{t5}, user2TelSoft(BCS{main}).BCS{t5}:
override(BCS{main.t7}) /
a1: BCS{acceptedCall}.voice := true,
a2: -Call(call1, call2)

$t2 > user21TelSoft(BCS{main}).BCS{t7}:
override(BCS{main.t7}) [one BCS{acceptedCall}.Call1] /
a1: BCS{acceptedCall}.voice := true,
a2: -Call(callSub1 + call21)

Figure A.15: The feature module of GR

223

«SPL»
TelSoft

«feature»
CD

«output»
ID(caller: User)

User

 «ctrl»
Forwardee 1

service
1
user

«ctrl»
Call

status: {request, connected, voice}

caller
callee
0..3

BCS

CW

TelSoft

CD

«feature»
BCS

«input»
StartCall(target: User)
AcceptCall()
EndCall()

«output»
Busy()
Ring()

«feature»
CDB

«feature»
CW

«input»
ToggleHold() CDB

no c: Calls | c.caller = c.callee
Users = Users@pre

CFB

«feature»
CFB

 «ctrl»
Subscription

cfb

 1
 user

CT

«feature»
CT

«input»
ToggleHoldCT()

 «ctrl»
Transfer 0..1

 ct
0..1
call

TWC

«feature»
TWC

«input»
ToggleHoldTWC()
LinkCalls()

«ctrl»
 Link0..1

twc
0..1
call

«ctrl»
«association»
ThreeWayCall

«role»
caller, 0..1

«role»
callee, 0..1

«role»
thirdParty, 0..1

«feature»
GR

«ctrl»
Call1

 «ctrl»
Member2

 «ctrl»
Member1

«ctrl»
Call2

User

0..1 callcall 0..1

0..1 grgr 0..1

gr

gr 1
user

 1
user

GR

Figure A.16: The TelSoft world model as evolved by GR

224

BCS{main.t8}:
/ a1: [no myproduct.RBF.Missed] Missed+(rbf = myproduct.RBF, user = o.caller)

BCS{main.idle} BCS{main.inCall.process.callerWaitConnect}

t1 > BCS{main.t1}, BCS{main.t5}: [one myproduct.RBF.Missed] /
a1: c = +Call(caller = BCS{user}, callee = myproduct.RBF.Missed.user, status = request),
a2: -Missed(myproduct.RBF.Missed),
a3: -Call(BCS{callRequests})

Figure A.17: The feature module of RBF

225

«SPL»
TelSoft

«feature»
CD

«output»
ID(caller: User)

User

 «ctrl»
Forwardee 1

service
1
user

«ctrl»
Call

status: {request, connected, voice}

caller
callee
0..3

BCS

CW

TelSoft

CD

«feature»
BCS

«input»
StartCall(target: User)
AcceptCall()
EndCall()

«output»
Busy()
Ring()

«feature»
CDB

«feature»
CW

«input»
ToggleHold() CDB

no c: Calls | c.caller = c.callee
Users = Users@pre

CFB

«feature»
CFB

 «ctrl»
Missed

cfb

 1
 user

CT

«feature»
CT

«input»
ToggleHoldCT()

 «ctrl»
Transfer 0..1

 ct
0..1
call

TWC

«feature»
TWC

«input»
ToggleHoldTWC()
LinkCalls()

«ctrl»
 Link0..1

twc
0..1
call

«ctrl»
«association»
ThreeWayCall

«role»
caller, 0..1

«role»
callee, 0..1

«role»
thirdParty, 0..1

«feature»
GR

«ctrl»
Call1

 «ctrl»
Member2

 «ctrl»
Member1

«ctrl»
Call2

User

0..1 callcall 0..1

0..1 grgr 0..1

gr

gr 1
user

 1
user

GR RBF

«feature»
RBF

 «ctrl»
Subscription

0..1
user

0..1
 rbf

Figure A.18: The TelSoft world model as evolved by RBF

226

BCS{main.idle} waitPIN

t1: override(BCS{t1}) [curfew()] /
a1: +PINRequest(from = myproduct),
a2: [one myproduct.TL.Caller] -Caller(myproduct.TL.Caller),
a2: +Caller(tl = myproduct.TL, user = o.target)

BCS{main.inCall.process}

t3: MyPIN+(o) [validPIN(o.PIN)] /
a1: +Call(caller = BCS{user}, callee = myproduct.TL.Caller.user, status = request),

BCS{callerWaitConnect}

t2: MyPIN+(o) [not validPIN(o.PIN)]

Figure A.19: The feature module of TL

227

«SPL»
TelSoft

«feature»
CD

«output»
ID(caller: User)

User

 «ctrl»
Forwardee 1

service
1
user

«ctrl»
Call

status: {request, connected, voice}

caller
callee
0..3

BCS

CW

TelSoft

CD

«feature»
BCS

«input»
StartCall(target: User)
AcceptCall()
EndCall()

«output»
Busy()
Ring()

«feature»
CDB

«feature»
CW

«input»
ToggleHold() CDB

no c: Calls | c.caller = c.callee
Users = Users@pre

CFB

«feature»
CFB

 «ctrl»
Missed

cfb

 1
 user

CT

«feature»
CT

«input»
ToggleHoldCT()

 «ctrl»
Transfer 0..1

 ct
0..1
call

TWC

«feature»
TWC

«input»
ToggleHoldTWC()
LinkCalls()

«ctrl»
 Link0..1

twc
0..1
call

«ctrl»
«association»
ThreeWayCall

«role»
caller, 0..1

«role»
callee, 0..1

«role»
thirdParty, 0..1

«feature»
GR

«ctrl»
Call1

 «ctrl»
Member2

 «ctrl»
Member1

«ctrl»
Call2

User

0..1 callcall 0..1

0..1 grgr 0..1

gr

gr 1
user

 1
user

GR RBF

«feature»
RBF

 «ctrl»
Subscription

0..1
user

0..1
 rbf

TL

 «ctrl»
Caller0..1

user
0..1
 tl

«feature»
TL

«ctrl» PIN

«input»
MyPIN(PIN)

«output»
PINRequest()

Figure A.20: The TelSoft world model as evolved by TL

strengthen transition BCS{main.t5} with s1: not o.caller in myproduct.TCS.Screen.user

Figure A.21: The feature module of TCS

228

«SPL»
TelSoft

«feature»
CD

«output»
ID(caller: User)

User

 «ctrl»
Forwardee 1

service
1
user

«ctrl»
Call

status: {request, connected, voice}

caller
callee
0..3

BCS

CW

TelSoft

CD

«feature»
BCS

«input»
StartCall(target: User)
AcceptCall()
EndCall()

«output»
Busy()
Ring()

«feature»
CDB

«feature»
CW

«input»
ToggleHold() CDB

no c: Calls | c.caller = c.callee
Users = Users@pre

CFB

«feature»
CFB

 «ctrl»
Missed

cfb

 1
 user

CT

«feature»
CT

«input»
ToggleHoldCT()

 «ctrl»
Transfer 0..1

 ct
0..1
call

TWC

«feature»
TWC

«input»
ToggleHoldTWC()
LinkCalls()

