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Abstract

This dissertation introduces new methodologies for the analysis of neural spike trains.

Biological properties of the nervous system, and how they are reflected in neural data,

can motivate specific analytic tools. Some of these biological aspects motivate mul-

tiscale frameworks, which allow for simultaneous modelling of the local and global

behaviour of neurons. Chapter 1 provides the preliminary background on the biology

of the nervous system and details the concept of information and randomness in the

analysis of the neural spike trains. It also provides the reader with a thorough litera-

ture review on the current statistical models in the analysis of neural spike trains. The

material presented in the next six chapters (2-7) have been the focus of three papers,

which have either already been published or are being prepared for publication.

It is demonstrated in Chapters 2 and 3 that the multiscale complexity penalized like-

lihood method, introduced in Kolaczyk and Nowak (2004), is a powerful model in the

simultaneous modelling of spike trains with biological properties from different time

scales. To detect the periodic spiking activities of neurons, two periodic models from

the literature, Bickel et al. (2007, 2008); Shao and Lii (2011), were combined and modi-

fied in a multiscale penalized likelihood model. The contributions of these chapters are

(1) introducing a powerful visualization tool, inter-spike interval (ISI) plot, (2) combin-

ing the multiscale method of Kolaczyk and Nowak (2004) with the periodic models of

Bickel et al. (2007, 2008) and Shao and Lii (2011), to introduce the so-called additive

and multiplicative models for the intensity function of neural spike trains and intro-

ducing a cross-validation scheme to estimate their tuning parameters, (3) providing

the numerical bootstrap confidence bands for the multiscale estimate of the intensity

function, and (4) studying the effect of time-scale on the statistical properties of spike

counts.

Motivated by neural integration phenomena, as well as the adjustments for the neu-

ral refractory period, Chapters 4 and 5 study the Skellam process and introduce the

Skellam Process with Resetting (SPR). Introducing SPR and its application in the

analysis of neural spike trains is one of the major contributions of this dissertation.

This stochastic process is biologically plausible, and unlike the Poisson process, it does

not suffer from limited dependency structure. It also has multivariate generalizations

for the simultaneous analysis of multiple spike trains. A computationally efficient re-

cursive algorithm for the estimation of the parameters of SPR is introduced in Chapter

5. Except for the literature review at the beginning of Chapter 4, the rest of the mate-
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rial within these two chapters is original. The specific contributions of Chapters 4 and

5 are (1) introducing the Skellam Process with Resetting as a statistical tool to ana-

lyze neural spike trains and studying its properties, including all theorems and lemmas

provided in Chapter 4, (2) the two fairly standard definitions of the Skellam process

(homogeneous and inhomogeneous) and the proof of their equivalency, (3) deriving the

likelihood function based on the observable data (spike trains) and developing a com-

putationally efficient recursive algorithm for parameter estimation, and (4) studying

the effect of time scales on the SPR model.

The challenging problem of multivariate analysis of the neural spike trains is addressed

in Chapter 6. As far as we know, the multivariate models which are available in the

literature suffer from limited dependency structures. In particular, modelling negative

correlation among spike trains is a challenging problem. To address this issue, the

multivariate Skellam distribution, as well as the multivariate Skellam process, which

both have flexible dependency structures, are developed. Chapter 5 also introduces a

multivariate version of Skellam Process with Resetting (MSPR), and a so-called profile-

moment likelihood estimation of its parameters. This chapter generalizes the results of

Chapter 4 and 5, and therefore, except for the brief literature review provided at the be-

ginning of the chapter, the remainder of the material is original work. In particular, the

contributions of this chapter are (1) introducing multivariate Skellam distribution, (2)

introducing two definitions of the Multivariate Skellam process in both homogeneous

and inhomogeneous cases and proving their equivalence, (3) introducing Multivariate

Skellam Process with Resetting (MSPR) to simultaneously model spike trains from an

ensemble of neurons, and (4) utilizing the so-called profile-moment likelihood method

to compute estimates of the parameters of MSPR.

The discussion of the developed methodologies as well as the “next steps” are outlined

in Chapter 7.
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Chapter 1

Preliminaries and Literature

Review

1.1 Introduction

The brain, the centre of the nervous system, is one of the most complex organs in

human body. Although it constitutes approximately 2% of our total body weight,

due to the high metabolism of its nerve cells, the human brain receives about 15% of

the cardiac output and consumes 20% of total body oxygen, as well as 25% of total

body glucose utilization, Carlson (2007); Magistretti et al. (1995). It regulates our

emotions, thoughts, behaviour, perception, motor movements and the function of all

organs, Murray (2007); LeDoux (2003); Lipton (2005); Kanai et al. (2011); Knapen

et al. (2011); Milpass (2012). Although the literature on brain research is significantly

rich, many questions about the human brain remain to be answered. The work of van

Hemmen and Sejnowski (2006) discusses some of the open problems in different areas

of systems neuroscience such as brain evolution, organization of the cerebral cortex,

interaction between neurons, computation in the brain and organization of cognitive

systems. Being able to fully cure patients suffering from brain-related illnesses such as

Alzheimer’s and dementia, or even to build an artificial brain, also motivate ongoing

neuroscience research. Two hundred years ago, heart transplants and artificial hearts

were science fiction, whereas many lives are being saved by heart transplants and by

means of artificial hearts today. A similar transition could happen with brain research.

Many attempts have already been made to simulate the human brain. de Garis et al.

(2010); Eliasmith (2013) provide interesting examples of large-scale simulations of the

brain. These examples include, but are not limited to, Markram’s Blue Brain project,

Markram (2006), which simulates a cortical column at the level of ion channel details

and sizes in at 1 million neurons. Two other projects are Modha’s Cognitive Com-
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putation Project, Ananthanarayanan and Modha (2007) (∼ 1 billion neurons) and

Izhikevich’s large-scale cortical simulations, Izhikevich and Edelman (2008) (∼ 100

billion neurons), which are both much larger in terms of the number of neurons, how-

ever, since random connectivity of neurons has been employed in these simulations,

the output is not easy to interpret and does not correspond to any particular function

or behaviour. Eliasmith et al. (2012); Eliasmith (2013) have introduced the Semantic

Pointer Architecture Unified Network (Spaun), which is a model of about 2.5 million

neurons with image sequences as inputs whose output is a motor behaviour. Spaun

is currently the largest functional model of the brain. These research studies would

suggest that state-of-the-art research is certainly moving toward building an artificial

human brain. In order to proceed, let us introduce some nervous system terminology

starting with neuroanatomy and neurophysiology.

Neuroanatomy is the study of the structure of the nervous system while neurophysiology

is the study of its functions. These two areas include the study of the structure of the

neurons, their communication and their underlying electrochemical processes, Carlson

(2007); Blum and Rutkove (2007). The purpose of this chapter is to familiarize the

reader with these two areas and to provide a literature review of related research. This

literature review also discusses the important problem of information coding in the

brain. We will discuss the sources of randomness in the neural data, as well as the

common statistical models in the analysis of neural data. Some details about data

collection techniques are also presented.

1.2 Neuroanatomy and Neurophysiology

The nervous system consists of all nerve cells, the brain and the spinal cord. It is

usually divided into two parts: the central nervous system (CNS), and the peripheral

nervous system (PNS). The brain and the spinal cord together form the CNS and the

remaining part of the nervous system, which includes the nerves attached to the CNS,

forms the PNS.

1.2.1 Early research

The discovery and development of the foundations of modern neuroscience go back

to the 19th century. According to Pearce (2001), in 1848, Emil du Bois-Reymound

discovered the neural impulse (action potential), whose conduction velocity was first

measured by his friend Hermann von Helmholtz in 1850. By the end of the 19th cen-

tury, Santiago Ramón y Cajal introduced the later-called “neuron theory” and revealed
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the shapes of the nerve cells by using a stain developed by Camillo Golgi, López-

Muñoz et al. (2006). The two scientists shared the 1906 Nobel Prize in Physiology and

Medicine for their work on the structure of the nervous system. However, it was the

mid 19th and 20th century anatomist Heinrich Wilhelm Gottfried von Waldeyer-Hartz

who first used the term neuron in reference to nerve cells, Ramón y Cajal (1954). In

a 1926 monograph entitled “The Interactive Action of the Nervous System,” Charles

Sherrington explained that the impulse in the chemical synapse (small gap between

two adjacent neurons) flow in one direction only, Sherrington (1926). He developed a

theory, which declares that the nervous system coordinates different parts of the body

and states that interactive actions of the nervous system are observed as reflexes in the

body. Charles Sherrington and Edgar Adrian shared the 1932 Nobel prize in Physiol-

ogy and Medicine for their discoveries regarding the functions of neurons.

1.2.2 Neurons and supporting cells

Neurons are special cells which are both information-processing and information-transmitting

units of the nervous system. They consist of a soma (or cell body), axon, dendrites and

terminal buttons. The soma provides the energy for the cell and contains genetic infor-

mation. Two structures connect to the soma: the axon and the dendrites. Dendrites

are tree-shaped structures which usually receive information from other neurons and

take it back to the soma. The axon, which is a long and thin tube, takes information

from the soma and passes it to other neurons. Terminal buttons, found at the end of

the twigs of an axon, facilitate the transmission of information from the sending cell

to the receiving cell, Carlson (2007). Figure 1.1 shows a neuron.

Figure 1.1: The main parts of a neuron.
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The shape and the function of a neuron depends on the job it performs. As a result,

neurons are divided into three categories according to their appearance. Multipolar

neurons are the most common neurons in the CNS with one axon and many dendrites

attached to the soma. Bipolar neurons have one axon and one dendrite attached to the

soma and are primarily found in sensory systems such as vision and hearing. Unipolar

neurons have only one axon attached to the soma and are found in the somatosensory

systems such as touch and pain.

In terms of function, neurons are also divided into three categories. Sensory neurons

receive information and stimuli from the internal or external environment, translate

them to electrochemical signals, and send these signals to the central nervous system.

They form a large part of the peripheral nervous system. Motor neurons located within

the central nervous system control the contraction of muscles or secretion from glands.

Finally are the interneurons, which are entirely located within the central nervous sys-

tem, receive information from sensory neurons and pass it along to motor neurons.

They are also involved in learning, memory, perceiving, deciding and controlling com-

plex behaviour. For more details on the shape and function of neurons see Nicholls

et al. (2012); Carlson (2007).

Neurons are not the only cells found in the nervous system. About a half of the CNS is

formed by other cells called supporting cells. These cells supply neurons with nutrients

and oxygen and help them perform their jobs. In the CNS, glial cells are the most

important supporting cell, in that they work as protective shields, glue the neurons

together and hold them in place, supply the nutrients, and literally “digest” dead neu-

rons and clean debris. Different types of glial cells (Astrocyte, Oligodendrocyte and

Microglia) are responsible for these different tasks. As an example, Oligodendrocytes

support axons and produce myelin. In the PNS, Schwann cells are the most impor-

tant supporting cells and are Oligodendrocytes counterparts. For more readings on

supporting cells refer to Kandel et al. (2000).

1.3 Neural communication

A neural message, which is an electrochemical wave, travels along the axon of a neuron

to the terminal buttons. As can be seen in Figure 1.1, a bead-shaped structure (the

myelin sheath) cover the axon. The function of the myelin sheath is to speed up this

transition and insulate the signal, preventing it from spreading between consecutive

axons, (Carlson, 2007, p.38). This signal is then transmitted to another neuron in
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a structure formed by the terminal buttons of the sending neuron and part of the

dendritic or somatic membrane of the receiving neuron. This structure is called a

synapse. The communication process consists of two subprocesses:

1. signal generation in the sending neuron and its conduction to the terminal buttons

of this neuron;

2. transmission of the message at the synapse.

Subsections 1.3.1 and 1.3.2 discuss these two subprocesses.

1.3.1 The generation of the action potential

The membranes of all cells (including neurons) are electrically charged, i.e., the poten-

tial of the inside of a cell, the intracellular potential, is different from the potential of

the outside of the cell– the extracellular potential. Neurons utilize this cross-membrane

electrical charge to generate and conduct neural messages. A neural message, which

is called an action potential, is an electrochemical wave caused by changes in the con-

centration of the positively and negatively charged ions in the extracellular and the

intracellular fluid, Kandel et al. (2000). The cross membrane potential of a neuron,

which is called the resting potential, is approximately −70mV. The ion channels, some

of which are voltage-dependent gates, control the dynamics of the inflow and outflow of

the positive and negative ions which are called cations and anions respectively. Nam-

ing these channels after the ions passing through them, they are called either sodium,

potassium, calcium or chloride channels, Hille (2001).

To understand what causes the action potential, two forces should be introduced: dif-

fusion and electrostatic pressure. According to Carlson, (Carlson, 2007, p.45-47), while

diffusion force moves molecules from high concentration areas to low concentration ar-

eas, the electrostatic power is the attractive or repulsive power between electrically

charged particles. When a neuron is excited by some stimuli or inputs from other

neurons, the membrane potential is depolarized i.e., the membrane potential is reduced

from the resting potential towards zero. If this depolarization meets the threshold of

excitation, which is about −60mV, the sodium channels open. As a result, both diffu-

sion and the electrostatic forces lead the sodium cations (positive ions), inside the cell.

Therefore, the inside potential of the cell starts to decrease (note that the inside po-

tential of the membrane is initially negative). Shortly after the opening of the sodium

channels, potassium channels also open and diffusion power pushes potassium cations

(positive ions) out of the cell. However, because the membrane is more permeable to

sodium ions, the influx of the sodium ions dominates the outflow of the potassium ions.
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Therefore, the membrane potential increases to reach its peak at +40mV where the

sodium channels become refractory i.e., the channels become blocked and cannot open

again until the membrane potential once more reaches the resting potential. However,

the potassium channels are still open and the diffusion power lets these ions escape.

Shortly after, the potassium channels are closed and the extra potassium ions outside

the cell will diffuse. The small amount of extra potassium outflow hyperpolarizes the

membrane for a short period as the potassium ions outside the cell diffuse. Hyperpo-

larization is the process during which the membrane potential is increased from the

resting potential. The Nobel prize winners Alan Lloyd Hodgkin and Andrew Fielding

Huxley introduced a set of differential equations, which model the dynamics of the ion

channels, Hodgkin and Huxley (1952). Figure 1.2 summarizes the process of action

potential generation.

Figure 1.2: The six stages of an action potential generation process, (Carlson, 2007,

p.49). Reprinted by permission of Pearson Education, Inc., Upper Saddle River, NJ.

Since action potentials tend to be very localized in time, they are called spikes. Fur-

thermore, a sequence of spikes generated by a single neuron is called a spike train,

(Gerstner and Kistler, 2002, p.3). As a result, discussing the randomness in spiking

activity and the corresponding statistical issues, the problem is usually formulated in

a point process framework. A typical spike train from a neuron looks like (t1, t2, ..., tn)

where ti is the time of the ith spike. Although the shapes and durations of individual
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spikes generated by a given neuron can vary, it is generally assumed that the form of

the action potential is not as important in information transmission. We will explain

the concept of neural information and randomness in Section 1.5.

A second firing, or the trigger of an action potential, cannot be initiated immediately

after an action potential is generated. A certain amount of time (≈ 1− 3 milliseconds)

must elapse before another spike is fired. This time period is called the absolute re-

fractory period and limits the maximum frequency of the neural firing rate to about

1000 spikes per second. The firing rate is defined as the number of spikes per unit of

time, (Gerstner and Kistler, 2002, p.14). Another type of refractoriness is the relative

refractory period, during which the initiation of another action potential is possible but

it requires a much higher stimulation. In this dissertation refractory period refers to

the absolute refractoriness unless otherwise stated.

One of the inevitable properties of the neural activity is the periodicity, or the rhythms

of the brain, Buzsáki (2006), which is observed in different parts of the brain. The bi-

ological mechanisms generating these rhythms are of interest to neuroscientists. These

rhythms are classified according to their frequencies as follows: δ-rhythm (2-4Hz),

Walker (1999), θ-rhythm (4-8Hz), Miller (1991); Malhotra et al. (2012), α-rhythm (8-

13Hz), Windhorst and Johansson (1999), β-rhythm (13-30Hz), Lopes da Silva (1991)

and γ-rhythm (more than 30Hz), Freeman (1992). Notice that these frequency bands

are what we have commonly found in the literature, but they vary from one manuscript

to another. Some of these rhythms can be present simultaneously in a given area of

the brain. Simultaneous presence of multiple frequencies in a vision experiment on

monkeys is reported in Bressler et al. (1993). According to Fischer et al. (2002), θ and

γ rhythms characterize the hippocampal activity in vivo. For more details on brain

rhythms refer to Buzsáki (2006). Chapter 2 introduces a model for oscillatory activ-

ities of neural spike trains in an inhomogeneous Poisson process framework (rate code).

After an action potential is triggered, it travels down the axon to the terminal buttons.

The amplitude of the action potential is constant (+40mV) from the generation point

to the terminal buttons. Moreover, once an action potential is triggered, it will not

disappear during transmission. This biological characteristic of neurons is called the

all-or-none law, whose discovery dates back to Edgar Adrian’s work in 1920s. The

terminal buttons, which are the main communication ports of neurons, transmit the

signal to the other neurons across the synapse. The synapse is the minute gap between

the terminal buttons of the sending cell and the dendrites of the receiving cell.
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1.3.2 Synaptic transmission

The transmission of messages from one neuron to another neuron through a synapse

is called synaptic transmission. The neuron which conducts the action potential to

the synapse is called the presynaptic neuron, and the one which receives the signal is

called the postsynaptic neuron. In the synapse, the space between the membranes of

the presynaptic and postsynaptic neurons is called the synaptic cleft. Although we

have mentioned that a synapse forms between the terminal buttons of the presynaptic

neuron and the dendritic membrane of the postsynaptic neuron, synapses can occur

in three places: on dendrites (axodendritic synapse), on soma (axosomatic synapse)

and on other axons (axoaxanic synapse); however, the axodendritic synapse is the

most common type of synapse, Lytton (2002); Weiss et al. (2002). Figure 1.3 shows a

synapse.

Figure 1.3: Synapse: the information transmission structure. Reproduced courtesy of

the National Institute on Aging, National Institute of Health, USA.

When the electrochemical wave arrives at the terminal buttons of the presynaptic
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neuron, it releases chemicals called neurotransmitters in the synaptic cleft. These neu-

rotransmitters then bind with the receptors on the postsynaptic membrane and can de-

polarize or hyperpolarize the postsynaptic membrane. The alterations in the membrane

potential of the postsynaptic neuron caused by the liberation of the neurotransmitters

are called postsynaptic potential, Purves et al. (2008a). If the released neurotransmit-

ters have an excitatory (inhibitory) effect on the postsynaptic neuron, they may cause

an excitatory depolarization (inhibitory hyperpolarization) of the postsynaptic mem-

brane, which is called excitatory postsynaptic potential (EPSP) (inhibitory postsynaptic

potential (IPSP)), Purves et al. (2008a).

Neurons are interconnected by means of synapses through which electrochemical sig-

nals pass from one neuron to another. The effect of a stimulus and its strength on the

neural activity can be explained through this example. Consider touching two pieces of

metal; one hot, one warm. In both cases, some neurons in your somatosensory system

are stimulated, however, in the former case the strength of the stimulus is much higher

than that of the latter case. The stronger the stimulus, the higher the firing. There-

fore, the strength of a stimulus affects the firing rate of a neuron. This property of

the neural activity is called the rate law. The first research studies on the relationship

between a stimulus and neural firing rate are those of Adrian and Zotterman in the

mid-1920s, Adrian (1926a,b); Adrian and Zotterman (1926a,b), where they observed a

direct relationship between the pressure applied to a patch of skin and the firing rate of

peripheral touch receptors. In Chapters 2 and 3 it is assumed that the firing rate codes

the information in the brain; however, “information” is yet to be properly defined.

Figure 1.4, adapted from (Carlson, 2007, p.51), shows a firing rate representation of

the strength of a stimulus.

Another interesting biological fact about neurons is bursting activity, Li et al. (2009);

Izhikevich (2000); Natarajan (2003). Bursting activity is the sudden and repeated fir-

ing of action potentials. Bursting depends on the context, and is more a subjective

interpretation of neural activity rather than a well-defined term.1 As an example, Li

et al. (2009) considers the bursting of a rat’s cortical neuron as the sudden trigger of

5-15 spikes with no more than 8 ms between these consecutive spikes. However, we

have not found any research in the literature which considers a gradual increase in the

spiking activity to be bursting. It is important to note that the term “bursting activ-

ity” has also been associated in the literature with the activation of T-type calcium

channels, Llinás and Steriade (2006). In this dissertation, “bursting” or “burst spiking

activity” only refer to a set of consecutive short interspike intervals.

1Private discussions with Dr. Britt Anderson of the University of Waterloo.
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Figure 1.4: The relationship between the strength of a stimulus and the firing rate.

A typical neuron forms numerous synapses with other neurons which could have ex-

citatory or inhibitory effects on it. While the excitatory neurons encourage spiking

activity in the postsynaptic neuron, increasing the likelihood of spiking, the inhibitory

neurons discourage the spiking activity in the postsynaptic neuron. The post synaptic

neuron integrates the EPSPs and IPSPs and if the integrated postsynaptic potential

crosses the threshold of excitation, an action potential will be triggered. This process is

called neural integration, Giuliodori and Zuccolilli (2004); Purves et al. (2008a), which

is illustrated in Figure 1.5.

As shown previously in Figure 1.4, the rate of the spiking activity depends on the

strength of the stimulus. According to (Carlson, 2007, p.62), the relative activity

of the excitatory and inhibitory synapses controls the firing rate of the postsynaptic

neuron. Furthermore, the increase in the excitatory (inhibitory) synaptic activity in-

creases (decreases) the postsynaptic spiking activity. Notice that inhibitory/excitatory

neurons and inhibitory/excitatory activities are different concepts. As an example, an

inhibitory postsynaptic potential is the result of the activity of an inhibitory neuron.

Therefore, the greater the number of presynaptic inhibitory neuron firings, the more ex-

cited that neuron is; the more inhibitory effect is generated in the postsynaptic neuron,

the less likely the postsynaptic neuron is to fire. This positive or negative interrelation

of the spiking activities will be discussed later in Chapters 4 and 6. Throughout this

dissertation we will be utilizing statistical techniques and statistical methodologies to

analyze neural data. Therefore, it is important to emphasize some of the properties of

neural spiking activity which motivate statistical and probabilistic modelling of such

data.
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Figure 1.5: Neural integration, (Carlson, 2007, p.63): (a) If the excitatory synapses

dominate the inhibitory ones, the postsynaptic neuron will fire. The EPSPs are shown

in red. (b) If the IPSPs produced by the inhibitory synapses (shown in blue) diminish

the size of the EPSPs, the postsynaptic neuron will not fire. Reprinted by permission

of Pearson Education, Inc., Upper Saddle River, NJ.

1.4 Spatial and temporal scales of the brain

The brain is a multiscale organ in terms of time and space. As far as spatial scale is

concerned, while molecules and ion channels are in the scale of nanometres (10−9), sys-

tems and the general function of the CNS belong to a much higher scale (100 meters).

Figure 1.6 reproduced from Churchland and Sejnowski (1994), illustrates the spatial

scales of the CNS.

The main focus of this dissertation is on the neurons or networks. This limits the

spatial scale to a specific range shown in Figure 1.6 (10−6 to 10−3 metres). However, a

much wider spectrum in the temporal scale is covered. The time scales of the biologi-

cal phenomena in the brain are quite variable, from ion channels opening and closing

(milliseconds) to development and aging (years). Furthermore, the work of Nelson

(2002) shows that the amount of variability in the spike trains depends on the time

scale. He showed that the relative refractory effects which are associated with dynamic

spike threshold, form the underlying correlation structure of the spike generation pro-

cess. The two papers Ramezan et al. (2014) and Kass and Ventura (2006) show that

(through examples) the spike count correlation (a.k.a. noise correlation) depends on

the size of the bins in which the spike are counted. The different time scales of the
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Figure 1.6: Different spatial scales of the brain.

biological phenomena, as well as the time scale dependent nature of some of the statis-

tical properties of spike trains, motivate methodologies in the analysis of neural spike

trains which take these multiscale behaviours into account. In Chapter 2 we will adapt

a multiscale estimation method introduced in Kolaczyk and Nowak (2004, 2005).

1.5 Randomness and information coding

Working with a highly connected network of neurons in a living organ, variability and

randomness are inevitable. One type of variability is due to the differences among

different subjects in a study. For example, if a particular experiment is performed 50

times on three rhesus monkeys, the differences in the outcomes of the study due to the

differences among the three monkeys, is called subject-to-subject variability. Another

type of variability is observed among the outcomes of repeated trials of an experiment

on the same subject. In the example above, the differences in the outcomes of the 50

repeated trials on the same subject is called trial-to-trial variability, (Laing and Lord,

2009, ch.6). These types of variabilities are similar to “within” and “between” sum

of squares in the Design Of Experiments (DOE). The external environment, the state

of the subject, trial-to-trial and subject-to-subject variabilities are usually influential

factors in neuroscience research. Furthermore, the very small size and the very large

number of neurons makes it hard to measure their electrical activity. Therefore, there

is always some measurement error and uncertainty in the extracellular measurements.

Due to the very large number of neurons in the brain (≈ 1011), in any study only

a small number of these neurons are sampled to be observed, resulting in sampling

12



errors in any study in this research area. Given that the ultimate goal is to crack the

neural code, it is important to clarify the sources of randomness and the concept of

information in neural activity.

1.5.1 Sources of randomness

According to Moore et al. (1966), an important aspect of the models, which generate

spike trains that resemble activity observed experimentally, is the presence of a random

component. Some sources of randomness in spike trains are:

1. The fluctuations of the membrane potential (known as synaptic noise), as well

as the fluctuations in the firing level which are intrinsic to the cell, Moore et al.

(1966); Calvin and Stevens (1968); Brunel et al. (2001); Faisal et al. (2008),

2. The random character of the synaptic input arriving at the cell, Moore et al.

(1966); Calvin and Stevens (1968),

3. The fundamental stochasticity in the response of neurons to the synaptic input

which imposes randomness on the interspike interval, Calvin and Stevens (1968);

Moore et al. (1966); Shinomoto et al. (2005),

4. Noisiness of the external sensory stimuli due to their thermodynamic or quantum

mechanical nature, Faisal et al. (2008),

5. Measurement errors associated with the recording devices, Jog et al. (2002);

Chelaru and Jog (2005).

According to Stein et al. (2005), although the full importance of the variability in the

interspike intervals of the individual neurons is yet to be determined, it is definitely not

limited to the neural noise. Gerstner and his colleagues, (Gerstner and Kistler, 2002,

ch.5), discuss some intrinsic and extrinsic-to-the-cell sources of neural noise. Among the

intrinsic sources are the fluctuations in the resistance of the membrane potential. These

fluctuations occur because of changes in the temperature and the fact that the number

of ion channels in a patch of neural membrane is finite. Synaptic transmission failures

(ratio of the presynaptic spikes which don’t generate postsynaptic response) is among

the extrinsic-to-the-cell sources for neural noise. Apart from the sources of noise related

to single cells, the work of Kistler and De Zeeuw (2002) suggests that having a network

of connected neurons can also cause irregularity in the spiking activity of neurons. This

is known as the network effect. Kostal et al. (2007) discuss some of the properties of

spiking randomness as well as an information-theoretic measure of randomness in the

spiking activity. They argue that the properties of spiking randomness and variability
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are two different matters. While small variability generally implies low randomness,

large variability in neural spiking activity does not imply a high level of randomness,

i.e., changing the probability model of neural spike trains, one can achieve the same

level of randomness with different amounts of variability. For a detailed study on the

sources of noise in the nervous system and the effects of noise on the trial-to-trial

variability refer to Faisal et al. (2008); Destexhe and Rudolph-Lilith (2012) and the

references therein.

1.5.2 Neural information coding

Adrian and Zotterman in a series of studies, Adrian (1926a,b); Adrian and Zotterman

(1926a,b), observed a direct relationship between the pressure applied to a patch of

skin and the firing rate of peripheral touch receptors. To the best of our knowledge,

these are the earliest published works on attempts to understand the relationship be-

tween neural activity and events in the outside world, which is called the neural code.

This is the way the brain receives input, represents the state of the world, and also

the way that it sends messages to the body. The neural code is the language of the

nervous system and to crack this code, we need to learn the rules of this language. The

neural code consists of encoding and decoding problems. While an encoding problem

refers to the way neurons represent a stimulus or behaviour, a decoding problem con-

cerns reproducing the stimulus from neural spike trains, Koyama et al. (2010). Recall

the example about the two metal pieces in Section refbetween communication. The

encoding problem in touching one of these metal pieces is to understand how the state

of the world (texture, temperature, etc.) have been translated into spike trains by the

sensory system. On the other hand, the dual decoding problem is to reconstruct the

state of the world based on the spike trains generated by neurons.

Now, given a spike train, what can be inferred about the stimulus signal or the state

of the sensory world? What aspects of the spike trains are important for the brain

to understand the state of the world? To-date no one knows the exact and the com-

plete rules of the encoding-decoding process, but there is a rich literature emphasizing

different aspects of neural spike trains, Gerstner and Kistler (2002); Nicolelis (2001);

Kostal et al. (2007); Montemurro et al. (2008). The major suggested neural codes are

as follows:

1. Rate Coding states that the mean or intensity function of the spiking activity

summarizes the information of spike trains. Adrian (1926a); Adrian and Zotter-

man (1926a); Wiesel and Hubel (1959); Adrian (1965); Shadlen and Newsome

(1994); Johnson and Ray (2004); Truccolo et al. (2005). However, the averaging
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can be done in three different ways: averaging over observation time, averaging

across trials and averaging across neurons. The choice of the averaging depends

on the problem of interest and the limits of the experiment. For more details

see Rieke et al. (1997), (Gerstner and Kistler, 2002, p.15-18) and the references

therein. Notice that using the conditional intensity function (conditioning on the

spiking history), Kass and Ventura (2001); Brown et al. (2003), also falls in the

rate coding category.

2. Temporal Coding claims that the precise timing and coordination of spikes encode

information in the brain, Theunissen and Miller (1995); Victor (1999); Panzeri

et al. (2001); Reich et al. (2001); Dayan and Abbott (2001).

3. Correlation/Synchrony Coding states that the correlations between the spike

trains summarize information, and that the information can be captured in the

synchronous firing of a population of neurons Johnson (1980); Gray et al. (1989);

de Charms and Merzenich (1996); Borisyuk and Borisyuk (1997); Singer (1999);

Averbeck et al. (2006); Gouwens et al. (2010).

4. Phase Coding captures the information through the time of firing relative to a

baseline periodic wave, O’Keefe and Recce (1993); Harris et al. (2002); Kayser

et al. (2009).

Of course, there have been studies on combining different codes together to come up

with a better understanding of the neural spike trains, Kass and Ventura (2001). In

Chapter 4 we propose a new methodology in the analysis of spike trains which, in some

ways, combines the rate code and a temporal code.

Although rate coding ignores any information possibly encoded in the temporal struc-

ture of the spike train (such as the time it takes to reach the first spike after the

stimulus onset), rate coding is highly robust with respect to the interspike interval

noise, Kostal et al. (2007); Stein et al. (2005). Following a point process approach,

our main interest falls in the rate coding category, however, Chapter 4 will introduce

a model which borrows properties from both the rate and temporal codes.

The literature on rate coding techniques is rich. In addition to the aforementioned

studies, Brown et al. (2001) developed an adaptive filter algorithm to track neural

receptive field plasticity (the change in the neural function and neural connections

by learning). The work of Dimatteo et al. (2001), introduced a Bayesian approach

(BARS) in spline curve-fitting with free knots. Kass and Ventura (2001) introduced

the Inhomogeneous Markov Interval (IMI) process based on the conditional intensity
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function of the underlying stochastic process governing spiking activity. According to

Kass and Ventura (2001) “The IMI processes avoid the assumption that the spike trains

are Poisson processes, which fails to account for effects such as refractory period.” Ko-

laczyk and Nowak (2004) and Kolaczyk and Nowak (2005) developed a multiresolution

approach for likelihoods based on which one can estimate the mean function of the

spiking activity, Ramezan et al. (2014). Truccolo et al. (2005) derived a GLM-type

model for the conditional intensity function of the underlying Poisson process govern-

ing the spiking activity. They studied the relationship between the neuronal activity

and several covariances including the spiking history of the neuron. For more details

on neural coding techniques refer to Stein et al. (2005); Gerstner and Kistler (2002);

Rieke et al. (1997) and the references therein.

The first use of the term “information” to describe the content of the neural action

potentials occurred in the book authored by Adrian (1928). Our purpose is to find

possible methods through which the brain interprets the information content of the

spike trains; however, to do this, one should have a good understanding of neural

information before studying the information coding methods. According to (Dayan

and Abbott, 2001, p.123), it is important to investigate “how much ... the neural

response tell[s] us about the stimulus?” They use information theory tools, such as

entropy, to explain the information content in the spiking activity. Given a stimulus

s, suppose that Pr(r|s) shows the probability of a response at rate r given that the

stimulus is fixed at s, and let Pr(r) show the marginal distribution of the response rate

r. Dyan and aboot (Dayan and Abbott, 2001, p.127) define the mutual information as

Im =
∑
r,s

Pr(s)Pr(r|s) log2

(Pr(r|s)
Pr(r)

)
. (1.5.1)

Expanding this equation we get,

Im =
∑
r,s

Pr(s)Pr(r|s) log2

(
Pr(r|s)

)
−
∑
r,s

Pr(s)Pr(r|s) log2

(
Pr(r)

)
.

Therefore, the mutual information is, in fact, the difference between the entropy of

the total response (under repeated presentation of the stimulus), and the total entropy

under different stimuli for different trials. This difference is the entropy associated with

that part of the response variability that is not due to the changes in the stimulus. For

the details of derivation of Equation 1.5.1 refer to (Dayan and Abbott, 2001, p.126-

128). For a detailed study on methods of measuring mutual information see Chechik

(2003); Rieke et al. (1997). Gerstner and Kistler (2002) also used the same framework

to measure the information content in neural activity. The work of Rieke and his col-

leagues (Rieke et al., 1997, Ch.3), provided details about why information theory is
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a powerful tool in this context. For a review of the applications of the information

theoretic tools in the neural activity refer to Victor (2006).

An interspike interval can be anywhere from a few to tens of milliseconds, increasing

the spike rate of an individual neuron to more than a few hundred spikes per second.

Neuroscience studies often involve simultaneous recording of many neurons on each of

the several experimental subjects which are being monitored during different trials over

periods of hours over days and days of experiments. This results in significantly large

datasets, therefore, any estimation algorithms should be computationally efficient. Fol-

lowing a rate code approach, the interesting method of BARS, Dimatteo et al. (2001),

utilizes the Reversible Jump MCMC method, Green (1995), to estimate the number

of the knots, and to locate them efficiently, which makes it computationally intensive.

According to Hastie and Tibshirani (1990), besides the computational cleanness when

the knots are given, choosing the number and the location of the knots is a challenging

problem. The multiscale model which is used in this dissertation, Kolaczyk and Nowak

(2004, 2005), is computationally efficient and easy to implement.

1.6 Statistical analysis of neural spike trains

Statistical analysis of spike trains dates back to the work of Brink et al. (1946), where

they provided a histogram-based approximation of the pdf of interspike intervals (ISIs)

of a frog’s neuron. According to Moore et al. (1966), due to the variability in the

interspike intervals, the underlying process of the neural spiking activity is stochastic.

The variability and the randomness in neural responses to repeated stimuli, Joeken

et al. (1997), as well as the instantaneous nature of the action potentials, for which

they are called spikes, motivate stochastic point processes as the underlying statistical

framework for the analysis of neural spike trains. In particular, some of the common

approaches in statistical analysis of neural spike trains are Integrate-and-Fire (IF)

models, point processes and GLM-based models, filtering (smoothing), and renewal

processes. Working with data, the likelihood method for estimation is a popular esti-

mation technique for each of these approaches, Barbieri et al. (2001); Kass and Ventura

(2001); Brown et al. (2003); Paninski (2004); Paninski et al. (2004, 2008).
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1.6.1 Integrate-and-Fire model (IF)

The Integrate-and-Fire model for spike trains, Gerstein and Mandelbrot (1964); Stein

(1965); Burkitt (2006a,b), is a dynamical model, which can take into consideration bio-

logical aspects such as refractoriness, all-or-none spiking law (see Section 1.3.1), as well

as sub-threshold electrical activity (the electrical activity across the cell’s membrane

which is under the threshold of excitation). A simple case of an IF model is defined by

the following stochastic linear dynamics, (Paninski et al., 2008, ch.10).

dV (t) =
(
g(t)V (t) + I(t)

)
dt+ σ dBt , (1.6.2)

where V (t) is the membrane potential, I(t) is the input current to the cell, g(t) is

the conductance of the membrane and the stochastic term Bt is a standard Brown-

ian motion. Every time V (t) passes the threshold of excitation, Vthreshold, a spike is

initiated, after which V (t) is reset to Vreset < Vthreshold. This process makes the spike

generation a threshold-crossing problem. Paninski and his colleagues, (Paninski et al.,

2008, ch.10), discuss IF models from three different points of view; diffusion processes,

state space (hidden Markov) models, and point processes. Burkitt (2006a), (Paninski

et al., 2008, ch.10) discuss parameter estimation of the IF model using a likelihood-

based approach. Equation (1.6.2) can be generalized in many ways, including having

different forms for the conductance or the voltage function. To incorporate stimulus

signal effect, Paninski et al. (2004) models I(t) as a function of the stimulus signal x(t).