«ctrl»
 Link0..1

twc
0..1
call

«ctrl»
«association»
ThreeWayCall

«role»
caller, 0..1

«role»
callee, 0..1

«role»
thirdParty, 0..1

«feature»
GR

«ctrl»
Call1

 «ctrl»
Member2

 «ctrl»
Member1

«ctrl»
Call2

User

0..1 callcall 0..1

0..1 grgr 0..1

gr

gr 1
user

 1
user

GR RBF

«feature»
RBF

 «ctrl»
Subscription

0..1
user

0..1
 rbf

TL

 «ctrl»
Caller0..1

user
0..1
 tl

«feature»
TL

«ctrl» PIN

«input»
MyPIN(PIN)

«output»
PINRequest()

TCS

«feature»
TCS

 «ctrl»
Screen

usertcs

Figure A.22: The TelSoft world model as evolved by TCS

229

let vmUser = myproduct.VM.UVM.user

strengthen transition BCS{main.t9} with $s1: no BCS{acceptedCall}

BCS{main.t10}: /
$a1: [BCS{acceptedCall}.callee in (VoiceMailUsers - vmUser)] msg = +VoiceMessage(),
$a2: [BCS{acceptedCall}.callee in (VoiceMailUsers - vmUser)] vm = +MailBox(vm = BCS{acceptedCall}.callee.UVM.vm, message = msg)

BCS{main.idle}BCS{main.inCall.process.calleeWaitAnswer}

t1 > BCS{callerTelSoft}.(BCS{main}).BCS{t10}: [timeout()] /
a1: -Call(BCS{acceptedCall}),
a2: +Call(caller = BCS{acceptedCall}.caller, callee = myproduct.VM.UVM.user, status = voice)

BCS{main.inCall.process.callerWaitAnswer} BCS{main.inCall.process.talking}
$t2: Call+(o) [o.caller = BCS{user} and o.callee in VMs]

t3: override(main.t1) [o.target = vmUser] /
a1: +Call(caller = BCS{user}, callee = o.target, status = voice),
a2: +MailBox(from = myproduct, content = myproduct.VM.Mailbox.message)

Figure A.23: The feature module of VM

230

«SPL»
TelSoft

«feature»
CD

«output»
ID(caller: User)

User

 «ctrl»
Forwardee 1

service
1
user

«ctrl»
Call

status: {request, connected, voice}

caller
callee
0..3

BCS

CW

TelSoft

CD

«feature»
BCS

«input»
StartCall(target: User)
AcceptCall()
EndCall()

«output»
Busy()
Ring()

«feature»
CDB

«feature»
CW

«input»
ToggleHold() CDB

no c: Calls | c.caller = c.callee
Users = Users@pre

CFB

«feature»
CFB

 «ctrl»
Missed

cfb

 1
 user

CT

«feature»
CT

«input»
ToggleHoldCT()

 «ctrl»
Transfer 0..1

 ct
0..1
call

TWC

«feature»
TWC

«input»
ToggleHoldTWC()
LinkCalls()

«ctrl»
 Link0..1

twc
0..1
call

«ctrl»
«association»
ThreeWayCall

«role»
caller, 0..1

«role»
callee, 0..1

«role»
thirdParty, 0..1

«feature»
GR

«ctrl»
Call1

 «ctrl»
Member2

 «ctrl»
Member1

«ctrl»
Call2

User

0..1 callcall 0..1

0..1 grgr 0..1

gr

gr 1
user

 1
user

GR RBF

«feature»
RBF

 «ctrl»
Subscription

0..1
user

0..1
 rbf

TL

 «ctrl»
Caller0..1

user
0..1
 tl

«feature»
TL

«ctrl» PIN

«input»
MyPIN(PIN)

«output»
PINRequest()

TCS

«feature»
TCS

 «ctrl»
Screen

usertcs

«feature»
VM

«output»
Messages(content: VoiceMessage)

«ctrl»
VoiceMailUser

«ctrl»
VoiceMessage

 «ctrl»
MailBox

«ctrl»
UVM 1

vm message

1
user

 1
vm

User

VM

Figure A.24: The TelSoft world model as evolved by VM

state machine main

idle talking

t1: Call.status~(o) [o = BCS{callerCall} and o.status = voice] /
a1: be = +BillEntry(start = currDateTime(), end = null(), charge = null()),
a2: +Charge(billEntry = be, user = BCS{user}),
a3: +Chargeable(billEntry = be, call = o)

t2: Call-(o) [o = BCS{acceptedCall}@pre and o.caller = BCS{user}] /
a1: (o.Chargeable.billEntry)@pre.end = currDateTime(),
a2: (o.Chargeable.billEntry)@pre.charge = charge((o.Chargeable.billEntry)@pre)

Figure A.25: The feature module of Billing

231

«SPL»
TelSoft

«feature»
CD

«output»
ID(caller: User)

User

 «ctrl»
Forwardee 1

service
1
user

«ctrl»
Call

status: {request, connected, voice}

caller
callee
0..3

BCS

CW

TelSoft

CD

«feature»
BCS

«input»
StartCall(target: User)
AcceptCall()
EndCall()

«output»
Busy()
Ring()

«feature»
CDB

«feature»
CW

«input»
ToggleHold() CDB

no c: Calls | c.caller = c.callee
Users = Users@pre

CFB

«feature»
CFB

 «ctrl»
Missed

cfb

 1
 user

CT

«feature»
CT

«input»
ToggleHoldCT()

 «ctrl»
Transfer 0..1

 ct
0..1
call

TWC

«feature»
TWC

«input»
ToggleHoldTWC()
LinkCalls()

«ctrl»
 Link0..1

twc
0..1
call

«ctrl»
«association»
ThreeWayCall

«role»
caller, 0..1

«role»
callee, 0..1

«role»
thirdParty, 0..1

«feature»
GR

«ctrl»
Call1

 «ctrl»
Member2

 «ctrl»
Member1

«ctrl»
Call2

User

0..1 callcall 0..1

0..1 grgr 0..1

gr

gr 1
user

 1
user

GR RBF

«feature»
RBF

 «ctrl»
Subscription

0..1
user

0..1
 rbf

TL

 «ctrl»
Caller0..1

user
0..1
 tl

«feature»
TL

«ctrl» PIN

«input»
MyPIN(PIN)

«output»
PINRequest()

TCS

«feature»
TCS

 «ctrl»
Screen

usertcs

«feature»
VM

«output»
Messages(content: VoiceMessage)

«ctrl»
VoiceMailUser

«ctrl»
VoiceMessage

 «ctrl»
MailBox

«ctrl»
UVM 1

vm message

1
user

 1
vm

User

VM

Billing

«ctrl»
BillEntry

start
end
charge

 «ctrl»
Charge1

user

«feature»
Billing

 1
billEntry

Call

 «ctrl»
 Chargeable0..1

billEntry
0..1
call

Figure A.26: The TelSoft world model as evolved by Billing

Billing{main.t1}: /
$a1 > Billing{a2}: [one o.callee.Subscription.service.RC] +Charge(BillEntry = be, User = o.callee)

Figure A.27: The feature module of RC

232

«SPL»
TelSoft

«feature»
CD

«output»
ID(caller: User)

User

 «ctrl»
Forwardee 1

service
1
user

«ctrl»
Call

status: {request, connected, voice}

caller
callee
0..3

BCS

CW

TelSoft

CD

«feature»
BCS

«input»
StartCall(target: User)
AcceptCall()
EndCall()

«output»
Busy()
Ring()

«feature»
CDB

«feature»
CW

«input»
ToggleHold()