IF models are popular due to their simplicity and computational efficacy. However,

this computational power comes at a price. They do not fully model the dynamic

behaviour of real neurons, (Brunel, 2010, ch.7). On the other end of the spectrum

of conductance-based methods are Hodgkin-Huxley models, which are more complex

and computationally intensive, but are closer to the real dynamic behaviour of neurons.

The original Hodgkin-Huxley model, Hodgkin and Huxley (1952), has been significantly

generalized since 1952 to more complex models with more components, Borg-Graham

(1999); Purvis and Butera (2005), incorporating more ion channels than the initial

sodium and potassium channels.

The conductance-based dynamical system models, i.e. IF or Hodgkin-Huxley models,

are at a finer time scale than the spike trains. However, it has been shown that certain

types of point process models fit well to the data generated from an IF model, Panin-

ski et al. (2008); Komoya and Kass (2008); Paninski et al. (2007). This shows that

the point process approximations can indirectly provide insight about the underlying

biophysiology, Paninski et al. (2008). More recent studies have made direct connec-

tions between the two approaches. Meng et al. (2011) introduces a sequential Monte
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Carlo algorithm that combines the future and past spiking information to estimate the

parameters of the dynamical system of a Hodgkin-Huxley model.

1.6.2 Point processes, histogram-based, and filtering models

Let N(t) show the number of spikes up to, and including time t. The conditional

intensity, or the history-dependent rate function of neural spiking activity θ(t|Ht) is

defined to be

θ(t|Ht) = lim
h→0

Pr
(
N(t+ h)−N(t) = 1

∣∣Ht

)
h

, (1.6.3)

where Ht is the history of the spike train up to time t, i.e. the spike times up to time t.

In survival analysis, this function is known as hazard function, Kalbfleisch and Prentice

(1980). Based on a given spike train t1, · · · , tn on the observation interval (0, T ), the

probability density of exactly these n spikes in (0, T ) in a point process framework is,

Brillinger (1988); Brown et al. (2003),

Pr(t1, ..., tn) =
n∏
i=1

θ(ti|Hti) exp
{
−
∫ T

0

θ(t|Ht) dt
}

= exp

{∫ T

0

log θ(t|Ht) dN(t)−
∫ T

0

θ(t|Ht) dt

}
. (1.6.4)

We will use this likelihood function later in Chapter 2. Many research studies suggest

that the conditional intensity function can summarize information content of neural

spike trains, Brown et al. (2001); Barbieri et al. (2001); Truccolo et al. (2005); Chen

et al. (2009); Sarma et al. (2010); Banerjee et al. (2012), and there are different methods

in the literature for estimating the history-dependent spiking rate function. Barbieri

et al. (2001) studied this problem under inhomogeneous Gamma, Inverse Gaussian

and inhomogeneous Poisson models. Under the inhomogeneous Poisson process frame-

work, neural spiking activity is independent of the history, thus Ht can be omitted from

Equation (1.6.3), i.e. θ(t|Ht) = θ(t). Although some of the assumptions of Poisson

process are not justified due to biological phenomena such as refractory period, burst

spiking activity or temporal dependence among spikes, Poisson models are still widely

used in the literature, Hanes et al. (1995); Banerjee et al. (2012). Some studies suggest

adjustments for refractory period, (Brunel, 2010, p. 163). More recently, there have

been studies in which, particular areas of the brain have been claimed to show Poisson

variability in their spike counts, Softky and Koch (1993); Maimon and Assad (2009);

Averbeck (2009). However, caution should be used when employing these results. We

will show in Chapter 3 that spike count variability can depend on the time scale and
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the bin size.

Incorporating explanatory variates, Truccolo et al. (2005) discretized the observation

window into very small subintervals and estimated the conditional intensity using

GLMs for Bernoulli trials. GLM models for the conditional intensity function have

been widely used in the literature, from retinogeniculate cell (RGC) responses, Ahma-

dian et al. (2009), to auditory cortex models, Calabrese et al. (2011), primary motor

cortex, Truccolo et al. (2008) and spatio-temporal correlation analysis in the visual

system, Pillow et al. (2008). All of these applications include, in one way or another,

formulating the spiking activity θ(t|Ht) as a function of the stimulus signal and/or

some explanatory variables (e.g. spiking history), Stapleton et al. (2006); Brown et al.

(1998); Carandini et al. (2007); Calabrese et al. (2011).

Incorporating history in Equation (1.6.3), Kass and Ventura (2001) introduced the

Inhomogeneous Markov Interval (IMI) process, which formulates the conditional in-

tensity function as a function of the experimental clock, and the time elapsed from the

previous spike. They assume that

θ
(
t |Ht

)
= θ
(
t , t− s∗(t)

)
(1.6.5)

where s∗(t) is the time of the last spike preceding t. In particular, they use the product

form of Equation (1.6.5) where

θ
(
t |Ht

)
= θ1(t) θ2

(
t− s∗(t)

)
. (1.6.6)

Through data analyses, they show that this model outperforms the homogeneous Pois-

son process, proving that spiking activity of neurons is not “memoryless,” at least in the

supplementary eye field. The IMI model combines the effect of the experimental clock

and the spiking history in a multiplicative way. Paninski et al. (2008) discusses two

other options. A Time Rescaling Renewal Process (TRRP) transformation of t−s∗(t),
i.e. substituting it by Θ1(t)−Θ1(s∗(t)) where Θ1(t) =

∫ t
0
θ1(u) du. The other method

is to combine t and the history in an additive way, where they show that the additive

IMI model is, essentially, equivalent to a soft thresholding IF model.

It is important to note that the Poisson process is a good approximation for the analysis

of neural spike trains when the data is pooled across many independent trials, Daley

and Vere-Jones (2008). In this case, histogram techniques, such as the Peri-Stimulus

Time Histogram (PSTH), are a good visualization technique. The PSTH is, essentially,

a histogram of pooled data across trials with a repeated stimulus. Figure 1.7 shows the

PSTH and the raster plot (common visualization methods for raw data) of 129 trials
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of retinal cell data in a vision experiment on connected retinal ganglion cell (RGC)

and lateral geniculate nucleus (LGN) neurons, Carandini et al. (2007); Sincich et al.

(2007). The raster plot is the plot of actual spike times in an experiment. Each row in

this plot shows the spike times of one trial. The details of the experimental conditions

for this dataset are discussed in Chapter 3.
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Figure 1.7: The raster plot and the PSTH based on 129 trials of repeated stimulus on

an RGC neuron.

The Bayesian Adaptive Regression Splines (BARS) method of Dimatteo et al. (2001)

can be used to smooth the PSTH and to estimate the intensity function of spiking

activity. Although its performance in identifying the change points works relatively

well, BARS is computationally expensive.

1.6.3 Filtering/Smoothing models

Both the BARS and GLM models discussed here lie within the more general frame-

work of filtering or smoothing in the signal processing literature. Although no optimal

filter design exists to perfectly decode spike train data, it is still possible to design

good firing rate filters with some optimal characteristics, Paulin (1992). As a result,

filtering techniques are widely used in the statistical analysis of neural spike trains

including, but not limited to, the control of prosthetic devices, Brockwell et al. (2004);

Srinivasan et al. (2007), estimating the location of a freely moving rat from the activity

of hippocampal place cells, Brown et al. (1998), and detecting patterns in responses to

visual stimuli, Carandini et al. (2007).
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In a Poisson process framework, Brown et al. (1998) introduced a modified Bayes fil-

ter to estimate the location of a rat based on the firings of hippocampal place cells,

which is, essentially, the MAP estimate derivation of the Kalman filter. Using kernel

estimation methods in the framework of an inhomogeneous Poisson process, Lehky

(2010) suggests minimizing a bias squared error criterion to find optimal width for

the Gaussian kernel. Kass et al. (2003) compares Gaussian filters, cubic splines and

BARS, where they argue that BARS outperforms the other two methods when the

neural firing rate changes rapidly over time.

The Kalman filter has been extensively used in neural spike train data analysis. In a

study involving hippocampal place cells recordings from a freely moving rat, Barbieri

et al. (2004) modelled the rate function of an inhomogeneous Poisson process as a

function of the coordinates of the animal’s position and the coordinates of the place

field’s centre. They developed a Kalman filter to predict the location of the animal

on the disc. Discretizing time into small time bins and modelling spike trains as

realizations of Bernoulli trials, Eden et al. (2004) develops point process filter analogues

of the Kalman filter. It is noteworthy that since the Kalman filter only uses the present

state of the process and the result of the calculations in its past steps, it can be used

in real-time in the analysis of neural data. This makes it attractive for neuroscience

research, particularly in neuro-prosthetic applications, Wu et al. (2006); Srinivasan

et al. (2007). For more applications refer to Srinivasan et al. (2007); Paninski (2010).

1.6.4 Renewal processes

The Interspike Interval (ISI) distribution has usually a much heavier tail than expo-

nential distribution, Brown et al. (2002, 2003); Truccolo et al. (2005). This motivates

utilizing other ISI distributions, and hence, other renewal processes than the Poisson

process, Perkel et al. (1967); Stein (1967); Johnson (1996); Nawrot et al. (2008); Grün

(2009). Beside the inhomogeneous Poisson process, the most common renewal pro-

cesses in the analysis of spike trains are Gamma, Log-Normal and Inverse Gaussian.

In Chapter 4 we introduce Skellam Process with Resetting (SPR). There, interspike

intervals are modelled as realizations of inter-record intervals of the difference between

two independent Poisson processes with an additional adjustment for refractory period.

Figure 1.8, adapted from van Vreeswijk (2010), shows the ISI distribution based on

Gamma, Log-Normal and Inverse Gaussian distributions. The spike rate is held fixed

at 50Hz and the coefficient of variations are 0.5 (black), 0.75 (red), 1 (green) and 1.5

(blue).
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Figure 1.8: ISI distributions for Gamma, Log-Normal and Inverse Gaussian renewal

processes. The spiking rate is held fixed at R = 50Hz and the coefficient of variation

(CV) is 0.5 (black), 0.75 (red), 1 (green) and 1.5 (blue).

All these cases assume stationarity, which implies that the parameters of the ISI distri-

bution are constant over time, which is not a feasible assumption in real data analysis.

To address this problem, it is necessary to introduce time-dependent versions of the

aforementioned renewal processes. Barbieri et al. (2001) introduces inhomogeneous

Gamma (IG) and inhomogeneous Inverse Gaussian (IIG) probability models for the

interspike distribution. Let {t1, t2, ... , tn} denote the spike times and let θ(t) be a

strictly positive intensity function. The IG and IIG models are respectively defined as,
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Barbieri et al. (2001),

ft(tk|tk−1) =
γ θ(tk)

Γ(γ)

(
γ

∫ tk

tk−1

θ(u) du

)γ−1
exp

{
− γ

∫ tk

tk−1

θ(u) du

}
(1.6.7)

ft(tk|tk−1) =
θ(tk)√

2π
( ∫ tk

tk−1
θ(u) du

)3 exp

{
− 1

2

( ∫ tk
tk−1

θ(u) du− ψ
)2

ψ2
∫ tk
tk−1

θ(u) du

}
(1.6.8)

where Γ is the gamma function, γ and ψ are, respectively, the constant parameters of

IG and IIG probability models, and θ(t) is the time varying parameter. Notice that if

γ = 1, IG is the inhomogeneous Poisson probability model. Modelling CA1 hippocam-

pal pyramidal neurons, Barbieri et al. (2001); Brown et al. (2002) showed that both

IG and IIG models outperform inhomogeneous Poisson process in terms of fit to the

data.

Although the distribution of real interspike intervals has a much heavier tail than

the exponential distribution, Gabbiani and Koch (1998) showed that if the threshold

potential after each spike in the integrate-and-fire model is reset to a random value

according to an exponential distribution, the corresponding spike train will follow a

Poisson process. The work of Farkhooi et al. (2009) reports negative autocorrelation

(a.k.a. serial correlation) in some parts of mammalian brains and fish, which violates

the assumptions of the renewal process. They suggested an alternative autoregressive

point process model to incorporate this autocorrelation among interspike intervals. For

more history-dependent models (e.g. Markov Point Processes) refer to Johnson (1996);

Kass and Ventura (2001); Truccolo et al. (2005); Paninski et al. (2007).

1.6.5 Likelihood-based inference

The neural encoding is a map between the stimulus space and the spike train space. Let

(0, T ) denote the observation interval. Based on the spike train t = {0 < t1, ..., tn < T}
and the stimulus x, the probabilistic formulation of the neural code is Pr(t|x). Max-

imum likelihood estimates have desirable (asymptotic) properties, (Lehmann, 1983,

ch.6), and the aptness of likelihood-based models in the analysis of spike trains has

been addressed in the literature, Brown et al. (2003); Kass et al. (2005). These reasons

motivate the extensive use of likelihoods in the neuroscience literature.

The work of Brillinger (1988) is one of the early and influential studies on utilizing

likelihood functions in the analysis of neural spike trains. Incorporating the neural
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integration phenomenon, he formulated the interaction between two and three neurons

via likelihood functions in a point process framework. Brown et al. (2003) studies the

ISI of hippocampal place cells under Gamma and Inverse Gaussian models and discusses

some model selection criteria. Pillow (2007) studied the details of ML estimation in the

point process framework for IF and GLM models. He presented log concave likelihood

models and argued that optimization in a convex parameter space is efficient. Pillow

et al. (2010) introduces log concave likelihood models for decoding information content

of spike trains about the stimulus signal. For more details and examples on the use

of likelihoods in the context of neural spike trains refer to Paninski (2004); Paninski

et al. (2004); Salimpour et al. (2011).

1.6.6 Nonparametric and Bayesian inference

In addition to the likelihood-based inference, nonparametric and Bayesian models have

also been referred to in the neuroscience literature. Nonparametric methods do not

impose distributional assumptions on neural data. Bootstrap and nonparametric re-

gression are two common nonparametric statistical methods widely used in neuro-

science, Kass et al. (2005). Nonparametric bootstrap confidence intervals will be used

throughout this dissertation. Kaufman et al. (2005) suggested a spline-based gener-

alized non-parametric regression model to estimate the neural firing rate. Bootstrap

and nonparametric regression are not the only nonparametric techniques employed in

neuroscience contexts. Gourévitch and Eggermont (2007) proposed a nonparametric

burst detection algorithm based on the ranks of the interspike intervals. Using Fourier

and wavelet transforms, Nedungadi et al. (2009) introduced a nonparametric Granger

causality to study the network connectivity in the brain from multivariate neural data.

The nonparametric models have also been used to estimate neural firing rates.

Bayesian methods are also among the popular approaches in the analysis of neural

spike trains, particularly in the decoding problem where interest lies in estimating the

probability function of a stimulus x given the spike trains 0 < t1, ..., tn < T . We have,

Pr(x|t) ∝ Pr(t|x)× Pr(x) . (1.6.9)

The first term in the right hand side of Equation (1.6.9) is the likelihood function of

the spike trains, and the second term is the prior distribution of the stimulus signal.

Koyama et al. (2010) develops a Bayesian state-space model to solve the decoding

problem in a motor cortex (hand motion) study. In another study on the primary

motor cortex in awake behaving monkeys, Wu et al. (2006) used a Bayesian Kalman

filter model to compute the posterior probability of the hand motion conditioned on
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a sequence of observed firing rates. In a Poisson process framework, Lehky (2004)

developed Bayesian models for the estimation of mean and the variance of spike counts

where they showed that relative to the simple likelihood analysis, their Bayesian models

provide more precise interval estimates of responses.

1.7 Neural data collection

Neural data collection is an integral part of neuroscience research. The type of data

to be collected in a specific research study depends on the objectives of the research.

This section briefly discusses some of the common data collection methods.

Whether to collect the data from an ensemble of nerve cells including thousands or

millions of neurons, or to record single neurons, an approach which considers the con-

tribution of the individual cells to the network of the nerve cells, is a controversial

matter in neuroscience research. While monitoring large populations of neurons mea-

sures the integrated neural activity of the population, single cell recordings provide

details about the contribution of each individual cell to the behaviour, Criado et al.

(2008). Furthermore, single cell recording methods are significantly more expensive

and harder to implement as they require brain surgeries or other invasive methods.

According to Windhorst and Johansson (1999), to examine the quality of the neural

data, one should consider the following specifications:

1. “Detection sensitivity:” High sensitivity of the recording method is required to

make useful measurements,

2. “Signal-to-noise ratio:” The ratio of the signal power to the noise power, which

should be large enough to make experimentally useful conclusions,

3. “Spatiotemporal resolution:” The spatial resolution is the ability to discriminate

between two points in space and temporal resolution is the ability to discriminate

between two points in time, Slavin and Bluemake (2005). These values should

be large enough to answer the experimental questions posed.

4. “Fidelity:” Accurate reflection of the underlying physiological phenomena by the

data and no disruption by the recording methodology itself.

For details about data collection techniques and the related issues refer to Windhorst

and Johansson (1999).
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1.7.1 Recordings from populations of neurons

According to (Carlson, 2007, p.148), Computerized Tomography (CT), which is gener-

ally referred to as the CT scan, was the first method developed to monitor the anatomy

of a living brain. The CT scan machine emits x-rays to the head, measuring the amount

of radioactivity passing through it. These measurements are performed from many dif-

ferent angles, allowing the machine to produce pictures of the skull and its contents.

A more complicated and accurate method, developed after the CT scan, is Magnetic

Resonance Imaging (MRI) which works based on properties of the cells being exposed

to a strong magnetic field. Unlike the CT scan, MRI is not an x-ray based method,

which makes it less invasive, (Carlson, 2007, p.149). Additionally, MRI generates pic-

tures of the lateral views and the front view of the brain, which are not possible with

CT scans.

The most recently introduced brain imaging method is the functional MRI (fMRI)

which, unlike the MRI, can also monitor the function of the brain, (Carlson, 2007,

p.155). It is a blood-oxygen-level dependent method (BOLD). The BOLD signal mea-

sures the changes in the ratio of oxygenated to deoxygenated blood, which is an index

for brain activity, (Kandel et al., 2000, p.374-375).

Magnetoencephalography (MEG) is another magnetic field based neuroimaging method.

It allows for inferences about the location of the dipole that gives rise to a specific mag-

netic field, (Zigmond et al., 1999, p.152), which is impossible with the other methods.

MEG is usually used in cognitive research studies. It measures extremely weak fields

outside the head, and can pick up fields associated with concerted actions of a few

thousands of neurons, Windhorst and Johansson (1999).

One of the most commonly used methods of neural data collection is electroencephalog-

raphy (EEG) which is a method of recording the electrical activity of the brain through

scalp electrodes. It measures the integrated potentials of a population of neurons. Ac-

cording to (Windhorst and Johansson, 1999, pp.971-995), beside the relatively lower

costs of the equipments, one of the major advantages of EEG is the ability to measure

electrical changes in the brain, which is not possible with the fMRI method. Another

advantage of EEG is its ability to record the periodic neural activities of the brain

discussed in Section 1.3.1.
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1.7.2 Single cell recordings

Optical methods and recordings from surgically implanted electrodes (microelectrodes)

are two of the data collection methods at the single cell resolution level, Windhorst

and Johansson (1999). Both methods include intracellular and extracellular recordings,

but this dissertation is based on the extracellular measurements recorded by surgically

implanted electrodes. The earliest formal publications on single cell recording using

surgically implanted electrodes are Adrian (1928, 1930) where the electric discharge of

sensory neurons in frogs, cats and rabbits are measured.

Optical methods involve using a dye which is calcium-sensitive or voltage-sensitive.

One typical optical method is that after the indicator is injected, photons are emitted

to the area of interest in the brain, whose spectral properties reflect the neural activity.

For details on these methods refer to (Windhorst and Johansson, 1999, Ch. 4, 16, 34)

and Antic et al. (1999). For developments on calcium imaging methods see Takahashi

et al. (2007).

Intracellular recordings measure the cross membrane potential of neurons by using

the patch clamp technique, which involves sealing a glass or quartz pipette onto the

membrane. These methods are used to study fine-level behaviour of neurons, e.g. ion

channels dynamics. For details on techniques and challenges of the intracellular record-

ings refer to Brown and Flaming (1986); Sherman-Gold (1993).

Extracellular recordings, which are used to extract data employed in this dissertation,

measure the electrical field potential outside neurons. The methods for such recordings

are used mainly for detecting action potentials or spikes. Extracellular recordings are

widely used for behavioural studies, particularly in freely moving animals, O’Keefe and

Dostrovsky (1971); Carandini et al. (2007); Maimon and Assad (2009); van der Meer

and Redish (2009); Walker et al. (2011). With the development of multielectrodes,

Taketani and Baudry (2006), these recordings allow for collecting electrical activities

from a large ensemble of neurons. However, compared to intracellular recordings, ex-

tracellular recordings are harder to interpret because they are not direct measurements

of the membrane potential. The first extracellular recording results on freely moving

animals was published in Strumwasser (1958), where ground squirrels were studied

while running around or sleeping. For the details on different techniques and types

of electrodes used in extracellular recordings, refer to McNaughton et al. (1983); Gray

et al. (1995); Wise (2007). The PhD thesis of Ferguson (2011), discusses different

methods, challenges, sources of error and current state-of-art of extracellular as well
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as intracellular recordings. There, as well as in the references therein, the relationship

between the intracellular and extracellular recordings has also been addressed.

The spike trains we use in this dissertation are all collected through extracellular record-

ings using surgically implanted microelectrodes. These thin electrodes have fine enough

tips to indirectly measure the electrical activity of individual neurons. The procedure

of implanting the tip of an electrode into a neural area of the brain is called stereotac-

tic surgery, (Carlson, 2007, pp.138-141). A stereotaxic atlas, which is a collection of

drawings of sections of the brain of a particular animal along with their corresponding

landmarks on the skull, provides precise coordinates for stereotactic surgery, (Carlson,

2007, pp.139). Neuroscientists use the skull landmarks in the stereotaxic atlas to im-

plant the microelectrodes into the corresponding areas of interest in the experimental

subject’s brain. Figure 1.9 provided by Dr. Matthijs van der Meer of the Biology

Department, University of Waterloo, shows the recording unit containing a collection

of the microelectrodes.

Figure 1.9: The recording unit housing microelectrodes used in data collection.

Attaching the unit to the brain, the electrical activities of the corresponding neurons

are recorded using computers. After filtering noise, the number of neurons being mon-

itored by the electrodes and their corresponding spike trains are determined through

a procedure called spike sorting, Lewicki (1998); Pouzat (2008). According to (Wind-

horst and Johansson, 1999, Ch.41 & 42), the very high temporal and spatial resolution

of microelectrode recording has made it the principle method for function and be-

havioral analyses of neurons. After the recording task is complete, the brain may be

perfused and extracted to investigate the exact placement of the microelectrodes and
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their recording sites.

As mentioned above, methods which have been discussed in Sections 1.7.1 and 1.7.2

have different spatiotemporal resolutions. The quality of the recording device as well

as the design of the experiment affect the spatiotemporal resolution. For example, the

spatial resolution of the fMRI method depends highly on the strength of the magnet

being used in the machine. The stronger the magnet, the better the spatial resolution.

Figure 1.10 provided by Dr.van der Meer, shows the spatiotemporal resolutions of the

data collection methods discussed in this section.

Figure 1.10: The spatiotemporal resolutions of neural activity recording methods.

The methods noted here are only some of the techniques used to record neural activity.

For more details about data collection methods and techniques, refer to Windhorst and

Johansson (1999); Martin (1998).

1.8 Discussion

This chapter provided the background knowledge in the neuroanatomy and neuro-

physiology of the nervous system, which is needed for the rest of the thesis. Neural
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spike trains were introduced and the common statistical methods (IF, point processes,

histogram-based, filtering, renewal processes, likelihood-based, Bayesian and nonpara-

metric inferences) for the analysis of such data were discussed. The data collection

techniques, both single cell recordings and recording the activity of an ensemble of

neurons, were also discussed. In the remainder of the thesis, different statistical mod-

els for the analysis and modelling of the neural spike trains will be developed.

1.9 Online data resources

Below is a list of online sources for neural spike trains:

• http://www.tech.plymouth.ac.uk/infovis/LAB_Downloads.htm

• http://gaya.jp/data/

• http://bmi.neuroinf.jp/

• http://www.carmen.org.uk/portal

• http://www.hirnforschung.net/cneuro/

• http://crcns.org/

• http://neurodatabase.org

• https://sites.google.com/site/spiketrainanalysiswithr/Home/analysis-gallery

• http://www.biomedicale.univ-paris5.fr/physcerv/C_Pouzat/Data.html

• http://neuinfo.org/

It should be noted that the second website provides data collected based on the func-

tional multineuron calcium imaging (fMCI) technique, which is an optical data collec-

tion method with a spatial resolution at the single cell level, Takahashi et al. (2007).
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Chapter 2

Multiscale Analysis of Neural Spike

Trains

2.1 Introduction

This chapter studies the multiscale analysis of neural spike trains, through both graph-

ical and Poisson process approaches. The powerful interspike interval (ISI) plot,

Ramezan et al. (2014), which simultaneously visualizes characteristics of neural spiking

activity on different time scales, is employed. We propose multiscale estimates of the

intensity functions of spike trains with additive or multiplicative periodic components

to address the periodicity of the spike trains caused by a stimulus signal or by brain

rhythms. A cross-validation scheme is provided to choose the tuning parameters of the

multiscale model, and its unbiasedness and robustness is studied.

2.2 Statement of the problem

As discussed in Chapter 1, neurons communicate with each other through spike trains.

How spike trains code information in the brain is of great interest, but its complete

characterization is still far from being settled, (Gerstner and Kistler, 2002, p.14), Brown

et al. (2004); Grun and Rotter (2010). Rate coding (see Chapter 1) is one of the most

common ways of neural information coding considered in the literature. It states that

the information in a spike train can be captured by counting the number of spikes in

a short period of time, Brown et al. (1998, 2002); Truccolo et al. (2005). In short, the

stronger the stimulus, the higher the firing rate and vice versa, Gerstner and Kistler

(2002). Therefore, proper estimation of the rate of spiking activity can provide valu-

able information about the stimulus signal, to which the neuron is exposed.
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When studying spike trains as realizations of point processes, one popular approach is

to model spike trains as realizations of an inhomogeneous Poisson process {N(t), t ≥ 0}
with a time varying intensity function θ(t). Here, it is implicitly assumed that it is the

function θ(t) that codes information, Brown et al. (1998); Truccolo et al. (2005). The

time varying intensity function θ(t) allows for modelling long term, temporary and/or

sudden increase/decrease in spiking activity, which are usually seen in spike train data.

These changes in the neural spiking rate can be caused by different neural phenomena

from different time scales.

Neural phenomena happen at a variety of time scales. At the finest scale, the refrac-

tory period is in the order of a few milliseconds. Recall that the refractory period is a

short time interval after each spike during which a neuron cannot fire a second spike.

Burst spiking activity, which is the sudden and frequent spiking activity of neurons

with short interspike intervals, can happen on the scale of less than a second, Izhike-

vich (2000); Li et al. (2009); Tokdar et al. (2010). It is important to emphasize that

the term “bursting activity” has also been associated with the activation of T-type

calcium channels, Llinás and Steriade (2006). However, in this thesis, bursting and

burst spiking activity only refer to short interspike interval and these terms will be

used interchangeably. In contrast, long term potentiation and long term depression,

which are compelling physiological models of learning and memory, are both examples

of neural phenomena which should be studied in time scales of at least an hour, Beck

et al. (2000); Cooke and Bliss (2006); Massey and Bashir (2007). These characteris-

tics from multiple time scales show that neural activity is fundamentally a multiscale

process. The work of Nelson, Nelson (2002), shows that the amount of variability in

the spike trains depends on the time scale. The different time scales of these biolog-

ical phenomena suggest the use of a multiscale approach for the analysis of neural data.

Although there have been discussions in the literature about the effect of time scale on

spike train data analysis (e.g. Nelson (2002) from the interspike interval point of view

or Kass and Ventura (2006)), to the best of our knowledge, there has not been any

study tailored to accommodate phenomena from multiple time scales within a Poisson

process framework. In particular, discretizing time to small bins, a common approach

is to choose a fixed bin size (and according to Omi and Shinomoto (2011) usually in

a subjective manner), and perform the analysis on the binned spike counts. Formal

methods to choose a fixed bin size with respect to some “goodness-of-fit” criteria are

discussed in Omi and Shinomoto (2011); Shimazaki and Shinomoto (2006). The bin-

size may also be chosen based on a combination of biological facts and “goodness-of-fit”
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criteria, Stapleton et al. (2006). In the current chapter, we show that making these bins

of the same size is not appropriate, or efficient. We also provide a multiscale method

for choosing “optimum” bin sizes across the observation window. We have noticed

that the correlation between the spike counts of paired Retinal Ganglion Cell (RGC)

and Lateral Geniculate Nucleus (LGN) neurons in a rhesus monkey study depends on

the time scale, which reinforces the importance of a rigorous and proper choice of bin

size. Using piecewise constant functions to estimate the intensity function of neural

spike trains in an inhomogeneous Poisson process framework, we estimate the intensity

function of the spiking activity in response to a stimulus signal. This problem is of

great interest in neuroscience, as the estimate of the intensity function is a foundation

of the rate coding approach. It can be used to perform prediction, Brown et al. (1998),

or to investigate the relationship between the spiking activity and the stimulus signal

to which the neuron has been exposed [see Figure 3.1 (a)]. In the latter case, it will

be shown that the spike latency (time difference between stimulus onset and the first

spike) can play an important role in estimating the intensity function. We propose

models for the time varying intensity function θ(t), which consist of two parts: c(t),

which captures the multiscale structure of the spike train, and a second term, which

consists of trigonometric functions to model periodicity. These two components are

then combined in a multiplicative or additive fashion to form θ(t), the intensity func-

tion of the neural spike trains. The multiscale estimate is computationally efficient,

Kolaczyk and Nowak (2004, 2005), and if tuned correctly, it captures structures and

variability in the stimulus signal.

2.3 Data visualization: interspike interval (ISI) plots

Data visualization is one of the most powerful tools in statistical data analysis, however,

it is challenging to visualize different properties of large datasets through informative

graphs, Bajaj (1999); Unwin et al. (2006); Gorban et al. (2007); Martin and Urbanek

(2008). A single neuron can fire a large number of times per second, for example,

during bursting activity. On the other hand the complete data set may cover a period

of several hours or days. Similarly, the subjects can have periods of several hours when

asleep, but they can also respond to stimuli in only a few milliseconds. Due to this

multiscale nature of the spiking activity, graphical displays need to enable visualiza-

tion of the properties of biological phenomena from different time scales. Moreover,

since inhomogeneous Poisson process is a common framework for the analysis of spike

train data, it is useful to visualize the data in a way that ensures that departure from

time homogeneity is reflected in the graphs. We employ the Interspike Interval (ISI)

plot, Ramezan et al. (2014), which manages to simultaneously show large and small
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time scales, whilst also being able to visualize the departure from time homogeneity

in the spiking activity. In this plot, the x axis represents the time of the ith firing,

Ti, while the y axis shows the time between the ith and the (i − 1)th firing in the log

scale, log(Ti − Ti−1). Panels (a) and (b) of Figure 2.1 show ISI plots of the data from

connected lateral geniculate nucleus (LGN) and retinal ganglion cells (RGC) of an

anesthetized rhesus monkey during a vision experiment. Panel (c) plots data from a

hippocampal place cell of a freely moving rat and panel (d) shows data from a different

study on hippocampal neurons of a freely moving rat. The marks on the horizontal

axes, also known as a rug plot (Vanables and Ripley, 1999, pp.134-135), represent ac-

tual spike time records.

Different structures in different time scales are visualized in Figure 2.1. Vertical streaks

in the graphs are associated with burst spiking activities. The red vertical boxes show

some of these vertical structures. In panel (c) many of these vertical streaks are visible

inside the red box. This panel represents data from a hippocampal place cell and the

short interspike intervals occur as the rat passes through the place field of the particu-

lar place cell whose data is visualized. The vertical empty streaks (white in this graph)

show temporal neural inactivity, which are associated with the gaps in the rug plots.

Some of these are shown in blue boxes in panels (a) and (b) of Figure 2.1. Reading

panel (c), the pattern in the ISI plot is different under and above the bright green hor-

izontal line. This corresponds to the fact that the burst spiking activity of the place

cell happens at a time scale finer than roughly exp{−0.6} = 0.54 seconds. In other

words if the rat is not on the place field of the cell, the typical interspike interval is

more than 0.54 seconds. The horizontal dark band in panel (d) between −2 and −2.5

in the vertical axis (inside the brown box) translates to 7− 12Hz in frequency domain,

and shows some periodic spiking activity at this frequency range. This characteristic

is known as θ-rhythm and is common among hippocampal cells. It seems that there

exists a change-point at about the vertical dark green line in panel (d). It turns out

that this point is where the rat leaves the track and is no longer running on the maze.

Notice that no observation in any of these plots has a y-axis value of less than -7.

This is consistent with the refractory period, which is usually at least 1 millisecond.

Reading panels (c) and (d), it is clear that due to the high density of the spikes during

the observation interval, the rug plot is not capable of reflecting any information about

the spike train.

It can be seen that the ISI plots in panels (a) and (b) are very similar, but different

from panels (c) and (d) which are the data from different experiments on different areas
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(d) Hippocampal data (brain rhythms)

Figure 2.1: Panels (a) and (b) show sample ISI plots of the spike train data collected

from a retinogeniculate synapse i.e., neurons in the retina (presynaptic) and in the

lateral geniculate nucleus (LGN) (postsynaptic) of an anesthetized rhesus monkey over

a 10-second time window. Panel (c) shows a hippocampal place cell of a freely moving

rat. Panel (d) plots the activity of a hippocampal neuron where some periodic spiking

activity is present (horizontal dark band).

of the brain. This similarity in the ISI plots of panels (a) and (b) is consistent with the

results of Sincich et al. (2007) and Carandini et al. (2007) where the retinal ganglion

cells and their paired lateral geniculate nucleus (LGN) neurons were studied. They,

and the references therein, showed that not all the retinal spikes get transmitted from

the retina to the cortex. In particular, Sincich et al. (2007) showed that it takes two

retinal EPSPs to generate a spike in LGN. This is consistent with the more “sparse”

pattern in panel (b), which represents the LGN data compared to panel (a), the retinal
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data. Lastly, to see how the departure from time homogeneity is illustrated in the ISI

plot, Figure 2.2 shows the ISI plots from a real dataset and a simulated homogeneous

Poisson process. The two datasets share a common average intensity i.e., the average

interspike interval is the same for the datasets in panels (a) and (b).
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(a) real data
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(b) simulated data

Figure 2.2: The interspike interval plots: (a) real data - (b) simulated homogeneous

Poisson process whose average intensity is the same as that of the real data in panel

(a)

While the real data shows both horizontal and vertical structures, the simulated data

is more homogeneous. Furthermore, the minimum value on the y axis of the simulated

data is much smaller than that of the real data, despite the average intensities of the

two processes being the same. While in the real data [panel (a)] all of the interspike

intervals are well above the refractory period limit (the black line), quite a few inci-

dents in the simulated data [panel (b)] are below the refractory period.

On the basis of what has been said, interest lies in developing models for the inten-

sity function of the neural spiking activity which are able to explain biological aspects

of interest from different time scales, such as bursting, temporal inactivity, refractory

period and periodic oscillations. Furthermore, these models should be able to model ef-

ficiently complex temporal relationships between a stimulus intensity and the observed

spike trains.
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2.4 Multiscale Modelling

Multiscale modelling in the neuroscience context, has been mostly applied to EEG

data, particularly in reconstruction of the brain’s electrical activity, Gavit et al. (2001),

spatio-temporal analysis of hippocampal neurons, Sanchez et al. (2006), and identifica-

tion of epileptic spikes, Calvagno et al. (2000); Indiradevi et al. (2008); Ganesan et al.

(2010). There is, however, some literature on multiscale modelling of spike trains. The

work of Nelson (2002) shows that variability in spike trains depends on the time scale,

whose effect on the analysis of neural spike trains is studied in (Sanchez and Principe,

2007, pp.37-40). In another study, Suhail and Oweiss (2004) show that the perfor-

mance of spike detection tests depends on time scale. Modelling experimental data

from a motor control study, Kim et al. (2005) reported that multiscale modelling of

the spike trains based on spike counts in time bins, enriches the representation of hand

movement models. All of these studies motivate using models which can accommodate

neural activity from different time scales, simultaneously. However, we haven’t found

any studies offering a tailored method to estimate the rate function of neural spike

trains when there are obvious spiking patterns from multiple time scales.

2.4.1 Multiresolution Analysis for Likelihoods

We employ the multiscale penalized likelihood method introduced in Kolaczyk and

Nowak (2004, 2005) to estimate the time-varying intensity function. Both references

suggest recursive partitioning of the observation interval, followed by a pruning pro-

cess, which results in merging some of the intervals based on the values of a penalized

loglikelihood function. Before proceeding, we shall provide some details on this multi-

scale methodology.

Consider dividing the time interval [0, T ) by the set of splitting points S = {iT/N}N−1i=1 .

Starting with the original interval [0, T ), a recursive partitioning (RP) is produced by

splitting only one of the intervals at a time at one of the unused splitting points in

S until no splitting point remains, and thus the complete recursive partition (C-RP)

P∗ is obtained. As a special case, N can be a power of 2 i.e., N = 2J and at each

step one of the intervals is divided exactly in half until the complete recursive partition

is produced. This special case is called the recursive dyadic partitioning (RDP) and

its associated C-RP is called the complete recursive dyadic partition (C-RDP). For
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example, three possible complete recursive partitions of the interval [0, 1) are

P ∗1 =
{
{[0, 1)} {[0, 1/2), [1/2, 1)} {[0, 1/4), [1/4, 1/2), [1/2, 1)}

{[0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1)}
}
,

P ∗2 =
{
{[0, 1)} {[0, 1/4), [1/4, 1)} {[0, 1/4), [1/4, 3/4), [3/4, 1)}

{[0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1)}
}
,

P ∗3 =
{
{[0, 1)} {[0, 3/5), [3/5, 1)} {[0, 1/5), [1/5, 3/5), [3/5, 1)}

{[0, 1/5), [1/5, 2/5), [2/5, 3/5), [3/5, 1)}

{[0, 1/5), [1/5, 2/5), [2/5, 3/5), [3/5, 4/5), [4/5, 1)}
}
.

Notice that P ∗1 , P ∗2 and P ∗3 are each a collection of partitions. In the example above,

P ∗1 is a complete recursive dyadic partition, (C-RDP), P ∗2 and P ∗3 are non-dyadic com-

plete recursive partitions (C-RP). Notice that the set of split points S for P ∗1 and P ∗2
is {i/(22)}3i=1, while that of P ∗3 is {i/5}4i=1. During the recursive partitioning process

(either dyadic or non-dyadic), the two intervals produced by splitting a so-called parent

interval at each step are respectively called the left and the right child. For example

in P ∗1 , [0, 1/2) is the parent interval to [0, 1/4) (left child) and [1/4, 1/2) (right child).

The complete recursive partitioning is also called a tree. Figure 2.3 displays P ∗1 and

P ∗2 in the form of trees. Notice that the number of intervals at the bottom of the

tree is usually associated with the term “resolution” as it determines the length of the

sub-intervals at the bottom of the tree.

For computational efficiency, it is assumed here that N = 2J , which does not necessar-

ily imply the RDP (for example see P ∗2 above). The value of J , which determines the

value of N , is called the resolution. Therefore, for a given observation interval [0, T ),

the finer the resolution, the more intervals at the bottom of the tree.

In another example, consider the two partitions P1 and P2 of the interval [0, 1) as

follows;

P1 = {[0, 1/2), [1/2, 1)} ,
P2 = {[0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1)} ,
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Figure 2.3: The recursive partitioning of the interval [0, 1). While (a) shows the dyadic

tree, (b) represents a non-dyadic tree.

where the elements of P1 are unions of the intervals in P2. We show this by P1 ≺P2,

and say that P2 is a refinement of P1 (refinement that includes potential equivalence

will be denoted using “�”). Now, based on an arbitrary partition P, define `(P) to

be the collection of all intervals I found in at least one partition P ′ 4 P. Similarly,

define `NT (P) = {I ∈ `(P), I /∈P}. For the partition P ∗1 in the example above we

have,

`(P) =
{

[0,
1

4
), [

1

4
,
2

4
), [

2

4
,
3

4
), [

3

4
, 1), [0,

1

2
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1

2
, 1), [0, 1)

}
`NT (P) =

{
[0,

1

2
), [

1

2
, 1), [0, 1)

}
Now, consider a stochastic process X(t) observed on the N intervals Ii ≡ [ i

N
, i+1
N

), i =

0, 1, ..., N−1. Let X0, X1, ..., XN−1 and θ0, θ1, ..., θN−1 denote, respectively, the number

of observations and the mean function of the process associated with theN subintervals.

Kolaczyk and Nowak (2004) introduced the following set of four conditions based on

which a so-called multiscale factorization of the likelihood function is constructed.

1. “Hierarchy of recursive partitions. A hierarchy of recursively defined parti-

tions

... ≺P`−1 ≺P` ≺P`+1 ≺ ... (2.4.1)

beginning with [0, 1) and ending with a complete recursive partition C-RP P∗ =

{Ii}N−1i=0 .”

2. “Independence within P∗. The components of X = (X0, X1, ..., XN−1) are

statistically independent and the components of θ are L-independent with respect
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to the likelihood of X, that is,

p(X|θ) =
N−1∏
i=0

p(Xi|θi). (2.4.2)

where θi ∈ Θi, i = 0, 1, ..., N − 1 and θ ∈ Θ = Θ0 × Θ1 × · · · × ΘN−1. Fur-

thermore, the p.d.f. of each Xi is a member of some common parametric family

F ≡ {p(.|θ); θ ∈ Θ ⊆ R}.”

3. “Reproducibility between partitions. The family F is reproducible in θ, in

the sense that, for all I ∈ `(P∗) and ∀θ ∈ ΘNI , the p.d.f of XI ≡
∑

i/N∈I Xi is

p(XI |θI) ∈ F , where θI ≡
∑

i/N∈I θi.”

Although this condition results in computational convenience, it is too limiting.

For example, if θi’s are to be approximated with linear functions rather than

piecewise constant functions, this condition will not be satisfied.

4. “Decoupling of parameters with partitions (i.e. cuts). For any Xi ∼
p(.|θi) ∈ F , i ∈ {i1, i2}, there exists some reparameterization (θi1 , θi2) → (θ, w)

such that

p(Xi1 , Xi2|θi1 , θi2) = p(X|θ)p(Xi1|X,w), (2.4.3)

where X ≡ Xi1 +Xi2 and θ ≡ θi1 +θi2 . That is, the sum X is a cut for (Xi1 , Xi2).

Hence, the marginal inference of the multiscale parameters is possible.”

Based on a family of distributions F the statistic T is called a cut if there exists

a parametrization {Fω : ω ∈ Ω} and partition (ω1, ω2) of ω such that ω1 and

ω2 are L-independent and pω(x) = pω1(t)× pω2(x|T = t). For the details on cuts

refer to Barndorff-Nielsen (1976, 1978); Bar-Lev and Pommeret (2003).

Theorem 2.1 [Kolaczyk and Nowak (2004)] Under the conditions 1-4 there exists a

factorization of the form

p(X|θ) = p(XI00|θI00)
∏

I∈`NT (P∗)

p(Xch(I),l|XI , wI) (2.4.4)

with respect to some reparameterization [θI00 , w] of θ, for I00 ≡ [0, 1) and θI00 ≡∑N−1
i=0 θi.
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The conditions 1-4, which allow for a likelihood multiresolution analysis (likelihood

MRA), are, essentially, similar to the conditions of regular multiresolution analysis,

under which the wavelet decomposition of an L2 function is derived. Table 2.1 (Ko-

laczyk and Nowak, 2003, p.252) shows a comparison of the conditions for likelihood

MRA and those of the wavelet MRA.

Table 2.1: Comparison of wavelet and likelihood MRA

Wavelet MRA Likelihood MRA

Hierarchy of nested subsets Hierarchy of recursive partitions

Orthonormal basis within V0 Independence within P∗

Scalability between subspaces Reproducibility between partitions

Translation within subspaces Decoupling of parameters with partitions (i.e. cuts)

In summary, the wavelet expansion of an L2 function based on the wavelet MRA

translates to the multiscale factorization of the likelihood function in Equation (2.4.4).

This factorization allows for the statistical inference at different scales independent of

other scales. It also allows for marginal inference on the parameters ωI .

2.4.2 A multiresolution probability model for counts

Similar to Brown et al. (2002); Sanger (2002); Dayan and Abbott (2001); Lee et al.

(2010); Kim and Basso (2010), in this chapter, we model neural spike trains as real-

izations of an inhomogeneous Poisson process. Therefore, it is interesting to study the

application of Theorem 2.1 on the Poisson family. Kolaczyk and Nowak (2004) derived

the multiscale probability model for such a distributional family. Consider the function

θ ∈ Θ, where θ(t) ∈ [l, u], for all t ∈ [0, 1]. Let 0 < l < u, and define θi = N
∫
Ii
θ(t)dt

to be the average of θ over Ii. Furthermore, let Xi ∼ Pois(θi). Then the components

in the likelihood factorization (2.4.4) take the form

Xch(I),l | XI , wI ∼ Bin(XI , wI) ,

XI00 | θI00 ∼ Pois(θI00),

where wI = θch(I),l/θI .
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2.4.3 Multiscale penalized likelihood

In the recursive partitioning setup (dyadic or non-dyadic), we denote each interval

(node) by Ijk, j = 0, ..., N, k = 0, ..., j − 1, where j shows the level and k represents

the location of the interval in that level. Let Xjk be the random variable representing

the number of spikes in that interval, where E(Xjk) = cjk. Also, let X0 represents

the number of spikes in the whole observation window [0, T ). Let ĉ(t) be the mul-

tiscale estimate of the intensity function of the underlying Poisson process. Given

N , the resolution of the complete recursive tree, we have ĉ
Nk

=
∫ (k+1)T/N

kT/N
ĉ(t) dt. In

this thesis we assume that ĉ(t) is a piecewise constant function, which implies that

ĉ(t) = ĉ
Nk
/(T/N) , kT/N < t ≤ (k + 1)T/N .

To control the complexity of the estimated intensity function, we use the penalized like-

lihood method. The penalized likelihood function is shown by `(c) − λpen(c), where

`(c) is the Poisson loglikelihood function [Xjk ∼ Pois(cjk)], λ is the penalty factor, and

pen(c) is a penalty function, penalizes the loglikelihood function for number of param-

eters cjk, j = 0, ..., N, k = 0, ..., j − 1. The two child intervals I`jk and Irjk are merged

if the penalized loglikelihood of the parent interval Ijk is larger than sum of those at

the two child intervals. The penalty function pen(c) used in this thesis is simply the

number of parameters at each level, see Kolaczyk and Nowak (2005). In summary,

if the intensity values are similar enough across the two child intervals (consecutive

bins), the two bins are merged, and the complexity of the estimated intensity is re-

duced. For details on penalized likelihood methods refer to Eggermont and LaRiccia

(2001), where density/intensity function estimation based on penalized likelihoods is

discussed. Note that, while increasing N (or resolution) results in more volatile fits,

increasing λ (penalty factor) produces “smoother” fits and vice versa.

Pruning the recursive tree merges some of the time bins, which results in bins Bi of

different sizes ([0, T ) = ∪iBi). One of the neuroscientific gains of allowing for multiple

time scales is that it identifies subintervals of the observation window [0, T ), during

which the spiking rate is constant.

2.4.4 Choosing tuning parameters via cross-validation

The tuning parameters of the multiscale model are N and λ. The smaller the N or

larger λ, the smoother the fit, which shows that the tuning pair (N, λ) can quantita-

tively control for over-fitting. Therefore, proper choice of these parameters is particu-

larly important to avoid over/under fitting. Since it is assumed that N = 2J , we can

think of either N or J as the resolution parameter. Given the data, let Imin and T

43



show the length of the shortest interspike interval and the length of the observation

window, respectively. It is therefore natural to assume that T/N > Imin. This in-

equality imposes a practical upper bound on N , or equivalently on J . Another option,

which is more conservative, is suggested in (Sanchez and Principe, 2007, p.37), where

it is assumed that T/N > 1 millisecond, setting the highest resolution at the refractory

period of neural firing.

Let us assume that the data consists ofm trials i.e., m spike trains from the same neuron

whose unknown intensity function is θ(t). Let ĉi(t) denote the multiscale estimate based

on the ith spike train, consisting of ni spikes, i = 1, 2, ...,m, which is clearly a function

of N and λ. We employ a leave-one-trial-out cross-validation based on the integrated

squared error loss (ISE). At each step of the m iterations of the cross-validation, one

of the m trials is omitted. Equation (2.4.5) provides the estimated pair (N∗, λ∗) via

cross-validation based on ISE. The derivation of this equation is provided in Section

2.7.

(N∗, λ∗)
ISE

= arg min
N,λ


∫ T

0

( m∑
i=1

ĉi(t)

mni

)2
dt− 2

m

m∑
i=1

ni∑̀
=1

∑
j 6=i

ĉj(ti`)/nj

ni(m− 1)

 , (2.4.5)

The time of the `th spike of the ith trial is represented by ti`. Notice that this is the

cross-validation method derived from the kernel estimation method, see (Givens and

Hoeting, 2005, p.285). Our approach is not kernel-based and this method could have

provided biased estimates of the intensity function. However, our simulation study

shows that any potential bias in the multiscale estimate of the intensity function is

small (see Figure 2.4). We have also studied the robustness of the tuning parameters

in Equation (2.4.5). Based on a simulation study, Figure 2.4 shows that the “optimum”

parameters (N∗, λ∗)
ISE

calculated from (2.4.5) can reproduce the true intensity func-

tion. Notice that the bootstrap confidence bands in Figure 2.4 are based on asymptotic

results, therefore, as the sample size increases, the coverage of the confidence bands

improve. The effect of the sample size (100 versus 1000 realizations) is plotted in the

bottom panel of Figure 2.4.

If the stimulus signal is available, and interest lies in understanding the relationship

between the signal and the intensity function, one could optimize the tuning parameters

(N, λ) so that most of the variability in the stimulus signal is explained by the intensity

function. To do so, any loss function could be used to measure the similarity between

the two functions. To perform such cross-validation, the latency to the stimulus on-set

should be estimated, which is discussed briefly in our real data analysis in Section
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Figure 2.4: The performance of the cross validation method. Top left: The true inten-

sity function. Top right: The bias of the estimated intensity function along with a 95%

confidence band calculated based on 1000 simulations (gray area). Bottom left: The

true intensity function (solid line) and its estimate (dashed line) based on 100 simula-

tions of the inhomogeneous Poisson process along with the 95% confidence band (gray

area). Bottom right: The true intensity function (solid line) and its estimate (dashed

line) based on 1000 simulations of the inhomogeneous Poisson process along with the

95% confidence band (gray area)

3.2. Notice that forcing the similarity between the stimulus signal and the spiking

rate needs biological justification. Figure 5.5a shows situations where the spiking rate

changes in the same or in the opposite direction relative to changes in the stimulus

signal.

45



2.5 Modelling periodicity and brain rhythms

One of the properties of neural activity is the periodicity or the rhythms of the brain.

As mentioned in the previous chapter, neural oscillatory activity, which is an inevitable

property of the brain (Buzsáki, 2006, pp.111-119), is categorized according to the fre-

quency range; δ-rhythm (2-4Hz), Walker (1999), θ-rhythm (4-8Hz), Miller (1991); Mal-

hotra et al. (2012), α-rhythm (8-13Hz), Windhorst and Johansson (1999), β-rhythm

(13-30Hz), Lopes da Silva (1991) and γ-rhythm (more than 30Hz), Freeman (1992).

Some of these rhythms can be simultaneously present in a given area of the brain.

Simultaneous presence of multiple frequencies in a vision experiment on monkeys is

reported in Bressler et al. (1993). According to Fischer et al. (2002), θ and γ rhythms

characterize the hippocampal activity in vivo. Furthermore, task-specific cognitive

performance is related to the interactions between different brain rhythms, Tort et al.

(2008, 2009); Axmacher et al. (2010). To integrate cross-frequency information, a

phase-phase coupling of gamma and theta oscillations in the CA1 region of rat hip-

pocampus is discussed in Belluscio et al. (2012). For a review on cross-frequency

coupling refer to Jensen and Colgin (2007). For more details of the brain rhythms,

refer to Buzsáki (2006). Besides brain rhythms, significant frequencies in the tempo-

ral power spectrum of the stimulus signal can also carry over to the spike trains. An

example of such a case is discussed in Chapter 3.

The literature has addressed the analysis of periodicity in the point process frame-

work. Bartlett (1963) discussed spectral analysis for the univariate point processes

and introduced the periodogram of the point process data. He also showed that the

asymptotic properties of this periodogram are similar to those of the conventional pe-

riodogram of continuous time series. He has discussed some details of this work in his

book, (Bartlett, 1978, pp.342-352), whose extension to bivariate case is addressed in

Bartlett (1964). Along the same lines, Lewis (1970, 1972) proposed a periodic intensity

function for an inhomogeneous Poisson process with known frequency, and Vere-Jones

(1982) extended the works of Lewis (1970, 1972) to the case where it is only known

that the frequency is in a specific range. Vere-Jones (1982) also studied the asymptotic

properties of the frequency estimate i.e., the value corresponding to the maximum of

Bartlett’s periodogram. Based on spike train data, Rigas and Tsitsis (1996) performed

a bivariate spectral analysis on gamma and alpha motoneurons to show that the pres-

ence of an alpha motoneuron reduces the effect of a gamma motoneuron on the muscle

spindle. In extending the works of Lewis (1970, 1972) and Vere-Jones (1982), Shao

and Lii (2011) proposed almost periodic intensity functions for inhomogeneous Poisson
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processes as the sum of sinusoidal functions plus a baseline

θ(t) =
K∑
k=1

Ak cos(ωkt+ φk) +B, (2.5.6)

where Ak, B, ωk and φk are unknown parameters satisfying some basic conditions so

that θ(t) is an intensity function. They provided consistent estimates of the frequencies,

phases, and amplitudes and discussed their asymptotic statistical properties in detail.

In a different context, on γ-ray pulsar detection, Bickel et al. (2007, 2008) proposed the

following model for the time-varying intensity function of an inhomogeneous Poisson

process;

θ(t) = µs(t) [(1− θ) + θντ (ft)] , (2.5.7)

where ντ (t) is a periodic function with the initial phase τ . While f , τ and µ are

unknown parameters, the function s(t) is known, and accounts for the sensitivity of the

recording device at time t. They developed a score test to investigate the significance

of the periodic component in this model. We are interested in combining a piecewise

constant function c(t) over our partition with some periodic terms, which accommodate

brain rhythms and/or periodicity in the stimulus signal. Combining the model of Shao

and Lii (2011) [multiple periodic terms in Equation (2.5.6)] with the model of Bickel

et al. (2007, 2008) to include the effect of the multiscale function c(t), Equation (2.5.7),

we propose the following multiplicative θm(t) and additive θa(t) intensity functions for

neural spike trains;

θm(t) = c(t)
{

(1−
K∑
k=1

ηk) +
K∑
k=1

ηk νγk
(
fkt+ ω

(0)
k

)}
, (2.5.8)

θa(t) =

(
1−

K∑
k=1

ηk

)
c(t) +

K∑
k=1

ηkνγk
(
fkt+ ω

(0)
k

)
, (2.5.9)

where η = (η1 , ..., ηK
), γ = (γ1 , ..., γK

), f = (f1 , ..., fK
) and ω(0) = (ω

(0)
1 , ..., ω

(0)
K )

are vector parameters of length K. The restrictions η
k
≥ 0 for k = 1, ..., K and∑

k ηk
≤ 1 guarantee the positivity of the intensity function. The periodic functions

νγ
k
, k = 1, ..., K are defined by

νγ
k
(x) = γ

k
[1 + cos(2π x)] , for ω

(0)
k < x < fk T + ω

(0)
k .

In these equations fk > 0 and −1
4
< ω

(0)
k < 3

4
, k = 1, .., K are, respectively, fre-

quency values (in Hz) and initial phases, Shao and Lii (2011). Notice that while the

non-negative parameters η
k
, k = 1, ..., K, quantify the contribution of the periodic

components relative to the baseline multiscale function c(t), the parameters γ
k
≥ 0,
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k = 1, ..., K are the amplitudes of these periodic components. The derivations of the

loglikelihoods based on these intensity functions are available in Section 2.7.

The smoothed periodogram has been employed to estimate the frequencies f (Brillinger,

2001, pp.131-142). We have noticed, through simulation studies, that the smoothed

periodogram significantly outperforms the raw periodogram in terms of detecting the

correct frequency when c(t) is a piecewise constant function. We have generated 1000

realizations of a Poisson process with the intensity function

θ(t) = c(t)
(

2 + cos(4
√

2π t)
)

0 ≤ t < 20,

where c(t) is a piecewise constant function displayed in Figure 2.5.
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Figure 2.5: The intensity function. upper panel: the multiscale estimate c(t) - lower

panel: the intensity function, θ(t) = c(t)
(

2 + cos(8
√

2πt)
)

.

Utilizing the classic periodogram, we have noted that more than 30% of the time, the

difference between the optimal frequency and the true frequency is more than 0.3Hz.

However, this error rate using the smoothed periodogram drops to under 3%. This may

be because spectral leakage (Arrillaqa and Watson, 2003, pp.39-41) affects the two pe-

riodograms differently. It may also be the effect of the piecewise constant function c(t)
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on the periodic behaviour of the process. For details about smoothed periodograms

refer to (Brillinger, 2001, 131-142) and the references therein.

To estimate the frequencies f , based on an initial search of the smoothed periodogram,

K frequencies corresponding to the K largest peaks of the smoothed periodogram are

extracted and then a more refined search in the neighbourhood of each frequency is

performed. This method is suggested in Shao and Lii (2011), however, we substitute

the raw periodogram with the smoothed periodogram in thier method, which improves

the frequency estimation with some computational cost. Since the initial phases ω(0)

are functionally dependent on the frequency values f , Shao and Lii (2011), we treat the

K frequencies, which result in the K highest values of the smoothed periodogram, and

their associated initial phases ω(0), as plug-in estimates. We then numerically maxi-

mize the 2K-parameter loglikelihood function for η = (η1 , ..., ηK
) and γ = (γ1 , ..., γK

)

using the Nelder-Mead algorithm Nelder and Mead (1965); Lagarias et al. (1998). In

our data analyses, we have noticed that having the plug-in estimates of f and ω(0),

the algorithm converges to the same solution for η and γ regardless of the choice of the

initial parameter values. It is noteworthy that the function c(t) and the frequencies f

are estimated separately. Based on a set of spike trains, the function c(t) is estimated

by the penalized likelihood method discussed in Section 2.4. The frequencies are es-

timated separately using the smoothed periodogram on the spike train data. These

estimates are then put together in the two models (2.5.8) and (2.5.9).

According to Lii Shao and Lii (2011), choosing the number of significant frequencies

in general is still an open question, but model selection techniques can be used to se-

lect K. We initially choose the frequencies which appear in at least half of the trials.

Then, we fit all models with possible subsets of these frequencies and choose the final

model according to a model selection criterion such as the Akaike information criterion

(AIC), Akaike (1974), corrected Akaike information criterion (AICc), Hurvich and Tsai

(1989), or Bayesian Information Criterion, Schwarz (1978). To check the performance

of these model selection criteria, we have performed a simulation study. One hundred

trials were generated from a multiplicative intensity function with K = 3. The pa-

rameter values used in this simulation are f = (2.8, 5, 6.5), ω(0) = (0.4, 0.5,−0.15),

η = (0.1, 0.4, 0.2) and γ = (0.5, 0.7, 1). Table 2.2 shows the results of the simulation

study.

Although the selection criteria unanimously suggest a multiplicative model with K = 2

periodic components (as opposed to K = 3), we have noticed that the fit of this model

relative to the true intensity is remarkably good. The frequency value which has not
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Table 2.2: Average values of different model selection criteria. The true model has

K = 3 periodic components.

K=1 K=2 K=3 K=4

Mult. Addit. Mult. Addit. Mult. Addit. Mult. Addit.

AIC -1957.1 -1944.9 -1958.1 -1951.9 -1950.3 -1936.7 -1942.6 -1927.7

AICc -1943.6 -1931.4 -1947.2 -1941.1 -1933.9 -1920.2 -1922.8 -1907.9

BIC -1809.2 -1797.0 -1824.9 -1818.8 -1787.6 -1773.9 -1765.1 -1750.2

been picked by any of the model selection criteria is f = 2.8Hz. Notice that the

contribution of each periodic term in Equations (2.5.8) and (2.5.9) depends on the

parameter values γ and η. In this simulation, the frequency 2.8Hz is associated with

the smallest values in both parameters. Therefore, the contribution of this periodic

term is not as big as those of the other two periodic components (associated with 5

and 6.5Hz frequencies). Not surprisingly, 2.8Hz is the frequency which has not been

identified in the selected model with K = 2 periodic components. Figure 2.6 plots

the true and the estimated intensity functions. The true intensity function (black

solid curve) has K = 3 periodic components with f = (2.8, 5, 6.5) and the estimated

intensity (dashed red curve), selected with the model selection criteria (AIC, AICc,

BIC), has K = 2 periodic components with f̂ = (5, 6.4).

2.6 Discussion

In this chapter we proposed a general and rich family of intensity functions for the

neural spiking activity in an inhomogeneous Poisson process framework. Multiscale

additive and multiplicative models with periodic components were introduced. We

also employed the powerful ISI plot, which can visualize biological phenomena from

different time scales. It is important to emphasize that the multiscale framework laid

out in this chapter is computationally fast. The computational efficiency of our model

is particularly noteworthy because in many situations spike trains are collected over a

long period of time, which makes the intensity function estimation problem a computa-

tionally intensive task. Our models are fast enough that computational issues are not

the main concern in their implementation. The following are some details and discus-

sions about several observations we have had about the topics discussed in this chapter.

The first observation is about the difference between the recursive partitioning and the

recursive dyadic partitioning estimators. Let ĉ
RP

(t) represent the multiscale estimate
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Figure 2.6: Comparison between the estimated (K=2) and the true (K=3) intensity

function.

of the intensity function based on the recursive partitioning (RP), and ĉ
RDP

(t) that

of the recursive dyadic partitioning (RDP). Kolaczyk and Nowak (2004) have shown

that ĉ
RDP

(t) and ĉ
RP

(t) can be computed using O(N) and O(N3) penalized likelihood

comparisons, respectively. Here, N is the number of intervals at the bottom of the

recursive partitioning tree. Clearly, for large N , the difference between the compu-

tation time of ĉ
RP

and ĉ
RDP

becomes an important issue. We noticed that the two

methods are also different in terms of the “windowing effect.” To explain this effect,

consider the 5 intervals shown in Figure 2.7. Starting from interval #1, at each level,

the observation window has been slightly shifted to the right. The “windowing effect”

of a given method is then defined to be the difference between the estimates of the

intensity function produced by the method, in the intersection of these intervals (gray

area). Clearly, we would like the windowing effect to be as as small as possible. The

effect of partitioning on statistical inference has been also addressed in a different con-

text by Ferguson (1974) and Paddock et al. (2003).

We have noticed that ĉ
RP

(t) has much lower windowing effect. In other words, ĉ
RP

(t)

is more stable during the shaded area across the different observation intervals. This

is not surprising since the recursive dyadic partitioning only allows for dyadic splits

of the hierarchical intervals. This imposes limitations on the structure of the recur-
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Figure 2.7: The intersection of consecutive intervals, during which the windowing effect

can be noticed.

sive partitioning, and makes the corresponding estimator ĉ
RDP

(t), quite sensitive to

small changes in the end-points of the observation interval [0, T ). However, ĉ
RP

(t) is

estimated by optimizing over a “forest of trees” rather than over the class of dyadic

trees, Kolaczyk and Nowak (2005). The almost negligible windowing effect of the RP

estimator motivated us not to employ the computationally efficient RDP estimator.

Having said that, it is noteworthy that despite the limited dyadic structure, for a fixed

observation window, ĉ
RDP

(t) is a reasonable fit and is significantly faster than ĉ
RP

(t)

to compute, particularly, as N increases. For risk optimality comparisons between ĉ
RP

and ĉ
RDP

refer to Kolaczyk and Nowak (2004), where it has been shown that under

mild conditions, and based on a squared Hellinger loss function, the risk of the esti-

mators ĉ
RP

and ĉ
RDP

are bounded above by O((logN/N)2/3) and O((log2N/N)2/3),

respectively.

Last, but not least, we would like to mention that the multiscale, multiple frequency

methodology laid out in this manuscript (inhomogeneous Poisson process) can be ex-

tended to the non-Poisson cases. The IMI model of Kass and Ventura (2001) and the

model of Pillow et al. (2008) are some examples of non-Poisson models for neural spike

trains. To the best of our knowledge, none of the common non-Poisson models are in

the multiscale, multiple frequency framework. The intensity function of non-Poisson

spike trains can still be estimated via multiscale methods with appropriate modifica-

tions, however, the optimality results of the multiscale estimator provided by Kolaczyk

and Nowak (2004, 2005) are only valid under a specific family of distributions. In

Chapter 4 and Chapter 5 a biologically justifiable model for neural spike trains (called

Skellam Process with Resetting) is developed, in which the parameters are estimated

based on the multiscale method laid out in this paper.
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2.7 Cross-validation and likelihood derivations

2.7.1 Derivation of the cross-validation method

Here we derive the cross-validation formula introduced in Equation (2.4.5). The es-

timate of the multiscale intensity based on the ith replication, ĉi(t), has been scaled

so that
∫ T
0
ĉi(t) dt = ni. Defining f(t) = c(t)/

∫ T
0
c(t) dt, f̂i(t) = ĉi(t)/ni the problem

becomes a density function estimation. Let

f̂−i(t) =
∑
j 6=i

f̂j(t)

m− 1

=
∑
j 6=i

ĉj(t)

nj(m− 1)
, (2.7.10)

and

f̂(t) =
m∑
i=1

f̂i(t)

m

=
m∑
i=1

ĉi(t)

mni
. (2.7.11)

Following similar derivation of the cross-validation method in (Givens and Hoeting,

2005, p.285), we can write the integrated square error as

ISE(J, λ) =

∫ T

0

[
f(t)− f̂(t)

]2
dt

=

∫ T

0

[f̂(t)]2 dt− 2E
(
f̂(t)

)
+

∫ T

0

[f(t)]2 dt .

The last term in the equation above is constant. Although we employ a multiscale esti-

mation technique, we use the conventional estimate
∑m

i=1 f̂
−i(t)/n for the expectation

in the second term. This is adapted from the conventional cross-validation method for

the kernel density estimation. Thus, minimizing

CV (J, λ) =

∫ T

0

[f̂(t)]2 dt− 2
̂

E
(
f̂(t)

)
=

∫ T

0

[f̂(t)]2 dt− 2

m

m∑
i=1

∑ni

`=1 f̂
−i(ti`)

ni

should be a reasonable choice for the parameters (J, λ). Substituting f̂(t) and f̂−i(t)

from Equations (2.7.10) and (2.7.11), the proof is complete.
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2.7.2 Loglikelihood derivation for the multiplicative model

Recall that

θ(t) = c(t)
{

(1−
K∑
k=1

ηk) +
K∑
k=1

ηkνγk
(
fk × t+ ω

(0)
k

)}
is the proposed intensity function. The loglikelihood function based on the spike train

{ti, i = 1, ..., n} is

`(η, γ, f, ω(0);n) =
n∑
i=1

log
(
θ(ti)

)
−
∫ T

0

θ(t) dt .

Notice that c(t) is a piecewise constant function over the observation window (0, T ] =

∪j(Dj, Dj+1], where Dj, j = 1, 2, ..., N are the breakpoints of the subintervals at the

bottom of the recursive tree and ∆Dj = Dj+1−Dj. Therefore,
∫ T
0
c(t) dt =

∑
j cj∆Dj

where cj = c(t), t ∈ (Dj, Dj+1]. We have

`(η, γ, f, ω(0);n) =
n∑
i=1

log
(
θ(ti)

)
−
∫ T

0

θ(t) dt

=
n∑
i=1

log c(ti) +
n∑
i=1

log

{
1−

K∑
k=1

ηk +
K∑
k=1

ηkνγk
(
fkt+ ω

(0)
k

)}
︸ ︷︷ ︸

A

+

−
∫ T

0

c(t)
[
1−

K∑
k=1

ηk +
K∑
k=1

ηkγk +
K∑
k=1

ηkγk cos
(

2π(fkt+ ω
(0)
k )
)]
dt

=
n∑
i=1

log c(ti)−
∫ T

0

c(t) + A−
N∑
j=1

∫ Dj+1

Dj

cj

[
−

K∑
k=1

ηk +

+
K∑
k=1

ηkγk +
K∑
k=1

ηkγk cos
(

2π(fkt+ ω
(0)
k )
)]

dt

=
n∑
i=1

log c(ti)−
N∑
j=1

cj∆Dj + A−
N∑
j=1

cj

( K∑
k=1

ηk(γk − 1)
)

∆Dj +

−
N∑
j=1

K∑
k=1

cj
ηkγk
2πfk

[
sin
(

2π(fkDj+1 + ω
(0)
k )
)
− sin

(
2π(fkDj + ω

(0)
k )
)]

.
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Therefore,

`(η, γ, f, ω(0);n) =
n∑
i=1

log c(ti)−
N∑
j=1

cj∆Dj

+
N∑
i=1

log

{
1−

K∑
k=1

ηk +
K∑
k=1

ηkγk +
K∑
k=1

ηkγk cos
(

2π(fkti + ω
(0)
k )
)}

−
N∑
j=1

K∑
k=1

ηk(γk − 1)cj∆Dj

−
N∑
j=1

K∑
k=1

cj
ηkγk
2πfk

[
sin
(

2π(fkDj+1 + ω
(0)
k )
)
− sin

(
2π(fkDj + ω

(0)
k )
)]

.

2.7.3 Loglikelihood derivation for the additive model

Similar to the multiplicative case, for 0 < t ≤ T we can write,

θ(t) =

(
1−

K∑
k=1

ηk

)
c(t) +

K∑
k=1

ηkγk +
K∑
k=1

ηkγk cos
(
fkt+ ω

(0)
k

)
.

The loglikelihood function is

`(η, γ, f, ω(0);n) =
n∑
i=1

log
(
θ(ti)

)
−
∫ T

0

θ(t) dt

=
n∑
i=1

log

{(
1−

K∑
k=1

ηk

)
c(ti) +

K∑
k=1

ηkγk +
K∑
k=1

ηkγk cos
(
fkti + ω

(0)
k

)}
︸ ︷︷ ︸

A

+

−
∫ T

0

[(
1−

K∑
k=1

ηk

)
c(t) +

K∑
k=1

ηkγk +
K∑
k=1

ηkγk cos
(
fkti + ω

(0)
k

)]
dt

= A−

(
1−

K∑
k=1

ηk

)∫ T

0

c(t) dt−
K∑
k=1

ηkγkT +

−
K∑
k=1

[
ηkγk

∫ T

0

cos
(

2π(fkt+ ω
(0)
k )
)
dt

]
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= A−

(
1−

K∑
k=1

ηk

)
N∑
j=1

cj∆Dj −
K∑
k=1

ηkγkT +

−
K∑
k=1

ηkγk
2πfk

[
sin
(

2π(fkT + ω
(0)
k )
)
− sin

(
2πω

(0)
k

)]
= A−

(
1−

K∑
k=1

ηk

)
N∑
j=1

cj∆Dj +

−
K∑
k=1

ηkγk

[
T +

1

2πfk

[
sin
(

2π(fkT + ω
(0)
k )
)
− sin(2πω

(0)
k )
]]

.