CDB

no c: Calls | c.caller = c.callee
Users = Users@pre CFB

«feature»
CFB

 «ctrl»
Missed

cfb

 1
 user

CT

«feature»
CT

«input»
ToggleHoldCT()

 «ctrl»
Transfer 0..1

 ct
0..1
call

TWC

«feature»
TWC

«input»
ToggleHoldTWC()
LinkCalls()

«ctrl»
 Link0..1

twc
0..1
call

«ctrl»
«association»
ThreeWayCall

«role»
caller, 0..1

«role»
callee, 0..1

«role»
thirdParty, 0..1

«feature»
GR

«ctrl»
Call1

 «ctrl»
Member2

 «ctrl»
Member1

«ctrl»
Call2

User

0..1 callcall 0..1

0..1 grgr 0..1

gr

gr 1
user

 1
user

GR RBF

«feature»
RBF

 «ctrl»
Subscription

0..1
user

0..1
 rbf

TL

 «ctrl»
Caller0..1

user
0..1
 tl

«feature»
TL

«ctrl» PIN

«input»
MyPIN(PIN)

«output»
PINRequest()

TCS

«feature»
TCS

 «ctrl»
Screen

usertcs

«feature»
VM

«output»
Messages(content: VoiceMessage)

«ctrl»
VoiceMailUser

«ctrl»
VoiceMessage

 «ctrl»
MailBox

«ctrl»
UVM 1

vm message

1
user

 1
vm

User

VM

Billing

«ctrl»
BillEntry

start
end
charge

 «ctrl»
Charge1

user

«feature»
Billing

 1
billEntry

Call

 «ctrl»
 Chargeable0..1

billEntry
0..1
call

RC

«feature»
RC

Figure A.28: The TelSoft world model as evolved by RC

Billing{main.talking}Billing{main.idle}

$t1: override(Billing{main.t2}) [one o.callee.Subscription.service.SB] /
a1: (o.Chargeable.billEntry)@pre.end = currDateTime(),
a2: (o.Chargeable.billEntry)@pre.charge = callerCharge((o.Chargeable.billEntry)@pre),
a3: be = +BillEntry(start = (o.Chargeable.billEntry)@pre.start, end = currDateTime(), charge = calleeCharge((o.Chargeable.billEntry)@pre)),
a4: +Charge(billEntry = be, user = o.callee),

Figure A.29: The feature module of SB

233

«SPL»
TelSoft

«feature»
CD

«output»
ID(caller: User)

User

 «ctrl»
Forwardee 1

service
1
user

«ctrl»
Call

status: {request, connected, voice}

caller
callee
0..3

BCS

CW

TelSoft

CD

«feature»
BCS

«input»
StartCall(target: User)
AcceptCall()
EndCall()

«output»
Busy()
Ring()

«feature»
CDB

«feature»
CW

«input»
ToggleHold()

CDB

no c: Calls | c.caller = c.callee
Users = Users@pre CFB

«feature»
CFB

 «ctrl»
Missed

cfb

 1
 user

CT

«feature»
CT

«input»
ToggleHoldCT()

 «ctrl»
Transfer 0..1

 ct
0..1
call

TWC

«feature»
TWC

«input»
ToggleHoldTWC()
LinkCalls()

«ctrl»
 Link0..1

twc
0..1
call

«ctrl»
«association»
ThreeWayCall

«role»
caller, 0..1

«role»
callee, 0..1

«role»
thirdParty, 0..1

«feature»
GR

«ctrl»
Call1

 «ctrl»
Member2

 «ctrl»
Member1

«ctrl»
Call2

User

0..1 callcall 0..1

0..1 grgr 0..1

gr

gr 1
user

 1
user

GR RBF

«feature»
RBF

 «ctrl»
Subscription

0..1
user

0..1
 rbf

TL

 «ctrl»
Caller0..1

user
0..1
 tl

«feature»
TL

«ctrl» PIN

«input»
MyPIN(PIN)

«output»
PINRequest()

TCS

«feature»
TCS

 «ctrl»
Screen

usertcs

«feature»
VM

«output»
Messages(content: VoiceMessage)

«ctrl»
VoiceMailUser

«ctrl»
VoiceMessage

 «ctrl»
MailBox

«ctrl»
UVM 1

vm message

1
user

 1
vm

User

VM

Billing

«ctrl»
BillEntry

start
end
charge

 «ctrl»
Charge1

user

«feature»
Billing

 1
billEntry

Call

 «ctrl»
 Chargeable0..1

billEntry
0..1
call

RC

«feature»
RC

«feature»
SB

SB

Figure A.30: The TelSoft world model as evolved by SB

A.2 Automotive Case Study

Figures A.31 to A.52 show, in order, the evolution steps of a FORML model of AutoSoft .

234

on

waitAccelerate

t3: Accelerate+(o) [o.to = myproduct] /
a1: car.acceleration := acceleration(car, o.inc)

off

waitSteer

t5: Steer+(o) [o.to = myproduct] /
a1: car.steerDirection := steerDirection(car,o.angle)

acceleration

steering

t1: IgniteOn+(o) [o.to = myproduct] /
a1: car.ignition := on

waitDecelerate

t4 > t3: Decelerate+(o) [o.to = myproduct] /
a1: car.acceleration := deceleration(car, o.dec)

deceleration

t2: IgniteOff+(o) [o.to = myproduct] /
a1: car.ignition := off

state machine main

let car = myproduct.Controls.car

Figure A.31: The feature module of BDS

«feature»
BDS

«input»
IgniteOn()
IgniteOff()
Steer(angle)
Accelerate(inc)
Decelerate(dec)

AutoSoftCar

ignition: {on, off}
steerDirection
velocity
acceleration

«SPL»
AutoSoft

BDS

AutoSoft

car

1
controller

AutoSoftCar = AutoSoftCars@pre

Controls

Figure A.32: The AutoSoft world model as evolved by BDS

235

disabled

disengaged

engaged

t3: SetCruiseSpeed+(o)
[o.to = myproduct and engageCnd(BDS{car})] /
a1: myproduct.CC.cruiseSpeed := BDS{car}.speed,
a2: myproduct.CC.goalAccel = 0

t4: Decelerate+(o) [o.to = myproduct]

t1: EnableCC+(o) [o.to = myproduct] t2: DisableCC+(o) [o.to = myproduct]

t5: [not engageCnd(BDS{car})]

inactiveactive

t8: Accelerate+(o)
[o.to = myproduct and driverOverride(BDS{car}, o.inc)]

t9: Accelerate+(o)
[o.to = myproduct and not driverOverride(BDS{car}, o.inc)]

enabled

main

main

BDS{main.on}

main

t6: [timeout()] /
a1: BDS{car}.accleration := accelerationCC(BDS{car}),
a2: myproduct.CC.goalAccel := accelerationCC(BDS{car})

t7: SetCruiseSpeed+(o) [o.to = myproduct] /
a1: myproduct.CC.cruiseSpeed := BDS{car}.speed

let active = inState(main.enabled.main.engaged.main.active)

strengthen transition BDS{main.t3} with s: not active or driverOverride(BDS{car}, o.inc)

Figure A.33: The feature module of CC

«feature»
BDS

«input»
IgniteOn()
IgniteOff()
Steer(angle)
Accelerate(inc)
Decelerate(dec)