Therefore,

`(η, γ, f, ω(0);n) =
n∑
i=1

log

{(
1−

K∑
k=1

ηk

)
c(ti) +

K∑
k=1

ηkγk +
K∑
k=1

ηkγk cos
(
fkti + ω

(0)
k

)}
+

−

(
1−

K∑
k=1

ηk

)
N∑
j=1

cj∆Dj +

−
K∑
k=1

ηkγk

[
T +

1

2πfk

[
sin
(

2π(fkT + ω
(0)
k )
)
− sin(2πω

(0)
k )
]]

.
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Chapter 3

Data Analysis Using Multiscale

Poisson Models

3.1 Introduction

This chapter applies the methodology of Chapter 2 on both simulated and real data.

Through these data analyses we show that the multiscale methodology performs well

in the analysis of neural spike trains. To estimate the variability of the multiscale

estimators, quasi-likelihood bootstrap confidence intervals for the multiscale intensity

function are developed. In an example, it is shown that the reconstruction quality of

a complex intensity function demonstrates the ability of the multiscale methodology

to crack the neural code. We also show, through an example, that the correlation

coefficient among spike trains depends on the timescale.

3.2 Retinogeniculate synapse data analysis

We have employed the additive and multiplicative models of Chapter 2 on the data

from a retinogeniculate synapse study. The lateral geniculate nucleus (LGN), which

is located in the thalamus of the brain, receives input from retinal ganglion cells and

is heavily involved in our perception of visual stimuli. The LGN also regulates the

strength of the signals sent to the V1 area in visual cortex. Three types of cells exist

in LGN: magnocellular (M cells), parvocellular (P cells), and koniocellular (K cells).

Depending on their responses to the stimulus signal, each cell is either ON-center or

OFF-center, (Nicholls et al., 2012, p.27) and Casagrande and Ichida (2011). It is

known that only about half of the retinal spikes are transmitted to the cortex by the

lateral geniculate nucleus (LGN), however, the unknown rules of such selections moti-
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vate studies on the spike trains of the retinogeniculate synapse, Carandini et al. (2007);

Sincich et al. (2007).

The data includes recordings from connected LGN and retinal ganglion cells (RGC)

of a rhesus monkey. The subject was anesthetized and a neuromuscular blockade was

established to prevent eye movement during recordings. Installing contact lenses, the

eyes of the experimental subject were focused on a translucent tangent screen located

144cm away. The stimulus signal was a beam of diffused LED directed to the back of

this screen at the centre of the receptive field. This signal was also restricted to the

receptive field to avoid stimulating other retinal cells whose receptive fields may have

overlapped with the cells being recorded. The light intensity changed constantly with

a temporal power spectrum between 0.2 and 80Hz, producing approximately the lumi-

nance intensities measured when viewing natural scenes. The data includes repeated

trials (5 seconds each) with the same stimulus signal across trials. For more details

on the experimental methods and the recording process, refer to Sincich et al. (2007).

The recorded LGN cells are either magnocellular or parvocellular. Combining the cell

type with response type (ON-center of OFF-center), there are four possible combi-

nations, from each of which we had one pair of physically connected RGC-LGN cells

with repeated trials. Figure 3.1 shows the raster plot of the first 25 replications from

each combination. The curve superimposed on the raster plot of the LGN replications

represents the stimulus intensity. It is clear in Figure 3.1 that paired LGN-RGC cells

have similar responses to a stimulus signal, with the RGC cell having a rate of almost

twice as much as the LGN’s [see Sincich et al. (2007)].

For clarity, notice that ON-centre parvocellular recordings will be fully analyzed here.

Later in this chapter, we represent the multiscale fits and frequency estimates (Table

3.3) based on the recordings from the ON-centre parvocellular cell. Similar results to

these ones for other pairs of neurons (OFF-centre and/or magnocellular), are provided

in Section 3.4. We employ the recursive partitioning (RP) method, which sacrifices

some computational efficiency compared to the RDP method. However, RP searches

over a much richer class of recursive partitions, which turns out to be crucial in this case.

The justification of this choice, is related to the windowing effect, which was discussed

in Chapter 2. For computational convenience we assume that N = 2J , J = 1, 2, 3, ... .

Furthermore, the one-trial-at-a-time cross-validation process for the tuning parameters

J and λ is based on a random sample of 35 trials from the 129 available replications.

The search for optimum λ is over 100 equally spaced values on the closed interval

[0, 1.5], while the search for optimum N is over the set {21, 22, ..., 210}. Based on this

scheme, we have used the formula introduced in Equation (2.4.5) on recordings from
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Figure 3.1: The raster plot of the first 25 replications of each pair. The lower part of

each panel (gray background) shows the RGC data while the upper panel plots the LGN

data. The superimposed curve is the scaled stimulus intensity, which is the same across

the trials for RGC and LGN neurons.

repeated trials of paired LGN and RGC neurons and the optimal parameter pairs are

presented in Table 3.1.

One interesting observation is that the estimated tuning parameters based on the reti-

nal data (RGC) are quite close to those of its connected LGN neuron. Notice that
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Table 3.1: The estimated pair (N∗, λ∗) from Equation (2.4.5) for the two connected

RGC and LGN cells.

Cell (N∗, λ∗)

RGC (26 , 0.030)

LGN (26 , 0.015)

N∗ = 26 based on both the LGN and the RGC data. The λ∗ values are also quite close

to each other (given the range of values over which the optimization was done). This

is consistent with the similarity in the spiking activity of these paired neurons plotted

in the two panels of Figure 3.1. We have also noticed that the correlation coefficient

between spike counts based on LGN and RGC data is negatively correlated with N ,

which shows that spike count correlation (a.k.a. “noise correlation”) is also a mul-

tiscale phenomenon. This phenomenon has also been reported by Kass and Ventura

(2006). Table 3.2 shows the average correlations for different values of N . Notice that

although spike count correlation had no role in cross validation, N∗ = 26 still results in

a very high correlation between the spike counts of the two neurons. For a relatively

recent study on the influential (experimental and physiological) factors on correlation

measurements refer to Cohen and Kohn (2011).

Figure 3.2 summarizes the multiscale fits of the intensity function for the 129 trials

of both RGC and LGN cells by plotting its average along with the 2.5% and 97.5%

quantiles based on the repeated trials.

As mentioned at the end of Section 2.4.4 in Chapter 2, we can also perform the cross-

validation based on the maximum similarity of the fit to the stimulus signal to explain

most of the variability in the stimulus signal. The raster plots in the upper panels

of Figure 3.1, particularly for the first few peaks of the stimulus signal, show some

stimulus onset or latency, which is the time difference between the stimulus onset

and the first spike. Spike latency Ventura (2004); Pawlas et al. (2010); Uzuntarla et al.

(2012) is not a fixed number across trials and thus can be considered a random variable.

This biological property of neurons has an important role in this particular setting for

cross-validation. We have noticed that if the cross validation is applied on any given

trial while adjusting for this latency, the estimate of the intensity function will capture

a lot of the structure in the stimulus signal. Performing the cross validation across all

trials with the average latency estimate produces a fit which smooths out a lot of the

variability in the stimulus signal. Figure 3.3 plots the two scenarios.
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Figure 3.2: The average of the multiscale fit of the intensity function across 129 trials.

The blue and the red dashed lines represent, respectively, 97.5% and 2.5% quantiles

based on the 129 repeated trials.
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Figure 3.3: The scaled fits based on the estimated tuning parameters. The fit in panel (a)

is based on one replication while that of panel (b) is based on all of the 129 replications.

The ĉ(t) function plotted in panel (b) is for the same data as in panel (a). The raster

plots for the two panels are from the same replication. The stimulus intensity is shown

in red.
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Figure 3.4 shows the multiscale fit associated with the pair (N∗, λ∗) = (26, 0.01)

for one randomly chosen replication (rep. #26), where the gray area represents a

95% point-wise confidence band based on the quasi-likelihood with variance function

V (µ) = φ1 + φ2µ. In the variance function, µ is the mean, V (µ) is the variance as a

function of the mean, and the two coefficients φ1 and φ2 determine the exact form of the

variance function V (µ), and are estimated from the data through standard regression

methods. We have noticed that the choice of the variance function greatly depends on

the resolution parameter N (or equivalently J). For example if the “optimal” value for

J was 7 as opposed to 6, then V (µ) = φ1µ
φ2 would have been a better choice for the

variance function. This shows the multiscale nature of spike count variability, which

has been previously addressed in Nelson (2002). To compute the confidence band we

have simulated 500 spike trains from the estimated intensity function, which has been

plotted in black in Figure 3.4, and used the 2.5% and the 97.5% sample quantiles. This

band was then scaled according to the aforementioned variance function.
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Figure 3.4: The multiscale fit based on a randomly chosen replication (rep. #26 ). The

gray area shows a 95% point-wise confidence band.

Table 3.3 represents the 5 most common frequencies across the 129 trials of both RGC

and LGN cells. We choose the frequencies which appear in at least half of the trials.

Based on this table, we choose K = 3 periodic terms, as three frequencies appear in at

least about 50% of trials.

The dominant frequency in the data (2.8Hz), lies in the δ-rhythm range. Although this
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Table 3.3: The 5 most repeated frequencies (in Hz) across the 129 trials. In brackets

is the percentage of trials which reported the frequency.

RGC 2.8(100%) 3.8(65.9%) 3.0(55%) 4.2(48.8 %) 5.6(46.5%)

LGN 2.8(98.5%) 3.8(55.8%) 5.6(48.8%) 4.2(31.0%) 5.4(17.1%)

is consistent with the result of Nuñez et al. (1992), where the presence of a δ-rhythm

in the LGN of an anesthetized cat has been reported, notice that this could be due

to the large peak at 2.81Hz in the temporal power spectrum of the stimulus intensity.

Figure 3.5 plots the Fourier transform of the stimulus signal.
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Figure 3.5: The Fourier transform of the stimulus signal (the curve super imposed on

the LGN trials in Figure 3.1). The red dashed line shows the maxima which is at

2.814Hz.

Figure 3.6 shows the fit of the multiplicative, Equation (2.5.8), and the additive, Equa-

tion (2.5.9), models for a retinal ganglion cell (RGC) as well as its connected LGN neu-

ron. The estimated parameters are presented in Table 3.4. Notice that the models are

different in terms of complexity as η
k
≈ 0 implies that the kth periodic component can

be omitted from the model. Since the models with fewer than three frequencies were

all outperformed by the one with 3 periodic components, we only present the results

of the models with K = 3 periodic components. We have also estimated the intensity

function using Bayesian Adaptive Regression Splines (BARS) introduced in Dimatteo

et al. (2001), which is a Bayesian free-knot curve fitting technique. The BARS fits for

the RGC and LGN are also plotted in Figure 3.6. It is clear in this figure that relative

to BARS, more details of the dynamics of the spiking activity are picked up by the
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multiscale, multiple frequency models. Looking at panel (a) in Figure 3.3, it is clear

that these extra details are related to the changes in the stimulus signal, which are

smoothed out in the BARS fit.

Table 3.4: Parameter estimates and 95% confidence intervals for the multiplicative and

the additive models.

Neuron Parameter Multiplicative model Additive model

RGC f̂ (2.8, 3.8, 3.0) (2.8, 3.8, 3.0)

ω̂(0) (0.454, 0.468, 0.400) (0.454, 0.468, 0.400)

η̂1 0.007 (0.001, 0.02) < 10−6

η̂2 < 10−6 < 10−7

η̂3 < 10−8 < 10−5

γ̂1 16.635 (1.801, 32.909) 17.872

γ̂2 10.882 15.650

γ̂3 11.831 11.749

AIC −1464.774 −1467.874

AICc −1422.774 −1434.941

BIC −1347.522 −1362.061

LGN f̂ (2.8, 3.8, 5.6) (2.8, 3.8, 5.6)

ω̂(0) (0.417, 0.458,−0.106) (0.417, 0.458,−0.106)

η̂1 0.247 (0.109, 0.427) < 10−7

η̂2 0.391 (0.165, 0.629) < 10−8

η̂3 0.362 (0.179, 0.575) < 10−8

γ̂1 1.452 (0.927, 2.033) 13.889

γ̂2 0.669 (0.348, 1.022) 12.356

γ̂3 1.001 (0.646, 1.398) 14.441

AIC −835.566 −798.142

AICc −766.683 −763.086

BIC −692.575 −689.469

To test the goodness-of-fit, Brown et al. (2002) developed a Kolmogorov-Smirnov (KS)

test based on the time-rescaling theorem, which is later corrected for time-discretization

effects in Haslinger et al. (2010). Comparing the multiscale models with BARS, not

only does the multiscale model provide a better fit to the LGN data, it is also com-

putationally much faster than BARS. In this dataset, estimation of the multiscale

function c(t) took about 0.015 seconds, while the BARS fit took 21.5 seconds for the
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RGC data, and 15.3 seconds for the LGN data on a 2.3GHz Intel Core 2 Duo with

2 GBs of memory. The optimization of the loglikelihood for K = 3 took another 5-6

seconds, which is still three to four times faster than the BARS method. The computa-

tional speed of the multiscale model is particularly important, because spike trains are

usually very large datasets (hours of multiple trial recordings with ISIs in the order of

milliseconds), and computational issues are quite common in this research area. Figure

3.7 shows the results of the goodness-of-fit test of Haslinger et al. (2010) on our models.

Empirical CDF

U
n

ifo
rm

 C
D

F

RGC neuron

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Multiplicative

Additive

BARS

Empirical CDF

U
n

ifo
rm

 C
D

F

LGN neuron

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Multiplicative

Additive

BARS

Figure 3.7: Kolmogorov-Smirnov goodness-of-fit test for BARS, the additive, and the

multiplicative models.

In the additive models, none of the periodic terms contribute to the intensity function

i.e.,
∑

k ηk
≈ 0 (notice that ηk ≥ 0 for k = 1, ..., K). This is why the confidence

intervals associated with the parameters of the additive model have not been computed.

In fact, additive models suggest that θ̂(t) = ĉ(t), the multiscale estimate with no

periodic components. While model selection criteria (AIC, AICc and BIC) all suggest

the multiplicative model for LGN, they all choose the additive model for the RGC

data. Caution should be used in employing these models as none of them provide

a particularly good fit for the RGC data; however, both multiplicative and additive

models provide reasonable fits to the LGN data, both of which outperform the BARS

fit (see Figure 3.7).
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3.3 Discussion

In this chapter a dataset on the retinogeniculate synapse data (RGC and LGN neurons)

was modeled using the multiscale methodology of Chapter 2 within the framework of

an inhomogeneous Poisson process.

Based on the results presented in Table 3.1, it is clear that the time-scale of the spiking

activity of the two retinal ganglion cell (RGC) and its connected LGN neuron are the

same. We have also observed that the correlation coefficient between the spike counts

of these two neurons is a multiscale quantity i.e., it depends on the bin size during

which the spike are counted (see Table 3.2).

Pointwise bootstrap confidence bounds plotted in Figure 3.4 are the sample quantiles

of 500 simulations of an inhomogeneous Poisson process with the intensity function

plotted in black. These quantiles have been adjusted for the variance function of the

associated quasi-likelihood. An alternative algorithm for computing the confidence

band which we have found similar in terms of the final result is provided below.

Given the total number of spikes, n, and the number of intervals at the bottom of

the recursive tree, N , the random vector of the spike counts at these N intervals

follow a Multinomial distribution MN(n, p1, ..., pN
). The parameters p1, ..., pN

can

be estimated from the initial spike train. Now, executing the following 5 steps, one

can generate realizations of the intensity function whose sample quantiles can be used

towards pointwise confidence band.

1. Generate n∗ ∼ Pois(n)

2. Generate (n1, ..., nN
) ∼ MN(n∗, p̂1, ..., p̂N

)

3. Generate ni samples from Uniform(Ii), where Ii, i = 1, 2, ..., N are the N subin-

tervals at the bottom of the partitioning tree.

4. Aggregate all N vectors from step 3 together and sort the numbers in an increas-

ing fashion.

5. Estimate the multiscale intensity function based on the simulated process from

the previous step and go to step 1.

Notice that this algorithm assumes that the Poisson distribution is a good approxima-

tion for the distribution of the total number of spikes of a given trial. If this is not
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a valid assumption, the variance of the estimation can be modified through a similar

quasi-likelihood method employed earlier in this chapter.

We showed that in some cases, the proposed multiscale model for the intensity func-

tion of neural spike trains fitts the data better than the BARS model. Beside being

computationally efficient, the multiscale model also outperforms BARS in terms of

reconstruction of the stimulus signal.

3.4 Supplementary plots and frequency values for

other neurons

3.4.1 Summary of the multiscale fits for other neurons

The following figures provide the average of multiscale fit for the other 3 paired neu-

rons, whose data is plotted in Figure 3.1. These are OFF-centre M and P cells as well

as an ON-centre P cell. Each combination includes multiple trials from an LGN neuron

as well as its connected retinal ganglion cell. The coloured dashed lines show 2.5% and

97.5% quantiles based on the repeated trials within each time bin. Figures 3.8 and 3.9

plot the results.

We have extracted the five most common frequencies for all pairs of neurons in Tables

3.5-3.8. Notice that since both the size of cell (P-type vs M-type) and the response

type of the cell (ON-centre vs OFF-centre) changes, the common frequencies are not

completely the same, however, the majority of them are repeated in all cells. The RGC

data is extracted from the input to the corresponding LGN neuron. In each table, RGC

means the retinal ganglion cell connected to the LGN cell mentioned in that table.
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Figure 3.8: The multiscale fit for Parvocellular cells. The red and blue dashed lines are

the 2.5% and 97.5% quantiles based on the repeated trials.
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Figure 3.9: The multiscale fit for Magnocellular cells. The red and blue dashed lines

are the 2.5% and 97.5% quantiles based on the repeated trials.
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Table 3.5: The 5 most repeated frequencies in Hz (and their percentages) across the

129 trials.

RGC (ON-center P cell) 2.8(100%) 3.8(65.9%) 3.0(55%) 4.2(48.8 %) 5.6(46.5%)

LGN (ON-center P cell) 2.8(98.4%) 3.8(55.8%) 5.6(48.8%) 4.2(31%) 5.4(17.1%)

Table 3.6: The 5 most repeated frequencies in Hz (and their percentages) across the

193 trials.

RGC (ON-center M cell) 9.4(87.0%) 2.8(78.2%) 4.2(69.9%) 5.6(53.4%) 6.4(42.5%)

LGN (ON-center M cell) 2.8(83.9%) 9.4(69.9%) 4.2(63.2%) 5.6(54.9%) 6.4(47.7%)

Table 3.7: The 5 most repeated frequencies in Hz (and their percentages) across the

400 trials.

RGC (OFF-center P cell) 3(100%) 2.8(99.3%) 4.2(97.5%) 3.6(68.5%) 5.4(61.3%)

LGN (OFF-center P cell) 4.2(94.5%) 3(93.8%) 2.8(88.8%) 5.4(66.8%) 3.6(39.3%)

Table 3.8: The 5 most repeated frequencies in Hz (and their percentages) across the

301 trials.

RGC (OFF-center M cell) 11.6(97.7%) 2.8(56.5%) 3.6(55.5%) 5.6(49.2%) 4.2(47.5%)

LGN (OFF-center M cell) 11.6(98.7%) 15.4(76.7%) 12.2(65.4%) 7.0(39.2%) 9.2(35.5%)
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Chapter 4

Univariate Skellam Process With

Resetting

4.1 Introduction

This chapter introduces the Skellam process and studies its properties in both the

homogeneous and inhomogeneous cases. In order to study neural spike trains in the

framework of a Skellam process, we also introduce the Skellam Process with Resetting

(SPR). Introduction of this process (SPR) and its application in the analysis of neural

spike trains is one of the major contributions of this dissertation. The Skellam process,

which is the difference between two independent Poisson processes, codes information

with two parameters/time-varying functions and is biologically justifiable. In fact, mo-

tivated by the process of neural integration, (Carlson, 2007, 62-63), the spikes in the

observation interval (0, T ] are modelled as the records of the so-called Skellam pro-

cess. The only difference between the records of a Skellam process and SPR is that

in the latter process, we add a short period of “resetting” after each spike, which is

motivated by the refractoriness of neurons and independence considerations. The two

Poisson processes defining the Skellam process play the role of the integrated presy-

naptic inhibitory and excitatory effects. Motivated by the time-dependent behaviour

of neural spiking activity, which was discussed in the previous chapter, we also study

the properties of this Skellam model under different time-scales.

4.1.1 Neural inhibition

Modelling neural spiking activity in an inhomogeneous Poisson process framework is

a common approach in the literature. However, one of the weaknesses of Poisson pro-

cess is its poor performance in approximating the interspike interval (ISI) distribution,
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Kass and Ventura (2001); Brown et al. (2002, 2003). Furthermore, there are periods of

neural inactivity, during which the only conclusion within Poisson process framework

would be that the intensity function is zero (or close to zero). While a zero intensity is

not an incorrect conclusion, it does not provide rich biological insight to the time inter-

vals during which the neuron does not initiate spikes. Neural integration is the process

by which a neuron aggregates the synaptic potentials. If the integrated postsynaptic

potential reaches the threshold of excitation (≈-60mV) at time t0, a spike is released

(Carlson (2007) pp.45, 62-63). During the spiking inactivity periods the neuron is not

necessarily resting, rather it is inhibited by the strong inhibitory postsynaptic poten-

tials. This means that there are still many chemical activities at its synapses (high

amount of input), but the integrated postsynaptic potential does not meet the thresh-

old of excitation. The more inhibited, the longer the inactivity period, hence, there

could be autocorrelation among interspike intervals (ISIs). The authors de Ruyter van

Steveninck et al. (1997) showed that the spike trains which show exponential ISIs and

seem to be well-approximated through Poisson process, are, in fact, more reproducible

than the simulated Poisson spike trains. In other words, the individual trials in the

raster plot of real data look more like each other compared to that of simulated data

from Poisson process. The dependence among ISIs, along with the limitations in the

correlation structure of Poisson models, Kocherlakota and Kocherlakota (1992), moti-

vate the idea of utilizing a more detailed model for studying neural spike trains.

4.2 Skellam distribution and Skellam process

Consider two independent random variables X(1) and X(2) where X(i) ind.∼ Pois(λi).

X = X(1) − X(2) is called a Skellam random variable with parameters λ1 and λ2,

denoted by X ∼ Sk(λ1, λ2). Studied by Skellam (1946), the probability mass function

of X is

pλ1,λ2(x) = exp {−(λ1 + λ2)}
∞∑
y=0

λx+y1 λy2
(x+ y)! y!

=

(√
λ1
λ2

)x

exp {−(λ1 + λ2)}Bx(2
√
λ1λ2),

where x = 0,±1,±2, ... and Bx(·) is the modified Bessel function of the first kind

(Abramowitz and Stegun, 1972, p.375),

Bx(t) =
∞∑
n=0

(t/2)x+2n

n!(x+ n)!
. (4.2.1)
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The probability generating function of a Skellam distribution with parameters λ1 and

λ2 is

GX(w) = E
(
wX
)

= exp
[
− (λ1 + λ2) + λ1w +

λ2
w

]
for w 6= 0. (4.2.2)

It is also easy to check that if Xi ∼ Sk(λ1i, λ2i), i = 1, ..., n are independent Skellam

random variables, then

X1 ±X2 ± · · · ±Xn ∼ Sk
(
λ11 ± λ12 · · · ± λ1n , λ21 ± λ22 · · · ± λ2n

)
.

The special case of the Skellam distribution where λ1 = λ2 was first studied by Ir-

win (1937). Based on the cumulants of Poisson random variables, Skellam (1946)

addressed the distribution of the difference between two independent Poisson random

variables, which is now called Skellam distribution. Calling it the Poisson difference

distribution, Alzaid and Omair (2010) provided the maximum likelihood estimates of

the parameters λ1 and λ2 based on the properties of the Bessel function and studied

their asymptotic distribution and compared them to the moment estimates. Karlis

(2003) used a bivariate Poisson model for analysis of sports data and used Skellam dis-

tribution as the distribution of the difference between the scores of two teams. Poppe

et al. (2008) used the Skellam distribution for the illumination allowance in a video

surveillance study. For some applications of Skellam distribution/process in finance as

well as the definition and some properties of the Skellam-Lèvy process see Barndorff-

Nielsen et al. (2012). For some neuroscience applications of Skellam distribution see

Shin et al. (2010), where they modelled changes in the firing activity of the neurons

before and after a task through a Skellam distribution.

4.2.1 Homogeneous Skellam process

Modelling discrete-valued price changes, the Skellam process was first introduced in

Barndorff-Nielsen et al. (2010) as the Skellam-Lèvy process. Studying the cumulants

of the “standard Skellam process”, in which λ1 = λ2 = 0.5, Barndorff-Nielsen et al.

(2010, 2012) call this process a “discrete-valued analogy of Brownian motion.” We

define the Skellam process in the classic framework of Poisson process as follows;

Definition 4.1 An integer-valued process {S(t) : t ≥ 0} is said to be a homogeneous

Skellam process with nonnegative parameters (λ1, λ2) if

1. S(0)=0,
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2. For all values t1 < t2, the random variable S(t2) − S(t1) is independent of the

times of incidents during [0, t1] (independent increments),

3. Pr
[
S(t+ h)− S(t) = 0

]
= 1− (λ1 + λ2)h+ o(h),

4. Pr
[
S(t+ h)− S(t) = 1

]
= λ1h+ o(h),

5. Pr
[
S(t+ h)− S(t) = −1

]
= λ2h+ o(h),

6. Pr
[∣∣S(t+ h)− S(t)

∣∣ ≥ 2
]

= o(h),

as h→ 0.

Alternatively, Skellam process can be defined as follows,

Definition 4.2 An integer-valued process {S(t) : t ≥ 0} is said to be a homogeneous

Skellam process with nonnegative parameters (λ1, λ2) if

1. S(0)=0,

2. {S(t), t ≥ 0} has independent increments,

3. For all values t, s ≥ 0, S(t+ s)− S(s) ∼ Sk(λ1t, λ2t).

Looking at Definition 4.2, the distribution of the increments is Skellam, which is an

infinitely divisible distribution. More specifically, it is a Lèvy process. This guaran-

tees the existence of a stochastic process which satisfies the conditions of the definition.

To the best of our knowledge, defining the Skellam process in this form was first

introduced in neuroscience contexts in Ramezan et al. (2010) and was employed later

to model real data (from visual cortex) in Ramezan et al. (2012). The results of these

research studies are presented in this chapter and the next one.

Theorem 4.1 Definitions 4.1 and 4.2 are equivalent.

Proof: The proof is provided in Section 4.8.

Theorem 4.2 Let Ni = {Ni(t), t ≥ 0}, i = 1, 2 be two independent Poisson processes

with rates λ1 and λ2, respectively. The stochastic process {S(t) = N1(t)−N2(t), t ≥ 0}
is a Skellam process with nonnegative parameters (λ1, λ2).

Proof: The proof is provided in Section 4.8.

Figure 4.1 displays a realization of two Skellam processes derived from independent

Poisson processes {Ni(t), t ≥ 0}, i = 1, 2.
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Figure 4.1: Examples of homogeneous Skellam process. (a)&(b): Homogeneous Poisson

processes N1 and N2 with equal parameters λ = 5 per unit time - (c)&(d): Skellam

processes based on N1 and N2. (c): {S(t) = N1(t) − N2(t), t ≥ 0} and (d):{S(t) =

N2(t)−N1(t), t ≥ 0}. The rug plots in (a) and (b) show the event times.

4.2.2 Inhomogeneous Skellam process

The homogeneous Skellam process defined above is a stationary process. We define the

inhomogeneous Skellam process, or alternatively Skellam process with time-varying

parameters, as follows.

Definition 4.3 An integer-valued process {S(t) : t ≥ 0} is said to be an inhomoge-

neous Skellam process with time-varying parameters λ1(t) and λ2(t), t ≥ 0 if
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1. S(0)=0,

2. {S(t), t ≥ 0} has independent increments,

3. Pr
[
S(t+ h)− S(t) = 0

]
= 1−

(
λ1(t) + λ2(t)

)
h+ o(h),

4. Pr
[
S(t+ h)− S(t) = 1

]
= λ1(t)h+ o(h),

5. Pr
[
S(t+ h)− S(t) = −1

]
= λ2(t)h+ o(h),

6. Pr
[∣∣S(t+ h)− S(t)

∣∣ ≥ 2
]

= o(h).

as h→ 0.

Alternatively, it can be defined as,

Definition 4.4 An integer-valued process {S(t) : t ≥ 0} is said to be an inhomoge-

neous Skellam process with time-varying parameters λ1(t) and λ2(t), t ≥ 0 if

1. S(0) = 0,

2. {S(t), t ≥ 0} has independent increments,

3. For all values t, s ≥ 0, S(t+ s)− S(s) ∼ Sk
( ∫ t+s

s
λ1(y) dy ,

∫ t+s
s

λ2(y) dy
)

.

Similar to the homogeneous case, the existence of such process is guaranteed due to

the infinite divisibility of the Skellam distribution for the increments. Of course, this

is tied to the fact that Skellam process is, in fact, a Lèvy process.

Theorem 4.3 Definitions 4.3 and 4.4 are equivalent.

Proof: The proof is provided in Section 4.8.

The inhomogeneous version of Theorem 4.2 is the following,

Theorem 4.4 Let Ni = {Ni(t), t ≥ 0}, i = 1, 2 be two independent inhomogeneous

Poisson processes with time-varying parameters λ1(t) and λ2(t), t ≥ 0, respectively.

The stochastic process {S(t) = N1(t) − N2(t), t ≥ 0} is an inhomogeneous Skellam

process with time-varying parameters λ1(t) and λ2(t).

Proof: The proof is similar to that of Theorem 4.2.
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Figure 4.2: Examples of inhomogeneous Skellam process. (a),(b),(d),(e): Inhomoge-

neous Poisson processes with their intensity functions in red. - (c)&(f): Inhomogeneous

Skellam processes based on the pairs (a),(b) and (d),(e). (c): (a)-(b) and (f):(d)-(e)

Figure 4.2 plots two realizations from inhomogeneous Skellam processes.

We will see that the spike times can be modelled as the record times1 of a Skellam

process, and in fact, the underlying Skellam process is not observable. In particular, the

negative part of Skellam process, during which the neuron may be strongly inhibited, is

not observable. It was mentioned in Chapter 1 that according to neural integration, a

spike is initiated when the excitatory postsynaptic potentials “dominate” the inhibitory

ones. Therefore, it seems logical to think of the records of the Skellam process as the

spike times, as a record occurs every time the process {N1(t), t ≥ 0} (aggregated

excitatory input) “dominates” {N2(t), t ≥ 0} (aggregated inhibitory input), i.e. when

1The record at time t is the maximum of the process up to and including time t.
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N1 > N2. Therefore, the only observable part of the process are these record times,

and the rest of the process is observed as 0. This matter, along with the effect of

the refractory period, motivate introducing a new process which will be called Skellam

process with resetting.

4.3 Skellam process with resetting (SPR)

We would like to study spike trains in the Skellam process framework. Analogous to

the integrated spiking activity of excitatory and inhibitory presynaptic neurons are, re-

spectively, {N1(t), t ≥ 0} and {N2(t), t ≥ 0}. Therefore, {S0(t) = N1(t)−N2(t), t ≥ 0}
plays the role of a jump process version of a neural integration process. Notice that

{S0(t), t ≥ 0} introduces negative values, which can (but do not necessarily have to)

correspond to the resting or inhibition periods (depolarization), during which the inte-

grated inhibitory postsynaptic potential dominates the integrated excitatory ones, i.e.

S0(t) < 0. However, as was mentioned before, these negative values are not observable.

Every time a neuron fires, most of its chemical mechanisms and the membrane poten-

tial reset during the refractory period (Nicholls et al., 2012, 120-121). Recall that the

(absolute) refractory period is a short interval after a spike (1-3 milliseconds), during

which the initiation of a second spike is not possible for the neuron. To incorporate

this biological fact (resetting of the chemical mechanisms) into our model, after each

record of the Skellam process (spike time) the process is reset, i.e., its value is brought

back to zero.

This resetting, which is completely motivated by the neurophysiology of neurons, will

bring mathematical convenience to our modelling. Notice that when the process resets,

its path goes back to 0, giving it a fresh start. This motivates the modelling assump-

tion that conditional on the nth resetting time, i.e. the nth spike time, the (n + 1)th

spike time is independent of the rest of the spiking history. In other words, the only

history which is taken into consideration is the elapsed time from the previous spike.

In Chapter 5, where the likelihood function based on spike trains is derived, we will

see that this assumption of conditional independence simplifies the derivation of the

likelihood function. This modelling assumption is, essentially, a similar idea to the

Inhomogeneous Markov Interval (IMI) model introduced in Kass and Ventura (2001),

where they formulated the conditional intensity, θ(t|Ht) in Equation (4.3.9), as a func-

tion of the experimental clock and the time elapsed since the previous spike. However,

SPR and IMI have some fundamental differences. SPR is much more biologically jus-

tifiable than most of the common statistical approaches in modelling the conditional
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intensity function of neural activity. The dynamics of sub-threshold neural activity

(below the threshold of excitation) is captured through the difference λ1− λ2, or in an

inhomogeneous process framework through the difference λ1(t)− λ2(t).

On the other hand, the fact that the spike times and the records of the Skellam process

agree in this model is due to the fact that a record occurs every time N1(t) dominates

N2(t), which is analogous to the domination of inhibitory potentials by the excitatory

ones. It is important to emphasize that using records is motivated by the biological

law of neural integration. Provided below is the formal definition of Skellam process

with Resetting (SPR).

Definition 4.5 Let Rt be the record of the Skellam process S0 = {S0(t), t ≥ 0} on the

interval [0, t) with S0(0) = 0, i.e.,

Rt = max
{
S0(t

∗) : t∗ < t
}
.

Skellam Process with Resetting (SPR) is defined to be

S =
{
S0(t)−Rt, t ≥ 0

}
.

For data analysis and estimation purposes, we will discretize time into very small

intervals, which consequently, translates the “exact” spike times into a sequence of

zeros and ones depending on whether or not a spike exists in each of these small

intervals. Let X(1) and X(2) be independent Poisson processes with respective rates λ1
and λ2 observed over the interval (0, T ]. Suppose this time interval is divided into k

subintervals of length h, i.e.,

(0, T ] =
k⋃
i=1

(
(i− 1)h , ih

]
. (4.3.3)

Define X
(1)
i and X

(2)
i to be event counts in the ith subinterval. Define Xi to be

Xi =


+1 X

(1)
i > X

(2)
i ,

0 X
(1)
i = X

(2)
i ,

−1 X
(1)
i < X

(2)
i .

(4.3.4)

Notice that Xi 6= X
(1)
i −X

(2)
i , but as h goes to zero (or k goes to infinity), Xi converges

to X
(1)
i −X

(2)
i . For a given value of h limiting to 0, the probability function of Xi is

xi -1 0 1

Pr(Xi = xi) p− p0 p+
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where

p− = λ2h+ o(h), (4.3.5)

p0 = 1− (λ1 + λ2)h+ o(h), (4.3.6)

p+ = λ1h+ o(h), (4.3.7)

which are the same as the probabilities listed in Definition 4.3. Notice that right after

each record, the Skellam process is forced to zero by Definition 4.5. Therefore, in the

discretized version we have,

Pr
(
Xi+1 = 0

∣∣∣ a record of S0 occurred in
(
(i− 1)h, ih

])
= 1, (4.3.8)

which imposes the resetting after each spike (record of S0), and brings back the values

of the Skellam process S0 to 0.

A sample path or trajectory of the SPR {S(t), t ≥ 0} is shown in Figure 4.3. Starting

at the origin, at each step the random variable increases (+1), decreases (-1) or stays

at the same value (0). The black dots represent the spike times and the red lines show

the forced-to-zero periods after each spike.

Assuming that {N0(t), t ≥ 0} is the counting process associated with S0, i.e. it counts

the number of records of S0, the conditional intensity function is

θ(t|Ht) = lim
h→0

Pr
(
N0(t+ h)−N0(t) = 1

∣∣Ht

)
h

(4.3.9)

where Ht = {t1, t2, ..., tN(t)} is the history of the process up to time t. If the counting

process N0 is Poisson, then it will be independent of the history Ht. However, the

resetting of the process in SPR brings dependence among consecutive spikes.

4.4 Skellam process and Markov chain

Discretizing time in Equation (4.3.3)’s fashion, the Skellam process with resetting is

a Markov Chain with the state space {1, 0,−1,−2, ...} and the Transition Probability

Matrix (TPM) 
0 1 0 0 0 . . .

p+ p0 p− 0 0 . . .