AutoSoftCar

ignition: {on, off}
steerDirection
velocity
acceleration

«SPL»
AutoSoft

BDS

AutoSoft

car

1
controller

AutoSoftCar = AutoSoftCars@pre

Controls

CC

«feature»
CC

«ctrl» cruiseSpeed
«ctrl» goalAccel

«input»
EnableCC()
DisableCC()
SetCruiseSpeed()

Figure A.34: The AutoSoft world model as evolved by CC

236

CC{main.enabled.main.engaged}

t3: SetHeadway+(o) [o.to = myproduct] / a1: product.HC.headway := o.dist

main

active

t2: override(CC{t6}) [slowRoadObjectAhead(BDS{car})] /
a1: BDS{car}.acceleration := accelerationHC(BDS{car}),
a2: myproduct.CC.goalAccel := accelerationHC(BDS{car})

inactive

t1: SetHeadway+(o) [o.to = product] /
a1: myproduct.HC.headway := o.dist

Figure A.35: The feature module of HC

237

«feature»
BDS

«input»
IgniteOn()
IgniteOff()
Steer(angle)
Accelerate(inc)
Decelerate(dec)

AutoSoftCar

ignition: {on, off}
steerDirection

«SPL»
AutoSoft

BDS

AutoSoft

car

1
controller

AutoSoftCar = AutoSoftCars@pre

Controls

CC

«feature»
CC

«ctrl» cruiseSpeed
«ctrl» goalAccel

«input»
EnableCC()
DisableCC()
SetCruiseSpeed()

«feature»
HC

«ctrl» headway

«input»
SetHeadway(dist) HC

RoadObject

velocity
acceleration

behind
0..1

ahead
0..1

Following

distance

Figure A.36: The AutoSoft world model as evolved by HC

disengaged engaged

t3: AutoSoftCar.steerDirection~(o) [o = BDS{car} and alertConditions(BDS{car})] /
a1: +LCA(from = myproduct)

t1: EngageLCA+(o) [o.to = myproduct]

t2: DisengageLCA+(o) [o.to = myproduct]

BDS{main.on}

main

Figure A.37: The feature module of LCA

238

«feature»
BDS

«input»
IgniteOn()
IgniteOff()
Steer(angle)
Accelerate(inc)
Decelerate(dec)

AutoSoftCar

ignition: {on, off}
steerDirection

«SPL»
AutoSoft

BDS

AutoSoft

car

1
controller

AutoSoftCar = AutoSoftCars@pre

Controls

CC

«feature»
CC

«ctrl» cruiseSpeed
«ctrl» goalAccel

«input»
EnableCC()
DisableCC()
SetCruiseSpeed()

«feature»
HC

«ctrl» headway

«input»
SetHeadway(dist)

HC

RoadObject

velocity
acceleration

MapObject

shape
position

LaneRoadSegment

road

lane
1..*

«feature»
LCA

«input»
EngageLCA()
DisengageLCA()

«output»
LCA()

LCA

Figure A.38: The AutoSoft world model as evolved by LCA

CC{main.enabled}

active

t2: [alertConditionsFCA(BDS{car})] /
a1: +StartFCA(from = myproduct, level = product.FCA.alertLevel)

inactive

t1: SetFCALevel+(o) [o.to = myproduct] /
a1: myproduct.FCA.alertLevel := o.level

alertOff alertOn
t3: [not alertConditionsFCA(BDS{car})] /
a1: +StopFCA(from = myproduct, level = myproduct.FCA.alertLevel)

setFCALevel

waitSetAlertLevel

t1: SetFCALevel+(o) [o.to = myproduct] / a1: myproduct.FCA.alertLevel := o.value

alert

main

Figure A.39: The feature module of FCA

239

«feature»
BDS

«input»
IgniteOn()
IgniteOff()
Steer(angle)
Accelerate(inc)
Decelerate(dec)

AutoSoftCar

ignition: {on, off}
steerDirection

«SPL»
AutoSoft

BDS

AutoSoft

car

1
controller

AutoSoftCar = AutoSoftCars@pre

Controls

CC

«feature»
CC

«ctrl» cruiseSpeed
«ctrl» goalAccel

«input»
EnableCC()
DisableCC()
SetCruiseSpeed()

«feature»
HC

«ctrl» headway

«input»
SetHeadway(dist)

HC

RoadObject

velocity
acceleration

MapObject

shape
position

LaneRoadSegment

road

lane
1..*

«feature»
LCA

«input»
EngageLCA()
DisengageLCA()

«output»
LCA()

LCA

«feature»
FCA

«ctrl» alertLevel

«input»
SetFCALevel(level)

«output»
StartFCA(level)
StopFCA(level)

FCA

Figure A.40: The AutoSoft world model as evolved by FCA

240

let driver = BDS{car}.Drives.driver
let personalHeadway = driver.PersonalHeadway
let regDrivers = myproduct.HP.PersonalHeadway.driver

HC{t3}: /
a1: [one personalHeadway] personalHeadway.distance := o.dist,
a2: [no personalHeadway] +PersonalHeadway(hp = myproduct.HP, driver = driver, distance = o.dist)

HC{inactive} HC{active}

t1: [one personalHeadway] /
a1: myproduct.HC.headway := personalHeadway.distance

HC{main}

Figure A.41: The feature module of HP

241

«feature»
BDS

«input»
IgniteOn()
IgniteOff()
Steer(angle)
Accelerate(inc)
Decelerate(dec)

AutoSoftCar

ignition: {on, off}
steerDirection

«SPL»
AutoSoft

BDS

AutoSoft

car

1
controller

AutoSoftCar = AutoSoftCars@pre

Controls CC

«feature»
CC

«ctrl» cruiseSpeed
«ctrl» goalAccel

«input»
EnableCC()
DisableCC()
SetCruiseSpeed()

«feature»
HC

«ctrl» headway

«input»
SetHeadway(dist)

HC

RoadObject

velocity
acceleration

MapObject

shape
position

LaneRoadSegment

road

lane
1..*

«feature»
LCA

«input»
EngageLCA()
DisengageLCA()

«output»
LCA()

LCA

«feature»
FCA

«ctrl» alertLevel

«input»
SetFCALevel(level)

«output»
StartFCA(level)
StopFCA(level)

FCA

HP

«feature»
HP

«ctrl»
PersonalHeadway

distance

driver

driver
1

car
1

Drives
Person0..1

hp

Figure A.42: The AutoSoft world model as evolved by HP

t1: EngageSLC+(o) [o.to = myproduct]

main

CC{main.enabled.main.engaged}

inactive activet2: DisengageSLC+(o) [o.to = myproduct]

t3: override(CC{t6}) [speedLimitViolation(BDS{car})] /
a1: BDS{car}.acceleration := accelerationSLC(BDS{car}),
a2: myproduct.CC.goalAccel := accelerationSLC(BDS{car})

242

Figure A.43: The feature module of SLC

«feature»
BDS

«input»
IgniteOn()
IgniteOff()
Steer(angle)
Accelerate(inc)
Decelerate(dec)

AutoSoftCar

ignition: {on, off}
steerDirection

«SPL»
AutoSoft

BDS

AutoSoft

car

1
controller

AutoSoftCar = AutoSoftCars@pre

Controls CC

«feature»
CC

«ctrl» cruiseSpeed
«ctrl» goalAccel

«input»
EnableCC()
DisableCC()
SetCruiseSpeed()

«feature»
HC

«ctrl» headway

«input»
SetHeadway(dist)

HC

RoadObject

velocity
acceleration

MapObject

shape
position

LaneRoadSegment

speedLimit road

lane
1..*

«feature»
LCA

«input»
EngageLCA()
DisengageLCA()

«output»
LCA()

LCA

«feature»
FCA

«ctrl» alertLevel

«input»
SetFCALevel(level)

«output»
StartFCA(level)
StopFCA(level)

FCA

HP

«feature»
HP

«ctrl»
PersonalHeadway

distance

driver

driver
1

car
1

Drives
Person0..1

hp

«feature»
SLC

«input»
EngageSLC()
DisengageSLC()

SLC

Figure A.44: The AutoSoft world model as evolved by SLC

243

CC{main.enabled.main.engaged}

main

disengaged

engaged

t1: EngageLCC+(o)
[o.to = myproduct and not driverOverrideLCC(BDS{car})]

t2: DisengageLCC+(o) [o.to = myproduct]

active inactive

t5: [timeoutLCC()] / a1: BDS{car}.steerDirection := steerDirection(BDS{car})

t3: Steer+(o)
[o.to = myproduct and driverOverrideLCC(BDS{car}, o.angle)]

t4: Steer+(o)
[o.to = myproduct and driverOverrideLCC(BDS{car}, o.angle)]

centerCar

BDS{main.t5}: / a1: myproduct.LCC.steerAngle = o.angle

t6: override(CC{t6})
[inState(main.engaged.centerCar.active) and safeSpeedExceeded(BDS{car})] /
a1: BDS{car}.acceleration := accelerationLCC(BDS{car}),
a2: myproduct.CC.goalAccel := accelerationLCC(BDS{car})

idle

overrideCC

Figure A.45: The feature module of LCC

244

«feature»
BDS

«input»
IgniteOn()
IgniteOff()
Steer(angle)
Accelerate(inc)
Decelerate(dec)

AutoSoftCar

ignition: {on, off}
steerDirection

«SPL»
AutoSoft

BDS

AutoSoft

car

1
controller

AutoSoftCar = AutoSoftCars@pre

Controls

CC

«feature»
CC

«ctrl» cruiseSpeed
«ctrl» goalAccel

«input»
EnableCC()
DisableCC()
SetCruiseSpeed()

«feature»
HC

«ctrl» headway

«input»
SetHeadway(dist)

HC

RoadObject

velocity
acceleration

MapObject

shape
position

LaneRoadSegment

speedLimit road

lane
1..*

«feature»
LCA

«input»
EngageLCA()
DisengageLCA()

«output»
LCA()

LCA

«feature»
FCA

«ctrl» alertLevel

«input»
SetFCALevel(level)

«output»
StartFCA(level)
StopFCA(level)

FCA

HP

«feature»
HP

«ctrl»
PersonalHeadway

distance

driver

driver
1

car
1

Drives
Person0..1

hp

«feature»
SLC

«input»
EngageSLC()
DisengageSLC()

SLC LCC

«feature»
LCC

«ctrl» steerAngle

«input»
EngageLCC()
DisengageLCC()

Figure A.46: The AutoSoft world model as evolved by LCC

245

LCC{active}

LCC{inactive}

engaged
t1: LX+(o)
[o.to = myproduct and not onLane(BDS{car}, o.dest)] /
a1: product.LXC.destLane := o.dest

t2: DisengageLXC+(o) [o.to = myproduct]

t3: LX+(o)
[o.to = myproduct and onLane(BDS{car}, o.dest)]

t9: Steer+(o)
[o.to = myproduct and driverOverrideLCC(BDS{car}, o.angle)]

assessSafety
t4: [not safeLX(BDS{car})]

active

t7: [timeoutLXC2()] /
a1: BDS{car}.steerDirection := steerDirectionLXC(BDS{car})

t5: [safeLCC(BDS{car}) and not safeLX(BDS{car})]
t10: [not safeLX(BDS{car}) and not safeLCC(BDS{car})] /
a1: +TakeOverSteering(from = myproduct)

t6: [onLane(BDS{car}, myproduct.LXC.destLane)]

waitSteer

t8: [timeoutLXC1()]

changeLane

t12: override(CC{t6})
[inState(engaged.changeLane.active) and safeSpeedExceeded(BDS{car})] /
a1: BDS{car}.acceleration := accelerationLXC(BDS{car}),
a2: myproduct.CC.goalAccel := accelerationLXC(BDS{car})

idle

overrideCC

let isActive = inState(engaged.changeLane.active)

weaken transition FCA{main.t2} with w: isActive and alertConditionsLXC(BDS{car})
strengthen transition FCA{main.t3} with s: not isActive or not alertConditionsLXC(BDS{car})

LCA{disengaged} LCA{engaged}

t13: [isActive]

t14: [not isActive]

LCC{main.engaged.centerCar}

LCA{main}

t11: Steer+(o)
[o.to = myproduct and driverOverrideLCC(BDS{car}, o.angle)]

Figure A.47: The feature module of LXC

246

«feature»
BDS

«input»
IgniteOn()
IgniteOff()
Steer(angle)
Accelerate(inc)
Decelerate(dec)

AutoSoftCar

ignition: {on, off}
steerDirection

«SPL»
AutoSoft

BDS

AutoSoft

car

1
controller

AutoSoftCar = AutoSoftCars@pre

Controls

CC

«feature»
CC

«ctrl» cruiseSpeed
«ctrl» goalAccel

«input»
EnableCC()
DisableCC()
SetCruiseSpeed()

«feature»
HC

«ctrl» headway

«input»
SetHeadway(dist)

HC

RoadObject

velocity
acceleration

MapObject

shape
position

LaneRoadSegment

speedLimit road

lane
1..*

«feature»
LCA

«input»
EngageLCA()
DisengageLCA()

«output»
LCA()

LCA

«feature»
FCA

«ctrl» alertLevel

«input»
SetFCALevel(level)

«output»
StartFCA(level)
StopFCA(level)

FCA

HP

«feature»
HP

«ctrl»
PersonalHeadway

distance

driver

driver
1

car
1

Drives
Person0..1

hp

«feature»
SLC

«input»
EngageSLC()
DisengageSLC()

SLC LCC

«feature»
LCC

«ctrl» steerAngle

«input»
EngageLCC()
DisengageLCC()

LXC

«feature»
LXC

«ctrl» destLane: Lane

«input»
LX(dest: Lane)
DisengageLXC()

«output»
TakeOverSteering()

Figure A.48: The AutoSoft world model as evolved by LXC

247

idle

LXC{engaged.changeLane.active}

t1: Lane.shape~(o) [o = hostLane(BDS{car})] /
a1: +RCA(from = myproduct, type = laneChangeType(hostLane(BDS{car})))

idle

main

main

LCC{main.engaged.centerCar.active}

t1: Lane.shape~(o) [o = hostLane(BDS{car})] /
a1: +RCA(from = myproduct, type = laneChangeType(hostLane(BDS{car})))

t2: Lane.shape~(o) [o = myproduct.LCC.destLane] /
a1: +RCA(from = myproduct, type = laneChangeType(myproduct.LCC.destLane))