0 p+ p0 p− 0 . . .

0 0 p+ p0 p− . . .
...

...
...

...
...

 . (4.4.10)

82



Time

S 0
(t)

● ● ● ● ●

0 10 20 30 40 50 60

−6
−4

−2
0

2

Figure 4.3: A toy example plotting a spike train of 5 spikes and a possible trajectory of

the process. The black dots represent spike times and the red short lines are associated

with the resetting of the process.

Since all states of this chain communicate, it is irreducible. Under the condition λ1 > λ2
the chain is positive recurrent. Furthermore, the diagonal elements p0 > 0 imply the

chain is aperiodic. Solving the system of equations

πj =
∞∑
i=1

πiPij j = 1, 2, ...

subject to
∑

j πj = 1, the equilibrium distribution π = (π1, π2, ...) of this ergodic chain

is

π1 =
p+ − p−

1 + p+ − p−
,

πi =

(
p−
p+

)i−2
π1
p+

i = 2, 3, ... (4.4.11)

where the states {1, 0,−1, ...} are mapped to i ∈ {1, 2, ...} i.e., πi is the long-run

proportion of visits to the state (2 − i). This limiting distribution is in the form of

Power Series Distribution (PSD) which was introduced initially in Noack (1950) and
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the properties of its cumulants and factorial cumulants were later studied by Khatri

(1959). Patil (1962) generalized the results to the truncated version of PSD and called

it Generalized Power Series Distribution (GPSD).

Two special cases of π are when p− approaches either of the limiting values 0 or p+ .

We have

π1 ↗
p+

1 + p+

as p− ↘ 0

π2 ↗
1

1 + p+

as p− ↘ 0

This is consistent with the time-discretized version of the “Poisson process with reset-

ting,” where most of the visits are to the state 0 and occasional visits to state 1. Now

let us study the case where p− → p+ . In this case, the condition for positive recurrence,

p− < p+ , fails at the limit and we have πi → 0, i = 1, 2, ..., which means that all states

are transient and the equilibrium distribution does not exist.

It is noteworthy that based on the equilibrium (stationary) distribution π, one crude

estimate for the expected number of spikes in the observation period (0, T ] is π1(T/h).

As h→ 0, this estimator converges to (λ1 − λ2)T , which is the mean value of a homo-

geneous Skellam process over (0, T ] with parameters λ1 and λ2.

4.4.1 Over dispersion

Let Mi be the random variable representing the value of the Skellam process with

resetting at time i. Let us call this random variable under equilibrium M . Then the

Moment Generating Function (MGF) of M is

E
(
etM
)

=
∞∑
i=1

πi e
(2−i)t

= π1 e
t +

π1
p+

∞∑
i=2

et(2−i)
(
p−
p+

)i−2
= π1

(
et +

1

p+ − p−e−t

)
(4.4.12)

Based on the MGF (4.4.12) we calculate the first two moments,

E(M) =
∂

∂t
E
(
etM
) ∣∣∣

t=0

= π1

(
1−

p−
(p+ − p−)2

)
(4.4.13)
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and

E(M2) =
∂2

∂t2
E
(
etM
) ∣∣∣

t=0

= π1

(
1 +

2p2−
(p+ − p−)3

+
p−

(p+ − p−)2

)
(4.4.14)

It is easy to check the mean-variance relationship based on the moments of the equi-

librium distribution. We have,

V ar(M)− E(M)

=
−p4

+
− p4− + 2 p+p− + 4 p2

+
p− − 6 p+p

2
− + 4 p3

+
p− − 6 p2

+
p2− + 4 p+p

3
− − p

2
− + 2 p3−

(p+ − p−)2(1 + p+ − p−)2

=
2 p+p−

(
2 (p+ − p−)2 + 2 p+p− + 2 p+ − 3 p− + 1

)
− (p2

+
+ p2−)2 − p2−(1− 2 p−)

(p+ − p−)2(1 + p+ − p−)2

Figure 4.4 plots the function above.

Figure 4.4: The “variance minus mean” function based on the moments derived from

the equilibrium distribution of the Markov chain.

Notice that although the difference V ar(M)−E(M) can be negative for some parameter

values (see Fig. 4.4), for the majority of the parameter space, we have over-dispersion

i.e., V ar(M) > E(M).
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4.5 The effect of time-scale

The importance of time scale in the analysis of neural spike trains was discussed in

detail in Chapter 2. Employing the Skellam process with resetting for the analysis of

neural spike trains, it is interesting to study the time-scale-dependent properties of this

model.

4.5.1 Interspike interval distribution

We start studying the interspike interval in discrete time and address the continuous

time as the limiting case. Consider Xi ∈ {−1, 0, 1} defined in Equation (4.3.4). Then,

Sn =
∑n

i=1Xi forms a random walk with state space {−1, 0,+1}. Given that S0 = 0,

we are interested in the first passage time to +1. Define the random variable N0 =

min{n : Sn = +1}. Since the starting point is 0 and spike times are associated with

S(t) = +1, the discrete version of interspike interval (ISI) is, in fact, N = N0+1 (this is

due to the extra 0 imposed by resetting). We assume λ1 > λ2 so that Pr(N <∞) = 1.

The probability generating function (pgf) of N is

Φ(t) =
(1− tp0)−

√
(1− tp0)

2 − 4t2p−p+

2p−
. (4.5.15)

The derivation of this generating function, Equation (4.5.15), is provided in Section 4.8.

Calculating the moments of the interspike interval (N + 1) based on the derivatives of

the probability generating function (4.5.15), we have

E(N) =
∂

∂t
Φ(t)

∣∣∣
t=1

= 1 +
1

p+ − p−
, (4.5.16)

E(N2) =
∂2

∂t2
Φ(t)

∣∣∣
t=1

+ E(N)

=
2p+

(p+ − p−)3
+

1

p+ − p−
+ 1 . (4.5.17)

These equations allow for the moment estimates of the parameters p− and p+ (equiva-

lently λ1 and λ2). We have
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p̂+ =
N2 −N

2(N − 1)3

p̂− =
N2 −N

2(N − 1)3
− 1

N − 1

Based on the discrete time Interspike interval N , the continuous-time ISI is T = Nh.

Replacing this in the equations above, dividing both sides by h, and taking the limit

as h→ 0 we get

λ̂1 =
T 2

2(T )3

λ̂2 =
T 2

2(T )3
− 1

T

Performing the same process in Equations (4.5.16) and (4.5.17) we have

E(T ) =
1

λ1 − λ2
(4.5.18)

E(T 2) =
2λ1

(λ1 − λ2)3
(4.5.19)

Notice that under Poisson process (λ2 = 0), these formulas simplify to the first two

moments of the exponential distribution. The parameter λ2 contributes to the tail of

the interspike interval, and makes it heavier relative to the exponential distribution of

the Poisson process.

4.5.2 Connection with Brownian motion

Recall the random walk defined by the partial sums Sn =
∑n

i=1Xi where Xi (i.i.d.) is

defined in Equation (4.3.4). For any m ≥ 1, and for any positive sequence {t1, ..., tm},
ti 6= tj for i 6= j, the multivariate C.L.T., (Anderson, 2003, p.86), and the Kolmogorov’s

existence theorem, (Øksendal, 2010, p.10), imply that all finite dimensional distribu-

tions of the process { Sbt/hc√
bt/hc

, t > 0} converge to multivariate normal distribution as

h→ 0 (or equivalently, as n = h−1 →∞). The mean and the variance of Xi are

µx = p+ − p− ,
σ2
x = (p+ + p−)− (p+ − p−)2 .
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Employing Donsker’s Theorem, Billingsley (1968), the process

Sn(t) =
1

σx
√
n

bntc∑
i=1

(Xi − µx) +
(
nt− bntc

) 1

σx
√
n

(
Xbntc+1 − µx

)
(4.5.20)

converges to a Wiener process. Therefore, Bn(t) = (λ1 − λ2)t +
√
λ1 + λ2Sn(t) con-

verges to a Brownian motion (call it Bt) with drift µ = λ1−λ2 and diffusion parameter

σ =
√
λ1 + λ2. Equivalently, one can say that the process { Sbt/hc√

bt/hc
, t > 0} converges to

the Brownian motion Bt with drift µ = λ1− λ2 and diffusion parameter σ =
√
λ1 + λ2

(with the interpolation for continuity correction of the sample path).

It is important to recall that the difference between the two Poisson processes N1

and N2, which represent the counting process version of the inhibitory and excitatory

synaptic input, form the random walk Sn discussed above. This random walk does,

in a way, play the role of the membrane potential, which in long run, is a Brownian

excursion.

4.5.3 Large time-scales

Now let us consider time scales much larger than the interspike intervals. What con-

stitutes “large” depends on parameters λ1 and λ2. In particular, if NT denotes the

spike count in a time widow of size T , we are interested in time windows during which

Pr(NT ≤ 0|λ1, λ2) < ε, for a given ε > 0. For example, the area on or under each

curve in Figure 4.5 shows the parameter space which satisfies Pr(NT ≤ 0|λ1, λ2) < ε,

for ε ∈ {0.001, 0.005, 0.01, 0.05}.

Now, consider a Skellam process S0 with parameters (λ1, λ2) within the aforementioned

parameter space. Modelling neural spike within the framework of Skellam process with

resetting S, the spike times are {t : S(t) = 1}. Notice that these spike times are also

the record times of the underlying Skellam process S0 from which the SPR S has been

derived. Based on the Skellam process S, and spike times t1, t2, · · · tNT
, the number of

spikes in the time interval (0, T ], NT , can be written as

NT = St1 + (St2 − St1) + (St3 − St2) + · · ·+ (StNT
− StNT−1

) , (4.5.21)

which is clearly a Skellam random variable with parameters λ1tNT
and λ2tNT

as each

term in the summation above is a Skellam random variable. Figure 4.6 show a simu-

lation study where a Skellam process with parameters (21, 5) has been simulated 500

times. Assuming ε = 0.001, Pr(NT ≤ 0|λ1 = 21, λ2 = 5) < ε. The histogram is based
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Figure 4.5: The area on or under each curve shows the parameter space in which

Pr(NT ≤ 0 |λ1, λ2) < ε.

on the spike counts over the observation interval, and the red curve is the Skellam den-

sity function with the same parameters to those used to simulate the Skellam process.
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Figure 4.6: The histogram of the simulated spike counts from a Skellam process with pa-

rameters (λ1, λ2) = (21, 5). The superimposed red curve is the Skellam density function

with the same parameters.
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4.6 Spike count and ISI variability

Let N(t) show the number of spikes up to and including time t. Conventional models

for N(t) (usually Poisson) suffer from lack of flexibility in their mean-variance struc-

tures. While Poisson variability assumption is valid in some cases, significant departure

from Poisson variability is usually observed in different areas of the brain, Maimon and

Assad (2009); Nelson (2002), or in different time-scales, Ramezan et al. (2014). This

departure from Poisson variability can also be due to the type of stimulus signal to

which the neuron has been exposed, de Ruyter van Steveninck et al. (1997). We showed

that in large time scales, the spike count in SPR follows a Skellam distribution, hence

is an over-dispersed model (relative to Poisson). Recall that under this framework

E(N(t)) = λ1 − λ2 and V ar(N(t)) = λ1 + λ2. Figure 4.7 shows a simulation study

which confirms this property of SPR.
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Figure 4.7: Mean-variance relationship in the Skellam process with resetting. Each

point in the plot represents the mean and variance of the spike counts for 1000 trials

where λ1, λ2 ∈ {1, 2, ..., 50}. The red dashed line represents mean=variance.

We can also look at the dispersion problem from an ISI point of view. The coefficient of

variation of the ISI distribution (CV
ISI

) is a measure of dispersion. For a Poisson model,

CV
ISI

= 1. Modelling ISI with Gamma or Inverse Gamma distributions, CV
ISI

< 1,

and for certain parameter values Inverse Gaussian can result in CV
ISI

> 1. Based on

the first two moments of the ISI in the Skellam model,

CV
ISI

=

√
λ1 + λ2
λ1 − λ2

> 1.
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The retinogeniculate synapse data which was discussed in Chapter 3 is overdispersed

relative to Poisson model, and has ĈV
ISI

> 1. This makes the Gamma and the

Inverse-Gamma distributions inappropriate for such data, but clearly, the ISI distribu-

tion based on the Skellam model is more approperiate.

From the retinogeniculate synapse data, we have randomly chosen a trial and fitted

the SPR as well as Poisson process model. Figure 4.8 shows the ISI percentiles of

simulated data from these two models, which confirms the heavier tail of SPR. Each

dot in this plot shows a percentile.
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Figure 4.8: The percentiles of the interspike intervals of Poisson process and SPR

(in seconds). Panel (a) represents percentiles based on fitted models to an RGC trial

and panel (b) shows those of an LGN trial. The numbers on the dots represents the

percentiles, i.e. 100th, 99th, 98th,... percentiles.

Table 4.1 includes the first two sample moments based on the real data and simulated

SPR and Poisson models. It is clear that SPR values are closer to real data, particularly

for the second moment.
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Table 4.1: The first two moments of the interspike intervals (ISI) based on real data,

and simulated Poisson and SPR data.

Neuron Data Ê(ISI) Ê(ISI2)

RGC Real 0.0202 0.00041

SPR 0.0215 0.00046

Poisson 0.0192 0.00071

LGN Real 0.0371 0.0014

SPR 0.0394 0.0016

Poisson 0.035 0.0028

4.7 Discussion

This chapter introduced and studied the properties of univariate Skellam process and

univariate Skellam process with resetting (SPR) in both homogeneous and inhomoge-

neous cases. We also discussed the theoretical properties of the Skellam model under

different time scales.

One motivation for utilizing Skellam process in the analysis of neural spike trains is

that it allows for the over-dispersed spike counts (relative to Poisson), which has been

previously addressed by using Negative Binomial models, Onken et al. (2009); Pillow

and Scott (2012). However, multivariate extensions of Negative Binomial models do

not have flexible dependency structure for the simultaneous analysis of multiple neu-

rons. In Chapter 6 we introduce the multivariate version of SPR, which is capable of

modelling multiple neural spike trains in a multivariate point process frame-work. The

other advantage of SPR over the conventional methods is that it has nice biological

interpretation, where the Skellam process is motivated by neural integration, and the

resettings are due to the refractoriness of neurons.

It is important to emphasize that we have assumed that the two Poisson processes N1

and N2, which define the Skellam process {S0(t) = N1(t)−N2(t), t ≥ 0}, are indepen-

dent. We also mentioned that these two processes mimic the integrated excitatory and

the inhibitory activity of presynaptic neurons. The spiking activities of the presynap-

tic neurons are not necessarily independent and this is why we only used the neural

integration as an analogy to Skellam process, furthermore, the neural integration is not

simply the linear process of adding up the excitatory and inhibitory effects.
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The main body of SPR is formed by the records of Skellam process. The resettings,

essentially, delay the records by some values h > 0. Unfortunately, there is not much

literature on the records of relatively more complex processes such as Skellam pro-

cess. Studying the records of Skellam process is of both mathematical and biological

interest. Our model is suitable for the ISIs because of its relatively long tail. More

detailed theoretical study on the records of the Skellam process will help developing

better models for interspike intervals.

Skellam process with resetting (SPR) introduced in this chapter can be generalized to

the multivariate case in order to analyze multiple neural spike trains simultaneously.

This multivariate problem is discussed in the Chapter 6.

4.8 Proofs of the theorems and some preliminary

results on the mean-variance relationship

This appendix provides the proofs to the theorems discussed in this chapter, as well

as some preliminary results on the mean-variance relationship in the Skellam process

with resetting.

4.8.1 Proof of Theorem 4.1

Proof: First, we show that Definition 4.1 implies Definition 4.2. Let {S(t), t ≥ 0} be

a Skellam process. Therefore, {S(t), t ≥ 0} satisfies the conditions listed in Definition

4.1. Following a similar proof to that of (Grimmett and D., 2001, pp.247-248), we show

that for any values s, t ≥ 0, the probability generating function of the random variable

S(t + s) − S(t) is the same as that of a Skellam random variable with nonnegative

parameters (λ1t, λ2t). Let us show define S∗(t, s) = S(t+ s)− S(t)

Pr (S∗(t+ h, s) = j) =
∞∑

i=−∞

{
Pr
[
S∗(t, s) = i

]
Pr
[
S∗(t+ h, s) = j|S∗(t, s) = i

]}
=

j+1∑
i=j−1

{
Pr
[
S∗(t, s) = i

]
Pr
[
S∗(t+ h, s) = j|S∗(t, s) = i

]}
+ o(h).

Define the notation Pj(t, s) = Pr [S∗(t, s) = j]. We have,

Pj(t+ h, s) = λ1hPj−1(t, s) + Pj(t, s)− (λ1 + λ2)hPj(t, s) + λ2hPj+1(t, s) + o(h).

Taking Pj(t, s) to the other side, dividing by h and taking the limit as h→ 0 we have
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d

dt
Pj(t, s) = λ2

(
Pj+1(t, s)− Pj(t, s)

)
− λ1

(
Pj(t, s)− Pj−1(t, s)

)
. (4.8.22)

Equation (4.8.22) is a differential-difference equation for Pj(t, s). The boundary con-

dition is Pj(t, t) = Pj(s, s) = I{0}(j) where I{0}(j) is an indicator function. Let

G(w, t, s) =
∑∞

j=−∞ Pj(t, s)w
j denote the probability generating function of S∗(t, s).

Clearly, G(0, t, s) = 0. For w 6= 0 we have,

∞∑
j=−∞

d

dt
Pj(t, s)w

j =
∞∑

j=−∞

{
λ2

(
Pj+1(t, s)− Pj(t, s)

)
− λ1

(
Pj(t, s)− Pj−1(t, s)

)}
wj

= λ2

[ 1

w

∞∑
j=−∞

Pj+1(t, s)w
j+1 −

∞∑
j=−∞

Pj(t, s)w
j
]

−λ1
[ ∞∑
j=−∞

Pj(t, s)w
j − w

∞∑
j=−∞

Pj−1(t, s)w
j−1
]

= λ2

[ 1

w
G(w, t, s)−G(w, t, s)

]
− λ1

[
G(w, t, s)− wG(w, t, s)

]

so,

∂G(w, t, s)

∂t
= G(w, t, s)

[
− (λ1 + λ2) + λ1w +

λ2
w

]
(4.8.23)

with the boundary condition G(w, t, t) = G(w, s, s) = 1. Integrating both sides, the

unique solution to the differential equation in (4.8.23) is,

G(w, t, s) = exp
(
− (λ1 + λ2)t+ λ1tw +

λ2t

w

)
,

which is the probability generating function of a Skellam distribution with parameters

λ1t and λ2t, Equation (4.2.2).

We now prove the other direction, i.e., Definition 4.2 implies Definition 4.1. It suffices to

show that for any value t ≥ 0 and a positive infinitesimal h conditions 3-6 of Definition

4.1 are met. Writing the Taylor expansions, we prove that condition 3 holds true. The

proofs for the other conditions are similar.

Pr
[
S(t+ h)− S(t) = 0

]
= exp{−(λ1 + λ2)h}

∞∑
y=0

(λ1h)y(λ2h)y

(y!)2

=
(

1− (λ1 + λ2)h+ o(h)
)(

1 + o(h)
)

= 1− (λ1 + λ2)h+ o(h) (4.8.24)
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Notice that in the second line of the equations above we used the fact that

1 <
∞∑
y=0

(λ1h)y(λ2h)y

(y!)2
≤ exp{λ1λ2h2} = 1 + o(h)

4.8.2 Proof of Theorem 4.2

Proof: N1 and N2 are Poisson processes, so N1(0) = N2(0) = 0, and consequently

S(0) = 0. For all values t1 < t2, N1(t2)−N1(t1) is independent of the times of incidents

of N1 during the interval [0, t1]. The same property holds true for N2. Therefore,

S(t2) − S(t1) is independent of the times of incidents of S during the interval [0, t1].

Notice that the times of incidents of S is the union of those of N1 and N2. The last piece

to complete the proof is to show that for any s, t ≥ 0, S(t + s)− S(s) ∼ Sk(λ1t, λ2t).

Notice that

S(t+ s)− S(s) = [N1(t+ s)−N1(s)
]
−
[
N2(t+ s)−N2(s)

]
.

However,

N1(t+ s)−N1(s) ∼ Pois(λ1t),

N2(t+ s)−N2(s) ∼ Pois(λ2t),

and since {N1, t ≥ 0} and {N2, t ≥ 0} are independent,

S(t+ s)− S(s) ∼ Sk(λ1t, λ2t).

4.8.3 Proof of Theorem 4.3

Proof: First, we show that Definition 4.3 implies Definition 4.4. Let {S(t), t ≥ 0} be

a Skellam process with regards to Definition 4.3. Notice that

S(t+ s)− S(s) ∼ Sk
(∫ t+s

s

λ1(y) dy ,

∫ t+s

s

λ2(y) dy
)
,

can be written as

S(t+ s)− S(s) ∼ Sk
(∫ t

0

λ1(y + s) dy ,

∫ t

0

λ2(y + s) dy
)
, (4.8.25)

by assuming that the inhomogeneous Skellam process starts at time s. Let us define

S∗(t, s) = S(t+ s)− S(s). Similar to the proof of Theorem 4.1 we have

Pj(t+ s+ h, s) = λ1(t+ s)hPj−1(t+ s, s) + Pj(t+ s, s)

−
(
λ1(t+ s) + λ2(t+ s)

)
hPj(t+ s, s)

+λ2(t+ s)hPj+1(t+ s, s) + o(h),
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where Pj(t + s, s) = Pr [S∗(t+ s, s) = j]. Rearranging the terms, dividing both sides

by h and taking the limit as h goes to zero we have

d

dt
Pj(t+ s, s) = λ2(t+ s)

(
Pj+1(t+ s, s)− Pj(t+ s, s)

)
−λ1(t+ s)

(
Pj(t+ s, s)− Pj−1(t+ s, s)

)
.

which is a differential-difference equation similar to Equation (4.8.22). Following the

same approach we get,

∂G(w, t+ s, s)

∂t
= G(w, t+ s, s)

[
−
(
λ1(t+ s) + λ2(t+ s)

)
+λ1(t+ s)w +

λ2(t+ s)

w

]
,

with the boundary condition G(w, t, t) = G(w, s, s) = 1. Integrating both sides, the

unique solution to this equations is,

G(w, t+ s, s) = exp

{
−
(∫ t

0

λ1(y + s) dy +

∫ t

0

λ2(y + s) dy
)

+w

∫ t

0

λ1(y + s) dy +

∫ t
0
λ1(y + s) dy

w

}
,

which is the probability generating function of a the Skellam random variable defined

in Equation (4.8.25).

The equivalence of the two definitions is complete if it is proved that Definition 4.4

implies Definition 4.3. According to Definition 4.4,

Pr
[
S(t+ h)− S(t) = i

]
= exp

{
−
(∫ t+h

t

λ1(y) dy +

∫ t+h

t

λ2(y) dy

)}
×

∞∑
y=0

(∫ t+h
t

λ1(y) dy
)y+i (∫ t+h

t
λ2(y) dy

)y
(y + i)! y!

(4.8.26)

For i = 1, 2, write

m
(i)
h (t) =

∫ t+h

t

λi(y) dy

Writing the Taylor expansion of m
(i)
h (t), i = 1, 2 with respect to h about h = 0 we

have,

m
(i)
h (t) = λi(t)h+ o(h) (4.8.27)
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Substituting Equation (4.8.27) in Equation (4.8.26) we get,

Pr
[
S(t+ h)− S(t) = i

]
= exp

{
−
(
λ1(t) + λ2(t)

)
h+ o(h)

}
×

∞∑
y=0

(
λ1(t)h

)y+i(
λ2(t)h

)y
(y + i)! y!

Now, writing the Taylor expansion of this probability function and following the same

argument as that of Equation (4.8.24) for conditions 1-6, the proof is complete.

An alternative proof to the second part of the proof above is to write Equation (4.8.26)

as

Pr
[
S(t+ h)− S(t) = i

]
= Pr

[
N1(t+ h)−N1(t)−

(
N2(t+ h)−N2(t)

)
= i
]
,

and calculate it based on the value of i. For example if i = 0,

Pr
[
N1(t+ h)−N1(t)−

(
N2(t+ h)−N2(t)

)
= 0
]

= Pr
[
N1(t+ h)−N1(t) = 0

]
×

Pr
[(
N2(t+ h)−N2(t)

)
= 0
]

+ o(h)

= 1− λ1(t)h− λ2(t)h+ o(h)

The calculations based on other values of i are similar.

4.8.4 Proof of Equation (4.5.15)

Conditioning on the first step, the probability generating function of N can be derived

as follows.

Φ(t) = E(tN0)

= E
(
tN0
∣∣X1 = 1

)
p+ + E

(
tN0
∣∣X1 = 0

)
p0 + E

(
tN0
∣∣X1 = −1

)
p−(4.8.28)

Given X1 = 1, we have N0 = 1, and the first term in the R.H.S. is t p+ . If X1 = −1,

define N1 and N2 to be, respectively, the number of steps required to go from −1 to 0,

and the number of steps required to go from 0 to +1. Clearly, N0 = 1+N1 +N2. Since

N1 and N2 depend on different subsets of Xis, they are independent. Furthermore,

N1 and N2 are both first passage times, so they are equally distributed as the random

variable N0. Therefore,
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E
(
tN0
∣∣X1 = −1

)
= E

(
t1+N1+N2

∣∣X1 = −1
)

= t E(tN1)E(tN2)

= t
(
Φ(t)

)2
. (4.8.29)

Similarly, given X1 = 0 we have N0 = 1 +N2. Therefore,

E
(
tN0
∣∣X1 = 0

)
= E

(
t1+N2

∣∣X1 = 0
)

= tΦ(t). (4.8.30)

Substituting Equations (4.8.29) and (4.8.30) in Equation (4.8.28) we get

tp−

(
Φ(t)

)2

+ (tp0 − 1)Φ(t) + tp+ = 0.

Solving this quadratic equation of Φ(t) based on the initial condition Φ(0) = 0, the

valid solution is

Φ(t) =
(1− tp0)−

√
(1− tp0)

2 − 4t2p−p+

2tp−
. (4.8.31)

Multiplying this equation by t (to get the pgf of N = N0 + 1) completes the proof.

4.8.5 Some preliminary results on the mean-variance relation-

ship in SPR

Here we discuss some of the mathematical properties of Skellam process with Resetting.

Lemma 4.1 Let N(t) be the random variable representing the number of records of a

Skellam process S0 = {S0(t), t ≥ 0} up to and including time t, and let {S(t), t ≥ 0}
be the SPR generated from the process S0. Then

Pr
(
N(t) = n

)
= λ1

∫ t

0

[
Pr
(
N(u) = n− 1|S(u) = 0

)
−

Pr
(
N(u) = n− 1|S(u) = 0

)]
Pr
(
S(u) = 0

)
du

where Pr(N(0) = 0) = 1.
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Proof: Conditioning on N(t) and S(t) we have,

Pr
(
N(t+ h) = n

)
= p+Pr

(
S(t) = 0

∣∣∣N(t) = n− 1
)

Pr
(
N(t) = n− 1

)
+Pr

(
S(t) = 1

∣∣∣N(t) = n
)

Pr
(
N(t) = n

)
+Pr

(
S(t) = 0

∣∣∣N(t) = n
)

Pr
(
N(t) = n

)
−p+Pr

(
S(t) = 0

∣∣∣N(t) = n
)

Pr
(
N(t) = n

)
+Pr

(
S(t) < 0

∣∣∣N(t) = n
)

Pr
(
N(t) = n

)
= Pr

(
N(t) = n

)
+ p+

[
Pr
(
S(t) = 0

∣∣∣N(t) = n− 1
)

Pr
(
N(t) = n− 1

)
−Pr

(
S(t) = 0

∣∣∣N(t) = n
)

Pr
(
N(t) = n

)]
.

Taking Pr
(
N(t) = n

)
to the other side, dividing by h and taking the limit as h goes

to zero we have,

d

dt
Pr
(
N(t) = n

)
= λ1

[
Pr
(
N(t) = n− 1

∣∣∣S(t) = 0
)

−Pr
(
N(t) = n

∣∣∣S(t) = 0
)]

Pr
(
S(t) = 0

)
. (4.8.32)

Integrating both sides of Equation (4.8.32) with respect to t we have

Pr
(
N(t) = n

)
= c+ λ1

∫ t

0

[
Pr
(
N(u) = n− 1

∣∣∣S(u) = 0
)

−Pr
(
N(u) = n

∣∣∣S(u) = 0
)]

Pr
(
S(u) = 0

)
du, (4.8.33)

where

Pr
(
N(t) = n

∣∣∣S(t) = 0
)

= 0 for n < 0.

The initial condition

Pr
(
N(0) = 0

)
= 1

implies that c = 0 is the unique solution to Equation (4.8.33).

Lemma 4.2 Consider the assumptions of Lemma 4.1. Furthermore, assume that t <

∞ and Pr(S(t) = 0) < 1. Then all of the followings are finite;

(i) E
(
N(t)

)
(ii) E

(
[N(t)]2

)
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(iii) E
(
N(t)

∣∣S(t) = 0
)

(iv) E
(

[N(t)]2
∣∣S(t) = 0

)
Proof: Let {Ni(t), t ≥ 0} i = 1, 2, be two Poisson processes constructing the Skellam

process {S0(t) = N1(t) − N2(t), t ≥ 0}, which itself generates the SPR {S(t), t ≥ 0}.
To prove (i) notice that for t <∞

N(t) ≤ N1(t) +N2(t). (4.8.34)

In other words, the number of records of the process S during the period (0, t] can

not be more than the aggregate number of events from the two processes N1 and N2.

Therefore

E
(
N(t)

)
≤ E

(
N1(t)

)
+ E

(
N2(t)

)
<∞.

Similarly, to prove (ii), square the two sides of the inequality (4.8.34) and then take

expectation from both sides. For (iii) we have

E
(
N(t)

∣∣S(t) = 0
)

=
∞∑
n=0

nPr
(
N(t) = n

∣∣S(t) = 0
)

=
∞∑
n=0

n
Pr
(
N(t) = n

)
Pr
(
S(t) = 0

∣∣N(t) = n
)

Pr
(
S(t) = 0

)
≤ 1

Pr
(
S(t) = 0

) ∞∑
n=0

nPr
(
N(t) = n

)
=

1

Pr
(
S(t) = 0

) E(N(t)
)

< ∞

The proof of (iv) is similar to (iii).

Theorem 4.5 Consider the assumptions of Lemma 4.2. The first two moments of

N(t), are

E
(
N(t)

)
= λ1

∫ t

0

Pr
(
S(u) = 0

)
du (4.8.35)

E
(

[N(t)]2
)

= 2λ1

∫ t

0

E
(
N(u)

∣∣∣S(u) = 0
)

Pr
(
S(u) = 0

)
du+ E

(
N(t)

)
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Proof: According to Lemma 4.2, E(N(t)) is finite. Employing Lemma 4.1 we have

E
(
N(t)

)
= 0 +

∞∑
n=1

nPr
(
N(t) = n

)
=

∞∑
n=1

{
nλ1

∫ t

0

[
Pr
(
N(u) = n− 1

∣∣∣S(u) = 0
)

−Pr
(
N(u) = n

∣∣∣S(u) = 0
)]

Pr
(
S(u) = 0

)
du

}
where the integral is over a finite interval (t ∈ (0, T ]) and the integrand is a bounded

function of u. This along with using Lemma 4.2 allows us to switch the order of the

integral and the summation and break the summation into two parts as follows

E
(
N(t)

)
= λ1

∫ t

0

∞∑
n=1

nPr
(
N(u) = n− 1

∣∣∣S(u) = 0
)

Pr
(
S(u) = 0

)
du

−λ1
∫ t

0

∞∑
n=1

nPr
(
N(u) = n

∣∣∣S(u) = 0
)

Pr
(
S(u) = 0

)
du

= λ1

∫ t

0

[
E
(
N(u)

∣∣∣S(u) = 0
)

+ 1
]
Pr
(
S(u) = 0

)
du

−λ1
∫ t

0

E
(
N(u)

∣∣∣S(u) = 0
)

Pr
(
S(u) = 0

)
du

= λ1

∫ t

0

Pr
(
S(u) = 0

)
du.

Following similar argument to the previous part, E[N(t)]2 is derived as follows,

E
(

[N(t)]2
)

= 0 +
∞∑
n=1

n2 Pr
(
N(t) = n

)
= λ1

∫ t

0

∞∑
n=1

n2 Pr
(
N(u) = n− 1

∣∣∣S(u) = 0
)

Pr
(
S(u) = 0

)
du

−λ1
∫ t

0

∞∑
n=1

n2 Pr
(
N(u) = n

∣∣∣S(u) = 0
)

Pr
(
S(u) = 0

)
du

= λ1

∫ t

0

[
E
(

[N(u)]2
∣∣∣S(u) = 0

)
+

∞∑
n=1

(2n− 1) Pr
(
N(u) = n− 1

∣∣∣S(u) = 0
)

Pr
(
S(u) = 0

)]
du

−λ1
∫ t

0

E
(

[N(u)]2
∣∣∣S(u) = 0

)
Pr
(
S(u) = 0

)
du
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= λ1

∫ t

0

[
∞∑
n=1

(n− 1) Pr
(
N(u) = n− 1

∣∣∣S(u) = 0
)

Pr
(
S(u) = 0

)]
du

+λ1

∫ t

0

[
∞∑
n=1

nPr
(
N(u) = n− 1

∣∣∣S(u) = 0
)

Pr
(
S(u) = 0

)]
du

= λ1

∫ t

0

E
(
N(u)

∣∣∣S(u) = 0
)

Pr
(
S(u) = 0

)
du

+λ1

∫ t

0

[
E
(
N(u)

∣∣∣S(u) = 0
)

+ 1
]
Pr
(
S(u) = 0

)
du

= 2λ1

∫ t

0

E
(
N(u)

∣∣∣S(u) = 0
)

Pr
(
S(u) = 0

)
du+ E

(
N(t)

)
The formula for E

(
N(t)

)
, Equation (4.8.35), declares that the more likely the under-

lying Skellam process with resetting (SPR) is at zero, the higher the mean spike count.

Clearly, increasing λ2, which is the inhibition parameter, increases Pr
(
S(t) < 0

)
, which

consequently decreases the mean spike count E
(
N(t)

)
as expected, and vice versa. As a

special case, let us assume that N = {N(t), t ≥ 0} is a Poisson process with parameter

λ1. Therefore, every event in N is a record. We have,

Pr
(
S(t) = 0

)
= 1− Pr

(
S(t) = 1

)
= 1− lim

h↘0
Pr
(

one event in (t− h, t)
)

= 1 .

Therefore, E
(
N(t)

)
= λ1t as expected. Theorem 4.5 provides insight about the mean-

variance behaviour of N(t). Define

g(t) = V ar
(
N(t)

)
− E

(
N(t)

)
.

We have

g(t) = E
(

[N(t)]2
)
−

[
E
(
N(t)

)]2
− E

(
N(t)

)
= 2λ1

∫ t

0

E
(
N(u)

∣∣∣S(u) = 0
)

Pr
(
S(u) = 0

)
du

−

[
λ1

∫ t

0

Pr
(
S(u) = 0

)
du

]2
.

However, if V (t) = λ1
∫ t
0

Pr
(
S(u) = 0

)
du, then(

V (t)
)2

= 2

∫ t

0

( d

dw
V (w)

)
V (w) dw .

102



Thus,

g(t) = 2λ1

∫ t

0

E
(
N(u)

∣∣∣S(u) = 0
)

Pr
(
S(u) = 0

)
du

−2

∫ t

0

λ1Pr
(
S(w) = 0

)[
λ1

∫ w

0

Pr
(
S(u) = 0

)
du
]
dw

= 2λ1

∫ t

0

E
(
N(u)

∣∣∣S(u) = 0
)

Pr
(
S(u) = 0

)
du

−2λ1

∫ t

0

E
(
N(w)

)
Pr
(
S(w) = 0

)
dw

= 2λ1

∫ t

0

[
E
(
N(u)

∣∣∣S(u) = 0
)
− E

(
N(u)

)]
Pr
(
S(u) = 0

)
du

with the boundary condition

g(t)
∣∣∣
t=0

= V ar
(
N(t)

)
− E

(
N(t)

)∣∣∣
t=0

= 0.

Equation (4.8.36) states that the mean-variance relationship in SPR is a weighted

average of the difference term

E
(
N(t)

∣∣∣S(t) = 0
)
− E

(
N(t)

)
,

which is 0 in the special case of Poisson process. The departure from Poisson variability

depends on the probability of the underlying SPR being at 0 over time. Clearly,

if λ2 = 0 or λ2 >> λ1, the probability term Pr
(
S(t) = 0

)
and consequently g(t)

approaches zero as expected.
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Chapter 5

Parameter Estimation in Univariate

SPR

5.1 Introduction

In Chapter 4, the Skellam Process with Resetting (SPR) was introduced and its prop-

erties were studied. In this chapter, we derive the likelihood function based on the

observable data (spike trains) and introduce a computationally efficient recursive al-

gorithm for parameter estimation within SPR framework. In the time-inhomogeneous

case, the multiscale estimation method of Chapter 2 is employed to estimate the func-

tions λ1(t) and λ2(t) of the underlying SPR. A similar cross-validation scheme to that

of Chapter 2 is introduced to choose the tuning parameters of the multiscale method

properly. Simulation studies and the analyses of retinogeniculate synapse data provide

promising results on the performance of the SPR.

5.2 Likelihood function

The likelihood function of the parameters based on the observable data (the observed

spike trains) is derived in this section. Discretizing time into very small time bins,

spike trains can be studied as realizations of a binary time series with values 1 and

0, where 1 and 0 show, respectively, the occurrence or lack of occurrence of a spike

in that particular time bin. In the SPR setup, spikes are associated with the visits

to state {1}, implying that the negative values of the Skellam Process with Resetting

(see for illustration Figure 4.3) are not observable. In fact, these negative values are

confounded with the zeros in spike train data. Therefore, the random variable Xi
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defined in Equation (4.3.4) is not observable. Let Xobs
i show the value of the series at

time bin i, Equation (4.3.3). We have

Xobs
i =

{
1 if a spike occurs at time bin i

0 otherwise

therefore, Xobs
i can also be formulated as follows,

Xobs
i = I

(∑
j<i

(Xj −Xobs
j ) = 0

)
× I
(
Xi = 1

)
, (5.2.1)

where Xi is defined in Equation (4.3.4), X0 = Xobs
0 = 0, and

I(A) =

{
1 if A is true

0 o.w.

Notice that to have a spike at time i, two conditions would be met:

1. The value of the underlying Skellam process at time i − 1, i.e.
∑

j<iXj, should

be non-negative. In other words,
∑

j<i(Xj −Xobs
j ) = 0.

2. At time i, the value of the unobserved random variable Xi should be 1, showing

the domination of inhibitory inputs, N2, by the excitatory ones, N1.

As mentioned in Chapter 4, for a given value of h limiting to 0, the probability function

of Xi is

xi -1 0 1

Pr(Xi = xi) p− p0 p+

where

p− = λ2h+ o(h), (5.2.2)

p0 = 1− (λ1 + λ2)h+ o(h), (5.2.3)

p+ = λ1h+ o(h), (5.2.4)

Interest lies in estimation of the two parameters λ1 and λ2, or equivalently p− and p+ .

The likelihood of these parameters based on x = (x1, x2, ..., xk), which are k realizations

of Xi, Equation (4.3.4), is

L(p− , p+ ; k− , k0 , k+) =

(
k

k− , k0 , k+

)
pk−− pk0

0
pk+
+
, (5.2.5)

where k− =
∑

j I(xj = −1), k0 =
∑

j I(xj = 0), k+ =
∑

j I(xj = +1), k−+k0 +k+ = k

and p− + p0 + p+ = 1. Notice that we have used the independence assumption among

105



Xis to write this likelihood function. Clearly, the independence among X1, X2, ... does

not imply that Xobs
i s are independent of one another.

Equation (5.2.5) is not the likelihood function of the parameters based on the observable

data (spike trains). Notice that the observable data associated with the small time bins

are 0 (no spike), or 1 (occurrence of a spike). Therefore, during the intervals where

no spikes are observed, the two values −1 and 0 and some of the +1s of the Skellam

process with resetting are confounded, thus reported as 0 in the observable data. To

better see this confounding, consider the observed spike train (0, 0, 0, 0, 1). The actual

path associated with this sequence could be (0,−1, 1, 0, 1), or (0, 0,−1, 1, 1), etc. In

short, many possible vectors x can result in the same observed vector xobs. Figure 5.1

shows these possible paths for the above-mentioned example.
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(i): x9 = (−1,−1,1,1,1)

Figure 5.1: A toy example for possible paths for xobs = (0, 0, 0, 0, 1). Panel (a) is the

only observable path while panels (b)-(i) show the different trajectories, all of which

result in the same observed vector in panel (a).

Based on only one discretized interspike interval xobs = (0, 0, ..., 0, 1) of length k + 1,
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the likelihood function of the parameters λ1 and λ2 is the sum of the likelihoods of all

possible paths (see Figure 5.1),

L
(
p− , p+ ;xobs

)
=

dk/2e∑
i=1

ai p
αi

− pβi
0
pγi
+
, (5.2.6)

where p− , p0 and p+ are defined, respectively, in Equations (5.2.2), (5.2.3) and (5.2.4)

and ai is the number of equiprobable paths with αi number of -1s, βi zeros and γi
number of 1s. The length of the vector xobs = (0, 0, ..., 0, 1) is k + 1, which also shows

the numbers of steps to a spike. Notice that steps are either −1, 0 or +1, however, due

to resetting, the first step after each spike is always 0, forcing the process not to allow

for two consecutive spikes in a short interval. Therefore, the “degrees of freedom” to

choose steps equals to k. In this notation,

(αi, βi, γi) ∈
{

(α, β, γ) : α + β + γ = k, 0 ≤ α ≤ b(k − 1)/2c, γ − α = 1
}
.

Now, let us assume the starting point of the observation interval is at the first spike and

the end of it is at the last spike. In Chapter 4 the modeling assumption of conditional

independence of spike times was discussed. This assumption states that conditional

on the current spike time, the past spike times are independent of the future ones,

which is essentially, modeling the process as a Markov chain. This assumption has

been addressed in the analysis of neural spike trains before, Kass and Ventura (2001).

Recall that during the refractory period, most of the chemical mechanisms across the

membrane and the membrane voltage reset, which provides biological justification for

this conditional independence assumption. Based on these assumptions, the likelihood

function of the parameters λ1 and λ2 given a spike train consists of n spikes is

L
(
p− , p+ ;xobs1 , ...,xobsn

)
=

n−1∏
l=1

d(kl−1)/2e∑
i=1

ai p
αi

− pβi
0
pγi
+
. (5.2.7)

The product has n − 1 terms as the time to the first spike is yet to be taken into

consideration. The resettings are essential for the conditional independence, starting

right after the first spike.

Table 5.1 illustrates the possible values for ai, αi, βi, γi for a toy example when

xobs = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1). Notice that here we assume that the first 0 is

due to resetting.

It is noteworthy that the minimum value of βi is one, which is because of the zeros

occurring after each and every spike as a result of resetting. The parameters ai can
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Table 5.1: Values associated with vectors x which are possible paths corresponding to

the observable vector xobs = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

i ai αi βi γi

1 1 0 11 1

2 55 1 9 2

3 660 2 7 3

4 2310 3 5 4

5 2310 4 3 5

6 462 5 1 6

be computed based on combinatorial calculations. Let n show the number of steps

between two consecutive spikes. Slightly modifying the formula introduced in Aoyama

et al. (2008), we can compute ais by

ai =
1

n

(
n

i , n− 2i+ 1 , i− 1

)
, i = 1, 2, ..., d(kl − 1)/2e . (5.2.8)

According to Table 5.1, the total number of paths, all of which are observed as

xobs = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1),

is
∑
ai = 5798. Assuming h = 0.001 seconds, this example shows that even for a

small period of 12 milliseconds (12 steps), the number of possible paths (unobservable)

can be quite large. Since the step size is the infinitesimal value h > 0, the number

of steps is usually a large number in real data. Furthermore, the numbers αi, βi and

γi get larger and larger as the interspike interval increases. Since the parameters p− ,

p0 and p+ are probabilities, raising them to large powers introduces round-off error to

the estimation problem, which will be discussed later. Moreover, Equation (5.2.8) is

computationally intensive for large values of n, and it is not recommended to compute

the coefficients ai in such cases.

The derivation of the likelihood function in Equation (5.2.7) is based on the assumption

that the beginning of the observation window is at the first spike. Otherwise, the first

path may not start at zero since the state of the process is not known at the beginning

of the observation window. Therefore, an extra term, which calculates the likelihood

of all the possible paths from the start point to the first spike should be imposed on

the likelihood function, Equation (5.2.7). Similar adjustment should be applied to the

interval between the last spike and the end of the observation window. We will address

this subtle point and take it into consideration in the computationally efficient method

introduced next for the calculation of the loglikelihood function.
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5.2.1 A computationally tractable method for parameter es-

timation

The round-off error in the calculation of the likelihood function using Equation (5.2.7)

increases significantly as the duration of the inactivity periods, i.e. the number of con-

secutive zeros in the observed data increases. This is because the longer the inactive

period, the more possible paths, and the larger the powers (α, β, γ) of probabilities

(p0 , p+ , p−) in Equation (5.2.7). Furthermore, calculating the number of possible paths

ai, gets computationally intensive for relatively long periods with no spikes. To have

a more accurate and tractable parameter estimation procedure, we will introduce a

recursive algorithm. It is both computationally efficient and easy to implement.

Discretizing time, let {Zi =
∑

j<i(Xj −Xobs
j ) +Xobs

i , i = 0, 1, ...} represent the trajec-

tory of the Skellam Process with Resetting (SPR). An example of this sample path was

plotted in Figure 4.3. Let m be the current state of the SPR, m ∈ {1, 0,−1,−2, ...},
and let k be the number of steps from current time to the next time that Zi = 1 i.e.,

k := min
{
j : Xobs

j = Zj = 1, j > current time (i)
}

where k ∈ {1, 2, 3, ...}. The quantity

P (k|m) = Pr
(
Zk = 1

∣∣∣Zi = m
)

= Pr
(
Xobs
k = 1, Xobs

j = 0 for m < j < k
∣∣∣Zi = m

)
denotes the probability of observing the next spike in exactly k > 0 steps while the pro-

cess is currently at m ≤ 1. Conditioning on the first step, and using the independence

assumption among unobservable Xis we have

P (k|m) =

{
p−P (k − 1|m− 1) + p0P (k − 1|m) + p+P (k − 1|m+ 1) if m < 0

p−P (k − 1| − 1) + p0P (k − 1|0) if m = 0

(5.2.9)

with the initial conditions

P (k|m) =


p+ if k = 1 & m = 0

0 if k = m = 1 or m ≤ −k
P (k − 1|0) if m = 1

The last term in the initial conditions above is due to the resetting where process is

set to zero, accounting for neural refractoriness after each and every spike, Equation

(4.3.8). Now, let us write the likelihood function of the parameters based on the
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recursive function P introduced in Equation (5.2.9). After the first spike, the process

is reset and starts at m = 0. Based on a fixed step-size h, let k1 show the number

of steps between the first and the second spikes. The probability of observing the

second spike in exactly k1 steps from the first spike is P (k1|1). However, for any

given parameter values Equation (5.2.6) also calculates the probability of this event.

Therefore

P (k1|1) =

d(k1−1)/2e∑
i=1

ai p
αi

− pβi
0
pγi
+
.

Now suppose that k2 steps exist between the second and the third spikes, k3 steps

between the third and the fourth spikes and so on. If there are n spikes in the spike

train, the conditional independence of the spikes implies that

n−1∏
i=1

P (ki|1) =
n−1∏
l=1

d(kl−1)/2e∑
i=1

ai p
αi

− pβi
0
pγi
+

= L
(
p− , p+ ;xobs1 , ...,xobsn

)
,

or equivalently the loglikelihood function based on the observation period from the first

spike to the last spike is

`
(
p− , p+ ;xobs1 , ...,xobsn

)
=

n−1∑
i=1

log
(
P (ki|1)

)
(5.2.10)

5.2.2 Two intervals: before the first and after the last spike

Notice that in the loglikelihood (5.2.10) the two time intervals before the first spike

and after the last spike are ignored. To take these periods into account, two terms

should be added to Equation (5.2.10). Let k0 shows the number of steps before the

first spike, i.e.

k0 := min
{
j : Xobs

j = Zj = 1, j > 0
}
.

Conditioning on the initial value of the process we have

Pr
(
Xobs
k0

= 1 , Xobs
j =0 for j < k0

)
=
∑
m

Pr
(
Xobs
k0

= 1, Xobs
j = 0 for j < k0

∣∣∣Z0 = m
)

Pr
(
Z0 = m

)
=
∑
m

P (k0|m)Pr
(
Z0 = m

)
Since the first spike has happened in k0 steps, Z0 ∈ {1, 0,−1,−2, ...,−k0 + 1}. Notice

that the probability function Pr(Z0 = m) is unknown and needs to be approximated.
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We have tried utilizing the uniform distribution, as well as the stationary distribution

of the chain, Equation (4.4.11), for Pr(Z0 = m). It turns out that the stationary

distribution outperforms the uniform distribution in terms of the fit. Having said that,

note that stationary distribution is not necessarily the best approximation as we don’t

know if the chain is at equilibrium. Using the stationary distribution of the chain,

Equation (4.4.11)], we have

Pr
(
Xobs
k0

= 1 , Xobs
j = 0 for j < k0

)
=

1∑
m=−k0+1

P (k0|m) π(2−m) (5.2.11)

Now, let kn show the number the steps after the last spike to the end of the observation

interval. This time, the value of the process, m, at the end of the observation interval

is unknown. However, a spike has just occurred, i.e. Zk∗ = 1 where k∗ =
∑n−1

i=0 ki, thus

Pr
(
Xobs

1+k∗ = 0 , Xobs
2+k∗ = 0, ..., Xobs

kn+k∗ = 0|Zk∗ = 1
)

= 1−
kn∑
j=1

P (j|1)(5.2.12)

Incorporating equations (5.2.11) and (5.2.12) in the loglikelihood (5.2.10) we get

`
(
p− , p+ ;xobs1 , ...,xobsn

)
= log

 1∑
m=−k0+1

P (k0|m) π∗m


+

n−1∑
i=1

log
(
P (ki|1)

)
+ log

(
1−

kn∑
j=1

P (j|1)

)
(5.2.13)

where λ1h = p+ + o(h) and λ2h = p− + o(h). Since P (n|m) is a recursive function, one

can compute the loglikelihood (5.2.13) by only one call to the function P if the inter-

mediate steps which lead to calculation of P (n|m) are saved. The following algorithm

summarizes the loglikelihood calculations and optimization to get the ML estimates.
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• Step1: Set the step size h = h0 (≤ refractory period),

• Step2: For a spike train of n spikes, calculate the discretized in-

terspike intervals k1, k2, ..., kn−1, which are the number of steps

between consecutive spikes, as well as the number of steps before

the first spike, k0 , and the number of steps after the last spike kn,

• Step3: Set kmax = max(ki, i = 0, 2, ..., n). Using equations (5.2.9)

and (5.2.10), define the matrix B such that Bi,j = P (j| − i + 2),

i, j = 1, 2, ..., n + 1. The rows and the columns of B represent,

respectively, the values of m and n. As an example P (5|−2) = B4 5.

• Step4: Optimize the bivariate loglikelihood (5.2.13), whose values

will be computed based the elements of the matrix B.

If λ2 = 0, the Skellam model is reduced to the conventional Poisson model with the ef-

fect of refractoriness (resetting). Not only does Skellam process allow for both negative

and positive correlation coefficients among spike trains, it is also an insightful model

in terms of neural inhibition. The parameter λ2 is a measure of integrated inhibitory

postsynaptic potential. We will address the dependency structure of the Skellam model

later in Chapter 6, where we extend the model to the multivariate case.

5.3 Data analysis

This section includes simulation studies as well as the analysis of the retinogenicu-

late synapse data (RGC and LGN neurons). The details of the real dataset and the

experiment procedures were previously discussed in Chapter 3.

5.3.1 Simulation study

To check the performance of the Skellam model, we have simulated 50 spike trains from

a SPR with parameters (λ1, λ2) = (25, 15). Figure 5.2 shows the raster plot as well as

the histogram of the spike count per trial.

We have employed the algorithm introduced above to estimate the parameters. The

results of the analysis have been plotted in Figure 5.3.
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Figure 5.2: Simulated data from a homogeneous SPR with parameters (λ1, λ2) =

(25, 10). panel (a) shows the raster plot of the data and panel (b) plots the histogram

of spike count per trial.

Based on h = 0.001, these estimates are (λ̂1, λ̂2) = (25.19, 14.43) for the parameter

values (λ1, λ2) = (25, 15). To estimate the variability around the estimates, we have

used 1000 nonparametric bootstrap samples each of size 50. Also provided, is the 95%

confidence intervals based on the central limit theorem. Since the conditions of the

central limit theorem seem to be reasonable here, the results based on the bootstrap

method and C.L.T. are relatively similar. Table 5.2 summarizes the results.

Table 5.2: Parameter estimates for the simulated data along with their 95% confidence

intervals.

Parameter Estimate 95% Confidence Interval

(Bootstrap) (C.L.T.)

λ1 = 25 25.19 (22.61 , 28.34) (22.29 , 28.09)

λ2 = 15 14.43 (11.91 , 17.41) (11.59 , 17.28)
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Figure 5.3: Scatter plot of the parameter estimates λ̂1 and λ̂2. Each black asterisk

shows the estimated parameters based on one of the 50 simulated trials. While the red

dot shows the correct parameter value from which the 50 trials, i.e. (λ1, λ2) = (25, 10),

the green dot represents the average of the individual trials’ estimates where (λ̂1, λ̂2) =

(25.19, 14.43).

5.3.2 Real data analysis

We employ the similar dataset (retinogeniculate synapse) discussed in Chapter 3, which

consists of 129 trials from an retinal ganglion cell RGC) as well as its paired LGN neu-

ron. The estimated parameters based on each trial have been plotted in Figure 5.4.

Figure 5.4 clearly clusters the two neurons, with the RGC estimates sitting on top left

of the LGN’s. This shows a higher excitation (λ1 − λ2) for the retinal ganglion cell

(RGC) relative to its LGN connected neuron which is consistent with the higher spiking

activity reported in Sincich et al. (2007) on this dataset. We generate 1000 nonpara-

metric bootstrap samples each of size 129 trials to estimate the variability around the

mean of the estimates. Also provided are 95% C.L.T. confidence intervals. Table 5.3

summarizes the findings.

It is known that not all the neural spikes in RGC get transmitted to the LGN, Sincich

et al. (2007); Carandini et al. (2007). In particular, Carandini et al. (2007) showed

that in the absence of any other inputs, it takes two Excitatory Postsynaptic Potentials

(EPSP) occurring within 30 milliseconds to drive one LGN spike. This “selectivity”

implies a lower spiking rate in LGN in each trial compared to the same trial for RGC.
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Figure 5.4: Raster plot and estimated parameters based on the retinogeniculate synapse

data. The green dots show the estimates from the RGC neuron, where their average is

(λ̂1, λ̂2) = (63.36, 15.09). The red dots represent those of the LGN cell data, where their

average is (λ̂1, λ̂2) = (46.60, 20.42). The black points show the average of the estimates

and the thick bands on the axes represent marginal 95% confidence intervals.

This biological property of paired RGC and LGN neurons has been reflected in sta-

tistical results where λ̂
(RGC)
1 > λ̂

(LGN)
1 and λ̂

(RGC)
2 < λ̂

(LGN)
2 . Recall that increasing λ1

and/or decreasing λ2, increases the likelihood of spiking activity of a neuron.

5.4 Multiscale estimation

Since neural spike trains have biological characteristics from multiple time scales Ramezan

et al. (2014); Nelson (2002); Kass and Ventura (2006), their analysis techniques should

consider this multiscale nature of the neural spiking activity, which was addressed in

details in Chapter 2. We employ the multiscale estimation algorithm of that chapter

to estimate the time-varying functions λ1(t) and λ2(t). Notice that in this chapter

we will only use the multiscale estimation algorithm without making any use of re-

lated theorems and/or upper bounds of the estimators’ risk discussed in Kolaczyk and

Nowak (2004). This is because the distribution of the number of spikes in the SPR

framework does not have the so-called “cut” characteristic, hence the factorization of

the likelihood function in the fashion of Chapter 2 is not possible in this setup. Refer to

Kolaczyk and Nowak (2004); Barndorff-Nielsen (1976, 1978) for details on decoupling

of the likelihood function and its underlying conditions. Compared to the Poisson pro-
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Table 5.3: Parameter estimates for the retinogeniculate data along with their 95%

confidence intervals.

Neuron Estimate 95% Confidence Interval

(Bootstrap) (C.L.T.)

RGC λ̂1 = 63.36 (62.82 , 63.92) (62.80 , 63.92)

λ̂2 = 15.09 (14.69 , 15.51) (14.70 , 15.49)

LGN λ̂1 = 46.60 (45.70 , 47.59) (45.64 , 47.55)

λ̂2 = 20.42 (19.87 , 21.01) (19.81 , 21.03)

cess, parameter estimation in SPR is computationally more intensive. For this reason

we have employed recursive dyadic partitioning (RDP) as opposed to general recursive

partitioning.

5.4.1 Tuning the parameters via cross-validation

The two parameters N , the number of intervals at the bottom of the recursive tree,

and λ, the penalty factor, are the tuning parameters of the multiscale model discussed

in Ramezan et al. (2014). We use similar cross-validation criteria to that of Chapter 2

which is, essentially, minimizing the integrated squared error loss. Let

f(t) =
λ1(t)∫ T
0
λ1(t)

, g(t) =
λ2(t)∫ T
0
λ2(t)

.

Assume, also, that f̂i(t) and ĝi(t) are, respectively, the estimates of the functions f(t)

and g(t), based on data from the ith trial i = 1, 2, ...,m. Define

f̂−i(t) =
∑
j 6=i

f̂j(t)

m− 1
, ĝ−i(t) =

∑
j 6=i

ĝj(t)

m− 1
,

f̂(t) =
m∑
i=1

f̂i(t)

m
, ĝ(t) =

m∑
i=1

ĝi(t)

m
.

The objective is to minimize the integrated square error losses
∫ T
0

(
f̂(t)− f(t)

)2
dt

and
∫ T
0

(
ĝ(t)− g(t)

)2
dt . Based on these two criteria, we have

CV1(N, λ) =

∫ T

0

[f̂(t)]2 dt− 2Ê
(
f̂(t)

)
=

∫ T

0

[f̂(t)]2 dt− 2

m

m∑
i=1

∑ni

`=1 f̂
−i(ti`)

ni
(5.4.14)
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CV2(N, λ) =

∫ T

0

[ĝ(t)]2 dt− 2Ê
(
ĝ(t)

)
=

∫ T

0

[ĝ(t)]2 dt− 2

m

m∑
i=1

∑ni

`=1 ĝ
−i(ti`)

ni
(5.4.15)

It is clear that the cross-validation is being done marginally on the two functions λ1(t)

and λ2(t), therefore, the pair (N∗, λ∗) which minimizes CV1(N, λ) may not be the same

as that of CV2(N, λ). To the best of our knowledge, no research study claims that the

time-scale of the spiking activity of the inhibitory and excitatory presynaptic neurons

are the same. Performing the cross-validation marginally, allows for having different

structures/time-scales in the two functions λ1(t) and λ2(t). As a special case, constant

λ2(t) and varying λ1(t) can be interpreted as relatively constant inhibitory activity,

but variable excitatory activity.

5.4.2 Simulation study

We perform two simulation studies to see if the multiscale model fits the data well.

First, we use the simulated data from Section 5.3.1 (homogeneous Skellam) to check

if the multiscale algorithm merges all the bins and if it provides time-homogeneous

estimates of the parameters λ1 and λ2. The tuning parameters λ (penalty factor) and

N (number of the sub-intervals at the bottom of the dyadic tree), are chosen through

the leave-one-trial-out cross-validation analysis described above. Cross-validation for

SPR is computationally more intensive compared to the Poisson model. We have

searched for the optimized pair over

N ∈ {20, 21, ..., 27},
λ ∈ {0.005, 0.01, 0.015, 0.02, 0.03, 0.05, 0.07, 0.09, 0.1, 0.2, 0.3, ..., 1.5}.

The optimal values for λ and N are (N∗, λ∗) = (22, 0.5), where the penalty factor

λ∗ = 0.5 is large enough to merge all sub-intervals to estimate constant values for

both functions λ1(t) and λ2(t) across the simulation window (0, 2]. As expected, the

results of this study are the same as those presented in the time homogeneous case in

Table 5.2. This shows that the multiscale estimator has correctly identified the time

homogeneity of the functions λ1(t) and λ2(t).

In the second simulation, we have simulated an SPR with the following intensities,

λ1(t) =


50 0 < t ≤ 0.5

10 0.5 < t ≤ 1.25

40 1.25 < t ≤ 2

λ2(t) =


20 0 < t ≤ 0.5

3 0.5 < t ≤ 1.25

15 1.25 < t ≤ 2

(5.4.16)
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Figure 5.5 shows the simulated data. Notice the clear sparsity in the raster plot during

the middle intervals where both functions λ1(t) and λ2(t) have lower values. Applying

the Cross-validation method of equations (5.4.14) and (5.4.15) the two “optimal” tuning

parameters are (N∗, λ∗) = (24, 0.05). Figure 5.6 plots the results of this analysis. Notice

that the true functions λ1(t) and λ2(t) defined in Equation (5.4.16) both lie within their

corresponding 95% confidence bands, as expected.
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Figure 5.5: Simulated data from a inhomogeneous SPR with parameters functions λ1(t)

and λ2(t) defined in (5.4.16). panel (a) shows the raster plot of the data and panel (b)

plots the histogram of spike count per trial.

5.4.3 Real data analysis

Similar to Section 5.4.2, we have performed a multiscale analysis on the retinogenic-

ulate synapse data. The optimal tuning parameters based on both LGN and RGC

data are (N∗, λ∗) = (26, 0.015). Figure 5.7 plots the average of the estimates λ̂1(t)

and λ̂2(t) based on the 129 trials along with their 95% bootstrap confidence bands.

Reading Figure 5.7, it is clear that the shape of the λ̂1(t) and λ̂2(t) are similar across

the two neurons, which is expected from the similarity in the raster plots shown in

Figure 5.4. The standard error of λ̂1(t) is smaller than that of λ̂2(t). This is due to

the fact that more information about λ1(t) is present in the spike trains. Notice that

λ2(t) is related to inhibition and negative values in SPR which are not observable in
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Figure 5.6: The average multiscale estimates (solid black) based on the simulated data

shown in Figure 5.5. The red dashed lines show the 95% bootstrap confidence bands.

The black dashed lines show the true functions.

spike trains. Figure 5.8 shows a simulated Skellam Process with Resetting with λ1(t)

and λ2(t) plotted in Figure 5.7. The similarity between the raster plots of the real data

and the simulated data shows that SPR model fits this data reasonably well.

In the SPR framework, λ1(t)−λ2(t) is a measure of mean spiking rate, hence it contains

some information about the stimulus signal to which the neuron has been exposed. In

our estimation processes, stimulus signal was never taken into consideration. Compar-

ing the estimate λ̂1(t) − λ̂2(t) with the stimulus signal both plotted in Figure 5.9, we

can see that most of the variability and structures in the stimulus signal have been

captured by SPR model. This is a promising result in the performance of the SPR

model. It is important to mention that we do not necessarily want to capture all the

structures in the stimulus signal through the intensity function of the spike trains. The

similarity in the shapes of the stimulus signal and the intensity function of neural spike

trains is connected directly to the neural code, which is an unknown process. In short,

the specific characteristics of this stimulus signal which are captured by the particular

recorded neurons are not known.

The lower mean spiking rate in LGN relative to RGC (Figure 5.9b vs. Figure 5.9c) is

consistent with the fact that the spiking activity in the RGC is about twice as much

as its connected LGN neuron. Comparing the SPR with with the fit of inhomogeneous

119



Time

λ 1^

0 1 2 3 4 5

0
20

40
60

80
10

0
12

0

Time

λ 1^

(a)

Time

λ 2^

0 1 2 3 4 5

0
5

10
15

20

Time

λ 2^

(b)

Time

λ 1^

0 1 2 3 4 5

0
20

40
60

80
10

0
12

0

Time

λ 1^

(c)

Time

λ 2^

0 1 2 3 4 5

0
5

10
15

20

Time

λ 2^

(d)

Figure 5.7: The average multiscale estimate of the functions λ1(t) and λ2(t) based on

the RG and LGN data. Panels (a) and (b) plot the estimates from the RGC data, while

(c) and (d) show those of LGN. The red lines show the 95% bootstrap confidence bands.

Poisson process, the results are quite comparable. However, there is less variability in

the fit of SPR vs Poisson (see Figure 5.9).
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Figure 5.8: Raster plots of 25 simulated SPRs with λ1(t) and λ2(t) plotted in Figure

5.7 as well as the 25 first trials from the real data. (a): simulated data and (b): real

data. While the lower part (grey background) plots the RGC data, the white part shows

LGN’s. The curve in the upper part of panel (b) shows the scaled stimulus signal.

5.5 Discussion

The derivation of the likelihood function and parameter estimation were discussed in

this chapter. Based on the observable data (spike trains) we derived the likelihood

function of the parameters/functions λ1 and λ2, where a computationally efficient al-

gorithm for parameter estimation was developed. The multiscale estimation algorithm

of Chapter 2 was tailored for the SPR framework. In a real data study we have shown

that SPR is capable of reproducing the stimulus signal from the spiking activity of

neurons.

Relative to the (inhomogeneous) Poisson process, SPR has one extra parameter/auxiliary

function λ2 making this new model both more flexible and biologically more insight-

ful. Reading Figure 5.4b, λ2 helps in clustering the two neurons. Furthermore, having

the two quantities λ1 and λ2 makes the mean-variance relationship in the SPR more

flexible relative to Poisson process.

It is clear in Figure 5.7 that the confidence band around λ2(t) is wider than that of

λ1(t). This is, of course, because the amount of available information about λ1 is
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significantly more than that of λ1(t). Notice that while λ1(t) is related to the neural

excitation, hence the observable spikes, λ2(2) is related to the neural inhibition and

the unobservable paths.

It is important to mention that the risk properties/boundaries discussed in Kolaczyk

and Nowak (2004) are derived under Gaussian, Poisson and Multinomial models and

those of the SPR model are yet to be investigated. Since the distribution of the number

of spikes in SPR framework does not belong to the family of sum-symmetric power se-

ries distributions SSPSD family, the risk results of Kolaczyk and Nowak (2004) should

be modified for this SPR framework.
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Chapter 6

Multivariate Skellam Process With

Resetting

6.1 Introduction

This chapter generalizes the results of Chapter 4 on the univariate Skellam process

with resetting (SPR) to the multivariate case, where spike trains from multiple neurons

can be simultaneously analyzed. We introduce the multivariate Skellam distribution

and discuss some of its characteristics. Also introduced is the multivariate Skellam

process in both homogeneous and inhomogeneous cases. We also generalize SPR to

the Multivariate Skellam Process with Resetting (MSPR). Parameter estimation in both

simulation and real data analyses are discussed, and they provide promising results on

the simultaneous analysis of multiple spike trains.

6.2 Conventional multivariate models

Studying the behaviour of a population of neurons and understanding their dependency

structure is one of the main research streams in neuroscience, Rieke et al. (1997); Ger-

stner and Kistler (2002); Averbeck et al. (2006); Schneidman et al. (2006); Grun and

Rotter (2010). However, simultaneous analysis of multiple neural spike trains is a chal-

lenging problem, Brown et al. (2004); Kass et al. (2005). In the case of single neurons,

the estimate of the intensity function of spiking activity is a popular tool to perform in-

ference about neural activity, Dimatteo et al. (2001); Kass and Ventura (2001); Behseta

and Chenouri (2011); Ramezan et al. (2014). Histogram-based smoothing techniques

such as Peristimulus Time Histogram (PSTH), Palm et al. (1988); Kass et al. (2003),

BARS, Dimatteo et al. (2001), or kernel estimates, Park et al. (2012, 2013) are com-
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mon techniques in modelling and analysis of neural spike trains. Poisson models are

popular and widely used in the literature, see Chapter 2, but in order to perform si-

multaneous inference based on spike trains from a population of p neurons within a

Poisson framework, one might use a multivariate distribution for the joint spike counts

whose marginal distributions are Poisson. Such a distribution is called a multivariate

Poisson distribution, (Johnson et al., 1997, p.139). Based on this definition, the multi-

variate Poisson probability distribution function is not uniquely defined. For different

representations in the bivariate case refer to (Kocherlakota and Kocherlakota, 1992,

p.100) and Lakshminarayana et al. (1999). According to Marshall and Olkin (1985), a

bivariate Poisson distribution was first derived in McKendrick (1925) as the solution

to a differential equation arising in biological applications. This distribution is, in fact,

the joint distribution of the two random variables

T1 = Y1 + Y2 ∼ Pois(λ1 + λ2), (6.2.1)

T2 = Y2 + Y3 ∼ Pois(λ2 + λ3), (6.2.2)

where Yi
ind.∼ Poi(λi), i = 1, 2, 3, Johnson et al. (1997); McKendrick (1925); Marshall

and Olkin (1985); Kocherlakota and Kocherlakota (1992) and references therein for

more details. The main problem with this approach is that since Cov(T1, T2) = λ2 > 0,

negative correlation is not allowed. The book of (Kocherlakota and Kocherlakota, 1992,

pp.87-99) studied the properties of a bivariate Poisson distribution whose probability

generating function is of the form

M(t1, t2) = exp
{
λ1(t1 − 1) + λ2(t2 − 1) + λ3(t1 − 1)(t2 − 1)

}
, (6.2.3)

where they addressed the details of the limited dependency structure of this model. Ex-

panding on the work of Griffiths et al. (1979), (Kocherlakota and Kocherlakota, 1992,

p.100) introduced the probability generating function of a class of bivariate Poisson

distributions, which does allow for some negative correlation at the cost of sacrificing

infinite divisibility. Lakshminarayana et al. (1999) also introduced a bivariate Poisson

distribution through the product of two marginal Poisson distributions and a multi-

plicative factor, which allows for negative correlations. However, the last two references

have only addressed the bivariate case, and do not have clear generalizations to multi-

variate Poisson distribution.

Generalizing the bivariate model introduced in Equations (6.2.1) and (6.2.2), Karlis and

Meligkotsidou (2005) introduced the multivariate Poisson random vector (T1, T2, ..., Tk)

where Tis are the sum of independent Poisson random variables. This generalization
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does solve the problem of having a “multivariate Poisson distribution”, but it does not

allow for negative correlations. The book of Grun and Rotter (2010) addresses the

correlations between spike trains in the same manner described in Equations (6.2.1)

and (6.2.2). The positive correlation is too limiting in the analysis of neural spike

trains. The biological concept of inhibitory and excitatory neurons, which implies the

existence of negatively correlated spike trains, Ecker et al. (2010); Renart et al. (2010),

is not properly formulated through the bivariate Poisson models introduced in Equa-

tions (6.2.1), (6.2.2), (6.2.3), and consequently the work of Karlis and Meligkotsidou

(2005) on multivariate Poisson distribution.

The limitation in the dependency structure of the multivariate Poisson distribution

motivates utilizing a different distribution for neural spike trains; however, it is conve-

nient to develop a model which shares some properties with the Poisson model which

has been extensively addressed in the literature. To accommodate this interest, we

generalize the Skellam model of Chapter 4 to the multivariate case. We use a simi-

lar approach to that of Karlis and Meligkotsidou (2005) to introduce the Multivariate

Skellam Distribution. We have recently noticed that a very special case of bivariate

Skellam random variable has been discussed in Bulla et al. (2013).

6.3 Multivariate Skellam Distribution

Let Y (I) = (Y1, ..., Yp)
T be a vector of p independent Skellam random variables, i.e.

Yi
ind.∼ Sk(λi1 , λi2), i = 1, .., p.

Also, let

Y (C) = (Y12, ..., Y1p, Y23, ..., Y2p, Y34, ..., Y3p, ..., Yp−1p)
T

be a vector of p(p− 1)/2 zero-mean independent Skellam random variables, i.e.,

Yij
ind.∼ Sk(γij, γij) i = 1, ..., p− 1, j = 2, ..., p, i < j.