Figure A.49: The feature module of RCA

248

«feature»
BDS

«input»
IgniteOn()
IgniteOff()
Steer(angle)
Accelerate(inc)
Decelerate(dec)

AutoSoftCar

ignition: {on, off}
steerDirection

«SPL»
AutoSoft

BDS

AutoSoft

car

1
controller

AutoSoftCar = AutoSoftCars@pre

Controls

CC

«feature»
CC

«ctrl» cruiseSpeed
«ctrl» goalAccel

«input»
EnableCC()
DisableCC()
SetCruiseSpeed()

«feature»
HC

«ctrl» headway

«input»
SetHeadway(dist)

HC

RoadObject

velocity
acceleration

MapObject

shape
position

LaneRoadSegment

speedLimit road

lane
1..*

«feature»
LCA

«input»
EngageLCA()
DisengageLCA()

«output»
LCA()

LCA

«feature»
FCA

«ctrl» alertLevel

«input»
SetFCALevel(level)

«output»
StartFCA(level)
StopFCA(level)

FCA

HP

«feature»
HP

«ctrl»
PersonalHeadway

distance

driver

driver
1

car
1

Drives
Person0..1

hp

«feature»
SLC

«input»
EngageSLC()
DisengageSLC()

SLC LCC

«feature»
LCC

«ctrl» steerAngle

«input»
EngageLCC()
DisengageLCC()

LXC

«feature»
LXC

«ctrl» destLane: Lane

«input»
LX(dest: Lane)
DisengageLXC()

«output»
TakeOverSteering()

RCA

«feature»
RCA

«output»
RCA(type)

Figure A.50: The AutoSoft world model as evolved by RCA

249

LCC{main.engaged}

main

attentive inattentivet3: [driver.status = attentive]

t2: [driver.status = unattentive] /
a1: +DMSAlert(from = myproduct)

t1: [timeoutDMS()] / a1: +DMSAlert(from = myproduct)

let driver = BDS{car}.Drives.driver

Figure A.51: The feature module of DMS

«feature»
BDS

«input»
IgniteOn()
IgniteOff()
Steer(angle)
Accelerate(inc)
Decelerate(dec)

AutoSoftCar

ignition: {on, off}
steerDirection

«SPL»
AutoSoft

BDS

AutoSoft

car

1
controller

AutoSoftCar = AutoSoftCars@pre

Controls

CC

«feature»
CC

«ctrl» cruiseSpeed
«ctrl» goalAccel

«input»
EnableCC()
DisableCC()
SetCruiseSpeed()

«feature»
HC

«ctrl» headway

«input»
SetHeadway(dist)

HC

RoadObject

velocity
acceleration

MapObject

shape
position

LaneRoadSegment

speedLimit road

lane
1..*

«feature»
LCA

«input»
EngageLCA()
DisengageLCA()

«output»
LCA()

LCA

«feature»
FCA

«ctrl» alertLevel

«input»
SetFCALevel(level)

«output»
StartFCA(level)
StopFCA(level)

FCA

HP

«feature»
HP

«ctrl»
PersonalHeadway

distance

driver

driver
1

car
1

Drives
Person

status = {attentive, unattentive}

0..1
hp

«feature»
SLC

«input»
EngageSLC()
DisengageSLC()

SLC LCC

«feature»
LCC

«ctrl» steerAngle

«input»
EngageLCC()
DisengageLCC()

LXC

«feature»
LXC

«ctrl» destLane: Lane

«input»
LX(dest: Lane)
DisengageLXC()

«output»
TakeOverSteering()

RCA

«feature»
RCA

«output»
RCA(type)

«feature»
DMS

«output»
DMSAlert()

DMS

Figure A.52: The AutoSoft world model as evolved by DMS

250

References

[1] S. Apel, F. Janda, S. Trujillo, and C. Kästner. Model superimposition in software
product lines. In ICMT, pages 4�19, 2009.

[2] S. Apel and C. Kästner. An overview of feature-oriented software development. JOT,
8 (5):49�84, 2009.

[3] S. Apel, T. Leich, M. Rosenmï¿½ller, and G. Saake. FeatureC++: On the symbiosis
of feature-oriented and aspect-oriented programming. In GPCE, pages 125�140, 2005.

[4] S. Apel, T. Leich, and G. Saake. Aspectual feature modules. TSE, 34 (2):162�180,
2008.

[5] Sven Apel, Christian Kästner, and Christian Lengauer. Featurehouse: Language-
independent, automated software composition. In ICSE, pages 221�231, 2009.

[6] Sven Apel, Christian Lengauer, Don Batory, Bernhard Möller, and Christian Kästner.
An algebra for feature-oriented software development. Technical Report MIP-0706,
Department of Informatics and Mathematics, University of Passau, 2007.

[7] Sven Apel, Hendrik Speidel, Philipp Wendler, Alexander von Rhein, and Dirk Beyer.
Detection of feature interactions using feature-aware veri�cation. In ASE, pages 372�
375, 2011.

[8] Patrizia Asirelli, Maurice H. Ter Beek, Alessandro Fantechi, and Stefania Gnesi. A
logical framework to deal with variability. In IFM, pages 43�58, 2010.

[9] Patrizia Asirelli, Maurice H. ter Beek, Stefania Gnesi, and Alessandro Fantechi. For-
mal description of variability in product families. In SPLC, pages 130�139, 2011.

[10] B. W. Bates, Jean-Michel Bruel, R. B. France, and M. M. Larrondo-petrie. Formalizing
fusion object-oriented analysis models. FMOODS, pages 222�233, 1996.

251

[11] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-wise re�nement. TSE, 30
(6):355�371, 2004.

[12] R.K. Berman and J.H. Brewster. Perspectives on the AIN architecture. IEEE Com-
munications Magazine, 30 (2):27�32.

[13] A. Bertolino, A. Fantechi, S. Gnesi, G. Lami, and A. Maccari. Use case description of
requirements for product lines. In REPL, pages 12�18, 2002.

[14] Armin Biere. Bounded model checking. In Handbook of Satis�ability, pages 457�481.
2009.

[15] T. F. Bowen, F. S. Dworack, C. H. Chow, N. Gri�eth, G. E. Herman, and Lin Y-
J. The feature interaction problem in telecommunication systems. In SETSS, pages
59�62, 1989.

[16] K. H. Braithwaite and J. M. Atlee. Towards automated detection of feature inter-
actions. In Feature Interactions in Telecommunications Systems, pages 36�59. IOS
Press, 1994.

[17] G. Bruns. Foundations for features. In ICFI, pages 3�11, 2005.

[18] M Calder, M. Kolberg, E. H. Magill, and S. Rei�-Marganiec. Feature interaction: a
critical review and considered forecast. Computer Networks, 41 (1):115�141, 2003.

[19] M. Calder and A. Miller. Using SPIN for feature interaction analysis - a case study.
In SPIN, pages 143�162, 2001.

[20] E. J. Cameron and H. Velthuijsen. Feature interactions in telecommunications sys-
tems. IEEE Communications Magazine, 31 (8):18�23, 1993.

[21] E. Jane Cameron, Nancy D. Gri�eth, Yow-Jian Lin Margaret E. Nilson, Yow jian Lin,
Margaret E. Nilson, William K. Schnure, and Hugo Velthuijsen. A feature interaction
benchmark for IN and beyond. In IEEE Communications Magazine, volume 31 (3),
pages 64�69, 1993.

[22] G. Chastek, P. Donohoe, K. C. Kang, and S. Thiel. Product Line Analysis: A Prac-
tical Introduction. Technical Report CMU/SEI-2001-TR-001, Software Engineering
Institute, Carnegie Mellon University, 2001.

252

[23] A. Classen, P. Heymans, P. Schobbens, A. Legay, and J. Raskin. Model checking lots
of systems: e�cient veri�cation of temporal properties in software product lines. In
ICSE, pages 335�344, 2010.

[24] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and Axel Legay. Symbolic
model checking of software product lines. In ICSE, pages 321�330, 2011.

[25] D. Coleman, P. Arnold, S. Bodo�, C. Dollin, H. Gilchrist, F. Hayes, and P. Jeremaes.
Object-Oriented Development: The Fusion Method. Prentice Hall, 1994.

[26] P. Combes and S. Pickin. Formalisation of a user view of network and services for
feature interaction detection. In Feature Interactions in Telecommunications Systems,
pages 120�135, 1994.

[27] CVL Submission Team. Common variability language (CVL), OMG re-
vised submission. http://www.omgwiki.org/variability/lib/exe/fetch.php?id=
start&cache=cache&media=cvl-revised-submission.pdf, 2012.

[28] K. Czarnecki and M. Antkiewicz. Mapping features to models: A template approach
based on superimposed variants. In GPCE, pages 422�437, 2005.

[29] K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and Ap-
plications. Addison-Wesley Professional, 2000.

[30] Shahram Esmaeilsabzali, Nancy A. Day, Joanne M. Atlee, and Jianwei Niu. Decon-
structing the semantics of big-step modelling languages. REJ, pages 235�265, 2010.

[31] Fathiyeh Faghih and Nancy A. Day. Mapping big-step modelling languages to SMV.
Technical Report CS-2011-29, David R. Cheriton School of Computer Science, Uni-
versity of Waterloo, 2011.

[32] Alessandro Fantechi and Stefania Gnesi. A behavioural model for product families.
In ESEC-FSE, pages 521�524, 2007.

[33] Alessandro Fantechi and Stefania Gnesi. Formal modeling for product families engi-
neering. In SPLC, pages 193�202, 2008.

[34] A. P. Felty and K. S. Namjoshi. Feature speci�cation and automatic con�ict detection.
In Feature interactions in telecommunications and software systems VI, pages 179�192,
2000.

253

http://www.omgwiki.org/variability/lib/exe/fetch.php?id=start&cache=cache&media=cvl-revised-submission.pdf
http://www.omgwiki.org/variability/lib/exe/fetch.php?id=start&cache=cache&media=cvl-revised-submission.pdf

[35] Dario Fischbein, Sebastian Uchitel, and Victor Braberman. A foundation for be-
havioural conformance in software product line architectures. In ROSATEA workshop
in ISSTA, pages 39�48, 2006.

[36] William B. Frakes and Kyo Kang. Software reuse research: Status and future. TSE,
31 (7):529�536, 2005.

[37] A. Gammelgaard and J.E. Kristensen. Interaction detection, a logical approach. In
Feature Interactions in Telecommunications Systems, pages 178�196, 1994.

[38] Martin Glinz, Stefan Berner, and Stefan Joos. Object-oriented modeling with adora.
Inf. Syst., 27(6):425�444, 2002.

[39] Stefania Gnesi and Marinella Petrocchi. Towards an executable algebra for product
lines. In SPLC, pages 66�73, 2012.

[40] M.L. Griss, J. Favaro, and M. d' Alessandro. Integrating feature modeling with the
RSEB. In ICSR, pages 76�85, 1998.

[41] Alexander Gruler, Martin Leucker, and Kathrin D. Scheidemann. Modeling and model
checking software product lines. In FMOODS, pages 113�131, 2008.

[42] R. J. Hall. Feature combination and interaction detection via foreground/background
models. In FIW, pages 449�469, 1998.

[43] D. Harel, A. Pnueli, J. P. Schmidt, and R. Sherman. On the formal semantics of
statecharts. In LICS, pages 54�64, 1987.

[44] Jonathan D. Hay and Joanne M. Atlee. Composing features and resolving interactions.
In FSE, pages 110�119, 2000.

[45] F. Heidenreich, J. Kopcsek, and C. Wende. FeatureMapper: Mapping Features to
Models. In Companion Proceedings of ICSE, pages 943�944, 2008.

[46] C. L. Heitmeyer and R. D. Je�ords. The SCR tabular notation: A formal
foundation. Technical Report NLR/MR/5546-03-8678, Naval Research Lab, 2003.
NLR/MR/5546-03-8678.

[47] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Reasoning
about Systems. Cambridge University Press, 2004.

254

[48] D. Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT Press,
2006.

[49] Michael Jackson. Problem Frames: Analysing and Structuring Software Development
Problems. Addison-Wesley, 2001.

[50] Michael Jackson and Pamela Zave. Deriving speci�cations from requirements: an
example. In ICSE, pages 15�24, 1995.

[51] I. Jacobson, M. Griss, and P. Jonsson. Software Reuse: Architecture, Process, and
Organization for Business Success. Addison-Wesley-Longman, 1997.

[52] Alma L. Juarez Dominguez. Detection of feature interactions in automotive active
safety features. Ph.D. Thesis, 2012.

[53] Alma L. Juarez-Dominguez, Nancy A. Day, and Je�rey J. Joyce. Modelling feature
interactions in the automotive domain. In MiSE, pages 45�50, 2008.

[54] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
oriented domain analysis (FODA) feasibility study. Technical Report CMU/SEI-90-
TR-21, Carnegie-Mellon University Software Engineering Institute, 1990.

[55] C. Kästner and S. Apel. Integrating compositional and annotative approaches for
product line engineering. In McGPLE workshop of GPCE, pages 35�40, 2008.

[56] A. Khoumsi. Detection and resolution of interactions between services of telephone
networks. In Feature Interactions in Telecommunication Network IV, 1997.

[57] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An
overview of AspectJ. In ECOOP, pages 327�353, 2001.

[58] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Ir-
win. Aspect-oriented programming. European Conference on Object-Oriented Pro-
gramming, pages 220�242, 1997.

[59] M. Kolberg, E. H. Magill, D. Marples, and S. Rei�. Second feature interaction contest.
FIW, pages 293�310, 2000.

[60] M. Kuhlemann, D. Batory, and C. Kästner. Safe composition of non-monotonic fea-
tures. pages 177�186, 2009.

255

[61] R. C. Laney, T. T. Tun, M. Jackson, and B. Nuseibeh. Composing features by man-
aging inconsistent requirements. In ICFI, pages 129�144, 2007.

[62] C. Larman. Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and the Uni�ed Process (3rd Edition). Prentice Hall, 2005.

[63] Kim Guldstrand Larsen and Bent Thomsen. A modal process logic. In LICS, pages
203�210, 1988.

[64] Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems - A Cyber-
Physical Systems Approach. Lee and Seshia, 1 edition, 2010.

[65] K. Lee, Kang. K. C., S. Kim, and Lee. J. Feature-oriented engineering of PBX software.
APSEC, pages 394�403, 1999.

[66] J. Liu, D. Batory, and S. Nedunuri. Modeling interactions in feature oriented software
designs. In FIW, pages 178�197, 2005.