Furthermore, let us assume that the two vectors Y (I) and Y (C) are also independent of

each other. We introduce the p-variate Skellam distribution through the vector

Y =

(
Y (I)

Y (C)

)

and the matrix C = (I , A), where I is the identity matrix of size p, and A is a p× p(p−1)
2

matrix whose elements are −1, 0 or 1. We will see later that while the random variables
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in the vector Y (I) capture the contribution of individual neurons to their firing rates (I

stands for individual), the ones in Y (C) model the pairwise associations (C stands for

combinations). The vector Z = (Z1, ..., Zp)
T defined by Z = CY is called a p-variate

Skellam random vector and follows a p-variate Skellam distribution. We show this by

Z ∼MSkp

(
λij, γij

)
, i, j ∈ {1, ..., p}, i < j in γij, (6.3.4)

where the indexes i and j are not equal for the parameters γij. This is because γij
is the parameter associated with the distribution of the random variable Yij, which,

essentially, captures the correlation between Zi and Zj in the vector Z (see Equation

(6.3.9)). We have

Z = C Y

=
(
I , A

)(Y (I)

Y (C)

)
= Y (I) + AY (C). (6.3.5)

The mean and the covariance matrix of the multivariate Skellam random vector, which

are respectively µ = (µ1, ..., µp)
T and Σ are

µ = E
(
Y (I)

)
,

Σ = Σ(I) + AΣ(C)AT ,

where Σ(I) and Σ(C) are the covariance matrices of Y (I) and Y (C), respectively. We

have

Σ =


σ2
1 ρ12σ1σ2 ρ13σ1σ3 . . . ρ1pσ1σp

σ2
2 ρ23σ2σ3 . . . ρ2pσ2σp

. . .
...

σ2
p

 .

In this notation

µi = λi1 − λi2 , (6.3.6)

σ2
i = λi1 + λi2 + 2γ+−(ii) , (6.3.7)

ρij = ± 2γij√
σ2
i σ

2
j

i, j = 1, 2, ..., p , (6.3.8)

in which,

γ+−(ii) = γ1i + γ2i + · · ·+ γi−1i + γii+1 + γii+2 + · · ·+ γip.
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The random vector Z can be written as

Z1

...

Zp

 =


Y1 ± Y12 ± Y13 ± Y14 ± · · · ± Y1p
Y2 ± Y12 ± Y23 ± Y24 ± · · · ± Y2p
Y3 ± Y13 ± Y23 ± Y34 ± · · · ± Y3p

...

Yp ± Y1p ± Y2p ± Y3p ± · · · ± Yp−1 p

 , (6.3.9)

where the signs are determined by the elements of matrix A.

While Y (I) in Equation (6.3.5) includes independent random variables, each of which

are specific to one and only one random variable Zi, i = 1, ..., p, Y (C) includes random

variables which determine the covariances between each pair (Zi, Zj). It is clear that

Σ(I) is a diagonal matrix, i.e.

Σ(I) =


λ11 + λ12 0 . . . 0

0 λ21 + λ22 . . . 0
...

...
. . .

...

0 0 . . . λp1 + λp2

 ,

thus, if the elements of A are all set to zero, the random variables in Z are uncorrelated.

Since the random vector Y (C) has mean zero, we have E(Z) = E
(
Y (I)

)
. This is implied

by defining each of the Skellam random variables Yij through only one parameter γij,

which turns out to be necessary for identifiability of the parameters. The probability

mass function of the random vector Z defined in Equation (6.3.5) is

p(z1, . . . , zp) =
∑
y12

· · ·
∑
yp−1 p

[
p(z1, . . . , zp | y12, y13, . . . , yp−1 p)

∏
i,j

pγij ,γij(yij)
]

=
∑
y12

· · ·
∑
yp−1 p

[
pλ11,λ12(z1 ∓ y12 ∓ · · · ∓ y1p)×

pλ21,λ22(z2 ∓ y12 ∓ · · · ∓ y2p)× · · · ×

pλp1,λp2(zp ∓ y1p ∓ · · · ∓ yp−1 p)×
∏
i,j

pγij ,γij(yij)
]
. (6.3.10)

where pλi2λi2 and pγij are the probability mass functions of Skellam random variables

Sk(λi1, λi2) and Sk(γij, γij), respectively.
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As a special case, let us investigate the bivariate Skellam random vector with +,+

configuration, i.e.

Z =

(
Z1

Z2

)
=

(
Y1 + Y12
Y2 + Y12

)
.

The elements of this vector are positively correlated. Following Equation (6.3.10) we

have,

Pr

[(
Z1

Z2

)
=

(
z1
z2

)]
= Pr

(
Y1 + Y12 = z1 , Y2 + Y12 = z2

)
=

+∞∑
y12=−∞

{
Prλ11λ12

(
Y1 = z1 − y12

)
×

Prλ21λ22

(
Y2 = z2 − y12

)
× Prγ12

(
Y12 = y12

)}
= exp

(
− λ11 − λ12 − λ21 − λ22 − 2γ12

)
×

+∞∑
y12=−∞

{
∞∑
x=0

λz1−y12+x11 λx12
(z1 − y12 + x)!x!

×

∞∑
x=0

λz2−y12+x21 λx22
(z2 − y12 + x)!x!

×
∞∑
x=0

γy12+2x
12

(y12 + x)!x!

}
.

For w1, w2 6= 0, the joint probability generating function of this bivariate Skellam

distribution (+,+ configuration) is

GZ(w1, w2) = E
(
wZ1

1 wZ2
2

)
= E

(
wY11 w

Y2
2 (w1w2)

Y12
)

= exp
[
− (λ11 + λ12 + λ21 + λ22 + 2 γ12) (6.3.11)

+λ11w1 + λ21w2 + γ12w1w2 +
λ12
w1

+
λ22
w2

+
γ12
w1w2

]
.

The joint probability generating function for the negatively correlated pair
(
Y1+Y12
Y2−Y12

)
is

obtained by substituting w1w2 by w1/w2 in Equation (6.3.11). Now consider the two

vectors
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Z(1) =

(
Z

(1)
1

Z
(1)
2

)
=

(
Y1 + Y12
Y2 + Y12

)
Z(2) =

(
Z

(2)
1

Z
(2)
2

)
=

(
Y1 + Y12
Y2 − Y12

)
where

Yi
ind.∼ Sk(λi1, λi2) ⊥ Y12 ∼ Sk(γ12, γ12).

The symbol ⊥ above shows independence. Following Equations (6.3.6), (6.3.7) and

(6.3.8) the moment estimates of the five parameters λ11, λ12, λ21, λ22, γ12 based on either

Z(1) or Z(2) are

λ̂11 =
1

2

(
µ̂1 + σ̂2

1 − |ρ̂12|σ̂1σ̂2
)
, λ̂12 =

1

2

(
− µ̂1 + σ̂2

1 − |ρ̂12|σ̂1σ̂2
)
,

λ̂21 =
1

2

(
µ̂2 + σ̂2

2 − |ρ̂12|σ̂1σ̂2
)
, λ̂22 =

1

2

(
− µ̂2 + σ̂2

2 − |ρ̂12|σ̂1σ̂2
)
,

γ̂12 =
1

2
|ρ̂12|σ̂1σ̂2. (6.3.12)

Figure 6.1 shows the probability mass function of the two bivariate random vectors

Z(1) and Z(2) where (λ11, λ12, λ21, λ22, γ12) = (7, 4, 6, 3, 15). The +,− configuration in

Z(2) (+,+ configuration in Z(1)) implies negative (positive) correlation which is also

clear in Figure 6.1. Notice that there exist four possible configurations two of which

imply positive correlations.

6.4 Multivariate Skellam process

Extending the results of Chapter 4, this section introduces the multivariate Skellam

process. For the sake of simplicity, we introduce the bivariate process with +,+ con-

figuration (positive correlation between the marginal processes). The results hold true

(with minor modifications) for the other configurations. The derivations for higher

dimensions are similar. Clearly, as we get to the higher dimensions, the estimation

problem becomes more and more computationally intense.

6.4.1 Bivariate homogeneous Skellam process

Similar to the univariate case, we define the Bivariate Skellam process as follows;
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Figure 6.1: The probability mass function of a bivariate Skellam random vector with

parameters (λ11, λ12, λ21, λ22, γ12) = (7, 4, 6, 3, 15). The upper panel shows the +,− con-

figuration (negative correlation), while the lower panel illustrates the +,+ configuration

(positive correlation).

Definition 6.1 An integer vector valued process {MS2(t) : t ≥ 0} is said to be a

positively correlated homogeneous bivariate Skellam process (+,+ configuration) with

intensities (λ11, λ12, λ21, λ22, γ12), all positive, if

1. MS2(0) =

(
0

0

)
2. For all values t1 < t2, the random variable MS2(t2)−MS2(t1) is independent of

the times of incidents during [0, t1] (independent increments),
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3. Pr

[
MS2(t+ h)−MS2(t) =

(
0

0

)]
= 1− (λ11 + λ12 + λ21 + λ22 + γ12)h+ o(h),

4. Pr

[
MS2(t+ h)−MS2(t) =

(
0

−1

)]
= λ22h+ o(h),

5. Pr

[
MS2(t+ h)−MS2(t) =

(
0

1

)]
= λ21h+ o(h),

6. Pr

[
MS2(t+ h)−MS2(t) =

(
−1

0

)]
= λ12h+ o(h),

7. Pr

[
MS2(t+ h)−MS2(t) =

(
−1

−1

)]
= γ12h+ o(h),

8. Pr

[
MS2(t+ h)−MS2(t) =

(
−1

1

)]
= o(h),

9. Pr

[
MS2(t+ h)−MS2(t) =

(
1

0

)]
= λ11h+ o(h),

10. Pr

[
MS2(t+ h)−MS2(t) =

(
1

−1

)]
= o(h),

11. Pr

[
MS2(t+ h)−MS2(t) =

(
1

1

)]
= γ12h+ o(h).

as h→ 0.

Alternatively, Bivariate Skellam process can be defined as follows.

Definition 6.2 An integer vector valued process {MS(t) : t ≥ 0} is said to be a

homogeneous Bivariate Skellam Process with parameters (λ11, λ12, λ21, λ22, γ12), all

positive, if

1. MS2(0) =

(
0

0

)
2. {MS2(t), t ≥ 0} has independent increments,

3. For all values t, s ≥ 0, MS(t+ s)−MS(s) ∼MSk2(λ11, λ12, λ21, λ22, γ12).
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Notice that the infinite divisibility of the bivariate Skellam distribution guarantees the

existence of a stochastic process for the definitions above. This is because the bivariate

Skellam process is also a Lèvy process.

Theorem 6.1 Definitions 6.1 and 6.2 are equivalent.

Proof: See Section 6.9.

We emphasize again that the results developed above are based on the +,+ configura-

tion in the Skellam random variables, which results in positively correlated Skellam pro-

cesses. The results based on other configurations are similar. Figure 6.2 shows how dif-

ferent configurations would affect the probability terms Pr
[
MS2(t+h)−MS2(t) =

(
i
j

)]
in Definition 6.1.
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Figure 6.2: The effect of correlation on probabilities in bivariate Skellam process

It is noteworthy that Definition 6.2 does not depend on the configurations (+,+),

(+,−), (−,+) or (−,−), however, to prove Definition 6.1 from this definition, (+,+)

configuration is assumed in the proof. Working with other configurations implies other

versions of Definition 6.1. In particular, the configurations with positive correlation

(+,+ and -,-) as well as the ones with negative correlation (+,- and -,+) are completely

the same in terms of both the derivation and implementation.
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6.4.2 Dimensionality of the parameter space

Based on the definition of the multivariate Skellam random vector Z [see Equation

(6.3.9)] with entries

Zj = Yj ± Y1j ± · · · ± Yj−1 j︸ ︷︷ ︸
j−1

±Yj j+1 ± Yj j+2 · · · ± Yjp︸ ︷︷ ︸
p−j

,

each of the random variables Zj, j = 1, 2, ..., p is associated with 2 + (j − 1) + (p −
j) = p + 1 parameters. Notice that each pair (Zi, Zj), i < j have the parameter

γij in common. Therefore, the total number of parameters of the p-variate Skellam

distribution is

2× p+
[
(p− 1) + (p− 2) + · · ·+ 1

]
=
p(p+ 3)

2
, (6.4.13)

which is equal to the number of parameters of a p-variate normal distribution. Since the

asymptotic distribution of the Skellam random variable is Gaussian (as the parameter

values increase), this consistency in the number of parameters suggests that the mul-

tivariate Skellam distribution is not an over-parameterized or an under-parameterized

formulation of the problem. For examples of Gaussian modelling of neural spike trains

refer to Sompolinsky et al. (2001); Cunningham et al. (2008) and the references therein.

6.4.3 Inhomogeneous multivariate Skellam process

The inhomogeneous version of the multivariate Skellam process is defined as follows.

Definition 6.3 An integer vector valued process {MS2(t) : t ≥ 0} is said to be a pos-

itively correlated inhomogeneous bivariate Skellam process (+,+ configuration) with

non-negative time varying intensity functions λ11(t), λ12(t), λ21(t), λ22(t) and γ12(t),

if

1. MS2(0) =

(
0

0

)
2. {MS2(t), t ≥ 0} has independent increments,

3. Pr

[
MS2(t+ h)−MS2(t) =

(
0

0

)]
= 1−

(
λ11(t) + λ12(t) + λ21(t) + λ22(t)+

γ12(t)
)
h+ o(h),
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4. Pr

[
MS2(t+ h)−MS2(t) =

(
0

−1

)]
= λ22(t)h+ o(h),

5. Pr

[
MS2(t+ h)−MS2(t) =

(
0

1

)]
= λ21(t)h+ o(h),

6. Pr

[
MS2(t+ h)−MS2(t) =

(
−1

0

)]
= λ12(t)h+ o(h),

7. Pr

[
MS2(t+ h)−MS2(t) =

(
−1

−1

)]
= γ12(t)h+ o(h),

8. Pr

[
MS2(t+ h)−MS2(t) =

(
−1

1

)]
= o(h),

9. Pr

[
MS2(t+ h)−MS2(t) =

(
1

0

)]
= λ11(t)h+ o(h),

10. Pr

[
MS2(t+ h)−MS2(t) =

(
1

−1

)]
= o(h),

11. Pr

[
MS2(t+ h)−MS2(t) =

(
1

1

)]
= γ12(t)h+ o(h).

as h→ 0.

Alternatively, it can be defined as

Definition 6.4 An integer vector valued process {MS2(t) : t ≥ 0} is said to be a in-

homogeneous Bivariate Skellam Process with non-negative time varying intensity func-

tions λ11(t), λ12(t), λ21(t), λ22(t) and γ12(t), if

1. MS2(0) =

(
0

0

)
2. {MS2(t), t ≥ 0} has independent increments,

3. For all values t, s ≥ 0, MS2(t+ s)−MS2(s) follows a bivariate Skellam distribu-

tion with time varying intensity functions
∫ t+s
s

λ11(y) dy,
∫ t+s
s

λ12(y) dy,
∫ t+s
s

λ21(y) dy,∫ t+s
s

λ22(y) dy and
∫ t+s
s

γ12(y) dy.
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Once again, the infinite divisibility of the increment probabilities (Skellam), or the fact

that the process is a Lèvy process, guarantees the existence of a stochastic process

defined above.

Similar to the homogeneous case we have,

Theorem 6.2 Definitions 6.3 and 6.4 are equivalent.

Proof: See Section 6.9.

6.5 Multivariate Skellam process with resetting (MSPR)

We introduced the Skellam process to model neural spike trains. In Chapters 4 and

5, univariate spike trains i.e., single neuron recordings, were modelled as realizations

of the Skellam Process with Resetting (SPR), where we used the notion of records. A

common sense generalization to the multivariate case (multiple neurons) is to model

the multivariate spike trains as “records” of a multivariate Skellam process. However,

multivariate records in this sense need to be properly defined. Although the literature

on univariate records dates back to 1950s, Chandler (1952), the literature on multivari-

ate records is not as rich. Most of the literature available on multivariate records belong

to the past 20 years. Consider a sequence of independent random vectors X1, X2, ...

with common continuous distribution function F . The random variable Xn is called

the multiple maxima if it is the componentwise sample maximum i.e., all components

of Xn − Xi are positive for i < n. Hashorva and Hüsler (2005) studied the asymp-

totic behaviour of this random variable. Substituting Xn − Xi > 0 for i < n with

Xn −Xi ≥ 0 in this definition gives the Pareto record or weak record, Gnedin (2007);

Hwang and Tsai (2010). Gnedin (2007) introduces yet another type of multivariate

record called the chain record, which is also based on the partial ordering of the vectors

X1, X2, .... These three different types of multivariate records are studied in details in

Hwang and Tsai (2010), where the mean and variance of record counts are derived and

central limit theorems with convergence rates are established when the variance tends

to infinity.

For the purpose of the joint analysis of spike trains from multiple neurons, we will,

essentially, keep the records of the marginal processes in a vector, and treat this vec-

tor as the “multivariate record.” As mentioned above, this is also referred to as the

dominating record, Hwang and Tsai (2010), strong record, Gnedin (2007), or multiple

maxima, Hashorva and Hüsler (2005). For the details of theoretical properties of this

type of record refer to Hwang and Tsai (2010) and the references therein.
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Definition 6.5 Let {S(i)
0 (t), t ≥ 0} i = 1, ..., k be k Skellam processes with records

R
(i)
t = max{S(i)

0 (t∗), t∗ < t}, respectively. Also, assume that R
(i)
t is independent of

R
(j)
t for i 6= j. Define MS0(t) and MRt as follows,

MS0(t) =

S
(1)
0 (t)

...

S
(k)
0 (t)

 , MRt =

R
(1)
t
...

R
(k)
t

 .

Multivariate Skellam Process with Resetting (MSPR) is then defined to be

MS =
{
MS0(t)−MRt, t ≥ 0

}
(6.5.14)

It is clear that the individual elements of the process defined in Equation (6.5.14) are

univariate Skellam processes with resetting.

The assumption of independent marginal records in the definition above is, in fact,

biologically plausible, because the absolute refractory period is intrinsic to the cell and

is not affected by the synaptic input.

6.6 Parameter estimation

Although we generalized the recursive algorithm of Chapter 5 (see Section 6.9) to the

bivariate case, we have noticed that it is too slow to be used in practice. This is be-

cause of the very large volume of the array analogous to the matrix M in the univariate

version of the algorithm in Section 5.2.2. Even for the very small interspike interval

of 1000 steps (1 second of one-millisecond steps), the array would have 109 elements,

which makes this algorithm extremely slow. Moreover, the ultimate goal is to model

more neurons than the bivariate case. Moment estimators or profile likelihood estima-

tors are some alternatives for parameter estimation.

6.6.1 Method of moments and likelihood

It was shown in Section 4.5.3 that for large time scales, the number of spikes in an SPR

model has a Skellam distribution. Therefore, we can use the method of moments to

estimate the parameters. In the bivariate case, the set of Equations (6.3.12) can be used

for parameter estimation. Not being domain-preservative (producing estimates outside

the parameter space), the method of moments may produce unacceptable estimates for

the parameters. Table 6.1 shows a few examples which confirm that the mapping from
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the parameter space to the moment space is not onto. The bold negative values show

that the moment estimates are not domain-preservative.

Table 6.1: Mapping between the moment space and the parameter space for Skellam

distribution.

Moments Parameters

µ1 σ2
1 µ2 σ2

2 ρ λ11 λ12 λ21 λ22 γ12

50 150 30 90 -0.7 59.3 9.3 19.33 -10.67 40.67

60 103 37 176 0.5 47.84 -12.16 72.84 35.84 33.66

80 120 100 150 0.5 66.44 -13.54 91.46 -8.54 33.54

Notice that

λ12 =
1

2
(σ2

1 − µ2
1 − |ρ12|σ1σ2) ,

λ22 =
1

2
(σ2

2 − µ2
2 − |ρ12|σ1σ2) ,

therefore, the unacceptable values occur when the over dispersion relative to Poisson

model (σ2
i − µi) is dominated by the absolute value of the covariance between spike

counts (ρ12σ1σ2). Our solution to this problem is to use a plug-in estimate of the

parameter γ12 and to use the marginal likelihoods, which were derived in Chapter 5.

The recursive function derived for marginal likelihood computations is (see Chapter 5)

P (k|m) =

{
p−P (k − 1|m− 1) + p0P (k − 1|m) + p+P (k − 1|m+ 1) if m < 0

p−P (k − 1| − 1) + p0P (k − 1|0) if m = 0

with the initial conditions

P (k|m) =


p+ if k = 1 & m = 0

0 if k = m = 1 or m ≤ −k
P (k − 1|0) if m = 1

in which, p+ = λ11h, p− = λ12h, and p0 = 1 − p+ − p− are the marginal probabilities

associated with the 3-state random walk. In the bivariate case with +,+ configuration,

these marginal probabilities are calculated by summing over the bivariate probabilities

from Definition 6.1. In this case, we have

p+ = (λ11 + γ12)h+ o(h) ,

p− = (λ21 + γ12)h+ o(h) , (6.6.15)

p0 = 1− p+ − p− .
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Now, we plug in the moment estimate of γ12 in the marginal likelihood function from

Equation (6.1) with parameters p+ and p− defined in Equations (6.6.15) above, and

maximize this “moment-profile likelihood function”. We will use constraint optimiza-

tion on this function because p+ , p− ≥ γ12h+ o(h). The derivations/parameter estima-

tion in the multivariate case (dimensions above 2) is similar.

6.7 Data analysis

We now employ the methods discussed above on both simulated data as well as the

real retinogeniculate synapse data discussed in Chapters 3 and 5.

6.7.1 Simulation study

We have simulated 100 trials of a positively correlated bivariate Skellam process with

resetting over the period [0, T ] = [0, 50] with parameters (λ11, λ12, λ21, λ22, γ12) =

(20, 10, 28, 8, 20) per unit time. Theoretically, the correlation coefficient among the

spike counts of the two neurons over the above-mentioned period is 0.55, whose esti-

mate from the data is 0.62 (S.E.=0.12). Based on the sample estimate of the correlation

coefficient, the +,+ configuration is used. Table 6.2 summarizes the estimation results.

Table 6.2: Simulation Results: parameter estimates for homogeneous Skellam process

with resetting.

Method Parameter Estimate (S.E.)

Moment-Profile Likelihood λ11 = 20 16.12 (2.49)

λ12 = 10 6.69 (2.45)

λ21 = 28 22.35 (1.90)

λ22 = 8 3.25 (1.96)

γ12 = 20 19.37 (7.65)

Moments Method λ11 = 20 21.35 (8.38)

λ12 = 10 11.92 (8.34)

λ21 = 28 26.44 (7.57)

λ22 = 8 7.34 (7.54)

γ12 = 20 19.37 (7.65)

From this simulation we can see that while the standard error of the moment-profile

likelihood estimate is higher, method of moments provides better point estimates. Of

139



course, if the estimates from the moments method lie outside the parameter space,

this method will not provide informative results. Based on the parameter values of the

simulated bivariate neural spike trains, the mean and the variance of the spike counts

per unit time (1 sec.) are E(N1) = 9.43, E(N2) = 19.1, V ar(N1) = 72 which are

well-estimated by the estimates (true values lie within the 95% confidence intervals).

Furthermore, the correlation coefficient between the two spike trains is 0.54 (based on

the data), whose moment-profile likelihood estimate from the third column of Table

6.2 is 0.61 (S.E.=0.12). In summary, comparing the estimates to the true parameter

values, we can see that the parameters of the multivariate Skellam model are estimated

quite well.

6.7.2 Real data study

We apply the multivariate Skellam methodology on two neurons from the retinogenic-

ulate synapse data. We fit the homogeneous Skellam model to the ON-centre Parvo-

cellular LGN-RGC pairs, which consist of 129 repeated trials. According to Carandini

et al. (2007), it takes two EPSPs within 30ms in RGC to drive one LGN spike. This

shows that the two cells are positively correlated, so the +,+ configuration will be

used. If such information was not available, we could easily test for the sign of the cor-

relation coefficient between the two sets of spike trains. The raster plot of (the first 25

replications of) the data is shown in Figure 6.3 which confirms this positive correlation.

Table 6.3 summarizes the results of the method of moments and the profile likelihood

model. Notice that the estimates from the moments method are not acceptable as they

fall outside the parameter space.

The estimates of the mean and the variance of the spike counts across the 129 tri-

als of the 5-second time window for the RGC data are 242.1 and 248.0, respectively.

Similar estimates for the LGN data are 132.1 and 327.2. respectively. This shows

that while the moment-profile likelihood estimate of the mean spike count is ap-

propriate (236.67-0.075=236.6), it is over-estimating the variance for the RGC data

(236.67 + 0.075 + 2×99.92 = 436.6). This could be due to the strong inhomogeneity in

the spike trains that we have analyzed, or because of a possible bias that the plug-in es-

timate of γ12 might have caused. Since the stimulus signal to which these neurons have

been exposed varies significantly over time, fitting an inhomogeneous process seems

more reasonable for this data.
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Figure 6.3: The raster plot of the first 25 trials of the on-center parvocellular recordings.

The grey panel represent the RGC recordings, while the white panels shows those of

LGN.

6.8 Discussion

This chapter generalized the univariate Skellam model to the multivariate case. The

multivariate Skellam random vector and multivariate Skellam process with resetting

(MSPR) were introduced. We proposed the so-called moment-profile likelihood method

to estimate the parameters of the process. Our data analyses provided promising re-

sults on the performance of the multivariate Skellam model.

The general case of MSPR has p(p+3)/2 parameters, where p is the number of neurons.

It can be shown that if the correlation coefficients among the elements of the random

vector Z, Equation (6.3.9), is the same, i.e. ρij = ρ0 i, j = 1, ..., p, the “individual

parameters” (λi1, λi2) i = 1, ..., p, and the “covariance parameters” γij are functionally

dependent. This reduces the model to a 2p-dimensional parameter space as opposed to

the original p(p+ 3)/2 dimensional one. It is noteworthy that while parameters γij do

not contribute to the mean spiking activity, they do contribute to the variance of the

spike counts, allowing for over dispersion in the parallel analysis of neural spike trains.

Each element of Z in Equation (6.3.9) is expressed by a sum of independent terms Yi
and Yij, where these elements explain both the mean and the variability. These terms

can be seen as the main effects and two-way interactions in an ANOVA set up. In
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Table 6.3: Parameter estimates for the RGC-LGN cells from 129 trials of an ON-centre

Parvocellular pair. The unit time is assumed to be the 5-second time window.

Method Parameter Estimate (S.E.)

Moment-Profile Likelihood λ11 236.67 (15.01)

λ12 0.075 (0.61)

λ21 138.23 (22.78)

λ22 8.14 (10.74)

γ12 99.92 (35.50)

Moments Method λ11 145.12 (25.0)

λ12 -97.02 (25.33)

λ21 129.73 (27.83)

λ22 -2.35 (27.23)

γ12 99.92 (39.62)

theory, more terms can be added to the model to count for the three-way up to m-way

interactions in the model i.e., terms like Yijk, Yijkl, etc.

It was shown in Chapter 3 that the correlation between spike counts is a multiscale

phenomena i.e., it depends on the bin-size during which the spikes are counted. It

is important to mention that the time scale can also affect the moment estimates

in our analysis above. In fact, one of the “next steps” in this area is to extend the

multiscale algorithm of Chapters 3 and 5 so that it can be used in the multivariate case.

6.9 Proofs of the theorems and a parameter esti-

mation algorithm

6.9.1 Proof of Theorem 6.1

First, we show that Definition 6.1 implies Definition 6.2. Let {MS2(t), t ≥ 0} be a

bivariate Skellam process. Therefore, {MS2(t), t ≥ 0} satisfies the conditions listed

in Definition 6.1. We show that for any values s, t ≥ 0, the probability generating

function of the random vector MS2(t+ s)−MS2(t) is the same as that of a bivariate

Skellam random vector with intensities λ11t, λ12t, λ21t, λ2t and γ12t. Notice that the

random vector MS2(t) consists of two random variables S1(t) and S2(t), each of which
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has a Skellam distribution. We have,

Pr

[
MS2(t+ h) =

(
j1
j2

)]

= Pr

[(
S1(t+ h)

S2(t+ h)

)
=

(
j1
j2

)]

=

j1+1∑
i1=j1−1

j2+1∑
i2=j2−1

{
Pr

[(
S1(t)

S2(t)

)
=

(
i1
i2

)]
Pr

[(
S1(t+ h)

S2(t+ h)

)
=

(
j1
j2

)∣∣∣∣
(
S1(t)

S2(t)

)
=

(
i1
i2

)]}
+ o(h)

=

j1+1∑
i1=j1−1

{
Pr

[(
S1(t)

S2(t)

)
=

(
i1

j2 − 1

)]
Pr

[(
S1(t+ h)

S2(t+ h)

)
=

(
j1
j2

)∣∣∣∣
(
S1(t)

S2(t)

)
=

(
i1

j2 − 1

)]

+ Pr

[(
S1(t)

S2(t)

)
=

(
i1
j2

)]
Pr

[(
S1(t+ h)

S2(t+ h)

)
=

(
j1
j2

)∣∣∣∣
(
S1(t)

S2(t)

)
=

(
i1
j2

)]

+ Pr

[(
S1(t)

S2(t)

)
=

(
i1

j2 + 1

)]
Pr

[(
S1(t+ h)

S2(t+ h)

)
=

(
j1
j2

)∣∣∣∣
(
S1(t)

S2(t)

)
=

(
i1

j2 + 1

)]}
+ o(h).

Expanding the second summation, we get
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Pr

[
MS2(t+ h) =

(
j1
j2

)]

= Pr

[(
S1(t)

S2(t)

)
=

(
j1 − 1

j2 − 1

)]
Pr

[(
S1(t+ h)

S2(t+ h)

)
=

(
j1
j2

)∣∣∣∣
(
S1(t)

S2(t)

)
=

(
j1 − 1

j2 − 1

)]

+Pr

[(
S1(t)

S2(t)

)
=

(
j1

j2 − 1

)]
Pr

[(
S1(t+ h)

S2(t+ h)

)
=

(
j1
j2

)∣∣∣∣
(
S1(t)

S2(t)

)
=

(
j1

j2 − 1

)]

+Pr

[(
S1(t)

S2(t)

)
=

(
j1 + 1

j2 − 1

)]
Pr

[(
S1(t+ h)

S2(t+ h)

)
=

(
j1
j2

)∣∣∣∣
(
S1(t)

S2(t)

)
=

(
j1 + 1

j2 − 1

)]

+Pr

[(
S1(t)

S2(t)

)
=

(
j1 − 1

j2

)]
Pr

[(
S1(t+ h)

S2(t+ h)

)
=

(
j1
j2

)∣∣∣∣
(
S1(t)

S2(t)

)
=

(
j1 − 1

j2

)]

+Pr

[(
S1(t)

S2(t)

)
=

(
j1
j2

)]
Pr

[(
S1(t+ h)

S2(t+ h)

)
=

(
j1
j2

)∣∣∣∣
(
S1(t)

S2(t)

)
=

(
j1
j2

)]

+Pr

[(
S1(t)

S2(t)

)
=

(
j1 + 1

j2

)]
Pr

[(
S1(t+ h)

S2(t+ h)

)
=

(
j1
j2

)∣∣∣∣
(
S1(t)

S2(t)

)
=

(
j1 + 1

j2

)]

+Pr

[(
S1(t)

S2(t)

)
=

(
j1 − 1

j2 + 1

)]
Pr

[(
S1(t+ h)

S2(t+ h)

)
=

(
j1
j2

)∣∣∣∣
(
S1(t)

S2(t)

)
=

(
j1 − 1

j2 + 1

)]

+Pr

[(
S1(t)

S2(t)

)
=

(
j1

j2 + 1

)]
Pr

[(
S1(t+ h)

S2(t+ h)

)
=

(
j1
j2

)∣∣∣∣
(
S1(t)

S2(t)

)
=

(
j1

j2 + 1

)]

+Pr

[(
S1(t)

S2(t)

)
=

(
j1 + 1

j2 + 1

)]
Pr

[(
S1(t+ h)

S2(t+ h)

)
=

(
j1
j2

)∣∣∣∣
(
S1(t)

S2(t)

)
=

(
j1 + 1

j2 + 1

)]
+o(h)

defining the notation

Pj1 , j2 (t) = Pr

[(
S1(t)

S2(t)

)
=

(
j1
j2

)]
we have,

Pj1 , j2 (t+ h) = γ12hPj1−1, j2−1(t) + λ21hPj1 , j2−1(t) + λ11hPj1−1, j2 (t) + λ12hPj1+1, j2
(t)

+
[
1− (λ11 + λ12 + λ21 + λ22 + 2γ12)h

]
Pj1 , j2 (t) + λ22hPj1 , j2+1(t)

+γ12hPj1+1, j2+1(t) + o(h) .
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Taking Pj1 , j2 (t) to the other side, deviding by h, and taking the limit as h goes to zero

we get

d

dt
Pj1 , j2 = λ12

(
Pj1+1, j2

(t)− Pj1 , j2 (t)
)

−λ11
(
Pj1 , j2 (t)− Pj1−1, j2 (t)

)
+λ22

(
Pj1 , j2+1(t)− Pj1 , j2 (t)

)
−λ21

(
Pj1 , j2 (t)− Pj1 , j2−1(t)

)
+γ12

(
Pj1+1, j2+1(t)− Pj1 , j2 (t)

)
−γ12

(
Pj1 , j2 (t)− Pj1−1, j2−1(t)

)
. (6.9.16)

This ia bivariate differential-difference equation for Pj1 ,j2 (t) where the boundary condi-

tion is Pj1 , j2 (0) = I{j1=j2=0}(0). Equation (6.9.16) is clearly simplified to the univariate

case if γ12 = λ21 = λ22 = 0. Using the probability generating function method we have

∞∑
j1=−∞

∞∑
j2=−∞

d

dt
Pj1 , j2 (t)wj11 w

j2
2 = λ12

[∑
j1 , j2

Pj1+1, j2
(t)wj11 w

j2
2 −

∑
j1 , j2

Pj1 , j2 (t)wj11 w
j2
2

]

− λ11

[∑
j1 , j2

Pj1 , j2 (t)wj11 w
j2
2 −

∑
j1−1, j2

Pj1−1, j2 (t)wj11 w
j2
2

]

+ λ22

[∑
j1 , j2

Pj1 , j2+1(t)w
j1
1 w

j2
2 −

∑
j1 , j2

Pj1 , j2 (t)wj11 w
j2
2

]

− λ21

[∑
j1 , j2

Pj1 , j2 (t)wj11 w
j2
2 −

∑
j1 , j2

Pj1 , j2−1(t)w
j1
1 w

j2
2

]

+ γ12

[∑
j1 , j2

Pj1+1, j2+1(t)w
j1
1 w

j2
2 −

∑
j1 , j2

Pj1 , j2 (t)wj11 w
j2
2

]

− γ12

[∑
j1 , j2

Pj1 , j2 (t)wj11 w
j2
2 −

∑
j1 , j2

Pj1−1, j2−1(t)w
j1
1 w

j2
2

]
,

hence,
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∂

∂t
G(w1, w2, t) = λ12

[
1

w1

G(w1, w2, t)−G(w1, w2, t)

]
− λ11

[
G(w1, w2, t)− w1G(w1, w2, t)

]

+ λ22

[
1

w2

G(w1, w2, t)−G(w1, w2, t)

]
− λ21

[
G(w1, w2, t)− w2G(w1, w2, t)

]

+ γ12

[
1

w1w2

G(w1, w2, t)−G(w1, w2, t)

]

− γ12

[
G(w1, w2, t)− w1w2G(w1, w2, t)

]
.

The boundary condition is G(w1, w2, 0) = 1. So

∂G(w1, w2, t)/∂t

G(w1, w2, t)
= −

(
λ11 + λ12 + λ21 + λ22 + 2γ12

)
+ λ11w1 + λ21w2 + γ12w1w2

+
λ12
w1

+
λ22
w2

+
γ12
w1w2

.

The unique solution to the differential equation above is

G(w1, w2, t) = exp

{
−
(
λ11 + λ12 + λ21 + λ22 + 2γ12

)
+ λ11w1 + λ21w2 + γ12w1w2

+
λ12
w1

+
λ22
w2

+
γ12
w1w2

}
.

This is the generating function of a bivariate Skellam distribution with +,+ configu-

ration in Equation (6.3.11) as required.