[67] Malte Lochau, Ina Schaefer, Jochen Kamischke, and Sascha Lity. Incremental model-
based testing of delta-oriented software product lines. In TAP, pages 67�82, 2012.

[68] John McCarthy and Patrick J. Hayes. Some philosophical problems from the stand-
point of arti�cial intelligence. In Machine Intelligence 4, pages 463�502. 1969.

[69] Silvio Meier, Tobias Reinhard, Christian Seybold, and Martin Glinz. Aspect-oriented
modeling with integrated object models. In Modellierung, volume 82 of LNI, pages
129�144, 2006.

[70] A. Nhlabatsi, R. Laney, and B. Nuseibeh. Feature interaction as a context sharing
problem. In ICFI, pages 133�148, 2009.

[71] OMG. Uni�ed Modelling Language (UML) Speci�cation, Version 2.0, 2005.

[72] OMG. Meta Object Facility (MOF) 2.0 Core Speci�cation, 2006.

[73] OMG. Object Constraint Language (OCL) 2.0 Speci�cation, 2006.

[74] David Park. Concurrency and automata on in�nite sequences. In Theoretical Com-
puter Science, pages 167�183, 1981.

[75] S. Park, M. Kim, and V. Sugumaran. A scenario, goal and feature-oriented domain
analysis approach for developing software product lines. IMDS, 104 (4):296�308, 2004.

256

[76] David L. Parnas. Functional documents for computer systems. Science of Computer
Programming, 25 (1):41�61, 1995.

[77] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag New York,
Inc., 2005.

[78] C. Prehofer. Feature-oriented programming: A fresh look at objects. In ECOOP,
pages 419�443, 1997.

[79] M. Rosenmüller, N. Siegmund, G. Saake, and S. Apel. Code generation to support
static and dynamic composition of software product lines. In GPCE, pages 3�12, 2008.

[80] Pourya Shaker and Joanne M. Atlee. Behaviour interactions among product-line fea-
tures (submitted to Modularity), 2013.

[81] Pourya Shaker, Joanne M. Atlee, and Shige Wang. A feature-oriented requirements
modelling language. In RE, pages 151�160, 2012.

[82] Peter Pin shan Chen. The entity-relationship model: Toward a uni�ed view of data.
ACM Transactions on Database Systems, 1:9�36, 1976.

[83] Reinhard Stoiber, Silvio Meier, and Martin Glinz. Visualizing product line domain
variability by aspect-oriented modeling. REV, 0:8�13, 2007.

[84] Ali Taleghani and Joanne M. Atlee. Semantic variations among uml statemachines.
In MoDELS, pages 245�259, 2006.

[85] Maurice H. ter Beek, Stefania Gnesi, Carlo Montangero, and Laura Semini. Detecting
policy con�icts by model checking uml state machines. In ICFI, pages 59�74, 2009.

[86] Maurice H. ter Beek, Franco Mazzanti, and Aldi Sulova. VMC: A tool for product
variability analysis. In FM, pages 450�454, 2012.

[87] M. Thomas. Modelling and analysing user views of telecommunications services. In
Feature Interactions in Telecommunications Systems, pages 168�182, 1997.

[88] S. Trujillo, D. Batory, and O. Diaz. Feature oriented model driven development:
A case study for portlets. International Conference on Software Engineering, pages
44�53, 2007.

257

[89] Carlton Reid Turner, Alfonso Fuggetta, Luigi Lavazza, and Alexander L. Wolf. A
conceptual basis for feature engineering. JSS, 49(1):3�15, 1999.

[90] Kenneth J. Turner, Stephan Rei�-Marganiec, Lynne Blair, Jianxiong Pang, Tom Gray,
Peter Perry, and Joe Ireland. Policy support for call control. CSI, pages 635�649, 2006.

[91] Axel van Lamsweerde. Requirements Engineering: From System Goals to UML Models
to Software Speci�cations. Wiley, 2009.

[92] H. Velthuijsen. Issues of non-monotonicity in feature-interaction detection. In FIW,
pages 31�42, 1995.

[93] P. Zave. Requirements for evolving systems: a telecommunications perspective. In
RE, pages 2�9, 2001.

[94] P. Zave and M. Jackson. A component-based approach to telecommunication software.
IEEE Software, 15 (5):70�78, 1998.

258

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background
	Feature-Oriented Modelling of Product-Line Requirements
	Feature Interactions in Product-Line Requirements
	Thesis Overview
	FORML
	Feature Interactions in FORML

	Chapter Summary

	Related Work
	Requirements Modelling
	Software-Engineering Modelling Languages
	Multi-View Requirements Modelling Languages
	Discussion

	Feature-Oriented Artifacts
	Compositional Approaches
	Feature-Oriented Programming
	AHEAD-Based Approaches
	Feature-Oriented ADORA
	FOAs used for Feature-Interaction Management
	Delta-Oriented Programming

	Structural-Annotation Approaches
	Variation-Mechanism Approaches
	Discussion

	Feature-Interaction Taxonomies
	Discussion

	FORML
	Running Examples
	TelSoft
	AutoSoft

	World Model
	Entities, Associations, and Compositions
	SPL, Feature, and Message Concepts
	Feature Model
	World States
	World Behaviours
	World-Model Constraints
	Comparison with UML Class Diagrams

	Expression Language
	Set Expressions
	Integer Expressions
	Predicates
	Undefined Set and Predicate Expressions
	Parenthesized Expressions
	Macros
	@pre
	Precedence
	Comparison with Alloy and OCL

	Behaviour Model
	FORML State Machines
	States
	Transitions
	Actions
	Referencing Machine Elements

	Simple Big Step
	Updating the world state
	Updating a machine's configuration
	Simplifying Assumptions

	Compound Big Step
	Big step termination
	@curri expressions
	Updating the world state

	Preemptive Transitions and Actions
	Preemptive Transitions
	Preemptive Actions

	Comparison with UML State Machines
	State-Machine Fragments
	Modelling the Addition of Requirements to Existing Features
	Modelling Intended Interactions
	Modelling Retrospective Intended Interactions
	Modelling Enhancements of Enhancements
	Examples

	Feature Composition
	Superimposition
	FSTs of FORML Feature Modules
	Merge Operation

	Simple Behaviour Model Semantics
	Semantic State-Transition System
	Semantic States
	Initial Semantic States

	Semantics of Behaviour-Model Expressions
	General Expressions
	Trigger expressions
	WCAs

	Semantic Transitions
	Computing the Label
	Computing the Destination State

	Evaluation
	Examining FORML's Design
	Case Studies
	The Domains
	Evaluation of Expressiveness
	Evaluation of Ease of Evolution
	Threats to Validity

	Chapter Summary

	Feature Interactions in FORML
	Nondeterminism Interactions
	Formal Definition

	Conflict Interactions
	Formal Definition

	Modification Interactions
	Formal Definition
	Distinguishing Intended Interactions
	Revised Modification Interactions

	Special Cases
	Looping Interactions
	Deadlock Interactions

	Chapter Summary

	Conclusion and Future Work
	Summary of Thesis and Contributions
	FORML
	Contributions

	Feature-Interaction Taxonomy
	Contributions

	Future Work
	More Validation
	Extending FORML
	Feature-Interaction Analyses
	Tool Support

	APPENDICES
	Case-Study Models
	Telephony Case Study
	Automotive Case Study

	References