Now we prove the other direction. It suffices to show that for any value t ≥ 0 and

positive infinitesimal h, conditions 3-11 of Definition 6.1 are satisfied. We can show

this by writing the bivariate Taylor expansion of the bivariate Skellam distribution

about h = 0 under different values of the vector z listed in conditions 3-11. Another

solution, which is much simpler, is through writing the probabilities for the univariate

random variables which form the multivariate random vector. Let

∆
h
Y (t) = Y (t+ h)− Y (t) . (6.9.17)
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Since

Z =

(
Y1 + Y12
Y2 + Y12

)
then

∆
h
Z(t) = Z(t+ h)− Z(t) =

∆
h
Y1(t) + ∆

h
Y12(t)

∆
h
Y2(t) + ∆

h
Y12(t)

 . (6.9.18)

We show that condition 3 is satisfied;

Pr

[
∆
h
Z(t) =

(
0

0

)]
= Pr

[∆
h
Y1(t) + ∆

h
Y12(t)

∆
h
Y2(t) + ∆

h
Y12(t)

 =

(
0

0

)]
= Pr

(
∆
h
Y1(t) = 0

)
Pr
(

∆
h
Y12(t) = 0

)
Pr
(

∆
h
Y2(t) = 0

)
+ o(h)

=
(

1− λ11h− λ12h
)(

1− λ21h− λ22h
)(

1− 2γ12h
)

+ o(h)

= 1−
(
λ11 + λ12 + λ21 + λ22 + 2γ12

)
h+ o(h).

Following similar derivations, conditions 4-11 are satisfied.

Condition 4:

Pr

[
∆
h
Z(t) =

(
0

−1

)]
= Pr

[∆
h
Y1(t) + ∆

h
Y12(t)

∆
h
Y2(t) + ∆

h
Y12(t)

 =

(
0

−1

)]
' Pr

(
∆
h
Y1(t) = 0

)
Pr
(

∆
h
Y12(t) = 0

)
Pr
(

∆
h
Y2(t) = −1

)
=

(
1− λ11h− λ12h

)(
1− 2γ12h

)(
λ22h

)
+ o(h)

= λ22h+ o(h).

Condition 5:

Pr

[
∆
h
Z(t) =

(
0

1

)]
= Pr

[∆
h
Y1(t) + ∆

h
Y12(t)

∆
h
Y2(t) + ∆

h
Y12(t)

 =

(
0

1

)]
' Pr

(
∆
h
Y1(t) = 0

)
Pr
(

∆
h
Y12(t) = 0

)
Pr
(

∆
h
Y2(t) = 1

)
=

(
1− λ11h− λ12h

)(
1− 2γ12h

)(
λ21h

)
+ o(h)

= λ21h+ o(h).
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Condition 6:

Pr

[
∆
h
Z(t) =

(
−1

0

)]
= Pr

[∆
h
Y1(t) + ∆

h
Y12(t)

∆
h
Y2(t) + ∆

h
Y12(t)

 =

(
−1

0

)]
' Pr

(
∆
h
Y1(t) = −1

)
Pr
(

∆
h
Y12(t) = 0

)
Pr
(

∆
h
Y2(t) = 0

)
=

(
λ12h

)(
1− 2γ12h

)(
1− λ21h− λ22h

)
+ o(h)

= λ12h+ o(h).

Condition 7:

Pr

[
∆
h
Z(t) =

(
−1

−1

)]
= Pr

[∆
h
Y1(t) + ∆

h
Y12(t)

∆
h
Y2(t) + ∆

h
Y12(t)

 =

(
−1

−1

)]
' Pr

(
∆
h
Y1(t) = 0

)
Pr
(

∆
h
Y12(t) = −1

)
Pr
(

∆
h
Y2(t) = 0

)
=

(
1− λ11h− λ12h

)(
γ12h

)(
1− λ21h− λ22h

)
+ o(h)

= γ12h+ o(h).

Condition 8:

Pr

[
∆
h
Z(t) =

(
−1

1

)]
= Pr

[∆
h
Y1(t) + ∆

h
Y12(t)

∆
h
Y2(t) + ∆

h
Y12(t)

 =

(
−1

1

)]
= o(h).

Condition 9:

Pr

[
∆
h
Z(t) =

(
1

0

)]
= Pr

[∆
h
Y1(t) + ∆

h
Y12(t)

∆
h
Y2(t) + ∆

h
Y12(t)

 =

(
1

0

)]
' Pr

(
∆
h
Y1(t) = 1

)
Pr
(

∆
h
Y12(t) = 0

)
Pr
(

∆
h
Y2(t) = 0

)
=

(
λ11h

)(
1− 2γ12h

)(
1− λ21h− λ22h

)
+ o(h)

= λ11h+ o(h).

Condition 10:

Pr

[
∆
h
Z(t) =

(
1

−1

)]
= Pr

[∆
h
Y1(t) + ∆

h
Y12(t)

∆
h
Y2(t) + ∆

h
Y12(t)

 =

(
1

−1

)]
= o(h).
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Condition 11:

Pr

[
∆
h
Z(t) =

(
1

1

)]
= Pr

[∆
h
Y1(t) + ∆

h
Y12(t)

∆
h
Y2(t) + ∆

h
Y12(t)

 =

(
1

1

)]
' Pr

(
∆
h
Y1(t) = 0

)
Pr
(

∆
h
Y12(t) = 1

)
Pr
(

∆
h
Y2(t) = 0

)
=

(
1− λ11hλ12h

)(
γ12h

)(
1− λ21h− λ22h

)
+ o(h)

= γ12h+ o(h).

6.9.2 Proof of Theorem 6.2

Proof: First we show that Definition 6.3 implies Definition 6.4. Since the idea behind

the proof is similar to that of Theorem 4.3 in Chapter 4, we provide only a sketch of

the proof here. Let {MS2(t), t ≥ 0} be a inhomogeneous Skellam process defined by

Definition 6.3. Likewise the univariate case,

MS2(t+ s)−MS2(s) ∼MSk2

(∫ t+s

s

λ11(y) dy , ... ,

∫ t+s

s

γ12(y) dy

)
can be written as

MS2(t+ s)−MS2(s) ∼MSk2

(∫ t

0

λ11(y + s) dy , ... ,

∫ t

0

γ12(y + s) dy

)
by assuming that the inhomogeneous bivariate Skellam process starts at time s, i.e.

MS2(s) =
(
0
0

)
. Similar to the proof of the Theorem 4.3 in Chapter 4 it can be shown

that for the (+,+) configuration,

∂G(w1, w2, t, s)

∂t
= G(w1, w2, t, s)

[
−
(
λ11(t+ s) + λ12(t+ s)

+λ21(t+ s) + λ22(t+ s) + 2γ12(t+ s)
)

+ λ11(t+ s)w1

+λ21(t+ s)w2 + γ12(t+ s)w1w2 +
λ12(t+ s)

w1

+
λ22(t+ s)

w2

+
γ12(t+ s)

w1w2

]
, (6.9.19)

with the boundary condition G(w1, w2, 1, 1) = 1, where G is the generating function.

The unique solution to the differential equation (6.9.19) is a bivariate function which
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is the same as the PGF of the bivariate Skellam random vector (+,+ configuration)

with intensity functions
∫ t+s
s

λ11(y) dy, ...,
∫ t+s
s

γ12(y) dy as required.

To prove the other direction, let

m
(i,j)
h (t) =

∫ t+h

t

λi,j(y) dy = Λij(t+ h)− Λij(t) (6.9.20)

∗
m

(i,j)

h (t) =

∫ t+h

t

γi,j(y) dy = Γij(t+ h)− Γij(t) (6.9.21)

Similar to the proof of Theorem 6.1, there are two solutions.

solution #1: The probability mass function of a bivariate Skellam random vector is

Pr
[
MS2(t+ h)−MS2(t) =

(
z1
z2

)]
=

exp
{
−
(
m

(1,1)
h (t) +m

(1,2)
h (t) +m

(2,1)
h (t) +m

(2,2)
h (t)− 2

∗
m

(1,2)

h (t)
)}

×
∞∑

y12=−∞

{( ∞∑
x=0

[m
(1,1)
h (t)]z1−y12+x[m

(1,2)
h (t)]x

(z1 − y12 + x)!x!

)( ∞∑
x=0

[m
(2,1)
h (t)]z2−y12+x[m

(2,1)
h (t)]x

(z2 − y12 + x)!x!

)

×
( ∞∑

x=0

[
∗
m

(2,1)

h (t)]y12+2x

(y12 + x)!x!

)}
(6.9.22)

Now we should write the Taylor expansion of this PMF. Notice that the Taylor ex-

pansion of the mean functions introduced in Equations (6.9.20) and (6.9.21) about the

point h = 0 are

m
(i,j)
h (t) = Λij(t) + λij(t)h+ o(h)− Λij(t)

= λij(t)h+ o(h)

∗
m

(i,j)

h (t) = Γij(t) + γij(t)h+ o(h)− Γij(t)

= γij(t)h+ o(h)

Now writing the Taylor expansion of the probability mass function (6.9.22) about the

point h = 0 for different cases listed in Definition 6.3 complete the proof.
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solution #2: We can break the probability terms in conditions 3-11 of Definition 6.3 to

probabilities of univariate random variables using similar notations as those of Equa-

tions (6.9.17) and 6.9.18, and employ univariate Taylor expansion in each case as we

did in the proof of Theorem 6.1.

The proof above was under the condition of positively correlated Skellam random vector

(+,+ configuration). The proofs for the other three configurations in the bivariate

vector are similar.

6.9.3 The recursive parameter estimation algorithm

Similar to the univariate case we will use a recursive function to compute the log-

likelihood function. To make the formulation of the problem easy to follow, we will

introduce our methodology in the bivariate case,. The multivariate formulation will be

an obvious generalization. Discretizing time, we define the observable random variables

Xobs1 and Xobs2 for neurons 1 and 2, respectively.

X
obsj
i =

{
1 if a spike form neuron j occurs at time bin i

0 otherwise

Similar to Chapter 5, let {Z(j)
i , i = 0, 1, ...} represents the trajectory of the Skellam

process with resetting for neuron j. Furthermore, let k be, the number of steps from

the current time to the next time where Z
(1)
i = 1. Analogous to the value k, let ` be

the same values as k but for the second process. In other words,

k := min{i : Z
(1)
i = 1, i > current time}

` := min{i : Z
(2)
i = 1, i > current time}

where k, ` ∈ {1, 2, 3, ...}. The quantity

P (k, `|m,n) = Pr
(
Xobs1
k+i = 1, Xobs2

`+i = 1
∣∣∣Z(1)

i = m,Z
(2)
i = n

)
(6.9.23)

denotes the probability of observing the next spike form neuron 1 in exactly k > 0 and

from neuron 2 in exactly ` > 0 steps while the current state for neuron 1’s process is

m ≤ 1, and that of neuron 2 is n ≤ 1. Representing MS2(t+ h)−MS2(t) by MS2(h),

we introduce the following notation associated with Theorem 6.1.
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Pr

[
MS2(h) =

(
0

0

)]
= p00 , Pr

[
MS2(h) =

(
0

−1

)]
= p0− ,

Pr

[
MS2(h) =

(
0

1

)]
= p0+ , Pr

[
MS2(h) =

(
−1

0

)]
= p−0 ,

Pr

[
MS2(h) =

(
−1

1

)]
= p−+ , Pr

[
MS2(h) =

(
−1

−1

)]
= p−− ,

Pr

[
MS2(h) =

(
1

0

)]
= p+0 , Pr

[
MS2(h) =

(
1

−1

)]
= p+− ,

Pr

[
MS2(h) =

(
1

1

)]
= p++ . (6.9.24)

Now, conditioning P (k, `|m,n) in Equation 6.9.23 on the first step of each process we

have

If m < 0 and n < 0,

P (k, `|m,n) = p−−P (k − 1, `− 1|m− 1, n− 1) + p0−P (k − 1, `− 1|m,n− 1)

+p+−P (k − 1, `− 1|m+ 1, n− 1) + p−0P (k − 1, `− 1|m− 1, n)

+p00P (k − 1, `− 1|m,n) + p+0P (k − 1, `− 1|m+ 1, n)

+p−+P (k − 1, `− 1|m− 1, n+ 1) + p0+P (k − 1, `− 1|m,n+ 1)

+p++P (k − 1, `− 1|m+ 1, n+ 1) (6.9.25)

If m < 0 and n = 0,

P (k, `|m, 0) = p−−P (k − 1, `− 1|m− 1,−1) + p0−P (k − 1, `− 1|m,−1)

+p+−P (k − 1, `− 1|m+ 1,−1) + p−0P (k − 1, `− 1|m− 1, 0)

+p00P (k − 1, `− 1|m, 0) + p+0P (k − 1, `− 1|m+ 1, 0) (6.9.26)

If m = 0 and n < 0,

P (k, `|0, n) = p−−P (k − 1, `− 1| − 1, n− 1) + p0−P (k − 1, `− 1|0, n− 1)

+p−0P (k − 1, `− 1| − 1, n) + p00P (k − 1, `− 1|0, n)

+p−+P (k − 1, `− 1| − 1, n+ 1) + p0+P (k − 1, `− 1|0, n+ 1)

(6.9.27)
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If m = 0 and n = 0,

P (k, `|0, 0) = p−−P (k − 1, `− 1| − 1,−1) + p0−P (k − 1, `− 1|0,−1)

p−0P (k − 1, `− 1| − 1, 0) + p00P (k − 1, `− 1|0, 0) (6.9.28)

The initial/boundary conditions for Equations (6.9.25)-(6.9.28) are

P (k, `|m,n) =



0 if (m ≤ −k) or (n ≤ −`) or (m = k = 1) or (n = ` = 1)

p++ if (k = 1 & m = 0) and (` = 1 & n = 0)

A if (k = 1 & m = 0) and n = 1

B if m = 1 and (` = 1 & n = 0)

P (k − 1, `− 1|0, 0) if m = 1 and n = 1

where

A = P (1, `− 1|0, 0)

= p++I(`− 1 = 1)

+
[
p+0P (k, `− 2|m, 0) + p+−P (k, `− 2|m,−1)

]
I(`− 1 ≥ 1) ,

and

B = P (k − 1, 1|0, 0)

= p++I(k − 1 = 1)

+
[
p0+P (k − 2, `|0, n) + p−+P (k − 2, `| − 1, n)

]
I(k − 1 ≥ 1) .

In the univariate case of Chapter 5, we employed the conditional independence assump-

tion every time a spike was initiated; however, that assumption should be adjusted for

the bivariate case as resettings don’t occur simultaneously for different neurons. In this

case, whenever one of the neurons fires, we use the conditional independence property,

but also average over the possible states of the other neuron. Let us show the likelihood

derivation in an example. Let {t(j)i , i = 1, 2, ..., n1} be the spike times of the jth neuron,

j = 1, 2. Figure 6.4 shows a possible permutation of the spike times and the number

of steps between consecutive spikes for each neuron. The two quantities ki and `j in

this graph show the number of steps between consecutive spikes.

We will derive the likelihood function for this example. Likelihood derivation based

on any other permutation of spikes is similar. Let us derive the likelihood terms

corresponding to the intervals before the first and after the last spikes. Similar to the
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: Spike times of neuron 1

: Spike times of neuron 2

Time

. . .

. . .
t
(1)
1

t
(1)
2 t

(1)
n1

t
(2)
n2t

(2)
3t

(2)
2t

(2)
1

k0

`0 `1 `2 `n2

kn1k1

Figure 6.4: One example of possible permutations of the spikes from two neurons N1

and N2.

univariate case, we make use of stationary distributions of the marginal processes. Let

π(1) and π(2) be the stationary distributions of the SPRs associated with neuron 1

and neuron 2, respectively. First, consider the interval before the very first spike, i.e.[
0 , t

(1)
1

)
. Define the events Ak0 := {Xobs1

j = Xobs2
j = 0 for j < k0} and B`0

:= {Xobs2
j2

=

0 for j2 < `0}. We have,

Pr
(
Xobs1
k0

= 1 , Xobs2
`0

= 1 , Ak0 , B`0

)
=

∑
m

∑
n

Pr
(
Xobs1
k0

= Xobs2
`0

= 1 , Ak0 , B`0

∣∣∣Z(1)
0 = m,Z

(2)
0 = n

)
Pr
(
Z

(1)
0 = m,Z

(2)
0 = n

)
=

∑
m

∑
n

P (k0 , `0|m,n)Pr
(
Z

(1)
0 = m,Z

(2)
0 = n

)
We substitute the term Pr

(
Z

(1)
0 = m,Z

(2)
0 = n

)
with the product of marginal stationary

distributions π
(1)
2−m π

(2)
2−n. Therefore,

Pr
(
Xobs1
k0

= 1 , Xobs2
`0

= 1 , Ak0 , B`0

)
=
∑
m

∑
n

P (k0 , `0|m,n) π
(1)
2−m π

(2)
2−n (6.9.29)

Now, we derive the terms for the periods after the last spikes. According to Figure 6.4,

neuron 2 fires the las spike at time t
(2)
n2 , therefore, averaging over all possible values of

the trajectory of the other neurons’ SPR, for the time bin after the very last spike in

Figure 6.4 we have
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Pr
(
Xobsi

1+k∗ = 0, Xobsi
2+k∗ = 0, ... , Xobsi

kn1+k
∗ = 0 for i = 1, 2

∣∣∣ Zk∗ = 1
)

=

∑
m

{[
1−

`n2∑
j1=1

`n2∑
j2=1

P
(
j1 , j2

∣∣∣m, 1
)]

Pr
(
Z

(1)

t
(2)
n2

= m
)}

(6.9.30)

where k∗ =
∑n2−1

i=0 `i. Similarly, corresponding to the period between the last spike of

the first neuron and and the last spike of the second neuron, i.e.
[
t
(1)
n1 , t

(2)
n2

)
, we have

Pr
(
Xobs1

1+k∗∗ = 0, Xobs1
2+k∗∗ = 0, ... , Xobs1

w+k∗∗ = 0 for i = 1, 2
∣∣∣ Zk∗ = 1

)
=∑

n

{[
1−

kn∑
j=1

P
(
j ,

n2−1∑
i=0

`i −
n1−1∑
i=0

ki

∣∣∣1 , n)]Pr
(
Z

(2)

t
(1)
n1

= n
)}

(6.9.31)

where k∗∗ =
∑n1−1

i=0 ki and w =
∑n2−1

i=0 `i +
∑n1−1

i=0 ki . We substitute Pr
(
Z

(2)

t
(1)
n1

= n
)

and

Pr
(
Z

(1)

t
(2)
n1

= m
)

with the marginal stationary distributions π
(2)
2−n and π

(1)
2−m, respectively.

Equations (6.9.29), (6.9.30) and (6.9.31) count for the contribution of the first and last

subintervals of the spiking activity. The full likelihood function is

L
(
p;xobs1 ,xobs2

)
=

1∑
m=−k0+1

1∑
n=−`0+1

P
(
k0 , `0

∣∣∣m,n
)
π
(1)
2−m π

(2)
2−n ×∑

n

P
(
k1 , `0 − k0

∣∣∣1 , n) π(2)
2−n ×

∑
m

P
( 1∑
i=0

ki − `0 , `1
∣∣∣m, 1

)
π
(1)
2−m ×

∑
m

P
( 1∑
i=0

ki −
1∑
i=0

`i , `2

∣∣∣m, 1
)
π
(1)
2−m ×

∑
n

P
(
k2 ,

2∑
i=0

`i −
1∑
i=0

ki

∣∣∣1 , n) π(2)
2−n × · · · ×

∑
n

{[
1−

kn1
−`n2∑
j=1

P
(
j ,

n2−1∑
i=0

`i −
n1−1∑
i=0

ki

∣∣∣1 , n)] π(2)
2−n

}
×

∑
m

{[
1−

`n2∑
j1=1

`n2∑
j2=1

P
(
j1 , j2

∣∣∣m, 1
)]
π
(1)
2−m

}
(6.9.32)
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where p = (p−− , p−+ , ..., p++) is the vector of parameters. Taking the logarithm from

both sides of Equation (6.9.32) we get the loglikelihood function of the bivariate spike

trains,

`
(
p;xobs1 ,xobs2

)
= log

(
L
(
p;xobs1 ,xobs2

))
.
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Chapter 7

Discussion and Future Work

7.1 Introduction

This thesis focused on the statistical analysis of neural spike trains. We started with

an introduction to the anatomy and physiology of the nervous system and the concept

of information. Combining the work of Bickel et al. (2007, 2008) and Shao and Lii

(2011) with the multiscale approach of Kolaczyk and Nowak (2004), additive and

multiplicative multiscale models for the intensity function of neural spike trains within

the framework of inhomogeneous Poisson process were introduced and studied in detail.

To address some of the issues related to Poisson process framework, Skellam process

with resetting (SPR) was introduced and its theoretical properties were discussed. This

model was then generalized to the multivariate case to address the challenging problem

of simultaneous analysis of spike trains from multiple neurons. In both univariate

and multivariate cases, computationally efficient parameter estimation methods were

developed. In this chapter we discuss the “next steps” of the work laid out in earlier

chapters.

7.2 Multiscale analysis within Poisson framework

The details of the multiscale analysis of neural spike trains were discussed in chap-

ter 2 and 3. The two additive and multiplicative intensity functions with periodic
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components proposed there are

θm(t) = c(t)
{

(1−
K∑
k=1

ηk) +
K∑
k=1

ηk νγk
(
fkt+ ω

(0)
k

)}
, (7.2.1)

θa(t) =

(
1−

K∑
k=1

ηk

)
c(t) +

K∑
k=1

ηkνγk
(
fkt+ ω

(0)
k

)
, (7.2.2)

where

νγ
k
(x) = γ

k
[1 + cos(2π x)] , for ω

(0)
k < x < fk T + ω

(0)
k .

The models discussed in Chapter 2 assume that the initial phases ω(0) are constant

throughout the study period [0, T ). This model can be useful for the firing activity

of phase-locked neurons, Taniguchi and Ogawa (1987); Köppl (1997); Simoes et al.

(2003). Notice that the notion of phase can be used differently across neuroscience

literature. We emphasize that here the term “phase” simply refers to ω(0). The initial

phase can also change over time. Some evidence which suggests phase synchronization

as one of the important methods of functional integration in the brain is reviewed in

Varela et al. (2001). Furthermore, O’Keefe and Recce (1993) discovered the phase

precession phenomenon which is a property of hippocampal place cells of moving rats.

They show that the phase of the spikes from the place cells relative to the θ-rhythm

of the local field potential (LFP) decreases as the rat progresses through the field in

which it moves. Although their definition of phase is slightly different than that of

ours, dynamic changes in one, result in changes in values of the other. These pieces of

evidence suggest temporal estimation of ω(0). One temporal estimate of ω(0) could be

the multiscale estimate, which allows for different values for disjoint time intervals. If

the instantaneous phase of the whole intensity function is of interest, then the Hilbert

transform is a powerful tool to employ. However, if interest lies in individual phases,

which is usually the case in the analysis of brain rhythms, then we suggest keeping

several initial phases in the model. Studying this problem is left for future work.

7.3 Univariate Skellam process with resetting (SPR)

It was shown in Chapter 4 that the Skellam model is valid for over-dispersed data

(relative to Poisson). The fundamental question is if it is possible to develop a variation

of Skellam process such that it can accommodate under-dispersion. We have noticed,

through simulations, that such variation does exist. Discretizing time into bins of size

h, where h > 0 is an infinitesimal, one can simulate a Skellam process with resetting

parametrized by λ1 and λ2 in a random walk fashion as follows;

158



1. Define p+ = λ1h, p− = λ2h, p0 = 1− (λ1 + λ2)h, and set S(0) = 0 and t = 1.

2. Calculate S(t) = S(t − 1) + w, where w is a number in {−1, 0,+1} chosen

randomly with respect to probabilities P (−1) = p− , P (0) = p0 and P (+1) = p+ .

3. If
∑t

i=0 S(i) = 1 then set S(t + 1) = 0, t ← t + 2 and go to step 2. Otherwise,

t← t+ 1 and go to step 2.

The sequence S forms a sample path of the SPR with parameters λ1 and λ2. In our

simulations, the realizations S(t) = 1 are associated with spike time, and counting the

number of spikes in time bins of length T results in spike count data. Notice that the

important point in this simulation is that h > 0 is a small number. In fact, relative to

λ1 and λ2, h should be negligible. However, if h is not relatively small, we have noticed

that this process generates under dispersed data. Figure 7.1 plots the mean and vari-

ance of spike counts against each other. Each point in this graph plots the mean and

variance of spike counts in 50 realizations of an SPR with parameters λ1 ∈ {1, 2, ..., 40}
and λ2 ∈ {1, 2, ..., 40}. The Process has been observed over [0, T ] = [0, 5] and the bin

size for spike counting is 0.5, also h = 0.01. Notice that as λ1 and/or λ2 increase, the

probabilities p− , p0 and p+ increase drastically.
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Figure 7.1: The mean-variance relationship in an SPR model with parameters λ1 ∈
{1, 2, ..., 40} and λ2 ∈ {1, 2, ..., 40} where h = 0.01. The dashed line shows the

mean=variance line.

159



It is clear from the graph that increasing λi, i = 1, 2 relative to h, causes this under-

dispersion effect. As a future research problem, it will be interesting to investigate this

model in more details and use it as an approach for modelling under-dispersed spike

counts.

Based on Equation (4.5.15) in Chapter 4, it is easy to derive the exact distribution of

spike counts. Let Yi show the ith discretized interspike interval. Furthermore, let N∗(t)

denotes the number of spikes in the interval [0, t]. It can be shown (see Section 7.5)

that the probability mass function of N∗(t) is

Pr(N∗(t) = n) =
∞∑

x=dt/he

∂xΦn+1(t)

∂tx

∣∣∣
t=0
× 1

x!
−

∞∑
x=dt/he

∂xΦn(t)

∂tx

∣∣∣
t=0
× 1

x!
, (7.3.3)

where

Φk(t) =

[
(1− tp0)−

√
(1− tp0)

2 − 4t2p−p+

2p−

]k
.

We have noticed through simulations that this distribution under time scales that are

neither as small or as large as those of Section 4.5 can be well-approximated by the con-

ditional Skellam distribution Pr(X|X > 0), where X ∼ Sk(λ1, λ2). For this simulation

study, we generated 1000 realizations of the process with parameters (λ1, λ2) = (10, 9).

In this simulation, the length of each step is h = 0.01 and [0, T ] = [0, 5]. Notice that

these values of λi, i = 1, 2 do not satisfy the conditions discussed in Section 4.5. Figure

7.2 shows the raster plot of the simulated data. Notice that the Skellam process was

reset to the previous record value after each spike.

The results of this simulation study are summarized in Figure 7.3. The red curve

superimposed on the histogram of spike counts, panel (b), is the density function of

the Skellam random variable X conditional on X > 0. The plot of the data quantiles

versus the quantiles of the conditional Skellam distribution, panel (c), confirms the

distribution of the data is well approximated by the conditional Skellam distribution.

Panel (d) plots the value of the path of the Skellam process with resetting (resetting to

the previous record) at t = 5 (end of the observation window) versus the spike counts

for each of the 1000 trials. The plot shows that the two random variables are positively

correlated, but, obviously, are not the same.

7.4 Multivariate Skellam process with resetting (MSPR)

The multivariate Skellam process with resetting (MSPR) was discussed in Chapter 6.

As a topic which has just been introduced, there are quite a few places for future work,
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Figure 7.2: Raster plot of 1000 spike trains generated from the Skellam process with

resetting with parameters (λ1, λ2) = (10, 9).

from both theoretical and computational points of view.

The so-called moment-profile likelihood parameter estimation method was discussed in

Chapter 6. It was mentioned, during the real data analysis in that chapter, that using

the plug-in moment estimate of parameter γij (or the covariances) in the likelihood

function may cause bias in the estimation. The effect of using the moment estimate as

a plug-in estimate in this particular problem has not been investigated. It is interesting

to study the asymptotic behavior of the moment-profile likelihood estimator, and see if

it is possible to improve it in terms of both variability and bias (if it is not unbiased).

One problem of interest in the simultaneous analysis of multiple neural spike trains

is dimensionality reduction. Analyzing an ensemble of neurons, estimation of the co-

variance matrix Σ will be a high dimensional problem. Dimensionality reduction, or

clustering the neurons is an interesting problem for future work in this area. Based on

a collection of p neurons, the first step would be to perform a principal components
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Figure 7.3: Simulation study based on 1000 realizations of a Skellam process with

resetting (to the previous record value) over the interval [0, T ] = [0, 5] with (λ1, λ2) =

(10, 9). a: Sample path of one realization. b: The histogram of spike counts per trial

with the density of the conditional Skellam distribution superimposed (the red curve).

c: The quantiles of the conditional Skellam distribution vs. the quantiles of the data.

d: The plot of spike counts per trial vs the value of the Skellam path at the end of

interval, i.e. at t = 5.

analysis (PCA) on the p× p covariance matrix of the spike counts. However, being in-

terested in marginal Skellam models for individual neurons, the optimization problem

should be of the form

max
a

(
aTΣa

)
s.t. ai ∈ Z ,
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where Σ is the covariance matrix of the neural spike trains and the vector a =

(a1, ..., ap)
T includes the coefficients. The set of integers are shown by Z. Clearly,

ais have to be bounded. We are currently investigating this problem.

Another important, and interesting problem for future work on MSPR is the estimation

of the functions λ11(t), λ12(t), λ21(t), λ22(t) and γ12(t) in the inhomogeneous case. The

importance of the multiscale estimation in this context has been discussed in details

in Chapters 2 and 3, so generalizing this multiscale approach to the multivariate case

will be a valuable estimation method.

We mentioned that the recursive algorithm of Chapter 5 for parameter estimation

is not pragmatic in the multivariate case as it is computationally intensive. Further

investigation of this algorithm to improve it in terms of speed is an interesting research

problem.

7.5 Derivation of spike count distribution

In this appendix we derive the distribution of the spike counts introduced in Equation

(7.3.3). We showed in Chapter 4 that

Φ(t) = E(tYi)

= Φ(t) =
(1− tp0)−

√
(1− tp0)

2 − 4t2p−p+

2p−
.

Let Ti show the time of the ith spike (continuous time scale). Since Tn = T1 + (T2 −
T1) + (T3 − T2) + · · ·+ (Tn − Tn−1), the PGF of the discretized interspike interval is

Φn(t) =

[
(1− tp0)−

√
(1− tp0)

2 − 4t2p−p+

2p−

]n
.

Now, we have

Pr
(
N∗(t) < n

)
= Pr

(
Tn > t

)
= Pr

(( n∑
i=1

Yi
)
h > t

)
= Pr

( n∑
i=1

Yi > t/h
)
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However,

Pr
( n∑
i=1

Yi = k
)

=
∂kΦn(t)

∂tk

∣∣∣
t=0
× 1

k!
,

therefore,

Pr
(
N∗(t) = n

)
= Pr

(
N∗(t) < n+ 1

)
− Pr

(
N∗(t) < n

)
= Pr

( n+1∑
i=1

Yi > t/h
)
− Pr

( n∑
i=1

Yi > t/h
)

=
∞∑

x=dt/he

∂xΦn+1(t)

∂tx

∣∣∣
t=0
× 1

x!
−

∞∑
x=dt/he

∂xΦn(t)

∂tx

∣∣∣
t=0
× 1

x!
,

where

Φk(t) =

[
(1− tp0)−

√
(1− tp0)

2 − 4t2p−p+

2p−

]k
.

164



Bibliography

Abramowitz, M. and Stegun, I. A., editors (1972). Handbook of Mathematical Func-

tions, with Formulas, Graphs and Mathematical Tables. United States Government

Printing Office, Washington, DC.

Adrian, E. D. (1926a). The impulses produced by sensory nerve endings part 1. Journal

of Physiology, 61(1):49–72.

Adrian, E. D. (1926b). The impulses produced by sensory nerve endings part 4: Im-

pulses from pain receptors. Journal of Physiology, 62(1):33–51.

Adrian, E. D. (1928). The basis of sensation: the action of the sense organs. W.W.

Norton & Co., New York, NY.

Adrian, E. D. (1930). The effects of injury on mammalian nerve fibers. Proceedings of

the Royal Society of London. Series B, Containing Papers of a Biological Character,

106(747):596–618.

Adrian, E. D. (1965). Nobel Lectures, Physiology or Medicine: 1922-1941. World

Scientific, River Edge, NJ.

Adrian, E. D. and Zotterman, Y. (1926a). The impulses produced by sensory nerve

endings part 2: The response of a single end organ. Journal of Physiology, 61(2):151–

171.

Adrian, E. D. and Zotterman, Y. (1926b). The impulses produced by sensory nerve

endings part 3: Impulses set up by touch and pressure. Journal of Physiology,

61(4):465–483.

Ahmadian, Y., Pillow, J., Shlens, J., Simoncelli, E., Chichilnisky, E., and Paninski, L.

(2009). A decoder-based spike train metric for analyzing the neural code in the retina.

In Computational and systems neuroscience, Frontiers in Systems Neuroscience.

165



Akaike, H. (1971). Information theory and an extension of the maximum likelihood

principle. In 2nd International Symposium on Information Theory, pages 267–281.

Akademia Kiado, Budapest.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transac-

tions on Automatic Control, 19(6):716–723.

Alzaid, A. A. and Omair, M. A. (2010). On the Poisson difference distribution inference

and applications. Bulletin of the Malaysian Mathematical Sciences Society, 33(1):17–

45.

Ananthanarayanan, R. and Modha, D. S. (2007). Anatomy of cortical simulator. In

SC07 proceeding of the 2007 ACM/IEEE conference on Supercomputing.

Anderson, T. W. (2003). An introduction to multivariate statistical analysis. John

Wiley & Sons, New York, NY.

Antic, S., Cohen, L. B., Lam, Y. W., Wachowiak, M., Zecevic, D., and Zochowski,

M. (1999). Fast multisite optical measurement of membrane potential: three exam-

ples. The Journal of the Federation of American Societies for Experimental Biology,

13:s271–s276.

Aoyama, K., Shimizu, K., and Ong, S. H. (2008). A first-passage time random walk

distribution with five transition probabilities: a generalization of the shifted inverse

trinomial. Annals of the Institute of Statistical Mathematics, 60(1):1–20.

Arrillaqa, J. and Watson, N. R. (2003). Power System Harmonics. John Wiley & Sons,

New York, NY, 2nd edition.

Arzoumanian, Z., Cordes, J. M., and Wasserman, I. (1999). Pulsar spin evolution,

kinematics, and the birthrate of neutron star binaries. The Astrophysical Journal,

520:696–705.

Averbeck, B. B. (2009). Poisson or not Poisson: differences in spike train statistics

between parietal cortical areas. Neuron, 62(3):310–311.

Averbeck, B. B., Latham, P. E., and Pouget, A. (2006). Neural correlations, population

coding and computation. Nature Reviews Neuroscience, 7:358–366.

Axmacher, N., Henseler, M., Jensen, O., Weinreich, I., Elger, C., and Fell, J. (2010).

Cross-frequency coupling supports multi-item working memory in the human hip-

pocampus. PNAS, 10(7):3228–3233.

166



Bachman, G., Lawrence, N., and Beckenstein, E. (2000). Fourier and Wavelet Analysis.

Springer, New York, NY.

Bai, O., Lin, P., Vorbach, S., Floeter, M. K., Hattori, N., and Hallett, M. (2008). A high

performance sensorimotor beta rhythm-based brain-computer interface associated

with human natural motor behavior. Journal of Neural Engineering, 5:24–35.

Bajaj, C. (1999). Data Visualization Techniques. John Wiley & Sons, New York, NY.

Banerjee, A., Dean, H. L., and Pesaran, B. (2012). Parametric models to relate spike

train and LFP dynamics with neural information processing. Frontiers in Compu-

tational Neuroscience, 6:51.

Bar-Gad, I., Ritov, Y., and Bergman, H. (2001). The neuronal refractory period causes

a short-term peak in the autocorrelation function. Journal of Neuroscience Methods,

104:155–163.

Bar-Lev, S. K. and Pommeret, D. (2003). A note on natural exponential families with

cuts. Statistics and Probability Letters, 63:215–221.

Barbieri, R., Frank, L., Nguyen, D. P., Quirk, M. C., Solo, V., Wilke, M., and Brown,

E. N. (2004). Dynamic analysis of information encoding in neural ensembles. Neural

Computation, 16:277–307.

Barbieri, R., Quirk, M. C., Frank, L. M., Wilson, M. A., and Brown, E. N. (2001).

Construction and analysis of non-Poisson stimulus-response models of neural spiking

activity. Journal of Neuroscience, 105:25–37.

Barndorff-Nielsen, O. E. (1976). Factorization of likelihood functions for full exponen-

tial families. Journal of the Royal Statistical Society. Series B, 38(1).

Barndorff-Nielsen, O. E. (1978). Information and Exponential Families in Statistical

Theory. John Wiley & Sons, New York, NY.

Barndorff-Nielsen, O. E., Pollard, D. G., and Shephard, N. (2010). Discrete-valued
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